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Preface to the second edition

There have been ten years since the publication of the first edition of this
book. Since then, new applications and developments of the Malliavin cal-
culus have appeared. In preparing this second edition we have taken into
account some of these new applications, and in this spirit, the book has
two additional chapters that deal with the following two topics: Fractional
Brownian motion and Mathematical Finance.

The presentation of the Malliavin calculus has been slightly modified
at some points, where we have taken advantage of the material from the
lectures given in Saint Flour in 1995 (see reference [248]). The main changes
and additional material are the following:

In Chapter 1, the derivative and divergence operators are introduced in
the framework of an isonormal Gaussian process associated with a general
Hilbert space H. The case where H is an L?-space is trated in detail after-
wards (white noise case). The Sobolev spaces D®P, with s is an arbitrary
real number, are introduced following Watanabe’s work.

Chapter 2 includes a general estimate for the density of a one-dimensional
random variable, with application to stochastic integrals. Also, the com-
position of tempered distributions with nondegenerate random vectors is
discussed following Watanabe’s ideas. This provides an alternative proof
of the smoothness of densities for nondegenerate random vectors. Some
properties of the support of the law are also presented.

In Chapter 3, following the work by Alos and Nualart [10], we have
included some recent developments on the Skorohod integral and the asso-
ciated change-of-variables formula for processes with are differentiable in
future times. Also, the section on substitution formulas has been rewritten
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and an It6-Ventzell formula has been added, following [248]. This for-
mula allows us to solve anticipating stochastic differential equations in
Stratonovich sense with random initial condition.

There have been only minor changes in Chapter 4, and two additional
chapters have been included. Chapter 5 deals with the stochastic calculus
with respect to the fractional Brownian motion. The fractional Brownian
motion is a self-similar Gaussian process with stationary increments and
variance t2f. The parameter H € (0,1) is called the Hurst parameter.
The main purpose of this chapter is to use the the Malliavin Calculus
techniques to develop a stochastic calculus with respect to the fractional
Brownian motion.

Finally, Chapter 6 contains some applications of Malliavin Calculus in
Mathematical Finance. The integration-by-parts formula is used to com-
pute “greeks”, sensitivity parameters of the option price with respect to the
underlying parameters of the model. We also discuss the application of the
Clark-Ocone formula in hedging derivatives and the additional expected
logarithmic utility for insider traders.

August 20, 2005 David Nualart
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The origin of this book lies in an invitation to give a series of lectures on
Malliavin calculus at the Probability Seminar of Venezuela, in April 1985.
The contents of these lectures were published in Spanish in [245]. Later
these notes were completed and improved in two courses on Malliavin cal-
culus given at the University of California at Irvine in 1986 and at Ecole
Polytechnique Fédérale de Lausanne in 1989. The contents of these courses
correspond to the material presented in Chapters 1 and 2 of this book.
Chapter 3 deals with the anticipating stochastic calculus and it was de-
veloped from our collaboration with Moshe Zakai and Etienne Pardoux.
The series of lectures given at the Eighth Chilean Winter School in Prob-
ability and Statistics, at Santiago de Chile, in July 1989, allowed us to
write a pedagogical approach to the anticipating calculus which is the ba-
sis of Chapter 3. Chapter 4 deals with the nonlinear transformations of the
Wiener measure and their applications to the study of the Markov property
for solutions to stochastic differential equations with boundary conditions.
The presentation of this chapter was inspired by the lectures given at the
Fourth Workshop on Stochastic Analysis in Oslo, in July 1992. I take the
opportunity to thank these institutions for their hospitality, and in par-
ticular I would like to thank Enrique Cabana, Mario Wschebor, Joaquin
Ortega, Siileyman Ustiinel, Bernt Oksendal, Renzo Cairoli, René Carmona,
and Rolando Rebolledo for their invitations to lecture on these topics.
We assume that the reader has some familiarity with the Ito stochastic
calculus and martingale theory. In Section 1.1.3 an introduction to the It6
calculus is provided, but we suggest the reader complete this outline of the
classical It6 calculus with a review of any of the excellent presentations of
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this theory that are available (for instance, the books by Revuz and Yor
[292] and Karatzas and Shreve [164]).

In the presentation of the stochastic calculus of variations (usually called
the Malliavin calculus) we have chosen the framework of an arbitrary cen-
tered Gaussian family, and have tried to focus our attention on the notions
and results that depend only on the covariance operator (or the associated
Hilbert space). We have followed some of the ideas and notations developed
by Watanabe in [343] for the case of an abstract Wiener space. In addition
to Watanabe’s book and the survey on the stochastic calculus of variations
written by Ikeda and Watanabe in [144] we would like to mention the book
by Denis Bell [22] (which contains a survey of the different approaches to
the Malliavin calculus), and the lecture notes by Dan Ocone in [270]. Read-
ers interested in the Malliavin calculus for jump processes can consult the
book by Bichteler, Gravereaux, and Jacod [35].

The objective of this book is to introduce the reader to the Sobolev dif-
ferential calculus for functionals of a Gaussian process. This is called the
analysis on the Wiener space, and is developed in Chapter 1. The other
chapters are devoted to different applications of this theory to problems
such as the smoothness of probability laws (Chapter 2), the anticipating
stochastic calculus (Chapter 3), and the shifts of the underlying Gaussian
process (Chapter 4). Chapter 1, together with selected parts of the sub-
sequent chapters, might constitute the basis for a graduate course on this
subject.

I would like to express my gratitude to the people who have read the
several versions of the manuscript, and who have encouraged me to com-
plete the work, particularly I would like to thank John Walsh, Giuseppe Da
Prato, Moshe Zakai, and Peter Imkeller. My special thanks go to Michael
Rockner for his careful reading of the first two chapters of the manuscript.

March 17, 1995 David Nualart
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Introduction

The Malliavin calculus (also known as the stochastic calculus of variations)
is an infinite-dimensional differential calculus on the Wiener space. It is tai-
lored to investigate regularity properties of the law of Wiener functionals
such as solutions of stochastic differential equations. This theory was ini-
tiated by Malliavin and further developed by Stroock, Bismut, Watanabe,
and others. The original motivation, and the most important application of
this theory, has been to provide a probabilistic proof of Hérmander’s “sum
of squares” theorem.

One can distinguish two parts in the Malliavin calculus. First is the
theory of the differential operators defined on suitable Sobolev spaces of
Wiener functionals. A crucial fact in this theory is the integration-by-parts
formula, which relates the derivative operator on the Wiener space and the
Skorohod extended stochastic integral. A second part of this theory deals
with establishing general criteria in terms of the “Malliavin covariance ma-
trix” for a given random vector to possess a density or, even more precisely,
a smooth density. In the applications of Malliavin calculus to specific exam-
ples, one usually tries to find sufficient conditions for these general criteria
to be fulfilled.

In addition to the study of the regularity of probability laws, other appli-
cations of the stochastic calculus of variations have recently emerged. For
instance, the fact that the adjoint of the derivative operator coincides with
a noncausal extension of the Ito stochastic integral introduced by Skoro-
hod is the starting point in developing a stochastic calculus for nonadapted
processes, which is similar in some aspects to the It6 calculus. This antic-
ipating stochastic calculus has allowed mathematicians to formulate and
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discuss stochastic differential equations where the solution is not adapted
to the Brownian filtration.

The purposes of this monograph are to present the main features of the
Malliavin calculus, including its application to the proof of Hérmander’s
theorem, and to discuss in detail its connection with the anticipating stoch-
astic calculus. The material is organized in the following manner:

In Chapter 1 we develop the analysis on the Wiener space (Malliavin
calculus). The first section presents the Wiener chaos decomposition. In
Sections 2,3, and 4 we study the basic operators D, §, and L, respectively.
The operator D is the derivative operator, ¢ is the adjoint of D, and L
is the generator of the Ornstein-Uhlenbeck semigroup. The last section of
this chapter is devoted to proving Meyer’s equivalence of norms, following
a simple approach due to Pisier. We have chosen the general framework of
an isonormal Gaussian process {W(h),h € H} associated with a Hilbert
space H. The particular case where H is an L? space over a measure space
(T, B, 1) (white noise case) is discussed in detail.

Chapter 2 deals with the regularity of probability laws by means of the
Malliavin calculus. In Section 3 we prove Hormander’s theorem, using the
general criteria established in the first sections. Finally, in the last section
we discuss the regularity of the probability law of the solutions to hyperbolic
and parabolic stochastic partial differential equations driven by a space-
time white noise.

In Chapter 3 we present the basic elements of the stochastic calculus for
anticipating processes, and its application to the solution of anticipating
stochastic differential equations. Chapter 4 examines different extensions of
the Girsanov theorem for nonlinear and anticipating transformations of the
Wiener measure, and their application to the study of the Markov property
of solution to stochastic differential equations with boundary conditions.

Chapter 5 deals with some recent applications of the Malliavin Calcu-
lus to develop a stochastic calculus with respect to the fractional Brownian
motion. Finally, Chapter 6 presents some applications of the Malliavin Cal-
culus in Mathematical Finance.

The appendix contains some basic results such as martingale inequalities
and continuity criteria for stochastic processes that are used along the book.
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Analysis on the Wiener space

In this chapter we study the differential calculus on a Gaussian space. That
is, we introduce the derivative operator and the associated Sobolev spaces
of weakly differentiable random variables. Then we prove the equivalence of
norms established by Meyer and discuss the relationship between the basic
differential operators: the derivative operator, its adjoint (which is usually
called the Skorohod integral), and the Ornstein-Uhlenbeck operator.

1.1  Wiener chaos and stochastic integrals

This section describes the basic framework that will be used in this mono-
graph. The general context consists of a probability space (2, F, P) and
a Gaussian subspace H; of L%(, F, P). That is, H; is a closed subspace
whose elements are zero-mean Gaussian random variables. Often it will
be convenient to assume that H; is isometric to an L? space of the form
L?(T, B, i), where y is a o-finite measure without atoms. In this way the
elements of H; can be interpreted as stochastic integrals of functions in
L?(T, B, u) with respect to a random Gaussian measure on the parameter
space T (Gaussian white noise).

In the first part of this section we obtain the orthogonal decomposition
into the Wiener chaos for square integrable functionals of our Gaussian
process. The second part is devoted to the construction and main properties
of multiple stochastic integrals with respect to a Gaussian white noise.
Finally, in the third part we recall some basic facts about the It6 integral.
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1.1.1  The Wiener chaos decomposition

Suppose that H is a real separable Hilbert space with scalar product de-
noted by (-,-) . The norm of an element h € H will be denoted by ||h| g -

Definition 1.1.1 We say that a stochastic process W = {W(h),h € H}
defined in a complete probability space (0, F, P) is an isonormal Gaussian
process (or a Gaussian process on H) if W is a centered Gaussian family
of random variables such that E(W (h)W (g)) = (h,g)m for all h,g € H.

Remarks:

1. Under the above conditions, the mapping h — W (h) is linear. Indeed,
for any A\, p € R, and h,g € H, we have

E ((W(Ah+ pg) — AW (h) — pW (9))?) = Ak + ugli3;
+N2 R + 12 Nlgl 3 — 2M(AR + pg, hYu
—2u(Ah + pg, 9)m + 22 u(h, gy g = 0.

The mapping h — W (h) provides a linear isometry of H onto a closed
subspace of L?(Q, F, P) that we will denote by H;. The elements of H; are
zero-mean Gaussian random variables.

2. In Definition 1.1.1 it is enough to assume that each random variable
W (h) is Gaussian and centered, since by Remark 1 the mapping h — W (h)
is linear, which implies that {WW(h)} is a Gaussian family.

3. By Kolmogorov’s theorem, given the Hilbert space H we can always
construct a probability space and a Gaussian process {W (h)} verifying the
above conditions.

Let H,(x) denote the nth Hermite polynomial, which is defined by

—1)" L2 d" 22
H,(z) = ( n') ez dmn(e_T), n>1,

and Hy(x) = 1. These polynomials are the coefficients of the expansion in
powers of t of the function F(x,t) = exp(tx — %) In fact, we have

x? 1
F(z,t) = o Z(z—1t)?
(0.t) = ey —5@—1?)
L (z—1)2
= 2 —(——e T 2 _ 1.1
¢T3 e e (1)

I

(]
i
=
—
&
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Using this development, one can easily show the following properties:

H!(r) = H, 1(x), n>1, (1.2)
(n+1)Hpp1(x) = aHp(z) — Hp—1(2x), n>1, (1.3)
Hy,(—z) = (—=1)"H,(z), n > 1. (1.4)

Indeed, (1.2) and (1.3) follow from g—i = tF, respectively, and %—I; = (z —
t)F, and (1.4) is a consequence of F(—z,t) = F(x,—t).

The first Hermite polynomials are Hy(z) = x and Ha(z) = 3(2? — 1).
From (1.3) it follows that the highest-order term of H,, () is % Also, from
the expansion of F(0,t) = exp(fg) in powers of t, we get H,(0) =0if n
is odd and Hay(0) = % for all & > 1. The relationship between Hermite

polynomials and Gaussian random variables is explained by the following
result.

Lemma 1.1.1 Let X, Y be two random variables with joint Gaussian dis-
tribution such that E(X) = E(Y) =0 and E(X?) = E(Y?) = 1. Then for
all n,m > 0 we have

BULCH0) =4 Y eerye it n o

Proof:  For all s,t € R we have

2 2
E <exp(sX - 5) exp(tY — 2)) = exp(stE(XY)).

Taking the (n + m)th partial derivative DU a4t s =t =0 in both sides

asmot™
of the above equality yields

0 if n#m.

E(n!m!H,(X)Hny(Y)) = { nl(BE(XY)" if n=nm.

O

We will denote by G the o-field generated by the random variables
{W(h),h € H}.

Lemma 1.1.2 The random variables {"V ") h € H} form a total subset
of L*(Q,G, P).

Proof:  Let X € L?(Q,G, P) be such that E(XeV (") =0 for all h € H.
The linearity of the mapping h — W (h) implies

E (X expit,-W(h,;)> =0 (1.5)

i=1
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for any t1,...,tm € R, hy,...,hy € H, m > 1. Suppose that m > 1 and
hi,...,hm € H are fixed. Then Eq. (1.5) says that the Laplace transform
of the signed measure

I/(B) =F (XlB (W(hl)v R} W(hm))) )

where B is a Borel subset of R™, is identically zero on R". Consequently,
this measure is zero, which implies E(X1g) = 0 for any G € G. So X =0,
completing the proof of the lemma. O

For each n > 1 we will denote by H, the closed linear subspace of
L?(Q, F, P) generated by the random variables { H,,(W (h)),h € H, ||h||g =
1}. Hp will be the set of constants. For n = 1, H; coincides with the set of
random variables {W(h),h € H}. From Lemma 1.1.1 we deduce that the
subspaces H,, and H,, are orthogonal whenever n # m. The space H,, is
called the Wiener chaos of order n, and we have the following orthogonal
decomposition.

Theorem 1.1.1 Then the space L?(2,G, P) can be decomposed into the
infinite orthogonal sum of the subspaces H,,:

Lz(Qa g, P) = @;L.OZOHTL'

Proof:  Let X € L?(Q,G, P) such that X is orthogonal to H, for all
n > 0. We want to show that X = 0. We have E(XH, (W (h))) = 0 for
all h € H with ||h||gy = 1. Using the fact that 2™ can be expressed as a
linear combination of the Hermite polynomials H,.(x), 0 < r < n, we get
E(XW(h)™) =0 for all n > 0, and therefore E(X exp(tW(h))) = 0 for all
t € R, and for all h € H of norm one. By Lemma 1.1.2 we deduce X = 0,
which completes the proof of the theorem. O

For any n > 1 we can consider the space P formed by the random
variables p(W(hy),...,W(hy)), where k > 1, hy,...,hy; € H, and p is a
real polynomial in k variables of degree less than or equal to n. Let P, be
the closure of P? in L2. Then it holds that Ho®H1®- - -HH,, = Pp. In fact,
the inclusion ®}_yH; C Py, is immediate. To prove the converse inclusion,
it suffices to check that P, is orthogonal to H,, for all m > n. We want to
show that E(p(W(h1),...,W(hg))Hmn(W(h))) = 0, where ||h||lg = 1, p is
a polynomial of degree less than or equal to n, and m > n. We can replace
p(W(h1),...,W(hy)) by qW(e1),...,W(e;), W(h)), where {e1,...,e;,h}
is an orthonormal family and the degree of ¢ is less than or equal to n. Then
it remains to show only that E(W (h)"H,,(W(h))) =0 for all r < n < m;
this is immediate because x” can be expressed as a linear combination of
the Hermite polynomials Hy(z), 0 < ¢ <r.

We denote by J,, the projection on the nth Wiener chaos H,,.

Example 1.1.1 Consider the following simple example, which corresponds
to the case where the Hilbert space H is one-dimensional. Let (2, F, P) =
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(R, B(R),v), where v is the standard normal law N(0,1). Take H =R, and
for any h € R set W(h)(xz) = ha. There are only two elements in H of
norm one: 1 and —1. We associate with them the random variables x and
—x, respectively. From (1.4) it follows that H,, has dimension one and is
generated by H, (x). In this context, Theorem 1.1.1 means that the Hermite
polynomials form a complete orthonormal system in L*(R,v).

Suppose now that H is infinite-dimensional (the finite-dimensional case
would be similar and easier), and let {e;,4 > 1} be an orthonormal basis
of H. We will denote by A the set of all sequences a = (a1, as,...), a; €N,
such that all the terms, except a finite number of them, vanish. For a € A
we set al = [[;2; a;! and |a| = >°72, a;. For any multiindex a € A we define
the generalized Hermite polynomial H,(z), z € RY, by

H,(z) = HH ().

The above product is well defined because Hy(x) = 1 and a; # 0 only for
a finite number of indices.
For any a € A we define

0o = Val [ [ Ha,(W(es)). (1.6)
i=1
The family of random variables {®,,a € A} is an orthonormal system.
Indeed, for any a,b € A we have

[ E(Ha, (W (ei) Ho, (W (ei)))

=1
= { 0 if a#b (L7)

Proposition 1.1.1 For any n > 1 the random variables

E (H Ha,i(W(ei))Hbi(W(ei))>

{@a,a € A, la] =n} (1.8)
form a complete orthonormal system in H,,.

Proof:  Observe that when n varies, the families (1.8) are mutually orthog-
onal in view of (1.7). On the other hand, the random variables of the family
(1.8) belong to P,,. Then it is enough to show that every polynomial ran-
dom variable p(W(hy),...,W(hy)) can be approximated by polynomials
in W (e;), which is clear because {e;,i > 1} is a basis of H. O

As a consequence of Proposition 1.1.1 the family {®,,a € A} is a com-
plete orthonormal system in L?(Q, G, P).
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Let a € A be a multiindex such that |a| = n. The mapping
I, (symm (®52,e2")) = Val®, (1.9)

provides an isometry between the symmetric tensor product H @’", equipped
with the norm vn! ||| yon, and the nth Wiener chaos H,,. In fact,

2 a\* n! o ®a;||2 al
e = ol a”®i:16i

i ®ai) H®n — E

Hsymm (®i:1 e;

and

=al.

H\/a%

As a consequence, the space L?(Q,G, P) is isometric to the Fock space,
defined as the orthogonal sum €9, VnlH®" In the next section we will
see that if H is an L? space of the form L?(T, B, i), then I, coincides with
a multiple stochastic integral.

2
2

1.1.2  The white noise case: Multiple Wiener-Ito integrals

Assume that the underlying separable Hilbert space H is an L? space of
the form L?(T, B, ), where (T, B) is a measurable space and p is a o-finite
measure without atoms. In that case the Gaussian process W is character-
ized by the family of random variables {W(A), A € B, u(A4) < oo}, where
W (A) = W(14). We can consider W(A) as an L?(Q, F, P)-valued mea-
sure on the parameter space (T, B), which takes independent values on any
family of disjoint subsets of T, and such that any random variable W (A)
has the distribution N (0, u(A)) if p(A) < co. We will say that W is an
L?(Q)-valued Gaussian measure (or a Brownian measure) on (7', B). This
measure will be also called the white noise based on u. In that sense, W(h)
can be regarded as the stochastic integral (Wiener integral) of the function
h € L*(T) with respect to W. We will write W (h) = [, hdW, and observe
that this stochastic integral cannot be defined pathwise, because the paths
of {W(A)} are not o-additive measures on 7. More generally, we will see
in this section that the elements of the nth Wiener chaos H,, can be ex-
pressed as multiple stochastic integrals with respect to W. We start with
the construction of multiple stochastic integrals.

Fix m > 1. Set By = {A € B : u(A) < oco}. We want to define the
multiple stochastic integral I,,,(f) of a function f € L2(T™,B™, ™). We
denote by &, the set of elementary functions of the form

n

f(tl,...,tm) = Z ail'”im]'AilX'”XAim (tl,...,tm), (1.10)

i1eim=1

where Aq, Ao, ..., A, are pairwise-disjoint sets belonging to By, and the
coefficients a;,...;,, are zero if any two of the indices 41,...,, are equal.
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The fact that f vanishes on the rectangles that intersect any diagonal
subspace {t; = t;,i # j} plays a basic role in the construction of the
multiple stochastic integral.

For a function of the form (1.10) we define

n

Im(f) = Z auZmW(An)W(A’Lm)

By esbm =1

This definition does not depend on the particular representation of f, and
the following properties hold:

(i) I, is linear,

(ii) In(f) = In(f), where f denotes the symmetrization of f, which
means

1
f(tla s atm) - % Zf(ta(l)a s 7t0'(7n))a

o running over all permutations of {1,...,m},

0 if m#gq,
'I’TL'(JP7 §>L2(T1n) if m =gq.

(i) Bn(f)L(9)) = {

Proof of these properties:

Property (i) is clear. In order to show (ii), by linearity we may assume
that f(t1,...,tm) = 14, xxA;, (t1,...,tm), and in this case the property
is immediate. In order to show property (iii), consider two symmetric func-
tions f € &, and g € £,. We can always assume that they are associated
with the same partition Aj,..., A,. The case m # ¢ is easy. Finally, let
m = ¢ and suppose that the functions f and g are given by (1.10) and by

n

g(tla"'atm) = Z bil-uimlAil><--~><A,-m(t1a---7tm)7

U1,y im =1

respectively. Then we have

E(n(Nln(9) = E(( Y ml a0, W(Ai) - W(A,,))

11 <<y
(3D ml by, WAL W(AL,)) )
11 <<l
= Y (m)2ai iy by (A - (A,
i< i

= ml(f,g)r2(m)-

In order to extend the multiple stochastic integral to the space L?(T™),
we have to prove that the space &, of elementary functions is dense in
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L?(T™). To do this it suffices to show that the characteristic function of
any set A = Ay X Ay X+ X A, A; € By, 1 < i < m, can be approximated
by elementary functions in &,,. Using the nonexistence of atoms for the
measure 4, for any € > 0 we can determine a system of pairwise-disjoint
sets {B1,...,B,} C By, such that u(B;) < € for any ¢ = 1,...,n, and
each A; can be expressed as the disjoint union of some of the B;. This is
possible because for any set A € By of measure different from zero and
any 0 < v < p(A) we can find a measurable set B C A of measure . Set
w(U, A;) = a. We have
n

14 = E eil---imlBilX---XBima

i1yeenim=1

where ¢;,...; is 0 or 1. We divide this sum into two parts. Let I be the set

m

of mples (i1,...,%4m), where all the indices are different, and let J be the
set of the remaining mples. We set
1p = Z €iyipy LB;) % x By, -
(il ,,,,, inl)GI

Then 1p belongs to the space &,,, B C A, and we have

114 = 1B[Z220rm) = > hini(Bi,) - p(Bi,,)
(i1yeeerim )EJ
n n m—2
m
< ()T (Zu<3i>>
=1 i=1
<

m m—1
( K )ea |

which shows the desired approximation.

Letting f = g in property (iii) obtains

E(Ln(f)?) = m!l fIZ2¢m) < m 1172 (zm)-

Therefore, the operator I,,, can be extended to a linear and continuous
operator from L2?(T™) to L?(Q, F, P), which satisfies properties (i), (ii),
and (iii). We will also write [, f(t1,...,tm)W (dt1) -+ W (dty,) for I, (f).

If f € L?>(TP) and g € L?(T?) are symmetric functions, for any 1 < r <
min(p, ¢) the contraction of r indices of f and g is denoted by f ®, g and
is defined by

(f S g)(tl, s 7tp+q72r)
= f(tla s 7tp77‘7 S)g(tp+1a s atp+q77‘7 S),LLT(CZS)
"

Notice that f ®, g € L2(TP+a=2r).
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The tensor product f® g and the contractions f®, g, 1 <r < min(p, q),
are not necessarily symmetric even though f and g are symmetric. We will
denote their symmetrizations by f®g and f®,g, respectively.

The next formula for the multiplication of multiple integrals will play a
basic role in the sequel.

Proposition 1.1.2 Let f € L?(T?) be a symmetric function and let g €
L2(T). Then,

L(H)1(g) = I (f @ g) +plp-1(f @1 9). (1.11)

Proof: By the density of elementary functions if L?(T?) and by linearity
we can assume that f is the symmetrization of the characteristic function of
Ay x -+ x Ap, where the A; are pairwise-disjoint sets of By, and g = 14, or
14,, where Ay is disjoint with A;,..., A,. The case g = 1,4, is immediate
because the tensor product f ® g belongs to £,41, and f ®1 g = 0. So, we
assume g = 1a,. Set B = pu(Ay)---u(A4,). Given € > 0, we can consider
a measurable partition A; = By U---U B, such that u(B;) < e. Now we
define the elementary function

h6 = § 1Bi><Bj><A2><“'><Ap'
i#]

Then we have

L(Hi(g) = W(A)W(A2) - W(A,)
= Y W(B)W(B;))W (As) -+ W(A)
i#]
+ (W(Bi)? = n(B)W(As)--- W (4,) (112)
=1
+u(A)W (Ag) - - W(Ap)
= Ierl(he) + R, +pIp71(f &1 g)'
Indeed,
f ®19= %IAQX"'XAPIJ’(Al)'
We have
HEe - fég”%?(Terl) = ”Ee - iAl X Aq ><A2><'~'><APH%2(TP+1)

A

>~ ||he - 1A1><A1><A2><~~><ApH%z(TpH)

=Y B uAy) < B
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and
n

E(R2) =2 p(Bi)*p(A2) - u(Ap) < 2€B,

i=1
and letting e tend to zero in (1.12) we obtain the desired result. ]
Formula (1.11) can be generalized as follows.

Proposition 1.1.3 Let f € L*(T?) and g € L*(T9) be two symmetric
functions. Then

b0 =31 (Vs wireg. a1y

r=0

Proof:  The proof can be done by induction with respect to the index g.
We will assume that p > ¢. For ¢ = 1 it reduces to (1.11). Suppose it holds
for ¢ — 1. By a density argument we can assume that the function g is of
the form ¢ = g1®gs, where g; and g, are symmetric functions of ¢ — 1 and
one variable, respectively, such that g; ® g2 = 0. By (1.11) we have

1y(91®92) = I4-1(91)11(g2)-
Thus by the induction hypothesis, and using (1.11), we obtain

I(1g(9) = Ip(f)Ig-1(91)11(g2)
7! <p> <q ; 1) Iprg—1-20-(f @r 91)11(g2)

r

Il
ML

3

= o

=2 <p> (q; 1) [ ramar (fBrg1) © 92)

r=

Q

[}

+(p+q—1=2r) g 2r—2((f®rg1) ®1 g2)

X(p+q—2r + V) rg o (f@r-191) ©1 g2)-
For any 1 < r < ¢, one can show the following equality:

r(p+q—2r+1)

pm—— (f@r-101)@192+(q—7)((f@rg1)®g2). (1.14)

q(f®rg) =

Substituting (1.14) into the above summations yields (1.13). O

The next result gives the relationship between Hermite polynomials and
multiple stochastic integrals.
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Proposition 1.1.4 Let H,,(z) be the mth Hermite polynomial, and let
h € H = L3(T) be an element of norm one. Then it holds that

ml (W)= [ hlt1) bt )W (1) -+ W (dtn). (1.15)

As a consequence, the multiple integral I,, maps L*(T™) onto the Wiener
chaos H,y, .

Proof: ~ Eq. (1.15) will be proved by induction on m. For m = 1 it is
immediate. Assume it holds for 1,2, ..., m. Using the recursive relation for
the Hermite polynomials (1.3) and the product formula (1.11), we have

Lusa (b)) = L (R™) 1 () — (h®(m—1> / h(t)zu(dt))

ml Ho(W(R))W (h) — m(m — 1)} Hy,oy (W (h))
= ml(m 4+ D) Hyp s (W(R)) = (m+ 1)} Hypat (W(R)),

where h®™ denotes the function of m variables defined by
hE™ (b1, tm) = h(t1) -+ h(tn).-

Denote by L%(T™) the closed subspace of L?(T™) formed by symmetric
functions. The multiple integral I,,, verifies E(I,,(f)?) = m! Hf||2L2(Tm) on
L%(T™). So the image I,,(L%(T™)) is closed, and by (1.15) it contains
the random variables H,,(W(h)), h € H, and ||h||g = 1. Consequently,
Hom C I (LE(T™)). Due to the orthogonality between multiple integrals
of different order, we have that I, (L%(T™)) is orthogonal to H,, n # m.
So, I, (L%(T™)) = My, which completes the proof of the proposition. [

As a consequence we deduce the following version of the Wiener chaos
expansion.

Theorem 1.1.2 Any square integrable random wvariable F € L?(Q,G, P)
(recall that G denotes the o-field generated by W) can be expanded into a
series of multiple stochastic integrals:

F =" T(fn)
n=0

Here fo = E(F), and Iy is the identity mapping on the constants. Further-
more, we can assume that the functions f, € L*(T™) are symmetric and,
in this case, uniquely determined by F.

Let {e;,i > 1} be an orthonormal basis of H, and fix a miltiindex a =
(a1,...,ap,0,...) such that |a| = a1 + -+ + apy = n. From (1.15) and
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(1.13) it follows that
M

M
a! H Hg,(W(ei;)) = Hfai(ez@a"')
i=1 =1

= I, (e?a1 Re$?®--- ®e}\8>[aM) )

Hence, the multiple stochastic integral I,, coincides with the isometry be-
tween the symmetric tensor product H®" (equipped with the modified
norm vn! ||| yen) and the nth Wiener chaos H,, introduced in (1.9). No-

tice that H®™ is isometric to L%(T™).

Example 1.1.2 Suppose that the parameter space is T =Ry x {1,...,d}
and that the measure p is the product of the Lebesgue measure times the
uniform measure, which gives mass one to each point 1,2,...,d. Then we
have H = L2(Ry x {1,...,d},p) = L?>(Ry;RY). In this situation we have
that Wi(t) = W([0,¢] x {i}), 0 <t < 1,1 < i < d, is a standard d-
dimensional Brownian motion. That is, {W'(t),t € Ry}, i = 1,...,d,
are independent zero-mean Gaussian processes with covariance function
E(Wi(s)W'(t)) = s A t. Furthermore, for any h € H, the random vari-
able W (h) can be obtained as the stochastic integral Zle Jo° hidwy.
The Brownian motion verifies

B(Wi(t) = W' (s)*) = [t — s
forany s,t >0,1=1,...,d. This implies that

- - 2k)!
B(WH(e) ~ W) = PRl

for any integer k > 2. From Kolmogorov’s continuity criterion (see the

appendiz, Section A.3) it follows that W possesses a continuous version.

Consequently, we can define the d-dimensional Brownian motion on the

canonical space Q = Co(Ry;RY). The law of the process W is called the

Wiener measure.

In this example multiple stochastic integrals can be considered as iterated
It stochastic integrals with respect to the Brownian motion, as we shall
see in the next section.

Example 1.1.3 TakeT = Ri and i equal to the Lebesque measure. Let W
be a white noise on T. Then W (s, t) = W([0,s] x [0,¢]), s,t € Ry, defines
a two-parameter, zero-mean Gaussian process with covariance given by

E(W (s, t)W(s',t') = (s At AL),

which is called the Wiener sheet or the two-parameter Wiener process.
The process W has a version with continuous paths. This follows easily
from Kolmogorov’s continuity theorem, taking into account that

E(W (s,t) = W(s',#)[2) < max(s, o, t,#)(|s — /| + |¢ ).
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1.1.8 1Ito stochastic calculus

In this section we survey some of the basic properties of the stochastic inte-
gral of adapted processes with respect to the Brownian motion, introduced
by Ito.

Suppose that W = {W (t),t > 0} is a standard Brownian motion defined
on the canonical probability space (Q, F, P). That is, Q = Co(R4) and P
is a probability measure on the Borel o-field B(2) such that the canonical
process Wi(w) = w(t) is a zero-mean Gaussian process with covariance
EW, W) = s At. The o-field F will be the completion of B(€) with
respect to P. We know that the sequence

Sa(t)= Y [W(tha™) = W(t(k - 1)27")]

1<k<2n

converges almost surely and in L?() to the constant ¢, as n tends to
infinity. In other words, the paths of the Brownian motion have a quadratic
variation equal to t. This property, together with the continuity of the
paths, implies that the paths of W have infinite total variation on any
bounded interval. Consequently, we cannot define path-wise a stochastic
integral of the form

/0 t u(s)W (ds),

where u = {u(t),t > 0} is a given stochastic process. If the paths of the
process u have finite total variation on bounded intervals, we can overcome
this difficulty by letting

/ w(s)W (ds) = u(t)W (t) — / W (s)u(ds).
0 0

However, most of the processes that we will find (like W itself) do not have
paths with finite total variation on bounded intervals.

For each t > 0 we will denote by F; the o-field generated by the random
variables {W(s),0 < s < t} and the null sets of F. Then a stochastic
process u = {u(t),t > 0} will be called adapted or nonanticipative if u(t)
is JFi;-measurable for any ¢ > 0.

We will fix a time interval, denoted by T, which can be [0,tg] or Ry.
We will denote by L2(T x Q) = L3(T x Q,B(T) ® F,A\' x P) (where \!
denotes the Lebesgue measure) the set of square integrable processes, and
L2(T x Q) will represent the subspace of adapted processes.

Let £ be the class of elementary adapted processes. That is, a process u
belongs to £ if it can be written as

n

u(t) = Filg, b, (), (1.16)

i=1
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where 0 < t; < --- < t,41 are points of T, and every F; is an Fy,-
measurable and square integrable random variable. Then we have the fol-
lowing result.

Lemma 1.1.3 The class € is dense in L2(T x Q).

Proof:  Suppose T = [0,1]. Let u be a process in L2(T x ), and consider
the sequence of processes defined by

—n

2" —1

i2
ﬁn(t) = Z on (/( - u(s)ds) 1(1‘2—n7(i+1)2—n](t). (117)
i=1 L

We claim that the sequence u" converges to u in L?(T x Q). In fact, define
P, (u) = u™. Then P, is a linear operator in L?(T x §2) with norm bounded
by one, such that P,(u) — w as n tends to infinity whenever the process u
is continuous in L?(Q). The proof now follows easily. O

Remark: A measurable process u : T x Q — R is called progressively
measurable if the restriction of u to the product [0,t] x Q is B([0,t]) ® F¢-
measurable for all t € T'. One can show (see [225, Theorem 4.6]) that any
adapted process has a progressively measurable version, and we will always
assume that we are dealing with this kind of version. This is necessary,
for instance, to ensure that the approximating processes u" introduced in
Lemma 1.1.3 are adapted.

For a nonanticipating process of the form (1.16), the random variable
/ u(t)dWy = Fi(W(tip1) — W (t:)) (1.18)
T i=1

will be called the stochastic integral (or the It6 integral) of u with respect
to the Brownian motion W.

The It6 integral of elementary processes is a linear functional that takes
values on L?(Q) and has the following basic properties:

E(/ wB)dWy) = 0, (1.19)
T
E(|/Tu(t)th|2) - E(/Tu(t)th). (1.20)

Property (1.19) is immediate from both (1.18) and the fact that for each
i =1,...,n the random variables F; and W (¢; 1) — W (t;) are independent.
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Proof of (1.20): We have

n

D B(EW (tirr) = W(t))?)

i=1

+ 22 E(F;F;(W(tig1) — W(t))

x (W(tjp1) = W(t;)))

= Bt — 1) = B /T u(t)?dt),

B( /T w(t)dWi )

because whenever i < j, W (t;41)—W (t;) is independent of F; F; (W (¢;41)—
W(t;)). |

The isometry property (1.20) allows us to extend the It6 integral to the
class L2(T x Q) of adapted square integrable processes, and the above
properties still hold in this class.

The It6 integral verifies the following local property:
/ w(®)dW, = 0,
T

almost surely (a.s.) on the set G = { [, u(t)?dt = 0}. In fact, on the set G
the processes {u"} introduced in (1.17) vanish, and therefore [, u"(t)dW; =
0 on G. Then the result follows from the convergence of [, u"(t)dW; to
fT U(t)th in LQ(Q)

We also have for any v € L2(T x Q), € > 0, and K > 0,

P{ /Tu(t)th > e} <P {/Tu(t)zdt > K} + g (1.21)

Proof of (1.21): Define

a(t) = u(t>1{j0t u(s)2ds<K}*

The process @ belongs to L2(T x ), and using the local property of the

1t6 integral we obtain
> e,/ u(t)?dt < K}
T

P{ /Tu(t)th
/Tﬂ(t)th >e,/Tu(t)2dt§K}

_ p{
/Tﬂ(t)th > e} < éE (/T ﬁ(t)th) < g

o
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Using property (1.21), one can extend the Itd integral to the class of
measurable and adapted processes such that

/ u(t)?dt < oo a.s.,
T

and the local property still holds for these processes.
Suppose that u belongs to L2(T x ). Then the indefinite integral

/ $)dWs = / 1[0 t] )dWs, teT,

is a martingale with respect to the increasing family of o-fields {F;,t > 0}.
Indeed, the martingale property is easy to check for elementary processes
and is transferred to general adapted processes by L? convergence.

If u is an elementary process of the form (1.16), the martingale

/t u(s)dWS = f:FZ(W(tZ+1 A t) - W(tZ AN t))
0 i=1

clearly possesses a continuous version. The existence of a continuous version
for {fo s)dWy} in the general case u € L2(T x ) follows from Doob’s
maximal mequahty for martingales (see (A.2)) and from the Borel-Cantelli
lemma.

If » is an adapted and measurable process such that fT (t)2dt < oo,
then the indefinite integral is a continuous local martingale. That is, if we
define the random times

t
=inf{t >0: / u(s)?ds > n}, n>1,
0

then:

(i) For each n > 1, T, is a stopping time (i.e., {T;, < t} € F; for any
t>0).

(ii) T;, T oo as n tends to infinity.
(iii) The processes

t
Mn(t):/o U(S)l{ngn}dWs

are continuous square integrable martingales such that

Mn(t):/o u(s)dWy

whenever ¢ < T,,. In fact, uljgr,; € L2(T x Q) for each n.
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Let u be an adapted and measurable process SU.Ch that fT (t)2dt < oo,

and consider the continuous local martingale M (¢ fo $)dWs. Define

. = [ sas.

Then M? — (M), is a martingale when u € L2(T x Q). This is clear if u is
an elementary process of the form (1.16), and in the general case it holds
by approximation.

The increasing process (M), is called the quadratic variation of the local
martingale M. That is, the family Z?;;(Mti“ — M;,)?, when 7 = {0 =
o <t < -+ <ty = t} runs over all the partitions of [0,¢], converges
in probability to fo )2ds as |r| = max;(t;+1 — t;) tends to zero. In-
deed by a localization argument it suffices to prove the convergence when
fo s5)2ds < K for some constant K > 0, and in this case it holds in L?()
due to Burkholder’s inequality (A.3) and the fact that M7 — (M), is a
square integrable martingale. In fact, we have

tit1 2
/ dS - (Mt +1 Mti)Q
t;

tit1

u?(s)ds — (Mg, , — My,)?

i+1

n—1 2 s
<c) FE <c¢KE sup / u?(6)de
P |s—r|<|r| Jr

for some constant ¢ > 0, and this converges to zero as |r| tends to zero.

t;

tit1
/ u?(s)ds
t.

i

One of the most important tools in the stochastic calculus is the change-
of-variable formula, or Ité’s formula.

Proposition 1.1.5 Let F : R — R be a twice continuously differentiable
function. Suppose that u and v are measurable and adapted processes ver-
ifying fo t)2dt < oo a.s. and fo |’U )dt < oo a.s. for every T € T. Set

X(t) )+ fo s)dWs + fo . Then we have
t t
FO) - FXo) = [ FOQua,+ [ F(Xuds
0 0
1 t
+ 5/ F" (X, )u?ds. (1.22)
0

The proof of (1.22) comes from the fact that the quadratic variation

of the process X (t) is equal to f; u2ds; consequently, when we develop
by Taylor’s expansion the function F(X(t)), there is a contribution from
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the second-order term, which produces the additional summand in Ito’s
formula.

Proof: By a localization procedure we can assume F' € Cg(]R) and

sup{ /T w(t)2dt, /T w(t)|dt} < K

for some constant K > 0. Fix ¢ > 0. For any partition 7 = {0 = ¢, < t; <
- < t, =t} we can write, using Taylor’s formula,

n—1
F(Xy) - F(Xo) = (F(Xey) — F(X,))
=0
n—1
= ZF/(Xti)(th+1 XtL)
=0
1 = 1"~ 2
+§ F (Xi)<Xti+1 _th‘,) )
=0

where X; is a random point between X, and Xy, . The first summand

in the above expression converges to fot F'(X)usdWs + fot F'(X)veds in
L?(Q) as |r| = max;(t;11 — t;) tends to zero. For the second summand we
use the decomposition

tit1 . tit1 tita
(Xti+1 _Xti)Q - (/ USdWS) 2 (/ udeS) (/ USds)
t; ti t;
tit1 2
+ (/ vsds) .
t;

Only the first term produces a nonzero contribution. Then we can write

t n—1 o tivt 2
/ F'(Xuds — > F"(X) ( / ude5>
0 i=0 ti
nol ety
= Z / [F"(X,) — F"(X;,)|u?ds
i=0 /i
n—l tiy1 tit1 2
+Y F(Xy,) / uds — ( / udeS>
1=0 ti ti
n—1 tit1 2
+ [F"(Xy,) — F"(X;)] (/ udes>
1=0 t

=a1 +as +as.
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We have
lai| <K sup  |[F"(Xs) - F"(X,)],
|s—r|<|]
n—1 tit1 2
las| < sup  [F"(X,) — F'(X,)| Z(/ udes> :
[s—r|<|m] — \Jt

These expressions converge to zero in probability as || tends to zero. Fi-
nally, applying Burkholder’s inequality (A.3) and the martingale property
of (fot usdWs)? — fot u?ds, we can get a constant ¢ > 0 such that

n-l tit1 tit1 2\?
E(laa]*) = E ZFN(XM)Z / uds — </ ustVs)

i=0 t ta
n—1 tit1 2
i=0 ti

< Ke|p'lo | s [ udas).
|s—r|<[x|Jr
and this converges to zero as || tends to zero. |

Consider two adapted processes {u;,t € T} and {vy,t € T} such that

fot u(s)?ds < oo a.s. and fot [v(s)|ds < oo a.s. for all t € T. Let X, € R.
The process

t t
X: = X, —|—/ usdWy —|—/ vsdS (1.23)
0 0

is called a continuous semimartingale, and M; = fg usdWsand V, = fot v.ds
are the local martingale part and bounded variation part of X, respectively.
1t6’s formula tells us that this class of processes is stable by the composition
with twice continuously differentiable functions.

Let m={0 =1y < t; <--- <ty =t} be a partition of the interval [0, t].
The sums

|
-

N | =

n

(Xti + Xti+1)(Wt11+1 - Wt) (124)

i

I
o

)

converge in probability as |7| tends to zero to

t 1 [t
/ X dW, + 7/ ugds.
0 2 Jo

This expression is called the Stratonovich integral of X with respect to W
and is denoted by fg X, o dWs,.
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The convergence of the sums in (1.24) follows easily from the decompo-
sition
1
i(th + Xti+1)(Wti,+l - Wtz) = Xti (Wti+1 - Wt1)
1

3 (Xt — X, ) (W2 Wi,),

i1 i

and the fact that the joint quadratic variation of the processes X and W
(denoted by (X, W),) is equal to %fg usds.

Let u € L2(T x Q). Set M,(t) = exp(fg usdWy — % Otuﬁds). As an
application of It6’s formula we deduce

M,(t) =1+ /0 t M, (s)u(s)dWs. (1.25)

That means M, is a local martingale. In particular, if u = h is a deter-
ministic square integrable function of the space H = L?(T), then M, is a
square integrable martingale. Formula (1.25) shows that exp(W; — %) plays
the role of the customary exponentials in the stochastic calculus.

The following result provides an integral representation of any square
functional of the Brownian motion. Set Fp = o{W (s),s € T'}.

Theorem 1.1.3 Let F' be a square integrable random variable. Then there
exists a unique process u € L2(T x Q) such that

T
Proof: To prove the theorem it suffices to show that any zero-mean

square integrable random variable G that is orthogonal to all the stochastic
integrals [, usdWy, u € LZ(T x ) must be zero. In view of formula (1.25),
such a random variable G is orthogonal to the exponentials

1
E(h) = exp(/ hsdWs — f/ hids),
T 2 Jr

h € L*(T). Finally, because these exponentials form a total subset of
L?(Q, Fr, P) by Lemma 1.1.2, we can conclude this proof. O

As a consequence of this theorem, any square integrable martingale on
the time interval T' can be represented as an indefinite It6 integral. In fact,
such a martingale has the form M, = E(F|F;) for some random variable
F € L?(Q, Fr, P). Then, taking conditional expectations with respect to
the o-field F; in Eq. (1.26), we obtain

E(F|F) = E(F) +/Ot wd W,
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Let f, : T — R be a symmetric and square integrable function. For
these functions the multiple stochastic integral I,,(f,,) with respect to the
Gaussian process {W(h) = [, hsdW,,h € L*(T)} introduced in Section
1.1.2 coincides with an 1terated It6 integral. That is, assuming T' = R, , we
have

oo tn to

Indeed, this equality is clear if f, is an elementary function of the form
(1.10), and in the general case the equality will follow by a density argu-
ment, taking into account that the iterated stochastic It6 integral verifies
the same isometry property as the multiple stochastic integral.

Let {W(t),t > 0} be a d-dimensional Brownian motion. In this case the
multiple stochastic integral I,,(f,) is defined for square integrable kernels

fa((t1,41), ..., (tn,in)), which are symmetric in the variables (¢;,4;) € Ry x
{1,...,d}, and it can be expressed as a sum of iterated It integrals:
In(fn) = nl Z / / / fn tlazl . (tnain))
U1 yeeyin=1

x dW,}; AW,

FEzercises

1.1.1 For every n let us define the Hermite polynomial H, (), z) by

H,(\,z) = A2 H,(—=),where z € R and X > 0.

)

Check that
exp(te — —t2)\) = E t"Hy, (A x)
p 2 n=0 ! ’ .

Let W be a white noise on a measure space (T, B, ). Show that

1
Hm(Hh”%{aW(h)) = W 7n(h®m)

for any h € L*(T, B, ).

1.1.2 Using the recursive formula (1.2), deduce the following explicit ex-
pression for the Hermite polynomials

[n/2] )k g2k

Z k! 71—2]@'2"C
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As an application show that if Y is a random variable with distribution
N(0,0?), then
(0 —1)"
B(Hym (V) = %1,

and E(H,(Y)) =0 if n is odd.

1.1.3 Let {W;,t > 0} be a one-dimensional Brownian motion. Show that
the process {H,(t,W;),t > 0} (where H,(t,z) is the Hermite polynomial
introduced in Exercise 1.1.1) is a martingale.

1.1.4 Let W = {W(h),h € H} be an isonormal Gaussian process defined
on the probability space (2, F, P), where F is generated by W. Let V be
a real separable Hilbert space. Show the Wiener chaos expansion

L2(0:V) = D H (V).
n=0

where H,, (V) is the closed subspace of L?(Q; V) generated by the V-valued
random variables of the form 27;1 Fjv;, Fj € H,, and v; € V. Construct

an isometry between H®" @ V and H,(V) as in (1.9).

1.1.5 By iteration of the representation formula (1.26) and using expres-
sion (1.27) show that any random variable F € L?(Q, F, P) (where F is
generated by W) can be expressed as an infinite sum of orthogonal multiple
stochastic integrals. This provides an alternative proof of the Wiener chaos
expansion for Brownian functionals.

1.1.6 Prove Eq. (1.14).

1.1.7 Let us denote by P the family of random variables of the form
p(W(hy),...,W(hy)), where h;, € H and p is a polynomial. Show that
P is dense in L"(Q2) for all r > 1.

Hint: Assume that r > 1 and let ¢ be the conjugate of r. As in the proof
of Theorem 1.1.1 show that if Z € L4(2) verifies E(ZY) =0 forall Y € P,
then Z = 0.

1.2 The derivative operator

This section will be devoted to the properties of the derivative operator.
Let W = {W(h),h € H} denote an isonormal Gaussian process associated
with the Hilbert space H. We assume that W is defined on a complete
probability space (Q, F, P), and that F is generated by W.

We want to introduce the derivative DF' of a square integrable random
variable F' : Q — R. This means that we want to differentiate F' with
respect to the chance parameter w € ). In the usual applications of this
theory, the space €2 will be a topological space. For instance, in the example
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of the d-dimensional Brownian motion, € is the Fréchet space Co(R;R9).
However, we will be interested in random variables F' that are defined P
a.s. and that do not possess a continuous version (see Exercise 1.2.1). For
this reason we will introduce a notion of derivative defined in a weak sense,
and without assuming any topological structure on the space Q.

We denote by Cp°(R™) the set of all infinitely continuously differentiable
functions f : R™ — R such that f and all of its partial derivatives have
polynomial growth.

Let S denote the class of smooth random variables such that a random
variable F' € § has the form

F=fW(h),...,W(hn)), (1.28)

where f belongs to C;°(R™), hy, ..., h, are in H, and n > 1.

We will make use of the notation 0;f = chfi and Vf = (01 f,...,0.f),
whenever f € C1(R™).

We will denote by S, and Sy the classes of smooth random variables
of the form (1.28) such that the function f belongs to Cp°(R™) (f and
all of its partial derivatives are bounded) and to C§°(R™) (f has compact
support), respectively. Moreover, we will denote by P the class of random
variables of the form (1.28) such that f is a polynomial. Note that P C S,
So C Sy C S, and that P and Sy are dense in L2(Q).

Definition 1.2.1 The derivative of a smooth random variable F of the
form (1.28) is the H-valued random variable given by

DF:zn:é?if(W(hl),...,W(hn))hi. (1.29)

For example, DW(h) = h. In order to interpret DF as a directional
derivative, note that for any element h € H we have

(DF.hyg = T ~[F(W (k1) + (b, B, W () + (B, ) 1)

Roughly speaking, the scalar product (DF, h) g is the derivative at € = 0 of
the random variable F' composed with shifted process {W(g)+¢(g, h)m,g €
H}.

The following result is an integration-by-parts formula that will play a
fundamental role along this chapter.

Lemma 1.2.1 Suppose that F is a smooth random variable and h € H.
Then
E((DF,h)y) = E(FW(h)). (1.30)
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Proof:  First notice that we can normalize Eq. (1.30) and assume that the
norm of A is one. There exist orthonormal elements of H, eq,...,e,, such
that h = e; and F' is a smooth random variable of the form

F = f(W(el), R W(en))7

where f is in Cp°(R"). Let ¢(x) denote the density of the standard normal
distribution on R™, that is,

o(x) = (2m) ¥ exp(~3 3 a)
i=1

Then we have

B(DFu) = [ oo
= | f@t)rdr
= E(FW(e1)) = E(FW(h)),
which completes the proof of the lemma. |

Applying the previous result to a product F'G, we obtain the following
consequence.

Lemma 1.2.2 Suppose that F' and G are smooth random wvariables, and
let h € H. Then we have

E(G(DF,h)g) = E(—F(DG,h)yg + FGW (h)). (1.31)
As a consequence of the above lemma we obtain the following result.

Proposition 1.2.1 The operator D is closable from LP(Q) to LP(Q; H)
for anyp > 1.

Proof:  Let {Fn,N > 1} be a sequence of smooth random variables such
that Fy converges to zero in LP()) and the sequence of derivatives DFy
converges to n in LP(Q; H). Then, from Lemma 1.2.2 it follows that 7 is
equal to zero. Indeed, for any h € H and for any smooth random variable
F € 8, such that FW (h) is bounded (for intance, F = Ge=<W(* where
G € Sy and € > 0), we have

E((n,h)yF) = lim E((DFy,h)uF)

N—o0
= J\}im E(—Fn(DF,h)g + FNFW(h)) =0,
because Fy converges to zero in LP(€)) as N tends to infinity, and the
random variables (DF, h)y and FW (h) are bounded. This implies n = 0.
a
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For any p > 1 we will denote the domain of D in LP() by D**, meaning
that DMP is the closure of the class of smooth random variables S with
respect to the norm

[Fllp = [E(FIP) + E(|DF|F)] " -
For p = 2, the space D'2 is a Hilbert space with the scalar product

We can define the iteration of the operator D in such a way that for
a smooth random variable F, the iterated derivative D¥F is a random
variable with values in H®*. Then for every p > 1 and any natural number
k > 1 we introduce the seminorm on S defined by

k P
1l = | E(EP) + > E(D Fllfe,) | - (1.32)

j=1
This family of seminorms verifies the following properties:
(i) Monotonicity: ||F|gp < | F
(ii) Closability: ~ The operator D* is closable from S into LP(Q; H®¥),

jqo forany FFeS,if p<qgand k <.

for all p > 1.
Proof: The proof is analogous to the case where k = 1 (see Exercise
1.2.3). ]

(iii) Compatibility: Let p,q > 1 be real numbers and k,j be natural
numbers. Suppose that F,, is a sequence of smooth random variables
such that || F}, ||, converges to zero as n tends to infinity, and ||F}, —
Flj,q converges to zero as n, m tend to infinity. Then ||F,||; , tends
to zero as n tends to infinity.

Proof:  This is an immediate consequence of the closability of the
operators D*, 1 > 1, on S. O

We will denote by D*? the completion of the family of smooth random
variables S with respect to the norm | - |- From property (i) it follows
that D**1» Cc DM if k > 0 and p > q. For k = 0 we put || - lop = || - [l
and DYP = LP(Q).

Fix an element h € H. We can define the operator D" on the set S of
smooth random variables by

D"F = (DF,h)y. (1.33)
By Lemma 1.2.2 this operator is closable from LP(Q2) into LP(£2), for any
p > 1, and it has a domain that we will denote by DP.

The following result characterizes the domain of the derivative operator
D'2 in terms of the Wiener chaos expansion.
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Proposition 1.2.2 Let F' be a square integrable random variable with the
Wiener chaos expansion F =Y 7 J,F. Then F € D" if and only if

E(|DF|5) = Y nllJuF|; < co. (1.34)

n=1
Moreover, if (1.34) holds, then for alln > 1 we have D(J,F) = J,,_1(DF).

Proof: ~ The derivative of a random variable of the form ®,, defined in
(1.6), can be computed using (1.2):

=Val)  [I Ho(W(e))Ha,—1(W(ej))e;.
j=1i=1,i#j
Then, D(®,) € Hn—1(H) (see Execise 1.1.4) if |a| =n, and

£ (ID(@.)%) = ZH il

i= 1175]&1(

The proposition follows easily from Proposition 1.1.1. ]
By iteration we obtain D¥(J,F) = J,_(D*F) for all k > 2 and n > k.
Hence,

o

B(| D*Ff ) :Z (n=1)-(n = k+1)[|7.F|l3,

and F € D*?2 if and only if >.°° | n* ||J, F||5 < oc.

The following result is the chain rule, which can be easily proved by
approximating the random variable F' by smooth random variables and
the function ¢ by ¢ * 1, where {1} is an approximation of the identity.

Proposition 1.2.3 Let ¢ : R™ — R be a continuously differentiable func-
tion with bounded partial derivatives, and fix p > 1. Suppose that F =
(FY,...,F™) is a random vector whose components belong to the space
DYP. Then o(F) € DYP, and

= zm: dip(F)DF".

Let us prove the following technical result.

Lemma 1.2.3 Let {F,,n > 1} be a sequence of random variables in D2
that converges to F in L?(Q) and such that

5171LpE ([DF. %) < oc.

Then F belongs to D2, and the sequence of derivatives {DF,,n > 1}
converges to DF in the weak topology of L?(Q; H).
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Proof:  There exists a subsequence {F, ),k > 1} such that the sequence
of derivatives DF,, ) converges in the weak topology of L?(Q; H) to some
element o € L?(Q; H). By Proposition 1.2.2, the projections of DFy ) on
any Wiener chaos converge in the weak topology of L?(Q), as k tends to
infinity, to those of a.. Consequently, Proposition 1.2.2 implies F' € D2
and a = DF'. Moreover, for any weakly convergent subsequence the limit
must be equal to a by the preceding argument, and this implies the weak
convergence of the whole sequence. O

The chain rule can be extended to the case of a Lipschitz function:

Proposition 1.2.4 Let ¢ : R™ — R be a function such that

lp(z) — o(y)| < Klz -y

for any x,y € R™. Suppose that F = (F*', ..., F™) is a random vector
whose components belong to the space DV2. Then o(F) € DY2, and there
exists a random vector G = (Gy,...,Gp,) bounded by K such that

D(p(F)) = i G;DF". (1.35)
i=1

Proof:  1If the function ¢ is continuously differentiable, then the result
reduces to that of Proposition 1.2.3 with G; = 9;p(F). Let a,(x) be a
sequence of regularization kernels of the form «,(x) = n™a(nz), where o
is a nonnegative function belonging to C§°(R™) whose support is the unit
ball and such that [,,, a(x)dz = 1. Set ¢, = ¢ * ay. It is easy to check
that lim,, ¢, (z) = ¢(z) uniformly with respect to x, and the functions ¢,,
are C™ with |V, | < K. For each n we have

D(p,(F)) = dip,, (F)DF". (1.36)
=1

The sequence ¢,,(F) converges to o(F) in L?(2) as n tends to infin-
ity. On the other hand, the sequence {D(p,,(F)),n > 1} is bounded in
L?(Q; H). Hence, by Lemma 1.2.3 ¢(F) € D*? and {D(y,,(F)),n > 1}
converges in the weak topology of L?(Q; H) to D(¢(F)). On the other
hand, the sequence {V¢,, (F'),n > 1} is bounded by K. Hence, there exists
a subsequence {Vi,, ) (F),k > 1} that converges to some random vec-
tor G = (G4, ...,G,,) in the weak topology o(L?(£2;R™)). Moreover, G is
bounded by K. Then, taking the limit in (1.36), we obtain Eq. (1.35). The
proof of the lemma is now complete. O

If the law of the random vector F' is absolutely continuous with respect
to the Lebesgue measure on R™, then G* = 9;¢(F) in (1.35). Proposition
1.2.4 and Lemma, 1.2.3 still hold if we replace D!-2 by D'? for any p > 1. In
fact, this follows from Lemma 1.5.3 and the duality relationship between
D and §.
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We will make use of the following technical result.

Lemma 1.2.4 The family of random variables {1,W(h)G — D"G,G €
Sp,h € H} is total in L*(Q).

Proof: Fix he H,n,N > 1, and set Gy = W (h)™ (W (h)), where ¢
is an infinitely differentiable function such that 0 < ¢ < 1, ¢ (x) =0
if |2 > N+ 1, ¢y(z) = 1if [#] < N, and sup, y [¢y(2)] < co. Then,
W (h)Gx — D"Gy converges in L2(Q) to W (h)"* —n||h||?, W(h)"! as
N tends to infinity. Hence the closed linear span of the family contains all
powers W (h)™, n > 1, h € H, which implies the result. a

Proposition 1.2.5 Let F be a random variable of the space DY such that
DF =0. Then F = E(F).

Proof: If F € D"2, then the result follows directly from Proposition 1.2.2.
In the general case, let 95 be a function in C;°(R) such that ¢ (z) = 0 if
|z| > N+1, ¢n(x) =2 if |z| < N. Let F,, be a sequence of smooth random
variables converging in L' () to F' and such that E(||DF,| ) tends to zero
as n tends to infinity. Then using Lemma 1.2.1 we obtain for any G € S,
and any h € H

E [yn(F) (W(h)G = D"G)]

E [{n (Fa)W (h)G = D" (Gt (Fa))]
+E [GDh (wN(Fn))]
E[GD" (4 (Fn))] -

Taking the limit as n tends to infinity yields
E [ (F) (W(h)G = D"G)] = 0.

As a consequence, by Lemma 1.2.4 E [¢ 5y (F)] = ¢ 5 (F) for each N. Hence,
F =E(F). O

Proposition 1.2.6 Let A € F. Then the indicator function of A belongs
to DY if and only if P(A) is equal to zero or one.

Proof: By the chain rule (Proposition 1.2.3) applied to to a function
¢ € C§°(R), which is equal to 2% on [0, 1], we have

D1y =D(14)>=21,D14

and, therefore, D14 = 0 because from the above equality we get that
this derivative is zero on A°¢ and equal to twice its value on A. So, by
Proposition 1.2.5 we obtain 14 = P(A).
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Remarks:

1. If the underlying Hilbert space H is finite-dimensional, then the spaces
D*P can be identified as ordinary Sobolev spaces of functions on R™ that
together with their k first partial derivatives have moments of order p with
respect to the standard normal law. We refer to Ocone [270] for a detailed
discussion of this fact. See also Exercise 1.2.8.

2. The above definitions can be exended to Hilbert-valued random vari-
ables. Let V' be a real separable Hilbert space. Consider the family Sy of
V-valued smooth random variables of the form

F:ZFjUj, v; €V, FjGS.
j=1

Define DFF = Z?:1 Dij ® vj, k > 1. Then DF is a closable operator
from Sy C LP(; V) into LP(Q; H®* @ V) for any p > 1. For any integer
k > 1 and any real number p > 1 we can define the seminorm on Sy

1

k
IFllkpv = [EUIFIR) + D EUD Flifeigy)| - (1.37)

j=1

The operator D* and the seminorms || -||x,, v verify properties (i), (ii), and
(iii) . We define the space D¥P(V) as the completion of Sy with respect
1

to the norm || - ||xp,v. For k& = 0 we put ||[Fllo,v = [E(|F|})]7, and
DOP(V) = LP(; V).

1.2.1 The deriwative operator in the white noise case

We will suppose in this subsection that the separable Hilbert space H is
an L? space of the form H = L?(T,B,u), where u is a o-finite atomless
measure on a measurable space (7', B).

The derivative of a random variable F' € D2 will be a stochastic process
denoted by {D;F,t € T} due to the identification between the Hilbert
spaces L?(Q; H) and L*(T x Q). Notice that D;F is defined almost every-
where (a.e.) with respect to the measure p x P. More generally, if & > 2
and F' € D*2, the derivative

D'F = {th...,th7 il € T}a

is a measurable function on the product space T* x 2, which is defined a.e.
with respect to the measure ¥ x P.

Example 1.2.1 Consider the example of a d-dimensional Brownian mo-
tion on the interval [0, 1], defined on the canonical space Q2 = Cy([0, 1]; RY).
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In this case (DF,h)g can be interpreted as a directional Fréchet deriva-
tive. In fact, let us introduce the subspace H' of € which consists of all
absolutely continuous functions x : [0,1] — RY with a square integrable
derivative, i.e., x(t) = fot i(s)ds, #+ € H = L*([0,1];R?). The space H!
is usually called the Cameron-Martin space. We can transport the Hilbert
space structure of H to the space H' by putting

d 1 '
(. y)m = (&, 9)n = Z/o ' (s)y' (s)ds.

In this way H' becomes a Hilbert space isomorphic to H. The injection of
H' into Q is continuous because we have

1
sup [z(t)] S/ &(s)lds < [l&]la = |||z
0<t<1 0

Assume d = 1 and consider a smooth functional of the particular form
F=fW(t),...,W(t.)), f € C;°(R"), 0 < t; < -+ < t, <1, where
W(t;) = fot’ dWy = W(1,,1). Notice that such a functional is continuous
in Q. Then, for any function h in H, the scalar product (DF, h) g coincides
with the directional derivative of F in the direction of the element fo h(s)ds,
which belongs to H'. In fact,

(DF,h)y = Zaif(W(tl),...,W(tn))<1[o7ti],h>H
. ;&f(W(tl),...,W(tn))/o h(s)ds

d .
— %F(ere/o h(s)ds)|e=o-

On the other hand, if F is Fréchet differentiable and A" denotes the signed
measure associated with the Fréchet derivative of F, then D,F = \¥((t,1]).
In fact, for any h € H we have

(DF. )y = /O N (dt)( /O h(s)ds)dt = /0 N (6 ])h(b)dt.

Suppose that F' is a square integrable random variable having an orthog-
onal Wiener series of the form

n=0

where the kernels f,, are symmetric functions of L?(T"). The derivative
D F can be easily computed using this expression.
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Proposition 1.2.7 Let F € D2 be a square integrable random variable
with o development of the form (1.38). Then we have

DiF = nly_1(fu(-1)). (1.39)

n=1

Proof: ~ Suppose first that F' = I,,,(fn), where f,, is a symmetric and
elementary function of the form (1.10). Then

DeF =3, > i WA+ 1ay, (0 W(As,) = mIn-a(fn(-,1)).
=1, i;m=1
Then the result follows easily. .

The heuristic meaning of the preceding proposition is clear. Suppose that
F' is a multiple stochastic integral of the form I,,(f,,), which has also been

denoted by
/ /fn Ho oo b W (dt) - W (dty).

Then, F belongs to the domain of the derivation operator and D;F is
obtained simply by removing one of the stochastic integrals, letting the
variable ¢ be free, and multiplying by the factor n.

Now we will compute the derivative of a conditional expectation with
respect to a o-field generated by Gaussian stochastic integrals. Let A € B.
We will denote by F4 the o-field (completed with respect to the probability
P) generated by the random variables {W(B),B C A, B € By}. We need
the following technical result:

Lemma 1.2.5 Suppose that I is a square integrable random variable with
the representation (1.38). Let A € B. Then

E(F|Fa) = ZI (£u15™). (1.40)

Proof: Tt suffices to assume that F' = I,(f,), where f, is a function
in &,. Also, by linearity we can assume that the kernel f,, is of the form
1B, x...xB,, Where By, ..., B, are mutually disjoint sets of finite measure.
In this case we have

E(F|Fa) = EW(By)---W(Bn)|Fa)
_ (H W(B; N A) + W (B, ﬂA))|.’FA)

= L(1(Bna)x--x(BnnA))-
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Proposition 1.2.8 Suppose that F belongs to D2, and let A € B. Then
the conditional expectation E(F|F4) also belongs to the space D2, and we
have:

Dy(E(F|Fa)) = E(D:F|F4)1a(t)
a.e. inT x Q.

Proof: By Lemma 1.2.5 and Proposition 1.2.7 we obtain
Di(E(FIFa) = Y nlur(ful D157 )1a(t) = B(DFIFa)1a(2).
n=1

O

Corollary 1.2.1 Let A € B and suppose that F € D2 is Fs-measurable.
Then D F is zero almost everywhere in A x Q.

Given a measurable set A € B, we can introduce the space D42 of
random variables which are differentiable on A as the closure of S with
respect to the seminorm

1P, =B + 8 ([ (i) utan)

FEzxercises

1.2.1 Let W = {W(¢),0 < t < 1} be a one-dimensional Brownian motion.
Let h € L?([0,1]), and consider the stochastic integral F' = fol hdW;. Show
that F' has a continuous modification on Cy([0, 1]) if and only if there exists
a signed measure p on (0,1] such that h(t) = u((¢,1]), for all t € [0,1],
almost everywhere with respect to the Lebesgue measure.

Hint: If h is given by a signed measure, the result is achieved through
integrating by parts. For the converse implication, show first that the con-
tinuous modification of F' must be linear, and then use the Riesz repre-
sentation theorem of linear continuous functionals on C([0,1]). For a more
general treatment of this problem, refer to Nualart and Zakai [268].

1.2.2 Show that the expression of the derivative given in Definition 1.2.1
does not depend on the particular representation of F' as a smooth func-
tional.

1.2.3 Show that the operator D* is closable from S into LP(£2; H®¥).

Hint: Let {Fy,N > 1} be a sequence of smooth functionals that con-
verges to zero in LP and such that D¥ Fjy converges to some 7 in LP(Q; H®*).
Iterating the integration-by-parts formula (1.31), show that E({(n,h1 ® - -®
hp)FE) =0 for all hy,...,hy € H, F € S, and

&= exp( - ei W(hz)2>
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1.2.4 Let f,, be a symmetric function in L?([0,1]™). Deduce the following
expression for the derivative of F = I,(f5):

n

D, F = n'Z/ Falty, .. ta_1,1)
i=1 {t1 < <tij_1<t<t;<tp—1}

X thl e th"71,

with the convention ¢,, = 1.

1.2.5 Let F' € D*? be given by the expansion F = oo o In(fn). Show
that

o0
t17 ot F Znn_l n_k+1) n—k(fn('atly"'atk))a
n==k

and
o0

n!?
E(HDkFH%Q(T’C)) = Z m”fn\\%z(wy

n=k

1.2.6 Suppose that F = > >~ I,(f,) is a random variable belonging to
the space D°? = N;D"2. Show that f, = L E(D"F) for every n > 0 (cf.
Stroock [321]).

1.2.7 Let F = exp(W 3 [ h%u(ds)), h € L*(T). Compute the iterated
derivatives of F' and the kernels of 1ts expansmn into the Wiener chaos.

1.2.8 Let eq,...,e, be orthonormal elements in the Hilbert space H. De-
note by JF, the o-field generated by the random variables W(ey), ..., W(e,).
Show that an F,,-measurable random variable F' belongs to D! if and only
if there exists a function f in the weighted Sobolev space W12(R™, N (0, I,,))
such that

F=fW(e),...,W(en)).
Moreover, it holds that DF = """, 9, f(W(e1),...,W(en))e;.

1.2.9 Let (2, F,P) be the canonical probability space of the standard
Brownian motion on the time interval [0,1]. Let F' be a random variable
that satisfies the following Lipschitz property:

w+/ hsds) w)| <ellhlg as., heH=L*0,1]).

Show that F' € D2 and | DF | g < ca.s. In [92] Enchev and Stroock proved
the reciprocal implication.

Hint: Suppose that F' € L%() (the general case is treated by a truncation
argument). Consider a complete orthonormal system {e;,i > 1} in H.
Define F,, = E(F|F,), where F,, is the o-field generated by the random
variables W(ey), ..., W (ey,). Show that F,, = f,(W(e1),...,W(en)), where
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fn is a Lipschitz function with a Lipschitz constant bounded by c. Use
Exercise 1.2.8 to prove that F,, belongs to D'? and |DF,||g < ¢, as.
Conclude using Lemma 1.2.3.

1.2.10 Show that the operator defined in (1.33) is closable in LP(£2), for
all p > 1.

1.2.11 Suppose that W = {W(¢),0 < ¢ < 1} is a standard one-dimensional
Brownian motion. Show that the random variable M = supg<;<; W(t)
belongs to the space D%2, and D,M = 10,7)(t), where T is the a.s. unique
point where W attains its maximum.

Hint: Approximate the supremum of W by the maximum on a finite set
(see Section 2.1.4).

1.2.12 Let Fy and F» be two elements of D2 such that Fy and |[|[DFy| g
are bounded. Show that Fy Fy € DY? and D(FFy) = F1DF, + F,DF).

1.2.13 Show the following Leibnitz rule for the operator DF:

k,
i . Fe) = Y pl'(mpie), FGes,
IC{tl,..‘,tk}

where for any subset I of {t1,...,t}, |I| denotes the cardinality of I.
1.2.14 Show that the set Sy is dense in D*? for any k > 1, p > 1.

1.3 The divergence operator

In this section we consider the divergence operator, defined as the adjoint
of the derivative operator. If the underlying Hilbert space H is an L? space
of the form L2(T,B, u), where p is a o-finite atomless measure, we will
interpret the divergence operator as a stochastic integral and we will call
it the Skorohod integral because in the Brownian motion case it coincides
with the generalization of the It0 stochastic integral to anticipating inte-
grands introduced by Skorohod [315]. We will deduce the expression of the
Skorohod integral in terms of the Wiener chaos expansion as well as prove
some of its basic properties.

We will first introduce the divergence operator in the framework of a
Gaussian isonormal process W = {W(h),h € H} associated with the
Hilbert space H. We assume that W is defined on a complete probabil-
ity space (2, F, P), and that F is generated by W.

We recall that the derivative operator D is a closed and unbounded
operator with values in L?(£2; H) defined on the dense subset D2 of L2(12).

Definition 1.3.1 We denote by 6 the adjoint of the operator D. That is,
§ is an unbounded operator on L?(Y; H) with values in L*(SY) such that:
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(i) The domain of &, denoted by Domé, is the set of H-valued square
integrable random variables u € L*(Q; H) such that

[E(DF,u) )| < c|[Fll2, (1.41)
for all F € DY2, where c is some constant depending on u.

(ii) If u belongs to Dom §, then 6(u) is the element of L*(Q2) characterized
by
E(F3(u)) = E((DF, u),,) (1.42)
for any F € D2,

The operator § is called the divergence operator and is closed as the
adjoint of an unbounded and densely defined operator. Let us study some
basic properties of this operator.

1.3.1 Properties of the divergence operator

Taking F = 1 in (1.42) we obtain E(d(u)) = 0 if u € Domd. Also, J is a
linear operator in Dom §. We denote by Sy the class of smooth elementary
elements of the form

UZZthj, (143)
j=1

where the F); are smooth random variables, and the h; are elements of
H. From the integration-by-parts formula established in Lemma 1.2.2 we
deduce that an element u of this type belongs to the domain of § and
moreover that
o(u) =Y FsW(hj) =Y (DFj,hs) - (1.44)
j=1

Jj=1

The following proposition provides a large class of H-valued random
variables in the domain of the divergence. Note that if u € DY2(H) then
the derivative Du is a square integrable random variable with values in the
Hilbert space H ® H, which can be indentified with the space of Hilbert-
Schmidt operators from H to H.

Proposition 1.3.1 The space D*2(H) is included in the domain of §. If
u,v € DY2(H), then

E (6(u)é(v))) = E ((u,v) ) + E(Tr (Duo Dv)). (1.45)

In order to prove Proposition 1.3.1 we need the following commutativity
relationship between the derivative and divergence operators. Let u € Sy,
FeSand h € H. Then

D"($(w)) = (u, h) y + 6(D"u). (1.46)
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Proof of (1.46): Suppose that u has the form (1.43). From (1.44) we deduce

iFj (hy,h;) H+zn: D"F;W (hy) — (D (D"F;) ,hj),,)
= (u,h)y + 5(D"u).

O

Notice that (1.46) is just a “Heisenberg commutativity relationship” that
can be written, using commutator brackets, as [D", dlu = (u, h)

Proof of Proposition (1.3.1): Suppose first that u,v € Sg. Let {e;,i > 1}
be a complete orthonormal system on H. Using the duality relationship
(1.42) and property (1.46) we obtain

E(0(u)d(v)))

i=1

B (Z (viei) g ((u,ei)y +5(Deiu))>
i=1

E((v; D(6(w)) ) = E (Z (v, €i) De"@(U)))

= E((uwv)y)+E | Y D (ue;)y D9 (ve)y
ij=1

= E((u,v)y)+ E(Tr(Duo Dv)).

As a consequence, we obtain the estimate

E (6w)?) < B (lull},) + B (IDulbion ) = luliom-  (147)

This implies that the space DV2(H) is included in the domain of 4. In fact,
if u € DY2(H), there exists a sequence u™ € Sy such that u™ converges to
w in L?(Q)) and Du™ converges to Du in L?(Q; H ® H). Therefore, 6(u™)
converges in L?(Q2) and its limit is §(u). Moreover, (1.45) holds for any
u,v € DY2(H). O

In order to extend the equality (1.46) to a more general class of random
variables we need the following technical lemma.

Lemma 1.3.1 Let G be a square integrable random variable. Suppose there
exists Y € L?(2) such that

E(GS(hF)) = E (YF),

for all F € DY2. Then G € D™? and D"G =Y.
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Proof: ~ We have

E(YF)=E(G§(hF)) = i E((J,G)6(hF)) = i E(FD"(J,Q)),

n=1
hence, J,, 1Y = D"(J,G) for each n > 1 and this implies the result. O

Proposition 1.3.2 Suppose that u € DY2(H), and D"u belongs to the
domain of the divergence. Then §(u) € D2, and the commutation relation
(1.46) holds.

Proof:  For all F € D2 we have using (1.45) and the duality relationship
(1.42)
E(5(u)d(hF)) = E((u,h)y F+(D"u,DF),)
— B (((wh) g+ 6(D") F),
which implies the result, taking into account Lemma 1.3.1 O

The following proposition allows us to factor out a scalar random variable
in a divergence.

Proposition 1.3.3 Let F € D2 and u be in the domain of § such that
Fu € L*(Q; H). Then Fu belongs to the domain of § and the following
equality is true

§(Fu) = Fo(u) — (DF,u)  , (1.48)

provided the right-hand side of (1.48) is square integrable.
Proof: ~ For any smooth random variable G € §p we have
E((DG,Fu),) = E((u, D(FG) - GDF)y)
E((6(uw)F — (u, DF) ;) Q)

which implies the desired result. O

The next proposition is a version of Proposition 1.3.3, where u is replaced
by a deterministic element h € H. In this case it suffices to impose that F’
is differentiable in the direction of h (see Lemma 1.3.2 for a related result).

Proposition 1.3.4 Let h € H and F € D"2. Then Fh belongs to the
domain of & and the following equality is true

§(Fh) = FW(h) — D"F.

Proof: Suppose first that F' € S. Then, the result is clearly true and using
(1.45) yields

E[6(Fn)’| = B (F2|nl}) + E[(D"F)*]. (1.49)
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Finally, if F}, € S is a sequence of smooth random variables converging to
F in L%(9) and such that D" F,, converges to D" F in L?(2), then by (1.49)
the sequence J(Fy,h) is convergent in L?(Q). O

The following extension of Proposition 1.3.3 will be useful.

Proposition 1.3.5 Suppose that H = L*(T,B,p). Let A € B, and con-
sider a random variable F € D42, Let u be an element of L*(Q; H) such
that ul 4 belongs to the domain of § and such that Ful o € L*(2; H). Then
Ful 4 belongs to the domain of § and the following equality is true

§(Fulg) = Fo(uly) — /A Dy Fugp(dt), (1.50)

provided the right-hand side of (1.48) is square integrable.

The next proposition provides a useful criterion to for the existence of
the divergence.

Proposition 1.3.6 Consider an element u € L*(Q; H) such that there
exists a sequence u™ € Domd which converges to u in L*(Q; H). Suppose
that there exists G € L*(Q) such that lim, .. E(§(u™)F) = E(GF) for all
F € S. Then, u belongs to Domd and 6(u) = G.

1.3.2  The Skorohod integral

We will suppose in this subsection that the separable Hilbert space H is
an L? space of the form H = L*(T,B,u), where u is a o-finite atomless
measure on a measurable space (T, B).

In this case the elements of Domé C L2(T x §2) are square integrable
processes, and the divergence §(u) is called the Skorohod stochastic integral
of the process u. We will use the following notation:

5(’1,6) = / Utth.
T
Any element u € L*(T x Q) has a Wiener chaos expansion of the form
u(t) =Y In(fal-1)), (1.51)
n=0

where for each n > 1, f,, € L*(T™"!) is a symmetric function in the first n
variables. Furthermore
o0
B ([ aterutan) = 3wl ull oy
T n=0
The following result expresses the operator § in terms of the Wiener chaos
decomposition.
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Proposition 1.3.7 Let u € L*(T x Q) with the expansion (1.51). Then u
belongs to Dom d if and only if the series

o(u) = Zjn+1(ﬁl) (1.52)
n=0

converges in L?(£2).

Observe that the (n 4+ 1)-dimensional kernels f,, appearing in formula
(1.51) are not symmetric functions of all its variables (only on the first n
variables). For this reason, the symmetrization of f,, in all its variables will
be given by

1
n+1

n
) falty, ottt e, )]
i=1

Falte, .. ta,t)

[fu(tr,. .. tn,t)

Equation (1.52) can also be written without symmetrization, because for
each n, I,11(fn) = In+1(fn). However, the symmetrization is needed in

order to compute the L? norm of the stochastic integrals (see formula (1.53)
ahead).

Proof:  Suppose that G = I,,(g) is a multiple stochastic integral of order
n > 1 where ¢ is symmetric. Then we have the following equalities:

E( / utDtGu(dt)> _ mi [ B (n.opmt sl 00) )

- /T E (To—s (faer ()0 Lu-1 (9, 1)) ()
— a(n—1)! / et (), (1) sy dt)
T

= n{fuo1,9)r20rm) = 0N fa1.9)r2(rm)
= B(L(f-0)lu(9) = B (I(f1-)G).

Suppose first that « € Dom §. Then from the above computations and from
formula (1.42) we deduce that

E@(w)G) = E(In(fa1)G)
for every multiple stochastic integral G = I,,(g). This implies that In(fn,l)

coincides with the projection of §(u) on the nth Wiener chaos. Consequent-
ly, the series in (1.52) converges in L?(f2) and its sum is equal to §(u).
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Conversely, suppose that this series converges and let us denote its sum by
V. Then from the preceding computations we have

N

N
) (/ ug Dy <Z In(Qn)) .u(dt)> = E(Vzln(gn))
T n=0

n=0

for all N > 0. So we get
W%WQMWMSWMWM

for any random variable F' with a finite Wiener chaos expansion. By a
density argument, this relation holds for any random variable F in D2,
and by Definition 1.3.1 we conclude that v belongs to Dom §. O

From Proposition 1.3.7 it is clear that the class Dom ¢ of Skorohod inte-
grable processes coincides with the subspace of L?(T x Q) formed by the
processes that satisfy the following condition:

[e.9]

BO)?) =Y (n+ DU falldagnsn < oo (1.53)

n=0

The space DY2(L?(T)), denoted by L':2, coincides with the class of
processes u € L?(T x ) such that u(t) € D2 for almost all ¢, and there
exists a measurable version of the two-parameter process Dgu; verifying
E [ J7(Dsus)?p(ds)p(dt) < co. This space is included in Dom ¢ by Propo-
sition 1.3.1. We recall that L'? is a Hilbert space with the norm

HUHiz,Lz(T) = HUH%Z(TXQ) + ||DU||%2(T2xQ)~

Note that .12 is isomorphic to L?(T; D'2).
If u and v are two processes in the space L2, then Equation (1.45) can
be written as

B(3(5() = | Bt + [ [ BDwDwulasutin). (154

Suppose that T = [0,00) and that p is the Lebesgue measure. Then,
if both processes are adapted to the filtration generated by the Brownian
motion, by Corollary 1.2.1 we have that Dsu; = 0 for almost all (s,t) such
that s > t, since F; = Fp,. Consequently, the second summand in Eq.
(1.54) is equal to zero, and we recover the usual isometry property of the
1t6 integral.

We could ask in which sense the Skorohod integral can be interpreted as
an integral. Suppose that u is a smooth elementary process of the form

ult) = 3 By (), (155)
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where the F}; are smooth random variables, and the h; are elements of
L?(T). Equation (1.44) can be written as

/T wdW, Z;Fj /T h (£)dWY —; /T Doy (Ou(dt). (156

We see here that the Skorohod integral of a smooth elementary process can
be decomposed into two parts, one that can be considered as a path-wise
integral, and another that involves the derivative operator. We remark that
if for every j the function h; is an indicator 14, of a set A; € By, and F}
is F. Ajc_—measurable, then by Corollary 1.2.1, the second summand of Eq.
(1.44) vanishes and the Skorohod integral of u is just the first summand of
(1.44).

Proposition 1.3.2 can be reformulated as follows.

Proposition 1.3.8 Suppose that u € LY2. Assume that for almost all t
the process { Dyus, s € T'} is Skorohod integrable, and there is a version of
the process { [ DyusdWs,t € T} which is in L*(T x Q). Then 6(u) € D2,
and we have

The next result characterizes the family of stochastic processes that can
be written as DF for some random variable F'.

Proposition 1.3.9 Suppose that u € L*(T x Q). There ezists a random
variable F € DY2 such that DF = u if and only if the kernels f,, appearing
in the integral decomposition (1.51) of u are symmetric functions of all the
variables.

Proof: The condition is obviously necessary. To show the sufficiency, define

=1
F = 1;) m[n_;’_l(fn).

Clearly, this series converges in D'? and DF = u. O

Proposition 1.3.10 Every process u € L*(T x Q) has a unique ortho-
gonal decomposition u = DF + u°, where F € D2, E(F) = 0, and
E(DG,u%) g) = 0 for all G in DY2. Furthermore, u® is Skorohod inte-
grable and 5(u®) = 0.

Proof: ~ The elements of the form DF, FF € D"“2, constitute a closed
subspace of L?(T x Q) by Proposition 1.3.9. Therefore, any process u €
L?(T x Q) has a unique orthogonal decomposition u = DF + u°, where
F e DY and u’ L DG for all G in DY2. From E((DG,u°)g) = 0 for all G
in DY2 ) it is clear that u° is Skorohod integrable and §(u®) = 0. O
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1.83.8 The Ito stochastic integral as a particular case
of the Skorohod integral

It is not difficult to construct processes u that are Skorohod integrable
(they belong to Domd) and do not belong to the space L':2. The next
result provides a simple method for constructing processes of this type.

Lemma 1.3.2 Let A belong to By, and let F' be a square integrable random
variable that is measurable with respect to the o-field F ac. Then the process
F1,4 is Skorohod integrable and

3(F14) = FW(A).

Proof:  Suppose first that F belongs to the space D2, In that case using
(1.48) and Corollary 1.2.1, we have

S(F14) = FIW(A) — / DyF1a()u(dt) = FW(A).

Then, the general case follows by a limit argument, using the fact that ¢ is
closed. ]

Notice that Lemma 1.3.2 is a particular case of Proposition 1.3.4 because
if Fisin L2(), Fac, P), then F € D42 and D4 F = 0.

Using this lemma we can show that the operator § is an extension of
the It6 integral in the case of the Brownian motion. Let W = {W(¢);0 <
t < 1,1 <i < d} be a d-dimensional Brownian motion. We denote by Li
the closed subspace of L%([0,1] x Q;R?) 2 L2(T x Q) (we recall that here
T =10,1] x {1,...,d}) formed by the adapted processes.

In this context we have the following proposition.

Proposition 1.3.11 L2 C Domd, and the operator § restricted to L2 co-
incides with the Ito integral, that is,

d 1
o(u) = Z/ uldWy}.
i=1"0
Proof:  Suppose that u is an elementary adapted process of the form
n
Uy = Z Fili, 4,0,
j=1

where F; € Lz(Q,ftj,P;Rd), and 0 < t; < -+ <ty < 1 (here F; =
Flo,)- Then from Lemma 1.3.2 we obtain u € Dom ¢ and

o(u) = ZZFJ(Wi(th) = W'(t;))- (1.58)
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We know that any process u € L2 can be approximated in the norm of
L?(T x Q) by a sequence u"™ of elementary adapted processes. Then by
(1.58) 6(u™) is equal to the Itd integral of u™ and it converges in L?(2) to
the It6 integral of w. Since § is closed we deduce that v € Dom d, and §(u)
is equal to the Ito integral of w. O

More generally, any type of adapted stochastic integral with respect to a
multiparameter Gaussian white noise W can be considered as a Skorohod
integral (see, for instance, Nualart and Zakai [264]).

Let W = {W(t),t € [0,1]} be a one-dimensional Brownian motion. We
are going to introduce a class of processes which are differentiable in the
future and it contains L2. The Skorohod integral is well defined in this class

and possesses properties similar to those of the Itd integral (see Chapter
3).
Let LY27 be the closure of Sy with respect to the seminorm

1
full} o, =E (/O ufdt) +E (/< (Dsut)stdt) ,
s<t

and let L be defined as the closure of Sy with respect to the seminorm

lullf = llull; o ; + E (/ <t(DTDSut)2dsdt> .
rVs<

Remarks:

1. L¥ coincides with the class of processes v € L2/ such that
{Dui1g 4(t),t € [0,1]} belongs to D2(L2([0,1]%)).

2. If u € LY%/ then f: wdt € D2 for any 0 < a < b < 1.

Proposition 1.3.12 L2 C LY, and for any u € L? we have Dgu; = 0 if

t>s, and
1
|ull3 = E (/ ufdt> . (1.59)
0

Proof:  Let u be an elementary adapted process of the form (1.58). Then
u € LF, and D,u; = 0 if t > s. The result follows because these processes
are dense in L2. O

Proposition 1.3.13 LY C Domd and for all u € L¥ we have
E (8(u)?) < 2|ull.
Proof:  If uw € Sy, then by (1.54) we have

1 1 1
E ( / ufdt) +F ( / / DsutDtusdsdt>
0 0 0
1 1 t
= F (/ ufdt) +2F (/ / DsutDtusdsdt> . (1.60)
0 0 0

E (5(u)2)
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Using the duality between the operators § and D and applying again (1.54)

yields
1 gt
FE (/ / DsutDtusdsdt) FE ( Ut (/ DiugdW > dt)
o Jo
%E ( / ufdt>

2
1
—|—2E< / Dtude> dt) (1.61)
Moreover, (1.54) yields

o (L () ) =2 ([ [ o)
+E ( / / / (D, Dyus) drdsdt) (1.62)

Substituting (1.61) and (1.62) into (1.60) we obtain the inequality (1.59).
Finally, the general case follow by a density argument. O

IA

1.3.4 Stochastic integral representation of Wiener functionals

Suppose that W = {W(t),t € [0,1]} is a one-dimensional Brownian motion.
We have seen in Section 1.1.3 that any square integrable random variable
F', measurable with respect to W, can be written as

1
+ /0 d(t)dWry,

where the process ¢ belongs to L2. When the variable F belongs to the
space D12, it turns out that the process ¢ can be identified as the optional
projection of the derivative of F'. This is called the Clark-Ocone represen-
tation formula:

Proposition 1.3.14 Let F € DY2, and suppose that W is a one-dimensio-
nal Brownian motion. Then

1
F=B(F)+ / E(DF|F)dW,. (1.63)

0
Proof: Suppose that F' = ZZO:O I,(f»). Using (1.39) and (1.40) we deduce

E(D,F|F,) ZnE(Infl(fn('vt)”}—t)

= Zn—[n 1 fn t17~-~ n—1, )1{t1V-~th_1§t})-
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Set ¢, = E(D:F|F;). We can compute §(¢) using the above expression for
¢ and (1.52), and we obtain

(oo}

5(¢) = Zln(fn) =F- E(F),

n=1

which shows the desired result because §(¢) is equal to the Itd stochastic
integral of ¢. O

As a consequence of this integral representation, and applying the Holder,
Burkholder, and Jensen inequalities, we deduce the following inequality for
F € DY and p > 2 in the case T' = [0, 1]:

E(FP) < C[[E(F) + E( / D, FIPdt)).

1.3.5 Local properties

In this subsection we will show that the divergence and derivative opera-
tors verify a local property. The local property of the Skorohod integral is
analogous to that of the It6 integral.

Proposition 1.3.15 Let u € DY?(H) and A € F, such that u =0 on A.
Then §(u) =0 a.s. on A.

Proof:  Let F be a smooth random variable of the form
F=fW(hy),...,W(hy))
with f € C§°(R™). We want to show that

6()1jjuy =0y =0

a.s. Suppose that ¢ : R — R is an infinitely differentiable function such
that ¢ > 0, ¢(0) = 1 and its support is included in the interval [—1,1].
Define the function ¢ (x) = ¢(%) for all € > 0. We will use (see Exercise
1.3.3) the fact that the product F¢, (||ul|%) belongs to D*2. Then by the
duality relation (1.42) we obtain

E (5(w)o. ([ull) F) = B ((u, DIF.(|lullz)]) 1)
= E(¢. (lulf) (u, DF)y)
+ 2B (Fe, (|lull?) (u, D"u)p) -

We claim that the above expression converges to zero as € tends to zero. In
fact, first observe that the random variables

Ve = 6. (Jully) (w. DF) + 276 (ull%) (u, D"}
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converge a.s. to zero as € | 0, since ||u| gy = 0 implies V. = 0. Second, we
can apply the Lebesgue dominated convergence theorem because we have

|6 (lullfr) (w, DF) | < [ @lloo lull | DF |,
0% (lullZ) (u, D u) |
< suplzd (@) [Dull por < 16 lloc DUl peoss -

The proof is now complete. O

Notice that the local property of the divergence has been established
for H-valued random variables in the space D2(H). We do not know if it
holds for an arbitrary variable u in the domain of 9, although we know that
in the Brownian case the local property holds in the subspace L2, because
as we have seen § coincides there with the It integral. As an extension of
this result we will prove in Proposition 1.3.17 below that the local property
of 6 holds in the space LF.

The next result shows that the operator D is local in the space D1,

Proposition 1.3.16 Let F' be a random variable in the space D% such
that F' =0 a.s. on some set A € F. Then DF =0 a.s. on A.

Proof:  We can assume that F' € D' N L>°(Q), replacing F by arctan(F).
We want to show that 1;p_gy DF = 0 a.s. Consider a function ¢ : R — R
such as that in the proof of Proposition 1.3.15. Set

vl = [ " by,

By the chain rule ¥ _(F) belongs to D! and Dy (F) = ¢.(F)DF. Let u
be a smooth elementary process of the form

n

u = Zthj,

Jj=1

where F; € S, and hj € H. Observe that the duality relation (1.42) holds
for F in DY N L°°(Q) and for a process u of this type. Note that the class
of such processes u is total in L*(; H) in the sense that if v € L'(Q; H)
satisfies E((v,u)y) = 0 for all w in the class, then v = 0. Then we have

[E(¢e(F) (DF,u))| = |[E{D @(F)),u)p)l
|E (¢ (F)o(w))] < €[dlloc E(|6(u)])-

Letting € | 0, we obtain
E (1{p—oy(DF,u)pm) =0,

which implies the desired result. O
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Proposition 1.3.17 Suppose that W = {W(t),t € [0,1]} is a one-
dimensional Brownian motion. Let u € LY and A € F, such that us(w) = 0
a.e. on the product space [0, T|x A. Then 6(u) =0 a.s. on A.

Proof: Let u € LF. Consider the sequence of processes u" defined in
(1.17). As in Lemma 1.1.3 the operator P, defined by P,(u) = u" has
norm bounded by 1 from L to L¥". By Proposition 1.3.13 6(a") converges
in L2(2) to §(u) as n tends to infinity. On the other hand, applying Propo-
sition 1.3.4 we have

—n

2" -1 i2
(5(%”) = Z on ([ - U(S)dS) (W(i+1)2*" — WiQ—n)
i=1 =

(i+1)27" 27"
—/ / D udtds.
i2-n (i—1)2—n

and by the local property of the operator D in the space .'27 (see Exercise
1.3.12) we deduce that this expression is zero on the set fol uZdt = 0, which
completes the proof of the proposition. O

We can localize the domains of the operators D and ¢ as follows. If L is a
class of random variables (or processes) we denote by Lj. the set of random
variables F' such that there exists a sequence {(Q,,F,),n > 1} C F xL
with the following properties:

(i) Q. 19, as.

(ii) F = F, a.s. on .

If Fe Dllc;g, p > 1, and (Q,, F,,) localizes F in DY? then DF is defined
without ambiguity by DF = DF,, on ,, n > 1. More generally, the
iterated derivative D¥ is well defined by localization in the space ]Dfo’f .
Moreover, for any h € H the operator D" is also local (see Exercise 1.3.12)
and it has a local domain ]D){lo’f, p>1.

Then, if u € D;2?(H), the divergence §(u) is defined as a random variable

loc
determined by the conditions

6(u)lq, =d(u")la, for all n>1,

where (2, u,,) is a localizing sequence for w.

Although the local property of the divergence operator has not been
proved in its domain, we can localize the divergence as follows. Suppose
that {(Qy,u™),n > 1} is a localizing sequence for w in (Domé), .. If §(u™) =
d(u™) a.s. on £, for all m > n, then, the divergence §(u) is the random
variable determined by the conditions (u)|q, = d(u™)|q, for all n > 1,
but it may depend on the localizing sequence.
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Examples: Let W = {W(¢),¢ € [0,1]} be a one-dimensional Brownian
motion. The processes

W 4
= — = W
Ut W[’ vy = exp(Wy)
belong to LL;%. Tn fact, the sequence (Q,,u") with Q, = {|W;] > 13} and
uy = M/VW localizes the process u in L*2. On the other hand, if we take
Q= {supsepo,1) W] < n} and vf = exp(W; A n), we obtain a localizing
sequence for the process v (see also Exercise 1.3.10).

The following proposition asserts that the Skorohod integral defined by
localization in the space ]LIFOC thanks to Proposition 1.3.17 is an extension

of the It6 stochastic integral.

Proposition 1.3.18 Let W = {W;,t € [0, 1]} be a one-dimensional Brown-

ian motion and consider an adapted process u such that fol u?dt < 0o a. s.
Then, u belongs to LY and 5(u) coincides with the Ité stochastic integral

1 loc
fO utth .

Proof:  For any integer k > 1 consider an infinitely differentiable function
¢+ R — R such that ¢, (x) = 1if |z| < k, ¢ (x) =0if || > k+ 1 and
lop(z)] <1 for all x. Define

¢
ub = w0, (/ u?ds)
0
1
Qk:{/ uidsgk}.
0

k

and

k

Then we have Qx T Q a.s., u = u* on [0,1] x Q, and u* € L2 because u

is adapted and

1 1 t
/ (uf)th :/ ui oy (/ ufds) dt <k +1.
0 0 0

Then, the result follows because on L2 the Skorohod integral is an extension
of the It6 integral. O

The following lemma is helpful in the application of the analysis on the
Wiener space. It allows us to transform measurability properties with re-
spect to o-fields generated by variables of the first chaos into analytical
conditions.

Lemma 1.3.3 Let G be a random variable in ]D)llc;i. Given a closed sub-
space K of H, we denote by Fi the o-field generated by the Gaussian
random variables {W(h),h € K}. Let A € Fk. Suppose that 14G is Fk-
measurable. Then DG € K, a.s., in A.
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Proof: ~ Since we can approximate G by ¢,(G), where ¢, € C°(R),
o, (x) = z for |z| < n, it is sufficient to prove the result for G € Dllo’iﬂLQ(Q).
Let h € H be an element orthogonal to K. Then E(G | Fk) belongs to
D"? and D"E(G | Fx) = 0. However, G € ]D)ﬁ)f and G = E(G | Fk) a.s.
on A. From the local property of D" it follows that D"G = 0 a.s. on A.
Then it remains to choose a countable and dense set of elements h in the
orthogonal complement of K, and we obtain that DG € K a.s. on A. [

The following lemma shows that an It6 integral is differentiable if and
only if its integrand is differentiable (see [279]).

Lemma 1.3.4 Let W = {W(¢),t € [0,1]} be a one-dimensional Brownian
motion. Consider a square integrable adapted process u = {u,t € [0,1]},

and set Xy = fg usdW,. Then the process u belongs to the space LY? if and
only if X, belongs to DY2. In this case the process X belongs to 12, and
we have

t t t s
/E(|D5Xt|2)ds:/ E(ug)ds+/ / E(|DyusP)drds,  (1.64)
0 0 0 0
for all t € ]0,1].

Proof: Suppose first that u € LY2. Then the process u verifies the
hypothesis of Proposition 1.3.8 of the Skorohod integral. In fact, the process
{Dius,s € [t,1]} is Skorohod integrable because it is adapted and square

integrable. Moreover,
2 1,1
dt :/ / E(|Dyus|?)dsdt < oo,
o Jt

(/)

due to the isometry of the It6 integral. Consequently, by Proposition 1.3.8
we obtain that X; belongs to D' for any ¢ and

1
/ Diu,dW,
t

t
DX, = udpyery + / Dyuy W, (1.65)
S

Taking the expectation of the square of the above expression, we get (1.64)
and X belongs to L2

Conversely, suppose that X; belongs to D'2. For each N we denote by
ul¥ the projection of u; on Py = Ho @ --- D Hy. Set XN = fg ulN dW.
Then XtN is the projection of X; on Py,1. Hence, X{V converges to X7 in
the topology of the space D':2. Then the result follows from the inequality

1 1 1 s
/E(|D5Xm2)ds _ /E(|u§|2)ds+/ / E(|Dwu [2)drds
0 0 0 0

1 s
/ / E(|D,u"|?)drds
0 0

= B (IDuY 2 0,5)) -

Vv
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FEzxercises

1.3.1 Show the isometry property (1.54) using the Wiener series expansion
of the process wu.

1.3.2 Let R be the class of processes of the form

n
u = ZEIA“
=1

where A; € By, and F; € L2(Q,.7-'A§,P). Show that Dom é coincides with
the closed hull of R for the norm ||ul[z2(rxq) + [|6(u)]|2.

1.3.3 Let F' be a smooth random variable of the form
F=fW(hi),...,W(hy)),

where f € C§°(R™). Let g be in C§°(R), and let u € LY2. Show that
Fg(|lull%) belongs to the space D'? and

D (Fy(|lull3)) = DFg(llullf) + 2Fg (Jull7) D3 -

1.3.4 Let F € D'? be a random variable such that E(|F|~2) < co. Then
P{F > 0} is zero or one.

Hint: Using the duality relation, compute E(¢ (F)d(u)), where u is an
arbitrary bounded element in the domain of ¢ and ¢, is an approximation
of the sign function.

1.3.5 Show that the random variable F' = 1y (4)>0} does not belong to
D'2. Prove that it belongs to D2 and DF = 0.

loc»

1.3.6 Show the following differentiation rule (see Ocone and Pardoux [272,
Lemma 2.3]) . Let F = (F,..., F*) be a random vector whose components
belong to ID)llo’i. Consider a measurable process u = {u(z),z € R*} which
can be localized by processes with continuously differentiable paths, such
that for any # € R¥, u(z) € D2 and the derivative Du(z) has a continuous

loc
version as an H-valued process. Suppose that for any a > 0 we have

E(Sup [IU(w)IerIIDU(w)II%]) < oo,

lz|<a

|| sup |Vu(z)||lo < o0
|z|<a

1,2

1o, and we have

Then the composition G = u(F) belongs to D

k
DG = 0;u(F)DF* + (Du)(F).

i=1



1.3 The divergence operator 53

Hint: Approximate the composition u(F) by the integral

|, w@y (P - ajaa.

where 1), is an approximation of the identity.

1.3.7 Suppose that H = L?(T). Let 8% be the adjoint of the operator DF.
That is, a multiparameter process u € L2(T* x ) belongs to the domain
of 6% if and only if there exists a random variable 6" (u) such that

E(F&*(u)) = E((u, D*F) 12 (7))

for all I € D¥2. Show that a process u € L*(T* x Q) with an expansion
up = ifn(fn(-,t)), teT,
n=0
belongs to the domain of &* if and only if the series
0" (u) = i Lngr(fn)
n=0

converges in L?(Q2).

1.3.8 Let u € L2(T* x Q). Show that there exists a random variable F' €
D*? such that w = D*F if and only if uy = > o2 I,(fa(-,t)) and the
kernels f,, € L2(T™*F) are symmetric functions of all their variables. Show
that every process u € L*(T"* x Q) admits a unique decomposition u =
DFF 4+ u°, where F € D*?2 and 6% (u°) = 0.

1.3.9 Let {W,;,t € [0,1]} be a one-dimensional Brownian motion. Using
Exercise 1.2.6 find the Wiener chaos expansion of the random variables

1 1
F = / (WS + 24WHdW,, Fp = / teVedw;,.
0 0

Let u € LY2 and F € DY2 be two

).

0 and E ([, [usDsF|*p(ds)p(dt)) < oo.
1,2
loc»

1.3.10 Suppose that H = L*(T
elements such that P(F = 0) =
Show that the process % belongs to L
its Skorohod integral.

and compute its derivative and

1.3.11 In the particular case H = L?(T'), deduce the estimate (1.47) from
Equation (1.53) and the inequality

||f~n||L2(T"+1) < ||anL2(Tn+1).
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1.3.12 Let F € D™P, p > 1, be such that F =0 a.s. on A € F. Show that
D'F = 0 a.s. on A. As a consequence, deduce the local property of the
operator D on the space L%%/f.

1.3.13 Using Clark-Ocone formula (1.63) find the stochastic integral rep-
resentation of the following random variables:

(i) F = W7,

(i) F = exp(2173),

(iii) F = Supo<i<1 Wi-

1.4 The Ornstein-Uhlenbeck semigroup

In this section we describe the main properties of the Ornstein-Uhlenbeck
semigroup and, in particular, we show the hypercontractivity property.

1.4.1  The semigroup of Ornstein-Uhlenbeck

We assume that W = {W(h),h € H} is an isonormal Gaussian process
associated to the Hilbert space H defined in a complete probability space
(Q,F,P), and that F is generated by W. We recall that J,, denotes the
orthogonal projection on the nth Wiener chaos.

Definition 1.4.1 The Ornstein- Uhlenbeck semigroup is the one-parameter
semigroup {Ty,t > 0} of contraction operators on L?(Q) defined by

oo
T,(F) =Y e ™J,F, (1.66)
n=0

for any F € L*(Q) .

There is an alternative procedure for introducing this semigroup. Sup-
pose that the process W' = {W’(h),h € H} is an independent copy of
W. We will assume that W and W' are defined on the product probability
space (2 x Q' F® F',P x P'). For any t > 0 we consider the process
Z ={Z(h),h € H} defined by

Z(h) = e 'W(h) + V1 —e~2W'(h),  he€H.

This process is Gaussian, with zero mean and with the same covariance
function as W. In fact, we have

E(Z(hl)Z(hQ)) = 6_2t<h1, h2>H + (1 — 6_2t)<h1,h2>H = <h1, hQ)H.

Let W: Q — R¥ and W’ : ' — R be the canonical mappings associated
with the processes {W(h),h € H} and {W'(h),h € H}, respectively. Given
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arandom variable F' € L*(Q), we can write F' = 1) oW, where 1 is a mea-
surable mapping from R¥ to R, determined PoWW ! a.s. As a consequence,

the random variable ¢ (Z(w,w’)) = (e W (w) + V1 — e 2tW' (")) is
well defined P x P’ a.s. Then, for any t > 0 we put

T,(F) = E' (¢p(e™W + V1 — e 2tW')), (1.67)

where E’ denotes mathematical expectation with respect to the probability
P’. Equation (1.67) is called Mehler’s formula. We are going to check the
equivalence between (1.66) and (1.67). First we will see that both definitions
give rise to a linear contraction operator on L?(Q2). This is clear for the
definition (1.66). On the other hand, (1.67) defines a linear contraction
operator on LP(2) for any p > 1 because we have

E(Ty(F)P) = E(E@Wp(e™W +/1—e2tW"))
< B(E(|Yp(e™W 4+ V1 — e 2tW) |P = E(|F]P).

So, to show that (1.66) is equal to (1.67) on L?(2), it suffices to check that
both definitions coincide when F' = exp(W (k) — 1||h||%), h € H. We have

E <exp (e—tmh) +V/1— e 2W/(h) - 1|h||%{))
e <etw<h> - 3 Il ) = Z =l o T2 )

(5,

n=0

On the other hand,
[e%) 1 on
n=0

which yields the desired equality.

W (RS,

The operators T} verify the following properties:
(i) T} is nonnegative (i.e., F' > 0 implies T;(F') > 0).

(ii) Ty is symmetric:

E(GT,(F)) = E(FTi(G)) = ) e " E(Ju(F)J(G)).

n=0
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Example 1.4.1 The classical Ornstein-Uhlenbeck (O.U.) process on the
real line { X¢,t € R} is defined as a Gaussian process with zero mean and co-
variance function given by K(s,t) = Be~ls=tl where ar, 3 > 0 and s,t € R.
This process is Markovian and stationary, and these properties characterize
the form of the covariance function, assuming that K is continuous.

It is easy to check that the transition probabilities of the Ornstein- Uhlen-
beck process X; are the normal distributions

P(X; € dy|Xs = ) = N(ze 7, f(1 — e72207%)).
In fact, for all s <t we have

B(X|X,) = et-9X,,
E((X, — B(X,|X,))?) = p1—e20lt=5)y,

Also, the standard normal law v = N (0, 8) is an invariant measure for the
Markov semigroup associated with the O.U. process.

Consider the semigroup of operators on L?(R,B(R),v) determined by
the stationary transition probabilities of the O.U. process (with o, 3 = 1).
This semigroup is a particular case of the Ornstein-Uhlenbeck semigroup
introduced in Definition 1.4.1, if we take (Q,F, P) = (R,B(R),v), H =R,
and W(t)(x) = tz for any t € R. In fact, if {Xs,s € R} is a real-valued
0.U. process, for any bounded measurable function f on R we have for
t>0and s eR

/ F@)P(Xops € dy| X, = 1) = / F@)N(e 2,1 — e (dy)
R R

/Rf(efta: +V1—e2ty(dy)
(T;f) (=)

Let W be a Brownian measure on the real line. That is, {W(B), B € B(R)}
is a centered Gaussian family such that

EOV(BOW(B2) = [ 15,0, (o)

Then the process
t
X; =+/2a3 / e~ =W qw,
—00

has the law of an Ornstein-Uhlenbeck process of parameters o, 3. Further-
more, the process X; satisfies the stochastic differential equation

dXt = QQﬂth - O[Xtdt.
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Consider now the case where H = L?(T, B, 1) and p is a o-finite atomless
measure. Using the above ideas we are going to introduce an Ornstein-
Uhlenbeck process parametrized by H. To do this we consider a Brownian
measure B on T x R, defined on some probability space (2, F, P) and with
intensity equal to 2u(dt)dz. Then we define

Xt(h):/_t /Th(T)e—“—S)B(dT,ds). (1.68)

It is easy to check that X;(h) is a Gaussian zero-mean process with covari-
ance function given by

E(Xy, (h1) Xy, (h2)) = e (hy  ho) .
Consequently, we have the following properties:

(i) For any h € H, {X;(h),t € R} is a real-valued Ornstein-Uhlenbeck
process with parameters o = 1 and 8 = ||h||%.

(ii) For any t > 0, {X;(h),h € H} has the same law as {W(h),h € H}.

Therefore, for any random variable F' € L°(Q2) we can define the com-
position F'(X;). That is, F(X;) is short notation for ¥ 5(X;), where ¥ p
is the mapping from R¥ to R determined by (W) = F. Let F, denote
the o-field generated by the random variables B(G), where G is a measur-
able and bounded subset of T x (—o0,t]. The following result establishes
the relationship between the process X;(h) and the Ornstein-Uhlenbeck
semigroup.

Proposition 1.4.1 For anyt > 0, s € R, and for any integrable random
variable F' we have

E(F(Xs10)|Fs) = (LF)(Xy). (1.69)

Proof: ~ Without loss of generality we may assume that F' is a smooth
random variable of the form

where f € Cy°(R™), hi,...,h, € H, 1 < i < n. In fact, the set S of
smooth random variables is dense in L!(2), and both members of Eq.
(1.69) are continuous in L!'(Q). We are going to use the decomposition
Xopt = Xoqt — et X, + et X,. Note that

(i) {etX,(h),h € H} is F,-measurable, and

(ii) the Gaussian family {Xsi¢(h) — e *X4(h),h € H} has the same law
as {V1—e 2W(h),h € H}, and is independent of F.
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Therefore, we have

E(F(Xsr)|Fs) = E(f(Xosi(),- ., Xoe(hn))|Fs)
E(f(Xewt(hn) = ™" Xo(hn) + €7 X, (b)),

o Kaalln) = € X () e X () )

E <f (mw’(hl) + e X (hy),

VT + e—fxswn)))
= (TtF) (Xs)a

where W’ is an independent copy of W, and E’ denotes the mathematical
expectation with respect to W’. O

Consider, in particular, the case of the Brownian motion. That means
Q= Cy([0,1]), and P is the Wiener measure. In that case, T = [0, 1], and
the process defined by (1.68) can be written as

X, (h) = / h(r) X (dr),

where X; (1) = fjoo Jy e “=9W(do,ds), and W is a two-parameter Wiener
process on [0, 1] x R with intensity 2dtdz. We remark that the stochastic
process {X;(-),t € R} is a stationary Gaussian continuous Markov process
with values on Cy([0, 1]), which has the Wiener measure as invariant mea-
sure.

1.4.2  The generator of the Ornstein- Uhlenbeck semigroup

In this section we will study the properties of the infinitesimal generator of
the Ornstein-Uhlenbeck semigroup. Let F' € L?(Q) be a square integrable
random variable. We define the operator L as follows:

o0
LF = Z —nJ,F,

n=0

provided this series converges in L?(€2). The domain of this operator will
be the set

Dom L ={F € L*(Q),F =Y L.(fa): > n?lJnF|l5 < oo}.
n=0 n=1

In particular, Dom L C D%2. Note that L is an unbounded symmetric
operator on L?(Q). That is, E(FLG) = E(GLF) for all F,G € Dom L. The
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next proposition tells us that L coincides with the infinitesimal generator
of the Ornstein-Uhlenbeck semigroup {7}, > 0} introduced in Definition
1.4.1. In particular, L is self-adjoint and (hence) closed.

Proposition 1.4.2 The operator L coincides with the infinitesimal gener-
ator of the Ornstein-Uhlenbeck semigroup {Ti,t > 0}.

Proof: ~ We have to show that F' belongs to the domain of L if and only
if the limit limy o }(T,F — F) exists in L*(Q2) and, in this case, this limit is
equal to LF. Assume first that F' € Dom L. Then

2) - i |:1(6_"t ~1) +an(|JnF2)7

n=0

1
E (‘t(TtF— F)—LF

which converges to zero as t | 0. In fact, for any n the expression %(e’”t —
1) 4+ n tends to zero, and moreover |1(e™"" —1)| < n.

Conversely, suppose that limy o %(TtF —F) = G in L?(Q). Then we have
that

1
JnG =lim — (T3 J, F — J,F) = —nJ,F.
tlo ¢
Therefore, F' belongs to the domain of L, and LF = G. O

The next proposition explains the relationship between the operators D,
0, and L.

Proposition 1.4.3 §DF = —LF, that is, for F € L*(Q) the statement
F € Dom L is equivalent to F € Dom D (i.e., F € D2 and DF € DomJd),
and in this case 0DF = —LF.

Proof:  Suppose first that ' € D2 and that DF belongs to Domd. Let
G be a random variable in the nth chaos H,,. Then, applying Proposition
1.2.2 we have

E(G6DF) = E((DG, DF)g) = n*(n — 1) (g, fn) gen = nE(GJ,F).

So, J,0DF = nJ,F, which implies F € Dom L and §DF = —LF.
Conversely, if F € Dom L, then F € D2 and for any G € D*2, G =
ZZO:O [n(gn), we have

E((DG,DF)y) =Y nE(J,GJ,F) = ~E(GLF).
n=1
Therefore, DF € DomJ, and DF = —LF. O

We are going to show that the operator L behaves as a second-order
differential operator when it acts on smooth random variables.



60 1. Analysis on the Wiener space

Proposition 1.4.4 [t holds that S C Dom L, and for any F' € S of the
form F = f(W(hy),...,W(hy)), f € C(R"), we have

= SOV ). W ()W (o). (1.70)

Proof: ~ We know that F belongs to D2 and that
DF = " 0if(W(ha),...,W(hn))hi.
i=1
Consequently, DF' € Sy C Dom ¢ and by Eq. (1.44) we obtain

SDF = Z 0if(W(h1),...,W(hn))W (h;)

- En: 8:0; F(W (h), ..., W (hn))(hi, by ar.

i,j=1
Now the result follows from Proposition 1.4.3. (]

More generally, we can prove the following result.

Proposition 1.4.5 Suppose that F = (F*',...,F™) is a random vector
whose components belong to D**. Let ¢ be a function in C*(R™) with
bounded first and second partial derivatives. Then o(F) € Dom L, and

L(p(F) = Y 0,0;p(F)(DF',DF)yy +y_ p(F)LF".

ij=1 i=1
Proof:  Approximate F' by smooth random variables in the norm || - ||2.4,
and ¢ by functions in Cp°(R™), and use the continuity of the operator L
in the norm || - ||2,2. O

We can define on S the norm

|F|l, = [E(F?) + B(LF))*.

Notice that Dom L = D?*? and that the norms | - ||, and || - ||2,2 coincide.
In fact,
o0
E(F%) + B(LFP) = Y (n*+1)|J.F3
n=0

= E(F?)+E(|IDF|%) + E(ID*Flfen)-
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Similarly, the space D*? can be characterized as the domain in L?() of
the operator C' = —y/—L defined by

CF = i —/nJ,F.

n=0

As in the case of the operator L, we can show that C' is the infinitesimal
generator of a semigroup of operators (the Cauchy semigroup) given by

Q.F = i e V. F.

n=0

Observe that Dom C' = D'2, and for any F € Dom C we have

E((CF)*) =) n|J.F|3 = E(|DF|F).

n=1

1.4.8 Hypercontractivity property and the multiplier theorem

We have seen that T} is a contraction operator on LP(2) for any p > 1.
Actually, these operators verify a hypercontractivity property, which is due
to Nelson [235]. In the next theorem this property will be proved using It6’s
formula, according to Neveu’s approach (cf. [236]).

Theorem 1.4.1 Let p > 1 and t > 0, and set q(t) = e*'(p—1) +1 > p.
Suppose that F € LP(Q). Then

1T Ellgcey < [1E1lp-

Proof: Put ¢ = q¢(t), and let ¢’ be the conjugate of ¢. Taking into
account the duality between L7(Q2) and L7 (), it suffices to show that
|[E(TyF)G)| < ||F|l,||Gly for any F € LP(Q) and for any G € L9 (Q).
With the operator T; nonnegative (which implies |T; F'| < T;(|F|)), we may
assume that F and G are nonnegative. By an approximation argument it
suffices to suppose that there exist real numbers a < b such that 0 < a <
F.G < b < oo. Also we may restrict our study to the case where F' =
fW(h1),...,W(hy)) and G = g(W (hy),...,W(h,)) for some measurable
functions f, g such that 0 < a < f,g < b < co and orthonormal elements
hi,...,h, € H.

Let {3;,0 <t <1} and {&,,0 <t < 1} be two independent Brownian
motions. Consider orthonormal functions ¢, ..., ¢, € L*([0,1]). By (1.67)
we can write

E(T,F)G) = E(f(et/01¢ldﬁ+ V1 e2t/01¢1d5,
...,e‘t/01¢ndﬁ+ \/1—e—2t/01¢nd§)g(/ol¢1dﬁ,...,/Olqbndﬁ».
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In this way we can reduce our problem to show the following inequality:
EXY) < [IX[[pY g,

where 0 < a < X,Y < b < o0, and X,Y are random variables mea-

surable with respect to the o-fields generated by the Brownian motions
n, = e 3, + V1 —e 2t and f, respectively. These random variables
will have integral representations of the following kind:

1 1
X0 =B+ [pdn, YO =B0)+ [ uds,
0 0
Appling 1t6’s formula to the bounded positive martingales

M, = E(X") + / pudn, and N,=E(Y?)+ / budB,,
0 0

and to the function f(z,y) = z%y”, a = %, v = %

, we obtain
XY = [ X[plYly

1 1
1
+/ (aMS“_lN;/dMS+7M§N§‘1dNS)+/ §M§‘N§Asds,
0 0

where
Ay = ala— )M +~(y — )N 22 + 20y M; "N b e

Taking expectations, we get
1 1
BOXY) = X[Vl + 5 [ BOLENTA)ds
0

Therefore, it suffices to show that As < 0. Note that a(a—1) = %(% -1)<
0. Thus, As will be negative if

ala=1)y(y = 1) = (aye™)? > 0.

Finally,
1
(a=1)(y—1)—qae > =—(p—1-(¢g—1)e ) =0,
g

which achieves the proof. O

As a consequence of the hypercontractivity property it can be shown
that for any 1 < p < ¢ < oo the norms || - ||, and || - ||, are equivalent on
any Wiener chaos H,. In fact, let ¢ > 0 such that ¢ = 1 + €2'(p — 1). Then
for every F € 'H,, we have

e " Fllg = |TeFllg < [ Fllp.
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In addition, for each n > 1 the operator J,, is bounded in LP(2) for any
1 <p< oo, and

(p—1)%
I F|lp < _n
| Ip { (p—1)"%

In fact, suppose first that p > 2, and let ¢ > 0 be such that p—1 = e?*. Using
the hypercontractivity property with the exponents p and 2, we obtain

Fll, if p>2
Fl, if p<2.

[JuFllp = e T JuF llp < €| JnFll2 < e™[|Fll2 < e[|l (1.71)
If p < 2, we use a duality argument:

[ JnFlly = sup E((JoF)G)
lGll,<1

IFllp sup [|7nGllg < €™ Fllp,
IGllq<1

IN

where ¢ is the conjugate of p, and ¢ — 1 = e?.

We are going to use the hypercontractivity property to show a multiplier
theorem (see Meyer [225] and Watanabe [343]) that will be useful in proving
Meyer’s inequalities.

Recall that we denote by P the class of polynomial random variables.
That means that a random variable F' belongs to P if it is of the form

F= p(W(hl)a SR W(hn))7

where hq,...,h, are elements of H and p is a polynomial of n variables.
The set P is dense in LP(Q) for all p > 1 (see Exercise 1.1.7).

Consider a sequence of real numbers {¢(n),n > 0} with ¢(0) = 0. This
sequence determines a linear operator Ty : P — P defined by

T,F =Y ¢(n)J.F, FeP.
n=0

We remark that the operators T;, Q¢, L, and C are of this type, the cor-
responding sequences being e™™, e~ VvVt _p, —+/n, respectively. We are
interested in the following question: For which sequences is the operator
T, bounded in LP(Q) for p > 17 Theorem 1.4.2 will give an answer to
this problem. The proof of the multiplier theorem is based on the following
technical lemma.

Lemma 1.4.1 Let p > 1 and F € P. Then for any integer N > 1 there
exists a constant K (depending on p and N ) such that

ITe(I = Jo = Ty =+ = In-1)(F)lp < Ke || Fl,

for allt > 0.



64 1. Analysis on the Wiener space

Proof: ~ Assume first that p > 2. Choose tg such that p = e? + 1. Then,
by Nelson’s hypercontractivity theorem (Theorem 1.4.1) we have, for all
t 2 t07

| To Lot (I — Jo — J1 — -+ — In—1)(F)[I?
< ||Tt—t0(l —Jo—J1—— ']N—l)(F)”%
=1 e FE =Y e P,
n=N n=N

S R 1

and this proves the desired inequality with K = eN'o, For t < tg, the
inequality can be proved by the following direct argument, using (1.71):

I1T:(I —Jo—J1 — - = JIn— 1)( )||p
N-—1

> uFllp +1Fl, < Z e[| F|lp + (|17l

n=0 n=0
(N62Nto +6Nt0) e_NtHFH;D'

IN

IA

For p = 2 the inequality is immediate, and for 1 < p < 2 it can be obtained
by duality (see Exercise 1.4.5). O

The following is the multiplier theorem.
Theorem 1.4.2 Consider a sequence of real numbers {¢(n), n > 0} such

that $(0) = 0 and ¢(n) = Y pogaxn™F forn > N and for some ar € R
such that > pe |ax|N=F < co. Then the operator

F) =S o), F

is bounded in LP(Q) for any 1 < p < co.

Notice that the assumptions of this theorem are equivalent to saying
that there exists a function h(z) analytic near the origin such that ¢(n) =
h(n=1) for n > N.

Proof:  Define

N—-1

_ (D) ()

T, =Y (n J+Zq§ n)J, =Ty + T2,
n=0
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We know that Tél) is bounded in LP(€2) because the operators J,, are
bounded in LP(2) for each fixed n. We have

lr2F| = 1> ( akn_k> JnF
P n=N \k=0 »
< D al | Yo nTRILE (1.72)
k=0 n=N p
Now, using the equality
oo k
nk = (/ e"tdt> = / ettt ) g dty,
0 [0,00)*
we obtain
> n kI, F = / Tyt (I = Jo— - — In_1)(F)dty - - dty.
n=N [0,00)%
Applying Lemma 1.4.1 yields
Z n*kJnF
n=N p
<[ s = do == Ty )(E) dbr - dy
[0,00)%
SKIFl, [ e Ny
100)¥
— KNP, (1.73)

where the constant K depends only on p and N. Substituting (1.73) into
(1.72) we obtain

2 _
|7F|| < K3 lan N,
k=0

which allows us to complete the proof. O

For example, the operator T, = (I — L)~® defined by the sequence
¢(n) = (1 +n)~%, where a > 0, is bounded in LP(Q), for 1 < p < oo,

«
because h(z) = (ﬁ) is analytic in a neibourhood of the origin. Actually
this operator is a contraction in LP(€2) for any 1 < p < oo (see Exercise
1.4.8).
The following commutativity relationship holds for a multiplier operators
Ts.
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Lemma 1.4.2 Consider a sequence of real numbers {¢(n),n > 0} and the
associated linear operator Ty from P into P. Define Ty = > oy d(n +
1)Jpn. Then for any F € P it holds that

DT, (F) = Ty, D(F). (1.74)

Proof: ~ Without loss of generality we can assume that F' belongs to the
nth Wiener chaos H,,, n > 0. In that case we have

DT,(F) = D(¢(n)F) = ¢(n)DF = T, D(F).

FExercises

1.4.1 Let W = {W,;,t > 0} be a standard Brownian motion. Check that
the process
Y, =/ Be W (),  teR,

has the law of an Ornstein-Uhlenbeck process with parameters «, 3.

1.4.2 Suppose that (Q, F, P) is the classical Wiener space (that is, =
Co([0,1]) and P is the Wiener measure). Let {T},¢ > 0} be the Ornstein-
Uhlenbeck semigroup given by

(T,F)(u) = / Fletu+ /1 — e~%w) P(dw),
Q

for all F' € L?(12). Consider a Brownian measure W on [0, 1] x R, defined

on some probability space (€2, F, P), and with Lebesgue measure as control

measure. Then W (s, t) = W([0,s] x [0,¢]), (s,t) € [0,1] x Ry, is a two-

parameter Wiener process that possesses a continuous version. Define

X(t,7) = e "W (r,e*), teR, 7€]0,1].

Compute the covariance function of X. Show that X; = X (¢, -) is a Q-valued
stationary continuous Markov process on the probability space ((NZ,]? , }5)
such that it admits T} as semigroup of operators.

Hint: Use the arguments of Proposition 1.4.1’s proof to show that

E (F(Xo)|Ferr ) = (TF)(X,)
forallt >0, s € R, F € L*(Q), where Fi, t >0, is the o-field generated

by the random variables {W(r,0),0 <o <t,7 € [0,1]}.

1.4.3 Forany 0 <e<1lput Fi_ =) " (1—€)"J,F and F* = 1[F_. —
F). Show that LF exists if and only if F¢ converges in L?(Q2) as € | 0, and
in this case LF = lim, o F*.
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1.4.4 Set F = exp(W(h) — 3||h[|%), h € H. Show that LF = —(W(h) —
IBlI7) E

1.4.5 Complete the proof of Lemma 1.4.1 in the case 1 < p < 2, using a
duality argument.

1.4.6 Using the Gaussian formula (A.1), show that the multiplier theorem
(Theorem 1.4.2) is still valid for Hilbert-valued random variables.

1.4.7 Show that the operator L is local in the domain Dom L. That is,
LF1{p—_gy = 0 for any random variable F' in Dom L.

1.4.8 Show that the operator (I — L)~ is a contraction in LP(Q2) for any
1 < p < o0, where a > 0.
Hint: Use the equation (14 n)~® =T'(a)! [[% e~ (nTDaga=1qg,

1.4.9 Show that if F € D"2 and G is a square integrable random variable
such that E(G) = 0, then

E(FG)=E ((DF,DC™*G),,).

1.5 Sobolev spaces and the equivalence of norms

In this section we establish Meyer’s inequalities, following the method of
Pisier [285]. Let V' be a Hilbert space. We recall that the spaces D¥P(V),
for any integer £ > 1 and any real number p > 1 have been defined as the
completion of the family of V-valued smooth random variables Sy with
respect to the norm || - ||, p,v defined in (1.37).

Consider the intersection

D> (V) = Np>1 Nk>1 DEP(V).

Then D> (V) is a complete, countably normed, metric space. We will write
D>*(R) = D>. For every integer k¥ > 1 and any real number p > 1 the
operator D is continuous from D¥? (V) into D¥~1?(H @ V). Consequently,
D is a continuous linear operator from D (V') into D*°(H ® V). Moreover,
if F and G are random variables in D°°, then the scalar product (DF, DG) g
is also in D*°. The following result can be easily proved by approximating
the components of the random vector F' by smooth random variables.

Proposition 1.5.1 Suppose that F = (F',...,F™) is a random vector
whose components belong to D>°. Let ¢ € C°(R™). Then ¢(F) € D*°, and

we have
m

D(p(F)) = " 0(F)DF".

=1
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In particular, we deduce that D> is an algebra. We will see later that
L is a continuous operator from D> into D*° and that the operator §
is continuous from D*°(H) into D*°. To show these results we will need
Meyer’s inequalities, which provide the equivalence between the p norm of
CF and that of ||DF ||y for p > 1 (we recall that C is the operator defined
by C' = —/—L). This equivalence of norms will follow from the fact that
the operator DC~1 is bounded in LP(Q) for any p > 1, and this property
will be proved using the approach by Pisier [285] based on the boundedness
in LP of the Hilbert transform. We recall that the Hilbert transform of a
function f € C§°(R) is defined by

The transformation H is bounded in LP(R) for any p > 1 (see Dunford and
Schwarz [87], Theorem XI.7.8).

Consider the function ¢ : [-5,0) U (0, 5] — R defined by

1
p(0) = ﬁ\wlogcos2 0|7%sign0. (1.75)

Notice that when 6 is close to zero this function tends to infinity as —=

V2mo’
Suppose that {W’(h),h € H} is an independent copy of the Gaussian

process {W(h),h € H}. We will assume as in Section 1.4 that W and W’
are defined in the product probability space (Q x ', F ® F', P x P’). For
any 0 € R we consider the process Wy = {Wy(h),h € H} defined by

Wo(h) = W(h) cosf + W'(h)sin 8, heH.

This process is Gaussian, with zero mean and with the same covariance
function as {W(h),h € H}. Let W : Q — R¥ and W’ : @/ — R be
the canonical mappings associated with the processes {W(h),h € H} and
{W'(h),h € H}, respectively. Given a random variable F' € L%(Q, F, P),
we can write F = ¢ o W, where 15 is a measurable mapping from R
to R, determined P o W~! a.s. As a consequence, the random variable
V(W) = v p(W cos@ + W' sin6) is well defined P x P’ a.s. We set

RoF = o (Wp). (1.76)

We denote by E’ the mathematical expectation with respect to the prob-
ability P’, and by D’ the derivative operator with respect to the Gaussian
process W’ (h). With these notations we can write the following expression
for the operator D(—C)~1.

Lemma 1.5.1 For every F € P such that E(F) =0 we have

D(-C)'F = : E'(D'(RgF))p(0)d6. (1.77)

i
2
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Proof:  Suppose that F = p(W(hy),...,W(hy)), where hq,...,h, € H
and p is a polynomial in n variables. We have

RyF = p(W(hy1) cos@ + W' (hy)sin6,...,W(hy,)cos@ + W' (h,,)sinf),

and therefore

D'(RyF) = i O;p(W (hy) cos @ + W'(hy)sin 6,
. W(hnl):clos 0 + W' (hy,)sin ) sin6h;(s) = sin Ry (DF).
Consequently, using Mehler’s formula (1.67) we obtain
E'(D'(RgF)) = sin0E' (Rg(DF)) = sin 0T,(DF),

where ¢ > 0 is such that cos = e~*. This implies

E'(D'(RgF)) = _ sinf(cos0)"J,, DF.

n=0

Note that since F' is a polynomial random variable the above series is
actually the sum of a finite number of terms. By Exercise 1.5.3, the right-
hand side of (1.77) can be written as

> (/ sin@(cos@)"gp(@)d@) J.DF = ;} — = Jn DF.

s
n=0 2

Finally, applying the commutativity relationship (1.74) to the multiplica-

tion operator defined by the sequence ¢(n) = ﬁ, n > 1, ¢(0) = 0, we
get

Ty+ DF = DTyF = D(—C)™'F,

and the proof of the lemma is complete. O

Now with the help of the preceding equation we can show that the opera-
tor DC~1! is bounded from LP(§2) into LP(Q; H) for any p > 1. Henceforth
cp and C}, denote generic constants depending only on p, which can be
different from one formula to another.

Proposition 1.5.2 Let p > 1. There exists a finite constant c, > 0 such
that for any F € P with E(F) = 0 we have

IDCT'Flp < cpl|Fll,-
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Proof:  Using (1.77) we can write
B (e )

-E (H E'(D'(RgF))p(8)dd

p
=a,'EFE ( )

where o, = E(|{|P) with £ an N(0,1) random variable. We recall that by

Exercise 1.2.6 (Stroock’s formula) for any G € L*(Q, F', P") the Gaussian
random variable

)

W'( E'(D'(RyF))p <>d9>

jus
2

W'(E'(D'G))
is equal to the projection J;G of G on the first Wiener chaos. Therefore,
we obtain that
p)

B (oo FI1,)
J; (p.v. [i RgF(p(f))d@) p)

for some constant ¢, > 0 (where the abbreviation p.v. stands for principal
value). Notice that the function RgF¢(0) might not belong to L'(—3, %)
because, unlike the term J| RyF, the function RyF may not balance the
singularity of ¢(6) at the origin. For this reason we have to introduce the

principal value integral

—a‘lEE’Q/ JiRgFp(6)df
3
aplEE’<

< c¢,EE’ ( p.v

us

" RyFo(6)d6

jus
2

pv. | ReFp(6)do = lim RoFo(6)dd,
-3 cl0 Je<iol<3

which can be expressed as a convergent integral in the following way:

us

/2 [ReFp(0) + R_gFp(—0)]do = % [RyF — R_yF]

0 0 +/2m|logcos? 0|
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For any ¢ € R we define the process
Re(h) = (W(h)cos& + W' (h)sin&, —W (h)sin& + W/ (h) cos§).

The law of this process is the same as that of {(W(h), W'(h)),h € H}. On
the other hand, R¢RoF' = R¢49F', where we set

ReG((W(h1), W' (1)), .., (W(hn), W' (hn))) = G(Re(ha), - .., Re(ha))-

Therefore, we get

pv. | ReFo(6)d0

T
2

p

p

where || - ||, denotes the LP norm with respect to P x P’. Integration with
respect to £ yields

E(||DCFlf,) < ¢ BE (/

Furthermore, there exists a bounded continuous function ¢ and a constant
¢ > 0 such that

jus p
p.v. / _ ReoFp(0)do dg). (1.78)

#(6) = 5(0) + 3,

on [—~7, 7]. Consequently, using the L? boundedness of the Hilbert trans-

form, we see that the right-hand side of (1.78) is dominated up to a constant

by
EE' (/ |R9F|Pd9> A

2

In fact, the term $(6) is easy to treat. On the other hand, to handle the
term % it suffices to write

/ / 271',—7 z
5 27

( 9F|pd9 + / / R§+9F|pd9d§> ,
-5 J=2r

where E@F =1 sz TTr](e)RgF O

20

F RewoF —ReoF
0

d§

us
2

/RnggF ReoF

d£

P
Rﬁg“’F ' d@dg)

w\a
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Proposition 1.5.3 Let p > 1. Then there exist positive and finite con-
stants c, and C), such that for any F' € P we have

eI DF | osan) < ICF Ny < Coll DF | o asny- (L.79)

Proof: ~ We can assume that the random variable F' has zero expectation.
Set G = C'F. Then, using Proposition 1.5.2, we have

IDF Loy = IDCT'Gllee @iy < 6llGllp = cp|CFlp,

which shows the left inequality. We will prove the right inequality using a
duality argument. Let F,G € P. Set G = C~(I — Jy)(G), and denote the
conjugate of p by ¢q. Then we have

|E((I — Jo)(G)CF)| = |E(CFCG)| = |E((DF, DG) )|
| DE| o (0:m) IDG Lagesmy < cql| DF || Lo(;m)|CGllg
cg|DF | zeo;m) (I = Jo)(G)llg < QlIDF| oo |G llg-

[E(GCF)]|

IN

Taking the supremum with respect to G € P with ||G||, < 1, we obtain

ICFlp < I DF || Lo c:m)-

Now we can state Meyer’s inequalities in the general case.

Theorem 1.5.1 For any p > 1 and any integer k > 1 there exist positive
and finite constants cp i, and Cy 1 such that for any F € P,

ok E (|DFF|P ) < E(|CFFP)
Cyi [E (|ID*FI2 o) + E(IFP)].  (1.80)

A

Proof: The proof will be done by induction on k. The case k = 1 is
included in Proposition 1.5.3. Suppose that the left-hand side of (1.80)
holds for 1,..., k. Consider two families of independent random variables,
with the identical distribution N(0,1), defined in the probability space
([0,1], B([0,1]), A) (X is the Lebesgue measure) {,(s),s € [0,1],a € NF},
where N, = {1,2,...} and {v,(s),s € [0,1],4 > 1}. Suppose that F =
p(W(h1),...,W(hy)), where the h;’s are orthonormal elements of H. We
fix a complete orthonormal system {e;,;s > 1} in H which contains the
hi’s. We set D;(F) = (DF,e;)g and DX(F) = D,, Dq, - -+ Dg, (F) for any
multiindex o = (aq,...,ax). With these notations, using the Gaussian
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formula (A.1) and Proposition 1.5.3, we can write

E (D[

E i 3" (D:DEF)?

|

i=1 qeNk
1 1 o b
= A;l/ / E{]D. Y DiDEFy,(t)v,(s)| | dtds
070 i=1 aeNk
2|5
1 oo
< / B> (D[ 3 DERaL0) dt
0 i=1 a€ENk
p
< > DEFy,(t) dt
aENN
%
<

o, E Z (CDLF
€Nk

Consider the operator

> k
:Z\/l—fJnF, Fep.
n=~k n

By Theorem 1.4.2 this operator is bounded in L?(Q2), and using the induc-
tion hypothesis we can write

2

2

E[|Y (cDiF)’ E[|Y (DECRyF)?

a€eNk a€eNk
B (| D*CRF e
e (|CH R P ")

e (|CH )

WS

IA

IN

for some constant ¢, > 0.

We will prove by induction the right inequality in (1.80) for F' € P
satisfying (Jo + J1 + -+ + Jrx—1)(F) = 0. The general case would follow
easily (Exercise 1.5.1). Suppose that this holds for k. Applying Proposition
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1.5.3 and the Gaussian formula (A.1), we have

(NS}

IN

E (yc’f+1F|”) JE (|DCFF|2,) = ¢

1 %)
= A;lcp/ E(
0 i=1

Z (DiCkF) v, (8)

i D,C*F
i=1

p
>ds

Consider the operator defined by

[eS) k
Ryq —Z< nil) I

n=2

Using the commutativity relationship (1.74), our induction hypothesis, and
the Gaussian formula (A.1), we can write

. P
/ E < ) ds
0
/o E ( i (CkDiRk,lF) Yi(s) ) ds
1 o0
p (HD <z (DiRyi ) ms))

=1

o0

Z (DZ-C’]“F) ~,(8)

i=1

IN

p
) ds
H®k

> <§: (DED; Ry 1 F) v,(s )) ds

aeNk \i=1

(NS

P

11 oo
C’,Lk.A;l/O /0 E Z(DﬁDiRleF) Y ($)7o(t)| | dsdt.
€Nk i=1

Finally, if we introduce the operator

k
— (n+1+k\"?
Rk’QZZ(M> Jn7

n=0
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we obtain, by applying the commutativity relationship, the Gaussian for-
mula (A.1), and the boundedness in L”(2) of the operator Ry 2, that

P
1 1 0o
/ / E||>. > (DEDiRiaF) 7i(5)7,(t)| | dsdt
070 aeNk i=1
11 o0 P
= / / E| Y Y (RiaDEDiF)v,(s)va(t)| | dsdt
070 aeNk i=1
p
1 1 o)
< Cp,k/ / E > (DEDiF) v,(s)7,(t)| | dsdt
0 0 @EN i:l
P
jo%s) 2
= CuMAE|[|Y Y (DEDiF)?
aENk i=1
= Cprdy E(HDIH_IFHH@(HU)
which completes the proof of the theorem. O

The inequalities (1.80) also hold for polynomial random variables taking
values in a separable Hilbert space (see Execise 1.5.5). One of the main ap-
plications of Meyer’s inequalities is the following result on the continuity of
the operator §. Here we consider § as the adjoint of the derivative operator
D on LP(Q).

Proposition 1.5.4 The operator § is continuous from DYP(H) into LP(£2)
forall p>1.

Proof: Let ¢ be the conjugate of p. For any u in DVP(H) and any
polynomial random variable G with E(G) = 0 we have

E(6(u)G) = E((u, DG) i) = E((t, DG) i) + E((E(u), DG)#),

where @ = u — E(u). Notice that the second summand in the above ex-

pression can be bounded by a constant times ||ul|z»o;m)[|G|lq- So we can

assume E(u) = E(DG) = 0. Then we have, using Exercise 1.4.9
[E(3(u)G)| |E((u, DG) )| = |E((Du, DC*DG) pen)|

I Dull Lo em) IPC DG || Lo e m)

ep||Dul| oo m) || D*C T RG|| La(o; o )

ININ A

Dl e ;e m)lIGllq,

where

R:inﬁl‘]”’
n=2
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and we have used Meyer’s inequality and the boundedness in L7(2) of the
operator R. So, we have proved that § is continuous from DVP(H) into
Lr(Q). |

Consider the set Py of H-valued polynomial random variables. We have
the following result:

Lemma 1.5.2 For any process u € Py and for any p > 1, we have
IC™6(w)llp < cpllull Loy m)-

Proof:  Let G € P with E(G) = 0 and u € Pp. Using Proposition 1.5.3

we can write

|B(CT16(u) G)l

|E((u, DC™'G)m)|

< Nullpr@um IDC™ Gl Lagos
< opllullpr @i 1Gll Loy,
where ¢ is the conjugate of p. This yields the desired estimation. O

As a consequence, the operator D(—L)~1§ is bounded from LP(§); H)
into LP(Q; H). In fact, we can write

D(-L)~'§ = [DC™Y[C™14).
Using Lemma 1.5.2 we can show the following result:

Proposition 1.5.5 Let F be a random variable in D*® with o > 1. Sup-
pose that D'F belongs to LP(Q; H®?) fori =0,1,...,k and for somep > a.
Then F € D*?, and there exists a sequence G,, € P that converges to F in
the norm || - ||k.p-

Proof:  We will prove the result only for £ = 1; a similar argument can be
used for k£ > 1. We may assume that F(F) = 0. We know that Pp is dense
in LP(; H). Hence, we can find a sequence of H-valued polynomial random
variables n,, that converges to DF' in LP(Q); H). Without loss of generality
we may assume that Jin,, € Py for all k > 1. Note that —L=16D = (I—.Jp)
on DY, Consider the decomposition n,, = DG, +u, given by Proposition
1.3.10. Notice that G,, € P because G,, = —L~14(n,,) and &(u,) = 0. Using
the boundedness in LP of the operator C~1¢ (which implies that of L=1§
by Exercise 1.4.8), we obtain that F — G,, = L™16(n,, — DF) converges to
zero in LP(Q) as n tends to infinity. On the other hand,

IDF = DGyl ooy = IDL™18(0, = DF)l| 1o (1) < cpllnn, — DF || Lo ()

hence, |DG,, — DF||g converges to zero in LP(2) as n tends to infinity. So
the proof of the proposition is complete. O

Corollary 1.5.1 The class P is dense in D*P for allp > 1 and k > 1.
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As a consequence of the above corollary, Theorem 1.5.1 holds for random
variables in D*?, and the operator (—C)* = (—L)? is continuous from D*-?
into LP. Thus, L is a continuous operator on D>,

The following proposition is a Hélder inequality for the |-, , norms.

Proposition 1.5.6 Let F € D*P, G € D* for k € N*, 1 < p,q < 0o and
let v be such that % + % = % Then, FG € D*" and

IFGlgy < ok IF ey Gl q

Proof:  Suppose that F, G € P. By Leipnitz rule (see Exercise 1.2.13) we
can write

k
D40G) =3 (§) 1Dl 194 s
=0

Hence, by Hélder’s inequality

kK J .
126, < 33 (D) NP FL ol N6 e,
§=0 i=0
< cpgk|IF ||k7p ||GHk,q-

O

We will now introduce the continuous family of Sobolev spaces defined
by Watanabe (see [343]). For any p > 1 and s € R we will denote by
[/l the seminorm

IE,, = [[(I = L)2F| ),

where F is a polynomial random variable. Note that (I—L)2F = > (1+
n)2J, F.
These seminorms have the following properties:

(1) [[I#1ll,,, is increasing in both coordinates s and p. The monotonicity

in p is clear and in s follows from the fact that the operators (I — L)3
are contractions in LP for all s < 0, p > 1 (see Exercise 1.4.8).

(ii) The seminorms ||||[|,, are compatible, in the sense that for any se-
quence F), in P converging to zero in the norm |[|-[[|, ,, and being a
Cauchy sequence in another norm |||-[||, ., it also converges to zero

in the norm ||||[|y -
For any p > 1, s € R, we define D*? as the completion of P with respect
to the norm |||-]

8,p°
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Remarks:
1 FWo, = IFle, = IIF],, and D*? = LP(Q). For k = 1,2,... the
seminorms ||-|[| , and [|||, , are equivalent due to Meyer’s inequalities. In

fact, we have

)
p

1Pl = 1 = DEFIl, < |B(F)] +||R(-L)§ F

k
where R = Y ° | (”TH) ? J,. By Theorem 1.4.2 this operator is bounded
in LP(Q) for all p > 1. Hence, applying Theorem 1.5.1 we obtain

IN

k
e (L S

oy (1F1,+ [D°Fl o guprons) < iy I1F -

IN

In a similar way one can show the converse inequality (Exercise 1.5.9).
Thus, by Corollary 1.5.1 the spaces D*® coincide with those defined using
the derivative operator.

2. From properties (i) and (ii) we have D7 ¢ D*# if p/ < p and &' < s.

3. For s > 0 the operator (I — L)™2 is an isometric isomorphism (in the
norm |||-|[[, ) between LP(2) and D*? and between D™** and LP((2) for
all p > 1. As a consequence, the dual of D%? is D™%7 where % + % =1.
If s < 0 the elements of D*P may not be ordinary random variables and
they are interpreted as distributions on the Gaussian space or generalized
random variables. Set D™ = U, ,D*. The space D™ is the dual of the
space D*° which is a countably normed space.

The interest of the space D™°° is that it contains the composition of
Schwartz distributions with smooth and nondegenerate random variables,
as we shall show in the next chapter. An example of a distribution random
variable is the compostion do(W(h)) (see Exercise 1.5.6).

4. Suppose that V is a real separable Hilbert space. We can define the
Sobolev spaces D*?(V) of V-valued functionals as the completion of the
class Py of V-valued polynomial random variables with respect to the
seminorm ||-|[|, i, defined in the same way as before. The above properties
are still true for V-valued functionals. If F' € D*?(V) and G € D~*(V),
where % + % =1, then we denote the pairing (F,G) by E((F,G),,).

Proposition 1.5.7 LetV be a real separable Hilbert space. For everyp > 1
and s € R, the operator D is continuous from D*P(V) toD*~?(V®H) and
the operator & (defined as the adjoint of D) is continuous from D*P(V @ H)
into D*~YP (V). That is, for all p > 1 and s € R, we have

o€ s—1,p < Cop Il p,r -
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Proof: For simplicity we assume that V' = R. Let us prove first the
continuity of D. For any F' € P we have

(I - L):DF = DR(I — L)®F,

i(nJrl)S I

n=1

By Theorem 1.4.2 the operator R is bounded in LP(2) for all p > 1, and
we obtain

|||DF|||3+1,p,H = HI L) DFHLP(QH) HDRI L FHLP(Q;H)

where

< HRI—L2F!|1p<cp!|!RI—L§FIH1p
- olu-oine o, ol
< dlI-1) FH = cp [1F 551, -

The continuity of the operator § follows by a duality argument. In fact, for
any u € D*P(H) we have

l6C)lls-rp = sup |E ((u, DF) )| < llullls p o I1PFI s g 11

ME; s o<1

IN

Cs,p |||u|||s,p,H .
]
Proposition 1.5.7 allows us to generalize Lemma 1.2.3 in the following

way:

Lemma 1.5.3 Let {F,,,n > 1} be a sequence of random variables converg-
ing to F' in LP(Q) for some p > 1. Suppose that sup,, |||Fy]||lsp < oo for
some s > 0. Then Then F belongs to D%P.

Proof: ~ We know that
sup H(I - L)%Fan < 00.
Let ¢ be the conjugate of p. There exists a subsequence {F},(;),7 > 1} such

that (I —L)3 n(iy converges weakly in o(LP, L?) to some element G. Then
for any polynomial random variable Y we have

E(F(I-1)2Y) = lmE (F,,y(—L)%Y)
= limE ((I - L)2F,;Y) = E(GY).
Thus, F = (I — L)~ 2@, and this implies that F' € D*P. O

The following proposition provides a precise estimate for the norm p of
the divergence operator.
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Proposition 1.5.8 Let u be an element of DVP(H), p > 1. Then we have
166, < e (1B + 1Dul o s ) -

Proof:  From Proposition 1.5.7 we know that ¢ is continuous from D7 (H)
into LP(€)). This implies that

186, < e (Nall o) + 1Dl oorram ) -
On the other hand, we have

HU'HLP(Q;H) < Bz + [lu— E(u)||Lp(Q;H) J

and
o= B o = [0~ D7ERCu| | <y [Culyoun
< G DUl oo -
where R =300 (14 1)z, 0
Ezxercises

1.5.1 Complete the proof of Meyer’s inequality (1.80) without the condition
(Jo +---+ JNfl)(F) =0.

1.5.2 Derive the right inequality in (1.80) from the left inequality by means
of a duality argument.

1.5.3 Show that

jus .
2 sinfcos™ 6 1

df = .
0o +/m|logcos? 6] V2(n+1)

Hint: Change the variables, substituting cosf = y and y = exp(fé).

1.5.4 Let W = {W,,t € [0, 1]} be a Brownian motion. For every 0 < v < %

and p = 2,3,4,... such that v < % — ﬁ, we define the random variable

W. — W, |?P
W 2p M
|| ||p7’)’ - /[0 12 |S _ t|1+2p'y dsdt.

Show that |[W||?2, belongs to D> (see Airault and Malliavin [3]).

1.5.5 Using the Gaussian formula (A.1), extend Theorem 1.5.1 to a poly-
nomial random variable with values on a separable Hilbert space V (see
Sugita [323]).
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1.5.6 Let p.(x) be the density of the normal distribution N(0,€), for any
e > 0. Fix h € H. Using Stroock’s formula (see Exercise 1.2.6) and the
expression of the derivatives of p.(z) in terms of Hermite polynomials,
show the following chaos expansion:

> (_1)m IQm(h®2m)
T .
=0 V2r 27 m! (| h|% +e)" "2
Letting € tend to zero in the above expression, find the chaos expansion of

do(W(h)) and deduce that do(TW (h)) belongs to the negative Sobolev space
D=2 for any a > i, and also that do(W(h)) is not in D~2:2,

pe(W(h)) =

1.5.7 (See Sugita [325]) Let F' be a smooth functional of a Gaussian process
{W(h),h € H}. Let {W'(h),h € H} be an independent copy of {W(h),h €

a) Prove the formula
ot

V1—e 2t

for all ¢ > 0, where D’ denotes the derivative operator with respect to W’.
b) Using part a), prove the inequality

D(T,F) = E'(D'(F(e™'W + /1 — e~ 2W")))

BUDTAII) < o (== ) BUFP),

for all p > 1.
c) Applying part b), show that the operator (—L)*T} is bounded in LP
and that 7} is continuous from L? into D¥?, for all k > 1 and p > 1.

1.5.8 Prove Proposition 1.5.7 for k > 1.
1.5.9 Prove that [||F[[[, , < ckp [ F|, for allp>1, k € Nand F' € P.

Notes and comments

[1.1] The notion of Gaussian space or the isonormal Gaussian process was
introduced by Segal [303], and the orthogonal decomposition of the space of
square integrable functionals of the Wiener process is due to Wiener [349].
We are interested in results on Gaussian families {W(h),h € H} that
depend only on the covariance function, that is, on the underlying Hilbert
space H. One can always associate to the Hilbert space H an abstract
Wiener space (see Gross [128]), that is, a Gaussian measure y on a Banach
space () such that H is injected continuously into {2 and

| expitty,z))utdy) = 5 ol
Q
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for any z € Q* C H. In this case the probability space has a nice topological
structure, but most of the notions introduced in this chapter are not related
to this structure. For this reason we have chosen an arbitrary probability
space as a general framework.

For the definition and properties of multiple stochastic integrals with
respect to a Gaussian measure we have followed the presentation provided
by It6 in [153]. The stochastic integral of adapted processes with respect to
the Brownian motion originates in It6 [152]. In Section 1.1.3 we described
some elementary facts about the Ito integral. For a complete exposition
of this subject we refer to the monographs by Ikeda and Watanabe [146],
Karatzas and Shreve [164], and Revuz and Yor [292].

[1.2] The derivative operator and its representation on the chaotic de-
velopment has been used in different frameworks. In the general context
of a Fock space the operator D coincides with the annihilation operator
studied in quantum probability.

The notation D F for the derivative of a functional of a Gaussian process
has been taken from the work of Nualart and Zakai [263].

The bilinear form (F,G) — E((DF, DG) ) on the space D2 is a partic-
ular type of a Dirichlet form in the sense of Fukushima [113]. In this sense
some of the properties of the operator D and its domain D2 can be proved
in the general context of a Dirichlet form, under some additional hypothe-
ses. This is true for the local property and for the stability under Lipschitz
maps. We refer to Bouleau and Hirsch [46] and to Ma and Rockner [205]
for monographs on this theory.

In [324] Sugita provides a characterization of the space D!? in terms
of differentiability properties. More precisely, in the case of the Brownian
motion, a random variable F' € L?(£2) belongs to D'? if and only if the
following two conditions are satisfied:

(i) F is ray absolutely continuous (RAC). This means that for any h € H
there exists a version of the process {F(w +t [, hods),t € R} that is
absolutely continuous.

(ii) There exists a random vector DF € L?(Q; H) such that for any
h € H, }[F(w+t [, hsds)—F (w)] converges in probability to (DF, h) g
as t tends to zero.

In Lemma 2.1.5 of Chapter 2 we will show that properties (i) and (ii)
hold for any random variable F' € D'?, p > 1. Proposition 1.2.6 is due to
Sekiguchi and Shiota [305].

[1.3] The generalization of the stochastic integral with respect to the
Brownian motion to nonadapted processes was introduced by Skorohod in
[315], obtaining the isometry formula (1.54), and also by Hitsuda
in [136, 135]. The identification of the Skorohod integral as the adjoint
of the derivative operator has been proved by Gaveau and Trauber [116].
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We remark that in [290] (see also Kusuoka [178]) Ramer has also intro-
duced this type of stochastic integral, independently of Skorohod’s work,
in connection with the study of nonlinear transformations of the Wiener
measure.

One can show that the iterated derivative operator D* is the adjoint
of the multiple Skorohod integral 6%, and some of the properties of the
Skorohod integral can be extended to multiple integrals (see Nualart and
Zakai [264]).

Formula (1.63) was first proved by Clark [68], where F' was assumed
to be Fréchet differentiable and to satisfy some technical conditions. In
[269] Ocone extends this result to random variables F' in the space D':2.
Clark’s representation theorem has been extended by Karatzas et al. [162]
to random variables in the space D!,

The spaces LY/ and L¥ of random variables differentiable in future
times were introduced by Alos and Nualart in [10]. These spaces lead to
a stochastic calculus which generalizes both the classical It6 calculus and
the Skorohod calculus (see Chapter 3).

[1.4] For a complete presentation of the hypercontractivity property and
its relation with the Sobolev logarithmic inequality, we refer to the Saint
Flour course by Bakry [15]. The multiplier theorem proved in this section is
due to Meyer [225], and the proof given here has been taken from Watanabe
[343].

[1.5] The Sobolev spaces of Wiener functionals have been studied by
different authors. In [172] Krée and Krée proved the continuity of the di-
vergence operator in L2.

The equivalence between the the norms ||D*F||, and |(=L)% ||lp for any
p > 1 was first established by Meyer [225] using the Littlewood-Payley
inequalities. In finite dimension the operator DC ! is related to the Riesz
transform. Using this idea, Gundy [129] gives a probabilistic proof of Meyer’s
inequalities which is based on the properties of the three-dimensional Bessel
process and Burkholder inequalities for martingales. On the other hand, us-
ing the boundedness in LP of the Hilbert transform, Pisier [285] provides
a short analytical proof of the fact that the operator DC~! is bounded in
LP. We followed Pisier’s approach in Section 1.5.

In [343] Watanabe developed the theory of distributions on the Wiener
space that has become a useful tool in the analysis of regularity of proba-
bility densities.



2
Regularity of probability laws

In this chapter we apply the techniques of the Malliavin calculus to study
the regularity of the probability law of a random vector defined on a
Gaussian probability space. We establish some general criteria for the ab-
solute continuity and regularity of the density of such a vector. These gen-
eral criteria will be applied to the solutions of stochastic differential equa-
tions and stochastic partial differential equations driven by a space-time
white noise.

2.1 Regularity of densities and related topics

This section is devoted to study the regularity of the law of a random vector
F = (F',...,F™), which is measurable with respect to an underlying
isonormal Gaussian process {W(h),h € H}. Using the duality between the
operators D and § we first derive an explicit formula for the density of
a one-dimensional random variable and we deduce some estimates. Then
we establish a criterion for absolute continuity for a random vector under
the assumption that its Malliavin matrix is invertible a.s. An alternative
approach, due to Bouleau and Hirsch, is presented in the third part of this
section. This approach is based on a criterion for absolute continuity in
finite dimension and it then uses a limit argument. The criterion obtained
in this way is stronger than that obtained by integration by parts, in that
it requires weaker regularity hypotheses on the random vector.
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We later introduce the notion of smooth and nondegenerate random vec-
tor by the condition that the inverse of the determinant of the Malliavin
matrix has moments of all orders. We show that smooth and nondegen-
erate random vectors have infinitely differentiable densities. Two different
proofs of this result are given. First we show by a direct argument the local
smoothness of the density under more general hypotheses. Secondly, we de-
rive the smoothness of the density from the properties of the composition
of a Schwartz tempered distribution with a smooth and nondegenerated
random vector.

We also study some properties of the topological support of the law of a
random vector. The last part of this section is devoted to the regularity of
the law of the supremum of a continuous process.

2.1.1 Computation and estimation of probability densities

As in the previous chapter, let W = {W(h),h € H} be an isonormal
Gaussian process associated to a separable Hilbert space H and defined on
a complete probability space (€2, F, P). Assume also that F is generated
by W.

The integration-by-parts formula leads to the following explicit expres-
sion for the density of a one-dimensional random variable.

Proposition 2.1.1 Let F be a random variable in the space DV2. Suppose

that ﬁ belongs to the domain of the operator & in L?(2). Then the law
H

of F' has a continuous and bounded density given by

o1 = [t (125 )]. o

Proof:  Let 1 be a nonnegative smooth function with compact support,
and set ¢(y) = [’ _1(z)dz. We know that ¢(F) belongs to D2, and
making the scalar product of its derivative with DF obtains

(D(p(F)), DF)y = ¢(F)| DF|)%.

Using the duality relationship between the operators D and § (see (1.42)),
we obtain

B[(F)] = E [<D(@(F % %M

— B [(r (%)} . (2.2)
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By an approximation argument, Equation (2.2) holds for ¥ (y) = 1144 (y),
where a < b. As a consequence, we apply Fubini’s theorem to get

(/ v dx) (|DF||H>
:/a 1o () 2

which implies the desired result. 0
\DFH? € Dom ¢ are that F' is in

D?* and that E(||DF|;®) < co (see Exercise 2.1.1). On the other hand,
Equation (2.1) still holds under the hypotheses F' € DY? and €

Pla<F <b)

We note that sufficient conditions for |

HDF 1%
DY?' (H) for some p,p’ > 1. We will see later that the property | DF ||z > 0
a.s. (assuming that F is in Dloc) is sufficient for the existence of a density.

From expression (2.1) we can deduce estimates for the density. Fix p and
q such that % + % = 1. By Holder’s inequality we obtain

(IDFH>H

In the same way, taking into account the relation E[§(DF/|DF|%)] = 0

we can deduce the inequality
DF
()
IDEE /1],

5( DF )
EGEYAR

for all z € R. Now using the L?(Q) estimate of the operator ¢ established
in Proposition 1.5.8 we obtain

pla) < (P(F > z))"/?||s

plz) < (P(F < z))"/*

As a consequence, we obtain

pla) < (P(IF| > |z))"/* (2.3)

b (wrm)l, = = ()L~ | (o)
IDF|F /), — " IDF|% IDENY ) | poomrem )
(2.4)
We have
D( DF )_ D2F _2<D2F,DF®DF>H®H
IDF|% IDF||% IDF || 7
and, hence,

(), oo
IDFWe /e~ IPFIG
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Finally, from the inequalities (2.3), (2.4) and (2.5) we deduce the following
estimate.

Proposition 2.1.2 Let q, a, 3 be three positive real numbers such that
% + é + % = 1. Let F be a random variable in the space D>, such that

E(HDFH;%) < 00. Then the density p(x) of F can be estimated as follows
1
Pr) < cqas (PF] > Jal)

x (E<|DF||H1> + 1D e s HHDF;Hﬁ) . (26)

Let us apply the preceding proposition to a Brownian martingale.

Proposition 2.1.3 Let W = {W(t),t € [0,T]} be a Brownian motion
and let u = {u(t),t € [0,T)} be an adapted process verifying the following
hypotheses:

(i) E (fOT u(t)zdt) < 00, u(t) belongs to the space D*2 for eacht € [0,T),
and

T
A:= sup E(|Ds;uP)+ sup E((/ |D? Sut|pdt)g) < 00,
5,t€[0,T] r,5€[0,T) 0 ’

for some p > 3.

(i) |u(t)] > p > 0 for some constant p.

Set My = fot u(s)dWs, and denote by pi(x) the probability density of M.
Then for any t > 0 we have

pi(r) < ﬁp(lMtl > |af)s, (2.7)

where q > p%} and the constant ¢ depends on X\, p and p.

Proof: ~ Fix t € (0,T]. We will apply Proposition 2.1.2 to the random
variable M;. We claim that M, € D?2. In fact, note first that by Lemma
1.3.4 M, € D2 and for s < ¢

t
DM, = u, +/ Dy, dW,. (2.8)

For almost all s, the process {Dsu,,r € [0,T]} is adapted and belongs to
L2, Hence, by Lemma 1.3.4 fst Dgu,.dW, belongs to D'? and

t t
Dy ( / DsurdWT> = Dyug + / Do Dyu,dW,. (2.9)
s sV
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From (2.8) and (2.9) we deduce for any 6,s < ¢
¢
DoD M; = Dous + Dsug -‘r/ DyDu,.dW,. (210)
sVo

We will take a@ = p in Proposition 2.1.2. Using Hélder’s and Burkholder’s
inequalities we obtain from (2.10)

E(||[D*Mi|[ o) < cot? .

Set
2

t t
o(t) == \|DMt||§,=/ (u+/ DsurdWr> ds.
0 s

We have the following estimates for any h <1

t t 2
o(t) > / <us+/ DsurdWT> ds
t(1—h) s
t u2 t t 2
> / —Sds—/ (/ DsurdWT) ds
t(1—h) 2 t(1—h) \Js

thp?
o~ In(t),

V

Y

where
2

t t
I, (t) 2/ (/ Dsu,.dWr> ds.
t(1—h) s

Choose h = ﬁ, and notice that A < 1 provided y > a := t’%. ‘We have

Pt} <p(nm=1) <siinwt. @)

Using Burkholder’ inequality for square integrable martingales we get the

following estimate
. t t 5
cp(th)ifl/ E <(/ (Dyuy,)? dr) ) ds
t(1—h) s

¢, sup E(|Dsu|?)(th)”, (2.12)

s,7€[0,t]

E(|In(1)|%)

IN

IN
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Consequently, for 0 <y < & we obtain, using (2.11) and (2.12),
Elo(t)™) = / W TP (o(t) T > y) dy
0
e 1
< a +7/ Y IP(o(t) < ) dy
Y

4 Y o)
< () +7/4 B(|Iy(t)| )y dy
tp2

tp?

oo

c (t_"Y —l—/ y”‘l_gdy> < (t_7 +t%_”) . (213)
4
02

tp

IN

Substituting (2.13) in Equation (2.6) with o = p, # < &, and with v = %
and v = 3, we get the desired estimate. |

Applying Tchebychev and Burkholder’s inequalities, from (2.7) we de-
duce the following inequality for any 6 > 1

pior= 425 (o ([ 0 ))

Corollary 2.1.1 Under the conditions of Proposition 2.1.3, if the process
u satisfies |us| < M for some constant M, then

2
pe(z) < ieXp — ] .
Vit qM?3t

Proof: Tt suffices to apply the martingale exponential inequality (A.5). O

2.1.2 A criterion for absolute continuity
based on the integration-by-parts formula

We recall that Cg°(R™) denotes the class of functions f : R™ — R that

are bounded and possess bounded derivatives of all orders, and we write

0; = 82 . We start with the following lemma of real analysis (cf. Malliavin

[207]).

Lemma 2.1.1 Let u be a finite measure on R™. Assume that for all ¢ €
C°(R™) the following inequality holds:

'/ &cpdu’ <cillplloos  1<i<m, (2.14)
Rm,

where the constants ¢; do not depend on . Then p is absolutely continuous
with respect to the Lebesgue measure.



2.1 Regularity of densities and related topics 91

Proof: ~ If m = 1 there is a simple proof of this result. Fix a < b, and
consider the function ¢ defined by

0 if z<a
plx)y=4¢ =5 if a<z<b
1 if x>0

Although this function is not infinitely differentiable, we can approximate
it by functions of C;°(R) in such a way that Eq. (2.14) still holds. In this
form we get p([a,b]) < c¢1(b — a), which implies the absolute continuity of
1.
For an arbitrary value of m, Malliavin [207] gives a proof of this lemma
that uses techniques of harmonic analysis. Following a remark in Malliavin’s
paper, we are going to give a different proof and show that the density of
1 belongs to L=-T if m > 1. Consider an approximation of the identity
{t.,e > 0} on R™. Take, for instance,

|z

blz) = (2me) % exp(~ 2]

).

Let cpr(x), M > 1, be a sequence of functions of the space C5°(R™) such
that 0 < c¢p <1 and

() = 1 if |o| <M
MITT= 0 i o] > M+1.

We assume that the partial derivatives of c¢p; of all orders are bounded
uniformly with respect to M. Then the functions

ex (@), w)(w) = en(e) | (e~ y)n(ay)

belong to C§°(R™).
The Gagliardo-Nirenberg inequality says that for any function f in the
space C§°(R™) one has

1/m
AN, e < [T 001
=1

An elementary proof of this inequality can be found in Stein [317, p. 129].
Applying this inequality to the functions cps (), * 1), we obtain

1

. (2.15)

llen (¥ * )

L=t < H Hal(cM(we * :U))

i=1

Equation (2.14) implies that the mapping ¢ — me O0;p dp, defined on
C§°(R™), is a signed measure, which will be denoted by v;, 1 < i < m.
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Then we have

oente il < [ en@)| [ owda—utd)| o
+ /m |Oicr (x))| (/Rm belw — y)u(dy)) dz
< [ | vde—wmta)as
s [ el ([ oo utan) do < i

where K is a constant not depending on M and e. Consequently, the family
of functions {cps (¢, * p), M > 1,€ > 0} is bounded in L=-T. We use the
weak compactness of the unit ball of L=-1 to deduce the desired result. [J

Suppose that F' = (F',..., F™) is a random vector whose components
belong to the space D', We associate to F the following random symmetric

loc*
nonnegative definite matrix:

vp = ((DF',DF7) ) 1<i j<m-

This matrix will be called the Malliavin matriz of the random vector F.
The basic condition for the absolute continuity of the law of F' will be that
the matrix v is invertible a.s. The first result in this direction follows.

Theorem 2.1.1 Let F = (F!,... F™) be a random vector verifying the
following conditions:

(i) F e D*? for alli,j=1,...,m, for somep > 1.

loc

(i) The matriz v is invertible a.s.

Then the law of F is absolutely continuous with respect to the Lebesgue
measure on R™.

Proof: ~ We will assume that F* € D?? for each i. Fix a test function
€ Cg°(R™). From Proposition 1.2.3, we know that ¢(F) belongs to the
space DVP and that

D(p(F)) = Zai@(F)DFi-

Hence,
(D(F)), DF )t = Y 0 (F )
therefore, )
0:¢(F) = 3 (D(e(F)), DF) (5 V" (2.16)

j=1
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The inverse of vr may not have moments, and for this reason we need a
localizing argument.

For any integer N > 1 we consider a function U € C§°(R™ @ R™) such
that Uy > 0 and

(a) \I/N(U) =1 ifoe Ky,

(b) Un(o)=0 ifo ¢ Kni1, where

y 1
Ky={ceR"@R™:|c”| <N forall i,j, and \deta|zﬁ}.

Note that Ky is a compact subset of GL(m) C R™ ® R™. Multiplying
(2.16) by ¥n(vp) yields

m

E[UN(vp)0p(F)] =Y E[¥n(vp)(D(p(F)), DF7)  (vp')7).
j=1

Condition (i) implies that ¥ (yz)(y5")?* DF7 belongs to D' (H). Conse-
quently, we use the continuity of the operator § from D'?(H) into LP()
(Proposition 1.5.4) and the duality relationship (1.42) to obtain

Elentooem)| = |E[er) Y s(vnteez o)

Jj=1

£ (1S 5(watr067 D) || ol

j=1

IN

Therefore, by Lemma 2.1.1 the measure [¥x(vy) - P] o F~! is absolutely
continuous with respect to the Lebesgue measure on R™. Thus, for any
Borel set A C R™ with zero Lebesgue measure we have

/ Un(vp)dP = 0.
F=1(A)

Letting N tend to infinity and using hypothesis (ii), we obtain the equality
P(F~1(A)) = 0, thereby proving that the probability Po F'~! is absolutely
continuous with respect to the Lebesgue measure on R™. O

Notice that if we only assume condition (i) in Theorem 2.1.1 and if no
nondegeneracy condition on the Malliavin matrix is made, then we deduce
that the measure (det(yz)- P)o F~! is absolutely continuous with respect
to the Lebesgue measure on R™. In other words, the random vector F' has
an absolutely continuous law conditioned by the set {det(vp) > 0}; that
is,

P{F € B,det(yp) >0} =0

for any Borel subset B of R™ of zero Lebesgue measure.
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2.1.8  Absolute continuity using Bouleau and Hirsch’s
approach

In this section we will present the criterion for absolute continuity obtained
by Bouleau and Hirsch [46]. First we introduce some results in finite di-
mension, and we refer to Federer [96, pp. 241-245] for the proof of these
results. We denote by A" the Lebesgue measure on R™.

Let ¢ be a measurable function from R to R. Then ¢ is said to be
approximately differentiable at a € R, with an approximate derivative equal
to b, if

1
lir%ﬁ)\l{x Ela—mn,a+n]:|p(x) —pla) — (x —a)b| > ¢elz—a|} =0
n—

for all e > 0. We will write b = ap¢’(a). The following property is an
immediate consequence of the above definition.

(a) If ¢ = @ a.e. and ¢ is differentiable a.e., then @ is approximately
differentiable a.e. and ap @’ = ¢’ a.e.

If ¢ is a measurable function from R™ to R, we will denote by ap 0;p the
approximate partial derivative of ¢ with respect to the ith coordinate. We
will also denote by

ap Vo = (ap d1¢, ..., ap On )
the approximate gradient of ¢. Then we have the following result:

Lemma 2.1.2 Let ¢ : R® — R™ be a measurable function, with m < n,
such that the approximate derivatives ap 0;p;, 1 <i<m, 1 < j < n, exist
for almost every x € R™ with respect to the Lebesgue measure on R™. Then
we have

/ det[{(ap Vi, ap Vi) 1 <jk<md\" =0 (2.17)
e~ 1(B)

for any Borel set B C R™ with zero Lebesque measure.
Notice that the conclusion of Lemma 2.1.2 is equivalent to saying that
(det[{ap Vo, ap Vipp,)] - A™) 0 07! <A™,

We will also make use of linear transformations of the underlying Gaussian
process {W(h),h € H}. Fix an element g € H and consider the translated
Gaussian process {W9(h),h € H} defined by W9(h) = W(h) + (h,9)n.

Lemma 2.1.3 The process W9 has the same law (that is, the same finite
dimensional distributions) as W under a probability Q) equivalent to P given

by
dQ

— 1 2
75 = exp(-W(9) — 5llgli).
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Proof:  Let f:R™ — R be a bounded Borel function, and let ey, ..., e,
be orthonormal elements of H. Then we have

B 10v2(en).ee W) exo( <o) - Sl )|

- E[f(Wg(el)’-~-ng(e"))

X exp <—Z<€i79>HW(ei) - ;Z@i’gﬁ{) }

i=1 i=1

o f(x1+<g761>H,-~~7xn+<g,€n>H)

1 n
X exp (‘2 Z |z; + <9,€i>H|2> dx
i=1

E[f(W(el)7 LR} W(en))]

O

Now consider a random variable F' € L%(Q2). We can write F' = ¢ o
W, where 1 is a measurable mapping from R¥ to R that is uniquely
determined except on a set of measure zero for P o W~!. By the preceding
lemma on the equivalence between the laws of W and W9, we can define
the shifted random variable F'Y = ¢ poW9. Then the following result holds.

Lemma 2.1.4 Let F be a random variable in the space DVP, p > 1.
Fiz two elements h,g € H. Then there exists a version of the process
{(DF, h)‘;?ﬂJ, s € R} such that for all a < b we have

b
Fbhtg _ pohty — / (DF, h)3!t9ds (2.18)

a.s. Consequently, there exists a version of the process {F*"*+9 t € R} that
has absolutely continuous paths with respect to the Lebesgue measure on R,
and its derivative is equal to (DF, h)g”?

Proof:  The proof will be done in two steps.

Step 1:  First we will show that F*"*9 ¢ L4(Q) for all ¢ € [1,p) with an
L4 norm uniformly bounded with respect to t if ¢ varies in some bounded
interval. In fact, let us compute

B(F) = 5 (1Fexo { VD) + W) - S+ ol )

IN

e (5 oo {525 v e win ] )
% e~ 3llth+gll%

= (E(|FP)> exp( llth + glfLI) < 0. (2.19)

q
2(p —q)
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Step 2:  Suppose first that F' is a smooth functional of the form F =

F(W(hy),...,W(h)). In this case the mapping t — F"*9 is continuously
differentiable and

d

k
S F) =y 0 f (W (ha) + (s )+ (g, h)
i=1

o Wk + b by i+ (g, haea) (B by = (DFR) 9.

Now suppose that F is an arbitrary element in D7, and let {Fy,k > 1}
be a sequence of smooth functionals such that as k tends to infinity Fy
converges to F'in L?(Q) and DFy, converges to DF in L?(Q); H). By taking
suitable subsequences, we can also assume that these convergences hold
almost everywhere. We know that for any k£ and any a < b we have

b
Yo gttt — / (DFy, hY5r9ds. (2.20)
a

For any ¢ € R the random variables F}"*9 converge almost surely to F*"+9

as k tends to infinity. On the other hand, the sequence of random variables
f;(DFk,h>§f+gds converges in L'(f2) to f;(DF, hYs9ds as k tends to
infinity. In fact, using Eq. (2.19) with ¢ = 1, we obtain

b b

E< / (DFy, hY39ds — / (DF, h)3't9ds
a a

b

E /|<DFk,h>§}+g—<DF,h>§}+9|ds

IN

(E(ID"F, — D"FI"))* (b - a)

IA

1
X sup exp| —=|[th+g 2).
t€la,b] (2(17_ 1)” I
In conclusion, by taking the limit of both sides of Eq. (2.20) as k tends to
infinity, we obtain (2.18). This completes the proof. |

Here is a useful consequence of Lemma 2.1.4.

Lemma 2.1.5 Let F be a random variable in the space DVP for some
p>1. Fix h € H. Then, a.s. we have

€

lim = [ (F* — F)dt = (DF, h) . (2.21)

e—0 € 0

Proof: By Lemma 2.1.4, for almost all (w,z) € Q x R we have

xr+e
it [ (FY"(w) — F(w))dy = (DF(w), hYZ. (2.22)

e—0€ J,
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Hence, there exists an x € R for which (2.22) holds a.s. Finally, if we
consider the probability @ defined by

dQ z2
op = exp(=aW(h) - 5 Inll%)
we obtain that (2.21) holds @ a.s. This completes the proof. O

Now we can state the main result of this section.

Theorem 2.1.2 Let F = (F',...,F™) be a random vector satisfying the
following conditions:

(i) F' belongs to the space DIP p>1, forali=1,...,m.

loc”

(i) The matriz v = ((DF*, DF7))1<; j<m is invertible a.s.

Then the law of F is absolutely continuous with respect to the Lebesgue
measure on R™.

Proof: ~ We may assume by a localization argument that F* belongs to
DY for k = 1,...,m. Fix a complete orthonormal system {e;,i > 1} in
the Hilbert space H. For any natural number n > 1 we define

@n,k(tl ce tn) = (Fk)t1€1+...+tnen

for 1 < k < m. By Lemma 2.1.4, if we fix the coordinates t¢1,...,t;_1,
tit1,.--,tn, the process {©™*(t1,... t,),t; € R} has a version with ab-
solutely continuous paths. So, for almost all ¢ the function ™% (¢y,... t,)
has an approximate partial derivative with respect to the ith coordinate,
and moreover,

apdip"F (t) = (DFF, ;) lyerttnen,
Consequently, we have

n

(apVp™*, apVpmd) = (Z(DF’“,ei>H<DFj,ei>H)t1€1+"'+t"e". (2.23)
i=1

Let B be a Borel subset of R™ of zero Lebesgue measure. Then, Lemma
2.1.2 applied to the function o™ = (™!, ... ©™™) yields, for almost all w,
assuming n > m

/ det[(apV™* apVp™)]dt; ... dt, = 0.
(™) ~1(B)
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Set G = {t € R" : Fhieat+inen(y) € B}. Taking expectations in the
above expression and using (2.23), we deduce

n tier+-+tnen
0 = E/ (detZDFk m(DF? e)\n )) dty---dt,
1=1
/ {det > (DF*,e))u(DF’ ;) )1p-1 ()
=1

X exp(i(tiW(ei) - ;tf))} dty -+~ dt,,

i=1
Consequently,

n

1p1(p)det(Y (DF* e)u(DF’ e)u) =0

i=1
almost surely, and letting n tend to infinity yields
1p-1(p)ydet((DF*DF7)y) =0,

almost surely. Therefore, P(F~1(B)) = 0, and the proof of the theorem is
complete. 0

As in the remark after the proof of Theorem 2.1.1, if we only assume
condition (i) in Theorem 2.1.2, then the measure (det((DF* DF7)g)-P)o
F~1is absolutely continuous with respect to the Lebesgue measure on R™.

The following result is a version of Theorem 2.1.2 for one-dimensional
random variables. The proof we present here, which has been taken from
[266], is much shorter than the proof of Theorem 2.1.2. It even works for

p=1.

Theorem 2.1.3 Let F' be a random variable of the space ID)IOC, and suppose
that ||DF|lg > 0 a.s. Then the law of F is absolutely continuous with
respect to the Lebesgue measure on R.

Proof: ~ By the standard localization argument we may assume that F
belongs to the space D!, Also, we can assume that |F| < 1. We have
to show that for any measurable function g : (—1,1) — [0,1] such that
f_ll g(y)dy = 0 we have E(g(F)) = 0. We can find a sequence of continu-
ously differentiable functions with bounded derivatives ¢g" : (=1,1) — [0, 1]
such that as n tends to infinity ¢™(y) converges to g(y) for almost all y
with respect to the measure P o F~1 + A'. Set

Y™ (y) = /1,1 g"(z)dx
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and

By the chain rule, 9" (F') belongs to the space D! and we have D[¢" (F)] =
g"(F)DF. We have that ¢" (F') converges to ¢(F) a.s. as n tends to infinity,
because g™ converges to g a.e. with respect to the Lebesgue measure. This
convergence also holds in L'(f2) by dominated convergence. On the other
hand, Dy™ (F) converges a.s. to g(F) DF because g™ converges to g a.e. with
respect to the law of F'. Again by dominated convergence, this convergence
holds in L*(9; H). Observe that ¢(F) = 0 a.s. Now we use the property
that the operator D is closed to deduce that g(F)DF = 0 a.s. Consequently,
g(F) = 0 a.s., which completes the proof of the theorem. a

As in the case of Theorems 2.1.1 and 2.1.2, the proof of Theorem 2.1.3
yields the following result:

Corollary 2.1.2 Let F' be a random variable in ]D)llc;(lj. Then the measure
(|DF || - P) o F~t is absolutely continuous with respect to the Lebesgue
measure.

This is equivalent to saying that the random variable F' has an absolutely
continuous law conditioned by the set {||DF|| gz > 0}; this means that

P{F € B,|DF|g >0}=0

for any Borel subset of R of zero Lebesgue measure.

2.1.4 Smoothness of densities

In order to derive the smoothness of the density of a random vector we will
impose the nondegeneracy condition given in the following definition.

Definition 2.1.1 We will say that a random vector F = (F1,... F™)
whose components are in D*° is nondegenerate if the Malliavin matrix v
is invertible a.s. and

(detyp) " € Ny LP(Q).

We aim to cover some examples of random vectors whose components are
not in D>° and satisfy a local nondegenerary condition. In these examples,
the density of the random vector will be smooth only on an open subset of
R™. To handle these example we introduce the following definition.

Definition 2.1.2 We will say that a random vector F = (F1, ... F™)
whose components are in D1,24 is locally nondegenerate in an open set A C
R™ if there exist elements u)y € D>*(H), j = 1,...,m and an m x m
random matriz v, = (v'1) such that v'] € D>, |dety,|~' € LP(Q) for all
p>1, and (DF', W\)y =71 on {F € A} foranyi,j=1,...,m.
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Clearly, a nondegenerate random vector is also locally nondegenerate in
R™, and we can take u},, = DF7, and v, = vp.
We need the following preliminary lemma.

Lemma 2.1.6 Suppose that v is an mxm random matriz that is invertible
a.s. and such that |dety|~! € Lr(Q) for allp > 1. Suppose that the entries

~9 of v are in D>®. Then (7_1)1j belongs to D> for all 1,7, and

D ('y_l)ij _ Z (7_1)ik (7_1)” D’ykl. (2.24)
k=1

Proof:  First notice that {dety > 0} has probability zero or one (see
Exercise 1.3.4). We will assume that dety > 0 a.s. For any € > 0 define

ATl = det y A1
€ dety+e

Note that (dety + ¢)~! belongs to D> because it can be expressed as the
composition of dety with a function in Cp°(R). Therefore, the entries of

v belong to D*°. Furthermore, for any i, j, (’y;l)ij converges in LP({2) to

('yfl)ij as € tends to zero. Then, in order to check that the entries of 4!

belong to D, it suffices to show ‘(taking into account Lemma 1.5.3) that

the iterated derivatives of (y7!)"” are bounded in LP(Q), uniformly with
respect to ¢, for any p > 1. This boundedness in LP(2) holds, from the
Leibnitz rule for the operator D¥ (see Exercise 1.2.13), because (det~)y~!
belongs to D°°, and on the other hand, (det~y + ¢)~! has bounded || - [|x,,
norms for all k&, p, due to our hypotheses.

Finally, from the expression 71y = 3% T we deduce Eq. (2.24) by

det v+e
first applying the derivative operator D and then letting € tend to zero. [

For a locally nondegenerate random vector the following integration-by-
parts formula plays a basic role. For any multiindex o € {1,...,m}* k > 1

k

we will denote by 9, the partial derivative ;- 9 T
oy 0Tay,

Proposition 2.1.4 Let F = (F*,..., F™) be a locally nondegenerate ran-
dom wvector in an open set A C R™ in the sense of Definition 2.1.2. Let
G € D* and let ¢ be a function in the space C;°(R™). Suppose that G =0
on the set {F ¢ A}. Then for any multiindex o € {1,...,m}*, k> 1, there
exists an element H, € D> such that

E [0a0(F)G] = E[o(F)H). (2.25)
Moreover, the elements H, are recursively given by
Hy = Y 6(6(ah7wh), (2.26)
j=1

Ha = Hak (H(oq,...,ozk_l))a (227)
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and for 1 < p < q < oo we have
-1 k
HHaHp < Cpg H'YA u||k,2’€—1r ||G||k,qv (2.28)
1_1,1
where =51

Proof: By the chain rule (Proposition 1.2.3) we have on {F € A}

(D(p(F)), uh) s = 0o(FUDF )i =Y 0ip(F)v4,
i=1 i=1
and, consequently,
0up(F) = > (D(e(F) b (03"

Taking into account that G vanishes on the set {F ¢ A}, we obtain

m

Goip(F) =) G(D(o(F)), uy)m(v5)".

Jj=1

Finally, taking expectations and using the duality relationship between the
derivative and the divergence operators we get

E[0ip(F)G] = E [p(F)H)

where H;y equals to the right-hand side of Equation (2.26). Equation (2.27)
follows by recurrence.

Using the continuity of the operator § from DY?(H) into LP(Q2) and the
Hélder inequality for the ||-||, , norms (Proposition 1.5.6) we obtain

m ) .

HHOth < Cp H(ozl,...,ozk,l) Z (Vzl)akj u’
i=1 -
< ¢ HH(QI,..‘,ak_l)HLq (v u)™ .

This implies (2.28) for £ = 1, and the general case follows by recurrence.l]

If F' is nondegenerate then Equation (2.25) holds for any G € D>, and
we replace in this equation v, and v’y by v» and DF7, respectively. In
that case, the element H, depends only on F' and G and we denote it by
H,(F,G). Then, formulas (2.25) to (2.28) are tranformed into

E[0ap(F)G] = E[p(F)Ha(F, G)], (2.29)
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where
Hiy(F,.G) = Z(s( o) ”DFJ) (2.30)
Jj=1
Ha(FaG) = Hak(H(al, Qe — 1)(F G)) (2~31)
and .
[ Ha(F,G)ll,, < cpq |77 DE [y, 1Gllj - (2.32)

As a consequence, there exists constants 3, v > 1 and integers n, m such
that
— m
1Ha(F.G)ll,, < cpq [[det vzt |5 IDFIE L NG, -

Now we can state the local criterion for smoothness of densities which
allows us to show the smoothness of the density for random variables that
are not necessarily in the space D*°.

Theorem 2.1.4 Let F' = (F',... F™) be a locally nondegenerate random
vector in an open set A C R™ in the sense of Definition 2.1.2. Then F
possesses an infinitely differentiable density on the open set A.

Proof: Fix xy € A, and consider an open ball Bs(zg) of radius § <
1d(z, A%). Let § < §' < d(xo, A°). Consider a function ¢ € C°°(R™) such
that 0 < ¢(x) <1, ¥(x) = 1 on Bs(zg), and ¥(x) = 0 on the complement
of By (o). Equahty (2.25) applied to the multiindex a = (1,2,...,m) and
to the random variable G = ¢(F) yields, for any function ¢ in CZ‘,’o (R™)

E[)(F)ap(F)] = Elp(F)Hal.

F! F™
_ / / Dato(@)da

Hence, by Fubini’s theorem we can write

Notice that

EW(F0ap(F) = [ 0ap(a)E [Lpo Bl do. (233)

We can take as 9, any function in C§°(R™). Then Equation (2.33) implies
that on the ball Bs(x) the random vector F' has a density given by

p(x) = E [1ipsayHa .
Moreover, for any multiindex 8 we have
E[Y(F)0s0ap(F)] = (F)Hﬁ(H )]
/ 804‘)0 1{F>x}H5(H )] dz.
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Hence, for any & € C§°(Bs(x0))

- & (x)p(x)dr = - §(x)E [1psoyHp(Hy)] da.

Therefore p(x) is infinitely differentiable in the ball Bs(xg), and for any
multiindex 3 we have

Opp(z) = (~1)VIE [1(psay Ha(Hy)) -

(]

We denote by S(R™) the space of all infinitely differentiable functions f :

R™ — R such that for any k& > 1, and for any multiindex 3 € {1,...,m}J
one has sup, cgm |2|¥|95 f(z)| < oo (Schwartz space).

Proposition 2.1.5 Let F = (F',... F™) be a nondegenerate random vec-
tor in the sense of Definition 2.1.1. Then the density of F belongs to the
space S(R™), and

p(x) = E[1psayHao, . m)(F,1)] . (2.34)
Proof: ~ The proof of Theorem 2.1.4 implies, taking G = 1, that F pos-

sesses an infinitely differentiable density and (2.34) holds. Moreover, for
any multiindex (3

9p(z) = (—1)PI B [1{psmy Hg(H1 2, m)(F,1))] .

In order to show that the density belongs to S(R™) we have to prove that
for any multiindex 3 and for any £ > 1 and for all j =1,...,m

sup :C?k|E (LypsayHa(Hi g, m) (F,1))] | < o0.

rER™

If x; > 0 we have

903k|E (LirsayHa(Hio, ) (F,1)] |
< E[|FIPY Hg(H o, my(F,1))]] < 0.

If 2; < 0 then we use the alternative expression for the density
pa) = E |[[1@w<rliwsryHaz,.mE 1)
i#]

and we deduce a similar estimate. O
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2.1.5 Composition of tempered distributions with
nondegenerate random vectors

Let F' be an m-dimensional random vector. The probability density of F at
x € R™ can be formally defined as the generalized expectation E(d,(F)),
where d, denotes the Dirac function at z. The expression F(d,(F)) can be
interpreted as the coupling (0, (F), 1), provided we show that 0, (F) is an
element of D~°°. The Dirac function §,, is a measure, and more generally we
will see that we can define the composition T'(F) of a Schwartz distribution
T € §'(R™) with a nondegenerate random vector, and the composition will
belong to D~°°. Furthermore, the diferentiability of the mapping x — §,(F)
from R™ into some Sobolev space D™*P provides an alternative proof of
the smoothness of the density of F.
Consider the following sequence of seminorms in the space S(R™):

[llar = [|(1+[af* = Aol . ¢ € SR™), (2.35)

for k € Z. Let Sax, k € Z, be the completion of S(R™) by the seminorm
|-l Then we have

Sok42 C S T CS CSHCS 2C--C8 95 TS _2p—2,

~

and Sy = C(R™) is the space of continuous functions on R™ which vanish
at infinity. Moreover, Ng>1S2x = S(R™) and Ug>1S_2r = S’ (R™).

Proposition 2.1.6 Let F = (F',... F™) be a nondegenerate random vec-
tor in the sense of Definition 2.1.1. For any k € N and p > 1, there exists
a constant c(p, k, F) such that for any ¢ € S(R™) we have

[6(F)| _ar,p < (o, ks F) [|0l] o -

Proof: Let ¢ = (1+|z|> — A)~*¢ € S(R™). By Proposition 2.1.4 for any
G € D there exists Rz (G) € D> such that

E[¢(F)G] = B [(1+|z> = A)*(F)G] = E [(F)Rai(G)] -
Therefore, using (2.35) and (2.28) with ¢ such that - 4 & = 1, yields
[E[¢(F)G]| < [[¢]loo B[R (G)] < clp, b F) 10l _gr G llag,q -
Finally, it suffices to use the fact that
HOEI st = 5up {|E [6(F)G]],G € D*, |G, <1}
|

Corollary 2.1.3 Let F' be a nondegenerate random vector. For any k € N
and p > 1 we can uniquely extend the mapping ¢ — ¢(F) to a continuous
linear mapping from S_op, into D™2kP,
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As a consequence of the above Corollary, we can define the composition
of a Schwartz distribution T € S’'(R™) with the nondegenerate random
vector F', as a generalized random variable T'(F') € D~°°. Actually,

T(F) € U3, Npsy D72FP,

For k = 0, ¢(F) coincides with the usual composition of the continuous
function ¢ € Sy = C(R™) and the random vector F.

For any x € R™, the Dirac function d, belongs to S_o, where k =
[%] + 1, and the mapping x — §, is 2j continuously differentiable from
R™ to S_og—2j, for any j € N. Therefore, for any nondegenerate random
vector I, the composition &, (F) belongs to D~2%? for any p > 1, and the
mapping x — &, (F) is 2j continuously differentiable from R™ to D~2k=27:»
for any j € N. This implies that for any G € D?**2/P the mapping = —
(6.(F),G) belongs to C%(R™).

Lemma 2.1.7 Let k = [%] +1andp > 1. If f € Co(R™), then for any
G € D%

Proof: ~ We have
f= f(x)ddx,
R’HL

where the integral is S_si-valued and in the sense of Bochner. Thus, ap-
proximating the integral by Riemann sums we obtain

f(F)= | f(2)b.(F)dz,

Rm™

in D~2%P. Finally, multiplying by G and taking expectations we get the
result. ]

This lemma and previous remarks imply that for any G € D?**2P_ the
measure

[LG(B) =F [l{FEB}G] , Be B(Rm)

has a density pg(z) = (6,(F),G) € C?(R™). In particular, (6,(F),1) is
the density of F' and it will be infinitely differentiable.

2.1.6 Properties of the support of the law

Given a random vector F' : 2 — R™, the topological support of the law
of F' is defined as the set of points € R™ such that P(|lx — F| <¢) >0
for all € > 0. The following result asserts the connectivity property of the
support of a smooth random vector.
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Proposition 2.1.7 Let F = (F*,..., F™) be a random vector whose com-
ponents belong to DV'P for some p > 1. Then, the topological support of the
law of F is a closed connected subset of R™.

Proof:  If the support of F' is not connected, it can be decomposed as the
union of two nonempty disjoint closed sets A and B.

For each integer M > 2 let 9, : R™ — R be an infinitely differentiable
function such that 0 < ¢, < 1, ¥p,(x) = 0if |z| > M, ¢ (z) = 1 if
|z] < M — 1, and sup, 5/ |V (2)] < oo.

Set Apr = An{|z| < M} and By = BN{|z| < M}. For M large enough
we have Aps # () and Bys # (0, and there exists an infinitely differentiable
function fp; such that 0 < fy; <1, far = 1 in a neighborhood of A, and
far = 0 in a neighborhood of B),.

The sequence (fare)y,)(F) converges a.s. and in LP(Q2) to 1ipeay as M
tends to infinity. On the other hand, we have

D[(futr)(E)] = > [(n0ifar) (F)DF' + (far0¢p ) (F)DF']

&
Il
—

(fmOitop)(F)DF".

I
s

K3

Hence,

sup [ D {(faran) ()]l < ZS}\I}) 10 asllo, [|DF? ||y € LP(9Q).

i=1

By Lemma 1.5.3 we get that 1;pc 4y belongs to D'?, and by Proposition
1.2.6 this is contradictory because 0 < P(F € A) < 1. O

As a consequence, the support of the law of a random variable F' € D!P,
p > 11is a closed interval. The next result provides sufficient conditions for
the density of F' to be nonzero in the interior of the support.

Proposition 2.1.8 Let F € D'?, p > 2, and suppose that F possesses a
density p(x) which is locally Lipschitz in the interior of the support of the
law of F. Let a be a point in the interior of the support of the law of F.
Then p(a) > 0.

Proof: Suppose p(a) = 0. Set r = 1% > 1. From Proposition 1.2.6 we
know that 1;psq) & D" because 0 < P(F > a) < 1. Fix € > 0 and set

1
(pe(l‘) = / 71[a—e,a+e] (y)dy

oo 2€

Then ¢, (F) converges to 1{psqy in L"(Q2) as € | 0. Moreover, ¢ (F) € D"

and
1
2¢

D(@e(F)) = 1[a—e,a+e](F)DF'
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We have

9 a-te p%
B (1Dt < EADFIE ™ (o [ alaias)

a—e€

The local Lipschitz property of p implies that p(x) < K|z — al, and we
obtain , .
E (ID(e(F)7) < (E(|DF ()72 27" Kwe.

By Lemma 1.5.3 this implies 1;psq) € DU7, resulting in a contradiction.
|

Sufficient conditions for the density of F' to be continuously differentiable
are given in Exercise 2.1.8.

The following example shows that, unlike the one-dimensional case, in
dimension m > 1 the density of a nondegenerate random vector may vanish
in the interior of the support.

Example 2.1.1 Let hy and hy be two orthonormal elements of H. Define
X = (X4, X3), where

X1 = arctanW(hy),
Xo = arctan W(hg).

Then, X; € D*° and
DX; = (1+W(hi)*) *h,
fori=1,2, and

det vy = [(1+W(h1)2)(1+W(h)®)] >

The support of the law of the random vector X is the rectangle [—g, g]Q,
and the density of X is strictly positive in the interior of the support. Now
consider the vector Y = (Y1,Y2) given by

3
Yi = (Xi+ g) cos(2Xs + 1),
}/2 = (Xl +3§)Sln(2X2+ﬂ')

We have that Y; € D> fori=1,2, and

ety = 40X, + 2002 [(14 W () (1 + W (2)?)] .

This implies that Y is a nondegenerate random vector. Its support is the
set {(z,y) : m® < 22 + y? < 472}, and the density of Y wvanishes on the
points (x,y) in the support such that m < y < 2w and x = 0.
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For a nondegenerate random vector when the density vanishes, then all
its partial derivatives also vanish.

Proposition 2.1.9 Let F = (F',... F™) be a nondegenerate random vec-
tor in the sense of Definition 2.1.1 and denote its density by p(x). Then
p(x) = 0 implies dop(x) = 0 for any multiindex c.

Proof: Suppose that p(z) = 0. For any nonnegative random variable
G € D>, (§,(F),G) > 0 because this is the density of the measure p(B) =
E [1{repyG]|, B € B(R™). Fix a complete orthonormal system {e;,i > 1}
in H. For each n > 1 the function ¢ : R® — C given by

<p(t):<(5z(F),exp ithW(ej) >

Jj=1

is nonnegative definite and continuous. Thus, there exists a measure v, on
R™ such that

o(t) = /n et dy, ().

Note that v, (R™) = (§,(F), 1) = p(z) = 0. So, this measure is zero and we
get that (3, (F),G) = 0 for any polynomial random variable G € P. This
implies that §,(F) = 0 as an element of D~°°.

For any multiindex o we have

9ap(z) = 0 (6(F), 1) = ((0abs) (F),1).
Hence, it suffices to show that (0,0,) (F') vanishes. Suppose first that a =
{i}. We can write

=1

as elements of D™°° which implies

(9:02) (F) = Y (D (6:(F)), DF’) (75"} =0
j=1
because D (0, (F)) = 0. The general case follows by recurrence. O

2.1.7 Regularity of the law of the mazimum
of continuous processes
In this section we present the application of the Malliavin calculus to the

absolute continuity and smoothness of the density for the supremum of
a continuous process. We assume that the o-algebra of the underlying
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probability space (€2, F, P) is generated by an isonormal Gaussian process
W = {W(h),h € H}. Our first result provides sufficient conditions for the
differentiability of the supremum of a continuous process.

Proposition 2.1.10 Let X = {X (t),t € S} be a continuous process parame-
trized by a compact metric space S. Suppose that

(i) E(sup;eg X (t)?) < oo;

(ii) for any t € S, X(t) € DY2, the H-valued process {DX(t),t € S}
possesses a continuous version, and E(sup,cg [|DX (1)]|%) < oo.

Then the random variable M = sup,cg X (t) belongs to D'2.

Proof: ~ Consider a countable and dense subset Sy = {t,,n > 1} in S.
Define M,, = sup{X(t1),...,X(t,)}. The function ¢, : R® — R defined
by ¢, (z1,...,2,) = max{xy,...,z,} is Lipschitz. Therefore, from Propo-
sition 1.2.4 we deduce that M,, belongs to D':2. The sequence M,, converges
in L?(Q) to M. Thus, by Lemma 1.2.3 it suffices to see that the sequence
DM, is bounded in L?(Q; H). In order to evaluate the derivative of M,,,
we introduce the following sets:

Ay ={M, = X(t1)},

Ap ={Mn # X(t1), ..., Mp # X(tp—1), Mn = X(tx)}, 2<k<n.

By the local property of the operator D, on the set Ay the derivatives of
the random variables M,, and X (¢) coincide. Hence, we can write

n
DM,, = Z 14, DX (ty,).
k=1

Consequently,
E(IDM %) < E (i;‘sp |DX<t)||%1) < oo,

and the proof is complete. O

We can now establish the following general criterion of absolute continu-
ity.

Proposition 2.1.11 Let X = {X(¢),t € S} be a continuous process parame-
trized by a compact metric space S verifying the hypotheses of Proposition
2.1.10. Suppose that |DX(t)||m # 0 on the set {t : X(t) = M}. Then
the law of M = sup,cg X(t) is absolutely continuous with respect to the
Lebesgue measure.
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Proof: ~ By Theorem 2.1.3 it suffices to show that a.s. DM = DX (¢) on
the set {¢t: X (t) = M}. Thus, if we define the set

G = {there exists t € S : DX (t) # DM, and X(t) = M},

then P(G) = 0. Let Sy = {tn,n > 1} be a countable and dense subset of
S. Let Hy be a countable and dense subset of the unit ball of H. We can
write

G C U Gs,r,k,h7

s€Sp,reQ,r>0,k>1,h€Hy

where

1
Gsrn = {{(DX(t) — DM, h)g > %for all te B.(s)}n{ sup X, =M}.
teB,(s)

Here B,.(s) denotes the open ball with center s and radius r. Because it is a
countable union, it suffices to check that P(Gs . rn) = 0 for fixed s, 7, k, h.
Set M' = sup{X(t),t € By(s)} and M) = sup{X(#;),1 < i < n,t; €
B.(s)}. By Lemma 1.2.3, DM/, converges to DM’ in the weak topology of
L?(Q; H) as n tends to infinity, but on the set Gy k. we have

(DM! — DM’ h) g >

T =

for all n > 1. This implies that P(Gs k) = 0. O

Consider the case of a continuous Gaussian process X = {X(¢),t € S}
with covariance function K (s,t), and suppose that the Gaussian space Hj
is the closed span of the random variables X (¢). We can choose as Hilbert
space H the closed span of the functions {K(¢,-),t € S} with the scalar
product

<K(ta ')7 K(57 )>H = K(t’ S)a

that is, H is the reproducing kernel Hilbert space (RKHS) (see [13]) as-
sociated with the process X. The space H contains all functions of the
form ¢(t) = E(YX(t)), where Y € H;. Then, DX(t) = K(t,-) and
|IDX(t)|| ; = K(t,t). As a consequence, the criterion of the above propo-
sition reduces to K(t,t) # 0 on the set {t : X(t) = M}.

Let us now discuss the differentiability of the density of M = sup,cq X (¢).
If S = [0,1] and the process X is a Brownian motion, then the law of M
has the density

p(zr) = \/7276 2 10,00 ().

Indeed, the reflection principle (see [292, Proposition II1.3.7]) implies that
P{supyc(o,1) X(t) > a} = 2P{X(1) > a} for all a > 0. Note that p(x) is
infinitely differentiable in (0, +00).
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Consider now the case of a two-parameter Wiener process on the unit
square W = {W(z),z € [0,1]?}. That is, S = T = [0,1]? and pu is the
Lebesgue measure. Set M = sup,cp 12 W(z). The explicit form of the
density of M is unknown. We will show that the density of M is infinitely
differentiable in (0, +00), but first we will show some preliminary results.

Lemma 2.1.8 With probability one the Wiener sheet W attains its maxi-
mum on [0,1]? on a unique random point (S, T).

Proof: ~ We want to show that the set

G= {w : sup W(z) =W(z)=W(z) for some z; # 22}
z€10,1]2

has probability zero. For each n > 1 we denote by R, the class of dyadic
rectangles of the form [(j — 1)27",527"] x [(k — 1)27", k27 "], with 1 <
4,k < 2™ The set G is included in the countable union

U U { sup W(z) = sup W(z)} .

n>1Ry,R2€ER,,RiNR2=0 z€R z€R,

Finally, it suffices to check that for each n > 1 and for any couple of dis-
joint rectangles Ry, Ry with sides parallel to the axes, P{sup,cp, W(z) =
sup,cp, W(z)} = 0 (see Exercise 2.1.7). O

Lemma 2.1.9 The random variable M = sup,¢( 12 W (2) belongs to D'?
and DM = 1y g1x0,1)(2), where (S,T) is the point where the maximum
is attained.

Proof: ~ We introduce the approximation of M defined by
M, = sup{W(z1),...,W(zn)},
where {2,,n > 1} is a countable and dense subset of [0, 1]2. It holds that

D. M, =1,s,1x[0,1,] (%)

where (S,,,T},) is the point where M, = W(S,,T,). We know that the
sequence of derivatives DM,, converges to DM in the weak topology of
L?([0,1]* x Q). On the other hand, (S,,T},) converges to (S,T) almost
surely. This implies the result. |

As an application of Theorem 2.1.4 we can prove the regularity of the
density of M.

Proposition 2.1.12 The random variable M = sup,¢jq 12 W (z) possesses
an infinitely differentiable density on (0, +00).



112 2. Regularity of probability laws

Proof: ~ Fix a > 0 and set A = (a,+00). By Theorem 2.1.4 it suffices to
show that M is locally nondegenerate in A in the sense of Definition 2.1.2.
Define the following random variables:

T, = inf{t: sup W(z,y) > a}

and
Se = inf{s: sup W(z,y) > a}.
{0<e<s,0<y<1}

We recall that S, and T, are stopping times with respect to the one-
parameter filtrations F! = o{W(z,y) : 0 < 2z < 5,0 < y < 1} and
Fr=oc{W(z,y):0<2<1,0<y <t}

Note that (S,,T,) < (5,T) on the set {M > a}. Hence, by Lemma 2.1.9
it holds that D, M (w) = 1 for almost all (z,w) such that z < (S, (w), Ty (w))
and M(w) > a.

For every 0 < v < % and p > 2 such that ﬁ <y < %—%, we define the
Holder seminorm on Cy([0, 1]),

i@ -t )P
o= ([, 0 )

We denote by H,, ~ the Banach space of continuous functions on [0, 1] van-
ishing at zero and having a finite (p,~y) norm.
We define two families of random variables:

Wi(s,:) = W(s,)||**
Vo= [ W60 = WL
[0,0]2 |s — s'|t+2Py

and

HW(at) - W(atl)||21,a
Y3(1) = / e dtdt
[0,7]2 It =

where o, 7 € [0,1]. Set Y(o,7) = Y(0) + Y2(7).
We claim that there exists a constant R, depending on a, p, and ~, such
that

Y(o,7) <R implies sup W, <a. (2.36)
2€[0,0]%[0,1]U[0,1] x[0,7]

In order to show this property, we first apply Garsia, Rodemich, and Rum-
sey’s lemma (see Appendix, Lemma A.3.1) to the H,, ,-valued function
s < W(s,+). From this lemma, and assuming Y*(o) < R, we deduce

W (s,) = W(s', )72 < eprRls — '[P

Py —
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for all s,s" € [0,0]. Hence,
W (s, )37, < cpy R

for all s € [0,0]. Applying the same lemma to the real-valued function
t — W(s,t) (s is now fixed), we obtain

w w 2 2 2py—1
| (Svt) - (Svt/)‘ P < Cp,'yR|t - t/| P
for all t,t" € [0, 1]. Hence,

sup |[W (s, t)| < c;{,fR%.
0<s<0,0<t<L1

Similarly, we can prove that

sup |[W (s,t)| < czlj,/é’Rﬁ,
0<s<1,0<t<r

and it suffices to choose R in such a way that 01177/511%ﬁ <a.

Now we introduce the stochastic process u (s, t) and the random variable
v 4 that will verify the conditions of Definition 2.1.2.

Let ¢ : Ry — Ry be an infinitely differentiable function such that ¢ (z) =
0Oifz >R, ¢(z)=1if z < £, and 0 < ¢(z) < 1. Then we define

ua(s,t) = (Y (s,t))
and

va= | V(s t))dsdt.
[0,1]2

On the set {M > a} we have
(1) ¥(Y(s,t)) = 0 if (s,t) € [0,5,] x [0,T,]. Indeed, if (Y (s,t)) # O,
then Y'(s,t) < R (by definition of ¥) and by (2.36) this would imply

SupZE[O,S]X[O,l]U[O,l]X[O,t] WZ < a, and, hence, s < Sa7 t < Ta, which is
contradictory.

(2) Ds M =1if (s,t) € 0,54] x [0,Tg], as we have proven before.

Consequently, on {M > a} we obtain

(DM, ua) g Dy My(Y (s,t))dsdt

[0,1]?

-/ Y (s, 0)dsdt = 7.
[0,S4]x[0,T,]



114 2. Regularity of probability laws

We have v, € D* and uy € D*°(H) because the variables Y!(s) and Y?(¢)
are in D> (see Exercise 1.5.4 and [3]). So it remains to prove that v,* has
moments of all orders. We have

O(Y (5, 8))dsdt > /[0 PRI

[0,1]2
= \{(s,t) €[0,1)?: Y (s)+Y2()<§}
> Mse 1] Vi) < 0
x At € [0,1] : Y2(t

= (V)TN

}

M:U

) <
R
1)

Here we have used the fact that the stochastic processes Y! and Y2 are
continuous and increasing. Finally for any € we can write

R

R
PY) () <0 = P <¥e)
W (s,-) = W(s', )2 R
< P P dsds’
= (/[076]2 |S _ s/‘1+2p7 > — 1
4 (W (s, ) = W(s', )17
_~\P b,y
S (R) E / ‘8— /|1+2p'y ds d
0,¢]
< O
for some constant C' > 0. This completes the proof of the theorem. O
Exercises

2.1.1 Show that if F' is a random variable in D?# such that E(|DF|~8) <
oo, then > € Dom § and

HDFH
5( DF ) ___LF 72<DF®DF,D2F>H®H
IDF|I% IDF|I% IDF|%
Hint: Show first that ﬁ belongs to Dom ¢ for any € > 0 using

Proposition 1.3.3, and then let € tend to zero.

2.1.2 Let u = {uy,t € [0,1]} be an adapted continuous process belonging
to L* and such that sup; ,c(,1] E[|Dsut|?] < oo. Show that if u; # 0 a.s.,

then the random variable F' = fol usdWy has an absolutely continuous law.

2.1.3 Suppose that F is a random variable in D'2, and let h be an element
of H such that (DF,h)g # 0 a.s. and ﬁ belongs to the domain of ¢.
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Show that F' possesses a continuous and bounded density given by

fl@)=E (1{F>w}5 (Whhm)> '

2.1.4 Let F be a random variable in D''2 such that Gkﬁ belongs to
H

Dom§ for any k£ =0,...,n, where Gp = 1 and

DF
6= (G )

if 1 <k <n+ 1. Show that F has a density of class C™ and

f®(@) = (~D*E [Lgpsa)Grn]
0<k<n

2.1.5 Let F > 0 be a random variable in D%2 such that % € Dom .
H
Show that the density f of F' verifies

191 < 19 (e ) IaCEGED?

for any p > 1, where ¢ is the conjugate of p.

2.1.6 Let W = {W;,t > 0} be a standard Brownian motion, and consider
a random variable F in D'2. Show that for all + > 0, except for a countable
set of times, the random variable F'+ WW; has an absolutely continuous law
(see [218]).

2.1.7Let W = {W (s, 1), (s,t) € [0,1]?} be a two-parameter Wiener process.
Show that for any pair of disjoint rectangles R;, Ry with sides parallel to
the axes we have

P{sup W(z) = sup W(z)} =0.
zE€Ry zER2

Hint: Fix a rectangle [a,b] C [0,1]2. Show that the law of the random
variable sup,¢(, y W (2) conditioned by the o-field generated by the family
{W(s,t),s < a1} is absolutely continuous.

2.1.8 Let F' € D*“, o > 4, be a random variable such that E(|DF|| ;") <
oo for all p > 2. Show that the density p(x) of F' is continuously differen-
tiable, and compute p’(x).

2.1.9 Let F = (F*,..., F™) be a random vector whose components belong
to the space D*. We denote by v the Malliavin matrix of F. Suppose
that det yr > 0 a.s. Show that the density of F' is lower semicontinuous.
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Hint: The density of F is the nondecreasing limit as N tends to infinity
of the densities of the measures [¥(vp) - P]o F~! introduced in the proof
of Theorem 2.1.1.

2.1.10 Let F' = (W (hy) + W(hg))e*W(hQ)a where hj, hy are orthonormal
elements of H. Show that F' € D>, |DF||g > 0 a.s., and the density of F'
has a lower semicontinuous version satisfying p(0) = 400 (see [197]).

2.1.11 Show that the random variable F' = fol t? arctan(W;)dt, where W
is a Brownian motion, has a C'°° density.

2.1.212 Let W = {W(s,t),(s,t) € [0,1]?} be a two-parameter Wiener
process. Show that the density of sup, ;)cjo,12 W (s,t) is strictly positive
in (0, +00).

Hint: Apply Proposition 2.1.8.

2.2 Stochastic differential equations

In this section we discuss the existence, uniqueness, and smoothness of so-
lutions to stochastic differential equations. Suppose that (Q, F, P) is the
canonical probability space associated with a d-dimensional Brownian mo-
tion {W¥(t),t € [0,T], 1 < i < d} on a finite interval [0, T]. This means
Q = Co([0,T);RY), P is the d-dimensional Wiener measure, and F is the
completion of the Borel o-field of  with respect to P. The underlying
Hilbert space here is H = L2(]0, T]; R?).

Let A;,B : [0,T] x R™ — R™, 1 < j < d, be measurable functions
satisfying the following globally Lipschitz and boundedness conditions:

(h1) Y7, [A;(t,x) — A;(t,y)| + |B(t,z) — B(t,y)| < K|z —y|, for any
x,y e R™, t €[0,T];

(h2) t — A;(t,0) and t — B(t,0) are bounded on [0, T].

We denote by X = {X(¢t), t € [0,T]} the solution of the following m-
dimensional stochastic differential equation:

d t ) t
X0 = w0+ /0 Ay (s, X ())dW7 + /O B(s, X(s))ds,  (2.37)

where xg € R™ is the initial value of the process X. We will show that
there is a unique continuous solution to this equation, such that for all
t € [0,T] and for all i = 1,...,m the random variable X*(t) belongs to
the space D'P for all p > 2. Furthermore, if the coefficients are infinitely
differentiable in the space variable and their partial derivatives of all orders
are uniformly bounded, then X(¢) belongs to D>°.

From now on we will use the convention of summation over repeated
indices.
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2.2.1 FEzistence and uniqueness of solutions

Here we will establish an existence and uniqueness result for equations
that are generalizations of (2.37). This more general type of equation will
be satisfied by the iterated derivatives of the process X.

Let V ={V(t),0 <t < T} be a continuous and adapted M-dimensional
stochastic process such that

B, = sup E(|[V(t)|") < oo
0<t<T

for all p > 2. Suppose that
o:RMxR™ - R™®R? and  b:RM xR™ - R™

are measurable functions satisfying the following conditions, for a positive
constant K:

(h3) |o(x,y)—o(z, )|+ |b(z,y) —b(z,y')| < Kly—y/|, for any x € RM,
Y,y € R™;

(h4) the functions x — o(z,0) and  — b(z,0) have at most polynomial
growth order (i.e., |o(x,0)| + |b(z,0)| < K(1+ |z|") for some integer
v >0).

With these assumptions, we have the next result.

Lemma 2.2.1 Consider a continuous and adapted m-dimensional process
a ={at),0 <t < T} such that d, = E(supg<,<rp |a(t)?) < oo for all
p > 2. Then there exists a unique continuous and adapted m-dimensional
process Y = {Y(t),0 < t < T} satisfying the stochastic differential equation

Y(t) = a(t) + /O o (V(5),Y (s))dW? + /O b(V(s),Y(s))ds.  (2.38)

Moreover,

B (s V0P <

0<t<T

for any p > 2, where Cy is a positive constant depending on p, T, K, 3,,,m,
and dp.

Proof:  Using Picard’s iteration scheme, we introduce the processes Yy (t) =
a(t) and

Yoi1(¢) :a(t)+/0 Uj(V(s),Yn(s))de—i—/o b(V(s),Yn(s))ds (2.39)
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if n > 0. By a recursive argument one can show that Y,, is a continuous
and adapted process such that

E( sup |Yn(t)|p> < oo (2.40)
0<t<T

for any p > 2. Indeed, applying Doob’s maximal inequality (A.2) and Burk-
holder’s inequality (A.4) for m-dimensional martingales, and making use
of hypotheses (h3) and (h4), we obtain

£ (s o)

0<t<T
T p
< ¢ dp+E</ 05(V(5), Yo(s))dW? )
B ((/0 |b(V(s),Yn(s))|ds> )]
< o dp+C;Kpr_1/O (1+E(|V(8)|"p)+E(|Yn(8)|p))dé’]
<

¢ [dp + ¢, KPT? (1 + By + sup E(IYn(t)Ip))] )

where ¢, and c; are constants depending only on p. Thus, Eq. (2.40) holds.
Again applying Doob’s maximal inequality, Burkholder’s inequality, and

condition (h3), we obtain, for any p > 2,

T
E( sup [Yosa () —mnf’) < k0T [T B(Ya(s) = Va9 ds.
0<t<T 0

It follows inductively that the preceding expression is bounded by

1
(e EPTP=H sup B([Yi(s)[7).

0<s<T

Consequently, we have

ZE ( sup |Yni1(t) — Yn(t)p> < 00,
= \o<i<r

which implies the existence of a continuous process Y satisfying (2.38) and
such that E(supg<,<7 |Y(t)[?) < Cy for all p > 2. The uniqueness of the
solution is derived by means of a similar method. (]

As a consequence, taking V(t) = t in the Lemma 2.2.1 produces the
following result.



2.2 Stochastic differential equations 119

Corollary 2.2.1 Assume that the coefficients A; and B of Eq. (2.37) are
globally Lipschitz and have linear growth (conditions (h1) and (h2)). Then
there exists a unique continuous solution X = {X(t),t € [0,T]} to Fq.
(2.37). Moreover,
E( sup |X(t)|p> <
0<i<T

for any p > 2, where Cy is a positive constant depending on p, T, K,v, and
Zo-

2.2.2  Weak differentiability of the solution

We will first consider the case where the coeflicients A; and B of the sto-
chastic differential equation (2.37) are globally Lipschitz functions and have
linear growth. Our aim is to show that the coordinates of the solution at
each time t € [0, 7] belong to the space D> = N~ D"?. To show this re-
sult we will make use of an extension of the chain rule to Lipschitz functions
established in Proposition 1.2.4.

We denote by DI (F), t €[0,T],j=1,...,d, the derivative of a random
variable F' as an element of L*([0,7] x (;R?) ~ L?(Q; H). Similarly we
denote by Dj}» /¥ (F) the Nth derivative of F.

Using Proposition 1.2.4, we can show the following result.

Theorem 2.2.1 Let X = {X(¢),t € [0,T)} be the solution to Eq. (2.37),
where the coefficients are supposed to be globally Lipschitz functions with
linear growth (hypotheses (h1) and (h2)). Then X'(t) belongs to D> for
any t € [0,T] andi=1,...,m. Moreover,

sup E( sup |DZXi(s)|p) < 00,
0<r<t r<s<T

and the derivative DI X' (t) satisfies the following linear equation:
t
DIX(®) = A(nX(r)+ [ Tuals) DIXH ()W

t
+/ Bi(s)DIX"(s)ds (2.41)
forr <t a.e., and _
DIX(t) =0

forr >t a.e., where Ay o(s) and By(s) are uniformly bounded and adapted
m-dimensional processes.

Proof:  Consider the Picard approximations given by

Xo(t) = Xo,

20+ /O Ay (s, X ())dWI + /0 B(s, X, (s))ds (2.42)

Xn-i-l (t)
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if n > 0. We will prove the following property by induction on n:

(P) Xi(t) e Db foralli =1,...,m, n >0, and t € [0, T]; further-
more, for all p > 1 we have

Y, (t):= sup F ( sup |D,,Xn(5)|p> < o0 (2.43)
0<r<t s€(r,t]
and .
1[)n+1(t) <c+ 02/ ¢n(8)ds, (2.44)
0

for some constants ¢y, co.

Clearly, (P) holds for n = 0. Suppose it is true for n. Applying Proposi-
tion 1.2.4 to the random vector X,,(s) and to the functions A; and B?, we
deduce that the random variables A’(s, X, (s)) and B'(s, X, (s)) belong

to D2 and that there exist m-dimensional adapted processes A, (s) =
(Z:’f(s), e ,Z;L;(s)) and B""(s) = (B"'(s),...,B.."(s)), uniformly boun-
ded by K, such that

D, [Ai(s, Xu(s)] = A 4(5)D(XE(9)1 (<) (2.45)
and
D [B(s, Xu(s)] = By (s)Dp(X}(5) Lz (2.46)

In fact, these processes are obtained as the weak limit of the sequences
{Ok[AL x am](s, X (s)), m > 1} and {9k [B" % cu](s, X, (s)), m > 1}, where
Q. denotes an approximation of the identity, and it is easy to check the
adaptability of the limit. From Proposition 1.5.5 we deduce that the random
variables A’ (s, X,,(s)) and B'(s, X,,(s)) belong to D,

Thus the processes { DL[A%(s, X,,(s))], s > r} and {DL[B'(s, X, (s))],s >
r} are square integrable and adapted, and from (2.45) and (2.46) we get

D, [A5(s, X ()]l < K|Dr Xy (s),  |De[B' (5, Xn(s))]| < K|Dr X (s)]-

(2.47)
Using Lemma 1.3.4 we deduce that the Ito integral fot Al (s, X, (s))dW]
belongs to the space D"2, and for r < t we have

D! / Al(s, Xp(5))dWI] = Aj(r, Xn( / DL[AL(s, Xn(s))]dW7.
(2.48)
On the other hand, fot Bi(s, X,,(s))ds € D2, and for r <t we have

Di[/o Bi(s,Xn(s))ds]:/ D![B(s, Xn(s))]ds. (2.49)
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From these equalities and Eq. (2.42) we see that X/, (t) € D" for all
t € [0, 7], and we obtain

t
E ( sup |Dan+1(s)|p) < ¢ [’yp Jer—le/ E (|D£Xn(s)\p) ds|,

r<s<t
(2.50)
where
vp =sup E( sup [A4;(t, Xn(¢))[") < co.
n,j 0<t<T

So (2.43) and (2.44) hold for n 4 1. From Lemma 2.2.1 we know that

B (sup X,) - X)) 0

s<T

as n tends to infinity. By Gronwall’s lemma applied to (2.50) we deduce
that derivatives of the sequence X} (t) are bounded in L?(Q; H) uniformly
in n for all p > 2. Therefore, from Proposition 1.5.5 we deduce that the
random variables X*(¢) belong to D**°. Finally, applying the operator D
to Eq. (2.37) and using Proposition 1.2.4, we deduce the linear stochastic
differential equation (2.41) for the derivative of X(t). O

If the coefficients of Eq. (2.37) are continuously differentiable, then we
can write

Ai(s) = (0eA])(5, X (5))

and _
By(s) = (9uB')(s, X ().

In order to prove the existence of higher-order derivatives, we will need
the following technical lemma.

Consider adapted and continuous processes a = {«a(r,t),t € [r,T|} and
V={V;(t),0<t<T,j=0,...,d} such that « is m-dimensional and Vj is
uniformly bounded and takes values on the set of matrices of order m x m.
Suppose that the random variables of(r,t) and V}"'(t) belong to D'> for
any ¢, j, k, [, and satisfy the following estimates:

sup E( sup |a(r,t)p) < 00,

0<r<T r<t<T
sup E(Sup |D5Vj(t)p) < 00,
0<s<T s<t<T
sup E( sup |D5a(r,t)P) < 00,
0<s,r<T rVs<t<T

for any p > 2 and any j =0,...,d.
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Lemma 2.2.2 Let Y = {Y(¢),r <t < T} be the solution of the linear
stochastic differential equation

Y(t) = a(r,t) +/ V}(s)Y(s)dWﬁ +/ Vo(s)Y (s)ds. (2.51)

Then {Y'(t)} belongs to D> for any i = 1,...,m, and the derivative
DY (t) verifies the following linear equation, for s < t:

DIY(t) = Dia(rt)+V(s)Y(s) 1<z

+ [ D2y @ + ViwDiv !
+ / t[DgZVO(u)Y(u) + Vo(u)DIY (u)]du. (2.52)

Proof: ~ The proof can be done using the same technique as the proof of
Theorem 2.2.1, and so we will omit the details. The main idea is to observe
that Eq. (2.51) is a particular case of (2.38) when the coefficients ¢; and
b are linear. Consider the Picard approximations defined by the recursive
equations (2.39). Then we can show by induction that the variables Y, (t)
belong to D> and satisfy the equation

DiYoia(t) = Dia(rt) + Vi(s)Yn(s) <<y

+ [ DY) + Vi) DIV ]
+ [ IDIVo(w)Ya () + Vo) DAY, ()

Finally, we conclude our proof as we did in the proof of Theorem 2.2.1. OJ

Note that under the assumptions of Lemma 2.2.2 the solution Y of Eq.
(2.51) satisfies the estimates

B (s VOr) <

0<t<T

sup E( sup |DSY(t)|p> < oo,

0<s<t r<t<T
for all p > 2.

Theorem 2.2.2 Let X be the solution of the stochastic differential equa-
tion (2.37), and suppose that the coefficients A; and B? are infinitely dif-
ferentiable functions in x with bounded derivatives of all orders greater than
or equal to one and that the functions A;-(t,()) and B'(t,0) are bounded.
Then X(t) belongs to D> for allt € [0,T), and i =1,...,m.
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Proof: We know from Theorem 2.2.1 that for any ¢ = 1,...,m and
any t € [0,7T], the random variable X(¢) belongs to D' for all p > 2.
Furthermore, the derivative DJX"*(t) verifies the following linear stochastic
differential equation:

DIX'(t) = Al(r, X,) + /t(akAf)(s,X(s))DZX’“(s)dWSl

+ /t(akB)(s,X(s))Dg;X’“(s)ds. (2.53)

Now we will recursively apply Lemma 2.2.2 to this linear equation. We
will denote by Djl>-I~ (X (t)) the iterated derivative of order N. We have to
introduce some notation. For any subset K = {e; < --- < ¢} of {1,..., N},
we put j(K) = je,, .-+, Je, and 7(K) = re,,...,7¢,. Define

af g (s ry) = Z(akl'“ak:uA?)(S»X(s))
< DX ()] DY) X (o)

r(I1) v
and
52‘1,”.,” (8,71,...,7N) = Z((‘?kl <O, BY) (s, X (5))
(1 ) (L )
<D (XM ()] -~ DI (XM (3),
where the sums are extended to the set of all partitions {1,...,N} =

LU---UI,. We also set a(s) = A%(s, X(s)). With these notations we will
recursively show the following properties for any integer N > 1:

(P1) Foranyt € [0,T],p>2,andi=1,...,m, X(t) belongs to DV-P,
and

sup FE ( sup | Dy oo (X(t)>|p) < 0.

T],A..,TNE[(),T] r1V--Vry <t<T

(P2) The Nth derivative satisfies the following linear equation:

N
D'Ij"ii:g“% (Xl(t)) = Z aée,jl ..... Je—1,Jet1s-2JN (7"5, T1yee s Te—1,Tet1y -+, TN)
e=1
t .
—I—/ [a}jjhm,jN(s,rl,...,rN)dW£
r1V---Vryn
+ﬁ§1w’jN(s7r1,...,rN)ds (2.54)

ift>r V- Vry,and DbV (X(H) =0if t <7 Ve-- V.

TN
We know that these properties hold for N = 1 because of Theorem 2.2.1.
Suppose that the above properties hold up to the index N. Observe that

i .
Qp gy in (857150, TN) I8 equal to

(DAL (5, X (5)) DI (XM(s))

T1y--sTN
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(this term corresponds to ¥ = 1) plus a polynomial function on the deriv-

atives (Ok, - - - Ok, Al)(s, X (s)) with v > 2, and the processes DZER(Xk(s))7
with card(l) < N — 1. Therefore, we can apply Lemma 2.2.2 to r =

r1 V---Vry, and the processes

Y(t) = Diboin(X(t), t>r,
Vi) = (0kAD(s,X(s), 1<ik<m, j=1,....d

and a(r,t) is equal to the sum of the remaining terms in the right-hand
side of Eq. (2.54).
Notice that with the above notations we have
DZ [a;,jl,m:jzv (t’ [AERER ’TN)} = Oé;,jl,nwjzv,j(t? TN, T)

and o _
Di [ﬁ;l,m’j]\](t/rl? .. 'arN>:| = ﬂ}huij’j(t,ﬁ, e ,TN7T).

Using these relations and computing the derivative of (2.54) by means
of Lemma 2.2.2, we obtain

DD} (X (1)

T1y.-sTN
N
:Eo/-4 S i (re,r r r TN,T)
Jerdirsde—tsfertsnin,g \T€ Tl Te=TrTetdy oo TN,
e=1
i
+0G gy (BT TN)
t
i l
+/ [alﬁjl,_wm’j(s,rl,...,rN,r)dWS
riV---Vry

B ing (ST ,TN,T)dS},

which implies that property (P2) holds for N+1. The estimates of property
(P1) are also easily derived. The proof of the theorem is now complete. O

FEzxercises

2.2.1 Let ¢ and b be continuously differentiable functions on R with boun-
ded derivatives. Consider the solution X = {X;,t € [0,T]} of the stochastic
differential equation

t t
Xt = To +/ U(Xs)dWS +/ b(XS)dS
0 0

Show that for s <t we have

D,X; = o(X,)exp (/Ot o' (Xs)dW, + /Ot[b' - ;(U')Q](Xs)ds) .
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2.2.2 (Doss [84]) Suppose that o is a function of class C?(R) with bounded
first and second partial derivatives and that b is Lipschitz continuous. Show
that the one-dimensional stochastic differential equation

t t
1
X, = 20 +/ o (X,)dW, +/ b+ 500" |(X.)ds (2.55)
0 0

has a solution that can be written in the form X; = u(W;,Y:), where

(i) u(wx,y) is the solution of the ordinary differential equation
0
8% =ow), w0,y =y;
(ii) for each w € €, {Y;(w),t > 0} is the solution of the ordinary differ-
ential equation

Y/(w) = f(Wi(w), Yi(w)),  Yo(w) =0,

where f(z,y) = blu(z,)) (%) = bu(e,y)) exp(~ [ o (u(z, )dz).

Using the above representation of the solution to Eq. (2.55), show that
X; belongs to D'? for all p > 2 and compute the derivative D, X;.

2.3 Hypoellipticity and Hormander’s theorem

In this section we introduce nondegeneracy conditions on the coefficients of
Eq. (2.37) and show that under these conditions the solution X (¢) at any
time ¢ € (0,7] has a (smooth) density. Clearly, if the subspace spanned
by {A4;(t,y),B(t,y);1 < j < d,t € [0,T],y € R™} has dimension strictly
smaller than m, then the law of X (t), for all ¢ > 0, will be singular with
respect to the Lebesgue measure. We thus need some kind of nondegeneracy
assumption.

2.3.1 Absolute continuity in the case of Lipschitz coefficients

Let {X(t),t € [0,T]} be the solution of the stochastic differential equation
(2.37), where the coefficients are supposed to be globally Lipschitz functions
with linear growth. In Theorem 2.2.1 we proved that X*(¢) belongs to D>
foralli=1,...,m and t € [0,T], and we found that the derivative DJ X}
satisfies the following linear stochastic differential equation:

t . )
Mﬁ=4mx&+&/£MWMMM

t .
+ / By (s)DI Xk ds. (2.56)
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We are going to deduce a simpler expression for the derivative DX}.
Consider the m x m matrix-valued process defined by

Yi(t) =6\ + / t (A a(s)Y (8)aW! + By ()Y} (s)ds] (2.57)
0

i,j = 1,...,m. If the coefficients of Eq. (2.37) are of class C'*% o > 0
(see Kunita [173]), then there is a version of the solution X (¢, xg) to this
equation that is continuously differentiable in z¢, and Y'(¢) is the Jacobian
matrix g—ﬁ)(t,xo).

Now consider the m x m matrix-valued process Z(t) solution to the

system

t

Zi) = @f/zuﬂﬁmmm

k —«

- /0 Zi(s) [By(s) - AL ()& ()] ds. (258)

By means of It6’s formula, one can check that Z,;Y; = Y;Z;, = I. In fact,
ZHOVEW) = 5+ [ Zi() B ol ()0

t .

[
0

t .

_ / Zi
0

t .

_ / Zi
0

and similarly for Y;Z;. As a consequence, for any ¢t > 0 the matrix Y; is
invertible and Y;~! = Z,. Then it holds that

l

‘7@%@@—AZWM@@W@WW

—l —

(s)B1(5)
() [B)(5) = Ao (5) A7) | ¥ (s)ds
()2, ()

)AL o(s)Y (s)ds = 6,

DIX} = Vi ()Y " (kAL (r, X,). (2.59)

Indeed, it is enough to verify that the process {Y;"(t)Y = (r)} A% (r, X,), ¢ >
r} satisfies Eq. (2.56):

A0 X) [ T {YEOY 050X aw'(s)

+ [ B ey msale.x) fas
= A (r, X))+ [Y(1) = Y (r)] Y (r)pAf(r, X,)
YO AR ).
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We will denote by
Y = (DX!,DX]\y = Z/ D! X;D. X dr
=170
the Malliavin matrix of the vector X (t). Equation (2.59) allows us to write
the following expression for this matrix:

Qi =YY", (2.60)

where
.. d t . .
=3 / Y1 (s)i Ak (s, X, )Y 1 (s)], AF (5, X, )ds. (2.61)
1=170
Define both the time-dependent m x m diffusion matrix
o (t, ) =Y Ayt x)Af(t, @)
k=1
and the stopping time

t
S = inf{t >0: / 1{deto’(s,Xs)7£0}d8 > 0} ANT.
0

The following absolute continuity result has been established by Bouleau
and Hirsch in [46].

Theorem 2.3.1 Let {X(t),t € [0,T]} be the solution of the stochastic dif-
ferential equation (2.37), where the coefficients are globally Lipschitz func-
tions and of at most linear growth. Then for any 0 < t < T the law of
X(t) conditioned by {t > S} is absolutely continuous with respect to the
Lebesgue measure on R™.

Proof:  Taking into account Theorem 2.2.1 and Corollary 2.1.2, it suffices
to show that det Q; > 0 a.s. on the set {t > S}. In view of expression (2.60)
it is sufficient to prove that det Cy > 0 a.s. on this set. Suppose ¢ > S. Then
there exists a set G C [0, ] of positive Lebesgue measure such that for any
s € G and v € R™ we have

vlo(s, Xs)v = A(s)|v],
where A(s) > 0. Taking v = (Y;"!)Tu and integrating over [0,¢] N G, we
obtain
t
ul' Cyu = / ul'Y (s) Yo (s, Xs) (Y (s) )T uds > klul?,
0

where & = fg 1g(3)%d8. Consequently, if ¢ > S, the matrix C; is
invertible and the result is proved. O
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2.3.2  Absolute continuity under Hormander’s conditions

In this section we assume that the coefficients of Eq. (2.37) are infinitely
differentiable with bounded derivatives of all orders and do not depend
on the time. Let us denote by X = {X(¢),t > 0} the solution of this
equation on [0,00). We have seen in Theorem 2.2.2 that in such a case the
random variables X*(¢) belong to the space D>. We are going to impose
nondegeneracy conditions on the coefficients in such a way that the solution
has a smooth density. To introduce these conditions, consider the following
vector fields on R™ associated with the coefficients of Eq. (2.37):

N

AJ = A](x)ax? ]:17"'7d7
i 0

B = B(x)ﬁxi'

The covariant derivative of Ay, in the direction of A; is defined as the vector

field Aijk = Aé. 8“428%%’ and the Lie bracket between the vector fields A;

and Ay is defined by
[Aj, Ax] = AY Ay — AY A;.
Set

0
3%—

Ao = B - g0 A0)

d
1
B— §;AIVA1.

The vector field Ay appears when we write the stochastic differential equa-
tion (2.37) in terms of the Stratonovich integral instead of the It6 integral:

t t
X =xp +/ A (Xs) ode +/ Ao (Xs)ds.
0 0
Hormander’s condition can be stated as follows:

(H) The vector space spanned by the vector fields
A, Agy [ALA]L0<i,5<d, [AL[A; AR 0<4,5,k<d,...
at point zg is R™.

For instance, if m = d = 1, A}(z) = a(z), and A}(x) = b(z), then
Hormander’s condition means that a(zg) # 0 or a™(z)b(zg) # 0 for some
n > 1. In this situation we have the following result.

Theorem 2.3.2 Assume that Hormander’s condition (H) holds. Then for
any t > 0 the random vector X (t) has a probability distribution that is
absolutely continuous with respect to the Lebesgue measure.
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We will see in the next section that the density of the law of X; is infi-
nitely differentiable on R™. This result can be considered as a probabilistic
version of Hérmander’s theorem on the hypoellipticity of second-order dif-
ferential operators. Let us discuss this point with some detail. We recall
that a differential operator .4 on an open set G of R™ with smooth (i.e.,
infinitely differentiable) coefficients is called hypoelliptic if, whenever u is
a distribution on G, u is a smooth function on any open set G’ C G on
which Aw is smooth.

Consider the second-order differential operator

d
A= % > (A2 + Ag. (2.62)

i=1

Hormander’s theorem [138] states that if the Lie algebra generated by the
vector fields Ag, A1, ..., Aq has full rank at each point of R™, then the
operator £ is hypoelliptic. Notice that this assumtion is stronger than (H).

A straightforward proof of this result using the calculus of pseudo-diffe-
rential operators can be found in Khon [170]. On the other hand, Oleinik
and Radkevi¢ [277] have made generalizations of Héormander’s theorem to
include operators £, which cannot be written in Hérmander’s form (as a
sum of squares).

In order to relate the hypoellipticity property with the smoothness of
the density of X, let us consider an infinitely differentiable function f
with compact support on (0,00) x R™. By means of 1t6’s formula we can
write for t large enough

to
0= BI7(t, X0 - B0, X0)] = £ | [ (5 + )5, X)ds
0 S
where ,
B 1 m . 9 m . 9
g o 5 ijz:l(AA ) ’ 81‘2837] + i—1 B 8331

Notice that G — B = L — Ay, where L is defined in (2.62). Denote by p:(dy)
the probability distribution of X;. We have

0=F [ | e g)f(s,Xads} = [ [ o seamans

This means that p;(dy) satisfies the forward Fokker-Planck equation (—%4—
G*)p = 0 (where G* denotes the adjoint of the operator G) in the distribu-
tion sense. Therefore, the fact that p;(dy) has a C*° density in the variable
y is implied by the hypoelliptic character of the operator % —G*. Increasing
the dimension by one and applying Hormander’s theorem to the operator
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—G*, one can deduce its hypoellipticity assuming hypothesis (H) at each
point g in R™. We refer to Williams [350] for a more detailed discussion
of this subject.

Let us turn to the proof of Theorem 2.3.2. First we carry out some
preliminary computations that will explain the role played by the nonde-
generacy condition (H). Suppose that V(x) = Vi(z )7 is a C* vector
field on R™. The Lie brackets appear when we apply It&’s formula to the
process Y; 'V (X;), where the process Y;~! has been defined in (2.58). I
fact, we have

Y;ilV(Xt) 370 / Y Ak:7 (XS)dWsk
1 d
+/0 {AO, +§;Ak, [Ag, V }( Yds. (2.63)

We recall that from (2.58) we have

d t
vl o= 1_2/ Y 10A,(X,)dWE
ke 0

t
yia
where 0Aj and 0B respectively denote the Jacobian matrices (@A};) and

((%—Bi), i,7 = 1,...,m. In order to show Eq. (2.63), we first use Ito’s
formula:

Z OAR(X)OAL(X )] ds,

t d
Y, WXy = Vi(ze) + /n—lz(aVAk—aAkV) (X)dwP
0

t
+ / Y, 1 (0VB — 0BV) (X,)ds
0

t d
+ / Y (0AR0ALV)(X.)ds (2.64)
0 k=1
4 / LS 00,V(X0) S ALK, ALK, )ds
7,j=1 k=1

t
- / vy, ! Z(aAkaX/Ak)(Xs)ds
0 k=1

Notice that

8VAk — 8AkV = [Ak, V], and
OVB - 9BV = [B,V].
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Additionally, we can write

d
[A0,V] 4 5 3[4 (46, V]) - [B,V]
1k:1 1
= —*I;AZA]“V +§;[Aka[Ak7VH

{—(AV AR)YV + VYV (AY A) + AV (AYV)

I
DO |
M=

k=1
—AY (VY AR) — (AVV)V A + (VI AR Y ALY
d
- 9 Z { - Aiaz'AZalV + VZ@A%&ZA,C + VlAéaialAk
k=1

+A§;81A§€81V + A;AZ&@ZV - AL@iVlalAk
CALVI9,0,A, — ALOV'O Ay, + ViBiAﬁcalAk}

d
. 1 . .
-y {VzaiA;alAk + 5 ALALDOY — A;aivlalAk}.
k=1

Finally expression (2.63) follows easily from the previous computations.

Proof of Theorem 2.3.2: Fix t > 0. Using Theorem 2.1.2 (or Theorem
2.1.1) it suffices to show that the matrix C; given by (2.61) is invertible
with probability one. Suppose that P{det C; = 0} > 0. We want to show
that under this assumption condition (H) cannot be satisfied. Let K, be
the random subspace of R™ spanned by {Y; 'Ax(X,);0 < o < s,k =
1,...,d}. The family of vector spaces {Kj, s > 0} is increasing. Set Ky+ =
Ns>0Ks. By the Blumenthal zero-one law for the Brownian motion (see
Revuz and Yor [292, Theorem I11.2.15]), K+ is a deterministic space with
probability one. Define the increasing adapted process {dim K, s > 0} and
the stopping time

7 =1inf{s > 0: dim K > dim K+ }.

Notice that P{r > 0} = 1. For any vector v € R™ of norm one we have

d t
T Cpv = Z/ WYL AR(X)|2ds.
k=170

As a consequence, by continuity v7Cyv = 0 implies v Y, 1A (X,) = 0
for any s € [0,t] and any k = 1,...,d. Therefore, Ko+ # R™, otherwise
K, = R™ for any s > 0 and any vector v verifying v7 Cyv = 0 would be
equal to zero, which implies that C; is invertible a.s., in contradiction with
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our hypothesis. Let v be a fixed nonzero vector orthogonal to Ky+. Observe
that v LK, if s < 7, that is,

vITY A(X,) =0, fork=1,...,d ands<T. (2.65)

We introduce the following sets of vector fields:

Yo = {Ala"'aAd}7
Sy = {[AnVk=1,....,dVeS, 1} ifn>1,
Y o= U 2.,
and
26 = 3,
E{n = {[Alﬂ ]7k dVEEn 13
1 d
[Ao, V +§Z H[A, VL Ve, |} ifn>1,
j=1
o= U X

We denote by 3, (x) (resp. X/, (z)) the subset of R™ obtained by freezing
the variable  in the vector fields of ¥, (resp. X7,). Clearly, the vector spaces
spanned by X(z) or by X'(z) coincide, and under Hérmander’s condition
this vector space is R™. We will show that for all n > 0 the vector v is or-
thogonal to X! (xg), which is in contradiction with Hérmander’s condition.
This claim will follow from the following stronger orthogonality property:

vTYW (X)) =0, foralls<7,VeEX, n>0. (2.66)

Indeed, for s = 0 we have Y; 'V(Xo) = V(z¢). Property (2.66) can be
proved by induction on n. For n = 0 it reduces to (2.65). Suppose that it
holds for n — 1, and let V € X! _;. Using formula (2.63) and the induction
hypothesis, we obtain

0 = / vTY, AR, V(X)) dWE
0

d
s 1
+/ vTY S [Ag, V] = Z Ay, [AR, V)] ¢ (X)) du
0 2 k=1

for s < 7. If a continuous semimartingale vanishes in a random interval
[0,7), where T is a stopping time, then the quadratic variation of the mar-
tingale part and the bounded variation part of the semimartingale must be
zero on this interval. As a consequence we obtain

~AR V(X)) =0
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and
L
oYt { [Ag, V] + 3 kZ:l [Ak, [Ag, V } (X,) =0,

for any s < 7. Therefore (2.66) is true for n, and the proof of the theorem
is complete. O

2.3.83 Smoothness of the density
under Hormander’s condition

In this section we will show the following result.

Theorem 2.3.3 Assume that {X(t),t > 0} is the solution to Eq. (2.37),
where the coefficients do not depent on the time. Suppose that the coeffi-
cients Aj, 1 < j < d, B are infinitely differentiable with bounded partial
derivatives of all orders and that Hérmander’s condition (H) holds. Then
for any t > 0 the random vector X (t) has an infinitely differentiable den-
sity.

From the previous results it suffices to show that (det C;)~! has moments
of all orders. We need the following preliminary lemmas.

Lemma 2.3.1 Let C' be a symmetric nonnegative definite m x m random
matriz. Assume that the entries C have moments of all orders and that
for any p > 2 there exists eo(p) such that for all € < eq(p)

sup P{vTCv <e} <€
|v]=1

Then (det Cy)~t € LP(Q) for all p.
Proof:  Let A = inf},—; vTCv be the smallest eigenvalue of C. We know
that \™ < det C. Thus, it suffices to show that E(A™?) < oo for all p > 2.

Set |C| = [Z” 1(0”)2} : Fix € > 0, and let vq,...,vy be a finite set of
unit vectors such that the balls with their center in these points and radius

% cover the unit sphere S 1. Then we have

P{A<e} = P{lvi‘n:fl v Cv < €}
1 1
< P{lil‘nflvTCv <elCl <=} +P{C|> =} (2.67)
v|= € €

Assume that [C| < 1 and v] Cvy, > 2¢ for any k =1,..., N. For any unit

2
vector v there exists a vy such that |[v —vx| < & and we can deduce the
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following inequalities:

el vl Cuy, — 0T Cv — v Cuy,|
2¢ — [[v" Cv — v Cog| + [v" Cvy, — v Cuy|]

2¢ — 2|C|lv — vg| > €.

IV IV IV

As a consequence, (2.67) is bounded by

N

P (U {of Cui < 2e}> T+ P{IC] > 1} < N@eyam 4+ o B((CP)

€
k=1

if e < %eo(p + 2m). The number N depends on e but is bounded by a
constant times e~2™. Therefore, we obtain P{\ < €} < const.e” for all
€ < €1(p) and for all p > 2. Clearly, this implies that A~! has moments of
all orders. ]

The next lemma has been proved by Norris in [239], following the ideas of
Stroock [320], and is the basic ingredient in the proof of Theorem 2.3.3. The
heuristic interpretation of this lemma is as follows: It is well known that if
the quadratic variation and the bounded variation component of a contin-
uous semimartingale vanish in some time interval, then the semimartingale
vanishes in this interval. (Equation (2.69) provides a quantitative version
of this result.) That is, when the quadratic variation or the bounded varia-
tion part of a continuous semimartingale is large, then the semimartingale
is small with an exponentially small probability.

Lemma 2.3.2 Let a,y € R. Suppose that B(t), v(t) = (v1(t),-..,7v4(t)),
and u(t) = (u1(t), ..., uq(t)) are adapted processes. Set

o) = at [ Bt [ om:
Y = y+ / a(s)ds + / u(s)dw,

and assume that there exists tg > 0 and p > 2 such that

c=FE < sup (|B(8)] + |v(@)] + a(t)] + IU(t)I)p) < 0. (2.68)

0<t<tg

Then, for any q > 8 and for any r,v > 0 such that 18r + 9v < q — 8, there
exists €g = €o(to, q,r, V) such that for all € < €

to tO
P {/ Y2dt < eq,/ (Ja(®)® + [u(t)[?)dt > e} <P e . (2.69)
0

0
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Proof:  Set 0, = |B(t)| + |v()| + |a(t)] + |u(t)]. Fix ¢ > 8 and r, v such
that 18r + 9v < g — 8. Suppose that v/ < v also satisfies 187 + 90" < ¢ — 8
Then we define the bounded stopping time

T:inf{s>0: sup 6, >e_r}/\t0.

0<u<s

We have
to to
P {/ Y2dt < eq,/ (Ja(®)2 + [u(t)2)dt > e} < Ay + Ay,
0 0

with A = P{T < to} and

to tO
Ay =P {/ Y2dt < eq,/ (Ja(®))? + |u(®)|?)dt > €, T = to} .
0

0

By the definition of T" and condition (2.68), we obtain

A < P{ sup 0s > e_r} <ePE [ sup 9’8’] < ce'P.
0<s<to 0<s<to

Let us introduce the following notation:
t t _
A = / a(s)ds, M, = / u;(s)dWy,
0 0

t t
Ne= [ Yulawi @i= [ A
0 0
Define for any p; >0, 6, > 0,7 =1,2,3,

By = {<N>T < py, sup |Ns| > 51},
0<s<T

By = {<M>T < py, sup |Mg| > 52}’
0<s<T

Bs = {<Q>T < p3, sup Q| > 53}-

0<s<T

By the exponential martingale inequality (cf. (A.5)),

2
P(B) < 2exp(— "), (2.70)

)

for i = 1,2,3. Our aim is to prove the following inclusion:

{ / Cypdr< e, / "l + )Py > e, T = to}
0 0

C B1UB2U Bs, (2.71)
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for the particular choices of p, and d;:
b=, Bimen a=d-r-4.
Py =22+ 1)2e 2% §y =2, g=9_5_5
pg = 3622424 S3=€B, qz= 42 _ %

From the inequality (2.70) and the inclusion (2.71) we get

o7 55 3
Ay < 2 exp(—ﬁ)—l—exp(—ﬁ)—kexp(—?)

IN

1 /
2 <exp(—26” ) + exp(—
< exp(—€e)

for € < ¢g, because

21 +2r—q = -V,
q1 ’

2qo + 21 — 5 = 7V
2q3+2r —2¢; = -V,

which allows us to complete the proof of the lemma. It remains only to
check the inclusion (2.71).

Proof of (2.71): Suppose that w ¢ By UByUBs, T(w) = to, and fOT Y2dt <
€?. Then

T
<Nﬁ:/lﬁmﬁw<a“ﬂ:py
0

< 01 = €. Also

. tr o

Then since w ¢ By, SUpg< < ‘fo Yu'dW?
1
2

t T i
/ Y,asds| < (to / Yfafdt> <tZe TR
0 0
t
[ var.
0

By Ito’s formula Y2 = y? + 2 fot Y,dYs + (M), and therefore

T T T t
/ (M) dt / Y2dt — Ty? — 2/ </ YSdYS> dt
0 0 0 0

el + 2ty (\/ﬂef’dr% + e‘“) < (2tg + 1)e™,

sup
0<s<T

Thus,

sup < Ve TTE 4 en,

0<s<T

A
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for € < ¢y because ¢ > ¢1 and —r 4 2 > ¢;. Since (M); is an increasing
process, for any 0 < v < T we have

YM)p_y < (2tg + 1)e®,

and hence (M) < 4~ 1(2tg 4 1)e? + ve2". Choosing v = (2tg 4+ 1)2e 7,
we obtain (M)r < py, provided € < 1. Since w ¢ By we get

sup | M| < 02 = €.
0<s<T

Recall that fOT Y2dt < € so that, by Tchebychev’s inequality,
At € [0,T] : [Va(w)| > €8} < €,
and therefore
At €[0,T]: |y + Ay(w)] > ¥ + 2} <€,

We can assume that €3 < 2, provided e < €(tg). So for each t € [0,7],
there exists s € [0,7] such that |s —t| < €3 and |y + A,| < €3 + €%,
Consequently,

t
ly + Ad| < [y + As| + |/ apdr| < (1+€77)es 4 €,
In particular, |y| < (1+ € ")e¥ + €%, and for all t € [0, 7] we have
|As] < 2 ((1 +e"ed + 6‘12) < 6€%2,

because go < 4 — 7. This implies that
T
Q)1 = / AZ|y,Pdt < 36tpe?2 7% = p,.
0
So since w ¢ Bs, we have

< 53 =B,

T
Qﬂ—M;&%@Wﬂw

Finally, by It6’s formula we obtain

T T
/ (af + u[?)dt = / ardAy + (M)7
0 0

T T
aw%—/’mmﬁ—/’mw@ﬂw+mwT
0 0
< (1+60)6e® ™ + B +2v/2 + 1e 25 < ¢

for € < €p, because g — r > q3, g3 > 1, and —2r + % > 1. O
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Now we can proceed to the proof of Theorem 2.3.3.

Proof of Theorem 2.5.5: Fix t > 0. We want to show that E[(det Cy)~P] <
oo for all p > 2. By Lemma 2.3.1 it suffices to see that for all p > 2 we have

sup P{UTCtU <e} <€
|[v]=1

for any € < eg(p). We recall the following expression for the quadratic form
associated to the matrix Cy:

d t
v Co = Z/ ’vTYS_lAj(XS)|2ds.
j=1"0

By Hoérmander’s condition, there exists an integer jo > 0 such that the
linear span of the set of vector fields ;020 ¥’ (x) at point xo has dimension
m. As a consequence there exist constants R > 0 and ¢ > 0 such that

S STV 2.

7=0 VeE}

for all v and y with [v| =1 and |y — | < R.
For any j = 0,1,...,50 we put m(j) = 2~% and we define the set

t
Bi=<¢ Y /0 (WY V(X)) ds < emO)

’
Vex;

Notice that {v?TCiv < €} = Ey because m(0) = 1. Consider the decompo-
sition
FEy C (EO ﬁEf) U (E1 QES) J---u (Ejofl ﬂE]C-O) UF,
where F' = Ey N Ey N --- N Ej,. Then for any unit vector v we have
Jo
P{u"Cpo < €} = P(Eo) < P(F) + > P(E; NES,,).
j=0
We are going to estimate each term of this sum. This will be done in two
steps.
Step 1:  Consider the following stopping time:
1
S=inf{c >0: sup |X,—ax9| >R or sup |[Y;'—1I>-}AL
0<s<o 0<s<o 2

We can write

P(F) < P(Fn{S=>¢é}) +P{S < e,
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where 0 < 3 < m(jo). For € small enough, the intersection F'N{S > €} is
empty. In fact, if S > ?, we have

S5 [wrveven)ts

J=0Vvex;)
Jo T 1 2
YV (Xs) Ter 112 ceP
ZZ Z/O <W) v Y, Idszj, (2.72)
J=0 Ve,

because s < S implies [v7Y;1| > 1 —[I — Y| > 5. On the other hand,

the left-hand side of (2.72) is bounded by (jo + 1) m(JO) on the set F', and
for € small enough we therefore obtain F' N {S > ¢} = ). Moreover, it
holds that

P{S <l < P{ sup XS—xO|ZR}

0<s<ef
- 1
+P< sup Y7 —1I>-
0<s<eh 2
< RUE| sup |Xs—axol?| +29E | sup |Vt I/
0<s<ef

0<s<eP

for any g > 2. Now using Burkholder’s and Holder’s inequalities, we deduce
that P{S < %} < Ce¥ for any g > 2, which provides the desired estimate
for P(F).

Step 2:  For any j =0,...,jo we introduce the following probability:

P(E;NES,,) = P Z/ 7Y, V(X)) ds < em0),
VEZ’

t
> / (WY V(X)) ds > emUth
0

’
Vex;

t
{ [ v as<eo,
0

IN
Eivg
~

d t :
[ ey viee)* s+ | (“Tnl(uo,w
k=170 0
d 2
1 em+1)
= [A X
+ QZ ]7 ij ( s) ds > n(J) ,
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where n(j) denotes the cardinality of the set X’. Consider the continu-

ous semimartingale {v7Y, 1V (X,),s > 0}. From (2.63) we see that the
quadratic variation of this semimartingale is equal to

d s ,
> /0 (7Y, A V(X)) do,
k=1

and the bounded variation component is

d

/OSvTY;1 [AO,V]+%Z[AJ-,[AJ-,V]] (X,)do.

j=1

Taking into account that 8m(j 4+ 1) < m(j), we get the desired estimate
from Lemma 2.3.2 applied to the semimartingale Y; = v7Y, 7'V (X,). The
proof of the theorem is now complete. O

Remarks:

1. Note that if the diffusion matrix o(z) = 2?21 Aj(x)AJT(:c) is elliptic at
the initial point (that is, o(z¢) > 0), then Hérmander’s condition (H) holds,
and for any ¢t > 0 the random variable X; has an infinitely differentiable
density. The interesting applications of Hérmander’s theorem appear when
o(xzg) is degenerate.

Consider the following elementary example. Let m = d = 2, Xg = 0,
B =0, and consider the vector fields

Al(m):[ L } and Aﬂ@:[smf@]

2$1 I

In this case the diffusion matrix

1 + sin? To x1(2 4+ sinxy
o(x) = [ x1(2 4 sinas) ( 5x3 ! }
degenerates along the line z; = 0. The Lie bracket [A;, As] is equal to
211 COS To
[ 1—2sinzo
R? and Hoérmander’s condition holds. So from Theorem 2.3.3 X(t) has a
C° density for any ¢t > 0.

} . Therefore, the vector fields A; and [A;, As] at x = 0 span

2. The following is a stronger version of Héormander’s condition:

(H1) The Lie algebra space spanned by the vector fields Aj,..., A4 at
point xq is R™.

The proof of Theorem 2.3.3 under this stronger hypothesis can be done
using the simpler version of Lemma 2.3.2 stated in Exercise 2.3.4.
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FEzxercises

2.3.1 Let W = {(W!,W?),t > 0} be a two-dimensional Brownian motion,
and consider the process X = {X;,t > 0} defined by

;Xig = LLQ}’

t
X} = / Wlaw?2.
0
Compute the Malliavin matrix v, of the vector X, and show that
t
dety, > t/ (Wh)ids.
0

Using Lemma 2.3.2 show that E| fOt(Wsl)st\*p] < oo for all p > 2, and
conclude that for all ¢ > 0 the random variable X; has an infinitely differ-
entiable density. Obtain the same result by applying Theorem 2.3.3 to a
stochastic differential equation satisfied by X (¢).

2.3.2 Let f(s,t) be a square integrable symmetric kernel on [0, 1]. Set
F = I;(f). Show that the norm of the derivative of F' is given by

00
IDF(F = AW (en)?,
n=1

where {\,} and {e,} are the corresponding sequence of eigenvalues and
orthogonal eigenvectors of the operator associated with f. In the particular
case where )\, = (mn)~2, show that

1
P(IDF|l <€) < V2 exp(—55),

and conclude that F' has an infinitely differentiable density.
Hint: Use Tchebychev’s exponential inequality with the function e~
and then optimize over .

2.3.3 Let m =3, d =2, and Xy = 0, and consider the vector fields

A2y

1 0 0
Ai(z)=| 0 |, As(z) = | sinzy |, B(z) = | $sinzacoszy+1
0 T 1

Show that the solution to the stochastic differential equation X (t) associ-
ated to these coeflicients has a C°° density for any ¢ > 0.

2.3.4 Prove the following stronger version of Lemma 2.3.2: Let

Y(t) =y+/0 a(s)ds—i—/o ui(8)dWE ¢ €[0,to],
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be a continuous semimartingale such that y € R and a and u,; are adapted
processes verifying

c:=FE { sup (la¢| + |ut|)p] < 00.
0<t<to

Then for any ¢,r,v > 0 verifying ¢ > v 4+ 10r + 1 there exists ¢g =
eo(to, q,m,v) such that for € < ¢

to to —v
P {/ Y2dt < eq,/ lu(t)|?dt > e} <ceP4e €
0 0

2.3.5 (Elworthy formula [90]) Let X = {X(¢), t € [0,T]} be the solution
to the following d-dimensional stochastic differential equation:

d t ) t
X(t):xo+;/0 Aj(X(s))dwg+/o B(X(s))ds,

where the coefficients A; and B are of class C'*, a > 0, with bounded
derivatives. We also assume that the m x m matrix A is invertible and that
its inverse has polynomial growth. Show that for any function ¢ € C}! (R%)
and for any ¢t > 0 the following formula holds:

Blow (0] = 1B %) [ (Amhieegvieany] .

where Y'(s) denotes the Jacobian matrix ‘?)f: given by (2.57).
Hint: Use the decomposition DsX; = Y ()Y ~1(s)A(Xs) and the dual-
ity relationship between the derivative operator and the Skorohod (It6)

integral.

2.4 Stochastic partial differential equations

In this section we discuss the applications of the Malliavin calculus to estab-
lishing the existence and smoothness of densities for solutions to stochastic
partial differential equations. First we will treat the case of a hyperbolic
system of equations using the techniques of the two-parameter stochastic
calculus. Second we will prove a criterion for absolute continuity in the case
of the heat equation perturbed by a space-time white noise.

2.4.1 Stochastic integral equations on the plane

Suppose that W = {W, = (W},..., W),z € R%} is a d-dimensional,
two-parameter Wiener process. That is, W is a d-dimensional, zero-mean



2.4 Stochastic partial differential equations 143

Gaussian process with a covariance function given by
E[Wi(sl, tl)Wj(SQ, tg)] = (Sij (81 A 82)(t1 A tg).

We will assume that this process is defined in the canonical probability
space (2, F, P), where  is the space of all continuous functions w : Ri —
R? vanishing on the axes, and endowed with the topology of the uniform
convergence on compact sets, P is the law of the process W (which is
called the two-parameter, d-dimensional Wiener measure), and F is the
completion of the Borel o-field of 2 with respect to P. We will denote
by {F.,z € R%} the increasing family of o-fields such that for any z,
F. is generated by the random variables {W(r),r < z} and the null sets
of F. Here r < z stands for ;1 < 21 and ro < z5. Given a rectangle
A = (51, 82] X (t1,t2], we will denote by W(A) the increment of W on A
defined by

W(A) = W(SQ,tQ) — W(827t1) — W(Sl,tg) + W(Sl,tl).

The Gaussian subspace of L%({), F, P) generated by W is isomorphic to
the Hilbert space H = L?(R%;R?). More precisely, to any element h € H
we associate the random variable W (h) = Z?:l Jrz hi(2)dWi(z).

T

A stochastic process {Y(z),z € R2} is said to be adapted if Y (2) is

F.-measurable for any z € Ri. The Itd stochastic integral of adapted and

square integrable processes can be constructed as in the one-parameter case
and is a special case of the Skorohod integral:

Proposition 2.4.1 Let L?L(Ri x Q) be the space of square integrable and
adapted processes {Y (z),z € R1} such that fRi E(Y?(2))dz < oo. For any
j=1,....d there is a linear isometry I : L2(R3 x Q) — L*(Q) such that

Ij<1(Z1,22}) = Wj((zh 2))

for any z1 < z5. Purthermore, L2(R% x Q; R?) C Dom 6, and 6 restricted to
LZ(R% x O RY) coincides with the sum of the Ité integrals I7, in the sense
that for any d-dimensional process Y € L2(R3 x €; R%) we have

d ) ) d . )
5(Y) = ZIJ(YJ) = Z/R Y7 (2)dW(2).

Let A;,B : R™ — R™, 1 < j < d, be globally Lipschitz functions.
We denote by X = {X(z),z € R3} the m-dimensional, two-parameter,
continuous adapted process given by the following system of stochastic
integral equations on the plane:

d
X() =20+ Y / A, (X)W + / B(X,)dr, (2.73)
=1 [0,2] [0,2]
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where zg € R™ represents the constant value of the process X (z) on the
axes. As in the one-parameter case, we can prove that this system of sto-
chastic integral equations has a unique continuous solution:

Theorem 2.4.1 There is a wunique m-dimensional, continuous, and
adapted process X that satisfies the integral equation (2.73). Moreover,

E

sup |X,|P| < oo
rel0,z]

for any p > 2, and any z € R%r.

Proof:  Use the Picard iteration method and two-parameter martingale
inequalities (see (A.7) and (A.8)) in order to show the uniform convergence
of the approximating sequence. O

Equation (2.73) is the integral version of the following nonlinear hyper-
bolic stochastic partial differential equation:

2X (s d 2117 (s
62(87(8;) - ;AJ‘(X(SJ))W + B(X(s,1)).

Suppose that z = (s,t) is a fixed point in Ri not on the axes. Then
we may look for nondegeneracy conditions on the coefficients of Eq. (2.73)
so that the random vector X (z) = (X1(2),...,X™(z)) has an absolutely
continuous distribution with a smooth density.

We will assume that the coefficients A; and B are infinitely differentiable
functions with bounded partial derivatives of all orders. We can show as in
the one-parameter case that X*(z) € D> for all z € R and i =1,...,m.
Furthermore, the Malliavin matrix Q¥ = (DX!, DXJ)y is given by

d
QY=Y D! XD X7dr, (2.74)
-1 [0,2]

where for any 7, the process {DfX;,r <z,1<i<m,1<k<d} satisfies
the following system of stochastic differential equations:

DIX: = Aj(X))+ [ }akAi(Xu)DindWi
+ OB (X,) DI X du. (2.75)
[r:2]
Moreover, we can write DIX! = &j(r,2)AL(X,), where for any r, the

process {5;(7", z),r < z,1 < 4,7 < m} is the solution to the following
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system of stochastic differential equations:

gi(r,z) = &+ O A} (X)X (r,u)dW],

! [r,2]

+ OB (X )&% (r, u)du. (2.76)

[r,2] ’

However, unlike the one-parameter case, the processes DI X! and f;-(r, 2)
cannot be factorized as the product of a function of z and a function of
r. Furthermore, these processes satisfy two-parameter linear stochastic dif-
ferential equations and the solution to such equations, even in the case of
constant coefficients, are not exponentials, and may take negative values.
As a consequence, we cannot estimate expectations such as E(|§; (r,2)|7P).
The behavior of solutions to two-parameter linear stochastic differential
equations is analyzed in the following proposition (cf. Nualart [243)).

Proposition 2.4.2 Let {X(z),z € R%} be the solution to the equation
X, =1 +/ aX,dW,, (2.77)
[0,]

where a € R and {W(z),z € R%} is a two-parameter, one-dimensional
Wiener process. Then,

(i) there exists an open set A C R such that

P{X, <0 foral ze€A}>0;
(ii) E(|X.|™') = oo for any z out of the axes.
Proof:  Let us first consider the deterministic version of Eq. (2.77):
s t
g(s,t) =1 —|—/ / ag(u, v)dudv. (2.78)
o Jo

The solution to this equation is g(s,t) = f(ast), where

f@) =3 (zv)?

n=0 :

In particular, for a > 0, g(s,t) = Ip(2vast), where I is the modified Bessel
function of order zero, and for a < 0, g(s,t) = Jo(24/]a|st), where Jy is

the Bessel function of order zero. Note that f(x) grows exponentially as
tends to infinity and that f(z) is equivalent to (m+/[z])~2 cos(2+/[z] — T

as z tends to —oo. Therefore, we can find an open interval I = (-3, —a)
with 0 < a < 8 such that f(x) < —§ <0 for all z € T.
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In order to show part (i) we may suppose by symmetry that a > 0. Fix
N >0and set A = {(s,t): & <st < %,0 < 8,t < N}. Then A is an open
set contained in the rectangle T = [0, N]? and such that f(—ast) < —§
for any (s,t) € A. For any € > 0 we will denote by X¢ the solution to the
equation

Xe=1+ / aeXEdW, .
0,71

By Lemma 2.1.3 the process W¢(s,t) = W (s,t) — ste~! has the law of
a two-parameter Wiener process on T = [0, N]? under the probability P,

defined by
dP.

dpP
Let Y be the solution to the equation

1
= exp<€1W(N, N) — 2€2N2) .

Yi=1 —|—/ aeY,dWS =1 —|—/ aeY, dW, — aYidr.  (2.79)
[0,2] [0,2] [0,2]

It is not difficult to check that

K = sup sup E(|Y{|?) < .
0<e<1 zeT

Then, for any € < 1, from Eqgs. (2.78) and (2.79) we deduce

E ( sup |Y(s,t) — f(ast)2>
(s,t)€T

<c ( [ B (o)~ (-aw)P)daay + K)

for some constant C' > 0. Hence,

lmE | sup |Y<(s,t) — f(—ast)]* | =0,
€l0 (s,t)ET

and therefore

P{YS <0 forall zeA} > P{ sup |Y(s,t) — f(—ast)| < 5}
(s,t)eA

(s,t)ET

> P{ sup |Y5(s,t)f(ast)|§5},

which converges to one as € tends to zero. So, there exists an ¢y > 0 such
that
P{Y; <0 forall z€A}>0
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for any € < €. Then
PAY; <0 forall zeA}>0

because the probabilities P. and P are equivalent, and this implies
P{X;<0 foral zeA}>0.

By the scaling property of the two-parameter Wiener process, the processes
X<(s,t) and X (es, et) have the same law. Therefore,

P{X(es,et) <0 forall (s,t)€ A} >0,

which gives the desired result with the open set €A for all € < ¢y. Note that
one can also take the open set {(e?s,t) : (s,t) € A}.

To prove (ii) we fix (s,t) such that st # 0 and define T = inf{c > 0 :
X(o,t) = 0}. T is a stopping time with respect to the increasing family of
o-fields {F,+,0 > 0}. From part (i) we have P{T < s} > 0. Then, applying
1to’s formula in the first coordinate, we obtain for any € > 0

E[(X(s,t)2+€) 7] = E[(X(s AT, t)> + ¢) 2]
+%E U 2X (2, )2 — )(X(2,6)% + €) 3d(X (-, 1))s

AT

Finally, if € | 0, by monotone convergence we get

E(|X(s,t)] ") = leing[(X(s,t)Q +6)72] > 0coP{T < s} = o0.

O

In spite of the technical problems mentioned before, it is possible to show
the absolute continuity of the random vector X, solution of (2.73) under
some nondegeneracy conditions that differ from Hérmander’s hypothesis.

We introduce the following hypothesis on the coefficients A; and B, which
are assumed to be infinitely differentiable with bounded partial derivatives
of all orders:

(P) The vector space spanned by the vector fields Aq,..., Aq, AYA;,
1<i,j<d, AY(AYAR), 1 < ik <d,..., A,(--(AY_Ai,)--),
1<i1,...,i, <d, at the point xg is R™.

Then we have the following result.
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Theorem 2.4.2 Assume that condition (P) holds. Then for any point z
out of the azes the random vector X (z) has an absolutely continuous prob-
ability distribution.

We remark that condition (P) and Hérmander’s hypothesis (H) are not
comparable. Consider, for instance, the following simple example. Assume
that m > 2, d =1, 79 = 0, Ay(z) = (1,2',2%,...,2™7 1), and B(z) = 0.
This means that X, is the solution of the differential system

dx! = 4w,

X2 = XldWw.
X3 =  XZdWw,
dXm =  Xmldw,,

and X, = 0 if z is on the axes. Then condition (P) holds and, as a con-
sequence, Theorem 2.4.2 implies that the joint distribution of the iter-
ated stochastic integrals W, f[o G WdW, .., f[o BICEE (fJWaw)---)dW =

<<z, AW (21) -+ - dW (2 ) possesses a density on R™. However, Horman-

der’s hypothesis is not true in this case. Notice that in the one-parameter
case the joint distribution of the random variables W; and fot WedWs is

singular because It6’s formula implies that W7 — 2 fot WsdWs —t = 0.

Proof of Theorem 2.4.2: The first step will be to show that the process
53-(7’, z) given by system (2.76) has a version that is continuous in the vari-
able r € [0,z]. By means of Kolmogorov’s criterion (see the appendix,
Section A.3), it suffices to prove the following estimate:

B(€(r,2) =07, 2)") < Clp, 2)lr = '] (2:80)
for any r,7’ € [0, 2] and p > 4. One can show that
sup E [ sup [£(r,0)|P | < C(p,z), (2.81)
rel0,z] v€E[r,z]

where the constant C(p, z) depends on p, z and on the uniform bounds of
the derivatives OpB" and 0y A}. As a consequence, using Burkholder’s and
Holder’s inequalities, we can write



2.4 Stochastic partial differential equations 149

E(|f(7", Z) - 5(7'/, Z)|p)
<cuadn (|3 ([, P - e

b

OB (X )(EL(rv) — €50, )] )

+E (Y ( / [0 A1(X0)) (7, v) W]
ij=1 [r,z]—[r",z]

b

+ OpB(X,)€k (r,v)dv] )

m

+E||Y < / [0eA1(X)E ()W,
ij=1 [r",z]—[r,z]

p
2

+ BU(X,)EN(, v)dv} )

< C(p,2) <|r SR PR CCOR §<r’,v>|f’>dv) .

Using a two-parameter version of Gronwall’s lemma (see Exercise 2.4.3) we
deduce Eq. (2.80).

In order to prove the theorem, it is enough to show that det@, > 0
a.s., where z = (s,t) is a fixed point such that st # 0, and Q. is given
by (2.74). Suppose that P{det @, = 0} > 0. We want to show that under
this assumption condition (P) cannot be satisfied. For any o € (0, s] let K,
denote the vector subspace of R spanned by

{4;(Xe);0< €< 0,5 =1,...,d}.

Then {K,,0 < o < s} is an increasing family of subspaces. We set Ko+ =
Ny>0K 5. By the Blumenthal zero-one law, Ky+ is a deterministic subspace
with probability one. Define

= inf{o > 0: dim K, > dim Ky+ }.

Then p > 0 a.s., and p is a stopping time with respect to the increasing
family of o-fields {F,+,0 > 0}. For any vector v € R™ we have

T Qv = Z/o 0 (vi€}(r, 2) Al( ))2dr.
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Assume that v7Q,v = 0. Due to the continuity in r of 5;- (r,z), we de-
duce viff(r,z)Aé(Xr) = 0 for any r € [0,2] and for any j = 1,...,d. In
particular, for 7 = (0,t) we get vIA;(X,¢) = 0 for any o € [0,s]. As a
consequence, Ko+ # R™. Otherwise K, = R™ for all o € [0, s], and any
vector v verifying v7@Q.v = 0 would be equal to zero. So, Q. would be
invertible a.s., which contradicts our assumption. Let v be a fixed nonzero
vector orthogonal to Ky+. We remark that v is orthogonal to K, if o < p,
that is,

vI'Aj(Xpt) =0 forall o<p and j=1,....d. (2.82)

We introduce the following sets of vector fields:

Yo = {Alv-"vAd}a
o o= {AYV,ji=1,....dVeX, 1}, n>1,
Y o= UX X,

Under property (P), the vector space (3(z)) spanned by the vector fields of
3 at point xg has dimension m. We will show that the vector v is orthogonal
to (X, (xo)) for all n > 0, which contradicts property (P). Actually, we will
prove the following stronger orthogonality property:

vIV(Xp) =0 forall o<pVeR, and n>0. (2.83)

Assertion (2.83) is proved by induction on n. For n = 0 it reduces to
(2.82). Suppose that it holds for n — 1, and let V € X, _1. The process
{vTV(X,¢),0 € [0,s]} is a continuous semimartingale with the following
integral representation:

UTV(XUt) = v on / / 6kV th)Af(ng)deT

+ 0T (0 V) (Xes) B¥ (X, )dedr
d
1 ,
+ 5vTa,Ca,C,V(X@) > Af(Xer) A} (Xer)dédr
=1

The quadratic variation of this semimartingale is equal to

Z/ / T(OkV)(Xer) AY (X)) dédr.

By the induction hypothesis, the semimartingale vanishes in the random
interval [0, p). As a consequence, its quadratic variation is also equal to
zero in this interval, and we have, in particular,
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vV (AYV)(Xor) =0 forall o<p and j=1,....d
Thus, (2.83) holds for n. This achieves the proof of the theorem. O

It can be proved (cf. [256]) that under condition (P), the density of X, is
infinitely differentiable. Moreover, it is possible to show the smoothness of
the density of X, under assumptions that are weaker than condition (P).
In fact, one can consider the vector space spanned by the algebra generated
by Ai,...,As with respect to the operation YV, and we can also add other
generators formed with the vector field B. We refer to references [241] and
[257] for a discussion of these generalizations.

2.4.2  Absolute continuity for solutions
to the stochastic heat equation

Suppose that W = {W(t,z),t € [0,T],z € [0,1]} is a two-parameter
Wiener process defined on a complete probability space (2, F, P). For each
t € [0,T] we will denote by F; the o-field generated by the random vari-
ables {W (s, ), (s,z) € [0,t] x [0,1]} and the P-null sets. We say that a
random field {u(t,z),¢ € [0,T],z € [0,1]} is adapted if for all (¢,z) the
random variable u(t, z) is F;-measurable.
Consider the following parabolic stochastic partial differential equation
on [0,7T] x [0,1]:
u 2u 2
O Ty bult, ) + olult ) T

with initial condition u(0,2) = wug(x), and Dirichlet boundary conditions
u(t,0) = u(t,1) = 0. We will assume that ug € C([0,1]) satisfies uo(0) =

It is well known that the associated homogeneous equation (i.e., when b =
0 and o = 0) has a unique solution given by v(t,z) = fol Gi(z,y)uo(y)dy,
where G¢(x, y) is the fundamental solution of the heat equation with Dirich-
let boundary conditions. The kernel G(z,y) has the following explicit for-

mula:

n=—oo

—exp<—@/+l“_%”2>}. (2.85)

(2.84)

4t

On the other hand, G¢(x,y) coincides with the probability density at point
y of a Brownian motion with variance /2t starting at = and killed if it
leaves the iterval [0, 1]. This implies that

Gt (xv y) S

1 x—yP>
e — . 2.86
En}w( n (2.86)
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Therefore, for any § > 0 we have

! s 8 [ sl 18
Gi(z,y)’dy < (dmt)"2 [ e @ dox=Cpt 2 . (2.87)
0 R

Note that the right-hand side of (2.87) is integrable in ¢ near the origin,
provided that G < 3.

Equation (2.84) is formal because the derivative g:TVZ does not exist, and
we will replace it by the following integral equation:

uta) = [ Glamir+ [ [ Goebus. s
+/O /0 Gi_s(z,y)o(u(s,y))W(dy,ds) . (2.88)

One can define a solution to (2.84) in terms of distributions and then show
that such a solution exists if and only if (2.88) holds. We refer to Walsh
[342] for a detailed discussion of this topic. We can state the following result
on the integral equation (2.88).

Theorem 2.4.3 Suppose that the coefficients b and o are globally Lip-
schitz functions. Then there is a unique adapted process u = {u(t,z),t €
[0,T],z € [0,1]} such that

E (/OT /01 u(t,:n)Qd:Edt) < 00,

and satisfies (2.88). Moreover, the solution u satisfies

sup E(Ju(t, z)|P) < o0 (2.89)
(t,x)€[0,T]x[0,1]

for allp > 2.

Proof: ~ Consider the Picard iteration scheme defined by

un(t, ) = / Gl y)uo (y)dy
and
t 1
Unar(t7) = uolt,z)+ /0 /0 G (2, 9)btn (5, ) dyds

+/0 /0 Gi_s(x,y)o(un(s,y))W(dy,ds), (2.90)
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n > 0. Using the Lipschitz condition on b and ¢ and the isometry property
of the stochastic integral with respect to the two-parameter Wiener process
(see the Appendix, Section A.3), we obtain

E(lups1(t,2) = un(t,z)])

< 2E<<//Gtéxy)lun(sy)—unwyldyds )

+2E(/ / Gi_ Sxy) |un(s,y) — tn— 1sy|dyds>

< AT+ 1) / / Gr s, 9)2E (Jun(s,9) — ttn1(s,9)|?) dyds.

Now we apply (2.87) with 8 = 2, and we obtain

Hence,

IN

E(luns1(t, @) — un(t, 2)[?)

gcT/O /0 E(Jun(s,y) — tun_1(s,y)|?)(t — s)~ 2 dyds.

E(Jun41(t,2) = un(t, o))

CT/ / / E(Jtun(r,2) — tn_1(r, 2)[*) (s — 1)~ %(t—s)_%dzdrds
C}/O /0 E(tn(r,2) — tn_1(r, 2)|*)dzdr.

Iterating this inequality yields

oo

1
sup / E(Jtuni1(t,2) — up(t,z)]*)dz < co.
n—o t€[0,T] JO

This implies that the sequence u,, (t, x) converges in L?([0, 1] x ), uniformly
in time, to a stochastic process u(t, x). The process u(t, z) is adapted and
satisfies (2.88). Uniqueness is proved by the same argument.

Let us now show (2.89). Fix p > 6. Applying Burkholder’s inequality for
stochastic integrals with respect to the Brownian sheet (see (A.8)) and the
boundedness of the function ug yields

E(June1(t,2)[") < cp(Jluolle

. <</°t /01 Gi—s(2,y) [b(un(s,y))l dyds> p)
h <(/Ot /01 Gt_s(m’y)QU(“n(S7y))2dyd8> g)) .
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Using the linear growth condition of b and ¢ we can write

B (uns1 (6 2)”) <Cyor <1+E<(/Ot /01 Gt_s(x,y)Qun(s,y)Qdyds)g)) .

Now we apply Holder’s inequality and (2.87) with § = ;%2 < 3, and we
obtain

p—2
Z

t 1 2p
E(juna (b)) < Cpr |14 ( [ Gtsm,y)wdyds)
0 0

< [ [ Bt yivas)

t 1
< G (14 [ [ Blluntsn)Pyiuas).

and we conclude using Gronwall’s lemma. O

The next proposition tells us that the trajectories of the solution to the
Equation (2.88) are a-Holder continuous for any a < %. For its proof we
need the following technical inequalities.

(a) Let B €(1,3). For any « € [0,1] and ¢,h € [0,T] we have
t 1 o
/ / Gain(z,y) — Gy(z,y)|Pdyds < Crgh"=", (2.91)
0 Jo
(b) Let 8 € (2,3). For any z,y € [0,1] and ¢ € [0,7T] we have
t ol
/ / |Gs(,2) — Gy(y, 2)|Pdzds < Cr gle — y[>77. (2.92)
o Jo

Proposition 2.4.3 Fiz a < %. Let ug be a 2a-Hélder continuous function
such that ug(0) = ug(1l) = 0. Then, the solution u to Equation (2.88) has
a version with a-Holder continuous paths.

Proof: We first check the regularity of the first term in (2.88). Set
Gi(z,up) == fol G(z,y)uo(y)dy. The semigroup property of G implies

1 1
Gilaua) = Gulosmn) = [ [ Gulan)Grou(w: () — wo(w)ldzdy,
0 0
Hence, using (2.86) we get

|Gt($, UO) — GS(IL‘, UQ)‘

IN

1 1
c / / Gl 9)Crs(y, 2)| — y[?*ddy
0 0

IA

1
c’/ Gyt — s|7dy < C'Jt — s
0
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On the other hand, from (2.85) we can write

Gt(z’y) = %(y - x) - wt(y + Z)’

where 1, (z) = \/ﬁ oo e @=2m/4 Notice that SUD ¢ [0,1] fol P, (2 —

z)dz < C. We can write

Gl o) — Gily,uo) = / ez — @) — (= — )] uo(2)dz

1
- / a2 + 2) — by(z + )] wo(2)dz
A1 + Bl.

It suffices to consider the term A;, because B; can be treated by a similar
method. Let 7 = y — 2 > 0. Then, using the Holder continuity of uy and
the fact that uo(0) = u1(0) = 1 we obtain

1-n
|41l < Yy (2 — ) Juo(2) — uo(z +n)| dz
0
1 n
H [ e l@lds+ [ - o) d:
1—n 0
1 n
< Cnm +C Y (z —x)(1 = z)zo‘dz + C’/ Y, (z — y)zzadz
1—n 0
S Clﬁ2a~
Set,

t 1
Ut z) = / / G (. y)o (u(s, )W (dy, ds).

E(Ut,2) = Ut y)l")

<C,E (/0 /0 G s(2,2) — Go_s(y, 2)lo(uls, 2))[2dzds

p—2

Applying Burkholder’s and Holder’s inequalities (see (A.8)), we have for
2

any p > 6
t ol o ==
<Cpr (/ / |Gi—s(x,2) — Gt—s(y,2)|l’—2dzds> ,
0 Jo

because fOT fol E(|lo(u(s, 2))|P)dzds < co. From (2.92) with 8 = 1%’ we
know that this is bounded by Clx — y\pr6
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On the other hand, for t > s we can write

E(U(t,x) = U(s, )"

)
s 1 %
< Cp{E</ ‘the(xvy)_Gsfe(xvy)|2‘o—(u(07y))‘2dyd9 )
0 0
t 1 z
+E (/ / |Gi—o(@,y)?|o(u(0,y))|*dydo }
s 0
s 1 2p ;)2;2
< G| [ [ 160t - Galir)F2ayas
0 0

p—2
2

+

s 1 2p
/ / Gi—o(z,y) 722 dydb
0 0

Using (2.91) we can bound the first summand by C,|t — s|p776. From (2.87)
the second summand is bounded by

t—s 1 2p t—s P2
/ / Go(x,y)r—2dydd < C’p/ 0~ 22 df
0 0 0

= Cllt—s|Tm.

As a consequence,
p—6 p—6
B(\U(t,2) = U(s,9)l") < Cpr (lo = /™= + |t =5 %),

and we conclude using Kolmogorov’s continuity criterion. In a similar way
we can handle that the term

Vit z) = / / Gz, y)b(u(s, y))dyds.
O

In order to apply the criterion for absolute continuity, we will first show
that the random variable u(t, ) belongs to the space D':2.

Proposition 2.4.4 Let b and o be Lipschitz functions. Then u(t,xz) €
D2, and the derivative D u(t,z) satisfies

Doyultit) = Gis(e,y)o(u(s,y))

t 1
+/ / Gi—o(x,nm)Bo nDs yu(8,n)dndo
s JO

t 1
+ / / Gy o(x,1)Sp.Dayu(6, )W (d6, diy)
s 0

if s < t, and Dgyu(t,x) = 0 if s > t, where By, and So,, (0,1) €
[0,T] x [0,1], are adapted and bounded processes.
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Remarks: If the coefficients b and o are functions of class C!' with
bounded derivatives, then By, = b'(u(6,7)) and Sy, = o’ (u(6,n)).

Proof:  Consider the Picard approximations u,, (¢, ) introduced in (2.90).
Suppose that u,(t,z) € DY for all (t,2) € [0,T] x [0,1] and

t el
sup E (/ / |Ds}yun(t,m)|2dyds> < 0. (2.93)
(t,z)€[0,T]x[0,1] 0o Jo

Applying the operator D to Eq. (2.90), we obtain that u,(t,x) € D2
and that

Ds,yun+l(t; x) - Gt,s(x,y)a(un(s,y))

t 1
+ / / G0 1) By, Dy ytn (0, 7))
s 0

t el
+/ / Gi—o(2,1)Sg , Dsyun(0,m)W (dO, dn),
s JO

where By, and Sy, , (6,7) € [0,T]x [0, 1], are adapted processes, uniformly
bounded by the Lipschitz constants of b and o, respectively. Note that

E ( / / Gt_s@,y)%(un(s,y>>2dyds>

< <1 + sup E(un(t,z)2)> < (s,

t€[0,T],z€]0,1]

for some constants C7,Cy > 0. Hence

t 1
E(/ / |Dsyyun+1(t,x)|2dyds>
0 0
t 1 t 1
e (1+E( / / / / Gte<x7n>2Ds,yunw,n)l?dndedyds))

< Cy <1—|—/ sup // (t —0)"2E(|Ds yun(0,n)| )d@dyds).
0 n€lo,1]
Let
t 1
Vo(t)= sup E </ / |Ds7yun(t,x)|2dyd5).
z€[0,1] 0 Jo
Then
Voa(t) < C4 (1+/V )(t—0)" 1de)
< <1+// o (u)(t—0)77 (0 —u)” 2dud0>
0 Jo
<

Cs <1+/O an(u)du> < 00,
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due to (2.93). By iteration this implies that

sup Va(t) < C,
t€[0,T],z€[0,1]

where the constant C' does not depend on n. Taking into account that
up (t, ) converges to u(t, ) in LP(2) for all p > 1, we deduce that u(t, x) €
D2 and Duy,(t, z) converges to Du(t,z) in the weak topology of L?(Q; H)
(see Lemma 1.2.3). Finally, applying the operator D to both members of
Eq. (2.88), we deduce the desired result. O

The main result of this section is the following;

Theorem 2.4.4 Let b and o be globally Lipschitz functions. Assume that
o(ug(y)) # 0 for some y € (0,1). Then the law of u(t,x) is absolutely
continuous for any (t,x) € (0,T] x (0,1).

Proof:  Fix (t,x) € (0,T] x (0,1). According to the general criterion for
absolute continuity (Theorem 2.1.3), we have to show that

t 1
/ / |Ds yu(t, z)|*dyds > 0 (2.94)
0 Jo

a.s. There exists an interval [a,b] C (0,1) and a stopping time 7 > 0 such
that o(u(s,y)) > ¢ > 0 for all y € [a,b] and 0 < s < 7. Then a sufficient
condition for (2.94) is

b
/ D, u(t,z)dy >0 foral 0<s<r, (2.95)

a.s. for some b > a. We will show (2.95) only for the case where s = 0. The
case where s > 0 can be treated by similar arguments, restricting the study
to the set {s < 7}. On the other hand, one can show using Kolmogorov’s
continuity criterion that the process {D;  u(t,z),s € [0,t],y € [0,1]} pos-
sesses a continuous version, and this implies that it suffices to consider the
case s = 0.

The process

b
U(t,x):/ Dy yu(t, x)dy

is the unique solution of the following linear stochastic parabolic equation:
b t ol
wta) = [ Glagotuo@lds+ [ [ Giule)Buyelspisdy
a 0 JO

+ / / Gis(,y)Sayo(s, )W (ds, dy). (2.96)

We are going to prove that the solution to this equation is strictly positive
at (t,x). By the comparison theorem for stochastic parabolic equations (see
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Exercise 2.4.5) it suffices to show the result when the initial condition is
01(qp], and by linearity we can take § = 1. Moreover, for any constant ¢ > 0
the process e“v(t, z) satisfies the same equation as v but with By, replaced
by B, + c. Hence, we can assume that B, , > 0, and by the comparison
theorem it suffices to prove the result with B = 0.

Suppose that a < 2 < 1 (the case where 0 < x < a would be treated by
similar arguments). Let d > 0 be such that 2 < b+ d < 1. We divide [0, ¢]
into m smaller intervals [%t, %], 1 < k < m. We also enlarge the interval
[a, b] at each stage k, until by stage k = m it covers [a, b + d]. Set

b 2

o= 1 inf inf inf G

= z)dz
2 m>11<k<m yela,bt4] J, (v, 2)dz,

1
m

and note that o > 0. For k =1,2,...,m we define the set

kt
Ey = {U(m,y) > akl[a,b+%](y)»V?J € [o, 1}} :

We claim that for any § > 0 there exists mg > 1 such that if m > mg then

P(Egq|ExN---NEg) < (2.97)

9
m

for all 0 < k < m — 1. If this is true, then we obtain

P{v(t,z) >0} > P{o(t,y) > a™1pra(y),Vy € 0,1]}
> P(Ep|Em_10--0E)
XP(Em_1|Em_2 N---N El) . P(El)
m

and since ¢ is arbitrary we get P{v(t,z) > 0} = 1. So it only remains to
check Eq. (2.97). We have for s € [£& 11

L kt
o(s,y) = / G (9, 2)o( L 2)dz
O m m

s 1
+ //Gs,g(y,z)Sg’zv(&z)W(d&dz).
+ Jo

Again by the comparison theorem (see Exercise 2.4.5) we deduce that on
the set E1 N ---N Ey the following inequalities hold

v(s,y) > w(s,y) >0
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for all (s,y) € [, W] 5 [0,1], where w = {w(s, y), (s.y) € [, L]«

m m

[0,1]} is the solution to
1
w(s,y) = /G%(y,z)akl[a’wr%](z)dz
0
s 1
+ //Gs,g(y,z)Sg’zw(G,z)W(dQ,dz).
tk 0

Hence,

P(Egs1|E1N -0 Ey)

k4 1)t k+1)d
> p{u D ) > oty e o+ LD oy
On the set E}, and for y € [a,b+ (kﬂ)d] it holds that
b 2d
/ G+ (y,z)dz > 2a.
Thus, from (2.98) we obtain that
P(Eg+1|E1ﬂ~-~ﬂEk) <P sup |¢>k+1(y)|>a|E1ﬁ~-~ﬂEk

k d
y€[a b+ ELDI]

< aPE ( sup |Prr1(y)|P|E1N---N Ek> ,
y€(0,1]

for any p > 2, where

sl w(s,2)
(I)k+1(y): . o Gt(’“miJrl)_s(yvz)Ss,ZTW(d&dz)

Applying Burkholder’s inequality and taking into account that S; . is uni-
formly bounded we obtain

E(|Pry1(y1) = Prgr(y2)|P[EL N -+ N Ey)

<CE(‘/m/ s(y1,2) = Gs(y2, 2))%a 2"
(et e

Note that sup,., 2€[0,1],s€[2E, 1D | a2k E (w(s, 2)2E N--N Ek) is
bounded by a constant not depending on m for all ¢ > 2. As a conse-

Elﬂ'-'ﬂEk->.
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quence, Holder’s inequality and Eq. (2.68) yield for p > 6

E(|Pr+1(y1) — Prra(y2)|P[EL N -+ N Ey)

£\ = z
¢ <> </ / |Gs(y1,2) = Gs (y2, Z)|3nd5dz>
m o Jo

p(1—n)

S Cm7%7|x—y\T,

where 2 Vv % < n < 1. Now from (A.11) we get

E| sup [Pri1(y)P|E1N---NE;| < Cmfi,
y€[0,1]

which concludes the proof of (2.97). O

FEzxercises

2.4.1 Prove Proposition 2.4.1.
Hint: Use the same method as in the proof of Proposition 1.3.11.

2.4.2Let {X,,z € Ri} be the two-parameter process solution to the linear
equation

X, =1 —|—/ aX,dW,.
[0,2]

Find the Wiener chaos expansion of X,.

2.4.3 Let o, : Ri — R be two measurable and bounded functions. Let
[ :R% — R be the solution of the linear equation

f(z) = alz) + o ]ﬁ(r)f(r)dﬂ
Show that for any z = (s,t) we have

[f@)] < sup Ja(r)] Y (m)™2 sup |B(r)]"(st)™.

rel0,z] m=0 re(0,z]

2.4.4 Prove Eqgs. (2.91) and (2.92).
1 lo—y|?

Hint: Tt suffices to consider the term 7t " in the series expansion
of G¢(x,y). Then, for the proof of (2.92) it is convenient to majorize by the
integral over [0,¢] x R and make the change of variables z = (z — y)¢,
s = (x —y)?n. For (2.91) use the change of variables s = hu and y = v/hz.

2.4.5 Consider the pair of parabolic stochastic partial differential equations

ot 9%l : i 0*W
5% = a2 + fi(u'(t,z))B(t,z) + g(u (t,x))G(t,x)m,

i=1,2,
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where f;, g are Lipschitz functions, and B and G are measurable, adapted,
and bounded random fields. The initial conditions are u'(0,z) = ¢,(x).
Then ¢, < ¢, (f1 < fo) implies u; < us.

Hint: Let {e;,i > 1} be a complete orthonormal system on L?([0,1]).
Projecting the above equations on the first IV vectors produces a stochastic
partial differential equation driven by the N independent Brownian motions
defined by

1
Wit) = / ei(x)W(t,dzx), i=1,...,N.
0
In this case we can use It6’s formula to get the inequality, and in the general

case one uses a limit argument (see Donati-Martin and Pardoux [83] for
the details).

2.4.6 Let u = {u(t,z),t € [0,T],z € [0,1]} be an adapted process such
that fOT fol E(u?,)dyds < co. Set

t 1
Zt,;c = / / Gt—s(l‘ay)us,ydWs,y
0 0

Show the following maximal inequality
E( sup |Zm|p)
0<t<T

T 1 t 1 5
< C’ZD,T/0 /0 E ((/0 /0 GtS(x,y)2(t—s)_2auiydyds> )dmdt,

1 3
Wher'e a < 1 and p > 5.
Hint: Write

sin

Zt,a: = =

o t 1 3
/ / Gia(,y)(t — 5)*Ya ydyds,
0 0

where .
Yo = / / Gs—0(y,2)(s = 0) “ug,dWp, .,
o Jo

and apply Holder and Burholder’s inequalities.

Notes and comments

[2.1] The use of the integration-by-parts formula to deduce the exis-
tence and regularity of densities is one of the basic applications of the
Malliavin calculus, and it has been extensively developed in the litera-
ture. The starting point of these applications was the paper by Malliavin
[207] that exhibits a probabilistic proof of Hérmander’s theorem. Stroock
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[318], Bismut [38], Watanabe [343], and others, have further developed the
technique Malliavin introduced. The absolute continuity result stated in
Theorem 2.1.1 is based on Shigekawa’s paper [307].

Bouleau and Hirsch [46] introduced an alternative technique to deal with
the problem of the absolute continuity, and we described their approach
in Section 2.1.2. The method of Bouleau and Hirsch works in the more
general context of a Dirichlet form, and we refer to reference [47] for a
complete discussion of this generalization. The simple proof of Bouleau
and Hirsch criterion’s for absolute continuity in dimension one stated in
Theorem 2.1.3 is based on reference [266]. For another proof of a similar
criterion of absolute continuity, we refer to the note of Davydov [77].

The approach to the smoothness of the density based on the notion
of distribution on the Wiener space was developed by Watanabe [343] and
[144]. The main ingredient in this approach is the fact that the composition
of a Schwartz distribution with a nondegenerate random vector is well
defined as a distribution on the Wiener space (i.e., as an element of D).
Then we can interpret the density p(x) of a nondegenerate random vector
F as the expectation E[d,(F)], and from this representation we can deduce
that p(x) is infinitely differentiable.

The connected property of the topological support of the law of a smooth
random variable was first proved by Fang in [95]. For further works on the
properties on the positivity of the density of a random vector we refer to
[63]. On the other hand, general criterion on the positivity of the density
using technique of Malliavin calculus can be deduced (see [248]).

The fact that the supremum of a continuous process belongs to D2
(Proposition 2.1.10) has been proved in [261]. Another approach to the
differentiability of the supremum based on the derivative of Banach-valued
functionals is provided by Bouleau and Hirsch in [47]. The smoothness of
the density of the Wiener sheet’s supremum has been established in [107].
By a similar argument one can show that the supremum of the fractional
Brownian motion has a smooth density in (0, +00) (see [190]). In the case of
a Gaussian process parametrized by a compact metric space S, Ylvisaker
[352], [353] has proved by a direct argument that the supremum has a
bounded density provided the variance of the process is equal to 1. See also
[351, Theorem 2.1].

[2.2] The weak differentiabilility of solutions to stochastic differential
equations with smooth coeflicients can be proved by several arguments. In
[146] Tkeda and Watanabe use the approximation of the Wiener process by
means of polygonal paths. They obtain a sequence of finite-difference equa-
tions whose solutions are smooth functionals that converge to the diffusion
process in the topology of D*°. Stroock’s approach in [320] uses an iterative
family of Hilbert-valued stochastic differential equations. We have used the
Picard iteration scheme X, (¢). In order to show that the limit X (¢) be-
longs to the space D, it suffices to show the convergence in LP, for any
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p > 2, and the boundedness of the derivatives DV X,,(¢) in LP(Q; H®N),
uniformly in n.

In the one-dimensional case, Doss [84] has proved that a stochastic differ-
ential equation can be solved path-wise — it can be reduced to an ordinary
differential equation (see Exercise 2.2.2). This implies that the solution in
this case is not only in the space DY'P but, assuming the coefficients are of
class C1(R), that it is Fréchet differentiable on the Wiener space Cy([0, 7).
In the multidimensional case the solution might not be a continuous func-
tional of the Wiener process. The simplest example of this situation is
Lévy’s area (cf. Watanabe [343]). However, it is possible to show, at least if
the coefficients have compact support (Ustiinel and Zakai [337]), that the
solution is H-continuously differentiable. The notion of H-continuous dif-
ferentiability will be introduced in Chapter 4 and it requires the existence
and continuity of the derivative along the directions of the Cameron-Martin
space.

[2.3] The proof of Hérmander’s theorem using probabilistic methods
was first done by Malliavin in [207]. Different approaches were developed
after Malliavin’s work. In [38] Bismut introduces a direct method for prov-
ing Hormander’s theorem, based on integration by parts on the Wiener
space. Stroock [319, 320] developed the Malliavin calculus in the context
of a symmetric diffusion semigroup, and a general criteria for regularity of
densities was provided by ITkeda and Watanabe [144, 343]. The proof we
present in this section has been inspired by the work of Norris [239]. The
main ingredient is an estimation for continuous semimartingales (Lemma
2.3.2), which was first proved by Stroock [320]. Ikeda and Watanabe [144]
prove Hormander’s theorem using the following estimate for the tail of the
variance of the Brownian motion:

P (/01 (Wt - /01 Wsds)2> dt < e) < \/iexp(—%e).

In [186] Kusuoka and Stroock derive Gaussian exponential bounds for
the density pi(zg,-) of the diffusion X;(xo) starting at zp under hypoel-
lipticity conditions. In [166] Kohatsu-Higa introduced in the notion of
uniformly elliptic random vector and obtained Gaussian lower bound es-
timates for the density of a such a vector. The results are applied to the
solution to the stochastic heat equation. Further applications to the poten-
tial theory for two-parameter diffusions are given in [76].

Malliavin calculus can be applied to study the asymptotic behavior of the
fundamental solution to the heat equation (see Watanabe [344], Ben Arous,
Léandre [26], [27]). More generally, it can be used to analyze the asymptotic
behavior of the solution stochastic partial differential equations like the
stochastic heat equation (see [167]) and stochastic differential equations
with two parameters (see [168]).
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On the other hand, the stochastic calculus of variations can be used
to show hypoellipticity (existence of a smooth density) under conditions
that are strictly weaker than Hormander’s hypothesis. For instance, in [24]
the authors allow the Lie algebra condition to fail exponentially fast on a
submanifold of R™ of dimension less than m (see also [106]).

In addition to the case of a diffusion process, Malliavin calculus has been
applied to show the existence and smoothness of densities for different types
of Wiener functionals. In most of the cases analytical methods are not
available and the Malliavin calculus is a suitable approach. The following
are examples of this type of application:

(i) Bell and Mohammed [23] considered stochastic delay equations. The
asymptotic behaviour of the density of the solution when the variance
of the noise tends to zero is analized in [99].

(ii) Stochastic differential equations with coefficients depending on the
past of the solution have been analyzed by Kusuoka and Stroock
[187] and by Hirsch [134].

(iii) The smoothness of the density in a filtering problem has been dis-
cussed in Bismut and Michel [43], Chaleyat-Maurel and Michel [61],
and Kusuoka and Stroock [185]. The general problem of the exis-
tence and smoothness of conditional densities has been considered by
Nualart and Zakai [266].

(iv) The application of the Malliavin calculus to diffusion processes with
boundary conditions has been developed in the works of Bismut [40]
and Cattiaux [60].

(v) Existence and smoothness of the density for solutions to stochastic
differential equations, including a stochastic integral with respect to
a Poisson measure, have been considered by Bichteler and Jacod [36],
and by Bichteler et al. [35], among others.

(vi) Absolute continuity of probability laws in infinite-dimensional spaces
have been studied by Moulinier [232], Mazziotto and Millet [220], and
Ocone [271].

(vii) Stochastic Volterra equations have been considered by Rovira and
Sanz-Solé in [295].

Among other applications of the integration-by-parts formula on the
Wiener space, not related with smoothness of probability laws, we can
mention the following problems:

(i) time reversal of continuous stochastic processes (see Follmer [109],
Millet et al. [229], [230]),
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(ii) estimation of oscillatory integrals (see Ikeda and Shigekawa [143],
Moulinier [233], and Malliavin [209]),

(iii) approximation of local time of Brownian martingales by the normal-
ized number of crossings of the regularized process (see Nualart and
Wschebor [262]),

(iv) the relationship between the independence of two random variables
F and G on the Wiener space and the almost sure orthogonality of
their derivatives. This subject has been developed by Ustiinel and
Zakai [333], [334].

The Malliavin calculus leads to the development of the potential the-
ory on the Wiener space. The notion of ¢, , capacities and the associated
quasisure analysis were introduced by Malliavin in [208]. One of the basic
results of this theory is the regular disintegration of the Wiener measure
by means of the coarea measure on submanifolds of the Wiener space with
finite codimension (see Airault and Malliavin [3]). In [2] Airault studies
the differential geometry of the submanifold F' = ¢, where F' is a smooth
nondegenerate variable on the Wiener space.

[2.4] The Malliavin calculus is a helpful tool for analyzing the regularity
of probability distributions for solutions to stochastic integral equations
and stochastic partial differential equations. For instance, the case of the
solution {X(z),z € R2} of two-parameter stochastic differential equations
driven by the Brownian sheet, discussed in Section 2.4.1, has been studied
by Nualart and Sanz [256], [257]. Similar methods can be applied to the
analysis of the wave equation perturbed by a two-parameter white noise
(cf. Carmona and Nualart [59], and Léandre and Russo [194]).

The application of Malliavin calculus to the absolute continuity of the
solution to the heat equation perturbed by a space-time white noise has
been taken from Pardoux and Zhang [282]. The arguments used in the last
part of the proof of Theorem 2.4.4 are due to Mueller [234]. The smoothness
of the density in this example has been studied by Bally and Pardoux
[19]. As an application of the L? estimates of the density obtained by
means of Malliavin calculus (of the type exhibited in Exercise 2.1.5), Bally
et al. [18] prove the existence of a unique strong solution for the white
noise driven heat equation (2.84) when the coefficient b is measurable and
locally bounded, and satisfies a one-sided linear growth condition, while the
diffusion coefficient o does not vanish, has a locally Lipschitz derivative,
and satisfies a linear growth condition. Gyongy [130] has generalized this
result to the case where o is locally Lipschitz.

The smoothness of the density of the vector (u(t,z1), ..., u(t, x,)), where
u(t, x) is the solution of a two-dimensional non-linear stochastic wave equa-
tion driven by Gaussian noise that is white in time and correlated in the
space variable, has been derived in [231]. These equations were studied by
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Dalang and Frangos in [75]. The abolute continuity of the law and the
smoothness of the density for the three-dimensional non-linear stochastic
wave equation has been considered in [288] and [289], following an approach
to construct a solution for these equations developed by Dalang in [77].

The smoothness of the density of the projection onto a finite-dimensional
subspace of the solution at time ¢ > 0 of the two-dimensional Navier-
Stokes equation forced by a finite-dimensional Gaussian white noise has
been established by Mattingly and Pardoux in [219] (see also [132]).



3

Anticipating stochastic calculus

As we have seen in Chapter 2, the Skorohod integral is an extension of the
It integral that allows us to integrate stochastic processes that are not
necessarily adapted to the Brownian motion. The adaptability assumption
is replaced by some regularity condition. It is possible to develop a stochas-
tic calculus for the Skorohod integral which is similar in some aspects to
the classical It6 calculus. In this chapter we present the fundamental facts
about this stochastic calculus, and we also discuss other approaches to the
problem of constructing stochastic integrals for nonadapted processes (ap-
proximation by Riemann sums, development in a basis of L2([0, 1]), substi-
tution methods). The last section discusses noncausal stochastic differential
equations formulated using anticipating stochastic integrals.

3.1 Approximation of stochastic integrals

In order to define the stochastic integral fol u,dWy; of a not necessarily
adapted process u = {u¢, t € [0,1]} with respect to the Brownian motion
W, one could use the following heuristic approach. First approximate u
by a sequence of step processes u”, then define the stochastic integral of
each process u” as a finite sum of the increments of the Brownian motion
multiplied by the values of the process in each interval, and finally try
to check if the sequence of integrals converges in some topology. What
happens is that different approximations by step processes will produce
different types of integrals. In this section we discuss this approach, and
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in particular we study two types of approximations, one leading to the
Skorohod integral, and a second one that produces a Stratonovich-type
stochastic integral.

3.1.1 Stochastic integrals defined by Riemann sums

In this section we assume that {W(¢),t € [0,1]} is a one-dimensional
Brownian motion, defined in the canonical probability space (92, F, P).
We denote by 7 an arbitrary partition of the interval [0, 1] of the form
m={0=1ty <ty <--- <t, =1}. We have to take limits (in probability, or
in LP(Q2), p > 1) of families of random variables S, depending on 7, as the
norm of 7 (defined as || = supg<;<,_1 (ti+1—%;)) tends to zero. Notice first
that this convegence is equivaleintfto the convergence along any sequence
of partitions whose norms tend to zero. In most of the cases it suffices to
consider increasing sequences, as the next technical lemma explains.

Lemma 3.1.1 Let S; be a family of elements of some complete metric
space (V,d) indezed by the class of all partitions of [0,1]. Suppose that for
any fized partition Ty we have
lim d(Szvr,,Sx) =0, (3.1)
|r]—0
where ™V 7y denotes the partition induced by the union of m and wy. Then
the family S, converges to some element S if and only if for any increasing
sequence of partitions {w(k),k > 1} of [0,1], such that |x(k)| — 0, the
sequence Sr(x) converges to S as k tends to infinity.

Proof:  Clearly, the convergence of the family S implies the convergence of
any sequence Sy (k) with |7(k)| — 0 to the same limit. Conversely, suppose
that Si) — S for any increasing sequence 7(k) with |7(k)| — 0, but
there exists an € > 0 and a sequence w(k) with |m(k)] — 0 such that
d(Sx(k),S) > € for all k. Then we fix ko and by (3.1) we can find a k; such
that k1 > kg and

N ™

d(Sr(ko)vr(ki)> Sr(kr)) <

Next we choose ko > k; large enough so that

€

d(sﬂ'(ko)\/ﬂ'(kl)\/ﬂ(kQ)ﬂSﬂ'(k2)) < 57

and we continue recursively. Set w(n) = w(ko) V 7(k1) V -+ V w(ky). Then
after the nth step we have

€
d(S%(n)» S) > d(Sﬂ(kn)’ S) - d(s%(n)’ Sﬁ(kn)> > 9°

Then 7(n) is an increasing sequence of partitions such that the sequence of
norms |7 (n)| tends to zero but d(Sx ), S) > §, which completes the proof
by contradiction. |
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Consider a measurable process u = {uy,t € [0, 1]} such that fol |ug|dt <
oo a.s. For any partition 7 we introduce the following step process:

um(t) = nf % < /t ” usds> T (1), (3.2)

o i1 —ti \Jy,
ItE (fol |ut|dt) < oo we define the step process

n—1 t
P 1 i+1
u (t) = Z _— (/ E(usf[ti’ti+l]c)d8) 1(tz‘,ti+1](t)' (33)

o i1 —ti \Jy,

We recall that fﬁi,ti+l] denotes the o-field generated by the increments
W, — Wy, where the interval (s, t] is disjoint with [¢;,;41].

The next lemma presents in which topology the step processes u™ and
u™ are approximations of the process u.
Lemma 3.1.2 Suppose that u belongs to L?([0,1] x Q). Then, the processes
u™ and U™ converge to the process u in the norm of the space L?([0,1] x Q)
as || tends to zero. Furthermore, these convergences also hold in L>
whenever u € L12,

Proof:  The convergence u™ — u in L?([0,1] x Q) as |r| tends to zero
can be proved as in Lemma 1.1.3, but for the convergence of 4™ we need a
different argument.

One can show that the families 4™ and @™ satisfy condition (3.1) with
V = L%*([0,1] x Q) (see Exercise 3.1.1). Consequently, by Lemma 3.1.1
it suffices to show the convergence along any fixed increasing sequence of
partitions (k) such that |7 (k)| tends to zero. In the case of the family u™,
we can regard u™ as the conditional expectation of the variable u, in the
probability space [0, 1] x €, given the product o-field of the finite algebra
of parts of [0, 1] generated by 7 times F. Then the convergence of u™ to
w in L*([0,1] x ) along a fixed increasing sequence of partitions follows
from the martingale convergence theorem. For the family @™ the argument
of the proof is as follows.

Let w(k) be an increasing sequence of partitions such that |7(k)| — 0.
Set m(k) = {0 = tf < tf <.~ < th = 1}. For any k we consider the
o-field G¥ of parts of [0,1] x € generated by the sets (t¥,¢¥ ,] x F, where
0 <i<ng—1and F € Fyr r 1o Then notice that a®) = E(u|GF),

where E denotes the mathematical expectation in the probability space
[0,1] x Q. By the martingale convergence theorem, 2™(¥) converges to some
element 7 in L2([0,1] x Q). We want to show that u = u. The difference
v = u — 1 is orthogonal to L2([0, 1] x 2, G¥) for every k. Consequently, for
any fixed k > 1, such a process v satisfies fle v(t,w)dtdP = 0 for any F €

Fiee 45, ) and for any interval I C [tF,¢% 1] in w(m) with m > k. Therefore,
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E(v(t)|.7:[t§,t?+l]c) = 0 for all (t,w) almost everywhere in [tF,t¥ ;] x Q.
Therefore, for almost all ¢, with respect to the Lebesgue measure, the above
conditional expectation is zero for any i,k such that t € [tF,¢F ,]. This
implies that v(t,w) = 0 a.s., for almost all ¢, and the proof of the first part
of the lemma is complete.

In order to show the convergence in 12 we first compute the derivatives
of the processes u™ and 4™ using Proposition 1.2.8:

™ = 1 i
D™ (t) = ; t+1—t< ) Drusds) Lt (1),
and
n—1 1 tig1
DA™ (t) = ;m ( /t E(Drus|]—'[ti,ti+l]c)ds>

X 1(ti,ti+1] (t)]'(tq‘,,t71+1]“ (r)

Then, the same arguments as in the first part of the proof will give the
desired convergence. |

Now consider the Riemann sums associated to the preceding approxima-

tions:
n—1

titv1
= Ymn () vt - Wi
and
. n—1 1 tit1
= ; m </t1 E(u8|‘7:[ti7ti+1]c)d5> (W(ti"rl) B W(tz))

Notice that from Lemma 1.3.2 the processes u™ are Skorohod integrable

for any process u in L%([0,1] x ) and that
ST = §(am).

On the other hand, for the process u™ to be Skorohod integrable we need
some additional conditions. For instance, if v € L%2, then u™ € L2 C
Dom ¢, and we have

n—1 1 tit1 tit1
Su)=8"-Y ——— / Dugdsdt. (3.4)
o titr —ti Jy, t

In conclusion, from Lemma 3.1.2 we deduce the following results:

(i) Let u € L2([0,1] x Q). If the family 5™ converges in L2(2) to some
limit, then u is Skorohod integrable and this limit is equal to §(u).
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(i) Let u € LY2. Then both families 57 = 0(u™) and 0(u™) converge in
L2(Q) to 6(u).

Let us now discuss the convergence of the family S™. Notice that

1
ST = / UtWtﬂdt,
0

where
= Witi) — W(t)

Wy =
tiy1 — ¢

1(ti7tz‘+1] (t) (35)
=0

Definition 3.1.1 We say that a measurable process u = {us,0 < ¢t < 1}
such that fol |ugldt < 0o a.s. is Stratonovich integrable if the family ST
converges in probability as |w| — 0, and in this case the limit will be denoted
by fol uy o dW;.

From (3.4) we see that for a given process u to be Stratonovich integrable
it is not sufficient that u € L2, In fact, the second summand in (3.4) can
be regarded as an approximation of the trace of the kernel Dyu; in [0,1]?,
and this trace is not well defined for an arbitrary square integrable kernel.
Let us introduce the following definitions:

Let X € L2 and 1 < p < 2. We denote by DT X (resp. D~ X) the
element of LP(]0, 1] x ) satisfying

1

lim sup E(|DsX; — (DT X)sP)ds =0 (3.6)
o0 Jo s<t<(s+L)Al
(resp.
1
lim sup E(|Ds Xt — (D™ X)4|P)ds = 0). (3.7)

0 (s—1)vo<i<s

We denote by ]Lll,’f (resp. ]Lll,f) the class of processes in .12 such that (3.6)
(resp. (3.7)) holds. We set L2 =L NI, . For X € L1? we write

(VX), = (D*X), + (D~ X),. (3.8)

Let X € L%2. Suppose that the mapping (s,t) — D,X; is continuous
from a neighborhood of the diagonal V. = {|s — t| < e} into LP(2). Then
X eL)? and

(DTX); = (D™ X); = Dy X;.

The following proposition provides an example of a process in the class
L3>
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Proposition 3.1.1 Consider a process of the form
t ¢
X: = Xp +/ wusdW +/ veds, (3.9)
0 0

where Xy € D2 and u € D*?(H), and v € LY2. Then, X belongs to the
class }Lé’z and

(DT X),

t t
U + Dth + / Dt’l)rdT' + / DtUTdWT, (310)
0 0

(D™ X);

t t
Dy Xo +/ Dyvrdr +/ Dyu,dW,. (3.11)
0 0
Proof:  First notice that X belongs to 12, and for any s we have
t t
DSXT/ = usl[O,t](S) + DSXO + / strdr + / DsurdWT.
0 0
Thus,

/ sup E(|DsX; — (D™ X),|*)ds
0 (s—

i)\/0<t§s

n

2 1 s 1 s
f/ / E(|DSvT|2)drd5+2/ / E(|Dsu,|?)drds
nJo J(s—1)vo 0 J(s=1)vo

1 1 s
+2 / / / E(|DyDgu,|*)drdsds,
0o Jo J(s—=L)vo

and this converges to zero as n tends to infinity. In a similar way we show
that (D' X), exists and is given by (3.10). O

IN

In a similar way, Lzl,f’f is the class of processes X in L% such that there

exists an element D~ X € LP([0, 1] x Q) for which (3.7) holds. Suppose that
X; is given by (3.9), where Xy € D2, u € L¥ and v € LY%f, then, X
belongs to the class L;f’f and (D~ X), is given by (3.11).

Then we have the following result, which gives sufficient conditions for
the existence of the Stratonovich integral and provides the relation between
the Skorohod and the Stratonovich integrals.

Theorem 3.1.1 Let u € L2

Lloc- Then w is Stratonovich integrable and

1 1 1 1
/ Ut © th = / Utth + */ (Vu)tdt (312)
0 0 2 0
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Proof: By the usual localization argument we can assume that u € L}’z.

Then, from Eq. (3.4) and the above approximation results on the Skorohod
integral, it suffices to show that

n—1 1 tit1 tit1 1 1
Z 7/ / Diugdsdt — f/ (Vu)ds,
St —tiJy, Ju 2 Jo

in probability, as |r| — 0. We will show that the expectation

n—1 1 tita tita 1 1
Zi/ dt/ (Dyug)ds — 7/ (Dtu), dt
o tivr —ti Jy, t 2 Jo

)

converges to zero as || — 0. A similar result can be proved for the operator
D™, and the desired convergence would follow. We majorize the above
expectation by the sum of the following two terms:

n—1 1 tit1 tit1 N
E Ztﬂ_t/t dt/t (Dyus — (DTu),)ds
b Tt — 1 [t
i+1
/t PO (D*u)tdt—§/0 (D*u), dt

i=0
= tit1 — i
1
< / sup E(|Dyus — (D+u)t |)dt
0

)

+E <
t<s < (t+|m )AL

1 n—1
+ i+1
o < /0 (D u)t (; ml(tivti+l](t) - 2) dt ) .

The first term in the above expression tends to zero by the definition of

the class ]L}’Q. For the second term we will use the convergence of the
. —1 tjq— .

functions >~ ti:ftti 1¢,.4,,,](t) to the constant % in the weak topology

of L*([0,1]). This weak convergence implies that

Loty (S it 1
/0 ( u)t (; ml(thtwl](t) - 2) dt
converges a.s. to zero as || — 0. Finally, the convergence in L11 gQ) follows
by dominated convergence, using the definition of the space LL;". O
Remarks:

1. If the mapping (s,t) — Dsu; is continuous from V; = {|s — t| < €} into
L1(€), then the second summand in formula (3.12) reduces to fol Dyudt.

2. Suppose that X is a continuous semimartingale of the form (1.23). Then
the Stratonovich integral of X exists on any interval [0,¢] and coincides
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with the limit in probability of the sums (1.24). That is, we have
t ¢ 1
/ X, 0dW, = / XodW, + 5 (X, W),
0 0

where (X, W) denotes the joint quadratic variation of the semimartingale
X and the Brownian motion. Suppose in addition that X € ]L?[’Q. In that
case, we have (D~ X),= 0 (because X is adapted), and consequently,

1
| (o), e - <XW1—|1;‘%Z i) — X ()W (1) — W (52),

where 7 denotes a partition of [0,1]. In general, for processes u € L% that
are continuous in L2(£2), the joint quadratic variation of the process u and
the Brownian motion coincides with the integral

/O 1((D+u)t — (D))t

(see Exercise 3.1.2). Thus, the joint quadratic variation does not coincide
in general with the difference between the Skorohod and Stratonovich inte-
grals.

The approach we have described admits diverse extensions. For instance,
we can use approximations of the following type:

n—1

ST - @ults) + aulti))(W(tin) - W(E),  (3.13)

=0

where a is a fixed number between 0 and 1. Assuming that u € L;”* and
E(uy) is continuous in ¢, we can show (see Exercise 3.1.3) that expression
(3.13) converges in L'(f2) to the following quantity:

6(u)+a/01 (D+u)tdt+(1—a)/01 (D~ u), dt. (3.14)

For a = % we obtain the Stratonovich integral, and for @ = 0 expression

(3.14) is the generalization of the It6 integral studied in [14, 30, 298].

3.1.2 The approach based on the L? development
of the process
Suppose that {W(A),A € B,u(A) < oo} is an L?*(Q)-valued Gaussian

measure associated with a measure space (T, B, ). We fix a complete or-
thonormal system {e;,i > 1} in the Hilbert space H = L*(T). We can
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compute the random Fourier coefficients of the paths of the process u in
that basis:

u(t) = Z(u, eymei(t).
i=1
Then one can define the stochastic integral of u (wihch we will denote by
fol ug * dWy, following Rosinski [293]) as the sum of the series

oo

Lut wdWy = (u,e;) g Wies), (3.15)

i=1

provided that it converges in probability (or in L?(Q)) and the sum does
not depend on the complete orthonormal system we have chosen. We will
call it the L2-integral.

We remark that if v € 12, then using (1.48) we have for any i
(u,e;ypd(e;) = d(ei{u, e;)mr) +/ / Dsugze;(s)e; (t)u(ds)u(dt).
TJr

Consequently, if u € L2 and the kernel Dyu; has a summable trace for
all w a.s., then the integral fT uz * dWy exists, and we have the following
relation (cf. Nualart and Zakai [263, Proposition 6.1]):

/ up * dWy = / uedWy + T(Du). (3.16)
T T

The following result (cf. Nualart and Zakai [267]) establishes the relation-
ship between the Stratonovich integral and the L2-integral when T = [0, 1]
and p is the Lebesgue measure.

Theorem 3.1.2 Let u be a measurable process such that fol uZdt < oo a.s.

Then if the integral fol uy * dWy exists, u is Stratonovich integrable, and
both integrals coincide.

Proof: Tt suffices to show that for any increasing sequence of partitions
{m(n),n > 1} whose norm tends to zero and 7(n+1) is obtained by refining
m(n) at one point, the sequence S7(") converges to fol ug xdWy as n tends to
infinity. The idea of the proof is to produce a particular complete orthonor-
mal system for which S™(") will be the partial sum of series (3.15). Without
any loss of generality we may assume that 7(1) = {0,1}. Set e; = 1. For
n > 1 define e,, 11 as follows. By our assumption m(n+1) refines 7(n) in one
point only. Assume that the point of refinement 7 belongs to some interval
(8n,tn) of the partition m(n). Then we set

R sn>>%
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ift € (sp, 7],

e (s sn>>é

if t € (7,t,], and e,41(t) = 0 for t € (sp,t,]° In this form we construct
a complete orthonormal system in L?([0,1]), which can be considered as a
modified Haar system. Finally, we will show by induction that the partial
sums of series (3.15) coincide with the approximations of the Stratonovich
integral corresponding to the sequence of partitions 7(n). First notice that
S7(n+1) differs from S™(™) only because of changes taking place in the
interval (sp,t,]. Therefore,

1

tn_sn

+ (T —/ mdt) (W (7) = W(sn))
- (tn - T /Ttn “tdt) (W(tn) = W(1)). (3.17)

tn
gr(nt+l) _ gm(n) — _ ( / utdt> (W (ty) — W (sn))

On the other hand,

1 1
( / en+1(t)utdt> / eni1 (AW,
0 0
1 t 2T 3t
= <|: n T:| / ’U,tdt — |:T Sn:| / Utdt)
tn — Sn T — Sn Sn tn - T T

y ([t ‘T]é (W) - Wisw) - | 2] L) - W(T») |

T — Sn tn — T

which is equal to

A (B [ v - W)

([ wanovie) - wey - ( | wit) (W(7) = W (s,)

n

LT (/: Wﬁ) (W (k) (W(T))}. (3.18)

tn — T

Comparing (3.17) with (3.18) obtains the desired result. O
Using the previous theorem, we can show the existence of the Stratonovich
integral under conditions that are different from those of Theorem 3.1.1.

Proposition 3.1.2 Let u be a process in L%O’i. Suppose that for all w a.s.

the integral operator from H into H associated with the kernel Du(w) is a
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nuclear (or a trace class) operator. Then u is Stratonovich integrable, and
we have

/1 ug o dWy = 0(u) + T(Du). (3.19)
0

Proof: We have seen that for any complete orthonormal system {e;, i > 1}

in H the series
o0

> (/01 “tei(t)dt> /01 ei(s)dW,

i=1
converges in probability to §(u) + T(Du). Then Proposition 3.1.2 follows
from Theorem 3.1.2. O

Ezercises

3.1.1 Let u € L?([0,1] x ). Show that the families u™ and 4™ defined
in Egs. (3.2) and (3.3) satisfy condition (3.1) with V = L?([0,1] x Q). If
u € LY2, then (3.1) holds with V = L12.

3.1.2 Let u € LL;® be a process continuous in L2(£2). Show that

n—1

> (ultivr) = ut:)(W(tipr) — W(t))

=0

converges in L'() to fJ((D*‘u)t — (D7 w),)dt as |m| tends to zero (see
Nualart and Pardoux [249, Theorem 7.6]).

3.1.3 Show the convergence of (3.13) to (3.14) in L'(Q) as || tends to
zero. The proof is similar to that of Theorem 3.1.1.

3.1.4 Show that the process u; = Wi_, is not L?-integrable but that it is
Stratonovich integrable and

1 1
/ Wi_ 0 dW, = Wg + 2/ Wy _ e dW,.
0 0

Hint: Consider the sequences of {¢,,} and {t,,} of orthonormal functions
in L2([0,1]) given by ¢,,(t) = v/2cos(2mnt) and v,,(t) = V2sin(27n(1 —1)),
n>1,t€[0,1] (see Rosinski [293]).

3.1.5 Let ¢ be a nonnegative C* function on [—1, 1] whose integral is 1
and such that ¥ (z) = ¥(—z). Consider the approximation of the identity
Y (z) = L9(£). Fix a process u € L2, and define

G

1
I (u) = /0 ug (YL W)edt.

Show that I.(u) converges in L*(£2) to the Stratonovich integral of u. The

convergence holds in probability if u € ]Lll Cf.



180 3. Anticipating stochastic calculus

3.1.6 Let u = {uy,t € [0,1]} be a Stratonovich integrable process and let
F be a random variable. Show that Fu; is Stratonovich integrable and that

1 1
/ FUtOth:F/ UtOth.
0 0

3.2 Stochastic calculus for anticipating integrals

In this section we will study the properties of the indefinite Skorohod inte-
gral as a stochastic process. In particular we discuss the regularity proper-
ties of its paths (continuity and quadratic variation) and obtain a version
of the Ito6 formula for the indefinite Skorohod integral.

3.2.1 Skorohod integral processes

Fix a Brownian motion W = {W(t),t € [0,1]} defined on the canonical
probability space (2, F, P). Suppose that v = {u(t),0 <t < 1} is a Sko-
rohod integrable process. In general, a process of the form ul, , may not
be Skorohod integrable (see Exercise 3.2.1). Let us denote by L* the set of
processes u such that ul 4 is Skorohod integrable for any ¢ € [0, 1]. Notice
that the space IL!'? is included into L°. Suppose that u belongs to L*, and
define

X() = 8(ulppy) = /O usdW,, (3.20)

The process X is not adapted, and its increments satisfy the following
orthogonality property:

Lemma 3.2.1 For any process u € L° we have
t
E(/ uT»dWT»|f[s,t]c) =0 (321)

for all s < t, where, as usual, Fs - denotes the o-field generated by the
increments of the Brownian motion in the complement of the interval [s, t].

Proof: ~ To show (3.21) it suffices to take an arbitrary F|, ,--measurable
random variable F belonging to the space D2, and check that

t 1
E(F/ wdW,) = E(/ up Dy F1(s 4y(r)dr) = 0,
s 0

which holds due to the duality relation (1.42) and Corollary 1.2.1. O

Let us denote by M the class of processes of the form X (¢) = fot usdWs,
where u € L. One can show (see [237]) that if a process X = {X,¢ € [0,1]}
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satisfies X (0) = 0, E(X(¢)?) < oo, for all ¢, and

s S B () — X(1)] < )

m={0=to<t1<-<tn=1} ;)

then X belongs to M if and only if condition (3.21) is satisfied. The ne-
cessity of (3.21) has been proved in Lemma 3.2.1.

A process X in M is continuous in L?. However, there exist processes u
in IL* such that the indefinite integral fg usdW, does not have a continuous
version (see Exercise 3.2.3). This can be explained by the fact that the
process X is not a martingale, and we do not dispose of maximal inequalities
to show the existence of a continuous version.

3.2.2  Continuity and quadratic variation
of the Skorohod integral

If u belongs to L2, then, under some integrability assumptions, we will
show the existence of a continuous version for the indefinite Skorohod inte-
gral of u by means of Kolmogorov’s continuity criterion. To do this we need
the following LP(2) estimates for the Skorohod integral that are deduced
by duality from Meyer’s inequalities (see Proposition 1.5.8):

Proposition 3.2.1 Let u be a stochastic process in LV2, and let p > 1.
Then we have

ol <, (] ()t + / 1 / 1<Dsut>2dsdt>%p) (322

The following proposition provides a sufficient condition for the existence
of a continuous version of the indefinite Skorohod integral.

Proposition 3.2.2 Let u be a process in the class V2. Suppose that for
some p > 2 we have E fol (fol (Dguz)?ds)%dt < co. Then the integral process

{fot usdWs, 0 <t < 1} has a continuous version.

Proof: ~ We may assume that E(u;) = 0 for any ¢, because the Gaussian
process fg E(us)dW, always has a continuous version. Set X; = fot usdWs.
Applying Proposition 3.2.1 and Hélder’s inequality, we obtain for s < ¢

t 1
E(|X, — X,P) < C’pE(|//(D9uT)2d0dr|%)
s 0

t) 1 5
Cp|t—s|’5‘1E</ /(Dgur)2d9’ dr).
s 0

IN
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29
that p is close to 2. Applying Fubini’s theorem we can write

(/ [ asi

Set A, = ‘fol(DguT)deF. Fix an exponent 2 < o < 1+ £, and assume

t
< 2C,E / It — 271" 0‘/ A, drdsdt
{s<t} s
2 s—o 5 —
_ Cpp / (|T,S|S 1—s® )E(Ar)drds
=5 J{s<r}

— 2017
T pGrL-

Hence, the random variable defined by

X
// X — X = XslP
It*SIQ

satisfies E(I") < oo and by the results of Section A.3 we obtain

1
3 / (T%+1—a+1— |1—r|%+17a) E(A;)dr < oco.
0

X, — Xo| < cpalP|t —s| %

for some constant ¢, q. g

For every p > 1 and any positive integer k we will denote by L*P the
space LP([0,1]; D*P) ¢ D¥P(L2[0,1]). Notice that for p = 2 and k = 1 this
definition is consistent with the previous notation for the space L2,

The above proposition implies that for a process u in ]LloC7 with p > 2,

the Skorohod integral fo usdWy has a continuous version. Furthermore, if

win LYP, p > 2, we have
t P
E | sup / usdWy < 00.
tefo,1] [Jo

It is possible to show the existence of a continuous version under different
hypotheses (see Exercises 3.2.4, and 3.2.5.).

The next result will show the existence of a nonzero quadratic variation
for the indefinite Skorohod integral (see [249)]).

Theorem 3.2.1 Suppose that u is a process of the space L2, Then

loc

— tiy1 2 1
</ udes) — / u?ds, (3.23)
t; 0

in probability, as || — 0, where m runs over all finite partitions {0 =ty <
tp < --- < t, = 1} of [0,1]. Moreover, the convergence is in L*(Q) if u
belongs to 12,

gl

=0
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Proof: ~We will describe the details of the proof only for the case u € L2,
The general case would be deduced by an easy argument of localization.

For any process u in Y2 and for any partition 7 = {0 =tg < t; < --- <
t, = 1} we define

2

n—1 tit1
VT(u) = Z (/ ude9> .
i=0 \ti

Suppose that u and v are two processes in L'2. Then we have

I (E;l (/ t”l(us—vs)dWs)Q)%

ti

X <E7:Z: (/;Hl(us + vs)dWS>2>é

< = e+ olfpe. (3.24)

It follows from this estimate that it suffices to show the result for a class
of processes u that is dense in "2, So we can assume that

m—1
Uy = 2 : Fjl(sjasjﬂ]’
j=0

where F} is a smooth random variable for each j, and 0 = 59 < -+ < s, =
1. We can assume that the partition 7 contains the points {sg, ..., sm}. In
this case we have

tit1 2

mi > <Fj(W(ti+1) - W(t:)) - Dstds>

J=0 {izs;<t;<s;11} ti

VT (u)

m—1
= Yo E(W(tin) - W(t))?
J=0 | {irs;<t;i<sjy1}
tiy1 tiv1 2
—Q(W(ti_H) — W(tz)) DstdS + (/ DstdS)
t;

t;

With the properties of the quadratic variation of the Brownian motion, this
converges in L!(Q) to

—1

1
Z F]-2(sj+1 —sj5) = / u?ds,
; 0

J=

as |r| tends to zero. O
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1,2

As a consequence of the previous result, if u € L7

is a process such that
the Skorohod integral fot usdW, has a continuous version with bounded
variation paths, then u = 0.

Theorem 3.2.1 also holds if we assume that u belongs to ]Lf;c.

3.2.8 Ito’s formula for the Skorohod

and Stratonovich integrals
In this section we will show the change-of-variables formula for the indef-
inite Skorohod integral. We start with the following version of this formula.

Denote by L?S the space of processes v € .22 such that E(||Du||i2([071]2)) <
.

Theorem 3.2.2 Consider a process of the form

t t
Xt = X() +/ Udes +/ ’Ust7 (325)

0 0
where Xo € ID)llc;g, u € ]L?jj oe @nd v € Lllo’i. Suppose that the process X

has continuous paths. Let F : R — R be a twice continuously differentiable
function. Then F'(X,)u; belongs to Li"? and we have

loc

F(X,) = F(Xo)ju/O F’(Xs)dXs—i—%/O F"(X,)u?

+ /t F"(X) (D™ X)susds. (3.26)
0

Proof:  Suppose that (Q™1, X)), (22 u") and (Q™3,0™) are localizing
sequences for Xy, u and v, respectively. For each positive integer k let 1,
be a smooth function such that 0 < ¢, <1, ¥, (x) =01if |[z| > k+ 1, and
Y (x) = 11if |x| < k. Define

1
ult = ulp, < / (ug)2ds) : (3.27)
0
Set X"F = xp + fg u™ kAW, + f(f v"ds and consider the familuy of sets

1
GME=Qml N2 nain { sup |X¢| < /4;} N {/ (u™)?ds < k} .
0

0<t<1

Define F* = F1),.. Then, by a localization argument, it suffices to show the
result for the processes X§, u™*, and v" and for the function F*. In this
way we can assume that X € DY2 u € Li’& v e Lb2, fol u?ds < k, and
that the functions F', F’ and F" are bounded.
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Set ' = Qi—f” 0 < i < 2" As usual, the basic argument in proving a

change-of-variables formula is Taylor development. Going up to the second
order, we get

2" —1
F(X) = F(Xo)+ Y FXE)(X () - X))
=0
£ L@ - X))
i=0

where X; denotes a random intermediate point between X (¢7) and X (t71)-
Now the proof will be decomposed in several steps.

Step 1. Let us show that

2" —1 t
S F(X)(X () — X () — / F' (X, )ulds, (3.28)
1=0

in L(Q), as n tends to infinity.
The increment (X (¢ ;) — X (¢!"))? can be decomposed into

n 2 n 2 n n
ti+1 ti+1 t1',+1 ti+1
(/ uSdWS> + (/ vsds> +2 </ udeS> (/ v5d8> .
i 23 23 2

The contribution of the last two terms to the limit (3.28) is zero. In fact,
we have

on_q o t?+1 2 t
E| Y F'(X)) (/ vsds> < ||F”||Oot2’"/ E(v?)ds,
i=0 ¢ 0
and
2" -1 o tﬁl t?+1
E Z F"(X;) (/ udeS> (/ veds
i=0 ¢ t

1
t 2
< 10 (2 [ B e
0

Therefore, it suffices to show that

21 i 2 ¢
> F'(X;) ( / uSdW5> — / F"(X,)ulds
t

i=0 i 0

in L(Q), as n tends to infinity. Suppose that n > m, and for any i =

)

1,...,n let us denote by tl(-m the point of the mth partition that is closer
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to t* from the left. Then we have

2" —1 o t;ﬁrl
> F(X) / usdW, / F"(X,)ulds
i=0 23

2" —1

< | S PE) - P ) ( /t e uSdWS>

=0

2m 1 7y 2 ti
DR AC (COI / ugdW, | — / ulds
=0 ) t t

it e[ty e

2" 1 7 t
+> F”(X(t}”))/J §ds—/ F"(X,)u?ds
; t 0

m
J

The expectation of the term b3 can be bounded by
kE sup |FN(XS) - FH(XT)| )
|[s—r|<t2—™

which converges to zero as m tends to infinity by the continuity of the
process X;. In the same way the expectation of b; is bounded by

E sup  |F"(X,) - F"(X |Z </ uSdWs> . (3.29)

|s—r|<t2—™

Letting first n tends to infinity and applying Theorem 3.2.1, (3.29) con-

verges to
E sup |F"(X,) - F'(X |/ u?ds |,
|s—r|<t2—™

which tends to zero as m tends to infinity. Finally, the term by converges
to zero in L'(Q) as n tends to infinity, for any fixed m, due to Theorem
3.2.1.

Step 2. Clearly,

2" —1

; FI(X(t7) ( /t . Usds> - /0 F'(X)vsds (3.30)

in L(Q) as n tends to infinity.
Step 3. From Proposition 1.3.5 we deduce

t?+1 tin+1 t'zn 1

F/(X (1)) / wsdWy = [ F (X)) usdWot | DL (X (7)) usds.

ty £y £y
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Therefore, we obtain

i+1 i1
> F’(X(t?))/ usdWy = / F'(X (7)) usdW,
=0 ty i=0 7t
2" —1 ‘1
+> / F(X (") Dy X (£ )uyds. (3.31)
=0 3

Let us first show that
2" 1

7, t
3 / X E) DX () ugds — | F(X)(D"X)susds  (3.32)
i=0 Yt¢ 0

in L'(Q) as n tends to infinity. We have

2" —1 ey t
E Z/ F"(X(ty))DSX(ty)usds—/ F"(X ) (D™ X)susds
i=0 Y8 0
2" —1 t?+1
< E|) F“(X(t?))/ [D X (1) — (D™ X)) usds
i=0 24
2" 1 t:‘+1
+E| ) / [F"(X(t1) — F"(X,)] (D™ X) susds
i=0 Yt
1/2
<

t
e ([ ) )
0
1/2
t 2
x {/ sw B (|D.X, (DX, )ds}
0 s—t2="<r<s

+E< sup  [F'(X,) - F"(X,) / |<DX>sus|ds>

|s—r|<t2—m
_gn n
— d 1 dy.

The term df tends to zero as n tends to infinity because Efot [(D~X)sus|
ds < 0o0. The term df tends to zero as n tends to infinity because X belongs
to L%’Q by Proposition 3.1.1.

As a consequence of the convergences (3.28), (3.30) and (3.32) we have
proved that the sequence

2" —1

t
A, = Z/ﬁ FI(X(£2))usdW,

i=0
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converges in L!(Q) as n tends to infinity to
t 1 t
®, : =F(X;)—F(Xo)— /O F'(X,)vsds — 5/0 F"(X,)u?

_ /t F"(X,) (D™ X)) uyds. (3.33)
0

Step 4. The process u; F'(X;) belongs to LY? because u € L?2, v € L12,
E(HDuHiz([m]z)) < o0, and the processes F'(X;), F"(X;) and fol u?ds are
uniformly bounded. In fact, we have

DS [UtF/(Xt)] = UtFtN(Xt) (usl{sft} + DSXO
t t
+/ D, dW, +/ strdr> +Fl(Xt)Dsut7
0 0

and all terms in the right-hand side of the above expression are square inte-
grable. For the third term we use the duality relationship of the Skorohod

integral:

1,1 t 2

//E (ut/ DSquWT> dsdt

o Jo 0
1,1 pl t

= E{ / / / Dgu, {ZutDrut < / DsquWT)+ustuT

o Jo Jo 0
t

—|—ut2 (/ DTDSugdW9>} drdsdt}
0

< ¢k (||Du||i2([o,1]2) + ||D2“||L2([o,1]3)> :

Step 5. Using the duality relationship it is clear that for any smooth
random variable G € § we have

2" 1 ti t
lim E <G 3 / " F’(X(t;’))udeS> _E (G / F’(Xs)ude5>.

On the other hand, we have seen that that A,, converges in L(£2) to (3.33).
Hence, (3.26) holds. O

Remarks:

1. If the process X is adapted then D~ X = 0, and we obtain the classical
1t6’s formula.

2. Also using the operator V introduced in (3.8) we can write

1 / ) (T X)tnds.

F(X:) = F(Xy) +/O F(X,)dX, + 2/,
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3. A sufficient condition for X to have continuous paths is

1
E (/ | D || dt) < o0
0

for some p > 2 (see Proposition 3.2.2).

4. One can show Theorem 3.2.2 under different types of hypotheses. More
precisely, one can impose some conditions on X and modify the assumptions
on Xy, u and v. For instance, one can assume either

(a) ueLY2NL>([0,1] x Q), ve L2([0,1] x ), X €Ly? and X has
a version which is continuous and X, € D"? for all ¢, or

(b) u € L2 N LA L3([0,1])), v € L*([0,1] x ), X € Ly°, and
X has a version which is continuous and X; € D"2 for all ¢, and
Iy Jo (D X)?dsdt + [} (D™ X)2dt € L*(9).

In fact, if X has continuous paths, by means of a localization argument it
suffices to show the result for each function F},, which has compact support.
On the other hand, the properties u € LY2, v € L2([0,1]xQ) and X € IL;E
imply the convergences (3.28), (3.30) and (3.32). The boundedness or
integrability assumptions on u, DX and D~ X are used in order to ensure
that E(®?) < oo, and w F'(X;) € L12.

loc> U € leo’f and v € Lllo’z, and X has
continuous paths, then we can conclude that u,F’'(X;)1g4(s) € (Domd)ioc

and It6’s formula (3.26) holds. In fact, steps 1, 2 and 3 of the proof are still
valid. Finally, the sequence of processes

5. If we assume the conditions X € D2

2" —1
"= Z F’(X(t?))usl(t?,t?+l}(8)
=0

converges in L*([0,1] x Q) to F'(X,)us1p4(s) as n tends to infinity, and
by Step 3, 6(v™) converges in L*(2) to ®;. Then, by Proposition 1.3.6,
us F'(X4) 10,4 (s) belongs to the domain of the divergence and (3.26) holds.

In [10] the following version of It6’s formula is proved:

Theorem 3.2.3 Suppose that X; = X, —|—f0t us dW + fot vyds, where Xy €
D2 u e (JLFQLOO(Q;L2([0,1])))IOC, v € Lllo’i’f and the process X has
continuous paths. Let F : R — R be a twice continuously differentiable

function. Then F'(X,)us1jg4(s) belongs to (Domd)ioe and we have

F(X,) = F(X0)+/O F’(Xs)dXer%/O F"(X)u?

+ / (X (D X) s (3.34)
0
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Proof: By a localization argument we can assume that the processes
F(Xy), F'(Xy), F"(X;) are uniformly bounded and fol u?ds < k. Then we
proceed as in the steps 1, 2 and 3 of the proof of Theorem 3.2.2, and we
conclude using Proposition 1.3.6.

Notice that for the proof of the convergence (3.28) we have to apply
Theorem 3.2.1 for u € LY. Also, (3.31) holds thanks to Proposition 1.3.5
applied to the set A = [t ¢} ]. O

Remarks:

1. A sufficient condition for the indefinite Skorohod integral fot usdWy of

. Lo 1
a process u € LE to have a continuous version is E ( Jo \ut|”dt) < oo for

some p > 2 (see Exercise 3.2.12).

2. The fact that fol u2dt is bounded is only used to insure that the right-
hand side of (3.26) is square integrable, and it can be replaced by the
conditions fol uZdt, fol (D~ X)2 dt € L2(9).

3. If Xy is a constant and w and v are adapted processes such that
fol uZdt < oo and fol vidt < oo a.s., then these processes satisfy the
hypotheses of Theorem 3.2.3 because u € (L¥ N L>(Q;L?([0,1]))), . by

Proposition 1.3.18, v € LL%f (this property can be proved by a localiza-

loc
tion procedure similat to that used in the proof of Proposition 1.3.18), and

loc

the process X; = Xg + fot usdWs + fot vsds has continuous paths because
it is a continuous semimartingale. Furthermore, in this case D~ X vanishes
and we obtain the classical It6’s formula.

4. In Theorem 3.2.3 we can replace the condition v € ]Lllcf’f by the fact

that we can localize v by processes such that fol ol dt € L*(Q), and
V= fg vitds,t € [0, 1]} S L;f’f. In this way the change-of-variable for-

mula established in Theorem 3.2.3 is a generalization of It6’s formula.

The following result is a multidimensional and local version of the change-
of-variables formula for the Skorohod integral.

Theorem 3.2.4 Let W = {W,,t € [0,1]} be an N-dimensional Brownian
motion. Suppose that X§ € D12 u € L?;j ,and vt e LY2, 1 < i < M,
1 <7 < N are processes such that

N t t
X;:Xg+2/ ugjdwg+/ vids, 0<t< 1.
i 0
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Assume that X} has continuous paths. Let F : RM — R be a twice contin-
uwously differentiable function. Then we have

M t
F(X) = F(Xo)+Y / (0,F)(X,)dX’
=170

1 M N t
ik, 7k
DS /O (0,0, F)(X,)u*udk ds

i,j=1k=1

M N t
+ Z Z/O (0;0,F)(D*~ X9 su*ds,

ij=1k=1

where DF denotes the derivative with respect to the kth compoment of the
Wiener process.

It0’s formula for the Skorohod integral allows us to deduce a change-of-
variables formula for the Stratonovich integral. Let us first introduce the
following classes of processes:

The set LgA is the class of processes u € ]L%’Z N IL?;S continuous in L?(£2)

and such that Vu € L2

Theorem 3.2.5 Let F be a real-valued, twice continuously differentiable

function. Consider a process of the form X; = X+ fot ug o dW + fot veds,
where Xy € D% w e ]Lé’flloc and v € L2

loc? loc”

paths. Then we have

Suppose that X has continuous

F(X:) = F(Xo) + /Ot F'(X)vsds + /Ot[F'(XS)uS] o dWs.

Proof:  As in the proof of the change-of-variable formula for the Skorohod
integral we can assume that the processes F(X;), F'(X:), F"(X;) and

fol u2ds are uniformly bounded, X, € D2, v € L3 and v € L2, We know,
by Theorem 3.1.1 that the process X; has the following decomposition:

t t t
1

Xt:Xo—&—/ uSdWS—i-/ vsds+/ —(Vu)qds.
0 0 0o 2

This process verifies the assumptions of Theorem 3.2.2. Consequently, we
can apply It6’s formula to X and obtain

F(X,) = F(Xo)+ /0 F’(Xs)vsds—k% /0 F/(X,)(Vau)sds

t 1 t
+/ F’(Xs)udeS+§/ F/(X) (VX ) susds.
0 0
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The process F'(X;)u; belongs to L. In fact, notice first that as in the
proof of Theorem 3.2.2 the boundedness of F'(X;), F"(X;) and fol u?ds
and the fact that u € }Li’j, v,Vu € LY2 and Xy € DY? imply that this
process belongs to L2 and

Ds [F/(Xt)ut] = F/(Xt)DS/LLt + F”(Xt)DSXt’U/t.

On the other hand, using that u € L%’{ u is continuous in L?(Q2), and
X e Ly? we deduce that F'(X;)us belongs to L}"? and that

(V(F'(X)u), = F'(Xe)(Vu)s + F"(Xp)ue(VX)e.
Hence, applying Theorem 3.1.1, we can write

1

[ Freontean. = [P )uaw.+ 5 [0 F00),

t 1 t
| P uaw,+ 5 [ F)u).ds
0 0

t
+% / F'(X5)us(VX)sds.
0

Finally, notice that
(VX)t = 2(D_X)t =+ Ug.
This completes the proof of the theorem. |

In the next theorem we state a multidimensional version of the change-
of-variable formula for the Stratonovich integral.

Theorem 3.2.6 Let W = {W,,t € [0,1]} be an N-dimensional Brownian
motion. Suppose that X} € D2 ¥ ¢ IL%A ,and vt € LY2, 1 <i < M,
1 <7 < N are processes such that

N ot t
Xf:Xé*Z/ ugjodwg+/v;‘ds,ogt§1.
=170 0

Assume that X} has continuous paths. Let F : RM — R be a twice contin-
wously differentiable function. Then we have

M N t N ) M t .
PO = PO+ 30 [@F)Xudcawy + Y [ @F)(xXoias.

Similar results can be obtained for the forward and backward stochastic
integrals. In these cases we require some addtional continuity conditions.
Let us consider the case of the forward integral. This integral is defined as
the limit in probability of the forward Riemann suns:
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Definition 3.2.1 Let u = {uy, ¢ € [0,1]} be a stochastic process. The for-

ward stochastic integral fol urd~ Wy is defined as the limit in probability as
|| — 0 of the Riemann sums

n—1
Z Ut; (Wti+1 - Wtz)
i=1
The following proposition provides some sufficient conditions for the ex-

istence of this limit.

Proposition 3.2.3 Let u = {uy,t € [0,1]} be a stochastic process which is
continuous in the norm of the space DV2. Suppose that u € ILLQ Then u
is forward integrable and

§(u) = /01 upd =Wy + /1 (D), ds.

0

Proof: ~ 'We can write, using Eq. (3.4)

n—1 n—1 n—1 tit1
) <Z util(ti7t1+1]> = Z U, (Wti+1 - th) - Z/ Dsutids. (335)
i=1 i=1 i=1 7t
The processes
n—1
u;r_ = Z util(ti,tuﬂ(t)
i=1

converge in the norm of the space "2 to the process u, due to the continuity
of t — wu; in D2, Hence, left-hand side of Equation (3.35), which equals
to 6(u™ "), converges in L%(2) to §(u). On the other hand,

dl
/0 ( sup E(|DsX: — (D™ X)s|)ds,

n

1 it
> [ B - (07w, ) ds
i=1 7 ti
1

IN

IN

n=1l it 1

Z/ Dsutids—/ (D_u)gds
i=1 7t 0 )
s—|m)VO<t<s

which tends to zero as |7 tends to zero, by the definition of the space
L12. 0

We can establish an It6’s formula for the forward integral as in the case of
the Stratonovich integral. Notice that the forward integral follows the rules
of the It6 stochastic calculus. Define the set L** as the class of processes

u € LLQ N ]L?;j continuous in D*? and such that D~u € L2,
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Theorem 3.2.7 Let F be a real-valued, twice continuously differentiable
function. Consider a process of the form X; = Xo + fot usd~ Wy + fot vsdS,
where Xo € D2, u € IL2_’41 and v € L2 Suppose that X has continuous

loc? oc loc*

paths. Then we have

t t 1 [t

F(X)) = F(Xo)+ / F/(X)vsds+ / [F/(X. )Wt / F(X,)ulds.
0 0 0

(3.36)

Proof:  As in the proof of the change-of-variable formula for the Skorohod

integral we can assume that the processes F(X:), F'(X:), F'(X:) and

fol u2ds are uniformly bounded, Xy € D2 u € L** and v € L2, We know,
by Proposition 3.2.3 that the process X; has the following decomposition:

t t t
X =X, +/ usdWy +/ vsds +/ (D™ u)gds.
0 0 0

This process verifies the assumptions of Theorem 3.2.2. Consequently, we
can apply It6’s formula to X and obtain

F(X;) = F(XO)Jr/O F’(Xs)vsds+/0 F'(X,) (D u)ds

t 1 [t
+/ F’(XS)uSdWS+§/ F"(X)(VX)susds.

0 0
The process F'(X;)u: belongs to Lif In fact, notice first that as in the
proof of Theorem 3.2.2 the boundedness of F'(X;), F"(X;) and fol u?ds
and the fact that u € Li’j, v,D7u € L*? and Xy € D2 imply that this
process belongs to L™? and

DS [F/(Xt)ut] = F/(Xt)DS’LLt + FI/(Xt)DSXt'LLt.

On the other hand, using that u € ]L}f, u is continuous in L2(€2), X has

continuous paths, and X € Ly we deduce that F’(X;)u, belongs to L)
and that

(D7 (F/(X)u))t = F/(Xt)(Di’LL)t + FI/(Xt)Ut(DiX)t.

Hence, applying Proposition 3.2.3, we can write

/O (X, )usld~ W, /0 FX, ) undW, + /O (D™ (F'(X)u)). ds

/Ot F'( X, )usdW, + /Ot F'(Xs)(D™u)qds

t
+/ F/(X,)us(D™X)ds.
0
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Finally, notice that
(VX)t = 2(D7X)t + Uy

This completes the proof of the theorem. O

3.2.4  Substitution formulas

The aim of this section is to study the following problem. Suppose that
u = {ug(x),0 < ¢ < 1} is a stochastic process parametrized by x € R™,
which is square integrable and adapted for each x € R™. For each x we can
define the It6 integral

/01 ug(x)dWy.

Assume now that the resulting random field is a.s. continuous in x, and
let F' be an m-dimensional random variable. Then we can evaluate the
stochastic integral at x = F', that is, we can define the random variable

/O ()W (3.37)

A natural question is under which conditions is the nonadapted process
{ut(F),0 < ¢t < 1} Skorohod integrable, and what is the relationship be-
tween the Skorohod integral of this process and the random variable defined
by (3.37). We will show that this problem can be handled if the random
field us(x) is continuously differentiable in x and verifies some integrability
conditions, and, on the other hand, the random variable F' belongs locally
to DY*. Notice, however, that no kind of smoothness in the sense of the
Malliavin calculus will be required on the process u;(z). A similar question
can be asked for the Stratonovich integral.

To handle these problems we will make use of the following technical
result.

Lemma 3.2.2 Suppose that {Y,(z),z € R™}, n > 1 is a sequence of
random fields such that Y, (x) converges in probability to Y (x) as n tends
to infinity, for each fixred x € R™. Suppose that

E(|Yn(z) = Ya(y)I") < cxle -yl (3.38)

for all |z|, ly] < K, n > 1, K > 0 and for some constants p > 0 and
a > m. Then, for any m-dimensional random variable F one has

lim Y, (F) =Y (F)

n—oo

in probability. Moreover, the convergence is in LP(Q2) if F is bounded.
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Proof:  Fix K > 0. Replacing F' by F := F'l{ <k} We can assume that
F' is bounded by K. Fix € > 0 and consider a random variable F, which
takes finitely many values and such that |F.| < K and ||F — F.[| < e. We
can write

Yo (F) = Y(F)| < Yo (F) = Yo (Fo)[ + [V (F2) = Y(E) [+ [YV(Fe) = Y(F)].

Take 0 < m' < a—m. By (3.38) and (A.10) there exist a constant C; and
random variables I, such that

[Yo(z) = Ya(y)l? <
ET,) < .

Moreover, Eq. (3.38) is also satisfied by the random field Y (z) and we can
also find a constant Cy and a random variable I" such that

Y(@) =Y@P < |z—y™T,
EI) < (.
Hence,
E([Ya(F) = Y(F)) < ¢, ( (C1 + Ca)e™ + E(IVa(F) = Y (F)))
and the desired convergence follows by taking first the limit as n tends to
infinity and then the limit as ¢ tends to zero. |

Consider a random field u = {us(x),0 < t < 1,2 € R™} satisfying the
following conditions:

(h1) For each x € R™ and t € [0,1], u;(x) is Fi-measurable
(h2) There exist constants p > 2 and a > m such that
E(lue(x) —ue(y)") < Crrelw =yl
for all |z|, |y] < K, K > 0, where fol Cixdt < oo. Moreover
Jo E(lu(0)2)dt < oo.

Notice that under the above conditions for each ¢ € [0,1] the random
field {u¢(x),x € R™} possesses a continuous version, and the It6 integral
fol us(x)dWy possesses a continuous version in (¢, ). In fact, for all |z|,
ly| < K, K > 0, we have

)

E (é}%ﬁ] / (ua(z) — us(y)) AW,

)
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The following theorem provides the relationship between the evaluated
integral fol ut(m)th’ . and the Skorohod integral é(u(F')). We need the
following hypothesis which is stronger than (h2):

(h3) For each (t,w) the mapping x — u;(x) is continuously differentiable,
and for each K >0

1
/ E ( sup |Vut(x)|q> dt < oo,
0 2] <K

where ¢ > 4 and ¢ > m. Moreover fol E(|ug (0)[*)dt < oc.

Theorem 3.2.8 Suppose that u = {u(z),0 <t < 1,2 € R™} is a random
field satisfying conditions (hl) and (h3). Let F' : & — R™ be a bounded
random variable such that F* € DY* for 1 <i < m. Then the composition
u(F) = {u(F),0 <t <1} belongs to the domain of § and

1
5(u(F)):/O ug(x)dWy

m 1
-y / djur(F) Dy F dt. (3.39)
z=F j=1 0

Proof:  Consider the approximation of the process u given by

n—1 %
ul(z) = n (/ us(x)ds> 1s st (). (3.40)
i=1

n

Notice that u(F) belongs to L?([0,1] x Q) and the sequence of processes
u™(F) converges to u(F) in L2([0,1] x ) as n tends to infinity. Indeed, if

F' is bounded by K we have
1 1
E(/ ut(F)th) / E<sup |ut(m)|2dt>
0 0 lz| <K
1
< 2 [ BluOP)
0

1
+2K2/ E ( sup |V (z)|? dt)
0 lo| <K

< 0o0.

IN

The convergence of u™(F) to u(F) in L?([0,1] x ) is obtained by first
approximating u(F) by an element of C([0,1]; L?()).
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From Proposition 1.3.4 and Exercise 3.2.10 we deduce that u™(F) belongs
to Domd and

S (F)) = nin (/ uS(F)ds> (Wees =) = Sin
i=1 = i=1 j=1

X ( (9jus(F)ds> < Derdr> : (3.41)
i—1 i

The It6 stochastic integrals fol ul(x)dWy  satisfy

a
E( > < cqlz —yl”.

Hence, by Lemma 3.2.2 the sequence fol up (x)dWy

1 1
/ uy (x)dWy — / uy (y)dWe
0 0

converges in L9(£2)
F

r=

to the random variable fol ut(x)th‘ o On the other hand, the second

summand in the right-hand side of (3.41) converges to

m 1
> / dus(F) Dy F dt
j=1"0

in L2(Q), as it follows from the estimate

1 1
/ Ojuy(F)DyFIdt — / aju?(F)DtFjdt‘
0 0

1
2

1
< ||pF|, (/O |8jut(F)—8ju?(F)|2dt>

The operator ¢ being closed the result follows. O

The preceding theorem can be localized as follows:

Theorem 3.2.9 Suppose that u = {u(z),0 <t < 1,2 € R™} is a random
field satisfying conditions (hl) and (h3). Let F : Q — R™ be a random

variable such that F' € Dllc;i for 1 < i < m. Then the composition u(F) =
{u¢(F),0 <t < 1} belongs to (Domd),,. and
1 mo 1 '
S(u(F)) = / w@awy| - / Oy (F)DFid.  (3.42)
0 x=F j=1 0

We recall that the operator § is not known to be local in Dom §, and for
this reason the value of 6(u(F)) in the Theorem 3.2.9 might depend on the
particular localizing sequence.
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The Stratonovich integral also satisfies a commutativity relationship but
in this case we do not need a complementary term. This fact is coherent
with the the general behavior of the Stratonovich integral as an ordinary
integral.

Let us introduce the following condition which is stronger than (h2):

(h4) There exists constants p > 2 and « > m such that

E(lu(z) —w(y)F) < cxlz—yl*,
u <

E(luy(z) — ui(y) — us(z) + us(y)[?) crcla —y|*Jt — 5|2,

for all |z|, l[y| < K, K > 0, and s,¢ € [0,1]. Moreover fol E(|ug(0)]?)
dt < oo, and t — wu;(z) is continuous in L?(Q) for each z.

Theorem 3.2.10 Let u = {u(z),0 <t < 1,z € R™} be a random field
satisfying hypothesis (hl) and (h4). Suppose that for each x € R™ the
Stratonovich integral fol ut(x) o dWy exists. Consider an arbitrary random
variable F. Then u(F) is Stratonovich integrabl, and we have

/01 w(F) o dW, = /O1 wi(x) o dW, (3.43)

x=F
Proof:  Fix a partition 7 = {0 =tg < t1 < --- < t, = 1}. We can write
n—1 1

D I (/tt+ uS(F)ds) (W (tit1) — W(t:))

t. —_
i—o i+l

= i e, (F)(W (tig1) — W(ts))
i=0

N f L ( / " a(F) (F)]ds) (W (ti1) = W(t:)

= tiv1 —ti \Js,
= an,+b,.

The continuity of t — w(x) in L?(£2) implies that for each x € R™ the
Riemann sums

z_: g, () (W (tig1) — W(ts))
i=0

converge in L?((2), as || tends to zero, to the Itd integral fol ug () dWy.
Moreover, we have for |z, |y| < K,

“

p
) < cperl|z —y|*.

S fue, () — e ()] (W () — W(5)
1=0
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Hence, by Lemma 3.2.2 we deduce that a, converges in probability to

fol ug(x) o th‘ . Now we study the convergence of b,,. For each fixed

x € R™, the sums

CEDY s ( / | " fuse) — e, (cc)]ds) (W (ti0) — W)

converge in probability, as |7| tends to zero, to the difference

V() i /01 wp() o W, — /01 g (2)dW .

So, it suffices to show that R™(F') converges in probability, as |7| tends to
zero, to V (F'). This convergence follows from Lemma 3.2.2 and the following
estimates, where 0 < & < 1 verifies eae > m, and |z|, |y| < K

[1R™(x) = R™ (2)]],e

n—1

1

< -
- ; tit1 — 1t

tit1

X / I[ws () = ue, (2) = us(y) + ue, (YW (1) = W(E))]| . ds

ti

n—1 . 1
< e > i —til? sup (B (Jug(x) —ug, (x) — us(y) + u, (9)[7)]”

i—0 SE[ti,tiq1]
S cp,scK|w_y‘%'

O

It is also possible to establish substitution formulas similar to those ap-
pearing in Theorems 3.2.9 and 3.2.10 for random fields wu;(x) which are
not adapted. In this case additional regularity assumptions are required.
More precisely we need regularity in « of Dgus(x) for Theorem 3.2.9 and
of (Vu(x)); for Theorem 3.2.10.

One can also compute the differentials of processes of the form Fi(X;)
where {X;,t € [0,1]} and {F}(z),t € [0,1],2 € R™} are generalized contin-
uous semimartingales, i.e., they have a bounded variation component and
an indefnite Skorohod (or Stratonovich) integral component. This type of
change-of-variables formula are known as Ito-Ventzell formulas. We show
below a formula of this type that will be used to solve anticipating stochas-
tic differential equations. We first state the following differentiation rule
(see also Exercise 1.3.6).

Lemma 3.2.3 Let F = (F',...,F™) be a random vector whose compo-
nents belong to DYP, p > 1 and suppose that |F| < K. Consider a mea-
surable random field uw = {u(x),x € R™} with continuously differentiable
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paths, such that for any v € R™, u(z) € D", » > 1, and the derivative
Du(x) has a continuous version as an H-valued process. Suppose we have

E<sup [|u<x>|r+||Du<x>||;1> < oo, (3.44)

|| <K

E ( sup |Vu(z)|q> < oo, (3.45)

|| <K

where % +% = % Then the composition u(F) belongs to DV, and we have

Z diu(F)DF' + (Du)(F). (3.46)
Proof: ~ Consider an approximation of the identity 1,,, and define

wnla) = [ alw)b o = )y

The sequence of random variables u,, (F') converges almost surely and in in
L™(9) to u(F) because of Condition (3.44). On the other hand, u,(F) €
D" and

D) = D( [ utsyon(r - vyan)

m

Du(y)y,(F —y dy+2 / Oy, (F — y) DFdy

R™

Du(y)y,,(F — y)dy + Z DF" [ du(y), (F — y)dy.

Rm™ i—1 Rm™
Again by conditions (3.44) and (3.45), this expression converges in L"(€); H)
to the right-hand side of (3.46). O

Let W be an N-dimensional Wiener process. Consider two stochastic
processes of the form:

N ot t
X;‘:X(g+2/ ufg'odwg’+/ vids, 1<i<m
=170 0

and

N t t
Fy(z) = Fo(x) + Z/O HI(z) o dW? —I—/O Gs(x)ds, x € R™.
j=1

We introduce the following set of hypotheses:
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(A1)

(A2)

(A3)

(A4)
(A5)

3. Anticipating stochastic calculus

Forall 1 <j < N,1<i<m,XjecD" v clLy v eLb?
and the process X is continuous and bounded by a constant K. We
assume also that u is bounded.

x — Fy(x) is twice differentiable for all ¢; the processes F}(z), VF;(x)
and V2F,(z) are continuous in (¢,z); F(z) € L%2, and there exist
two versions of DF;(x) which are differentiable in  and such that
the functions D Fy(z) and V(DsF;)(z) are continuous in the regions
{s<t<1,z€eR™}and {t < s <1,z € R™}, respectively.

& — H (x) is differentiable for all ¢; the processes Hy(z) and VH ()
are continuous in (t,z); H’(z) € L%", and there exist two versions
of DsH(z) which are differentiable in  and such that the functions
DsH(x) and V(DsH;)(x) are continuous in the regions {s < ¢ <
1,z e R™} and {t < s < 1,z € R™}, respectively.

The function x — G¢(z) is continuous for all ¢, and G(z) € L1

The following estimates hold:

E ( sup (\Ft(x)|4 +|VF(z)|* + V2Ft(9:)4)>

< o9,
le| <K, te[0,1]
E < sup  (|Hy(2)[* + |VH(2)|* + |Gt(33)4)> < oo,
|z|<K,te[0,1]
1
/ E ( sup (|D5Ft(x)|4 + |V(D5Ft)(x)4)> ds < oo,
0 |z|<K,te[0,1]
1
/ E ( sup  (|DsHy(z)|* + |V(D5Ht)(x)4)> ds < oo.
0

|z|<K,t€[0,1]

Theorem 3.2.11 Assume that the processes X; and Fy(z) satisfy the above
hypotheses. Then <VFt(Xt),uj> and H}(X,) are elements of L* for all
j=1,...,N, and

N t t
Fy(X;) = FO(XO)+Z/O (VEy(Xy),ul odwg'+/0 (VFy(Xs),vs)ds

N t t
+Z/ Hg(xs)odwg+/ Go(Xs)ds.
=Jo 0

Proof:  To simplify then notation we will assume N = m = 1. The proof
will be done in several steps.

Step 1:  Consider an approximation of the identity v, on R. For each
x € R we can apply the multidimensional change-of-variables formula for
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the Stratonovich integral (Theorem 3.2.6) to the process Fy(z)v,, (X: — x)
and we obtain

F(o)on (X, — 1) = Fola)n(Xo—2) + / (), (X, — ) 0 WV,
+/0 Gy(2)¢,,(Xs — x)ds
+/0 Fs(x)z/);(Xs — x)us o dWs

—1—/0 Fy(z)y! (Xs — x)veds.

If we express the above Stratonovich integrals in terms of the corresponding
Skorohod integrals we get

Fi@)n(Xi —2) = Folw)in(Xo — ) + / Ho (), (X, — 2)dWV,
¢ 1
+f [Gsm n 2<VH>s<x>] (X, — 2)ds
b5 [ HA@ (X 2) (VX), ds
0

+ / Fy(@)d, (X — 2)udW,
0

—l—% /0 (VE), (2)0), (X5 — z)usds

+ [ R - (5 7w, o) ds

0
1 ¢ 1
—|—§/0 Fy(z), (Xs — 2)(VX)susds.

Grouping the Skorohod integral terms and the Lebesgue integral terms
together we can write

Fi(z)y, (Xt — ) = Fo(x)y,,(Xo — x) —l—/o o (s, 2)dW —l—/o B, (s, x)ds,

where

an(t,x) = ¢, (Xe — @) Hy(2) + 1y (Xy — 2)ui Fy ()
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and
Bulti) = 0u(Xi=0) (Gulo) + 5 (VH) )

LK~ 2) (;Htm (VX),

+F(x) <; (Vu), + vt> —+ %ut (VF), (z))

YLK D)) (VX),

Step 2:  We claim that the processes Hy(X:) and F}(X;)u; belong to ]L&’2
In fact, first notice that Hypotheses (A2) and (A3) imply that for each z,
Hy(z) and F/(z)u; belong to LY2) and D (F}(x)) = (DsF;)'(x). Then we
can apply Lemma 3.2.3 (suitably extended to stochastic processes) to Hy(x)
and X; and also to F/(z)u; and X; to deduce that Hy(X;) and F}(Xy)us
belong to L}2, taking into account the following estimates

fol E(H?(X,))ds < fol E (supmgK Hsz(x)) ds < o0,
1

Jy B (supjuj<sc | DH, (@) ) ds < oo,

Jy B (supyaj< e [HL(@) ) ds < o,

and

Jy BUFLX, Jus))ds < |[ull%, Jy B (supjux |Fi(@)) ds < oo,
Jo B(FUX)P | Dusl3,)ds 1
fo E (sup|m|<K |st(m)|4> ds folE (HDusH;) als)E < 00,
X | Dus| 7 u2)ds < [|ull%,
( (sup\M|F:<x>|4)dstE(nDuSHZ)ds) < o0,
E(||(p HH )ds
< UH fo (SUP\1\<KH (DFy) HH>ds<oo.

Nl

<
Jo B(FY(
X

The derivatives of these processes are given by
Di[Hy(Xy)] = Hy(X¢)Ds Xy + (DsHy)(X¢)
and

Ds[Ft/(Xt)ut] = Ft”(Xt>Dthut + (DSFt)/(Xt)’LLt + Ft’(Xt)Dsut
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Then, from our hypotheses it follows that the processes H;(X;) and
F/(X;)u; belong to Li, and

(V(H(X)), = H{(X:) (VX), + (VH):(Xy)
and

(V(F (X)) = FY(X0) (VX), e+ (VEY (X + FL(X0) (Va),
Step 3:  We claim that
/R <Ft(x)1pn(Xt —2) = Fola)v, (Xo —2) — /0 ﬁn(s,x)ds> dr (3.47)
converges in L!(€) to the process
B = R(X) - R - [ [Gsm) + S (VH)L(X)

S HLG) (VX), + 3 (VEY,(X,Juy + EL(X,) (Va),
F+F/(X,) (VX), us + F(X,)vs] ds.

In fact, the convergence for each (s,w) follows from the continuity assump-
tion on z of the processes G4(x), (VH)(z), (VF),(z), and the fact that
H(x) is of class O, and F!(x) is of class C?. The L(Q) convergence
follows by the dominated convergence theorem because we have

1
E </o sgp/ﬂ@ﬁn(s,xﬂdxds) < 0.

From Step 2 we deduce
Q= Fy(X¢) - Fo(Xo) - /Ot [G(X) + Fi(Xs)vs] ds
- /0 HL(X) + FU(X)us] 0 dW,
+/Ot [Hy(Xs) + FL(Xs)us) dW.
Step 4:  Finally, we have

/R o (5, ) = /R Hao(2), (Xo — a)da + /R Fy(a), (X, — )uyda.

The integrals fR (s, z)dx converge as n tends to infinity in the norm of
L12 to Hs(Xs) + F/(Xs)us. Hence, the Skorohod integral

/O t ( /R an (s, x)dx) aw, (3.48)
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converges in L?(Q) to

/t [Ho(Xs) + FU(Xs)us) dWs.
0

By Fubini’s theorem, (3.48) coincides with (3.47). Consequently, we get

t
B, = / (HL(X.) + F!(X.)us] W,
0
which completes the proof. O

Ezercises
3.2.1 Consider the process u defined by

u(t) = Lwysop (Lo, 17 (t) — Lz 1y(8)-

Show that this process is Skorohod integrable but the process uly 1 is
not.

3.2.2 Let w € L2, and fix 0 < s < ¢t < 1. Show that

t 2
E ((/ quWT> |}"[S7t]c>
t t gt
=F (/ u%dr—l—/ / Dvu,«Druydrdv|f[syﬂc>.

3.2.3 Consider the process u(t) = sign(Wy —t)exp(W; — £), 0 < ¢t < 1.
Show that this process is Skorohod integrable on any interval, and

t
t
/ usdWy = sign(Wy — t) exp(W; — 5) — signW7.
0

Hint: Fix a smooth random variable G and compute F( fol D;Guydt)
using Girsanov’s theorem.

3.2.4 Let u € L?? be a process satisfying

1
sup {|E(Dsut)| + E/ |D5Drut2dr] < 00.
s,t€[0,1] 0

Assume in addition that Efol |u|Pdt < oo for some p > 4. Show that the

Skorohod integral { fot usdWs,t € [0,1]} possesses a continuous version.

3.2.5 Let u € L?([0,1] x Q) be a stochastic process such that for any
t € [0,1] the random variable u; belongs to the finite sum of chaos ®N_ H,,.
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Show that the Skorohod integral {fot usdWs,t € [0,1]} possesses a contin-
uous version.

Hint: Use the fact that all the p norms are equivalent on a finite chaos
and apply a deterministic change of time (see Imkeller [148]).

3.2.6 Let u be a process in the space L?* = L4([0,1];D?*). Using the
Gaussian formula (A.1) and Proposition 3.2.1, prove the following inequal-

E</ ([ Duedwg)z’dr) <cle([ [ drde)
p ( [ ([ [ @upaopac) cm)] |

3.2.7 Consider a random field {u;(x),0 < ¢ < 1,z € G}, where G is a
bounded open subset of R™, such that u € L?(G x [0, 1] x 2). Suppose that
for each x € R™, u(x) € Domé and E( [, |6(u(x))|*dz) < oo. Show that
the process { [ ui(z)dz,t € [0,1]} is Skorohod 1ntegrable and

5</Gut(:v)dx) :/Gé(u.(z))das.

3.2.8 Let X = {X;,t € LO 1]} and Y = {Y;,¢t € [0,1]} be continuous
processes in the space L, . such that X is adapted and Y is backward
adapted (that is, Y; is F; 1j-measurable for any ¢). Consider a Cct function
® : R?2 — R. Show that the process {®(X;,Y;),t € [0,1]} belongs to L’
and that the sums

loc

n—1

Z DX (t:), Y (tig1)) (W (tig1) — W(ts))

converge in probability to the Skorohod integral fol O(Xy, Y, )dW, (see Par-
doux and Protter [281]).

3.2.9 Let f,g : R — R be bounded functions of bounded variation. Con-
sider the stochastic process X (t) = f(W(t))g(W (1) — W(t)). Show that X
is Skorohod integrable, and compute E(5(X)?).

3.2.10 Suppose that W = {W(h),h € H = L*(T,B,u)} is a centered
isonormal Gaussian process on the complete probability space (22, F, P).
Assume F = o(W). Let G be a bounded domain of R™ with Lipschitz
boundary, and let A € B, u(A) < oo. Let {u(z),x € G} be an Fae-
measurable random field with continuously differentiable paths such that

E (sup |Vu(a:)|4) <oo and E (Sup |u(x)2) < .

zeG z€G
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Set h =14 and let F' € D%, Show that
(a) w(F) € D*M and D"(u(F)) =Y i~, duD"F".
(b) u(F)1,4 belongs to the domain of ¢ and

S(u(F)1a) = u(F)W(A) = du(F)D"F".

i=1

Hint: Approximate u(F') by convolution with an approximation of the
identity.

3.2.11 Let p € (2,4), and o = 42%;). Consider a process u = {us, t € [0,1]}

in L N LY([0,1] x Q).Using the It&’s formula for the Skorohod integral
show the following estimate

t t
/urdWr < Cpt—s)27t (E/ |u |*dr+

t t
+E / / (Dyug)? drdf
s JO

t t t
+E / / / (DyDyug)? drdade) :
s 6 %

3.2.12 Let u = {uy,t € [0, 1]} be a process in ¥ such that (fol |ut|pdt) <

p

E

oo for some p > 2. Show that the process X; = fot usdWy, has a continuous
version whose trajectories are Hélder continuous of order less that %.

3.2.13 Show that the process u™* defined in (3.27) belongs to IL?S.

3.3 Anticipating stochastic differential equations

The anticipating stochastic calculus developed in Section 3.2 can be applied
to the study of stochastic differential equations where the solutions are
nonadapted processes. Such kind of equations appear, for instance, when
the initial condition is not independent of the Wiener process, or when we
impose a condition relating the values of the process at the initial and final
times. In this section we discuss several simple examples of anticipating
stochastic differential equations of Skorohod and Stratonovich types.

3.3.1 Stochastic differential equations
in the Sratonovich sense
In this section we will present examples of stochastic differential equations

formulated using the Stratonovich integral. These equations can be solved
taking into account that this integral satisfies the usual differentiation rules.
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(A) Stochastic differential equations with random initial condition

Suppose that W = {W(t),t € [0,1]} is a d-dimensional Brownian motion
on the canonical probability space (Q, F, P). Let 4, : R™ — R™, 0 < i <d,
be continuous functions. Consider the stochastic differential equation

d t t
X =Xo+ Z/ Ai(X,) o dW? +/ Ap(Xs)ds, tel0,1], (3.49)
=170 0

with an anticipating initial condition X, € L°(Q;R™). The stochastic in-
tegral is interpreted in the Stratonovich sense. There is a straightforward
method to construct a solution to this equation, assuming that the co-
efficients are smooth enough. The idea is to compose the stochastic flow
associated with the coefficients with the random initial condition Xj.

Suppose that the coefficients A;, 1 < i < d, are continuously differen-
tiable with bounded derivatives. Define B = Ay + 1 37" | Z?:l AkoA;,
and suppose moreover that B is Lipschitz.

Let {¢,(x),t € [0,1]} denote the stochastic flow associated with the
coefficients of Eq. (3.49), that is, the solution to the following stochastic
differential equation with initial value z € R™:

d t ‘ t
o) = vty / Ailpy()) o W + / Ao(py(2))ds

d_ pt t
x—i—Z/ Ai(gos(x))dW;—i-/ By, (x))ds. (3.50)
i=1"0 0
We know (see, for instance Kunita [173]) that there exists a version of
o, (x) such that (¢,2) — ¢,(x) is continuous, and we have

E(Jpy(x) = 0. ()I") < Cpre (|t = 5|5 + |z —y|?)

for all s,t € [0,1], |z|,]y] < K, p > 2, K > 0. Then we can establish the
following result.

Theorem 3.3.1 Assume that A;, 1 < i < d, are of class C3, and A;,
1 <i<d, and B have bounded partial derivatives of first order. Then for
any random vector Xo, the process X = {¢,(Xo),t € [0,1]} satisfies the
anticipating stochastic differential equation (3.49).

Proof: Under the assumptions of the theorem we know that for any
x € R™ Eq. (3.50) has a unique solution ¢,(x). Set X = {p,(Xo),t €
[0,1]}. By a localization argument we can assume that the coeflicients A;,
1 <i < d, and B have compact support. Then, it suffices to show that for
any ¢ = 1,...,d the process u;(t,z) = A;(p,(x)) satisfies the hypotheses of
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Theorem 3.2.10. Condition (hl) is obvious and one easily check condition
(h4) by means of It6’s formula. This completes the proof. O

The uniqueness of a solution for Eq. (3.49) is more involved. We will
show that there is a unique solution in the class of processes ]Léfoc (R™),
assuming some additional regulatiry conditions on the initial condition Xj.

Lemma 3.3.1 Suppose that Xy € ]D)llo’zc)(]Rm) for some p > q > 2, and
assume that the coefficients A;, 1 < i < d, and B are of class C? with
bounded partial derivatives of first order. Then, we claim that {p,(Xy),t €

[0,1]} belongs to ]L;:{IOC(]R’”).
Proof:  Let (2", X1') be a localizing sequence for Xg in D*?(R™). Set

GMEM =t n{IXgI < kEN{ sup  p(e)] < MY
|z|<K,te[0,1]

On the set G™*M the process ¢,(Xo) coincides with M (XF3,(XE)),
where (3, is a smooth function such that 0 < 8, <1, 8, (x) = 1if |z| <k,
and By (z) = 0 if |x| > k+ 1, and ¢ (z) is the stochastic flow associated
with the coefficients 8,,4;, 1 < i < d, and (,,;B. Hence, we can assume
that the coefficients A;, 1 < i < d, and B are bounded and have bounded
derivatives up to the second order, X, € DV?(R™), and X, is bounded by
k. The following estimates hold

E( sup [<P¢($)|T+||D<Pt($)||§{]> < oo, (3.51)
|| <Ft€[0,1]
E( sup V(pt(x)|‘1> < o0, (3.52)
2| <K,t€[0,1]

for any r > 2. The estimates follow from our assumptions on the coefficients
A;, 1 <i<d, and B, taking into account that

m d t
mmwzzmmw+zz/mMmmmmMM¢
=179

k=1

S

mo ¢
+3° [ aBle.@Di [ehia)] ar (3.53)
k=1
for1<j<dand 0<s<t<1. Hence, from Lemma 3.2.3 we obtain that
{p(Xo),t € [0,1]} belongs to L1¢(R™) and
Dy (¢4(X0)) = Vi (Xo)Ds Xo + (Depy) (Xo).

Finally, from Eq. (3.53) for the derivative of ¢,(Xj) it is easy to check that
{¢,(X0),t € [0,1]} belongs to Ly (R™), and

(D (9(X0))i"™ = Vou(Xo)DiXo + (D), (Xo).
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Theorem 3.3.2 Assume that A;, 1 <i < d, and B are of class C*, with
bounded partial derivatives of first order and Xgo belongs to ]D)l’p(Rm) for
some p > 4. Then the process X = {¢,(Xo),t € [0,1]} is the unique solution
to Eq. (3.49) in ]L; ﬁ)c (R™) which is continuous.

Proof: By Lemma 3.3.1 we already know that X belongs to ]L2 1()C(]Rm).
Let Y be another continuous solution in this space. Suppose that (Q" X5
is a localizing sequence for Xg in ]D)lo’g(Rm), and (™1 Y") is a localizing

sequence for Y in L)’ foc( ™). Set

QUM = Q™ N {|Xg| < kYN { sup  [p(x)] < M}
|z|<K,t€[0,1]
N{ sup [Y; | < M}
te[0,1]

The processes Y, 65, (Y7), (BarA4:) (YY), 0 < i < d, satisfy hypothesis (A1).
On the set Q%M we have

Y, = X0+Z/A YodW! + /Ao t€0,1].

Let us denote by ¢; ' () the inverse of the mapping = < ¢,(x). By the
classical It6’s formula we can write

@t = x_Z/ 905 s 1A()OdW:

- / (el (o (2))) " Ao (x)ds

0

We claim that the processes Fy(z) = ¢; ' (z), Hi(z) = (¢, (07 ()"  Ai (),
and G¢(z) = (¢L(¢51(2))) 1 Ao(z) with values in the space of m x m ma-
trices satisfy hypotheses (A2) to (A5). This follows from the properties of
the stochastic flow assicated with the coefficients A;.

Consequently, we can apply Theorem 3.2.11 and we obtain, on the set
Qn,k,M

d t
) = Xt X [ ) A aw
+ / (651) (V) Ao(Ya)ds
_Z/ (ps s ) 1A( )OdW’L

/O (6 (5 (¥a))) " Ao(Ya ) ds.
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Notice that /
(p:1) (@) = —(Phles (@)

Hence, we get o; 1(Y;) = Xo, that is, ¥; = ¢,(Xo) which completes the
proof of the uniqueness. O

In [272] Ocone and Pardoux consider equations with a random drift and
with time-dependent coefficients. In such a case one has to remove the drift
before composing with the random initial condition. The solution is given
by X; = ¢,(Y2), where {¢,(z),t € [0,1]} denotes the flow associated with
Eq. (3.49) with b= 0, i.e.,

d t .
v =+ [ A, @) oawt,

and Y; solves the following ordinary differential equation parametrized by
w:

dY; = (; Ao)(Y)dt, Yy = Xo,

-1
where (1 4o)(z) = [1(2)]  Ao(t,(x).

Then, a formal calculation based on Theorem 3.2.5 shows that the process
{¥,(Y1),t > 0} solves Eq. (3.49). In fact, we have

d
dlw)] = DA (V) 0 dW] 4 v (v Y dt
d
> AW (Y2) 0 W] + Ao(u(Y2))

i=1

(B) One-dimensional stochastic differential equations with random
coefficients

Consider the one-dimensional equation

t t
X = Xo —|—/ o(Xs) o dWs +/ b(Xs)ds, (3.54)
0 0

where the coefficients o and b and initial condition Xy are random.

Suppose that the coefficients and the intial condition are deterministic
and assume that o is of class C? with bounded first and second derivatives,
and that b is Lipschtiz. Then, there is a unique solution X; to Eq. (3.54)
giben by (see Doss [84] and Exercise 2.2.2) X; = u(W4,Y:), where u(z,y)
is the solution of the ordinary differential equation

ou

% = J(”)’ U(O,y) =Y,
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and Y; is the solution to the ordinary differential equation
t
Y, =Xo+ / f(W,,Ys)ds, (3.55)
0

where f(z,y) = b(u(z,y)) exp(— [q o’ (u(z,y)dz).
The next result shows that in the random case, the process X; = u(W;,Y})
solves Eq. (3.54).

Theorem 3.3.3 Suppose that the coefficients and the intial condition of
Eq. (3.54) are random and for each w € Q, o(w) is of class C* with bounded
first and second derivatives, and that b(w) is Lipschtiz. Let Xy = u(W,Y:),
where Yy is given by (3.55). Then, o(Xy) is Stratonovich integrable on any
interval [0,t] and (8.54) holds.

Proof:  Consider a partition 7 = {0 = tp < t1 < --- < ¢, = 1} of the
interval [0, 1]. Denote by W the polygonal approximation of the Brownian
motion defined in (3.5). Set X[ = u(W/],Y;). This process satisfies

t . t wr
X7 = Xo+ / o(XT)W ods + / exp ( / a'(u(y,y;»dy) b(X,)ds
0 0

Ws

Xo+ A7 + B

The term AT can be written as
t . t .
A — / [0(XT) — o(X,)] Wads +/ (X)W ads = AMT 4 42T
0 0

Clearly A7 = X[ —Xo—B] converges in probability to Xt—Xo—fOt b(Xs)ds
as |r| tends to zero. On the other hand, A>™ can be expressed as Riemann
sum that approximates the Stratonovich integral fot 0(Xs) o dWs. As a

consequence, it suffices to show that A% '™ converges in probability to zero
as |m| tends to zero. We have

o(X7) —o(Xs) = oo’ (X) (W —Ws)
+ % (U(cr’)2 + 020”) &) (Wr — VVS)2 ,

where ¢ is a random intermediate point between W7 and W,. The last
summand of the above expression does not contribute tot the limit of A}™™.
In order to handle the first summand we set Z5 = oo’ (X;). To simplify we
assume ¢t = 1. Consider another partition of the interval [0,1] of the form
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{s; = 1,0 <j <m}. We can write

m—1

Sj+1 .
< Z Zs, / (WT — W) W ds

j=1 i

1 .
/ Z, (W™ = W,) W ds
0

m=l s -
+> / (Zs — Zs,) (WF — W) Wds
j=1"7%;

= gmm +D7T,m.

For any fixed m the term C™™ converges in probability to zero as |x|
tends to zero. In fact, if the points s; and sj;1 belong to the partition ,
we have

Sj+1 .
/ (W — W) Wads

Wi, — Wi, [t
= > / (WI —W,)ds
tiv1—t  Jy

i

1t E€[s5,854+1)

1
- - X 2ties — i)

1t €[s5,55+1)

tit1 9 )
x/ [(Weiys = W2)" = (W, = W,,)?] ds
t;

and this converges to zero. Finally, the term D™"™ can be estimated as
follows

| D™ (WT — W) W,|ds

A

w

=

o]

N

N
NgR

1
22 X S

7=0 i:tie[Sj,Sj+1)

AN
)
o)
IND
N
\

tit1 9 )
x/ [(Wapor = W) 4+ (W, = Wi,)? ds.

As |x| tends to zero the right-hand side of the above inequality converges
in probability to % Hence, we obtain

1
lim sup [D™"| <= sup |Z, — Z],

1
[m|—0 [t—s|< 5

and this expression tends to zero in probability as m tends to infinity, due
to the continuity of the process Z;. O
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3.3.2  Stochastic differential equations
with boundary conditions

Consider the following Stratonovich differential equation on the time inter-
val [0, 1], where instead of giving the value Xy, we impose a linear relation-
ship between the values of Xy and X;:

{ dX; = Y0 A (Xy) 0 dWi + Ao(Xy)dt, (3.56)

h(Xo, X1) = 0.

We are interested in proving the existence and uniqueness of a solution
for this type of equations. We will discuss two particular cases:

(a) The case where the coefficients A;, 0 < i < d and the function h are
affine (see Ocone and Pardoux [273]).

(b) The one-dimensional cased (see Donati-Martin [80]).

(A) Linear stochastic differential equations with boundary conditions

Consider the following stochastic boundary value problem for ¢ € [0, 1]

Xo=Xo+ X0, [y AiXy odW + [} AgXds, (3.5
HoXo+ H X, = h. '
We assume that A;, ¢« = 0,...,d, Hy, and H; are m X m deterministic

matrices and h € R™. We will also assume that the mx2m matrix (Hg : Hy)
has rank m.

Concerning the boundary condition, two particular cases are interesting:
Two-point boundary-value problem: Let | € N be such that 0 < < m.

/
Suppose that Hy = ( Iéo

and H{ is an (m — 1) x m matrix. Condition rank(Hp : Hy) = m implies

that H{ has rank [ and that H{ has rank m — [. If we write h = ( ZO >7
1

where hg € R! and hy € R™~!, then the boundary condition becomes

), Hy = ( I-?{’ ),Where H{ is an [ x m matrix

H)Xo=hy, H.X|=hi.

Periodic solution:  Suppose Hy = —H; = I and h = 0. Then the bound-
ary condition becomes
Xy = X1.

With (3.57) we can associate an m x m adapted and continuous matrix-
valued process ® solution of the Stratonovich stochastic differential equa-
tion
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{ dd; =4 | A®, 0 AW} + B, dt, (3.58)

dy =1.

Using the It6 formula for the Stratonovich integral, one can obtain an ex-
plicit expression for the solution to Eq. (3.57). By a solution we mean a con-
tinuous and adapted stochastic process X such that A;(X;) is Stratonovich
integrable with respect to W on any time interval [0,¢] and such that (3.57)
holds.

Theorem 3.3.4 Suppose that the random matriz Hy + H1 P, is a.s. in-
vertible. Then there exists a solution to the stochastic differential equation
(8.57) which is wunique among those continuous processes whose compo-
nents belong to the space Lé’foc.

Proof:  Define
X = 0: X, (3.59)

where X is given by
Xo = [Ho + Hi®1] "' h. (3.60)

Then it follows from this expression that X* belongs to ]I_é’flloc7 for all i =
1,...,m, and due to the change-of-variables formula for the Stratonovich
integral (Theorem 3.2.6), this process satisfies Eq. (3.57).

In order to show the uniqueness, we proceed as follows. Let Y €
Lé’flloc(Rm) be a solution to (3.57). Then we have

d t t
@;1:1—2/0 <I>;1Aiode—/0 ;1 Agds.
=1

By the change-of-variables formula for the Stratonovich integral (Theorem
3.2.6) we see that ®;'Y;, namely, Y; = ®;Yy.Therefore, Y satisfies (3.59).
But (3.60) follows from (3.59) and the boundary condition HyYy + H 1Y) =
h. Consequently, Y satisfies (3.59) and (3.60), and it must be equal to X.

O

Notice that, in general, the solution to (3.57) will not belong to L%’?OC(R"‘).
One can also treat non-homogeneous equations of the form

{ Xe=Xo+ 20, [T AiXy odWi+ [ AgXds + Vi,

(3.61)
HoXo+ H1 X1 =h,

where V; is a continuous semimartingale. In that case,
1 t
Xt = <I>t [HO + Hl(pl]_l |:h - qu)l/ @;1 o dVg] + @f/ (I):l e} dVg
0 0

is a solution to Eq. (3.61). The uniqueness in the class L%’joc(Rm) can be
established provided the process V; also belongs to this space. |



3.3 Anticipating stochastic differential equations 217

(B) One-dimensional stochastic differential equations with boundary
conditions

Consider the one-dimensional stochastic boundary value problem

{ Xe=Xo+ [y o(Xs)odW,+ [y b(X,)ds, (3.62)

apXo + a1 Xy = as,

Applying the techniques of the anticipating stochastic calculus we can
show the following result.

Theorem 3.3.5 Suppose that the functions o and by := b+ %O’O’l are of
class C? with bounded derivatives and aga1 > 0. Then there exists a solution
to Eq. (3.62). Furthermore, if the functions o and by are of class C* with
bounded derivatives then the solution is unique in the class LZ”?OC.

Proof:  Let ¢,(x) be the stochastic flow associated with the coefficients o
and ;. By Theoren 3.3.1 for any random variable X the process ¢,(Xo)
satisfies

t t
X, = Xo+ / o(X,) o dW, +/ b(X,)ds.
0 0

Hence, in order to show the existence of a solution it suffices to prove that
there is a unique random variable X, such that

az — agXo

¢1(Xo) = (3.63)

ai
The mapping g(z) = ¢, () is strictly increasing and this implies the exis-
tence of a unique solution to Eq. (3.63).

Taking into account Theorem 3.3.2 to show the uniqueness it suffices to
check that the unique solution X, to Eq. (3.63) belongs to ID)llcf for some
p > 4. By the results of Doss (see [84] and Exercise 2.2.2) one can represent
the flow ¢,(z) as a Fréchet differentiable function of the Brownian motion
W. Using this fact and the implicit function theorem one deduces that
Xy € DP for all p > 2. O

loc

3.3.8  Stochastic differential equations in the Skorohod sense

Let W = {W;,t € [0,1]} be a one-dimensional Brownian motion defined on
the canonical probability space (2, F, P). Consider the stochastic differen-
tial equation

t t
X, = Xo+ / o, X)W, + / b(s, X.)ds, (3.64)
0 0

0 <t <1, where Xy is Fi-measurable and ¢ and b are deterministic
functions. First notice that the usual Picard iteration procedure cannot
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be applied in that situation. In fact the estimation of the L?-norm of the
Skorohod integral requires a bound for the derivative of X, and this deriv-
ative can be estimated only in terms of the second derivative. So we are
faced with a nonclosed procedure. In some sense, Eq. (3.64) is an infinite
dimensional hyperbolic partial differential equation. In fact, this equation
can be formally written as

t t
X, = X0+/ U(S,Xs)odWer%/ o' (5, X) [(DTX), + (D™ X), ] ds
0 0

t
+ / b(s, Xs)ds.
0

Nevertheless, if the diffusion coefficient is linear it is possible to show
that there is a unique global solution using the techniques developed by
Buckdahn in [48, 49], based on the classical Girsanov transformation. In
order to illustrate this approcah let consider the following particular case:

t
X, = Xo+o / X.dWV,. (3.65)
0

When Xj is deterministic, the solution to this equation is the martingale
X, = X307
If Xy = signWi, then a solution to Eq. (3.65) is (see Exercise 3.2.3)
X, =sign (W7 — ot) eWem3ot,

More generally, by Theorem 3.3.6 below, if X, € LP(Q2) for some p > 2,
then ,
1
X; = Xo(Ap)e?Wrmzot

is a solution to Eq. (3.65), where A;(w)s = ws — o(t A s). In terms of the
Wick product (see [53]) one can write

X, = X, OeUWt—%oﬁt

Let us now turn to the case of a general linear diffusion coefficient and
consider the equation

t t
Xt:X0+/ asXdes—i—/ b(s, X.)ds, 0<t<1,  (3.66)
0 0

where o € L?([0,1]), X, is a random variable and b is a random function
satisfying the following condition:
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(H1) b:[0,1]] xRxQ — R is a measurable function such that there
exist an integrable function ~, on [0,1], 7, > 0, a constant L > 0, and a
set Ny € F of probability one, verifying

1
b(t,2,w) — bty @) < vz -y, / Yyt < I,
0
bt0.w)| < L.

forall z,y € R, t € [0,1] and w € Ny.
Let us introduce some notation. Consider the family of transformations
T, A : Q— Q, t €0,1], given by

tAs
T (w)s = ws + / oudu,
0

tAs
A(w)s = ws — / oudu.
0

Note that Ty A; = A, T; = Identity. Define

t 1 [t
€4 = €exp (/ o dW,y — f/ agds) .
0 2 /o

Then, by Girsanov’s theorem (see Proposition 4.1.2) E [F(At)e] = E[F)
for any random variable F' € L(Q). For each € R and w € ) we denote
by Z:(w,x) the solution of the integral equation

Zi(w,z) =x Jr/o e M (Ty(w)) b(s, 5 (Ty(w)) Zs(w, x), Ts(w))ds. (3.67)

Notice that for s < ¢t we have e,(T}) = exp(foS OudWy + %fos Uidu) =
es(Ts). Henceforth we will omit the dependence on w in order to simplify
the notation.

Theorem 3.3.6 Fiz an initial condition Xy € LP(QY) for some p > 2, and
define

Xt = EtZt (At, XO(At)) . (368)
Then the process X = {X;,0 <t < 1} satisfies 1j9y0X € Domd for all

t €10,1], X € L([0,1] x Q), and X is the unique solution of Eq. (3.66)
verifying these conditions.

Proof:

Ezistence:  Let us prove first that the process X given by (3.68) satisfies
the desired conditions. By Gronwall’s lemma and using hypothesis (H.1),
we have

t
|X;| < et <|X0(At) +L/ 5;1(Ts)ds) ,
0
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which implies sup,¢(o 1] £(] X¢[?) < oo, for all 2 < g < p, as it follows easily
from Girsanov’s theorem and Holder’s inequality. Indeed, we have

t
coE (5?(3th (|X0(At)|q + Lq/ E;q(TS)dS)>
0
t
cge™” {E (5g1(Tt)|X0|q + Lqeffl(Tt)/ Es_q(Tf)ds> }
0

C{E(Xo")? +1}.

IN

E(X:)

IN

IN

Now fix ¢ € [0,1] and let us prove that 1y 40X € Dom¢ and that (3.66)
holds. Let G € S be a smooth random variable. Using (3.68) and Girsanov’s
theorem, we obtain

t
E (/ asXstGds>
0

t
E </ 0s€ss (AsaXO(Aa))DéGdS)
0

5 ([ 0. 2.(X0) (D.C) (T)is). (300

Notice that £G(T,) = o, (DsG) (Ty). Therefore, integrating by parts in
(3.69) and again applying Girsanov’s theorem yield

E(/Ot ZS(XO);SG(TS)CZS> - E[Zt(XO)G(Tt) — Zo(X0)G

—/0 e N (T (s,65(Ts) Zs(X0), Ts) G(Ts)ds
=FE (e1Z: (Ar, Xo(Ar)) G) — E(Zo(X0)G)

—/OtE(b(s,asZs (As, Xo(AL)) G) ds
—E(X,G) - E (XoG) / "B (b(s, X.)G) ds.
0

Because the random variable X; — Xy — fot b(s, Xs)ds is square integrable,
we deduce that 1jg ;0 X belongs to the domain of ¢ and that (3.66) holds.

Uniqueness:  Let Y be a solution to Eq. (3.66) such that Y belongs to
L*([0,1] x Q) and 1}y 40Y € Domd for all ¢ € [0,1]. Fix ¢t € [0,1] and let
G be a smooth random variable. Multiplying both members of (3.66) by
G(A;) and taking expectations yield

BHG() = B(GA) +E ( /Otb<s,YS>G<At>ds)

+E (/Ot oY D, (G(At))> ds . (3.70)
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Notice that £G(A,) = —o(D,G)(A,). Therefore, integrating by parts
obtains

E(Y,G(A,) = E (YG) - / E (Yoo (D.G)(A,)) ds

G(
\E (/ b(s, Y2)G s) - B (/Ot /0 b(s,YS)ar(DrG)(Ar)dsdr>
([

(DG

—E( /0 /0 USYS(DTDSG)(AT)ardsdr). (3.71)

If we apply Eq. (3.71) to the smooth random variable o,.(D,G)(A4,) for
each fixed r € [0,¢], the negative terms in the above expression cancel out

with the term E (fot osYs (DsG) (As)ds) , and we obtain

B o) =BG + £ ( [ b, V)G(AL) ).

By Girsanov’s theorem this implies

E (Y(Ty)er UUG)Eme)+E(Azmaxxnyn)%lagG)d&

Therefore, we have
t
Yt(Tt)et_l(Tt) =Y +/ b(s,Ys(Ts), Ts) e H(Ty)ds, (3.72)
0

and from (3.72) we get Y;(T))e; 1(T;) = Zi(Yy) a.s. That is,
Yi=¢e12; (At7Y0(At)> =Xy

a.s., which completes the proof of the uniqueness. O

When the diffusion coefficient is not linear one can show that there exists
a solution up to a random time.

FEzercises

3.3.1 Let f be a continuously differentiable function with bounded deriv-
ative. Solve the linear Skorohod stochastic differential equation

dX, = X, dWi, te[0,1]
Xo = f(W).
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3.3.2 Consider the stochastic boundary-value problem

dX}! = X?odW;,
dX; = 0,
X; = 0, X{=1.

Find the unique solution of this system, and show that F(|X;|?) = oo for
all t € [0,1].

3.3.3 Find an explicit solution for the stochastic boundary-value problem

dX; = (X} + X})odW},
dX? = X7 odW}?
X+X2 = 1, Xi=1

Notes and comments

[3.1] The Skorohod integral is an extension of the It6 integral introduced
in Section 1.3 as the adjoint of the derivative operator. In Section 3.1,
following [249], we show that it can be obtained as the limit of two types
of modified Riemann sums, including the conditional expectation operator
or subtracting a complementary term that converges to the trace of the
derivative.

The forward stochastic integral, defined as

1
o(u) Jr/ Dy udt,
0

is also an extension of the It integral which has been studied by different
authors. Berger and Mizel [30] introduced this integral in order to solve
stochastic Volterra equations. In [14], Asch and Potthoff prove that it sat-
isfies a change-of-variables formula analogous to that of the It6 calculus.
An approach using a convolution of the Brownian path with a rectangular
function can be found in Russo and Vallois [298]. In [176] Kuo and Russek
study the anticipating stochastic integrals in the framework of the white
noise calculus.

The definition of the stochastic integral using an orthonormal basis of
L?([0,1]) is due to Paley and Wiener in the case of deterministic integrands.
For random integrands this analytic approach has been studied by Balkan
[16], Ogawa [274, 275, 276], Kuo and Russek [176] and Rosinski [293], among
others.

[3.2] The stochastic calculus for the Skorohod and Stratonovich inte-
grals was developed by Nualart and Pardoux [249]. In particular, the local
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property introduced there has allowed us to extend the change-of-variables
formula and to deal with processes that are only locally integrable or pos-
sess locally integrable derivatives. Another extensive work on the stochastic
calculus for the Skorohod integral in L? is Sekiguchi and Shiota [305].
Other versions of the change-of-variables formula for the Skorohod inte-
gral can be found in Sevljakov [306], Hitsuda [136], and Ustiinel [330].

[3.3] For a survey of this kind of applications, we refer the reader to
Pardoux [278].

Stochastic differential equations in the Skorohod sense were first studied
by Shiota [311] using Wiener chaos expansions. A different method was
used by Ustiinel [331]. The approach described in Section 3.3, based on the
Girsanov transformation, is due to Buckdahn and allows us to solve a wide
class of quasilinear stochastic differential equations in the Skorohod sense
with a constant or adapted diffusion coefficient. When the diffusion coeffi-
cient is random, one can use the same ideas by applying the anticipating
version of Girsanov’s theorem (see [50]). In [49] Buckdahn considers Skoro-
hod stochastic differential equations of the form (3.64), where the diffusion
coefficient ¢ is not necessarily linear. In this case the situation is much
more complicated, and an existence theorem can be proved only in some
random neighborhood of zero.

Stochastic differential equations in the sense of Stratonovich have been
studied by Ocone and Pardoux in [272]. In this paper they prove the ex-
istence of a unique solution to Eq. (3.49) assuming that the coefficient
Ap(s,x) is random. In [273] Ocone and Pardoux treat stochastic differen-
tial equations of the Stratonovich type with boundary conditions of the
form (3.56), assuming that the coeflicients A; and the function h are affine,
and they also investigate the Markov properties of the solution.
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Transformations
of the Wiener measure

In this chapter we discuss different extensions of the classical Girsanov
theorem to the case of a transformation of the Brownian motion induced
by a nonadapted process. This generalized version of Girsanov’s theorem
will be applied to study the Markov property of solutions to stochastic
differential equations with boundary conditions.

4.1 Anticipating Girsanov theorems

In this section we will work in the context of an abstract Wiener space.
That is, we will assume that the underlying probability space (2, F, P) is
such that € is a separable Banach space, P is a Gaussian measure on 2 with
full support, and F is the completion of the Borel o-field of Q) with respect
to P. Moreover, there is a separable Hilbert space H that is continuously
and densely embedded in €2, with injection i : H — Q, and such that

_ 1
/ el@vy)P(dx) = exp(—*HyH%{)
Q 2

for any y € Q* C H (here we identify H with its dual).

The triple (2, H, P) is called an abstract Wiener space. Note that each
element y € * defines a Gaussian random variable. If we denote this
variable by W (y), then the mapping y — W(y), from Q* into L?(Q), is
continuous with respect to the norm of H, and it can be extended to H. In
that way H is isometric to a Gaussian subspace in L?({2) that generates F
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and that is denoted by H; (i.e., H; is the first Wiener chaos). The image
of H by the injection i is denoted by H' C Q.

The classical Wiener space is a particular case of an abstract Wiener
space if we take Q = Cy([0,1]), H = L?([0,1]), i(h)(t) = fg h(s)ds, and P
is the Wiener measure. The space H' is here the Cameron-Martin space.

Consider a measurable mapping u : Q2 — H, and define the transforma-
tionT: Q — Q by
T(w) =w +i(u(w)). (4.1)
In the white noise case, H can be represented as H = L?(T, B, 1), and H-
valued random variables are stochastic processes parametrized by T'. Along
this chapter we will use this terminology.
We want to discuss the following problems:

(A) When is the image measure P o T~! absolutely continuous with re-
spect to P 7

(B) Find a new probability @ absolutely continuous with respect to P
such that Qo T~ = P.

Furthermore, we are also interested in finding expressions for the Radon-
[PoT ]
P

Nikodym densities d and % in terms of wu.

4.1.1 The adapted case

Consider the case of the Wiener space, that is, @ = Cy([0,1]). Then u =

{ut,0 <t < 1} is a random process such that fol uZdt < oo a.s., and the
associated transformation is given by

T(w) = we + /0 us(w)ds. (4.2)

Suppose that the process u is adapted, and define

t t
&, = exp </ usdWs — %/ ufds) , te]o,1]. (4.3)
0 0

The following two propositions provide a complete answer to questions (A)
and (B).

Proposition 4.1.1 The probability P o T~ is absolutely continuous with
respect to P.

Proposition 4.1.2 (Girsanov theorem) There exists a probability Q ab-
solutely continuous with respect to P such that Q o T~' = P (that is,
Wy + fg usds has the law of a Brownian motion under Q) if and only if
E(&;) =1 and in this case % =¢&.
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Proof of Proposition 4.1.2:  Suppose first that E(£;) = 1. Consider the
increasing family of stopping times defined by

t
Tk = inf{¢ : / u?ds > k}.
0

By Ito’s formula {&;,,,,t € [0,1]} is a positive continuous martingale.
Hence {&;,t € [0,1]} is a continuous local martingale, and is a martingale
because E(£;) = 1.

Fix 0 <s<t<1and A € Fs. Applying 1t6’s formula yields

E (ei/\(Wt—Ws+f: urdr)lAgl)

— B (E (ei)\(Wt—WS-Q—f; urdr)—fst u,,adWr—% fst ufdr|fs) ]_Ags)
LA : "
= BLagy) = [ B (N Y

Hence,
. "t 2
E (ez)\(Wt—Ws+j5 quT)1A§1> — E(]_Agl)e—%(t—s),
and we obtain
E(F(T)¢,) = E(F)
for any functional F' :  — C of the form

1
F=exp|iY N(W(ti)-W(t) |,

j=

where A\j e Rand 0 =ty < t; < -+ < ¢y, = 1. Therefore, the probability
Q given by % = ¢, satisfies Qo T~ = P.

Conversely, assume Q o T~! = P and % = 7. For any integer k > 1 we
define the transformation

tATL
Ti(w): = wy +/ usds.
0

In view of E(£,,) =1 we can apply the arguments of the first part of the
proof to the transformation 7T}, deducing

E(F(Ty)E,,) = E(F)

for any nonnegative and bounded random variable F. If F' is F;, -measura-
ble, then F(T}) = F(T). On the other hand, we know that



228 4. Transformations of the Wiener measure

Hence, &, = E(nT-'(F:,)), and letting k tend to infinity obtains
§& =1 O

Proof of Proposition 4.1.1:  Let B be a Borel subset of Q with P(B) = 0.
Consider the stopping times 7 and the transformations T} introduced in
the proof of Proposition 4.1.2. We know that P o T,;l and P are mutually
absolutely continuous. Hence,
P(r=(B)) = P '(B)n{rx=1})+P(I1(B)n{rx < 1})
P(T; Y (B)n{ri=1}) + P(T""(B) N {1 < 1})

1
P{Tk<l}=P{/ ufdt>k},
0

which converges to zero as k tends to infinity. This completes the proof. [

IA

4.1.2  General results on absolute continuity
of transformations

In this subsection we will assume that (€2, F, P) is an arbitrary complete
probability space and T" : 2 — € is a measurable transformation. First we
will see that questions (A) and (B) are equivalent if the measures P o7T~!
and P (or Q and P) are equivalent (i.e., they are mutually absolutely
continuous).

Lemma 4.1.1 The following statements are equivalent:
(i) The probabilities P o T~ and P are equivalent.

(ii) There exists a probability Q equivalent to P such that Qo T~1 = P.

Under the above assumptions, and setting X = d[P;)g_l] andY = j—g, we
have E(Y |T) = ﬁ, P a.s. If we assume, moreover, that {T~1(A), A €

F} =F a.s. (which is equivalent to the existence of a left inverse T; such
that T, o T = I a.s.), we have

;Lg _ (‘W OT>_1. (4.4)

Proof:  Let us first show that (i) implies (ii). Set X = d[Psigfl]. We know
that P{X = 0} = 0 and P{X(T) = 0} = (Po T~ 1){X = 0} = 0. Define

the measure @ by d@Q = ﬁ dP. Then for any B € F we have

Q(Tl(B))z/Tl(B) ﬁdP:/B %d[PoT*]:P(B).

Clearly, P << @ because % # 0.
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Conversely, assume that (ii) holds. Then (i) follows from the implications
P(B)=0 <+ QT 'YB)=0 <= PTYB))=0.

In order to show the equality E(Y | T) = X(lT) a.s., we write for any
BeF

/ E(Y|T)dP = / YdP = Q(T*(B))
T-1(B) T-1(B)

1
= ———dP.
/Tl(B) X(T)
The last statement follows from E(Y |T) =Y. O

Remarks: If we only assume the absolute continuity PoT~! << P (or
) << P), the above equivalence is no longer true. We can only affirm that
QoT !'=Pand P<<Q imply PoT~! << P . The following examples
illustrate this point.

Examples: Let Q = Cy([0,1]) and P be the Wiener measure. Consider
the following two examples.

(1) Suppose uz = f(W7), where f : R — R is a measurable function. The
probability PoT ! is absolutely continuous with respect to P if and only if
the distribution of the random variable Y + f(Y") is absolutely continuous,
where Y has the law N(0,1) (see Exercise 4.1.1). If we take f(z) = 22,
then PoT~! << P, but it is not possible to find a probability Q on  such
that under Q the process {W; +tWZ,t € [0,1]} is a Brownian motion.
(2) Let

2W;
— =1 t
(1 _t)Q [O,S]( )7

where S = inf{t : W2 = 1 — t}. Since P(0 < S < 1) = 1, we have
2

fol uZdt = 4fOS (lvfigﬂdt < o0 a.s. However, E(§;) < 1 (see Exercise 4.1.2),

where & is given by (4.3), and, from Proposition 4.1.2, it is not possible

to find a probability @ absolutely continuous with respect to P such that
under () the process

t Snt 7
W, ds =W; + 2 * _d
t—l—/ouss ¢t + /0 (1_8)25

Uy =

is a Brownian motion (see [200, p. 224]).

In the following sections we will look for a random variable 1 such that
E(nlr-1(p)) < P(B) (4.5)

for all B € F. If n > 0 a.s., this implies that P o T-! << P. On the
other hand, if the equality in (4.5) holds for all B € F (which is equivalent
to imposing that E(n) = 1), then P is equivalent to P o T~! and the
probability @ given by % =7 verifies Qo T—! = P.
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4.1.3  Continuously differentiable variables
in the direction of H*

Let (Q, H,P) be an abstract Wiener space. We will need the following
notion of differentiability.

Definition 4.1.1 We will say that a random variable F is (a.s.) H-conti-
nuously differentiable if for (almost) all w € Q the mapping h — F(w +
i(h)) is continuously differentiable in H. The set of a.s. H-continuously
differentiable functions will be denoted by C.

We will prove that C}; C ]D)llo"i. In order to show this inclusion we have

to introduce some preliminary tools. For any set A € F define
pa(w) = nf{|[h]|g : w+i(h) € A},

where the infimum is taken to be infinite if the set is empty. Clearly,
palw) =0if w € A, and py(w) < € if w belongs to the e-neighborhood
of A constructed with the distance of H'. Also, p,(w) = ccifw & A+ H*.
Other properties of this distance are the following;:

(i) AcB = puw)=ppWw);

(ii) lpa(w +i(h) — pa(W)| < |2l m;

(iii) An TA = pu, (W) ] pa(w);
)

(iv) If G is o-compact and ¢ € C§°(R), then ¢(p) belongs to D*P for all
p > 2 (with the convention ¢(co) = 0), and || D[¢(pc)]llg < [|6']co-

Proof of these properties:  Properties (i) and (ii) are immediate conse-
quences of the definition of p,. In order to show (iii) it suffices to see that
infp, py (W) < py(w) forallw e Q. If w & A+ H', this inequality is clear.
Suppose w € A + H'. By definition, for any ¢ > 0 there exists h € H such
that w4+ i(h) € A and ||h||g < py(w) + €. We can find an index ng such
that w +i(h) € A, for all n > ng. Therefore, py (w) < pa(w) + € for all
n > ng, which implies the desired result.

Let us prove (iv). Set G = U, K, where {K,,} is an increasing sequence
of compact sets. By (iii) we have pr | pg, hence ¢(pg, ) — é(pg). For
each n, py is a measurable function because it can be written as

() = 00 on (K, + H")¢
Pr,\W) = dHl((u_)fKn)ﬂHl,O) on Kn+Hla

where dp1 is the metric of H! and w — (w — K,) N H! is a measurable
function from K,, + H! into the closed subsets of H'. Consequently, ¢(ps)
is a bounded and measurable function such that

|6(pa(w +i(h))) = d(pa(W))| < ¢/ llsc Il (4.6)
and it suffices to apply Exercise 1.2.9 and Proposition 1.5.5. |
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Proposition 4.1.3 We have C}; C D2

loc

Proof:  Suppose that F' € C};. Define the following sequence of sets:

An:{wEQ: sup |F(w+i(h))] <n,
|hllz<t

sup | DF(w+i(h))|la < n}
Al <t

The fact that F is a.s. H-continuously differentiable implies that almost
surely (J2; A, = Q. For each n we can find a o-compact set G, C 4,
such that P(G,) = P(A,).

Let ¢ € C§°(R) be a nonnegative function such that |¢(¢)] < 1 and

¢ (t)| < 4 for all £, ¢(t) = 1 for |¢| < §, and ¢(t) = 0 for [¢| > 2. Define

Fn = ¢(npg,, ) F.
We have
(a) F,, = F on the set G,,.
(b) F, is bounded by n. Indeed,

Ful L4y, <2y |Fl <1,

because pg, < = implies that there exists h € H with w + i(h) €
G, C A, and ||hHH<i< 1

3n —n’

(c) For any k € H with ||k||g < 5= we have, using (4.6),

3n

[Fulw 4 (k) — Falw)| <
[6(npg, (@ + (k) F(w + (k) — dnpg, () F(w + i(k))]
+16(npg, (@) F(w + (k) — dnpe, (@) Fw)
<anlblal, <2 or o<yl Flw+ (k)]
1y, < 23 Flw+i(k) - F(w)|

<8n?|lkllm +1g,, <2 }HkIIH/ |DF(w + ti(k))| |z dt
< (8n2 + )]l -
So, by Exercise 1.2.9 we obtain F,, € D2, and the proof is complete. [J

Lemma 4.1.2 Let F be a random variable in Cy such that E(F?) < oo
and E(|DF||%) < co. Then F € D2
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Proof:  For any h € H and any smooth random variable G € S, we have
E((DF,h)nG)
1
= hn% —E((F(w+e¢€i(h)) — F(w)) G)
e—0 €

= lim 1E (FG(w — 6i(h))eEW(h)—§HhH?1 _ FG)

e—0 €
= E(F(GW(h) — (DG, h)u)).
The result then follows from Lemma 1.3.1. O

For any h € H the random variable W(h) is a.s. H-continuously differ-
entiable and D(W(h)) = h (see Exercise 4.1.3).

4.1.4  Transformations induced by elementary processes

Denote by {e;, ¢ > 1} a complete orthonormal system in H. We will
assume that e; € Q*; in that way W (e;) is a continuous linear functional
on €. Consider a smooth elementary process u € Sy (see Section 1.3.1) of
the form

N
= v (W(er),..., Wien))es, (4.7)

N
T(w)=w+ > 1;(W(er),...,W(en))i(e;)
=1
Define the random variable
N 1
n(u) = | det(I + A)|exp Zuej YaW (e;) §Zue] , (4.8)
Jj=1 Jj=1
where
A ='W
and

W(N) = (W(el)a ) W(eN))
We claim that 7 can also be written as

n(u) = |deto (I + Du)| exp(—d(u) — %IIUH%% (4.9)

where deto(/ + Du) denotes the Carleman-Fredholm determinant of the
square integrable kernel I + Du (see the appendix, section A4). In order
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to deduce (4.9), let us first remark that for an elementary process u of the
form (4.7) the Skorohod integral 6(u) can be evaluated as follows:

5w = S NWe) - 33 S W e, e

j=1 j=11i=1 Oz;
N

= ) (ue;)pW(e;) — TA. (4.10)
j=1

On the other hand, the derivative Du is equal to

N N 8Z/Jj "
Du=> 3" Aje;@e;, Ajj= T, (W), (4.11)

j=1i=1
and the Carleman-Fredholm determinant of the kernel I + Du is
det(I + A)exp(—T A),

which completes the proof of (4.9).

The following proposition contains the basic results on the problems (A)
and (B) for the transformation T induced by u, when u € Sg.

Proposition 4.1.4 Suppose that u is a smooth elementary process of the
form (4.7). It holds that

(i) If T is one to one, we have
En(u)F(T)] < E[F] (4.12)
for any positive and bounded random variable F.

(i) If deta(I4Du) # 0 a.s. (which is equivalent to saying that the matric
I+’ (x) is invertible a.e.), then

PoT ! <P (4.13)

(iii) If T is bijective, then
En(u)F(T)] = E[F], (4.14)
for any positive and bounded random variable F.
Proof:  Let us first remark that T is one to one (onto) if and only if the
mapping p(x) = x4 1(x) is one to one (onto) on RY. We start by showing

(i). It suffices to assume that the random variable F' has the form

F=f(W(e),...,W(en), G) (4.15)
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where G denotes the vector (W (en+1), ..., W(en)), M > N, and f belongs

to the space Cg°(RM). The composition F(T) is given by
F(T)=f(W(e1) + (u,e1)m, ..., W(en) + (u,en)m, G).

Note that (u,e;)m = wj(W(N )). Applying the change-of-variables formula
and using the one to one character of ¢, we obtain

N 1 N
EnF(T)] = E[|det(I + A)| exp fZ(u ey uW(e;) — 52 u, €)%
Xf(W(el) + (u, 61>H, RN W(GN) + (u, €N>H, G)]
1 N
:E/]RN det (I + ' (2)) | exp 7;(% +4,(2))

< fz1 40, (), an + Uy (@), G)(2r) "% dry - day

N

1

=F exp —fz yj2 f,- . yn, G) (277)_% dyy -+ - dyn
P(RN) 2]‘:1

N

1

SE [ exp| 5> 0} | Furoyn, G)(@m) " Fdyr - dyy
RN i=1

= E(F). (4.16)

This concludes the proof of (i). Property (ii) follows from the fact that ¢
is locally one to one. Indeed, we can find a countable family of open sets
G, C RY such that their union is {det(I + ¢") # 0} and ¢ is one to one
on each G,. This implies by (i) that

E[n(u)l{w(meGn}F(T)] < E[F]

for any nonnegative and bounded random variable F, which yields the
desired absolute continuity. Finally, property (iii) is proved in the same
way as (i). O

Remarks: Condition deto(I + Du) # 0 a.s. implies a positive answer to
problem (A). On the other hand, the bijectivity of T" allows us to deduce
a Girsanov-type theorem. Notice that (4.12) implies (4.13) and (4.12), and
the additional hypothesis E[n(u)] = 1 implies (4.14).

In the next section we will extend these results to processes that are not
necessarily elementary.

4.1.5  Anticipating Girsanov theorems

Let us first consider the case of a process whose derivative is strictly less
than one in the norm of H ® H. We need the following approximation
result.
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Lemma 4.1.3 Let u € LY? be such that |Dullpgn < 1 a.s. Then there
exists a sequence of smooth elementary processes u, € Sy such that a.s.
U — U, N(ty) — n(u), and || Dus||pen < 1 for all n.

Proof: Tt suffices to find a sequence u,, such that u,, converges to u in the
norm of L2, and ||Du, || ger < 1. In fact, the almost sure convergence
of u,, and n(uy,) is then deduced by choosing a suitable subsequence (note
that Du and §(u) are continuous functions of w with respect to the norm
of LY2, and n(u) is a continuous function of u, Du, and 6(u)). Moreover,
to get the strict inequality || Dul|pgn < 1, we replace u, by (1 — 1)u,.

The desired sequence u,, is obtained as follows. Fix a complete orthonor-
mal system {e;, i > 1} C Q* in H, and denote by F,, the o-field generated
by W) = (W(ey),...,W(e,)). Define

n

Pou=> " E[(u,e;)u|Fnle;.

i=1
Then P,u converges to  in the norm of L2, and
ID[Pru]l|lton < [|E[DulFulllaen < 1.

By Exercise 1.2.8 we know that E[(u, €;) | Fn] = f;(W ™)), where the func-
tion f; belongs to the Sobolev space W12(R™, N (0, 1,,)).

Replacing f; by Uy o f;, where Uy € C§°(R) is a function equal to x if
|z] < N and |¥'y(x)] < 1, we can assume that f; and its partial derivatives
are bounded. Finally, it suffices to smooth f; by means of the convolution
with an approximation of the identity. In fact, we have

n n n

Y (e 05 f)(@) < Y e # (951 (2) < Y (05 £:)*(2) < 1
ij=1 i,j=1 i,j=1
a.e., which allows us to complete the proof. O

The following result is due to Buckdahn and Enchev (cf. [48] and [91]).
See also Theorem 6.1 in Kusuoka’s paper [178].

Proposition 4.1.5 Suppose that u € LY? and ||Dullggy < 1 a.s. Then
the transformation T(w) = w + i(u) verifies (4.12), and PoT~! << P.

Proof:  Let u, be the sequence provided by Lemma 4.1.3. The transfor-
mation T associated with each process u,, is one to one, because ¢,, is a
contraction (we assume ||Duy || mer <1 — 1). Then, by (4.12), for each n
we have

En(un)F(T,)] < E[F],

for any nonnegative, continuous, and bounded function F'. By Fatou’s lem-
ma this inequality holds for the limit process u, and (4.12) is true. Finally,
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the absolute continuity follows from the fact that n(u) > 0 a.s. because
||DUHH®H <1 a.s. J

If in Proposition 4.1.5 we assume in addition that F[n(u)] = 1, then
(4.14) holds. A sufficient condition for E[n(u)] = 1 has been given by
Buckdahn in [48] (see also Exercise 4.1.4).

In order to remove the hypothesis that the derivative is strictly bounded
by one, we will show that if u is H-continuously differentiable then the
corresponding transformation can be locally approximated by the compo-
sition of a linear transformation and a transformation induced by a process
whose derivative is less than one. The H differentiability property seems to
be fundamental in order to obtain this decomposition. The following two
lemmas will be useful in completing the localization procedure.

Lemma 4.1.4 Suppose that there exists a sequence of measurable sets B,

and an element u € Lllog such that U, B, = Q a.s., and

E[n(u)lp, F(T)] < E[F] (4.17)

for any n > 1, and for any nonnegative, measurable and bounded function
F. Then

(i) if deta(I + Du) # 0 a.s., we have PoT~! << P;
(#) if there exists a left inverse T; such that Ty o T = Id a.s., then
En(u)F(T)] < E[F]
for any nonnegative, measurable, and bounded function F.

Proof:  Part (i) is obvious. In order to show (ii) we can assume that the
sets B, are pairwise disjoint. We can write B,, = T~(T7; '(By,)), and we
have

E[p(u)F(T)] =Y Eln(wlp, F(I)] <Y Ellp g F(T)] < BIF].

O

We will denote by C%(H) the class of a.s. H-continuously differentiable
processes (or H-valued random variables).

Lemma 4.1.5 Let u; € Cy(H), ug,uz € LY, and denote by Ty, T», and
T3 the corresponding transformations. Suppose that

(i) PoTy ! << P;
(ZZ) T3:T1 OT2 (07”U3:U2+U1(T2)).

Then we have
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(a) I+ DU3 = [I+ (Dul)(Tg)] (I+D’Uq),
(b) n(uz) = n(ur)(T2)n(uz).

Remarks: We recall that the composition (Du;)(Dug) verifies

(Duy)(Dug) = > De, ((u1,€3) 1) De, ((uz, ) 1)e; @ ¢
i,5,k=1

Proof of Lemma 4.1.5: From Lemma 4.1.2 we deduce

DU3 = DUQ + (D’ul)(Tg) + (Dul)(Tg)(DLQ),

which implies (a). In order to prove (b) we use the following property of
the Carleman-Fredholm determinant:

detg[(l + Kl)(l + KQ)] = detg(I + Kl)detg(l + KQ) eXp(—T(KlKQ)).
Hence,
U(U3) = det2 (I + (Dul)(Tz)) detQ(I + DUQ)
x exp(—=T[(Duy ) (T2)(Duz)])

1
x exp | —6(uz) — 0(u1(T2)) — 5\%”%{

1
— s ()~ Ca,wn (T3)) |
Finally, we use the property

6(ui(Tz)) = (f(W(h)+ (h,u2)m)g)
= f(W(h) + (hyu2) )W (g) — f(W(h) 4 (h,uz) ) ((h, 9)
—(Dug, h @ g) )
= 0(u1)(T) — (u1(T2),u2) u — T[(Du1)(T2)(Duz)],

which allows us to complete the proof. ]

We are now able to show the following result.

Proposition 4.1.6 Let u € C}(H), and assume that deta(I + Du) # 0
(which is equivalent to saying that I + Du is invertible a.s.). Then there
exists a sequence of measurable subsets G, C Q such that U,G,, = Q a.s.,
and three sequences of processes up 1, Un,2, and Uy 3 such that

(a) un1 = vy, is deterministic;

(b) un2 belongs to LY and | Duyol|lpen < c<1;
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(¢c) un3 is a smooth elementary process given by a linear map ,, such
that det(I +1,,) # 0;

(d) T=Ty10Tp20Th3 on Gy, where T and T,,; (i = 1,2,3) are the
transformations associated with the processes u and u,, ;, respectively.
In other words, u = vy + Un,2(Th.3) + Un,3, on Gy,

Proof:  Let {e;,i > 1} C Q* be a complete orthonormal system in H.
Fix a countable and dense subset Hy of H. Consider the set X C H @ H
formed by the kernels of the form

n
K = Z /\ijei®ej,
i,j=1
where n > 1, A\;; € Q, and det(I + A) # 0. The set K is dense in the set
{K € HRH : deto(I+K) # 0}, and for any K € K the operator I+ K has
a bounded inverse. We will denote by K the smooth elementary process
associated with K, namely,

K == Z )\,;jW(ej)ei.

2,j=1

So, we have Deif( = K(e;), i > 1. Fix a positive number 0 < a < §, where
0 < ¢ < 1 is a fixed number. Set

V() = 11+ )Mz -

Consider the set of triples v = (K,v,n), withn > 1, K € K, and v € Hy,
such that v(K) < g-. This countable set will be denoted by Z. For each
v € T we define the following set:

C, = {w €Q: sup ||Du(w+i(h) — K||peon < av(K),
Bl <+

—n

Ju(w) ~ K w) ~ vl < LE

Then the union of the sets C, when v € 7 is the whole space 2 a.s., because
deta(I + Du) # 0 and w is a.s. H-continuously differentiable. We can find
o-compact sets G, C C,, such that P(G,) = P(C,). The sets G, constitute
the family we are looking for, and we are going to check that these sets
satisfy properties (a) through (d) for a suitable sequence of processes.

Let ¢ € C§°(R) be a nonnegative function such that |¢(t)] < 1 and
|¢'(t)] < 4 for all ¢, ¢(t) =1 for [t| < 3, and ¢(t) = 0 for [t| > 2. Define

Uyl = Y,
Uy 3z = K7
we = ¢lnpg, (T,3)] [w(T,3) — uvs(T,3) —v].
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Clearly, these u, 1 and u, 3 satisfy conditions (a) and (c), respectively. Then
it suffices to check properties (b) and (d). The process u, 2 is the product of
two factors: The first one is a random variable that is bounded and belongs
to DYP for all p > 2, due to property (iv) of the function p. The second
factor is H-continuously differentiable.

Let us now show that the derivative of u, 2 is bounded by ¢ < 1 in the
norm of H ® H. Define

vy, = uy2(T,3) = ¢(npg, ) lu — K —v]. (4.18)

Then u, 2 = v,,(T,;?}), and we have

i+ K17 Du) (@) | o
< AE) Do) D s

So it suffices to check that ||Dv,||per < ¢y(K). We have

[ Duy2|lnen

A

1Dvslron < 14, <1y([Du = Klnon
+n|lu — uy 3 — v g)-
Suppose that pg (w) < % Then there exists an element A € H such that

w+i(h) € G, and ||h||g < +. Consequently, from the definition of the set
C, we obtain for this element w

[(Du)(w) = Kllnou < ay(K),

and
[u(w) —uwsw) —vllg < [lu(w+i(h) —us(w+i(h)) —vlla
Hllu(w +i(h)) — u(w) = (K, h) || a
< mg{) + 1 /01<(DU)(w +ti(h)) — K, h)gdt| g
< oK)

Hence, we have || Dv, ||pgr < 9ay(K). Also this argument implies that u,, o
is bounded. As a consequence (see Exercise 4.1.5), u, o belongs to L1:2.

Finally, we will check property (d). Notice first that w € G, implies
pg,(w) = 0. Therefore, from (4.18) we obtain

w(w) = v+ uy 2(Ty 3(w)) + up 3(w).
O

Using the above proposition we can prove the following absolute conti-
nuity result.
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Theorem 4.1.1 Let u be a process that is a.s. H-continuously differen-
tiable. Suppose that I + Du is invertible a.s. (or deta(I + Du) # 0 a.s.).
Denote by T the transformation defined by T(w) = w + i(u(w)). Then
PoT ! << P.

Proof: Consider the decomposition T' = T;, 1 0T}, 20T}, 3 and the sequence
of sets Gy, introduced in Proposition 4.1.6. The transformations T}, ;, i =
1,2, 3, verify (4.12). For ¢ = 1,3 this follows from part (i) of Proposition
4.1.4, and for ¢ = 2 it follows from Proposition 4.1.5. From Lemma 4.1.5
and using the local property of n(u), we have

n(u) = nW)(Tn2 0 Ty 3)n(tn2)(Th3)n(un3) on Gy,

Consequently, for any nonnegative and bounded random variable F' we
obtain

Ele, F(T)n(uw)] =
Elg, F(Thi0Th20Th3)n(w)(Thz2 0 Tns)n(un,2)(Th3)n(un,3)]
S E[F (T 0 Tn2)n(v)(Tn,2)n(un,2)]
< E[F(Tha)n(v)] < E[F],

and the result follows from Lemma 4.1.4. O

The main result of this section is the following version of Girsanov’s
theorem due to Kusuoka ([178], Theorem 6.4).

Theorem 4.1.2 Let u be a process that is H-continuously differentiable,
and denote by T the transformation defined by T'(w) = w+i(u(w)). Suppose
that

(i) T is bijective;
(i1) I + Du is invertible a.s. (or deto(I + Du) # 0 a.s.).

Then there exists a probability Q equivalent to P, such that QoT ! = P,
given by
dQ 1 2
— = |deto(I 4+ Du)|exp(—=d(u) — = |lul|%). (4.19)
dP 2
Proof: ~ From Theorem 4.1.1 we know that Eq. (4.17) of Lemma 4.1.4
holds with the sequence of sets G,, given by Proposition 4.1.6. Then part
(ii) of Lemma 4.1.4 yields
Eln(u)F(T)] < EIF], (4.20)
for any nonnegative and bounded random variable F. It is not difficult to
see, using the implicit function theorem, that the inverse transformation
T~ is also associated with an a.s. H-continuously differentiable process.
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Let us denote this process by v. From Lemma 4.1.5 applied to the compo-
sition I =Tt o T, we get 1 = n(v)(T)n(u). Therefore, PoT << P, and
applying (4.20) to T~ we get

E(F) = E[n(v)n(u)(T~")F] < Eln(u)F(T)],
so the equality in (4.20) holds and the proof is complete. a

FEzxercises

4.1.1 Show that the law of the continuous process W;+t f (W7) is absolutely
continuous with respect to the Wiener measure on Cy([0, 1]) if and only if
Y 4+ f(Y) has a density when Y has N(0,1) law. If f is locally Lipschitz,
a sufficient condition for this is f'(x) # —1 a.e.

4.1.2 Using It6’s formula, show that
S S 2
2W, W; 1
E — ——dW; — 2 ———dt <
(e"p< / 02" / (1—07 )) 7

where S = inf{t: W2 =1—t}.

4.1.3 Show that for any h € H the random variable W (h) is a.s. H
continuously differentiable and D(W (h)) = h.

4.1.4 Let u € Y2 be a process satisfying the following properties:

(i) || Du ||H®H< c <1
(i) F (exp(% fol ufdt)) < oo for some g > 1.

Show that E(n) =1 (see Enchev [91]).

4.1.5 Let F € C};, and G € D'? for all p > 1. Assume that E(F?G?) <
and
E(|DF||3G? + DG} F?) < .

Show that F'G belongs to D2,

4.2 Markov random fields

We start by introducing the notion of conditional independence.

Definition 4.2.1 Let F1, F2, and F3 be three sub-o-algebras in a proba-
bility space (0, F, P). We will say that F1 and Fy are conditionally inde-
pendent given Fs if

P(A; N Ag|F3) = P(A1|F3)P(As|F3)
for all Ay € Fy and Ay € Fs. In this case we will write fllj__L}"Q.
3
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The conditional independence fll}_L}"g is equivalent to the property
3

P(Ay|F3) = P(A1|F2 vV Fs)

for all A; € F;. We refer to Rozanov [296] for a detailed analysis of this
notion and its main properties.

The conditional independence allows us to introduce several definitions of
Markov’s property. Let { X (¢),t € [0,1]} be a continuous stochastic process.

(a) We will say that X is a Markov process if for all t € [0, 1] we have

o{X,,r €0,t]} %} o{X,,r € [t,1]}.

(b) We will say that X is a Markov random field if for all 0 < s <t <1
we have

o{X,,re [&t]}a{%}&}a{th €0,1] = (s,8)}.

Property (a) is stronger than (b) (see Exercise 4.2.3). The converse is
not true (see Exercise 4.2.4).

In the next section we will apply Theorem 4.1.2 to study the Markov
field property of solutions to stochastic differential equations with boundary
conditions.

4.2.1 Markov field property for stochastic differential
equations with boundary conditions

Let {Wy,t € [0, 1]} be a standard Brownian motion defined on the canonical
probability space (2, F, P). Consider the stochastic differential equation

{ Xy = Xo — Jo F(Xs)ds +W, (4.21)

XO = g(Xl - XO)a

where f,g: R — R are two continuous functions.

Observe that the periodic condition Xy = X; is not included in this
formulation. In order to handle this and other interesting cases, one should
consider more general boundary conditions of the form

X() = g(ef)‘Xl — Xo),

with A € R. The periodic case would correspond to A # 0 and g(z) =
(e=* —1)"1z. In order to simplify the exposition we will assume henceforth
that A = 0.
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When f =0, the solution of (4.21) is
Y, = W, + g(Wh). (4.22)

Denote by X the set of continuous functions z : [0,1] — R such that zy =
g(x1 — 2p). The mapping w — Y (w) is a bijection from € into X. Consider
the process Y = {V;,t € [0, 1]} given by (4.22). Define the transformation
T:Q—Qby

W) = wy —|—/0 f(Ys(w))ds. (4.23)

Lemma 4.2.1 The transformation T is a bijection of Q if and only if Eq.
(4.21) has a unique solution for each w € Q; in this case this solution is

given by X =Y (T (w)).

Proof:  If T(n) = w, then the function X; = Y;(n) solves Eq. (4.21) for
W, = w;. Indeed:

t t
Xo=Xot = Xotw— [ FVG)ds = Xo+ We— [ F(X)ds
0 0

Conversely, given a solution X to Eq. (4.21), we have T(Y ~1(X)) = W.
Indeed, if we set Y ~1(X) = 7, then

T = n+ /f n)ds =17, + /f

n+ Wy — Xy + Xo =

]

There are sufficient conditions for T to be a bijection (see Exercise
4.2.10). Henceforth we will impose the following assumptions:

(H.1) There exists a unique solution to Eq. (4.21) for each w € .

(H.2) f and g are of class C'L.

Now we turn to the discussion of the Markov field property. First notice
that the process Y is a Markov random field (see Exercise 4.2.3). Suppose
that @ is a probability on Q such that P = QoT~!. Then {T'(w);,0 <t < 1}
will be a Wiener process under @), and, consequently, the law of the process
X under the probability P coincides with the law of Y under Q. In this way
we will translate the problem of the Markov property of X into the problem
of the Markov property of the process Y under a new probability Q). This
problem can be handled, provided @ is absolutely continuous with respect
to the Wiener measure P and we can compute an explicit expression for its
Radon-Nikodym derivative. To do this we will make use of Theorem 4.1.2,
applied to the process

w = f(%3). (4.24)
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Notice that T is bijective by assumption (H.1) and that u is H-continuously
differentiable by (H.2). Moreover,

Dgur = f'(Yo)lg'(Wh) + 1s<ny)- (4.25)

The the Carleman-Fredholm determinant of kernel (4.25) is computed in
the next lemma.

Lemma 4.2.2 Set oy = f'(Y:). Then
det2([+D’U1) _ (1 +g/(Wl) (1 — e fol Oétdt)) e*Q’(Wl)fol atdt'

Proof:  From (A.12) applied to the kernel Du, we obtain

deto(I+Du) =1+ Y 12, (4.26)
n.

n=2

where

Yn / det (121 Dy ug, )dty .. . dty,
[071]'”

{t1<ta<--<tn}

n

( /0 1 a(t)dt> det B,

and the matrix B,, is given by

0 gW)+1 gW)+1 - g(W)+1

g'(W) 0 gW)+1 - g(W)+1

B=1|gW) ¢n) 0 e g (W) +1
gW)  ¢'(M) gWy) - 0

Simple computations show that for all n > 1
det B, = (=1)"g'(W1)"(¢'(W1) + 1) + (=1)" "¢ (W) (¢'(W1) + D)™

Hence,

0 1
deto(I + Du) =14 % ( / a(t)dt>
n=1 0
X [(—1)"9'(W1)”(g'(W1) +1)+ (—1)n+1g/(W1)(g’(W1) + 1)”}
= (g/ (W) + 1)e=9 WD Jo andt /(1) =("(W+D) [ vt
= (1 + g'(Wl) (1 — e fol atdt)) e—g/(Wl)fol atdt.

n
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Therefore, the following condition implies that dety(I + Du) # 0 a.s.:
(H.3) 1+4'(y) (1 - e_f/(“‘g(y))) # 0, for almost all z,y in R.

Suppose that the functions f and g satisfy conditions (H.1) through
(H.3). Then the process u given by (4.24) satisfies the conditions of Theo-
rem 4.1.2, and we obtain

nw =12 - \1+g'<wl> 1o - /Olf’(Yt)dt>H (1.27)

x exp(—g’<W1> /O P /0 W,

-3 /0 1 f<m2dt>.

We will denote by ® the term

d=1+g (W) {1 - eXp<— /01 f’(Yt)dtﬂ ;

and let L be the exponential factor in (4.27). Using the relationship between
the Skorohod and Stratonovich integrals, we can write

/Olf(Y;t)th = /Olf(Yt) o dW; — ;/Olf/(y;:)dt—g/(Wl)/Ol F(Y,)dt.

Consequently, the term L can be written as

1 1 1
Lzexp(— /0 F¥) 0 dW, + /0 PV~ /0 f(Yt)2dt)- (4.28)
In this form we get
n(u) = |®|L.

The main result about the Markov field property of the process X is the
following:

Theorem 4.2.1 Suppose that the functions f and g are of class C? and
f' has linear growth. Suppose furthermore that the equation

X, = Xo — [) f(X)ds + W,
{ Xo = g(X:1 = Xo) (4.29)

has a unique solution for each W € Q and that (H.3) holds. Then the
process X wverifies the Markov field property if and only if one of the fol-
lowing conditions holds:

(a) f(x) =ax+Db, for some constants a,b € R,
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(b) ¢ =0,
(c) g =-1

Remarks:

1. If condition (b) or (c) is satisfied, we have an initial or final fixed value.
In this case, assuming only that f is Lipschitz, it is well known that there
is a unique solution that is a Markov proces (not only a Markov random
field).

2. Suppose that (a) holds, and assume that the implicit equation x =
g((e~® — 1)z + y) has a unique continuous solution = ¢(y). Then Eq.
(4.29) admits a unique solution that is a Markov random field (see Exercise
4.2.6).

Proof:  Taking into account the above remarks, it suffices to show that if
X is a Markov random field then one of the above conditions is satisfied.
Let @ be the probability measure on Cy([0, 1]) given by (4.27). The law of
the process X under P is the same as the law of Y under Q. Therefore, Y
is a Markov field under Q.

For any ¢ € (0,1), we define the o-algebras

Fi=0{Yu, 0<u<t}=o{W,, 0<u<tgW)},
ff:U{Yu, t<u<l, YO}:U{VVU7 tgugl}, and
FP = o{Y0,Yi} = of Wy, g(Wh)}.

The random variable L defined in (4.28) can be written as L = LiL¢,
where

t t t
Li = exp(—/o f(Ys) 0odW, + %/0 f'(Ys)ds — %/0 f(YS)2ds>

and
1 1 1
si—ew(= [ soeaw.+ ] [ pwas— g [ rootas).

Notice that L is F;-measurable and L§ is Ff-measurable. For any nonneg-
ative random variable &, F;-measurable, we define (see Exercise 4.2.11)

E(En(w) | Ff) _ E(EI®IL; | FF)

Ne = EQ(E|Fy) = E(m) | Fe) — E(®LI | F5)

The denominator in the above expression is finite a.s. because n(u) is inte-
grable with respect to P. The fact that Y is a Markov field under @ implies
that the o-fields F; and F¢ are conditionally independent given Fy. As a
consequence, A¢ is FP-measurable. Choosing £ = (Li)~! and & = x(Li)™1,
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where y is a nonnegative, bounded, and F/-measurable random variable,
we obtain that

Q0| F) . E(9L|F)
E(|®|L} | F¢) E(|®[Li | F¢)
are Fp-measurable. Consequently,
_ Ex|®| | FF)
Gy = L
E(|®[ | F¥)

is also FP-measurable.

The next step will be to translate this measurability property into an
analytical condition using Lemma 1.3.3. First notice that if x is a smooth
random variable that is bounded and has a bounded derivative, then G,
belongs to D2 because f' has linear growth. Applying Lemma 1.3.3 to the

loc
random variable G, and to the o-field o{W;, W1} yields
d
—D[G,] =0
dS [ X}

a.e. on [0, 1]. Notice that = D,x = 0 a.e. on [t, 1], because x is Fj-measurable
(again by Lemma 1.3.3). Therefore, for almost all s € [t, 1], we get

d e € € d €
B g 0.0l | 72| Bl | 7] = Eldiel | 1 B | L0l | 7).

The above equality holds true if x is Ff-measurable. So, by a monotone
class argument, it holds for any bounded and nonnegative random variable
X, and we get that

1d —g' W) Zf"(Ws + g(Wh))

——D,® =
dds 1+g(W)(1-2)

is Ff-measurable for almost all s € [t,1] (actually for all s € [¢,1] by
continuity), where

Z:em(—A{fm0+ﬁWﬂM0.

Suppose now that condition (a) does not hold, that is, there exists a point
y € R such that f”(y) # 0. By continuity we have f”(x) # 0 for all  in
some interval (y — €,y + €). Given t < s < 1, define

As - {f//(Ws +g(W1)) S (y —6Y + 6)}
Then P(A,) > 0, and

1 gWh)Z
L1rgW)(1-2)
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is Fy-measurable. Again applying Lemma 1.3.3, we obtain that

d g W)z

o | Trgmyi=z] ="

for almost all r € [0,¢] and w € As. This implies
g (W) + g (W) f"(W, + g(W1)) =0
a.e. on [0,¢] x A,. Now, if
B = A0 {f"(Wy +9(W)) € (y — e,y +€)},
we have that P(B) # 0 and
g (W) +4'(W1)) =0,

a.s. on B. Then if (b) and (c¢) do not hold, we can find an interval I such
that if Wy € I then ¢'(W1)(1 + ¢’(W1)) # 0. The set BN {W; € I} has
nonzero probability, and this implies a contradiction. O

Consider the stochastic differential equation (4.21) in dimension d > 1.
One can ask under which conditions the solution is a Markov random field.
This problem is more difficult, and a complete solution is not available. First
we want to remark that, unlike in the one-dimensional case, the solution
can be a Markov process even though f is nonlinear. In fact, suppose that
the boundary conditions are of the form

X = a 1<k<l,
XIF = by 1<k<d-lI,

where {i1,...,4} U {j1,...,J4a—1} is a partition of {1,...,d}. Assume in
addition that f is triangular, that means, f*(z) is a function of x!, ..., z*
for all k. In this case, if for each k, f* satisfies a Lipschitz and linear
growth condition on the variable ¥, one can show that there exists a unique
solution of the equation dX; + f(X;) = dW; with the above boundary
conditions, and the solution is a Markov process. The Markov field property
for triangular functions f and triangular boundary conditions has been
studied by Ferrante [97]. Other results in the general case obtained by a
change of probability argument are the following:

(1) In dimension one, and assuming a linear boundary condition of the
type FoXo+F1 X1 = ho, Donati-Martin (cf. [80]) has obtained the existence
and uniqueness of a solution for the equation

dXt = O'(Xt> o th + b(Xt)
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when the coefficients b and ¢ are of class C* with bounded derivatives,
and FyFy # 0. On the other hand, if ¢ is linear (o(z) = ax), hg # 0, and
assuming that b is of class C?, then one can show that the solution X is a
Markov random field only if the drift is of the form b(z) = Az + Bz log ||,
where |B| < 1. See also [5] for a discussion of this example using the
approach developed in Section 4.2.3.

(2) In the d-dimensional case one can show the following result, which
is similar to Theorem 2.1 (cf. Ferrante and Nualart [98]):

Theorem 4.2.2 Suppose f is infinitely differentiable, g is of class C?, and
det(I—p(1)g'(W1)+g' (W1)) # 0 a.s., where ¢(t) is the solution of the linear
equation do(t) = f(Y:)p(t)dt, ¢(0) = I. We also assume that the equation

{ Xy = Xo — [y f(Xs)ds + W,
Xo = g(X1 — Xo)

has a unique solution for each W € Co([0,1];R?), and that the following
condition holds:

(H.4) span(0;, -+ 0;, f'(2);i1,. . im €{1,...,d},m > 1) = R4,
for all x € R?,

Then we have that ¢'(x) is zero or —Ig, that is, the boundary condition
is of the form Xog =a or X1 = b.

(3) Tt is also possible to have a dichotomy similar to the one-dimensional
case in higher dimensions (see Exercise 4.2.12).

4.2.2  Markov field property for solutions
to stochastic partial differential equations

In this section we will review some results on the germ Markov field (GMF)
property for solutions to stochastic partial differential equations driven by a
white noise which have been obtained by means of the technique of change
of probability.

Let D be a bounded domain in R* with smooth boundary, and consider
a continuous stochastic process X = {X,,z € D}. We will say that X is
a germ Markov field (GMF) if for any € > 0 and any open subset A C
D, the o-fields 0{X,,z € A} and o{X,,z € D — A°} are conditionally
independent given the o-field o{X,, z € (0A).}, where (0A). denotes the
e-neighborhood of the boundary of A.

We will first discuss in some detail the case of an elliptic stochastic partial
differential equation with additive white noise.
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(A) Elliptic stochastic partial differential equations

Let D be a bounded domain in RF with smooth boundary, and assume
k = 1,2,3. Let ¥ denote the Lebesgue measure on D, and set H =
L2(D, B(D), \*). Consider an isonormal Gaussian process W = {W (h), h €
H} associated with H. That is, if we set W(A) = W(1ly), then W =
{W(A),A € B(D)} is a zero-mean Gaussian process with covariance

E(W(A)W(B)) = \*(An B).
We want to study the equation

~AU@) + f(U@)) = W(z), x€D, (130)
Ulap =0.

Let us first introduce the notion of the solution to (4.30) in the sense of

distributions.

Definition 4.2.2 We will say that a continuous process U = {U(z),x €
D} that vanishes in the boundary of D is a solution to (4.30) if

—WA@wHﬂWMm=Af@WM@

for all ¢ € C°°(D) with compact support.

We will denote by G(z,y) the Green function associated with the Laplace
operator A with Dirichlet boundary conditions on D. That is, for any
¢ € L%(D), the elliptic linear equation

—AyY(z) =¢(z), z€D,
{ bl 0 (4.31)

possesses a unique solution in the Sobolev space H} (D), which can be
written as

wmzéamw@w

We recall that HJ(D) denotes the completion of C§°(D) for the Sobolev
norm || - ||1,2. We will use the notation ¢ = Gy. We recall that G is a
symmetric function such that G(z, ) is harmonic on D — {z}.

One can easily show (see [54]) that U is a solution to the elliptic equation
(4.30) if and only if it satisfies the integral equation

U@+ﬁp@@ﬂwm@:AG@www» (4.32)

Note that the right-hand side of (4.32) is a well-defined stochastic integral
because the Green function is square integrable. More precisely, we have

sup/ G?(x,y)dy < co. (4.33)
z€DJD
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In dimension k£ > 3 this property is no longer true, and for this reason the
analysis stops at dimension three.
We will denote by Uy the solution of (4.30) for f = 0, that is,

Uo(z) = /D G, )W (dy). (4.34)

Using Kolmogorov’s criterion one can show (see Exercise 4.2.13) that the
process {Up(z),z € D} has Lipschitz paths if k¥ = 1, Holder continuous
paths of order 1 — € if kK = 2, and Holder continuous paths of order % —e¢if
k =3, for any € > 0.

The following result was established by Buckdahn and Pardoux in [54].

Theorem 4.2.3 Let D be a bounded domain of R*, k = 1,2,3, with a
smooth boundary. Let f be a continuous and nondecreasing function. Then
Eq. (4.32) possesses a unique continuous solution.

A basic ingredient in the proof of this theorem is the following inequality:
Lemma 4.2.3 There exists a constant a > 0 such that for any ¢ € L*(D),
(Go, o) > al|GollF. (4.35)

Proof:  Set ¥ = Gy. Then ¢ solves Eq. (4.31). Multiplying this equation
by v and integrating by parts, we obtain

oy
ox i

k

>

1=1

2

H

From Poincaré’s inequality (cf. [120, p. 157]) there exists a constant a > 0
such that for any v € H}(D),

k
i=1

The result follows. O

We are going to reformulate the above existence and uniqueness theorem
in an alternative way. Consider the Banach space

B={weC(D),w|sp=0},

2

oY
% > a”?ﬂH%I

tIWH

equipped with the supremum norm, and the transformation T': B — B
given by

T(w)(z) = w(z) +/DG(1177y)f(w(y))dy~ (4.36)
Note that {U(z), 2z € D} is a solution to (4.32) if and only if
T(U(x)) = Uo().

Then Theorem 4.2.3 is a consequence of the following result.
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Lemma 4.2.4 Let f be a continuous and nondecreasing function. Then
the transformation T given by (4.36) is bijective.

Proof: ~ Let us first show that T is one to one. Let u,v € B such that
T(u) = T(v). Then

u—v+ Glf(u) — f(v)] = 0. (4.37)
Multiplying this equation by f(u) — f(v), we obtain
(=0, f(u) = f(0))u + (Gf(w) = f(v)], f(u) = f(v))a = 0.
Using the fact that f is nondecreasing, and Lemma 4.2.3, it follows that
al|G[f(u) = f()]IIF < 0.

By (4.37) this is equivalent to allu—vl[|%, < 0, so u = v and T is one to one.

In order to show that T is onto, we will assume that f is bounded. The
general case would be obtained by a truncation argument. Let v € B,
and let {v,,n € N} be a sequence of functions in C?(D), with compact
support in D, such that ||[v — vy ||eo tends to zero as n tends to infinity. Set
hn, = —Awv,. It follows from Lions ([199], Theorem 2.1, p. 171) that the
elliptic partial differential equation

_Aun + f(un) = hn
Unp |8D: 0

admits a unique solution u,, € H}(D). Then,
un + G[f (un)] = Ghy = vn, (4.38)

that is, T'(u,) = v,. We now prove that u,, is a Cauchy sequence in L?(D).
Multiplying the equation

Up, — U, + G[f(un) - f(um)] =Un —Unm

by f(un) — f(um), and using Lemma 4.2.3 and the monotonicity property
of f, we get

al|Glf (un) = f(um)lllzr < (W = Vi, f(un) = f (wm))
which implies, using the above equation,
a’llun - um”H < <vn — Um, f(un) - f(um) + 2a(un - Um)>H

Since {v,} is a Cauchy sequence in L?(D) and f is bounded, {u,} is a
Cauchy sequence in L?(D). Define u = limu,. Then f(u,) converges to
f(u) in L?(D). Taking the limit in (4.38), we obtain

u+Glf(u)] = v.
Thus u € B (f is bounded) and T'(u) = v. O
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Let us now discuss the germ Markov field property of the process U(z).
First we will show that the Gaussian process Uy (z) verifies the germ Markov
field property. To do this we shall use a criterion expressed in terms of the
reproducing kernel Hilbert space (RKHS) H associated to Up. Let Hy C
L?(Q) be the Gaussian space (i.e., the first chaos) generated by W. An
element v € B belongs to the RKHS H iff there exists a random variable
X € 'H; such that

v(z) = E[XUy(z)],

for all x € D, i.e., iff there exists ¢ € L?(D) such that v = G¢. In other
words, H = {v € B : Av € L?(D)}, and (v1,v2)3 = (Avy, Ava) .
We now have the following result (see Pitt [285] and Kiinsch [177]).

Proposition 4.2.1 A continuous Gaussian field U = {U(zx),z € D} pos-
sesses the germ Markov field property iff its RKHS H C B is local in the
sense that it satisfies the following two properties:

(i) Whenever u, v in H have disjoint supports, (u,v)y = 0.

(ii) If v € H is of the form v = vy + vy with vi,vo € B with disjoint
supports, then vy,vy € H.

The RKHS associated to the process Uy verifies conditions (i) and (ii),
and this implies the germ Markov field property of Uy. Concerning the
process U, one can prove the following result.

Theorem 4.2.4 Assume that f is a C? function such that f' >0 and f’
has linear growth. Then the solution {U(z),x € D} of the elliptic equation
(4.30) has the germ Markov property if and only if f" = 0.

This theorem has been proved by Donati-Martin and Nualart in [82]. In
dimension one, Eq. (4.30) is a second-order stochastic differential equation
studied by Nualart and Pardoux in [251]. In that case the germ o-field
corresponding to the boundary points {s,t} is generated by the variables
{XS,XS,Xt,Xt}, and the theorem holds even if the function f depends
on X; and X, (assuming in that case more regularity on f). The main
difference between one and several parameters is that in dimension one,
one can explicitly compute the Carleman-Fredholm determinant of Du.
Similar to the work done in [81] and [82] we will give a proof for the case
k=2or k=23.

Proof of Theorem 4.2.4: The proof follows the same lines as the proof of
Theorem 2.1. We will indicate the main steps of the argument.

Step 1:  We will work on the abstract Wiener space (B, H, 11), where p is
the law of Uy, and the continuous injection i : H — B is defined as follows:

i(h)(x) = /D Gz, y)h(y)dy.
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From Lemma 4.2.3 we deduce that ¢ is one to one, and from Eq. (4.33)
we see that ¢ is continuous. The image i(H) is densely included in B. We
identify H and H*, and in this way B* can be viewed as a dense subset of
H | the inclusion map being given by

a— / Gy, )a(dy) = G*a.
D

Finally, for any o € B* we have
/Bei<a,w>u(dw) = E{exp(i/DUo(x)oz(dx))}
_ E {exp(i /D /D G(x,y)dWya(dm‘))]

exp<§ / < / G(:c,y>a<dx>)2 dy>

.
ex (- 5167l ).

which implies that (B, H, p1) is an abstract Wiener space. Note that i(H)
coincides with the RKHS H introduced before, and that Up(z) = w(z) is
now the canonical process in the space (B, B(B), y).

We are interested in the germ Markov field property of the process
U(z) =T 1(Up)(z). Let v be the probability on B defined by p=voT 1.
That is, v is the law of U.

Step 2:  Let us show that the transformation 7' verifies the hypotheses
of Theorem 4.1.2. We already know from Lemma 4.2.4 that T is bijective.
Notice that we can write

T(w) =w+i(f(w)),
so we have to show that:

(i) the mapping w — i(f(w)) from B to H is H-continuously differen-
tiable;

(ii) the mapping Iy + Du(w) : H — H is invertible for all w € B, where
Du(w) is the Hilbert-Schmidt operator given by the kernel

Du(w)(z,y) = f'(w(x))G(z,y).

Property (i) is obvious and to prove (ii), from the Fredholm alternative,
it suffices to check that —1 is not an eigenvalue of Du(w). Let h € H be an
element such that

W) + ' (w()) /D G, y)h(y)dy = 0.
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Multiplying this equality by % and integrating over D, we obtain

@) _
/Df’(w(:v))d + (h,Gh)g = 0.

From Lemma 4.2.3, (h, Gh)y > a||Gh||%, thus |Gh||g =0 and h = 0.
Therefore, by Theorem 4.1.2 we obtain

d
# = |dety (I + Du)| exp(—5(u) — L[lull?). (4.39)
Set L = exp(—6(u) — 5 lul/?).

Step 3: For a fixed domain A with smooth boundary I' and such that
A C D, we denote

Fi=o{Us(z),r € A}, F¢=0o{Uy(x),x € D~ A},
and
F = Ne=00{Up(z), 2 € (0A)}.

Consider the factorization L = L*L¢, where

) 1
L' = exp (—5(U1A) - 2”“1/\”%1)

and
. 1
L = exp(—5(U1D_A) - QU1D—A”%I> :

We claim that J* is F*-measurable and J¢ is F¢-measurable. This follows
from the fact that the Skorohod integrals

6(u1A)=/Af(Uo(x))W(d:E)

and

Sty ) = [ fUu()Wda)

are Fl-measurable and F¢-measurable, respectively (see [81]).

Step 4:  From Step 3 it follows that if f” = 0, the Radon-Nikodym density
given by (4.39) can be expressed as the product of two factors, one being
Fi-measurable, and the second one being F¢-measurable. This factorization
implies the germ Markov field property of X under pu.

Step 5:  Suppose conversely that U possesses the germ Markov property
under p. By the same arguments as in the proof of Theorem 2.1 we can
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show that for any nonnegative random variable ¢ that is Fi-measurable,
the quotient
G _ Fleo | 7
=
E[® | 7]

is F-measurable, where ® = deta(I + f'(Up(z))G(z,y)). Observe that
® > 0 because the eigenvalues of the kernel f/(Uy(z))G(x,y)) are positive.

Step 6:  The next step will be to translate the above measurability prop-
erty into an analytical condition. Fix € > 0 such that A~ = A — T, and
A} = (D—A)-T. are nonempty sets. We have that G¢ is o{Up(z),x € T'c}-
measurable. If we assume that £ is a smooth random variable, then G¢ is
in Dllé?:v and by Lemma 1.3.3 we obtain that

DG¢ € (G(z,-),z €T )m.

This implies that for any function ¢ € C5°(D —T'¢) we have (¢, ADG¢)y =
0 a.s. Suppose that ¢ € C5°(AF). In that case we have in addition that
(¢, ADE) g = 0, because ¢ is Fi-measurable. Consequently, for such a func-
tion ¢ we get

El&(o, AD®)y | FIE[® | F] = E[£P | F°| E[($, AD¢)u | F7.

The above equality holds true for any bounded and nonnegative random
variable &, therefore, we obtain that

(6, ADB)y (4.40)

is F¢-measurable.

Step 7:  The derivative of the random variable ® can be computed using
the expression for the derivative of the Carleman-Fredholm determinant.
We have

D@ =T (I + f'(Uo(2))G(x,y)) ! = DD.[f'(Uo(2))G(x,y)]) -
So, from (4.40) we get that
T (I + f'(Uo(x))G(x,9) ™" = I){¢, AD.[f'(Uo(2))G(x, y)]) r)
is Fe-measurable. Note that
D.[f'(Uo(2)G(x,y)] = f"(Uo(2))G (x, 2)G(x,y)

and
Thus, we have that

T (((I+ f'(Uo(2))G(2,y)) ™" = D) (d(2) f" (Uo(2))G(x,y)))
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is Fé-measurable, and we conclude that for any xz € AT,
£/(Vala)) [ K )Gl )y

is Fe-measurable, where K (z,y) = (I + Du)~! — I)(z,y). Suppose now
that there exists a point b € R such that f”(b) # 0. Then f” will be nonzero
in some interval J. Set

A={we B: f"(Uy(x)) € J}.

The set A has nonzero probability, it belongs to F¢, and

1Alg«%ma@wwy

is Fe-measurable. Applying again Lemma 1.3.3 and using the same argu-
ments as above, we obtain that on the set A

(G + Du) = [f" (Uo(1))(21)G (a1, 22)] (I + Du)~Y) (z,2) = 0
for any function ¢ € C§°(A- ). So we get
L s o (@)e sy 1 (Uo (o) ey GU + Du) ™ (2, 21)G(I + Du) ™" (21, 2) = 0

for all z,x; such that * € AF and z; € A_. Notice that the operator
G(I + Du)~! has a singularity in the diagonal of the same type as G. So
from the above equality we get

L o(a)esy = 0,

which is not possible. ([l

(B) Parabolic stochastic partial differential equations

Consider the following equation studied in Section 2.4.2:

Qu 2w — flu(t,z)) + 5, (t,x) € [0,T] x [0, 1],
{ u(t,0) =u(t,1) =0, 0<t<T.

We will impose two different types of boundary conditions:

(B-1)  u(0,2) = uo(x),

(B.2) u(0,z)=u(l,z), 0<z<1.

In case (B.1) we are given a initial condition uy € C([0,1]) such that
up(0) = up(l) = 0, and in case (B.2) we impose a periodic boundary
condition in time. Under some hypotheses on the function f there exists a
unique continuous solution of the corresponding integral equation:
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For (B.1) a sufficient condition is that f is Lipschitz (see Theorem 2.4.3).

For (B.2) (see [253]) we require that there exists a constant 0 < ¢ < 2
such that

(z=9)(f(z) = f(y) < ez —y)?
for all y,z € R.

From the point of view of the Markov property of the solution, the be-
havior of these equations is completely different. In case (B.1) the GMF
property always holds. On the other hand, assuming that f(z) is of class
C? and that the boundary condition (B.2) holds, then the solution u has
the GMF property if and only if f” = 0. These results have been proved
under more general assumptions on the function f in [253].

4.2.8  Conditional independence and factorization properties

In this section we prove a general characterization of the conditional inde-
pendence and apply it to give an alternative proof of Theorem 4.2.1. More
precisely, we discuss the following general problem: Consider two indepen-
dent sub-o-fields Fi, F5 of a probability space, and let X and Y be two
random variables determined by a system of the form

{ X =g(Y,w)
Y =g (X,w)

where g;(y, -) is F;-measurable (i = 1,2). Under what conditions on g; and
go are F; and Fy conditionally independent given X and Y? We will see
that this problem arises in a natural way when treating stochastic equations
with boundary conditions.

Let (Q,F, P) be a complete probability space and let F; and F be two
independent sub-o-fields of F. Consider two functions g1,¢92 : R x @ — R
such that g; is B(R) ® F;-measurable, for ¢ = 1,2, and that they verify the
following conditions for some ¢y > 0:

H1 For every € R and y € R the random variables ¢;(y, ) and ga(z, )

possess absolutely continuous laws and the function

1
§(z,y) = sup — Pllz—gi(y)| <e,ly— g2(2)] < ¢}
0<e<ep €

is locally integrable in R2.

H2 For almost all w € Q and for any |£| < €9, |n| < €o the system

r—g (y>w) = 5
{ y—gzl(x,W) =7 (441)

has a unique solution (z,y) € R2.
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H3 For almost all w € Q the functions y — ¢1(y) and = — go(z) are
continuously differentiable and there exists a nonnegative random
variable H such that E(H) < oo and

—-1
sup 11— g1(y)g5(x)] < H as.
ly—g2(z)|<eo
lz—g1(y)<eo

Hypothesis H2 implies the existence of two random variables X and Y
determined by the system

X(w) =g (w),w)
{ Y(w) = g2(X (w),w). (4.42)

Theorem 4.2.5 Let g and g2 be two functions satisfying hypotheses H1
through H3. Then the following statements are equivalent:

(i) F1 and Fo are conditionally independent given the random variables
X, Y.

(ii) There ewist two functions F; : R? x Q — R, i = 1,2, which are
B(R?) @ F; -measurable for i = 1,2, such that

‘1_.9/1(Y)95(X) |:F1(X7Y)F2(X7Y) a.s.

Proof:  Let G; and G2 be two bounded nonnegative random variables
such that G; is F;-measurable for i = 1,2. Suppose that f : R? — R is
a nonnegative continuous and bounded function. For any x € R we will
denote by f;(z,-) the density of the law of g;(x), for ¢ = 1,2. For each
e > 0, define °(2) = 5= 1. (2). Set

Jay) =11 - gi(y)gale) | -
We will first show the equality
E[G1GaJ (X, V) f(X,Y)] (4.43)

= /RQ EGi|91(y) = 2] fi(y, 2)E G2 |g2(x) = y] fo(x, y) f (2, y)dxdy.

Actually, we will see that both members arise when we compute the limit
of

/RQ E[G1G2¢"(z — g1(y)) ¢ (y — g2(2))] f (2, y)dxdy (4.44)

as € tends to zero in two different ways.

For any w € Q we introduce the mapping ®,, : R?> — R? defined by

(I)w(x’y) = (l‘ - gl(?/’w)vy —gg(l‘,w)) = (x,y)
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Notice that @, (X (w),Y (w)) = (0,0). Denote by D.,(w) the set
Dey(w) = {(z,9) €R? : [z — g1(y, )| < €0, |y — ga2(w,w)| <eo0} .

Hypotheses H2 and H3 imply that for almost all w the mapping o, is
a Cl-diffeomorphism from D, (w) onto (—&g,0)?. Therefore, making the
change of variable (Z,7) = ®,(x,y), we obtain for any € < g¢

/RQ o (x = 91()¢" (y — 92(x)) f (2, y)dady
= [ @ @05 @ 9) (05" 0. ) dnd,

By continuity this converges to J(X,Y)f(X,Y) as € tends to zero. The
convergence of the expectations follows by the dominated convergence the-
orem, because from hypothesis H3 we have

J(®Y(z,9)) < sup |1 gi(y)gh(x)| " < H e LY(9)
|[y—g2(z,w)|<eo
lz—g1(y,w)|<eo

if |Z| < &9, and |g| < €.

Consequently, (4.44) converges to the left-hand side of (4.43) as € tends
to zero. Let us now turn to the proof that the limit of (4.44) equals the
right-hand side of (4.43). We can write

[G1G29°(z — 91(y)) ¢ (y — g2())]
= E[G19"(x — q1(y))] E[G29" (y — g2(z))]

= (/R o (z — )E |Gy |g1(y) = a] f1(y,a)da)
. (/R o (y = B)E [Gs |ga(a) = B] f2(x,mdﬁ> |

We are going to take the limit of both factors as € tends to zero. For the
first one, the Lebesgue differentiation theorem tell us that for any y € R
there exists a set NY of zero Lebesgue measure such that for all x ¢ NV,

laifg i o (x — )E[G1|g1(y) = o] fi(y,a)da = E[G1]g1(y) = =] f1(y, ).

In the same way, for the second integral, for each fixed x € R, there will be
a set N* of zero Lebesgue measure such that for all y & N*,

lin / oy — B)E (G2 g2(2) = B falz, B)dB = E (G lg2(x) = y] folz, ).
€ R

We conclude that, except on the set

N={(z,y):z € NY or ye N*}
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we will have the convergence

lgf{)lE [G1G2 ¢*(x — g1(y)) " (y — g2(x))]
= E[G1|g1(y) = z] f1(y, 2) E [G2 |g2(x) = y] fa(, y).

Thus, this convergence holds almost everywhere. The preceding equal-
ity provides the pointwise convergence of the integrands appearing in ex-
pression (4.44). The corresponding convergence of the integral is derived
through the dominated convergence theorem, using hypothesis H1.

Consequently, (4.43) holds for any continuous and bounded function f,
and this equality easily extends to any measurable and bounded function
f. Taking f = 1p, where B is a set of zero Lebesgue measure, and putting
G = Gy = 1, we deduce from (4.43) that P{(X,Y) € B} = 0 because
J(X,Y) >0 a.s. As a consequence, the law of (X,Y) is absolutely contin-
uous with a density given by

f1($7y)f2(y7x)
EJXY)[X =2,Y =y|’

fXY(xvy) =

Therefore, (4.43) implies that

EGi1G2J(X,Y)[X =2,Y =y] fxy(2,y)
= E[Gi|gi(y) = 2] fily,2)E[G2]g2(7) = y] fa(z,y), (4.45)

almost surely with respect to the law of (X,Y). Putting G2 = 1, we obtain

EGiJ(X,Y)|X =2,V =y] fxy(2,y) (4.46)
= E[G1|91(y) = =] f1(y, x) f2 (7, y),

and with G; =1 we get
E[GJ( X, V)X =2,Y =vy] fxv(z,y) (4.47)
=E [G2 |92(m) = y] fl(yvx)f2(x7y)
Substituting (4.46) and (4.47) into (4.45) yields

E[GiGoJ(X,Y)|X =2,Y =y|E[J(X,Y)|X =2,Y =y]  (4.48)
=E[GiJ(X,)Y)|X =a,Y =y|E[GoJ(X,Y)|X =2, =y].

Conditioning first by the bigger o-fields o(X,Y)V Fy and o(X,Y)V F, in
the right-hand side of (4.48), we obtain

E[G1GoJ(X,Y)|XY]E[J(X,Y)|XY] (4.49)
= E[G\E[J(X,Y)|X,Y,F1]|X,Y]
xE[GoE[J(X,Y)|X,Y, F]|X,Y].
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Suppose first that .7:1}1%]:2. This allows us to write Eq. (4.49) as follows:
E[G1GoJ(X,Y)E[J(X,Y)|X,Y]|X,Y]
Taking the expectation of both members of the above equality, we obtain

ElJ(X,Y)|X,Y]
EJX,V)|X,Y,A]E[JX,Y)|X,Y, ]

J(X,Y) ' =

This implies the desired factorization because any random variable that is
o(X,Y) V Fi-measurable (i = 1,2) can be written as F(X (w),Y (w),w) for
some B(R?) ® F;-measurable function F: R? x Q — R.

Conversely, suppose that (ii) holds. Then we have from (4.49)

E[G1G2|X,Y] = E[G1GoFy (X, Y)F(X,Y) J(X,Y)|X,Y]

 BGIR(X,)Y)J(X,Y)|X,Y]|E[G:F>(X,Y) J(X,Y)|X,Y]
N E[J(X,Y)|X,Y]

Writing this equality for G; = 1, Go = 1, and for G; = G5 = 1, we conclude
that
E[GiG:| X, Y| =E[Gi|X,Y]|E[G2|X,Y].

O

Remarks: Some of the conditions appearing in the preceding hypotheses
can be weakened or modified, and the conclusion of Theorem 4.2.5 will
continue to hold. In particular, in hypothesis H3 we can replace H(w)
by Hi(w)Hz(w), with H;(w) F;-measurable for ¢ = 1,2, and assume only
Hy(w)Hz(w) < oo a.s. In H1 the local integrability of the function §(z,y)
holds if the densities f1(y,z) and fa(z,2) of ¢1(y) and go(z) are locally
bounded in R2.

If the variables X and Y are discrete, then the conditional independence
7:1}%]—'2 is always true (see Exercise 4.2.9).

)

The following two lemmas allow us to reformulate the factorization prop-
erty appearing in the preceding theorem.

Lemma 4.2.5 Suppose that (A1, By) and (As, Bs) are R%-valued indepen-
dent random variables such that A1 Ay = B1By. Then either

(i) A1 =0 a.s. or Ay =0 a.s.; or

(ii) there is a constant k # 0 such that Ay = kB a.s. and Ay = k™1 By
a.s.
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Proof:  Suppose that (i) does not hold. Then P(A; # 0) # 0 and P(As #
0) # 0. Without loss of generality we can assume that the underlying
probability space is a product space (Q, F, P) = (Qq, F1, P1) x (Qa, Fo, P).
Let wy be such that As(wz) # 0. Then condition (ii) follows from the
relationship

O

Lemma 4.2.6 Consider two independent o-fields F1, Fo and two random
variables G1, Gy such that G; is F;-measurable for i = 1,2. The following
statements are equivalent:

(a) There exist two random wvariables Hy and Ho such that H; is F;-
measurable, 1 = 1,2, and

1-— G1G2 = H1H2.

(b) G1 or Gy is constant a.s.

Proof:  The fact that (b) implies (a) is obvious. Let us show that (a)
implies (b). As before we can assume that the underlying probability space
is a product space (1 X Qq, F1 ® Fa, P x Py). Property (a) implies that

[G1(@1) — G1(w1)|Ga(ws) = [Hi(w1) — Hy(@1)]Hz(w2),

where G and H; are independent copies of G; and H; on some space
(Q1, F1, Pr). Lemma 4.2.5 applied to the above equality implies either

(PA) G2 =0 as. or él —G1=0a.s.;or
(PB) G2 = kH; for some constant k # 0.

Then (PA) leads to property (b) directly and (PB) implies that 1 =
[Hy 4+ kG1]Hs. Again applying Lemma 4.2.5 to this identity yields that Ho
and thus G4 are a.s. constant. O

Corollary 4.2.1 Under the hypotheses of Theorem 4.2.5, assume in addi-
tion that 1 — g1 (Y)gh(X) has constant sign. Then conditions (i) and (i)
are equivalent to the following statement:

(i) One (or both) of the variables g1(Y) and g5(X) is almost surely con-
stant with respect to the conditional law given X,Y .

As an application of the above criterion of conditional independence we
are going to provide an alternative proof of Theorem 4.2.1 under slightly
different hypotheses. Let W = {W,,t € [0,1]} be a Brownian motion de-
fined in the canonical probability space (2, F, P).
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Theorem 4.2.6 Let f and 1 be functions of class C' such that |f'| < K
and 1// < 0. Consider the equation

{ Xo = Xo— [y f(Xs)ds + W,
Xo = (X1).

This equation has a unique solution X = {Xy,t € [0,1]} that is a Markov
random field if and only if one of the following conditions holds:

(4.50)

(a) f(x) =ax+Db, for some constants a,b € R;

(b) ¥' = 0.
Remarks:
1. The fact that a unique solution exists is easy (see Exercise 4.2.7).

2. The case X; constant (condition (c) of Theorem 4.2.1) is not included
in the above formulation.

Proof: ~ We will only show that if X is a Markov random field then one
of conditions (a) or (b) holds. We will assume that X is a Markov random
field and ¢’ (z¢) # 0 for some xo € R. Fix 0 < s < t < 1. The Markov field
property implies

X relst)t AL of{X.rée (st} (4.51)

o{Xs, X}
From the definition of the conditional independence we deduce

Fioo Al Fe 4.52
s,tU{Xth} s,t) ( )

where

f;,t =o{W, - W,,s <r <t}, and
Feo=0{W,,0<r <s;W, = Wy, t <r <1}

Indeed, (4.51) implies (4.52) because
f;t C o{X,,r €[s,t]}

and
Fei C o{X,,r e (st)}.

Define .
@w@=y</ﬂ%ﬁmw+m—W@

for any s <t and y € R. Consider the random functions g;,g2 : Rx Q2 — R
given by
91(y) = ¢54(y)
’ 4.53
AR I (45
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We have

{ Xt = gl(Xs)
Xs ZQQ(Xt>7

and we are going to apply Theorem 4.2.5 to the functions g; and go. Let
us first verify that these functions satisfy conditions H1 through H3 of this
theorem.

Proof of H1: ~ We have that g1 (y), g2(7) € D' for all p > 2, and, more-
over,
Drgi(y) = e~ Jif (sos,u(y))dul[syt] (r),

and
Dygo(z) = e I+ f’(wc,u(w(%,l(I))))dul[o 4(r)
_ (1 pr I w
+b s (V1 (@)W (11 ())e™ I I PralNdug (),

From these explicit expressions for the derivative of the functions ¢; and go
we can deduce the absolute continuity of the laws of these variables using
the criteria established in Chapter 2. In fact, we have ||D(g;))||lz > O,
i =1,2, and we can apply Theorem 2.1.3. Furthermore, we have

1
s Pz =) <e) <ef(t—s)2 (4.54)
and )
1
2—€P (ly = g2(z)| <e) < eKsa, (4.55)

which imply the boundedness of the function §(z,y) introduced in H1. In
fact, let us check Eq. (4.54). Set h=1(, yy and ¢ (2) =5 [*_ Ljz_c i q(r)dr.
We have Dy, (g1(y)) > e % (¢t — s). The duality formula (1.42) implies

D[t (91(y))] )
Dn(91(y))
E(Dn[¢c(91(w)]) _ E(W: = W)Y (91()))
e K(t—s) e K (t—s)

eK(t - S)_%7

Ple—a) = B(

IN

and (4.54) holds.
Proof of H2:  We are going to show that for all w € () the transformation
(l‘,y) — (l‘ - gl(y7w>7y - gg(x,w))

is bijective from R? to R?. Let (z,7) € R®. Set 2 =  + ¢, ,(y). It suffices
to show that the mapping

Y g5 (U (001 (T + 0,4 (9))) +7
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has a unique fixed point, and this follows from

(ciTl; = 90, ("/’ (%&,1(j + Sos,t(y)))) Y’ (%,1(5E + @s,t(y)))
X1 (T + @5 ()l (y) < 0.

Proof of H3:  We have

1= gi(W)gs(x) =1 =@, (1) (¥ (pr1(2)) ¥ (011(2)) @p 1 (x) > 1.

gi(Xs):eXp(f/ fI(X,)dr

Gh(X,) = /(%) exp(— / £1(X,)dr).

[0,s]U[¢t,1]

Note that
and

In view of Corollary 4.2.1, the conditional independence (4.52) implies that
one of the variables ¢} (X;) and g5(X}) is constant a.s. with respect to the
conditional probability, given X and X;. Namely, there exists a measurable
function h : R? — R such that either

) exp(— f (X = h(Xs, X;), or
(2) &/(Xs) exp(~ f[oé o 1) = h(X,, Xo).

We will show that (1) implies that f’ is constant. Case (2) would be
treated in a similar way. Suppose that there exist two points z1,22 € R
such that f/(z1) < a < f’(x3). Let C be the class of continuous functions
y : [0,1] — R such that yo = 9 (y1). The stochastic process X takes values
in C, which is a closed subset of C([0,1]), and the topological support of
the law of X is C. As a consequence, we can assume that (1) holds for any
X € C. For any 0 < 2§ < t — s we can find two trajectories 21,22, € C,
depending on § such that:

(1) zi(s) = zi(t) = 3(z1 + 72).

(ii) The functions z; and zs coincide on [0,1] — (s,t), and they do not
depend on § on this set.

(iil) zi(r) =a; foralli=1,2 and r € (s + J,t — J).
(iv) The functions z; are linear on the intervals (s, s + d) and (t — 0, ¢t).

‘We have
hmexp/ I/ (zi(r))dr) = elt=8)f"(@i)
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We can thus find a § small enough such that

exp ( / t f’(zl(r))dr) <elt=9) <exp ( / t f’(zz(r))dr> .

By continuity we can find neighborhoods V; of z; in C, i = 1,2, such that

exp ( / t f’(x(r))dr) < et < exp ( / t f’(y(r))dr) |

for all z € V; and y € Vo . Therefore, h(X,, X;) > e~ (t=s)if X € Vi, and
h(Xs, X3) < e~ (t=s)a if X ¢ Vj,. This is contradictory because there is a
~ > 0 such that when x runs over V;, i = 1,2, the point (z(s),z(t)) takes
all possible values on some rectangle [%(ml +x2) — 7, %(le +x2) +7)% O

FEzercises

4.2.1 Let F1,F2,G be three sub-o-fields in a probability space such that
TligL}"g. Show the following properties:

(a) fl V g%fg V g
(b) flngfg lf g C gl C .7:1.

(c) .7:1%]:2 if G C FiNF,, and H is a o-field containing G of the
form H = H;y V Ha, where H; C F; and Hy C Fo.

4.2.2 Let {G,,,n > 1} be a sequence of o-fields such that flgLfQ for each

n. Show that FligL}'g, where G = V,,G,, if the sequence is increasing, and
G = N,G, if it is decreasing.

4.2.3 Let X = {X,t € [0,1]} be a continuous Markov process. Show that
it satisfies the Markov field property.

4.2.4 Let W = {W;,t € [0,1]} be a Brownian motion, and let g : R — R
be a measurable function. Show that X; = W;+ g(W7) is a Markov random
field. Assume that g(x) = ax + b. Show that in this case X is a Markov
process if and only if a = —1 or a = 0.

4.2.5 For any 0 < € < 1 consider the function f.: Ry — R defined by
1—t if 0<t<l-—e

fet) =1« € if l—e<t<24e¢
2+t if 2+e<t.
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Let X¢ = {X§,t > 0} be a stochastic process such that P{X; = f.(¢),Vt >
0} = 4 and P{X{ = —f.(t),¥t > 0} = 1. Show that X¢ is a Markov
process but X = lim.jo X¢ does not have the Markov property.

4.2.6 Consider the stochastic differential equation

{ Xt:Xo—angst—b-i-Wt
Xo = g9(X1 — Xo),

where a,b € R. Suppose that the implicit equation = g((e™* — 1)z + y)
has a unique continuous solution z = ¢(y). Show that the above equation
admits a unique explicit solution that is a Markov random field.

4.2.7 Show that Eq. (4.50) has a unique continuous solution which is a
Markov random field if f(z) = ax +b.

4.2.8 Check the estimates (4.54) and (4.55) integrating by parts on the
Wiener space.

4.2.9 Let A, B be two independent discrete random variables taking values
in some countable set S. Consider two measurable functions f,g: R x S —
R, and suppose that the system

{ .Z‘Zf(y,a)
y:g(xab)

has a unique solution for each (a,b) € S such that P{A = a,B = b} > 0.
Let X, Y be the random variables determined by the equations

X =f(Y,A)
{ Y =g¢(X, B).

Show that A and B are conditionally independent given X,Y.

4.2.10 Suppose that f,g are two real-valued functions satisfying the fol-
lowing conditions:

(i) f is of class C1, and there exist K > 0 and X\ € R such that —\ <
f'(z) < K for all z.

(ii) g is of class C', and eV |¢/(z)] < |1 + ¢/(x)| for all 2 and for some
N>

Show that Eq. (4.21) has a unique solution for each w € Cy([0, 1]) ([250]
and [97]).

4.2.11 Let @ << P be two probabilities in a measurable space ({2, F),
and set n = %. Show that for any nonnegative (or @-integrable) random
variable £ and for any sub-c-algebra G C F we have

Ep(&nlG)
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4.2.12 Consider the equation in R?

dXt + f(Xt) = th
Xi=x¢=0,

where f(x!,2?) = (z! — 22, — fo(2!)) and fo is a twice continuously differ-
entiable function such that 0 < fi(x) < K for some positive constant K.
Show that there exists a unique solution, which is a Markov random field
if and only if f§ =0 (cf. [250]).

4.2.13 Let G(z,y) be the Green function of —A on a bounded domain D
of R¥ k =23. Let W = {W(4A ) Ae B( )} be a Brownian measure on
D. Define the random field Uo(z) = [, G(z,y)W(dy), x € D. Show that
the process {Up(x),x € D} has Holder contlnuous paths of order 1 — € if
k = 2, and Hélder continuous paths of order % —eif k=3, for any € > 0.

Hint: Write G(x,y) as the sum of a smooth function plus a function with
a singularity of the form log |z — y| if k = 2 and |z — y|~! if k = 3, and use
Kolmogorov’s continuity criterion.

Notes and comments

[4.1] Proposition 4.1.2 is a fundamental result on nonlinear transfor-
mations of the Wiener measure and was obtained by Girsanov in [121].
Absolute continuity of the Wiener measure under linear (resp. nonlinear)
transformations was discussed by Cameron and Martin in [56] (resp. [57]).
We refer to Liptser and Shiryayev [200] for a nice and complete presenta-
tion of the absolute continuity of the transformations of the Wiener measure
under adapted shifts.

The extension of Girsanov’s theorem to nonlinear transformations was
discussed by Ramer [290] and Kusuoka [178] in the context of an abstract
Wiener space. The notion of H-continuously differentiable random variable
and the material of Sections 4.1.3 and 4.1.5 have been taken from Kusuoka’s
paper [178].

The case of a contraction (i.e., ||Du|lpgn < 1) has been studied by
Buckdahn in [48]. In that case, and assuming some additional assumptions,
one can show that there exists a transformation A : Q@ — Q verifying
AoT =To A= 1Id as., and the random variable n(u) has the following
expression (in the case of the classical Wiener space):

B d[P o A™1] B 1, 12
n(u) = S—2— = exp(( = () — 5 |lulFat

_/1 /tDsut(Dt(us(At)))(Tt)dsdt>’
0 Jo
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where {T}, 0 <t < 1} is the one-parameter family of transformations of 2
defined by

sAt
(Thw)s = ws —|—/ Uy (w)dr
0

and {4;, 0 <t < 1} is the corresponding family of inverse transformations.

In [338] Ustiinel and Zakai proved Proposition 4.1.5 under the hypothesis
||DUH£(H,H) <1 a.s.

Theorem 4.1.2 has been generalized in different directions. On one hand,
local versions of this theorem can be found in Kusuoka [179]. On the other
hand, Ustiinel and Zakai [337] discuss the case where the transformation
T is not bijective (a multiplicity function must be introduced in this case)
and wu is locally H-continuously differentiable.

The case of a one-parameter family of transformations on the classical
Wiener space {T;,0 < t < 1} defined by the integral equations

(Thw)(s) = ws +/0 ) up (Trw)dr

has been studied by Buckdahn in [49]. Assuming that u € L2 is such that
I el 2edt + [y |[I1Dusl| |2 dt < oo, Buckdahn has proved that for each
t € [0,1] there exists a transformation A; : Q@ — Q such that T; o A; =
A;oTy = Id as., PoT; ! << P, PoA;' << P, and the density functions
of PoT; ' and Po A; " are given by

PoA! ! L
M, = M = exp {—/ us(TS)dWs — */ us(TS>2d8
P 0 2Jo

d
- [ [ @i s},

d[PoT !

_ ] B /t l/t )
L, = ——p P ; us(TsAy)dWy 5/, us(TsAp)“ds

- /Ot /OS(DSUT)(TTAt)DT[uS(TsAt)]drds} :

The process {L,0 < ¢t < 1} satisfies the Skorohod linear stochastic differ-
ential equation L; = 1+ fot usLsdWs. This provides a generalization of the
results for this type of equations presented in Chapter 2.

Ustiinel and Zakai (cf. [335]) have extended this result to processes u
such that:

1 1
E / exp(\u?)dr < co and / I Dug || z||%, dt < oo
0 0

for some A > 0. They use a general expression of the Radon-Nikodym
derivative associated with smooth flows of transformations of 2 (see Cruze-
iro [71]).



4.2 Markov random fields 271

In [93] Enchev and Stroock extend the above result to the case where
the process u is Lipschitz, that means,

|Dul|pgr < c as.

We refer to the monograph by Ustiinel and Zakai (cf. [339]) for a com-
plete analysis of transformations on the Wiener space and their induced
measures.

[4.2] We refer to Rozanov [296] for a detailed analysis of the notion of
conditional independence. The study of the Markov property for solutions
to stochastic differential equations with boundary conditions by means of
the change of probability technique was first done in [250]. Further appli-
cations to different type of equations can be found in [80], [97], [98], [246],
[251], and [252]. The study of the germ Markov field property for solu-
tions to stochastic partial differential equations driven by a white noise has
been done in [81], [82], and [253]. The characterization of the conditional
independence presented in Section 4.2.3 has been obtained in [5].
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Fractional Brownian motion

The fractional Brownian motion is a self-similar centered Gaussian process
with stationary increments and variance equals t27, where H is a parameter
in the interval (0,1). For H = 1 this process is a classical Brownian motion.
In this chapter we will present the application of the Malliavin Calculus
to develop a stochastic calculus with respect to the fractional Brownian
motion.

5.1 Definition, properties and construction
of the fractional Brownian motion

A centered Gaussian process B = {By,t > 0} is called fractional Brown-

ian motion (fBm) of Hurst parameter H € (0,1) if it has the covariance
function

(2H 4425 — |t — s2H) (5.1)

DN =

Ry (t,s) = E(BB;) =

Fractional Brownian motion has the following self-similar property: For
any constant a > 0, the processes {a’HBat,t > 0} and {B,t > 0} have
the same distribution. This property is an immediate consequence of the
fact that the covariance function (5.1) is homogeneous of order 2H.
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From (5.1) we can deduce the following expression for the variance of the
increment of the process in an interval [s, t]:

E (|B; — By|?) = |t — s|*". (5.2)

This implies that fBm has stationary increments.

By Kolmogorov’s continuity criterion and (5.2) we deduce that fBm
has a version with continuous trajectories. Moreover, by Garsia-Rodemich-
Rumsey Lemma (see Lemma A.3.1), we can deduce the following modulus
of continuity for the trajectories of fBm: For all ¢ > 0 and T" > 0, there
exists a nonnegative random variable G, r such that E (|Ge r|P) < oo for
all p> 1, and

|B; — By| < Gerlt — |7,

for all s,¢ € [0,T]. In other words, the parameter H controls the regularity
of the trajectories, which are Holder continuous of order H — ¢, for any
e>0.

For H = }, the covariance can be written as Ry (t,s) = tA's, and
the process B is a standard Brownian motion. Hence, in this case the
increments of the process in disjoint intervals are independent. However,
for H # %, the increments are not independent.

Set X,, = B, — Bp—1, n > 1. Then {X,,,n > 1} is a Gaussian stationary
sequence with covariance function

pu(n) = % ((n + 1) 4 (n — 1) — 2n2H) .

This implies that two increments of the form By — By_1 and By, — Biyn—1
are positively correlated (i.e. py(n) > 0) if H > 1 and they are negatively
correlated (i.e. py(n) < 0) if H < 1. In the first case the process presents
an aggregation behaviour and this property can be used to describe cluster
phenomena. In the second case it can be used to model sequences with
intermittency.

In the case H > % the stationary sequence X,, exhibits long range de-
pendence , that is,

lim pr(n)
n—oo H(2H — 1)n?H—2
and, as a consequence, Y -, py(n) = co.
In the case H < % we have

=1

> lpr(n)] < oo

5.1.1 Semumartingale property

We have seen that for H # % fBm does not have independent increments.
The following proposition asserts that it is not a semimartingale.
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Proposition 5.1.1 The fBm is not a semimartingale for H # %

Proof:  For p > 0 set

Yo = 0PN By jm — Bioayml”-

j=1

By the self-similar property of fBm, the sequence {Y,, ,,n > 1} has the
same distribution as {Y}, ,,n > 1}, where

n
Yop=n""Y |B;— B[
=1

The stationary sequence {B; — B,_1,j > 1} is mixing. Hence, by the Er-
godic Theorem f’n’p converges almost surely and in L*(Q) to E (|B;|P) as
n tends to infinity. As a consequence, Y,, , converges in probability as n
tends to infinity to E (|B|?). Therefore,

Vi = Y |Bim = Byl
j=1

converges in probability to zero as n tends to infinity if pH > 1, and to
infinity if pH < 1. Consider the following two cases:

) If H< %, we can choose p > 2 such that pH < 1, and we ob-
tain that the p-variation of fBm (defined as the limit in probability
limy, 00 V5 p) is infinite. Hence, the quadratic variation (p = 2) is
also infinite.

i) If H > %, we can choose p such that % < p < 2. Then the p-variation
is zero, and, as a consequence, the quadratic variation is also zero.
On the other hand, if we choose p such that 1 < p < % we deduce
that the total variation is infinite.

Therefore, we have proved that for H # % the fractional Brownian mo-
tion cannot be a semimartingale. O

In [65] Cheridito has introduced the notion of weak semimartingale as a
stochastic process {X¢,t > 0} such that for each T > 0, the set of random
variables

S fi(X, =Xy )n>=1,0<tg < <ty <T,
j=1

Ifil <1, f;is fgfl—measurable}



276 5. Fractional Brownian motion

is bounded in L°(€2), where for each t > 0, 7/ is the o-field generated by
the random variables {X,,0 < s < t}. It is important to remark that this
o-field is not completed with the null sets. Then, in [65] it is proved that
fBm is not a weak semimartingale if H # %

Let us mention the following surprising result also proved in [65]. Sup-
pose that {B;,t >0} is a fBm with Hurst parameter H € (0,1), and
{W;,t >0} is an ordinary Brownian motion. Assume they are indepen-
dent. Set

Mt = Bt + Wt'
Then {M;,t > 0} is not a weak semimartingale if H € (0,3) U (3, 3], and
it is a semimartingale, equivalent in law to Brownian motion on any finite
time interval (0,71, if H € (2,1).

5.1.2 Mowving average representation

Mandelbrot and Van Ness obtained in [217] the following integral represen-
tation of fBm in terms of a Wiener process on the whole real line (see also
Samorodnitsky and Taqqu [301]).

Proposition 5.1.2 Let {W(A), A € B(R), u(A) < oo} be a white noise on

R. Then
1 H-—
Bi= 1 / (-9
is a fractional Brownian motion with Hurst parameter H, if
1
oo 2 1 2
Cy(H) = </O ((1 +s)H-3 sH*%) ds + 2H> .

Proof:  Set fi(s) = ((t — 3)+)H_% - ((—s)"’)H_%7 s € R, t > 0. Notice
that [, fi(s)?ds < oo. In fact, if H # 3, as s tends to —oo, f(s) behaves

ol
\
—~
n
w
~
+
~
i
[N
=

as (—s)H ~3 which is square integrable at infinity. For ¢ > 0 set
X, = /R (=571 F = ((=)")" | aw,

We have

B(X?) = /]R { (t— s)—&-)H*% _ ((_8)+)H*%}2d8
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Similarly, for any s < t we obtain

BXe - X = [ [0 - (-0 "]

[ l@=s=umy™

= Ci(H)*|t - s]*H. (5.4)

[N
\
—
[
S
~—
+
~—
i
ol
[E——"
[ V)
U
<

From (5.3) and (5.4) we deduce that the centered Gaussian process { X, t >
0} has the covariance Ry of a fBm with Hurst parameter H. O

Notice that the above integral representation implies that the function
Ry defined in (5.1) is a covariance function, that is, it is symmetric and
nonnegative definite.

It is also possible to establish the following spectral representation of
fBm (see Samorodnitsky and Taqqu [301]):

1 ets — 1, 1 o~
By = 2 Haw,
= G [,

where W = W +iW? is a complex Gaussian measure on R such that

WIA) = WH(—A), W2(A) = —~W2(A), and E(W'(A)?) = E(W2(A)?) =
1]

R and

1

oxm = (grammm)

5.1.83  Representation of fBm on an interval

Fix a time interval [0, T]. Consider a fBm {By,t € [0,T]} with Hurst para-
meter H € (0,1). We denote by £ the set of step functions on [0, T]. Let H
be the Hilbert space defined as the closure of £ with respect to the scalar
product
<1[0,t]7 1[07S]>7‘l = RH(t, 8)'

The mapping 19 ;) — B; can be extended to an isometry between H and
the Gaussian space H; associated with B. We will denote this isometry
by ¢ — B(y). Then {B(p),» € H} is an isonormal Gaussian process
associated with the Hilbert space H in the sense of Definition 1.1.1.

In this subsection we will establish the representation of fBm as a Volterra
process using some computations inspired in the works [10] (case H > %)
and [240] (general case).

Case H > %

It is easy to see that the covariance of fBm can be written as

t s
Ry(t,s) = aH/ / r — |2 =2 dudr, (5.5)
0 Jo
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where ag = H(2H — 1). Formula (5.5) implies that

(0,0 = a / / —uPH20 0 dudr (5.6)

for any pair of step functions ¢ and v in £.
We can write

|7,_ |2H—2 _ (TU)H_%
B(2—2H,H - 1)

rAu
X / ! 2 (p —p)H %(u — ) =3 dy, (5.7)
0

where 3 denotes the Beta function. Let us show Equation (5.7). Suppose
r > u. By means of the change of variables z = 7=~ = ., we obtain

/ o172 (p — U)H_%(u - ’U)H_%d’l)
0

o .
(r — u)* =2 / (zu—r) 72 A5,

u

1
= -1 [ ) Tl
0

B(2—2H,H — %)(ru)%*H(r )22,

Consider the square integrable kernel

t P
Ky(t,s) :cHs%_H/ (u—s)H_%uH_%du, (5.8)

1/2
H(2H-1)
m] and t > s.

Taking into account formulas (5.5) and (5.7) we deduce that this kernel
verifies

where cg = {

tAs tAs t . )
Ky(t,u)Ky(s,u)du = C%{/ (/ (y — U)Hi’szdy>
0 o ;

X (/ (z—u)ngHil’dz) ut2H dy

— B2 2HH - / / ly — 2[212dzdy
= Rylt,s). (5.9)

Formula (5.9) implies that the kernel Ry is nonnegative definite and
provides an explicit representation for its square root as an operator.
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From (5.8) we get

0Ky \H2 gz
—(ts) =cn | - —s)fz, 1

ot (t,s) =cu (S) (t —s) (5.10)

Consider the linear operator K} from & to L?([0,7]) defined by
T
* 0K
(Kfre)(s) = / @(t)TtH(t, s)dt. (5.11)
Notice that
(KiL,) (s) = Kn(t,5)Lpq(s). (5.12)

The operator Kj; is an isometry between & and L?([0,7]) that can be
extended to the Hilbert space H. In fact, for any s,t € [0,7T] we have using
(5.12) and (5.9)

<K}k{1[0,t}aK;—II[O,S]>L2([O,T]) = <KH(ta ')1[0,t]7KH(s, ')1[0731>L2([0,T])
tAs

Ky (t,u)Kg(s,u)du

0
= Ru(t,s) = (L Lo.s])p

The operator K7, can be expressed in terms of fractional integrals:

(Kire) () = enD(H — )5~ (17 P 2 o(u) (s) (5.13)

This is an immediate consequence of formulas (5.10), (5.11) and (A.14).
For any a € [0, 7], the indicator function 1j0,q) belongs to the image of
K73, and applying the rules of the fractional calculus yields (Exercise 5.1.6)

_ 1 1 H—L 1
K Ligg) = ————s27H (D772 H3) (8)11g 1(5).  (5.14
(Kx) "~ (Ljo,a)) cHF(H—%)S ( o Cu )(s) 0,0 (s). (5.14)
Consider the process W = {W;,t € [0,T]} defined by

We = B((Ky) ™ (1jo.)- (5.15)

Then W is a Wiener process, and the process B has the integral represen-
tation

B - / Kt s)dW.. (5.16)
0
Indeed, for any s,t € [0,7] we have
BEWW,) = E (B (L) BIK:) ™ (10,4)))
= (&)™ (L) (K5 (L))

= <1[O,t]7 1[073]>L2([0,T]) =sAt.
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Moreover, for any ¢ € H we have

T
B(y) = / (Kjye) (£)dW,. (5.17)

Notice that from (5.14), the Wiener process W is adapted to the filtration
generated by the fBm B and (5.15) and (5.16) imply that both processes
generate the same filtration. Furthermore, the Wiener process W that pro-
vides the integral representation (5.16) is unique. Indeed, this follows from
the fact that the image of the operator K}; is L?([0,T]), because this image
contains the indicator functions.

The elements of the Hilbert space H may not be functions but distrib-
utions of negative order (see Pipiras and Taqqu [283], [284]). In fact, from
(5.13) it follows that H coincides with the space of distributions f such
that s%_HI(i__% (f(u)u"~2)(s) is a square integrable function.

We can find a linear space of functions contained in H in the following
way. Let |H| be the linear space of measurable functions ¢ on [0,7] such
that

T T
2 2H—2
ISy = an / / lou] [ul Ir — a2 drdu < oo. (5.18)

It is not difficult to show that |H| is a Banach space with the norm || - |5
and £ is dense in |H|. On the other hand, it has been shown in [284] that
the space |H| equipped with the inner product (,1),, is not complete and
it is isometric to a subspace of H. The following estimate has been proved
in [222].

Lemma 5.1.1 Let H > § and ¢ € L7 ([0,T)). Then
Il < bar 2l g o (5.19)
for some constant by > 0.

Proof: Using Holder’s inequality with exponent ¢ = % in (5.18) we get

1 1-H
1—H

2 T L gy T T 2H—2
||so||\H|§aH/0|sor|Hdr /O/O\souur—m du)  dr

The second factor in the above expression, up to a multiplicative con-
stant, is equal to the 1= norm of the left-sided fractional integral Igf o).
Finally is suffices to apply the Hardy-Littlewood inequality (see [317, The-
orem 1, p.119])

HI(?JerLq(o,oo) < Cag 1 Lr(0,00) (5.20)

where 0 < a <1, 1 <p < ¢ < oo satisfy % = % — «, with the particular
values o =2H — 1, ¢ = = and p = . 0
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As a consequence
L*([0,T)) € L#([0,T)) C |H| C H.

The inclusion L?([0,T]) C |H| can be proved by a direct argument:

T T T T
r—ul?" 72 drdu 21 —ulP 2 drdu
Prl 1Py Pu
o Jo o Jo

T2H71 T 9
< / 0|2 du.
0

7=}

IN

This means that the Wiener-type integral fOT p(t)dBy (which is equal to
B(y), by definition) can be defined for functions ¢ € |H|, and

/0 (t)dB, = / (Kgye) (£)dW. (5.21)

Case H < %

To find a square integrable kernel that satisfies (5.9) is more difficult than
in the case H > % The following proposition provides the answer to this
problem.

Proposition 5.1.3 Let H < % The kernel

where cyg = \/(172H)ﬁ(127H2H7H+1/2), satisfies

Rult,s) = / K () Ky (5. w) (5.22)

In the references [78] and [284] Eq. (5.22) is proved using the analyticity
of both members as functions of the parameter H. We will give here a
direct proof using the ideas of [240]. Notice first that

H-} \
%(t,s) — cp(H — %) (i) (t— )%, (5.23)
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Proof:  Consider first the diagonal case s = t. Set ¢(s) = f; K (s,u)?du.
We have

u

(b(s) = c%[ [/OS(S)QH—l(S _ U)QH_ldu

S
—(2H—1)/ sy =2 (g — y)H 3
0

X (/ UHg(v—u)Hédv> du

Making the change of variables u = sz in the first integral and using
Fubini’s theorem yields

o(s) = i [s*7B(2—2H,2H)
—(9H —1)sH 3 " H-
(2 1)s /Ov

x (/ w2 (s —u)H 3 (y — u)H%du> dv

0

+2(H;)2/()8/01)/01””12H(UU)H5(U)U)H

_3 pg_3
xwH "2 2dudwdv}.

Nl

Nl

Now we make the change of variable u = vz, v = sy for the second term
and u = wx, w = vy for the third term and we obtain

o(s) = chs* [5(2 —2H,2H) — (2H — 1)(& + %)

1l
></ / xl_zH(l—xy)H_%(l—a:)H_%datdy
o Jo
_ 2H

Suppose now that s < ¢. Differentiating Equation (5.22) with respect to
t, we are aimed to show that

H(2H-1 — (1 — 5)2H-1) = 6%(@ W) Ky (s, 0)du. (5.24)
0
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Set ¢(t,s) = [ 258 (t,u) Ky (s,u)du. Using (5.23) yields

o) = -y [ (t)H(t—u)H-% (2)" s - e

u

H—1
1 S/t 2 1
_ 2 H-— = 2/ e t— H— EfH
u 2) , \u (t—u) U

X (/ UH_%(U —u)H_édv> du.

Making the change of variables u = sx in the first integral and v = vx in
the second one we obtain

Njw

Blts) = Gh(H —5) ()" 5()
1 1 s 3
—ch( = g [

where y(y) = fol 21 72H (y — 2)H=3 (1 — 2)H~2dx for y > 1. Then, (5.24)
is equivalent to

| = st oy — - 32 [ i)
= HM 3 — g3 H(p — g)2H-1), (5.25)

Differentiating the left-hand side of equation (5.25) with respect to ¢ yields

=) [ = o) = [T

= ul(t, s), (5.26)

where, for y > 1,

Nfw

3(y) = /1 2172 (y — )73 (1 - 2) "2 da.
0
By means of the change of variables z = % we obtain
Sy) = (2 — 2H, H + L)y "y — 122, (5.27)
Finally, substituting (5.27) into (5.26) yields
plts) = B~ 2H, H + J)(H — 2)(H — 1)
xt_H_%s(t _ 5)2H—2 + %t_H_%((t _ 8)2H—1 _ t2H—1)

H(1 - 2H)

x (t—H—és(t — )2 S )y ;tH_g) .

DN | =
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This last expression coincides with the derivative with respect to t of the
right-hand side of (5.25). This completes the proof of the equality (5.22).00

The kernel Kz can also be expressed in terms of fractional derivatives:
1 1_ 1
Kg(t,s) =cyl'(H + 5)8%_}[ (Dt{ HuH_5> (s). (5.28)
Consider the linear operator Kj; from & to L?([0,7]) defined by

T
(50)) = Ku(Tp() + [ (ol0) = o(6) T2 0oyt (5:29

Notice that

(Kgl[o7t]> (s) = Ku(t, s)l[oyt] (s). (5.30)
From (5.22) and (5.30) we deduce as in the case H > % that the operator
K% is an isometry between & and L?([0,77]) that can be extended to the
Hilbert space H.
The operator K7; can be expressed in terms of fractional derivatives:

1

2p(u))(s), (5.31)

where di = cyT'(H + 3). This is an immediate consequence of (5.29) and
the equality

(Dt%:HuH_%) (8)1j0,¢(s) = (D%:HUH_%l[Ovt] (u)) (5)-

As a consequence,

(Kir0) (s) = dyg s3~H (D3t~

C7([0,7]) € H c L*([0, 1)),

ify>3—H.
Using the alternative expression for the kernel Ky given by
t
Kp(t,s)=cu(t—s)7 7 + s7 3R (=), (5.32)
s
where L
1 = 1
Fl(z):cH(i—H)/ GH_%(I—(G—FI)H_?)dH,
0

one can show that H = IT%:H(LQ) (see [78] and Proposition 6 of [9]). In
fact, from (5.29) and (5.32) we obtain, for any function ¢ in IT%:H(I?)

(Kiro) (s) = en(T = )" 2p(s)
1, (T s
ren(H = 3) [ () = (o)) =) Edr
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where the operator

1

T
Apls) =en (G~ 1) [ o) = o)

o
7 N
—
|
~~
®w |3
—

i
[N
N———
QU
=

is bounded in L?.
On the other hand, (5.31) implies that

H={f:36 € L2(0,T): f(s) = di's? (122" a3 g(u))(5)},

with the inner product

(f gy = /0 o(s)p(s)ds,

if ) 1
F(s) = di s¥ (L2 a3 () (s)
and . )
g(s) = dyts* (127 Tu = 2p(u)) (5).

Consider process W = {W,,t € [0,T1} defined by
W, = B((K7p) ™" (1j0,.))-

As in the case H > %, we can show that W is a Wiener process, and the

process B has the integral representation
t
B = / Kty s)dW,.
0

Therefore, in this case the Wiener-type integral fOT p(t)dBy can be defined
for functions ¢ € Ié:H(Lz), and (5.21) holds.
Remark

In [9] these results have been generalized to Gaussian Volterra processes
of the form

t
X, = / K(t, $)dW,,
0

where {W;,t > 0} is a Wiener process and K(t,s) is a square integrable
kernel. Two different types of kernels can be considered, which correspond
to the cases H < 3 and H > 1.

i) Singular case: K(-,s) has bounded variation on any interval (u,T],
u > s, but fST |K|(dt, s) = oo for every s.

ii) Regular case: The kernel satisfies fsT |K|((s,T),s)%ds < oo for each
s.
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Define the left and right-sided fractional derivative operators on the
whole real line for 0 < a < 1 by

D% f(s) := 1—a/ I(s u1+5+u)du

DS f(s) = / UG qu_u)du,

s € R, respectively. Then, the scalar product in H has the following simple
expression

and

1_g 1_g
(.9 =k (D2 1.017 ") (5:33)

where ey = C1(H)™'T(H+3), f,9 € H, and by convention f(s) = g(s) =0
if s ¢ [0,7].
Ezercises

5.1.1 Show that B = {B,,t > 0} is a fBm with Hurst parameter H if and
only if it is a centered Gaussian process with stationary increments and
variance t27.

5.1.2 Using the self-similarity property of the fBm show that for all p > 0

E( sup |Bt|p> =C, ugTr?
0<t<T

5.1.3 Let B = {B;,t > 0} be a fBm with Hurst parameter H € (0, 3) U
( 1). Show that the following process is a martingale

t
Mt:/ H (4 — 52 B,
0

with variance clyth’QH and compute the constant ¢; g.

Hint: Use the representation (5.17).
5.1.4 Show that the fBm admits the representation B; = ¢z g f(f sH’%dYs,
where Y; = fot (t—s)H’%sH’%dWs, and W is an ordinary Brownian motion.

5.1.5 Suppose H > % If 7 is a stopping time with values in [0, T], show
that for all p > 0

E < sup Bt|p> < prHE(’TpH)‘
0<t<r

Hint: Use the representation established in Exercise 5.1.4.
5.1.6 Show formula (5.14).

5.1.7 Show that |H| is a Banach space with the norm || -||jz¢ and £ is dense
in |H|.

5.1.8 Show formula (5.33).
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5.2 Stochastic calculus with respect to fBm

In this section we develop a stochastic calculus with respect to the fBm.
There are essentially two different approaches to construct stochastic inte-
grals with respect to the fBm:

(i) Path-wise approach. If uw = {uy,t € [0,T]} is a stochastic process with
~-Holder continuous trajectories, where v > 1—H, then by the results
of Young ([354]) the Riemann Stieltjes integral fOT usd By exists path-
wise. This method is particularly useful in the case H > %, because it
includes processes of the form u; = F(B;), where F is a continuously
differentiable function.

(ii) Malliavin calculus. We have seen in Chapter 1 that in the case of
an ordinary Brownian motion, the adapted processes in L?([0,7T] x
) belong to the domain of the divergence operator, and on this
set the divergence operator coincides with It6’s stochastic integral.
Actually, the divergence operator coincides with an extension of 1t6’s
stochastic integral introduced by Skorohod in [315]. In this context
a natural question is to ask in which sense the divergence operator
with respect to a fractional Brownian motion B can be interpreted
as a stochastic integral. Note that the divergence operator provides
an isometry between the Hilbert Space H associated with the fBm B
and the Gaussian space H1, and gives rise to a notion of stochastic
integral for classes of deterministic functions included in H. If H < %,
then H = I{é:H(LQ) is a class of functions that contains C7([0, T7) if
v>L1—H.If H=1 then H = L*([0,T]), and if H > %, H contains
the space |H| of functions. We will see that in the random case, (see

Propositions 5.2.3 and 5.2.4) the divergence equals to a path-wise
integral minus the trace of the derivative.

5.2.1 Malliavin Calculus with respect to the fBm

Let B = {By,t € [0,7]} be a {Bm with Hurst parameter H € (0,1). The
process {B(¢),p € H} is an isonormal Gaussian process associated with
the Hilbert space H in the sense of Definition 1.1.1. We will denote by D
and ¢ the derivative and divergence operators associated with this process.

Recall that the operator Kj; is an isometry between H and a closed
subspace of L2([0,T]). Moreover, W, = B((K})™" (110,¢7)) is a Wiener
process such that

t
B, — / Ku(t, s)dWW,,
0

and for any ¢ € H we have B(p) = W (K p).
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In this framework there is a transfer principle that connects the deriva-
tive and divergence operators of both processes B and W. Its proof is left
as an exercise (Exercise 5.2.1).

Proposition 5.2.1 For any F € Dy;? = D2
K5 DF = DVF,

where DV denotes the derivative operator with respect to the process W,
and ]D)%,{,Q the corresponding Sobolev space.

Proposition 5.2.2 Domd = (K;EI)_1 (Domdwy ), and for any H-valued ran-
dom variable w in Dom § we have §(u) = dw (Kju), where dy denotes
the divergence operator with respect to the process W.

Suppose H > % We denote by |H|®|H| the space of measurable functions
¢ on [0,7]? such that
2 2H -2 2H -2
lellbasia = [ Vool [ouallr = w210 = drdudtan < oo
0,

Then, |H| ® [H| is a Banach space with respect to the norm || - [|3¢c)x|-
Furthermore, equipped with the inner product

)

(o hnsne = [ Pt =l 210 a2 i

the space |H| ® |H| is isometric to a subspace of H ® H. A slight extension
of the inequality (5.19) yields

For any p > 1 we denote by D*?(|H|) the subspace of D*?(H) formed
by the elements v such that v € [H| a.s., Du € |H| ® |H| a.s., and

E (||u||fH|) v E (||Du||fm®‘m) < 0.

5.2.2  Stochastic calculus with respect to fBm. Case H > %

We can introduce the Stratonovich integral as the limit of symmetric Rie-
mann sums as we have done in Chapter 3 in the framework of the an-
ticipating stochastic calculus for the Brownian motion. However, here we
will consider only uniform partitions, because this simplify the proof of the
results.

Consider a measurable process u = {us,t € [0, T]} such that fOT lug|dt <
oo a.s. Let us define the aproximating sequences of processes

n—1 tit1
(ﬂ-nu)t = Z A:Ll </ uSdS) 1(t¢,t¢+1](t)a (535)
i=0 ti
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where t; = iA,,,i=0,...,n, and A,, = % Set

. n—1 . tit1
S = Z An (/t usds) (BtiJrl - Bt,)
=0 g

Definition 5.2.1 We say that a measurable process uw = {u;,0 < t < T}

such that fOT |ug|dt < oo a.s. is Stratonovich integrable with respect to the
fBm if the sequence S™ converges in probability as || — 0, and in this case

the limit will be denoted by fOT us 0 dBy.

The following proposition establishes the relationship between the
Stratonovich integral and the divergence integral. It is the counterpart of
Theorem 3.1.1 for the fBm.

Proposition 5.2.3 Let u = {u;,t € [0,T]} be a stochastic process in the
space DY2(|H|). Suppose also that a.s.

T T
/ / D] [t — 522 dsdt < oo, (5.36)
0 0

Then wu is Stratonovich integrable and we have

T T T
/ ug 0 dBy = 6(u) + aH/ / Dyuy [t — s|*" 2 dsdt. (5.37)
0 o Jo

Proof: 'The proof will be done in two steps.
Step 1. Notice first that fOT |ug|dt < oo a.s. because |H| C L([0,T7]). We
claim that
In"uly < din ullg (539)

for some positive constant dy. In fact, we have that
) T T
Il = aH/ / ()| | ("), | |s — ¢2H2dsdt
0o Jo

T T
< aH/ / lus| |ue| @,,(s,t)dsdt,
o Jo

where
2 = el 2H -2
bu(5:8) = A7 S 15100, (0) / / o — 0P ~2dodp.
i,5=0 ti t
Hence, in order to show (5.38) it suffices to check that

b, (s, t)|s —t|*2H < dy.
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Notice that
tit1 pljtr
aH/ / lo — 0|*"2dodf = E((B,,, — B,)(B,,, — By,)).
t; t;

Thus, for s,t € (t;,ti+1]
Bl Dl — 112721 = A A2 s — (22 < o,
and for s € (ti7ti+1}7 t e (tj,tj_H] with ¢ < j
Bl )]s — 172"

|s — t[*~2H 2H 20
TV [(t5 = tig1)*™ + (15 — tig1 + 24,)
—2(2‘3]’ — ti+1 + An)2H]

oo max [K2 4 (k+2)*1 = 2(k + 1)) (k +2)2721
Therefore (5.38) holds with

1
dg = ag' max(1, o (27 4 (k4 2)*" — 2(k + 1)*7] (k4 2)*72).

We can find a sequence of step processes uy such that ||ug — u|||2m —0
as k tends to infinity. Then

I = ull g < = 7l g+ 7 — plg + s — ll g

< (Vdua +1) luk = ulljgg + (7" e — urlljpy
and letting first n tend to infinity and then k tend to infnity we get
. n, _
nhﬁn;o 7" u — ulfj =0

a.s., and by dominated convergence we obtain

. n 2
lim E(|[7"u — ulfj3,) = 0.

n—oo
In a similar way we can show that
\|D7Tnu||\2H|®|H| < fu HDUH|2H|®|H| ;
for some constant fg > 0, and as a consequence

: 2
nh_)rr;o E(|[Dn"™u — Dullj3g ) = 0

Therefore, 7"u — u in the norm of the space D*2(|H|).
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Step 2. Using Proposition 1.3.3 we can write

n—1 tit1
> oAz < / usds> (B, — Bi) = 6(7"u) + T (u), (5.39)
i=0 &

where
7

+1
<Dus, 1[t ds.

t
i,ti+1]>H
t;

T, (u) = gA /

By Step 1 §(n"u) will converge in L2(£2) to §(u) as n tends to infinity. Then
it suffices to show that T),(u) converges almost surely to

T T
ap / / Dgug |t — s[* 72 dsdt.
o Jo

T T
T, (u) = aH/ / Dsugtp,, (s, t)dsdt,
o Jo

We can write

where
n—1 tit1
wn(sv t) = Z 1[ti;ti+1](t)A’r:1 / ‘S - U‘QH_QdO"
i=0 b
By dominated convergence it suffices to show that
Yo ls )]s — 272 < ey
for some constant ey > 0. If s,t € (¢;,t;41] then,

Uols,t)]s — 220 < AJTAZH(H 1)

X [(ti+1 o 5)2H71 + (S o ti)QHfl]
2

2H - 1°

<
On the other hand, if s € (;,t;41], t € (tj,tj41] with i < j we have

wn(87t)|s_t|2_2H <

k 22—2H
-1 S (k+2)

Ae€f0,1]
X[(k 414+ X271 — (kX))
9H
2H —1°

Hence, (5.2.2) holds with ey = 57— max(2, gg). This completes the proof
of the proposition. O
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Remark 1 A sufficient condition for (5.36) is
T [ T /p
/ (/ | Dguy|? dt) ds < 00
0 s
ST

Remark 2 Let u = {w;,t € [0,T]} be a stochastic process which is
continuous in the norm of D'? and (5.36) holds. Then the Riemann sums

Z L+1 - ti)’

=0

for some p >

where ¢t; < s; < t;41, converge in probability to the right-hand side of
(5.37). In particulat, the forward and backward integrals of u with respect
to the fBm exists and they coincide with the Stratonovich integral.

(A) The divergence integral

Suppose that v = {u;,t € [0,7]} is a stochastic process in the space
DY2(|H|). Then, for any t € [0,7] the process uljgy also belongs to
DY2(|H|) and we can define the indefnite divergence integral denoted by

t
/ uSdBS =0 (ul[oyt]) .
0

If (5.36) holds, then by Proposition 5.2.3 we have

t t t T
/ ugs 0 dBs = / usdBg + aH/ D,ug |s — r‘szz drds.
0 0 0o Jo

By Proposition 1.5.8, if p > 1, a process u € DYP(|H]|) belongs to the
domain of the divergence in LP(2), and we have

E (18 @) < Crp (I @)l + E (1Pl ) -
As a consequence, applying (5.34) we obtain
E (18 @) < Crp (1B @100y + B (1DU21 5 0.112) ) - (5:40)

Let pH > 1. Denote by L' the space of processes u € DV2(|H|) such
that

T T [ T pH ,
1
ull,, == / E(Jus|P)ds + E / (/ |Dyus| ™ dr) ds < 00.
0 0 0

Assume pH > 1 and suppose that u € Ll}f and consider the indefinite

divergence integral X; = fot usdBs. The following results have been estab-
lished in [6]:
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(i) Maximal inequality for the divergence integral:

te[0,T)

E( sup Iti> < Clullyy

where the constant C' > 0 depends on p, H and T'. This follows from
the L? estimate (5.40) and a convolution argument.

(ii) Continuity: The process X; has a version with continuous trajectories
and for all v < H — % there exists a random variable C, such that

|Xt_Xs‘ SC,Y |t—8|’y.

As a consequence, for a process u € ﬁp>1L1§, the indefinite integral
process X = { fg ugsdBg, t € [O,T]} is y-Holder continuous for all
v < H.

(B) Ito’s formula for the divergence integral

Suppose that f,g : [0,7] — R are Holder continuous functions of orders
a and @ with o + 8 > 1. Young [354] proved that the Riemann-Stieltjes
integral fOT fsdgs exists. Moreover, if hy = fot fsdgs and F is of class C?
the following change of variables formula holds:

F(hy) = F(0) + / F/(ha) fudge.

As a consequence, if F is a function of class C2?, and H > %, the
Stratonovich integral integral fot F'(Bs)odBs introduced in Definition 5.2.1
is actually a path-wise Riemann-Stieltjes integral and for any function F'

of class C? we have
t
F(By) = F(0) +/ F'(Bs) o dB;. (5.41)
0

Suppose that F is a function of class C?(R) such that

max {|F(z)], [F' (@), |[F"(@)]} < e, (5.42)

1

7z - This condition

where ¢ and A are positive constants such that A <
implies

E ( sup |F(Bt)|p) <c’'E (ep““pOS*ST ‘Bt|2> < oo
0<t<T

T*ZH

for all p < 55— In particular, we can take p = 2. The same property holds
for ' and F".
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Then, if F satisfies the growth condition (5.42), the process F’(B;) be-
longs to the space DV2(|H|) and (5.36) holds. As a consequence, from
Proposition 5.2.3 we obtain

¢
/F’(Bs)ost = /F’( )dBs —|—aH/ / F"(B,)(s — r)*H 2drds
0 0 o Jo

/O F'(B,)dBs +H/ F"(B,)s*1ds. (5.43)

Therefore, putting together (5.41) and (5.43) we deduce the following It6’s
formula for the divergence process

F(By) = F(0) + /Ot F'(B,)dB, + H/Ot F"(By)s*"~1ds. (5.44)

We recall that the divergence operator has the local property and 6(u)
is defined without ambiguity in DIOC(H)
We state the following general version of It6’s formula (see [11]).

Theorem 5.2.1 Let F be a function of class C?(R). Assume that u =
{ug,t € [0, T]} is a process in the space ]D)IOC (|H|) such that the indefinite

integral X; = fo usdBjs is a.s. continuous. Assume that ||ull, belongs to H.
Then for each t € [0,T)] the following formula holds

F(X,) = F(0) + /Ot F'(X)usdB,

t T s
+ aH/ F"(X,) us (/ P (/ Daueng) da> ds
0 0 0
t s
+apg / F"(X)u, ( / ug (s — 6)*172 d@) ds. (5.45)
0 0

Remark 1 If the process u is adapted, then the third summand in the
right-hand side of (5.45) can be written as

t s 6
aH/ F"(X,) us (/ (/ i Dguedo> ng) ds.
0 0 0

Remark 2 251 T (s—0)27721(y 4(0) is an approximation of the identity as

H tends to s. Therefore, taking the limit as H converges to % in Equation

(5.45) we recover the usual It6’s formula for the the Skorohod integral (see
Theorem 3.2.2).
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5.2.8  Stochastic integration with respect to fBm
in the case H < %

The extension of the previous results to the case H < % is not trivial and
new difficulties appear. In order to illustrate these difficulties, let us first

remark that the forward integral fOT B.dB; defined as the limit in L? of the
Riemann sums

n—1
Z Bti (BtH»l - Bti)’
=0

where t; = %, does not exists. In fact, a simple argument shows that the
expectation of this sum diverges:

n 1 n
ZE (Bti—1(Bti - Bti—l)) = 5 Z [tle - t$f1 - (tl - ti—l)QH]

=1 i=1

_ %TQH (1 _n1—2H) s —o0,

as n tends to infinity. Notice, however, that the expectation of symmetric
Riemann sums is constant:

1« Lo
2 ;E (B, + Bi_)(Bi, — Bi,) = 5 ; o

T2H
2

We recall that for H < % the operator Kj; given by (5.31) is an isometry
between the Hilbert space H and L?([0,T]). We have the estimate :

0K 1 5
— <ecp(z—H) (t—s)2. 4
(69 ey~ ) (1- 9 (5.46)
Also from (5.32) (see Exercise 5.2.3) it follow sthat
IK(t,s)] < C(t—s)" 3. (5.47)

Consider the following seminorm on the set & of step functions on [0, T):

T
lol% = / S (s)(T — )7 ds

—I—/O (/S w(t)—go(s)|(t—s)H_3dt> ds.

We denote by Hg the completion of £ with respect to this seminorm. The
space Hg is the class of functions ¢ on [0, 7] such that HcpHi( < 00, and it
is continuously included in H. If u € DY? (Hf), then u € Dom 4.
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Note that if u = {uy, t € [0,T]} is a process in D12 (H ), then there is a
sequence {p,,} of bounded simple H g-valued processes of the form

n—1
Pn = Z Fjl(t.wt]’ﬂ]’ (5.48)
7=0

where F}; is a smooth random variable of the form

Fj = fj(Bs{"“’BSj ) )7
m(j)

with f; € C;,X’(Rm(j)), and 0 =ty < t; <...<t, =T, such that

T
E||u—<pn||§(—|—E/ ||DTu—D,~g0n||§< dr — 0, as n — oo.
0

(5.49)
In the case H < % it is more convenient to consider the symmetric inte-

gral introduced by Russo and Vallois in [298]. For a process « = {u, t € [0, T}

with integrable paths and e >0, we denote by u$ the integral (2¢)~* ttj; ugds,

where we use the convention us = 0 for s ¢ [0,T]. Also we put B; = Br
for s > T and B, =0 for s < 0.

Definition 5.2.2 The symmetric integral of a process u with integrable
paths with respect to the fBm is defined as the limit in probability of

T
(25)*1/ Us (Bste — Bs—¢) ds.
0

as € | 0 if it exists. We denote this limit by fOT Uy 0 dB;..

The following result is the counterpart of Proposition 5.2.3 in the case
H < %, for the symmetric integral.

Proposition 5.2.4 Let u = {u;,t € [0,T]} be a stochastic process in the
space DY2(H ). Suppose that the trace defined as the limit in probability

e
TrDu := ;l_I)I(l) % /0 <DU57 1[s—s,s+s]ﬁ[0,T]>H ds

exists. Then the symmetric stochastic integral of u with respect to fBm in
the sense of Definition 5.2.1 exists and
T
/ ug 0 dBy = 6(u) + TrDu.
0

In order to prove this theorem, we need the following technical result.

Lemma 5.2.1 Let u be a simple process of the form (5.48). Then u®
converges to u in DV? (Hg) ase | 0.
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Proof: Let u be given by the right-hand side of (5.48). Then w is a bounded
process. Hence, by the dominated convergence theorem

T
E/ (us —uS)*(T — s)*H~1ds — 0 as el 0. (5.50)
0
Fix an index ¢ € {0,1,...,n — 1}. Using that u; — us = 0 for s,t € [t; t;41]
we obtain
tit1 T 3 2
/ / Jus — us — (up —us)| (t —s)72dt | ds
ti S
tit1 tit1 3 2
2/ (/ |u§—u§|(t—s)H_2dt> ds
t; S
tir1 T 3 2
+2/ / [us —uS — (up —u,)| (t — s)772dt | ds
t; tit1

= 241(i,e) + 245(i, ). (5.51)

IN

The convergence of the expectation of the term As(i,¢) to 0, as e | 0, follows
from the dominated convergence theorem, the fact that w is a bounded
process and that for a.a. 0 < s <t < T,

\uffuif(utfusﬂ(tfs)H*% —0 as elo.

Suppose that ¢ < iminogignq |t;+1 — ti]- Then u§ —us = 0 if s and ¢
belong to [t; + 2¢,t;4+1 — 2¢], we can make the following decomposition

E(A1(i,€))

t;+2e t;+2¢e 3
8/ </ luf — s (t — s)H2dt> ds
ti S
tit1 tit1 3 2
—|—8/ </ |uf—u§|(t—s)H2dt) ds
tiy1—2¢ S

tit1 3 2
(/ uf—u§|(t—s)H_2dt> ds
ti+2e

t;+2¢e
+8 /
t
tiy1—2¢e tit1 3 2
+8/ / lué —us|(t —s)~2dt | ds.
t; t7‘+1—26

IN

1
i P
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The first and second integrals converge to zero, due to the estimate
c
ju5 —g] < Jt .

On the other hand, the third and fourth term of the above expression
converge to zero because u; is bounded. Therefore we have proved that

E||u—u5||§(—>0 as e — 0.

Finally, it is easy to see by the same arguments that we also have
T
E/ | Dy — Dyu|[5 drr — 0 as e¢—0.
0

Thus the proof is complete. ([

Now we are ready to prove Proposition 5.2.4.

Proof of Proposition 5.2.4: From the properties of the divergence operator,
and applying Fubini’s theorem we have

T T
(20)1 /0 ts (Bore — By o) ds = (26)°1 /0 5 (wslio—earq () ds

T
(2e)7 / (Dug, Ly g1))y, ds
0

e ([ )on

T
+(25>_1/0 <D-u871[87675+51(')>7{ ds

T
= / urdB, + B®.
0

By our hypothesis we get that B® converges to TrDu in probability as
e | 0. In order to see that foT uSdB, converges to d (u) in L?(f2) as ¢ tends
to zero, we will show that u® converges to u in the norm of D'2 (H). Fix
§ > 0. We have already noted that the definition of the space DV2 (Hx)
implies that there is a bounded simple H i -valued processes ¢ as in (5.48)
such that

T
Ellu= @l +E [ 1Dru-Dglfedr <. (5.52)
0
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Therefore, Lemma 5.2.1 implies that for € small enough,

T
Bllu =%+ B [ 11D, (=) dr
0

T
< 0E||U*¢||§<+6E/O 1D, (u— @)% dr
2 T 2
+cE\|so—sof||K+cE/0 1D, (o — ¢°)|I% dr
2 T 2
+cEHso€—u€HK+cE/O 1D (¢° — )% dr
T
< 206+cE||<pE—uE||§(+cE/ 1D, (¢ — w2 dr. (5.53)
0
We have
T
/ (g5 —ul)? (T — )~ 1ds
0
T 1 s+e 2
< /E(/ (gor—ur)dr> (T — 5)?H1ds
0 26 s—e
T 1 (r4+e)AT
< E (¢, —uy)’ / (T — s)*H=Yds | dr.
(

0 2e r—e)Vo0

From property (i) it follows that

(r+e)AT
(2e)7" / K(T,t)%dt < ¢ [(T —r)~2 +r72].
(

r—e)Vo

Hence, by the dominated convergence theorem and condition (4.21) we
obtain

T
liﬁ)lsup/ E(¢5 —ud)? K(T,s)ds
€ 0

T
< / Ep, —uy)? K(T,s)%ds <. (5.54)
0
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On the other hand,

2

T T 5
E/ (/ lpf —ug — %Jrusl(tS)H_th) ds
2
-4
—4€2E/ (/_/ )eo — (¢ —u)s—p| (t —5) dtd9> ds
1 T st+e  pT+r—s s 2
—@E/ / / [(p =)t — (o —u)p| (t = )" "2 dtdr| ds
0 s—e r

2

72€E/ / (/T+E @—u)t—(go—u)r(t—r)Hgdt> drds

T+e p(r+e)AT T+e I 2
/ / loy —us — @, +up| (t—7)" "2 dt| dsdr
(r—e)vo

T+e T+e 3 2
< E/ / loy —u — @, +up| (t— )72 dt| dr. (5.55)

y (5.54) and (5.55) we obtain
limsup F ||¢° — uEH?< < 24.
el0
By a similar argument,

T
limsupE/ [| Dy (¢ — us)H?( dr < 26.
el0 0

Since 4 is arbitrary, u® converges to u in the norm of D'? (Hg) as e | 0,
and, as a consequence, fOT udB, converges in L? () to § (u) . Thus the
proof is complete. O

Consider the particular case of the process u; = F(B;), where F is a
continuously differentiable function satisfying the growth condition (5.42).
If H > 1, the process F(B;) the process belongs to D'?(H). Moreover,
TrDu exists and

T
TrDu = H/ F'(By)t* =14t
0

As a consequence we obtain

T T T
/ F(By)odB; = / F(By)dB; + H / F'(B,)t* =14t
0 0 0
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Ay . . . 1
(C) Ité’s formulas for the divergence integral in the case H < 3

An Tté’s formula similar to (5.44) was proved in [9] for general Gaussian
processes of Volterra-type of the form B; = fot K(t,s)dWs, where K(t,s)
is a singular kernel. In particular, the process B; can be a fBm with Hurst
parameter i < H< % Moreover, in this paper, an It6’s formula for the in-
definite divergence process X; = fot usd By similar to (5.45) was also proved.

On the other hand, in the case of the fractional Brownian motion with
Hurst parameter i < H< %, an [t6’s formula for the indefinite symmetric
integral X, = fot usdB; has been proved in [7] assuming again § < H < 3.

Let us explain the reason for the restriction % < H.In order to define the
divergence integral fOT F'(Bs)dBs, we need the process F'(B;) to belong
to L?(Q;'H). This is clearly true, provided F satisfies the growth condition
(5.42), because F'(B,) is Holder continuous of order H —e > 1 — H if
e<2H -1 If H < 1 one can show (see [66]) that

10
P(B €M) =0,

and the space DV2(H) is too small to contains processes of the form F’(By).
Following the approach of [66] we are going to extend the domain of the
divergence operator to processes whose trajectories are not necessarily in
the space H.
Using (5.31) and applying the integration by parts formula for the frac-
tional calculus (A.17) we obtain for any f,g € H

<f,9>71 = <K;;IfaK}k~Ig>L2([O,T])

1_g~s—H g_1 1 _Hgi-H pg_1
= d2H <82 DTZ_ S 2 f, §2 DTz_ S 2 >
L2([0,17)

1 1 i-H 1_ i-H pg_
= d%{ <f,sH 252 HD(?JF st 2HD% st

)
g L2([0,T7])
This implies that the adjoint of the operator K7, in L%([0,T1]) is
1 1
(K3f) (s) = dps? T D3 st 2Hpz~Hl -5,

Set Ho = (K3) " (K};“)_l (L?([0,T))). Denote by Sy the space of
smooth and cylindrical random variables of the form

F=f(B(¢1),---,B(6,)), (5.56)

where n > 1, f € Cp° (R™) (f and all its partial derivatives are bounded),
and ¢; € Ho.

Definition 5.2.3 Let u = {u,t € [0,T]} be a measurable process such

that
T
E (/ ufdt) < oo.
0
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We say that u € Dom™d if there exists a random variable §(u) € L*(Q)
such that for all F € S we have

/ E(w K"K D F)dt = E(6(u)F).
R

This extended domain of the divergence operator satisfies the following
elementary properties:

1. Domé C Dom™4, and § restricted to Domd coincides with the diver-
gence operator.

2. If u € Dom™§ then E(u) belongs to H.

3. If u is a deterministic process, then v € Dom*§ if and only if v € H.

This extended domain of the divergence operator leads to the following
version of It6’s formula for the divergence process, established by Cheridito
and Nualart in [66].

Theorem 5.2.2 Suppose that F is a function of class C*(R) satisfying the
growth condition (5.42). Then for allt € [0,T], the process {F'(Bs)1,4(s)}
belongs to Dom™d and we have

F(By) = F(0) + /Ot F'(Bs)dB; +H/Ot F"(B,)s*~1ds. (5.57)
Proof:  Notice that F'(B,)1jg 4(s) € L*([0,T] x ) and
F(By) — F(0) — H/Ot F"(B,)s*"~lds € L*(Q).
Hence, it suffices to show that for any F € Sy
(E(F'(Bs)1j0,4(s), Ds F)x
=E ((F(Bt) — F(0) — H/Ot F”(BS)SQH_ld8> F) . (5.58)
Take F' = H,(B(y)), where ¢ € Ha and H,, is the nth-Hermite polynomial.

We have
DiF = Hn—l(B(SD))‘Pt

Hence, (5.58) can be written as
E (Hn—1(B(9)(F'(Bs)10,5(s), 5)m)

— BE((F(B) - F(0)— H / F/(B,)s*~ds) H,(B(g)))
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Using (5.33) we obtain

h [ B(F B (B() (D?

= E(F(B{') - F(0) - H i F"(By)s*™ " ds) H,(B())). (5.59)

In order to show (5.59) we will replace F' by

1
Fu(z) = / Fla =)y

where ¢ is a nonnegative smooth function supported by [—1, 1] such that

1
o e(y)dy = 1.
We will make use of the following equalities:

B(F(B)HA(B(¢)) = -~ B(F(B)S"(¢°")

1
= LD EB)). e
1
= EE(F(H)(Bt))ﬂ(O,t]y<P>71-
op 8%p

Let p(o,y) := (270)"2 exp (—%) Note that 32 = %872. For all n > 0

and s € (0,t],
LEENB) = L [ p2 )P )y
ds ds R ’

0 g
= [ R 2 )y
R

p
R ayz
= HSQH”/Rp(SQHyy)F("”)(y)dy

= HPHERF™2(B,)). (5.60)

= Hs*M! (s*,y) F™ (y)dy

For n = 0 the left hand side of (5.59) is zero. On the other hand it follows
from (5.60) that

E (F(By)) — F(0) — H/Ot E(F"(By))s*~1ds =0

This shows that (5.59) is valid for n = 0.
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Fix n > 1. Equation (5.60) implies that for all s € (0,¢],

d n n ’ﬂ n
— (BEDB) o 0)) = HTTBED(B) (L. 0
+e2nE(F™(By))
log_ i-H
X (Lo, )3 (D2 D27 )(s).
It follows that
t
E(F™(B)) (10,4, )% = H/O E(F™(B,)) (10,4, )75 ds
t
+e n/ E(F™(B,))
0
n log_ l-H
(Lo,s: 007 (D " D2 “9)(s), (5.61)

(5.61) is equivalent to (5.59) because
E(F™(B0)){L(0,s), ¢)3 = nlE(F(Be) Hu(B())),

E(F™(B){L0,:9)3 ' = (n = 1) B(F (B Hiuo1)(B(9))).
and
E(F"(B) (10,4, )5 = lE(F"(B.) Hy (B(9))).

This completes the proof (5.59) for the function Fj. Finally it suffices to
let k£ tend to infinity. O

(D) Local time and Tanaka’s formula for fBm

Berman proved in [22] that that fractional Brownian motion B = {B;,t >
0} has a local time I¢ continuous in (a,t) € R x [0, 00) which satisfies the

occupation formula
t
/ (B.)ds = / g(a)l%da (5.62)
0 R

for every continuous and bounded function g on R. Moreover, I{ is increas-
ing in the time variable. Set

t
LY = 2H/ s*H=170(ds).
0

It follows from (5.62) that

2H/ s = 1ds—/g(a)L?da.
R
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This means that a — L{ is the density of the occupation measure

t
u(C) = 2H/ 10(B,)s* T ds,
0

where C' is a Borel subset of R. Furthermore, the continuity property of I{
implies that L{ is continuous in (a,t) € R x [0, 00).

As an extension of the It&’s formula (5.57), the following result has been
proved in [66]:

Theorem 5.2.3 Let 0 <t < oo and a € R. Then
1¢B.>a}10,4(5) € Dom™§,

and

t
1
(B — a)* = (—a)* +/ Up, o0 dBs + S Li (5.63)
0

This result can be considered as a version of Tanaka’s formula for the
fBm. In [69] it is proved that for H > %, the process 1{p,~q}1(0,4(s) belongs
to Domd and (5.63) holds.

The local time /¢ has Holder continuous paths of order § < 1 — H in
time, and of order v < % in the space variable, provided H > %(see
Table 2 in [117]). Moreover, I{ is absolutely continuous in a if H < %, it
is continuously differentiable if H < é, and its smoothness in the space
variable increases when H decreases.

In a recent paper, Eddahbi, Lacayo, Solé, Tudor and Vives [88] have
proved that I¢ € D%? for all a < % That means, the regularity of
the local time [ in the sense of Malliavin calculus is the same order as its
Holder continuity in the space variable. This result follows from the Wiener

chaos expansion (see [69]):

00t
¢ = Z./o s_”Hp(s2H7a)Hn(as_H)In (1[073] ®") ds.
=0

In fact, the series
oo

S(1+n)E l(/ot s p(s*H a)Hy(as™ )1, (1.4 &) dsﬂ

n=0

S n)%n ' tsr —nH (2H oo 2H o as—H ar—H
> !/0/0() (25, a)p(r®™ ) Hy (as™) Hy (ar~™)

X Ry (r, 8)"drds
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is equivalent to

=

t ot
to / / Ry (u,v)(uv) ™"~ dudv
o Jo

||M8

n-
1

n

I
[M]8

1
pozte / Rp(1,2)z " 14z
0

Il
<

n

Then, the result follows from the estimate

1
/ Rp(1,2)z =14 < Cn o,
0

Ezercises

5.2.1 Show the tranfer principle stated in Propositions 5.2.1 and 5.2.2.
5.2.2 Show the inequality (5.34).

5.2.3 Show the estimate (5.47).

5.2.4 Deduce the Wiener chaos expansion of the local time .

5.3 Stochastic differential equations driven
by a fBm

In this section we will establish the existence and uniqueness of a solution
for stochastic differential equations driven by a fractional Brownian mo-
tion with Hurst parameter H > %, following an approach based on the
fractional calculus. We first introduce a notion of Stieltjes integral based
on the fractional integration by parts formula (A.17).

5.83.1 Generalized Stieltjes integrals

Given a function g : [0,T] — R, set gr_ (s) = g(s) —lim.|o(T —¢) provided
this limit exists. Take p,q > 1 such that %Jr é <land 0 < a < 1.
Suppose that f and g are functions on [0,7] such that ¢(7'—) exists,
felg (LP) and gr_ € I%f_a (L9). Then the generalized Stieltjes integral
of f with respect to g is defined by (see [357])

T T
| = [ D5 fus () DY gr (5. (5.64)
0 0

In [357] it is proved that this integral coincides with the Riemann-Stieltjes
integral if f and g are Holder continuous of orders o and g with a+ 3 > 1.
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Fix0<a< % Denote by W (0, T') the space of measurable functions
f:10,T] — R such that

Il = 500 <|f |+/ AU aﬂ' ) <.

We have, for all 0 < € < «
Cote(0,T) C W™ (0,T) C C*%(0,T).

Denote by W;~*°°(0,T) the space of measurable functions g : [0,7] — R
such that

_ lg(t) —g(s)l , [ la(y) —g(s)]
nglfa,oo’T = 0<§1<l£)<T ((ts)lo‘ +/3 Wdy) < 0.

We have, for all 0 < € < «
C1=oF=(0,T) € Wi “™(0,T) € C=(0,T).

For g € W}~ *°°(0,T) define

1
— D{~%g;_
I~ a) ociier | Vi) ©)

1
< ————— .
= F(l 704)1_\(04) ||ngfo¢,oo,T

Aa(g) =

Finally, denote by Woa’l((), T') the space of measurable functions f on [0, T
such that

||f|\a,1==/ d+// VL0 4y s < o
0

Lemma 5.3.1 Fiz 0 < a < % and consider two functions g €

W} *(0,T) and f € W (0,T). Then the generalized Stieltjes integral

t T
/ fsdgs = / fsl[O,t](s)dgs
0 0

exists for all t € [0,T] and for any s < t we have

/ fudg, - / fudg, = / D2, (f) () (D) ~"gi_) () d-

This lemma follows easily from the definition of the fractional derivative.
We have
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t
‘ / fsdgs
0

/0 (DE4f) (5) (Di=%ge-) (5) ds

< Aal9) [1f1la,q -
Indeed,

t
/ fsdgs
0

t
< sw [(DEt0n) )] [ 1(0§) ()] ds
0<s<t<T 0
< Aa(@) 1 fll o -

The following proposition is the main estimate for the generalized Stielt-
jes integral.

Proposition 5.3.1 Fiz0 < o < . Given two functions g € W~ “™(0,T)
and f € W' (0,T) we set
¢
he = / fsdgs~
0

Then for all s <t <T we have
© by — hy] o [ % | .—a
‘ht|+/0 m ds S AQ(Q)CO“T/O' ((t—?") +7r )

X (Ifrl +/T (lf y){iﬂl )dr, (5.65)

is a constant depending on o and T'.

a )

where c,,

Proof: Using the definition and additivity property of the indefinite inte-
gral we obtain

Aa(g)< / (rfrl)adr
+a/ / — a+1 dydr) (5.66)

Taking s = 0 we obtain the desired estimate for |h;|. Multiplying (5.66) by
(t — s)~*"! and integrating in s yields

/O m ds < Au(g)/0 (t—s)—o? (5.67)

x(/( —dr+a // . a+1dydr>ds.

|he = hs| = r) (Dy=%ge-) (r) dr

IN
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By the substitution s = r — (¢ — r)y we have

/T(t —8) T (r—5)T%ds < (t — )72 /00(1 +y)"* ly dy  (5.68)
0 0

and, on the other hand,
Yy
/ (t—s) *Mds=a'[t—y) -t <alt—y) ™ (5.69)
0

Substituting (5.68) and (5.69) into (5.67) yields

" |hy — byl s
/07(25_8)0&1 ds < Aulg) {cgp/o 7(t_r)2adr
CIO S, e

r
where -
) = / (1+y) "y %y = B2a,1—a).
0
(|
As a consequence of this estimate, if f € W}~ **(0,T) we have
t
[ Ao < Balg) e (6= 91 e (5.70)
and _
[ ras] < d@clh Wl 6.1)
0 ,00

5.3.2  Deterministic differential equations

Let 0 < o < 5 be fixed. Let g € lefd’oo(O, T;R%). Consider the determin-
istic differential equation on R?

t d
T = T +/ b(s,xs)ds + Zaj (s,24)dg?, t€[0,T], (5.72)
0

j=1

where zg € R™.
Let us introduce the following assumptions on the coefficients:

H1 o(t,z) is differentiable in z, and there exist some constants 0 <
5,0 < 1 and for every N > 0 there exists My > 0 such that the
following properties hold:

lo(t,z) —o(t,y)| < My|lz —y|, VzeR™ Vtel0,T],
|0z,0(t,2) — Op,0(t,y)| < M|z — y|6, Vx|, |yl < N, vt € (0,17,
lo(t,2) = o(s,2)| + |0s,0(t,2) — Ou,0(s,2)| < Mot — s/,
Vz e R™ Vit s €[0,7T].
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foreachi=1,...,m.

H2 The coefficient b(t, x) satisfies for every N > 0

bt.2) = b(t,y)| < Lale—yl Yial.lyl < N, vt € [0,7],
bt.a)] < Lola| +bo (1), Vo € R™, vt € [0,T],

where by € L” (0,T;R™), with p > 2 and for some constant Ly > 0.

Theorem 5.3.1 Suppose that the coefficients o and b satisfy the as-
sumptions H1 and H2 with p = £, 0 < 3,0 < 1 and 0 < a < ag =

[e3%

min (%,ﬁ, 5%). Then Equation (5.72) has a unique continuous solution
such that ' € Wg*°(0,T) for alli=1,...,m.

Sketch of the proof: Suppose d = m = 1. Fix A > 1 and define the
seminorm in W3">°(0,7T) by

Ilor = s e (11 [ B ).
*A 0. o (t—s)ott

Consider the operator £ defined by

t

t
(L) = w0+ [ bls s+ [ (s 1) do.
0 0
There exists Ag such that for A > )y we have

1
I£F oy < ol + 14 S 1 flla,n-

Hence, the operator £ leaves invariant the ball By of radius 2 (|zo]| + 1) in
the norm |||, of the space Wg">(0, T'). Moreover, there exists a constant
C depending on g such that for any A > 1 and u,v € By

1) = L@l < 13w 1+ AW +AED u=vllars 6.7

)

where

" u — ul’
A (u) = sup / —— ds.
) refo,1)Jo (r—s)ott

A basic ingredient in the proof of this inequality is the estimate
‘0’(7“, fT) - U(S’fs) - 0'(7“, hT) +o (Svhs)‘
< Molfr = fs = he + hs| + Mol frr — he|(r — S)ﬁ
+ Mylfy = bl (1 = 27 + e = )
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which is an immediate consequence of the properties of the function ¢. The
seminorm A is bounded on L (Byp), and, as a consequence, (5.74) implies
that £ is a contraction operator in £ (Bp) with respect to a different norm
[l4.5, for a suitable value of A2 > 1. Finally, the the existence of a solu-
tion follows from a suitable fixed point argument (see Lemma 5.3.2). The
uniqueness is proved again using the main estimate (5.65).

The following lemma has been used in the proof of Theorem 4.1.1 (for
its proof see [254]).

Lemma 5.3.2 Let (X, p) be a complete metric space and py, py,py SOMeE
metrics on X equivalent to p. If L : X — X satisfies:
i) there exists ro > 0, xg € X such that if By = {z € X : py (x0,2) <10}
then

L (Bo) C Bo,

ii) there exists ¢ : (X, p) — [0,+00] lower semicontinuous function and
some positive constants Coy, Ko such that denoting Ny(a) = {z € X :

p(z) < a}

a)  L(Bgy) C Ny(Co),
b))  p(L(z),L(y)) < Kopy (w,y), Yo,y € Ny(Co) N B,

1) there exists a € (0,1) such that
p2 (L(x),L(y)) < apy(@,y), Yo,y € L(Bo),
then there exists x* € L (By) C X such that
¥ =L(x%).

Estimates of the solution

Suppose that the coefficient o satisfies the assumptions of the Theorem
4.1.1 and
lo (t,z)] < Ko (1+ |x]7), (5.74)

where 0 <« < 1. Then, the solution f of Equation (5.72) satisfies

[flla.00 < Crexp (C2Aa(9)"), (5.75)
where
ﬁ if y=1
k= > i R <y<l
= if 0<y< R

and the constants C; and Cy depend on T, «, and the constants that
appear in conditions H1, H2 and (5.74).
The proof of (5.75) is based on the following version of Gronwall lemma:
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Lemma 5.3.3 Fiz 0 < a < 1, a,b > 0. Let = : [0,00) — [0,00) be a
continuous function such that for each t

t
x < a-+ bto‘/ (t—s) s “ayds. (5.76)
0
Then

1"(1 _ a)n+1tn(17a)
EES

oo
Ty §a+a2b”
n=1

< ad, exp [catbl/(l_a)} , (5.77)

where ¢, and d,, are positive constants depending only on a (as an example,
one can set ¢, = 2 (I'(1 — a))l/(lfa) and do = 462% ).

This implies that there exists a constants c,,d, > 0 such that

z; < ad, exp [catbl/u*a)] .

5.8.83  Stochastic differential equations with respect to fBm

Let B = {B;,t > 0} be a d-dimensional fractional Brownian motion of
Hurst parameter H € (%, 1). This means that the components of B are
independent fBm with the same Hurst parameter H. Consider the equation
on R™

d ¢ t
Xt:X0+Z/ o) (s,xs)ong+/ b(s, Xo)ds, t€[0,T], (5.78)
= o 0

where X is an m-dimensional random variable. The integral with respect
to B is a path-wise Riemann-Stieltjes integral, and we know that this in-
tegral exists provided that the process o, (s, Xs) has Hélder continuous
trajectories of order larger that 1 — H.

Choose a such that 1 — H < a < % By Fernique’s theorem, for any
0 < 0 < 2 we have

E (exp (Aa(B)‘;)) < o0.

As a consequence, if u = {ug, t € [0,T]} is a stochastic process whose
trajectories belong to the space W;f’l(O,T), almost surely, the path-wise

generalized Stieltjes integral integral fOT us o dBy exists and we have the

estimate
T
/ ugs 0 dByg
0

Moreover, if the trajectories of the process u belong to the space Wy (0,T),

< Gllully, -

then the indefinite integral U; = fg us 0 dB, is Holder continuous of order
1 — a, and its trajectories also belong to the space Wi (0,T).
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Consider the stochastic differential equation (5.78) on R™ where the
process B is a d-dimensional fBm with Hurst parameter H € (%, 1) and
Xo is an m-dimensional random variable. Suppose that the coefficients
o, b Qx [0,T] x R™ — R are measurable functions satisfying conditions
H1 and H2, where the constants My and Ly may depend on w € 2, and
ﬂ>1—H75>%—1. Fix « such that

(1 )
1—H<a<a0—m1n<2,ﬁ,6+1)

and o < %. Then the stochastic equation (5.65) has a unique continuous

solution such that X* € W;"*°(0,T) for all i = 1,...,m. Moreover the
solution is Hélder continuous of order 1 — .
Assume that Xy is bounded and the constants do not depend on w.
Suppose that
o (t,2)] < Ko (1+ [2]7),

where 0 < v < 1. Then,
[ X1la,00 < Crexp (C2Aa(B)").
Hence,for all p > 1
E(IXI7,.) < CPE (exp (pCaAa(B)")) < o0

provided k < 2, that is,

+-<H

=2
N

and

2

1
1-H S
<a<g-—o

e If v =1 this means a < % and H > %.
° If’y<2—%Wecantakeanyasuchthat1—H<a<%.
Ezercises

5.3.1 Show the estimates (5.70) and (5.71).
5.3.2 Show Lemma 5.3.1.

5.4 Vortex filaments based on fBm

The observations of three-dimensional turbulent fluids indicate that the
vorticity field of the fluid is concentrated along thin structures called vortex
filaments. In his book Chorin [67] suggests probabilistic descriptions of
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vortex filaments by trajectories of self-avoiding walks on a lattice. Flandoli
[102] introduced a model of vortex filaments based on a three-dimensional
Brownian motion. A basic problem in these models is the computation of
the kynetic energy of a given configuration.

Denote by u(z) the velocity field of the fluid at point € R3, and let
¢ = curlu be the associated vorticity field. The kynetic energy of the field
will be

H= 1 lu(z)|?dz = i/ £a) L) dxdy. (5.79)
2 Jgs 87 Jps Jrs |z —y
We will assume that the vorticity field is concentrated along a thin tube
centered in a curve v = {v,,0 < ¢t < T}. Moreover, we will choose a random
model and consider this curve as the trajectory of a three-dimensional
fractional Brownian motion B = {B;,0 < t < T'}. This can be formally
expressed as

o) =T [ ( RS Bs>Bsds> p(dy), (5.80)

where I is a parameter called the circuitation, and p is a probability mea-
sure on R? with compact support.

Substituting (5.80) into (5.79) we derive the following formal expression
for the kynetic energy:

= [ [ s, (5.81)
RS R3

where the so-called interaction energy H,, is given by the double integral

2 3 T T 1 . .
H,y = — / / odB; odB;. 5.82
Y 87T; 0 0 |Z‘+Bt—y—B5‘ ¢ ( )

We are interested in the following problems: Is H a well defined ran-
dom variable? Does it have moments of all orders and even exponential
moments?

In order to give a rigorous meaning to the double integral (5.82) let us

introduce the regularization of the function |-|~*:
-1
On =[] *P1yn, (5.83)

where p;/, is the Gaussian kernel with variance % Then, the smoothed
interaction energy

T
0

" r2 g T i i
H7, = §2/0 (/ on(z+ By yBs)ost> odB;,  (5.84)
=1
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is well defined, where the integrals are path-wise Riemann-Stieltjes inte-
grals. Set

= [ [ B p(dop(a). (5.85)
R JR3
The following result has been proved in [255]:

Theorem 5.4.1 Suppose that the measure p satisfies
[ [t ptdnpldy) < . (5.86)
R3 JR3

Let H3, be the smoothed interaction energy defined by (5.84). Then H"
defined in (5.85) converges, for all k > 1, in L¥(Q) to a random variable
H > 0 that we call the energy associated with the vorticity field (5.80).

If H= %, fBm B is a classical three-dimensional Brownian motion. In
this case condition (5.86) would be [gs [ps |2 —y| ™ p(dz)p(dy) < oo, which
is the assumption made by Flandoli [102] and Flandoli and Gubinelli [103].
In this last paper, using Fourier approach and It6’s stochastic calculus, the
authors show that Fe PH < oo for sufficiently small negative 3.

The proof of Theorem 5.4.1 is based on the stochastic calculus of varia-
tions with respect to fBm and the application of Fourier transform.

Sketch of the proof. The proof will be done in two steps:

Step 1(Fourier transform) Using

1 Se HE2)
o= e e

we get

on(@) = /R €| -2eie)-16?/2n g

Substituting this expression in (5.84), we obtain the following formula for
the smoothed interaction energy

2 3. T T A e-ll?/2n o
o= % / / / &aetBey=8) € " T\ gpi o qpd
i 31 j o Jo R3 1€]2 ° !

=1
r C2_ileamy)—lel?/2n |y (12
= & [ IYel2 de. (5587

where
T .
Ye = / H&Be) dB,
0

and ||Y5||(2: = Z?:l Yg?gl Integrating with respect to p yields
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anIj Va2 16172 [5(6) 12 e 1617 /2nge > 0 5.88
=3 1Yellc 16177 [p(&)]" e £>0. (5.88)
T JR3

From Fourier analysis and condition (5.86) we know that

/ / & — 4" p(de)p(dy) = Cy / P2 €17 4de < 00, (5.80)
R3 JR3 R3

Then, taking into account (5.89) and (5.88), in order to show the con-
vergence in L*(Q) of H" to a random variable H > 0 it suffices to check
that

B (V) < Cx (1n1g/E2)). (5.90)

Step 2 (Stochastic calculus) We will present the main arguments for the
proof of the estimate (5.90) for k = 1. Relation (5.37) applied to the process

ug = &5 allows us to decompose the path-wise integral Ye = fOT ei&Be) o
dB; into the sum of a divergence plus a trace term:

T T
Ye = / e"&BY AR, + H/ it &B 21y (5.91)
0 0

On the other hand, applying the three dimensional version of Itd’s formula
(5.44) we obtain

3 T T
ei<f’BT>:1+Z/ zfje“f’B‘)(SBtJ—H/ 2H=1g 2t 6B gt (5.92)
=170 0

Multiplying both members of (5.92) by i€|¢|~2 and adding the result to
(5.91) yields

T .
Y. — B gp, | — & (b 1) —y® L y®
€= D¢ o € t 1€]2 € T e €

where pe(v) = v — # (&, v) is the orthogonal projection of v on <§>J‘. It

suffices to derive the estimate (5.90) for the term Yf(l). Using the duality
relationship (1.42) for each j = 1,2,3 we can write

B (Yg(l)ﬂyélm) - E <<ez(§,B.),péD. <p2/ ez<£,Bt>dBt>> ) .
0
H
(5.93
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The commutation relation (D(0(u)), h);, = (u, h),, + 6((Du, h),,) implies

T T
DF (/ e—i<vaf>ng> =B, i+ (—ifk)/ 104(r)e “&BOdB].
0 0

Applying the projection operators yields

peDr (Pé/ el“’Bf)dBt>
0

—ile.B,) If*f>
‘ ( €2 ),

» &)’
e (1 - (|5|)2 ) |

Notice that the term involving derivatives in the expectation (5.93) van-
ishes. This cancellation is similar to what happens in the computation of
the variance of the divergence of an adapted process, in the case of the
Brownian motion. Hence,

3
ZE (Yg(l)’j?él)’j) — 9 F (< e HEB) —iEB) > )
=1 "

T T _
= 2aH/ / E(e”E’BS*B”) |s — |22 =2 dsdr
o Jo

T T ls=r|2H 12
= 2aH/ / em 2 K0 s — 202 dsar,
o Jo

which behaves as |€ |%*2 as || tends to infinity. This completes the proof
of the desired estimate for k = 1.

In the general case k > 2 the proof makes use of the local nondeterminism
property of {Bm:

Var (Z (B, — Bsi)> >k Y (ti—s:)"

i

Decomposition of the interaction energy

Assume % <H< % For any x # y, set

3 T t
. 1 _ .
H,, = odB' ) odB!. 5.94
v 2/ ([ prmy—pyos) o (589

Then ]ﬁ; exists as the limit in L?(Q) of the sequence ﬁg\y defined using
the approximation o,(x) of |z|~! introduced in (5.83) and the following
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decomposition holds

_ 3. 4T gt 1 o
H,, = dB'dB!.
D A s e Al

T ot
—H? / / do(x —y+ By — By)(t — T)Q(QH_l)drdt.
o Jo

T t
1
+H2H71/ (/ tr2H2dr>dt
( ) 0 0 |$—y+Bt—Br\( )
JrH/T( 1 (T — r)2H-2 4 1 2H1>d
— T _— 7T T.
o \|t —y+ Br — B, |z —y + By

Notice that in comparison with Hy,, in the definition of ]ﬁ;j we chose to
deal with the half integral over the domain

{0<s<t<T},

and to simplify the notation we have omitted the constant g. Nevertheless,

it holds that H, = g—; (]IT]I:y + ]IT]I;) , and we have proved using Fourier
analysis that H,, has moments of any order.
The following results have been proved in [255]:

1. All the terms in the above decomposition of ]ﬁ; exists in L?(Q) for

2. If |z — y| — 0, then the terms behave as |z — y|# 1, so they can be
integrated with respect to p(dz)p(dy).

3. The bound H < % is sharp: For H = % the weighted self-intersection
local time diverges.

Notes and comments

[5.1] The fractional Brownian motion was first introduced by Kolmogorov
[171] and studied by Mandelbrot and Van Ness in [217], where a stochas-
tic integral representation in terms of a standard Brownian motion was
established.

Hurst developed in [141] a statistical analysis of the yearly water run-offs
of Nile river. Suppose that z1,...,x, are the values of n successive yearly
water run-offs. Denote by X, = ZZ=1 xp the cumulative values. Then,
X — %Xn is the deviation of the cumulative value X corresponding to k
successive years from the empirical means as calculated using data for n
years. Consider the range of the amplitude of this deviation:

k k
R, = max (Xk — Xn> — min (Xk — Xn)
1<k<n n 1<k<n n



5.4 Vortex filaments based on fBm 319

and the empirical mean deviation

n

2
Sn: :&Z(xk?>

k=1

Based on the records of observations of Nile flows in 622-1469, Hurst dis-
covered that 7; behaves as cn®, where H = 0.7. On the other hand, the
partial sums xln—i— .-+ 4+ x, have approximately the same distribution as
nfx, where again H is a parameter larger than %

These facts lead to the conclusion that one cannot assume that x4, ..., z,
are values of a sequence of independent and identically distributed random
variables. Some alternative models are required in order to explain the
empirical facts. One possibility is to assume that x4, . .., z, are values of the
increments of a fractional Brownian motion. Motivated by these empirical
observations, Mandelbrot has given the name of Hurst parameter to the
parameter H of fBm.

The fact that for H > % fBm is not a semimartingale has been first
proved by [198] (see also Example 4.9.2 in Liptser and Shiryaev [201]).
Rogers in [296] has established this result for any H # 1.

[5.2] Different approaches have been used in the literature in order to
define stochastic integrals with respect to fBm. Lin [198] and Dai and
Heyde [73] have defined a stochastic integral foT ¢,dBs as limit in L? of
Riemann sums in the case H > % This integral does not satisfy the prop-

erty E( fOT ¢.dBs) = 0 and it gives rise to change of variable formulae of
Stratonovich type. A new type of integral with zero mean defined by means
of Wick products was introduced by Duncan, Hu and Pasik-Duncan in [86],
assuming H > % This integral turns out to coincide with the divergence
operator (see also Hu and Oksendal [140]).

A construction of stochastic integrals with respect to fBm with parame-
ter H € (0,1) by a regularization technique was developed by Carmona
and Coutin in [58]. The integral is defined as the limit of approximating
integrals with respect to semimartingales obtained by smoothing the singu-
larity of the kernel K (t, s). The techniques of Malliavin Calculus are used
in order to establish the existence of the integrals. The ideas of Carmona
and Coutin were further developed by Alos, Mazet and Nualart in the case
0<H < %inl8].

The interpretation of the divergence operator as a stochastic integral was
introduced by Decreusefont and Ustiinel in [78]. A stochastic calculus for
the divergence process has been developed by Alos, Mazet and Nualart in
[9], among others.

A basic reference for the stochastic calculus with respect to the fBM is
the recent monograph by Hu [139]. An Itd’s formula for H € (0,1) in the
framework of white noise analysis has been established by Bender in [22].
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We refer to [124] and [123] for the stochastic calculus with respect to fBM
based on symmetric integrals.

The results on the stochastic calculus with respect to the fBm are based
on the papers [11] (case H > 1), [7] and [66] (case H < 3).

[5.3] In [202], Lyons considered deterministic integral equations of the
form

t
Ty = T +/ U(IS)dgsa
0

0 <t < T, wherethe g : [0,T] — R%is a continuous functions with bounded
p-variation for some p € [1,2). This equation has a unique solution in the
space of continuous functions of bounded p-variation if each component
of g has a Holder continuous derivative of order o > p — 1. Taking into
account that fBm of Hurst parameter H has locally bounded p-variation
paths for p > 1/H, the result proved in [202] can be applied to Equation
(5.78) in the case o(s,z) = o(z), and b(s,z) = 0, provided the coefficient
o has a Holder continuous derivative of order a > % —1.

The rough path analysis developed by Lyons in the [203] is a powerful
technique based on the notion of p-variation which permits to handle dif-
ferential equations driven by irregular functions (see also the monograph
[204] by Lyons and Qian). In [70] Coutin and Qian have established the
existence of strong solutions and a Wong-Zakai type approximation limit
for stochastic differential equations driven by a fractional Brownian motion
with parameter H > % using the approach of rough path analysis.

In [299] Ruzmaikina establishes an existence and uniqueness theorem
for ordinary differential equations driven by a Holder continuous function
using Holder norms.

The generalized Stieltjes integral defined in (5.64), based on the frac-
tional integration by parts formula, was introduced by Zéhle in [355]. In
this paper, the author develops an approach to stochastic calculus based
on the fractional calculus. As an application, in [356] the existence and
uniqueness of solutions is proved for differential equations driven by a frac-
tional Brownian motion with parameter H > %7 in a small random interval,
provided the diffusion coefficient is a contraction in the space WQﬁ ooy Where

% < g < H. Here VV2 denotes the Besov-type space of bounded measur-
able functions f : [0, T — R such that

/ / t—s|2ﬁ+)1)ddt<oo

In [254] Nualart and Rascanu have established the existence and uniqueness
of solution for Equation (5.78) using an a priori estimate based on the
fractional integration by parts formula, following the approach of Zéhle.

[5.4] The results of this section have been proved by Nualart, Rovira
and Tindel in [255].



6

Malliavin Calculus in finance

In this chapter we review some applications of Malliavin Calculus to mathe-
matical finance. First we discuss a probabilistic method for numerical com-
putations of price sensitivities (Greeks) based on the integration by parts
formula. Then, we discuss the use of Clark-Ocone formula to find hedging
portfolios in the Black-Scholes model. Finally, the last section deals with
the computation of additional expected utility for insider traders.

6.1 Black-Scholes model

Consider a market consisting of one stock (risky asset) and one bond (risk-
less asset). The price process of the risky asset is assumed to be of the form
Sy = Spefle, t € [0,T], with

t 2 t
H, :/ (g — &)dﬁ—/ os.dWs, (6.1)
0 2 0

where W = {W;,t € [0,T]} is a Brownian motion defined in a complete
probability space (Q, F, P). We will denote by {F;,t € [0,T]} the filtration
generated by the Brownian motion and completed by the P-null sets. The
mean rate of return p, and the wvolatility process o, are supposed to be
measurable and adapted processes satisfying the following integrability
conditions
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T T
/ |y |dt < o0, / ofdt < oo
0 0
almost surely.

By It6’s formula we obtain that S; satisfies a linear stochastic differential
equation:
dSt == /,Ltstdt + O'tStth. (62)

The price of the bond By, t € [0, 7], evolves according to the differential
equation
dBt = TtBtdt, BO = 17

where the interest rate process is a nonnegative measurable and adapted
process satisfying the integrability condition

T
/ T'tdt < 00,
0
t
B; = exp </ rsds) .
0

Imagine an investor who starts with some initial endowment x > 0 and
invests in the assets described above. Let a; be the number of non-risky
assets and (3, the number of stocks owned by the investor at time t. The
couple ¢, = (ay, B;), t € [0,T], is called a portfolio or trading strategy, and
we assume that a; and (3, are measurable and adapted processes such that

almost surely. That is,

T T T
/ |Beps|dt < o0, / Blodt < oo,/ || redt < o0 (6.3)
0 0 0

almost surely. Then = = ag + 3¢S0, and the investor’s wealth at time ¢
(also called the value of the portfolio) is

Vi(¢) = ay By + 3,5;.

The gain G;(¢) made by the investor via the portfolio ¢ up to time ¢ is
given by

t ¢
G(9) :/ asdBg +/ B4dSs.
0 0

Notice that both integrals are well defined thanks to condition (6.3).

We say that the portfolio ¢ is self-financing if there is no fresh investment
and there is no consumption. This means that the value equals to the intial
investment plus the gain:

t t
Vi(¢) =z + /0 a,dB, + /O 8,dS,. (6.4)

From now on we will consider only self-financing portfolios.
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We introduce the discounted prices defined by

_ t 2 t
Sy = Bt—lst = Spexp ( / (us —rg — 025) ds +/ JSdVVS> .
0 0

Then, the discounted value of a portfolio will be

Vi(¢) = By 'Vi(¢) = ay + 3,5, (6.5)
Notice that
dVi(¢) = —r By 'WVi(¢)dt + By 1dVi(¢)
= —rf3,S.dt + B 3,dS;
= /Btdgta

that is
t

Vig) = a+ /0 8,d3.

t
m—l—/(us—rs)ﬁsssds—k /asﬁssdeS. (6.6)
0 0

Equations (6.5) and (6.6) imply that the composition «; on non-risky
assets in a self-financing portfolio is determined by the initial value z and

By
Vi(¢) — 5,5

t ~ ~
x +/0 B.,dSs — 3, 5.

£
|

On the other hand, (6.6) implies that if g, = r; for ¢ € [0,T], then the
value process V;(¢) of any self-financing portfolio is a local martingale.

6.1.1 Arbitrage opportunities and martingale measures

Definition 6.1.1 An arbitrage is a self-financing strateqy ¢ such that
Vo(p) =0, Vr(p) >0 and P(Vr(¢) > 0) > 0.

In general, we are interested in having models for the stock price process
without opportunities of arbitrage. In the case of discrete time models,
the absence of opportunities of arbitrage is equivalent to the existence of
martingale measures:

Definition 6.1.2 A probability measure QQ on the o-field Fr, which is
equivalent to P, is called a martingale measure (or a non-risky probability

measure) if the discounted price process {gt,O <t < T} is a martingale
in the probability space (Q, Fr, Q).
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In continuous time, the relation between the absence of opportunities of
arbitrage and existence of martingale measures is more complex. Let us
assume the following additional conditions:

O't>0

T
/ 02ds < oo
0

Hi—Te
oy

t 1 t
Zy = exp (— / 0,dW, — 3 / 9§d3> ,
0 0

which is a positive local martingale.

If E(Zr) = 1, then, by Girsanov theorem (see Proposition 4.1.2), the
process Z is a martingale and the measure ) defined by g—g = Zr is a
probability measure, equivalent to P, such that under ) the process

for all ¢t € [0,T] and

almost surely, where 6, = Then, we can define the process

t
W, :Wt+/ 0sds
0

is a Brownian motion. Notice that in terms of the process W; the price
process can be expressed as

t 2 t —~
Sy = S0 exp </ (TS — E)dS +/ O’Sde) )
0 2 0

and the discounted prices form a local martingale:

~ t . 1 t
S = Bt_lst = Spexp </ osdWy — 5/ 0§d3> .
0 0

Moreover, the discounted value process of any self-financing stragety is also
a local martingale, because from (6.6) we obtain

t t
Vi(¢) = o +/ 8.d5, =z + / 03B.5 V. (6.7)
0 0
Condition (6.7) implies that there are no arbitrage opportunities verify-
N2
ing Eq (fOT (JSBSSS) ds) < o0. In fact, this condition implies that the

discounted value process 12((1)) is a martingale under ). Then, using the
martingale property we obtain

Eq (Vr(9)) = Vo(9) =0,
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so Vp(¢) = 0, @-almost surely, which contradicts the fact that P( Vp(¢) >
0) > 0.

A portfolio ¢ is said to be admissible for the intial endowment x > 0 if
its value process satisfies Vi(¢) > 0, t € [0,T], almost surely. Then, there
are no arbitrage opportunities in the class of admissible portfolios. In fact,
such an arbitrage will have a discounted value process V;(¢) which is a
nonnegative local martingale. Thus, it is a supermartingale, and, hence,

Eq (Ve(6)) < Vo) =0,

so Vp(¢) = 0, @Q-almost surely, which contradicts the fact that P( Vp(¢) >
0) > 0.

Note that, if we assume that the process o is uniformly bounded, then
the discounted price process {S;,0 < ¢ < T} is a martingale under @, and
@ is a martingale measure in the sense of Definition 6.1.2.

6.1.2 Completeness and hedging

A derivative is a contract on the risky asset that produces a payoff H at
maturity time 7. The payoff is, in general, an Fp-measurable nonnegative
random variable H.

Example 6.1.1 FEuropean Call-Option with maturity T and exercise price
K > 0: The buyer of this contract has the option to buy, at time T, one
share of the stock at the specified price K. If St < K the contract is
worthless to him and he does not exercise his option. If S > K, the seller
is forced to sell one share of the stock at the price K, and thus the buyer
can make a profit Sy — K by selling then the share at its market price. As
a consequence, this contract effectively obligates the seller to a payment of
H=(Sr—K)* at time T.

Example 6.1.2 Furopean Put-Option with maturity T and ezercise price
K > 0: The buyer of this contract has the option to sell, at time T, one
share of the stock at the specified price K. If St > K the contract is
worthless to him and he does not exercise his option. If ST < K, the seller
is forced to buy one share of the stock at the price K, and thus the buyer
can make a profit S — K by buying first the share at its market price. As
a consequence, this contract effectively obligates the seller to a payment of
H= (K —87)% at time T.

Example 6.1.3 Barrier Option: H = (St — K)*1¢r, <1y, for some a >
K >0, a>5y, where T, = inf{t > 0:S; > a}. This contract is similar to
the European call-option with exercise price K and maturity T', except that
now the stock price has to reach a certain barrier level a > max(K, Sy) for
the option to become activated.
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+
Example 6.1.4 Assian Option: H = (% fOT Sidt — K) . This contract is

stmilar to the Furopean call-option with exercise price K and maturity T,
except that now the average stock price is used in place of the terminal stock
price.

We shall say that a nonnegative Fp-measurable payoff H can be repli-
cated if there exists a self-financing portfolio ¢ such that Vr(¢) = H. The
following proposition asserts that any derivative satisfying F(B>Z2H?) <
oo is replicable, that is, the Black and Scholes model is complete. Its proof is
a consequence of the integral representation theorem (see Theorem 1.1.3).

Proposition 6.1.1 Let H be a nonnegative Fr-measurable random vari-
able such that E(B;QZ%HQ) < 0. Then, there exists a self-financing port-
folio ¢ such that Vp(¢) = H.

Proof: By the integral representation theorem (Theorem 1.1.3) there
exists an adapted and measurable process u = {u;,t € [0,7]} such that

E (fOT ugds) < o0 and

T
By'ZrH = E (B7'ZrH) +/ usdWi.
0

Set
t
M, =E (B:'ZrH|F,) = E (B;' ZrH) +/ usdWs. (6.8)
0

Notice that BrZ, "My = H. We claim that there exists a self-financing
portfolio ¢ such that V;(¢) = H. Define the self-financing portfolio ¢, =
(atv ﬂt) by

B Zt_l (ut —J: Mt9t)
' oSt
it = MtZ;l — 5t5t'

9

The discounted value of this portfolio is
Vi(¢) = aw + 8,8 = Z; ' M,, (6.9)
so, its final value will be
Vi(¢) = BrVr(¢) = BrZ; My = H.
Let us show that this portfolio is self-financing. By It6’s formula we have

d(Z7Y) = Z7H (0, dW, + 62dt)
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and
d(Z;'My) = Z;7'dMy + Myd(Z;7) + dMgd(Z;)
= Z[lutth + Mthl(thWt =+ 9?dt> + Z{lutt%dt
= Zt_l (Ut + Mtet) th
= O'tgtﬁtdwt.
Hence,
dVi(¢) = d(B.Z7'M,) = By S,8,dW, + B, Z; * Myr,dt

= By0(S,0,dW; 4 B1015:3,0,dt + By (ay + B,5;)rdt
= Si0:0,dWi + S: 0, (11 — 1r4) dt + 5, Syridt + Brogridt
= Si0:0,dW; + B, St dt + Broyrdt

= 4dB, + 3,dS;.

]

The price of a derivative with payoff H at time ¢t < T is given by the
value at time ¢ of a portfolio which replicates H. Under the assumptions
of Proposition 6.1.1, from (6.8) and (6.9) we deduce

Vi(¢) = By Z; 'E (By' Zr H|Fy) = Z; "E(Zre™ Jrads 7).

Assume now E(Z7) = 1 and let @ be given by % = Zr. Then, using
Exercise 4.2.11 we can write

V;(qf)) — EQ(e— ftT TSdsH|-7:t)-

In particular,
Vo() = Eq(e™lo ™% H). (6.10)

6.1.3 Black-Scholes formula

Suppose that the parameters o, = o, u, = p and r; = r are constant. In
that case we obtain that the dynamics of the stock price is described by a
geometric Brownian motion:

o2
S :SOeXp(<u— 2) t—i—aWt) .

Moreover, 6; = 0 = £ and

92
Zt = exp <—9Wt — 2t> .
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So, E(Zr) = 1, and Wt = W; + 0t is a Brownian motion under ), with
% = Zr, on the time interval [0, T.

This model is complete in the sense that any payoff H > 0 satisfying
FEq(H?) < oo is replicable. In this case, we simply apply the integral rep-
resentation theorem to the random variable e”""H € L2(Q, Fr,Q) with
respect to the Wiener process . In this way we obtain

T —~—
e"TH = Eq (e_rTH) +/ usdWs,
0

and the self-financing replicating portfolio is given by

Ut
ﬂ = ="
! O'St
. = Mt - ﬁtsta

where .

My = Eq (e7""H|F,) = Eqg (7" H) + / usdWi.
0

Consider the particular case of an European option, that is, H = ®(Sr),
where ® is a measurable function with linear growth. The value of this
derivative at time ¢ will be

Vi(9) = Eq (e 00(sn)|R)
e—r(T—t)EQ ((I)(Ster(T—t)ea(VNVT—Wt)—02/2(T—t))‘]_-t) _

Hence,
Vi = F(t,5), (6.11)

where
F(t,x) =e """ "Eq (@(MMT—t)@o(’v“vTﬁvt)—02/2<T7t>)) . (6.12)

Under general hypotheses on @ (for instance, if ® has linear growth, is
continuous and piece-wise differentiable) which include the cases

B(a) = (z—K)*,
o) = (K-t

the function F(t,z) is of class C*2. Then, applying Itd’s formula to (6.11)
we obtain

t N t
Vi) = V0(¢)+/ Ja—F(u,Su)Suqu—i—/ ra—F(u,Su)Sudu
0 83) 0 ax

LoF 1 [to*F 5 02
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On the other hand, we know that V;(¢) has the representation
¢

t
Vi) = Vo(6) + /O 0B, SudiVy + /O Vdu.

Comparing these expressions, and taking into account the uniqueness of
the representation of an It6 process, we deduce the equations

oF

ﬂt = %(tvst%
oF 1 &2F
rF(t,S,) = o —(t, St)+— 2538 5 (£, 51)
oF
+’I"St 8 (t St)

The support of the probability distribution of the random variable S; is
[0,00). Therefore, the above equalities lead to the following partial differ-
ential equation for the function F(t, ), where 0 <t < T,z >0

aa—};(t,:r) + T:cg—i(t,x) %%(t, z) o? x> = rF(tz),
F(T,x) = ®(x).
The replicating portfolio is given by
8, = (Z—F(t,st), (6.13)
o = e "H(F(t,5) — B,5). (6.14)
Formula (6.12) can be written as
F(t,z) = e—T(T—t)EQ (cp(xef’(T—t)eU(WT—Wn)—UZ/Q(T—t)))

—rT 27T/ (I)( rT——T-ﬁ-U\fy)e y /2dy

where 7 =T — t is the time to maturity.
In the particular case of an European call-option with exercise price K
and maturity T, @(m) = (x — K)T , and we get

52 +
F(t,z) = eV /2 e~ TTHOVTY _ Ke‘“g) dy

)
= 2®(dy) — Ke (T t)<I>(d_), (6.15)
where
log % + (r - %2> T
o\ T ’
log = + (r + %2) T
a\/T
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FEzxercises

6.1.1 Consider the Black-Scholes model with constant volatility, mean rate
of return and interest rate. Compute the price at time ¢y, 0 <ty < T of a
derivative whose payoff is:

(i) H= % [ Sidt.

. 4/3

(i) H=5,".

6.1.2 Using
(St —K)" - (St —K)" =Sr— K (6.16)

deduce a relation between the price of an European call-option and that
of an European put-option. In particular, in the case of the Black-Scholes
model with constant volatility, mean rate of return and interest rate, obtain
a formula for the price of an European put-option from (6.15).

6.1.3 From (6.15) show that

OF
0’F 1

= @' (d
0% = aovT )
%Z = VT (dy).

Deduce that F' is a nondecreasing and convex function of x.

6.2 Integration by parts formulas and computation
of Greeks

In this section we will present a general integration by parts formula and
we will apply it to the computation of Greeks. We will assume that the
price process follows a Black-Scholes model with constant coefficients o, p,
and r.

Let W = {W(h),h € H} denote an isonormal Gaussian process associ-
ated with the Hilbert space H. We assume that W is defined on a complete
probability space (Q, F, P), and that F is generated by W.

Proposition 6.2.1 Let F, G be two random variables such that F € D2,
Consider an H-valued random variable u such that D"F = (DF,u); # 0
a.s. and Gu(D*F)~! € Domd. Then, for any continuously differentiable
function function f with bounded derivative we have

E(f'(F)G) = E(f(F)H(F,G)),

where H(F,G) = §(Gu(D“F)~1).
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Proof: By the chain rule (see Proposition 1.2.3) we have
DU(f(F)) = f(F)D"F.
Hence, by the duality relationship (1.42) we get
E(f(F)G) = E(D“(f(F))(D"F)"'G)

= E((D(f(F)),u(D"F)7'G),)

= B(f(F)5(Gu(D"F)™)).
This completes the proof. O
Remarks:

1. If the law of F is absolutely continuous, we can assume that the function
f is Lipschitz.

2. Suppose that u is deterministic. Then, for Gu(D“F)~! € Domé it suffices
that G(D“F)~! € D2, Sufficient conditions for this are given in Exercise
6.2.1.

3. Suppose we take u = DF'. In this case

H(F.G) = 5 (GDF) |
| DF |y

and Proposition 6.2.1 yields

E(f(F)G)=E <f(F)6 (GDF>> . (6.17)

2
1Dy

A Greek is a derivative of a financial quantity, usually an option price,
with respect to any of the parameters of the model. This derivative is useful
to measure the stability of this quantity under variations of the parameter.
Consider an option with payoff H such that Eq(H?) < co. From (6.10) its
price at time t = 0 is given by

Vo = EQ(e_rTH).
We are interested in computing the derivative of this expectation with

respect to a parameter a, a being one of the parameters of the problem,
that is, Sy, o, or r. Suppose that we can write H = f(F,). Then

W T N
N0 TR E, , 1
e G (619)
Using Proposition 6.2.1 we obtain
Vo T dF,
— = H — . .1
da € EQ f(Fa) F,, do (6 9)

In some cases the function f is not smooth and formula (6.19) provides
better result in combination with Montecarlo simultation that (6.18). We
are going to discuss several examples of this type.
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6.2.1 Computation of Greeks for FEuropean options

The most important Greek is the Delta, denoted by A, which by definition
is the derivative of Vj with respect to the initial price of the stock Sj.
Suppose that the payoff H only depends on the price of the stock at the
maturity time T'. That is, H = ®(S7). We call these derivative European
options. From (6.13) it follows that A coincides with the composition in
ristky assets of the replicating portfolio.
If ® is a Lipschitz function we can write

—rT
— a‘/o — EQ(efTT(I)/(ST)aﬁ) — eSO

AN=—=
BS() aSO

Eq(®'(ST)Sr).

Now we will apply Proposition 6.2.1 with u =1, F = St and G = St. We
have

T
DuST = / DtSTdt =oT ST.
0

Hence, all the conditions appearing in Remark 2 above are satisfies in this
case and we we have

-1
T 1 Wr

As a consequence,

efrT

- SQO'T

A Eq(®(Sr)Wr). (6.20)

The Gamma, denoted by T, is the second derivative of the option price
with respect to Sy. As before we obtain

R . asr\?\ 7

Assuming that @’ is Lipschitz we obtain, taking G = S%, F = Sr and
u = 1 and applying Proposition 6.2.1

1 - St Wr
2
= —— 1
oSt (/0 DtSTdt> 6( > St ( )

and, as a consequence,

Eo(@"(7)5%) = Fo (¥(sr)sr (o ~1) ).
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Finally, applying again Proposition 6.2.1 with G = S (% — 1), F=S5p

and u = 1 yields
s Ve 1
0277 oT

5| Sr ( — 1) </ DtSTdt>
_ (WE 1 W
o o272  o2T oT
and, as a consequence,

”/ H;72 1 I17T
E — —1))=Eg|(® r - ).
Therefore, we obtain
efrT ”72 1
I'=_——Fo(® L ___w ) 21
SgUT Q < (S7) (O’T o T)> (6.21)

The derivative with respect to the volatility is called Vega, and denoted
by ¥:

1

o 05
do do
Applying Proposition 6.2.1 with G = SyWr, FF = St and u = 1 yields

T -1 e
§| Sy (Wr —oT) (/ DtSTdt> § ( L 1)
0 UT

W2 1
<UTUWT)'

9 = = Eq(e ™ ®'(S7)=—) = e " Eg(®'(Sr)St (Wr — oT)).

As a consequence,

v =e"TEq ((D(ST) (‘ﬁ - % - WT>) : (6.22)

By means of an approximation procedure these formulas still hold al-
though the function ® and its derivative are not Lipschitz. We just need
® to be piecewise continuous with jump discontinuities and with linear
growth. In particular, we can apply these formulas to the case of and Eu-
ropean call-option (®(z) = (z — K)T), and European put-option (®(z) =
(K —z)™), or a digital option (®(x) = 1{z>x})-

We can compute the values of the previous derivatives with a Monte
Carlo numerical procedure. We refer to [110] and [169] for a discussion of
the numerical simulations.
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6.2.2 Computation of Greeks for exotic options

Consider options whose payoff is a function of the average of the stock price

+ fOT Sdt, that is
1 T
H=0¢ | = Sdt | .
T A k

For instance, an Asiatic call-option with exercise price K, is a derivative
+
of this type, where H = (% fOT Sidt — K) . In this case there is no closed

formula for the density of the random variable - fOT Sydt. From (6.10) the
price of this option at time ¢ = 0 is given by

—rT 1 T
Vo=e TEq (@5 [ S]]
0

Let us compute the Delta for this type of options. Set Sp = % fOT Sydt.
We have

IV, _ 08 —rT =
— 220 — Eo(e T (Sr) Sk ) = S— Eo (@' (S1)Sr).

A‘TSO_ 95, So

We are going to apply Proposition 6.2.1 with G = Sy, F = St and u; = S;.
Let us compute

1 T o T
D,F =~ | D,Sdr=2 1] 8.dr,
t TA + T T/t T

and

1) L — 25 S.
I S.D,Fdt o \ T 8dt
T T

2 foT S, dW, . Jo St (ft aSrdr> dt
2o i

Jo Sedt (Jy suat)
2 Jo SV
N

T 1 T
/ Stth = — ST — SO — T'/ Stdt .
0 g 0
Thus,

5 GS. _28r-85) 2 _2 (58
Iy SiDiFdt) o2 [ St o o\ [ S.dt ’

0

+ 1.

Notice that
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where m = r— "; Finally, we obtain the following expression for the Delta:

2¢~"T — St — So
A= ——FEo D (S _ .
B (26 (2w
For other type of path dependent options it is not convenient to take

u = 1 in the integration by parts formula. Consider the general case of an
option depending on the prices at a finite number of times, that is,

H=®(S,...,5,,),

where ® : R™ — R is a continuously differentiable function with bounded
partial derivatives and 0 < t; <ty < --- < t,, =T. We introduce the set
T',, defined by

tj
L= {aeLz([O,T]):/ ardt =1VYj = 1,...,m}.
0

T
A= EQ (H/O atth> .

Then we have

In fact, we have

D*H = > 0;%(S,...,5,)D"Sy,
j=1

o> 0;(Sh,,. .., 5,)S,.
j=1

As a consequence,
OH 1 & D*H
— = — 0;®(S¢,,..., S S, = ——
85{) So Z J ( o ’ tm) t O'S()

j=1

and we obtain

oOH e T e’ T
_ _—rT — a _
A=e"TEg (aso> 5. Fa(D'H) = Fq (H/O atth> .

We can take for instance a = %1[07251] and we get

—rT

& Wt
A = E H L. 2
- Q< tl) (6.23)

Formula (6.23) is not very useful for simulation due to the inestability of
t1

if ¢1 is small. For this reason, specific alternative methods should be
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used to handle every case. For example, in [169] the authors consider an
up in and down call option with payoff

H= ]-{infi:ly___ym StigD}l{supi:L S, ZU}]-{ST<K}7

LM

and apply an integration by parts formula using a dominating process de-
fined as

Y% = m Z (St1 - Sti—l)Q'
1<i<m
t; <t
It is proved in [169] that if ¥ : [0, 00) — [0,1] is a function in C;° such that
V(r)=1ifr <a/2and ¥(z) = 0if 2 > a, where U > Sp+§ > So—5 > D,

then,
. Soe_TT \I/(Y)
. <H5<JOTW<n>dt>>'

6.2.1 Suppose that G € D F € D?? and u is an H-valued random
variable such that: E(G%) < oo, E((D*F)~12) < 0o, and E(||DD“F||Z) <
oc. Show that G(D“F)~1 € D12,

6.2.2 Using formulas (6.20), (6.21), and (6.22) compute the values of A, T
and 9 for an European call option with exercise price K and compare the
results with those obtained in Exercise 6.1.3.

FEzxercises

6.2.3 Compute A, I" and ¥ for a digital option using formulas (6.20), (6.21),
and (6.22).

6.3 Application of the Clark-Ocone formula
in hedging

In this section we discuss the application of Clark-Ocone formula to find
explicit formulas for a replicating portfolio in the Black-Scholes model.

6.3.1 A generalized Clark-Ocone formula
Suppose that

. t
Wt = Wt +/ F)Sds,
0

where 6 = {0¢,¢ € [0,T]} is an adapted and measurable process such that
fOT Hfdt < oo almost surely. Suppose that E(Zr) = 1, where the process
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t 1 t
Zy = exp (/ 0, dW, — 5/ eids> .
0 0

Then, by Girsanov Theorem (see Proposition 4.1.2), the process W =

Zy is given by

{W,,t € [0,T]} is a Brownian motion under the probability Q on Fr given

The Clark-Ocone formula established in Proposition 1.3.14 can be gen-
eralized in oder to represent an Fr-measurable random variable I as a
stochastic integral with respect to the process W. Notice that, in general,

we have IV C Fr (where {F}V,0 < t < T} denotes the family of o-
fields generated by W) and usually FV' # Fr. Thus, an Fr-measurable
random variable F' may not be F}"-measurable and we cannot obtain a

representation of F' as an integral with respect to stimply by applying
the Clark-Ocone formula to the Brownian motion W on the probaiblity
space (Q, 73V, Q).

In order to establish a generalized Clark-Ocone formula we need the
following technical lemma. Its proof is left as an exercise (Exercise 6.3.1).

Lemma 6.3.1 Let F be an Fr-measurable random variable such that F €
DY2 and let € LY2. Assume

(i) E(Z2F?) + E(Z2 [; (D,F)%dt) < oo,
2
(i) E (Z%F2 Iy (et + [ Dbdw, + [ GsDtGSds) dt> < oo
Then ZpF € DY? and
T T
Dt(ZTF) = ZTDtF — ZTF (9,5 +/ Dtades +/ 93Dt08d3> .
t t

Theorem 6.3.1 Let F' be an Fr-measurable random variable such that
F € DY and let § € LY2. Suppose that conditions (i) and (ii) of Lemma
6.3.1 hold. Then

T T
F = Eo(F) +/ Eq <DtF - F/ DtedeS}}> AW,
0 t

Proof: PutY; = Eq(F|F:). Using Exercise 4.2.11 we can write

Y, = Z; 'E(ZrF|Fy),

¢ ¢
Z; ' =exp (/ 0,dWs + 1/ 9§d5> .
0 2Jo

where
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Then, by Clark-Ocone formula, we have
BZeFIR) = Bk + [ BD(Ze ),
Hence,
Y, =27, 'Eq(F)+ Z; ! /Ot E(Dy(ZpF)|Fs)dW,. (6.24)

From Lemma 6.3.1 we obtain

T —_—~
E(Di(ZrF)|F:) = E (ZT <DtF F <9t Jr/ Dtedes>> |~7:t>
t
T —
= ZtEQ <DtFF <9t +/ Dtgde9> |ft>
t

= Zt\I’t - ZthQt, (625)

where

T
\I/t - EQ(DtF - F/ DtedeS|ft)'
t

Substituting (6.25) into (6.24) yields

t t
Y, = Z; 'Eq(F) + Z;l/ Z,W dW, — Z;l/ ZY0,dWs.
0 0

Applying 1t6’s formula and using

d(Z; 1) = Z7H(0:dW, + 67dt)

we get
dY, = Yi(0,dW; + 07dt) + U dW,; — Y,0,dW; + 0,,dt — Y,07dt
= \Ijtth.
This completes the proof. O

6.3.2 Application to finance

Let H be the payoff of a derivative in the Black-Scholes model (6.2). Sup-
pose that E(B;QZ%Hz) < 0o0. We have seen that H is replicable, as a conse-
quence of the integral representation theorem. Furthermore, if ¢, = (a4, 5;)
is a replicating portfolio, we have seen that

t —~—
Vi(o) :EQ(B;1H)+/O 0585 8,dW,.
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Suppose now that B;:'H € D2, § € L2 and the conditions (i) and (ii) of
Lemma 6.3.1 are satisfied by F = B:FIH and 6. Then, we conclude that

T
0:S:0, = Eq <Dt (By'H) — B;lﬂ/ DtGSdWsU-}) .
t

Hence,

B g =
B, = —-Eq (Dt (By'H) — B;lH/ Dtedes|ft> :
t

015

If the interest rate r; = r is constant this formula reduces to

efr(Tft)

T
B,=———FEq (DtH - H/ DtedeSm) .
t

04S¢

In the particular case u, = p, 0y = o, we obtain D:f; = 0, and

e—r(T—t)

In that case, the only hypothesis required is H € DY2W  In fact, it suffices
to apply the ordinary Clark-Ocone formula for the Brownian motion W

Tt
and use that 3, = < g, where

T —_—
e""H=Eq(e7""H) + / urdWs.
0

Consider the particular case of an European option with payoff H =
(I)(ST) Then

677“(T7t)

By = aistEQ (®'(St)oSr|Ft)

S’ S’
— —r(T—t) 1 PT T
T 05g (235517 )

e " T Eg (@ (2S7—¢)ST—1) |os, -
In this way we recover the fact that [, coincides with %—i(t,St), where
F(t,x) is the price function.
Consider now an option whose payoff is a function of the average of the
stock price S = % fOT Sidt, that is H = @ (?T). In this case we obtain

et L= 1T
ﬁt: S, EQ (I)(ST)T/IS STd’I“|.7:t .
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We can write
S t§+1 TSd
iy = rar,
=72ttt

where S; = % fg S,dr. As a consequence we obtain
—r(T—t) — —
e te  y(T —t)—= y(T —t)—=
= Fo|ld =+ 2S5 = 2Sr_ = .
ﬁt St Q ( (T + T T—t T T—t |I:St’y:St

FExercises
6.3.1 Prove Lemma 6.3.1.

6.3.2 Let W, = W, + fot Osds, where 6 = {0;,t € [0,T]} is an adapted and
measurable process. Use the generalized Clark-Ocone formula to find the
integral representation in terms of the Wiener process W of the following
random variables:

(i) F = W2, and 6 is bounded and belongs to D'? for some p > 2,

(ii) F = exp(aWr), and 6 is bounded and belongs to D'* for some p > 2,

(iii) F = exp(aWr) and 0; = W;.

6.3.3 Consider the Black-Scholes model with constant volatility, mean rate
of return and interest rate. Consider the particular case of an European
option with payoff H = exp(aWr). Find a replicating portfolio using the
Clark-Ocone formula.

6.4 Insider trading

Suppose that in a financial market there are two types of agents: a natural
agent whose information coincides with the natural filtration of the price
process, and an insider who possesses some extra information from the
beginning of the trading interval [0,7]. The simpler modelization of this
additional information consists in assume the knowledge of a given random
variable L. Two important questions in this context are:

i) How can one calculate the additional utility of the insider?
ii) Does the insider have arbitrage opportunities?

Consider the Black-Scholes model for the price process S; with a measur-

able and adapted mean rate of return p, satisfying £ ( fOT | ut|dt) < oo and

a measurable and adapted volatility process satisfying FE ( fOT oidt < oo)

and o; > 0 a.s. The price process is then given by

dSt = S’t(,utdt + O'tth>.
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As usual, we denote, {F;,t > 0} the filtration generated by the Wiener
process W and the P-null sets. The price of the bond is given by

t
B; = exp </ r3d5> ,
0

where 7, is a non negative measurable and adapted process satisfying

T
FE (/ rtdt> < 0.
0

A natural insider will use a self-financing portfolio ¢, = (v, 8;) where
the processes a; and 3, are measurable and F;-adapted, satisfying

/OT |81 |dt < 00, /OT o | redt < oo,/OT FZodt < oo (6.26)
almost surely. That is, the value process
Vi(¢) = au By + B, S;
satisfies the self-financing condition
dVi(p) = riay Bedt + 3,dSy. (6.27)

We restrict ourselves to strictly admissible portfolios, that is to portfolios
¢ satisfying Vi(¢) > 0 for all ¢t € [0,T]. The quantity m; = 5:(%) is the
proportion of the wealth invested in stocks, and it determines the portfolio.
In terms of 7, the value process (denoted by V;) satisfies the following linear

stochastic differential equation

dVy = (py + (g — re)m) Vidt + 740 VidWr.

The solution of this equation is

‘ (778‘78)2
Vi = Vo Bt exp / (MS_TS)WS_T
0

One of the possible objectives of an investor is to maximize the expected
utility from terminal wealth, by means of choosing an appropriate portfolio.
We will consider the logarithmic utility function u(x) = logz to measure
the utility that the trader draws from his wealth at the maturity time 7.
Then, the problem is to find a portfolio 7; which maximizes the expected
utility:

t
ds+/ ﬂsadeS>. (6.28)
0

Oy = max E (log V), (6.29)
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where

T
E(logVr) = logV0+E</ rsds>
0

T 2 T
+E </ l(ﬂs —Te)Ts — % ds —I—/ 7T50'5dws> )
0 0

Due to the local martingale property of the stochastic integral fot Ts0sdW,
the utility maximization probllem reduces to find the maximum of

T (7_(_50_5)2
E(/O [(us—rs)ﬂs— 5 ] d8> :

We can write this expression as

T N 2 T . 2
_1E</ <wsas—”5“) ds>+E</ Md3>
2 0 Os 0 20-2

and the solution to the maximization problem (6.29) is (Merton’s formula)

(6.30)

and

T 2
(/’L _Ts)
br=F s 8 s .
z (/ 2077

Consider now the problem of an insider trader. Assume that the in-
vestor is allowed to use a portfolio ¢, = (s, 8;) which is measurable and
Gi-adapted, where {G;,t € [0,T]} is a filtration which is modelling the
information of the investor. In principle no assumption will be made on
this filtration. In the particular case where the additional information is
given by a random variable L which is Fp-measurable (or more generally,
Frie-measurable for some € > 0) we have

Qt = .7:,5 \/O'(L).

We also assume condition (6.26). Now the self-financing condition (6.27),
by definition, will be

¢ ¢ ¢
Vi(g) =Vp +/ re0gBeds +/ BttsSsds +/ Bs0sSsd” Wy,  (6.31)
0 0 0

where fot B5s0,d~ Wy denotes the forward stochastic integral introduced
in Definition 3.2.1, and the process (,0:5; satisfies the assumptions of
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Proposition 3.2.3. That is, the mapping t — [(,0+5; is continuous from
[0,7] into D2, and BoS € Li2.

Assume Vi(¢) > 0 for all ¢t € [0,7] and set m; = % as before. Then,
from (6.31) we obtain

d‘/t =rVi+ (‘[,Lt — Tt) Wt‘/,gdt + ﬂ'ththfwt. (632)

Under some technical conditions on the processes m:, oy and p, (see
Exercise 6.4.1), the process V; defined by
t
ds+/ Tsosd” Wy
0

T ¢ (7750'5)2
‘/t = Vbefo reds exXp / </’[’s - 7"5) Ts — 2
0
(6.33)

satisfies the linear stochastic differential equation (6.32).
Let us denote by Ag the class of portfolios 7 = {m,t € [0, T} satisfying
the following conditions:

(i) = is Gi-adapted.

(ii) The processes m and o are continuous in the norm of D'* and 7 €
1,2
Ly~

(iii) (fo [(p 7r5|d5) < o0.

We need the following technical lemma.

Lemma 6.4.1 Let 1 and o be measurable process which are continuous
in the norm of DY and 7 € L2 Suppose that o is Fi-adapted. Then the

forward integral fOT meo.d” Wy exists and

T T T
/ Teo.d” Wi :/ 0 AW —/ (D_W)gas ds.
0 0 0 )

Moreover, fOT ns0sd~ Wy equals to the following limit in L*(Q)

T tit1
msosd Wy = lim s / o, dWy | .
/0 W\loz b < t; )

Proof:  Notice first that 7o € Ly? and (D~ (70)); = (D~ )04 This
follows from the fact that for any s > t we have

Ds(mat) = O'tDsﬂ't.

The proof of the lemma can be done using the same ideas as in the proof
of Proposition 3.2.3 (Exercise 6.4.2). O
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We aim to solve the optimization problem

&g = max E (logVy). (6.34)

TEAg
The following theorem provides a characterization of optimal portfolios.

Theorem 6.4.1 The following conditions are equivalent for a portfolio
™ € Ag:

(i) The portfolio ™ is optimal for problem (6.34).

(it) The function s — E ( [y 0,dW;|Gy), is absolutely continuous in [t,T]
for any t € [0,T) and there exists

d

E(py — p, — 02mi|Gy) = —£E (/0 aTdWT|gt) (6.35)

for almost all s € [t,T].

Proof:  Set

J(m) = E(logV{f)—Vo—E</0 rsds>

_ T (7750'5)2
= FE (/0 [(us —Ts) W — 21 ds)
+E (/T WSUSdWS> . (6.36)
0

Assume first that 7* € Ag is optimal. We have J(7*) > J(7* +¢) for any
0 € Ag and ¢ € R. Therefore

d
d—gJ(w* +e08)|c=0 = 0.

Hence,

T T
E (/ (1y — 75 — 021t Byds +/ ﬁsades> =0, (6.37)
0 0

for all 3 € Ag. In particular, applying this to 8, = G1(sy(u), where
0 <r<t<T and G is G;-measurable and bounded, we obtain

t i
E (/ (1 — py — o2ms) ds +/ adeS|gr> =0, (6.38)
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which implies (ii). Conversely, integrating (6.35) we obtain (6.38). For any
0 € Ag we have

T n—1 tit1
E (/ 5Sd_X5> lim E (ﬁt (/ osdWs ))
0 w110 2=
'L+1
E( ( o dWy |gt1)>
t1+1
|hﬁlO E (ﬂtlE( (g —rs — 02m%) ds|Gy, ))
o 2 %
= |171ﬁ10 E (ﬂtl / —rs—0omy) ds>

E(/O (g —7s —aw)ﬁds)

and (6.37) holds. This implies that the directional derivative of J at 7*
with respect to the direction [ denoted by DgJ(n*) is zero. Note that
J : Ag — R is concave. Therefore, for all a, 8 € Ag and € € (0, 1), we have

hm
|7f\l0

Ja+ef)—=J(@) = J(1-e)7—+p)—J()

> (1-e)d(1=2) +ed(8) ~ J(a)

«

= I s (99 - 2.

Now, with 1—; =147 we have

lim (J( >y _ J(a)) — tim 27 (J(a + na) — J(a)) = Dad(a),

e—0 ¢ n—0 n

and we obtain
DyJ(a) = lim % (J(a+28) — J(a)) = Dad(a) + J(8) - J(a).
In particular, applying this to a = 7* and using that DgJ(7*) = 0 we get
J(B) = J(r%) <0

for all 5 € Ag and this proves that 7* is optimal. |

The characterization theorem provides a closed formula for the optimal
portfolio 7*. In fact, we have

E(0}|G:) = E(uy — 14lGr) + alt), (6.39)
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1 t+h
alt) =l 3 < /t UTdWTQt> .

Note that the optimal portfolio has a similar form as the solution of the
Merton problem (6.30).

We compute now the value of the optimal portfolio when it exists. From
(6.39) we have

where

. Ei|Gr) +al?)
Trt - E(Ut2|gt) ) (640)

where v; = p, — . Substituting (6.40) into (6.36) yields

* T v E(vs|Gs) + S)_ﬁ E(vs|Gs) + als) ? s
J) = E(/ T E(@[0.) 2( B(s21G.) )]d>

E( VS|gs + a(s) -
+E< 02|gs osd WS> .

Now, using the properties of the conditional expectation and applying
Proposition 3.2.3 we get

o ("
J(r*) = 2E</o E(02[G.) E(02|G,

[ B o) e

Example 1 (Partial observation case). Assume G, C F;. Then,

iE (/ 0'7-dW»,«|gt> =0
ds 0

for all s > ¢. That is a(t) = 0, and the optimal portfolio is given by

ot = E(:ut - Tt|gt>
! E(0?|Gt)

if the right-hand side is well defined as an element of Ag. In this case, the
optimal utility is

Ja*) = 3F (/OT

Example 2 (Insider strategy). Suppose F; C G;. Then

(Bt =116 __al? )] ds>

(B, ~ rs|gs>>2] ds)
E(o3[G:) |

e alt)
T T
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J(ﬂ'*) _ %E </OT [(ﬂs 02T5)2 B a(0‘-92)2‘| d5> +E </0T (DO_-SG’)SdS) .

(6.42)

Consider the particular case where the o-field G; is generated by an Frp-
measurable random variable L. We can apply the approach of the enlarge-
ment of filtrations and deduce that W is a semimartingale with respect
to the filtration G;. Suppose that there exists a G;-progresively measurable

process pf such that fOT |ud |dt < oo almost surely and

. t
Wt = Wt —/ ugds
0

is a Gi-Brownian motion. Then, for any G;-progresively measurable portfolio
7 such that E (fOT ﬂfagdé’) < 00 we can write

T T
E </ wsasd_WS> =F </ ﬂsasugds>
0 0

and, as a consequence,

T 2
E — I's s g s (TrSO-S) d
(/0 [(MS r + o ILS) T 2 S
1 T —r, 2 1 T o, 2
—*/ (,usr +pd — O’Sﬂ'S) ds + 7/ (W + uf) ds.
2 0 Og 2 0 Os

Thus, the optimal portfolio is given by

J(m)

g

Ps —Ts | M
oy =He 2T s
Us Og

On the other hand, the additional expected logarithmic utility will be
1 T _ 2 1 r — 7\
E(/ (Wwf) ds) _E</ (W) i
2 0 Og 2 0 Og
1 T 2
= -FE 9)ds | .

because

E </OT (usa—r> u§d5> B (/OT (MJ_TS) (dWS_dWS)> =0,
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2
provided we assume E ( fOT (%) ds) < 00. Notice that

1 t+h . 1 t+h
a(t) = E%EE /75 o sdWs|G; +%{%EE /t Us,ugds|gt

= Utﬂtg-
Example 6.4.1 Suppose that L = Wg, where S > T. Then

g Ws — W,
t

M:S—t’

and the additional expected utillity is infinite because

T 2 T
We — W, / dt S
_— = :1
E(/o ( S—t )dt) o S—t Bs—1

which is finite if and only if S > T.

FEzxercises

1,2 2 1,2

—loc? VO € Dloc7 (p“t - pt)ﬂ—t - (ﬂ—tgt) € ]Lloc

and the value process V; has continuous trajectories. Then, appy the 1td’s
formula (3.36) in order to deduce (6.32).

6.4.2 Complete the proof of Lemma 6.4.1.

6.4.1 Suppose that 7o € L}

6.4.3 Compute the additional expected logarithmic utility when L =
l¢s, >k}, where to > T

Notes and comments

[6.1] The Black-Sholes formula for option pricing was derived by Black
and Scholes in a paper published in 1973 [44]. Their results were influenced
by the research developed by Samuelson and Merton. There are many ref-
erence books on mathematical finance where the techniques of stochastic
calculus are applied to derive the basic formulas for pricing and hedging of
derivatives (see Karatzas [160], Karatzas and Shreve [165], Lamberton and
Lapeyre [189], and Shreve [312]).

The recent monograph by Malliavin and Thalmaier [216] discusses a
variety of applications of Malliavin calculus in mathematical finance.

[6.2] We refer to [169] as a basic expository paper on the applications
of the integration by parts formula of Malliavin calculus to Monte Carlo
simulations of greeks. In [110] and [111] the Malliavin calculus is applied to
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derive formulas for the derivative of the expectation of a diffusion process
with respect to the parameters of the equation. The results on the case of
an option depending on the price at a finite number have been taken from
[122] and [31].

[6.3] The generalized Clark-Ocone formula and its applications in hedg-
ing in the multidimensional case has been studied by Karatzas and Ocone
in [161].

[6.4] A pioneering paper in the study of the additional utility for insider
traders is the work by Karatzas and Pikovsky [163]. They assume that the
extra information is hidden in a random variable L from the beginning of
the trading interval, and they make use of the technique of enlargement
of filtrations. For another work on this topic using the technique of en-
largement of filtrations we refer to [12]. The existence of opportunities of
arbitrage for the insider has been investigated in [127] and [151]. For a re-
view of the role of Malliavin calculus in the problem of insider trading we
refer to the work by Imkeller [149]. The approach of anticipating stochastic
calculus in the problem of insider trading has been developed in [196].



A
Appendix

A.1 A Gaussian formula

Let {a,,n > 1} be a sequence of real numbers such that Y~ a2 < oo.
Suppose that {&,,,n > 1} is a sequence of independent random variables
defined in the probability space (2, F, P) with distribution N (0, 1). Then,

for each p > 0
p oo 5
E ( ) =4, <Z ai> , (A1)
n=1

jap 2

e 2 dzx.
R V2T

Z an&,, (1)

where
A, =

A.2 Martingale inequalities

Let {M,t € [0,T]} be a continuous local martingale with respect to an
increasing family of o-fields {F;,t > 0}. The following inequalities play a
fundamental role in the stochastic calculus:



352 A.3 Continuity criteria

Doob’s maximal inequality
For any p > 1 we have

g s pap) < (-2-) B(ap). (A2)
p—1

0<t<T

Actually (A.2) holds if we replace |M;| by any continuous nonnegative
submartingale.

Burkholder-Davis-Gundy inequality
For any p > 0 there exist constants ¢;(p) and cz(p) such that

a@)E (0F) < B(swp M) < @B ((0F). (A3)

This inequality still holds if we replace T by a stopping time S : Q@ — [0, T].

On the other hand, applying the Gaussian formula (A.1) and (A.3) one
can show Burkholder’s inequality for Hilbert-valued martingales. That is, if
{M;,t € [0,T]} is a continuous local martingale with values in a separable
Hilbert space K, then for any p > 0 one has

E(IMr]l") < e ((M)F) (A1)
where -
(M)r = Z<<M7 €i)K)T,

{e;,i > 1} being a complete orthonormal system in K.
Ezxponential inequality
For any 6 > 0 and p > 0 we have

2
Plons <p s i) <2en(-3). ()

0<t<T

Two-parameter martingale inequalities

Let W = {W(z),z € R%} be a two-parameter Wiener process. Consider
the o-fields

F. = o{W(), 2 <z},
Fl = o(W(s,t),0<s <s,t' >0},

S

FE = o{W(s,t),0<t <t s >0}
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We will say that a random field £ = {{(z), z € R2 } is adapted if £(z) is F.-
measurable for all z. Also, we will say that £ is 1-adapted (resp. 2-adapted)

if £(s,t) is Fl-measurable (resp. F7-measurable). Let & = {£(2),z € R}
be a measurable and adapted process such that

S T
E / / £2(2)dz | < oo
o Jo
for all (S,T). Define, for s < S, t < T,

M(s,t) = /O /Otf(z)W(dz). (A6)

Applying Doob’s inequality (A.2) (see [55]) twice, we obtain for any p > 1

/OS /OT ()W (dz) p) . (A7)

Moreover, if £ is 1-adapted (resp. 2-adapted), the stochastic integral (A.6)
can also be defined, and it is a continuous martingale with respect to the
coordinate s (resp. t), whose quadratic variation is given by

aneo= [ f (o),

As a consequence, (A.3) and (A.7) yield, for any p > 1,

/os /otg(z)%’z ) < H / / )
[ [ e

p \”
| <
E| sup |M(s,t)|P | < <p—1> E(

0<s< S
0<t<T

cai(p)E <

IA

) (A8)

Co (p)E (

A.3 Continuity criteria

The real analysis lemma due to Garsia, Rodemich, and Rumsey’s [114] is a
powerful tool to deduce results on the modulus of continuity of stochastic
processes from estimates of the moments of their increments. The following
version of this lemma has been taken from Stroock and Varadhan [322,
p. 60].

Lemma A.3.1 Let p,¥ : R, — Ry be continuous and strictly increasing
functions vanishing at zero and such that lim;.,¥(t) = co. Suppose that
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¢ : R* — E is a continuous function with values on a separable Banach
space (E,||-||). Denote by B the open ball in R centered at xo with radius

r. Then, provided
oo [ o (L)
(It =)

it holds, for all s,t € B,

2|t—s| d+1
ot - ol <5 [ w () plaw

where \g is a universal constant depending only on d.

Now suppose that X = {X(t),t € R?} is a continuous stochastic process
with values on a separable Banach space (F, || - ||) such that the following
estimate holds:

E(|X(@) = X(s)[I”) < HI[t — s (A.9)

for some H >0, v > 0, a > d, and for all s,t € B.
m—+2d

Then taking ¥(z) = 27 and p(z) = 2~ 7 , with 0 < m < o — d, one
obtains

[X(t) = X(s)|" < Capymlt — s[™T, (A.10)

forall s,t € B, whereI' = [, [, H)Tt(t_);%dsd. Moreover, if E(|| X (t0)]]7)
< oo for some tg € F, then we can conclude that

E(sup [|X(#)[]7) < o0 (A.11)

[t|I<a

for any a > 0.

If X is not supposed to be continuous, one can show by an approximation
argument that (A.9) implies the existence of a continuous version of X sat-
isfying (A.10) (see [315]). This proves the classical Kolmogorov continuity
criterion. Actually, (A.10) follows from E(I") <oo if we assume v > 1, as it
can be proved by an approximation of the identify argument.

A.4 Carleman-Fredholm determinant

Let (T, B, i) be a measure space, and let K € L?(T x T). Assume that the
Hilbert space H = L?(T) is separable and let {e;,i > 1} be a complete
orthonormal system in H. In the particular case K = . ._, a;je; ® e; the
Carleman-Fredholm determinant of I + K is defined as

1,7=1

deto(I + K) = det(I + A) exp(—T A),
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where A = (ai;)1<i,j<n- It can be proved that the mapping K — deto(I +
K) is continuous in L?(T x T'). As a consequence it can be extended to the
whole space L?(T x T). If the operator on L?(T) associated with the kernel
K (denoted again by K) is nuclear, then one can write

deto(I + K) = det(I + K)exp(-T K).

A useful formula to compute the Carleman-Fredholm determinant dets (7 +
K), where K € L*(T x T), is the following:

deto(I + K) = 1+Z%, (A.12)

n=2

where
o= [ det(R ettt ().

Here K(ti7t]‘) = K(ti,tj) if 4 }éj and f((tz,tz) =0.
We refer to [316] and [314] for a more detailed analysis of the properties
of this determinant.

A.5 Fractional integrals and derivatives

We recall the basic definitions and properties of the fractional calculus. For
a detailed presentation of these notions we refer to [300].

Let a,b € R, a <b. Let f € L' (a,b) and a > 0. The left and right-sided
fractional integrals of f of order « are defined for almost all = € (a, b) by

19, f () = %a) / @) f () dy (A.13)
and . .
@) = Fia / (v— )" £ () dy, (A.14)

respectively. Let I, (L?) (resp. Iy* (L)) the image of LP(a,b) by the op-
erator 17, (resp. If' ).

If feld (LP) (resp. f € Iy (LP)) and 0 < a < 1 then the left and
right-sided fractional derivatives are defined by

o _ 1 fl) @) - f)
Da+f(a:)—r< )<(xa)a+ /a g dy), (A.15)

11—«

and

L (@ @ f
Db_f()_F(l—a)<(b—x)a+ /m (y—x)aH dy) (A.16)
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for almost all z € (a,b) (the convergence of the integrals at the singularity
y = z holds point-wise for almost all € (a,b) if p = 1 and moreover in
LP-sense if 1 < p < 00).

Recall the following properties of these operators:

then

1
e fa< —and g= P
p 1

134 (LP) = I (LP) € L7 (a,b).

o If &« > — then

1

13 (LP) U I (LP) € €77 (a,b),
where C® 7 (a,b) denotes the space of (a - %)—Hélder continuous
functions of order o — 1% in the interval [a, b].
The following inversion formulas hold:
13-9— (D3+f ) = f
for all f € I, (LP), and
D3y (I3f) = f

for all f € L' (a,b). Similar inversion formulas hold for the operators I
and Dy’ .
The following integration by parts formula holds:

b b
[ 0 ©ais = [ 1) (D) (s, (A7)

for any f € I3, (LP), g € I (L),
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