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Preface

Hidden Markov models—most often abbreviated to the acronym “HMMs”—
are one of the most successful statistical modelling ideas that have came up in
the last forty years: the use of hidden (or unobservable) states makes the model
generic enough to handle a variety of complex real-world time series, while the
relatively simple prior dependence structure (the “Markov” bit) still allows
for the use of efficient computational procedures. Our goal with this book is to
present a reasonably complete picture of statistical inference for HMMs, from
the simplest finite-valued models, which were already studied in the 1960’s,
to recent topics like computational aspects of models with continuous state
space, asymptotics of maximum likelihood, Bayesian computation and model
selection, and all this illustrated with relevant running examples. We want
to stress at this point that by using the term hidden Markov model we do
not limit ourselves to models with finite state space (for the hidden Markov
chain), but also include models with continuous state space; such models are
often referred to as state-space models in the literature.

We build on the considerable developments that have taken place dur-
ing the past ten years, both at the foundational level (asymptotics of maxi-
mum likelihood estimates, order estimation, etc.) and at the computational
level (variable dimension simulation, simulation-based optimization, etc.), to
present an up-to-date picture of the field that is self-contained from a theoret-
ical point of view and self-sufficient from a methodological point of view. We
therefore expect that the book will appeal to academic researchers in the field
of HMMs, in particular PhD students working on related topics, by summing
up the results obtained so far and presenting some new ideas. We hope that it
will similarly interest practitioners and researchers from other fields by lead-
ing them through the computational steps required for making inference in
HMMs and/or providing them with the relevant underlying statistical theory.

The book starts with an introductory chapter which explains, in simple
terms, what an HMM is, and it contains many examples of the use of HMMs
in fields ranging from biology to telecommunications and finance. This chap-
ter also describes various extension of HMMs, like models with autoregression
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or hierarchical HMMs. Chapter 2 defines some basic concepts like transi-
tion kernels and Markov chains. The remainder of the book is divided into
three parts: State Inference, Parameter Inference and Background and Com-
plements; there are also three appendices.

Part I of the book covers inference for the unobserved state process. We
start in Chapter 3 by defining smoothing, filtering and predictive distributions
and describe the forward-backward decomposition and the corresponding re-
cursions. We do this in a general framework with no assumption on finiteness
of the hidden state space. The special cases of HMMs with finite state space
and Gaussian linear state-space models are detailed in Chapter 5. Chapter 3
also introduces the idea that the conditional distribution of the hidden Markov
chain, given the observations, is Markov too, although non-homogeneous, for
both ordinary and time-reversed index orderings. As a result, two alternative
algorithms for smoothing are obtained. A major theme of Part I is simulation-
based methods for state inference; Chapter 6 is a brief introduction to Monte
Carlo simulation, and to Markov chain Monte Carlo and its applications to
HMMs in particular, while Chapters 7 and 8 describe, starting from scratch,
so-called sequential Monte Carlo (SMC) methods for approximating filtering
and smoothing distributions in HMMs with continuous state space. Chapter 9
is devoted to asymptotic analysis of SMC algorithms. More specialized top-
ics of Part I include recursive computation of expectations of functions with
respect to smoothed distributions of the hidden chain (Section 4.1), SMC ap-
proximations of such expectations (Section 8.3) and mixing properties of the
conditional distribution of the hidden chain (Section 4.3). Variants of the ba-
sic HMM structure like models with autoregression and hierarchical HMMs
are considered in Sections 4.2, 6.3.2 and 8.2.

Part II of the book deals with inference for model parameters, mostly
from the maximum likelihood and Bayesian points of views. Chapter 10 de-
scribes the expectation-maximization (EM) algorithm in detail, as well as
its implementation for HMMs with finite state space and Gaussian linear
state-space models. This chapter also discusses likelihood maximization us-
ing gradient-based optimization routines. HMMs with continuous state space
do not generally admit exact implementation of EM, but require simulation-
based methods. Chapter 11 covers various Monte Carlo algorithms like Monte
Carlo EM, stochastic gradient algorithms and stochastic approximation EM.
In addition to providing the algorithms and illustrative examples, it also con-
tains an in-depth analysis of their convergence properties. Chapter 12 gives
an overview of the framework for asymptotic analysis of the maximum like-
lihood estimator, with some applications like asymptotics of likelihood-based
tests. Chapter 13 is about Bayesian inference for HMMs, with the focus being
on models with finite state space. It covers so-called reversible jump MCMC
algorithms for choosing between models of different dimensionality, and con-
tains detailed examples illustrating these as well as simpler algorithms. It also
contains a section on multiple imputation algorithms for global maximization
of the posterior density.
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Part III of the book contains a chapter on discrete and general Markov
chains, summarizing some of the most important concepts and results and
applying them to HMMs. The other chapter of this part focuses on order
estimation for HMMs with both finite state space and finite output alphabet;
in particular it describes how concepts from information theory are useful for
elaborating on this subject.

Various parts of the book require different amounts of, and also different
kinds of, prior knowledge from the reader. Generally we assume familiarity
with probability and statistical estimation at the levels of Feller (1971) and
Bickel and Doksum (1977), respectively. Some prior knowledge of Markov
chains (discrete and/or general) is very helpful, although Part III does con-
tain a primer on the topic; this chapter should however be considered more
a brush-up than a comprehensive treatise of the subject. A reader with that
knowledge will be able to understand most parts of the book. Chapter 13 on
Bayesian estimation features a brief introduction to the subject in general but,
again, some previous experience with Bayesian statistics will undoubtedly be
of great help. The more theoretical parts of the book (Section 4.3, Chapter 9,
Sections 11.2–11.3, Chapter 12, Sections 14.2–14.3 and Chapter 15) require
knowledge of probability theory at the measure-theoretic level for a full under-
standing, even though most of the results as such can be understood without
it.

There is no need to read the book in linear order, from cover to cover.
Indeed, this is probably the wrong way to read it! Rather we encourage the
reader to first go through the more algorithmic parts of the book, to get an
overall view of the subject, and then, if desired, later return to the theoretical
parts for a fuller understanding. Readers with particular topics in mind may
of course be even more selective. A reader interested in the EM algorithm,
for instance, could start with Chapter 1, have a look at Chapter 2, and then
proceed to Chapter 3 before reading about the EM algorithm in Chapter 10.
Similarly a reader interested in simulation-based techniques could go to Chap-
ter 6 directly, perhaps after reading some of the introductory parts, or even
directly to Section 6.3 if he/she is already familiar with MCMC methods.
Each of the two chapters entitled “Advanced Topics in...” (Chapters 4 and 8)
is really composed of three disconnected complements to Chapters 3 and 7,
respectively. As such, the sections that compose Chapters 4 and 8 may be
read independently of one another. Most chapters end with a section entitled
“Complements” whose reading is not required for understanding other parts
of the book—most often, this section mostly contains bibliographical notes—
although in some chapters (9 and 11 in particular) it also features elements
needed to prove the results stated in the main text.

Even in a book of this size, it is impossible to include all aspects of hidden
Markov models. We have focused on the use of HMMs to model long, po-
tentially stationary, time series; we call such models ergodic HMMs. In other
applications, for instance speech recognition or protein alignment, HMMs are
used to represent short variable-length sequences; such models are often called
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left-to-right HMMs and are hardly mentioned in this book. Having said that
we stress that the computational tools for both classes of HMMs are virtually
the same. There are also a number of generalizations of HMMs which we do
not consider. In Markov random fields, as used in image processing applica-
tions, the Markov chain is replaced by a graph of dependency which may be
represented as a two-dimensional regular lattice. The numerical techniques
that can be used for inference in hidden Markov random fields are similar to
some of the methods studied in this book but the statistical side is very differ-
ent. Bayesian networks are even more general since the dependency structure
is allowed to take any form represented by a (directed or undirected) graph.
We do not consider Bayesian networks in their generality although some of
the concepts developed in the Bayesian networks literature (the graph repre-
sentation, the sum-product algorithm) are used. Continuous-time HMMs may
also be seen as a further generalization of the models considered in this book.
Some of these “continuous-time HMMs”, and in particular partially observed
diffusion models used in mathematical finance, have recently received consid-
erable attention. We however decided this topic to be outside the range of
the book; furthermore, the stochastic calculus tools needed for studying these
continuous-time models are not appropriate for our purpose.

We acknowledge the help of Stéphane Boucheron, Randal Douc, Gersende
Fort, Elisabeth Gassiat, Christian P. Robert, and Philippe Soulier, who par-
ticipated in the writing of the text and contributed the two chapters that
compose Part III (see next page for details of the contributions). We are also
indebted to them for suggesting various forms of improvement in the nota-
tions, layout, etc., as well as helping us track typos and errors. We thank
François Le Gland and Catherine Matias for participating in the early stages
of this book project. We are grateful to Christophe Andrieu, Søren Asmussen,
Arnaud Doucet, Hans Künsch, Steve Levinson, Ya’acov Ritov and Mike Tit-
terington, who provided various helpful inputs and comments. Finally, we
thank John Kimmel of Springer for his support and enduring patience.

Paris, France Olivier Cappé
& Lund, Sweden Eric Moulines
March 2005 Tobias Rydén
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Université Paris-Nanterre

with Eric Moulines

Chapter 15 was written by
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1

Introduction

1.1 What Is a Hidden Markov Model?

A hidden Markov model (abbreviated HMM) is, loosely speaking, a Markov
chain observed in noise. Indeed, the model comprises a Markov chain, which
we will denote by {Xk}k≥0, where k is an integer index. This Markov chain
is often assumed to take values in a finite set, but we will not make this
restriction in general, thus allowing for a quite arbitrary state space. Now,
the Markov chain is hidden, that is, it is not observable. What is available to
the observer is another stochastic process {Yk}k≥0, linked to the Markov chain
in that Xk governs the distribution of the corresponding Yk. For instance, Yk

may have a normal distribution, the mean and variance of which is determined
by Xk, or Yk may have a Poisson distribution whose mean is determined by
Xk. The underlying Markov chain {Xk} is sometimes called the regime, or
state. All statistical inference, even on the Markov chain itself, has to be
done in terms of {Yk} only, as {Xk} is not observed. There is also a further
assumption on the relation between the Markov chain and the observable
process, saying that Xk must be the only variable of the Markov chain that
affects the distribution of Yk. This is expressed more precisely in the following
formal definition.

A hidden Markov model is a bivariate discrete time process {Xk, Yk}k≥0,
where {Xk} is a Markov chain and, conditional on {Xk}, {Yk} is a sequence
of independent random variables such that the conditional distribution of Yk

only depends on Xk. We will denote the state space of the Markov chain {Xk}
by X and the set in which {Yk} takes its values by Y.

The dependence structure of an HMM can be represented by a graphical
model as in Figure 1.1. Representations of this sort use a directed graph
without loops to describe dependence structures among random variables. The
nodes (circles) in the graph correspond to the random variables, and the edges
(arrows) represent the structure of the joint probability distribution, with the
interpretation that the latter may be factored as a product of the conditional
distributions of each node given its “parent” nodes (those that are directly
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Fig. 1.1. Graphical representation of the dependence structure of a hidden Markov
model, where {Yk} is the observable process and {Xk} is the hidden chain.

connected to it by an arrow). Figure 1.1 thus implies that the distribution
of a variable Xk+1 conditional on the history of the process, X0, . . . , Xk,
is determined by the value taken by the preceding one, Xk; this is called
the Markov property. Likewise, the distribution of Yk conditionally on the
past observations Y0, . . . , Yk−1 and the past values of the state, X0, . . . , Xk,
is determined by Xk only (this is exactly the definition we made above).
We shall not go into details about graphical models, but just sometimes use
them as an intuitive means of illustrating various kinds of dependence. The
interested reader is referred to, for example, Jensen (1996) or Jordan (2004)
for introductory texts and to Lauritzen (1996), Cowell et al. (1999), or Jordan
(1999) for in-depth coverage. Throughout the book, we will assume that each
HMM is homogeneous, by which we mean that the Markov chain {Xk} is
homogeneous (its transition kernel does not depend on the time index k),
and that the conditional law of Yk given Xk does not depend on k either.
In order to keep this introductory discussion simple, we do not embark into
precise mathematical definitions of Markov chain concepts such as transition
kernels for instance. The formalization of several of the ideas that are first
reviewed on intuitive grounds here will be the topic of the first part of the
book (Section 2.1).

As mentioned above, of the two processes {Xk} and {Yk}, only {Yk} is
actually observed, whence inference on the parameters of the model must be
achieved using {Yk} only. The other topic of interest is of course inference on
the unobserved {Xk}: given a model and some observations, can we estimate
the unobservable sequence of states? As we shall see later in the book, these
two major statistical objectives are indeed strongly connected. Models that
comprise unobserved random variables, as HMMs do, are called latent variable
models, missing data models, or also models with incomplete data, where the
latent variable refers to the unobservable random quantities.

Let us already at this point give a simple and illustrative example of an
HMM. Suppose that {Xk} is a Markov chain with state space {0, 1} and that
Yk, conditional on Xk = i, has a Gaussian N(µi, σ

2
i ) distribution. In other

words, the value of the regime governs the mean and variance of the Gaussian
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distribution from which we then draw the output. This model illustrates a
common feature of HMMs considered in this book, namely that the condi-
tional distributions of Yk given Xk all belong to a single parametric family,
with parameters indexed by Xk. In this case, it is the Gaussian family of
distributions, but one may of course also consider the Gamma family, the
Poisson family, etc. A meaningful observation, in the current example, is that
the marginal distribution of {Yk} is that of a mixture of two Gaussian dis-
tributions. Hence we may also view HMMs as an extension of independent
mixture models, including some degree of dependence between observations.

Indeed, even though the Y -variables are conditionally independent given
{Xk}, {Yk} is not an independent sequence because of the dependence in
{Xk}. In fact, {Yk} is not a Markov chain either: the joint process {Xk, Yk} is
of course a Markov chain, but the observable process {Yk} does not have the
loss of memory property of Markov chains, in the sense that the conditional
distribution of Yk given Y0, . . . , Yk−1 generally depends on all the condition-
ing variables. As we shall see in Chapter 2, however, the dependence in the
sequence {Yk} (defined in a suitable sense) is not stronger than that in {Xk}.
This is a general observation that is valid not only for the current example.

Another view is to consider HMMs as an extension of Markov chains, in
which the observation {Yk} of the state {Xk} is distorted or blurred in some
manner that includes some additional, independent randomness. In the pre-
vious example, the distortion is simply caused by additive Gaussian noise, as
we may write this model as Yk = µXk

+ σXk
Vk, where {Vk}k≥0 is an i.i.d.

(independent and identically distributed) sequence of standard Gaussian ran-
dom variables. We could even proceed one step further by deriving a similar
functional representation for the unobservable sequence of states. More pre-
cisely, if {Uk}k≥0 denotes an i.i.d. sequence of of uniform random variables on
the interval [0, 1], we can define recursively X1, X2, . . . by the equation

Xk+1 = 1(Uk ≤ pXk
)

where p0 and p1 are defined respectively by pi = P(Xk+1 = 1 |Xk = i) (for
i = 0 and 1). Such a representation of a Markov chain is usually referred
to as a stochastically recursive sequence (and sometimes abbreviated to SRS)
(Borovkov, 1998). An alternative view consists in regarding 1(Uk ≤ p·) as a
random function (here on {0, 1}), hence the name iterated random functions
also used to refer to the above representation of a Markov chain (Diaconis and
Freedman, 1999). Our simple example is by no means a singular case and, in
great generality, any HMM may be equivalently defined through a functional
representation known as a (general) state-space model,

Xk+1 = a(Xk, Uk) , (1.1)
Yk = b(Xk, Vk) , (1.2)

where {Uk}k≥0 and {Vk}k≥0 are mutually independent i.i.d. sequences of ran-
dom variables that are independent of X0, and a and b are measurable func-
tions. The first equation is known as the state or dynamic equation, whereas
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the second one is the observation equation. These two equations correspond
to a recursive, generative form of the model, as opposed to our initial expo-
sition, which focused on the specification of the joint probability distribution
of the variables. Which view is most natural and fruitful typically depends on
what the HMM is intended to model and for what purpose it is used (see the
examples section below).

In the times series literature, the term “state-space model” is usually re-
served for models in which a and b are linear functions and the sequences {Uk},
{Vk}, and X0 are jointly Gaussian (Anderson and Moore, 1979; Brockwell and
Davis, 1991; Kailath et al., 2000). In this book, we reverse the perspective and
refer to the family of models defined by (1.1) as (general) state-space models.
The linear Gaussian sub-family of models will be covered in some detail, no-
tably in Chapter 5, but is clearly not the main focus of this book. Similarly, in
the classical HMM literature like the tutorial by Rabiner (1989) or the books
by Elliott et al. (1995) and MacDonald and Zucchini (1997), it is tacitly as-
sumed that the denomination “hidden Markov model” implies a finite state
space X. This is a very important case indeed, but in this book we will treat
more general state spaces as well. In our view, the terms “hidden Markov
model” and “state-space model” refer to the same type of objects, although
we will reserve the latter for describing the functional representation of the
model given by (1.1).

1.2 Beyond Hidden Markov Models

The original works on (finite state space) hidden Markov models, as well as
most of the theory regarding Gaussian linear state-space models, date back to
the 1960s. Since then, the practical success of these models in several distinct
application domains has generated an ever-increasing interest in HMMs and a
similarly increasing number of new models based on HMMs. Several of these
extensions of the basic HMM structure are, to some extent, also covered in
this book.

A first simple extension is when the hidden state sequence {Xk}k≥0
is a dth order Markov process, that is, when the conditional distribution
of Xk given past values X� (with 0 ≤ � < k) depends on the d-tuple
Xk−d, Xk−d+1, . . . , Xk−1. At least conceptually this is not a very significant
step, as we can fall back to the standard HMM setup by redefining the state
to be the vector (Xk−d+1, . . . , Xk), which has Markovian evolution. Another
variation consists in allowing for non-homogeneous transitions of the hidden
chain or for non-homogeneous observation distributions. By this we mean that
the distribution of Xk given Xk−1, or that of Yk given Xk, can be allowed
to depend on the index k. As we shall see in the second part of this book,
non-homogeneous models lead to identical methods as far as state inference,
i.e., inference about the hidden chain {Xk}, is concerned (except for the need
to index conditional distributions with k).
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Fig. 1.2. Graphical representation of the dependence structure of a Markov-
switching model, where {Yk} is the observable process and {Xk} is the hidden
chain.

Markov-switching models perhaps constitute the most significant general-
ization of HMMs. In such models, the conditional distribution of Yk+1, given
all past variables, depends not only on Xk+1 but also on Yk (and possibly
more lagged Y -variables). Thus, conditional on the state sequence {Xk}k≥0,
{Yk}k≥0 forms a (non-homogeneous) Markov chain. Graphically, this is rep-
resented as in Figure 1.2. In state-space form, a Markov-switching model may
be written as

Xk+1 = a(Xk, Uk) , (1.3)
Yk+1 = b(Xk+1, Yk, Vk+1) . (1.4)

The terminology regarding these models is not fully standardized and the
term Markov jump systems is also used, at least in cases where the (hidden)
state space is finite.

Markov-switching models have much in common with basic HMMs. In
particular, virtually identical computational machinery may be used for both
models. The statistical analysis of Markov-switching models is however much
more intricate than for HMMs due to the fact that the properties of the ob-
served process {Yk} are not directly controlled by those of the unobservable
chain {Xk} (as is the case in HMMs; see the details in Chapter 4). In partic-
ular, {Yk} is an infinite memory process whose dependence may be stronger
than that of {Xk} and it may even be the case that no stationary solution
{Yk}k≥0 to (1.3)–(1.4) exists.

A final observation is that the computational tools pertaining to posterior
inference, and in particular the smoothing equations of Chapter 3, hold in even
greater generality. One could for example simply assume that {Xk, Yk}k≥0
jointly forms a Markov process, only a part {Yk}k≥0 of which is actually ob-
served. We shall see however in the third part of the book that all statistical
statements that we can currently make about the properties of estimators of
the parameters of HMMs heavily rely on the fact that {Xk}k≥0 is a Markov
chain, and even more crucially, a uniformly ergodic Markov chain (see Chap-
ter 4). For more general models such as partially observed Markov processes,
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it is not yet clear what type of (not overly restrictive and reasonably general)
conditions are required to guarantee that reasonable estimators (such as the
maximum likelihood estimator for instance) are well behaved.

1.3 Examples

HMMs and their generalizations are nowadays used in many different areas.
The (partial) bibliography by Cappé (2001b) (which contains more than 360
references for the period 1990–2000) gives an idea of the reach of the do-
main. Several specialized books are available that largely cover applications of
HMMs to some specific areas such as speech recognition (Rabiner and Juang,
1993; Jelinek, 1997), econometrics (Hamilton, 1989; Kim and Nelson, 1999),
computational biology (Durbin et al., 1998; Koski, 2001), or computer vision
(Bunke and Caelli, 2001). We shall of course not try to compete with these in
fully describing real-world applications of HMMs. We will however consider
throughout the book a number of prototype HMMs (used in some of these
applications) in order illustrate the variety of situations: finite-valued state
space (DNA or protein sequencing), binary Markov chain observed in Gaus-
sian noise (ion channel), non-linear Gaussian state-space model (stochastic
volatility), conditionally Gaussian state-space model (deconvolution), etc.

It should be stressed that the idea one has about the nature of the hidden
Markov chain {Xk} may be quite different from one case to another. In some
cases it does have a well-defined physical meaning, whereas in other cases it
is conceptually more diffuse, and in yet other cases the Markov chain may
be completely fictitious and the probabilistic structure of the HMM is then
used only as a tool for modeling dependence in data. These differences are
illustrated in the examples below.

1.3.1 Finite Hidden Markov Models

In a finite hidden Markov model, both the state space X of the hidden Markov
chain and the set Y in which the output lies are finite. We will generally assume
that these sets are {1, 2, . . . , r} and {1, 2, . . . , s}, respectively. The HMM is
then characterized by the transition probabilities qij = P(Xk+1 = j |Xk = i)
of the Markov chain and the conditional probabilities gij = P(Yk = j |Xk = i).

Example 1.3.1 (Gilbert-Elliott Channel Model). The Gilbert-Elliott
channel model, after Gilbert (1960) and Elliott (1963), is used in information
theory to model the occurrence of transmission errors in some digital commu-
nication channels. Interestingly, this is a pre-HMM hidden Markov model, as
it predates the seminal papers by Baum and his colleagues who introduced
the term hidden Markov model.

In digital communications, all signals to be transmitted are first digitized
and then transformed, a step known as source coding. After this preprocessing,
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one can safely assume that the bits that represent the signal to be transmitted
form an i.i.d. sequence of fair Bernoulli draws (Cover and Thomas, 1991). We
will denote by {Bk}k≥0 the sequence of bits at the input of the transmission
system.

Abstracted high-level models of how this sequence of bits may get distorted
during the transmission are useful for devising efficient reception schemes and
deriving performance bounds. The simplest model is the (memoryless) binary
symmetric channel in which it is assumed that each bit may be randomly
flipped by an independent error sequence,

Yk = Bk ⊕ Vk , (1.5)

where {Yk}k≥0 are the observations and {Vk}k≥0 is an i.i.d. Bernoulli sequence
with P(Vk = 1) = q, and ⊕ denotes modulo-two addition. Hence, the received
bit is equal to the input bit Bk if Vk = 0; otherwise Yk �= Bk and an error
occurs.

The more realistic Gilbert-Elliott channel model postulates that errors
tend to be more bursty than predicted by the memoryless channel. In
this model, the channel regime is modeled as a two-state Markov chain
{Sk}k≥0, which represents low and high error conditions, respectively. The
transition matrix of this chain is determined by the switching probabilities
p0 = P(Sk+1 = 1 |Sk = 0) (transition into the high error regime) and
p1 = P(Sk+1 = 0 |Sk = 1) (transition into the low error regime). In each
regime, the model acts like the memoryless symmetric channel with error
probabilities q0 = P(Yk �= Bk |Sk = 0) and q1 = P(Yk �= Bk |Sk = 1), where
q0 < q1.

To recover the HMM framework, define the hidden state sequence as the
joint process that collates the emitted bits and the sequence of regimes, Xk =
(Bk, Sk). This is a four-state Markov chain with transition matrix

(0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (1− p0)/2 p0/2 (1− p0)/2 p0/2
(0, 1) p1/2 (1− p1)/2 p1/2 (1− p1)/2
(1, 0) (1− p0)/2 p0/2 (1− p0)/2 p0/2
(1, 1) p1/2 (1− p1)/2 p1/2 (1− p1)/2

Neither the emitted bit Bk nor the channel regime Sk is observed directly,
but the model asserts that conditionally on {Xk}k≥0, the observations are
independent Bernoulli draws with

P(Yk = b |Bk = b, Sk = s) = 1− qs .

�

Example 1.3.2 (Channel Coding and Transmission Over Memory-
less Discrete Channel). We will consider in this example another elemen-
tary example of the use of HMMs, also drawn from the digital communication
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world. Assume we are willing to transmit a message encoded as a sequence
{b0, . . . , bm} of bits, where bi ∈ {0, 1} are the bits and m is the length of the
message. We wish to transmit this message over a channel, which will typically
affect the transmitted message by introducing (at random) errors.

To go further, we need to have an abstract model for the channel. In this
example, we will consider discrete channels, that is, the channel’s inputs and
outputs are assumed to belong to finite alphabets: {i1, . . . , iq} for the inputs
and {o1, . . . , ol} for the outputs. In this book, we will most often consider
binary channels only; then the inputs and the outputs of the transmission
channel are bits, q = l = 2 and {i1, i2} = {o1, o2} = {0, 1}. A transmission
channel is said to be memoryless if the probability of the channel’s output
Y0:n = y0:n conditional on its input sequence S0:n = s0:n factorizes as

P(Y0:n |S0:n) =
n∏

i=0

P(Yi |Si) .

In words, conditional on the input sequence S0:n, the channel outputs are con-
ditionally independent. The transition probabilities of the discrete memory-
less channel are defined by a transition kernel R : {i1, . . . , iq}×{o1, . . . , ol} →
[0, 1], where for i = 1, . . . , q and j = 1, . . . , l,

R(ii, oj) = P(Y0 = oj |S0 = ii) . (1.6)

The most classical example of a discrete memoryless channel is the binary
symmetric channel (BSC) with binary input and binary output, for which
R(0, 1) = R(1, 0) = ε with ε ∈ [0, 1]. In words, every time a bit Sk = 0 or Sk =
1 is sent across the BSC, the output is also a bit Yk = {0, 1}, which differs from
the input bit with probability ε; that is, the error probability is P(Yk �= Ok) =
ε. As described in Example 1.3.1, the output of a binary symmetric channel
can be modeled as a noisy version of the input sequence, Yk = Sk⊕Vk, where
⊕ is the modulo-two addition and {Vk}k≥0 is an independent and identically
distributed sequence of bits, independent of the input sequence {Xk}k≥0 and
with P{Vk = 0} = 1− ε. If we wish to transmit a message S0:m = b0:m over a
BSC without coding, the probability of getting an error will be

P(Y0:m �= b0:m |S0:m = b0:m) =
1− P(Y0:m = b0:m |S0:m = b0:m) = 1− (1− ε)m .

Therefore, as m becomes large, with probability close to 1, at least one bit
of the message will be incorrectly received, which calls for practical solution.
Channel coding is a viable method to increase reliability, but at the expense
of reduced information rate. Increased reliability is achieved by adding redun-
dancy to the information symbol vector, resulting in a longer coded vector
of symbols that are distinguishable at the output of the channel. There are
many ways to construct codes, and we consider in this example only a very
elementary example of a rate 1/2 convolutional coder with memory length 2.
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Fig. 1.3. Rate 1/2 convolutional code with memory length 2.

The rate 1/2 means that a message of length m will be transformed into a
message of length 2m, that is, we will send 2m bits over the transmission
channel in order to introduce some kind of redundancy to increase our chance
of getting an error-free message. The principle of this convolutional coder is
depicted in Figure 1.3.

Because the memory length is 2, there are 4 different states and the behav-
ior of this convolutional encoder can be captured as 4-state machine, where
the state alphabet is X = {(0, 0), (0, 1), (1, 0), (1, 1)}. Denote by Xk the value
of the state at time k, Xk = (Xk,1, Xk,2) ∈ X. Upon the arrival of the bit
Bk+1, the state is transformed to

Xk+1 = (Xk+1,1, Xk+1,2) = (Bk+1, Xk,1) .

In the engineering literature, Xk is said to be a shift register. If the sequence
{Bk}k≥0 of input bits is i.i.d. with probability P(Bk = 1) = p, then {Xk}k≥0
is a Markov chain with transition probabilities

P[Xk+1 = (1, 1) |Xk = (1, 0)] = P[Xk+1 = (1, 1) |Xk = (1, 1)] = p ,

P[Xk+1 = (1, 0) |Xk = (0, 1)] = P[Xk+1 = (1, 0) |Xk = (0, 0)] = p ,

P[Xk+1 = (0, 1) |Xk = (1, 0)] = P[Xk+1 = (0, 1) |Xk = (1, 1)] = 1− p ,

P[Xk+1 = (0, 0) |Xk = (0, 1)] = P[Xk+1 = (0, 0) |Xk = (0, 0)] = 1− p ,

all other transition probabilities being zero. To each input bit, the convolu-
tional encoder generates two outputs according to

Sk = (Sk,1, Sk,2) = (Bk ⊕Xk,2, Bk ⊕Xk,2 ⊕Xk,1) .

These encoded bits, referred to as symbols, are then sent on the transmission
channel. A graphical interpretation of the problem is quite useful. A convo-
lutional encoder (or, more generally, a finite state Markovian machine) can
be represented by a state transition diagram of the type in Figure 1.4. The
nodes are the states and the branches represent transitions having non-zero
probability. If we index the states with both the time index k and state index
m, we get the trellis diagram of Figure 1.4. The trellis diagram shows the time



10 1 Introduction

1|10

00

01

10

11

1|11

0|00 0|00 0|00 0|00

1|11

1|11 1|11

0|01 0|010|01

1|001|00

1|10

0|11 0|11

1|01 1|01

0|100|10

1|10

Fig. 1.4. Trellis representation of rate 1/2 convolutional code with memory length
2.

progression of the state sequences. For every state sequence, there is a unique
path through the trellis diagram and vice versa.

More generally, the channel encoder is a finite state machine that trans-
forms a message encoded as a finite stream of bits into an output sequence
whose length is increased by a multiplicative factor that is the inverse of the
rate of the encoder. If the input bits are i.i.d., the state sequence of this
finite state machine is a finite state Markov chain. The m distinct states
of the Markov source are {t1, . . . , tm}. The outputs of this finite state ma-
chine is a sequence Sk with values in a finite alphabet {o1, . . . , oq}. The state
transitions of the Markov source are governed by the transition probabilities
p(i, j) = P(Xn = tj |Xn−1 = ti) and the output of the finite-state machine
by the probabilities q(i; j, k) = P(Sn = oi |Xn = tj , Xn−1 = tk).

The Markov source always starts from the same initial state, X0 = t1 say,
and produces an output sequence S0:n = (S0, S1, . . . , Sn) ending in the termi-
nal state Xn = t1. S0:n is the input to a noisy discrete memoryless channel
whose output is the sequence Y0:n = (Y0, . . . , Yn). This discrete memoryless
channel is also governed by transition probabilities (1.6). It is easy to rec-
ognize the general set-up of hidden Markov models, which are an extremely
useful and popular tool in the digital communication community.

The objective of the decoder is to examine Y0:n and estimate the a poste-
riori probability of the states and transitions of the Markov source, i.e., the
conditional probabilities P(Xk = ti |Y0:n) and P(Xk = ti, Xk+1 = tj |Y0:n).

�

Example 1.3.3 (HMM in Biology). Another example featuring finite
HMMs is stochastic modeling of biological sequences. This is certainly one of
the most successful examples of applications of HMM methodology in recent
years. There are several different uses of HMMs in this context (see Churchill,
1992; Durbin et al., 1998; Koski, 2001; Baldi and Brunak, 2001, for further
references and details), and we only briefly describe the application of HMMs



1.3 Examples 11

to gene finding in DNA, or more generally, functional annotation of sequenced
genomes.

In their genetic material, all living organisms carry a blueprint of the
molecules they need for the complex task of living. This genetic material
is (usually) stored in the form of DNA—short for deoxyribonucleic acid—
sequences. The DNA is not actually a sequence, but a long, chain-like molecule
that can be specified uniquely by listing the sequence of amine bases from
which it is composed. This process is known as sequencing and is a challenge
on its own, although the number of complete sequenced genomes is growing
at an impressive rate since the early 1990s. This motivates the abstract view
of DNA as a sequence over a four-letter alphabet A, C, G, and T (for adenine,
cytosine, guanine, and thymine—the four possible instantiations of the amine
base).

The role of DNA is as a storage medium for information about the individ-
ual molecules needed in the biochemical processes of the organism. A region
of the DNA that encodes a single functional molecule is referred to as a gene.
Unfortunately, there is no easy way to discriminate coding regions (those that
correspond to genes) from non-coding ones. In addition, the dimension of the
problem is enormous as typical bacterial genomes can be millions of bases
long with the number of genes to be located ranging from a few hundreds to
a few thousands.

The simplistic approach to this problem (Churchill, 1992) consists in mod-
eling the observed sequence of bases {Yk}k≥0 ∈ {A,C,G, T} by a two-state
hidden Markov model such that the non-observable state is binary-valued with
one state corresponding to non-coding regions and the other one to coding re-
gions. In the simplest form of the model, the conditional distribution of Yk

given Xk is simply parameterized by the vector of probabilities of observing A,
C, G, or T when in the coding and non-coding states, respectively. Despite its
deceptive simplicity, the results obtained by estimating the parameters of this
basic two-state finite HMM on actual genome sequences and then determin-
ing the smoothed estimate of the state sequence Xk (using techniques to be
discussed in Chapter 3) were sufficiently promising to generate an important
research effort in this direction.

The basic strategy described above has been improved during the years to
incorporate more and more of the knowledge accumulated about the behav-
ior of actual genome sequences—see Krogh et al. (1994), Burges and Karlin
(1997), Kukashin and Borodovsky (1998), Jarner et al. (2001) and references
therein. A very important fact, for instance, is that in coding regions the
DNA is structured into codons, which are composed of three successive sym-
bols in our A, C, G, T alphabet. This property can be accommodated by
using higher order HMMs in which the distribution of Yk does not only de-
pend on the current state Xk but also on the previous two observations Yk−1
and Yk−2. Another option consists in using non-homogeneous models such
that the distribution of Yk does not only depend on the current state Xk

but also on the value of the index k modulo 3. In addition, some particular
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sub-sequences have a specific function, at least when they occur in a coding
region (there are start and end codons for instance). Needless to say, enlarging
the state space X to add specific states corresponding to those well identified
functional sub-sequences is essential. Finally and most importantly, the func-
tional description of the DNA sequence is certainly not restricted to just the
coding/non-coding dichotomy, and most models use many more hidden states
to differentiate between several distinct functional regions in the genome se-
quence. �

Example 1.3.4 (Capture-Recapture). Capture-recapture models are of-
ten used in the study of populations with unknown sizes as in surveys, census
undercount, animal abundance evaluation, and software debugging to name
a few of their numerous applications. To set up the model in its original
framework, we consider here the setting examined in Dupuis (1995) of a pop-
ulation of lizards (Lacerta vivipara) that move between three spatially con-
nected zones, denoted 1, 2, and 3, the focus being on modeling these moves.
For a given lizard, the sequence of the zones where it stays can be modeled
as a Markov chain with transition matrix Q. This model still pertains to
HMMs as, at a given time, most lizards are not observed: this is therefore a
partly hidden Markov model. To draw inference on the matrix Q, the capture-
recapture experiment is run as follows. At time k = 0, a (random) number
of lizards are captured, marked, and released. This operation is repeated at
times k = 1, . . . , n by tagging the newly captured animals and by recording
at each capture the position (zone) of the recaptured animals. Therefore, the
model consists of a series of capture events and positions (conditional on a
capture) of n+1 cohorts of animals marked at times k = 0, . . . , n. To account
for open populations (as lizards can either die or leave the region of observa-
tion for good), a fourth state is usually added to the three spatial zones. It
is denoted † (dagger) and, from the point of view of the underlying Markov
chain, it is an absorbing state while, from the point of view of the HMM, it
is always hidden.1

The observations may thus be summarized by the series {Ykm}0≤k≤n of
capture histories that indicate, for each lizard at least captured once (m being
the lizard index), in which zone it was at each of the times it was captured.
We may for instance record

{ykm}0≤k≤n = (0, . . . , 0, 1, 1, 2, 0, 2, 0, 0, 3, 0, 0, 0, 1, 0, . . . , 0) ,

where 0 means that the lizard was not captured at that particular time in-
dex. To each such observed sequence, there corresponds a (partially) hidden
sequence {Xkm}0≤k≤n of lizard locations, for instance

{xkm}0≤k≤n = (1, . . . , 2,1,1,2,2,2,3, 2,3,3, 2, 2,1,†, . . . , †)
1One could argue that lizards may also enter the population, either by migration

or by birth. The latter reason is easily accounted for, as the age of the lizard can be
assessed at the first capture. The former reason is real but will be ignored.
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which indicates that the animal disappeared right after the last capture (where
the values that are deterministically known from the observations have been
stressed in bold).

The purposes in running capture-recapture experiments are often twofold:
first, inference can be drawn on the size of the whole population based on the
recapture history as in the Darroch model (Castledine, 1981; Seber, 1983),
and, second, features of the population can be estimated from the captured
animals, like capture and movement probabilities. �

1.3.2 Normal Hidden Markov Models

By a normal hidden Markov model we mean an HMM in which the conditional
distribution of Yk given Xk is Gaussian. In many applications, the state space
is finite, and we will then assume it is {1, 2, . . . , r}. In this case, given Xk = i,
Yk ∼ N(µi, σ

2
i ), so that the marginal distribution of Yk is a finite mixture of

normals.

Example 1.3.5 (Ion Channel Modeling). A cell, for example in the hu-
man body, needs to exchange various kinds of ions (sodium, potassium, etc.)
with its surrounding for its metabolism and for purposes of chemical commu-
nication. The cell membrane itself is impermeable to such ions but contains
so-called ion channels, each tailored for a particular kind of ion, to let ions
pass through. Such a channel is really a large molecule, a protein, that may
assume different configurations, or states. In some states, the channel allows
ions to flow through—the channel is open—whereas in other states ions can-
not pass—the channel is closed. A flow of ions is a transportation of electrical
charge, hence an electric current (of the order of picoamperes). In other words,
each state of the channel is characterized by a certain conductance level. These
levels may correspond to a fully open channel, a closed channel, or something
in between. The current through the channel can be measured using special
probes (this is by no means trivial!), with the result being a time series that
switches between different levels as the channel reconfigures. In this context,
the main motivation is to study the characteristics of the dynamic of these ion
channels, which is only partly understood, based on sampled measurements.

In the basic model, the channel current is simply assumed to be corrupted
by additive white (i.i.d.) Gaussian measurement noise. If the state of the ion
channel is modeled as a Markov chain, the measured time series becomes an
HMM with conditionally Gaussian output and with the variances σ2

i not de-
pending on i. A limitation of this basic model is that if each physical configura-
tion of the channel (say closed) corresponds to a single state of the underlying
Markov chain, we are implicitly assuming that each visit to this state has a
duration drawn from a geometric distribution. A work-around that makes it
possible to keep the HMM framework consists in modeling each physical con-
figuration by a compound of distinct states of the underlying Markov chain,
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which are constrained to have a common conditional Gaussian output distri-
bution. Depending on the exact transition matrix of the hidden chain, the
durations spent in a given physical configuration can be modeled by negative
binomial, mixtures of geometric or more complicated discrete distributions.

Further reading on ion-channel modeling can be found, for example, in
Ball and Rice (1992) for basic references and Ball et al. (1999) and Hodgson
(1998) for more advanced statistical approaches. �

Example 1.3.6 (Speech Recognition). As yet another example of normal
HMMs, we consider applications to speech recognition, which was the first
area where HMMs were used extensively, starting in the early 1980s. The
basic task is to, from a recording of a person’s voice (or in real time, on-line),
automatically determine what he or she said.

To do that, the recorded and sampled speech signal is slotted into short
sections (also called frames), typically representing about 20 milliseconds of
the original signal. Each section is then analyzed separately to produce a set
of coefficients that represent the estimated power spectral density of the signal
in the frame. This preprocessing results in a discrete-time multivariate time
series of spectral coefficients. For a given word to be recognized (imagine, for
simplicity, that speakers only pronounce single words), the length of the series
of vectors resulting from this preprocessing is not determined beforehand but
depends on the time taken for the speaker to utter the word. A primary
requirement on the model is thus to cope with the time alignment problem so
as to be able to compare multivariate sequences of unequal lengths.

In this application, the hidden Markov chain corresponds to sub-elements
of the utterance that are expected to have comparable spectral characteris-
tics. In particular, we may view each word as a sequence of phonemes (for
instance, red: [r-e-d]; class: [k-l-a:-s]). The state of the Markov chain is then
the hypothetical phoneme that is currently being uttered at a given time slot.
Thus, for a word with three phonemes, like “red” for example, the state of
the Markov chain may evolve according to Figure 1.5. Note that as opposed
to Figures 1.1 and 1.2, Figure 1.5 is an automaton description of the Markov
chain that indicates where the chain may jump to given its current state. Each
arrow thus represents a possible transition that is associated with a non-zero
transition probability. In this book, we shall use double circles for the nodes
of such automata, as in Figure 1.5, to distinguish them from graphical mod-
els. We see that each state corresponding to a phoneme has a transition back
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Fig. 1.5. Automaton representation of the Markov chain structure of an HMM for
recognizing the word “red”.
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to itself, that is, a loop; this is to allow the phoneme to last for as long as
the recording of it does. The purposes of the initial state Start and termi-
nal state Stop is simply to have well-defined starts and terminations of the
Markov chain; the stop state may be thought of as an absorbing state with
no associated observation.

The observation vectors associated with a particular (unobservable) state
are assumed to be independent and are assigned a multivariate distribution,
most often a mixture of Gaussian distributions. The variability induced by this
distribution is used to model spectral variability within and between speak-
ers. The actual speech recognition is realized by running the recorded word
as input to several different HMMs, each representing a particular word, and
selecting the one that assigns the largest likelihood to the observed sequence.
In a prior training phase, the parameters of each word model have been esti-
mated using a large number of recorded utterances of the word. Note that the
association of the states of the hidden chain with the phonemes in Figure 1.5
is more a conceptual view than an actual description of what the model does.
In practice, the recognition performance of HMM-based speech recognition
engines is far better than their efficiency at segmenting words into phonemes.

Further reading on speech recognition using HMMs can be found in the
books by Rabiner and Juang (1993) and Jelinek (1997). The famous tutorial
by Rabiner (1989) gives a more condensed description of the basic model, and
Young (1996) provides an overview of current large-scale speech recognition
systems. �

1.3.3 Gaussian Linear State-Space Models

The standard state-space model that we shall most often employ in this book
takes the form

Xk+1 = AXk + RUk , (1.7)
Yk = BXk + SVk , (1.8)

where

• {Uk}k≥0, called the state or process noise, and {Vk}k≥0, called the mea-
surement noise, are independent standard (multivariate) Gaussian white
noise (sequences of i.i.d. multidimensional Gaussian random variables with
zero mean and identity covariance matrices);

• The initial condition X0 is Gaussian with mean µν and covariance Γν and
is uncorrelated with the processes {Uk} and {Vk};

• The state transition matrix A, the measurement transition matrix B, the
square-root of the state noise covariance R, and the square-root of the
measurement noise covariance S are known matrices with appropriate di-
mensions.
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Ever since the pioneering work by Kalman and Bucy (1961), the study of the
above model has been a favorite both in the engineering (automatic control,
signal processing) and time series literature. Recommended readings on the
state-space model include the books by Anderson and Moore (1979), Caines
(1988), and Kailath et al. (2000). In addition to its practical importance,
the Gaussian linear state-space model is interesting because it corresponds to
one of the very few cases for which exact and reasonably efficient numerical
procedures are available to compute the distributions of the X-variables given
Y -variables (see Chapters 3 and 5).

Remark 1.3.7. The form adopted for the model (1.7)–(1.8) is rather stan-
dard (except for the symbols chosen for the various matrices, which vary
widely in the literature), but the role of the matrices R and S deserve some
comments. We assume in the following that both noise sequences {Uk} and
{Vk} are i.i.d. with identity covariance matrices. Hence R and S serve as
square roots of the noise covariances, as

Cov(RUk) = RRt and Cov(SVk) = SSt ,

where the superscript t denotes matrix transposition. In some cases, and in
particular when either the X- or Y -variables are scalar, it would probably
be simpler to use U ′

k = RUk and V ′
k = SVk as noise variables, adopting

their respective covariance matrices as parameters of the model. In many
situations, however, the covariance matrices have a special structure that is
most naturally represented by using R and S as parameters. In Example 1.3.8
below for instance, the dynamic noise vector Uk has a dimension much smaller
than that of the state vector Xk. Hence R is a tall matrix (with more rows than
columns) and the covariance matrix of U ′

k = RUk is rank deficient. It is then
much more natural to work only with the low-dimensional unit covariance
disturbance vector Uk rather than with U ′

k = RUk. In the following, we will
assume that SSt is a full rank covariance matrix (for reasons discussed in
Section 5.2), but RRt will often be rank deficient as in Example 1.3.8.

In many respects, the case in which the state and measurement noises {Uk}
and {Vk} are correlated is not much more complicated. It however departs
from our usual assumptions in that {Xk, Yk} then forms a Markov chain but
{Xk} itself is no longer Markov. We will thus restrict ourselves to the case
in which {Uk} and {Vk} are independent and refer, for instance, to Kailath
et al. (2000) for further details on this issue. �

Example 1.3.8 (Noisy Autoregressive Process). We shall define a pth
order scalar autoregressive (AR) process {Zk}k≥0 as one that satisfies the
stochastic difference equation

Zk+1 = φ1Zk + · · ·+ φpZk−p+1 + Uk , (1.9)

where {Uk}k≥0 is white noise. Define the lag-vector
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Xk = (Zk, . . . , Zk−p+1)t , (1.10)

and let A be the so-called companion matrix

A =

⎛⎜⎜⎜⎜⎜⎝
φ1 φ2 . . . φp

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎠ . (1.11)

Using these notations, (1.9) can be equivalently rewritten in state-space form:

Xk = AXk−1 +
(
1 0 . . . 0

)t
Uk−1 , (1.12)

Yk =
(
1 0 . . . 0

)
Xk . (1.13)

If the autoregressive process is not directly observable but only a noisy version
of it is available, the measurement equation (1.13) is replaced by

Yk =
(
1 0 . . . 0

)
Xk + Vk , (1.14)

where {Vk}k≥0 is the measurement noise. When there is no feedback between
the measurement noise and the autoregressive process, it is sensible to assume
that the state and measurement noises {Uk} and {Vk} are independent. �

1.3.4 Conditionally Gaussian Linear State-Space Models

We gradually move toward more complicated models for which the state space
X of the hidden chain is no more finite. The previous example is, as we shall
see in Chapter 5, a singular case because of the unique properties of the
multivariate Gaussian distribution with respect to linear transformations. We
now describe a related, although more complicated, situation in which the
state Xk is composed of two components Ck and Wk where the former is finite-
valued whereas the latter is a continuous, possibly vector-valued, variable.
The term “conditionally Gaussian linear state-space models”, or CGLSSMs
in short, corresponds to structures by which the model, when conditioned on
the finite-valued process {Ck}k≥0, reduces to the form studied in the previous
section.

Conditionally Gaussian linear state-space models belong to a class of mod-
els that we will refer to as hierarchical hidden Markov models, whose depen-
dence structure is depicted in Figure 1.6. In such models the variable Ck, which
is the highest in the hierarchy, influences both the transition from Wk−1 to
Wk as well as the observation Yk. When {Ck} takes its values in a finite set,
it is also common to refer to such models as jump Markov models, where the
jumps correspond to the instants k at which the value of Ck differs from that of
Ck−1. Of course, Figure 1.6 also corresponds to a standard HMM structure by
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Fig. 1.6. Graphical representation of the dependence structure of a hierarchical
HMM.

considering the composite state Xk = (Ck,Wk). But for hierarchical HMMs
in general and CGLSSMs in particular, it is often advantageous to consider
the intermediate state sequence {Wk}k≥0 as a nuisance parameter to focus on
the {Ck} component that stands at the top of the hierarchy in Figure 1.6. To
do so, one needs to integrate out the influence of {Wk}, conditioning on {Ck}
only. This principle can only be made effective in situations where the model
belongs to a simple class (such as Gaussian linear state-space models) once
conditioned on {Ck}. Below we give several simple examples that illustrate
the potential of this important class of models.

Example 1.3.9 (Rayleigh-fading Channel). We will now follow up on
Example 1.3.1 and again consider a model of interest in digital communication.
The point is that for wireless transmissions it is possible, and desirable, to
model more explicitly (than in Example 1.3.1) the physical processes that
cause errors during transmissions. As in Example 1.3.1, we shall assume that
the signal to be transmitted forms an i.i.d. sequence of fair Bernoulli draws.
Here the sequence is denoted by {Ck}k≥0 and we assume that it takes its
values in the set {−1, 1} rather than in {0, 1}. This sequence is transmitted
through a suitable modulation (Proakis, 1995) that is not of direct interest to
us.

At the receiving side, the signal is first demodulated and the simplest
model, known as the additive white Gaussian noise (AWGN) channel, postu-
lates that the demodulated signal {Yk}k≥0 may be written

Yk = hCk + Vk , (1.15)

where h is a (real) channel gain, also known as a fading coefficient, and
{Vk}k≥0 is an i.i.d. sequence of Gaussian observation noise with zero mean and
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variance σ2. For reasons that are inessential for the discussion that follows,
the actual model features complex channel gain and noise (Proakis, 1995), a
fact that we will ignore in the following.

The AWGN channel model ignores inter-symbol interference in the sense
that under (1.15) the observations {Yk} are i.i.d. In many practical situations,
it is necessary to account for channel memory to obtain a reasonable model
of the received signal. Another issue is that, in particular in wireless commu-
nication, the physical characteristics of the propagation path or channel are
continuously changing over time. As a result, the fading coefficient h will typ-
ically not stay constant but vary with time. A very simple model consists in
assuming that the fading coefficient follows a (complex) autoregressive model
of order 1, giving the model

Wk+1 = ρWk + Uk ,

Yk = WkCk + Vk ,

where the time-varying h is denoted by Wk, and {Uk}k≥0 is white Gaussian
noise (an i.i.d. sequence of zero mean Gaussian random variables). With this
model, it is easily checked that if we assume that W0 is a Gaussian random
variable independent of both the observation noise {Vk} and the state noise
{Uk}, {Yk} is the observation sequence corresponding to an HMM with hidden
state Xk = (Ck,Wk) (the emitted bit and the fading coefficient). This is a
general state-space HMM, as Wk is a real random variable. In this application,
the aim is to estimate the sequence {Ck} of bits, which is thus a component
of the unobservable state sequence, given the observations {Yk}. The fading
coefficients {Wk} are of no direct interest and constitute nuisance variables.

This model however has a unique feature among general state-space HMMs
in that conditionally on the sequence {Ck} of bits, it reduces to a Gaussian
linear state-space model with state variables {Wk}. The only difference to
Section 1.3.3 is that the observation equation becomes non-homogeneous in
time,

Yk = Wkck + Vk ,

where {Ck = ck} is the event on which we are conditioning. As a striking
consequence, we shall see in Chapters 4 and 5 that the distribution of Wk given
the observations Y0, Y1, . . . , Yk is a mixture of 2k+1 Gaussian distributions.
Because this is clearly not a tractable form when k is a two-digit number, the
challenge consists in finding practical approaches to approximate the exact
distributions. �

Conditionally Gaussian models related to the previous example are also
commonly used to approximate non-Gaussian state-space models. Imagine
that we are interested in the linear model given by Eqs. (1.7)–(1.8) with both
noise sequences still being i.i.d. but at least one of them with a non-Gaussian
distribution. Assuming a very general form of the noise distribution would
directly lead us into the world of (general) continuous state-space HMMs. As
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a middle ground, we may however assume that the distribution of the noise
is a finite mixture of Gaussian distributions.

Let {Ck}k≥0 denote an i.i.d. sequence of random variables taking values
in a set C, which can be finite or infinite. We refer to these variables as
the indicator variables when C is finite and latent variables otherwise. To
model non-Gaussian system dynamics we will typically replace the evolution
equation (1.7) by

Wk+1 = µW (Ck+1) + A(Ck+1)Wk + R(Ck+1)Uk , Uk ∼ N(0, I) ,

where, µW , A and R are respectively vector-valued and matrix-valued func-
tions of suitable dimensions on C. When C = {1, . . . , r} is finite, the distribu-
tion of the noise µW (Ck+1)+R(Ck+1)Uk driving the state equation is a finite
mixture of multivariate Gaussian distributions,

r∑
i=1

mi N
(
µW (i), R(i)Rt(i)

)
with mi = P(C0 = i) .

Another option consists in using the same modeling to represent non-Gaussian
observation noise by replacing the observation equation (1.8) by

Yk = µY (Ck) + B(Ck)Wk + S(Ck)Vk , Vk ∼ N(0, I) ,

where µY , B and S are respectively vector-valued and matrix-valued func-
tions of suitable dimensions on C. Of course, by doing this the state of the
HMM has to be extended to the joint process {Xk}k≥0, where Xk = (Wk, Ck),
taking values in the product set X × C. At first sight, it is not obvious that
anything has been gained at all by introducing additional mixture indices
with respect to our basic objective, which is to allow for linear state-space
models with non-Gaussian noises. We shall see however in Chapter 8 that
the availability of computational procedures that evaluate quantities such
as E[Wk |Y0, . . . Yk, C0, . . . , Ck] is a distinct advantage of conditionally linear
state-space models over more general (unstructured) continuous state-space
HMMs. Conditionally Gaussian linear state-space models (CGLSSM) have
found an exceptionally broad range of applications.

Example 1.3.10 (Change Point Detection). A simple yet useful exam-
ple of CGLSSMs appears in change point detection problems (Shumway and
Stoffer, 1991; Fearnhead, 1998). In a Gaussian linear state-space model, the
dynamics of the state depends on the state transition matrix and on the state
noise covariance. These quantities may change over time, and if the changes,
when they occur, do so unannounced and at unknown time points, then the
associated inferential problem is referred to as a change point problem. Var-
ious important application areas of statistics involve change detection in a
central way (for instance, environmental monitoring, quality assurance, bi-
ology). In the simplest change point problem, the state variable is the level
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Fig. 1.7. Left: well-log data waveform with a median smoothing estimate of the
state. Right: median smoothing residual.

of a quantity of interest, which is modeled as a step function; the time in-
stants at which the step function jumps are the change points. An example of
this situation is provided by the well-log data considered in Chapter 5 of the
book by Ó Ruanaidh and Fitzgerald (1996) and analyzed, among others, by
Fearnhead (1998) and Fearnhead and Clifford (2003).

In this example, the data, which is plotted in Figure 1.7, consists of mea-
surements of the nuclear magnetic response of underground rocks that are
obtained whilst drilling for oil. The data contains information about the rock
structure that is being drilled through. In particular, it contains information
about boundaries between rock strata; jumps in the step function relate to the
rock strata boundaries. As can be seen from the data, the underlying state is
a step function, which is corrupted by a fairly large amount of noise. It is the
position of these jumps that one needs to estimate. To model this situation,
we put C = {0, 1}, where Ck = 0 means that there is no change point at
time index k, whereas Ck = 1 means that a change point has occurred. The
state-space model is

Wk+1 = A(Ck+1)Wk + R(Ck+1)Uk ,

Yk = Wk + Vk ,

where A(0) = I, R(0) = 0 and A(1) = 0 and R(1) = R. The simplest model
consists in taking for {Ck}k≥0 an i.i.d. sequence of Bernoulli random variables
with probability of success p. The time between two change points (period of
time during which the state variable is constant) is then distributed as a
geometric random variable with mean 1/p;

Wk+1 =

{
Wk with probability p ,

Uk otherwise .
(1.16)
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It is possible to allow a more general form for the prior distribution of the
durations of the periods by introducing dependence among the indicator vari-
ables.

Note that it is also possible to consider such multiple change point mod-
els under the different, although strictly equivalent, perspective of a Bayesian
model with an unknown number of parameters. In this alternative represen-
tation, the hidden state trajectory is parameterized by the succession of its
levels (between two change points), which thus form a variable dimension set
of parameters (Green, 1995; Lavielle and Lebarbier, 2001). Bayesian inference
about such parameters, equipped with a suitable prior distribution, is then
carried out using simulation-based techniques to be discussed further in Chap-
ter 13. �

Example 1.3.11 (Linear State-Space Model with Observational Out-
liers and Heavy-Tailed Noise). Another interesting application of condi-
tional Gaussian linear state-space models pertains to the field of robust statis-
tics (Schick and Mitter, 1994). In the course of model building and validation,
statisticians are often confronted with the problem of dealing with outliers.
Routinely ignoring unusual observations is neither wise nor statistically sound,
as such observations may contain valuable information about unmodeled sys-
tem characteristics, model degradation and breakdown, measurement errors
and so forth.

The well-log data considered in the previous example illustrates this sit-
uation. A visual inspection of the nuclear response reveals the presence of
outliers, which tend to clump together in bursts (or clusters). This is con-
firmed when plotting the quantile-quantile regression plot (see Figure 1.8)
of the residuals of the well-log data obtained from a crude moving median
estimate of the state variable (the median filter applies a sliding window to
a sequence and outputs the median value of all points in the window as a
smoothed estimate at the window center). It can be seen that the normal
distribution does not fit the measurement noise well in the tails. Following
Fearnhead and Clifford (2003), we model the measurement noise as a mixture
of two Gaussian distributions. The model can be written

Wk+1 = A(Ck+1,1)Wk + R(Ck+1,1)Uk , Uk ∼ N(0, 1) ,
Yk = µ(Ck,2) + B(Ck,2)Wk + S(Ck,2)Vk , Vk ∼ N(0, 1) ,

where Ck,1 ∈ {0, 1} and Ck,2 ∈ {0, 1} are indicators of a change point and of
the presence of an outlier, respectively. As above, the level is assumed to be
constant between two change points. Therefore we put A(0) = 1, R(0) = 0,
A(1) = 0, and R(1) = σU . When there is no outlier, that is, Ck,2 = 0,
we assume that the level is observed in additive Gaussian noise. Therefore
{µ(0), B(0), S(0)} = (0, 1, σV,0). In the presence of an outlier, the measure-
ment does no longer carry information about the current value of the level,
that is, B(1) = 0, and the measurement noise is assumed to follow a Gaus-
sian distribution with negative mean µ and (large) variance σV,1. Therefore
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Fig. 1.8. Quantile-quantile regression of empirical quantiles of the well-log data
residuals with respect to quantiles of the standard normal distribution.

{µ(1), B(1), S(1)} = (µ, 0, σV,1). One possible model for {Ck,2} would be a
Bernoulli model in which we could include information about the ratio of
outliers/non-outliers in the success probability. However, this does not incor-
porate any information about the way samples of outliers cluster together, as
samples are assumed independent in such a model. A better model might be
a two-state Markov chain in which the state transition probabilities allow a
preference for “cohesion” within outlier bursts and non-outlier sections. Sim-
ilar models have been used for audio signal restoration, where an outlier is a
local degradation of the signal (click, scratch, etc.).

There are of course, in the framework of CGLSSMs, many additional de-
grees of freedom. For example, Ó Ruanaidh and Fitzgerald (1996) claimed that
the distribution of the measurement noise in the “clean” segments (segments
free from outliers) of the nuclear response measurement have tails heavier than
those of the Gaussian distribution, and they advocated a Laplacian additive
noise model. The use of heavy-tailed distributions to model either the observa-
tion noise or the measurement noise, which finds its roots in the field of robust
statistics, is very popular and has been worked out in many different fields.
One can of course consider to use Laplace, Weibull, or Student t-distributions,
depending on the expected “size” of the tails, but if one is willing to exploit
the full strength of conditionally Gaussian linear systems, it is wiser to con-
sider using Gaussian scale mixtures. A random vector V is a Gaussian scale
mixture if it can be expressed as the product of a Gaussian vector W with
zero mean and identity covariance matrix and an independent positive scalar
random variable

√
C: V =

√
CW (Andrews and Mallows, 1974). The variable

C is the multiplier or the scale. If C has finite support, then V is a finite mix-
ture of Gaussian vectors, whereas if C has a density with respect to Lebesgue
measure on R, then V is a continuous mixture of Gaussian vectors. Gaussian
scale mixtures are symmetric, zero mean, and have leptokurtic marginal den-
sities (tails heavier than those of a Gaussian distribution). �
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1.3.5 General (Continuous) State-Space HMMs

Example 1.3.12 (Bearings-only Tracking). Bearings-only tracking con-
cerns online estimation of a target trajectory when the observations consist
solely of the direction of arrivals (bearings) of a plane wavefront radiated by a
target as seen from a known observer position (which can be fixed, but is, in
most applications, moving). The measurements are blurred by noise, which ac-
counts for the errors occurring when estimating the bearings. In this context,
the range information (the distance between the object and the sensor) is not
available. The target is usually assumed to be traveling in a two-dimensional
space, the state of the target being its position and its velocity. Although the
observations occur at regularly spaced instants, we describe the movement
of the object in continuous time to be able to define the derivatives of the
motion. The system model that we describe here is similar to that used in
Gordon et al. (1993) and Chapter 6 of Ristic et al. (2004)—see also (Pitt and
Shephard, 1999; Carpenter et al., 1999).

The state vector at time kT is Xk = (Px,k, Ṗx,k, Py,k, Ṗy,k)t, representing
the target’s position at time kT and its velocity, where T denotes the sampling
period. One possible discretization of this model, based on a second order
Taylor expansion, is given by (Gordon et al., 1993)

Xk+1 = AXk + RUk , (1.17)

where

A =

⎛⎜⎜⎝
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎞⎟⎟⎠ , R = σU

⎛⎜⎜⎝
T 2/2 0
T 0
0 T 2/2
0 T

⎞⎟⎟⎠
and {Uk}k≥0 is bivariate standard white Gaussian noise, Uk ∼ N(0, I2).
The scale σU characterizes the magnitude of the random fluctuations of
the acceleration between two sampling points. The initial position X0 is
multivariate Gaussian with mean (µx, µ̇x, µy, µ̇y) and covariance matrix
diag(σ2

x, σ̇
2
x, σ

2
y, σ̇

2
y). The measurements {Yk}k≥0 are modeled as

Yk = tan−1
(
Py,k −Ry,k

Px,k −Rx,k

)
+ σV Vk , (1.18)

where {Vk}k≥0 is white Gaussian noise with zero mean and unit variance, and
(Rx,k, Ry,k) is the (known) observer position. It is moreover assumed that
{Uk} and {Vk} are independent. One important feature of this model is that
the amount of information about the range of the target that is present in the
measurements is, in general, small. The only range information in the observa-
tions arise due to the knowledge of the state equations, which are informative
about the maneuvers that the target is likely to perform. Therefore, the ma-
jority of range information contained in the model is that which is included
in the prior model of the target motion. �
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Fig. 1.9. Two-dimensional bearings-only target tracking geometry.

Example 1.3.13 (Stochastic Volatility). The distributional properties of
speculative prices have important implications for several financial models.
Let Sk be the price of a financial asset—such as a share price, stock index,
or foreign exchange rate—at time k. Instead of the prices, it is more cus-
tomary to consider the relative returns (Sk − Sk−1)/Sk−1 or the log-returns
log(Sk/Sk−1), which both describe the relative change over time of the price
process. In what follows we often refer, for short, to returns instead of relative
or log-returns (see Figure 1.10). The unit of the discrete time index k may
be for example an hour, a day, or a month. The famous Black-Scholes model,
which is a continuous-time model and postulates a geometric Brownian mo-
tion for the price process, corresponds to log-returns that are i.i.d. and with a
Gaussian N(µ, σ2) distribution, where σ is the volatility (the word volatility is
the word used in econometrics for standard deviation). The Black and Scholes
option pricing model provides the foundation for the modern theory of option
valuation.

In actual applications, however, this model has certain well-documented
deficiencies. Data from financial markets clearly indicate that the distribu-
tion of returns usually have tails that are heavier than those of the normal
distribution (see Figure 1.11). In addition, even though the returns are ap-
proximately uncorrelated over times (as predicted by the Black and Scholes
model), they are not independent. This can be readily verified by the fact that
the sample autocorrelations of the absolute values (or squares) of the returns
are non-zero for a large number of lags (see Figure 1.12). Whereas the former
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Fig. 1.10. Left: opening values of the Standard and Poors index 500 (S&P 500)
over the period January 2, 1990–August 25, 2000. Right: log-returns of the opening
values of the S&P 500, same period.
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Fig. 1.11. Left: histogram of S&P 500 log-returns. Right: quantile-quantile regres-
sion plot of empirical quantiles of S&P 500 log-returns against quantiles of the
standard normal distribution.

property indicates that the returns can be modeled by a white noise sequence
(a stationary process with zero autocorrelation at all positive lags), the latter
property indicates that the returns are dependent and that the dependence
may even span a rather long period of time.

The variance of returns tends to change over time: the large and small
values in the sample occur in clusters. Large changes tend to be followed by
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Fig. 1.12. Left: correlation coefficients of S&P 500 log-returns over the period
January 2, 1990–August 25, 2000. The dashed lines are 95% confidence bands
(±1.96/

√
n) corresponding to the autocorrelation function of i.i.d. white Gaussian

noise. Right: correlation coefficients of absolute values of log-returns, same period.

large changes—of either sign—and small changes tend to be followed by small
changes, a phenomenon often referred to as volatility clustering.

Most models for return data that are used in practice are of a multiplicative
form,

Yk = σkVk , (1.19)

where {Vk}k≥0 is an i.i.d. sequence and the volatility process {σk}k≥0 is a
non-negative stochastic process such that σk and Vk are independent for all
k. Mostly, {σk} is assumed to be strict sense stationary. It is often assumed
that Vk is symmetric or, at least, has zero mean. The rationale for using
these models is quite simple. First of all, the direction of the price changes is
modeled by the sign of Vk only, independently of the order of magnitude of
this change, which is directed by the volatility. Because σk and Vk are inde-
pendent and Vk is assumed to have unit variance, σ2

k is then the conditional
variance of Xk given σk. Most models assume that σk is a function of past
values. The simplest model assumes that σk is a function of the squares of the
previous observations. This leads to the celebrated autoregressive conditional
heteroscedasticity (ARCH) model developed by Engle (1982),

Yk =
√

XkVk ,

Xk = α0 +
p∑

i=1

αiY
2
k−i , (1.20)
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where α0, . . . , αp are non-negative constants. In the Engle (1982) model, {Vk}
is normal; hence the conditional error distribution is normal, but with con-
ditional variance equal to a linear function of the p past squared observa-
tions. ARCH models are thus able to reproduce the tendency for extreme
values to be followed by other extreme values, but of unpredictable sign.
The autoregressive structure can be seen by the following argument. Writ-
ing νk = Y 2

k −Xk = Xk(V 2
k − 1), one obtains

Y 2
k −

p∑
i=1

αiY
2
k−i = α0 + νk . (1.21)

Because {Vk} is an i.i.d. sequence with zero mean and unit variance, {νk}k≥0
is an uncorrelated sequence. Because ARCH(p) processes do not fit log-returns
very well unless the order p is quite large, various people have thought about
improvements. As (1.21) bears some resemblance to an AR structure, a possi-
ble generalization is to introduce an ARMA structure. This construction leads
to the so-called GARCH(p, q) process (Bollerslev et al., 1994). This model dis-
plays some striking similarities to autoregressive models with Markov regime;
this will be discussed in more detail below.

An alternative to the ARCH/GARCH framework is a model in which the
variance is specified to follow some latent stochastic process. Such models,
referred to as stochastic volatility (SV) models, appear in the theoretical lit-
erature on option pricing and exchange rate modeling. In contrast to GARCH-
type processes, there is no direct feedback from past returns to the volatility
process, which has been questioned as unnatural by some authors. Empiri-
cal versions of the SV model are typically formulated in discrete time, which
makes inference problems easier to deal with. The canonical model in SV for
discrete-time data is (Hull and White, 1987; Jacquier et al., 1994),

Xk+1 = φXk + σUk , Uk ∼ N(0, 1) ,
Yk = β exp(Xk/2)Vk , Vk ∼ N(0, 1) , (1.22)

where the observations {Yk}k≥0 are the log-returns, {Xk}k≥0 is the log-
volatility, which is assumed to follow a stationary autoregression of order
1, and {Uk}k≥0 and {Vk}k≥0 are independent i.i.d. sequences. The parameter
β plays the role of the constant scaling factor, φ is the persistence (mem-
ory) in the volatility, and σ is the volatility of the log-volatility. Despite a
very parsimonious representation, this model is capable of exhibiting a wide
range of behaviors. Like ARCH/GARCH models, the model can give rise to
a high persistence in volatility (“volatility clustering”). Even with φ = 0, the
model is a Gaussian scale mixture that will give rise to excess kurtosis in the
marginal distribution of the data. In ARCH/GARCH models with normal er-
rors, the degree of kurtosis is tied to the roots of the volatility equation; as the
volatility becomes more correlated, the degree of kurtosis also increases. In
the stochastic volatility model, the parameter σ governs the degree of mixing
independently of the degree of smoothness in the variance evolution.
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It is interesting to note that stochastic volatility models are related to
conditionally Gaussian linear state-space models. By taking logarithms of the
squared returns, one obtains,

Xk = φXk−1 + σUk−1 ,

log Y 2
k = log β2 + Xk + Zk , where Zk = log V 2

k .

If Vk is standard normal, Zk follows the logχ2
1 distribution. This distribution

may be approximated with arbitrary accuracy by a finite mixture of Gaussian
distributions, and then the SV model becomes a conditionally Gaussian linear
state-space model (Sandmann and Koopman, 1998; Durbin and Koopman,
2000). This time, the latent variable Ck is the mixture component and the
model writes

Wk+1 = φWk + Uk , Uk ∼ N(0, 1) ,
Yk = Wk + (µ(Ck) + σV (Ck)Vk) , Vk ∼ N(0, 1) .

This representation of the stochastic volatility model may prove useful when
deriving numerical algorithms to filter the hidden state or estimate the model
parameters. �

1.3.6 Switching Processes with Markov Regime

We now consider several examples that are not HMMs but belong to the class
of Markov-switching models already mentioned in Section 1.2. Perhaps the
most famous example of Markov-switching processes is the switching autore-
gressive process that was introduced by Hamilton (1989) to model econometric
data.

1.3.6.1 Switching Linear Models

A switching linear autoregression is a model of the form

Yk = µ(Ck) +
d∑

i=1

ai(Ck)(Yk−i − µ(Ck−i) + σ(Ck)Vk , k ≥ 1 , (1.23)

where {Ck}k≥0, called the regime, is a Markov chain on a finite state space
C = {1, 2, . . . , r}, and {Vk}k≥0 is white noise independent of the regime; the
functions µ : C → R, ai : C → R, i = 1, . . . , r, and σ : C → R describe
the dependence of the parameters on the realized regime. In this model, we
change only the scale of the innovation as a function of the regime, but we
can of course more drastically change the innovation distribution conditional
on each state.
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Remark 1.3.14. A model closely related to (1.23) is

Yk = µ(Ck) +
d∑

i=1

ai(Ck)Yk−i + σ(Ck)Vk , k ≥ 1 . (1.24)

In (1.23), µ(Ck) is the mean of Yk conditional on the sequence of states
C1, . . . , Ck, whereas in (1.24) the shift is on the intercept of the autoregressive
process. �

A model like this is not an HMM because, given {Ck}, the Yk are not
conditionally independent but rather form a non-homogeneous autoregression.
Hence it is a Markov-switching model. Obviously, the conditional distribution
of Yk does not only depend on Ck and Yk−1 but also on other lagged Cs and
Y s back to Ck−d and Yk−d. By vectorizing the Y s and Cs, that is, stacking
them in groups of d elements, we can obtain a process whose conditional
distribution depends on one lagged variable only, as in Figure 1.2.

This model can be rewritten in state-space form. Let

Yk = [Yk, Yk−1, . . . , Yk−d+1]t ,

Ck = [Ck, Ck−1, . . . , Ck−d+1]t ,

µ(Ck) = [µ(Ck), . . . , µ(Ck−d+1)]t ,

Vk = [Vk, 0, . . . , 0]t ,

and denote by C(c) the d × d companion matrix associated with the autore-
gressive coefficients of the state c,

A(c) =

⎡⎢⎢⎢⎢⎢⎢⎣

a1(c) a2(c) . . . . . . ad(c)
1 0 0

0 1 0
...

...
. . . . . . . . .

...
0 . . . 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (1.25)

The stacked observation vector Yk then satisfies

Yk = µ(Ck) + A(Ck) (Yk−1 − µ(Ck−1)) + σ(Ck)Vk . (1.26)

Interestingly enough, switching autoregressive processes have a rather rich
probabilistic structure and have proven to be useful in many different contexts.
We focus here on applications in econometrics and finance, but the scope of
potential applications of these models span many different areas.

Example 1.3.15 (Regime Switches in Econometrics). The Hamilton
(1989) model for the U.S. business cycle fostered a great deal of interest in
Markov-switching autoregressive models as an empirical vehicle for character-
izing macro-economic fluctuations. This model provides a formal statistical
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representation of the old idea that expansion and contraction constitute two
distinct economic phases: Hamilton’s model assumes that a macro-economic
aggregate (real output growth, country’s gross national product measured per
quarter, annum, etc.) follows one of two different autoregressions depending
on whether the economy is expanding or contracting, with the shift between
regimes governed by the outcome of an unobserved Markov chain. The simple
business cycle model advocated by Hamilton takes the form

Yk = µ(Ck) +
d∑

i=1

ai(Yk−i − µ(Ck−i)) + σVk , (1.27)

where {Vk}k≥0 is white Gaussian noise with zero mean and unit variance,
and {Ck}k≥0 is the unobserved latent variable that reflects the state of the
business cycle (the autoregressive coefficients do not change; only the mean
of the process is effectively modulated). In the simplest model, {Ck} takes
only two values; for example, Ck = 0 could indicate that the economy is in
recession and Ck = 1 that it is in expansion. When Ck = 0, the average growth
rate is given by µ(0), whereas when Ck = 1 the average growth rate is µ(1).
This simple model can be made more sophisticated by making the variance a
function of the state Ck as well,

Yk = µ(Ck) +
d∑

i=1

ai(Yk−i − µ(Ck−i)) + σ(Ck)Vk .

The Markov assumption on the hidden states basically says that if the econ-
omy was, say, in expansion the last period, the probability of going into re-
cession is a fixed constant that does not depend on how long the economy has
been in expansion or other measures of the strength of the expansion. This
assumption, though rather naive, does not appear to be a bad representation
of historical experience, though several researchers have suggested that more
complicated specifications of the transition matrix ought to be considered.

Further reading on applications of switching linear Gaussian autoregres-
sions in economics and finance can be found in, for instance, Krolzig (1997),
Kim and Nelson (1999), Raj (2002), and Hamilton and Raj (2003). �

It is possible to include an additional degree of sophistication by consid-
ering instead of a linear autoregression, linear state-space models (see for in-
stance Tugnait, 1984; West and Harrison, 1989; Kim and Nelson, 1999; Doucet
et al., 2000a; Chen and Liu, 2000):

Wk+1 = µW (Ck+1) + A(Ck+1)Wk + R(Ck+1)Uk ,

Yk = µY (Ck) + B(Ck)Wk + S(Ck)Vk , (1.28)

where {Ck}k≥0 is a Markov chain on a discrete state space, {Uk}k≥0 and
{Vk}k≥0 are mutually independent i.i.d. sequences independent of {Ck}k≥0,
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and µW , µY , A, B, R, and S are vector- and matrix-valued functions of ap-
propriate dimensions. Each state of the underlying Markov chain is then asso-
ciated with a particular regime of the dynamic system, specified by particular
values of (µW , µY , A,B,R, S) governing the behavior the state and observa-
tions. Switching linear state-space models approximate complex non-linear
dynamics with a dynamic mixture of linear processes. This type of model
has found a broad range of applications in econometrics (Kim and Nelson,
1999), in engineering including control (hybrid system, target tracking), sig-
nal processing (blind channel equalization) and communications (interference
suppression) (Doucet et al., 2000b, 2001b).

Example 1.3.16 (Maneuvering Target). Recall that in Example 1.3.12,
we considered the motion of a single target that evolves in 2-D space with
(almost) constant velocity. To represent changes in the velocity (either speed
or direction or both), we redefine the model that describes the evolution of the
state Wk = (Px,k, Ṗx,k, Py,k, Ṗy,k) by making it conditional upon a maneuver
indicator Ck = ck ∈ {1, . . . , r} that is assumed to take only a finite number
of values corresponding to various predefined maneuver scenarios. The state
now evolves according to the following conditionally Gaussian linear equation

Wk = A(Ck+1)Wk + R(Ck+1)Uk , Uk ∼ N(0, I) ,

where A(c) and R(c) describe the parameters of the dynamic system char-
acterizing the motion of the target for the maneuver labeled by c. Assuming
that the observations are linear, Yk = BWk + Vk, the system is a switching
Gaussian linear state-space model. �

1.3.6.2 Switching Non-linear Models

Switching autoregressive processes with Markov regime can be generalized by
allowing non-linear autoregressions. Such models were considered in particular
by Francq and Roussignol (1997) and take the form

Yk = φ(Yk−1, . . . , Yk−d, Xk) + σ(Yk−1, . . . , Yk−d, Xk)Vk , (1.29)

where {Xk}k≥0, called the regime, is a Markov chain on a discrete state space
X, {Vk} is an i.i.d. sequence, independent of the regime, with zero mean and
unit variance, and φ : R

d×X → R and σ : R
d×X → R

+ are (measurable) func-
tions. Of particular interest are the switching ARCH models (Francq et al.,
2001),

Yk =
√

ζ0(Xk) + ξ1(Xk)Y 2
t−1 + ξd(Xk)Y 2

t−d Vk .

Krishnamurthy and Rydén (1998) studied an even more general class of
switching autoregressive processes that do not necessarily admit an additive
decomposition; these are characterized by

Yk = φ(Yk−1, . . . , Yk−d, Xk, Vk) , (1.30)
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where {Xk}k≥0, the regime, is a Markov chain on a discrete state space,
{Vk}k≥0 is an i.i.d. sequence independent of the regime, and φ : R

d × X → R

is a (measurable) function. Conditional on the regime, {Yk} is thus a dth order
Markov chain on a general state space. Douc et al. (2004) studied the same
kind of model but allowing the regime to evolve on a general state space.

Example 1.3.17 (Switching ARCH Models). Hamilton’s (1989) switch-
ing autoregression (1.27) models a change in the business cycle phase as a
shift in the average growth rate. By contrast, Hamilton and Susmel (1994)
modeled changes in the volatility of the stock market as a shift in the overall
scale of the ARCH process modeling stock returns. They suggested to model
the monthly excess return of a financial asset (for example, the excess return
of a financial index over the treasury bill yield) as

Wk =
√

ζ0 + ξ1W 2
k−1 + · · ·+ ξmW 2

k−mUk ,

Yk = δ0 + δ1Yk−1 + · · ·+ δqYk−q + σ(Ck)Wk . (1.31)

where {Uk}k≥0 is Gaussian white noise with zero mean and {Ck}k≥0 is an un-
observed Markov chain on a discrete state space that represents the volatility
phase of the stock market; {Ck} and {Uk} are independent. In the absence of
such phases, the parameter σ(Ck) would simply be constant over k, and (1.31)
would describe stock returns by an autoregressive model whose innovations
{Uk} follow an mth order ARCH process.

More generally, when the function σ : C → R
+ is not identically equal

to unity, the latent ARCH process Wk is multiplied by a scale factor σ(Ck)
representing the current phase Ck that characterizes overall stock volatility.
Assuming again that the market has two phases, C = {0, 1}, and normalizing
σ(0) = 1, σ(1) has the interpretation as the ratio of the average variance of
stock returns when Ck = 1 compared to that observed when Ck = 0. �

1.4 Left-to-Right and Ergodic Hidden Markov Models

Most HMMs fall into one of two principally different classes of models: left-to-
right HMMs and ergodic HMMs. By a left-to-right HMM is meant an HMM
with a Markov chain that starts in a particular initial state, traverses a number
of intermediate states, and finally terminates in a final state (this state may be
considered as absorbing). When traversing the intermediate states the chain
may not go backwards—toward the initial state—but only toward the final
state. This progression is usually pictured from left to right; thus the term
“left-to-right HMM”. Speech recognition, discussed in Example 1.3.6 above, is
typically a case where only left-to-right HMMs are used. A left-to-right HMM
is not ergodic, but produces a sequence, typically of random length, of output.
The number of states is also usually large.
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In contrast, an ergodic HMM is one for which the underlying Markov chain
is ergodic, or at least is irreducible and admits a unique stationary distribution
(thus allowing for periodicity). Such a model can thus produce an infinitely
long sequence of output, which is an ergodic sequence as well. The number
of states, if the state space is finite, is typically small. Most of the examples
mentioned in Section 1.3 correspond to ergodic HMMs.

Left-to-right HMMs and ergodic HMMs have much in common, in par-
ticular on the computational side. Indeed, computational algorithms like the
EM algorithm, which is widely used for HMMs, may be implemented similarly
whatever the structure of the Markov chain. Of course, because left-to-right
HMMs often have many states, in such models it is often considerably more
difficult to find the maximum likelihood estimator, say, among all local max-
ima of the likelihood function.

Having said that, when it comes to matters of theoretical statistics, there
are noticeable differences between ergodic and left-to-right HMMs. Inference
in left-to-right HMMs cannot be based on a single observed sequence of output,
but is based on many, usually independent sequences. In contrast, inference
in ergodic HMMs is usually based on a single long observed sequence, within
which there is no independence. For this reason, issues regarding asymptotics
of estimators and statistical tests are to be treated quite differently. For er-
godic HMMs, one cannot rely on statistical theory for i.i.d. data but must
develop specific methods. This development was initiated in the late 1960s by
Baum and Petrie (1966) but was not continued until the 1990s. The case of
left-to-right HMMs is simpler because it involves only independent observa-
tions, even though each observation is a sequence of random length.

It should however be stressed that, when dealing with left-to-right HMMs,
finding the global maximum of the log-likelihood function, that is, the maxi-
mum likelihood estimator, or computing confidence intervals for parameters,
etc., is not always a main goal, as for left-to-right HMMs the focus is often on
how the model performs with respect to the particular application at hand:
how good is the DNA sequence alignment; how large is the percentage of
correctly recognized words, etc.? Indeed, even comparisons between models
of different structure are often done by evaluating their performance on the
actual application rather than applying statistical model selection procedures.
For these reasons, one can argue that left-to-right HMMs are often applied in
a “data fitting way” or “data mining way”, rather than in a “statistical way”.

Throughout this book, most examples given are based on ergodic HMMs,
but the methodologies described are with few exceptions applicable to left-to-
right HMMs either directly or after minor modifications.
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Main Definitions and Notations

We now formally describe hidden Markov models, setting the notations that
will be used throughout the book. We start by reviewing the basic definitions
and concepts pertaining to Markov chains.

2.1 Markov Chains

2.1.1 Transition Kernels

Definition 2.1.1 (Transition Kernel). Let (X,X ) and (Y,Y) be two mea-
surable spaces. An unnormalized transition kernel from (X,X ) to (Y,Y) is a
function Q : X× Y → [0,∞] that satisfies

(i) for all x ∈ X, Q(x, ·) is a positive measure on (Y,Y);
(ii) for all A ∈ Y, the function x 
→ Q(x,A) is measurable.

If Q(x,Y) = 1 for all x ∈ X, then Q is called a transition kernel, or simply a
kernel. If X = Y and Q(x,X) = 1 for all x ∈ X, then Q will also be referred
to as a Markov transition kernel on (X,X ).

An (unnormalized) transition kernel Q is said to admit a density with
respect to the positive measure µ on Y if there exists a non-negative function
q : X×Y → [0,∞], measurable with respect to the product σ-field X ⊗Y, such
that

Q(x,A) =
∫

A

g(x, y)µ(dy) , A ∈ Y .

The function q is then referred to as an (unnormalized) transition density
function.

When X and Y are countable sets it is customary to write Q(x, y) as a
shorthand notation for Q(x, {y}), and Q is generally referred to as a transition
matrix (whether or not X and Y are finite sets).

We summarize below some key properties of transition kernels, introducing
important pieces of notation that are used in the following.
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• Let Q and R be unnormalized transition kernels from (X,X ) to (Y,Y) and
from (Y,Y) to (Z,Z), respectively. The product QR, defined by

QR(x,A) def=
∫

Q(x, dy)R(y,A) , x ∈ X, A ∈ Z ,

is then an unnormalized transition kernel from (X,X ) to (Z,Z). If Q and
R are transition kernels, then so is QR, that is, QR(x,Z) = 1 for all x ∈ X.

• If Q is an (unnormalized) Markov transition kernel on (X,X ), its iterates
are defined inductively by

Q0(x, ·) = δx for x ∈ X and Qk = QQk−1 for k ≥ 1 .

These iterates satisfy the Chapman-Kolmogorov equation: Qn+m = QnQm

for all n,m ≥ 0. That is, for all x ∈ X and A ∈ X ,

Qn+m(x,A) =
∫

Qn(x, dy)Qm(y,A) . (2.1)

If Q admits a density q with respect to the measure µ on (X,X ), then for
all n ≥ 2 the kernel Qn is also absolutely continuous with respect to µ.
The corresponding transition density is

qn(x, y) =
∫

Xn−1
q(x, x1) · · · q(xn−1, y)µ(dx1) · · ·µ(dxn−1) . (2.2)

• Positive measures operate on (unnormalized) transition kernels in two dif-
ferent ways. If µ is a positive measure on (X,X ), the positive measure µQ
on (Y,Y) is defined by

µQ(A) def=
∫

µ(dx)Q(x,A) , A ∈ Y .

Moreover, the measure µ⊗Q on the product space (X×Y,X⊗Y) is defined
by

µ⊗Q(C) def=
∫∫

C

µ(dx)Q(x, dy) , C ∈ X ⊗ Y .

If µ is a probability measure and Q is a transition kernel, then µQ and
µ⊗Q are probability measures.

• (Unnormalized) transition kernels operate on functions. Let f be a real
measurable function on Y. The real measurable function Qf on X is defined
by

Qf(x) def=
∫

Q(x, dy) f(y) , x ∈ X ,

provided the integral is well-defined. It will sometimes be more convenient
to use the alternative notation Q(x, f) instead of Qf(x). In particular,
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for x ∈ X and A ∈ Y, Q(x,A), δxQ(A), Q1A(x), and Q(x,1A), where
1A denotes the indicator function of the set A, are four equivalent ways
of denoting the same quantity. In general, we prefer using the Q(x,1A)
and Q(x,A) variants, which are less prone to confusion in complicated
expressions.

• For any positive measure µ on (X,X ) and any real measurable function f
on (Y,Y),

(µQ) (f) = µ (Qf) =
∫∫

µ(dx)Q(x, dy) f(y) ,

provided the integrals are well-defined. We may thus use the simplified
notation νQf instead of (νQ)(f) or ν(Qf).

Definition 2.1.2 (Reverse Kernel). Let Q be a transition kernel from
(X,X ) to (Y,Y) and let ν be a probability measure on (X,X ). The reverse
kernel

←−
Qν associated to ν and Q is a transition kernel from (Y,Y) to (X,X )

such that for all bounded measurable functions f defined on X× Y,∫∫
X×Y

f(x, y) ν(dx)Q(x, dy) =
∫∫

X×Y
f(x, y) νQ(dy)

←−
Qν(y, dx) . (2.3)

The reverse kernel does not necessarily exist and is not uniquely defined.
Nevertheless, if

←−
Qν,1 and

←−
Qν,2 satisfy (2.3), then for all A ∈ X ,

←−
Qν,1(y,A) =

←−
Qν,2(y,A) for νQ-almost every y in Y. The reverse kernel does exist if X and
Y are Polish spaces endowed with their Borel σ-fields (see Appendix A.1 for
details). If Q admits a density q with respect to a measure µ on (Y,Y), then←−
Qν can be defined for all y such that

∫
X q(z, y) ν(dz) �= 0 by

←−
Qν(y, dx) =

q(x, y) ν(dx)∫
X q(z, y) ν(dz)

. (2.4)

The values of
←−
Qν on the set {y ∈ Y :

∫
X q(z, y) ν(dz) = 0} are irrelevant

because this set is νQ-negligible. In particular, if X is discrete and µ is counting
measure, then for all (x, y) ∈ X× Y such that νQ(y) �= 0,

←−
Qν(y, x) =

ν(x)Q(x, y)
νQ(y)

. (2.5)

2.1.2 Homogeneous Markov Chains

Let (Ω,F ,P) be a probability space and let (X,X ) be a measurable space.
An X-valued (discrete index) stochastic process {Xn}n≥0 is a collection of X-
valued random variables. A filtration of (Ω,F) is a non-decreasing sequence
{Fn}n≥0 of sub-σ-fields of F . A filtered space is a triple (Ω,F ,F), where F is
a filtration; (Ω,F ,F,P) is called a filtered probability space. For any filtration
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F = {Fn}n≥0, we denote by F∞ = ∨∞
n=0Fn the σ-field generated by F or, in

other words, the minimal σ-field containing F. A stochastic process {Xn}n≥0
is adapted to F = {Fn}n≥0, or simply F-adapted, if Xn is Fn-measurable for
all n ≥ 0 The natural filtration of a process {Xn}n≥0, denoted by F

X =
{FX

n }n≥0, is the smallest filtration with respect to which {Xn} is adapted.

Definition 2.1.3 (Markov Chain). Let (Ω,F ,F,P) be a filtered probability
space and let Q be a Markov transition kernel on a measurable space (X,X ).
An X-valued stochastic process {Xk}k≥0 is said to be a Markov chain under P,
with respect to the filtration F and with transition kernel Q, if it is F-adapted
and for all k ≥ 0 and A ∈ X ,

P (Xk+1 ∈ A | Fk) = Q(Xk, A) . (2.6)

The distribution of X0 is called the initial distribution of the chain, and X is
called the state space.

If {Xk}k≥0 is F-adapted, then for all k ≥ 0 it holds that FX
k ⊆ Fk; hence

a Markov chain with respect to a filtration F is also a Markov chain with
respect to its natural filtration. Hereafter, a Markov chain with respect to its
natural filtration will simply be referred to as a Markov chain. When there is
no risk of confusion, we will not mention the underlying probability measure
P.

A fundamental property of a Markov chain is that its finite-dimensional
distributions, and hence the distribution of the process {Xk}k≥0, are entirely
determined by the initial distribution and the transition kernel.

Proposition 2.1.4. Let {Xk}k≥0 be a Markov chain with initial distribu-
tion ν and transition kernel Q. For any k ≥ 0 and any bounded X⊗(k+1)-
measurable function f on X(k+1),

E [f(X0, . . . , Xk)] =
∫

f(x0, . . . , xk) ν(dx0)Q(x0, dx1) · · ·Q(xk−1, dxk) .

In the following, we will use the generic notation f ∈ Fb (Z) to denote the
fact that f is a measurable bounded function on (Z,Z). In the case of Propo-
sition 2.1.4 for instance, one considers functions f that are in Fb

(
X(k+1)

)
.

More generally, we will usually describe measures and transition kernels on
(Z,Z) by specifying the way they operate on the functions of Fb (Z).

2.1.2.1 Canonical Version

Let (X,X ) be a measurable space. The canonical space associated to (X,X )
is the infinite-dimensional product space (XN,X⊗N). The coordinate process
is the X-valued stochastic process {Xk}k≥0 defined on the canonical space by
Xn(ω) = ω(n). The canonical space will always be endowed with the natural
filtration F

X of the coordinate process.
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Let (Ω,F) = (XN,X⊗N) be the canonical space associated to the measur-
able space (X,X ). The shift operator θ : Ω → Ω is defined by

θ(ω)(n) = ω(n + 1) , n ≥ 0 .

The iterates of the shift operator are defined inductively by θ0 = Id (the
identity), θ1 = θ and θk = θ ◦ θk−1 for k ≥ 1. If {Xk}k≥0 is the coordinate
process with associated natural filtration F

X , then for all k, n ≥ 0, Xk ◦ θn =
Xk+n, and more generally for any FX

k -measurable random variable Y , Y ◦ θn

is FX
n+k-measurable.
The following theorem, which is a particular case of the Kolmogorov con-

sistency theorem, states that it is always possible to define a Markov chain
on the canonical space.

Theorem 2.1.5. Let (X,X ) be a measurable set, ν a probability measure on
(X,X ), and Q a transition kernel on (X,X ). Then there exists an unique
probability measure on (XN,X⊗N), denoted by Pν , such that the coordinate
process {Xk}k≥0 is a Markov chain (with respect to its natural filtration) with
initial distribution ν and transition kernel Q.

For x ∈ X, let Px be an alternative simplified notation for Pδx
. Then for

all A ∈ X⊗N, the mapping x → Px(A) = Q(x,A) is X -measurable, and for
any probability measure ν on (X,X ),

Pν(A) =
∫

ν(dx) Px(A) . (2.7)

The Markov chain defined in Theorem 2.1.5 is referred to as the canonical
version of the Markov chain. The probability Pν defined on (XN,X⊗N) de-
pends on ν and on the transition kernel Q. Nevertheless, the dependence with
respect to Q is traditionally omitted in the notation. The relation (2.7) implies
that x→ Px is a regular version of the conditional probability Pν ( · |Xk = x)
in the sense that one can rewrite (2.6) as

Pν

(
Xk+1 ∈ A | FX

k

)
= Pν

(
X1 ◦ θk ∈ A

∣∣FX
k

)
= PXk

(X1 ∈ A) Pν -a.s.

2.1.2.2 Markov Properties

More generally, an induction argument easily yields the Markov property: for
any FX

∞-measurable random variable Y ,

Eν [Y ◦ θk | FX
k ] = EXk

[Y ] Pν -a.s. (2.8)

The Markov property can be extended to a specific class of random times
known as stopping times. Let N̄ = N∪ {+∞} denote the extended integer set
and let (Ω,F ,F) be a filtered space. Then, a mapping τ : Ω → N̄ is said to
be an F-stopping time if {τ = n} ∈ Fn for all n ≥ 0. Intuitively, this means
that at any time n one should be able to tell, based on the information Fn
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available at that time, if the stopping time occurs at this time n (or before
then) or not. The class Fτ defined by

Fτ = {B ∈ F∞ : B ∩ {τ = n} ∈ Fn for all n ≥ 0} ,

is a σ-field, referred to as the σ-field of the events occurring before τ .

Theorem 2.1.6 (Strong Markov Property). Let {Xk}k≥0 be the canon-
ical version of a Markov chain and let τ be an F

X-stopping time. Then for
any bounded FX

∞-measurable function Ψ ,

Eν [1{τ<∞}Ψ ◦ θτ | FX
τ ] = 1{τ<∞} EXτ

[Ψ ] Pν -a.s. (2.9)

We note that an FX
∞-measurable function, or random variable, Ψ , is typically

a function of potentially the whole trajectory of the Markov chain, although
it may of course be a rather simple function like X1 or X2 + X2

3 .

2.1.3 Non-homogeneous Markov Chains

Definition 2.1.7 (Non-homogeneous Markov Chain). Let (Ω,F ,F,P)
be a filtered probability space and let {Qk}k≥0 be a family of transition kernels
on a measurable space (X,X ). An X-valued stochastic process {Xk}k≥0 is said
to be a non-homogeneous Markov chain under P, with respect to the filtration
F and with transition kernels {Qk}, if it is F-adapted and for all k ≥ 0 and
A ∈ X ,

P(Xk+1 ∈ A | Fk) = Qk(Xk, A) .

For i ≤ j we define
Qi,j = QiQi+1 · · ·Qj .

With this notation, if ν denotes the distribution of X0 (which we refer to as
the initial distribution as in the homogeneous case), the distribution of Xn is
ν Q0,n−1. An important example of a non-homogeneous Markov chain is the
so-called reverse chain. The construction of the reverse chain is based on the
observation that if {Xk}k≥0 is a Markov chain, then for any index n ≥ 1 the
time-reversed (or, index-reversed) process {Xn−k}n

k=0 is a Markov chain too.
The definition below provides its transition kernels.

Definition 2.1.8 (Reverse Chain). Let Q be a Markov kernel on some
space X, let ν be a probability measure on this space, and let n ≥ 1 be an
index. The reverse chain is the non-homogeneous Markov chain with initial
distribution νQn, (time) index set k = 0, 1, . . . , n and transition kernels

Qk =
←−
QνQn−k−1 , k = 0, . . . , n− 1 ,

assuming that the reverse kernels are indeed well-defined.
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If the transition kernel Q admits a transition density function q with re-
spect to a measure µ on (X,X ), then Qk also admits a density with respect
to the same measure µ, namely

hk(y, x) =
∫
qn−k−1(z, x)q(x, y) ν(dz)∫

qn−k(z, y) ν(dz)
. (2.10)

Here, ql is the transition density function of Ql with respect to µ as defined
in (2.2). If the state space is countable, then

Qk(y, x) =
νQn−k−1(x)Q(x, y)

νQn−k(y)
. (2.11)

An interesting question is in what cases the kernels Qk do not depend
on the index k and are in fact all equal to the forward kernel Q. A Markov
chain with this property is said to be reversible. The following result gives a
necessary and sufficient condition for reversibility.

Theorem 2.1.9. Let X be a Polish space. A Markov kernel Q on X is re-
versible with respect to a probability measure ν if and only if for all bounded
measurable functions f on X× X,∫∫

f(x, x′) ν(dx)Q(x, dx′) =
∫∫

f(x, x′) ν(dx′)Q(x′, dx) . (2.12)

The relation (2.12) is referred to as the local balance equations (or detailed
balance equations). If the state space is countable, these equations hold if for
all x, x′ ∈ X,

ν(x)Q(x, x′) = ν(x′)Q(x′, x) . (2.13)

Upon choosing a function f that only depends on the second variable in
(2.12), it is easily seen that νQ(f) = ν(f) for all functions f ∈ Fb (X). We can
also write this as ν = νQ. This equation is referred to as the global balance
equations. By induction, we find that νQn = ν for all n ≥ 0. The left-hand side
of this equation is the distribution of Xn, which thus does not depend on n
when global balance holds. This is a form of stationarity, obviously implied by
local balance. We shall tie this form of stationarity to the following customary
definition.

Definition 2.1.10 (Stationary Process). A stochastic process {Xk} is
said to be stationary (under P) if its finite-dimensional distributions are trans-
lation invariant, that is, if for all k, n ≥ 1 and all n1, . . . , nk, the distribution
of the random vector (Xn1+n, . . . , Xnk+n) does not depend on n.

A stochastic process with index set N, stationary but otherwise general, can
always be extended to a process with index set Z, having the same finite-
dimensional distributions (and hence being stationary). This is a consequence
of Kolmogorov’s existence theorem for stochastic processes.
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For a Markov chain, any multi-dimensional distribution can be expressed
in terms of the initial distribution and the transition kernel—this is Propo-
sition 2.1.4—and hence the characterization of stationarity becomes much
simpler than above. Indeed, a Markov chain is stationary if and only if its
initial distribution ν and transition kernel Q satisfy νQ = ν, that is, sat-
isfy global balance. Much more will be said about stationary distributions of
Markov chains in Chapter 14.

2.2 Hidden Markov Models

A hidden Markov model is a doubly stochastic process with an underlying
stochastic process that is not directly observable (it is “hidden”) but can be
observed only through another stochastic process that produces the sequence
of observations. As shown in the introduction, the scope of HMMs is large and
covers a variety of situations. To accommodate these conceptually different
models, we now define formally a hidden Markov model.

2.2.1 Definitions and Notations

In simple cases such as fully discrete models, it is common to define hidden
Markov models by using the concept of conditional independence. Indeed, this
was the view taken in Chapter 1, where an HMM was defined as a bivariate
process {(Xk, Yk)}k≥0 such that

• {Xk}k≥0 is a Markov chain with transition kernel Q and initial distribution
ν;

• Conditionally on the state process {Xk}k≥0, the observations {Yk}k≥0 are
independent, and for each n the conditional distribution of Yn depends on
Xn only.

It turns out that conditional independence is mathematically more difficult to
define in general settings (in particular, when the state space X of the Markov
chain is not countable), and we will adopt a different route to define general
hidden Markov models. The HMM is defined as a bivariate Markov chain,
only partially observed though, whose transition kernel has a special struc-
ture. Indeed, its transition kernel should be such that both the joint process
{Xk, Yk}k≥0 and the marginal unobservable (or hidden) chain {Xk}k≥0 are
Markovian. From this definition, the usual conditional independence proper-
ties of HMMs will then follow (see Corollary 2.2.5 below).

Definition 2.2.1 (Hidden Markov Model). Let (X,X ) and (Y,Y) be two
measurable spaces and let Q and G denote, respectively, a Markov transition
kernel on (X,X ) and a transition kernel from (X,X ) to (Y,Y). Consider the
Markov transition kernel defined on the product space (X× Y,X ⊗ Y) by
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T [(x, y), C] =
∫∫
C

Q(x, dx′)G(x′, dy′) , (x, y) ∈ X× Y, C ∈ X ⊗ Y .

(2.14)
The Markov chain {Xk, Yk}k≥0 with Markov transition kernel T and initial
distribution ν ⊗ G, where ν is a probability measure on (X,X ), is called a
hidden Markov model.

Although the definition above concerns the joint process {Xk, Yk}k≥0, the
term hidden is only justified in cases where {Xk}k≥0 is not observable. In this
respect, {Xk}k≥0 can also be seen as a fictitious intermediate process that
is useful only in defining the distribution of the observed process {Yk}k≥0.
We shall denote by Pν and Eν the probability measure and corresponding
expectation associated with the process {Xk, Yk}k≥0 on the canonical space(
(X× Y)N, (X ⊗ Y)⊗N

)
. Notice that this constitutes a slight departure from

the Markov notations introduced previously, as ν is a probability measure on
X only and not on the state space X×Y of the joint process. This slight abuse
of notation is justified by the special structure of the model considered here.
Equation (2.14) shows that whatever the distribution of the initial joint state
(X0, Y0), even if it were not of the form ν × G, the law of {Xk, Yk}k≥1 only
depends on the marginal distribution of X0. Hence it makes sense to index
probabilities and expectations by this marginal initial distribution only.

If both X and Y are countable, the hidden Markov model is said to be
discrete, which is the case originally considered by Baum and Petrie (1966).
Many of the examples given in the introduction (those of Section 1.3.2 for
instance) correspond to cases where Y is uncountable and is a subset of R

d

for some d. In such cases, we shall generally assume that the following holds
true.

Definition 2.2.2 (Partially Dominated Hidden Markov Model). The
model of Definition 2.2.1 is said to be partially dominated if there exists a
probability measure µ on (Y,Y) such that for all x ∈ X, G(x, ·) is absolutely
continuous with respect to µ, G(x, ·) � µ(·), with transition density function
g(x, ·). Then, for A ∈ Y, G(x,A) =

∫
A
g(x, y)µ(dy) and the joint transition

kernel T can be written as

T [(x, y), C] =
∫∫
C

Q(x, dx′)g(x′, y′)µ(dy′) C ∈ X ⊗ Y . (2.15)

In the third part of the book (Chapter 10 and following) where we consider
statistical estimation for HMMs with unknown parameters, we will require
even stronger conditions and assume that the model is fully dominated in the
following sense.

Definition 2.2.3 (Fully Dominated Hidden Markov Model). If, in ad-
dition to the requirements of Definition 2.2.2, there exists a probability mea-
sure λ on (X,X ) such that ν � λ and, for all x ∈ X, Q(x, ·) � λ(·) with tran-
sition density function q(x, ·). Then, for A ∈ X , Q(x,A) =

∫
A
q(x, x′)λ(dx′)
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and the model is said to be fully dominated. The joint Markov transition ker-
nel T is then dominated by the product measure λ⊗µ and admits the transition
density function

t [(x, y), (x′, y′)] def= q(x, x′)g(x′, y′) . (2.16)

Note that for such models, we will generally re-use the notation ν to denote
the probability density function of the initial state X0 (with respect to λ)
rather than the distribution itself.

2.2.2 Conditional Independence in Hidden Markov Models

In this section, we will show that the “intuitive” way of thinking about an
HMM, in terms of conditional independence, is justified by Definition 2.2.1.
Readers unfamiliar with conditioning in general settings may want to read
more on this topic in Appendix A.4 before reading the rest of this section.

Proposition 2.2.4. Let {Xk, Yk}k≥0 be a Markov chain over the product
space X × Y with transition kernel T given by (2.14). Then, for any in-
teger p, any ordered set {k1 < · · · < kp} of indices and all functions
f1, . . . , fp ∈ Fb (Y),

Eν

[
p∏

i=1

fi(Yki
)

∣∣∣∣∣ Xk1 , . . . , Xkp

]
=

p∏
i=1

∫
Y
fi(y)G(Xki

, dy) . (2.17)

Proof. For any h ∈ Fb (Xp), it holds that

Eν

[
p∏

i=1

fi(Yki
)h(Xk1 , . . . , Xkp

)

]

=
∫
· · ·

∫
ν(dx0)G(x0, dy0)

⎡⎣ kp∏
i=1

Q(xi−1, dxi)G(xi, dyi)

⎤⎦
×

[
p∏

i=1

fi(yki)

]
h(xk1 , . . . , xkp)

=
∫
· · ·

∫
ν(dx0)

kp∏
i=1

Q(xi−1, dxi)h(xk1 , . . . , xkp)

∫
· · ·

∫ ⎡⎣ ∏
i�∈{k1,...,kp}

G(xi, dyi)

⎤⎦⎡⎣ ∏
i∈{k1,...,kp}

∫
fi(yi)G(xi, dyi)

⎤⎦ .

Because
∫
G(xi, dyi) = 1,
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Eν

[
p∏

i=1

fi(Yki)h(Xk1 , . . . , Xkp)

]
=

Eν

⎡⎣h(Xk1 , . . . , Xkp)
∏

i∈{k1,...,kp}

∫
fi(yi)G(Xi, dyi)

⎤⎦ .

��

Corollary 2.2.5.

(i) For any integer p and any ordered set {k1 < · · · < kp} of indices,
the random variables Yk1 , . . . , Ykp are Pν-conditionally independent given
(Xk1 , Xk2 , . . . , Xkp

).
(ii) For any integers k and p and any ordered set {k1 < · · · < kp} of indices

such that k �∈ {k1, . . . , kp}, the random variables Yk and (Xk1 , . . . , Xkp)
are Pν-conditionally independent given Xk.

Proof. Part (i) is an immediate consequence of Proposition 2.2.4. To prove
(ii), note that for any f ∈ Fb (Y) and h ∈ Fb (Xp),

Eν

[
f(Yk)h(Xk1 , . . . , Xkp) |Xk

]
= Eν

[
Eν [f(Yk) |Xk1 , . . . , Xkp

, Xk]h(Xk1 , . . . , Xkp
)
∣∣ Xk

]
= Eν

[
f(Yk) |Xk] Eν [h(Xk1 , . . . , Xkp) |Xk

]
.

��

As a direct application of Propositions A.4.2 and A.4.3, the conditional in-
dependence of the observations given the underlying sequence of states implies
that for any integers p and p′, any indices k1 < · · · < kp and k′

1 < · · · < k′
p′

such that {k1, . . . , kp} ∩ {k′
1, . . . , k

′
p′} = ∅ and any function f ∈ Fb (Yp),

Eν [f(Yk1 , . . . , Ykp
) |Xk1 , . . . , Xkp

, Xk′
1
, . . . , Xk′

p
, Yk′

1
, . . . Yk′

p
]

= Eν [f(Yk1 , . . . , Ykp
) |Xk1 , . . . , Xkp

] . (2.18)

Indeed, in terms of conditional independence of the variables,

(Yk1 , . . . , Ykp
) ⊥⊥ (Yk′

1
, . . . , Yk′

p′ ) | (Xk1 , . . . , Xkp
, Xk′

1
, . . . , Xk′

p′ ) [Pν ]

and
(Yk1 , . . . , Ykp) ⊥⊥ (Xk′

1
, . . . , Xk′

p′ ) | (Xk1 , . . . , Xkp) [Pν ] .

Hence, by the contraction property of Proposition A.4.3,

(Yk1 , . . . , Ykp) ⊥⊥ (Xk′
1
, . . . , Xk′

p′ , Yk′
1
, . . . , Yk′

p
) | (Xk1 , . . . , Xkp) [Pν ] ,

which implies (2.18).
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2.2.3 Hierarchical Hidden Markov Models

In examples such as 1.3.16 and 1.3.15, we met hidden Markov models whose
state variable naturally decomposes into two distinct sub-components. To ac-
commodate such structures, we define a specific sub-class of HMMs for which
the state Xk consists of two components, Xk = (Ck,Wk). This additional
structure will be used to introduce a level of hierarchy in the state variables.
We call this class hierarchical hidden Markov models. In general, the hierar-
chical structure will be as follows.

• {Ck}k≥0 is a Markov chain on a state space (C, C) with transition kernel
QC and initial distribution νC . Thus, for any f ∈ Fb (C) and any k ≥ 1,

E [f(Ck) |C0:k−1] = QC(Ck−1, f) and EνC
[f(C0)] = νC(f) .

• Conditionally on {Ck}k≥0, {Wk}k≥0 is a Markov chain on (W,W). More
precisely, there exists a transition kernel QW : (X× C)×W → [0, 1] such
that for any k ≥ 1 and any function f ∈ Fb (W),

E [f(Wk) |W0:k−1 , C0:k] = QW [(Wk−1, Ck), f ] .

In addition, there exists a transition kernel νW : C×W → [0, 1] such that
for any f ∈ Fb (W),

E [f(W0) |C0] = νW (C0, f) .

We denote by Xk = (Ck,Wk) the composite state variable. Then, {Xk}k≥0 is
a Markov chain on X = C×W with transition kernel

Q [(c, w), A×B] =
∫

A

∫
B

QC(c, dc′)QW [(w, c′), dw′] , A ∈ C, B ∈ W ,

and initial distribution

ν(A×B) =
∫

A

νC(dc) νW (c, B) .

As before, we assume that {Yk}k≥0 is conditionally independent of {Xk}k≥0
and such that the conditional distribution of Yn depends on Xn only, meaning
that (2.17) holds.

The distinctive feature of hierarchical HMMs is that it is often advanta-
geous to consider that the state variables are {Ck}k≥0 rather than {Xk}k≥0.
Of course, the model is then no longer an HMM because the observation Yk

depends on all partial states Cl for l ≤ k due to the marginalization of the
intermediate component Wl (for l = 0, . . . , k). Nonetheless, this point of view
is often preferable, particularly in cases where the structure of {Ck}k≥0 is
very simple, such as when C is finite. The most common example of hierarchi-
cal HMM is the conditionally Gaussian linear state-space model (CGLSSM),
which we already met in Examples 1.3.9, 1.3.11, and 1.3.16. We now formally
define this model.
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Definition 2.2.6 (Conditionally Gaussian Linear State-Space Model).
A CGLSSM is a model of the form

Wk+1 = A(Ck+1)Wk + R(Ck+1)Uk , W0 ∼ N(µν , Σν) , (2.19)
Yk = B(Ck)Wk + S(Ck)Vk ,

subject to the following conditions.

• The indicator process {Ck}k≥0 is a Markov chain with transition kernel
QC and initial distribution νC . Usually, C is finite and then identified with
the set {1, . . . , r}.

• The state (or process) noise {Uk}k≥0 and the measurement noise {Vk}k≥0
are independent multivariate Gaussian white noises with zero mean and
identity covariance matrices. In addition, the indicator process {Ck}k≥0 is
independent of both the state noise and of the measurement noise.

• A, B, R, and S are known matrix-valued functions of appropriate dimen-
sions.



Part I

State Inference



3

Filtering and Smoothing Recursions

This chapter deals with a fundamental issue in hidden Markov modeling:
given a fully specified model and some observations Y0, . . . , Yn, what can be
said about the corresponding unobserved state sequence X0, . . . , Xn? More
specifically, we shall be concerned with the evaluation of the conditional dis-
tributions of the state at index k, Xk, given the observations Y0, . . . , Yn, a task
that is generally referred to as smoothing. There are of course several options
available for tackling this problem (Anderson and Moore, 1979, Chapter 7)
and we focus, in this chapter, on the fixed-interval smoothing paradigm in
which n is held fixed and it is desired to evaluate the conditional distributions
of Xk for all indices k between 0 and n. Note that only the general mechan-
ics of the smoothing problem are dealt with in this chapter. In particular,
most formulas will involve integrals over X. We shall not, for the moment,
discuss ways in which these integrals can be effectively evaluated, or at least
approximated, numerically. We postpone this issue to Chapter 5, which deals
with some specific classes of hidden Markov models, and Chapters 6 and 7, in
which generally applicable Markov chain Monte Carlo methods or sequential
importance sampling techniques are reviewed.

The driving line of this chapter is the existence of a variety of smoothing
approaches that involve a number of steps that only increase linearly with
the number of observations. This is made possible by the fact (to be made
precise in Section 3.3) that conditionally on the observations Y0, . . . , Yn, the
state sequence still is a Markov chain, albeit a non-homogeneous one.

Readers already familiar with the field could certainly object that as the
probabilistic structure of any hidden Markov model may be represented by
the generic probabilistic network drawn in Figure 1.1 (Chapter 1), the fixed
interval smoothing problem under consideration may be solved by applying
the general principle known as probability propagation or sum-product—see
Cowell et al. (1999) or Frey (1998) for further details and references. As patent
however from Figure 1.1, the graph corresponding to the HMM structure is
so simple and systematic in its design that efficient instances of the probabil-
ity propagation approach are all based on combining two systematic phases:
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one in which the graph is scanned systematically from left to right (or forward
pass), and one in which the graph is scanned in reverse order (backward pass).
In this context, there are essentially only three different ways of implement-
ing the above principle, which are presented below in Sections 3.2.2, 3.3.1,
and 3.3.2.

From a historical perspective, it is interesting to recall that most of the
early references on smoothing, which date back to the 1960s, focused on the
specific case of Gaussian linear state-space models, following the pioneering
work by Kalman and Bucy (1961). The classic book by Anderson and Moore
(1979) on optimal filtering, for instance, is fully devoted to linear state-space
models—see also Chapter 10 of the recent book by Kailath et al. (2000) for a
more exhaustive set of early references on the smoothing problem. Although
some authors such as (for instance) Ho and Lee (1964) considered more general
state-space models, it is fair to say that the Gaussian linear state-space model
was the dominant paradigm in the automatic control community1. In con-
trast, the work by Baum and his colleagues on hidden Markov models (Baum
et al., 1970) dealt with the case where the state space X of the hidden state
is finite. These two streams of research (on Gaussian linear models and finite
state space models) remained largely separated. Approximately at the same
time, in the field of probability theory, the seminal work by Stratonovich
(1960) stimulated a number of contributions that were to compose a body
of work generally referred to as filtering theory. The object of filtering the-
ory is to study inference about partially observable Markovian processes in
continuous time. A number of early references in this domain indeed con-
sider some specific form of discrete state space continuous-time equivalent of
the HMM (Shiryaev, 1966; Wonham, 1965)—see also Lipster and Shiryaev
(2001), Chapter 9. Working in continuous time, however, implies the use of
mathematical tools that are definitely more complex than those needed to
tackle the discrete-time model of Baum et al. (1970). As a matter of fact, fil-
tering theory and hidden Markov models evolved as two mostly independent
fields of research. A poorly acknowledged fact is that the pioneering paper
by Stratonovich (1960) (translated from an earlier Russian publication) de-
scribes, in its first section, an equivalent to the forward-backward smoothing
approach of Baum et al. (1970). It turns out, however, that the formalism
of Baum et al. (1970) generalizes well to models where the state space is not
discrete anymore, in contrast to that of Stratonovich (1960) (see Section 3.4
for the exact correspondence between both approaches).

1Interestingly, until the early 1980s, the works that did not focus on the lin-
ear state-space model were usually advertised by the use of the words “Bayes” or
“Bayesian” in their title—see, e.g., Ho and Lee (1964) or Askar and Derin (1981).
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3.1 Basic Notations and Definitions

In the rest of this chapter, the principles of smoothing as introduced by Baum
et al. (1970) are exposed in a general setting that is suitable for all the exam-
ples introduced in Section 1.3.

3.1.1 Likelihood

The joint probability of the unobservable states and observations up to index
n is such that for any function f ∈ Fb

(
{X× Y}n+1

)
,

Eν [f(X0, Y0, . . . , Xn, Yn)] =
∫
· · ·

∫
f(x0, y0, . . . , xn, yn)

× ν(dx0)g(x0, y0)
n∏

k=1

{Q(xk−1, dxk)g(xk, yk)}µn(dy0, . . . , dyn) , (3.1)

where µn denotes the product distribution µ⊗(n+1) on (Xn+1,X⊗(n+1)).
Marginalizing with respect to the unobservable variables X0, . . . , Xn, one ob-
tains the marginal distribution of the observations only,

Eν [f(Y0, . . . , Yn)] =
∫
· · ·

∫
f(y0, . . . , yn) Lν,n(y0, . . . , yn)µn(dy0, . . . , dyn) ,

(3.2)
where Lν,n is an important quantity which we define below for future reference.

Definition 3.1.1 (Likelihood). The likelihood of the observations is the
probability density function of Y0, Y1, . . . , Yn with respect to µn defined, for all
(y0, . . . , yn) ∈ Yn+1, by

Lν,n(y0, . . . , yn) =∫
· · ·

∫
ν(dx0)g(x0, y0)Q(x0, dx1)g(x1, y1) · · ·Q(xn−1, dxn)g(xn, yn) . (3.3)

In addition,
�ν,n

def= log Lν,n , (3.4)

is referred to as the log-likelihood function.

Remark 3.1.2 (Concise Notation for Sub-sequences). For the sake of
conciseness, we will use in the following the notation Yl:m to denote the col-
lection of consecutively indexed variables Yl, . . . , Ym wherever possible (pro-
ceeding the same way for the unobservable sequence {Xk}). In quoting (3.3)
for instance, we shall write Lν,n(y0:n) rather than Lν,n(y0, . . . , yn). By trans-
parent convention, Yk:k refers to the single variable Yk, although the second
notation (Yk) is to be preferred in this particular case. In systematic expres-
sions, however, it may be helpful to understand Yk:k as a valid replacement
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of Yk. For similar reasons, we shall, when needed, accept Yk+1:k as a valid
empty set. The latter convention should easily be recalled by programmers,
as instructions of the form “for i equals k+1 to k, do...”, which do nothing,
constitute a well-accepted ingredient of most programming idioms. �

3.1.2 Smoothing

We first define generically what is meant by the word smoothing before deriv-
ing the basic results that form the core of the techniques discussed in the rest
of the chapter.

Definition 3.1.3 (Smoothing, Filtering, Prediction). For positive in-
dices k, l, and n with l ≥ k, denote by φν,k:l|n the conditional distribution of
Xk:l given Y0:n, that is

(a) φν,k:l|n is a transition kernel from Y(n+1) to X(l−k+1):
• for any given set A ∈ X⊗(l−k+1), y0:n 
→ φν,k:l|n(y0:n, A) is a Y⊗(n+1)-

measurable function,
• for any given sub-sequence y0:n, A 
→ φν,k:l|n(y0:n, A) is a probability

distribution on (Xl−k+1,X⊗(l−k+1)).
(b) φν,k:l|n satisfies, for any function f ∈ Fb

(
Xl−k+1

)
,

Eν [f(Xk:l) |Y0:n] =
∫
· · ·

∫
f(xk:l) φν,k:l|n(Y0:n, dxk:l) ,

where the equality holds Pν-almost surely. Specific choices of k and l give rise
to several particular cases of interest:

Joint Smoothing: φν,0:n|n, for n ≥ 0;
(Marginal) Smoothing: φν,k|n for n ≥ k ≥ 0;
Prediction: φν,n+1|n for n ≥ 0; In describing algorithms, it will be convenient

to extend our notation to use φν,0|−1 as a synonym for the initial distri-
bution ν;

p-step Prediction: φν,n+p|n for n, p ≥ 0.
Filtering: φν,n|n for n ≥ 0; Because the use of filtering will be preeminent in

the following, we shall most often abbreviate φν,n|n to φν,n.

In more precise terms (see details in Section A.2 of Appendix A), φν,k:l|n
is a version of the conditional distribution of Xk:l given Y0:n. It is however not
obvious that such a quantity indeed exists in great generality. The proposition
below complements Definition 3.1.3 by a constructive approach to defining the
smoothing quantities from the elements of the hidden Markov model.

Proposition 3.1.4. Consider a hidden Markov model compatible with Defi-
nition 2.2.2, let n be a positive integer and y0:n ∈ Yn+1 a sub-sequence such
that Lν,n(y0:n) > 0. The joint smoothing distribution φν,0:n|n then satisfies
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φν,0:n|n(y0:n, f) = Lν,n(y0:n)−1
∫
· · ·

∫
f(x0:n)

× ν(dx0)g(x0, y0)
n∏

k=1

Q(xk−1, dxk)g(xk, yk) (3.5)

for all functions f ∈ Fb
(
Xn+1

)
. Likewise, for indices p ≥ 0,

φν,0:n+p|n(y0:n, f) =
∫
· · ·

∫
f(x0:n+p)

× φν,0:n|n(y0:n, dx0:n)
n+p∏

k=n+1

Q(xk−1, dxk) (3.6)

for all functions f ∈ Fb
(
Xn+p+1

)
.

Proof. Equation (3.5) defines φν,0:n|n in a way that obviously satisfies part (a)
of Definition 3.1.3. To prove the (b) part of the definition, recall the charac-
terization of the conditional expectation given in Appendix A.2 and consider
a function h ∈ Fb

(
Yn+1

)
. By (3.1),

Eν [h(Y0:n)f(X0:n)] =
∫
· · ·

∫
h(y0:n)f(x0:n)

× ν(dx0)g(x0, y0)

[
n∏

k=1

Q(xk−1, dxk)g(xk, yk)

]
µn(dy0:n) .

Using Definition 3.1.1 of the likelihood Lν,n and (3.5) for φν,0:n|n yields

Eν [h(Y0:n)f(X0:n)] =
∫
· · ·

∫
h(y0:n) φν,0:n|n(y0:n, f)Lν,n(y0:n)µn(dy0:n)

= Eν [h(Y0:n)φν,0:n|n(Y0:n, f)] . (3.7)

Hence Eν [f(X0:n) |Y0:n] equals φν,0:n|n(Y0:n, f), Pν-a.e., for any function f ∈
Fb

(
Xn+1

)
.

For (3.6), proceed similarly and consider two functions f ∈ Fb
(
Xn+p+1

)
and h ∈ Fb

(
Yn+1

)
. First apply (3.1) to obtain

Eν [h(Y0:n)f(X0:n+p)] =
∫
· · ·

∫
f(x0:n+p)

× ν(dx0)g(x0, y0)

[
n∏

k=1

Q(xk−1, dxk)g(xk, yk)

]
h(y0:n)

×
[

n+p∏
l=n+1

Q(xl−1, dxl)g(xl, yl)

]
µn+p(dy0:n+p) .
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When integrating with respect to the subsequence yn+1:n+p, the third line
of the previous equation reduces to

∏n+p
l=n+1 Q(xl−1, dxl)µn(dy0:n). Finally

use (3.3) and (3.5) to obtain

Eν [h(Y0:n)f(X0:n+p)] =
∫
· · ·

∫
h(y0:n)f(x0:n+p)

φν,0:n|n(y0:n, dx0:n)

[
n+p∏

k=n+1

Q(xk−1, dxk)

]
Lν,n(y0:n)µn(dy0:n) , (3.8)

which concludes the proof. ��

Remark 3.1.5. The requirement that Lν,n(y0:n) be non-null is obviously re-
quired to guarantee that (3.5) makes sense and that (3.7) and (3.8) are correct.
Note that if S is a set such that

∫
S Lν,n(y0:n)µn(dy0:n) = 0, Pν(Y0:n ∈ S) = 0

and the value of φν,0:n|n(y0:n, ·) for y0:n ∈ S is irrelevant (see discussion in
Appendix A.3).

In the sequel, it is implicit that results similar to those in Proposition 3.1.4
hold for values of y0:n ∈ Sν,n ⊂ Yn+1, where the set Sν,n is such that Pν(Y0:n ∈
Sν,n) = 1. In most models of practical interest, this nuance can be ignored as
it is indeed possible to set Sν,n = Yn+1. This is in particular the case when
g(x, y) is strictly positive for all values of (x, y) ∈ X × Y. There are however
more subtle cases where, for instance, the set Sν,n really depends upon the
initial distribution ν (see Example 4.3.28). �

Proposition 3.1.4 also implicitly defines all other particular cases of smooth-
ing kernels mentioned in Definition 3.1.3, as these are obtained by marginal-
ization. For instance, the marginal smoothing kernel φν,k|n for 0 ≤ k ≤ n is
such that for any y0:n ∈ Yn+1 and f ∈ Fb (X),

φν,k|n(y0:n, f) def=
∫
· · ·

∫
f(xk) φν,0:n|n(y0:n, dx0:k) , (3.9)

where φν,0:n|n is defined by (3.5).
Likewise, for any given y0:n ∈ Yn+1, the p-step predictive distribution

φν,n+p|n(y0:n, ·) may be obtained by marginalization of the joint distribution
φν,0:n+p|n(y0:n, ·) with respect to all variables xk except the last one (the one
with index k = n + p). A closer examination of (3.6) together with the use
of the Chapman-Kolmogorov equations introduced in (2.1) (cf. Chapter 14)
directly shows that φν,n+p|n(y0:n, ·) = φν,n(y0:n, ·)Qp, where φν,n refers to the
filter (conditional distribution of Xn given Y0:n).

3.1.3 The Forward-Backward Decomposition

As stated in the introduction, the rest of the chapter is devoted to techniques
upon which the marginal smoothing kernels φν,k|n may be efficiently computed
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for all values of k in {0, . . . , n} for a given, pre-specified, value of n. This is
the task that we referred to as fixed interval smoothing. In doing so, our main
tool will be a simple representation of φν,k|n, which we now introduce.

Replacing φν,0:n|n in (3.9) by its expression given in (3.5) shows that it is
always possible to rewrite φν,k|n(y0:n, f), for functions f ∈ Fb (X), as

φν,k|n(y0:n, f) = Lν,n(y0:n)−1
∫

f(x) αν,k(y0:k, dx)βk|n(yk+1:n, x) , (3.10)

where αν,k and βk|n are defined below in (3.11) and (3.12), respectively. In
simple terms, αν,k correspond to the factors in the multiple integral that are
to be integrated with respect to the state variables xl with indices l ≤ k while
βk|n gathers the remaining factors (which are to be integrated with respect
to xl for l > k). This simple splitting of the multiple integration in (3.9)
constitutes the forward-backward decomposition.

Definition 3.1.6 (Forward-Backward “Variables”). For k ∈ {0, . . . , n},
define the following quantities.
Forward Kernel αν,k is the non-negative finite kernel from (Yk+1,Y⊗(k+1))
to (X,X ) such that

αν,k(y0:k, f) =
∫
· · ·

∫
f(xk) ν(dx0)g(x0, y0)

k∏
l=1

Q(xl−1, dxl)g(xl, yl) ,

(3.11)
with the convention that the rightmost product term is empty for k = 0.
Backward Function βk|n is the non-negative measurable function on Yn−k×
X defined by

βk|n(yk+1:n, x) =∫
· · ·

∫
Q(x, dxk+1)g(xk+1, yk+1)

n∏
l=k+2

Q(xl−1, dxl)g(xl, yl) , (3.12)

for k ≤ n− 1 (with the same convention that the rightmost product is empty
for k = n− 1); βn|n(·) is set to the constant function equal to 1 on X.

The term “forward and backward variables” as well as the use of the sym-
bols α and β is part of the HMM credo and dates back to the seminal work
of Baum and his colleagues (Baum et al., 1970, p. 168). It is clear however
that for a general model as given in Definition 2.2.2, these quantities as de-
fined in (3.15) and (3.12) are very different in nature, and indeed sufficiently
so to prevent the use of the loosely defined term “variable”. In the original
framework studied by Baum and his coauthors where X is a finite set, both
the forward measures αν,k(y0:k, ·) and the backward functions βk|n(yk+1:n, ·)
can be represented by vectors with non-negative entries. Indeed, in this case
αν,k(y0:k, x) has the interpretation Pν(Y0 = y0, . . . , Yk = yk, Xk = x) while
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βk|n(yk+1:n, x) has the interpretation P(Yk+1 = yk+1, . . . , Yn = yn |Xk = x).
This way of thinking of αν,k and βk|n may be extended to general state spaces:
αν,k(y0:k, dx) is then the joint density (with respect to µk+1) of Y0, . . . , Yk and
distribution of Xk, while βk|n(yk+1:n, x) is the conditional joint density (with
respect to µn−k) of Yk+1, . . . , Yn given Xk = x. Obviously, these entities may
then not be represented as vectors of finite length, as when X is finite; this
situation is the exception rather than the rule.

Let us simply remark at this point that while the forward kernel at index
k is defined irrespectively of the length n of the observation sequence (as long
as n ≥ k), the same is not true for the backward functions. The sequence
of backward functions clearly depends on the index where the observation
sequence stops. In general, for instance, βk|n−1 differs from βk|n even if we
assume that the same sub-observation sequence y0:n−1 is considered in both
cases. This is the reason for adding the terminal index n to the notation
used for the backward functions. This notation also constitute a departure
from HMM traditions in which the backward functions are simply indexed
by k. For αν,k, the situation is closer to standard practice and we simply
add the subscript ν to recall that the forward kernel αν,k, in contrast with
the backward measure, does depend of the distribution ν postulated for the
initial state X0.

3.1.4 Implicit Conditioning (Please Read This Section!)

We now pause to introduce a convention that will greatly simplify the exposi-
tion of the material contained in the first part of the book (from this chapter
on, starting with the next section), both from terminological and notational
points of view. This convention would however generate an acute confusion
in the mind of a hypothetical reader who, having read Chapter 3 up to now,
would decide to skip our friendly encouragement to read what follows care-
fully.

In the rest of Part I (with the notable exception of Section 4.3), we focus
on the evaluation of quantities such as φν,0:n|n or φν,k|n for a given value of
the observation sequence y0:n. In this context, we expunge from our notations
the fact that all quantities depend on y0:n. In particular, we rewrite (3.5) for
any f ∈ Fb

(
Xn+1

)
more concisely as

φν,0:n|n(f) = L−1
ν,n

∫
· · ·

∫
f(x0:n) ν(dx0)g0(x0)

n∏
i=1

Q(xi−1, dxi)gi(xi) ,

(3.13)
where gk are the data-dependent functions on X defined by gk(x) def= g(x, yk)
for the particular sequence y0:n under consideration. The sequence of func-
tions {gk} is about the only new notation that is needed as we simply re-use
the previously defined quantities omitting their explicit dependence on the ob-
servations. For instance, in addition to writing Lν,n instead of Lν,n(y0:n), we
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will also use φn(·) rather than φn(y0:n, ·), βk|n(·) rather than βk|n(yk+1:n, ·),
etc. This notational simplification implies a corresponding terminological ad-
justment. For instance, αν,k will be referred to as the forward measure at
index k and considered as a positive finite measure on (X,X ). In all cases, the
conversion should be easy to do mentally, as in the case of αν,k, for instance,
what is meant is really “the measure αν,k(y0:k, ·), for a particular value of
y0:k ∈ Yk+1”.

At first sight, omitting the observations may seem a weird thing to do in
a statistically oriented book. However, for posterior state inference in HMMs,
one indeed works conditionally on a given fixed sequence of observations.
Omitting the observations from our notation will thus allow more concise ex-
pressions in most parts of the book. There are of course some properties of the
hidden Markov model for which dependence with respect to the distribution
of the observations does matter (hopefully!) This is in particular the case of
Section 4.3 on forgetting and Chapter 12, which deals with statistical proper-
ties of the estimates for which we will make the dependence with respect to
the observations explicit.

3.2 Forward-Backward

The forward-backward decomposition introduced in Section 3.1.3 is just a
rewriting of the multiple integral in (3.9) such that for f ∈ Fb (X),

φν,k|n(f) = L−1
ν,n

∫
f(x) αν,k(dx)βk|n(x) , (3.14)

where

αν,k(f) =
∫
· · ·

∫
f(xk) ν(dx0)g0(x0)

k∏
l=1

Q(xl−1, dxl)gl(xl) (3.15)

and

βk|n(x) = ∫
· · ·

∫
Q(x, dxk+1)gk+1(xk+1)

n∏
l=k+2

Q(xl−1, dxl)gl(xl) . (3.16)

The last expression is, by convention, equal to 1 for the final index k = n.
Note that we are now using the implicit conditioning convention discussed in
the previous section.

3.2.1 The Forward-Backward Recursions

The point of using the forward-backward decomposition for the smoothing
problem is that both the forward measures αν,k and the backward functions
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βk|n can be expressed recursively rather than by their integral representations
(3.15) and (3.1.4). This is the essence of the forward-backward algorithm pro-
posed by Baum et al. (1970, p. 168), which we now describe. Section 3.4 at the
end of this chapter gives further comments on historical and terminological
aspects of the forward-backward algorithm.

Proposition 3.2.1 (Forward-Backward Recursions). The forward mea-
sures defined by (3.15) may be obtained, for all f ∈ Fb (X), recursively for
k = 1, . . . , n according to

αν,k(f) =
∫

f(x′)
∫

αν,k−1(dx)Q(x, dx′)gk(x′) (3.17)

with initial condition

αν,0(f) =
∫

f(x)g0(x) ν(dx) . (3.18)

Similarly, the backward functions defined by (3.16) may be obtained, for
all x ∈ X, by the recursion

βk|n(x) =
∫

Q(x, dx′)gk+1(x′)βk+1|n(x′) (3.19)

operating on decreasing indices k = n− 1 down to 0; the initial condition is

βn|n(x) = 1 . (3.20)

Proof. The proof of this result is straightforward and similar for both recur-
sions. For αν,k for instance, simply rewrite (3.15) as

αν,k(f) =
∫

xk∈X
f(xk)

∫
xk−1∈X

[∫
· · ·

∫
x0∈X,...,xk−2∈X

ν(dx0)g0(x0)
k−1∏
l=1

Q(xl−1, dxl)gl(xl)

]
Q(xk−1, dxk)gk(xk) ,

where the term in brackets is recognized as αν,k−1(dxk−1). ��

Remark 3.2.2 (Concise Markov Chain Notations). In the following, we
shall often quote the above results using the concise Markov chain notations
introduced in Chapter 2. For instance, instead of (3.17) and (3.19) one could
write more simply αν,k(f) = αν,k−1Q(fgk) and βk|n = Q(gk+1βk+1|n). Like-
wise, the decomposition (3.14) may be rewritten as

φν,k|n(f) = L−1
ν,nαν,k

(
fβk|n

)
.

�
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The main shortcoming of the forward-backward representation is that the
quantities αν,k and βk|n do not have an immediate probabilistic interpreta-
tion. Recall, in particular, that the first one is a finite (positive) measure
but certainly not a probability measure, as αν,k(1) �= 1 (in general). There
is however an important solidarity result between the forward and backward
quantities αν,k and βk|n, which is summarized by the following proposition.

Proposition 3.2.3. For all indices k ∈ {0, . . . , n},

αν,k(βk|n) = Lν,n

and
αν,k(1) = Lν,k ,

where Lν,k refers to the likelihood of the observations up to index k (included)
only, under Pν .

Proof. Because (3.14) must hold in particular for f = 1 and the marginal
smoothing distribution φν,k|n is a probability measure,

φν,k|n(1) def= 1 = L−1
ν,nαν,k

(
βk|n

)
.

For the final index k = n, βn|n is the constant function equal to 1 and hence
αν,n(1) = Lν,n. This observation is however not specific to the final index n, as
αν,k only depends on the observations up to index k and thus any particular
index may be selected as a potential final index (in contrast to what happens
for the backward functions). ��

3.2.2 Filtering and Normalized Recursion

The forward and backward quantities αν,k and βk|n, as defined in previous
sections, are unnormalized in the sense that their scales are largely unknown.
On the other hand, we know that αν,k(βk|n) is equal to Lν,n, the likelihood of
the observations up to index n under Pν .

The long-term behavior of the likelihood Lν,n, or rather its logarithm, is
a result known as the asymptotic equipartition property, or AEP (Cover and
Thomas, 1991) in the information theoretic literature and as the Shannon-
McMillan-Breiman theorem in the statistical literature. For HHMs, Proposi-
tion 12.3.3 (Chapter 12) shows that under suitable mixing conditions on the
underlying unobservable chain {Xk}k≥0, the AEP holds in that n−1 log Lν,n

converges Pν-a.s. to a limit as n tends to infinity. The likelihood Lν,n will
thus either grow to infinity or shrink to zero, depending on the sign of the
limit, exponentially fast in n. This has the practical implication that in all
cases where the recursions of Proposition 3.2.1 are effectively computable (like
in the case of finite state space to be discussed in Chapter 5), the dynamics
of the numerical values needed to represent αν,k and βk|n is so large that it
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rapidly exceeds the available machine representation possibilities (even with
high accuracy floating-point representations). The famous tutorial by Rabiner
(1989) coined the term scaling to describe a practical solution to this prob-
lem. Interestingly, scaling also partly answers the question of the probabilistic
interpretation of the forward and backward quantities.

Scaling as described by Rabiner (1989) amounts to normalizing αν,k and
βk|n by positive real numbers to keep the numeric values needed to represent
αν,k and βk|n within reasonable bounds. There are clearly a variety of options
available, especially if one replaces (3.14) by the equivalent auto-normalized
form

φν,k|n(f) = [αν,k(βk|n)]−1
∫

αν,k(fβk|n) , (3.21)

assuming that αν,k(βk|n) is indeed finite and non-zero.
In our view, the most natural scaling scheme (developed below) consists

in replacing the measure αν,k and the function βk|n by scaled versions ᾱν,k

and β̄k|n of these quantities, satisfying both

(i) ᾱν,k(1) = 1, and
(ii) ᾱν,k(β̄k|n) = 1.

Item (i) implies that the normalized forward measures ᾱν,k are probabil-
ity measures that have a probabilistic interpretation given below. Item (ii)
implies that the normalized backward functions are such that φν,k|n(f) =∫
f(x)β̄k|n(x) ᾱν,k(dx) for all f ∈ Fb (X), without the need for a further

renormalization. We note that this scaling scheme differs slightly from the
one described by Rabiner (1989). The reason for this difference, which only
affects the scaling of the backward functions, is non-essential and will be dis-
cussed in Section 3.4.

To derive the probabilistic interpretation of ᾱν,k, observe that (3.14) and
Proposition 3.2.3, instantiated for the final index k = n, imply that the fil-
tering distribution φν,n at index n (recall that φν,n is used as a simplified
notation for φν,n|n) may be written [αν,n(1)]−1αν,n. This finding is of course
not specific to the choice of the index n as already discussed when proving
the second statement of Proposition 3.2.3. Thus, the normalized version ᾱν,k

of the forward measure αν,k coincides with the filtering distribution φν,k in-
troduced in Definition 3.1.3. This observation together with Proposition 3.2.3
implies that there is a unique choice of scaling scheme that satisfies the two
requirements of the previous paragraph, as∫

f(x) φν,k|n(dx) = L−1
ν,n

∫
f(x) αν,k(dx)βk|n(x)

=
∫

f(x) L−1
ν,kαν,k(dx)︸ ︷︷ ︸
ᾱν,k(dx)

L−1
ν,nLν,kβk|n(x)︸ ︷︷ ︸

β̄k|n(x)
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must hold for any f ∈ Fb (X). The following definition summarizes these
conclusions, using the notation φν,k rather than ᾱν,k, as these two definitions
refer to the same object—the filtering distribution at index k.

Definition 3.2.4 (Normalized Forward-Backward Variables). For k ∈
{0, . . . , n}, the normalized forward measure ᾱν,k coincides with the filtering
distribution φν,k and satisfies

φν,k = [αν,k(1)]−1αν,k = L−1
ν,kαν,k .

The normalized backward functions β̄k|n are defined by

β̄k|n =
αν,k(1)

αν,k(βk|n)
βk|n =

Lν,k

Lν,n
βk|n .

The above definition would be pointless if computing αν,k and βk|n was in-
deed necessary to obtain the normalized variables φν,k and β̄k|n. The following
result shows that this is not the case.

Proposition 3.2.5 (Normalized Forward-Backward Recursions).

Forward Filtering Recursion The filtering measures may be obtained, for
all f ∈ Fb (X), recursively for k = 1, . . . , n according to

cν,k =
∫ ∫

φν,k−1(dx)Q(x, dx′)gk(x′) ,

φν,k(f) = c−1
ν,k

∫
f(x)

∫
φν,k−1(dx)Q(x, dx′)gk(x′) , (3.22)

with initial condition

cν,0 =
∫

g0(x)ν(dx) ,

φν,0(f) = c−1
ν,0

∫
f(x)g0(x) ν(dx) .

Normalized Backward Recursion The normalized backward functions
may be obtained, for all x ∈ X, by the recursion

β̄k|n(x) = c−1
ν,k+1

∫
Q(x, dx′)gk+1(x′)β̄k+1|n(x′) (3.23)

operating on decreasing indices k = n − 1 down to 0; the initial condition is
β̄n|n(x) = 1.

Once the two recursions above have been carried out, the smoothing distri-
bution at any given index k ∈ {0, . . . , n} is available via

φν,k|n(f) =
∫

f(x) β̄k|n(x)φν,k(dx) (3.24)

for all f ∈ Fb (X).
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Proof. Proceeding by forward induction for φν,k and backward induction for
βk|n, it is easily checked from (3.22) and (3.23) that

φν,k =

(
k∏

l=0

cν,l

)−1

αν,k and β̄k|n =

(
n∏

l=k+1

cν,l

)−1

βk|n . (3.25)

Because φν,k is normalized,

φν,k(1) def= 1 =

(
k∏

l=0

cν,l

)−1

αν,k(1) .

Proposition 3.2.3 then implies that for any integer k,

Lν,k =
k∏

l=0

cν,l . (3.26)

In other words, cν,0 = Lν,0 and for subsequent indices k ≥ 1, cν,k =
Lν,k/Lν,k−1. Hence (3.25) coincides with the normalized forward and back-
ward variables as specified by Definition 3.2.4. ��

We now pause to state a series of remarkable consequences of Proposi-
tion 3.2.5.

Remark 3.2.6. The forward recursion in (3.22) may also be rewritten to
highlight a two-step procedure involving both the predictive and filtering mea-
sures. Recall our convention that φν,0|−1 refers to the predictive distribution
of X0 when no observation is available and is thus an alias for ν, the distribu-
tion of X0. For k ∈ {0, 1, . . . , n} and f ∈ Fb (X), (3.22) may be decomposed
as

cν,k = φν,k|k−1(gk) ,
φν,k(f) = φν,k|k−1(fgk) ,
φν,k+1|k = φν,kQ . (3.27)

The equivalence of (3.27) with (3.22) is straightforward and is a direct con-
sequence of the remark that φk+1|k = φν,kQ, which follows from Proposi-
tion 3.1.4 in Section 3.1.2. In addition, each of the two steps in (3.27) has a
very transparent interpretation.

Predictor to Filter : The first two equations in (3.27) may be summarized as

φν,k(f) ∝
∫

f(x) g(x, Yk)φν,k|k−1(dx) , (3.28)

where the symbol ∝ means “up to a normalization constant” (such that
φν,k(1) = 1) and the full notation g(x, Yk) is used in place of gk(x) to
highlight the dependence on the current observation Yk. Equation (3.28)
is recognized as Bayes’ rule applied to a very simple equivalent Bayesian
pseudo-model in which
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• Xk is distributed a priori according to the predictive distribution
φν,k|k−1,

• g is the conditional probability density function of Yk given Xk.
The filter φν,k is then interpreted as the posterior distribution of Xk given
Yk in this simple equivalent Bayesian pseudo-model.

Filter to Predictor : The last equation in (3.27) simply means that the updated
predicting distribution φν,k+1|k is obtained by applying the transition ker-
nel Q to the current filtering distribution φν,k. We are thus left with the
very basic problem of determining the one-step distribution of a Markov
chain given its initial distribution.

�

Remark 3.2.7. In many situations, using (3.27) to determine φν,k is indeed
the goal rather than simply a first step in computing smoothed distributions.
In particular, for sequentially observed data, one may need to take actions
based on the observations gathered so far. In such cases, filtering (or predic-
tion) is the method of choice for inference about the unobserved states, a topic
that will be developed further in Chapter 7. �

Remark 3.2.8. Another remarkable fact about the filtering recursion is
that (3.26) together with (3.27) provides a method for evaluating the like-
lihood Lν,k of the observations up to index k recursively in the index k. In
addition, as cν,k = Lν,k/Lν,k−1 from (3.26), cν,k may be interpreted as the
conditional likelihood of Yk given the previous observations Y0:k−1. However,
as discussed at the beginning of Section 3.2.2, using (3.26) directly is gener-
ally impracticable for numerical reasons. In order to avoid numerical under-
or overflow, one can equivalently compute the log-likelihood �ν,k. Combin-
ing (3.26) and (3.27) gives the important formula

�ν,k
def= log Lν,k =

k∑
l=0

log φν,l|l−1(gl) , (3.29)

where φν,l|l−1 is the one-step predictive distribution computed according
to (3.27) (recalling that by convention, φν,0|−1 is used as an alternative nota-
tion for ν). �

Remark 3.2.9. The normalized backward function β̄k|n does not have a sim-
ple probabilistic interpretation when isolated from the corresponding filtering
measure. However, (3.24) shows that the marginal smoothing distribution,
φν,k|n, is dominated by the corresponding filtering distribution φν,k and that
β̄k|n is by definition the Radon-Nikodym derivative of φν,k|n with respect to
φν,k,

β̄k|n =
dφν,k|n
dφν,k

As a consequence,
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inf
{
M ∈ R : φν,k({β̄k|n ≥M}) = 0

}
≥ 1

and
sup

{
M ∈ R : φν,k({β̄k|n ≤M}) = 0

}
≤ 1 ,

with the conventions inf ∅ = ∞ and sup ∅ = −∞. As a consequence, all values
of β̄k|n cannot get simultaneously large or close to zero as was the case for
βk|n, although one cannot exclude the possibility that β̄k|n still has important
dynamics without some further assumptions on the model.

The normalizing factor
∏n

l=k+1 cν,l = Lν,n/Lν,k by which β̄k|n differs from
the corresponding unnormalized backward function βk|n may be interpreted
as the conditional likelihood of the future observations Yk+1:n given the ob-
servations up to index k, Y0:k. �

3.3 Markovian Decompositions

The forward-backward recursions (Proposition 3.2.1) and their normalized
versions (Proposition 3.2.5) were probably already well-known to readers fa-
miliar with the hidden Markov model literature. A less widely observed fact
is that the smoothing distributions may also be expressed using Markov tran-
sitions. In contrast to the forward-backward algorithm, this second approach
will already be familiar to readers working with dynamic (or state-space) mod-
els (Kailath et al., 2000, Chapter 10). Indeed, the method to be described in
Section 3.3.2, when applied to the specific case of Gaussian linear state-space
models, is known as Rauch-Tung-Striebel (sometimes, abbreviated to RTS)
smoothing after Rauch et al. (1965). The important message here is that
{Xk}k≥0 (as well as the index-reversed version of {Xk}k≥0, although greater
care is needed to handle this second case) is a non-homogeneous Markov
chain when conditioned on some observed values {Yk}0≤k≤n. The use of this
approach for HMMs with finite state spaces as an alternative to the forward-
backward recursions is due to Askar and Derin (1981)—see also (Ephraim and
Merhav, 2002, Section V) for further references.

3.3.1 Forward Decomposition

Let n be a given positive index and consider the finite-dimensional distribu-
tions of {Xk}k≥0 given Y0:n. Our goal will be to show that the distribution
of Xk given X0:k−1 and Y0:n reduces to that of Xk given Xk−1 only and Y0:n,
this for any positive index k. The following definition will be instrumental in
decomposing the joint posterior distributions φν,0:k|n.

Definition 3.3.1 (Forward Smoothing Kernels). Given n ≥ 0, define for
indices k ∈ {0, . . . , n− 1} the transition kernels
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Fk|n(x,A) def=

{
[βk|n(x)]−1

∫
A
Q(x, dx′)gk+1(x′)βk+1|n(x′) if βk|n(x) �= 0

0 otherwise ,

(3.30)
for any point x ∈ X and set A ∈ X . For indices k ≥ n, simply set

Fk|n
def= Q , (3.31)

where Q is the transition kernel of the unobservable chain {Xk}k≥0.

Note that for indices k ≤ n − 1, Fk|n depends on the future observations
Yk+1:n through the backward variables βk|n and βk+1|n only. The subscript
n in the Fk|n notation is meant to underline the fact that, like the back-
ward functions βk|n, the forward smoothing kernels Fk|n depend on the fi-
nal index n where the observation sequence ends. The backward recursion of
Proposition 3.2.1 implies that [βk|n(x)]−1 is the correct normalizing constant.
Thus, for any x ∈ X, A 
→ Fk|n(x,A) is a probability measure on X . Because
the functions x 
→ βk|n(x) are measurable on (X,X ), for any set A ∈ X ,
x 
→ Fk|n(x,A) is X/B(R)-measurable. Therefore, Fk|n is indeed a Markov
transition kernel on (X,X ). The next proposition provides a probabilistic in-
terpretation of this definition in terms of the posterior distribution of the state
at time k + 1, given the observations up to time n and the state sequence up
to time k.

Proposition 3.3.2. Given n, for any index k ≥ 0 and function f ∈ Fb (X),

Eν [f(Xk+1) |X0:k, Y0:n] = Fk|n(Xk, f) ,

where Fk|n is the forward smoothing kernel defined by (3.30) for indices k ≤
n− 1 and (3.31) for indices k ≥ n.

Proof. First consider an index 0 ≤ k ≤ n and let f and h denote functions in
Fb (X) and Fb

(
Xk+1

)
, respectively. Then

Eν [f(Xk+1)h(X0:k) |Y0:n] =
∫
· · ·

∫
f(xk+1)h(x0:k) φν,0:k+1|n(dx0:k+1) ,

which, using (3.13) and the definition (3.16) of the backward function, expands
to

L−1
ν,n

∫
· · ·

∫
h(x0:k) ν(dx0)g0(x0)

k∏
i=1

Q(xi−1, dxi)gi(xi)

×
∫

Q(xk, dxk+1)f(xk+1)gk+1(xk+1)

×
∫
· · ·

∫ n∏
i=k+2

Q(xi−1, dxi)gi(xi)︸ ︷︷ ︸
βk+1|n(xk+1)

. (3.32)
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From Definition 3.3.1,
∫
Q(xk, dxk+1)f(xk+1)gk+1(xk+1)βk+1|n(xk+1) is equal

to Fk|n(xk, f)βk|n(xk). Thus, (3.32) may be rewritten as

Eν [f(Xk+1)h(X0:k) |Y0:n] = L−1
ν,n

∫
· · ·

∫
Fk|n(xk, f)h(x0:k)

× ν(dx0)g0(x0)

[
k∏

i=1

Q(xi−1, dxi)gi(xi)

]
βk|n(xk) . (3.33)

Using the definition (3.16) of βk|n again, this latter integral is easily seen to
be similar to (3.32) except for the fact that f(xk+1) has been replaced by
Fk|n(xk, f). Hence

Eν [f(Xk+1)h(X0:k) |Y0:n] = Eν [Fk|n(Xk, f)h(X0:k) |Y0:n] ,

for all functions h ∈ Fb
(
Xk+1

)
as requested.

For k ≥ n, the situation is simpler because (3.6) implies that φν,0:k+1|n =
φν,0:k|nQ. Hence,

Eν [f(Xk+1)h(X0:k) |Y0:n]

=
∫
· · ·

∫
h(x0:k) φν,0:k|n(dx0:k)

∫
Q(xk, dxk+1)f(xk+1) ,

and thus

Eν [f(Xk+1)h(X0:k) |Y0:n] =
∫
· · ·

∫
h(x0:k)φν,0:k|n(dx0:k)Q(xk, f) ,

= Eν [Q(Xk, f)h(X0:k) |Y0:n] .

��

Remark 3.3.3. A key ingredient of the above proof is (3.32), which gives a
representation of the joint smoothing distribution of the state variables X0:k
given the observations up to index n, with n ≥ k. This representation, which
states that

φν,0:k|n(f)

= L−1
ν,n

∫
· · ·

∫
f(x0:k) ν(dx0)g0(x0)

[
k∏

i=1

Q(xi−1, dxi)gi(xi)

]
βk|n(xk)

(3.34)

for all f ∈ Fb
(
Xk+1

)
, is a generalization of the marginal forward-backward

decomposition as stated in (3.14). �

Proposition 3.3.2 implies that, conditionally on the observations Y0:n, the
state sequence {Xk}k≥0 is a non-homogeneous Markov chain associated with
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the family of Markov transition kernels {Fk|n}k≥0 and initial distribution
φν,0|n. The fact that the Markov property of the state sequence is preserved
when conditioning sounds surprising because the (marginal) smoothing distri-
bution of the state Xk depends on both past and future observations. There
is however nothing paradoxical here, as the Markov transition kernels Fk|n
indeed depend (and depend only) on the future observations Yk+1:n.

As a consequence of Proposition 3.3.2, the joint smoothing distributions
may be rewritten in a form that involves the forward smoothing kernels using
the Chapman-Kolmogorov equations (2.1).

Proposition 3.3.4. For any integers n and m, function f ∈ Fb
(
Xm+1

)
and

initial probability ν on (X,X ),

Eν [f(X0:m)) |Y0:n] =∫
· · ·

∫
f(x0:m) φν,0|n(dx0)

m∏
i=1

Fi−1|n(xi−1, dxi) , (3.35)

where {Fk|n}k≥0 are defined by (3.30) and (3.31) and φν,0|n is the marginal
smoothing distribution defined, for any A ∈ X , by

φν,0|n(A) = [ν(g0β0|n)]−1
∫

A

ν(dx)g0(x)β0|n(x) . (3.36)

If one is only interested in computing the fixed point marginal smoothing
distributions, (3.35) may also be used as the second phase of a smoothing
approach which we recapitulate below.

Corollary 3.3.5 (Alternative Smoothing Algorithm).
Backward Recursion Compute the backward variables βn|n down to β0|n by
backward recursion according to (3.19) in Proposition 3.2.1.
Forward Smoothing φν,0|n is given by (3.36) and for k ≥ 0,

φν,k+1|n = φν,k|nFk|n ,

where Fk|n are the forward kernels defined by (3.30).

For numerical implementation, Corollary 3.3.5 is definitely less attractive
than the normalized forward-backward approach of Proposition 3.2.5 because
the backward pass cannot be carried out in normalized form without first
determining the forward measures αν,k. We will discuss in Chapter 5 some
specific models where these recursions can be implemented with some form of
normalization, but generally speaking the backward decomposition to be de-
scribed next is preferable for practical computation of the marginal smoothing
distributions.

On the other hand, Proposition 3.3.4 provides a general decomposition of
the joint smoothing distribution that will be instrumental in establishing some
form of ergodicity of the Markov chain that corresponds to the unobservable
states {Xk}k≥0, conditional on some observations Y0:n (see Section 4.3).



70 3 Filtering and Smoothing Recursions

3.3.2 Backward Decomposition

In the previous section it was shown that, conditionally on the observations
up to index n, Y0:n, the state sequence {Xk}k≥0 is a Markov chain, with
transition kernels Fk|n. We now turn to the so-called time-reversal issue: is it
true in general that the unobserved chain with the indices in reverse order,
forms a non-homogeneous Markov chain, conditionally on some observations
Y0:n?

We already discussed time-reversal for Markov chains in Section 2.1 where
it has been argued that the main technical difficulty consists in guaranteeing
that the reverse kernel does exist. For this, we require somewhat stronger
assumptions on the nature of X by assuming for the rest of this section that X
is a Polish space and that X is the associated Borel σ-field. From the discussion
in Section 2.1 (see Definition 2.1.2 and comment below), we then know that
the reverse kernel does exist although we may not be able to provide a simple
closed-form expression for it. The reverse kernel does have a simple expression,
however, as soon as one assumes that the kernel to be reversed and the initial
distribution admit densities with respect to some measure on X.

Let us now return to the smoothing problem. For positive indices k such
that k ≤ n−1, the posterior distribution of (Xk, Xk+1) given the observations
up to time k satisfies

Eν [f(Xk, Xk+1) |Y0:k] =
∫∫

f(xk, xk+1) φν,k(dxk)Q(xk, dxk+1) (3.37)

for all f ∈ Fb (X× X). From the previous discussion, there exists a Markov
transition kernel Bν,k which satisfies Definition 2.1.2, that is

Bν,k
def= {Bν,k(x,A), x ∈ X, A ∈ X}

such that for any function f ∈ Fb (X× X),

Eν [f(Xk, Xk+1) |Y0:k] =
∫∫

f(xk, xk+1)φν,k+1|k(dxk+1) Bν,k(xk+1, dxk) ,

(3.38)
where φν,k+1|k = φν,kQ is the one-step predictive distribution.

Proposition 3.3.6. Given a strictly positive index n, initial distribution ν,
and index k ∈ {0, . . . , n− 1},

Eν [f(Xk) |Xk+1:n, Y0:n] = Bν,k(Xk+1, f)

for any f ∈ Fb (X). Here, Bν,k is the backward smoothing kernel defined
in (3.38).

Before giving the proof of this result, we make a few remarks to provide
some intuitive understanding of the backward smoothing kernels.
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Remark 3.3.7. Contrary to the forward kernel, the backward transition ker-
nel is only defined implicitly through the equality of the two representa-
tions (3.37) and (3.38). This limitation is fundamentally due to the fact that
the backward kernel implies a non-trivial time-reversal operation.

Proposition 3.3.6 however allows a simple interpretation of the back-
ward kernel: Because Eν [f(Xk) |Xk+1:n, Y0:n] is equal to Bν,k(Xk+1, f) and
thus depends neither on Xl for l > k + 1 nor on Yl for l ≥ k + 1, the
tower property of conditional expectation (Proposition A.2.3) implies that
not only is Bν,k(Xk+1, f) equal to Eν [f(Xk) |Xk+1, Y0:n] but also coincides
with Eν [f(Xk) |Xk+1, Y0:k], for any f ∈ Fb (X). In addition, the distribution
of Xk+1 given Xk and Y0:k reduces to Q(Xk, ·) due to the particular form
of the transition kernel associated with a hidden Markov model (see Defini-
tion 2.2.1). Recall also that the distribution of Xk given Y0:k is denoted by
φν,k. Thus, Bν,k can be interpreted as a Bayesian posterior in the equivalent
pseudo-model where

• Xk is distributed a priori according to the filtering distribution φν,k,
• The conditional distribution of Xk+1 given Xk is Q(Xk, ·).
Bν,k(Xk+1, ·) is then interpreted as the posterior distribution of Xk given
Xk+1 in this equivalent pseudo-model.

In particular, for HMMs that are “fully dominated” in the sense of Def-
inition 2.2.3, Q has a transition probability density function q with respect
to a measure λ on X. This is then also the case for φν,k, which is a marginal
of (3.13). In such cases, we shall use the slightly abusive but unambiguous
notation φν,k(dx) = φν,k(x)λ(dx) (that is, φν,k denotes the probability den-
sity function with respect to λ rather than the probability distribution). The
backward kernel Bν,k(xk+1, ·) then has a probability density function with
respect to λ, which is given by Bayes’ formula,

Bν,k(xk+1, x) =
φν,k(x)q(x, xk+1)∫

X φν,k(x)q(x, xk+1)λ(dx)
. (3.39)

Thus, in many cases of interest, the backward transition kernel Bν,k can
be written straightforwardly as a function of φν,k and Q. Several examples of
such cases will be dealt with in some detail in Chapter 5. In these situations,
Proposition 3.3.9 is the method of choice for smoothing, as it only involves
normalized quantities, whereas Corollary 3.3.5 is not normalized and thus can
generally not be implemented as it stands. �

Proof (of Proposition 3.3.6). Let k ∈ {0, . . . , n−1} and h ∈ Fb
(
Xn−k

)
. Then

Eν [f(Xk)h(Xk+1:n) |Y0:n] =
∫
· · ·

∫
f(xk)h(xk+1:n) φν,k:n|n(dxk:n) . (3.40)

Using the definition (3.13) of the joint smoothing distribution φν,k:n|n yields
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Eν [f(Xk)h(Xk+1:n) |Y0:n]

= L−1
ν,n

∫
· · ·

∫
ν(dx0)g0(x0)

k∏
i=1

Q(xi−1, dxi)gi(xi)f(xk)

×
[

n∏
i=k+1

Q(xi−1, dxi)gi(xi)

]
h(xk+1:n) ,

=
Lν,k

Lν,n

∫∫
φν,k|n(dxk)Q(xk, dxk+1)f(xk)gk+1(xk+1)

×
∫
· · ·

∫ [
n∏

i=k+2

Q(xi−1, dxi)gi(xi)

]
h(xk+1:n) , (3.41)

which implies, by the definition (3.38) of the backward kernel, that

Eν [f(Xk)h(Xk+1:n) |Y0:n]

=
Lν,k

Lν,n

∫∫
Bν,k(xk+1, dxk)f(xk)φν,k+1|k(dxk+1)gk+1(xk+1)

×
∫
· · ·

∫ [
n∏

i=k+2

Q(xi−1, dxi)gi(xi)

]
h(xk+1:n) . (3.42)

Taking f ≡ 1 shows that for any function h′ ∈ Fb
(
Xn−k

)
,

Eν [h′(Xk+1:n) |Y0:n] =
Lν,k

Lν,n

∫
· · ·

∫
h′(xk+1:n)

× φν,k+1|k(dxk+1)gk+1(xk+1)
n∏

i=k+2

Q(xi−1, dxi)gi(xi) .

Identifying h′ with h(xk+1:n)
∫
f(x) Bν,k(xk+1, dx), we find that (3.42) may

be rewritten as

Eν [f(Xk)h(Xk+1:n) |Y0:n]

= Eν

[
h(Xk+1:n)

∫
Bν,k(Xk+1, dx)f(x)

∣∣∣∣ Y0:n

]
,

which concludes the proof. ��

The next result is a straightforward consequence of Proposition 3.3.6,
which reformulates the joint smoothing distribution φν,0:n|n in terms of the
backward smoothing kernels.

Corollary 3.3.8. For any integer n > 0 and initial probability ν,

Eν [f(X0:n) |Y0:n] =
∫
· · ·

∫
f(x0:m) φν,n(dxn)

n−1∏
k=0

Bν,k(xk+1, dxk) (3.43)



3.3 Markovian Decompositions 73

for all f ∈ Fb
(
Xn+1

)
. Here, {Bν,k}0≤k≤n−1 are the backward smoothing ker-

nels defined in (3.38) and φν,n is the marginal filtering distribution corre-
sponding to the final index n.

It follows from Proposition 3.3.6 and Corollary 3.3.8 that, conditionally on
Y0:n, the joint distribution of the index-reversed sequence {X̄k}0≤k≤n, with
X̄k = Xn−k, is that of a non-homogeneous Markov chain with initial distri-
bution φν,n and transition kernels {Bν,n−k}1≤k≤n. This is an exact analog of
the forward decomposition where the ordering of indices has been reversed,
starting from the end of the observation sequence and ending with the first
observation. Three important differences versus the forward decomposition
should however be kept in mind.

(i) The backward smoothing kernel Bν,k depends on the initial distribu-
tion ν and on the observations up to index k but it depends neither
on the future observations nor on the index n where the observation
sequence ends. As a consequence, the sequence of backward transition
kernels {Bν,k}0≤k≤n−1 may be computed by forward recurrence on k, ir-
respectively of the length of the observation sequence. In other terms, the
backward smoothing kernel Bν,k depends only on the filtering distribu-
tion φν,k, whereas the forward smoothing kernel Fk|n was to be computed
from the backward function βk|n.

(ii) Because Bν,k depends on φν,k rather than on the unnormalized forward
measure αν,k, its computation involves only properly normalized quanti-
ties (Remark 3.3.7). The backward decomposition is thus more adapted
to the actual computation of the smoothing probabilities than the for-
ward decomposition. The necessary steps are summarized in the following
result.

Proposition 3.3.9 (Forward Filtering/Backward Smoothing).

Forward Filtering Compute, forward in time, the filtering distributions φν,0
to φν,n using the recursion (3.22). At each index k, the backward transition
kernel Bν,k may be computed according to (3.38).
Backward Smoothing From φν,n, compute, for k = n− 1, n− 2, . . . , 0,

φν,k|n = φν,k+1|n Bν,k ,

recalling that φν,n|n
def= φν,n.

(iii) A more subtle difference between the forward and backward Markovian
decompositions is the observation that Definition 3.3.1 does provide an
expression of the forward kernels Fk|n for any k ≥ 0, that is, also for
indices after the end of the observation sequence. Hence, the process
{Xk}k≥0, when conditioned on some observations Y0:n, really forms a
non-homogeneous Markov chain whose finite-dimensional distributions
are defined by Proposition 3.3.4. In contrast, the backward kernels Bν,k
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are defined for indices k ∈ {0, . . . , n−1} only, and thus the index-reversed
process {Xn−k} is also defined, by Proposition 3.3.6, for indices k in
the range {0, . . . , n} only. In order to define the index-reversed chain
for negative indices, a minimal requirement is that the underlying chain
{Xk} also be well defined for k < 0. Defining Markov chains {Xk} with
indices k ∈ Z is only meaningful in the stationary case, that is when ν is
the stationary distribution of Q. As both this stationarization issue and
the forward and backward Markovian decompositions play a key role
in the analysis of the statistical properties of the maximum likelihood
estimator, we postpone further discussion of this point to Chapter 12.

3.4 Complements

The forward-backward algorithm is known to many, especially in the field
of speech processing, as the Baum-Welch algorithm, although the first pub-
lished description of the approach is due to Leonard E. Baum, Ted Petrie,
George Soules, and Norman Weiss (1970, p. 168). The denomination refers to
the collaboration between Baum and Lloyd R. Welch (Welch, 2003) who also
worked out together an early version of the EM approach (to be discussed
in Chapter 10). To the best of our knowledge however, the note entitled “A
Statistical Estimation Procedure for Probabilistic Functions of Finite Markov
Processes”, co-authored by Baum and Welch and mentioned in the bibliogra-
phy of Baum et al. (1970), has never been published.

The forward-backward algorithm was discovered several times in the early
1970s. A salient example is the paper by Bahl et al. (1974) on the compu-
tation of posterior probabilities for a finite-state Markov channel encoder for
transmission over a discrete memoryless channel (see Example 1.3.2 in the
introductory chapter). The algorithm described by Bahl et al. (1974) is fully
equivalent to the forward-backward and is known in digital communication
as the BCJR (for Bahl, Cocke, Jelinek, and Raviv) algorithm. Chang and
Hancock (1966) is another less well-known reference, contemporary of the
work of Baum and his colleagues, which also describes the forward-backward
decomposition and its use for decoding in communication applications.

It is important to keep in mind that the early work on HMMs by Baum
and his colleagues was conducted at the Institute for Defense Analyses (IDA)
in Princeton under a contract from the U.S. National Security Agency. Al-
though there are a few early publications of theoretical nature, most of the
practical work that dealt with cryptography was kept secret and has never
been published. It explains why some significant practical aspects (like the
need for scaling to be discussed below) remained unpublished until HMMs
became the de facto standard approach to speech recognition in the 1980s.

The famous tutorial by Rabiner (1989) is considered by many as the stan-
dard source of information for practical implementation of hidden Markov
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models. The impact of this publication has been very significant in speech pro-
cessing but also in several other domains of application such as bioinformat-
ics (Durbin et al., 1998). It was Rabiner (1989) who coined the term scaling to
describe the need for normalization when implementing the forward-backward
recursions. There is indeed a subtle difference between the normalization
scheme described in Section 3.2.2 and the solution advocated by Rabiner
(1989), which was first published by Levinson et al. (1983). As was done in
Section 3.2.2, Rabiner (1989) recommends normalizing the forward measures
so that they integrate to one. However, the normalized backward functions are
defined as β̆k|n = (

∏n
l=k cν,l)−1βk|n rather than β̄n|n = (

∏n
l=k+1 cν,l)−1βk|n.

This difference is a consequence of the normalized backward recursion being
carried out as

β̆n|n(x) = c−1
ν,n and

β̆k|n(x) = c−1
ν,k

∫
X
Q(x, dx′)gk+1(x′)β̆k+1|n(x′) for k = n− 1 down to 0,

rather than as prescribed by (3.23). In contrast to our approach, Rabiner’s
scaling implies that normalization is still required for computing the marginal
smoothing distributions as

φν,k|n(dx) = [φν,k(β̆k|n)]−1β̆k|n(x)φν,k(dx) .

On the other hand, the joint smoothing distribution φν,k:k+1|n of Xk and Xk+1
may be obtained directly, without normalization, as

φν,k:k+1|n(dx, dx′) = φν,k(dx)Q(x, dx′)gk+1(x′)β̆k+1|n(x′) .

Indeed, φν,k = (
∏k

l=0 cν,l)−1αν,k and thus

φν,k:k+1|n(dx, dx′) =

(
n∏

l=0

cν,l

)−1

αν,k(dx)Q(x, dx′)gk+1(x′)βk+1|n(x′) ,

as requested, as Lν,n =
∏n

l=0 cν,l is the normalization factor common to all
smoothing distributions from (3.13).

Easy computation of bivariate smoothing distributions does not, in our
view, constitute a strong motivation for preferring a particular scaling scheme.
The Markovian structure of the joint smoothing distribution exhibited in Sec-
tion 3.3 in particular provides an easy means of evaluating bivariate smoothing
distributions. For instance, with the scaling scheme described in Section 3.2.2,
the forward Markovian decomposition of Section 3.3.1 implies that

φν,k:k+1|n(dx, dx′) = cν,kφν,k|n(dx)
Q(x, dx′)gk+1(x′)β̄k+1|n(x′)

β̄k|n(x)
.

As stated in the introduction, Stratonovich (1960) proposed a decomposi-
tion that is largely related to the forward-backward approach when the state
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space X is discrete. The forward measure, named w in the work of Stratonovich
(1960), is defined as

wk(x) = Pν(Xk = x |Y0:k) ,

which coincides with the definition of the filtering probability φν,k for a dis-
crete X. Also recall that φν,k corresponds to the normalized forward variable
ᾱν,k = [αν,k(1)]−1αν,k. Instead of the backward function, Stratonovich (1960)
defined

w̄k(x) = Pν(Xk = x |Yk:n) .

Forward and backward recursions for wk and w̄k, respectively, as well as the
relation for computing the marginal smoothing probability from wk and w̄k,
are given in the first section of Stratonovich (1960) on pages 160–162. Al-
though w̄k as defined by Stratonovich (1960) obviously has a probabilistic
interpretation that the backward function lacks, the resulting recursion is
more complicated because it requires the evaluation of the prior probabilities
Pν(Xk = x) for k ≥ 0. In addition, generalizing the definition of w̄k to gen-
eral state spaces X would require using the more restrictive index- (or time-)
reversal concept discussed in Section 3.3.2. In contrast, the forward-backward
decomposition of Baum et al. (1970) provides a very general framework for
smoothing as discussed in this chapter.

The fact that, in some cases, a probabilistic interpretation may be given to
the backward function βk|n (or to equivalent quantities) also explains why in
the control and signal processing literatures, the forward-backward recursions
are known under the generic term of two-filter formulas (Kitagawa, 1996;
Kailath et al., 2000, Section 10.4). This issue will be discussed in detail for
Gaussian linear state-space models in Section 5.2.5.
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Advanced Topics in Smoothing

This chapter covers three distinct complements to the basic smoothing rela-
tions developed in the previous chapter.

In the first section, we provide recursive smoothing relations for computing
smoothed expectations of general functions of the hidden states. In many
respects, this technique is reminiscent of the filtering recursion detailed in
Section 3.2.2, but somewhat harder to grasp because the quantity that needs
to be updated recursively is less directly interpretable.

In the second section, it is shown that the filtering and smoothing ap-
proaches discussed so far (including those of Section 4.1) may be applied,
with minimal adaptations, to a family of models that is much broader than
simply the hidden Markov models. We consider in some detail the case of
hierarchical HMMs (introduced in Section 1.3.4) for which marginal filtering
and smoothing formulas are still available, despite the fact that the hierarchic
component of the state process is not a posteriori Markovian.

The third section is different in nature and is devoted to the so-called
forgetting property of the filtering and smoothing recursions, which are in-
strumental in the statistical theory of HMMs (see Chapter 12). Forgetting
refers to the fact that observations that are either far back in the past or
in the remote future (relative to the current time index) have little impact
on the posterior distribution of the current state. Although this section is
written to be self-contained, its content is probably better understood after
some exposure to the stability properties of Markov chains as can be found in
Chapter 14.

4.1 Recursive Computation of Smoothed Functionals

Chapter 3 mostly dealt with fixed-interval smoothing, that is, computation
of φk|n1 for a fixed value of the observation horizon n and for all indices

1Note that we omit the dependence with respect to the initial distribution ν,
which is not important in this section.



78 4 Advanced Topics in Smoothing

0 ≤ k ≤ n. For Gaussian linear state-space models, it is well-known however
that recursive (in n) evaluation of φk|n for a fixed value of k, also called
fixed-point smoothing, is feasible (Anderson and Moore, 1979, Chapter 7).
Gaussian linear state-space models certainly constitute a particular case, as
the smoothing distributions φk|n are then entirely defined by their first and
second moments (see Chapter 5). But fixed-point smoothing is by no means
limited to some specific HMMs and (3.13) implies the existence of recursive
update equations for evaluating φk|n with k fixed and increasing values of n.
Remember that, as was the case in the previous chapter, we consider for the
moment that evaluating integrals on X is a feasible operation.

The good news is that there also exist recursive formulas for computing
a large class of smoothed quantities, which include in particular expressions
like E[

∑n
k=0 s(Xn) |Y0:n] and E[(

∑n
k=0 s(Xn))2 |Y0:n], where s is a real-valued

measurable function on (X,X ) such that both expectations are well-defined.
Although one can of course consider arbitrary functions in this class, we will
see in Chapter 10 that smoothed expectations of the state variables, for some
specific choices of the function of interest, are instrumental in numerical ap-
proximations of the maximum likelihood estimate for parameter-dependent
HMMs.

4.1.1 Fixed Point Smoothing

The fundamental equation here is (3.13), which upon comparing the expres-
sions corresponding to n and n+1 gives the following update equation for the
joint smoothing distribution:

φ0:n+1|n+1(fn+1) =
(

Ln+1

Ln

)−1 ∫
· · ·

∫
fn+1(x0:n+1)

φ0:n|n(dx0, . . . , dxn)Q(xn, dxn+1) gn+1(xn+1) (4.1)

for functions fn+1 ∈ Fb
(
Xn+2

)
. Recall that we used the notation cn+1 for the

scaling factor Ln+1/Ln that appears in (4.1), where, according to (3.27), cn+1
may also be evaluated as φn+1|n(gn+1).

Equation (4.1) corresponds to a simple, yet rich, structure in which the
joint smoothing distribution is modified by applying an operator that only
affects the last coordinate2. The probabilistic interpretation of this finding is
that Xn+1 and X0:n−1 are conditionally independent given both Y0:n+1 and
Xn. This remark suggests that while the objective of updating φk|n recur-
sively in n (for a fixed k) may not be achievable directly, φk,n|n—the joint
distribution of Xk and Xn given Y0:n—does follow a simple recursion.

Proposition 4.1.1 (Fixed Point Smoothing). For k ≥ 0 and any f ∈
Fb

(
X2

)
,

2This structure also has deep implications, which we do not comment on here,
for sequential Monte Carlo approaches (to be discussed in Chapters 7 and 8).
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φk,k+1|k+1(f) = c−1
k+1

∫∫
f(xk, xk+1)φk(dxk)Q(xk, dxk+1) gk+1(xk+1) ,

where φk is the filtering distribution and ck+1 = φkQgk+1. For n ≥ k + 1 and
any f ∈ Fb

(
X2

)
,

φk,n+1|n+1(f) =

c−1
n+1

∫∫
f(xk, xn+1)

∫
φk,n|n(dxk, dxn)Q(xn, dxn+1) gn+1(xn+1) .

Both relations are obtained by integrating (4.1) over all variables but those of
relevant indices (k and k + 1 for the first one, k, n, and n + 1 for the second
one). At any index n, the marginal smoothing distribution may be evalu-
ated through φk|n = φk,n|n(·,X). Similarly the filtering distribution, which is
required to evaluate cn+1, is given by φn = φk,n|n(X, ·).

4.1.2 Recursive Smoothers for General Functionals

From Proposition 4.1.1, one can easily infer a smoothing scheme that applies
to the specific situation where the only quantity of interest is E[s(Xk) |Y0:n]
for a particular function s, and not the full conditional distribution φk,n|n. To
this aim, define the finite signed measure τn on (X,X ) by

τn(f) =
∫

f(xn) s(xk)φk,n|n(dxk, dxn) , f ∈ Fb (X) ,

so that τn(X) = E[s(Xk) |Y0:n]. Proposition 4.1.1 then implies that

τk+1(f) = c−1
k+1

∫
f(xk+1)

∫
s(xk)φk(dxk)Q(xk, dxk+1) gk+1(xk+1) ,

and

τn+1(f) = c−1
n+1

∫
f(xn+1)

∫
τn(dxn)Q(xn, dxn+1) gn+1(xn+1) (4.2)

for n ≥ k + 1 and f ∈ Fb (X). Equation (4.2) is certainly less informative
than Proposition 4.1.1, as one needs to fix the function s whose smoothed
conditional expectation is to be updated recursively. On the other hand, this
principle may be adapted to compute smoothed conditional expectations for
a general class of functions that depend on the whole trajectory of the hidden
states X0:n rather than on just a single particular hidden state Xk.

Before exposing the general framework, we first need to clarify a matter of
terminology. In the literature on continuous time processes, and particularly
in works that originate from the automatic control community, it is fairly
common to refer to quantities similar to τn as filters—see for instance Elliott
et al. (1995, Chapters 5 and 6) or Zeitouni and Dembo (1988). A filter is then
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defined as an object that may be evaluated recursively in n and is helpful in
computing a quantity of interest that involves the observations up to index
n. A more formal definition, which will also illustrate what is the precise
meaning of the word recursive, is that a filter {τn}n≥0 is such that τ0 =
Rν(Y0) and τn+1 = Rn(τn, Yn+1) where Rν and {Rn}n≥0 are some non-
random operators. In the case discussed at the beginning of this section, Rn

is defined by (4.2) where Q is fixed (this is the transition kernel of the hidden
chain) and Yn+1 enters through gn+1(x) = g(x, Yn+1). Note that because the
normalizing constant c−1

n+1 in (4.2) depends on φn, Q and gn+1, to be coherent
with our definition we should say that {φn, τn}n≥0 jointly forms a filter. In this
book, we however prefer to reserve the use of the word filter to designate the
state filter φn. We shall refer to quantities similar to {τn}n≥0 as the recursive
smoother associated with the functional {tn}n≥0, where the previous example
corresponds to tn(x0, . . . , xn) = s(xk). It is not generally possible to derive a
recursive smoother without being more explicit about the family of functions
{tn}n≥0. The device that we will use in the following consists in specifying
{tn}n≥0 using a recursive formula that involves a set of fixed-dimensional
functions.

Definition 4.1.2 (Smoothing Functional). A smoothing functional is a
sequence {tn}n≥0 of functions such that tn is a function Xn+1 → R, and which
may be defined recursively by

tn+1(x0:n+1) = mn(xn, xn+1)tn(x0:n) + sn(xn, xn+1) (4.3)

for all x0:n+1 ∈ Xn+2 and n ≥ 0, where {mn}n≥0 and {sn}n≥0 are two se-
quences of measurable functions X× X → R and t0 is a function X → R.

This definition can be extended to cases in which the functions tn are d-
dimensional vector-valued functions. In that case, {sn}n≥0 also are vector-
valued functions X × X → R

d while {mn}n≥0 are matrix-valued functions
X× X → R

d × R
d.

In simpler terms, a smoothing functional is such that the value of tn+1
in x0:n+1 differs from that of tn, applied to the sub-vector x0:n, only by a
multiplicative and an additive factor that both only depend on the last two
components xn and xn+1. The whole family is thus entirely specified by t0
and the two sequences {mn}n≥0 and {sn}n≥0. This form has of course been
chosen because it reflects the structure observed in (4.1) for the joint smooth-
ing distributions. It does however encompass some important functionals of
interest. The first and most obvious example is when tn is a homogeneous
additive functional, that is, when

tn(x0:n) =
n∑

k=0

s(xk)

for a given measurable function s. In that case, sn(x, x′) reduces to s(x′) and
mn is the constant function equal to 1.
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The same strategy also applies for more complicated functions such as the
squared sum (

∑n
k=1 s(xk))2. This time, we need to define two functions

tn,1(x0:n) =
n∑

k=1

s(xk) ,

tn,2(x0:n) =

[
n∑

k=1

s(xk)

]2

, (4.4)

for which we have the joint update formula

tn+1,1(x0:n+1) = tn,1(x0:n) + s(xn+1) ,

tn+1,2(x0:n+1) = tn,2(x0:n) + s2(xn+1) + 2s(xn+1)tn,1(x0:n) .

Note that these equations can also be considered as an extension of Defini-
tion 4.1.2 for the vector valued function tn = (tn,1, tn,2)t.

We now wish to compute E[tn(X0:n) |Y0:n] recursively in n, assuming that
the functions tn are such that these expectations are indeed finite. We proceed
as previously and define the family of finite signed measures {τn} on (X,X )
such that

τn(f) def=
∫
· · ·

∫
f(xn) tn(x0:n)φ0:n|n(dx0, . . . , dxn) (4.5)

for all functions f ∈ Fb (X). Thus, τn(X) = E[tn(X0:n) |Y0:n]. We then have
the following direct consequence of (4.1).

Proposition 4.1.3. Let (tn)n≥0 be a sequence of functions on Xn+1 → R pos-
sessing the structure of Definition 4.1.2. The finite signed measures {τn}n≥0
on (X,X ) defined by (4.5) may then be updated recursively according to

τ0(f) = {ν(g0)}−1
∫

f(x0) ν(dx0) t0(x0) g0(x0)

and

τn+1(f) = c−1
n+1

∫∫
f(xn+1)

[
τn(dxn)Q(xn, dxn+1) gn+1(xn+1)mn(xn, xn+1)

+φn(dxn)Q(xn, dxn+1) gn+1(xn+1)sn(xn, xn+1)
]

(4.6)

for n ≥ 0, where f denotes a generic function in Fb (X). At any index n,
E[tn(X0:n) |Y0:n] may be evaluated by computing τn(X).

In order to use (4.6), it is required that the standard filtering recursions
(Proposition 3.2.5) be computed in parallel to (4.6). In particular, the nor-
malizing constant cn+1 is given by (3.22) as

cn+1 = φnQgn+1 .
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As was the case for Definition 4.1.2, Proposition 4.1.3 can obviously be
extended to cases where the functional (tn)n≥0 is vector-valued, without any
additional difficulty. Because the general form of the recursion defined by
Proposition 4.1.3 is quite complex, we first examine the simple case of homo-
geneous additive functionals mentioned above.

Example 4.1.4 (First and Second Moment Functionals). Let s be a
fixed function on X and assume that the functionals of interest are the sum
and squared sum in (4.4). A typical example is when the base function s equals
1A for a some measurable set A. Then, E[tn,1(X0:n) |Y0:n] is the conditional
expected occupancy of the set A by the hidden chain {Xk}k≥0 between indices
0 and n. Likewise, E[tn,2(X0:n) |Y0:n]−(E[tn,1(X0:n) |Y0:n])2 is the conditional
variance of the occupancy of the set A.

We define the signed measures τn,1 and τn,2 associated to tn,1 and tn,2
by (4.5). We now apply the general formula given by Proposition 4.1.3 to
obtain a recursive update for τn,1 and τn,2:

τ0,1(f) = [ν(g0)]−1
∫

f(x0) ν(dx0) s(x0)g0(x0) ,

τ0,2(f) = [ν(g0)]−1
∫

f(x0) ν(dx0) s2(x0)g0(x0)

and, for n ≥ 0,

τn+1,1(f) =
∫

f(xn+1)[
φn+1(dxn+1) s(xn+1) + c−1

n+1

∫
τn,1(dxn)Q(xn, dxn+1) gn+1(xn+1)

]
,

τn+1,2(f) =
∫

f(xn+1)[
φn+1(dxn+1) s2(xn+1) + c−1

n+1

∫
τn,2(dxn)Q(xn, dxn+1) gn+1(xn+1)

+ 2c−1
n+1

∫
τn,1(dxn)Q(xn, dxn+1) gn+1(xn+1)s(xn+1)

]
.

�

4.1.3 Comparison with Forward-Backward Smoothing

It is important to contrast the approach of Section 4.1.2 above with the tech-
niques discussed previously in Chapter 3. What are exactly the differences
between the recursive smoother of Proposition 4.1.3 and the various versions
of forward-backward smoothing discussed in Sections 3.2 and 3.3? Is it always
possible to apply either of the two approaches? If yes, is one of them preferable
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to the other? These are important issues that we review below. Note that for
the moment we only compare these two approaches on principle grounds and
we do not even try to discuss the computational burden associated with the
effective implementation of either approach. This latter aspect is of course
entirely dependent of the way in which we are to evaluate (or approximate)
integrals, which is itself highly dependent on the specific model under consid-
eration. Several concrete applications of this approach will be considered in
Chapters 10 and 11.

4.1.3.1 Recursive Smoothing Is More General

Remember that in Chapter 3 our primary objective was to develop approaches
for computing marginal smoothing distributions φk|n = P(Xk ∈ · |Y0:n). A
closer inspection of the results indicate that both in the standard forward-
backward approach (Section 3.2) or when using a Markovian (forward or back-
ward) decomposition (Section 3.3), one may easily obtain the bivariate joint
smoothing distribution φk+1:k|n = P((Xk+1, Xk) ∈ · |Y0:n) as a by-product of
evaluating φk|n, with essentially no additional calculation (see in particular
Section 3.4).

If we consider however the second-order functional tn,2 discussed in Ex-
ample 4.1.4, we may write

E[tn,2(X0:n) |Y0:n] =
n∑

i=0

n∑
j=0

E[s(Xi)s(Xj) |Y0:n] .

The conditional expectations on the right-hand side indeed only involve the
bivariate joint smoothing distributions but for indices that are not consecu-
tive: it is not sufficient to determine φk+1:k|n for k = 0, . . . , n− 1 to evaluate
E[tn,2(X0:n) |Y0:n] directly. One would require the complete set of distribu-
tions P[(Xi, Xj) ∈ · |Y0:n] for 0 ≤ i ≤ j ≤ n.

From this example we may conclude that computing E[tn(X0:n) |Y0:n] us-
ing forward-backward smoothing is not possible for the whole class of func-
tionals defined in (4.3) but only for a subset of it. If we are to use only the
bivariate joint smoothing distributions φk+1:k|n, then tn must be an additive
functional for which the multipliers mn are constant (say, equal to 1). In that
case, tn reduces to

tn(x0:n) = t0(x0) +
n−1∑
k=0

sk(xk, xk+1) ,

and the expected value of tn may be directly evaluated as

E[tn(X0:n) |Y0:n] =∫
t0(x0)φ0|n(dx0) +

n−1∑
k=0

∫
sk(xk, xk+1)φk:k+1|n(dxk, dxk+1) . (4.7)
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Recursive smoothing is more general in the sense that it is not restricted to
sum functionals but applies to the whole class of functions whose structure
agrees with (4.3).

4.1.3.2 For Additive Functionals, Forward-Backward Is More
General

A distinctive feature however of recursive smoothing is that it may only be
applied once a particular function in the class has been selected. The recursive
smoother τn is associated with a specific choice of the functional tn. As an
example, denote by τn,A the recursive smoother associated with the homoge-
neous sum functional

tn,A(x0:n) =
n∑

k=0

1A(xk)

for a given set A. We may compute τn,A, recursively in n using Proposi-
tion 4.1.3 and evaluate

∑n
k=0 P(Xk ∈ A |Y0:n) as τn,A(X). If we now consider

a different set B, there is no way of evaluating
∑n

k=0 P(Xk ∈ B |Y0:n) from the
previous recursive smoother τn,A. It is thus required to run a specific recursive
smoother for each function that we are possibly interested in.

In contrast, once we have evaluated φk+1:k|n for all indices k between 0
and n−1, we may apply (4.7) to obtain the expectation of any particular sum
functional that we might be interested in.

4.1.3.3 Recursive Smoothing Is Recursive!

A final element of the comparison of the two approaches is the fact that
forward-backward is fundamentally intended for a fixed amount of observa-
tions, a situation usually referred to as block or batch processing. Consider
again, as an example, a simple sum functional of the form

tn(x0:n) =
n∑

k=0

s(xk) ,

and suppose that we are given our n observations not as a whole but one by
one, starting with X0 and then X1, X2, etc.

If we use the normalized forward-backward recursions (Proposition 3.2.5)
or the equivalent backward Markovian decomposition (Proposition 3.3.9), the
only quantities that are available at an intermediate index k (with k less
than n) are the filtering distributions φ0 to φk. Although we could evaluate
E[s(Xj) |Y0:j ] for j ≤ k, it is not yet possible to evaluate E[tk(X0:k) |Y0:k]. To
be able to compute smoothed quantities, one must decide on an endpoint, say
k = n, from which the backward recursion is started. The backward recursion
then provides us with the smoothed marginal distributions φk|n from which
E[tk(X0:n) |Y0:n] can be evaluated. This is even more obvious for the forward
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Markovian decomposition (Corollary 3.3.5), which starts by the backward
recursion initialized at the final index n.

In contrast, for the recursive smoother, the update equation (4.6) in Propo-
sition 4.1.3 provides a means of computing E[tk(X0:k) |Y0:k] for all indices
k = 1, 2, . . . , whether or not we have reached the final observation index.
There need not even be a final observation index, and the method can be
applied also when n = ∞ or when the final observation index is not speci-
fied. Note that in cases where n is finite but quite large, forward-backward
(or the equivalent Markovian decompositions) requires that all the interme-
diate results be stored: before we can compute φk|n we first need to evaluate
and keep track of all the filtering distributions φ0 to φn (or, for the forward
Markovian decomposition, the backward functions βn|n down to β0|n). Thus
for large values of n, recursive smoothing approaches are also preferable to
those based on forward-backward ideas.

Remember however that the price to pay for deriving a recursive smoother
is the need to particularize the function of interest. We will discuss in Chap-
ter 10 the exact computational cost of both approaches in examples of HMMs
for which the computation corresponding to Proposition 4.1.3 is actually fea-
sible.

4.1.3.4 Bibliographic Notes

The recursive smoothing approach discussed in this section was first described
by Zeitouni and Dembo (1988) and Elliott (1993) for continuous time discrete
state Markov processes observed in (Gaussian) noise. The approach is also
at the core of the book by Elliott et al. (1995). The application of the same
principle to the specific case of Gaussian linear state-space models is consid-
ered, among others, by Elliott and Krishnamurthy (1999) (see also references
therein). The common theme of these works is to use the EM algorithm (see
Chapter 10), replacing forward-backward smoothing by recursive smoothing.
For reasons to be explained in Section 10.2, the functionals of interest in this
context are sums (that is, mn = 1 in Definition 4.1.2). We will see in Sec-
tion 10.2.4 that the same approach (always with sum functionals) also applies
for computing the gradient of the log-likelihood with respect to the parameters
in parameterized models. The fact that the same approach applies for more
general functionals such as squared sums is, to the best of our knowledge, new
(see also Section 10.3.4 for an example of this latter case).

4.2 Filtering and Smoothing in More General Models

Although our main interest is hidden Markov models as defined in Section 2.2,
the smoothing decompositions and recursions derived so far turn out to be far
more general. We briefly discuss below the case of several non-HMM models
of practical interest before considering the specific case of hierarchical HMMs
as defined in Section 2.2.3.
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4.2.1 Smoothing in Markov-switching Models

In Markov-switching models (see Section 1.3.6), the distribution of Yk given
X0:k and Y0:k−1 does not only depend on Xk but also on a number of past val-
ues of the observed sequence. Assume for ease of notation that the dependence
with respect to previous observations is only on the last observation Yk−1. It
is easily checked that (3.1), which defines the joint distribution of a number
of consecutive hidden states and observations, should then be replaced by

Eν [f(X0, Y0, . . . , Xn, Yn)] =
∫
· · ·

∫
f(x0, y0, . . . , xn, yn)

× ν(dx0)h(x0, y0)
n∏

k=1

{Q(xk−1, dxk) g [(xk, yk−1), yk]} µn(dy0, . . . , dyn)

(4.8)

for all f ∈ Fb
(
{X× Y}n+1

)
, where g[(xk, yk−1), ·] is the transition density

function of Yk given Xk and Yk−1. Note that for Markov-switching models,
it is more natural to define the initial distribution as the joint distribution of
X0 and Y0 and hence as a probability measure on (X×Y,X ⊗Y). In (4.8), we
have adopted a particular and equivalent way of representing this distribution
as ν(dx0)h(x0, dy0)µ(dy0) for some transition density function h.

Equation (4.8) is similar to (3.1) and will be even more so once we adopt
the implicit conditioning convention introduced in Section 3.1.4. Indeed, upon
defining

g0(·) def= h(·, Y0) ,

gk(·) def= g [(·, Yk−1), Yk] for k ≥ 1 ,

the joint distribution φν,0:n|n of the hidden states X0:n given the observations
Y0:n is still given by (3.13), and hence the mechanics of smoothing for switching
autoregressive models are the same as for the standard HMM (see for instance
Hamilton, 1994, Chapter 22).

4.2.2 Smoothing in Partially Observed Markov Chains

It should also be clear that the same remark holds, mutatis mutandis, for other
variants of the model such as non-homogeneous ones—if Q depends on the
index k for instance—or if the transition from Xk to Xk+1 also depends on
some function of the past observations Y0:k−1. Moreover, a closer inspection
of the smoothing relations obtained previously indicate that, except when one
wishes to exhibit predicted quantities—as in (3.27)—only the unnormalized
product kernel Rk−1(xk−1, dxk) = Q(xk−1, dxk) gk(xk) does play a role3. In

3We will come back to this remark when examining sequential Monte Carlo
approaches in Chapter 7.
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particular, for the general class of models in which it is only assumed that
{Xk, Yk}k≥0 jointly form a Markov chain, the joint distribution of Yk and Xk

given Yk−1 and Xk−1 may be represented as

Q [(xk−1, yk−1), dxk] g [(xk−1, yk−1, xk), yk]µ(dyk) ,

assuming that the second conditional distribution is dominated by µ. Hence
in this case also, one may define

Rk−1(xk−1, dxk) def= Q [(xk−1, Yk−1), dxk] g [(xk−1, Yk−1, xk), Yk]

and use the same filtering and smoothing relations as before. With this nota-
tion, it is a simple matter of rewriting, replacing the product of Q and gk by
Rk−1 to obtain, for instance, the filtering update from (3.22):

cν,k =
∫∫

φν,k−1(dx)Rk−1(x, dx′) ,

φν,k(f) = c−1
ν,k

∫
f(x′)

∫
φν,k−1(dx)Rk−1(x, dx′) , f ∈ Fb (X) .

4.2.3 Marginal Smoothing in Hierarchical HMMs

An example that nicely illustrates the previous discussion on the generality of
the filtering and smoothing recursions of Chapter 3 is the case of hierarchical
HMMs. These models defined in Section 2.2.3 are hidden Markov models in
which the unobservable chain {Xk}k≥0 is split into two components {Ck}k≥0
and {Wk}k≥0 such that the component {Ck}k≥0, which is the highest in the hi-
erarchy, marginally forms a Markov chain. Of course, these models are HMMs
and can be handled as such. In many cases, it is however advantageous to
consider that the component of interest is {Ck}k≥0 only, marginalizing with
respect to the intermediate component {Wk}k≥0. A typical example is the case
of conditionally Gaussian linear state-space models (Definition 2.2.6), where
the indicator component Ck takes values in a finite set, whereas the intermedi-
ate component Wk is a vector-valued, possibly high-dimensional, variable. It is
clear however that the pair (Ck, Yk) does not correspond to a hidden Markov
model. In particular, the distribution of Yn depends on all indicator variables
C0 up to Cn (rather than on Cn only), due to the marginalization of the inter-
mediate variables W0:n. Because of the generality of the smoothing relations
obtained in Chapter 3, the implementation of marginal smoothing—that is,
estimation of {Ck}k≥0 only given {Yk}k≥0—however bears some similarity
with the (simpler) case of HMMs.

For notational simplicity, we consider in the remainder of this section that
the hierarchic component {Ck}k≥0 takes values in the finite set {1, . . . , r}.
As usual in this context, we use the notations QC(x, x′) and νC(x) rather
than QC(x, {x′}) and νC({x}). The other notations pertaining to hierarchical
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hidden Markov models can be found in Section 2.2.3. Let ψν,0:k|k denote the
posterior distribution of C0:k given Y0:k,

ψν,0:k|k(c0:k) def= Pν (C0:k = c0:k |Y0:k) . (4.9)

Using (3.13) for the hierarchical HMM and integrating with respect to the
intermediate component w0:n readily gives

ψν,0:n|n (c0:n) = L−1
ν,n νC(c0)

n∏
k=1

QC(ck−1, ck)

∫
· · ·

∫
νW (c0, dw0)

n∏
k=1

QW [(wk−1, ck), dwk] gk(ck, wk) , (4.10)

where gk(ck, wk) def= g [(ck, wk), Yk]. Comparing the above expression for two
successive indices, say n and n + 1, yields

ψν,0:n+1|n+1 (c0:n+1) =
(

Lν,n+1

Lν,n

)−1

ψν,0:n|n (c0:n)QC(cn, cn+1)∫
ϕν,n+1|n(c0:n+1, dwn+1) gn+1(cn+1, wn+1) , (4.11)

where

ϕν,n+1|n(c0:n+1, f) def=∫
Wn+1

νW (c0, dw0)
{

n∏
k=1

QW [(wk−1, ck), dwk]gk(ck, wk)
}
QW [(wn, cn+1), f ]

∫
Wn+1

νW (c0, dw0)
n∏

k=1
QW [(wk−1, ck), dwk]gk(ck, wk)

(4.12)

for f ∈ Fb (W), which is recognized as the predictive distribution of the
intermediate component Wn+1 given the observations Y0:n up to index n and
the indicator variables C0:n+1 up to index n + 1.

In the example of conditionally Gaussian linear state-space models, the
conditional predictive distribution ϕν,n+1|n(c0:n+1, ·) given in (4.12) is Gaus-
sian and may indeed be evaluated recursively for a given sequence of indicator
variables c0:n+1 using the Kalman recursions (see Section 5.2). Moreover, in
these models the integral featured on the second line of (4.11) may also be
evaluated exactly. It is important however to understand that even in this
(favorable) case, the existence of (4.11) does not provide an easy solution to
updating the marginal filtering distribution ψν,n|n as it does for HMMs. The
fundamental problem is that (4.12) also directly indicates that the predictive
distribution Wn+1 given Y0:n, but without conditioning on the indicator vari-
ables C0:n+1, is a mixture distribution with a number of components equal
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to the number of possible configurations of C0:n+1, that is, rn+2. Hence in
practice, even in cases such as the conditionally Gaussian linear state-space
models for which evaluation of (4.12) is feasible, it is not possible to imple-
ment the exact marginal filtering relations for the sequence {Ck}k≥0 because
of the combinatorial explosion due to the need to enumerate all configurations
of the indicator variables.

Thus, (4.1) will only be helpful in approaches where it is possible to impute
values to (part of) the unknown sequence {Ck}k≥0, making it possible to
avoid exhaustive enumeration of all configurations of the indicator variables.
This is precisely the aim of sequential Monte Carlo methods to be described
in Chapters 7 and 8, where the specific case of hierarchical HMMs will be
detailed in Section 8.2.

Note that while (4.1) obviously suggests a recursion in increasing values of
n, it is also possible to write an analog to the forward-backward decomposition
(see Section 3.2) starting from (4.10):

ψν,0:n|n (c0:n) = L−1
ν,n

∫
αν,k(c0:k, dwk)βk|n(ck:n, wk) , (4.13)

where

αν,k(c0:k, f) def=
∫
· · ·

∫
f(wk)

νC(c0) νW (c0, dw0)
k∏

l=1

QC(cl−1, cl)QW [(wl−1, cl), dwl] gl(cl, wl)

for f ∈ Fb (W) and

βk|n(ck:n, wk) def=
∫
· · ·

∫ n∏
l=k+1

QC(cl−1, cl)QW [(wl−1, cl), dwl] gl(cl, wl) .

The same comment as before applies regarding the fact that both the forward
and backward variables do depend on complete sub-sequences of indicator
variables; c0:k for αν,k and ck:n for βk|n. This property of hierarchical HMMs
restricts the practical use of (4.13) to cases in which it is possible, for instance,
to condition on all values of Cl in the sequence C0:n except Ck. The main ap-
plication of this decomposition is to be found in Markov chain Monte Carlo
methods (Chapter 6) and, more precisely, in the so-called Gibbs sampling
approach (Section 6.2.5). The use of (4.13) in this context will be fully illus-
trated for conditionally Gaussian linear state space models in Sections 5.2.6
and 6.3.2.

4.3 Forgetting of the Initial Condition

Recall from previous chapters that in a partially dominated HMM model (see
Definition 2.2.2), we denote by
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• Pν the probability associated to the Markov chain {Xk, Yk}k≥0 on the
canonical space

(
(X× Y)N, (X ⊗ Y)⊗N

)
with initial probability measure ν

and transition kernel T defined by (2.15);
• φν,k|n the distribution of the hidden state Xk conditionally on the obser-

vations Y0:n, under the probability measure Pν .

Forgetting properties pertain to the dependence of φν,k|n with respect to
the initial distribution ν. A typical question is to ask whether φν,k|n and
φν′,k|n are close (in some sense) for large values of k and arbitrary choices
of ν and ν′. This issue will play a key role both when studying the conver-
gence of sequential Monte Carlo methods (Chapter 9) and when analyzing the
asymptotic behavior of the maximum likelihood estimator (Chapter 12).

In the following, it is shown more precisely that, under appropriate con-
ditions on the kernel Q of the hidden chain and on the transition density
function g, the total variation distance

∥∥φν,k|n − φν′,k|n
∥∥

TV converges to zero
as k tends to infinity. Remember that, following the implicit conditioning
convention (Section 3.1.4), we usually omit to indicate explicitly that φν,k|n
indeed depends on the observations Y0:n. In this section however we cannot
use this convention anymore, as we will meet both situations in which, say,
‖φν,n − φν′,n‖TV converges to zero (as n tends to infinity) for all possible
values of the sequence {yn}n≥0 ∈ YN (uniform forgetting) and cases where
‖φν,n − φν′,n‖TV can be shown to converge to zero almost surely only when
{Yk}k≥0 is assumed to be distributed under a specific distribution (typically
Pν�

for some initial distribution ν�). In this section, we thus make dependence
with respect to the observations explicit by indicating the relevant subset
of observation between brackets, using, for instance, φν,k|n[y0:n] rather than
φν,k|n.

We start by recalling some elementary facts and results about the total
variation norm of a signed measure, providing in particular useful characteri-
zations of the total variation as an operator norm over appropriately defined
function spaces. We then discuss the contraction property of Markov ker-
nels, using the measure-theoretic approach introduced in an early paper by
Dobrushin (1956) and recently revisited and extended by Del Moral et al.
(2003). We finally present the applications of these results to establish for-
getting properties of the smoothing and filtering recursions and discuss the
implications of the technical conditions required to obtain these results.

4.3.1 Total Variation

Let (X,X ) be a measurable space and let ξ be a signed measure on (X,X ).
Then there exists a measurable set H ∈ X , called a Jordan set, such that

(i) ξ(A) ≥ 0 for each A ∈ X such that A ⊆ H;
(ii) ξ(A) ≤ 0 for each A ∈ X such that A ⊆ X \H.

The set H is not unique, but any other such set H ′ ∈ X satisfies ξ(H ∩H ′) =
1. Hence two Jordan sets differ by at most a set of zero measure. If X is
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finite or countable and X = P(X) is the collection of all subsets of X, then
H = {x : ξ(x) ≥ 0} and H ′ = {x : ξ(x) > 0} are two Jordan sets. As another
example, if ξ is absolutely continuous with respect to a measure ν on (X,X )
with Radon-Nikodym derivative f , then {f ≥ 0} and {f > 0} are two Jordan
sets. We define two measures on (X,X ) by

ξ+(A) = ξ(H ∩A) and ξ−(A) = −ξ(Hc ∩A) , A ∈ X .

The measures ξ+ and ξ− are referred to as the positive and negative variations
of the signed measure ξ. By construction, ξ = ξ+− ξ−. This decomposition of
ξ into its positive and negative variations is called the Hahn-Jordan decom-
position of ξ. The definition of the positive and negative variations above is
easily shown to be independent of the particular Jordan set chosen.

Definition 4.3.1 (Total Variation of a Signed Measure). Let (X,X ) be a
measurable space and let ξ be a signed measure on (X,X ). The total variation
norm of ξ is defined as

‖ξ‖TV = ξ+(X) + ξ−(X) ,

where (ξ+, ξ−) is the Hahn-Jordan decomposition of ξ.

If X is finite or countable and ξ is a signed measure on (X,P(X)), then ‖ξ‖TV =∑
x∈X |ξ(x)|. If ξ has a density g with respect to a measure λ on (X,X ), then

‖ξ‖TV =
∫
|f(x)|λ(dx).

Definition 4.3.2 (Total Variation Distance). Let (X,X ) be a measurable
space and let ξ and ξ′ be two measures on (X,X ). The total variation distance
between ξ and ξ′ is the total variation norm of the signed measure ξ − ξ′.

Denote by M(X,X ) the set of finite signed measures on the measurable
space (X,X ), by M1(X,X ) the set of probability measures on (X,X ) and by
M0(X,X ) the set of finite signed measures ξ on (X,X ) satisfying ξ(X) = 0.
M(X,X ) is a Banach space with respect to the total variation norm. In this
Banach space, the subset M1(X,X ) is closed and convex.

Let Fb (X) denote the set of bounded measurable real functions on X.
This set embedded with the supremum norm ‖f‖∞ = sup{f(x) : x ∈ X}
also is a Banach space. For any ξ ∈ M(X,X ) and f ∈ Fb (X), we may define
ξ(f) =

∫
f dξ. Therefore any finite signed measure ξ in M(X,X ) defines a

linear functional on the Banach space (Fb (X) , ‖·‖∞). We will use the same
notation for the measure and for the functional. The following lemma shows
that the total variation of the signed measure ξ agrees with the operator norm
of ξ.

Lemma 4.3.3.

(i) For any ξ ∈ M(X,X ) and f ∈ Fb (X),∣∣∣∣∫ f dξ

∣∣∣∣ ≤ ‖ξ‖TV ‖f‖∞ .
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(ii) For any ξ ∈ M(X,X ),

‖ξ‖TV = sup {ξ(f) : f ∈ Fb (X,X ) , ‖f‖∞ = 1} .

(iii) For any f ∈ Fb (X),

‖f‖∞ = sup {ξ(f) : ξ ∈ M(X,X ), ‖ξ‖TV = 1} .

Proof. Let H be a Hahn-Jordan set of ξ. Then ξ+(H) = ξ(H) and ξ−(Hc) =
−ξ(Hc). For f ∈ Fb (X),

|ξ(f)| ≤ |ξ+(f)|+ |ξ−(f)| ≤ ‖f‖∞ (ξ+(X) + ξ−(X)) = ‖f‖∞ ‖ξ‖TV ,

showing (i). It also shows that the suprema in (ii) and (iii) are no larger than
‖ξ‖TV and ‖f‖∞, respectively. To establish equality in these relations, first
note that ‖1H − 1Hc‖∞ = 1 and ξ (1H − 1Hc) = ξ(H) − ξ(Hc) = ‖ξ‖TV.
This proves (ii). Next pick f and let let {xn} be a sequence in X such that
limn→∞ |f(xn)| = ‖f‖∞. Then ‖f‖∞ = limn→∞ |δxn(f)|, proving (iii). ��

The set M0(X,X ) possesses some interesting properties that will prove
useful in the sequel. Let ξ be in this set. Because ξ(X) = 0, for any f ∈ Fb (X)
and any real c it holds that ξ(f) = ξ(f − c). Therefore by Lemma 4.3.3(i),
|ξ(f)| ≤ ‖ξ‖TV ‖f − c‖∞, which implies that

|ξ(f)| ≤ ‖ξ‖TV inf
c∈R

‖f − c‖∞ .

It is easily seen that for any f ∈ Fb (X), infc∈R ‖f − c‖∞ is related to the
oscillation semi-norm of f , also called the global modulus of continuity,

osc (f) def= sup
(x,x′)∈X×X

|f(x)− f(x′)| = 2 inf
c∈R

‖f − c‖∞ . (4.14)

The lemma below provides some additional insight into this result.

Lemma 4.3.4. For any ξ ∈ M(X,X ) and f ∈ Fb (X),

|ξ(f)| ≤ sup
(x,x′)∈X×X

|ξ+(X)f(x)− ξ−(X)f(x′)| , (4.15)

where (ξ+, ξ−) is the Hahn-Jordan decomposition of ξ. In particular, for any
ξ ∈ M0(X,X ) and f ∈ Fb (X),

|ξ(f)| ≤ 1
2
‖ξ‖TV osc (f) , (4.16)

where osc (f) is given by (4.14).



4.3 Forgetting of the Initial Condition 93

Proof. First note that

ξ(f) =
∫

f(x) ξ+(dx)−
∫

f(x) ξ−(dx)

=
∫∫

f(x) ξ+(dx) ξ−(dx′)
ξ−(X)

−
∫∫

f(x′) ξ+(dx) ξ−(dx′)
ξ+(X)

.

Therefore

|ξ(f)| ≤
∫∫

|f(x)/ξ−(X)− f(x′)/ξ+(X)| ξ+(dx) ξ−(dx′)

≤ sup
(x,x′)∈X×X

|f(x)/ξ−(X)− f(x′)/ξ+(X)| ξ+(X)ξ−(X) ,

which shows (4.15). If ξ(X) = 0, then ξ+(X) = ξ−(X) = 1
2 ‖ξ‖TV, showing

(4.16). ��

Therefore, for ξ ∈ M0(X,X ), ‖ξ‖TV is the operator norm of ξ considered
as an operator over the space Fb (X) equipped with the oscillation semi-norm
(4.14). As a direct application of this result, if ξ and ξ′ are two probability
measures on (X,X ), then ξ − ξ′ ∈ M0(X,X ) which implies that for any f ∈
Fb (X),

|ξ(f)− ξ′(f)| ≤ 1
2
‖ξ − ξ′‖TV osc (f) . (4.17)

This inequality is sharper than the bound |ξ(f) − ξ′(f)| ≤ ‖ξ − ξ′‖TV ‖f‖∞
provided by Lemma 4.3.3(i), because osc (f) ≤ 2 ‖f‖∞.

We conclude this section by establishing some alternative expressions for
the total variation distance between two probability measures.

Lemma 4.3.5. For any ξ and ξ′ and M1(X,X ),

1
2
‖ξ − ξ′‖TV = sup

A
|ξ(A)− ξ′(A)| (4.18)

= 1− sup
ν≤ξ,ξ′

ν(X) (4.19)

= 1− inf
n∑

p=1

ξ(Ai) ∧ ξ′(Ai) . (4.20)

Here the supremum in (4.18) is taken over all measurable subsets of X, the
supremum in (4.19) is taken over all finite signed measures ν on (X,X ) sat-
isfying ν ≤ ξ and ν ≤ ξ′, and the infimum in (4.20) is taken over all finite
measurable partitions A1, . . . , An of X.

Proof. To prove (4.18), first write ξ(A) − ξ′(A) = (ξ − ξ′)1A and note that
osc (1A) = 1. Thus (4.17) shows that the supremum in (4.18) is no larger than
(1/2) ‖ξ − ξ′‖TV. Now let H be a Jordan set of the signed measure ξ − ξ′.
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The supremum is bounded from below by ξ(H) − ξ′(H) = (ξ − ξ′)+(X) =
(1/2) ‖ξ − ξ′‖TV. This establishes equality in (4.18).

We now turn to (4.19). For any p, q ∈ R, |p−q| = p+q−2(p∧q). Therefore
for any A ∈ X ,

1
2
|ξ(A)− ξ′(A)| = 1

2
(ξ(A) + ξ′(A))− ξ(A) ∧ ξ′(A) .

Applying this relation to the sets H and Hc, where H is as above, shows that

1
2

(ξ − ξ′) (H) =
1
2

[ξ(H) + ξ′(H)]− ξ(H) ∧ ξ′(H) ,

1
2

(ξ′ − ξ) (Hc) =
1
2

[ξ(Hc) + ξ′(Hc)]− ξ(Hc) ∧ ξ′(Hc) .

For any measure ν such that ν ≤ ξ and ν ≤ ξ′, it holds that ν(H) ≤ ξ(H) ∧
ξ′(H) and ν(Hc) ≤ ξ(Hc) ∧ ξ′(Hc), showing that

1
2

(ξ − ξ′) (H) +
1
2

(ξ′ − ξ) (Hc) =
1
2
‖ξ − ξ′‖TV ≤ 1− ν(X) .

Thus (4.19) is no smaller than the left-hand side. To show equality, let ν be
the measure defined by

ν(A) = ξ(A ∩Hc) + ξ′(A ∩H) . (4.21)

By the definition of H, ξ(A∩Hc) ≤ ξ′(A∩Hc) and ξ′(A∩H) ≤ ξ(A∩H) for
any A ∈ X . Therefore ν(A) ≤ ξ(A) and ν(A) ≤ ξ′(A). In addition, ν(H) =
ξ′(H) = ξ(H) ∧ ξ′(H) and ν(Hc) = ξ(Hc) = ξ(Hc) ∧ ξ′(Hc), showing that
1
2 ‖ξ − ξ′‖TV = 1− ν(X) and concluding the proof of (4.19).

Finally, because ν(X) = ξ(H) ∧ ξ′(H) + ξ(Hc) ∧ ξ′(Hc) we have

sup
ν≤ξ,ξ′

ν(X) ≥ inf
n∑

i=1

ξ(Ai) ∧ ξ′(Ai) .

Conversely, for any measure ν satisfying ν ≤ ξ and ν ≤ ξ′, and any partition
A1, . . . , An,

ν(X) =
n∑

i=1

ν(Ai) ≤
n∑

i=1

ξ(Ai) ∧ ξ′(Ai) ,

showing that

sup
ν≤ξ,ξ′

ν(X) ≤ inf
n∑

i=1

ξ(Ai) ∧ ξ′(Ai) .

The supremum and the infimum thus agree, and the proof of (4.20) follows
from (4.19). ��
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4.3.2 Lipshitz Contraction for Transition Kernels

In this section, we study the contraction property of transition kernels with
respect to the total variation distance. Such results have been discussed in
a seminal paper by Dobrushin (1956) (see Del Moral, 2004, Chapter 4, for
a modern presentation and extensions of these results to a general class of
distance-like entropy criteria). Let (X,X ) and (Y,Y) be two measurable spaces
and let K be a transition kernel from (X,X ) to (Y,Y) (see Definition 2.1.1).
The kernel K is canonically associated to two linear mappings:

(i) a mapping M(X,X ) → M(Y,Y) that maps any ξ in M(X,X ) to a (pos-
sibly signed) measure ξK given by ξK(A) =

∫
X ξ(dx)K(x,A) for any

A ∈ Y;
(ii) a mapping Fb (Y) → Fb (X) that maps any f in Fb (Y) to the function

Kf given by Kf(x) =
∫
K(x, dy) f(y).

Here again, with a slight abuse in notation, we use the same notation K for
these two mappings. If we equip the spaces M(X,X ) and M(Y,Y) with the
total variation norm and the spaces Fb (X) and Fb (Y) with the supremum
norm, a first natural problem is to compute the operator norm(s) of the kernel
K.

Lemma 4.3.6. Let (X,X ) and (Y,Y) be two measurable spaces and let K be
a transition kernel from (X,X ) to (Y,Y). Then

1 = sup {‖ξK‖TV : ξ ∈ M(X,X ), ‖ξ‖TV = 1}

= sup {‖Kf‖∞ : f ∈ Fb (Y) , ‖f‖∞ = 1} .

Proof. By Lemma 4.3.3,

sup {‖ξK‖TV : ξ ∈ M(X,X ), ‖ξ‖TV = 1}

= sup {ξKf : ξ ∈ M(X,X ), f ∈ Fb (Y) , ‖f‖∞ = 1, ‖ξ‖TV = 1}

= sup {‖Kf‖∞ : f ∈ Fb (Y,Y) , ‖f‖∞ = 1} ≤ 1 .

If ξ is a probability measure then so is ξK. Because the total variation of
any probability measure is one, we see that the left-hand side of this display
is indeed equal to one. Thus all members equate to one, and the proof is
complete. ��

To get sharper results, we will have to consider K as an operator acting
on a smaller set of finite measures than M(X,X ). Of particular interest is the
subset M0(X,X ) of signed measures with zero total mass. Note that if ξ lies in
this subset, then ξK is in M0(Y,Y). Below we will bound the operator norm
of the restriction of the operator K to M0(X,X ).
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Definition 4.3.7 (Dobrushin Coefficient). Let K be a transition kernel
from (X,X ) to (Y,Y). Its Dobrushin coefficient δ(K) is given by

δ(K) =
1
2

sup
(x,x′)∈X×X

‖K(x, ·)−K(x′, ·)‖TV

= sup
(x,x′)∈X×X,x �=x′

‖K(x, ·)−K(x′, ·)‖TV

‖δx − δx′‖TV
.

We remark that as K(x, ·) and K(x′, ·) are probability measures, it holds that
‖K(x, ·)‖TV = ‖K(x′, ·)‖TV = 1. Hence δ(K) ≤ 1

2 (1 + 1) = 1, so that the
Dobrushin coefficient satisfies 0 ≤ δ(K) ≤ 1.

Lemma 4.3.8. Let ξ be a finite signed measure on (X,X ) and let K be a
transition kernel from (X,X ) to (Y,Y). Then

‖ξK‖TV ≤ δ(K) ‖ξ‖TV + (1− δ(K)) |ξ(X)| . (4.22)

Proof. Pick ξ ∈ M(X,X ) and let, as usual, ξ+ and ξ− be its positive and
negative part, respectively. If ξ−(X) = 0 (ξ is a measure), then ‖ξ‖TV = ξ(X)
and (4.22) becomes ‖ξK‖TV ≤ ‖ξ‖TV; this follows from Lemma 4.3.6. If
ξ+(X) = 0, an analogous argument applies.

Thus assume that both ξ+ and ξ− are non-zero. In view of Lemma 4.3.3(ii),
it suffices to prove that for any f ∈ Fb (Y) with ‖f‖∞ = 1,

|ξKf | ≤ δ(K)(ξ+(X) + ξ−(X)) + (1− δ(K))|ξ+(X)− ξ−(X)| . (4.23)

We shall suppose that ξ+(X) ≥ ξ−(X), if not, replace ξ by −ξ and (4.23)
remains the same. Then as |ξ+(X)− ξ−(X)| = ξ+(X)− ξ−(X), (4.23) becomes

|ξKf | ≤ 2ξ−(X)δ(K) + ξ+(X)− ξ−(X) . (4.24)

Now, by Lemma 4.3.4, for any f ∈ Fb (Y) it holds that

|ξKf | ≤ sup
(x,x′)∈X×X

|ξ+(X)Kf(x)− ξ−(X)Kf(x′)|

≤ sup
(x,x′)∈X×X

‖ξ+(X)K(x, ·)− ξ−(X)K(x′, ·)‖TV ‖f‖∞ .

Finally (4.24) follows upon noting that

‖ξ+(X)K(x, ·)− ξ−(X)K(x′, ·)‖TV

≤ ξ−(X) ‖K(x, ·)−K(x′, ·)‖TV + [ξ+(X)− ξ−(X)] ‖K(x, ·)‖TV

= 2ξ−(X)δ(K) + ξ+(X)− ξ−(X) .

��

Corollary 4.3.9.

δ(K) = sup {‖ξK‖TV : ξ ∈ M0(X,X ), ‖ξ‖TV ≤ 1} . (4.25)
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Proof. If ξ(X) = 0, then (4.22) becomes ‖ξK‖TV ≤ δ(K) ‖ξ‖TV, showing that

sup {‖ξK‖TV : ξ ∈ M0(X,X ), ‖ξ‖TV ≤ 1} ≤ δ(K) .

The converse inequality is obvious, as

δ(K) = sup
{

(x, x′) ∈ X× X,
∥∥∥∥1

2
(δx − δx′)K

∥∥∥∥
TV

}
≤ sup {‖ξK‖TV : ξ ∈ M0(X,X ), ‖ξ‖TV = 1} .

��

If ξ and ξ′ are two probability measures on (X,X ), Corollary 4.3.9 implies
that

‖ξK − ξ′K‖TV ≤ δ(K) ‖ξ − ξ′‖TV .

Thus the Dobrushin coefficient is the norm of K considered as a linear operator
from M0(X,X ) to M0(Y,Y).

Proposition 4.3.10. The Dobrushin coefficient is sub-multiplicative. That is,
if K : (X,X ) → (Y,Y) and R : (Y,Y) → (Z,Z) are two transition kernels,
then δ(KR) ≤ δ(K)δ(R).

Proof. This is a direct consequence of the fact that the Dobrushin coefficient
is an operator norm. By Corollary 4.3.9, if ξ ∈ M0(X,X ), then ξK ∈ M0(Y,Y)
and ‖ξK‖TV ≤ δ(K) ‖ξ‖TV. Likewise, ‖νR‖TV ≤ δ(R) ‖ν‖TV holds for any
ν ∈ M0(Y,Y). Thus

‖ξKR‖TV = ‖(ξK)R‖TV ≤ δ(R) ‖ξK‖TV ≤ δ(K)δ(R) ‖ξ‖TV

��

4.3.3 The Doeblin Condition and Uniform Ergodicity

Anticipating results on general state-space Markov chains presented in Chap-
ter 14, we will establish, using the contraction results developed in the previous
section, some ergodicity results for a class of Markov chains (X,X ) satisfying
the so-called Doeblin condition.

Assumption 4.3.11 (Doeblin Condition). There exist an integer m ≥ 1,
ε ∈ (0, 1), and a transition kernel ν = {νx,x′ , (x, x′) ∈ X×X} from (X×X,X ⊗
X ) to (X,X ) such that for all (x, x′) ∈ X× X and A ∈ X ,

Qm(x,A) ∧Qm(x′, A) ≥ ενx,x′(A) .

We will frequently consider a strengthened version of this assumption.
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Assumption 4.3.12 (Doeblin Condition Reinforced). There exist an in-
teger m ≥ 1, ε ∈ (0, 1), and a probability measure ν on (X,X ) such that for
any x ∈ X and A ∈ X ,

Qm(x,A) ≥ εν(A) .

By Lemma 4.3.5, the Dobrushin coefficient of Qm may be equivalently
written as

δ(Qm) = 1− inf
n∑

i=1

Qm(x,Ai) ∧Qm(x′, Ai) , (4.26)

where the infimum is taken over all (x, x′) ∈ X× X and all finite measurable
partitions A1, . . . , An of X of X. Under the Doeblin condition, the sum in this
display is bounded from below by ε

∑n
i=1 νx,x′(Ai) = ε. Hence the following

lemma is true.

Lemma 4.3.13. Under Assumption 4.3.11, δ(Qm) ≤ 1− ε.

Stochastic processes that are such that for any k, the distribution of the
random vector (Xn, . . . , Xn+k) does not depend on n are called stationary
(see Definition 2.1.10). It is clear that in general a Markov chain will not
be stationary. Nevertheless, given a transition kernel Q, it is possible that
with an appropriate choice of the initial distribution ν we may produce a
stationary process. Assuming that such a distribution exists, the stationarity
of the marginal distribution implies that Eν [1A(X0)] = Eν [1A(X1)] for any
A ∈ X . This can equivalently be written as ν(A) = νQ(A), or ν = νQ. In such
a case, the Markov property implies that all finite-dimensional distributions
of {Xk}k≥0 are also invariant under translation in time. These considerations
lead to the definition of invariant measure.

Definition 4.3.14 (Invariant Measure). If Q is a Markov kernel on (X,X )
and π is a σ-finite measure satisfying πQ = π, then π is called an invariant
measure.

If an invariant measure is finite, it may be normalized to an invariant
probability measure. In practice, this is the main situation of interest. If an
invariant measure has infinite total mass, its probabilistic interpretation is
much more difficult. In general, there may exist more than one invariant mea-
sure, and if X is not finite, an invariant measure may not exist. As a trivial
example, consider X = N and Q(x, x + 1) = 1.

Invariant probability measures are important not merely because they de-
fine stationary processes. Invariant probability measures also define the long-
term or ergodic behavior of a stationary Markov chain. Assume that for some
initial measure ν, the sequence of probability measures {νQn}n≥0 converges
to a probability measure γν in total variation norm. This implies that for any
function f ∈ Fb (X), limn→∞ νQn(f) = γν(f). Therefore
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γν(f) = lim
n→∞

∫∫
ν(dx)Qn(x, dx′) f(x′)

= lim
n→∞

∫∫
ν(dx)Qn−1(x, dx′)Qf(x′) = γν(Qf) .

Hence, if a limiting distribution exists, it is an invariant probability measure,
and if there exists a unique invariant probability measure, then the limiting
distribution γν will be independent of ν, whenever it exists. These considera-
tions lead to the following definitions.

Definition 4.3.15. Let Q be a Markov kernel admitting a unique invariant
probability measure π. The chain is said to be ergodic if for all x in a set
A ∈ X such that π(A) = 1, limn→∞ ‖Qn(x, ·)− π‖TV = 0. It is said to be
uniformly ergodic if limn→∞ supx∈X ‖Qn(x, ·)− π‖TV = 0.

Note that when a chain is uniformly ergodic, it is indeed uniformly geo-
metrically ergodic because limn→∞ supx∈X ‖Qn(x, ·)− π‖TV = 0 implies that
there exists an integer m such that 1

2 sup(x,x′)∈X×X ‖Qm(x, ·)−Qm(x′, ·)‖TV <
1 by the triangle inequality. Hence the Dobrushin coefficient δ(Qm) is strictly
less than 1, and Qm is contractive with respect to the total variation distance
by Lemma 4.3.8. Thus there exist constants C < ∞ and ρ ∈ [0, 1) such that
supx∈X ‖Qn(x, ·)− π‖TV ≤ Cρn for all n.

The following result shows that if a power Qm of the Markov kernel Q sat-
isfies Doeblin’s condition, then the chain admits a unique invariant probability
and is uniformly ergodic.

Theorem 4.3.16. Under Assumption 4.3.11, Q admits a unique invariant
probability measure π. In addition, for any ξ ∈ M1(X,X ),

‖ξQn − π‖TV ≤ (1− ε)	n/m
 ‖ξ − π‖TV ,

where �u� is the integer part of u.

Proof. Let ξ and ξ′ be two probability measures on (X,X ). Corollary 4.3.9,
Proposition 4.3.10, and Lemma 4.3.13 yield that for all k ≥ 1,∥∥ξQkm − ξ′Qkm

∥∥
TV ≤ δk(Qm) ‖ξ − ξ′‖TV ≤ (1− ε)k ‖ξ − ξ′‖TV . (4.27)

Taking ξ′ = ξQpm, we find that∥∥∥ξQkm − ξQ(k+p)m
∥∥∥

TV
≤ (1− ε)k ,

showing that {ξQkm} is a Cauchy sequence in M1(X,X ) endowed with the
total variation norm. Because this metric space is complete, there exists a
probability measure π such that ξQkm → π. In view of the discussion above,
π is invariant for Qm. Moreover, by (4.27) this limit does not depend on ξ.
Thus Qm admits π as unique invariant probability measure. The Chapman-
Kolmogorov equations imply that (πQ)Qm = (πQm)Q = πQ, showing that
πQ is also invariant for Qm and hence that πQ = π as claimed. ��



100 4 Advanced Topics in Smoothing

Remark 4.3.17. Classical uniform convergence to equilibrium for Markov
processes has been studied during the first half of the 20th century by Doe-
blin, Kolmogorov, and Doob under various conditions. Doob (1953) gave a
unifying form to these conditions, which he named Doeblin type conditions.
More recently, starting in the 1970s, an increasing interest in non-uniform
convergence of Markov processes has arisen. An explanation for this interest
is that many useful processes do not converge uniformly to equilibrium, while
they do satisfy weaker properties such as a geometric convergence. It later
became clear that non-uniform convergence relates to local Doeblin type con-
dition and to hitting times for so-called small sets. These types of conditions
are detailed in Chapter 14. �

4.3.4 Forgetting Properties

Recall from Chapter 3 that the smoothing probability φν,k|n[Y0:n] is defined
by

φν,k|n[Y0:n](f) = Eν [f(Xk) |Y0:n] , f ∈ Fb (X) .

Here, k and n are integers, and ν is the initial probability measure on (X,X ).
The filtering probability is defined by φν,n[Y0:n] = φν,n|n[Y0:n]. In this section,
we will establish that under appropriate conditions on the transition kernel
Q and on the function g, the sequence of filtering probabilities satisfies a
property referred to in the literature as “forgetting of the initial condition”.
This property can be formulated as follows: given two probability measures ν
and ν′ on (X,X ),

lim
n→∞ ‖φν,n[Y0:n]− φν′,n[Y0:n]‖TV = 0 Pν�

-a.s. (4.28)

where ν� is the initial probability measure that defines the law of the ob-
servations {Yk}. Forgetting is also a concept that applies to the smoothing
distributions, as it is often possible to extend the previous results showing
that

lim
k→∞

sup
n≥0

∥∥φν,k|n[Y0:n]− φν′,k|n[Y0:n]
∥∥

TV = 0 Pν� -a.s. (4.29)

Equation (4.29) can also be strengthened by showing that, under additional
conditions, the forgetting property is uniform with respect to the observed
sequence Y0:n in the sense that there exists a deterministic sequence {ρk}
satisfying ρk → 0 and

sup
y0:n∈Yn+1

sup
n≥0

∥∥φν,k|n[y0:n]− φν′,k|n[y0:n]
∥∥

TV ≤ ρk .

Several of the results to be proven in the sequel are of this latter type (uniform
forgetting).
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As shown in (3.5), the smoothing distribution is defined as the ratio

φν,k|n[y0:n](f) =
∫
· · ·

∫
f(xk) ν(dx0) g(x0, y0)

∏n
i=1 Q(xi−1, dxi) g(xi, yi)∫

· · ·
∫
ν(dx0) g(x0, y0)

∏n
i=1 Q(xi−1, dxi) g(xi, yi)

.

Therefore, the mapping associating the probability measure ν ∈ M1(X,X ) to
the probability measure φν,k|n[y0:n] is non-linear. The theory developed above
allows one to separately control the numerator and the denominator of this
quantity but does not lend a direct proof of the forgetting properties (4.28) or
(4.29). To achieve this, we use the alternative representation of the smoothing
probability φν,k|n[y0:n] introduced in Proposition 3.3.4, which states that

φν,k|n[y0:n](f) =
∫
· · ·

∫
φν,0|n[y0:n](dx0)

k∏
i=1

Fi−1|n[yi:n](xi−1, dxi) f(xk)

= φν,0|n[y0:n]
k∏

i=1

Fi−1|n[yi:n]f . (4.30)

Here we have used the following notations and definitions from Chapter 3.

(i) Fi|n[yi+1:n] are the forward smoothing kernels (see Definition 3.3.1) given
for i = 0, . . . , n− 1, x ∈ X and A ∈ X , by

Fi|n[yi+1:n](x,A) def=
(
βi|n[yi+1:n](x)

)−1

×
∫

A

Q(x, dxi+1) g(xi+1, yi+1)βi+1|n[yi+2:n](xi+1) , (4.31)

where βi|n[yi+1:n](x) are the backward functions (see Definition 3.1.6)

βi|n[yi+1:n](x) =∫
· · ·

∫
Q(x, dxi+1) g(xi+1, yi+1)βi+1|n[yi+2:n](xi+1) . (4.32)

Recall that, by Proposition 3.3.2, {Fi|n}i≥0 are the transition kernels of
the non-homogeneous Markov chain {Xk} conditionally on Y0:n,

Eν [f(Xi+1) |X0:i, Y0:n] = Fi|n[Yi+1:n](Xi, f) .

(ii) φν,0|n[y0:n] is the posterior distribution of the state X0 conditionally on
Y0:n = y0:n, defined for any A ∈ X by

φν,0|n[y0:n](A) =

∫
A
ν(dx0) g(x0, y0)β0|n[y1:n](x0)∫
ν(dx0) g(x0, y0)β0|n[y1:n](x0)

. (4.33)

We see that the non-linear mapping ν 
→ φν,k|n[y0:n] is the composition of
two mappings on M1(X,X ).
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(i) The mapping ν 
→ φν,0|n[y0:n], which associates to the initial distribu-
tion ν the posterior distribution of the state X0 given Y0:n = y0:n. This
mapping consists in applying Bayes’ formula, which we write as

φν,0|n[y0:n] = B[g(·, y0)β0|n[y1:n](·), ν] .

Here

B[φ, ξ](f) =
∫
f(x)φ(x) ξ(dx)∫
φ(x) ξ(dx)

, f ∈ Fb (X) , (4.34)

for any probability measure ξ on (X,X ) and any non-negative measurable
function φ on X. Note that B[φ, ξ] is a probability measure on (X,X ).
Because of the normalization, this step is non-linear.

(ii) The mapping ξ 
→ ξ
∏k

i=1 Fi−1|n[yi:n], which is a linear mapping being
defined as product of Markov transition kernels.

For two initial probability measures ν and ν′ on (X,X ), the difference of
the associated smoothing distributions may thus be expressed as

φν,k|n[y0:n]− φν′,k|n[y0:n] =(
B[g(·, y0)β0|n[y1:n], ν]− B[g(·, y0)β0|n[y1:n], ν′]

) k∏
i=1

Fi−1|n[yi:n] . (4.35)

Note that the function g(x, y0)β0|n[y1:n](x) defined for x ∈ X may also be
interpreted as the likelihood of the observation Lδx,n[y0:n] when starting from
the initial condition X0 = x (Proposition 3.2.3). In the sequel, we use the
likelihood notation whenever possible, writing, in addition, Lx,n[y0:n] rather
than Lδx,n[y0:n] and L•,n[y0:n] when referring to the whole function.

Using Corollary 4.3.9, (4.35) implies that∥∥φν,k|n[y0:n]− φν,k|n[y0:n]
∥∥

TV ≤

‖B[L•,n[y0:n], ν]− B[L•,n[y0:n], ν′]‖TV δ

(
k∏

i=1

Fi−1|n[yi:n]

)
, (4.36)

where the final factor is a Dobrushin coefficient. Because Bayes operator B
returns probability measures, the total variation distance in the right-hand
side of this display is always bounded by 2. Although this bound may be
sufficient, it is often interesting to relate the total variation distance between
B[φ, ξ] and B[φ, ξ′] to the total variation distance between ξ and ξ′. The
following lemma is adapted from (Künsch, 2000)—see also (Del Moral, 2004,
Theorem 4.3.1).

Lemma 4.3.18. Let ξ and ξ′ be two probability measures on (X,X ) and let φ
be a non-negative measurable function such that ξ(φ) > 0 or ξ′(φ) > 0. Then

‖B[φ, ξ]− B[φ, ξ′]‖TV ≤
‖φ‖∞

ξ(φ) ∨ ξ′(φ)
‖ξ − ξ′‖TV . (4.37)
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Proof. We may assume, without loss of generality, that ξ(φ) ≥ ξ′(φ). For any
f ∈ Fb (X),

B[φ, ξ](f)− B[φ, ξ′](f)

=
∫
f(x)φ(x) (ξ − ξ′)(dx)∫

φ(x) ξ(dx)
+

∫
f(x)φ(x) ξ′(dx)∫
φ(x) ξ′(dx)

∫
φ(x) (ξ′ − ξ)(dx)∫

φ(x) ξ(dx)

=
1

ξ(φ)

∫
(ξ − ξ′)(dx)φ(x)(f(x)− B[φ, ξ′](f)) .

By Lemma 4.3.5,∣∣∣∣∫ (ξ − ξ′)(dx)φ(x)(f(x)− B[φ, ξ′](f))
∣∣∣∣ ≤ ‖ξ − ξ′‖TV×

1
2

sup
(x,x′)∈X×X

|φ(x)(f(x)− B[φ, ξ′](f))− φ(x′)(f(x′)− B[φ, ξ′](f))| .

Because |B[φ, ξ′](f)| ≤ ‖f‖∞ and φ ≥ 0, the supremum on the right-hand
side of this display is bounded by 2 ‖φ‖∞ ‖f‖∞. This concludes the proof. ��

As mentioned by Künsch (2000), the Bayes operator may be non-contractive:
the numerical factor in the right-hand side of (4.37) is sometimes larger than
one and the bound may be shown to be tight on particular examples. The
intuition that the posteriors should at least be as close as the priors if the
same likelihood (the same data) is applied is thus generally wrong.

Equation (4.30) also implies that for any integer j such that j ≤ k,

φν,k|n[y0:n] = φν,0|n[y0:n]
j∏

i=1

Fi−1|n[yi:n]
k∏

i=j+1

Fi−1|n[yi:n]

= φν,j|n[y0:n]
k∏

i=j+1

Fi−1|n[yi:n] . (4.38)

This decomposition and Corollary 4.3.9 shows that for any 0 ≤ j ≤ k, any
initial distributions ν and ν′ and any sequence y0:n such that Lν,n[y0:n] > 0
and Lν′,n[y0:n] > 0,∥∥φν,k|n[y0:n]− φν′,k|n[y0:n]

∥∥
TV

≤ δ

⎛⎝ k∏
i=j+1

Fi−1|n[yi:n]

⎞⎠ ∥∥φν,j|n[y0:n]− φν′,j|n[y0:n]
∥∥

TV .

Because the Dobrushin coefficient of a Markov kernel is bounded by one, this
relation implies that the total variation distance between the smoothing dis-
tributions associated with two different initial distributions is non-expanding.
To summarize this discussion, we have obtained the following result.
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Proposition 4.3.19. Let ν and ν′ be two probability measures on (X,X ). For
any non-negative integers j, k, and n such that j ≤ k and any sequence
y0:n ∈ Yn+1 such that Lν,n[y0:n] > 0 and Lν′,n[y0:n] > 0,∥∥φν,k|n[y0:n]− φν′,k|n[y0:n]

∥∥
TV

≤ δ

⎛⎝ k∏
i=j+1

Fi−1|n[yi:n]

⎞⎠∥∥φν,j|n[y0:n]− φν′,j|n[y0:n]
∥∥

TV , (4.39)

∥∥φν,k|n[y0:n]− φν′,k|n[y0:n]
∥∥

TV

≤ ‖L•,n[y0:n]‖∞
Lν,n[y0:n] ∨ Lν′,n[y0:n]

δ

(
k∏

i=1

Fi−1|n[yi:n]

)
‖ν − ν′‖TV . (4.40)

Along the same lines, we can compare the posterior distribution of the
state Xk given observations Yj:n for different values of j. To avoid intro-
ducing new notations, we will simply denote these conditional distributions
by Pν (Xk ∈ · |Yj:n = yj:n). As mentioned in the introduction of this chap-
ter, it is sensible to expect that Pν (Xk ∈ · |Yj:n) gets asymptotically close
to Pν (Xk ∈ · |Y0:n) as k − j tends to infinity. Here again, to establish this
alternative form of the forgetting property, we will use a representation of
Pν (Xk ∈ · |Yj:n) similar to (4.30).

Because {(Xk, Yk)} is a Markov chain, and assuming that k ≥ j,

Pν (Xk ∈ · |Xj , Yj:n) = Pν (Xk ∈ · |Xj , Y0:n) .

Moreover, we know that conditionally on Y0:n, {Xk} is a non-homogeneous
Markov chain with transition kernels Fk|n[Yk+1:n] where Fi|n = Q for i ≥ n
(Proposition 3.3.2). Therefore the Chapman-Kolmogorov equations show that
for any function f ∈ Fb (X),

Eν [f(Xk) |Yj:n] = Eν [Eν [f(Xk) |Xj , Yj:n] |Yj:n]

= Eν

⎡⎣ k∏
i=j+1

Fi−1|n[Yi:n]f(Xj)

∣∣∣∣∣∣ Yj:n

⎤⎦ = φ̃ν,j|n[Yj:n]
k∏

i=j+1

Fi−1|n[Yi:n]f ,

cf. (4.38), where the probability measure φ̃ν,j|n[Yj:n(f)] is defined by

φ̃ν,j|n[Yj:n](f) = Eν [f(Xj) |Yj:n] , f ∈ Fb (X) .

Using (4.38) as well, we thus find that the difference between Pν (Xk ∈ · |Yj:n)
and Pν (Xk ∈ · |Y0:n) may be expressed by

Eν [f(Xk) |Yj:n]− Eν [f(Xk) |Y0:n] = (φ̃ν,j|n − φν,j|n)
k∏

i=j+1

Fi−1|n[Yi:n]f .
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Proceeding like in Proposition 4.3.19, we may thus derive a bound on the total
variation distance between these probability measures.

Proposition 4.3.20. For any integers j, k, and n such that 0 ≤ j ≤ k and
any probability measure ν on (X,X ),

‖Pν (Xk ∈ · |Y0:n)− Pν (Xk ∈ · |Yj:n)‖TV ≤ 2δ

⎛⎝ k∏
i=j+1

Fi−1|n[Yi:n]

⎞⎠ .

(4.41)

4.3.5 Uniform Forgetting Under Strong Mixing Conditions

In light of the discussion above, establishing forgetting properties amounts
to determining non-trivial bounds on the Dobrushin coefficient of prod-
ucts of forward transition kernels and, if required, on ratio of likelihoods
Lx,n(y0:n)/(Lν,n(y0:n) ∨ Lν′,n(y0:n)). To do so, we need to impose additional
conditions on Q and g. We consider in this section the following assumption,
which was introduced by Le Gland and Oudjane (2004, Section 2).

Assumption 4.3.21 (Strong Mixing Condition). There exist a transi-
tion kernel K : (Y,Y) → (X,X ) and measurable functions ς− and ς+ from Y
to (0,∞) such that for any A ∈ X and y ∈ Y,

ς−(y)K(y,A) ≤
∫

A

Q(x, dx′) g(x′, y) ≤ ς+(y)K(y,A) . (4.42)

We first show that under this condition, one may derive a non-trivial upper
bound on the Dobrushin coefficient of the forward smoothing kernels.

Lemma 4.3.22. Under Assumption 4.3.21, the following hold true.

(i) For any non-negative integers k and n such that k < n and x ∈ X,

n∏
j=k+1

ς−(yj) ≤ βk|n[yk+1:n](x) ≤
n∏

j=k+1

ς+(yj) . (4.43)

(ii) For any non-negative integers k and n such that k < n and any probability
measures ν and ν′ on (X,X ),

ς−(yk+1)
ς+(yk+1)

≤
∫
X ν(dx)βk|n[yk+1:n](x)∫
X ν′(dx)βk|n[yk+1:n](x)

≤ ς+(yk+1)
ς−(yk+1)

.

(iii) For any non-negative integers k and n such that k < n, there exists a
transition kernel λk,n from (Yn−k,Y⊗(n−k)) to (X,X ) such that for any
x ∈ X, A ∈ X , and yk+1:n ∈ Yn−k,
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ς−(yk+1)
ς+(yk+1)

λk,n(yk+1:n, A) ≤ Fk|n[yk+1:n](x,A)

≤ ς+(yk+1)
ς−(yk+1)

λk,n(yk+1:n, A) . (4.44)

(iv) For any non-negative integers k and n, the Dobrushin coefficient of the
forward smoothing kernel Fk|n[yk+1:n] satisfies

δ(Fk|n[yk+1:n]) ≤
{
ρ0(yk+1) k < n ,

ρ1 k ≥ n ,

where for any y ∈ Y,

ρ0(y)
def= 1− ς−(y)

ς+(y)
and ρ1

def= 1−
∫

ς−(y)µ(dy) . (4.45)

Proof. Take A = X in Assumption 4.3.21 to see that
∫
X Q(x, dx′) g(x′, y) is

bounded from above and below by ς+(y) and ς−(y), respectively. Part (i) then
follows from (3.16).

Next, (3.19) shows that∫
ν(dx)βk|n[yk+1:n](x)

=
∫∫

ν(dx)Q(x, dxk+1) g(xk+1, yk+1)βk+1|n[yk+2:n](xk+1) .

This expression is bounded from above by

ς+(yk+1)
∫

K(yk+1, dxk+1)βk+1|n[yk+2:n](xk+1) ,

and similarly a lower bound, with ς−(yk+1) rather than ς+(yk+1), holds too.
These bounds are independent of ν, and (ii) follows.

We turn to part (iii). Using the definition (3.30), the forward kernel
Fk|n[yk+1:n] may be expressed as

Fk|n[yk+1:n](x,A) =

∫
A
Q(x, dxk+1) g(xk+1, yk+1)βk+1|n[yk+2:n](xk+1)∫

X Q(x, dxk+1) g(xk+1, yk+1)βk+1|n[yk+2:n](xk+1)
.

Using arguments as above, (4.44) holds with

λk,n(yk+1:n, A) def=

∫
A
K(yk+1, dxk+1)βk+1|n[yk+2:n](xk+1)∫

X K(yk+1, dxk+1)βk+1|n[yk+2:n](xk+1)
.

Finally, part (iv) for k < n follows from part (iii) and Lemma 4.3.13. In the
opposite case, recall from (3.31) that Fk|n = Q for indices k ≥ n. Integrating
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(4.42) with respect to µ and using
∫
g(x, y)µ(dy) = 1, we find that for any

A ∈ X and any x ∈ X,

Q(x,A) ≥
∫

ς−(y)K(y,A)µ(dy) =
∫

ς−(y)µ(dy)×
∫
ς−(y)K(y,A)µ(dy)∫

ς−(y)µ(dy)
,

where the ratio on the right-hand side is a probability measure. The proof of
part (iv) again follows from Lemma 4.3.13. ��

The final part of the above lemma shows that under Assumption 4.3.21,
the Dobrushin coefficient of the transition kernel Q satisfies δ(Q) ≤ 1− ε for
some ε > 0. This is in fact a rather stringent assumption, which fails to be
satisfied in many of the examples considered in Chapter 1. When X is finite,
this condition is satisfied if Q(x, x′) ≥ ε for any (x, x′) ∈ X × X. When X is
countable, δ(Q) < 1 is satisfied under the Doeblin condition 4.3.11 with n = 1.
When X ⊆ R

d or more generally is a topological space, δ(Q) < 1 typically
requires that X is compact, which is, admittedly, a serious limitation.

Proposition 4.3.23. Under 4.3.21 the following hold true.

(i) For any non-negative integers k and n and any probability measures ν
and ν′ on (X,X ),∥∥φν,k|n[y0:n]− φν′,k|n[y0:n]

∥∥
TV

≤
k∧n∏
j=1

ρ0(yj)× ρk−k∧n
1

∥∥φν,0|n[y0:n]− φν′,0|n[y0:n]
∥∥

TV ,

where ρ0 and ρ1 are defined in (4.45).
(ii) For any non-negative integer n and any probability measures ν and ν′ on

(X,X ) such that
∫
ν(dx0) g(x0, y0) > 0 and

∫
ν′(dx0) g(x0, y0) > 0,∥∥φν,0|n[y0:n]− φν′,0|n[y0:n]

∥∥
TV

≤ ς+(y1)
ς−(y1)

‖g‖∞
ν(g(·, y0)) ∨ ν′(g(·, y0))

‖ν − ν′‖TV .

(iii) For any non-negative integers j, k, and n such that j ≤ k and any
probability measure ν on (X,X ),

‖Pν (Xk ∈ · |Y0:n = y0:n)− Pν(Xk ∈ · |Yj:n = yj:n)‖TV

≤ 2
k∧n∏

i=j∧n+1

ρ0(yi)× ρ
k−j−(k∧n−j∧n)
1 .

Proof. Using Lemma 4.3.22(iv) and Proposition 4.3.10, we find that for j ≤ k,

δ(Fj|n[yj+1:n] · · ·Fk|n[yk+1:n]) ≤
k∧n∏

i=j∧n+1

ρ0(yi)× ρ
k−j−(k∧n−j∧n)
1 .
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Parts (i) and (iii) then follow from Propositions 4.3.19 and 4.3.20, respectively.
Next we note that (4.33) shows that

φν,0|n[y0:n] = B
[
β0|n[y1:n](·),B[g(·, y0), ν]

]
.

Apply Lemma 4.3.18 twice to this form to arrive at a bound on the total
variation norm of the difference φν,0|n[y0:n]− φν′,0|n[y0:n] given by∥∥β0|n[y1:n]

∥∥
∞

B[g(·, y0), ν](β0|n[y1:n])
× ‖g(·, y0)‖∞

ν(g(·, y0)) ∨ ν′(g(·, y0))
‖ν − ν′‖TV .

Finally, bound the first ratio of this display using Lemma 4.3.22(ii); the supre-
mum norm is obtained by taking one of the initial measures as an atom at
some point x ∈ X. This completes the proof of part (ii). ��

From the above it is clear that forgetting properties stem from properties
of the product

k∧n∏
i=j∧n+1

ρ0(Yi)ρ
k−j−(k∧n−j∧n)
1 . (4.46)

The situation is elementary when the factors of this product are (non-trivially)
upper-bounded uniformly with respect to the observations Y0:n. To obtain
such bounds, we consider the following strengthening of the strong mixing
condition, first introduced by Atar and Zeitouni (1997).

Assumption 4.3.24 (Strong Mixing Reinforced).

(i) There exist two positive real numbers σ− and σ+ and a probability mea-
sure κ on (X,X ) such that for any x ∈ X and A ∈ X ,

σ−κ(A) ≤ Q(x,A) ≤ σ+κ(A) .

(ii) For all y ∈ Y, 0 <
∫
X κ(dx) g(x, y) <∞.

It is easily seen that this implies Assumption 4.3.21.

Lemma 4.3.25. Assumption 4.3.24 implies Assumption 4.3.21 with ς−(y) =
σ− ∫

X κ(dx) g(x, y), ς+(y) = σ+
∫
X κ(dx) g(x, y), and

K(y,A) =

∫
A
κ(dx) g(x, y)∫

X κ(dx) g(x, y)
.

In particular, ς−(y)/ς+(y) = σ−/σ+ for any y ∈ Y.

Proof. The proof follows immediately upon observing that

σ−
∫

A

κ(dx′) g(x′, y) ≤
∫

A

Q(x, dx′) g(x′, y) ≤ σ+
∫

A

κ(dx′) g(x′, y) .

��
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Replacing Assumption 4.3.21 by Assumption 4.3.24, Proposition 4.3.23
may be strengthened as follows.

Proposition 4.3.26. Under Assumption 4.3.24, the following hold true.

(i) For any non-negative integers k and n and any probability measures ν
and ν′ on (X,X ),∥∥φν,k|n[y0:n]− φν′,k|n[y0:n]

∥∥
TV

≤
(

1− σ−

σ+

)k∧n

(1− σ−)k−k∧n
∥∥φν,0|n[y0:n]− φν′,0|n[y0:n]

∥∥
TV .

(ii) For any non-negative integer n and any probability measures ν and ν′ on
(X,X ) such that

∫
ν(dx0) g(x0, y0) > 0 and

∫
ν′(dx0) g(x0, y0) > 0,∥∥φν,0|n[y0:n]− φν′,0|n[y0:n]

∥∥
TV

≤ σ+

σ−
‖g‖∞

ν[g(·, y0)] ∨ ν′[g(·, y0)]
‖ν − ν′‖TV .

(iii) For any non-negative integers j, k, and n such that j ≤ k and any
probability measure ν on (X,X ),

‖Pν (Xk ∈ · |Y0:n = y0:n)− Pν (Xk ∈ · |Yj:n = yj:n)‖TV

≤ 2
(

1− σ−

σ+

)k∧n−j∧n (
1− σ−)k−j−(k∧n−j∧n)

.

Thus, under Assumption 4.3.24 the filter and the smoother forget their
initial conditions exponentially fast, uniformly with respect to the observa-
tions. This property, which holds under rather stringent assumptions, plays a
key role in the sequel (see for instance Chapters 9 and 12).

Of course, the product (4.46) can be shown to vanish asymptotically under
conditions that are less stringent than Assumption 4.3.24. A straightforward
adaptation of Lemma 4.3.25 shows that the following result is true.

Lemma 4.3.27. Assume 4.3.21 and that there exists a set C ∈ Y and con-
stants 0 < σ− ≤ σ+ < ∞ satisfying µ(C) > 0 and, for all y ∈ C,
σ− ≤ ς−(y) ≤ ς+(y) ≤ σ+. Then, ρ0(y) ≤ 1 − σ−/σ+, ρ1 ≥ 1 − σ−µ(C)
and

k∧n∏
i=j∧n+1

ρ0(Yi)ρ
k−j−(k∧n−j∧n)
1

≤
(
1− σ−/σ+)∑k∧n

i=j∧n+1 1C(Yi) [1− σ−µ(C)
]k−j−(k∧n−j∧n)

. (4.47)
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In words, forgetting is guaranteed to occur when {Yk} visits a given set C
infinitely often in the long run. Of course, such a property cannot hold true
for all possible sequences of observations but it may hold with probability one
under appropriate assumptions on the law of {Yk}, assuming in particular
that the observations are distributed under the model, perhaps with a dif-
ferent initial distribution ν�. To answer whether this happens or not requires
additional results from the general theory of Markov chains, and we postpone
this discussion to Section 14.3 (see in particular Proposition 14.3.8 on the
recurrence of the joint chain in HMMs).

4.3.6 Forgetting Under Alternative Conditions

Because Assumptions 4.3.21 and 4.3.24 are not satisfied in many contexts of
interest, it is worthwhile to consider ways in which these assumptions can be
weakened. This happens to raise difficult mathematical challenges that largely
remain unsolved today. Perhaps surprisingly, despite many efforts in this di-
rection, there is up to now no truly satisfactory assumption that covers a
reasonable fraction of the situations of practical interest. The problem really
is more complicated than appears at first sight. In particular, Example 4.3.28
below shows that the forgetting property does not necessarily hold under as-
sumptions that imply that the underlying Markov chain is uniformly ergodic.
This last section on forgetting is more technical and requires some knowledge
of Markov chain theory as can be found in Chapter 14.

Example 4.3.28. This example was first discussed by Kaijser (1975) and re-
cently worked out by Chigansky and Lipster (2004). Let {Xk} be a Markov
chain on X = {0, 1, 2, 3}, defined by the recurrence equation Xk = (Xk−1 + Uk)
mod 4, where {Uk} is an i.i.d. binary sequence with P(Bk = 0) = p and
P(Bk = 1) = 1− p for some 0 < p < 1. For any (x, x′) ∈ X×X, Q4(x, x′) > 0,
which implies that δ(Q4) < 1 and, by Theorem 4.3.16, that the chain is
uniformly geometrically ergodic. The observations {Yk} are a deterministic
binary function of the chain, namely

Yk = 1{0,2}(Xk) .

The function mapping Xk to Yk is not injective, but knowledge of Yk indicates
two possible values of Xk. The filtering distribution is given recursively by

φν,k[y0:k](0) = yk {φν,k−1[y0:k−1](0) + φν,k−1[y0:k−1](3)} ,

φν,k[y0:k](1) = (1− yk) {φν,k−1[y0:k−1](1) + φν,k−1[y0:k−1](0)} ,

φν,k[y0:k](2) = yk {φν,k−1[y0:k−1](2) + φν,k−1[y0:k−1](1)} ,

φν,k[y0:k](3) = (1− yk) {φν,k−1[y0:k−1](3) + φν,k−1[y0:k−1](2)} .

In particular, either one of the two sets {0, 2} and {1, 3} has null probability
under φν,k[y0:k], depending on the value of yk, and irrespectively of the choice
of ν. We also notice that
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yk φν,k[y0:k](j) = φν,k[y0:k](j) , for j = 0, 2,
(1− yk)φν,k[y0:k](j) = φν,k[y0:k](j) , for j = 1, 3. (4.48)

In addition, it is easily checked that, except when ν({0, 2}) or ν({1, 3})
equals 1 (which rules out one of the two possible values for y0), the like-
lihood Lν,n[y0:n] is strictly positive for any integer n and any sequence
y0:n ∈ {0, 1}n+1.

Dropping the dependence on y0:k for notational simplicity and using (4.48)
we obtain

|φν,k(0)− φν′,k(0)|
= yk|φν,k−1(0)− φν′,k−1(0) + φν,k−1(3)− φν′,k−1(3)|
= yk {yk−1|φν,k−1(0)− φν′,k−1(0)|+ (1− yk−1)|φν,k−1(3)− φν′,k−1(3)|} .

Proceeding similarly, we also find that

|φν,k(1)− φν′,k(1)| =
(1− yk) {(1− yk−1)|φν,k−1(1)− φν′,k−1(1)|+ yk−1|φν,k−1(0)− φν′,k−1(0)|} ,

|φν,k(2)− φν′,k(2)| =
yk {yk−1|φν,k−1(2)− φν′,k−1(2)|+ (1− yk−1)|φν,k−1(1)− φν′,k−1(1)|} ,

|φν,k(3)− φν′,k(3)| =
(1− yk) {(1− yk−1)|φν,k−1(3)− φν′,k−1(3)|+ yk−1|φν,k−1(2)− φν′,k−1(2)|} .

Adding the above equalities using (4.48) again shows that for any k = 1, . . . , n,

‖φν,k[y0:k]− φν′,k[y0:k]‖TV = ‖φν,k−1[y0:k−1]− φν′,k−1[y0:k−1]‖TV

= ‖φν,0[y0]− φν′,0[y0]‖TV .

By construction, φν,0[y0](j) = y0 ν(j)/(ν(0) + ν(2)) for j = 0 and 2, and
φν,0[y0](j) = (1 − y0) ν(j)/(ν(1) + ν(3)) for j = 1 and 3. This implies that
‖φν,0[y0]− φν′,0[y0]‖TV �= 0 if ν �= ν′.

In this model, the hidden Markov chain {Xk} is uniformly ergodic, but
the filtering distributions φν,k[y0:k] never forget the influence of the initial
distribution ν, whatever the observed sequence. �

In the above example, the kernel Q does not satisfy Assumption 4.3.24
with m = 1 (one-step minorization), but the condition is verified for a power
Qm (here for m = 4). This situation is the rule rather than the exception.
In particular, a Markov chain on a finite state space has a unique invariant
probability measure and is ergodic if and only if there exists an integer m > 0
such that Qm(x, x′) > 0 for all (x, x′) ∈ X × X (but the condition may not
hold for m = 1). This suggests considering the following assumption (see for
instance Del Moral, 2004, Chapter 4).



112 4 Advanced Topics in Smoothing

Assumption 4.3.29.

(i) There exist an integer m, two positive real numbers σ− and σ+, and a
probability measure κ on (X,X ) such that for any x ∈ X and A ∈ X ,

σ−κ(A) ≤ Qm(x,A) ≤ σ+κ(A) .

(ii) There exist two measurable functions g− and g− from Y to (0,∞) such
that for any y ∈ Y,

g−(y) ≤ inf
x∈X

g(x, y) ≤ sup
x∈X

g(x, y) ≤ g+(y) .

Compared to Assumption 4.3.24, the condition on the transition kernel has
been weakened, but at the expense of strengthening the assumption on the
function g. Note in particular that part (ii) is not satisfied in Example 4.3.28.

Using (4.30) and writing k = jm + r with 0 ≤ r < m, we may express
φν,k|n[y0:n] as

φν,k|n[y0:n] = φν,0|n[y0:n]
j−1∏
u=0

⎛⎝(u+1)m−1∏
i=um

Fi|n[yi+1:n]

⎞⎠ k−1∏
i=jm

Fi|n[yi+1:n] .

This implies, using Corollary 4.3.9, that for any probability measures ν and ν′

on (X,X ) and any sequence y0:n satisfying Lν,n[y0:n] > 0 and Lν′,n[y0:n] > 0,∥∥φν,k|n[y0:n]− φν′,k|n[y0:n]
∥∥

TV

≤
j−1∏
u=0

δ

⎛⎝(u+1)m−1∏
i=um

Fi|n[yi+1:n]

⎞⎠∥∥φν,0|n[y0:n]− φν′,0|n[y0:n]
∥∥

TV . (4.49)

This expression suggest computing a bound on δ(
∏um+m−1

i=um Fi|n[yi+1:n])
rather than a bound on δ(Fi|n). The following result shows that such a bound
can be derived under Assumption 4.3.29.

Lemma 4.3.30. Under Assumption 4.3.29, the following hold true.

(i) For any non-negative integers k and n such that k < n and x ∈ X,

n∏
j=k+1

g−(yj) ≤ βk|n[yk+1:n](x) ≤
n∏

j=k+1

g+(yj) , (4.50)

where βk|n is the backward function (3.16).
(ii) For any non-negative integers u and n such that 0 ≤ u < �n/m� and any

probability measures ν and ν′ on (X,X ),

σ−

σ+

(u+1)m∏
i=um+1

g−(yi)
g+(yi)

≤
∫
X ν(dx)βum|n[yum+1:n](x)∫
X ν′(dx)βum|n[yum+1:n](x)

≤ σ+

σ−

(u+1)m∏
i=um+1

g+(yi)
g−(yi)

.
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(iii) For any non-negative integers u and n such that 0 ≤ u < �n/m�, there ex-
ists a transition kernel λu,n from

(
Y(n−(u+1)m),Y⊗(n−(u+1)m)

)
to (X,X )

such that for any x ∈ X, A ∈ X and yum+1:n ∈ Y(n−um),

σ−

σ+

(u+1)m∏
i=um+1

g−(yi)
g+(yi)

λu,n(y(u+1)m+1:n, A) ≤
(u+1)m−1∏

i=um

Fi|n[yi+1:n](x,A)

≤ σ+

σ−

(u+1)m∏
i=um+1

g+(yi)
g−(yi)

λu,n(y(u+1)m+1:n, A) . (4.51)

(iv) For any non-negative integers u and n,

δ

⎛⎝(u+1)m−1∏
i=um

Fi|n[yi+1:n]

⎞⎠ ≤
{
ρ0(yum+1:(u+1)m) u < �n/m� ,
ρ1 u ≥ �n/m� ,

where for any yum+1:(u+1)m ∈ Ym,

ρ0(yum+1:(u+1)m) def= 1−σ−

σ+

(u+1)m∏
i=um+1

g−(yi)
g+(yi)

and ρ1
def= 1−σ− . (4.52)

Proof. Part (i) can be proved using an argument similar to the one used for
Lemma 4.3.22(i).

Next notice that for 0 ≤ u < �n/m�,

βum|n[yum+1:n](xum)

=
∫
· · ·

∫ (u+1)m∏
i=um+1

Q(xi−1, dxi) g(xi, yi)β(u+1)m|n[y(u+1)m+1:n](x(u+1)m) .

Under Assumption 4.3.29, dropping the dependence on the ys for notational
simplicity, the right-hand side of this display is bounded from above by

(u+1)m∏
i=um+1

g+(yi)
∫
· · ·

∫ (u+1)m∏
i=um+1

Q(xi−1, dxi)β(u+1)m|n(x(u+1)m)

≤ σ+
(u+1)m∏
i=um+1

g+(yi)
∫

β(u+1)m|n(x(u+1)m)κ(dx(u+1)m) .

In a similar fashion, a lower bound may be obtained, containing σ− and g−

rather than σ+ and g+. Thus part (ii) follows.
For part (iii), we use (3.30) to write
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(u+1)m−1∏
i=um

Fi|n[yi+1:n](xum, A)

=

∫
· · ·

∫ ∏(u+1)m
i=um+1 Q(xi−1, xi) g(xi, yi)1A(x(u+1)m)β(u+1)m|n(x(u+1)m)∫
· · ·

∫ ∏(u+1)m
i=um+1 Q(xi−1, xi) g(xi, yi)β(u+1)m|n(x(u+1)m)

.

The right-hand side is bounded from above by

σ+

σ−

(u+1)m∏
i=um+1

g+(yi)
g−(yi)

×
∫

A
κ(dx)β(u+1)m|n[y(u+1)m+1:n](x)∫
κ(dx)β(u+1)m|n[y(u+1)m+1:n](x)

.

We define λu,n as the second ratio of this expression. Again a corresponding
lower bound is obtained similarly, proving part (iii).

Part (iv) follows from part (iii) and Lemma 4.3.13. ��

Using this result together with (4.49), we may obtain statements analogous
to Proposition 4.3.23. In particular, if there exist positive real numbers γ−

and γ+ such that for all y ∈ Y,

γ− ≤ g−(y) ≤ g+(y) ≤ γ+ ,

then the smoothing and the filtering distributions both forget uniformly the
initial distribution.

Assumptions 4.3.24 and 4.3.29 are still restrictive and fail to hold in many
interesting situations. In both cases, we assume that either the one-step or
the m-step transition kernel is uniformly bounded from above and below.
The following weaker condition is a first step toward handling more general
settings.

Assumption 4.3.31. Let Q be dominated by a probability measure κ on
(X,X ) such that for any x ∈ X and A ∈ X , Q(x,A) =

∫
A
qκ(x, x′)κ(dx′) for

some transition density function qκ. Assume in addition that

(i) There exists a set C ∈ X , two positive real numbers σ− and σ+ such that
for all x ∈ C and x′ ∈ X,

σ− ≤ qκ(x, x′) ≤ σ+ .

(ii) For all y ∈ Y and all x ∈ X,
∫

C
qκ(x, x′) g(x′, y)κ(dx′) > 0;

(iii) There exists a (non-identically null) function α : Y → [0, 1] such that for
any (x, x′) ∈ X× X and y ∈ Y,∫

C
ρ[x, x′ ; y](x′′)κ(dx′′)∫

X ρ[x, x′ ; y](x′′)κ(dx′′)
≥ α(y) ,

where for (x, x′, x′′) ∈ X3 and y ∈ Y,

ρ[x, x′ ; y](x′′) def= qκ(x, x′′)g(x′′, y)qκ(x′′, x′) . (4.53)
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Part (i) of this assumption implies that the set C is 1-small for the kernel
Q (see Definition 14.2.10). It it shown in Section 14.2.2.2 that such small
sets do exist under conditions that are weak and generally simple to check.
Assumption 4.3.31 is trivially satisfied under Assumption 4.3.24 using the
whole state space X as the state C: in that case, their exists a transition density
function qκ(x, x′) that is bounded from above and below for all (x, x′) ∈ X2. It
is more interesting to consider cases in which the hidden chain is not uniformly
ergodic. One such example, first addressed by Budhiraja and Ocone (1997),
is a Markov chain observed in noise with bounded support.

Example 4.3.32 (Markov Chain in Additive Bounded Noise). We con-
sider real states {Xk} and observations {Yk}, assuming that the states form
a Markov chain with a transition density q(x, x′) with respect to Lebesgue
measure. Furthermore we assume the following.

(i) Yk = Xk + Vk, where {Vk} is an i.i.d. sequence of satisfying P(|V | ≥
M) = 0 for some finite M (the essential supremum of the noise sequence
is bounded). In addition, Vk has a probability density g with respect to
Lebesgue measure.

(ii) The transition density satisfies q(x, x′) > 0 for all (x, x′) and there exists
a positive constant A, a probability density h and positive constants σ−

and σ+ such that for all x ∈ C = [−A−M,A + M ],

σ−h(x′) ≤ q(x, x′) ≤ σ+h(x′) .

The results below can readily be extended to cover the case Yk = ψ(Xk)+Vk,
provided that the level sets {x ∈ R : |ψ(x)| ≤ K} of the function ψ are
compact. This is equivalent to requiring |ψ(x)| → ∞ as |x| → ∞. Likewise
extensions to multivariate states and/or observations are obvious.

Under (ii), Assumption 4.3.31(i) is satisfied with C as above and κ(dx) =
h(x) dx. Denote by φ the probability density of the random variables Vk.
Then g(x, y) = φ(y − x). The density φ may be chosen such that suppφ ⊆
[−M,+M ], so that g(x, y) > 0 if and only if x ∈ [y −M,y + M ]. To verify
Assumption 4.3.31(iii), put Γ = [−A,A]. For y ∈ Γ , we then have g(x, y) = 0
if x �∈ [−A−M,A + M ], and thus∫

q(x, x′′)g(x′′, y)q(x′′, x′) dx′′ =
∫ A+M

−A−M

q(x, x′′)g(x′′, y)q(x′′, x′) dx′′ .

This implies that for all (x, x′) ∈ X× X,∫
C
q(x, x′′)g(x′′, y)q(x′′, x′) dx′′∫

X q(x, x′′)g(x′′, y)q(x′′, x′) dx′′ = 1 .

The bounded noise case is of course very specific, because an observation Yk

allows locating the corresponding state Xk within a bounded set. �
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Under assumption 4.3.31, the lemma below establishes that the set C is a
1-small set for the forward transition kernels Fk|n[yk+1:n] and that it is also
uniformly accessible from the whole space X (for the same kernels).

Lemma 4.3.33. Under Assumption 4.3.31, the following hold true.

(i) For any initial probability measure ν on (X,X ) and any sequence y0:n ∈
Yn+1 satisfying

∫
C
ν(dx0) g(x0, y0) > 0,

Lν,n(y0:n) > 0 .

(ii) For any non-negative integers k and n such that k < n and any y0:n ∈
Yn+1, the set C is a 1-small set for the transitions kernels Fk|n. Indeed
there exists a transition kernel λk,n from (Y(n−k),Y⊗(n−k)) to (X,X )
such that for all x ∈ C, yk+1:n ∈ Yn−k and A ∈ X ,

Fk|n[yk+1:n](x,A) ≥ σ−

σ+ λk,n[yk+1:n](A) .

(iii) For any non-negative integers k and n such that n ≥ 2 and k < n − 1,
and any yk+1:n ∈ Yn−k,

inf
x∈X

Fk|n[yk+1:n](x,C) ≥ α(yk+1) .

Proof. Write

Lν,n(y0:n) =
∫
· · ·

∫
ν(dx0) g(x0, y0)

n∏
i=1

Q(xi−1, dxi) g(xi, yi)

≥
∫
· · ·

∫
ν(dx0) g(x0, y0)

n∏
i=1

Q(xi−1, dxi) g(xi, yi)1C(xi−1)

≥
∫

C

ν(dx0) g(x0, y0)
(
σ−)n

n∏
i=1

∫
C

g(xi, yi)κ(dxi) ,

showing part (i). The proof of (ii) is similar to that of Lemma 4.3.22(iii). For
(iii), write

Fk|n[yk+1:n](x,C)

=
∫∫

ρ[x, xk+2 ; yk+1](xk+1)1C(xk+1)ϕ[yk+2:n](xk+2)κ(dxk+1:k+2)∫∫
ρ[x, xk+2 ; yk+1](xk+1)ϕ[yk+2:n](xk+2)κ(dxk+1:k+2)

=
∫∫

Φ[yk+1](x, xk+2)ρ[x, xk+2 ; yk+1](xk+1)ϕ[yk+2:n](xk+2)κ(dxk+1:k+2)∫∫
ρ[x, xk+2 ; yk+1](xk+1)ϕ[yk+2:n](xk+2)κ(dxk+1:k+2)

.

where ρ is defined in (4.53) and

ϕ[yk+2:n](xk+2) = g(xk+2, yk+2)βk+2|n[yk+3:n](xk+2) ,

Φ[yk+1](x, xk+2) =
∫
ρ[x, xk+2 ; yk+1](xk+1)1C(xk+1)κ(dxk+1)∫

ρ[x, xk+2 ; yk+1](xk+1)κ(dxk+1)
.
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Under Assumption 4.3.31, Φ(x, x′ ; y) ≥ α(y) for all (x, x′) ∈ X×X and y ∈ Y,
which concludes the proof. ��

The corollary below then shows that the whole set X is a 1-small set for the
composition Fk|n[yk+1:n]Fk+1|n[yk+2:n]. This generalizes a well-known result
for homogeneous Markov chains (see Proposition 14.2.12).

Corollary 4.3.34. Under Assumption 4.3.31, for positive indices 2 ≤ k ≤ n,

∥∥φν,k|n[y0:n]− φν′,k|n[y0:n]
∥∥

TV ≤ 2
	k/2
−1∏

j=0

[
1− σ−

σ+α(y2j+1)
]
.

Proof. Because of Lemma 4.3.33(i), we may use the decomposition in (4.39)
with j = 0 bounding the total variation distance by 2 to obtain

∥∥φν,k|n[y0:n]− φν′,k|n[y0:n]
∥∥

TV ≤ 2
k−1∏
j=0

δ
(
Fj|n[yj+1:n]

)
.

Now, using assertions (ii) and (iii) of Lemma 4.3.33,

Fj|n[yj+1:n]Fj+1|n[yj+2:n](x,A)

≥
∫

C

Fj|n[yj+1:n](x, dx′)Fj+1|n[yj+2:n](x′, A)

≥ α(yj+1)
σ−

σ+ λj+1,n[yj+2:n](A) ,

for all x ∈ X and A ∈ X . Hence the composition Fj|n[yj+1:n]Fj+1|n[yj+2:n]
satisfies Doeblin’s condition (Assumption 4.3.12) and the proof follows by
Application of Lemma 4.3.13. ��

Corollary 4.3.34 is only useful in cases where the function α is such that
the obtained bound indeed decreases as k and n grow. In Example 4.3.32,
one could set α(y) = 1Γ (y), for an interval Γ . In such a case, it suffices that
the joint chain {Xk, Yk}k≥0 be recurrent under Pν�—which was the case in
Example 4.3.32—to guarantee that 1Γ (Yk) equals one infinitely often and thus
that

∥∥φν,k|n[Y0:n]− φν′,k|n[Y0:n]
∥∥

TV tends to zero Pν� -almost surely as k, n→
∞. The following example illustrates a slightly more complicated situation in
which Assumption 4.3.31 still holds.

Example 4.3.35 (Non-Gaussian Autoregressive Process in Gaussian
Noise). In this example, we consider a first-order non-Gaussian autoregressive
process, observed in Gaussian noise. This is a practically relevant example for
which there is apparently no results on forgetting available in the literature.
The model is thus

Xk+1 = φXk + Uk , X0 ∼ ν ,

Yk = Xk + Vk ,

where
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(i) {Uk}k≥0 is an i.i.d. sequence of random variables with Laplace (double
exponential) distribution with scale parameter λ;

(ii) {Vk}k≥0 is an i.i.d. sequence of Gaussian random variable with zero mean
and variance σ2.

We will see below that the fact that the tails of the Xs are heavier than the
tails of the observation noise is important for the derivations that follow. It is
assumed that |φ| < 1, which implies that the chain {Xk} is positive recurrent,
that is, admits a single invariant probability measure π. It may be shown (see
Chapter 14) that although the Markov chain {Xk} is geometrically ergodic,
that is, ‖Qn(x, ·)− π‖TV → 0 geometrically fast, it is not uniformly ergodic
as lim infn→∞ supx∈R ‖Qn(x, ·)− π‖TV > 0. We will nevertheless see that the
forward smoothing kernel is uniformly geometrically ergodic.

Under the stated assumptions,

q(x, x′) =
1
2λ

exp (−λ|x′ − φx|) ,

g(x, y) =
1√
2πσ

exp
[
− (y − x)2

2σ2

]
.

Here we set, for some M > 0 to be specified later, C = [−M − 1/2,M + 1/2],
and we let y ∈ [−1/2,+1/2]. Note that

∫ M+1/2
−M−1/2 exp(−λ|u− φx| − |y − u|2/2σ2 − λ|x′ − φu|) du∫ ∞

−∞ exp(−λ|u− φx| − |y − u|2/2σ2 − λ|x′ − φu|) du

≥
∫ M

−M
exp(−λ|u− x| − u2/2σ2 − φλ|x′ − u|) du∫ ∞

−∞ exp(−λ|u− x| − u2/2σ2 − φλ|x′ − u|) du ,

and to show Assumption 4.3.31(iii) it suffices to show that the right-hand
side is bounded from below. This in turn is equivalent to showing that
sup(x,x′)∈R×R R(x, x′) < 1, where

R(x, x′) =

(∫ −M

−∞ +
∫ ∞

M

)
exp(−α|u− x| − βu2 − γ|x′ − u|) du∫ ∞

−∞ exp(−α|u− x| − βu2 − γ|x′ − u|) du (4.54)

with α = λ, β = 1/2σ2 and γ = φλ.
To do this, first note that any M > 0 we have sup{R(x, x′) : |x| ≤

M, |x′| ≤ M} < 1, and we thus only need to study the behavior of this
quantity when x and/or x′ become large. We first show that

lim sup
M→∞

sup
x≥M, |x′|≤M

R(x, x′) < 1 . (4.55)

For this we note that for |x′| ≤M and x ≥M , it holds that
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M

+
∫ ∞

x

)
exp

[
−α|x− u| − βu2 − γ(u− x′)

]
du

≤ e−αxeγM exp[−βM2 + (α− γ)M ]
2βM − (α− γ)

+ eγM exp(−βx2 − γx)
2βx + (γ + α)

,

where we used the bound∫ ∞

y

exp(λu− βu2) du ≤ (2βy − λ) exp(−βy2 + λy) ,

which holds as soon as 2βy − λ ≥ 0. Similarly, we have∫ −M

−∞
exp

[
−α(x− u)− βu2 − γ(x′ − u)

]
du

≤ e−αxeγM exp[−βM2 − (γ + α)M ]
2βM + (γ + α)

,

∫ M

−M

exp
[
−α(x− u)− βu2 − γ|u− x′|

]
du

≥ e−2γMe−αx

∫ M

−M

exp(−βu2 + αu) du .

Thus, (4.54) is bounded by

e3γM

2 exp[−βM2 + (α− γ)M ]
2βM + γ − α

+ sup
x≥M

exp[−βx2 + (α− γ)x]
βx + (γ + α)∫ M

−M
exp(−βu2 + αu) du

proving (4.55).
Next we show that

lim sup
M→∞

sup
x≥M, x′≥M

R(x, x′) < 1 . (4.56)

We consider the case M ≤ x ≤ x′; the other case can be handled similarly.
The denominator in (4.54) is then bounded by

e−αx−γx′
∫ M

−M

exp(−βu2 + (α + γ)u) du .

The two terms in the numerator are bounded by, respectively,∫ −M

−∞
exp

[
−α(x− u)− βu2 − γ(x′ − u)

]
du

≤ e−αx−γx′ exp[−βM2 − (α + γ)M ]
2βM + α + γ
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and∫ ∞

M

exp
(
−α|x− u| − βu2 − γ|x′ − u|

)
du

≤ e−αx−γx′ exp[−βM2 + (α + γ)M ]
2βM − α− γ

+
exp(−βx2 + γx− γx′)

2βx− γ + α
+

exp[−β(x′)2 + αx− αx′]
2βx′ + α + γ

,

and (4.56) follows by combining the previous bounds.
We finally have to check that

lim sup
M→∞

sup
x′≤−M, x≥M

R(x, x′) < 1 .

This can be done along the same lines. �



5

Applications of Smoothing

Remember that in the previous two chapters, we basically considered that
integration over X was a feasible operation. This is of course not the case in
general, and numerical evaluation of the integrals involved in the smoothing
recursions turns out to be a difficult task. In Chapters 6 and 7, generally
applicable methods for approximate smoothing, based on Monte Carlo simu-
lations, will be considered. Before that, we first examine two very important
particular cases in which an exact numerical evaluation is feasible: models
with finite state space in Section 5.1 and Gaussian linear state-space mod-
els in Section 5.2. Most of the concepts to be used below have already been
introduced in Chapters 3 and 4, and the current chapter mainly deals with
computational aspects and algorithms. It also provides concrete examples of
application of the methods studied in the previous chapters.

Note that we do not yet consider examples of application of the technique
studied in Section 4.1, as the nature of functionals that can be computed
recursively will only become more explicit when we discuss the EM framework
in Chapter 10. Corresponding examples will be considered in Section 10.2.

5.1 Models with Finite State Space

We first consider models for which the state space X of the hidden variables
is finite, that is, when the unobservable states may only take a finite num-
ber of distinct values. In this context, the smoothing recursions discussed in
Chapter 3 take the familiar form described in the seminal paper by Baum
et al. (1970) as well as Rabiner’s (1989) tutorial (which also covers scaling
issues). Section 5.1.2 discusses a technique that is of utmost importance in
many applications, for instance digital communications and speech process-
ing, by which one can determine the maximum a posteriori sequence of hidden
states given the observations.
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5.1.1 Smoothing

5.1.1.1 Filtering

Let X denote a finite set that we will, without loss of generality, identify with
X = {1, . . . , r}. Probability distributions on X can be represented by vectors
belonging to the simplex of R

r, that is, the set{
(p1, . . . , pr) : pi ≥ 0 for every 1 ≤ i ≤ r,

r∑
i=1

pi = 1

}
.

The components of the transition matrix Q and the initial distribution ν of the
hidden chain are denoted by (qij)1≤i,j≤r and (νi)1≤i≤r, respectively. Similarly,
for the filtering and smoothing distributions, we will use the slightly abusive
but unambiguous notation φk(i) = P(Xk = i |Y0:k), for 1 ≤ i ≤ r, instead of
φk({i}). Finally, because we are mainly concerned with computational aspects
given a particular model specification, we do not need to indicate dependence
with respect to the initial distribution ν of X0 and will simply denote the
filter (and all associated quantities) by φk instead of φν,k.

The first item below describes the specific form taken by the filter-
ing recursions—or, in Rabiner’s (1989) terminology, the normalized forward
recursion—when the state space X is finite.

Algorithm 5.1.1 (Forward Filtering). Assume X = {1, . . . , r}.
Initialization: For i = 1, . . . , r,

φ0|−1(i) = ν(i) .

Forward Recursion: For k = 0, . . . , n,

ck =
r∑

i=1

φk|k−1(i)gk(i) , (5.1)

φk(j) = φk|k−1(j)gk(j)/ck , (5.2)

φk+1|k(j) =
r∑

i=1

φk(i)qij , (5.3)

for each j = 1, . . . , r.

The computational cost of filtering is thus proportional to n, the number
of observations, and scales like r2 (squared cardinality of the state space X)
because of the r vector matrix products corresponding to (5.3). Note however
that in models with many zero entries in the transition matrix, in particular
for left-to-right models like speech processing HMMs (Example 1.3.6), the
complexity of (5.3) is at most of order r times the maximal number of non-
zero elements along the rows of Q, which can be significantly less. In addition,
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and this is also the case for speech processing HMMs, if the Yk are high-
dimensional multivariate observations, the main computational load indeed
lies in (5.1)–(5.2) when computing the numerical values of the conditional
densities of Yk given Xk = j for all r possible states j.

Recall from Section 3.2.2 that the likelihood of the observations Y0:n can
be computed directly on the log scale according to

�n
def= log Ln =

n∑
k=0

log ck . (5.4)

This form is robust to numerical over- or underflow and should be systemati-
cally preferred to the product of the normalization constants ck, which would
evaluate the likelihood on a linear scale.

5.1.1.2 The Forward-Backward Algorithm

As discussed in Section 3.4, the standard forward-backward algorithm as ex-
posed by Rabiner (1989) adopts the scaling scheme described by Levinson
et al. (1983). The forward pass is given by Algorithm 5.1.1 as described above,
where both the normalization constants ck and the filter vectors φk have to be
stored for k = 0, . . . , n. Note that the tradition consists in denoting the for-
ward variables by the letter α, but we reserved this notation for the unscaled
forward variables (see Section 3.2). Here we actually only store the filter vec-
tors φk, as their unnormalized versions would quickly under- or overflow the
machine precision for any practical value of n.

Algorithm 5.1.2 (Backward Smoothing). Given stored values of φ0, . . . ,
φn and c0, . . . , cn, computed during the forward filtering pass (Algorithm 5.1.2),
and starting from the end of the data record, do the following.

Initialization: For j = 1, . . . , r,
β̆n|n(j) = c−1

n .

Backward Recursion: For k = n− 1, . . . , 0,

β̆k|n(i) = c−1
k

r∑
j=1

qijgk+1(j)β̆k+1|n(j) (5.5)

for each i = 1, . . . , r.

For all indices k < n, the marginal smoothing probabilities may be evaluated as

φk|n(i) def= P(Xk = i |Y0:n) =
φk(i)β̆k|n(i)∑r

j=1 φk(j)β̆k|n(j)
, (5.6)

and the bivariate smoothing probabilities as

φk:k+1|n(i, j) def= P(Xk = i,Xk+1 = j |Y0:n) = φk(i)qijgk+1(j)β̆k+1|n(j) .
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The correctness of the algorithm described above has already been dis-
cussed in Section 3.4. We recall that it differs from the line followed in Sec-
tion 3.2.2 only by the choice of the normalization scheme. Algorithms 5.1.1
and 5.1.2 constitute the standard form of the two-pass algorithm known as
forward-backward introduced by Baum et al. (1970), where the normalization
scheme is first mentioned in Levinson et al. (1983) (although the necessity of
scaling was certainly known before that date, as discussed in Section 3.4).

The complexity of the backward pass is comparable to that of the forward
filtering, that is, it scales as n × r2. Note however that for high-dimensional
observations Yk, the computational cost of the backward pass is largely re-
duced, as it is not necessary to evaluate the (n + 1)r conditional densities
gk(i) that have already been computed (given that these have been stored in
addition to the filter vectors φ0, . . . φn).

5.1.1.3 Markovian Backward Smoothing

The backward pass as described in Algorithm 5.1.2 can be replaced by the
use of the backward Markovian decomposition introduced in Section 3.3.2.
Although this second form of backward smoothing is equivalent to Algo-
rithm 5.1.2 from a computational point of view, it is much more transparent
on principle grounds. In particular, it shows that the smoothing distributions
may be evaluated from the filtering ones using backward Markov transition
matrices. In addition, these transition matrices only depend on the filtering
distributions themselves and not on the data anymore. In this respect, the
computation of the observation densities in (5.5) is thus inessential.

The algorithm, which has been described in full generality in Section 3.3.2,
goes as follows,

Algorithm 5.1.3 (Markovian Backward Smoothing). Given stored val-
ues of φ0, . . . , φn and starting from the end of the data record, do the following.

Initialization: For j = 1, . . . , r,

φn|n(j) = φn(j).

Backward Recursion: For k = n− 1, . . . , 0,
• Compute the backward transition kernel according to

Bk(j, i) =
φk(i)qij∑r

m=1 φk(m)qmj
(5.7)

for j, i = 1, . . . , r (if the denominator happens to be null for index j, then
Bk(j, i) can be set to arbitrary values for i = 1, . . . , r).

• Compute
φk:k+1|n(i, j) = φk+1|n(j)Bk(j, i)

and
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φk|n(i) =
r∑

m=1

φk+1|n(m)Bk(m, i)

for i, j = 1, . . . , r.

Compared to the general situation investigated in Section 3.3.2, the for-
mulation of Algorithm 5.1.3 above takes profit of (3.39) in Remark 3.3.7,
which provides an explicit form for the backward kernel Bk in cases where the
hidden Markov model is fully dominated (which is always the case when the
state space X is finite). Note also that the value of Bk(j, i) in cases where
the denominator of (5.7) happens to be null is irrelevant. The condition∑r

m=1 φk(m)qmj = 0 is equivalent to stating that φk+1|k(j) = 0 by (5.3),
which in turn implies that φk+1(j) = 0 by (5.2) and finally that φk+1|n(j) = 0
for n ≥ k+1 by (5.6). Hence the value of Bk(j, i) is arbitrary and is (hopefully)
never used in Algorithm 5.1.3, as it is multiplied by zero.

As noted in Section 3.3.2, the idea of using this form of smoothing for
finite state space models is rarely ever mentioned except by Askar and Derin
(1981) who illustrated it on a simple binary-valued example—see also dis-
cussion in Ephraim and Merhav (2002) about “stable” forms of the forward-
backward recursions. Of course, one could also consider the forward Marko-
vian decomposition, introduced in Section 3.3.1, which involves the kernels
Fk|n that are computed from the backward variables βk|n. We tend to pre-
fer Algorithm 5.1.2, as it is more directly connected to the standard way of
computing smoothed estimates in Gaussian linear state-space models to be
discussed later in Section 5.2.

5.1.2 Maximum a Posteriori Sequence Estimation

When X is finite, it turns out that it is also possible to carry out a different type
of inference concerning the unobservable sequence of states X0, . . . Xn. This
second form is non-probabilistic in the sense that it does not provide a dis-
tributional statement concerning the unknown states. On the other hand, the
result that is obtained is the jointly optimal, in terms of maximal conditional
probability, sequence X0, . . . Xn of unknown states given the corresponding
observations, which is in some sense much stronger a result than just the
marginally (or bivariate) optimal sequence of states. However, neither optimal-
ity property implies the other. To express this precisely, let xk maximize the
conditional probability P(Xk = xk |Y0:n) for each k = 0, 1, . . . , n, and let the
sequence x′

0:n maximize the joint conditional probability P(X0:n = x′
0:n |Y0:n).

Then, in general, the sequences x0:n and x′
0:n do not agree. It may even be

that a transition (xk, xk+1) of the marginally optimal sequence is disallowed
in the sense that qxk,xk+1 = 0.

In the HMM literature, the algorithm that makes possible to compute ef-
ficiently the a posteriori most likely sequence of states is known as the Viterbi
algorithm, after Viterbi (1967). It is based on the well-known dynamic pro-
gramming principle. The key observation is indeed (4.1), which we rewrite
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in log form with notations appropriate for the finite state space case under
consideration:

log φ0:k+1|k+1(x0, . . . , xk+1) = (�k − �k+1)
+ log φ0:k|k(x0, . . . , xk)

+ log qxkxk+1 + log gk+1(xk+1) , (5.8)

where �k denotes the log-likelihood of the observations up to index k and
φ0:k|k is the joint distribution of the states X0:k given the observations Y0:k.
The salient feature of (5.8) is that, except for a constant term that does not
depend on the state sequence (on the right-hand side of the first line), the a
posteriori log-probability of the subsequence x0:k+1 is equal to that of x0:k up
to terms that only involve the pair (xk, xk+1).

Define

mk(i) = max
{x0,...,xk−1}∈Xk

log φ0:k|k(x0, . . . , xk−1, i) + �k , (5.9)

that is, up to a number independent of the state sequence, the maximal con-
ditional probability (on the log scale) of a sequence up to time k and ending
with state i. Also define bk(i) to be that value in X of xk−1 for which the
optimum is achieved in (5.9); in other words, bk(i) is the second final state
in an optimal state sequence of length k + 1 and ending with state i. Using
(5.8), we then have the simple recursive relation

mk+1(j) = max
i∈{1,...,r}

[mk(i) + log qij ] + log gk+1(j) , (5.10)

and bk+1(j) equals the index i for which the maximum is achieved. This
observation immediately leads us to formulate the Viterbi algorithm.

Algorithm 5.1.4 (Viterbi Algorithm).

Forward Recursion (for optimal conditional probabilities): Let

m0(i) = log(ν(i)g0(i)) .

Then for k = 0, 1, . . . , n− 1, compute mk+1(j) for all states j as in (5.10).
Backward Recursion (for optimal sequence): Let x̂n be the state j for which

mn(j) is maximal. Then for k = n − 1, n − 2, . . . , 0, let x̂k be the state
i for which the maximum is attained in (5.10) for mk+1(j) with j = x̂k+1.
That is, x̂k = bk+1(x̂k+1).

The backward recursion first identifies the final state of the optimal state
sequence. Then, once the final state is known, the next to final one can be
determined as the state that gives the optimal probability for sequences ending
with the now known final state. After that, the second next to final state can
be determined in the same manner, and so on. Thus the algorithm requires
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storage of all the mk(j). Storage of the bk(j) is not necessary but makes the
backward recursion run faster. In cases where there is no unique maximizing
state i in (5.10), there may be no unique optimal state sequence either, and
bk+1(j) can be taken arbitrarily within the set of maximizing indices i.

5.2 Gaussian Linear State-Space Models

Gaussian linear state-space models form another important class for which
the tools introduced in Chapter 3 provide implementable algorithms. Sec-
tions 5.2.1 to 5.2.4 review two different variants of the general principle out-
lined in Proposition 3.3.9. The second form, exposed in Section 5.2.4, is def-
initely more involved, but also more efficient in several situations, and is
best understood with the help of linear prediction tools that are reviewed
in Sections 5.2.2 and 5.2.3. Finally, the exact counterpart of the forward-
backward approach, examined in great generality in Section 3.2, is exposed in
Section 5.2.5.

5.2.1 Filtering and Backward Markovian Smoothing

We here consider a slight generalization of the Gaussian linear state-space
model defined in Section 1.3.3:

Xk+1 = AkXk + RkUk, (5.11)
Yk = BkXk + SkVk, (5.12)

where {Uk}k≥0 and {Vk}k≥0 are two independent vector-valued i.i.d. Gaussian
sequences such that Uk ∼ N(0, I) and Vk ∼ N(0, I) where I is a generic
notation for the identity matrices (of suitable dimensions). In addition, X0 is
assumed to be N(0, Σν) distributed and independent of {Uk} and {Vk}. Recall
from Chapter 1 that while we typically assume that SkS

t
k = Cov(SkVk) is

a full-rank covariance matrix, the dimension of the state noise vector (also
referred to as the excitation or disturbance) Uk is in many situations smaller
than that of the state vector Xk and hence RkR

t
k may be rank deficient.

Compared to the basic model introduced in Section 1.3.3, the difference
lies in the fact that the parameters of the state-space model, Ak, Bk, Rk, and
Sk, depend on the time index k. This generalization is motivated by condi-
tionally Gaussian state-space models, as introduced in Section 1.3.4. For such
models, neither is the state space finite nor is the complete model equivalent
to a Gaussian linear state-space model. However, it is indeed possible, and
often advantageous, to perform filtering while conditioning on the state of the
unobservable indicator variables. In this situation, although the basic model
is homogeneous in time, the conditional model features time-dependent pa-
rameters. There are also cases in which the means of {Uk} and {Vk} depend
on time. To avoid notational blow-up, we consider only the zero-mean case:



128 5 Applications of Smoothing

the modifications needed to handle non-zero means are straightforward as
explained in Remark 5.2.14 below.

A feature that is unique to the Gaussian linear state-space model defined
by (5.11)–(5.12) is that because the states X0:n and the observations Y0:n are
jointly multivariate Gaussian (for any n), all smoothing distributions are also
Gaussian. Hence any smoothing distribution is fully determined by its mean
vector and covariance matrix. We consider in particular below the predictive
state estimator φk|k−1 and filtered state estimator φk and denote by

φk|k−1 = N
(
X̂k|k−1, Σk|k−1

)
, (5.13)

φk = N
(
X̂k|k, Σk|k

)
, (5.14)

their respective means and covariance matrices.

Remark 5.2.1. Note that up to now we have always used φk as a simplified
notation for φk|k, thereby expressing a default interest in the filtering distri-
bution. To avoid all ambiguity, however, we will adopt the notations X̂k|k and
Σk|k to denote the first two moments of the filtering distributions in Gaus-
sian linear state-space models. The reason for this modification is that the
conventions used in the literature on state-space models are rather variable,
but with a marked general preference for using X̂k and Σk to refer to the mo-
ments of predictive distribution φk|k−1—see, e.g., Anderson and Moore (1979)
or Kailath et al. (2000). In contrast, the more explicit notations X̂k|k and Σk|k
are self-explaining and do not rely on an implicit knowledge of whether the
focus is on the filtering or prediction task. �

The following elementary lemma is instrumental in computing the predic-
tive and the filtered state estimator.

Proposition 5.2.2 (Conditioning in the Gaussian Linear Model). Let
X and V be two independent Gaussian random vectors with E[X] = µX ,
Cov(X) = ΣX , and Cov(V ) = ΣV , and assume E[V ] = 0. Consider the
model

Y = BX + V , (5.15)

where B is a deterministic matrix of appropriate dimensions. Further assume
that BΣXBt + ΣV is a full rank matrix. Then

E [X |Y ] = E[X] + Cov(X,Y ) {Cov(Y )}−1 (Y − E[Y ]) (5.16)

= µX + ΣXBt
{
BΣXBt + ΣV

}−1 (Y −BµX)

and

Cov(X |Y ) = Cov(X − E[X|Y ]) = E
[
(X − E[X|Y ])Xt

]
(5.17)

= ΣX −ΣXBt
{
BΣXBt + ΣV

}−1
BΣX .
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Proof. Denote by X̂ the right-hand side of (5.16). Then

X − X̂ = X − E(X)− Cov(X,Y ){Cov(Y )}−1(Y − E[Y ]) ,

which implies that

Cov(X − X̂, Y ) = Cov(X,Y )− Cov(X,Y ){Cov(Y )}−1 Cov(Y ) = 0 . (5.18)

The random vectors Y and X−X̂ thus are jointly Gaussian (as linear transfor-
mations of a Gaussian multivariate random vector) and uncorrelated. Hence,
Y and X − X̂ are also independent. Writing

X = X̂ + (X − X̂) ,

where X̂ is σ(Y ) measurable (as a linear combination of the components of Y )
and X − X̂ is independent of X̂, it is then easily checked (see Appendix A.2)
that X̂ = E(X |Y ) and that, in addition,

Cov (X |Y ) def= Cov
[
(X − X̂)(X − X̂)′

∣∣∣ Y ]
= Cov(X − X̂) .

Finally, (5.17) is obtained upon noting that

Cov(X − X̂) = E[(X − X̂)(X − X̂)t] = E[(X − X̂)Xt] ,

using (5.18) and the fact that X̂ is a linear transform of Y . The second lines
of (5.16) and (5.17) follow from the linear structure of (5.15). ��

For Gaussian linear state-space models, Proposition 5.2.2 implies in par-
ticular that while the mean vectors X̂k|k−1 or X̂k|k do depend on the observa-
tions, the covariance matrices Σk|k−1 and Σk|k are completely determined by
the model parameters. Our first result below simply consists in applying the
formula derived in Proposition 5.2.2 for the Gaussian linear model to obtain
an explicit equivalent of (3.27) in terms of the model parameters.

Proposition 5.2.3 (Filtering in Gaussian Linear State-Space Mod-
els). The filtered and predictive mean and covariance matrices may be updated
recursively as follows, for k ≥ 0.

Filtering:

X̂k|k = X̂k|k−1 + Σk|k−1B
t
k(BkΣk|k−1B

t
k + SkS

t
k)−1(Yk −BkX̂k|k−1) ,

(5.19)

Σk|k = Σk|k−1 −Σk|k−1B
t
k(BkΣk|k−1B

t
k + SkS

t
k)−1BkΣk|k−1 , (5.20)

with the conventions X̂0|−1 = 0 and Σ0|−1 = Σν .
Prediction:

X̂k+1|k = AkX̂k|k , (5.21)

Σk+1|k = AkΣk|kAt
k + RkR

t
k , (5.22)
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Proof. As mentioned in Remark 3.2.6, the predictor-to-filter update is ob-
tained by computing the posterior distribution of Xk given Yk in the equiva-
lent pseudo-model Xk ∼ N(X̂k|k−1, Σk|k−1) and

Yk = BkXk + Vk ,

where Vk is N(0, SkS
t
k) distributed and independent of Xk. Equations (5.19)

and (5.20) thus follow from Proposition 5.2.2. Equations (5.21) and (5.22)
correspond to the moments of

Xk+1 = AkXk + RkUk

when Xk and Uk are independent and, respectively, N(X̂k|k, Σk|k) and N(0, I)
distributed (see discussion in Remark 3.2.6). ��

Next we consider using the backward Markovian decomposition of Sec-
tion 3.3.2 to derive the smoothing recursion. We will denote by X̂k|n and
Σk|n respectively the mean and covariance matrix of the smoothing distribu-
tion φk|n. According to Remark 3.3.7, the backward kernel Bk corresponds to
the distribution of Xk given Xk+1 in the pseudo-model

Xk+1 = AkXk + RkUk ,

when Xk ∼ N(X̂k|k, Σk|k) and Uk ∼ N(0, I) independently of Xk. Using
Proposition 5.2.2 once again, Bk(Xk+1, ·) is seen to be the Gaussian distribu-
tion with mean and covariance matrix given by, respectively,

X̂k|k + Σk|kAt
k(AkΣk|kAt

k + RkR
t
k)−1(Xk+1 −AkX̂k|k) , (5.23)

and covariance matrix

Σk|k −Σk|kAt
k(AkΣk|kAt

k + RkR
t
k)−1AkΣk|k . (5.24)

Proposition 3.3.9 asserts that Bk is the transition kernel that maps φk+1|n to
φk|n. Hence, if we assume that φk+1|n = N(X̂k+1|n, Σk+1|n) is already known,

X̂k|n = X̂k|k + Σk|kAt
kMk(X̂k+1|n −AkX̂k|k) , (5.25)

Σk|n = Σk|k −Σk|kAt
kMkAkΣk|k + Σk|kAt

kMkΣk+1|nMkAkΣk|k , (5.26)

give the moments of φk|n, where

Mk = (AkΣk|kAt
k + RkR

t
k)−1 .

To derive these two latter equations, we must observe that (i) Bk(Xk+1, ·)
may be interpreted as an affine transformation of Xk+1 as in (5.23) followed
by adding an independent zero mean Gaussian random vector with covariance
matrix as in (5.24), and that (ii) mapping φk+1|n into φk|n amounts to replac-
ing the fixed Xk+1 by a random vector with distribution N(X̂k+1|n, Σk+1|n).
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The random vector obtained through this mapping is Gaussian with mean
and covariance as in (5.25)–(5.26), the third term of (5.26) being the “extra
term” arising because of (ii).

We summarize these observations in the form of an algorithm.

Algorithm 5.2.4 (Rauch-Tung-Striebel Smoothing). Assume that the
filtering moments X̂k|k and Σk|k are available (for instance by application of
Proposition 5.2.3) for k = 0, . . . , n. The smoothing moments X̂k|n and Σk|n
may be evaluated backwards by applying (5.25) and (5.26) from k = n− 1 down
to k = 0.

This smoothing approach is generally known as forward filtering, backward
smoothing or RTS (Rauch-Tung-Striebel) smoothing after Rauch et al. (1965).
From the discussion above, it clearly corresponds to an application of the gen-
eral idea that the backward posterior chain is a Markov chain as discussed in
Section 3.3.2. Algorithm 5.2.4 is thus the exact counterpart of Algorithm 5.1.3
for Gaussian linear state-space models.

5.2.2 Linear Prediction Interpretation

The approach that we have followed so far to derive the filtering and smoothing
recursions is simple and efficient and has the merit of being directly connected
with the general framework investigated in Chapter 3. It however suffers from
two shortcomings, the latter being susceptible of turning into a real hindrance
in practical applications of the method.

The first concern has to do with the interpretability of the obtained re-
cursions. Indeed, by repeated applications of Proposition 5.2.2, we rapidly
obtain complicated expressions such as (5.26). Although such expressions are
usable in practice granted that one identifies common terms that need only
be computed once, they are hard to justify on intuitive grounds. This may
sound like a vague or naive statement, but interpretability turns out to be a
key issue when considering more involved algorithms such as the disturbance
smoothing approach of Section 5.2.4 below.

The second remark is perhaps more troublesome because it concerns the
numerical efficiency of the RTS smoothing approach described above. Several
of the state-space models that we have considered so far share a common
feature, which is dramatically exemplified in the noisy AR(p) model (Exam-
ple 1.3.8 in Chapter 1). In this model, the disturbance Uk is scalar, and there
is a deterministic relationship between the state variables Xk and Xk+1, which
is that the last p − 1 components of Xk+1 are just a copy of the first p − 1
components of Xk. In such a situation, it is obvious that the same deter-
ministic relation should be reflected in the values of X̂k|n and X̂k+1|n, in the
sense that the last p − 1 components of X̂k+1|n must coincide with the first
p − 1 components of X̂k|n. In contrast, Algorithm 5.2.4 implies a seemingly
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complex recursion, which involves a p×p matrix inversion, to determine X̂k|n
from X̂k+1|n and X̂k|k.

In order to derive a smoothing algorithm that takes advantage of the model
structure (5.11)–(5.12), we will need to proceed more cautiously. For models
like the noisy AR(p) model, it is in fact more appropriate to perform the
smoothing on the disturbance (or dynamic noise) variables Uk rather than
the states Xk themselves. This idea, which will be developed in Section 5.2.4
below, does not directly fit into the framework of Chapter 3 however because
the pairs {Uk, Yk}k≥0 are not Markovian, in contrast to {Xk, Yk}k≥0.

The rest of this section thus follows a slightly different path by developing
the theory of best linear prediction in mean squared error sense. The key point
here is that linear prediction can be interpreted “geometrically” using (ele-
mentary) Hilbert space theory. In state-space models (and more generally, in
time series analysis), this geometric intuition serves as a valuable guide in the
development and construction of algorithms. As a by-product, this approach
also constitutes a framework that is not limited to the Gaussian case consid-
ered up to now and applies to all linear state-space models with finite second
moments. However, the fact that this approach also fully characterizes the
marginal smoothing distributions is of course particular to Gaussian models.

5.2.2.1 Best Linear Prediction

This section and the following require basic familiarity with the key notions
of L2 projections, which are reviewed briefly in Appendix B. Let Y0, . . . , Yk

and X be elements of L2(Ω,F ,P). We will assume for the moment that
Y0, . . . , Yk and X are scalar random variables. The best linear predictor of
X given Y0, . . . , Yk is the L2 projection of X on the linear subspace

span(1, Y0, . . . , Yk) def=

{
Y : Y = µ +

k∑
i=0

αiYi, µ, α0, . . . , αk ∈ R

}
.

The best linear predictor will be denoted by proj(X|1, Y0, . . . , Yk), or simply by
X̂ in situations where there is no possible confusion regarding the subspace on
which X is projected. The notation “1” refers to the constant (deterministic)
random variable, whose role will be made clearer in Remark 5.2.5 below.

According to the projection theorem (Theorem B.2.4 in Appendix B), X̂
is characterized by the equations

E{(X − X̂)Y } = 0 for all Y ∈ span(1, Y0, . . . , Yk) .

Because 1, Y0, . . . , Yk is a generating family of span(1, Y0, . . . , Yk), this condi-
tion may be equivalently rewritten as

E[(X − X̂)1] = 0 and E[(X − X̂)Yi] = 0, for all i = 0, . . . , k .
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The notations X − X̂ ⊥ span(1, Y0, . . . , Yk) and X − X̂ ⊥ Yi will also be used
to denote concisely these orthogonality relations, where orthogonality is to
be understood in the L2(Ω,F ,P) sense. Because X̂ ∈ span(1, Y0, . . . , Yk), the
projection may be represented as

X̂ = µ + φ0(Y0 − E[Y0]) + . . . + φk(Yk − E[Yk]) (5.27)

for some scalars µ, ϕ0, . . . , ϕk. Denoting by Γk the matrix [Cov(Yi, Yj)]0≤i,j≤k

and γk the vector [Cov(X,Y0), . . . ,Cov(X,Yk)]t, the prediction equations may
be summarized as

µ = E[X] and Γnϕ = γk, where ϕ = (ϕ1, . . . , ϕk)t . (5.28)

The projection theorem guarantees that there is at least one solution ϕ. If the
covariance matrix Γk is singular, there are infinitely many solutions, but all
of them correspond to the same (uniquely defined) optimal linear predictor.
An immediate consequence of Proposition B.2.6(iii) is that the covariance of
the prediction error may be written in two equivalent, and often useful, ways,

Cov(X − X̂) = E[X(X − X̂)] = Cov(X)− Cov(X̂) . (5.29)

Remark 5.2.5. The inclusion of the deterministic constant in the generating
family of the prediction subspace is simply meant to capture the prediction
capacity of E[X]. Indeed, because

E[(X − µ)2] = E{[X − E(X)]2}+ [µ− E(X)]2 ≤ E(X2) + [µ− E(X)]2 ,

predicting X by E(X) is the optimal guess that always reduces the mean
squared error in the absence of observations.

In (5.27), we used a technique that will be recurrent in the following and
consists in replacing some variables by orthogonalized ones. Because E[(Yi −
E(Yi))1] = 0 for i = 0, . . . , k, the projection on span(1, Y0, . . . , Yk) may be
decomposed as the projection on span(1), that is, E(X), plus the projection
on span(Y0 − E[Y0], . . . , Yk − E[Yk]). Following (5.28), projecting a non-zero
mean variable X is then achieved by first considering the projection on the
centered observations Yi−E(Yi) and then adding the expectation of X to the
obtained prediction. For this reason, considering means is not crucial, and we
assume in the sequel that all variables under consideration have zero mean.
Hence, X̂ is directly defined as the projection on span(Y0, . . . , Yk) only and
the covariances Cov(Yi, Yj) and Cov(X,Yi) can be replaced by E(YiYj) and
E(XYi), respectively. �

We now extend these definitions to the case of vector-valued random vari-
ables.

Definition 5.2.6 (Best Linear Predictor). Let X = [X(1), . . . , X(dx)]t

be a dx-dimensional random vector and Y0, . . . , Yk a family of dy-dimensional
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random vectors, all elements of L2(Ω,F ,P). It is further assumed that E(X) =
0 and E(Yi) = 0 for i = 0, . . . , k. The minimum mean square error prediction
of X given Y0, . . . , Yk is defined as the vector [X̂(1), . . . , X̂(dx)]t such that
every component X̂(j), j = 1, . . . , dx, is the L2-projection of X(j) on

span
(
{Yi(j)}0≤i≤k,1≤j≤dy

)
.

As a convention, we will also use the notations

X̂ = proj(X|Y0, . . . , Yk) = proj(X| span(Y0, . . . , Yk)) ,

in this context.

Definition 5.2.6 asserts that each component X(j) of X is to be projected
on the linear subspace spanned by linear combinations of the components of
the vectors Yi, ⎧⎨⎩Y : Y =

k∑
i=0

dy∑
j=1

αi,jYi(j) , αi,j ∈ R

⎫⎬⎭ .

Proceeding as in the case of scalar variables, the projection X̂ may be written

X̂ =
k∑

i=0

ΦiYi ,

where Φ0, . . . , Φk are dx× dy matrices. The orthogonality relations that char-
acterize the projection of X̂ may the be summarized as

k∑
i=0

Φi E(YiY
t
j ) = E(XY t

j ) for j = 0, . . . , k , (5.30)

where E(YiY
t
j ) and E(XY t

j ) are respectively dy×dy and dx×dy matrices such
that [

E(YiY
t
j )

]
l1l2

= E[Yi(l1)Yj(l2)] ,[
E(XY t

j )
]
l1l2

= E[X(l1)Yj(l2)] .

The projection theorem guarantees that there is at least one solution to this
system of linear equations. The solution is unique if the dy(k + 1)× dy(k + 1)
block matrix

Γk =

⎛⎜⎝E(Y0Y
t
0 ) · · · E(Y0Y

t
k )

...
...

E(YnY
t
0 ) · · · E(YnY

t
n)

⎞⎟⎠
is invertible. As in the scalar case, the covariance matrix of the prediction
error may be written in any of the two forms
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Cov(X − X̂) = E[X(X − X̂)t] = E(XXt)− E(X̂X̂t) . (5.31)

An important remark, which can be easily checked from (5.30), is that

proj(AX|Y0, . . . , Yk) = Aproj(X|Y0, . . . , Yk) , (5.32)

whenever A is a deterministic matrix of suitable dimensions. This simply says
that the projection operator is linear.

Clearly, solving for (5.30) directly is only possible in cases where the dimen-
sion of Γk is modest. In all other cases, an incremental way of computing the
predictor would be preferable. This is exactly what the innovation approach
to be described next is all about.

5.2.2.2 The Innovation Approach

Let us start by noting that when k = 0, and when the covariance matrix
E(Y Y t) is invertible, then the best linear predictor of the vector X in terms
of Y only satisfies

X̂ = E(XY t)
[
E(Y Y t)

]−1
Y , (5.33)

Cov(X − X̂) = E[X(X − X̂)t] = E(XXt)− E(XY t)
[
E(Y Y t)

]−1 E(XY t) .

Interestingly, (5.33) is an expression that we already met in Proposition 5.2.2.
Equation (5.33) is equivalent to the first expressions given in (5.16) and (5.17),
assuming that X is a zero mean variable. This is not surprising, as the proof
of Proposition 5.2.2 was based on the fact that X̂, as defined by (5.33), is
such that X − X̂ is uncorrelated with Y . The only difference is that in the
(multivariate) Gaussian case, the best linear predictor and the covariance of
the prediction error also correspond two the first two moments of the condi-
tional distribution of X given Y , which is Gaussian, and hence entirely define
this distribution.

Another case of interest is when the random variables Y0, . . . , Yk are uncor-
related in the sense that E(YiY

t
j ) = 0 for any i, j = 0, . . . , k such that i �= j. In

this case, provided that the covariance matrices E(YiY
t
i ) are positive definite

for every i = 0, . . . , k, the best linear predictor of X in terms of {Y0, . . . , Yk}
is given by

X̂ =
k∑

i=0

E(XY t
i )

[
E(YiY

t
i )

]−1
Yi . (5.34)

The best linear predictor of X in terms of Y0, . . . , Yk thus reduces to the
sum of the best linear predictors of X in terms of each individual vector Yi,
i = 0, . . . , k.

Of course, in most problems the vectors Y0, . . . , Yk are correlated, but
there is a generic procedure by which we may fall back to this simple case,
irrespectively of the correlation structure of the Yk. This approach is the
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analog of the Gram-Schmidt orthogonalization procedure used to obtain a
basis of orthogonal vectors from a set of linearly independent vectors.

Consider the linear subspace span(Y0, . . . , Yj) spanned by the observations
up to index j. By analogy with the Gram-Schmidt procedure, one may replace
the set {Y0, . . . , Yj} of random vectors by an equivalent set {ε0, . . . , εj} of
uncorrelated random vectors spanning the same linear subspace,

span(Y0, . . . , Yj) = span(ε0, . . . , εj) for all j = 0, . . . , k . (5.35)

This can be achieved by defining recursively the sequence of εj by ε0 = Y0
and

εj+1 = Yj+1 − proj(Yj+1| span(Y0, . . . , Yj)) (5.36)

for j ≥ 0. The projection of Yj+1 on span(Y0, . . . , Yj) = span(ε0, . . . , εj) has
an explicit form, as ε0, . . . , εj are uncorrelated. According to (5.34),

proj(Yj+1| span(ε0, . . . , εj)) =
j∑

i=0

E(Yj+1ε
t
i)

[
E(εiεti)

]−1
εi , (5.37)

which leads to the recursive expression

εj+1 = Yj+1 −
j∑

i=0

E(Yj+1ε
t
i)

[
E(εiεti)

]−1
εi . (5.38)

For any j = 0, . . . , k, εj may be interpreted as the part of the random variable
Yj that cannot be linearly predicted from the history Y0, . . . , Yj−1. For this rea-
son, εj is called the innovation. The innovation sequence {εj}j≥0 constructed
recursively from (5.38) is uncorrelated but is also in a causal relationship with
{Yj}j≥0 in the sense that for every j ≥ 0,

εj ∈ span(Y0, . . . , Yj) and Yj ∈ span(ε0, . . . , εj) . (5.39)

In other words, the sequences {Yj}j≥0 and {εj}j≥0 are related by a causal
and causally invertible linear transformation.

To avoid degeneracy in (5.37) and (5.38), one needs to assume that the
covariance matrix E(εjεtj) is positive definite. Hence we make the following
definition, which guarantees that none of the components of the random vec-
tor Yj+1 can be predicted without error by some linear combination of past
variables Y0, . . . , Yj .

Definition 5.2.7 (Non-deterministic Process). The process {Yk}k≥0 is
said to be non-deterministic if for any j ≥ 0 the matrix

Cov [Yj+1 − proj(Yj+1|Y0, . . . , Yj)]

is positive definite.
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The innovation sequence {εk}k≥0 is useful for deriving recursive prediction
formulas for variables of interest. Let Z ∈ L2(Ω,F ,P) be a random vector
and denote by Ẑ|k the best linear prediction of Z given observations up to
index k. Using (5.34), Ẑ|k satisfies the recursive relation

Ẑ|k =
k∑

i=0

E(Zεti)
[
E(εiεti)

]−1
εi (5.40)

= Ẑ|k−1 + E(Zεtk)
[
E(εkεtk)

]−1
εk .

The covariance of the prediction error is given by

Cov(Z − Ẑ|k) = Cov(Z)− Cov(Ẑ|k) (5.41)

= Cov(Z)−
k∑

i=0

E(Zεti)
[
E(εiεti)

]−1 E(εiZt)

= Cov(Z)− Cov(Ẑ|k−1)− E(Zεtk)
[
E(εkεtk)

]−1 E(εkZt) .

5.2.3 The Prediction and Filtering Recursions Revisited

5.2.3.1 Kalman Prediction

We now consider again the state-space model

Xk+1 = AkXk + RkUk, (5.42)
Yk = BkXk + SkVk, (5.43)

where {Uk}k≥0 and {Vk}k≥0 are now only assumed to be uncorrelated second-
order white noise sequences with zero mean and identity covariance matrices.
The initial state variable X0 is assumed to be uncorrelated with {Uk} and {Vk}
and such that E(X0) = 0 and Cov(X0) = Σν . It is also assumed that {Yk}k≥0
is non-deterministic in the sense of Definition 5.2.7. The form of (5.43) shows
that a simple sufficient (but not necessary) condition that guarantees this
requirement is that SkS

t
k be positive definite for all k ≥ 0.

As a notational convention, for any (scalar or vector-valued) process
{Zk}k≥0, the projection of Zk onto the linear space spanned by the random
vectors Y0, . . . , Yn will be denoted by Ẑk|n. Particular cases of interest are
X̂k|k−1, which corresponds to the (one-step) state prediction as well as Ŷk|k−1
for the observation prediction. The innovation εk discussed in the previous
section is by definition equal to the observation prediction error Yk − Ŷk|k−1.
We finally introduce two additional notations,

Γk
def= Cov(εk) and Σk|n

def= Cov(Xk − X̂k|n) .
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Remark 5.2.8. The careful reader will have noticed that we overloaded the
notations X̂k|k−1 and Σk|k−1, which correspond, in Proposition 5.2.3, to the
mean and covariance matrix of φk|k−1 and, in Algorithm 5.2.9, to the best
mean square linear predictor of Xk in terms of Y0, . . . , Yk−1 and the covari-
ance of the linear prediction error Xk − X̂k|k−1. This abuse of notation is
justified by Proposition 5.2.2, which states that these concepts are equivalent
in the Gaussian case. In general the non-Gaussian model, only the second
interpretation (linear prediction) is correct. �

We first consider determining the innovation sequence from the observa-
tions. Projecting (5.43) onto span(Y0, . . . , Yk−1) yields

Ŷk|k−1 = BkX̂k|k−1 + SkV̂k|k−1 . (5.44)

Our assumptions on the state-space model imply that E(VkY
t
j ) = 0 for j =

0, . . . , k − 1, so that V̂k|k−1 = 0. Hence

εk = Yk − Ŷk|k−1 = Yk −BkX̂k|k−1 . (5.45)

We next apply the general decomposition obtained (5.40) to the variable
Xk+1 to obtain the state prediction update. Equation (5.40) applied with
Z = Xk+1 yields

X̂k+1|k = X̂k+1|k−1 + E(Xk+1ε
t
k)

[
E(εkεtk)

]−1
εk . (5.46)

To complete the recursion, the first term on the right-hand side should be
expressed in terms of X̂k|k−1 and εk−1. Projecting the state equation (5.42)
on the linear subspace spanned by Y0, . . . , Yk−1 yields

X̂k+1|k−1 = AkX̂k|k−1 + Ûk|k−1 = AkX̂k|k−1 , (5.47)

because E(UkY
t
j ) = 0 for indices j = 0, . . . , k−1. Thus, (5.46) may be written

X̂k+1|k = AkX̂k|k−1 + Hkεk , (5.48)

where Hk, called the Kalman gain1, is a deterministic matrix defined by

Hk
def= E(Xk+1ε

t
k)Γ−1

k . (5.49)

To evaluate the Kalman gain, first note that

εk = Yk −BkX̂k|k−1 = Bk(Xk − X̂k|k−1) + SkVk . (5.50)

1Readers familiar with the topic will certainly object that we do not comply with
the well-established tradition of denoting the Kalman gain by the letter K . We will
however meet in Algorithm 5.2.13 below a different version of the Kalman gain for
which we reserve the letter K .
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Because E(Vk(Xk − X̂k|k−1)t) = 0, (5.50) implies that

Γk = BkΣk|k−1B
t
k + SkS

t
k , (5.51)

where Σk|k−1 is our notation for the covariance of the state prediction error
Xk − X̂k|k−1. Using the same principle,

E(Xk+1ε
t
k) = Ak E(Xkε

t
k) + Rk E(Ukε

t
k)

= AkΣk|k−1B
t
k + Rk E[Uk(Xk − X̂k|k−1)t]Bt

k

= AkΣk|k−1B
t
k , (5.52)

where we have used the fact that

Uk ⊥ span(X0, U0, . . . , Uk−1, V0, . . . , Vk−1) ⊇ span(Xk, Y0, . . . , Yk−1) .

Combining (5.51) and (5.52) yields the expression of the Kalman gain:

Hk = AkΣk|k−1B
t
k

{
BkΣk|k−1B

t
k + SkS

t
k

}−1
. (5.53)

As a final step, we now need to evaluate Σk+1|k. Because Xk+1 = AkXk +
RkUk and E(XkU

t
k) = 0,

Cov(Xk+1) = Ak Cov(Xk)At
k + RkR

t
k . (5.54)

Similarly, the predicted state estimator follows (5.48) in which X̂k|k−1 and
εk also are uncorrelated, as the former is an element of span(Y0, . . . , Yk−1).
Hence

Cov(X̂k+1|k) = Ak Cov(X̂k+1|k)At
k + HkΓkH

t
k . (5.55)

Using (5.31),

Σk+1|k = Cov(Xk+1)− Cov(X̂k+1|k)

= AkΣk|k−1A
t
k + RkR

t
k −HkΓkH

t
k , (5.56)

upon subtracting (5.55) from (5.54). Equation (5.56) is known as the Ric-
cati equation. Collecting (5.45), (5.48), (5.51), (5.53), and (5.56), we obtain
the standard form of the so-called Kalman filter, which corresponds to the
prediction recursion.

Algorithm 5.2.9 (Kalman Prediction).

Initialization: X̂0|−1 = 0 and Σ0|−1 = Σν .
Recursion: For k = 0, . . . n,

εk = Yk −BkX̂k|k−1 , innovation (5.57)

Γk = BkΣk|k−1B
t
k + SkS

t
k , innovation cov. (5.58)

Hk = AkΣk|k−1B
t
kΓ

−1
k , Kalman Gain (5.59)

X̂k+1|k = AkX̂k|k−1 + Hkεk , predict. state estim. (5.60)

Σk+1|k = (Ak −HkBk)Σk|k−1A
t
k + RkR

t
k . predict. error cov. (5.61)
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It is easily checked using (5.59) that (5.61) and (5.56) are indeed equiva-
lent, the former being more suited for practical implementation, as it requires
fewer matrix multiplications. Equation (5.61) however dissimulates the fact
that Σk+1|k indeed is a symmetric matrix. One can also check by simple
substitution that Algorithm 5.2.9 is also equivalent to the application of the
recursion derived in Proposition 5.2.3 for Gaussian models.

Remark 5.2.10. Evaluating the likelihood function for general linear state-
space models is a complicated task. For Gaussian models however, εk and Γk

entirely determine the first two moments, and hence the full conditional prob-
ability density function of Yk given the previous observations Y0, . . . , Yk−1, in
the form

(2π)−dy/2|Γk|−1/2 exp
{
−1

2
εtkΓ

−1
k εk

}
(5.62)

where dy is the dimension of the observations. As a consequence, the log-
likelihood of observations up to index n may be computed as

�n = − (n + 1)dy

2
log(2π)− 1

2

n∑
k=0

{
log |Γk|+ εtkΓ

−1
k εk

}
, (5.63)

which may be evaluated recursively (in n) using Algorithm 5.2.9. Equa-
tion (5.63), which is very important in practice for parameter estimation in
state-space models, is easily recognized as a particular form of the general
relation (3.29). �

Example 5.2.11 (Random Walk Plus Noise Model). To illustrate Algo-
rithm 5.2.9 on a simple example, consider the scalar random walk plus noise
model defined by

Xk+1 = Xk + σuUk ,

Yk = Xk + σvVk ,

where all variables are scalar. Applying the Kalman prediction equations
yields, for k ≥ 1,

X̂k+1|k = X̂k|k−1 +
Σk|k−1

Σk|k−1 + σ2
v

(
Yk − X̂k|k−1

)
(5.64)

= (1− ak)X̂k|k−1 + akYk ,

Σk+1|k = Σk|k−1 + σ2
u −

Σ2
k|k−1

Σk|k−1 + σ2
v

=
Σk|k−1σ

2
v

Σk|k−1 + σ2
v

+ σ2
u

def= f(Σk|k−1) , (5.65)
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with the notation ak = Σk|k−1/(Σk|k−1 + σ2
v). This recursion is initialized by

setting X̂0|−1 = 0 and Σ0|−1 = Σν . For such a state-space model with time-
independent parameters, it is interesting to consider the steady-state solutions
for the prediction error covariance, that is, to solve for Σ in the equation

Σ = f(Σ) =
Σσ2

v

Σ + σ2
v

+ σ2
u .

Solving this equation for Σ ≥ 0 yields

Σ∞ =
1
2

(
σ2

u +
√

σ4
u + 4σ2

uσ
2
v

)
.

Straightforward calculations show that, for any M <∞, sup0≤Σ≤M |ḟ(Σ)| <
1. In addition, for k ≥ 1, (Σk+1|k − Σ∞)(Σk|k−1 − Σ∞) ≥ 0. These re-
marks imply that Σk+1|k always falls between Σk|k−1 and Σ∞, and in par-
ticular that Σk+1|k ≤ max(Σ1|0, Σ∞). Because f is strictly contracting on
any compact subset of R

+, regardless of the value of Σν , the coefficients
ak = Σk|k−1/(Σk|k−1 + σ2

v) converge to

a∞ =
Σ∞

Σ∞ + σ2
v

,

and the mean squared error of the observation predictor (Yk+1− Ŷk+1|k) con-
verges to Σ∞ + σ2

v . �

Remark 5.2.12 (Algebraic Riccati Equation). The equation obtained
by assuming that the model parameters Ak, Bk, SkS

t
k, and RkR

t
k are time

invariant, that is, do not depend on the index k, and then dropping indices
in (5.56), is the so-called algebraic Riccati equation (ARE). Using (5.51) and
(5.53), one finds that the ARE may be written

Σ = AΣAt + AΣBt(BΣBt + SSt)−1BΣAt + RRt.

Conditions for the existence of a symmetric positive semi-definite solution to
this equation, and conditions under which the recursive form (5.56) converges
to such a solution can be found, for instance, in (Caines, 1988). �

5.2.3.2 Kalman Filtering

Algorithm 5.2.9 is primarily intended to compute the state predictor X̂k|k−1
and the covariance Σk|k−1 of the associated prediction error. It is of course
possible to obtain a similar recursion for the filtered state estimator X̂k|k and
associated covariance matrix Σk|k.

Let us start once again with (5.40), applied with Z = Xk, to obtain

X̂k|k = X̂k|k−1 + E(Xkε
t
k)Γ−1

k εk = X̂k|k−1 + Kkεk (5.66)
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where, this time, Kk
def= Cov(Xk, εk)Γ−1

k is the filter version of the Kalman
gain. The first term on the right-hand side of (5.66) may be rewritten as

X̂k|k−1 = Ak−1X̂k−1|k−1 + Rk−1Ûk−1|k−1 = Ak−1X̂k−1|k−1, (5.67)

where we have used

Uk−1 ⊥ span(X0, U0, . . . , Uk−2) ⊇ span(Y0, . . . , Yk−1) .

Likewise, the second term on the right-hand side of (5.66) reduces to

Kk = Σk|k−1B
t
kΓ

−1
k , (5.68)

because εk = Bk(Xk − X̂k|k−1) + SkVk with E(XkV
t
k ) = 0.

The only missing piece is the relationship between the error covariance
matrices Σk|k and Σk|k−1. The state equation Xk = Ak−1Xk−1 + Rk−1Uk−1

and the state prediction equation X̂k|k−1 = Ak−1X̂k−1|k−1 imply that

Cov(Xk) = Ak−1 Cov(Xk−1)At
k−1 + Rk−1R

t
k−1 ,

Cov(X̂k|k−1) = Ak−1 Cov(X̂k−1|k−1)At
k−1 ,

which, combined with (5.31), yield

Σk|k−1 = Ak−1Σk−1|k−1A
t
k−1 + Rk−1R

t
k−1 . (5.69)

By the same argument, the state recursion Xk = Ak−1Xk−1 +Rk−1Uk−1 and
the filter update X̂k|k = Ak−1X̂k−1|k−1 + Kkεk imply that

Σk|k = Ak−1Σk−1|k−1A
t
k−1 + Rk−1R

t
k−1 −KkΓkK

t
k . (5.70)

These relations are summarized in the form of an algorithm.

Algorithm 5.2.13 (Kalman Filtering). For k = 0, . . . n, do the following.

• If k = 0, set X̂k|k−1 = 0 and Σk|k−1 = Σν ; otherwise, set

X̂k|k−1 = Ak−1X̂k−1|k−1 ,

Σk|k−1 = Ak−1Σk−1|k−1A
t
k−1 + Rk−1R

t
k−1 .

• Compute

εk = Yk −BkX̂k|k−1 , innovation (5.71)

Γk = BkΣk|k−1B
t
k + SkS

t
k , innovation cov. (5.72)

Kk = Σk|k−1B
t
kΓ

−1
k , Kalman (filter.) gain (5.73)

X̂k|k = X̂k|k−1 + Kkεk , filter. state estim. (5.74)
Σk|k = Σk|k−1 −KkBkΣk|k−1 . filter. error cov. (5.75)
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There are several different ways in which Algorithm 5.2.13 may be equiva-
lently rewritten. In particular, it is possible to completely omit the prediction
variables X̂k|k−1 and Σk|k−1 (Kailath et al., 2000).

Remark 5.2.14. As already mentioned in Remark 5.2.5, the changes needed
to adapt the filtering and prediction recursions to the case where the state and
measurement noises are not assumed to be zero-mean are straightforward. The
basic idea is to convert the state-space model by defining properly centered
states and measurement variables. Define X∗

k = Xk−E[Xk], U∗
k = Uk−E[Uk],

Y ∗
k = Yk − E[Yk], and V ∗

k = Vk − E[Vk]; the expectations of the state and
measurement variables can be computed recursively using

E[Xk+1] = Ak E[Xk] + Rk E[Uk] ,
E[Yk] = Bk E[Xk] + Sk E[Vk] .

It is obvious that

X∗
k+1 = Xk+1 − E[Xk+1] = Ak(Xk − E[Xk]) + Rk(Uk − E[Uk])

= AkX
∗
k + RkU

∗
k

and, similarly,
Y ∗

k = Yk − E[Yk] = BkX
∗
k + SkV

∗
k .

Thus {X∗
k , Y

∗
k }k≥0 follows the model defined by (5.42)–(5.43) with X∗

0 = 0,
E[U∗

k ] = 0 and E[V ∗
k ] = 0. The Kalman recursions may be applied directly

to compute for instance X̂∗
k|k−1, the best linear estimate of X∗

k in terms of
Y ∗

0 , . . . , Y
∗
k−1. The best linear estimate of Xk in terms of Y0, . . . , Yk−1 is then

given by
X̂k|k−1 = X̂∗

k|k−1 + E[Xk] .

All other quantities of interest can be treated similarly. �

5.2.4 Disturbance Smoothing

After revisiting Proposition 5.2.3, we are now ready to derive an alternative
solution to the smoothing problem that will share the general features of
Algorithm 5.2.4 (RTS smoothing) but operate only on the disturbance vectors
Uk rather than on the states Xk. This second form of smoothing, which is more
efficient in situations discussed at the beginning of Section 5.2.2, has been
popularized under the name of disturbance smoothing by De Jong (1988),
Kohn and Ansley (1989), and Koopman (1993). It is however a rediscovery
of a technique known, in the engineering literature, as Bryson-Frazier (or
BF) smoothing, named after Bryson and Frazier (1963)—see also (Kailath
et al., 2000, Section 10.2.2). The original arguments invoked by Bryson and
Frazier (1963) were however very different from the ones discussed here and
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the use of the innovation approach to obtain smoothing estimates was initiated
by Kailath and Frost (1968).

Recall that for k = 0, . . . , n−1 we denote by Ûk|n the smoothed disturbance
estimator, i.e., the best linear prediction of the disturbance Uk in terms of the
observations Y0, . . . , Yn. The additional notation

Ξk|n
def= Cov(Uk − Ûk|n)

will also be used. We first state the complete algorithm before proving that it
is actually correct.

Algorithm 5.2.15 (Disturbance Smoother).

Forward filtering: Run the Kalman filter (Algorithm 5.2.9) and store for k =
0, . . . , n the innovation εk, the inverse innovation covariance Γ−1

k , the
state prediction error covariance Σk|k−1, and

Λk
def= Ak −HkBk ,

where Hk is the Kalman (prediction) gain.
Backward smoothing: For k = n− 1, . . . , 0, compute

pk =

{
Bt

nΓ
−1
n εn for k = n− 1,

Bt
k+1Γ

−1
k+1εk+1 + Λt

k+1pk+1 otherwise,
(5.76)

Ck =

{
Bt

nΓ
−1
n Bn for k = n− 1,

Bt
k+1Γ

−1
k+1Bk+1 + Λt

k+1Ck+1Λk+1 otherwise,
(5.77)

Ûk|n = Rt
kpk , (5.78)

Ξk|n = I −Rt
kCkRk . (5.79)

Initial Smoothed State Estimator: Compute

X̂0|n = Σν

(
Bt

0Γ
−1
0 ε0 + Λt

0p0
)
, (5.80)

Σ0|n = Σν −Σν

[
Bt

0Γ
−1
0 B0 + Λt

0C0Λ0
]
Σν . (5.81)

Smoothed State Estimator: For k = 0, . . . n− 1,

X̂k+1|n = AkX̂k|n + RkÛk|n , (5.82)

Σk+1|n = AkΣk|nAt
k + RkΞk|nRt

k

−AkΣk|k−1Λ
t
kCkRkR

t
k −RkR

t
kCkΛkΣk|k−1A

t
k . (5.83)

Algorithm 5.2.15 is quite complex, starting with an application of the
Kalman prediction recursion, followed by a backward recursion to obtain the
smoothed disturbances and then a final forward recursion needed to evaluate
the smoothed states. The proof below is split into two parts that concentrate
on each of the two latter aspects of the algorithm.
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Proof (Backward Smoothing). We begin with the derivation of the equations
needed for computing the smoothed disturbance estimator Ûk|n for k = n− 1
down to 0. As previously, it is advantageous to use the innovation sequence
{ε0, . . . , εn} instead of the correlated observations {Y0, . . . , Yn}. Using (5.40),
we have

Ûk|n =
n∑

i=0

E(Ukε
t
i)Γ

−1
i εi =

n∑
i=k+1

E(Ukε
t
i)Γ

−1
i εi , (5.84)

where the fact that

Uk ⊥ span{Y0, . . . Yk} = span{ε0, . . . , εk} ,

has been used to obtain the second expression. We now prove by induction
that for any i = k + 1, . . . , n,

E[Uk(Xi − X̂i|i−1)t] =

{
Rt

k , i = k + 1 ,

Rt
kΛ

t
k+1 Λt

k+2 . . . Λt
i−1 , i ≥ k + 2 ,

(5.85)

E(Ukε
t
i) =

{
Rt

kB
t
k+1 , i = k + 1 ,

Rt
kΛ

t
k+1 Λt

k+2 . . . Λt
i−1B

t
i , i ≥ k + 2 .

(5.86)

First note that

E(Ukε
t
k+1) = E[Uk(Xk+1 − X̂k+1|k)t]Bt

k+1

= E(UkX
t
k+1)B

t
k+1 = Rt

kB
t
k+1 ,

using (5.45) and the orthogonality relations Uk ⊥ Vk+1, Uk ⊥ span(Y0, . . . , Yk)
and Uk ⊥ Xk. Now assume that (5.85)–(5.86) hold for some i ≥ k + 1. Com-
bining the state equation (5.42) and the prediction update equation (5.48),
we obtain

Xi+1 − X̂i+1|i = Λi(Xi − X̂i|i−1) + RiUi −HiSiVi . (5.87)

Because E(UkU
t
i ) = 0 and E(UkV

t
i ) = 0, the induction assumption implies

that

E[Uk(Xi+1 − X̂i+1|i)t] = E[Uk(Xi − X̂i|i−1)t]Λt
i = Rt

kΛ
t
k+1 Λt

k+2 . . . Λt
i .

(5.88)
Proceeding as in the case i = k above,

E(Ukε
t
i+1) = E[Uk(Xi+1−X̂i+1|i)t]Bt

i+1 = Rt
kΛ

t
k+1 Λt

k+2 . . . Λt
iB

t
i+1 , (5.89)

which, by induction, shows that (5.85)–(5.86) hold for all indices i ≥ k + 1.
Plugging (5.86) into (5.84) yields

Ûk|n = Rt
k

(
Bt

k+1Γ
−1
k+1εk+1 +

n∑
i=k+2

Λt
k+1 . . . Λ

t
i−1B

t
iΓ

−1
i εi

)
, (5.90)
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where the term between parentheses is easily recognized as pk defined recur-
sively by (5.76), thus proving (5.78).

To compute the smoothed disturbance error covariance Ξk|n, we apply
once again (5.41) to obtain

Ξk|n = Cov(Uk)− Cov
(
Ûk|n

)
(5.91)

= I −
n∑

i=k+1

E(Ukε
t
i)Γ

−1
i E(εiU t

k)

= I −Rt
k

(
Bt

k+1Γ
−1
k+1Bk+1

+
n∑

i=k+2

Λt
k+1 . . . Λt

i−1B
t
iΓ

−1
i BiΛi−1 . . . Λk+1

)
Rk ,

where I is the identity matrix with dimension that of the disturbance vector
and (5.89) has been used to obtain the last expression. The term in parentheses
in (5.91) is recognized as Ck defined by (5.77), and (5.79) follows. ��

Proof (Smoothed State Estimation). The key ingredient here is the following
set of relations:

E[Xk(Xi − X̂i|i−1)t] =

{
Σk|k−1 , i = k ,

Σk|k−1Λ
t
k Λt

k+1 . . . Λt
i−1 , i ≥ k + 1 ,

(5.92)

E(Xkε
t
i) =

{
Σk|k−1B

t
k , i = k ,

Σk|k−1Λ
t
k Λt

k+1 . . . Λt
i−1B

t
i , i ≥ k + 1 ,

(5.93)

which may be proved by induction exactly like (5.85)–(5.86).
Using (5.40) as usual, the minimum mean squared error linear predictor of

the initial state X0 in terms of the observations Y0, . . . , Yn may be expressed
as

X̂0|n =
n∑

i=0

E(X0ε
t
i)Γ

−1
i εi . (5.94)

Hence by direct application of (5.93),

X̂0|n = Σν

(
Bt

0Γ
−1
0 ε0 +

n∑
i=1

Λt
0 . . . Λt

i−1B
t
iΓ

−1
i εi

)
, (5.95)

proving (5.80). Proceeding as for (5.91), the expression for the smoothed initial
state error covariance in (5.81) follows from (5.41).

The update equation (5.82) is a direct consequence of the linearity of the
projection operator applied to the state equation (5.42). Finally, to prove
(5.83), first combine the state equation (5.42) with (5.82) to obtain
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Cov(Xk+1 − X̂k+1|n) = Cov[Ak(Xk − X̂k|n) + Rk(Uk − Ûk|n)] =

AkΣk|nAt
k + RkΞk|nRt

k −Ak E(XkÛ
t
k|n)Rt

k −Rk E(Ûk|nXt
k)At

k , (5.96)

where the remark that E[X̂k|n(Uk − Ûk|n)t] = 0, because X̂k|n belongs to
span(Y0, . . . , Yn), has been used to obtain the second expression. In order to
compute E(XkÛ

t
k|n) we use (5.90), writing

E(XkÛ
t
k|n) = E(Xkε

t
k+1)Γ

−1
k+1Bk+1Rk+

n∑
i=k+2

E(Xkε
t
i)Γ

−1
i BiΛi−1 . . . Λk+1Rk . (5.97)

Finally, invoke (5.93) to obtain

E(XkÛ
t
k|n) = Σk|k−1Λ

t
kB

t
k+1Γ

−1
k+1Bk+1Rk+

n∑
i=k+2

Σk|k−1Λ
t
kΛ

t
k+1 . . . Λt

i−1B
t
iΓ

−1
i BiΛi−1 . . . Λk+1Rk ,

which may be rewritten as

E(XkÛ
t
k|n) = Σk|k−1Λ

t
kCkRk . (5.98)

Equation (5.83) then follows from (5.96). ��
Remark 5.2.16. There are a number of situations where computing the best
linear prediction of the state variables is the only purpose of the analysis,
and computation of the error covariance Cov(Xk − X̂k|n) is not required.
Algorithm 5.2.15 may then be substantially simplified because (5.77), (5.79),
(5.81), and (5.83) can be entirely skipped. Storage of the prediction error
covariance matrices Σk|k−1 during the initial Kalman filtering pass is also not
needed anymore. �

Remark 5.2.17. An important quantity in the context of parameter estima-
tion (to be discussed in Section 10.4 of Chapter 10) is the one-step posterior
cross-covariance

Ck,k+1|n
def= E

[(
Xk − X̂k|n

)(
Xk+1 − X̂k+1|n

)t
∣∣∣∣Y0:n

]
. (5.99)

This is a quantity that can readily be evaluated during the final forward
recursion of Algorithm 5.2.15. Indeed, from (5.42)–(5.82),

Xk+1 − X̂k+1|n = Ak

(
Xk − X̂k|n

)
+ Rk

(
Uk − Ûk|n

)
.

Hence
Ck,k+1|n = Σk|nAt

k − E
(
XkÛ

t
k|n

)
Rt

k ,

where the fact that E(XkU
t
k) = 0 has been used. Using (5.98) then yields

Ck,k+1|n = Σk|nAt
k −Σk|k−1Λ

t
kCkRkR

t
k . (5.100)

�
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5.2.5 The Backward Recursion and the Two-Filter Formula

Notice that up to now, we have not considered the backward functions βk|n
in the case of Gaussian linear state-space models. In particular, and although
the details of both approaches differ, the smoothing recursions discussed in
Sections 5.2.1 and 5.2.4 are clearly related to the general principle of back-
ward Markovian smoothing discussed in Section 3.3.2 and do not rely on the
forward-backward decomposition discussed in Section 3.2.

A first terminological remark is that although major sources on Gaussian
linear models never mention the forward-backward decomposition, it is indeed
known under the name of two-filter formula (Fraser and Potter, 1969; Kita-
gawa, 1996; Kailath et al., 2000, Section 10.4). A problem however is that, as
noted in Chapter 3, the backward function βk|n is not directly interpretable
as a probability distribution (recall for instance that the initialization of the
backward recursion is βn|n(x) = 1 for all x ∈ X). A first approach consists
in introducing some additional assumptions on the model that ensure that
βk|n(x), suitably normalized, can indeed be interpreted as a probability den-
sity function. The backward recursion can then be interpreted as the Kalman
prediction algorithm, applied backwards in time, starting from the end of the
data record (Kailath et al., 2000, Section 10.4).

A different option, originally due to Mayne (1966) and Fraser and Potter
(1969), consists in deriving the backward recursion using a reparameterization
of the backward functions βk|n, which is robust to the fact that βk|n(x) may
not be integrable over X. This solution has the advantage of being generic
in that it does not require any additional assumptions on the model, other
than SkS

t
k being invertible. The drawback is that we cannot simply invoke a

variant of Algorithm 5.2.3 but need to derive a specific form of the backward
recursion using a different parameterization. This implementation of the back-
ward recursion (which could also be used, with some minor modifications, for
usual forward prediction) is referred to as the information form of the Kalman
filtering and prediction recursions (Anderson and Moore, 1979, Section 6.3;
Kailath et al., 2000, Section 9.5.2). In the time series literature, this method
is also sometimes used as a tool to compute the smoothed estimates when
using so-called diffuse priors (usually for X0), which correspond to the notion
of improper flat distributions to be discussed below.

5.2.5.1 The Information Parameterization

The main ingredient of what follows consists in revisiting the calculation of the
posterior distribution of the unobserved component X in the basic Gaussian
linear model

Y = BX + V .

Indeed, in order to prove Proposition 5.2.2, we could have followed a very
different route: assuming that both ΣV and Cov(Y ) = BtΣXB +ΣV are full
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rank matrices, the posterior probability density function of X given Y , which
we denote by p(x|y), is known by Bayes’ rule to be proportional to the product
of the prior p(x) on X and the conditional probability density function p(y|x)
of Y given X, that is,

p(x|y) ∝ exp
{
−1

2
[
(y −Bx)tΣ−1

V (y −Bx) + (x− µX)tΣ−1
X (x− µX)

]}
,

(5.101)
where the symbol ∝ indicates proportionality up to a constant that does not
depend on the variable x. Note that this normalizing constant could easily be
determined in the current case because we know that p(x|y) corresponds to a
multivariate Gaussian probability density function. Hence, to fully determine
p(x|y), we just need to rewrite (5.101) as a quadratic form in x:

p(x|y) ∝ exp
{
{−1

2
[
xt(BtΣ−1

V B + Σ−1
X )x− xt(BtΣ−1

V y + Σ−1
X µX)

− (BtΣ−1
V y + Σ−1

X µX)tx
]}

, (5.102)

that is,

p(x|y) ∝ exp
{
−1

2
[
(x− µX|Y )tΣ−1

X|Y (x− µX|Y )]
}

, (5.103)

where

µX|Y = Σ−1
X|Y

(
BtΣ−1

V y + Σ−1
X µX

)
, (5.104)

ΣX|Y =
(
BtΣ−1

V B + Σ−1
X

)−1
. (5.105)

Note that in going from (5.102) to (5.104), we have used once again the fact
that p(x|y) only needs be determined up to a normalization factor, whence
terms that do not depend on x can safely be ignored.

As a first consequence, (5.105) and (5.104) are alternate forms of equa-
tions (5.17) and (5.16), respectively, which we first met in Proposition 5.2.2.
The fact that (5.17) and (5.105) coincide is a well-known result from matrix
theory known as the matrix inversion lemma that we could have invoked di-
rectly to obtain (5.104) and (5.105) from Proposition 5.2.2. This simple rewrit-
ing of the conditional mean and covariance in the Gaussian linear model is
however not the only lesson that can be learned from (5.104) and (5.105).
In particular, a very natural parameterization of the Gaussian distribution
in this context consists in considering the inverse of the covariance matrix
Π = Σ−1 and the vector κ = Πµ rather than the covariance Σ and the mean
vector µ. Both of these parameterizations are of course fully equivalent when
the covariance matrix Σ is invertible. In some contexts, the inverse covariance
matrix Π is referred to as the precision matrix, but in the filtering context the
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use of this parameterization is generally associated with the word informa-
tion (in reference to the fact that in a Gaussian experiment, the inverse of the
covariance matrix is precisely the Fisher information matrix associated with
the estimation of the mean). We shall adopt this terminology and refer to the
use of κ and Π as parameters of the Gaussian distribution as the information
parameterization. Note that because a Gaussian probability density function
p(x) with mean µ and covariance Σ may be written

p(x) ∝ exp
{
−1

2
[
xtΣ−1x− 2xtΣ−1µ

]}
= exp

{
−1

2
[
trace

(
xxtΣ−1)− 2xtΣ−1µ

]}
,

Π = Σ−1 and κ = Πµ also form the natural parameterization of the multivari-
ate normal, considered as a member of the exponential family of distributions
(Lehmann and Casella, 1998).

5.2.5.2 The Gaussian Linear Model (Again!)

We summarize our previous findings—Eqs. (5.104) and (5.105)—in the form
of the following alternative version of Proposition 5.2.2,

Proposition 5.2.18 (Conditioning in Information Parameterization).
Let

Y = BX + V ,

where X and V are two independent Gaussian random vectors such that,
in information parameterization, κX = Cov(X)−1 E(X), ΠX = Cov(X)−1,
ΠV = Cov(V )−1 and κV = E(V ) = 0, B being a deterministic matrix. Then

κX|Y = κX + BtΠV Y , (5.106)

ΠX|Y = ΠX + BtΠV B , (5.107)

where κX|Y = Cov(X|Y )−1 E(X|Y ) and ΠX|Y = Cov(X|Y )−1.
If the matrices ΠX , ΠV , or ΠX|Y are not full rank matrices, (5.106)

and (5.107) can still be interpreted in a consistent way using the concept of
improper (flat) distributions.

Equations (5.106) and (5.107) deserve no special comment as they just
correspond to a restatement of (5.104) and (5.105), respectively. The last
sentence of Proposition 5.2.18 is a new element, however. To understand the
point, consider (5.101) again and imagine what would happen if p(x), for
instance, was assumed to be constant. Then (5.102) would reduce to

p(x|y) ∝ exp
{
−1

2
[
xt(BtΣ−1

V B)x− xt(BtΣ−1
V y)− (BtΣ−1

V y)tx
]}

, (5.108)
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which corresponds to a perfectly valid Gaussian distribution, when viewed as a
function of x, at least when BtΣ−1

V B has full rank. The only restriction is that
there is of course no valid probability density function p(x) that is constant
on X. This practice is however well established in Bayesian estimation (to
be discussed in Chapter 13.1.1) where such a choice of p(x) is referred to as
using an improper flat prior. The interpretation of (5.108) is then that under
an (improper) flat prior on Y , the posterior mean of X given Y is(

BtΣ−1
V B

)−1
BtΣ−1

V Y , (5.109)

which is easily recognized as the (deterministic) optimally weighted least-
squares estimate of x in the linear regression model Y = Bx + V . The im-
portant message here is that (5.109) can be obtained direct from (5.106) by
assuming that ΠX is the null matrix and κX the null vector. Hence Propo-
sition 5.2.18 also covers the case where X has an improper flat distribution,
which is handled simply by setting the precision matrix ΠX and the vector
κX equal to 0. A more complicated situation is illustrated by the following
example.

Example 5.2.19. Assume that the linear model is such that X is bivariate
Gaussian and the observation Y is scalar with

B =
(
1 0

)
and Cov(V ) = σ2 .

Proposition 5.2.18 asserts that the posterior parameters are then given by

κX|Y = κX +
(
σ−2Y

0

)
, (5.110)

ΠX|Y = ΠX +
(
σ−2 0
0 0

)
. (5.111)

In particular, if the prior on X is improper flat, then (5.110) and (5.111)
simply mean that the posterior distribution of the first component of X given
Y is Gaussian with mean Y and variance σ2, whereas the posterior on the
second component is also improper flat. �

In the above example, what is remarkable is not the result itself, which is
obvious, but the fact that it can be obtained by application of a single set of
formulas that are valid irrespectively of the fact that some distributions are
improper. In more general situations, directions that are in the null space of
ΠX|Y form a subspace where the resulting posterior is improper flat, whereas
the posterior distribution of X projected on the image ΠX|Y is a valid Gaus-
sian distribution.

The information parameterization is ambivalent because it can be used
both as a Gaussian prior density function as in Proposition 5.2.18 but also as
an observed likelihood. There is nothing magic here but simply the observation
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that as we (i) allow for improper distributions and (ii) omit the normalization
factors, Gaussian priors and likelihood are equivalent. The following lemma
is a complement to Proposition 5.2.18, which will be needed below.

Lemma 5.2.20. Up to terms that do not depend on x,∫
exp

{
−1

2
[
(y −Bx)tΣ−1(y −Bx)

]}
exp

{
−1

2
[(
ytΠy − 2ytκ

)]}
dy

∝ exp
{
−1

2
[
xtBt(I + ΠΣ)−1ΠBx− 2xtBt(I + ΠΣ)−1κ

]}
, (5.112)

where I denotes the identity matrix of suitable dimension.

Proof. The left-hand side of (5.112), which we denote by p(x), may be rewrit-
ten as

p(x) = exp
{
−1

2
xBtΣ−1Bx

}
×∫

exp−1
2
[
yt(Π + Σ−1)y − 2yt(κ + Σ−1Bx)

]
dy . (5.113)

Completing the square, the bracketed term in the integrand of (5.113) may
be written{

y − (Π + Σ−1)−1(κ + Σ−1Bx)
}t

(Π + Σ−1)

×
{
y − (Π + Σ−1)−1(κ + Σ−1Bx)

}
− (κ + Σ−1Bx)t(Π + Σ−1)−1(κ + Σ−1Bx) . (5.114)

The exponent of −1/2 times the first two lines of (5.114) integrates to a
constant (or, rather, a number not depending on x), as it is recognized as a
Gaussian probability density function. Thus

p(x) ∝ exp−1
2

{
[−2xtBtΣ−1(Π + Σ−1)−1κ

+ xtBt
(
Σ−1 −Σ−1(Π + Σ−1)−1Σ−1)Bx

}
, (5.115)

where terms that do not depend on x have been dropped. Equation (5.112)
follows from the equalities Σ−1(Π + Σ−1)−1 = (I + ΠΣ)−1 and

Σ−1 −Σ−1(Π + Σ−1)−1Σ−1

= Σ−1(Π + Σ−1)−1 [(Π + Σ−1)−Σ−1] = (I + ΠΣ)−1Π .

Note that the last identity is the matrix inversion lemma that we already met,
as (I +ΠΣ)−1Π = (Π−1 +Σ)−1. Using this last form however is not a good
idea in general, however, as it obviously does not apply in cases where Π is
non-invertible. ��
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5.2.5.3 The Backward Recursion

The question now is, what is the link between our original problem, which con-
sists in implementing the backward recursion in Gaussian linear state-space
models, and the information parameterization discussed in the previous sec-
tion? The connection is the fact that the backward functions defined by (3.16)
do not correspond to probability measures. More precisely, βk|n(Xk) defined
by (3.16) is the conditional density of the “future” observations Yk+1, . . . , Yn

given Xk. For Gaussian linear models, we know from Proposition 5.2.18 that
this density is Gaussian and hence that βk|n(x) has the form of a Gaussian
likelihood,

p(y|x) ∝ exp−1
2
[
(y −Mx)tΣ−1(y −Mx)

]
,

for some M and Σ given by (5.16) and (5.17). Proceeding as previously, this
equation can be put in the same form as (5.108) (replacing B and ΣV by
M and Σ, respectively). Hence, a possible interpretation of βk|n(x) is that
it corresponds to the posterior distribution of Xk given Yk+1, . . . , Yn in the
pseudo-model where Xk is assumed to have an improper flat prior distribution.
According to the previous discussion, βk|n(x) itself may not correspond to
a valid Gaussian distribution unless one can guarantee that M tΣ−1M is a
full rank matrix. In particular, recall from Section 3.2.1 that the backward
recursion is initialized by setting βn|n(x) = 1, and hence βn|n never is a valid
Gaussian distribution.

The route from now on is clear: in order to implement the backward re-
cursion, one needs to define a set of information parameters corresponding to
βk|n and derive (backward) recursions for these parameters based on Propo-
sition 5.2.18. We will denote by κk|n and Πk|n the information parameters
(precision matrix times mean and precision matrix) corresponding to βk|n for
k = n down to 0 where, by definition, κn|n = 0 and Πn|n = 0. It is important
to keep in mind that κk|n and Πk|n define the backward function βk|n only
up to an unknown constant. The best we can hope to determine is

βk|n(x)∫
βk|n(x) dx

,

by computing the Gaussian normalization factor in situations where Πk|n is
a full rank matrix. But this normalization is not more legitimate or practical
than other ones, and it is preferable to consider that βk|n will be determined up
to a constant only. In most situations, this will be a minor concern, as formulas
that take into account this possible lack of normalization, such as (3.21), are
available.

Proposition 5.2.21 (Backward Information Recursion). Consider the
Gaussian linear state-space model (5.11)–(5.12) and assume that SkS

t
k has

full rank for all k ≥ 0. The information parameters κk|n and Πk|n, which
determine βk|n (up to a constant), may be computed by the following recursion.
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Initialization: Set κn|n = 0 and Πn|n = 0.
Backward Recursion: For k = n− 1 down to 0,

κ̃k+1|n = Bt
k+1

(
Sk+1S

t
k+1

)−1
Yk+1 + κk+1|n , (5.116)

Π̃k+1|n = Bt
k+1

(
Sk+1S

t
k+1

)−1
Bk+1 + Πk+1|n , (5.117)

κk|n = At
k

(
I + Π̃k+1|nRkR

t
k

)−1
κ̃k+1|n , (5.118)

Πk|n = At
k

(
I + Π̃k+1|nRkR

t
k

)−1
Π̃k+1|nAk . (5.119)

Proof. The initialization of Proposition 5.2.21 has already been discussed and
we just need to check that (5.116)–(5.119) correspond to an implementation
of the general backward recursion (Proposition 3.2.1).

We split this update in two parts and first consider computing

β̃k+1|n(x) ∝ gk+1(x)βk+1|n(x) (5.120)

from βk+1|n. Equation (5.120) may be interpreted as the posterior distribu-
tion of X in the pseudo-model in which X has a (possibly improper) prior
distribution βk+1|n (with information parameters κk+1|n and Πk+1|n) and

Y = Bk+1X + Sk+1V

is observed, where V is independent of X. Equations(5.116)–(5.117) thus
correspond to the information parameterization of β̃k+1|n by application of
Proposition 5.2.18.

From (3.19) we then have

βk|n(x) =
∫

Qk(x, dx′)β̃k+1|n(x′) , (5.121)

where we use the notation Qk rather than Q to emphasize that we are deal-
ing with possibly non-homogeneous models. Given that Qk is a Gaussian
transition density function corresponding to (5.12), (5.121) may be computed
explicitly by application of Lemma 5.2.20 which gives (5.118) and (5.119). ��

While carrying out the backward recursion according to Proposition 5.2.21,
it is also possible to simultaneously compute the marginal smoothing distri-
bution by use of (3.21).

Algorithm 5.2.22 (Forward-Backward Smoothing).

Forward Recursion: Perform Kalman filtering according to Algorithm 5.2.13 and
store the values of X̂k|k and Σk|k.

Backward Recursion: Compute the backward recursion, obtaining for each k the
mean and covariance matrix of the smoothed estimate as

X̂k|n = X̂k|k + Σk|k
(
I + Πk|nΣk|k

)−1 (κk|n −Πk|nX̂k|k) , (5.122)

Σk|n = Σk|k −Σk|k
(
I + Πk|nΣk|k

)−1
Πk|nΣk|k . (5.123)
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Proof. These two equations can be obtained exactly as in the proof of
Lemma 5.2.20, replacing (y − Bx)tΣ−1(y − Bx) by (x − µ)tΣ−1(x − µ) and
applying the result with µ = X̂k|k, Σ = Σk|k, κ = κk|n and Π = Πk|n. If
Πk|n is invertible, (5.122) and (5.123) are easily recognized as the application
of Proposition 5.2.2 with B = I, Cov(V ) = Π−1

k|n, and an equivalent observed
value of Y = Π−1

k|nκk|n. ��

Remark 5.2.23. In the original work by Mayne (1966), the backward infor-
mation recursion is carried out on the parameters of β̃k|n, as defined by (5.120),
rather than on βk|n. It is easily checked using (5.116)–(5.119) that, except for
this difference of focus, Proposition 5.2.21 is equivalent to the Mayne (1966)
formulas—see also Kailath et al. (2000, Section 10.4) on this point. Of course,
in the work of Mayne (1966), β̃k|n has to be combined with the predictive
distribution φk|k−1 rather than with the filtering distribution φk, as β̃k|n al-
ready incorporates the knowledge of the observation Yk. Proposition 5.2.21
and Algorithm 5.2.22 are here stated in a form that is compatible with our
general definition of the forward-backward decomposition in Section 3.2. �

5.2.6 Application to Marginal Filtering and Smoothing in
CGLSSMs

The algorithms previously derived for linear state-space models also have
important implications for conditionally Gaussian linear state-space models
(CGLSSMs). According to Definition 2.2.6, a CGLSSM is such that condi-
tionally on {Ck}k≥0,

Wk+1 = A(Ck+1)Wk + R(Ck+1)Uk , W0 ∼ N(µν , Σν) ,
Yk = B(Ck)Wk + S(Ck)Vk ,

where the indicator process {Ck}k≥0 is a Markov chain on a finite set X, with
some transition matrix QC .

We follow the general principle outlined in Section 4.2.3 and consider the
computation of the posterior distribution of the indicator variables C0:k given
the observations Y0:k, marginalizing with respect to the continuous compo-
nent of the state W0:k. The key remark—see (4.11)—is that one may evaluate
the conditional distribution of Wk given the observations Y0:k−1 and the indi-
cator variables C0:k. For CGLSSMs, this distribution is Gaussian with mean
Ŵk|k−1(C0:k) and covariance Σk|k−1(C0:k)—the dependence on the measure-
ment, here Y0:k−1, is implicit and we emphasize only the dependence with
respect to the indicator variables in the following. Both of these quantities
may be evaluated using the Kalman filter recursion (Algorithm 5.2.13), which
we briefly recall here.

Given Ŵk−1|k−1(C0:k−1) and Σk−1|k−1(C0:k−1), the filtered partial state
estimator and the filtered partial state error covariance at time k−1, evaluate
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the predicted partial state and the associated predicted partial state error
covariance as

Ŵk|k−1(C0:k) = A(Ck)Ŵk−1|k−1(C0:k−1) , (5.124)

Σk|k−1(C0:k) = A(Ck)Σk−1|k−1(C0:k−1)At(Ck) + R(Ck)Rt(Ck) .

From these quantities, determine in a second step the innovation and the
covariance of the innovation given the indicator variables,

εk(C0:k) = Yk −B(Ck)Ŵk|k−1(C0:k) , (5.125)

Γk(C0:k) = B(Ck)Σk|k−1(C0:k)Bt(Ck) + S(Ck)St(Ck) .

In a third and last step, evaluate the filtered partial state estimation and
filtered partial state error covariance from the innovation and the innovation
covariance,

Kk(C0:k) = Σk|k−1(C0:k)B(Ck)Γ−1
k (C0:k) , (5.126)

Ŵk|k(C0:k) = Ŵk|k−1(C0:k) + Kk(C0:k)εk(C0:k) ,
Σk|k(C0:k) = {I −Kk(C0:k)B(Ck)} Σk|k−1(C0:k) .

As a by-product of the above recursion, one may also determine the condi-
tional probability of Ck given the history of the indicator process C0:k−1 and
the observations Y0:k up to index k. Indeed, by Bayes’ rule,

Pν(Ck = c |C0:k−1, Y0:k)
Pν(Ck = c′ |C0:k−1, Y0:k)

=

Lν(Y0:k |C0:k−1, Ck = c)QC(Ck−1, c)
Lν(Y0:k |C0:k−1, Ck = c′)QC(Ck−1, c′)

, (5.127)

where Lν denotes the conditional likelihood of the observations given the in-
dicator variables. Both the numerator and the denominator can be evaluated,
following Remark (5.2.10), by applying the Kalman recursions (5.125)–(5.126)
for the two values Ck = c and Ck = c′. Using (5.62) and (5.127) then yields

Pν(Ck = c |C0:k−1, Y0:k) ∝ |Γk(C0:k−1, c)|−1/2×

exp
{
−1

2
εtk(C0:k−1, c)Γ−1

k (C0:k−1, c)εk(C0:k−1, c)
}
QC(Ck−1, c) , (5.128)

where the normalization factor may be evaluated by summation of (5.128)
over all c ∈ C. At the expense of computing r times (5.125)–(5.126), where
r is the cardinality of C, it is thus possible to evaluate the conditional dis-
tribution of Ck given the history of the indicator process C0:k−1, where the
continuous variables W0:k have been fully marginalized out. To be applicable
however, (5.128) implies that the history of the indicator process before in-
dex k be exactly known. This is hardly conceivable except in simulation-based
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smoothing approximations where one imputes values of the unknown sequence
of indicators {Ck}k≥0. The application of (5.125)–(5.126) and (5.128) for this
purpose will be fully described in Chapter 8.

A similar remark holds regarding the computation of the conditional distri-
bution of Ck given both the history C0:k−1 and future Ck+1:n of the indicator
sequence and the corresponding observations Y0:n. The principle that we follow
here is an instance of the generalized forward-backward decomposition (4.13)
which, in the case of CGLSSMs, amounts to adapting Algorithm 5.2.22 as
follows.

1. Use the backward information recursion of Proposition 5.2.21 to compute
κk|n(Ck+1:n) and Πk|n(Ck+1:n)2.

2. Use the filtering recursion of Algorithm 5.2.13—restated above as (5.124)–
(5.126)—to compute Ŵk−1|k−1(C0:k−1) and Σk−1|k−1(C0:k−1).

3. For all values of c ∈ C, evaluate εk(C0:k−1, c), Γk(C0:k−1, c), as well
as Ŵk|k(C0:k−1, c), Σk|k(C0:k−1, c) using one step of Algorithm 5.2.13.
Then apply (5.122) and (5.123) to obtain Ŵk|n(C0:k−1, c, Ck+1:n) and
Σk|n(C0:k−1, c, Ck+1:n).

The most difficult aspect then consists in computing the likelihood of the
observations Y0:n given the indicator sequence, where all indicators variables
but ck are fixed and ck takes all possible values in C. The lemma below provides
a simple formula for this task.

Lemma 5.2.24. Assume that εk(ck), Γk(ck), Ŵk|k(ck), Σk|k(ck), Ŵk|n(ck),
and Σk|n(ck) are available, where we omit dependence with respect to the in-
dicator variables cl for l �= k, which is implicit in the following.

The likelihood of the observations Y0:n given the indicator sequence C0:n =
c0:n is then proportional to the quantity

1
|Γk(ck)|1/2 exp

[
−1

2
εtk(ck)Γ−1

k (ck)εk(ck)
]

× 1
|Σk|k(ck)|1/2 exp

[
−1

2
Ŵ t

k|k(ck)Σ−1
k|k(ck)Ŵk|k(ck))

]
×

{
1

|Σk|n(ck)|1/2 exp
[
−1

2
Ŵ t

k|n(ck)Σ−1
k|n(ck)Ŵk|n(ck))

]}−1

, (5.129)

where the proportionality constant does not depend on the value of ck.

Before actually proving this identity, we give a hint of the fundamental
argument behind (5.129). If X and Y are jointly Gaussian variables (with
non-singular covariance matrices), Bayes’ rule implies that

2We do not repeat Proposition 5.2.21 with the notations appropriate for
CGLSSMs as we did for (5.124)–(5.126).
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p(x|y) =
p(y|x)p(x)∫

p(y|x′)p(x′) dx′ .

In particular, the denominator on the right-hand side equals p(y|x)p(x)/p(x|y)
for any value of x. For instance, in the linear model of Proposition 5.2.2,
applying this identity for x = 0 yields∫

p(Y |x)p(x) dx ∝ 1
|ΣV |1/2 exp

[
−1

2
Y tΣ−1

V Y

]
× 1
|ΣX |1/2 exp

[
−1

2
µt

XΣ−1
X µX

]
×

{
1

|ΣX|Y |1/2 exp
[
−1

2
µt

X|Y ΣX|Y µX|Y

]}−1

, (5.130)

where µX|Y
def= E(X|Y ) and ΣX|Y

def= Cov(X|Y ) and constants have been
omitted. It is tedious but straightforward to check from (5.16) and (5.17)
using the matrix inversion lemma that (5.130) indeed coincides with what we
know to be the correct result:∫

p(Y |x)p(x) dx = p(Y ) ∝

1
|ΣV + BΣXBt|1/2 exp

[
−1

2
(Y −BµX)t(ΣV + BΣXBt)−1(Y −BµX)

]
.

Equation (5.130) is certainly not the most efficient way of computing p(Y )
but it is one that does not necessitate any other knowledge than that of the
prior p(x), the conditional p(y|x), and the posterior p(x|y). Lemma 5.2.24 will
now be proved by applying the same principle to the conditional smoothing
distribution in a CGLSSM.

Proof (Conditional Smoothing Lemma). The forward-backward decomposi-
tion provides a simple general expression for the likelihood of the observations
Y0:n in the form

Ln =
∫

αk(dw)βk|n(w) (5.131)

for any k = 0, . . . , n. Recall that our focus is on the likelihood of the obser-
vations conditional on a given sequence of indicator variables C0:n = c0:n,
and more precisely on the evaluation of the likelihood for all values of ck in
C, the other indicator variables cl, l �= k, being held fixed. In the following,
every expression should be understood as being conditional on C0:n = c0:n,
where only the dependence with respect to ck is of interest (terms that do not
depend on the value of ck will cancel out by normalization). This being said,
(5.131) may be rewritten as

L(ck)
n =

∫∫
αk−1(dwk−1)Q(ck)(wk−1, dwk)g(ck)

k (wk)βk|n(wk) (5.132)
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using the forward recursion (3.17), where the superscript (ck) is used to high-
light quantities that depend on this variable. Because the first term of the
integrand does not depend on ck, it may be replaced by its normalized ver-
sion φk−1 to obtain

L(ck)
n ∝

∫∫
φk−1(dwk−1)Q(ck)(wk−1, dwk)g(ck)

k (wk)βk|n(wk) , (5.133)

where the proportionality constant does not depend on ck. Now, using the
prediction and filtering relations (see Proposition 3.2.5 and Remark 3.2.6),
the right-hand side of (5.133) may be rewritten as the product∫

φ
(ck)
k|k−1(dw)g(ck)

k (w)×
∫

φ
(ck)
k (dw)βk|n(w) . (5.134)

Finally note that in the case of conditionally Gaussian linear state-space mod-
els: (i) the first integral in (5.134) may be computed from the innovation εk as
the first line of (5.129)—a remark that was already used in obtaining (5.128);
(ii) φ(ck)

k is a Gaussian probability density function with parameters Ŵk|k(ck)
and Σk|k(ck); (iii) βk|n is a Gaussian likelihood defined, up to a constant, by
the information parameters κk|n and Πk|n;

(iv) φ
(ck)
k|n (dw) =

φ
(ck)
k (dw)βk|n(w)∫
φ

(ck)
k (dw′)βk|n(w′)

is the Gaussian distribution with parameters X̂k|n and Σk|n given by (5.122)
and (5.123), respectively. The last two factors of (5.129) are now easily recog-
nized as an instance of (5.130) applied to the second integral term in (5.134),
where the factor βk|n(0) has been ignored because it does not depend on the
value of ck. Note that as a consequence, the fact that κk|n and Πk|n define
βk|n up to an unknown constant only is not detrimental. ��

Once again, the context in which Lemma 5.2.24 will be useful is not en-
tirely obvious at this point and will be fully discussed in Section 6.3.2 when
reviewing Monte Carlo methods. From the proof of this result, it should be
clear however that (5.129) is deeply connected to the smoothing approach
discussed in Section 5.2.5 above.
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Monte Carlo Methods

This chapter takes a different path to the study of hidden Markov models in
that it abandons the pursuit of closed-form formulas and exact algorithms to
cover instead simulation-based techniques. This change of perspective allows
for a much broader coverage of HMMs, which is not restricted to the specific
cases discussed in Chapter 5. In this chapter, we consider sampling the un-
known sequence of states X0, . . . , Xn conditionally on the observed sequence
Y0, . . . Yn. In subsequent chapters, we will also use simulation to do inference
about the parameters of HMMs, either using simulation-based stochastic algo-
rithms that optimize the likelihood (Chapter 11) or in the context of Bayesian
joint inference on the states and parameters (Chapter 13). But even the sole
simulation of the missing states may prove itself a considerable challenge in
complex settings like continuous state-space HMMs. Therefore, and although
these different tasks are presented in separate chapters, simulating hidden
states in a model whose parameters are assumed to be known is certainly
not disconnected from parameter estimation to be discussed in Chapters 11
and 13.

6.1 Basic Monte Carlo Methods

Although we will not go into a complete description of simulation methods
in this book, the reader must be aware that recent developments of these
methods have offered new opportunities for inference in complex models like
hidden Markov models and their generalizations. For a more in-depth covering
of these simulation methods and their implications see, for instance, the books
by Chen and Shao (2000), Evans and Swartz (2000), Liu (2001), and Robert
and Casella (2004).
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6.1.1 Monte Carlo Integration

Integration, in general, is most useful for computing probabilities and expec-
tations. Of course, when given an expectation to compute, the first thing is
to try to compute the integral analytically. When analytic evaluation is im-
possible, numerical integration is an option. However, especially when the
dimension of the space is large, numerical integration can become numerically
involved: the number of function evaluations required to achieve some degree
of approximation increases exponentially in the dimension of the problem (this
is often called the curse of dimensionality).

Thus it is useful to consider other methods for evaluating integrals. For-
tunately, there are methods that do not suffer so directly from the curse of
dimensionality, and Monte Carlo methods belong to this group. In particular,
recall that, by the strong law of large numbers, if ξ1, ξ2, . . . is a sequence of
i.i.d. X-valued random variables with common probability distribution π, then
the estimator

π̂MC
N (f) = N−1

N∑
i=1

f(ξi)

converges almost surely to π(f) for all π-integrable functions f . Obviously
this Monte Carlo estimate of the expectation is not exact, but generating a
sufficiently large number of random variables can render this approximation
error arbitrarily small, in a suitable probabilistic sense. It is even possible to
assess the size of this error. If

π(|f |2) =
∫
|f(x)|2 π(dx) <∞ ,

the central limit theorem shows that
√
N

[
π̂MC

N (f)− π(f)
]

has an asymptotic
normal distribution, which can be used to construct asymptotic confidence
regions for π(f). For instance, if f is real-valued, a confidence interval with
asymptotic probability of coverage α is given by[

π̂MC
N (f)− cαN

−1/2σN (π, f), π̂MC
N (f) + cαN

−1/2σN (π, f)
]
, (6.1)

where

σ2
N (π, f) def= N−1

N∑
i=1

[
f(ξi)− π̂MC

N (f)
]2

and cα is the α/2 quantile of the standard Gaussian distribution. If generating
a sequence of i.i.d. samples from π is practicable, one can make the confidence
interval as small as desired by increasing the sample size N . When compared
to univariate numerical integration and quasi-Monte Carlo methods (Nieder-
reiter, 1992), the convergence rate is not fast. In practical terms, (6.1) implies
that an extra digit of accuracy on the approximation requires 100 times as
many replications, where the rate 1/

√
N cannot be improved. On the other
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hand, it is possible to derive methods to reduce the asymptotic variance of the
Monte Carlo estimate by allowing a certain amount of dependence among the
random variables ξ1, ξ2, . . . Such methods include antithetic variables, control
variates, stratified sampling, etc. These techniques are not discussed here (see
for instance Robert and Casella, 2004, Chapter 4). A remarkable fact however
is that the rate of convergence of 1/

√
N in (6.1) remains the same whatever

the dimension of the space X is, which leaves some hope of effectively using
the Monte Carlo approach in large-dimensional settings.

6.1.2 Monte Carlo Simulation for HMM State Inference

6.1.2.1 General Markovian Simulation Principle

We now turn to the specific task of simulating the unobserved sequence of
states in a hidden Markov model, given some observations. The main re-
sult has already been discussed in Section 3.3: given some observations, the
unobserved sequence of states constitutes a non-homogeneous Markov chain
whose transition kernels may be evaluated, either from the backward func-
tions for the forward chain (with indices increasing as usual) or from the
forward measures—or equivalently filtering distributions—for the backward
chain (with indices in reverse order). Schematically, both available options
are rather straightforward to implement.

Backward Recursion/Forward Sampling: First compute (and store) the back-
ward functions βk|n by backward recursion, for k = n, n − 1 down to 0
(Proposition 3.2.1). Then, simulate Xk+1 given Xk from the forward tran-
sition kernels Fk|n specified in Definition 3.3.1.

Forward Recursion/Backward Sampling: First compute and store the forward
measures αν,k by forward recursion, according to Proposition 3.2.1. As an
alternative, one may evaluate the normalized versions of the forward mea-
sures, which coincide with the filtering distributions φν,k, following Propo-
sition 3.2.5. Then Xk is simulated conditionally on Xk+1 (starting from
Xn) according to the backward transition kernel Bν,k defined by (3.38).

Despite its beautiful simplicity, the method above will obviously be of no help
in cases where an exact implementation of the forward-backward recursion is
not available.

6.1.2.2 Models with Finite State Space

In the case where the state space X is finite, the implementation of the forward-
backward recursions is feasible and has been fully described in Section 5.1.
The second method described above is a by-product of Algorithm 5.1.3.

Algorithm 6.1.1 (Markovian Backward Sampling). Given the stored val-
ues of φ0, . . . , φn computed by forward recursion according to Algorithm 5.1.1,
do the following.
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Final State: Simulate Xn from φn.

Backward Simulation: For k = n−1 down to 0, compute the backward transition
kernel according to (5.7) and simulate Xk from Bk(Xk+1, ·).

The numerical complexity of this sampling algorithm is thus equivalent to
that of Algorithm 5.1.3, whose computational cost depends most importantly
on the cardinal r of X and on the difficulty of evaluating the function g(x, Yk)
for all x ∈ X and k = 0, . . . , n (see Section 5.1). The backward simulation
pass in Algorithm 6.1.1 is simpler than its smoothing counterpart in Algo-
rithm 5.1.3, as one only needs to evaluate Bk(Xk+1, ·) for the simulated value
of Xk+1 rather than Bk(i, j) for all (i, j) ∈ {1, . . . , r}2.

6.1.2.3 Gaussian Linear State-Space Models

As discussed in Section 5.2, Rauch-Tung-Striebel smoothing (Algorithm 5.2.4)
is the exact counterpart of Algorithm 5.1.3 in the case of Gaussian linear state-
space models. Not surprisingly, to obtain the smoothing means and covariance
matrices in Algorithm 5.2.4, we explicitly constructed the backward Gaussian
transition density, whose mean and covariance are given by (5.23) and (5.24),
respectively. We simply reformulate this observation in the form of an algo-
rithm as follows.

Algorithm 6.1.2 (Gaussian Backward Markovian State Sampling).
Assume that the filtering moments X̂k|k and Σk|k have been computed using
Proposition 5.2.3. Then do the following.

Final State: Simulate
Xn ∼ N(X̂n|n, Σn|n).

Backward Simulation: For k = n − 1 down to 0, simulate Xk from a Gaussian
distribution with mean and covariance matrix given by (5.23) and (5.24),
respectively.

The limitations discussed in the beginning of Section 5.2.2 concerning RTS
smoothing (Algorithm 5.2.4) also apply here. In some models, Algorithm 6.1.2
is far from being computationally efficient (Frühwirth-Schnatter, 1994; Carter
and Kohn, 1994). With these limitations in mind, De Jong and Shephard
(1995) described a sampling algorithm inspired by disturbance (or Bryson-
Frazier) smoothing (Algorithm 5.2.15) rather than by RTS smoothing. The
method of De Jong and Shephard (1995) is very close to Algorithm 5.2.15
and proceeds by sampling the disturbance vectors Uk backwards (for k =
n− 1, . . . , 0) and then the initial state X0, from which the complete sequence
X0:n may be obtained by repeated applications of the dynamic equation (5.11).
Because the sequence of disturbance vectors {Uk}k=n−1,...,0 does not however
have a backward Markovian structure, the method of De Jong and Shephard
(1995) is not a simple by-product of disturbance smoothing (as was the case
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for Algorithms 5.2.4 and 6.1.2). Durbin and Koopman (2002) described an
approach that is conceptually simpler and usually about as efficient as the
disturbance sampling method of De Jong and Shephard (1995).

The basic remark is that if X and Y are jointly Gaussian variables, the
conditional distribution of X given Y is Gaussian with mean vector E [X |Y ]
and covariance matrix Cov(X |Y ), where Cov(X |Y ) equals Cov(X−E[X |Y ])
and, in addition, does not depend on Y (Proposition 5.2.2). In particular, if
(X∗, Y ∗) is another independent pair of Gaussian distributed random vectors
with the same (joint) distribution, X−E[X |Y ] and X∗−E[X∗ |Y ∗] are inde-
pendent and both are N (0,Cov(X |Y )) distributed. In summary, to simulate
ξ from the distribution of X given Y , one may

1. Simulate an independent pair of Gaussian variables (X∗, Y ∗) with the
same distribution as (X,Y ) and compute X∗ − E[X∗ |Y ∗];

2. Given Y , compute E[X |Y ], and set

ξ = E[X |Y ] + X∗ − E[X∗ |Y ∗] .

This simulation approach only requires the ability to compute conditional
expectations and to simulate from the prior joint distribution of X and Y .
When applied to the particular case of Gaussian linear state-space models,
this general principle yields the following algorithm.

Algorithm 6.1.3 (Sampling with Dual Smoothing). Given a Gaussian
linear state-space model following (5.11)–(5.12) and observations Y0, . . . , Yn, do
the following.

1. Simulate a fictitious independent sequence {X∗
k , Y

∗
k }k=0,...,n of both states

and observations using the model equations.
2. Compute {X̂k|n}k=0,...,n and {X̂∗

k|n}k=0,...,n using Algorithm 5.2.15 for the
two sequences {Yk}k=0,...,n and {Y ∗

k }k=0,...,n.

Then {X̂k|n + X∗
k − X̂∗

k|n}k=0,...,n is distributed according to the posterior dis-
tribution of the states given Y0, . . . , Yn.

Durbin and Koopman (2002) list a number of computational simplifica-
tions that are needed to make the above algorithm competitive with the distur-
bance sampling approach. As already noted in Remark 5.2.16, the backward
recursion of Algorithm 5.2.15 may be greatly simplified when only the best
linear estimates (and not their covariances) are to be computed. During the
forward Kalman prediction recursion, it is also possible to save on computa-
tions by noting that all covariance matrices (state prediction error, innovation)
will be common for the two sequences {Yk} and {Y ∗

k }, as these matrices do
not depend on the observations but only on the model. The same remark
should be used when the purpose is not only to simulate one sequence but N
sequences of states conditional on the same observations, which will be the
standard situation in a Monte Carlo approach. Further improvement can be
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gained by carrying out simultaneously the simulation and Kalman prediction
tasks, as both of them are implemented recursively (Durbin and Koopman,
2002).

6.2 A Markov Chain Monte Carlo Primer

As we have seen above, the general task of simulating the unobserved X0:n
given observations Y0:n is non-trivial except when X in finite or the model is a
Gaussian linear state-space model. In fact, in such models, analytic integration
with respect to (low-dimensional marginals of) the conditional distribution
of X0:n given observations is most often feasible, whence there is generally
no true need for simulation of the unobserved Markov chain. The important
and more difficult challenge is rather to explore methods to carry out this
task in greater generality, and this is the object of the current section. We
start by describing the accept-reject algorithm, which is a general approach
to simulation of i.i.d. samples from a prescribed distribution, and then turn
to so-called Markov chain Monte Carlo methods, which are generally more
successful in large-dimensional settings.

6.2.1 The Accept-Reject Algorithm

For specific distributions such as the Gaussian, Poisson, or Gamma distribu-
tions, there are efficient tailor-made simulation procedures; however, we shall
not discuss here the most basic (but nonetheless essential) aspects of random
variate generation for which we refer, for instance, to the books by Devroye
(1986), Ripley (1987), or Gentle (1998). We are rather concerned with meth-
ods that can provide i.i.d. samples from any pre-specified distribution π, not
just for specific choices of this distribution. It turns out that there are only
a limited number of options for this task, which include the accept-reject al-
gorithm discussed here and the sampling importance resampling approach to
be discussed in Section 7.1 (although the latter only provides an approximate
i.i.d. sample).

The accept-reject algorithm, first described by von Neumann, is important
both for its direct applications and also because its principle is at the core
of many of the more advanced methods to be discussed in the following (for
general references on the accept-reject method, see Devroye, 1986, Chapter 2,
Ripley, 1987, p. 60–62, or Robert and Casella, 2004, Chapter 2). It is easier
to introduce the key concepts using probability densities, and we assume that
π has a density with respect to a measure λ; because this assumption will
be adopted all through this section, we shall indeed use the notation π for
this density as well. The key requirement of the method is the availability of
another probability density function (with respect to λ) r whose functional
form is known and from which i.i.d. sampling is readily feasible. We also
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envelope

Mr(x)

target density 

π(x)

Fig. 6.1. Illustration of the accept-reject method. Random points are drawn uni-
formly under the bold curve and rejected if the ordinate exceeds π(x) (dashed curve).

assume that for some constant M > 1, Mr(x) ≥ π(x), for all x ∈ X, as
illustrated by Figure 6.1.

Proposition 6.2.2 below asserts that abscissas of i.i.d. random points in
X×R

+ that are generated uniformly under the graph of π(x) are distributed
according to π. Of course, it is not easier to sample uniformly under the graph
of π(x) in X × R

+ than it is to sample directly from π, but one may instead
sample uniformly under the graph of the envelope Mr(x) and accept only
those samples that fall under the graph of π. To do this, first generate a
candidate, say ξ according to the density r and compute π(ξ) as well as the
height of the envelope Mr(ξ). A uniform U([0, 1]) random variable U is then
generated independently from ξ, and the pair is accepted if UMr(ξ) ≤ π(ξ).
In case of rejection, the whole procedure is started again until one eventually
obtains a pair ξ, U which is accepted. The algorithm is summarized below,

Algorithm 6.2.1 (Accept-Reject Algorithm).

Repeat: Generate two independent random variables: ξ ∼ r and U ∼ U([0, 1]).
Until: U ≤ π(ξ)/(Mr(ξ)).

The correctness of the accept-reject method can be deduced from the fol-
lowing two simple results.

Proposition 6.2.2. Let ξ be a random variable with density π with respect to
a measure λ on X and U be an independent real random variable uniformly
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distributed on the interval [0,M ]. Then the pair (ξ, Uπ(ξ)) of random variables
is uniformly distributed on

Sπ,M =
{
(x, u) ∈ X× R

+ : 0 < u < Mπ(x)
}

,

with respect to λ⊗ λLeb, where λLeb denotes Lebesgue measure.
Conversely, if a random vector (ξ, U) of X × R

+ is uniformly distributed
on Sπ,M , then ξ admits π as marginal probability density function.

Proof. Obviously, if Proposition 6.2.2 is to be true for some value of M0, then
both claims also hold for all values of M > 0 simply by scaling the ordinate
by M/M0. In the following, we thus consider the case where M equals one.
For the first statement, take a measurable subset B ⊆ Sπ,1 and let Bx denote
the section of B in x, that is, Bx = {u : (x, u) ∈ B}. Then

P {(ξ, Uπ(ξ)) ∈ B} =∫
x∈X

∫
u∈Bx

1
π(x)

λLeb(du)π(x)λ(dx) =
∫∫

B

λLeb(du)λ(dx) .

For the second statement, consider a measurable subset A ⊆ X and set Ā =
{(x, u) ∈ A× R

+ : 0 ≤ u ≤ π(x)}. Then

P(ξ ∈ A) = P
(
(ξ, U) ∈ Ā

)
=

∫∫
Ā
λLeb(du)λ(dx)∫∫

Sπ,1
λLeb(du)λ(dx)

=
∫

A

π(x)λ(dx) .

��

Lemma 6.2.3. Let V1, V2, . . . be a sequence of i.i.d. random variables taking
values in a measurable space (V,V) and B ∈ V a set such that P(V1 ∈ B) =
p > 0.

The integer-valued random variable σ = inf {k ≥ 1, Vk ∈ B} (with the con-
vention that inf ∅ = ∞) is geometrically distributed with parameter p, i.e., for
all i ≥ 0,

P(σ = i) = (1− p)i−1p . (6.2)

The random variable V = Vσ1σ<∞ is distributed according to

P(V ∈ A) =
P(V ∈ A ∩B)

p
. (6.3)

Proof. First note that

P(σ = i) = P(V1 �∈ B, . . . , Vi−1 �∈ B, Vi ∈ B) = (1− p)i−1p ,

showing (6.2), which implies in particular that the waiting time σ is finite
with probability one. For A ∈ V,



6.2 A Markov Chain Monte Carlo Primer 169

P(V ∈ A) =
∞∑

i=1

P(V1 �∈ B, . . . , Vi−1 �∈ B, Vi ∈ A ∩B)

=
∞∑

i=1

(1− p)i−1 P(V1 ∈ A ∩B)

= P(V1 ∈ A ∩B)
1

1− (1− p)
.

��

Hence by Proposition 6.2.2, the intermediate pairs (ξi, Ui) generated in
Algorithm 6.2.1 are such that (ξi,MUir(ξi)) are uniformly distributed under
the graph of Mr(x). By Lemma 6.2.3, the accepted pair (ξ, U) is then uni-
formly distributed under the graph of π(x) and, using Proposition 6.2.2, ξ
is marginally distributed according to π. The probability p of acceptance is
equal to

P
{
U1 ≤

π(ξ1)
Mr(ξ1)

}
= P {(ξ1,MU1r(ξ1)) ∈ Sπ,M} =

∫
X π(x)λ(dx)∫

X Mr(x)λ(dx)
=

1
M

.

Remark 6.2.4. The same algorithm can be applied also in cases where the
densities π or r are known only up to a constant. In that case, denote by
Cπ =

∫
π(x)λ(dx) and Cr =

∫
r(x)λ(dx) the normalizing constants. The con-

dition π(x) ≤ Mr(x) can be equivalently written as π̄(x) ≤ M(Cr/Cπ)r̄(x),
where π̄(x) = π(x)/Cπ and r̄(x) = r(x)/Cr denote the actual probability den-
sity functions. Because the two stopping conditions π̄(x) ≤ M(Cr/Cπ)r̄(x)
and π(x) ≤ Mr(x) are equivalent, using the accept-reject algorithm with π,
r, and M amounts to using it with π̄, r̄ and MCr/Cπ. Therefore, the knowl-
edge of the normalizing constants Cπ and Cr is not required. Note however
that when either Cπ or Cr differs from one, it is not possible anymore to
interpret 1/M as the acceptance probability, and the actual acceptance prob-
ability Cπ/(CrM) is basically unknown. In that case, the complexity of the
accept-reject algorithm (typically how many intermediate draws are required
on average before accepting a single one) cannot be determined in advance
and may only be estimated empirically. �

Of course, the assumption π(x) ≤ Mr(x) puts some stringent constraints
on the choice of the density r from which samples are drawn. The density r
should have both heavier tails and sharper infinite peaks than π. The efficiency
of the algorithm is the ratio of the areas under the two graphs of π(x) and
Mr(x), which equals 1/M . Therefore, it is essential to keep M as close to one
as possible. The optimal choice of M for a given r is Mr = supx∈X π(x)/r(x),
as it maximizes the acceptance probability and therefore minimizes the av-
erage required computational effort. Determining a proposal density r such
that Mr is small and evaluating Mr (or a tight upper bound for it) are the
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two key ingredients for practical application of the accept-reject method. In
many situations, and especially in multi-dimensional settings, both of these
tasks are often equally difficult (see Robert and Casella, 2004, for examples).

6.2.2 Markov Chain Monte Carlo

The remarks above highlight that although accept-reject is often a viable
approach in low-dimensional problems, it has serious drawbacks in large-
dimensional ones. Most fortunately, there exists a class of alternatives that
allow us to handle arbitrary distributions, on large-dimensional sets, without
a detailed study of them. This class of simulation methods is called Markov
chain Monte Carlo (or MCMC) methods, as they rely on Markov-dependent
simulations. It should be stressed at this point that the “Markov” in “Markov
chain Monte Carlo” has nothing to do with the “Markov” in “hidden Markov
models”. These MCMC methods are generic/universal and, while they natu-
rally apply in HMM settings, they are by no means restricted to those.

The original MCMC algorithm was introduced by Metropolis et al. (1953)
for the purpose of optimization on a discrete state space, in connection with
statistical physics: the paper was actually published in the Journal of Chemical
Physics. The Metropolis algorithm was later generalized by Hastings (1970)
and Peskun (1973, 1981) to statistical simulation. Despite several other papers
that highlighted its usefulness in specific settings (see, for example, Geman
and Geman, 1984; Tanner and Wong, 1987; Besag, 1989), the starting point
for an intensive use of MCMC methods by the statistical community can be
traced to the presentation of the Gibbs sampler by Gelfand and Smith (1990).
The MCMC approach is now well-known in many scientific domains, which
include physics and statistics but also biology, engineering, etc.

Returning for a while to the general case where π is a distribution, the
tenet of MCMC methods is the remark that simulating an i.i.d. sequence
ξ1, . . . , ξn with common probability distribution π is not the only way to ap-
proximate π in the sense of being able to approximate the expectation of any
π-integrable function f . In particular, one may consider Markov-dependent se-
quences {ξi}i≥1 rather than i.i.d. sequences. The ergodic theorem for Markov
chains asserts that, under suitable conditions (discussed in Section 14.2.6 of
Chapter 14),

π̂MCMC
N (f) =

1
N

N∑
i=1

f(ξi) (6.4)

is a reasonable estimate of the expectation of f under the stationary distribu-
tion of the chain {ξi}i≥1, for all integrable functions f . In addition, the rate of
convergence is identical to that of standard (independent) Monte Carlo, that
is, 1/

√
N . To make this idea practicable however requires simulation schemes

that guarantee

(i) that simulating the chain {ξi}i≥1 given an arbitrary initial value ξ1 is an
easily implementable process;
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(ii) that the stationary distribution of {ξi}i≥1 indeed coincides with the de-
sired distribution π;

(iii) that the chain {ξi}i≥1 satisfies conditions needed to guarantee the con-
vergence towards π, irrespectively of the initial value ξ1.

We will introduce below two major classes of such algorithms, and we refer
the reader to Robert and Casella (2004) and Roberts and Tweedie (2005) for
an appropriate detailed coverage of these MCMC methods.

In this context, the specific distribution of interest is generally referred to
as the target distribution. To keep the presentation simple, we will also assume
that all distributions and conditional distributions arising are dominated by a
common measure λ. The target distribution in particular is assumed to have
a probability density function, as above denoted by π, with respect to λ.

6.2.3 Metropolis-Hastings

The (very limited) assumption underlying the Metropolis-Hastings algorithm,
besides the availability of π, is that one can simulate from a transition density
function r (with respect to the same measure λ), called the proposal distribu-
tion, whose functional form is also known.

Algorithm 6.2.5 (The Metropolis-Hastings Algorithm). Simulate a
sequence of values {ξi}i≥1, which forms a Markov chain on X, with the following
mechanism: given ξi,

1. Generate ξ ∼ r(ξi, ·);
2. Set

ξi+1 =

⎧⎨⎩ξ with probability α(ξi, ξ) def=
π(ξ) r(ξ, ξi)
π(ξi) r(ξi, ξ)

∧ 1

ξi otherwise
(6.5)

The initial value ξ1 may be chosen arbitrarily.

In practice, (6.5) is carried out by drawing an independent U([0, 1]) vari-
able U and accepting ξ only if U ≤ A(ξi, ξ), where

A(ξi, ξ) =
π(ξ) r(ξ, ξi)
π(ξi) r(ξi, ξ)

,

is generally referred to as the Metropolis-Hastings acceptance ratio.
The reason for this specific choice of acceptance probability in (6.5), whose

name follows from Metropolis et al. (1953) and Hastings (1970), is that the
associated Markov chain {ξt} satisfies the detailed balance equation (2.12)
discussed in Chapter 2.

Proposition 6.2.6 (Reversibility of the Metropolis-Hastings Kernel).
The chain {ξi}i≥1 generated by Algorithm 6.2.5 is reversible and π is its

stationary probability density function.
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Proof. The transition kernel K associated with Algorithm 6.2.5 is such that
for a function f ∈ Fb (X),

K(x, f) =
∫

f(x′) [α(x, x′)r(x, x′)λ(dx′) + pR(x) δx(dx′)] ,

where pR(x) is the probability of remaining in the state x, given by

pR(x) = 1−
∫

α(x, x′)r(x, x′)λ(dx′) .

Hence∫∫
f1(x)f2(x′)π(x)λ(dx)K(x, dx′) =∫∫

f1(x)f2(x′)π(x)α(x, x′)r(x, x′)λ(dx)λ(dx′)

+
∫

f1(x)f2(x)π(x)pR(x)λ(dx) (6.6)

for all functions f1, f2 ∈ Fb (X). According to (6.5),

π(x)α(x, x′)r(x, x′) = π(x′)r(x′, x) ∧ π(x)r(x, x′) ,

which is symmetric in x and x′, and thus K satisfies the detailed balance
condition (2.12), as we may swap the functions f1 and f2 in both terms on
the right-hand side of (6.6). This implies in particular that π is a stationary
density for the kernel K. ��

The previous result is rather weak as there is no guarantee that the chain
{ξi}i≥1 indeed converges in distribution to π, whatever the choice of the ini-
tialization ξ1. We postpone the study of such questions until Chapter 14,
where we show that such results can be obtained under weak additional con-
ditions (see for instance Theorem 14.2.37). We refer to the books by Robert
and Casella (2004) and Roberts and Tweedie (2005) for further discussion
of convergence issues and focus, in the following, on the practical aspects of
MCMC.

Remark 6.2.7. An important feature of the Metropolis-Hastings algorithm
is that it can be applied also when π or r is known only through the ratio
π(x′)/π(x) or r(x′, x)/r(x, x′). This allows the algorithm to be used without
knowing the normalizing constants: evaluating π and/or r only up to a con-
stant scale factor, or even the ratio π/r, is sufficient to apply Algorithm 6.2.5.
This fact is instrumental when the algorithm is to be used to simulate from
posterior distributions in Bayesian models (see Chapter 13 for examples), as
these distributions are most often defined though Bayes theorem as the prod-
uct of the likelihood and the prior density, where the normalization is not
computable (or else one would not consider using MCMC...).
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In hidden Markov models, this feature is very useful for simulating from
the posterior distribution of an unobservable sequence of states X0:n given the
corresponding observations Y0:n. Indeed, the functional form of the conditional
distribution of X0:n given Y0:n is given in (3.13), which is fully explicit except
for the normalization factor Lν,n. For MCMC approaches, there is no point in
trying to evaluate this normalization factor Lν,n, and it suffices to know that
the desired joint target distribution is proportional to

φ0:n|n(x0:n) ∝ ν(x0)g0(x0)
n∏

k=1

q(xk−1, xk)gk(xk) , (6.7)

where we assume that the model is fully dominated in the sense of Defini-
tion (2.2.3) and hence that ν and q denote, respectively, a probability density
function and a transition density function (with respect to λ). The target
distribution φ0:n|n defined by (6.7) is thus perfectly suitable for MCMC sim-
ulation. �

We now consider two important classes of Metropolis-Hastings algorithms.

6.2.3.1 Independent Metropolis-Hastings

A first option for the choice of the proposal transition density function r(x, ·)
is to select a fixed—that is, independent of x—distribution over X, like the
uniform distribution if X is compact, or more likely some other distribution
that is related to π. This method, as first proposed by Hastings (1970), appears
to be an alternative to importance sampling and the accept-reject algorithms1.
To stress this special case, we denote the independent proposal density by
rind(x). The Metropolis-Hastings acceptance probability then reduces to

α(x, x′) =
π(x′)/rind(x′)
π(x)/rind(x)

∧ 1 .

In particular, in the case of a uniform proposal rind, the acceptance probability
is nothing but the ratio π(x′)/π(x) (a feature shared with the random walk
Metropolis-Hastings algorithm below). Intuitively, the transition from Xn = x
to Xn+1 = x′ is accomplished by generating an independent sample from a
proposal distribution rind and then thinning it down based on a comparison
of the corresponding importance ratios π(x)/rind(x) and π(x′)/rind(x′).

One can notice the connection with the importance sampling method
(see Section 7.1.1) in that the Metropolis-Hastings acceptance probability
is also based on the importance weight π(ξ′)/rind(ξ′). A major difference is

1The importance sampling algorithm is conceptually simpler than MCMC meth-
ods. For coherence reasons however, the former will be discussed later in the book,
when considering sequential Monte Carlo methods. Readers not familiar with the
concept of importance sampling may want to go through Section 7.1.1 at this point.



174 6 Monte Carlo Methods

that importance sampling preserves all the simulations while the independent
Metropolis-Hastings algorithm only accepts moving to new values ξ′ with suf-
ficiently large importance ratio. It can thus be seen as an approximation to
sampling importance resampling of Section 7.1.2 in that it also replicates the
points with the highest importance weights.

As reported in Mengersen and Tweedie (1996), the performance of an
independent Metropolis-Hastings algorithm will vary widely, depending on, in
particular, whether or not the importance ratio π(ξ)/rind(ξ) is bounded (which
is also the condition required for applying the accept-reject algorithm). In
Mengersen and Tweedie (1996, Theorem 2.1), it is proved that the algorithm
is uniformly ergodic (see definition 4.3.15) if there exists β > 0 such that

π

{
x ∈ X :

rind(x)
π(x)

≥ β

}
= 1 , (6.8)

and then, for any x ∈ X,

‖Kn(x, ·)− π‖TV ≤ (1− β)n .

Conversely, if for every β > 0 the set on which (6.8) fails has positive π-
measure, then the algorithm is not even geometrically ergodic. The practical
implication is that the chain may tend to “get stuck” in regions with low
values of π. This happens when the proposal has lighter tails than the target
distribution. To ensure robust performance, it is thus advisable to let rind be
a relatively heavy-tailed distribution (such as the t-distribution for example).

Example 6.2.8 (Squared and Noisy Autoregression). Consider the fol-
lowing model where the hidden Markov chain is from a regular AR(1) model,

Xk+1 = φXk + Uk

with Uk ∼ N(0, τ2), and where the observable is

Yk = X2
k + Vk

with Vk ∼ N(0, σ2). The conditional distribution of Xk given Xk−1, Xk+1 and
Y0:n is, by Remark 6.2.7, equal to the conditional distribution of Xk given
Xk−1, Xk+1 and Yk, with density proportional to

exp
[
− 1

2τ2

{
(xk − φxk−1)2 + (xk+1 − φxk)2 +

τ2

σ2 (yk − x2
k)2

}]
. (6.9)

Obviously, the difficulty with this distribution is the (yk − x2
k)2 term in the

exponential. A naive resolution of this difficulty is to ignore the term in the
proposal distribution, which is then a N(µk, ρ

2
k) distribution with

µk = φ
xk−1 + xk+1

1 + φ2 and ρ2
k =

τ2

1 + φ2 .
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Fig. 6.2. Illustration of Example 6.2.8. Top: plot of the last 500 realizations of
the chain {ξi}i≥1 produced by the independent Metropolis-Hastings algorithm as-
sociated with the N(µk, ρ

2
k) proposal over 10,000 iterations. Bottom: histogram of

a chain of length 10,000 compared with the target distribution (normalized by nu-
merical integration).

The ratio π(x)/rind(x) is then equal to exp−(yk−x2
k)2/2σ2, which is bounded.

Figure 6.2 (bottom) shows how the Markov chain produced by Algorithm
6.2.5 does converge to the proper posterior distribution, even though the target
is bimodal (because of the ambiguity on the sign of xt resulting from the square
in the observation equation). Figure 6.2 (top) also illustrates the fact that, to
jump from one mode to another, the chain has to remain in a given state for
several iterations before jumping to the alternative modal region. �

When the ratio π(x)/rind(x) is not bounded, the consequences may be very
detrimental on the convergence of the algorithm, as shown by the following
elementary counterexample.

Example 6.2.9 (Cauchy Meets Normal). Consider a Cauchy C(0, 1) tar-
get distribution with a Gaussian N(0, 1) proposal. The ratio π(x)/rind(x) is
then exp{x2/2}/(1 + x2), which is unbounded and can produce very high
values. Quite obviously, the simulation of a sequence of normal proposals to
achieve simulation from a Cauchy C(0, 1) distribution is bound to fail, as the
normal distribution, whatever its scale, cannot reach the tails of the Cauchy
distribution: this failure is illustrated in Figure 6.3. To stress the importance
of this requirement (that the ratio π(x)/rind(x) be bounded), it is important
to remember that we can diagnose the failure in Figure 6.3 only because we
are cheating and know what the target distribution is, including its normal-
ization. In real practical uses of the method, it would be very difficult in such
a case to detect that the sampling algorithm is not doing what it is expected
to. �
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Fig. 6.3. Illustration of Example 6.2.9. Histogram of a independent Metropolis-
Hastings chain of length 5,000, based on a N(0, 1) proposal, compared with the
target C(0, 1) distribution.

6.2.3.2 Random Walk Metropolis-Hastings

Given that the derivation of an acceptable independent proposal becomes less
realistic as the dimension of the problem increases, another option for the
choice of r(x, ·) is to propose local moves around x with the hope that, by
successive jumps, the Markov chain will actually explore the whole range of
the target distribution. The most natural (and historically first) proposal in
a continuous state space X is the random walk proposal,

r(x, x′) = h(x′ − x) ,

where h is a symmetric density. The Metropolis-Hastings acceptance proba-
bility is then

α(x, x′) =
π(x′)
π(x)

∧ 1 ,

due to the symmetry assumption on h. Once again, the chain {ξi}i≥1 thus
visits each state x in proportion to π(x).

Example 6.2.10 (Squared and Noisy Autoregression, Continued).
The conditional distribution of Xk given Xk−1, Xk+1 and Yk (6.9) is gen-
erally bimodal as in Figure 6.2. For some occurrences of Xk−1, Xk+1 and Yk,
the zone located in between the modes has a very low probability under the
conditional distribution. If we use a Gaussian random walk, i.e., h = N(0, ρ2),
with a scale ρ that is too small, the random walk will never jump to the other
mode. This is illustrated in Figure 6.4 for ρ = 0.1. On the opposite, if the
scale ρ is sufficiently large, the corresponding Markov chain will explore both
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Fig. 6.4. Illustration of Example 6.2.10. Same legend as Figure 6.2 but for a different
outcome of (Xt−1, Xt+1, Yt) and with the Markov chain based on a random walk
with scale ρ = 0.1.

Fig. 6.5. Illustration of Example 6.2.10. Same legend and data set (Xt−1, Xt+1, Yt)
as Figure 6.4 but with the Markov chain based on a random walk with scale ρ = 0.5.

modes and give a satisfactory approximation of the target distribution, as
shown by Figure 6.5 for ρ = 0.5.

Comparing Figures 6.4 and 6.5 also confirms that a higher acceptance rate
does not necessarily imply, by far, a better performance of the Metropolis-
Hastings algorithm (in Figure 6.4, the acceptance rate is about 50% and it
drops to 13% in the case of Figure 6.5). Especially with random walk propos-
als, it is normal to observe a fair amount of rejections when the algorithm is
properly tuned. �

Even though the choice of a symmetric density h seems to offer less oppor-
tunities for misbehaving, there are two levels at which the algorithm may err:
one is related to tail behavior, namely that the tail of h must be heavy enough
if geometric convergence is to occur (Mengersen and Tweedie, 1996); and the
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other is the scale of the random walk. From a theoretical point of view, note
that the random walk Metropolis-Hastings kernel is never uniformly ergodic
in unbounded state spaces X (Robert and Casella, 2004, Section 7.5). Depend-
ing on which scale is chosen, the Markov chain may be very slow to converge
either because it moves too cautiously (if the scale is too small) or too wildly
(if the scale is too large). Based on time-scaling arguments (i.e., continuous-
time limits for properly rescaled random walk Metropolis-Hastings chains),
Roberts and Rosenthal (2001) recommend setting the acceptance rate in the
range 0.2–0.35, which can be used as a guideline to select the scale of the
random walk. In cases similar to the one considered in Example 6.2.10, with
well-separated modes, it is customary to observe that the “best” scaling of
the proposal (in terms of the empirical correlation of the MCMC chain for
instance) corresponds to an acceptance rate that is even lower than these num-
bers. Unexpected multimodality really is a very significant difficulty in this
respect: if the target distribution has several separated modes that are not
expected, a random walk with too small a scale can miss those modes without
detecting a problem with convergence, as the exploration of the known modes
may well be very satisfactory, as exemplified in Figure 6.4.

Example 6.2.11 (Cauchy Meets Normal, Continued). To keep up with
the spirit of this toy example, we also try to use in this case a Gaussian random
walk as a proposal. The corresponding acceptance probability is then

α(x, x′) =
1 + x2

1 + (x′)2
∧ 1 .

Figure 6.6 illustrates the performance of the algorithm in this setting. The
graphic fit of the Cauchy density by the histogram is good but, if we follow
Roberts and Tweedie (2005) and look at the chain in more detail, it appears
that after 10,000 iterations the range of the chain is (−14.44, 15.57), which
shows that the chain fails to explore in a satisfactory fashion the tails of
the Cauchy distribution. In fact, the 99% quantile of the Cauchy C(0, 1) dis-
tribution is 31, implying that on average 200 points out of the 10,000 first
values of the Markov chain should be above 31 in absolute value! Roberts and
Tweedie (2005) show in essence that, when the density of the random walk
has tails that are not heavy enough, the corresponding Markov chain is not
geometrically ergodic.

�

The two previous categories are the most common choices for the proposals
density r, but they are by no means the only or best choices. For instance, in
a large-dimension compact state space with a concentrated target distribution
π, the uniform proposal is very inefficient in that it leads to a very low average
acceptance probability; this translates, in practice, to the chain {ξi}i≥1 being
essentially constant. Similarly, using the random walk proposal with a small
scale parameter while the target is multimodal with a very low density in
between the modes may result in the chain never leaving its initial mode.
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Fig. 6.6. Illustration of Example 6.2.11. Histogram of the 10,000 first steps of a
random walk Metropolis-Hastings Markov chain using a Gaussian proposal with
scale 1 and Cauchy target distribution.

6.2.4 Hybrid Algorithms

Although the Metropolis-Hastings rule of Algorithm 6.2.5 is our first effec-
tive approach for constructing MCMC samplers, we already have a number
of available options, as we may freely choose the proposal distribution r. A
natural question to ask in this context is to know whether it is possible to
build new samplers from existing ones. It turns out that there are two generic
and easily implemented ways of combining several MCMC samplers into a
new one, which we shall refer to as a hybrid sampler. The following lemma is
easy to prove from the corresponding definitions of Chapters 2 and 14.

Lemma 6.2.12 (Hybrid Kernels). Assume that K1, . . . ,Km are Markov
transition kernels that all admit π as stationary distribution. Then

(a) Ksyst = K1K2 · · ·Km and
(b) Krand =

∑m
i=1 αiKi, with αi > 0 for i = 1, . . . ,m and

∑m
i=1 αi = 1,

also admit π as stationary distribution. If in addition K1, . . . ,Km are π re-
versible, Krand also is π reversible but Ksyst need not be.

Both of these constructions are easily implemented in practice: in (a), each
iteration of the hybrid sampler consists in systematically cycling through the
m available MCMC kernels; in (b), at each iteration we first toss an m-ary
coin with probability of turning i equal to αi and then apply the MCMC
kernel Ki. The additional warning that Ksyst may not be π reversible (even if
all the individual kernels Ki are) is not a problem per se. Reversibility is not
a necessary condition for MCMC, it is only prevalent because it is easier to
devise rules that enforce the (strongest) detailed balance condition. Note also
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that it is always possible to induce reversibility by appropriate modifications
of the cycling strategy. For instance, the symmetric combination KsystKrev
with Krev = KmKm−1 · · ·K1 is easily checked to be π reversible. In practice,
it means that the cycle through the various available MCMC kernels Ki has
to be done in descending and then ascending order.

Regarding irreducibility, it is clear that the random scan kernel Krand
is guaranteed to be phi-irreducible if at least one of the kernels Ki is. For
the systematic scan strategy, the situation is more complex and Ksyst may
fail to be phi-irreducible even in cases where all the individual kernels Ki

are phi-irreducible (with common irreducibility measure φ). A more useful
remark is that if K1, . . . ,Km all admit π as stationary distribution but are not
phi-irreducible—meaning that they do not yet correspond to fully functional
converging MCMC algorithms—there are cases where both Ksyst and Krand
are phi-irreducible. It is thus possible to build viable sampling strategies from
individual MCMC transitions that are not in themselves fully functional. The
main application of this remark is to break large-dimensional problems into
smaller ones by modifying only one part of the state at a time.

6.2.5 Gibbs Sampling

When the distribution of interest is multivariate, it may be the case that
for each particular variable, its conditional distribution given all remaining
variables has a simple form. This is in particular the case for models specified
using conditional independence relations like HMMs and more general latent
variable models. In this case, a natural MCMC algorithm is the so-called Gibbs
sampler, which we now describe. Its name somehow inappropriately stems
from its use for the simulation of Gibbs Markov random fields by Geman and
Geman (1984).

6.2.5.1 A Generic Conditional Algorithm

Suppose we are given a joint distribution with probability density function
π on a space X such that x ∈ X may be decomposed into m components
x = (x1, . . . , xm), where xk ∈ Xk. If k is an index in {1, . . . ,m}, we shall
denote by xk the kth component of x and by x−k = {xl}l �=k the collection
of remaining components. We further denote by πk(·|x−k) the conditional
probability density function of Xk given {Xl}l �=k and assume that simulation
from this conditional distribution is feasible (for k = 1, . . . ,m). Note that xk

is not necessarily scalar but may be itself vector-valued.

Algorithm 6.2.13 (Gibbs Sampler). Starting from an initial arbitrary state
ξ1, update the current state ξi = (ξi

1, . . . , ξ
i
m) to a new state ξi+1 as follows.

For k = 1, 2, . . . ,m: Simulate ξi+1
k from πi(·|ξi+1

1 , . . . , ξi+1
k−1, ξ

i
k+1, . . . , ξ

i
m).
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In other words, in the kth round of the cycle needed to simulate ξi+1,
the kth component is updated by simulation from its conditional distribution
given all other components (which remain fixed). This new value then super-
sedes the old one and is used in the subsequent simulation steps. A complete
round of m conditional simulations is usually referred to as a sweep of the
algorithm. Another representation of the Gibbs sampler is to break the com-
plete cycle as a combination of m individual MCMC steps where only one of
the m components is modified according to the corresponding conditional dis-
tribution. This approach is easily recognized as the combination of type (a)—
systematic cycling—in Lemma 6.2.12. Hence we know from Lemma 6.2.12
that the correct behavior of the complete cycle can be inferred from that of
the individual updates. The next result is a first step in this direction.

Proposition 6.2.14 (Reversibility of Individual Gibbs Steps). Each of
the m individual steps of the Gibbs sampler (Algorithm 6.2.13) is π reversible
and thus admits π as a stationary probability density function.

Proof. Consider the step that updates the kth component and denote by Kk

the corresponding transition kernel. We can always write λ = λk⊗λ−k where
λk and λ−k are measures on Xk and X−k, respectively, such that λk dominates
πk(·|x−k) for all values of xk ∈ Xk. With these notations,

Kk(x, dx′) = δ{x−k}(dx′
−k)πk(x′

k|x−k)λk(dx′
k) .

Hence, for any functions f1, f2 ∈ Fb (X),∫∫
f1(x)f2(x′)π(x)λ(dx)K(x, dx′) =∫ {
f1(x)π(x)λk(dxk)

∫
f2(x′

k, x−k)πk(x′
k|x−k)λk(dx′

k)
}
λ−k(dx−k) ,

where (x′
k, x−k) refers to the element u of X such that uk = x′

k and u−k = x−k.
Because π(xk, x−k)πk(x′

k|x−k) = πk(xk|x−k)π(x′
k, x−k), we may also write∫∫

f1(x)f2(x′)π(x)λ(dx)K(x, dx′) =∫ {
f2(x′

k, x−k)π(x′
k, x−k)λk(dx′

k)

×
∫

f1(xk, x−k)πk(xk|x−k)λk(dxk)
}
λ−k(dx−k) ,

which is the same expression as before where the roles of f1 and f2 have been
exchanged, thus showing that the detailed balance condition (2.12) holds. ��

An insightful interpretation of Proposition 6.2.14 is that each step corre-
sponds to a very special type of Metropolis-Hastings move where the accep-
tance probability is uniformly equal to 1, due to choice of πk as the proposal
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distribution. However, Proposition 6.2.14 does not suffice to establish proper
convergence of the Gibbs sampler, as none of the individual steps produces a
phi-irreducible chain. Only the combination of the m moves in the complete
cycle has a chance of producing a chain with the ability to visit the whole
space X from any starting point. Of course, one can also adopt the combina-
tion of type (b) in Lemma 6.2.12 to obtain the random scan Gibbs sampler as
opposed to the systematic scan Gibbs sampler, which corresponds to the solu-
tion exposed in Algorithm 6.2.13. We refer to (Robert and Casella, 2004) and
(Roberts and Tweedie, 2005) for more precise convergence results pertaining
to these variants of the Gibbs sampler.

One perspective that is somehow unique to Gibbs sampling is Rao-
Blackwellization, named after the Rao-Blackwell theorem used in classical
statistics (Lehmann and Casella, 1998) and recalled as Proposition A.2.5. It
is in essence a variance reduction technique (see Robert and Casella, 2004,
Chapter 4) that takes advantage of the conditioning abilities of the Gibbs
sampler. If only a part of the vector x is of interest (as is often the case in
latent variable models), say xk, Rao-Blackwellization consists in replacing the
empirical average

π̂MCMC
N (f) =

1
N

N∑
i=1

f(ξi
k) with π̂RB

N (f) =
1
N

N∑
i=1

Eπ[f(ξk) | ξi
−k] ,

where {ξi}i≥1 denotes the chain produced by Algorithm 6.2.13. This is of
course only feasible in cases where the integral of the function of interest
f under πk(·|x−k) may be easily evaluated for all x ∈ X. In i.i.d. settings,
π̂MCMC

N (f) would be more variable than π̂RB
N (f) by Proposition A.2.5. For

Markov chain simulations {ξi}i≥1, this is not necessarily the case, and it is
only in specific situations (see Robert and Casella, 2004, Sections 9.3 and
10.4.3) that the latter estimate can be shown to be less variable. Another
substantial benefit of Rao-Blackwellization is to provide an elegant method for
the approximation of probability density functions of the different components
of x. Indeed,

1
N

N∑
i=1

πk

(
·
∣∣ξi

−k

)
is unbiased and converges to the marginal density of kth component, under
the target distribution. If the conditional probability density functions are
available in closed form, it is unnecessary (and inefficient) to use nonparamet-
ric density estimation methods such as kernel methods for postprocessing the
output of Gibbs sampling.

We now discuss a clever use of the Gibbs sampling principle, known as the
slice sampler, which is of interest in its own right.
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6.2.5.2 The Slice Sampler

Proposition 6.2.2 asserts that the bivariate random variable (X,U) whose
distribution is uniform on

Sπ =
{
(x, u) ∈ X× R

+ : 0 ≤ u ≤ π(x)
}

,

is such that the marginal distribution of X is π. This observation is at the
core of the accept-reject algorithm discussed in Section 6.2.1. We will use
the letter U to denote uniform distributions on sets, writing, for instance,
(X,U) ∼ U (Sπ).

From the perspective of MCMC algorithms, we can consider using a ran-
dom walk on Sπ to produce a Markov chain with stationary distribution equal
to this uniform distribution on Sπ. There are many ways of implementing a
random walk on this set, but a natural solution is to go one direction at a
time, that is, to move iteratively along the u-axis and then along the x-axis.
Furthermore, we can use uniform moves in both directions; that is, starting
from a point (x, u) in Sπ, the move along the u-axis will correspond to the
conditional distribution

U ({u : u ≤ π(ξ)}) , (6.10)

resulting in a change from point (x, u) to point (x, u′), still in Sπ, and then
the move along the ξ-axis to the conditional distribution

U ({x : π(x) ≥ u′}) , (6.11)

resulting in a change from point (x, u′) to point (x′, u′). This set of proposals
is the basis chosen for the original slice sampler of Damien and Walker (1996),
Neal (1997) (published as Neal, 2003), and Damien et al. (1999).

Algorithm 6.2.15 (Slice Sampler). Starting from an arbitrary point (ξ1, U1)
in Sπ, simulate for i ≥ 1,

1. U i+1 ∼ U
(
[0, π(ξi)]

)
;

2. ξi+1 ∼ U
(
S(U i+1)

)
, with S(u) = {x : π(x) ≥ u}.

The important point here is that Algorithm 6.2.15 is validated as a Gibbs
sampling method, as steps 1 and 2 in the above are simply the conditional
distributions of U and ξ associated with the joint distribution U (Sπ).

Obviously, this does not make the slice sampler a universal generator:
in many settings, resolving the simulation from the uniform U (S(u)) is just
as hard (and impossible) as to generate directly from π, and extensions are
often necessary (Robert and Casella, 2004, Chapter 8). Still, this potential
universality shows that Gibbs sampling does not only pertain to a special
category of hierarchical models.

Example 6.2.16 (Single Site Conditional Distribution in Stochastic
Volatility Model). To illustrate the slice sampler, we consider the stochastic
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volatility model discussed in Example 1.3.13 whose state-space form is as
follows:

Xk+1 = φXk + σUk ,

Yk = β exp(Xk/2)Vk ,

where {Uk}k≥0 and {Vk}k≥0 are independent standard Gaussian white noise
processes. In this model, β2 exp(Xk) is referred to as the volatility, and its
estimation is one of the purposes of the analysis (see Example 1.3.13 for
details). As in Example 6.2.8 above, we consider the conditional distribution of
Xk given Xk−1, Xk+1 and Yk, whose transition density function πk(x|xk−1, xk)
is proportional to

exp
[
−

{
(xk+1 − φx)2

2σ2 +
(x− φxk−1)2

2σ2

}]
1

β exp(x/2)
exp

[
− y2

k

2β2 exp(x)

]
,

(6.12)
ignoring constants. In fact, terms that do not depend on x can be ignored as
well, and we may complete the square (in x) to obtain

πk(x|xk−1, xk) ∝ exp
[
−1 + φ2

2σ2

{
(x− µk)2 +

y2
kσ

2

(1 + φ2)β2 exp(−x)
}]

,

where

µk =
φ(xk+1 + xk−1)− σ2/2

1 + φ2 . (6.13)

Defining

αk =
y2

kσ
2 exp(−µk)

(1 + φ2)β2 and ρ =
1 + φ2

2σ2 , (6.14)

πk(x|xk−1, xk) is thus proportional to

exp
[
−ρ

{
(x− µk)2 + αk exp[−(x− µk)]

}]
.

The parameter µk corresponds to a simple shift that poses no simulation prob-
lem. Hence, the general form of the conditional probability density function
from which simulation is required is exp[−ρ{x2 +α exp(−x)}] for positive val-
ues of ρ and α. Shephard and Pitt (1997) (among others) discuss an approach
based on accept-reject ideas for carrying out this conditional simulation, but
we may also use the slice sampler for this purpose. The second step of Al-
gorithm 6.2.15 then requires simulation from the uniform distribution on the
set

S(u) =
{
x : exp[−ρ{x2 + α exp(−x)}] ≥ u

}
=

{
x : x2 + α exp(−x) ≤ ω

}
,

setting ω = −(1/ρ) log u. Now, while the inversion of x2 + α exp(−x) = ω is
not possible analytically, the facts that this function is convex (for α > 0) and
that the previous value of x belongs to the set S(u) help in solving this equa-
tion by numerical trial-and-error or more elaborate zero-finding algorithms.
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As pointed out by Neal (2003), there is also no need to solve precisely this
equation, as knowledge of an interval that contains the set S(u) is enough to
simulate from the uniform distribution on S(u): it then suffices to simulate
candidates ξ uniformly from the larger set and accept them only if ξ ∈ S(u)
(which is also the accept-reject method but with a high acceptance rate that
is controlled by the accuracy of the zero-finding algorithm). Figure 6.7 (top
plot) shows that the fit between the histogram of 10,000 consecutive values
produced by the slice sampler and the true distribution is quite satisfactory. In
addition, the bottom plot shows that the autocorrelation between successive
values of ξi is quite modest. This fast mixing of the one-dimensional slice sam-
pler is an appealing feature that has been shown to hold under fairly general
assumptions on the target distribution (Roberts and Rosenthal, 1998; Robert
and Casella, 2004, Chapter 8). �
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Fig. 6.7. Illustration of Example 6.2.16. Top: histogram of a Markov chain produced
by the slice sampler for α = 5 and ρ = 1 with target distribution in overlay. Bottom:
correlogram with 95% confidence interval corresponding to the assumption of white
noise.

6.2.6 Stopping an MCMC Algorithm

There is an intrinsic difficulty with using Markov chain Monte Carlo methods
for simulation purposes in that, were we to stop the iterations “too early”,
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we would still be influenced by the (arbitrary) starting value of the chain,
and were we to stop the iteration “too late”, we would be wasting simula-
tion time. In contrast with what happens for independent Monte Carlo where
(6.1) may be used to obtain confidence intervals, it is fairly difficult to esti-
mate the accuracy of estimates derived from the MCMC sample because of
the unknown correlation structure of the simulated ξi. Apart for often useful
graphic diagnostics (trace of the samples, correlograms, comparison of his-
tograms obtained with different starting points...), there exist (more or less)
empirical rules that provide hints on when an MCMC sampler should be
stopped. A branch of MCMC, known as perfect sampling, corresponds to a
refinement of these rules in which the aim is to guarantee that the Markov
chain, when observed at appropriate times, is exactly distributed from the
stationary distribution. Not surprisingly, these methods are very difficult to
devise and equally costly to implement. Another direction, generally referred
to as computable bounds, consists in obtaining bounds on the convergence
speed of MCMC-generated Markov chains. When available, such results are
very powerful, as they do not require any empirical estimation, and the num-
ber of required MCMC simulations may be calibrated beforehand. Of course,
the drawback here is that for complex samplers, typically hybrid samplers that
incorporate several different MCMC sampling steps, such results are simply
not available (Robert and Casella, 2004).

6.3 Applications to Hidden Markov Models

This section describes methods that may be used to simulate the unobservable
sequence of states X0:n given the corresponding observations Y0:n in HMMs for
which the direct (independent) Monte Carlo simulations methods discussed
in Section 6.1.2 are not applicable.

We start from the most generic and easily implementable approaches in
which each individual hidden state Xk is simulated conditionally on all Xl

except itself. We then move to a more specific sampling technique that takes
profit of the structure found in conditionally Gaussian linear state-space mod-
els (see, in particular, Definition 2.2.6 and Sections 4.2.3 and 5.2.6).

6.3.1 Generic Sampling Strategies

6.3.1.1 Single Site Sampling

We now formalize an argument that was underlying in Examples 6.2.8
and 6.2.16. Starting from the joint conditional distribution of X0:n given Y0:n
defined (up to a proportionality constant) by (6.7), the conditional probability
density function of a single variable in the hidden chain, Xk say, given Y0:n
and its two neighbors Xk−1 and Xk+1 is such that



6.3 Applications to Hidden Markov Models 187

φk−1:k+1|n(xk|xk−1, xk+1) ∝ φk−1:k+1|n(xk−1, xk, xk+1)
∝ q(xk−1, xk)q(xk, xk+1)gk(xk) . (6.15)

At the two endpoints k = 0 and k = n, we have the obvious corrections

φ0:1|n(x0|x1) ∝ ν(x0)q(x0, x1)

and
φn−1:n|n(xn|xn−1) ∝ q(xn−1, xn)gn(xn) .

Therefore, if we aim at simulating the whole vector X0:n by the most ba-
sic Gibbs sampler that simulates one component of the vector at a time,
φk−1:k+1|n(xk|xk−1, xk+1) is given by (6.15) in a simple closed-form expres-
sion. Remember that the expression looks simple only because knowledge of
the normalization factor is not required for performing MCMC simulations.

In the case where X is finite, the simulation of X0:n by this Gibbs sampling
approach is rather straightforward, as the only operations that are requested
(for k = 0, . . . , n) are

• computing q(xk−1, x)q(x, xk+1)gk(x) for all values of x ∈ X and normaliz-
ing them to form a probability vector πk;

• simulating a value of the state according to πk.

It is interesting to contrast this Gibbs sampling algorithm with the simpler
Monte Carlo approach of Algorithm 6.1.1. A complete sweep of the Gibbs
sampler is simpler to implement, as each Gibbs simulation step requires that
r products be computed (where r is the cardinality of X). Hence, the complete
Gibbs sweep requires O (r(n + 1)) operations compared to O

(
r2(n + 1)

)
for

Algorithm 6.1.1 due to the necessity of computing all the filtering distribu-
tions by Algorithm 5.1.1. On the other hand, the Monte Carlo simulations
obtained by Algorithm 6.1.1 are independent, which is not the case for those
produced by Gibbs sampling. For a comparable computational effort, we may
thus perform r times as many simulations by Gibbs sampling than by inde-
pendent Monte Carlo. This does not necessarily correspond to a gain though,
as the variance of MCMC estimates is most often larger than that of Monte
Carlo ones due to the Markov dependence between successive samples. It re-
mains that if the number of possible values of Xk is very large (a case usually
found in related models used in applications such as image processing), it may
be the case that implementing Monte Carlo simulation is overwhelming while
the Gibbs sampler is still feasible.

It is generally true that, apart from this case (finite but very large state
space), there are very few examples of hidden Markov models where the
Gibbs sampling approach is applicable and the general Monte Carlo ap-
proach of Section 6.1.2.1 is not. This has to do with the fact that determining
φk−1:k+1|n(·|xk−1, xk+1) exactly, not only up to a constant, involves exactly
the same type of marginalization operation involved in the implementation
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of the filtering recursion. An important point to stress here is that replac-
ing an exact simulation by a Metropolis-Hastings step in a general MCMC
algorithm does not jeopardize its validity as long as the Metropolis-Hastings
step is associated with the correct stationary distribution. Hence, the most
natural alternative to the Gibbs sampler in cases where sampling from the full
conditional distribution is not directly feasible is the one-at-a-time Metropolis-
Hastings algorithm that combines successive Metropolis-Hastings steps that
update only one of the variables. For k = 0, . . . , n, we thus update the kth
component xi

k of the current simulated sequence of states xi by proposing a
new candidate for xi+1

k and accepting it according to (6.5), using (6.15) as the
target.

Example 6.3.1 (Single Site Conditional Distribution in Stochastic
Volatility Model, Continued). We return to the stochastic volatility model
already examined in Example 6.2.16 but with the aim of simulating complete
sequences under the posterior distribution rather than just individual states.
From the preceding discussion, we may use the algorithm described in Exam-
ple 6.2.16 for each index (k = 0, . . . , n) in the sequence of states to simulate.
Although the algorithm itself applies to all indices, the expression of µk, αk

and ρ in (6.13)–(6.14) need to be modified for the two endpoints as follows.
For k = 0, the first term in (6.12) should be replaced by

exp−
{

(x1 − φx)2

2σ2 +
(1− φ2)x2

2σ2

}
, (6.16)

as it is sensible to assume that the initial state X0 is a priori distributed as
the stationary distribution of the AR(1) process, that is, N

(
0, σ2/(1− φ2)

)
.

Hence for k = 0, (6.13) and (6.14) should be replaced by⎧⎨⎩µ0 = φx1 − σ2/2 ,
α0 = Y 2

0 σ
2 exp(−µ0)/β2 ,

ρ0 = 1/(2σ2) .
(6.17)

For k = n, the first term in (6.12) reduces to

exp−
{

(x− xn−1)2

2σ2

}
, (6.18)

and thus ⎧⎨⎩µn = φxn−1 − σ2/2 ,
αn = Y 2

n σ
2 exp(−µn)/β2 ,

ρn = 1/(2σ2) ,
(6.19)

replace (6.13) and (6.14).
An iteration of the complete algorithm thus proceeds by computing, for

each index k = 0, . . . , n in turn, µk, αk and ρ according to (6.13) and (6.14),
or (6.17) or (6.19) if k = 0 or n. Then one iteration of the slice sampling
algorithm discussed in Example 6.2.16 is applied.
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For comparison purposes, we also consider a simpler alternative that con-
sists in using a random walk Metropolis-Hastings proposal for the simulation
of each individual site. As discussed in Section 6.2.3.2, the acceptance proba-
bility of the move at index k is given by

αk(x, x′) =
πk(x′)
πk(x)

∧ 1 ,

where πk is defined in (6.12) with the modifications mentioned in (6.16)
and (6.18) for the two particular cases k = 0 and k = n. Remember that for
random walk proposals, we are still free to choose the proposal density itself
because, as long as it is of random walk type, it does not affect the acceptance
ratio. Because the positive tail of πk is equivalent to that of a Gaussian distri-
bution with variance (2ρ)−1 = σ2/(1 +φ2) and the negative one decays much
faster, it seems reasonable to use a Gaussian random walk proposal with a
standard deviation about 2.4×σ/

√
1 + φ2 based on (Roberts and Rosenthal,

2001)—see also discussion in Section 6.2.3.2 above about setting the scale of
random walk proposals.

To compare the relative efficiency of these approaches, we use data simu-
lated from the stochastic volatility model with parameter values corresponding
to those fitted by Shephard and Pitt (1997) on log-returns of a historical daily
exchange rate series, that is, φ = 0.98, σ = 0.14, and β = 0.66. We first con-
sider the case where n = 20 for which the simulated state trajectory and the
observed data are plotted in Figure 6.8. Because of the highly non-linear na-
ture of the model, comparing the values of daily log-return Yk and those of the
day volatility Xk is not very helpful. To provide a clearer picture, the crosses
in Figure 6.8 represent σ̂2

k = log(Y 2
k /β

2) rather than Yk itself. Note that σ̂2
k is

the maximum likelihood estimate of the daily volatility Xk in the absence of
an a priori model on the dynamics of the volatility sequence. It is also easily
checked from (6.12) and similar expressions that the posterior distribution of
the states depend only on the values of Y 2

k /β
2. Figure 6.8 shows that while

larger values of log(Y 2
k /β

2) provide a rather good idea of the actual volatility,
smaller ones look more like outliers and can be very far from the volatility
(beware that the y-scale in Figure 6.8 is reversed). Indeed, a volatility value
x rules out observations significantly larger (in magnitude) than, say, three
times β exp(x/2), but not observations significantly smaller than β exp(x/2).

Figure 6.9 summarizes the output of 50,000 complete cycles of the single
site slice sampling strategy on this data. The initial volatility sequence x1

0:n,
whose choice is arbitrary, was set to be zero at all sites. Obviously, in this
model, the smoothing distributions are very dispersed and do not allow a
precise estimation of the actual sequence of states. Note however that there
is a possible misinterpretation of Figure 6.9, which would be that the most
likely state sequence is the very smooth trajectory connecting the modes of
the marginal smoothing distributions displayed here. This is not the case,
and typical simulated sequence of states have variations comparable to that
of the true sequence. But because of the large dispersion of the marginal
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Fig. 6.8. Illustration of Example 6.3.1. Simulated data: values of Xk (black circles)
and log(Y 2

k /β2) (cross). Note that the ordinates (y-axis) run from top to bottom.
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Fig. 6.9. Illustration of Example 6.3.1. Waterfall representation of the marginal
smoothing distributions estimated from 50,000 iterations of the single site slice sam-
pler (densities estimated with Epanechnikov kernel, bandwidth 0.05). The bullets
show the true simulated state sequence.
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Fig. 6.10. Correlogram of the values simulated at index k = 10: solid line, single
site slice sampler; dashed line, single site random walk Metropolis-Hastings.

posterior distributions and the absence of clearly marked posterior modes,
their marginal averages produce the very smooth curves displayed here.

In this example the efficiency of the simulation algorithm itself is reason-
able. To obtain Figure 6.9, for instance, 15,000 iterations would already have
been sufficient, in the sense of producing no visible difference, showing that the
sampler has converged to the stationary distribution. Figures such as 50,000
or even 15,000 may seem frightening, but they are rather moderate in MCMC
applications. Figure 6.10 is the analog of the bottom plot in Figure 6.7, dis-
playing the empirical autocorrelations of the sequence of simulated values for
the state with index k = 10 (in the center of the sequence). It is interesting to
note that while the single site slice sampler (Figure 6.7) produces a sequence
of values that are almost uncorrelated, Figure 6.10 exhibits a strong positive
correlation due to the interaction between neighboring sites.

Also shown in Figure 6.10 (dashed line) is the autocorrelation for the
other algorithm discussed above, based on Gaussian random walk proposals
for the simulation of each individual site. This second algorithm has a tuning
parameter that corresponds to the standard deviation of the proposals. In the
case shown in Figure 6.10, this standard deviation was set to 2.4×σ/

√
1 + φ2

as previously discussed. With this choice, the acceptance rates are of the
order of 50%, ranging from 65% for edge sites (k = 0 and k = n) to 45%
at the center of the simulated sequence. Figure 6.10 shows that this second
algorithm produces successive draws that are more correlated (with positive
correlation) than the single site slice sampling approach. A frequently used
numerical measure of the performance of an MCMC sampler is twice the sum
of the autocorrelations, over all the range of indices where the estimation
is accurate (counting the value one that corresponds to the index zero only
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once). This number is equal to the ratio of the asymptotic variance of the
sample mean of the simulated values, say 1/N

∑N
i=1 x

i
10 in our case, to the

corresponding Monte Carlo variance for independent simulations under the
target distribution (Meyn and Tweedie, 1993, Theorem 17.5.3; Robert and
Casella, 2004, Theorem 6.65). Thus this ratio, which is sometimes referred to
as the integrated autocorrelation time, may be interpreted as the price to pay
(in terms of extra simulations) for using correlated draws. For the approach
based on slice sampling this factor is equal to 120, whereas it is about 440
when using random walk proposals. Hence the method based on random walk
is about four times less efficient, or more appropriately requires about four
times as many iterations to obtain comparable results in terms of variance of
the estimates. Note that this measure should not be over-interpreted, as the
asymptotic variance of estimates of the form 1/N

∑N
i=1 f(xi

0:n) will obviously
depend on the function f as well. In addition, each iteration of the random
walk sampler runs faster than for the sampler based on slice sampling.

It is important to understand that the performance of a sampler depends
crucially on the characteristics of the target distribution. More specifically,
in our example it depends on the values of the parameters of the model, (σ,
φ, β), but also on the particular observed sequence Y0:n under consideration.
This is a serious concern in contexts such as those of Chapters 11 and 13,
where it is required to simulate sequences of states under widely varying, and
sometimes very unlikely, choices of the parameters. To illustrate this point, we
replaced Y10 by the value β exp(5/2), which corresponds to a rather significant
positive (and hence very informative) outlier in Figure 6.8. Figure 6.11 shows
the effect of this modification on the marginal smoothing distributions. For
this particular data set, the integrated autocorrelation time at index k = 10
increases only slightly (140 versus 120 above) for the sampler based on single
site slice sampling but more significantly (450 versus 220) for the sampler that
uses random walk proposals.

In Figures 6.9 and 6.11, the length of the sequence to simulate was indeed
quite short (n = 20). An important issue in many applications is to know
whether or not the efficiency of the sampler will deteriorate significantly when
moving to longer sequences. Loosely speaking the answer is “no, in general”
for HMMs due to the forgetting properties of the posterior distribution. When
the conditions discussed in Section 4.3 hold, the posterior correlation between
distant sites is indeed low and thus single site sampling does not really be-
come worse as the overall length of the sequence increases. Figure 6.12 for
instance shows the results obtained for n = 200 with the same number of
MCMC iterations. For the slice sampling based approach, the integrated au-
tocorrelation time at index k = 100 is about 90, that is, comparable to what
was observed for the shorter observation sequence2 (see also Figure 8.6 and
related comments for further discussion of this issue).

2It is indeed even slightly lower due to the fact that mixing is somewhat better
far from the edges of the sequence to be simulated. The value measured at index
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Fig. 6.11. Same plot as Figure 6.9 where Y10 has been replaced by a positive outlier.
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Fig. 6.12. Illustration of Example 6.3.1. Grey level representation of the smoothing
distributions estimated from 50,000 iterations of the single site slice sampler (densi-
ties estimated with Epanechnikov kernel, bandwidth 0.05). The bold line shows the
true simulated state sequence.
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We conclude this example by noting that slice sampling is obviously not
the only available approach to tackle posterior simulation in this model and
we do not claim that it is necessary the best one either. Because of its practical
importance in econometric applications, MCMC approaches suitable for this
model have been considered by several authors including Jacquier et al. (1994),
Shephard and Pitt (1997) and Kim et al. (1998). �

6.3.1.2 Block Sampling Strategies

putting In some cases, single site updating can be painfully slow. It is thus of
interest to try to speed up the simulation by breaking some of the dependence
involved in single site updating. A natural solution is to propose a joint update
of a group of Xk, as this induces more variability in the simulated values.
This strategy has been shown to be successful in some particular models (Liu
et al., 1994). The drawback of this approach however is that when the size
of the blocks increases, it is sometimes difficult to imagine efficient proposal
strategies in larger dimensional spaces. For the stochastic volatility model
discussed above for instance, Shephard and Pitt (1997) discuss the use of
approximations based on Gaussian expansions.

There are no general rules here, however, and the eventual improvements
in mixing speed have to be gauged at the light of the extra computational
efforts required to simulate larger blocks. In the case of multivariate Gaussian
distributions for instance, simulating in blocks of size m involves computing
the Cholevski factorization of m by m matrices, an operation whose cost is of
order m3. Hence moving to block simulations will be most valuable in cases
where single site sampling is pathologically slow.

6.3.2 Gibbs Sampling in CGLSSMs

For the stochastic volatility model, Kim et al. (1998) (among others) advocate
the use of a specific technique that consists in approximating the behavior
of the model by a conditionally Gaussian linear state-space structure. This
makes sense as there are simulation techniques specific to CGLSSMs that are
usually more efficient than generic simulation methods. This is also the main
reason why CGLSSMs are often preferred to less structured (but perhaps more
accurate) alternative models in a variety of situations such as “heavy tailed”
noise or outliers as in Examples 1.3.11 and 1.3.10, non-Gaussian observation
noise (Kim et al., 1998), or signals (Cappé et al., 1999). Not surprisingly,
efficient simulation in CGLSSMs is a topic that has been considered by many
authors, including Carter and Kohn (1994), De Jong and Shephard (1995),
Carter and Kohn (1996), and Doucet and Andrieu (2001).

k = 10 is equal to 110, that is, similar to what was observed for the shorter (n = 20)
sequence.
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In this context, the most natural approach to simulation consists in ade-
quately combining the two specific Monte Carlo techniques discussed in Sec-
tion 6.1.2 (for the finite state space case and Gaussian linear state-space
models). Indeed, if we assume knowledge of the indicator sequence C0:n, the
continuous component of the state, {Wk}0≤k≤n, follows a non-homogeneous
Gaussian linear state-space model from which one can sample (block-wise) by
Algorithms 6.1.2 or 6.1.3. If we now assume that W0:n is known, Figure 1.6
clearly corresponds to a (non-homogeneous) finite state space hidden Markov
model for which we may use Algorithm 6.1.1. To illustrate this conditional
two-step block simulation approach, we consider an illustrative example.

Example 6.3.2 (Non-Gaussian Autoregressive Process Observed in
Noise). Example 1.3.8 dealt with the case of a Gaussian autoregressive pro-
cess observed in noise. When the state and/or observation noises are non-
Gaussian, a possible solution is to represent the corresponding distributions
by mixtures of Gaussians. The model then becomes a CGLSSM according to

Wk+1 = AWk +

R(Ck+1)︷ ︸︸ ︷⎡⎢⎢⎢⎣
ρ(Ck+1)

0
...
0

⎤⎥⎥⎥⎦Uk , (6.20)

Yk =
[
1 0 · · · 0

]
Wk + S(Ck)Vk , (6.21)

where the matrix A is the companion matrix defined in (1.11), which is such
that Wk+1(1) (the first coordinate of Wk+1) is the regression

∑p
i=1 φiWk(i),

whereas the rest of the vector Wk+1 is simply a copy of the first p − 1 coor-
dinates of Wk.

By allowing ρ and S to depend on the indicator sequence Ck, either the
state or the observation noise (or both) can be represented as finite scale
mixtures of Gaussians. We will assume in the following that {Ck}k≥0 is a
Markov chain taking values in the finite set {1, . . . , r}; the initial distribution
is denoted by νC , and the transition matrix by QC . In addition, we will assume
that W0 is N(0, ΣW0) distributed where ΣW0 does not depend on the indicator
C0.

The simulation of the continuous component of the state Wk for k =
0, . . . , n, conditionally on C0:n, is straightforward: for a specified sequence of
indicators, (6.20) and (6.21) are particular instances of a non-homogeneous
Gaussian linear state-space model for which Algorithm 6.1.3 applies directly.
Recall that due to the particular structure of the matrix A in (6.20), the
noisy AR model is typically an example for which the disturbance smoothing
(Algorithm 5.2.15) will be more efficient.

For the simulation of the indicator variables given the disturbances U0:n−1,
two different situations can be distinguished.
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Indicators in the Observation Equation: If ρ is constant (does not depend on
Ck), only the terms related to the observation equation (6.21) contribute
to the posterior joint distribution of the indicators C0:n whose general
expression is given in (4.10). Hence the joint posterior distribution of the
indicators satisfies

ψ0:n|n(c0:n|w0:n, y0:n) ∝

νC(c0)

{
n−1∏
k=0

QC(ck, ck+1)

}
n∏

k=0

1
S(ck)

exp
[
− (yk − wk)2

2S2(ck)

]
, (6.22)

where factors that do not depend on the indicator variables have been
omitted. Equation (6.22) clearly has the same structure as the joint dis-
tribution of the states in an HMM given by (3.13). Because Ck is finite-
valued, we may use Algorithm 5.1.1 for filtering and then Algorithm 6.1.1
for sampling granted that the function gk be defined as

gk(c) =
1

S(c)
exp

[
− (yk − wk)2

2S2(c)

]
. (6.23)

Indicators in the Dynamic Equation: In the opposite case, S is constant but
ρ is a function of the indicator variables. The joint distribution of the
indicators C0:n given W0:n and Y0:n depends on the quantities defining
the dynamic equation (6.20) only, according to

ψ0:n|n(c0:n|w0:n, y0:n) ∝

νC(c0)

{
n−1∏
k=0

QC(ck, ck+1)

}
n∏

k=1

1
ρ(ck)

exp
[
−

u2
k−1

2ρ2(ck)

]
, (6.24)

where uk
def= wk+1 − Awk. Algorithms 5.1.1 and 6.1.1 once again apply

with gk defined as

gk(c) =
1

ρ(c)
exp

[
−

u2
k−1

2ρ2(c)

]
(6.25)

for k = 1, . . . , n and g0 = 1. Note that in this second case, we do not
need to condition on the sequence of states W0:n, and knowledge of the
disturbances U0:n−1 is sufficient. In particular, when using Algorithm 6.1.3
(conditionally given C0:n), one can omit the last two steps to keep track
only of the simulated disturbance sequence

Ûk|n + U∗
k − Û∗

k|n (for k = 0, . . . , n− 1) ,

using the notations introduced in Algorithm 6.1.3.
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Of course, in cases where the indicator variables modify the variances of both
the state noise and the observation noise, the two cases considered above
should be merged, which involves in particular that the functions gk be defined
as the product of the expressions given in (6.23) and (6.25), respectively. �

In general, the algorithm described above is reasonably successful. How-
ever, the rate of convergence of the MCMC sampler typically depends on the
values of the parameters and the particular data under consideration: it can
be slow in adverse situations, making it difficult to reach general conclusions.
There are however a number of cases of practical importance where the algo-
rithm fails. This has to do with the fact that in some situations, there is a very
close association between the admissible values of the continuous component
{Wk}k≥0 and the indicator variables {Ck}k≥0 leading to a very slow explo-
ration of the space by the MCMC simulations. This happens in particular
when using so-called Bernoulli-Gaussian noises (Kormylo and Mendel, 1982;
Lavielle, 1993; Doucet and Andrieu, 2001). In the model of Example 6.3.2
for instance, if we just want to model outlying values—a model of interest in
audio restoration applications (Ó Ruanaidh and Fitzgerald, 1996; Godsill and
Rayner, 1998)—we could set S = 0 in the absence of outliers (say if Ck = 1)
and S = σ, where σ2 is large compared to the variance of {Wk}k≥0, in the
opposite case (Ck = 2). In this case, however, it is easily seen from (6.23)
that Ck = 1 is only possible if Wk = Yk and, conversely, Wk = Yk has zero
probability (remember that it is a continuous variable) unless Ck = 1. Hence
the above algorithm would be fully stuck in that case. Not surprisingly, if
S2(1) is not exactly equal to 0 but still very small (compared to the variance
of {Wk}k≥0), the Gibbs sampling approach, which simulates W0:n and then
C0:n conditionally on each other, both block-wise, is not very efficient. We
illustrate this situation with a very simple instance of Example 6.3.2.

Example 6.3.3 (Gaussian AR Process with Outliers). We consider
again (6.20) and (6.21) in the AR(1) case, that is, when all variables in the
models are scalar. For the state equation, the parameters are set as

A
def= φ = 0.98 and R =

√
1− φ2 ,

so that the stationary distribution of {Wk}k≥0 is Gaussian with unit variance.
We first assume that S = 3 in the presence of outliers and 0.2 otherwise,
corresponding to a moderately noisy signal in the absence of outliers. By
convention, Ck = 2 will correspond to the presence of an outlier at index k
and we set Ck = 1 otherwise.

The light curve in the top plot of Figure 6.13 displays the corresponding
simulated observations, where outliers have been generated at (arbitrarily se-
lected) indices 25, 50, and 75. For modeling purposes, we assume that outliers
occur independently of each other and with probability 0.95. The alternat-
ing block sampling algorithm discussed above is applied by initially setting
C1

k = 1 for k = 0, . . . , n, thus assuming that there are no outliers. Then W i
0:n
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Fig. 6.13. Top plot: observed signal (light curve) and estimated state sequence (bold
curve) as estimated after 500 iterations of alternating block sampling from C0:n and
W0:n. Bottom plot: estimated probability of presence of an outlier; S(1) = 0.2 in
this case.

is simulated (as a block) conditionally on Ci
0:n, and Ci+1

0:n conditionally on
W i

0:n, for i = 1 to 500. The bottom plot in Figure 6.13 displays estimates of
the probability of the presence of an outlier at index k obtained by counting
the number of times where Ci

k = 1. Not surprisingly, the three outliers are
clearly localized, although there are two or three other points that could also
be considered as outliers given the model, with some degree of plausibility.
The bold curve in the top plot of Figure 6.13 shows the average of the simu-
lated state sequences W i

0:n. This is in fact a very good approximation of the
actual state sequence that is not shown here because it is would be nearly
indiscernible from the estimated state sequence in this case.

We now keep the same sequence of states and observation noises but con-
sider the case where S(1) = 0.02, that is, ten times smaller than before. In
some sense, the task is easier now because there is almost no observation noise
except for the outliers, so that localizing them should be all the more easy.
Figure 6.14, which is the analog of the top plot in Figure 6.13, shows that it is
indeed not the case as the outlier located at index 25 is visibly not detected,
resulting in a grossly incorrect estimation of the underlying state at index
25. The source of the problem is transparent: because initially C1

k = 1 for all
indices, simulated values of Wk are very close to the observation Yk because
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Fig. 6.14. Observed signal (light curve) and estimated state sequence (bold curve)
as estimated after 500 iterations of alternating block sampling from C0:n and W0:n

when S(1) = 0.02.

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

Iteration

N
um

be
r 

of
 O

ut
lie

rs

Fig. 6.15. Number of outliers as a function of the iteration index when S(1) = 0.2.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

Iteration

N
um

be
r 

of
 O

ut
lie

rs

Fig. 6.16. Number of outliers as a function of the iteration index when S(1) = 0.02.
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S(1) is very small, in turn making it very difficult to reach configurations with
Ck = 2.

This lack of convergence when S(1) = 0.02 is also patent when comparing
Figures 6.15 and 6.16: both figures show the simulated number of outliers, that
is, the number of indices k for which Ci

k = 2, as a function of the iteration
index i. In Figure 6.15, this number directly jumps from 0 initially to reach
the most likely values (between 3 and 6) and move very quickly in subsequent
iterations. In contrast, in Figure 6.16 the estimated number of outliers varies
only very slowly with very long steady period. A closer examination of the
output reveals that in the second case, it is only after 444 iterations that C26
is finally simulated as 2, which explains why the estimated sequence of states
is still grossly wrong after 500 simulations. �

The moral of Example 6.3.3 is by no means that the case where S(1) = 0.02
is desperate. Running the simulation for much longer than 500 iterations—and
once again, 500 is not considered as a big number in the MCMC world—does
produce the expected results. On the other hand, the observation that the
same sampling algorithm performs significantly worse in a task that is ar-
guably easier is not something that can easily be swept under the carpet. At
the risk of frightening newcomers to the field, it is important to underline
that this is not an entirely lonely observation, as it is often difficult to sample
efficiently from very concentrated distributions. In Example 6.3.3, the subsets
of (C ×W)n+1 that have non-negligible probability under the posterior dis-
tribution are very narrow (in some suitable sense) and thus hard to explore
with generic MCMC approaches.

To overcome the limits of the method used so far, we can however take
profit of the remark that in CGLSSMs, the conditional distribution of the
continuous component of the state, W0:n, given both the observations Y0:n
and the sequence of indicators C0:n, is multivariate Gaussian and can be fully
characterized using the algorithms discussed in Section 5.2. Hence the idea
to devise MCMC algorithms that target the conditional distribution of C0:n
given Y0:n, where the continuous part W0:n is marginalized out, rather than
the joint distribution of C0:n and W0:n. This is the principle of the approaches
proposed by Carter and Kohn (1996) and Doucet and Andrieu (2001). The
specific contribution of Doucet and Andrieu (2001) was to remark that us-
ing the information form of the backward smoothing recursion (discussed in
Section 5.2.5) is preferable because it is more generally applicable.

The main tool here is Lemma 5.2.24, which makes it possible to evaluate
the likelihood of the observations, marginalizing with respect to the contin-
uous part of the state sequence, where all indicators except one are fixed.
Combined with the information provided by the prior distribution of the se-
quence of indicators, this is all we need for sampling an indicator given all
its neighbors, which is the Gibbs sampling strategy discussed in full gener-
ality in Section 6.2.5. There is however one important detail concerning the
application Lemma 5.2.24 that needs to be clarified. To apply Lemma 5.2.24
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at index k, it is required that the results of both the filtering recursion for
index k − 1, {Ŵk−1|k−1(C0:k−1), Σk−1|k−1(C0:k−1)}, as well as those of the
backward information recursion at index k, {κk|n(Ck+1:n), Πk|n(Ck+1:n)}, be
available. None of these two recursions is particularly simple as each step of
each recursion involves in particular the inversion of a square matrix whose
dimension is that of the continuous component of the state. The important
point noted by Carter and Kohn (1996) and Doucet and Andrieu (2001) is
that because the forward quantities at index k depend on indicators Cl for
l ≤ k only and, conversely, the backward quantities depend on indicators
Cl such that l > k only, it is advantageous to use a systematic scan Gibbs
sampler that simulates Ck given its neighbors for k = 0, . . . , n (or in reverse
order) so as to avoid multiple evaluation of identical quantities. This how-
ever makes the overall algorithm somewhat harder to describe because it is
necessary to carry out the Gibbs simulations and the forward (or backward)
recursion simultaneously. The overall computational complexity of a complete
sweep of the Gibbs sampler is then only of the order of what it takes to im-
plement Algorithm 5.2.13 or Proposition 5.2.21 for all indices k between 0
and n, times the number r of possible values of the indicator, as these need
to be enumerated exhaustively at each index. We now describe the version of
the systematic scan Gibbs sampler that uses the result previously obtained in
Section 5.2.6.

Algorithm 6.3.4 (Gibbs Sampler for Indicators in Conditional Gaus-
sian Linear State-Space Model). Consider a conditionally Gaussian linear
state-space model (Definition 2.2.6) with indicator-dependent matrices A, R, B,
and S for which the covariance of the initial state Σν may depend on C0 and
denote by νC and QC , respectively, the initial distribution and transition matrix
of {Ck}k≥0.

Assuming that a current simulated sequence of indicators Ci
0:n is available,

draw Ci+1
0:n as follows.

Backward Recursion: Apply Proposition 5.2.21 for k = n down to 0 with Ak =
A(Ci

k+1), Rk = R(Ci
k+1), Bk = B(Ci

k), and Sk = S(Ci
k). Store the com-

puted quantities κk|n and Πk|n for k = n down to 0.
Initial State: For c = 1, . . . , r, compute

ε0 = Y0 ,

Γ0(c) = B(c)Σν(c)Bt(c) + S(c)St(c) ,

Ŵ0|0(c) = Σν(c)Bt(c)Γ−1
0 (c)ε0 ,

Σ0|0(c) = Σν(c)−Σν(c)Bt(c)Γ−1
0 (c)Bt(c)Σν(c) ,

�0(c) = −
[
log |Γ0(c)|+ εt0Γ

−1
0 (c)ε0

]
/2

Ŵ0|n(c) = Ŵ0|0(c) + Σ0|0(c)
[
I + Π0|nΣ0|0(c)

]−1
[
κ0|n −Π0|nŴ0|0(c)

]
,

Σ0|n(c) = Σ0|0(c)−Σ0|0(c)
[
I + Π0|nΣ0|0(c)

]−1
Σ0|0(c) ,
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m0(c) = −
[
log |Σ0|0(c)|+ Ŵ t

0|0(c)Σ
−1
0|0(c)Ŵ0|0(c)

]
/2

+
[
log |Σ0|n(c)|+ Ŵ t

0|n(c)Σ−1
0|n(c)Ŵ0|n(c)

]
/2 ,

p0(c) = exp [�0(c) + m0(c)] νC(c)QC(c, Ci
1) .

Normalize the vector p0 by computing p̄0(c) = p0(c)/
∑r

c′=1 p0(c′) for
c = 1, . . . , r and sample Ci+1

0 from the probability distribution p̄0 on
{1, . . . , r}. Then store the Kalman filter variables corresponding to c = Ci+1

0
(Ŵ0|0(Ci+1

0 ) and Σ0|0(Ci+1
0 ), that is) for the next iteration.

For k = 1, . . . , n: for c = 1, . . . , r, compute

Ŵk|k−1(c) = A(c)Ŵk−1|k−1(Ci+1
k−1) ,

Σk|k−1(c) = A(c)Σk−1|k−1(Ci+1
k−1)A

t(c) + R(c)Rt(c) ,

εk(c) = Yk −B(c)Ŵk|k−1(c) ,

Γk(c) = B(c)Σk|k−1(c)Bt(c) + S(c)St(c) ,

Ŵk|k(c) = Ŵk|k−1(c) + Σk|k−1(c)Bt(c)Γ−1
k (c)εk(c) ,

Σk|k(c) = Σk|k−1(c)−Σk|k−1(c)Bt(c)Γ−1
k (c)Bt(c)Σk|k−1(c) ,

�k(c) = −
[
log |Γk(c)|+ εtkΓ

−1
k (c)εk

]
/2 ,

Ŵk|n(c) = Ŵk|k(c) + Σk|k(c)
[
I + Πk|nΣk|k(c)

]−1
[
κk|n −Πk|nŴk|k(c)

]
,

Σk|n(c) = Σk|k(c)−Σk|k(c)
[
I + Πk|nΣk|k(c)

]−1
Σk|k(c) ,

mk(c) = −
[
log |Σk|k(c)|+ Ŵ t

k|k(c)Σ−1
k|k(c)Ŵk|k(c)

]
/2

+
[
log |Σk|n(c)|+ Ŵ t

k|n(c)Σ−1
k|n(c)Ŵk|n(c)

]
/2 ,

pk(c) =
{

exp [�k(c) + mk(c)]QC(Ci+1
k−1, c)QC(c, Ci

k+1) for k < n

exp [�n(c) + mn(c)]QC(Ci+1
n−1, c) for k = n

.

Set p̄k(c) = pk(c)/
∑r

c′=1 pk(c′) (for c = 1, . . . , r) and sample Ci+1
k from

p̄k. If k < n, the corresponding Kalman filter variables Ŵk|k(Ci+1
k ) and

Σk|k(Ci+1
k ) are stored for the next iteration.

Despite the fact that it is perhaps the most complex algorithm that is
to be met in this book, Algorithm 6.3.4 deserves no special comment as
it simply combines the results obtained in Chapter 5 (Algorithms 5.2.13
and 5.2.22, Lemma 5.2.24) with the principle of the Gibbs sampler exposed
in Section 6.2.5 and the clever remark that using a systematic scanning order
of the simulation sites (here in ascending order) greatly reduces the compu-
tation load. Algorithm 6.3.4 is similar to the method described by Doucet
and Andrieu (2001), but here the expression used for evaluating mk(c) has
been made more transparent by use of the smoothing moments Ŵk|n(c) and
Σk|n(c).
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Remark 6.3.5. Note that in Algorithm 6.3.4, the quantities �k(c) and, most
importantly, mk(c) are evaluated on a log-scale. Only when computation of
the probabilities p̄k(c) is necessary are those converted back to the linear scale
using the exponential function. Although rarely explicitly mentioned, this re-
mark is of some importance in many practical applications of MCMC methods
(and particularly those to be discussed in Section 13.2) that involve ratios of
likelihood terms, each of which may well exceed the machine precision. In
the case of Algorithm 6.3.4, remember that these terms need to be evaluated
for all possible values of c and hence their range of variations is all the more
important that some of these indicator configurations may be particularly un-
likely. �

To illustrate the behavior of Algorithm 6.3.4, we consider again the noisy
AR(1) models with outliers in the case where S(1) = 0.02, which led to the
poor mixing illustrated in Figure 6.16.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

Iteration

N
um

be
r 

of
 O

ut
lie

rs

Fig. 6.17. Number of outliers as a function of the iteration index when S(1) = 0.02
for the systematic scan Gibbs sampler.

Example 6.3.6 (Gaussian AR Process with Outliers, Continued).
Applying Algorithm 6.3.4 to the model of Example 6.3.3 provides the re-
sult shown in Figure 6.17, this figure being the exact analog Figure 6.16.
Figure 6.17 shows that with Algorithm 6.3.4, only configurations with at least
three outliers are ever visited. This is logical, as with such a low value of
the observation noise (S(1) = 0.02), the values observed at indices 25, 50,
and 75 can only correspond to outliers. A closer examination of the simula-
tion shows that all simulated sequences Ci

0:n except the initial one—we are
still initializing the sampler with the configuration such that C1

k = 1 for all
k = 0, . . . , n—are such that Ci

25 = Ci
50 = Ci

75 = 2. From the simulation, we
are thus as certain as we can be that there are indeed outliers at these loca-
tions and most probably there are no others (the configuration with exactly
these three outliers is selected about 67% of the time and no individual site—
other than those with indices 25, 50, and 75—is selected more than 15 times
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out of the 500 iterations). Figure 6.17 also shows that the other configurations
that are explored are visited rather rapidly rather than with long idle periods
as in Figure 6.16, which also suggests good mixing properties of the Gibbs
sampling algorithm. �

To conclude this section with a more realistic example of the use of
CGLSSMs and MCMC techniques, we consider the change point model and
the well-log data already discussed in Example 1.3.10.

Example 6.3.7 (Gibbs Sampler for the Well-Log Data). To analyze
the well-log data shown in Figure 1.7, we consider the conditionally Gaussian
state-space model

Wk+1 = A(Ck+1,1)Wk + R(Ck+1,1) , Uk Uk ∼ N(0, 1) ,
Yk = µY (Ck,2) + B(Ck,2)Xk + S(Ck,2) , Vk Vk ∼ N(0, 1) ,

where Ck,1 ∈ {1, 2} and Ck,2 ∈ {1, 2} are indicator variables indicating, re-
spectively, the presence of a jump in the level of the underlying signal and that
of an outlier in the measurement noise, as discussed in Examples 1.3.10 and
1.3.11. For comparison purposes, we use exactly the same model specification
as the one advocated by Fearnhead and Clifford (2003).

• The data shown in Figure 1.7 is first centered (approximately) by sub-
tracting µ = 115, 000 from each observation; in the following, Yk refers to
the data with this average level µ subtracted.

• When Ck,1 = 1 the underlying signal level is constant and we set A(1) = 1
and R(1) = 0. When Ck,1 = 2, the occurrence of a jump is modeled
by A(2) = 0, R(2) = 10,000, which is an informative prior on the size
of the jump. Though as explained in the introduction this is presumably
an oversimplified assumption, we assume a constant probability for the
presence of a jump, or, equivalently, that {Ck,1}k≥0 is an i.i.d. sequence
of Bernoulli random variables with constant probability of success p. The
jump positions then form a discrete renewal sequence whose increment
distribution is geometric with expectation 1/p. Because there are about
16 jumps in a sequence of 4,000 samples, the average of the increment
distribution is about 250, suggesting p = 1/250.

• When Ck,2 = 1, the observation is modeled as the true state corrupted
by additive noise, so that B(1) = 1, where S(1) is set to 2,500 based
on the empirical standard deviation of the median filter residual shown
in the right plot of Figure 1.7. When Ck,2 = 2, the occurrence of an
outlier is modeled by a Gaussian random variable whose parameters are
independent of the true state, so that B(2) = 0, and the outlier is assumed
to have mean µY (2) = -30,000 and standard deviation S(2) = 12,500.
The outliers appear to be clustered in time, with a typical cluster size
of four samples. Visual inspection shows that there are about 16 clusters
of noise, which suggests to model the sequence {Ck,2}k≥0 as a Markov
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chain with transition probabilities P(Ck,2 = 2 |Ck,2 = 1) = 1/250 and
P(Ck,2 = 1 |Ck,2 = 2) = 1/4. The initial C0,2 is assumed to be distributed
according to the stationary distribution of this chain, which is P(C0,2 =
1) = 125/127.

• The initial distribution of W0 is assumed to have zero mean with a very
large variance, which corresponds to an approximation of the so-called
diffuse (or improper flat, following the terminology of Section 5.2.5) prior.
Note that because B(C0) may be null (when C0 = 2), using a truly diffuse
prior (with “infinite” covariance matrix) cannot be done in this case by
simply computing Ŵ0|0 as in (5.109), which is customary. In the case under
consideration, however, the prior on W0 is non-essential because the initial
state is very clearly identified from the data anyway.

Note that in the model above, the presence of outliers induces non-zero means
in the observation equation. As discussed in Remark 5.2.14, however, this
does not necessitate significant modifications, and we just need to apply
Algorithm 6.3.4 using as “observation” Yk − µY (ck) rather than Yk, where
µY (1) = 0 and µY (2) = -30,000.

Because R(1) = 0 implies that the continuous component of the state Wk

stays exactly constant between two jump points, this model belongs to the
category discussed earlier for which the alternating block sampling algorithm
cannot be applied at all. We thus consider the result of the Gibbs sampler
that operates on the indicator variables only. Figure 6.18 displays the results
obtained by application of Algorithm 6.3.4 after 5,000 iterations, one itera-
tion referring to a complete cycle of the Gibbs sampler through all the n + 1
sites. Initially, C1

k,1 and C1
k,2 are both set to 1 for all sites k = 0, . . . , n, which

corresponds to the (very improbable) configuration in which there are neither
jumps nor outliers. Clearly, after 5,000 iterations both the jump and outlier
positions are located very clearly. There is however a marked difference, which
is that whereas the outliers (middle plot) are located with posterior probabil-
ities very close to 1, the jumps are only located with probabilities between 0.3
and 0.6. There are two reasons for this behavior, the second being more fun-
damental. First, the model for the distribution of outliers is more precise and
incorporate in particular the fact that outliers systematically induce a down-
ward bias. The second reason is a slightly deficient modeling of the occurrence
of jumps. For the outliers, the selected Markov transition kernel implies that
outlier periods are infrequent (occurring 2/127 of the time on average) but
have durations that are exponential with average duration 4. This is a crucial
feature, as a closer examination of the data reveals that some of these periods
of outliers last for 10 or even 20 consecutive samples. In contrast, our model for
jumps implies that jumps are infrequent (occurring in one sample out of 250
on average) and isolated. For instance, a sequence of four consecutive jumps
is, a priori, judged as being 6.2× 107 times less probable than the occurrence
of just one jump in one of these four positions. The real data however, cf.
Figure 6.19, shows that the actual jumps are not abrupt and involve at least
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Fig. 6.18. From top to bottom: original data, posterior probability of the presence
of outliers, and jumps estimated from 5,000 iterations of Algorithm 6.3.4.
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Fig. 6.19. From top to bottom: original data and posterior probability of the pres-
ence of jumps (zoom on a detail of Figure 6.18).
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Fig. 6.20. Jump detection indicators (indices such that C i
k = 2) for the first 250

iterations.

two and sometimes as many as five consecutive points. Because the modeling
assumptions do not allow all of these points to be marked as jumps, the result
tends to identify one of these only as the preferred jump location, whence
the larger uncertainty (lower posterior probability) concerning which one is
selected. Interestingly, the picture will be very different when we consider the
filtering distributions (that is, the distribution of Ck given data up to index
k only) in Example 8.2.10 of Chapter 8.

Figure 6.20 gives an idea of the way the simulation visits the configura-
tions of indicators (for the jumps), showing that the algorithm almost instan-
taneously forgets its erroneous initial state. Consequently, the configurations
change at a rather fast pace, suggesting good mixing behavior of the sampler.
Note that those time indices for which jumps are detected in the bottom plot
of Figure 6.18 correspond to abscissas for which the indicators of jump stay
“on” very systematically through the simulation. �

To conclude this section on MCMC sampling in conditionally Gaussian
linear state-space models, we note that there is an important and interesting
literature that discusses the “best” use of simulations for the purpose of esti-
mating the unobservable state sequence {Wk, Ck}k≥0. To estimate a function
f of the unobserved sequence of states W0:n, the most natural options are the
straightforward MCMC estimate

1
N

N∑
i=1

f(W i
0:n) ,
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directly available with alternating block sampling (as in Example 6.3.3), or
its Rao-Blackwellized version

1
N

N∑
i=1

E[f(W0:n) |Ci
0:n] ,

which can easily be computed when using Algorithm 6.3.4, at least for linear
and quadratic functions f , as the smoothing moments Ŵk|n(Ci+1

0:k , Ci
k+1:n) and

Σk|n(Ci+1
0:k , Ci

k+1:n) are evaluated at each iteration i and for all sites k. But
both of these alternatives are estimates of E[f(W0:n) |Y0:n], which, in some
applications, is perhaps not what is regarded as the “best” estimate of the
states. In the change point application discussed in Example 6.3.7 in particu-
lar, E [f(W0:n) |Y0:n] does not correspond to a piecewise constant trajectory,
especially if some jump locations are only detected with some ambiguity. If
one really believes that the model is correct, it may thus make more sense
to estimate first the best sequence of indicators ĉ0:n, that is, the one that
maximizes P(C0:n = c0:n |Y0:n), and then use E[f(W0:n) |Y0:n, C0:n = ĉ0:n]
as the estimate of the continuous part of the state sequence. In the change
point model, this third way of proceeding is guaranteed to return a piecewise
constant sequence. This is not an easy task, however, because finding the in-
dicator sequence ĉ0:n that maximizes the posterior probability is a difficult
combinatorial optimization problem, especially given the fact that we can-
not evaluate P(C0:n = c0:n |Y0:n) directly. We refer to Lavielle and Lebarbier
(2001), Doucet and Andrieu (2001), and references therein for further reading
on this issue.
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Sequential Monte Carlo Methods

The use of Monte Carlo methods for non-linear filtering can be traced back to
the pioneering contributions of Handschin and Mayne (1969) and Handschin
(1970). These early attempts were based on sequential versions of the impor-
tance sampling paradigm, a technique that amounts to simulating samples
under an instrumental distribution and then approximating the target distri-
butions by weighting these samples using appropriately defined importance
weights. In the non-linear filtering context, importance sampling algorithms
can be implemented sequentially in the sense that, by defining carefully a
sequence of instrumental distributions, it is not needed to regenerate the pop-
ulation of samples from scratch upon the arrival of each new observation. This
algorithm is called sequential importance sampling, often abbreviated SIS. Al-
though the SIS algorithm has been known since the early 1970s, its use in
non-linear filtering problems was rather limited at that time. Most likely, the
available computational power was then too limited to allow convincing appli-
cations of these methods. Another less obvious reason is that the SIS algorithm
suffers from a major drawback that was not clearly identified and properly
cured until the seminal paper by Gordon et al. (1993). As the number of it-
erations increases, the importance weights tend to degenerate, a phenomenon
known as sample impoverishment or weight degeneracy. Basically, in the long
run most of the samples have very small normalized importance weights and
thus do not significantly contribute to the approximation of the target distri-
bution. The solution proposed by Gordon et al. (1993) is to allow rejuvenation
of the set of samples by duplicating the samples with high importance weights
and, on the contrary, removing samples with low weights.

The particle filter of Gordon et al. (1993) was the first successful applica-
tion of sequential Monte Carlo techniques to the field of non-linear filtering.
Since then, sequential Monte Carlo (or SMC) methods have been applied in
many different fields including computer vision, signal processing, control,
econometrics, finance, robotics, and statistics (Doucet et al., 2001a; Ristic
et al., 2004). This chapter reviews the basic building blocks that are needed
to implement a sequential Monte Carlo algorithm, starting with concepts re-
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lated to the importance sampling approach. More specific aspects of sequential
Monte Carlo techniques will be further discussed in Chapter 8, while conver-
gence issues will be dealt with in Chapter 9.

7.1 Importance Sampling and Resampling

7.1.1 Importance Sampling

Importance sampling is a method that dates back to, at least, Hammersley and
Handscomb (1965) and that is commonly used in several fields (for general
references on importance sampling, see Glynn and Iglehart, 1989, Geweke,
1989, Evans and Swartz, 1995, or Robert and Casella, 2004.)

Throughout this section, µ will denote a probability measure of interest
on a measurable space (X,X ), which we shall refer to as the target distri-
bution. As in Chapter 6, the aim is to approximate integrals of the form
µ(f) =

∫
X f(x)µ(dx) for real-valued measurable functions f . The Monte Carlo

approach exposed in Section 6.1 consists in drawing an i.i.d. sample ξ1, . . . ,
ξN from the probability measure µ and then evaluating the sample mean
N−1 ∑N

i=1 f(ξi). Of course, this technique is applicable only when it is possi-
ble (and reasonably simple) to sample from the target distribution µ.

Importance sampling is based on the idea that in certain situations it is
more appropriate to sample from an instrumental distribution ν, and then to
apply a change-of-measure formula to account for the fact that the instru-
mental distribution is different from the target distribution. More formally,
assume that the target probability measure µ is absolutely continuous with
respect to an instrumental probability measure ν from which sampling is easily
feasible. Denote by dµ/dν the Radon-Nikodym derivative of µ with respect
to ν. Then for any µ-integrable function f ,

µ(f) =
∫

f(x)µ(dx) =
∫

f(x)
dµ

dν
(x) ν(dx) . (7.1)

In particular, if ξ1, ξ2, . . . is an i.i.d. sample from ν, (7.1) suggests the following
estimator of µ(f):

µ̃IS
ν,N (f) = N−1

N∑
i=1

f(ξi)
dµ

dν
(ξi) . (7.2)

Because this estimator is the sample mean of independent random variables,
there is a range of results to assess the quality of µ̃IS

ν,N (f) as an estimator
of µ(f). First of all, the strong law of large number implies that µ̃IS

ν,N (f)
converges to µ(f) almost surely as N tends to infinity. In addition, the cen-
tral limit theorem for i.i.d. variables (or deviation inequalities) may serve as
a guidance for selecting the proposal distribution ν, beyond the obvious re-
quirement that it should dominate the target distribution µ. We postpone this
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issue and, more generally, considerations that pertain to the behavior of the
approximation for large values of N to Chapter 9.

In many situations, the target probability measure µ or the instrumental
probability measure ν is known only up to a normalizing factor. As already
discussed in Remark 6.2.7, this is particularly true when applying impor-
tance sampling ideas to HMMs and, more generally, in Bayesian statistics.
The Radon-Nikodym derivative dµ/dν is then known up to a (constant) scal-
ing factor only. It is however still possible to use the importance sampling
paradigm in that case, by adopting the self-normalized form of the impor-
tance sampling estimator,

µ̂IS
ν,N (f) =

∑N
i=1 f(ξi)dµ

dν (ξi)∑N
i=1

dµ
dν (ξi)

. (7.3)

This quantity is obviously free from any scale factor in dµ/dν. The self-
normalized importance sampling estimator µ̂IS

ν,N (f) is defined as a ratio of the
sample means of the functions f1 = f × (dµ/dν) and f2 = dµ/dν. The strong
law of large numbers thus implies that N−1 ∑N

i=1 f1(ξi) and N−1 ∑N
i=1 f2(ξi)

converge almost surely, to µ(f1) and ν(dµ/dν) = 1, respectively, showing that
µ̂IS

ν,N (f) is a consistent estimator of µ(f). Again, more precise results on the
behavior of this estimator will be given in Chapter 9. In the following, the
term importance sampling usually refers to the self-normalized form (7.3) of
the importance sampling estimate.

7.1.2 Sampling Importance Resampling

Although importance sampling is primarily intended to overcome difficul-
ties with direct sampling from µ when approximating integrals of the form
µ(f), it can also be used for (approximate) sampling from the distribution µ.
The latter can be achieved by the sampling importance resampling (or SIR)
method due to Rubin (1987, 1988). Sampling importance resampling is a two-
stage procedure in which importance sampling as discussed below is followed
by an additional random sampling step. In the first stage, an i.i.d. sample
(ξ̃1, . . . , ξ̃M ) is drawn from the instrumental distribution ν, and one computes
the normalized version of the importance weights,

ωi =
dµ
dν (ξ̃i)∑M

i=1
dµ
dν (ξ̃i)

, i = 1, . . . ,M . (7.4)

In the second stage, the resampling stage, a sample of size N denoted by
ξ1, . . . , ξN is drawn from the intermediate set of points ξ̃1, . . . , ξ̃M , taking
into account the weights computed in (7.4). The rationale is that points ξ̃i for
which ωi in (7.4) is large are most likely under the target distribution µ and
should thus be selected with higher probability during the resampling than
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TARGET

TARGET

Fig. 7.1. Principle of resampling. Top plot: the sample drawn from ν with associated
normalized importance weights depicted by bullets with radii proportional to the
normalized weights (the target density corresponding to µ is plotted in solid line).
Bottom plot: after resampling, all points have the same importance weight, and
some of them have been duplicated (M = N = 7).

points with low (normalized) importance weights. This principle is illustrated
in Figure 7.1.

There are several ways of implementing this basic idea, the most obvi-
ous approach being sampling with replacement with probability of sampling
each ξi equal to the importance weight ωi. Hence the number of times N i

each particular point ξ̃i in the first-stage sample is selected follows a bino-
mial Bin(N,ωi) distribution. The vector (N1, . . . , NM ) is distributed from
Mult(N,ω1, . . . , ωM ), the multinomial distribution with parameter N and
probabilities of success (ω1, . . . , ωM ). In this resampling step, the points in
the first-stage sample that are associated with small normalized importance
weights are most likely to be discarded, whereas the best points in the sample
are duplicated in proportion to their importance weights. In most applica-
tions, it is typical to choose M , the size of the first-stage sample, larger (and
sometimes much larger) than N . The SIR algorithm is summarized below.

Algorithm 7.1.1 (SIR: Sampling Importance Resampling).

Sampling: Draw an i.i.d. sample ξ̃1, . . . , ξ̃M from the instrumental
distribution ν.

Weighting: Compute the (normalized) importance weights
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ωi =
dµ
dν (ξ̃i)∑M

j=1
dµ
dν (ξ̃j)

for i = 1, . . . ,M .

Resampling:
• Draw, conditionally independently given (ξ̃1, . . . , ξ̃M ), N discrete random

variables (I1, . . . , IN ) taking values in the set {1, . . . ,M} with probabil-
ities (ω1, . . . , ωM ), i.e.,

P(I1 = j) = ωj , j = 1, . . . ,M . (7.5)

• Set, for i = 1, . . . , N , ξi = ξ̃Ii

.

The set (I1, . . . , IN ) is thus a multinomial trial process. Hence, this method
of selection is known as the multinomial resampling scheme.

At this point, it may not be obvious that the sample ξ1, . . . , ξN obtained
from Algorithm 7.1.1 is indeed (approximately) i.i.d. from µ in any suitable
sense. In Chapter 9, it will be shown that the sample mean of the draws
obtained using the SIR algorithm,

µ̂SIR
ν,M,N (f) =

1
N

N∑
i=1

f(ξi) , (7.6)

is a consistent estimator of µ(f) for all functions f satisfying µ(|f |) <∞. The
resampling step might thus be seen as a means to transform the weighted
importance sampling estimate µ̂IS

ν,M (f) defined by (7.3) into an unweighted
sample average. Recall that N i is the number of times that the element ξ̃i is
resampled. Rewriting

µ̂SIR
ν,M,N (f) =

1
N

N∑
i=1

f(ξi) =
M∑
i=1

N i

N
f(ξ̃i) ,

it is easily seen that the sample mean µ̂SIR
ν,M,N (f) of the SIR sample is, condi-

tionally on the first-stage sample (ξ̃1, . . . , ξ̃M ), equal to the importance sam-
pling estimator µ̂IS

ν,M (f) defined in (7.3),

E
[
µ̂SIR

ν,M,N (f)
∣∣ ξ̃1, . . . , ξ̃M

]
= µ̂IS

ν,M (f) .

As a consequence, the SIR estimator µ̂SIR
ν,M,N (f) is an unbiased estimate of

µ(f), but its mean squared error is always larger than that of the importance
sampling estimator (7.3) due to the well-known variance decomposition

E
[(
µ̂SIR

ν,M,N (f)− µ(f)
)2

]
= E

[(
µ̂SIR

ν,M,N (f)− µ̂IS
ν,M (f)

)2
]

+ E
[(
µ̂IS

ν,M (f)− µ(f)
)2

]
.



214 7 Sequential Monte Carlo Methods

The variance E[(µ̂SIR
ν,M,N (f) − µ̂IS

ν,M (f))2] may be interpreted as the price
to pay for converting the weighted importance sampling estimate into an
unweighted approximation.

Showing that the SIR estimate (7.6) is a consistent and asymptotically
normal estimator of µ(f) is not a trivial task, as ξ1, . . . , ξN are no more
independent due to the normalization of the weights followed by resampling.
As such, the elementary i.i.d. convergence results that underlie the theory of
the importance sampling estimator are of no use, and we refer to Section 9.2
for the corresponding proofs.

Remark 7.1.2. A closer examination of the numerical complexity of Algo-
rithm 7.1.1 reveals that whereas all steps of the algorithm have a complexity
that grows in proportion to M and N , this is not quite true for the multi-
nomial sampling step whose numerical complexity is, a priori, growing faster
than N (about N log2M—see Section 7.4.1 below for details). This is very
unfortunate, as we know from elementary arguments discussed in Section 6.1
that Monte Carlo methods are most useful when N is large (or more appro-
priately that the quality of the approximation improves rather slowly as N
grows).

A clever use of elementary probabilistic results however makes it possible
to devise methods for sampling N times from a multinomial distribution with
M possible outcomes using a number of operations that grows only linearly
with the maximum of N and M . In order not to interrupt our exposition of
sequential Monte Carlo, the corresponding algorithms are discussed in Sec-
tion 7.4.1 at the end of this chapter. Note that we are here only discussing im-
plementations issues. There are however different motivations, also discussed
in Section 7.4.2, for adopting sampling schemes other than multinomial sam-
pling. �

7.2 Sequential Importance Sampling

7.2.1 Sequential Implementation for HMMs

We now specialize the sampling techniques considered above to hidden Markov
models. As in previous chapters, we adopt the hidden Markov model as spec-
ified by Definition 2.2.2 where Q denotes the Markov transition kernel of the
hidden chain, ν is the distribution of the initial state X0, and g(x, y) (for
x ∈ X, y ∈ Y) denotes the transition density function of the observation given
the state, with respect to the measure µ on (Y,Y). To simplify the mathe-
matical expressions, we will also use the shorthand notation gk(·) = g(·, Yk)
introduced in Section 3.1.4. We denote the joint smoothing distribution by
φ0:k|k, omitting the dependence with respect to the initial distribution ν,
which does not play an important role here. According to (4.1), the joint
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smoothing distribution may be updated recursively in time according to the
relations

φ0(f) =
∫
f(x0) g0(x0) ν(dx0)∫

g0(x0) ν(dx0)
for all f ∈ Fb (X) ,

φ0:k+1|k+1(fk+1) =
∫
· · ·

∫
fk+1(x0:k+1) φ0:k|k(dx0:k)T u

k (xk, dxk+1)

for all fk+1 ∈ Fb
(
Xk+2) , (7.7)

where T u
k is the transition kernel on (X,X ) defined by

T u
k (x, f) =

(
Lk+1

Lk

)−1 ∫
f(x′) Q(x, dx′)gk+1(x′)

for all x ∈ X, f ∈ Fb (X) . (7.8)

The superscript “u” (for “unnormalized”) in the notation T u
k is meant to high-

light the fact that T u
k is not a probability transition kernel. This distinction is

important here because the normalized version Tk = T u
k /T

u
k (1) of the kernel

will play an important role in the following. Note that except in some spe-
cial cases discussed in Chapter 5, the likelihood ratio Lk+1/Lk can generally
not be computed in closed form, rendering analytic evaluation of T u

k or φ0:k|k
hopeless. The rest of this section reviews importance sampling methods that
make it possible to approximate φ0:k|k recursively in k.

First, because importance sampling can be used when the target distri-
bution is known only up to a scaling factor, the presence of non-computable
constants such as Lk+1/Lk does not preclude the use of the algorithm. Next, it
is convenient to choose the instrumental distribution as the probability mea-
sure associated with a possibly non-homogeneous Markov chain on X. As seen
below, this will make it possible to derive a sequential version of the impor-
tance sampling technique. Let {Rk}k≥0 denote a family of Markov transition
kernels on (X,X ) and let ρ0 denote a probability measure on (X,X ). Further
denote by {ρ0:k}k≥0 the family of probability measures associated with the in-
homogeneous Markov chain with initial distribution ρ0 and transition kernels
{Rk}k≥0,

ρ0:k(fk) def=
∫
· · ·

∫
fk(x0:k) ρ0(dx0)

k−1∏
l=0

Rl(xl, dxl+1) .

In this context, the kernels Rk will be referred to as the instrumental kernels.
The term importance kernel is also used. The following assumptions will be
adopted in the sequel.
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Assumption 7.2.1 (Sequential Importance Sampling).

1. The target distribution φ0 is absolutely continuous with respect to the in-
strumental distribution ρ0.

2. For all k ≥ 0 and all x ∈ X, the measure T u
k (x, ·) is absolutely continuous

with respect to Rk(x, ·).

Then for any k ≥ 0 and any function fk ∈ Fb
(
Xk+1

)
,

φ0:k|k(fk) =
∫
· · ·

∫
fk(x0:k)

dφ0

dρ0
(x0)

{
k−1∏
l=0

dT u
l (xl, ·)

dRl(xl, ·)
(xl+1)

}
ρ0:k(dx0:k) ,

(7.9)
which implies that the target distribution φ0:k|k is absolutely continuous with
respect to the instrumental distribution ρ0:k with Radon-Nikodym derivative
given by

dφ0:k|k
dρ0:k

(x0:k) =
dφ0

dρ0
(x0)

k−1∏
l=0

dT u
l (xl, ·)

dRi(xl, ·)
(xl+1) . (7.10)

It is thus legitimate to use ρ0:k as an instrumental distribution to compute
importance sampling estimates for integrals with respect to φ0:k|k. Denoting
by ξ1

0:k, . . . , ξ
N
0:k N i.i.d. random sequences with common distribution ρ0:k, the

importance sampling estimate of φ0:k|k(fk) for fk ∈ Fb
(
Xk+1

)
is defined as

φ̂IS
0:k|k(fk) =

∑N
i=1 ω

i
kfk(ξi

0:k)∑N
i=1 ω

i
k

, (7.11)

where ωi
k are the unnormalized importance weights defined recursively by

ωi
0 =

dφ0

dρ0
(ξi

0) for i = 1, . . . , N , (7.12)

and, for k ≥ 0,

ωi
k+1 = ωi

k

dT u
k (ξi

k, ·)
dRk(ξi

k, ·)
(ξi

k+1) for i = 1, . . . , N . (7.13)

The multiplicative decomposition of the (unnormalized) importance weights
in (7.13) implies that these weights may be computed recursively in time as
successive observations become available. In the sequential Monte Carlo lit-
erature, the update factor dT u

k /dRk is often called the incremental weight.
As discussed previously in Section 7.1.1, the estimator in (7.11) is left un-
modified if the weights, or equivalently the incremental weights, are evaluated
up to a constant only. In particular, one may omit the problematic scaling
factor Lk+1/Lk that we met in the definition of T u

k in (7.8). The practical
implementation of sequential importance sampling thus goes as follows.
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Algorithm 7.2.2 (SIS: Sequential Importance Sampling).

Initial State: Draw an i.i.d. sample ξ1
0 , . . . , ξ

N
0 from ρ0 and set

ωi
0 = g0(ξi

0)
dν

dρ0
(ξi

0) for i = 1, . . . , N .

Recursion: For k = 0, 1, . . . ,
• Draw (ξ1

k+1, . . . , ξ
N
k+1) conditionally independently given {ξj

0:k , j =
1, . . . , N} from the distribution ξi

k+1 ∼ Rk(ξi
k, ·). Append ξi

k+1 to ξi
0:k to

form ξi
0:k+1 = (ξi

0:k, ξ
i
k+1).

• Compute the updated importance weights

ωi
k+1 = ωi

k × gk+1(ξi
k+1)

dQ(ξi
k, ·)

dRk(ξi
k, ·)

(ξi
k+1), i = 1, . . . , N .

At any iteration index k importance sampling estimates may be evaluated accord-
ing to (7.11).

FILT.

INSTR.

FILT. +1

Fig. 7.2. Principle of sequential importance sampling (SIS). Upper plot: the curve
represents the filtering distribution, and the particles with weights are represented
along the axis by bullets, the radii of which being proportional to the normalized
weight of the particle. Middle plot: the instrumental distribution with resampled
particle positions. Bottom plot: filtering distribution at the next time index with
particle updated weights. The case depicted here corresponds to the choice Rk = Q.
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An important feature of Algorithm 7.2.2, which corresponds to the method
originally proposed in Handschin and Mayne (1969) and Handschin (1970),
is that the N trajectories ξ1

0:k, . . . , ξ
N
0:k are independent and identically dis-

tributed for all time indices k. Following the terminology in use in the non-
linear filtering community, we shall refer to the sample at time index k,
ξ1
k, . . . , ξ

N
k , as the population (or system) of particles and to ξi

0:k for a specific
value of the particle index i as the history (or trajectory) of the ith particle.
The principle of the method is illustrated in Figure 7.2.

7.2.2 Choice of the Instrumental Kernel

Before discussing in Section 7.3 a serious drawback of Algorithm 7.2.2 that
needs to be fixed in order for the method to be applied to any problem of prac-
tical interest, we examine strategies that may be helpful in selecting proper
instrumental kernels Rk in several models (or families of models) of interest.

7.2.2.1 Prior Kernel

The first obvious and often very simple choice of instrumental kernel Rk is that
of setting Rk = Q (irrespectively of k). In that case, the instrumental kernel
simply corresponds to the prior distribution of the new state in the absence
of the corresponding observation. The incremental weight then simplifies to

dT u
k (x, ·)

dQ(x, ·) (x′) =
Lk

Lk+1
gk+1(x′) ∝ gk+1(x′) for all (x, x′) ∈ X2 . (7.14)

A distinctive feature of the prior kernel is that the incremental weight in (7.14)
does not depend on x, that is, on the previous position. The use of the prior
kernel Rk = Q is popular because sampling from the prior kernel Q is often
straightforward, and computing the incremental weight simply amounts to
evaluating the conditional likelihood of the new observation given the current
particle position. The prior kernel also satisfies the minimal requirement of
importance sampling as stated in Assumption 7.2.1. In addition, because the
importance function reduces to gk+1, it is upper-bounded as soon as one can
assume that supx∈X,y∈Y g(x, y) is finite, which (often) is a very mild condi-
tion (see also Section 9.1). Despite these appealing properties, the use of the
prior kernel can sometimes lead to poor performance, often manifesting it-
self as a lack of robustness with respect to the values taken by the observed
sequence {Yk}k≥0. The following example illustrates this problem in a very
simple situation.

Example 7.2.3 (Noisy AR(1) Model). To illustrate the potential prob-
lems associated with the use of the prior kernel, Pitt and Shephard (1999)
consider the simple model where the observations arise from a first-order lin-
ear autoregression observed in noise,
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Xk+1 = φXk + σUUk , Uk ∼ N(0, 1) ,
Yk = Xk + σV Vk , Vk ∼ N(0, 1) ,

where φ = 0.9, σ2
U = 0.01, σ2

V = 1 and {Uk}k≥0 and {Vk}k≥0 are independent
Gaussian white noise processes. The initial distribution ν is the stationary
distribution of the Markov chain {Xk}k≥0, that is, normal with zero mean
and variance σ2

U/(1− φ2).
In the following, we assume that n = 5 and simulate the first five obser-

vations from the model, whereas the sixth observation is set to the arbitrary
value 20. The observed series is

(−0.652, −0.345, −0.676, 1.142, 0.721, 20) .

The last observation is located 20 standard deviations away from the mean
(zero) of the stationary distribution, which definitively corresponds to an aber-
rant value from the model’s point of view. In a practical situation however, we
would of course like to be able to handle also data that does not necessarily
come from the model under consideration. Note also that in this toy example,
one can evaluate the exact smoothing distributions by means of the Kalman
filtering recursion discussed in Section 5.2.

Figure 7.3 displays box and whisker plots for the SIS estimate of the pos-
terior mean of the final state X5 as a function of the number N of particles
when using the prior kernel. These plots have been obtained from 125 inde-
pendent replications of the SIS algorithm. The vertical line corresponds to the
true posterior mean of X5 given Y0:5, computed using the Kalman filter. The
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Fig. 7.3. Box and whisker plot of the posterior mean estimate of X5 obtained from
125 replications of the SIS filter using the prior kernel and increasing numbers of
particles. The horizontal line represents the true posterior mean.
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figure shows that the SIS algorithm with the prior kernel grossly underesti-
mates the values of the state even when the number of particles is very large.
This is a case where there is a conflict between the prior distribution and
the posterior distribution: under the instrumental distribution, all particles
are proposed in a region where the conditional likelihood function g5 is ex-
tremely low. In that case, the renormalization of the weights used to compute
the filtered mean estimate according to (7.11) may even have unexpectedly
adverse consequences: a weight close to 1 does not necessarily correspond to a
simulated value that is important for the distribution of interest. Rather, it is
a weight that is large relative to other, even smaller weights (of particles even
less important for the filtering distribution). This is a logical consequence of
the fact that the weights must sum to one. �

7.2.2.2 Optimal Instrumental Kernel

The mismatch between the instrumental distribution and the posterior distri-
bution observed in the previous example is the type of problem that one should
try to alleviate by a proper choice of the instrumental kernel. An interesting
choice to address this problem is the kernel

Tk(x, f) =
∫
f(x′) Q(x, dx′)gk+1(x′)∫

Q(x, dx′)gk+1(x′)
for x ∈ X, f ∈ Fb (X), (7.15)

which is just T u
k defined in (7.8) properly normalized to correspond to a

Markov transition kernel (that is, Tk(x, 1) = 1 for all x ∈ X). The kernel
Tk may be interpreted as a regular version of the conditional distribution
of the hidden state Xk+1 given Xk and the current observation Yk+1. In the
sequel, we will refer to this kernel as the optimal kernel, following the terminol-
ogy found in the sequential importance sampling literature. This terminology
dates back probably to Zaritskii et al. (1975) and Akashi and Kumamoto
(1977) and is largely adopted by authors such as Liu and Chen (1995), Chen
and Liu (2000), Doucet et al. (2000a), Doucet et al. (2001a) and Tanizaki
(2003). The word “optimal” is somewhat misleading, and we refer to Chap-
ter 9 for a more precise discussion of optimality of the instrumental distribu-
tion in the context of importance sampling (which generally has to be defined
for a specific choice of the function f of interest). The main property of Tk as
defined in (7.15) is that

dT u
k (x, ·)

dTk(x, ·) (x′) =
Lk

Lk+1
γk(x) ∝ γk(x) for (x, x′) ∈ X2, (7.16)

where γk(x) is the denominator of Tk in (7.15):

γk(x) def=
∫

Q(x, dx′)gk+1(x′) . (7.17)
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Equation (7.16) means that the incremental weight in (7.13) now depends
on the previous position of the particle only (and not on the new position
proposed at index k + 1). This is the exact opposite of the situation observed
previously for the prior kernel. The optimal kernel (7.15) is attractive because
it incorporates information both on the state dynamics and on the current
observation: the particles move “blindly” with the prior kernel, whereas they
tend to cluster into regions where the current local likelihood gk+1 is large
when using the optimal kernel. There are however two problems with using
Tk in practice. First, drawing from this kernel is usually not directly feasible.
Second, calculation of the incremental importance weight γk in (7.17) may
be analytically intractable. Of course, the optimal kernel takes a simple form
with easy simulation and explicit evaluation of (7.17) in the particular cases
discussed in Chapter 5. It turns out that it can also be evaluated for a slightly
larger class of non-linear Gaussian state-space models, as soon as the observa-
tion equation is linear (Zaritskii et al., 1975). Indeed, consider the state-space
model with non-linear state evolution equation

Xk+1 = A(Xk) + R(Xk)Uk , Uk ∼ N(0, I) , (7.18)
Yk = BXk + SVk , Vk ∼ N(0, I) , (7.19)

where A and R are matrix-valued functions of appropriate dimensions. By
application of Proposition 5.2.2, the conditional distribution of the state vector
Xk+1 given Xk = x and Yk+1 is multivariate Gaussian with mean mk+1(x)
and covariance matrix Σk+1(x), given by

Kk+1(x) = R(x)Rt(x)Bt
[
BR(x)Rt(x)Bt + SSt

]−1
,

mk+1(x) = A(x) + Kk+1(x) [Yk+1 −BA(x)] ,

Σk+1(x) = [I −Kk+1(x)B]R(x)Rt(x) .

Hence new particles ξi
k+1 need to be simulated from the distribution

N
(
mk+1(ξi

k), Σk+1(ξi
k)
)
, (7.20)

and the incremental weight for the optimal kernel is proportional to

γk(x) =
∫

q(x, x′)gk+1(x′) dx′ ∝

|Γk+1(x)|−1/2 exp
{
−1

2
[Yk+1 −BA(x)]t Γ−1

k+1(x) [Yk+1 −BA(x)]
}

where
Γk+1(x) = BR(x)Rt(x)Bt + SSt .

In other situations, sampling from the kernel Tk and/or computing the nor-
malizing constant γk is a difficult task. There is no general recipe to solve this
problem, but rather a set of possible solutions that should be considered.



222 7 Sequential Monte Carlo Methods

Example 7.2.4 (Noisy AR(1) Model, Continued). We consider the
noisy AR(1) model of Example 7.2.3 again using the optimal importance ker-
nel, which corresponds to the particular case where all variables are scalar and
A and R are constant in (7.18)–(7.19) above. Thus, the optimal instrumental
transition density is given by

tk(x, ·) = N
(

σ2
Uσ

2
V

σ2
U + σ2

V

{
φx

σ2
U

+
Yk

σ2
V

}
,

σ2
Uσ

2
V

σ2
U + σ2

V

)
and the incremental importance weights are proportional to

γk(x) ∝ exp
[
−1

2
(Yk − φx)2

σ2
U + σ2

V

]
.

Figure 7.4 is the exact analog of Figure 7.3, also obtained from 125 in-
dependent runs of the algorithm, for this new choice of instrumental kernel.
The figure shows that whereas the SIS estimate of posterior mean is still neg-
atively biased, the optimal kernel tends to reduce the bias compared to the
prior kernel. It also shows that as soon as N = 400, there are at least some
particles located around the true filtered mean of the state, which means that
the method should not get entirely lost as subsequent new observations arrive.

To illustrate the advantages of the optimal kernel with respect to the prior
kernel graphically, we consider the model (7.18)–(7.19) again with φ = 0.9,
σ2

u = 0.4, σ2
v = 0.6, and (0, 2.6, 0.6) as observed series (of length 3). The initial

distribution is a mixture 0.6 N(−1, 0.3) + 0.4 N(1, 0.4) of two Gaussians, for
which it is still possible to evaluate the exact filtering distributions as the
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Fig. 7.4. Box and whisker plot of the posterior mean estimate for X5 obtained from
125 replications of the SIS filter using the optimal kernel and increasing numbers of
particles. Same data and axes as Figure 7.3.
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FILT.

FILT. +1

FILT. +2

Fig. 7.5. SIS using the prior kernel. The positions of the particles are indicated by
circles whose radii are proportional to the normalized importance weights. The solid
lines show the filtering distributions for three consecutive time indices.

FILT.
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Fig. 7.6. SIS using the optimal kernel (same data and display as in Figure 7.5).
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mixture of two Kalman filters using, respectively, N(−1, 0.3) and N(1, 0.4) as
the initial distribution of X0. We use only seven particles to allow for an in-
terpretable graphical representation. Figures 7.5 and 7.6 show the positions of
the particles propagated using the prior kernel and the optimal kernel, respec-
tively. At time 1, there is a conflict between the prior and the posterior as the
observation does not agree with the particle approximation of the predictive
distribution. With the prior kernel (Figure 7.5), the mass becomes concen-
trated on a single particle with several particles lost out in the left tail of
the distribution with negligible weights. In contrast, in Figure 7.6 most of the
particles stay in high probability regions through the iterations with several
distinct particles having non-negligible weights. This is precisely because the
optimal kernel “pulls” particles toward regions where the current local likeli-
hood gk+1(x) = gk+1(x, Yk) is large, whereas the prior kernel does not. �

7.2.2.3 Accept-Reject Algorithm

Because drawing from the optimal kernel Tk is most often not feasible, a first
natural idea consists in trying the accept-reject method (Algorithm 6.2.1),
which is a versatile approach to sampling from general distributions. To sam-
ple from the optimal importance kernel Tk(x, ·) defined by (7.15), one needs
an instrumental kernel Rk(x, ·) from which it is easy to sample and such that
there exists M satisfying dQ(x,·)

dRk(x,·) (x
′)gk(x′) ≤ M (for all x ∈ X). Note that

because it is generally impossible to evaluate the normalizing constant γk of
Tk, we must resort here to the unnormalized version of the accept-reject algo-
rithm (see Remark 6.2.4). The algorithm consists in generating pairs (ξ, U) of
independent random variables with ξ ∼ Rk(x, ·) and U uniformly distributed
on [0, 1] and accepting ξ if

U ≤ 1
M

dQ(x, ·)
dRk(x, ·) (ξ)gk(ξ) .

Recall that the distribution of the number of simulations required is geometric
with parameter

p(x) =
∫
Q(x, dx′)gk(x′)

M
.

The strength of the accept-reject technique is that, using any instrumental
kernel Rk satisfying the domination condition, one can obtain independent
samples from the optimal importance kernel Tk. When the conditional like-
lihood of the observation gk(x)—viewed as a function of x—is bounded, one
can for example use the prior kernel Q as the instrumental distribution. In
that case

dTk(x, ·)
dQ(x, ·) (x′) =

gk(x′)∫
gk(u)Q(x, du)

≤ supx′∈X gk(x′)∫
gk(u)Q(x, du)

.
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The algorithm then consists in drawing ξ from the prior kernel Q(x, ·), U
uniformly on [0, 1] and accepting the draw if U ≤ gk(ξ)/ supx∈X gk(x). The
acceptance rate of this algorithm is then given by

p(x) =

∫
X Q(x, dx′)gk(x′)
supx′∈X gk(x′)

.

Unfortunately, it is not always possible to design an importance kernel Rk(x, ·)
that is easy to sample from, for which the bound M is indeed finite, and such
that the acceptance rate p(x) is reasonably large.

7.2.2.4 Local Approximation of the Optimal Importance Kernel

A different option consists in trying to approximate the optimal kernel Tk by a
simpler proposal kernel Rk that is handy for simulating. Ideally, Rk should be
such that Rk(x, ·) both has heavier tails than Tk(x, ·) and is close to Tk(x, ·)
around its modes, with the aim of keeping the ratio dTk(x,·)

dRk(x,·) (x
′) as small as

possible. To do so, authors such as Pitt and Shephard (1999) and Doucet
et al. (2000a) suggest to first locate the high-density regions of the optimal
distribution Tk(x, ·) and then use an over-dispersed (that is, with sufficiently
heavy tails) approximation of Tk(x, ·). The first part of this program mostly
applies to the case where the distribution Tk(x, ·) is known to be unimodal
with a mode that can be located in some way. The overall procedure will need
to be repeated N times with x corresponding in turn to each of the current
particles. Hence the method used to construct the approximation should be
reasonably simple if the potential advantages of using a “good” proposal kernel
are not to be offset by an unbearable increase in computational cost.

A first remark of interest is that there is a large class of state-space models
for which the distribution Tk(x, ·) can effectively be shown to be unimodal
using convexity arguments. In the remainder of this section, we assume that
X = R

d and that the hidden Markov model is fully dominated (in the sense
of Definition 2.2.3), denoting by q the transition density function associated
with the hidden chain. Recall that for a certain form of non-linear state-space
models given by (7.18)–(7.19), we were able to derive the optimal kernel and
its normalization constant explicitly. Now consider the case where the state
evolves according to (7.18), so that

q(x, x′) ∝ exp
[
−1

2
(x′ −A(x))t

{
R(c)Rt(x)

}−1 (x′ −A(x))
]
,

and g(x, y) is simply constrained to be a log-concave function of its x ar-
gument. This of course includes the linear Gaussian observation model con-
sidered previously in (7.19) but also many other cases like the non-linear
observation considered below in Example 7.2.5. Then the optimal transition
density tuk(x, x′) = (Lk+1/Lk)−1q(x, x′)gk(x′) is also a log-concave function of
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its x′ argument, as its logarithm is the sum of two concave functions (and a
constant term). This implies in particular that x′ 
→ tuk(x, x′) is unimodal and
that its mode may be located using computationally efficient techniques such
as Newton iterations.

The instrumental transition density function is usually chosen from a
parametric family {rθ}θ∈Θ of densities indexed by a finite-dimensional pa-
rameter θ. An obvious choice is the multivariate Gaussian distribution with
mean m and covariance matrix Γ , in which case θ = (µ, Γ ). A better choice
is a multivariate t-distribution with η-degrees of freedom, location m, and
scale matrix Γ . Recall that the density of this distribution is proportional to
rθ(x) ∝ [η+ (x−m)tΓ−1(x−m)](−η+d)/2. The choice η = 1 corresponds to a
Cauchy distribution. This is a conservative choice that ensures over-dispersion,
but if X is high-dimensional, most draws from a multivariate Cauchy might
be too far away from the mode to reasonably approximate the target distribu-
tion. In most situations, values such as η = 4 (three finite moments) are more
reasonable, especially if the underlying model does not feature heavy-tailed
distributions. Recall also that simulation from the multivariate t-distribution
with η degrees of freedom, location m, and scale Σ can easily be achieved
by first drawing from a multivariate Gaussian distribution with mean m and
covariance Γ and then dividing the outcome by the square root of an inde-
pendent chi-square draw with η degrees of freedom divided by η.

To chose the parameter θ of the instrumental distribution rθ, one should
try to minimize the supremum of the importance function,

min
θ∈Θ

sup
x′∈X

q(x, x′)gk(x′)
rθ(x′)

. (7.21)

This is a minimax guarantee by which θ is chosen to minimize an upper bound
on the importance weights. Note that if rθ was to be used for sampling from
tk(x, ·) by the accept-reject algorithm, the value of θ for which the minimum is
achieved in (7.21) is also the one that would make the acceptance probability
maximal (see Section 6.2.1). In practice, solving the optimization problem
in (7.21) is often too demanding, and a more generic strategy consists in
locating the mode of x′ 
→ tk(x, x′) by an iterative algorithm and evaluating
the Hessian of its logarithm at the mode. The parameter θ is then selected in
the following way.

Multivariate normal: fit the mean of the normal distribution to the mode
of tk(x, ·) and fit the covariance to minus the inverse of the Hessian of
log t(x, ·) at the mode.

Multivariate t-distribution: fit the location and scale parameters as the mean
and covariance parameters in the normal case; the number of degrees of
freedom is usually set arbitrarily (and independently of x) based on the
arguments discussed above.

We discuss below an important model for which this strategy is successful.
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Example 7.2.5 (Stochastic Volatility Model). We return to the stoch-
astic volatility model introduced as Example 1.3.13 and considered previously
in the context of MCMC methods as Example 6.2.16. From the state-space
equations that define the model,

Xk+1 = φXk + σUk ,

Yk = β exp(Xk/2)Vk ,

we directly obtain

q(x, x′) =
1√

2πσ2
exp

[
− (x′ − φx)2

2σ2

]
,

gk(x′) =
1√

2πβ2
exp

[
− Y 2

k

2β2 exp(−x′)− 1
2
x′
]
.

Simulating from the optimal transition kernel tk(x, x′) is difficult, but the
function x′ 
→ log(q(x, x′)gk(x′)) is indeed (strictly) concave. The mode mk(x)
of x′ 
→ tk(x, x′) is the unique solution of the non-linear equation

− 1
σ2 (x′ − φx) +

Y 2
k

2β2 exp(−x′)− 1
2

= 0 , (7.22)

which can be found using Newton iterations. Once at the mode, the (squared)
scale σ2

k(x) is set as minus the inverse of the second-order derivative of x′ 
→
(log q(x, x′)gk(x′)) evaluated at the mode mk(x). The result is

σ2
k(x) =

{
1
σ2 +

Y 2
k

2β2 exp [−mk(x)]
}−1

. (7.23)

In this example, a t-distribution with η = 5 degrees of freedom was used, with
location mk(x) and scale σk(x) obtained as above. The incremental impor-
tance weight is then given by

exp
[
− (x′−φx)2

2σ2 − Y 2
k

2β2 exp(−x′)− x′
2

]
{
η + [x′−mk(x)]2

σ2
k(x)

}−(η+1)/2 .

As in the case of Example 6.2.16, the first time index (k = 0) is particular,
and it is easily checked that m0(x) is the solution of

−1− φ2

σ2 x− 1
2

+
Y 2

0

2β2 exp(−x) = 0 ,

and σ0(x) is given by

σ2
0(x) =

[
1− φ2

σ2 +
Y 2

0

2β2 exp(−m0)
]−1

.
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Fig. 7.7. Waterfall representation of filtering distributions as estimated by SIS with
N = 1,000 particles (densities estimated with Epanechnikov kernel, bandwidth 0.2).
Data is the same as in Figure 6.8.

.

Figure 7.7 shows a typical example of the type of fit that can be obtained
for the stochastic volatility model with this strategy using 1,000 particles.
Note that although the data used is the same as in Figure 6.8, the estimated
distributions displayed in both figures are not directly comparable, as the
MCMC method in Figure 6.8 approximates the marginal smoothing distribu-
tion, whereas the sequential importance sampling approach used for Figure 7.7
provides a (recursive) approximation to the filtering distributions. �

When there is no easy way to implement the local linearization technique,
a natural idea explored by Doucet et al. (2000a) and Van der Merwe et al.
(2000) consists in using classical non-linear filtering procedures to approximate
tk. These include in particular the so-called extended Kalman filter (EKF),
which dates back to the 1970s (Anderson and Moore, 1979, Chapter 10), as
well as the unscented Kalman filter (UKF) introduced by Julier and Uhlmann
(1997)—see, for instance, Ristic et al. (2004, Chapter 2) for a recent review
of these techniques. We illustrate below the use of the extended Kalman filter
in the context of sequential importance sampling.

We now consider the most general form of the state-space model with
Gaussian noises:
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Xk+1 = a(Xk, Uk) , Uk ∼ N(0, I) , (7.24)
Yk = b(Xk, Vk) , Vk ∼ N(0, I) , (7.25)

where a, b are vector-valued measurable functions. It is assumed that {Uk}k≥0
and {Vk}k≥0 are independent white Gaussian noises. As usual, X0 is as-
sumed to be N(0, Σν) distributed and independent of {Uk} and {Vk}. The
extended Kalman filter proceeds by approximating the non-linear state-space
equations (7.24)–(7.25) by a non-linear Gaussian state-space model with linear
measurement equation. We are then back to a model of the form (7.18)–(7.19)
for which the optimal kernel may be determined exactly using Gaussian for-
mulas. We will adopt the approximation

Xk ≈ a(Xk−1, 0) + R(Xk−1)Uk−1 , (7.26)
Yk ≈ b [a(Xk−1, 0), 0] + B(Xk−1) [Xk − a(Xk−1, 0)] + S(Xk−1)Vk , (7.27)

where

• R(x) is the dx × du matrix of partial derivatives of a(x, u) with respect to
u and evaluated at (x, 0),

[R(x)]i,j
def=

∂ [a(x, 0)]i
∂uj

for i = 1, . . . , dx and j = 1, . . . , du ;

• B(x) and S(x) are the dy × dx and dy × dv matrices of partial derivatives
of b(x, v) with respect to x and v respectively and evaluated at (a(x, 0), 0),

[B(x)]i,j =
∂ {b [a(x, 0), 0]}i

∂xj
for i = 1, . . . , dy and j = 1, . . . , dx ,

[S(x)]i,j =
∂ {b [a(x, 0), 0]}i

∂vj
for i = 1, . . . , dy and j = 1, . . . , dv .

It should be stressed that the measurement equation in (7.27) differs
from (7.19) in that it depends both on the current state Xk and on the previ-
ous one Xk−1. The approximate model specified by (7.26)–(7.27) thus departs
from the HMM assumptions. On the other hand, when conditioning on the
value of Xk−1, the structure of both models, (7.18)–(7.19) and (7.26)–(7.27),
are exactly similar. Hence the posterior distribution of the state Xk given
Xk−1 = x and Yk is a Gaussian distribution with mean mk(x) and covariance
matrix Γk(x), which can be evaluated according to

Kk(x) = R(x)Rt(x)Bt(x)
[
B(x)R(x)Rt(x)Bt(x) + S(x)St(x)

]−1
,

mk(x) = a(x, 0) + Kk(x) {Yk − b [a(x, 0), 0]} ,

Γ (x) = [I −Kk(x)B(x)]R(x)Rt(x) .

The Gaussian distribution with mean mk(x) and covariance Γk(x) may then
be used as a proxy for the optimal transition kernel Tk(x, ·). To improve



230 7 Sequential Monte Carlo Methods

the robustness of the method, it is safe to increase the variance, that is, to
use cΓk(x) as the simulation variance, where c is a scalar larger than one. A
perhaps more recommendable option consists in using as previously a proposal
distribution with tails heavier than the Gaussian, for instance, a multivariate
t-distribution with location mk(x), scale Γk(x), and four or five degrees of
freedom.

Example 7.2.6 (Growth Model). We consider the univariate growth
model discussed by Kitagawa (1987) and Polson et al. (1992) given, in state-
space form, by

Xk = ak−1(Xk−1) + σuUk−1 , Uk ∼ N(0, 1) , (7.28)

Yk = bX2
k + σvVk , Vk ∼ N(0, 1) , (7.29)

where {Uk}k≥0 and {Vk}k≥0 are independent white Gaussian noise processes
and

ak−1(x) = α0x + α1
x

1 + x2 + α2 cos [1.2(k − 1)] (7.30)

with α0 = 0.5, α1 = 25, α2 = 8, b = 0.05, and σ2
v = 1 (the value of σ2

u will
be discussed below). The initial state is known deterministically and set to
X0 = 0.1. This model is non-linear both in the state and in the measurement
equation. Note that the form of the likelihood adds an interesting twist to the
problem: whenever Yk ≤ 0, the conditional likelihood function

gk(x) def= g(x;Yk) ∝ exp
[
− b2

2σ2
v

(
x2 − Yk/b

)2
]

is unimodal and symmetric about 0; when Yk > 0 however, the likelihood gk

is symmetric about 0 with two modes located at ±(Yk/b)1/2.
The EKF approximation to the optimal transition kernel is a Gaussian

distribution with mean mk(x) and variance Γk(x) given by

Kk(x) = 2σ2
ubak−1(x)

[
4σ2

ub
2f2

k−1(x) + σ2
v

]−1
,

mk(x) = ak−1(x) + Kk−1(x)
[
Yk − ba2

k−1(x)
]
,

Γk(x) =
σ2

vσ
2
u

4σ2
ub

2a2
k−1(x) + σ2

v

.

In Figure 7.8, the optimal kernel, the EKF approximation to the optimal
kernel, and the prior kernel for two different values of the state variance are
compared. This figure corresponds to the time index one, and Y1 is set to 6
(recall that the initial state X0 is equal to 0.1). In the case where σ2

u = 1 (left
plot in Figure 7.8), the prior distribution of the state, N(a0(X0), σ2

u), turns
out to be more informative (more peaky, less diffuse) than the conditional
likelihood g1. In other words, the observed Y1 does not carry a lot of informa-
tion about the state X1, compared to the information provided by X0; this
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Fig. 7.8. Log-density of the optimal kernel (solid line), EKF approximation of
the optimal kernel (dashed-dotted line), and the prior kernel (dashed line) for two
different values of the state noise variance σ2

u: left, σ2
u = 1; right, σ2

u = 10.

is because the measurement variance σ2
v is not small compared to σ2

u. The
optimal transition kernel, which does take Y1 into account, is then very close
to the prior kernel, and the differences between the three kernels are minor.
In such a situation, one should not expect much improvement with the EKF
approximation compared to the prior kernel.

In the case shown in the right plot of Figure 7.8 (σ2
u = 10), the situation is

reversed. Now σ2
v is relatively small compared to σ2

u, so that the information
about X1 contained in g1 is large to that provided by the prior information on
X0. This is the kind of situation where we expect the optimal kernel to improve
considerably on the prior kernel. Indeed, because Y1 > 0, the optimal kernel is
bimodal, with the second mode far smaller than the first one (recall that the
plots are on log-scale); the EKF kernel correctly picks the dominant mode.
Figure 7.8 also illustrates the fact that, in contrast to the prior kernel, the EKF
kernel does not necessarily dominate the optimal kernel in the tails; hence the
need to simulate from an over-dispersed version of the EKF approximation as
discussed above. �

7.3 Sequential Importance Sampling with Resampling

Despite quite successful results for short data records, as was observed in
Example 7.2.5, it turns out that the sequential importance sampling approach
discussed so far is bound to fail in the long run. We first substantiate this
claim with a simple illustrative example before examining solutions to this
shortcoming based on the concept of resampling introduced in Section 7.1.2.

7.3.1 Weight Degeneracy

The intuitive interpretation of the importance sampling weight ωi
k is as a mea-

sure of the adequacy of the simulated trajectory ξi
0:k to the target distribution
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φ0:k|n. A small importance weight implies that the trajectory is drawn far from
the main body of the posterior distribution φ0:k|n and will contribute only
moderately to the importance sampling estimates of the form (7.11). Indeed,
a particle such that the associated weight ωi

k is orders of magnitude smaller
than the sum

∑N
i=1 ω

i
k is practically ineffective. If there are too many inef-

fective particles, the particle approximation becomes both computationally
and statistically inefficient: most of the computing effort is put on updating
particles and weights that do not contribute significantly to the estimator;
the variance of the resulting estimator will not reflect the large number of
terms in the sum but only the small number of particles with non-negligible
normalized weights.

Unfortunately, the situation described above is the rule rather than the
exception, as the importance weights will (almost always) degenerate as the
time index k increases, with most of the normalized importance weights
ωi

k/
∑N

j=1 ω
j
k close to 0 except for a few ones. We consider below the case

of i.i.d. models for which it is possible to show using simple arguments that
the large sample variance of the importance sampling estimate can only in-
crease with the time index k.

Example 7.3.1 (Weight Degeneracy in the I.I.D. Case). The simplest
case of application of the sequential importance sampling technique is when µ
is a probability distribution on (X,X ) and the sequence of target distributions
corresponds to the product distributions, that is, the sequence of distributions
on (Xk+1,X⊗(k+1)) defined recursively by µ0 = µ and µk = µk−1 ⊗ µ, for
k ≥ 1. Let ν be another probability distribution on (X,X ) and assume that µ
is absolutely continuous with respect to ν and that∫ [

dµ

dν
(x)

]2

ν(dx) <∞ . (7.31)

Finally, let f be a bounded measurable function that is not (µ-a.s.) constant
such that its variance under µ, µ(f2)− µ2(f), is strictly positive.

Consider the sequential importance sampling estimate given by

µ̂IS
k,N (f) =

N∑
i=1

f(ξi
k)

∏k
l=0

dµ
dν (ξi

k)∑N
j=1

∏k
l=0

dµ
dν (ξj

k)
, (7.32)

where the random variables {ξj
l }, l = 1, . . . , k, j = 1, . . . , N are i.i.d. with com-

mon distribution ν. As discussed in Section 7.2, the unnormalized importance
weights may be computed recursively and hence (7.32) really corresponds to
an estimator of the form (7.11) in the particular case of a function fk that
depends on the last component only. This is of course a rather convoluted and
very inefficient way of constructing an estimate of µ(f) but still constitutes
a valid instance of the sequential importance sampling approach (in a very
particular case).
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Now let k be fixed and write

N1/2 {µ̂IS
k,N (f)− µ(f)

}
=

N−1/2 ∑N
i=1

∏k
l=0

{
f(ξi

k)− µ(f)
}

dµ
dν (ξi

l )

N−1
∑N

i=1
∏k

l=0
dµ
dν (ξi

l )
.

(7.33)
Because

E

[
k∏

l=0

dµ

dν
(ξi

l )

]
= 1 ,

the weak law of large numbers implies that the denominator of the right-hand
side of (7.33) converges to 1 in probability as N increases. Likewise, under
(7.31), the central limit theorem shows that the numerator of the right-hand
side of (7.33) converges in distribution to the normal N(0, σ2

k(f)) distribution,
where

σ2
k(f) = E

⎛⎝{
k∏

l=0

[
f(ξ1

k)− µ(f)
]2 dµ

dν
(ξ1

l )

}2⎞⎠ (7.34)

=

[∫ (
dµ

dν
(x)

)2

ν(dx)

]k ∫ [
dµ

dν
(x)

]2

[f(x)− µ(f)]2 ν(dx) .

Slutsky’s lemma then implies that (7.33) also converges in distribution to the
same N(0, σ2

k(f)) limit as N grows. Now Jensen’s inequality implies that

1 =
[∫

dµ

dν
(x)ν(dx)

]2

≤
∫ [

dµ

dν
(x)

]2

ν(dx) ,

with equality if and only if µ = ν. Therefore, if µ �= ν, the asymptotic variance
σ2

k(f) grows exponentially with the iteration index k for all functions f such
that∫ [

dµ

dν
(x)

]2

[f(x)− µ(f)]2 ν(dx) =
∫

dµ

dν
(x) [f(x)− µ(f)]2 µ(dx) �= 0 .

Because µ is absolutely continuous with respect to ν, µ{x ∈ X : dµ/dν(x) =
0} = 0 and the last integral is null if and only if f has zero variance under µ.

Thus in the i.i.d. case, the asymptotic variance of the importance sampling
estimate (7.32) increases exponentially with the time index k as soon as the
proposal and target differ (except for constant functions). �

It is more difficult to characterize the degeneracy of the weights for gen-
eral target and instrumental distributions. There have been some limited at-
tempts to study more formally this phenomenon in some specific scenarios.
In particular, Del Moral and Jacod (2001) have shown the degeneracy of the
sequential importance sampling estimator of the posterior mean in Gaussian
linear models when the instrumental kernel is the prior kernel. Such results
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are in general difficult to derive (even in the Gaussian linear models where
most of the derivations can be carried out explicitly) and do not provide much
additional insight. Needless to say, in practice, weight degeneracy is a preva-
lent and serious problem making the vanilla sequential importance sampling
method discussed so far almost useless. The degeneracy can occur after a very
limited number of iterations, as illustrated by the following example.
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Fig. 7.9. Histograms of the base 10 logarithm of the normalized importance weights
after (from top to bottom) 1, 10, and 100 iterations for the stochastic volatility
model of Example 7.2.5. Note that the vertical scale of the bottom panel has been
multiplied by 10.

Example 7.3.2 (Stochastic Volatility Model, Continued). Figure 7.9
displays the histogram of the base 10 logarithm of the normalized importance
weights after 1, 10, and 100 time indices for the stochastic volatility model
considered in Example 7.2.5 (using the same instrumental kernel). The num-
ber of particles is set to 1,000. Figure 7.9 shows that, despite the choice of
a reasonably good approximation to the optimal importance kernel, the nor-
malized importance weights quickly degenerate as the number of iterations of
the SIS algorithm increases. Clearly, the results displayed in Figure 7.7 still
are reasonable for k = 20 but would be disastrous for larger time horizons
such as k = 100. �
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Because the weight degeneracy phenomenon is so detrimental, it is of great
practical significance to set up tests that can detect this phenomenon. A simple
criterion is the coefficient of variation of the normalized weights used by Kong
et al. (1994), which is defined by

CVN =

⎡⎣ 1
N

N∑
i=1

(
N

ωi∑N
j=1 ω

j
− 1

)2
⎤⎦1/2

. (7.35)

The coefficient of variation is minimal when the normalized weights are all
equal to 1/N , and then CVN = 0. The maximal value of CVN is

√
N − 1,

which corresponds to one of the normalized weights being one and all others
being null. Therefore, the coefficient of variation is often interpreted as a
measure of the number of ineffective particles (those that do not significantly
contribute to the estimate). A related criterion with a simpler interpretation
is the so-called effective sample size Neff (Liu, 1996), defined as

Neff =

⎡⎣ N∑
i=1

(
ωi∑N

j=1 ω
j

)2
⎤⎦−1

, (7.36)

which varies between 1 (all weights null but one) and N (equal weights). It is
straightforward to verify the relation

Neff =
N

1 + CV2
N

.

Some additional insights and heuristics about the coefficient of variation are
given by Liu and Chen (1995).

Yet another possible measure of the weight imbalance is the Shannon en-
tropy of the importance weights,

Ent = −
N∑

i=1

ωi∑N
j=1 ω

j
log2

(
ωi∑N

j=1 ω
j

)
. (7.37)

When all the normalized importance weights are null except for one of them,
the entropy is null. On the contrary, if all the weights are equal to 1/N , then
the entropy is maximal and equal to log2N .

Example 7.3.3 (Stochastic Volatility Model, Continued). Figure 7.10
displays the coefficient of variation (left) and Shannon entropy (right) as a
function of the time index k under the same conditions as for Figure 7.9,
that is, for the stochastic volatility model of 7.2.5. The figure shows that the
distribution of the weights steadily degenerates: the coefficient of variation
increases and the entropy of the importance weights decreases. After 100 iter-
ations, there are less than 50 particles (out 1,000) significantly contributing to
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Fig. 7.10. Coefficient of variation (left) and entropy of the normalized importance
weights as a function of the number of iterations for the stochastic volatility model
of Example 7.2.5. Same model and data as in Figure 7.9.

the importance sampling estimator. Most particles have importance weights
that are zero to machine precision, which is of course a tremendous waste in
computational resource.

�

7.3.2 Resampling

The solution proposed by Gordon et al. (1993) to reduce the degeneracy of the
importance weights is based on the concept of resampling already discussed in
the context of importance sampling in Section 7.1.2. The basic method con-
sists in resampling in the current population of particles using the normalized
weights as probabilities of selection. Thus, trajectories with small importance
weights are eliminated, whereas those with large importance weights are du-
plicated. After resampling, all importance weights are reset to one. Up to the
first instant when resampling occurs, the method can really be interpreted
as an instance of the sampling importance resampling (SIR) technique dis-
cussed in Section 7.1.2. In the context of sequential Monte Carlo, however,
the main motivation for resampling is to avoid future weight degeneracy by
reseting (periodically) the weights to equal values. The resampling step has
a drawback however: as emphasized in Section 7.1.2, resampling introduces
additional variance in Monte Carlo approximations. In some situations, the
additional variance may be far from negligible: when the importance weights
already are nearly equal for instance, resampling can only reduce the number
of distinct particles, thus degrading the accuracy of the Monte Carlo approx-
imation. The one-step effect of resampling is thus negative but, in the long
term, resampling is required to guarantee a stable behavior of the algorithm.
This interpretation suggests that it may be advantageous to restrict the use of
resampling to cases where the importance weights are becoming very uneven.
The criteria defined in (7.35), (7.36), or (7.37) are of course helpful for that
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purpose. The resulting algorithm, which is generally known under the name of
sequential importance sampling with resampling (SISR), is summarized below.

Algorithm 7.3.4 (SISR: Sequential Importance Sampling with Re-
sampling). Initialize the particles as in Algorithm 7.2.2, optionally applying the
resampling step below. For subsequent time indices k ≥ 0, do the following.

Sampling:
• Draw (ξ̃1

k+1, . . . , ξ̃
N
k+1) conditionally independently given {ξj

0:k , j =
1, . . . , N} from the instrumental kernel: ξ̃i

k+1 ∼ Rk(ξi
k, ·), i = 1, . . . , N .

• Compute the updated importance weights

ωi
k+1 = ωi

kgk+1(ξ̃i
k+1)

dQ(ξi
k, ·)

dRk(ξi
k, ·)

(ξ̃i
k+1) , i = 1, . . . , N .

Resampling (Optional):
• Draw, conditionally independently given {(ξi

0:k, ξ̃
j
k+1), i, j = 1, . . . , N},

the multinomial trial (I1
k+1, . . . I

N
k+1) with probabilities of success

ω1
k+1∑N

j ωj
k+1

, . . . ,
ωN

k+1∑N
j ωj

k+1

.

• Reset the importance weights ωi
k+1 to a constant value for i = 1, . . . , N .

If resampling is not applied, set for i = 1, . . . , N , Ii
k+1 = i.

Trajectory update: for i = 1, . . . , N ,

ξi
0:k+1 =

(
ξ

Ii
k+1

0:k , ξ̃
Ii

k+1
k+1

)
. (7.38)

As discussed previously the resampling step in the algorithm above may
be used systematically (for all indices k), but it is often preferable to perform
resampling from time to time only. Usually, resampling is either used system-
atically but at a lower rate (for one index out of m, where m is fixed) or at
random instants based on the values of the coefficient of variation or the en-
tropy criteria defined in (7.35) and (7.37), respectively. Note that in addition
to arguments based on the variance of the Monte Carlo approximation, there
is usually also a computational incentive for limiting the use of resampling;
indeed, except in models where the evaluation of the incremental weights is
costly (think of large-dimensional multivariate observations for instance), the
computational cost of the resampling step is not negligible. Both Sections 7.4.1
and 7.4.2 discuss several implementations and variants of the resampling step
that may render the latter argument less pregnant.

The term particle filter is often used to refer to Algorithm 7.3.4 although
the terminology SISR is preferable, as particle filtering is sometimes also used
more generically for any sequential Monte Carlo method. Gordon et al. (1993)
actually proposed a specific instance of Algorithm 7.3.4 in which resampling
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is done systematically at each step and the instrumental kernel is chosen as
the prior kernel Rk = Q. This particular algorithm, commonly known as the
bootstrap filter , is most often very easy to implement because it only involves
simulating from the transition kernel Q of the hidden chain and evaluation of
the conditional likelihood function g.

There is of course a whole range of variants and refinements of Algo-
rithm 7.3.4, many of which will be covered in some detail in the next chapter.
A simple remark though is that, as in the case of the simplest SIR method
discussed in Section 7.1.2, it is possible to resample N times from a larger pop-
ulation of M intermediate samples. In practice, it means that Algorithm 7.3.4
should be modified as follows at indices k for which resampling is to be applied.

SIS: For i = 1, . . . , N , draw α candidates ξ̃i,1
k+1, . . . , ξ̃

i,α
k+1 from each proposal

distribution Rk(ξi
k, ·).

Resampling: Draw (N1,1
k+1, . . . , N1,α

k+1, . . . , NN,1
k+1, . . . , NN,α

k+1 ) from the multi-
nomial distribution with parameter N and probabilities

ωi,j
k+1∑N

l=1
∑α

m=1 ω
l,m
k+1

for i = 1, . . . , N , j = 1, . . . , α .

Hence, while this form of resampling keeps the number of particles fixed and
equal to N after resampling, the intermediate population (before resampling)
has size M = α × N . Although obviously heavier to implement, the use of
α larger than one may be advantageous in some models. In particular, we
will show in Chapter 9 that using α larger than one effectively reduces the
variance associated with the resampling operation in a proportion that may
be significant.

Remark 7.3.5 (Marginal Interpretation of SIS and SISR). Both Al-
gorithms 7.2.2 and 7.3.4 have been introduced as methods to simulate whole
trajectories {ξi

0:k}1≤i≤N that approximate the joint smoothing distribution
φ0:k|k. This was done quite easily in the case of sequential importance sam-
pling (Algorithm 7.2.2), as the trajectories are simply extended independently
of one another as new samples arrive. When using resampling however, the
process is more involved because it becomes necessary to duplicate or discard
some trajectories according to (7.38).

This presentation of the SIS and SISR methods has been adopted because
it is the most natural way to introduce sequential Monte Carlo methods.
It does not mean that, when implementing the SISR algorithm, storing the
whole trajectories is required. Neither do we claim that for large k, the ap-
proximation of the complete joint distribution φ0:k|k provided by the particle
trajectories {ξi

0:k}1≤i≤N is accurate (this point will be discussed in detail in
Section 8.3). Most often, Algorithm 7.3.4 is implemented storing only the
current generation of particles {ξi

k}1≤i≤N , and (7.38) simplifies to

ξi
k+1 = ξ̃

Ii
k+1

k+1 i = 1, . . . , N .
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In that case, the system of particles {ξik}1≤i≤N with associated weights
{ωi

k}1≤i≤N , provides an approximation to the filtering distribution φk, which
is the marginal of the joint smoothing distribution φ0:k|k.

The notation ξik could be ambiguous when resampling is applied, as the
first k+1 elements of the ith trajectory ξi0:k+1 at time k+1 do not necessarily
coincide with the ith trajectory ξi0:k at time k. By convention, ξik always refers
to the last point in the ith trajectory, as simulated at index k. Likewise, ξil:k
is the portion of the same trajectory that starts at index l and ends at the
last index (that is, k). When needed, we will use the notation ξi0:k(l) for the
element of index l in the ith particle trajectory at time k to avoid ambiguity.

�

To conclude this section on the SISR algorithm, we briefly revisit two of
the examples already considered previously to contrast the results obtained
with the SIS and SISR approaches.

Example 7.3.6 (Stochastic Volatility Model, Continued). To illus-
trate the effectiveness of the resampling strategy, we consider once again the
stochastic volatility model introduced in Example 7.2.5, for which the weight
degeneracy phenomenon (in the basic SIS approach) was patent in Figures 7.9
and 7.10.

Figures 7.11 and 7.12 are the counterparts of Figs. 7.10 and 7.9, respec-
tively, when resampling is applied whenever the coefficient of variation (7.35)
of the normalized weights exceeds one. Note that Figure 7.11 displays the
coefficient of variation and Shannon entropy computed, for each index k, be-
fore resampling, at indices for which resampling do occur. Contrary to what
happened in plain importance sampling, the histograms of the normalized im-
portance weights shown in Figure 7.12 are remarkably similar, showing that
the weight degeneracy phenomenon is now under control. Another important
remark in this example is that both criteria (the coefficient of variation and
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Fig. 7.11. Coefficient of variation (left) and entropy of the normalized importance
weights as a function of the number of iterations in the stochastic volatility model
of Example 7.2.5. Same model and data as in Figure 7.10. Resampling occurs when
the coefficient of variation gets larger than 1.



240 7 Sequential Monte Carlo Methods

−25 −20 −15 −10 −5 0
0

500

1000

−25 −20 −15 −10 −5 0
0

500

1000

−25 −20 −15 −10 −5 0
0

500

1000

Importance Weights (base 10 logarithm)

Fig. 7.12. Histograms of the base 10 logarithm of the normalized importance
weights after (from top to bottom) 1, 10, and 100 iterations in the stochastic volatil-
ity model of Example 7.2.5. Same model and data as in Figure 7.9. Resampling
occurs when the coefficient of variation gets larger than 1.

entropy) are strongly correlated. Triggering resampling whenever the entropy
gets below, say 9.2, would thus be nearly equivalent with resampling occurring,
on average, once every tenth time indices. The Shannon entropy of the nor-
malized importance weights evolves between 10 and 9, suggesting that there
are at least 500 particles that are significantly contributing to the importance
sampling estimate (out of 1,000). �

Example 7.3.7 (Growth Model, Continued). Consider again the non-
linear state-space model of Example 7.2.6, with the variance σ2

u of the state
noise set to 10; this makes the observations very informative relative to the
prior distribution on the hidden states. Figures 7.13 and 7.14 display the
filtering distributions estimated for the first 31 time indices when using the
SIS method with the prior kernel Q as instrumental kernel (Figure 7.13), and
the corresponding SISR algorithm with systematic resampling—that is, the
bootstrap filter—in Figure 7.14. Both algorithms use 500 particles.

For each time index, the top plots of Figures 7.13 and 7.14 show the high-
est posterior density (HPD) regions corresponding to the estimated filtering
distribution, where the lighter grey zone contains 95% of the probability mass
and the darker area corresponds to 50% of the probability mass. These HPD
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Fig. 7.13. SIS estimates of the filtering distributions in the growth model with
instrumental kernel being the prior one and 500 particles. Top: true state sequence
(×) and 95%/50% HPD regions (light/dark grey) of estimated filtered distribution.
Bottom: coefficient of variation of the normalized importance weights.
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Fig. 7.14. Same legend for Figure 7.13, but with results for the corresponding
bootstrap filter.
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regions are based on a kernel density estimate (using the Epanechnikov kernel
with bandwidth 0.2) computed from the weighted particles (that is, before
resampling in the case of the bootstrap filter). Up to k = 8, the two meth-
ods yield very similar results. With the SIS algorithm however, the bottom
panel of Figure 7.13 shows that the weights degenerate quickly. Remember
that the maximal value of the coefficient of variation (7.35) is

√
N − 1, that

is about 22.3 in the case of Figure 7.13. Hence for k = 6 and for all indices
after k = 12, the bottom panel of Figure 7.13 indeed means that almost all
normalized weights but one are null: the filtered estimate is concentrated at
one point, which sometimes severely departs from the actual state trajectory
shown by the crosses. In contrast, the bootstrap filter (Figure 7.14) appears
to be very stable and provides reasonable state estimates even at indices for
which the filtering distribution is strongly bimodal (see Example 7.2.6 for an
explanation of this latter feature). �

7.4 Complements

As discussed above, resampling is a key ingredient of the success of sequential
Monte Carlo techniques. We discuss below two separate aspects related to this
issue. First, we show that there are several schemes based on clever probabilis-
tic results that may be exploited to reduce the computational load associated
with multinomial resampling. Next, we examine some variants of resampling
that achieves lower conditional variance than multinomial resampling. In this
latter case, the aim is of course to be able to decrease the number of particles
without losing too much on the quality of the approximation.

Throughout this section, we will assume that it is required to draw N
samples ξ1, . . . , ξN out of a, usually larger, set {ξ̃1, . . . , ξ̃M} according to the
normalized importance weights {ω1, . . . , ωM}. We denote by G a σ-field such
that both ω1, . . . , ωM and ξ̃1, . . . , ξ̃M are G-measurable.

7.4.1 Implementation of Multinomial Resampling

Drawing from the multinomial distribution is equivalent to drawing N random
indices I1, . . . , IN conditionally independently given G from the set {1, . . . ,M}
and such that P(Ij = i | G) = ωi. This is of course the simplest example of use
of the inversion method, and each index may be obtained by first simulating
a random variable U with uniform distribution on [0, 1] and then determining
the index I such that U ∈ (

∑I−1
j=1 ω

j ,
∑I

j=1 ω
j ] (see Figure 7.15). Determining

the appropriate index I thus requires on the average log2M comparisons (us-
ing a simple binary tree search). Therefore, the naive technique to implement
multinomial resampling requires the simulation of N independent uniform
random variables and, on the average, of the order N log2M comparisons.
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Fig. 7.15. Multinomial sampling from uniform distribution by the inversion method.

A nice solution to avoid the repeated sorting operations consists in pre-
sorting the uniform variables. Because the resampling is to be repeated
N times, we need N uniform random variables, which will be denoted by
U1, . . . , UN and U(1) ≤ U(2) ≤ · · · ≤ U(N) denoting the associated order
statistics. It is easily checked that applying the inversion method from the
ordered uniforms {U(i)} requires, in the worst case, only M comparisons. The
problem is that determining the order statistics from the unordered uniforms
{Ui} by sorting algorithms such as Heapsort or Quicksort is an operation that
requires, at best, of the order N log2N comparisons (Press et al., 1992, Chap-
ter 8). Hence, except in cases where N � M , we have not gained anything
yet by pre-sorting the uniform variables prior to using the inversion method.
It turns out however that two distinct algorithms are available to sample di-
rectly the ordered uniforms {U(i)} with a number of operations that scales
linearly with N .

Both of these methods are fully covered in by Devroye (1986, Chapter 5),
and we only cite here the appropriate results, referring to Devroye (1986,
pp. 207–215) for proofs and further references on the methods.

Proposition 7.4.1 (Uniform Spacings). Let U(1) ≤ . . . ≤ U(N) be the
order statistics associated with an i.i.d. sample from the U ([0, 1]) distribution.
Then the increments

Si = U(i) − U(i−1) , i = 1, . . . , N , (7.39)

(where by convention S1 = U(1)) are called the uniform spacings and dis-
tributed as

E1∑N+1
i=1 Ei

, . . . ,
EN∑N+1
i=1 Ei

,

where E1, . . . , EN+1 is a sequence of i.i.d. exponential random variables.

Proposition 7.4.2 (Malmquist, 1950). Let U(1) ≤ . . . ≤ U(N) be the order
statistics of U1, U2, . . . , UN—a sequence of i.i.d. uniform [0, 1] random vari-
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ables. Then U
1/N
N , U

1/N
N U

1/(N−1)
N−1 , . . . , U

1/N
N U

1/(N−1)
N−1 · · ·U1/1

1 is distributed
as U(N), . . . , U(1).

The two sampling algorithms associated with these probabilistic results
may be summarized as follows.

Algorithm 7.4.3 (After Proposition 7.4.1).

For i = 1, . . . , N + 1: Simulate Ui ∼ U ([0, 1]) and set Ei = − logUi.
Set G =

∑N+1
i=1 Ei and U(1) = E1/G.

For i = 2, . . . , n: U(i) = U(i−1) + Ei/G.

Algorithm 7.4.4 (After Proposition 7.4.2).

Generate VN ∼ U ([0, 1]) and set U(N) = V
1/N
N .

For i = N − 1 down to 1: Generate Vi ∼ U ([0, 1]) and set U(i) = V
1/i
i U(i+1).

Note that Devroye (1986) also discusses a third, slightly more complicated
algorithm—the bucket sort method of Devroye and Klincsek (1981)—which
also has an expected computation time of order N . Using any of these meth-
ods, the computational cost of multinomial resampling scales only linearly in
N and M , which makes the method practicable even when a large number of
particles is used.

7.4.2 Alternatives to Multinomial Resampling

Instead of using the multinomial sampling scheme, it is also possible to use a
different resampling (or reallocation) scheme. For i = 1, . . . ,M , denote by N i

the number of times the ith element ξ̃i is selected. A resampling scheme will
be said to be unbiased with respect to G if

M∑
i=1

N i = N , (7.40)

E
[
N i

∣∣G] = Nωi, i = 1, . . . ,M . (7.41)

We focus here on resampling techniques that keep the number of particles
constant (see for instance Crisan et al., 1999, for unbiased sampling with a
random number of particles). There are many different conditions under which
a resampling scheme is unbiased. The simplest unbiased scheme is multinomial
resampling, for which (N1, . . . , NM ), conditionally on G, has the multinomi-
mal distribution Mult(N,ω1, . . . , ωN ). Because I1, . . . , IM are conditionally
i.i.d. given G, it is easy to evaluate the conditional variance in the multino-
mial resampling scheme:
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Var

[
1
N

N∑
i=1

f(ξ̃Ii

)

∣∣∣∣∣G
]

=
1
N

M∑
i=1

ωi

⎡⎣f(ξ̃i)−
M∑

j=1

ωjf(ξ̃j)

⎤⎦2

=
1
N

⎧⎨⎩
M∑
i=1

ωif2(ξ̃i)−
[

M∑
i=1

ωif(ξ̃i)

]2
⎫⎬⎭ . (7.42)

A sensible objective is to try to construct resampling schemes for which the
conditional variance Var(

∑N
i=1

Ni

N f(ξ̃i) | G) is as small as possible and, in par-
ticular, smaller than (7.42), preferably for any choice of the function f .

7.4.2.1 Residual Resampling

Residual resampling, or remainder resampling, is mentioned by Whitley (1994)
(see also Liu and Chen, 1998) as a simple means to decrease the variance
incurred by the sampling step. In this scheme, for i = 1, . . . ,M we set

N i =
⌊
Nωi

⌋
+ N̄ i , (7.43)

where N̄1, . . . , N̄M are distributed, conditionally on G, according to the multi-
nomial distribution Mult(N −R, ω̄1, . . . , ω̄N ) with R =

∑M
i=1�Nωi� and

ω̄i =
Nωi − �Nωi�

N −R
, i = 1, . . . ,M . (7.44)

This scheme is obviously unbiased with respect to G. Equivalently, for any
measurable function f , the residual sampling estimator is

1
N

N∑
i=1

f(ξi) =
M∑
i=1

�Nωi�
N

f(ξ̃i) +
1
N

N−R∑
i=1

f(ξ̃Ji

) , (7.45)

where J1, . . . , JN−R are conditionally independent given G with distribution
P(J i = k | G) = ω̄k for i = 1, . . . , N−R and k = 1, . . . ,M . Because the residual
resampling estimator is the sum of one term that, given G, is deterministic
and one term that involves conditionally i.i.d. labels, the variance of residual
resampling is given by

1
N2 Var

[
N−R∑
i=1

f(ξ̃Ji

)

∣∣∣∣∣G
]

=
N −R

N2 Var
[
f(ξ̃J1

)
∣∣∣G] (7.46)

=
(N −R)

N2

M∑
i=1

ω̄i

⎧⎨⎩f(ξ̃i)−
M∑

j=1

ω̄jf(ξ̃j)

⎫⎬⎭
2

=
1
N

M∑
i=1

ωif2(ξ̃i)−
M∑
i=1

�Nωi�
N2 f2(ξ̃i)− N −R

N2

{
M∑
i=1

ω̄if(ξ̃i)

}2

.
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Residual sampling dominates multinomial sampling also in the sense of having
smaller conditional variance. Indeed, first write

M∑
i=1

ωif(ξ̃i) =
M∑
i=1

�Nωi�
N

f(ξ̃i) +
N −R

N

M∑
i=1

ω̄if(ξ̃i) .

Then note that the sum of the M numbers �Nωi�/N plus (N −R)/N equals
one, whence this sequence of M + 1 numbers can be viewed as a probability
distribution. Thus Jensen’s inequality applied to the square of the right-hand
side of the above display yields{

M∑
i=1

ωif(ξ̃i)

}2

≤
M∑
i=1

�Nωi�
N

f2(ξ̃i) +
N −R

N

{
M∑
i=1

ω̄if(ξ̃i)

}2

.

Combining with (7.46) and (7.42), this shows that the conditional variance of
residual sampling is always smaller than that of multinomial sampling.

7.4.2.2 Stratified Resampling

The inversion method for sampling a multinomial sequence of trials maps
uniform (0, 1) random variables U1, . . . , UN into indices I1, . . . , IN through a
deterministic function. For any function f ,

N∑
i=1

f(ξ̃Ii

) =
N∑

i=1

Φf (U i) ,

where the function Φf (which depends on both f and {ξ̃i}) is defined, for any
u ∈ (0, 1], by

Φf (u) def= f(ξ̃I(u)), I(u) =
M∑
i=1

i1(
∑i−1

j=1 ωj ,
∑i

j=1 ωj ](u) . (7.47)

Note that, by construction,
∫ 1
0 Φf (u) du =

∑M
i=1 ω

if(ξ̃i). To reduce the con-
ditional variance of

∑N
i=1 f(ξ̃Ii

), we may change the way in which the sample
U1, . . . , UN is drawn. A possible solution, commonly used in survey sampling,
is based on stratification (see Kitagawa, 1996, and Fearnhead, 1998, Section
5.3, for discussion of the method in the context of particle filtering). The
interval (0, 1] is partitioned into different strata, assumed for simplicity to
be intervals (0, 1] = (0, 1/N ] ∪ (1/N, 2/N ] ∪ · · · ∪ ({N − 1}/N, 1]. More gen-
eral partitions could have been considered as well; in particular, the number
of partitions does not have to equal N , and the interval lengths could be
made dependent on the ωi. One then draws a sample Ũ1, . . . , ŨN condition-
ally independently given G from the distribution Ũ i ∼ U (({i− 1} /N, i/N ])
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Fig. 7.16. Stratified sampling: the interval (0, 1] is divided into N intervals ((i −
1)/N, i/N ]. One sample is drawn uniformly from each interval, independently of
samples drawn in the other intervals.

(for i = 1, . . . , N) and let Ĩi = I(Ũ i) with I as in (7.47) (see Figure 7.16).
By construction, the difference between Ñ i =

∑N
j=1 1{Ĩj=i} and the target

(non-integer) value Nωi is less than one in absolute value. It also follows that

E

[
N∑

i=1

f(ξ̃Ĩi

)

∣∣∣∣∣G
]

= E

[
N∑

i=1

Φf (Ũ i)

∣∣∣∣∣G
]

= N

N∑
i=1

∫ i/N

(i−1)/N

Φf (u) du = N

∫ 1

0
Φf (u) du = N

M∑
i=1

ωif(ξ̃i) ,

showing that the stratified sampling scheme is unbiased. Because Ũ1, . . . , ŨN

are conditionally independent given G,

Var

[
1
N

N∑
i=1

f(ξ̃Ĩi

)

∣∣∣∣∣G
]

= Var

[
1
N

N∑
i=1

Φf (Ũ i)

∣∣∣∣∣G
]

=
1
N2

N∑
i=1

Var
[
Φf (Ũ i)

∣∣∣G]

=
1
N

M∑
i=1

ωif2(ξ̃i)− 1
N

N∑
i=1

[
N

∫ i/N

(i−1)/N

Φf (u)du

]2

;

here we used that
∫ 1
0 Φ2

f (u) du =
∫ 1
0 Φf2(u) du =

∑M
i=1 ω

if2(ξ̃i). By Jensen’s
inequality,

1
N

N∑
i=1

[
N

∫ i/N

(i−1)/N

Φf (u)du

]2

≥
[

N∑
i=1

∫ i/N

(i−1)/N

Φf (u)du

]2

=

[
M∑
i=1

ωif(ξ̃i)

]2

,
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showing that the conditional variance of stratified sampling is always smaller
than that of multinomial sampling.

Remark 7.4.5. Note that stratified sampling may be coupled with the resid-
ual sampling method discussed previously: the proof above shows that using
stratified sampling on the R residual indices that are effectively drawn ran-
domly can only decrease the conditional variance. �

7.4.2.3 Systematic Resampling

Stratified sampling aims at reducing the discrepancy

D�
N (U1, . . . , UN ) def= sup

a∈(0,1]

∣∣∣∣∣ 1
N

N∑
i=1

1(0,a](U i)− a

∣∣∣∣∣
of the sample U from the uniform distribution function on (0, 1]. This is simply
the Kolmogorov-Smirnov distance between the empirical distribution function
of the sample and the distribution function of the uniform distribution. The
Koksma-Hlawka inequality (Niederreiter, 1992) shows that for any function f
having bounded variation on [0, 1],∣∣∣∣∣ 1

N

N∑
i=1

f(ui)−
∫ 1

0
f(u) du

∣∣∣∣∣ ≤ C(f)D�
N (u1, . . . , uN ) ,

where C(f) is the variation of f . This inequality suggests that it is desirable
to design random sequences U1, . . . , UN whose expected discrepancy is as low
as possible. This provides another explanation of the improvement brought
by stratified resampling (compared to multinomial resampling).

1

1 2 43 65
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ω1 + ω2
ω1 + ω2 + ω3

0

Fig. 7.17. Systematic sampling: the unit interval is divided into N intervals
((i − 1)/N, i/N ] and one sample is drawn from each of them. Contrary to strati-
fied sampling, each sample has the same relative position within its stratum.
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Pursuing in this direction, it makes sense to look for sequences with even
smaller average discrepancy. One such sequence is U i = U + (i− 1)/N , where
U is drawn from a uniform U((0, 1/N ]) distribution. In survey sampling, this
method is known as systematic sampling. It was introduced in the particle
filter literature by Carpenter et al. (1999) but is mentioned by Whitley (1994)
under the name of universal sampling. The interval (0, 1] is still divided into
N sub-intervals ({i− 1}/N, i/N ] and one sample is taken from each of them,
as in stratified sampling. However, the samples are no longer independent, as
they have the same relative position within each stratum (see Figure 7.17).
This sampling scheme is obviously still unbiased. Because the samples are not
taken independently across strata, it is however not possible to obtain simple
formulas for the conditional variance (Künsch, 2003). It is often conjectured
that the conditional variance of systematic resampling is always lower than
that of multinomial resampling. This is not correct, as demonstrated by the
following example.

Example 7.4.6. Consider the case where the initial population of particles
{ξ̃i}1≤i≤N is composed of the interleaved repetition of only two distinct values
x0 and x1, with identical multiplicities (assuming N to be even). In other
words,

{ξ̃i}1≤i≤N = {x0, x1, x0, x1, . . . , x0, x1} .
We denote by 2ω/N the common value of the normalized weight ωi associated
to the N/2 particles ξ̃i that satisfy ξ̃i = x1, so that the remaining ones (which
are such that ξ̃i = x0) share a common weight of 2(1 − ω)/N . Without loss
of generality, we assume that 1/2 ≤ ω < 1 and that the function of interest f
is such that f(x0) = 0 and f(x1) = F .

Under multinomial resampling, (7.42) shows that the conditional variance
of the estimate N−1 ∑N

i=1 f(ξi) is given by

Var

[
1
N

N∑
i=1

f(ξi
mult)

∣∣∣∣∣G
]

=
1
N

(1− ω)ωF 2 . (7.48)

Because the value 2ω/N is assumed to be larger than 1/N , it is easily
checked that systematic resampling deterministically sets N/2 of the ξi to be
equal to x1. Depending on the draw of the initial shift, all the N/2 remaining
particles are either set to x1, with probability 2ω−1, or to x0, with probability
2(1−ω). Hence the variance is that of a single Bernoulli draw scaled by N/2,
that is,

Var

[
1
N

N∑
i=1

f(ξi
syst)

∣∣∣∣∣G
]

= (ω − 1/2)(1− ω)F 2 .

Note that in this case, the conditional variance of systematic resampling is not
only larger than (7.48) for most values of ω (except when ω is very close to
1/2), but it does not even decrease to zero as N grows! Clearly, this observa-
tion is very dependent on the order in which the initial population of particles
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ω 0.51 0.55 0.6 0.65 0.70 0.75
Multinomial 0.050 0.049 0.049 0.048 0.046 0.043
Residual, stratified 0.010 0.021 0.028 0.032 0.035 0.035
Systematic 0.070 0.150 0.200 0.229 0.245 0.250
Systematic with prior random shuffling 0.023 0.030 0.029 0.029 0.028 0.025

Table 7.1. Standard deviations of various resampling methods for N = 100 and
F = 1. The bottom line has been obtained by simulations, averaging 100,000 Monte
Carlo replications.

is presented. Interestingly, this feature is common to the systematic and strat-
ified sampling schemes, whereas the multinomial and residual approaches are
unaffected by the order in which the particles are labelled. In this particular
example, it is straightforward to verify that residual and stratified resampling
are equivalent—which is not the case in general—and amount to determinis-
tically setting N/2 particles to the value x1, whereas the N/2 remaining ones
are drawn by N/2 conditionally independent Bernoulli trials with probability
of picking x1 equal to 2ω − 1. Hence the conditional variance, for both the
residual and stratified schemes, is equal to N−1(2ω− 1)(1−ω)F 2. It is hence
always smaller than (7.48), as expected from the general study of these two
methods.

Once again, the failure of systematic resampling in this example is en-
tirely due to the specific order in which the particles are labelled: it is easy
to verify, at least empirically, that the problem vanishes upon randomly per-
muting the initial particles before applying systematic resampling. Table 7.1
also shows that a common feature of both the residual, stratified, and sys-
tematic resampling procedures is to become very efficient in some particular
configurations of the weights such as when ω = 0.51 for which the probabili-
ties of selecting the two types of particles are almost equal and the selection
becomes quasi-deterministic. Note also that prior random shuffling does some-
what compromise this ability in the case of systematic resampling. �

In practical applications of sequential Monte Carlo methods, residual,
stratified, and systematic resampling are generally found to provide compa-
rable results. Despite the lack of complete theoretical analysis of its behavior,
systematic resampling is often preferred because it is the simplest method
to implement. Note that there are specific situations, to be discussed in Sec-
tion 8.2, where more subtle forms of resampling (which do not necessarily
bring back all the weights to equal values) are advisable.
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Advanced Topics in Sequential Monte Carlo

This chapter deals with three disconnected topics that correspond to variants
and extensions of the sequential Monte Carlo framework introduced in the
previous chapter. Remember that we have already examined in Section 7.2
a first and very important degree of freedom in the application of sequential
Monte Carlo methods, namely the choice of the instrumental kernel Rk used
to simulate the trajectories of the particles. We now consider solutions that
depart, more or less significantly, from the sequential importance sampling
with resampling (SISR) method of Algorithm 7.3.4.

The first section covers a far-reaching revision of the principles behind the
SISR algorithm in which sequential Monte Carlo is interpreted as a repeated
sampling task. This reinterpretation suggests several other sequential Monte
Carlo schemes that differ, sometimes significantly, from the SISR approach.
Section 8.2 reviews methods that exploit the specific hierarchical structure
found in some hidden Markov models, and in particular in conditionally Gaus-
sian linear state-space models (CGLSSMs). The algorithms to be considered
there combine the sequential simulation approach presented in the previous
chapter with the Kalman filtering recursion discussed in Chapter 5. Finally,
Section 8.3 discusses the use of sequential Monte Carlo methods for approxi-
mating smoothed quantities of the form introduced in Section 4.1.

8.1 Alternatives to SISR

We first present a reinterpretation of the objectives of the sequential impor-
tance sampling with resampling (SISR) algorithm in Section 7.3. This new
interpretation suggests a whole range of different approaches that combines
more closely the sampling (trajectory update) and resampling (weight reset)
operators involved in the SISR algorithm.

In the basic SISR approach (Algorithm 7.3.4), we expect that after a re-
sampling step, say at index k, the particle trajectories ξ1

0:k, . . . , ξ
N
0:k approx-

imately form an i.i.d. sample of size N from the distribution φ0:k|k. We will
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discuss more precisely in Chapter 9 the degree to which this assertion is cor-
rect but assume for the moment that the general intuition is justifiable. Even
in the absence of resampling at index k, in which case the weights ω1

k, . . . , ω
N
k

are not identical, the expectation of any function fk ∈ Fb
(
Xk+1

)
under φ0:k|k

may be approximated, following (7.11), by

N∑
i=1

ωi
k∑N

j=1 ω
j
k

fk(ξi
0:k) .

This behavior may indeed be adopted as a general principle for sequential
Monte Carlo techniques, considering that a valid algorithm is such that it is
recursive and guarantees that the weighted empirical distribution,

φ̂0:k|k =
N∑

i=1

ωi
k∑N

j=1 ω
j
k

δξi
0:k

, (8.1)

is a consistent approximation to φ0:k|k, in some suitable sense, as the number
N of particles increases (the symbol δ denotes Dirac measures).

The particular feature of the sequence of target distributions encountered
in the HMM filtering application is the relatively simple recursive form recalled
by (7.7):

φ0:k+1|k+1(fk+1) =
∫
· · ·

∫
fk+1(x0:k+1)φ0:k|k(dx0:k)T u

k (xk, dxk+1) ,

for all functions fk+1 ∈ Fb
(
Xk+2

)
, where T u

k is the (unnormalized) kernel
defined in (7.8). This relation may be rewritten replacing T u

k by its normalized
version Tk defined in (7.15), the so-called optimal importance kernel, to obtain

φ0:k+1|k+1(fk+1) =
∫
· · ·

∫
fk+1(x0:k+1)φ0:k|k(dx0:k)

× Lk

Lk+1
γk(xk)Tk(xk, dxk+1) , (8.2)

where γk is the normalizing function defined in (7.17). Because the likelihoods
Lk and Lk+1 are precisely the type of quantities that are non-evaluable in
contexts where sequential Monte Carlo is useful, it is preferable to rewrite (8.2)
in the equivalent auto-normalized form

φ0:k+1|k+1(fk+1) =

∫
· · ·

∫
fk+1(x0:k+1)φ0:k|k(dx0:k)γk(xk)Tk(xk, dxk+1)∫

· · ·
∫
φ0:k|k(dx0:k)γk(xk)

.

(8.3)
A natural idea in the context of sequential Monte Carlo is to plug the

approximate empirical distribution defined in (8.1) into the recursive update
formula (8.3), which yields
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φ̃0:k+1|k+1(fk+1)
def=

N∑
i=1

ωi
k γk(ξi

k)∑N
j=1 ω

j
k γk(ξj

k)

∫
fk+1(ξi

0:k, x) Tk(ξi
k, dx) . (8.4)

This equation defines a probability distribution φ̃0:k+1|k+1 on Xk+2, which
is a finite mixture distribution and which also has the particularity that its
restriction to the first k+1 component is a weighted empirical distribution with
support ξ1

0:k, . . . , ξ
N
0:k and weights proportional to ωi

kγk(ξi
k). Following this

argument, the updated empirical approximation φ̂0:k|k should approximate
the distribution defined in (8.4) as closely as possible, but with the constraint
that it is supported by N points only. The simplest idea of course consists in
trying to obtain a (conditionally) i.i.d. sample from this mixture distribution.
This interpretation opens a range of new possibilities, as we are basically faced
with a sampling problem for which several methods, including those discussed
in Chapter 6, are available.

8.1.1 I.I.D. Sampling

As discussed above, the first obvious idea is to simulate, if possible, the new
particle trajectories as N i.i.d. draws from the distribution defined by (8.4).
Note that the term “i.i.d.” is used somewhat loosely here, as the statement
obviously refers to the conditional distribution of the new particle trajecto-
ries ξ1

0:k+1, . . . , ξ
N
0:k+1 given the current state of the system as defined by the

particle trajectories ξ1
0:k, . . . , ξ

N
0:k and the weights ω1

k, . . . , ω
N
k . The algorithm

obtained when following this principle is distinct from Algorithm 7.3.4, al-
though it is very closely related to SISR when the optimal importance kernel
Tk is used as the instrumental kernel.

Algorithm 8.1.1 (I.I.D. Sampling or Selection/Mutation Algorithm).

Weight computation: For i = 1, . . . , N , compute the (unnormalized) importance
weights

αi
k = ωi

k γk(ξi
k) . (8.5)

Selection: Draw I1
k+1, . . . , I

N
k+1 conditionally i.i.d. given {ξi

0:k}1≤i≤N , with prob-
abilities P(I1

k+1 = j) proportional to αj
k, j = 1, . . . , N .

Sampling: Draw ξ̃1
k+1, . . . , ξ̃

N
k+1 conditionally independently given {ξi

0:k}1≤i≤N

and {Ii
k+1}1≤i≤N , with distribution ξ̃i

k+1 ∼ Tk(ξ
Ii

k+1
k , ·). Set ξi

0:k+1 =

(ξ
Ii

k+1
0:k , ξ̃i

k+1) and ωi
k+1 = 1 for i = 1, . . . , N .

Comparing the above algorithm with Algorithm 8.1.1 for the particular choice
Rk = Tk reveals that they differ only by the order in which the sampling and
selection operations are performed. Algorithm 8.1.1 prescribes that each tra-
jectory be first extended by setting ξi

0:k+1 = (ξi
0:k, ξ̃

i
k+1) with ξ̃i

k+1 drawn
from Tk(ξi

k, ·). Then resampling is performed in the population of extended
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trajectories, based on weights given by (8.5) when Rk = Tk. In contrast, Algo-
rithm 8.1.1 first selects the trajectories based on the weights αi

k and then sim-
ulates an independent extension for each selected trajectory. This is of course
possible only because the optimal importance kernel Tk is used as instrumen-
tal kernel, rendering the incremental weights independent of the position of
the particle at index k + 1 and thus allowing for early selection. Intuitively,
Algorithm 8.1.1 is preferable because it does not simply duplicate trajectories
with high weights but rather selects the most promising trajectories at index
k using independent extensions (at index k + 1) for each selected trajectory.
Following the terminology in use in genetic algorithms1, Algorithm 8.1.1 is a
selection/mutation algorithm, whereas the SISR approach is based on muta-
tion/selection. Recall that the latter is more general, as it does not require that
the optimal kernel Tk be used, although we shall see later, in Section 8.1.2,
that the i.i.d. sampling approach can be modified to allow for general instru-
mental kernels.

Remark 8.1.2. In Chapter 7 as well as in the exposition above, we consid-
ered that the quantity of interest is the joint smoothing measure φ0:k|k. It
is important however to understand that this focus on the joint smoothing
measure φ0:k|k is unessential as all the algorithms presented so far only rely
on the recursive structure observed in (8.4). Of course, in the case of the
joint smoothing measure φ0:k|k, the kernel Tk and the function γk that appear
in (8.4) have a specific form given by (7.15) and (7.17):∫

f(x′) γk(x)Tk(x, dx′) =
∫

f(x′) gk+1(x′)Q(x, dx′) (8.6)

for functions f ∈ Fb (X), where γk(x) equals the above expression evaluated
for f = 1. However, any of the sequential Monte Carlo algorithms discussed so
far can be used for generic choices of the kernel Tk and the function γk provided
the expression for the incremental weights is suitably modified. The core of
SMC techniques is thus the structure observed in (8.4), whose connection with
the methods exposed here is worked out in detail in the recent book by Del
Moral (2004).

As an example, recall from Chapter 3 that the distribution φ0:k|k−1 differs
from φ0:k−1|k−1 only by an application of the prior (or state transition) kernel
Q and hence satisfies a recursion similar to (8.4) with the kernel Tk and the
function γk replaced by Q and gk, respectively:

φ0:k+1|k(fk+1) =

∫
· · ·

∫
fk+1(x0:k+1)φ0:k|k−1(dx0:k)gk(xk)Q(xk, dxk+1)∫

· · ·
∫
φ0:k|k−1(dx0:k)gk(xk)

,

(8.7)
1Genetic algorithms (see, e.g., Whitley, 1994) have much in common with se-

quential Monte Carlo methods. Their purpose is different however, with an emphasis
on optimization rather than, as for SMC, simulation. Both fields do share a lot of
common terminology.
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Fig. 8.1. The bootstrap filter decomposed into elementary mutation/selection steps.
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where the denominator could be written more compactly as φk|k−1(gk). The
recursive update formula obtained for the (joint) predictive distribution is
much simpler than (8.4), as (8.7) features the prior kernel Q—from which
we generally assume that sampling is feasible—and the conditional likeli-
hood function gk—whose analytical expression is known. In particular, it is
straightforward to apply Algorithm 8.1.1 in this case by selecting with weights
gk(ξ1

k), . . . , gk(ξN
k ) and mutating the selected particles using the kernel Q. This

is obviously equivalent to the bootstrap filter (Algorithm 7.3.4 with Q as the
instrumental kernel) viewed at a different stage: just after the selection step
for Algorithm 7.3.4 and just after the mutation step for Algorithm 8.1.1 ap-
plied to the predictive distribution (see Figure 8.1 for an illustration). The
previous interpretation however suggests that the bootstrap filter operates
very differently on the filtering and predictive approximations, either accord-
ing to Algorithm 7.3.4 or to Algorithm 8.1.1. We shall see in the next chapter
(Section 9.4) that this observation has important implications when it comes
to evaluating the asymptotic (for large N) performance of the method. �

Coming back to the joint smoothing distribution φ0:k|k, Algorithm 8.1.1 is
generally not applicable directly as it involves sampling from Tk and evaluation
of the normalization function γk (see also the discussion in Section 7.2.2 on
this point). In the remainder of this section, we will examine a number of more
practicable options that keep up with the general objective of sampling from
the distribution defined in (8.4). The first section below presents a method
that is generally known under the name auxiliary particle filter after Pitt
and Shephard (1999) (see also Liu and Chen, 1998). The way it is presented
here however differs notably from the exposition of Pitt and Shephard (1999),
whose original argument will be discussed in Section 8.1.3.

8.1.2 Two-Stage Sampling

We now consider using the sampling importance resampling method intro-
duced in Section 7.1.2 to sample approximately from φ̃0:k+1|k+1. Recall that
SIR sampling proceeds in two steps: in a first step, a new population is drawn
according to an instrumental distribution, say ρ0:k+1; then, in a second step,
the points are selected with probabilities proportional to the importance ratio
between the target (here φ̃0:k+1|k+1) and the instrumental distribution ρ0:k+1.

Our aim is to find an instrumental distribution ρ0:k+1 that is as close as
possible to φ̃0:k+1|k+1 as defined in (8.4), yet easy to sample from. A sensible
option is provided by mixture distributions such that for all functions fk+1 ∈
Fb

(
Xk+2

)
,

ρ0:k+1(fk+1) =
N∑

i=1

ωi
k τ i

k∑N
j=1 ω

j
k τ j

k

∫
f(ξi

0:k, x) Rk(ξi
k, dx) . (8.8)

Here, τ1
k+1, . . . , τ

N
k+1 are positive numbers, called adjustment multiplier weights

by Pitt and Shephard (1999), and Rk is a transition kernel on X. Both the
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adjustment multiplier weights and the instrumental kernel may depend on the
new observation Yk+1 although, as always, we do not explicitly mention it in
our notation. To ensure that the importance ratio is well-defined, we require
that the adjustment multiplier weights be strictly positive and that Tk(x, ·),
or equivalently T u

k (x, ·), be absolutely continuous with respect to Rk(x, ·), for
all x ∈ X.

These assumptions imply that the target distribution φ̃0:k+1|k+1 defined
in (8.4) is dominated by the instrumental distribution ρ0:k+1 with importance
function given by the Radon-Nikodym derivative

dφ̃0:k+1|k+1

dρ0:k+1
(x0:k+1) = Ck

N∑
i=1

1{ξi
0:k}(x0:k)

γk(ξi
k)

τ i
k

dTk(ξi
k, ·)

dRk(ξi
k, ·)

(xk+1) , (8.9)

where

Ck =
∑N

i=1 ω
i
k τ i

k∑N
i=1 ω

i
k γk(ξi

k)
.

Because the factor Ck is a normalizing constant that does not depend on
x0:k+1, it is left here only for reference; its evaluation is never required when
using the SIR approach. In order to obtain (8.9), we used the fundamental
observation that a set Ak+1 ∈ X⊗(k+2) can have non-null probability under
both (8.4) and (8.8) only if there exists an index i and a measurable set A ⊆ X
such that {ξi

0}× · · · × {ξi
k}×A ⊆ Ak+1, that is, Ak+1 must contain (at least)

one of the current particle trajectories. Recall that

γk(ξi
k)Tk(ξi

k, dx) = gk+1(x)Q(ξi
k, dx) ,

and hence (8.9) may be rewritten as

dφ̃0:k+1|k+1

dρ0:k+1
(x0:k+1) = Ck

N∑
i=1

1{ξi
0:k}(x0:k)

gk+1(xk+1)
τ i
k

dQ(ξi
k, ·)

dRk(ξi
k, ·)

(xk+1) ,

(8.10)
Thanks to the relatively simple expression of the importance function

in (8.10), the complete SIR algorithm is straightforward provided that we
can simulate from the instrumental kernel Rk.

Algorithm 8.1.3 (Two-Stage Sampling).

First-Stage Sampling:
• Draw I1

k , . . . , I
M
k conditionally i.i.d. given {ξi

0:k}1≤i≤N , with probabilities
P(Ii

k = j) proportional to the (unnormalized) first-stage weights ωj
kτ

j
k ,

j = 1, . . . ,M .
• Draw ξ̃1

k+1, . . . , ξ̃
M
k+1 conditionally independently given {ξl

0:k}1≤l≤N and

{Ii
k}1≤i≤M , with distribution ξ̃i

k+1 ∼ Rk(ξIi
k

k , ·). Set ξ̃i
0:k+1 = (ξIi

k

0:k, ξ̃
i
k+1)

for i = 1, . . . ,M .
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Weight computation: For i = 1, . . . ,M , compute the (unnormalized) second-
stage weights

αi
k =

gk+1(ξ̃i
k+1)

τ
Ii

k

k

dQ(ξIi
k

k , ·)
dRk(ξIi

k

k , ·)
(ξ̃i

k+1) . (8.11)

Second-Stage Resampling:
• Draw J1

k+1, . . . , J
N
k+1 conditionally i.i.d. given {ξ̃i

0:k+1}1≤i≤M , with prob-
abilities P(J1

k+1 = j) proportional to the second-stage weights αj
k,

j = 1, . . . ,M .

• For i = 1, . . . , N , set ξi
0:k+1 = ξ̃

Ji
k+1

0:k+1 and ωi
k+1 = 1.

The adjustment multiplier weights {τ i
k}1≤i≤n should be chosen to sample

preferentially (in the first stage) the particle trajectories that are most likely
under φ̃0:k+1|k+1. Usually the multiplier weight τ i

k depends on the new ob-
servation Yk+1 and on the position of the particle at index k, ξi

k, but more
general conditions can be considered as well. If one can guess, based on the
new observation, which particle trajectories are most likely to survive or die,
the resampling stage may be anticipated by increasing (or decreasing) the
importance weights. As such, the use of adjustment multiplier weights is a
mechanism to prevent sample impoverishment.

The expression for the second-stage weights in (8.11) provides additional
insights on how to choose the adjustment multiplier weights. The efficiency
of the SIR procedure is best when the importance weights are well-balanced,
that is, when the total mass is spread over a large number of particles. The
multiplier adjustment weights τ i

k should thus be chosen to render the second-
stage weights as evenly distributed as possible. In the particular case where
sampling is done from the prior (or state transition) kernel, that is if Rk = Q,
the expression of the second-stage weight simplifies to

αi
k = gk+1(ξ̃i

k+1)/τ
Ii

k+1
k .

Although it is not possible to equate this expression to one, as τ i
k cannot

depend on ξ̃i
k+1, it is easy to imagine strategies that reach this objective on

average. Pitt and Shephard (1999) suggest that the adjustment multiplier
weights be set as the likelihood of the mean of the predictive distribution
corresponding to each particle,

τ i
k = gk+1

(∫
x Q(ξi

k, dx)
)

. (8.12)

In particular, in examples where Q corresponds to a random walk move, the
adjustment multiplier weight τ i

k is thus equal to gk+1(ξi
k), the conditional

likelihood of the new observation given the current position, which is quite
natural. In general situations, the success of this approach depends on our
ability to choose the adjustment multiplier weights in a way that the first
sampling stage is effective.
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Ref. Bootstrap filter Auxiliary particle filter
N M = 100 1,000 10,000 M = 100 1,000 10,000
100 0.91 0.49 (0.12) 0.57 (0.10) 0.61 (0.11) 0.56 (0.11) 0.62 (0.11) 0.62 (0.10)

1,000 0.91 - 0.64 (0.10) 0.71 (0.09) 0.59 (0.11) 0.71 (0.10) 0.74 (0.09)
10,000 0.91 - - 0.75 (0.09) 0.60 (0.12) 0.73 (0.09) 0.80 (0.08)

Table 8.1. Approximations of the posterior mean X̂5|5 in the noisy AR(1) model,
obtained using the bootstrap filter and auxiliary particle filter. The model and ob-
servations Y0:5 are given in Example 7.2.3. Results are reported for different values
of M (size of the first stage sample) and N (number of particle retained in the
second stage). The figures are means and standard errors from 500 independent
replications for each pair of M and N . The column “ref” displays the true posterior
mean computed by Kalman filtering.

Example 8.1.4 (Noisy AR(1) Model, Continued). To illustrate the be-
havior of the method, we consider again the simple noisy AR(1) model of
Example 7.2.3, which has the advantage that exact filtering quantities may
be computed by the Kalman recursions. In Example 7.2.3, we approximated
the posterior mean of X5 given the observed Y0:5 using sequential importance
sampling with the prior kernel Q as instrumental kernel and found that this
approximation grossly underestimates the true posterior mean, which evalu-
ates (by Kalman filtering) to 0.91. The situation improves somewhat when
using the optimal kernel Tk (Example 7.2.4). Because there are only six ob-
servations, the differences between the results of SIS and SISR are small, as
the weights do not have the time to degenerate (given that, in addition, the
outlier occurs at the last time index).

In Table 8.1, we compare the results of the SISR algorithm with Q as the
instrumental kernel (also known as the bootstrap filter) and the two-stage
algorithm. Following (8.12), the adjustment multiplier weights were set to

τ i
k = N(Yk+1; φξi

k, σ
2
V ) ;

see Example 7.2.3 for details on the notation. This second algorithm is usually
referred to as the (or an) auxiliary particle filter. The table shows that for all
values of M (the size of the first stage sampling population) and N (the
number of particles retained in the second stage), the auxiliary article filter
outperforms the bootstrap filter. The auxiliary filter effectively reduces the
bias to a level that is, in this case, comparable (albeit slightly larger) to
that obtained when using the optimal kernel Tk as instrumental kernel (see
Figure 7.4).

For the bootstrap filter (Algorithm 7.3.4), only values of M larger than
N have been considered. Indeed, because the algorithm operates by first ex-
tending the trajectories and then resampling, it does not apply directly when
M < N . Note however that the examination of the figures obtained for the
auxiliary filter (Algorithm 8.1.3), for which both M and N may be chosen
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freely, suggests that it is more efficient to use M larger than N than the con-
verse. The payoff for using M larger than N , compared to the base situation
where M = N , is also much more significant in the case of the bootstrap
filter—whose baseline performance is worse—than for the auxiliary particle
filter. �

8.1.3 Interpretation with Auxiliary Variables

We now discuss another interpretation of Algorithm 8.1.3, which is more in
the spirit of (Pitt and Shephard, 1999). This alternative perspective on Algo-
rithm 8.1.3 is based on the observation that although we generally consider our
target distributions to be the joint smoothing distribution φ0:k|k, the obtained
algorithms are directly applicable for approximating the filtering distribution
φk simply by dropping the history of the particles (Remark 7.3.5).

In particular, if we now consider that only the current system of particles
{ξi

k}1≤i≤N , with associated weights {ωi
k}1≤i≤N is available, (8.3) should be

replaced by the marginal relation

φ̃k+1(f) def=
N∑

i=1

ωi
k γk(ξi

k)∑N
j=1 ω

j
k γk(ξj

k)

∫
f(x) Tk(ξi

k, dx) , f ∈ Fb (X) , (8.13)

which thus defines our target distribution for updating the system of particles.
For the same reason as above, it makes sense to select a proposal distri-

bution (this time on X) closely related to (8.13). Indeed, we consider the N
component mixture

ρk+1(f) =
N∑

i=1

ωi
kτ

i
k∑N

j=1 ω
j
kτ

j
k

∫
f(x)Rk(ξi

k, dx) . (8.14)

Proceeding as in (8.9)–(8.10), the Radon-Nikodym derivative is now given
by

dφ̃ν,k+1

dρk+1
(x) = Ck

d
{∑N

i=1 ω
i
k Tk(ξi

k, ·)
}

d
{∑N

i=1 ω
i
kτ

j
k Rk(ξi

k, ·)
} (x) . (8.15)

Compared to (8.10), this marginal importance ratio would be costly to eval-
uate as such, as both its numerator and its denominator involve summing
over N terms. This difficulty can be overcome by data augmentation, intro-
ducing an auxiliary variable that corresponds to the mixture component that
is selected when drawing the new particle position. Consider the following
distribution φaux

k+1 on the product space {1, . . . , N} × X:

φaux
k+1({i} ×A) =

ωi
k

∫
A
gk+1(x)Q(ξi

k, dx)∑N
j=1 ω

j
kγk(ξj

k)
, A ∈ X , i = 1, . . . , N . (8.16)
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Because

φaux
k+1({1, . . . , N} ×A) =

N∑
i=1

φaux
k+1({i} ×A) = φ̃k+1(A) , A ∈ X ,

φ̃k+1 is the marginal distribution of φaux
k+1 and we may sample from φ̃k+1 by

sampling from φaux
k+1 and discarding the auxiliary index. To sample from φaux

k+1
using the SIR method, we can then use the following instrumental distribution
on the product space {1, . . . , N} × X:

ρaux
k+1({i} ×A) =

ωi
k τ i

k∑N
j=1 ω

j
k τ j

k

Rk(ξi
k, A) , A ∈ X . (8.17)

This distribution may be interpreted as the joint distribution of the selection
index Ii

k and the proposed new particle position ξ̃i
k+1 in Algorithm 8.1.3. This

time, the importance function is very simple and similar to (8.10),

dφaux
k+1

dρaux
k+1

(i, x) = Ck
gk+1(x)

τ i
k

dQ(ξi
k, ·)

dRk(ξi
k, ·)

(x) , i = 1, . . . , N, x ∈ X , (8.18)

Hence Algorithm 8.1.3 may also be understood in terms of auxiliary sampling.

8.1.4 Auxiliary Accept-Reject Sampling

Rather than using the SIR method, simulating from (8.17) and using the im-
portance ratio defined in (8.18), we may consider other methods for simulating
directly from (8.16). An option, already discussed in the context of sequen-
tial importance sampling in Section 7.2.2, consists in using the accept-reject
method (defined in Section 6.2.1).

The accept-reject method may be used to generate a truly i.i.d. sample
from the target distribution. The price to pay compared to the SIR algorithm
is a typically higher computational cost, especially when the acceptance prob-
ability is low. In addition, the number of simulations needed is itself random
and the computation time cannot be predicted beforehand, especially when
there are unknown normalizing constants (Remark 6.2.4). The method has
nonetheless been studied for sequential simulation by several authors includ-
ing Tanizaki (1996), Tanizaki and Mariano (1998), and Hürzeler and Künsch
(1998) (see also Pitt and Shephard, 1999, and Liu and Chen, 1998).

In auxiliary accept-reject the idea is to find an instrumental distribution
ρaux

k+1 that dominates the target φaux
k+1 and is such that the Radon-Nikodym

derivative dφaux
k+1/dρ

aux
k+1 is bounded. Indeed, proposals of the form given

in (8.8) still constitute an appropriate choice granted that we strengthen some-
what the assumptions that were needed for applying the SIR method.

Assumption 8.1.5. For any k ≥ 0 and x ∈ X,

sup
x′∈X

gk+1(x′)
dQ(x, ·)
dRk(x, ·) (x′) <∞ . (8.19)
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Because the index i runs over a finite set {1, . . . , N}, we may define

Mk = max
1≤i≤N

Ai
k

τ i
k

, where Ai
k ≥ sup

x∈X
gk+1(x)

dQ(ξi
k, ·)

dRk(ξi
k, ·)

(x) . (8.20)

With these definitions, the Radon-Nikodym derivative dφaux
k+1/dρ

aux
k+1 given

by (8.18) is bounded by

dφaux
k+1

dρaux
k+1

(i, x) ≤Mk

∑N
i=1 ω

i
k τ i

k∑N
i=1 ω

i
k γk(ξi

k)
, (8.21)

and hence the use of the accept-reject algorithm is valid. The complete algo-
rithm proceeds as follows.

Algorithm 8.1.6 (Auxiliary Accept-Reject). For i = 1, . . . , N ,

Repeat:
• Draw an index Ii

k ∈ {1, . . . , N} with probabilities proportional to the
first-stage weights ω1

kτ
1
k , . . . , ω

N
k τN

k .
• Conditionally on Ii

k, draw a proposal ξ̃i
k+1 from the instrumental transition

kernel Rk(ξIi
k

k , ·) and U i from a uniform distribution on [0, 1].
Until:

U i ≤ 1
Mk

gk+1(ξ̃i
k+1)

τ
Ii

k

k

dQ(ξIi
k

k , ·)
dRk(ξIi

k

k , ·)
(ξ̃i

k+1) .

Update: Set ξi
k+1 = ξ̃i

k+1.

When done, reset all weights {ωi
k+1}1≤i≤N to a (common) constant value.

Because the joint distribution of the accepted pairs is φaux
k+1, as defined

by (8.16), the marginal distribution of the accepted draws (forgetting about
the index) is (8.13) as required. One should typically try to increase the ac-
ceptance rate by proper choices of the adjustment multiplier weights τ i

k and,
whenever possible, by also choosing the instrumental kernel Rk in an appro-
priate fashion. The user should also determine the upper bounds Ai

k in (8.20)
as tightly as possible. The following lemma, due to Künsch (2003), gives some
indications on how the multiplier weights should be chosen to maximize the
acceptance ratio.

Lemma 8.1.7. For a given choice of instrumental kernels Rk and upper
bounds Ai

k, the average acceptance probability is maximal when the incremen-
tal adjustment weights τ i

k are proportional to Ai
k for i = 1, . . . , N .

Proof. Recall from Remark 6.2.4 that because of the presence of unknown nor-
malization constants, the acceptance probability of the accept-reject method
is not 1/Mk but rather the inverse of the upper bound on the importance
function, that is, the right-hand side of (8.21). Because
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∑N
i=1 ω

i
k τ i

k∑N
i=1 ω

i
k γk(ξi

k)
Mk ≥

∑N
i=1 ω

i
k τ i

k
Ai

k

τ i
k∑N

i=1 ω
i
k γk(ξi

k)
=

∑N
i=1 ω

i
k Ai

k∑N
i=1 ω

i
k γk(ξi

k)
,

the acceptance probability is bounded by∑N
i=1 ω

i
k γk(ξi

k)∑N
i=1 ω

i
k Ai

k

. (8.22)

The bound is attained when Ai
k/τ

i
k = Mk for all i. ��

Tanizaki and Mariano (1998) and Hürzeler and Künsch (1998) both con-
sider the particular choice Rk = Q. Lemma 8.1.7 shows that the optimal
adjustment multiplier weights are then constant, τ i

k = 1 for all i. This is
somewhat surprising in light of the discussion in Section 8.1.2, as one could
conjecture heuristically that it is more appropriate to favor particles that agree
with the next observations. Lemma 8.1.7 however shows that the only means
to improve the acceptance rate is, whenever possible, to properly optimize the
instrumental kernel.

8.1.5 Markov Chain Monte Carlo Auxiliary Sampling

Rather than using the accept-reject algorithm to sample exactly from (8.16),
Berzuini et al. (1997) suggest that a few iterations of a Markov chain Monte
Carlo sampler with target distribution (8.16) be used. The algorithm proposed
by Berzuini et al. (1997) is based on the independent Metropolis-Hastings
sampler discussed in Section 6.2.3.1. Once again, we use a distribution ρaux

k+1
of the form defined in (8.8) as the proposal, but this time the chain moves
from (i, x) to (i′, x′) with a probability given by A[(i, x), (i′, x′)] ∧ 1 where

A [(i, x), (i′, x′)] =
[
gk+1(x′)

τ i′
k

dQ(ξi
k, ·)

dRk(ξi
k, ·)

(x′)
] [

gk+1(x)
τ i
k

dQ(ξi
k, ·)

dRk(ξi
k, ·)

(x)
]−1

.

(8.23)
In case of rejection, the chain stays in (i, x). This update step is then repeated
independently N times.

Algorithm 8.1.8 (Auxiliary MCMC). For i = 1, . . . , N ,

Initialization: Draw an index Ii,1
k ∈ {1, . . . , N} with probabilities proportional

to the first-stage weights ω1
kτ

1
k , . . . , ω

N
k τN

k , and ξ̃i,1
k+1 from the instrumental

transition kernel Rk(ξIi,1
k

k , ·). Set ξi
k+1 = ξ̃i,1

k+1 and Ii
k = Ii,1

k .
For j = 2 to Jmax: Draw an index Ii,j

k ∈ {1, . . . , N} with probabilities propor-
tional to the first-stage weights ω1

kτ
1
k , . . . , ω

N
k τN

k , draw ξ̃i,j
k+1 from the instru-

mental transition kernel Rk(ξIi,j
k

k , ·) and a U([0, 1]) variable U j . If

U j ≤ A[(Ii
k, ξ

i
k+1), (I

i,j
k , ξ̃i,j

k+1)] ,

set ξi
k+1 = ξ̃i,j

k+1 and Ii
k = Ii,j

k .
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When done, all weights {ωi
k+1}1≤i≤N are reset to a constant value.

In the above algorithm, ρaux
k+1 is used both as proposal distribution for

the independent Metropolis-Hastings sampler and for generating the initial
values Ii,1

k and ξ̃i,1
k+1. Compared to the accept-reject approach of the previous

section, Algorithm 8.1.8 is appealing, as it is associated with a deterministic
computation time that scales like the product of N and Jmax. On the other
hand, the method can only be useful if Jmax is “small” which in turn is
legitimate only if the independent Metropolis-Hastings chain is fast mixing.
As discussed in Section 6.2.3.1, the mixing of each individual chain is governed
by the behavior of the quantity

M i
k = sup

x∈X

gk+1(x)
τ i
k

dQ(ξi
k, ·)

dRk(ξi
k, ·)

(x) ,

and the chain is uniformly (geometrically) ergodic, at rate (1 − 1/M i
k), only

if M i
k is finite. Not surprisingly, this approach thus shares many common fea-

tures and properties with the accept-reject algorithm discussed in the previous
section. It is of course possible to combine both methods (Tanizaki, 2003) or
to resort to other type of MCMC samplers. We refer to Berzuini and Gilks
(2001) for a full discussion of this approach together with some examples
where it is particularly useful.

8.2 Sequential Monte Carlo in Hierarchical HMMs

In Section 4.2, we examined a general class of HMMs, referred to as hierarchi-
cal HMMs, for which the state can be partitioned into two components, one
of which can be analytically integrated out—or marginalized—conditionally
on the other component. When marginalization is feasible, one may derive
computationally efficient sampling procedures that focus their full attention
on a state space whose dimension is smaller—and in most applications, much
smaller—than the original one. As a result, when marginalization is feasible,
it usually significantly improves the performance of particle filtering, allowing
in particular a drastic reduction of the number of particles needed to achieve a
given level of accuracy of the estimates (Akashi and Kumamoto, 1977; Liu and
Chen, 1998; MacEachern et al., 1999; Doucet et al., 2000a,b). One should how-
ever keep in mind that marginalization requires the use of rather sophisticated
algorithms, and that the computations necessary to update each marginal par-
ticle can be much more demanding than for an unstructured particle that lives
in the complete state space.

Marginalizing out some of the variables is an example of a classical tech-
nique in computational statistics referred to as the Rao-Blackwellization, be-
cause it is related to the Rao-Blackwell risk reduction principle in statistics.
Rao-Blackwellization is an important ingredient of simulation-based methods
that we already met in the context of MCMC methods in Chapter 6.
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In the hierarchical hidden Markov model introduced in Section 1.3.4, the
state variable Xk can be decomposed in two parts (Ck,Wk), where Ck is called
the indicator variable or the regime and Wk is the partial state, which can be
marginalized out conditionally on the regime. We will focus on the special case
where the indicator variables are discrete and finite. Although it is possible to
use the marginalization principle in a more general setting (see, e.g., Doucet
et al., 2001b, or Andrieu et al., 2003), the case of discrete indicator variables
remains the most important in practical applications.

8.2.1 Sequential Importance Sampling and Global Sampling

Assume that the indicator variables take their values in the finite set C =
{1, . . . , r}. We consider here, as previously, that the goal is to simulate from
the sequence of joint probability measures {ψ0:k|k}k≥0 of C0:k given Y0:k. For
the moment, the details of the structure of ψ0:k|k do not matter and we simply
assume that there exists an (unnormalized) transition kernel T u

k : Ck+1×C →
R

+ such that

ψ0:k+1|k+1(c0:k+1) = ψ0:k|k(c0:k)T u
k (ck, ck+1) . (8.24)

Note that as usual for probabilities on discrete spaces, we use the notation
ψ0:k|k(c0:k) rather than ψ0:k|k({c0:k}). This definition should be compared to
(7.8). Indeed, T u

k is an unnormalized kernel similar to that which appears in
(7.8), although it does not depend—as a function of c0:k—on ck only. This
modification is due to the fact that the structure of the joint smoothing distri-
bution in hierarchical HMMs, when marginalizing with respect to the interme-
diate component {Wk}, is more complex than in the models that we have met
so far in this chapter (see Section 4.2.3). Once again, these considerations are
not important for the moment, and the reader should consider (8.24) as the
definition of a (generic) sequence of probability distributions over increasing
spaces.

8.2.1.1 Sequential Importance Sampling

In the sequential importance sampling framework, the target distribution
at time k is approximated by independent path particles denoted, as pre-
viously, by ξ1

0:k, . . . , ξ
N
0:k, associated with non-negative (normalized) weights(

ω1
k, . . . , ω

N
k

)
such that

ψ̂0:k|k(c0:k) =
N∑

i=1

ωi
k1ξi

0:k
(c0:k) . (8.25)

These particles and weights are updated sequentially by drawing from an
instrumental distribution over sequences in CN defined by an initial probability
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distribution ρ0:0 on C and a family of transition kernels Rk : Ck+1×C → R
+,

for k ≥ 0, such that

ρ0:k+1(c0:k+1) = ρ0:k(c0:k)Rk(c0:k, ck+1) , (8.26)

where ρ0:k denotes the joint distribution of ξ1
0:k. It is assumed that for each k,

the instrumental kernel Rk dominates the transition T u
k in the sense that

for any c0:k and any c = 1, . . . , r, the condition T u
k (c0:k, c) > 0 implies

Rk(c0:k, c) > 0. In words, all transitions that are permitted (have positive
probability) under the model are permitted also under the instrumental ker-
nel. In the sequential importance sampling procedure, one draws exactly one
successor for each path particle ξi

0:k, i = 1, . . . , N . More precisely, an N -uplet
I1
k+1, . . . , I

N
k+1 is drawn conditionally independently given the past and with

probabilities proportional to the weights

Rk(ξi
0:k, 1), . . . , Rk(ξi

0:k, r) .

The particle system is then updated according to ξi
0:k+1 = (ξi

0:k, I
i
k+1). If

ξ1
0 , . . . , ξ

N
0 are drawn independently from a probability distribution ρ0:0, the

particle system ξ1
0:k, . . . , ξ

N
0:k consists of N independent draws from the instru-

mental distribution ρ0:k. As in (7.13), the associated (unnormalized) impor-
tance weights can be written as a product of incremental weights

ωi
k+1 = ωi

k

T u
k (ξi

0:k, I
i
k+1)

Rk(ξi
0:k, I

i
k+1)

. (8.27)

The instrumental transition kernel that minimizes the variance of the im-
portance weights conditionally on the history of the particle system will be
denoted by Tk and is given by the analog of (7.15):

Tk(c0:k, c) =
T u

k (c0:k, c)
T u

k (c0:k,C)
, c0:k ∈ Ck+1, c ∈ C . (8.28)

This kernel is referred to as the optimal instrumental kernel. The importance
weights (8.27) associated with this kernel are updated according to

ωi
k+1 = ωi

kT
u
k (ξi

0:k,C) . (8.29)

As before, these incremental importance weights do not depend on the de-
scendant of the particle. The SIS algorithm using the optimal importance
kernel is equivalent to the random sampling algorithm of Akashi and Ku-
mamoto (1977). In this scheme, resampling is stochastic with precisely one
descendant of each particle at time k being kept. For each particle, a de-
scendant is chosen with probabilities proportional to the descendant’s weights
T u

k (ξi
0:k, 1), . . . , T u

k (ξi
0:k, r). The weight of the chosen particle is set to the prod-

uct of its parent’s weight and the sum
∑r

c=1 T
u
k (ξi

0:k, c).
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8.2.1.2 Global Sampling

As in the previous chapter, the particle system produced by sequential im-
portance sampling degenerates, and the way to fight this degeneracy is re-
sampling. Because the state space is finite however, we now can probe the
whole state space because each particle has a finite number (r) of possible de-
scendants. The sampling and resampling steps may then be combined into a
single random draw. Recall that a natural estimator of the target distribution
ψ0:k|k at time k is the empirical distribution of the particles defined in (8.25).
Equation (8.24) suggests to estimate the probability distribution Πk+1 by

ψ̃0:k+1|k+1(c0:k+1) =

∑N
i=1 ω

i
kδξi

0:k
(c0:k)T u

k (ξi
0:k, ck+1)∑N

i=1 ω
i
kT

u
k (ξi

0:k,C)
. (8.30)

This equation corresponds to (8.4) in the current discrete setting. The sup-
port of this distribution is included in the set of all the possible descendants
of the current system of particles. Each particle has at most r possible de-
scendants and thus the support of this distribution has at most N × r points.
A straightforward solution (see for instance Fearnhead and Clifford, 2003) to
sample from this distribution is as follows.

Algorithm 8.2.1 (Global Sampling).

Weighting: For i = 1, . . . , N and j = 1, . . . , r, compute the (normalized) weights

ωi,j
k+1 =

ωi
kT

u
k (ξi

0:k, j)∑N
l=1

∑r
c=1 ω

l
kT

u
k (ξi

0:k, c)
. (8.31)

Sampling : Conditionally independently from the particle system history, draw N
identically distributed pairs (Ii

k, J
i
k+1) ∈ {1, . . . , N} × {1, . . . , r}, for i =

1, . . . N , such that P[(I1
k , J

1
k+1) = (i, j) | Gk] = ωi,j

k+1, where Gk is the σ-field
generated by the history of the particle system up to time k.

Update: Set ξi
0:k+1 = (ξIi

k

0:k, J
i
k+1) and ωi

k+1 = 1/N for i = 1, . . . , N .

Remark 8.2.2. There are several closely related algorithms that have ap-
peared in the literature, in particular the detection estimation algorithm of
Tugnait (1984). In this algorithm, the resampling stage is deterministic, with
the N particles having largest weights being kept. The application of such
ideas has been especially investigated in digital communication applications
and is discussed, for instance, by Punskaya et al. (2002) and Bertozzi et al.
(2003). �

8.2.2 Optimal Sampling

As stressed in Section 7.4.2, there are other options to draw the reallocation
variables such as residual, stratified, or systematic resampling. Although these
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can certainly be useful in this context, the discrete nature of the state space has
an unexpected consequence that is not addressed properly by the resampling
techniques discussed so far. For problems in which the state space is continu-
ous, having multiple copies of particles is not detrimental. After resampling,
each copy of a given duplicated particle will evolve independently from the
others. Therefore, a particle with a large importance weight that is replicated
many times in the resampling stage may, in the future, have a large number of
distinct descendants. When the state space is finite however, each particle can
probe all its possible descendants (ξi

0:k, j) such that T u
k (ξi

0:k, j) > 0. Hence,
if the resampling procedure replicates a particle at time k, the replications of
this particle will probe exactly the same configurations in the future. Having
multiple copies of the same path particle in finite state space models is thus
particularly wasteful.

A possible solution to this problem has been suggested by Fearnhead and
Clifford (2003) under the name optimal sampling. Instead of drawing realloca-
tion variables {(Ii

k, J
i
k+1)}1≤i≤N , we sample non-negative importance weights

{W i,j
k+1} satisfying the constraints

N∑
i=1

r∑
j=1

1{W i,j
k+1>0} ≤ N (8.32)

E[W i,j
k+1 | Gk] = ωi,j

k+1, i = 1, . . . , N, j = 1, . . . , r, (8.33)

where the weights ωi,j
k+1 are defined in (8.31). The first constraint is that

there are at most N particles with non-zero weights. The second constraint is
that the importance weights be unbiased—in the terminology of Liu and Chen
(1998) or Liu et al. (2001), the new sample is the said to be properly weighted.
A word of caution is needed here: despite the fact that the unbiasedness
condition is very sensible in the context of resampling, it does not, in itself,
guarantee a proper behavior of the algorithm (more on this will be said in
Chapter 9). Conversely, exact unbiasedness is not absolutely necessary, and it
is perfectly possible to consider algorithms that exhibit a low, and controllable,
bias. The problem reduces to that of approximating a probability distribution
having M = N × r points of support by a random probability distribution
having at most N points of support. Resampling is equivalent to assigning
a new, random weight to each of the M = N × r particles. If the weight is
zero the particle is removed, whereas if the weight is non-zero the particle is
kept; the non-zero random variables W i,j

k+1 represent the new weights of the
descendants of the particle system.

In a more general perspective, the problem can be formulated as follows.
Let ω be a discrete probability distribution with M points of support

ω = (ω1, . . . , ωM ), ωi ≥ 0,
M∑
i=1

ωi = 1 . (8.34)
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We want to find a random probability distribution W = (W1, . . . ,WM ) on
{1, . . . ,M} with at most N ≤M points of support,

Wi ≥ 0 ,

M∑
i=1

Wi = 1 ,

M∑
i=1

1{Wi>0} ≤ N , (8.35)

satisfying
E[Wi] = ωi, i = 1, . . . ,M . (8.36)

There are of course a number of different ways to achieve (8.35) and
(8.36). In particular, all the resampling methods discussed in Section 7.4.2
(as well as multinomial resampling) draw integer counts Ni, which are such
that Wi = Ni/N satisfy the above requirements, with equality for the last
condition in (8.35). The “optimal” solution is the one that guarantees that
the random distribution W is close, in some suitable sense, to the target dis-
tribution ω. We follow the suggestion of Fearnhead and Clifford (2003) and
use the average L2 distance. The problem then becomes equivalent to finding
a random probability distribution W = (W1, . . . ,WM ) that minimizes

M∑
i=1

E(Wi − ωi)2 (8.37)

subject to (8.35) and (8.36). To compute the solution we rely on two lemmas.

Lemma 8.2.3. Let ω ≥ 0 and p ∈ (0, 1]. If W is a non-negative random
variable satisfying

E[W ] = ω and P(W > 0) = p , (8.38)

then
E(W − ω)2 ≥ 1− p

p
ω2 . (8.39)

The lower bound is attained by any random variable W such that W equals
ω/p on the subset of the sample space where W > 0.

Proof. By decomposing the sample space into {W > 0} and {W = 0}, we
obtain

ω = E[W ] = E[W |W > 0] P(W > 0) = E[W |W > 0]p , (8.40)

and by a similar decomposition,

E(W − ω)2 = E[(W − ω)2 |W > 0]p + ω2(1− p) . (8.41)

A bias-variance decomposition of E[(W − ω)2 |W > 0] then gives
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E[(W − ω)2 |W > 0]

= E[(W − E[W |W > 0])2 |W > 0] + (E[W |W > 0]− ω)2

= E[(W − E[W |W > 0])2 |W > 0] + ω2 (1− p)2

p2 ,

where we used (8.40) to obtain the second equality. The right-hand side of this
display is bounded from below by ω2(1 − p)2/p2, and inserting this into the
right-hand side of (8.41) we obtain (8.39). Using the last display once again, we
also see that the bound is attained if and only if W equals E[W |W > 0] = ω/p
on the set where W > 0. ��

Lemma 8.2.4. Let N < M be integers and let β1, . . . , βM be non-negative
numbers. Consider the problem

minimize
M∑

j=1

βj

pj

subject to
M∑

j=1

pj ≤ N ,

0 ≤ pj ≤ 1, j = 1, . . . ,M .

This problem has a unique solution given by

pj = µ
√

βj ∧ 1, j = 1, . . . ,M , (8.42)

where the constant µ is the unique solution of the equation

M∑
i=1

µ
√

βj ∧ 1 = N . (8.43)

Proof. Denote by λ and λi the Lagrange multipliers associated respectively
with the inequality constraints

∑M
i=1 pi ≤ N and pi ≤ 1, i = 1, . . . ,M . The

Karush-Kuhn-Tucker conditions (see Boyd and Vandenberghe, 2004) for the
primal p1, . . . , pM and dual λ, λ1, . . . , λM optimal points are given by

M∑
i=1

pi ≤ N, pi ≤ 1, i = 1, . . . ,M , (8.44)

λ ≥ 0, λi ≥ 0, i = 1, . . . ,M , (8.45)

λ

(
M∑
i=1

pi −N

)
= 0, λi(pi − 1) = 0, i = 1, . . . ,M , (8.46)

− βi

p2
i

+ λ + λi = 0, i = 1, . . . ,M . (8.47)
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The complementary slackness condition (8.46) implies that for all indices i
such that pi < 1, the corresponding multiplier λi is zero. Hence, using (8.47),

pi =

√
βi

λ
∧ 1, i = 1, . . . ,M . (8.48)

From this we see that if λ = 0, then pi = 1 for all i and (8.44) cannot be satis-
fied. Thus λ > 0, and the complementary slackness condition (8.46) therefore
implies that

∑M
i=1 pi = N . Plugging (8.48) into this equation determines the

multiplier λ by solving for λ in the equation
∑M

1

√
βi/λ ∧ 1 = N . ��

By combining these two lemmas, we readily obtain a characterization of
the random distribution achieving the minimal average divergence (8.37) sub-
ject to the support constraint

∑M
i=1 P(Wi > 0) ≤ N and the unbiasedness

constraint (8.36).

Proposition 8.2.5. Let W = (W1, . . . ,WM ) be a random vector with non-
negative entries. This vector is a solution to the problem

minimize
M∑
i=1

E(Wi − ωi)2

subject to
M∑
i=1

P(Wi > 0) ≤ N ,

E[Wi] = ωi, i = 1, . . . ,M ,

if and only if for any i = 1, . . . ,M ,

Wi =

{
ωi/pi with probability pi

def= µωi ∧ 1 ,
0 otherwise ,

(8.49)

where µ is the unique solution of the equation

M∑
i=1

µωi ∧ 1 = N . (8.50)

Proof. Put pi = P(Wi > 0). By Lemma 8.2.3,

M∑
i=1

E(Wi − ωi)2 ≥
M∑
i=1

ω2
i

pi
−

M∑
i=1

ω2
i . (8.51)

The proof follows from Lemma 8.2.4. ��

Remark 8.2.6. Note that if µωi ≥ 1, then pi = 1 and ωi/pi = ωi. Thus (8.49)
implies that weights exceeding a given threshold (depending on the weights
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themselves) are left unchanged. For a particle i whose weight falls below this
threshold, the algorithm proceeds as follows. With probability 1− pi > 0, the
weight is set to zero; otherwise it is set (and thus increased) to ωi/pi = 1/µ
in order to satisfy the unbiasedness condition. The algorithm is related to
the procedure proposed in Liu et al. (2001) under the name partial rejection
control. �

The above proposition describes the marginal distribution of the Wi that
solves (8.37). The following result proposes a simple way to draw random
weights (W1, . . . ,WM ) that satisfy (8.49) with

∑M
i=1 1{Wi>0} = N .

Proposition 8.2.7. Let µ be the solution of (8.50),

S def= {i ∈ {1, . . . ,M} : µωi ≥ 1} (8.52)

and pi = µωi ∧ 1. Let U be a uniform random variable on (0, 1) and set

Ni =
⌊∑

j �∈S, j≤i pj + U
⌋
−

⌊∑
j �∈S, j<i pj + U

⌋
, i = 1, . . . ,M ,

with �·� being the integer part. Define the random vector W = (W1, . . . ,WM )
by

Wi =

⎧⎪⎨⎪⎩
ωi if i ∈ S ,

1/µ if i �∈ S and Ni > 0 ,

0 if i �∈ S and Ni = 0 .

(8.53)

Then W satisfies (8.49) and

M∑
i=1

1{Wi>0} = N , (8.54)

M∑
i=1

Wi = 1 . (8.55)

Proof. We first show that P(Wi > 0) = pi. For i ∈ S this is immediate, with
pi = 1. Thus pick i �∈ S. Then

Ni ≤ sup
x≥0

(�x + pi� − �x�) ≤ 1 .

Therefore Ni = 1{Wi>0}, which implies P(Wi > 0) = P(Ni > 0) = E[Ni]. It
is straightforward to check that the expectation of Ni is the difference of the
two sums involved in its definition, whence E[Ni] = pi. Thus P(Wi > 0) = pi,
showing that (8.49) is satisfied.

Next observe that
∑M

1 1{Wi>0} = |S| +
∑

i�∈S Ni. The sum of Ni over all
i �∈ S is a telescoping one, whence
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M∑
i=1

1{Wi>0} = |S|+
⌊∑

i�∈S pi + U
⌋
− �U�

= |S|+ �N − |S|+ U� − �U� = |S| − (N − |S|) = N ,

where we used
∑

i�∈S pi =
∑M

1 pi−
∑

i∈S pi = N − |S| for the second equality.
Thus we have (8.54).

Finally,
M∑
i=1

Wi =
∑
i∈S

ωi +
∑
i∈S

Ni/µ .

From the above, we know that the second sum on the right-hand side equals
(N − |S|)/c. Because, by definition, ωi/pi = 1/µ for i �∈ S, the first sum is∑

i∈S

ωi = 1−
∑
i�∈S

ωi = 1− µ−1
∑
i�∈S

pi = 1− N − |S|
µ

.

We conclude that
∑M

1 Wi = 1, that is, (8.55) holds. ��
Back to our original problem, Proposition 8.2.7 suggests the following sam-

pling algorithm.

Algorithm 8.2.8 (Optimal Sampling).

Weighting : For i = 1, . . . , N and j = 1, . . . , r, compute the weights

ωi,j
k+1 =

ωi
kT

u
k (ξi

0:k, j)∑N
l=1

∑r
c=1 ω

l
kT

u
k (ξi

0:k, c)
. (8.56)

Sampling:
• Determine the solution µk+1 of the equation

N∑
i=1

r∑
j=1

µk+1ω
i,j
k+1 ∧ 1 = N .

• Draw U ∼ U([0, 1]) and set S = 0.
• For i = 1, . . . , N and j = 1, . . . , r,

– If µk+1ω
i,j
k+1 ≥ 1, then set W i,j

k+1 = ωi,j
k+1.

– If µk+1ω
i,j
k+1 < 1, then set

W i,j
k+1 =

{
µ−1

k+1 if �µk+1(S + ωi,j
k+1) + U� − �µk+1S + U� > 0 ,

0 otherwise ,

and set S = S + ωi,j
k+1.

Update: For i = 1, . . . , N and j = 1, . . . , r, if W i,j
k+1 > 0 set

ξ
I(i,j)
0:k+1 = (ξi

0:k, j) ,

ω
I(i,j)
k+1 = W i,j

k+1 , where I(i, j) =
i∑

l=1

j−1∑
c=1

1{W l,c
k+1>0} .
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8.2.3 Application to CGLSSMs

In this section, we consider conditionally Gaussian linear state-space models
(CGLSSMs), introduced in Section 1.3.4 and formally defined in Section 2.2.3.
Recall that a CGLSSM is such that

Wk+1 = A(Ck+1)Wk + R(Ck+1)Uk , (8.57)
Yk = B(Ck)Wk + S(Ck)Vk ,

where

• {Ck}k≥0 is a Markov chain on the finite set C = {1, . . . , r}, with transition
kernel QC and initial distribution νC ;

• the state noise {Uk}k≥0 and measurement noise {Vk}k≥0 are independent
multivariate Gaussian white noises with zero mean and identity covariance
matrices;

• the initial partial state W0 is assumed to be independently N(µν , Σν)
distributed;

• A, B, R, and S are known matrix-valued functions of appropriate dimen-
sions.

Efficient recursive procedures, presented in Section 5.2.6, are available to
compute the filtered or predicted estimate of the partial state and the as-
sociated error covariance matrix conditionally on the indicator variables and
observations. By embedding these algorithms in the sequential importance
sampling resampling framework, it is possible to derive computationally ef-
ficient sampling procedures that operate in the space of indicator variables
(Doucet et al., 2000a; Chen and Liu, 2000). Recall in particular that the ker-
nel T u

k in (8.24) has an expression given by (4.11), which we repeat below.

T u
k (c0:k, ck+1) =

(
Lk+1

Lk

)−1

QC(ck, ck+1)×∫
W
gk+1(ck+1, wk+1)ϕk+1|k(c0:k+1, wk+1) dwk+1 , (8.58)

for c0:k+1 ∈ Ck+2, where

• Lk is the likelihood of the observations up to time k;
• gk+1(ck+1, wk+1) = g [(ck+1, wk+1), Yk+1] is the value of the transition

density function of the observation Yk+1 given the state and indicator
variables, that is,

gk+1(ck+1, wk+1) = N(Yk+1;B(ck+1)wk+1, S(ck+1)St(ck+1)) , (8.59)

with N(·;µ,Σ) being the density of the Gaussian multivariate distribution
with mean µ and covariance matrix Σ;
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• ϕk+1|k(c0:k+1, wk+1) is the density of the predictive distribution of the
partial state Wk+1 given the observations up to time k and the indicator
variables up to time k + 1:

ϕk+1|k(c0:k+1, wk+1) = N
(
wk+1; Ŵk+1|k(c0:k+1), Σk+1|k(c0:k+1)

)
,

(8.60)
where Ŵk+1|k(c0:k+1) and Σk+1|k(c0:k+1) denote respectively the condi-
tional mean and error covariance matrix of the prediction of the par-
tial state Wk+1 in terms of the observations Y0:k and indicator variables
C0:k+1 = c0:k+1—these quantities can be computed recursively using the
Kalman one-step prediction/correction formula (see Section 5.2.3).

As discussed in Section 4.2.3, the distribution of the partial state Wn condi-
tional on the observations up to time n is a mixture of rn+1 components—here,
Gaussian components—with weights given by ψ0:n|n. In the particle approx-
imation, each particle ξi

0:n relates to a single term in this mixture. Particle
approximation of the filtering distribution ϕn|n of the partial state Wn thus
consists in recursively choosing N components out of a growing mixture of
rn+1 components and adjusting accordingly the weights of the components
which are kept; hence the name mixture Kalman filter proposed by Chen and
Liu (2000) to describe this approach.

Algorithm 8.2.9 (Mixture Kalman Filter).

Initialization: For i = 1, . . . , r, compute

ξi
0 = i ,

ωi
0 = N(Y0;B(i)µν , B(i)ΣνB

t(i) + S(i)St(i)) νC(c0) ,

K0(ξi
0) = Bt(i)Σν

[
B(i)ΣνB

t(i) + S(i)St(i)
]−1

,

Ŵ0|0(ξi
0) = µν + K0(ξi

0) [Y0 −B(i)µν ] ,

Σ0|0(ξi
0) = Σν −K0(ξi

0)B(i)Σν .

Recursion:
Computation of weights: For i = 1, . . . , N and j = 1, . . . , r, compute

Ŵk+1|k(ξi
0:k, j) = A(j)Ŵk|k(ξi

0:k) ,

Σk+1|k(ξi
0:k, j) = A(j)Σk|k(ξi

0:k)At(j) + R(j)Rt(j) ,

Ŷk+1|k(ξi
0:k, j) = B(j)Ŵk+1|k(ξi

0:k, j) ,

Γk+1(ξi
0:k, j) = B(j)Σk+1|k(ξi

0:k, j)B
t(j) + S(j)St(j) ,

ω̃i,j
k+1 = ωi

k N(Yk+1 ; Ŷk+1|k(ξi
0:k, j), Γk+1(ξi

0:k, j)) QC(ξi
k, j) .

(First Option) Importance Sampling Step: For i = 1, . . . , N , draw J i
k+1 in

{1, . . . , r} with probabilities proportional to ω̃i,1
k , . . . , ω̃i,r

k , conditionally
independently of the particle history, and set
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ξi
0:k+1 = (ξi

0:k, J
i
k+1) ,

ωi
k+1 =

r∑
j=1

ω̃i,j
k+1

/
N∑

i=1

r∑
j=1

ω̃i,j
k+1 ,

Kk+1(ξi
0:k+1) = Σk+1|k(ξi

0:k, J
i
k+1)B

t(J i
k+1)Γ

−1
k+1(ξ

i
0:k+1, J

i
k+1) ,

Ŵk+1|k+1(ξi
0:k+1) = Ŵk+1|k(ξi

0:k, J
i
k+1)

+ Kk+1(ξi
0:k+1)

[
Yk+1 − Ŷk+1|k(ξi

0:k, J
i
k+1)

]
,

Σk+1|k+1(ξi
0:k+1) =

[
I −Kk+1(ξi

0:k+1)B(Jk+1)
]
Σk+1|k(ξi

0:k, J
i
k+1) .

(Second Option) Optimal Sampling Step:
• Draw importance weights W i,j

k for i = 1, . . . , N and j = 1, . . . , r
using Algorithm 8.2.8.

• Set I = 0. For i = 1, . . . , N and j = 1, . . . , r, if W i,j
k+1 > 0 then

ξI
0:k+1 = (ξi

0:k, j) ,

ωI
k+1 = W i,j

k+1 ,

Kk+1(ξI
0:k+1) = Σk+1|k(ξi

0:k, j)B
t(j)Γ−1

k+1(ξ
i
0:k, j) ,

Ŵk+1|k+1(ξI
0:k+1) = Ŵk+1|k(ξi

0:k, j)

+ Kk+1(ξI
0:k+1)

[
Yk+1 − Ŷk+1|k(ξi

0:k, j)
]
,

Σk+1|k+1(ξI
0:k+1) =

[
I −Kk+1(ξI

0:k+1)B(j)
]
Σk+1|k(ξi

0:k, j) ,
I = I + 1 .

Note that in the algorithm above, {W i,j
k } are the weights drawn according

to Algorithm 8.2.8. These have nothing to do with the state variable Wk

and should not be mistaken with the corresponding predictor denoted by
Ŵk+1|k(ξi

0:k, j). The first option corresponds to the basic importance sampling
strategy—without resampling—and is thus analogous to the SIS approach
of Algorithm (7.2.2). As usual, after several steps without resampling, the
particle system quickly degenerates into a situation where the discrepancy
between the weights {ωi

k}1≤i≤N is more and more pronounced as k grows.
The second option corresponds to a resampling step based on Algorithm 8.2.8,
which avoids particle duplication in the situation where Ck is finite-valued.

Example 8.2.10. To illustrate the previous algorithm, we consider once more
the well-log data of Example 1.3.10 using the same modeling assumptions
as in Example 6.3.7. In contrast to Example 6.3.7 however, we now consider
sequential approximation of the filtering (or fixed-lag smoothing) distributions
of the jump and outlier indicators rather than the block (non-sequential)
approximation of the joint smoothing distributions of these variables.
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Fig. 8.2. On-line analysis of the well-log data, using 100 particles with detection
delay ∆ = 0. Top: data; middle: posterior probability of a jump; bottom: posterior
probability of an outlier.
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Fig. 8.3. On-line analysis of the well-log data, using 100 particles with detection
delay ∆ = 5 (same display as above).
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The main aim of analyzing well-log data is the on-line detection of abrupt
changes in the level of the response. The detection delay, defined as the number
of samples that are processed before a decision is taken, should be kept as small
as possible. Here the detection delay has been set to ∆ = 0 and ∆ = 5: after
processing each observation Yk, the probability of a jump having occurred at
time k−∆ was estimated by averaging the values of {ξi

0:k(k−∆)}1≤i≤N (see
Example 6.3.7 for the detail of the parameterization used in this example).

The results of a single on-line analysis of the well-log data using the optimal
sampling strategy (at each step) are shown in Figures 8.2 (∆ = 0) and 8.3
(∆ = 5). In both cases, N = 100 particles are used. For ∆ = 0, the particle
filter has performed reasonably well: most of the obvious jumps in the level
of the data have a posterior probability close to 1, although some of them
are obviously missing (around time index 2000 for instance). In addition,
differentiating jumps from outliers is particularly difficult in this case and
the filter has misclassified outliers into change points (at time index 700 for
instance). On Figure 8.3 (∆ = 5), most of the misclassification errors have
disappeared and the overall result is quite good (although some points are
still detected both as change points and outliers as in index 1200). Because
the typical length of an outlier is about four, five samples are usually enough
to tell whether a change in the level has occurred. �

8.3 Particle Approximation of Smoothing Functionals

As emphasized in Section 4.1, it is often of interest to approximate the ex-
pectation of some statistic tn(x0:n) under the joint smoothing distribution
φ0:n|n, ∫

· · ·
∫

tn(x0:n)φ0:n|n(dx0:n) .

This difficult problem admits a computationally simpler solution in cases
where the statistic has the specific form—which we called a smoothing func-
tional in Section 4.1—given by (see Definition 4.1.2):

tn+1(x0:n+1) = mn(xn, xn+1)tn(x0:n) + sn(xn, xn+1) , n ≥ 0 , (8.61)

for all x0:n+1 ∈ Xn+2. Here {mn}n≥0 and {sn}n≥0 are two sequences of
real measurable functions on X × X. Examples include the sample mean
tn(x0:n) = (n+1)−1 ∑n

k=0 xk, the first-order sample autocovariance coefficient
tn(x0:n) = n−1 ∑n

k=1 xk−1xk, etc. Other important examples of smoothing
functionals arise in parameter estimation when using the EM algorithm or
when computing the gradient of the log-likelihood function (see Chapters 10
and 11 for details).

Define the finite signed measure τn on (X,X ) by

τn(f) def=
∫
· · ·

∫
f(xn) tn(x0:n)φ0:n|n(dx0:n) , f ∈ Fb (X) . (8.62)
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Note that by construction, τn(X) = φ0:n|n(tn), that is, the quantity of inter-
est. By Proposition 4.1.3, the measures {τn}n≥0 may be updated recursively
according to

τ0(f) = {ν(g0)}−1
∫

f(x0) t0(x0)g0(x0) ν(dx0)

and

τn+1(f) = c−1
n+1

∫∫
f(xn+1)

[
τn(dxn)Q(xn, dxn+1)gn+1(xn+1)mn(xn, xn+1)

+ φn(dxn)Q(xn, dxn+1)gn+1(xn+1)sn(xn, xn+1)
]
, (8.63)

where the normalizing constant cn+1 is given by (3.22) as cn+1 = φnQgn+1.
It is easily seen that τn is absolutely continuous with respect to the filtering
measure φn. Hence (8.63) may be rewritten as

τn+1(f) =
∫∫

f(xn+1)×{
dτn

dφn
(xn)mn(xn, xn+1) + sn(xn, xn+1)

}
φn:n+1|n+1(dxn:n+1) . (8.64)

In SISR algorithms, the joint smoothing distribution φ0:n+1|n+1 at time n+1 is
approximated by a set {ξi

0:n+1}1≤i≤N of particles with associated importance
weights {ωi

n+1}1≤i≤N . Due to the sequential update of the particle trajecto-
ries, there exist indices I1

n+1, . . . , I
N
n+1 (see Algorithm 7.3.4) such that

ξi
0:n+1 = (ξ

Ii
n+1

0:n , ξi
n+1) ,

meaning that the first n + 1 coordinates of the path are simply copied from
the previous generation of particles. Because τn is absolutely continuous with
respect to φn for any n, it seems reasonable to approximate τn using the same
system of particles as that used to approximate φn. That is, for any n we
approximate τn by

τ̂n =
N∑

i=1

ωi
n∑N

j=1 ω
j
n

γi
nδξi

n
, (8.65)

where γi
n, i = 1, . . . , N , are signed weights. Such approximations have been

considered in different settings by Cappé (2001a), Cérou et al. (2001), Doucet
and Tadić (2003), and Fichou et al. (2004). This approximation of τn yields
the following estimator of φ0:n|n(tn) = τn(X):

φ̂0:n|n(tn) =
N∑

i=1

ωi
n∑N

j=1 ω
j
n

γi
n . (8.66)
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The two measures τ̂n and φ̂n have the same support, which implies that
τ̂n is absolutely continuous with respect to φ̂n; in addition, for any x ∈
{ξ1

n, . . . , ξ
N
n },

dτ̂n

dφ̂n

(x) =

∑
j∈In(x) ω

j
nγ

j
n∑

j∈In(x) ω
j
n

, (8.67)

where In(x) def= {j = 1, . . . , N : ξj
n = x}. In cases where there are no ties (all

particle locations are distinct), we simply have

dτ̂n

dφ̂n

(ξi
n) = γi

n . (8.68)

To derive a recursive approximation of τ̂n, it is only needed to derive up-
date equations for the signed weights γi

n. Plugging the particle approximation
φ̂n:n+1|n+1 ∝

∑N
i=1 ω

i
n+1δξi

n:n+1
of the retrospective smoothing distribution

φn:n+1|n+1 into the update equation (8.64) yields the following approxima-
tion of the measure τn+1:

N∑
i=1

ωi
n+1∑N

j=1 ω
j
n+1

{
dτn

dφn
(ξ

Ii
n+1

n )mn(ξ
Ii

n+1
n , ξi

n+1) + sn(ξ
Ii

n+1
n , ξi

n+1)
}
δξi

n+1
.

(8.69)
Using the approximation (8.68) of dτn

dφn
(ξj

n), the latter relation suggests the
following recursion for the weights {γi

n}1≤i≤N :

γi
0 = t0(ξi

0) , (8.70)

γi
n+1 = γ

Ii
n+1

n mn(ξ
Ii

n+1
n , ξi

n+1) + sn(ξ
Ii

n+1
n , ξi

n+1) . (8.71)

This relation, originally derived by Cappé (2001a)2, is computationally at-
tractive because the approximation uses the same set particles and weights
as those used to approximate the filtering distribution; only the incremental
signed weights need to be computed recursively. Also, it mimics the exact
recursion for τn and therefore seems like a good way to approximate this
sequence of measures.

To get a better understanding of the behavior of the algorithm, we
will derive the recursion (8.71) from a different (admittedly more elemen-
tary) perspective. The sequential importance sampling approximation of the
joint smoothing distribution φ0:n|n amounts to approximate, for any statistic
tn(x0:n), φ0:n|n(tn) by

φ̂0:n|n(tn) =
N∑

i=1

ωi
n∑N

j=1 ω
j
n

tn(ξi
0:n) . (8.72)

2The recursion obtained by Cérou et al. (2001) is based on a very different
argument but turns out to be equivalent in the case where the functional of interest
corresponds to the gradient of the log-likelihood function (see Section 10.2.4 for
details).
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If the statistic tn is a smoothing functional as defined in (8.61), this quan-
tity can be evaluated sequentially so that storing the whole particle paths is
avoided. Denote by {tin}1≤i≤N the current value of the smoothing functional
tn along the particle path ξi

0:n: tin = tn(ξi
0:n). This quantity may be updated

according to the recursion ti0 = t0(ξi
0) and

tin+1 = t
Ii

n+1
n mn(ξ

Ii
n+1

n , ξi
n+1) + sn(ξ

Ii
n+1

n , ξi
n+1), i = 1, . . . , N . (8.73)

Perhaps surprisingly, because the two approximations have been derived
from two different perspectives, (8.73) and (8.71) are identical. This means
that both equations are recursive ways to compute the approximation (8.72)
of expectations with respect to the joint smoothing distribution. The sec-
ond reasoning, which led to recursion (8.73), however, raises some concern
about the practical use of this approximation. Because the path particles
{(ξi

0:n, ω
i
n)}1≤i≤N are targeted to approximate a probability distribution over

the space Xn+1, whose dimension grows with n, it is to be expected that the
curse of dimensionality can only be fought by increasing the number N of path
particles as n increases (Del Moral, 2004). A worst case analysis suggests that
the number N of path particles should grow exponentially with n, which is
of course unrealistic. This assertion should however be taken with some care
because we are in general interested only in low-dimensional statistical sum-
maries of the particle paths. Hence, the situation usually is more contrasted,
as illustrated below on an example.

Example 8.3.1. We consider here the stochastic volatility model of Exam-
ple 7.2.5:

Xk+1 = φXk + σUk , Uk ∼ N(0, 1) ,
Yk = β exp(Xk/2)Vk , Vk ∼ N(0, 1) .

Here the observations {Yk}k≥0 are the log-returns, {Xk}k≥0 is the log-
volatility, and {Uk}k≥0 and {Vk}k≥0 are independent sequences of standard
white Gaussian noise. We use the SISR algorithm with systematic resampling
and instrumental kernel being a t-distribution with 5 degrees of freedom and
mode and scale adjusted to the mode and curvature of the optimal instru-
mental kernel (see Example 7.2.5). We consider the daily log-returns, that
is, the difference of the log of the series, on the British pound/US dollar ex-
change rate from October, 1 1981, to June, 28 1985 (the data is scaled by
100 and mean-corrected—see Kim et al., 1998, and Shephard and Pitt, 1997
for details). The number of samples is n = 945, and we used the stochastic
volatility model with parameters φ = 0.975, β = 0.63, and σ = 0.16; these
are the maximum likelihood estimates reported by Sandmann and Koopman
(1998) on this data set.

The path particles after 70 iterations are plotted in Figure 8.4. The figure
clearly shows that the selection mechanism implies that for any given time
index k ≤ n, the number of ancestors, at that time, of the particle trajectories
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Fig. 8.4. Particle trajectories at time n = 70 for the stochastic volatility model using
the algorithm of Example 7.2.5 with N = 100 particles and systematic resampling.

ending in index n becomes small as the difference between n and k grows. It
is therefore to be expected that estimation of the expectation under the joint
smoothing distribution of statistics involving the first time lags will typically
display large fluctuations and that these fluctuations will get larger when n
increases.

This behavior is indeed illustrated in Figure 8.5, which shows particle
estimates of

∫
x2 φ0|n(dx) for different values of n and N . The variance of the

particle estimate steadily increases with n for all values of N . In addition, a
fairly large number N of particles is needed to obtain reliable estimates for
larger values of n although the value to be estimated does not change much
when n gets larger than, say, n = 20.

It is interesting to contrast the results of particle methods with those
that can be obtained with the (non-sequential) Markov chain Monte Carlo
(MCMC) methods of Chapter 6. For MCMC methods, because the target
distribution is static and equal to the joint distribution φ0:n|n, we simply ran
100 instances of the sampler of Example 6.3.1 for each value of n and recorded
the averaged value of the first component (squared) in each sample. Here a
“sweep” refers to the successive updates of each of the n + 1 sites of the
simulated sequence Xi

0:n (see Example 6.3.1 for details). The computation
cost of the MCMC and particles approaches, with comparable values of n
and N , are thus roughly the same. Remember however that in the particle
approach, estimated values of

∫
x2 φ0|n(dx) for different values of n may be
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Fig. 8.5. Box and whisker plots of particle estimates of
∫
x2 φ0|n(dx) for n = 1, 5,

20, 30, and 500, and particle population sizes N = 102, 103, and 104. The plots are
based on 100 independent replications.
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Fig. 8.6. Same figure as above for MCMC estimates of
∫
x2 φ0|n(dx), where N

refers to the number of MCMC sweeps though the data, using the MCMC sampler
of Example 6.3.1.

obtained in a single run of the algorithm due to the sequential nature of the
computations. Observe first on the leftmost display of Figure 8.6 that the
MCMC estimates obtained with just N = 100 sweeps are severely downward
biased: this is due to the fact that the sequence of states X1

0:n is initialized
with zero values and N = 100 is insufficient to forget this initialization, due
to the correlation between successive MCMC simulations (see Figure 6.10).
On this data set (and with those parameter values), about 200 iterations are
indeed needed to obtain reasonably unbiased estimates. The next important
observation about Figure 8.6 is that the variance of the estimate does not
vary much with n. This is of course connected to the observation, made in
Example 6.3.1, that the correlation between successive MCMC simulations
does not change (significantly) as n increases. For smaller values of n, the
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existence of correlation makes the MCMC approach far less reliable than the
particle method. But for larger values of n, the degradation of the results
previously observed for the particle method—with a fixed value of N and as
n increases—kicks in and the comparison is more balanced (compare the fifth
boxes in the rightmost displays of Figures 8.5 and 8.6).

In some sense, the degradation observed on Figure 8.5 as n grows (N
being fixed) is all the more disturbing that we expect the result to be nearly
independent of n, once it exceeds a given value (which is clearly the case
on Figures 8.5 and 8.6). Indeed, the forgetting property of the smoothing
distributions discussed in Section 4.3 implies that the posterior distribution of
the state x0 depends predominantly on the observations Yk with time indices
close to k = 03 (see, e.g., Polson et al., 2002, for a related use of the forgetting
property). For large values of n, it is thus reasonable to approximate the
expectation of tn,0(x0:n) = x0 under φ0|n by that of the same quantity under
φ0|k for k large enough, but still much smaller than n. Of course it is to be
expected that the bias of the approximation decreases when increasing the
number of lags k. On the other hand, as mentioned above, the dispersion
of the particle estimator of the expectation under the reduced-lag smoothing
distribution φ0|k(t0,n) increases with k. We are thus faced with a classical bias-
variance trade-off problem; when k is large the bias is small but the dispersion
is large, and vice versa. Setting k smaller than n is thus an effective way of
robustifying the estimator without any modification of the sequential Monte
Carlo procedure.

To give an idea of how large k should be for the example under consid-
eration, the difference between the means of the particle estimates (obtained
using N = 105 particles) of φ0|n(tn,0) and φ0|k(tn,0) is less than 10−3 for
n = 100 and k = 20. For k = 1 and k = 10, the corresponding differences are
0.2 and −0.12, respectively. This means that we can safely estimate φ0|n(t0,n)
by φ0|k(t0,n) if we take k ≥ 20. The standard error of the reduced-lag smooth-
ing estimator φ0|20(t0,n) is, at least, three times less than that of φ0|500(t0,n).
As a consequence, we can achieve the same level of performance using reduced-
lag smoothing with about 10 times less particles (compare, on Figure 8.5, the
third box in the second display with the fifth one in the third display).

This naturally raises the question whether the same conclusion can be
drawn for other statistics of interest. Suppose that we want to approximate
the expectations of tn,1(x0:n) =

∑n−1
l=0 x2

l and tn,2(x0:n) =
∑n

l=1 xl−1xl under
the joint smoothing distribution φ0:n|n4. These two statistics may be writ-
ten as time averages, immediately suggesting the fixed-lag approximations∑n−1

l=0

∫
x2

l φl|(l+k)∧n(dxl) and
∑n

l=1

∫
xl−1xl φl−1:l|(l+k)∧n(dxl−1:l) for some

3Note that we invoke here the spirit of Section 4.3 rather than an exact result, as
we are currently unable to prove that the forgetting property holds for the stochas-
tic volatility model (see discussion at the end of Section 4.3), although empirical
evidence says it does.

4These statistics need to be evaluated in order to estimate the intermediate quan-
tity of the Expectation-Maximization algorithm—see Example 11.1.2 for details.



8.3 Particle Approximation of Smoothing Functionals 285

  10   20 joint
400

450

500

550
102 Particles

t 1

  10   20 joint

103 Particles

  10   20 joint

104 Particles

  10   20 joint
400

450

500

550
102 Particles

t 2

  10   20 joint

103 Particles

  10   20 joint

104 Particles

Fig. 8.7. Box and whisker plots of particle estimators of the expectations of the
two statistics tn,1(x0:n) =

∑n−1
k=0 x2

k (top) and tn,2(x0:n) =
∑n

k=1 xkxk−1 (bottom)
for n = 945: from left to right, increasing particle population sizes of N = 102, 103,
and 104; on each graph, fixed-lag smoothing approximation for smoothing delays
k = 10 and 20 and full path “joint” particle approximation. The plots are based on
100 independent replications.

lag k—where the term fixed-lag refers to the fact that k is fixed and does
not vary with n. To approximate both of these sums, one can use a variant
of (8.73) in which only the part of the sum that pertains to indices l located
less than k lags away from the current time index is updated, while the con-
tribution of indices further back in the past is fixed. A little thought should
convince the reader that this can be achieved by storing the cumulative contri-
bution of past sections of the trajectories that do not get resampled anymore∑N

i=1
∑n−k−1

l=0 s(ξi
0:n(l)) as well as the recent history of the particles {ξi

0:n(l)}
for l = n − k, . . . , n and i = 1, . . . , N ; here s is the function of interest, say
s(x) = x2 in the case of tn,1, and ξi

0:n(l) denotes the element of index l in the
path ξi

0:n. As above, it is expected that increasing the number of lags k will
increase the dispersion but decrease the bias. This is confirmed by the results
displayed in Figure 8.7. Again, the use of fixed-lag instead of joint smoothing
provides more accurate estimators. �

To conclude this section, we would like to stress again the difference be-
tween fixed-dimensional statistics like tn,0(x0:n) = x0 and smoothing function-
als, in the sense of Definition (4.1.2), which depend on the complete collection
of hidden states up to time n (for instance, tn,1(x0:n) =

∑n−1
l=0 x2

l ). Although
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the latter case does seem to be more challenging, the averaging effect due to
n should not be underestimated: even crude approximations of the individual
terms, say

∫
x2

l φl|n(dxl) in the case of tn,1, may add up to provide a reliable
approximation of the conditional expectation of tn,1. In our experience, the
strategy discussed above is usually successful with rather moderate values of
the lag k and the number N of particles, as will be illustrated in Chapter 11.
In the case of fixed-dimensional statistics, more elaborate smoothing algo-
rithms may be more recommendable, particularly in situations where relying
on forgetting properties might be questionable (Kitagawa, 1996; Fong et al.,
2002; Briers et al., 2004).



9

Analysis of Sequential Monte Carlo Methods

The previous chapters have described many algorithms to approximate pre-
diction, filtering, and smoothing distributions. The development of these al-
gorithms was motivated mainly on heuristic grounds, and the validity of these
approximations is of course a question of central interest. In this chapter, we
analyze these methods, mainly from an asymptotic perspective. That is, we
study the behavior of the estimators in situations where the number of par-
ticles gets large. Asymptotic analysis provides approximations that in many
circumstances have proved to be relatively robust. Most importantly, asymp-
totic arguments provide insights in the sampling methodology by verifying
that the procedures are sensible, providing a framework for comparing com-
peting procedures, and providing understanding of the impact of different
options (choice of importance kernel, etc.) on the overall performance of the
samplers.

9.1 Importance Sampling

9.1.1 Unnormalized Importance Sampling

Let (X,X ) be a measurable space. Define on (X,X ) two probability distribu-
tions: the target distribution µ and the instrumental distribution ν.

Assumption 9.1.1. The target distribution µ is absolutely continuous with
respect to the instrumental distribution ν, µ� ν, and dµ/dν > 0 ν-a.s.

Let f be a real-valued measurable function on X such that µ(|f |) =
∫
|f | dµ <

∞. Denote by ξ1, ξ2, . . . an i.i.d. sample from ν and consider the estimator

µ̃IS
ν,N (f) =

1
N

N∑
i=1

f(ξi)
dµ

dν
(ξi) . (9.1)
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Because this estimator is the sample average of independent random vari-
ables, there is a range of results to asses the accuracy of µ̃IS

ν,N (f) as an es-
timator of µ(f). Some of these results are asymptotic in nature, like the law
of large numbers (LLN) and the central limit theorem (CLT). It is also pos-
sible to derive non-asymptotic bounds like Berry-Esseen bounds, bounds on
error moments E |µ̃IS

ν,N (f) − µ(f)|p for some p > 0 or on the tail probability
P
(
|µ̃IS

ν,N (f)− µ(f)| ≥ ε
)
. Instead of covering the full scale of results that can

be derived, we establish for the different algorithms presented in the previous
chapter a law of large numbers, a central limit theorem, and deviation bounds.

A direct application of the LLN and of the CLT yields the following result.

Theorem 9.1.2. Let f be a real measurable function such that µ(|f |) < ∞
and |f |µ � |f |ν, and let ξ1, ξ2, . . . be a sequence of i.i.d. random variables
from ν. Then the unnormalized importance sampling estimator µ̃IS

ν,N (f) given
by (9.1) is strongly consistent, limN→∞ µ̃IS

ν,N (f) = µ(f) a.s.
Assume in addition that∫

f2
[
dµ

dν

]2

dν <∞ . (9.2)

Then µ̃IS
ν,N (f) is asymptotically Gaussian,

√
N(µ̃IS

ν,N (f)− µ(f)) D−→ N
(

0,Varν

(
f
dµ

dν

))
as N →∞ ,

where Varν

(
f dµ

dν

)
is given by

Varν

(
f
dµ

dν

)
=

∫ [
f
dµ

dν
− µ(f)

]2

dν .

Obviously, while the importance sampling construction (9.1) is universal,
the performance of the importance sampling estimator depends heavily on
the relation between the target distribution µ, the instrumental distribution
ν, and the function f . It is also worthwhile to note that for a given function
f , it is most often possible to find a distribution ν that yields an estimate
with a lower variance than when using the Monte Carlo method, that is,
taking ν = µ. In some situations the improvements can be striking: this is in
particular the case where the function f is non-zero only for values that are
in the tails of the target distribution µ, a situation that occurs for instance
when estimating the probability of rare events. The basic idea is to choose the
importance distribution ν so that it generates values that are in the region
where the integrand f dµ

dν is large, as this region is where the most important
contributions are made to the value of the integral.

Notice that

Varν

(
f
dµ

dν

)
= [µ(f)]2 ν

[( |f |dµ/dν
µ(|f |) − 1

)2
]

,
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where the second factor on the right-hand side is the chi-square distance
between the densities 1 and |f |dµ

dν /µ(|f |) under ν. This factor is of course
in general unknown, but may be estimated consistently by computing the
(squared) coefficient of variation CV2

N , see (7.35), of the importance weights
ωi = |f(ξi)|dµ

dν (ξi), i = 1, . . . , N .
Poor selection of the instrumental distribution can induce large variations

in the importance weights dµ/dν and thus unreliable approximations of µ(f).
In many settings, an inappropriate choice of the instrumental distribution
might lead to an estimator (9.1) whose variance is infinite (and which therefore
does not satisfy the assumptions of the CLT). Here is a simple example of this
behavior.

Example 9.1.3 (Importance Sampling with Cauchy and Gaussian
Variables). In this example, the target µ = C(0, 1) is a standard Cauchy
distribution, and the instrumental distribution ν = N(0, 1) is a standard Gaus-
sian distribution. The importance weight function, given by

dµ

dν
(x) =

√
2π

exp(x2/2)
π (1 + x2)

,

is obviously badly behaved. In particular

1√
2π

∫ ∞

−∞

[
dµ

dν
(x)

]2

exp(−x2/2) dx = ∞ .

Figure 9.1 illustrates the poor performance of the associated importance sam-
pling estimator for the function f(x) = exp(−|x|). We have displayed the
quantile-quantile plot of the sample quantiles of the unnormalized IS estimator
µ̃IS

ν,N (f), obtained from m = 500 independent Monte Carlo experiments, ver-
sus the quantiles of a standard normal distribution. In the left panel N =100
and in the right panel N =1,000. The quantile-quantile plot shows deviations
from the normal distribution in both the lower and the upper tail for both
N =100 and N =1,000, indicating that the distribution of µ̃IS

ν,N (f) does not
converge in the limit to a Gaussian distribution. �

Example 9.1.4. We now switch the roles of the target and instrumental dis-
tributions, taking µ = N(0, 1) and ν = C(0, 1). The importance weight is
bounded by

√
2π/e, and this time Theorem 9.1.2 can be applied. Quantile-

quantile plots of the sample quantiles of the unnormalized IS estimator
µ̃IS

ν,N (f) are shown in Figure 9.2. The fit is good, even when the sample size
is small (N = 100). It is worthwhile to investigate the impact of the choice
of the scale of the Cauchy distribution. Assume now that ν = C(0, σ) where
σ > 0 is the scale parameter. The importance weight function is bounded by

√
2π

eσ eσ2/2 , σ <
√

2 ,

σ
√

π/2 , σ ≥
√

2 .
(9.3)
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Fig. 9.1. Quantile-quantile plot of the sample quantiles of the unnormalized IS
estimator of µ(f) versus the quantiles of a standard normal distribution. The target
and instrumental distributions µ and ν are standard Cauchy and standard Gaussian,
respectively, and f(x) = exp(−|x|). The number of Monte Carlo replications is
m = 500. Left panel: sample size N = 100. Right panel: sample size N = 1, 000.
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Fig. 9.2. Same figure as above with the roles of µ and ν switched: the target
distribution µ is standard Gaussian and the instrumental distribution ν is standard
Cauchy.
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For σ <
√

2, the maximum is attained at ±
√

2− σ2, while for σ ≥
√

2 it is
attained at x = 0. The upper bound on the importance weight has a minimum
at σ = 1.
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Fig. 9.3. Box-and-whisker plots of the unnormalized IS estimator of µ(f). The
target and instrumental distributions µ and ν were standard Gaussian and Cauchy
with scale σ, respectively, and f(x) = exp(−|x|). Left to right: σ: 0.1, 1, and 10. The
sample size was N = 1,000 and the number of Monte Carlo replications for each
plot was m = 500.

Figure 9.3 displays box-and-whisker plots of the unnormalized IS estimator
for three different values of the scale: σ = 0.1, σ = 1, and σ = 10. The choice
σ = 1 leads to estimators that are better behaved than for σ = 0.1 and σ = 10.
In the first case, the values drawn from the instrumental distribution are
typically too small to represent the standard Gaussian distribution around 0.
In the second case, the values drawn are typically too large, and many draws
fall far in the tail of the Gaussian distribution. �

9.1.2 Deviation Inequalities

As outlined above, it is interesting to obtain some non-asymptotic control of
the fluctuations of the importance sampling estimator. We may either want to
compute bounds on moments E |µ̃IS

ν,N (f)−µ(f)|p, or to control the probability
P(|µ̃IS

ν,N (f) − µ(f)| ≥ t) for some t > 0. Because µ̃IS
ν,N (f) is a sum of i.i.d.

random variables, there is a variety of probability inequalities that may be
applied for this purpose (see Petrov, 1995, Chapter 2). We do not develop
this topic in detail, but just mention two inequalities that will be used later
in the book.
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The first family of inequalities is related to the control on moments of sums
of random variables. There are a variety of inequalities of that kind, which
are all similar (except for the constants).

Theorem 9.1.5 (Marcinkiewicz-Zygmund Inequality). If X1, . . . , Xn

is a sequence of independent random variables and p ≥ 2, then

E

∣∣∣∣∣
n∑

i=1

(Xi − E[Xi])

∣∣∣∣∣
p

≤ C(p)np/2−1
n∑

i=1

E |Xi − E(Xi)|p (9.4)

for some positive constant C(p) only depending on p.

The second family of inequalities is related to bounding the tail proba-
bilities. There is a large amount of work in this domain too. The archetypal
result is the so-called Hoeffding inequality.

Theorem 9.1.6 (Hoeffding Inequality). Let X1, . . . , Xn be independent
bounded random variables such that P(ai ≤ Xi ≤ bi) = 1. Then for any t ≥ 0,

P

{
n∑

i=1

[Xi − E(Xi)] ≥ t

}
≤ e−2t2/

∑n
i=1(bi−ai)2

and

P

{
n∑

i=1

[Xi − E(Xi)] ≤ −t
}
≤ e−2t2/

∑n
i=1(bi−ai)2 .

From these inequalities, it is straightforward to derive non-asymptotic
bounds on moments and tail probabilities of the importance sampling esti-
mator. Because the importance ratio is formally not defined on sets A that
are such that ν(A) = 0, we first need to extend the concept of oscillation—
see (4.14)—as follows. For any measurable function f and measure ν, we define
the essential oscillation of f with respect to ν by

oscν (f) def= 2 inf
c∈R

‖f − c‖ν,∞ , (9.5)

where ‖g‖ν,∞ denotes the essential supremum of g (with respect to ν), the
smallest number a such that {x : g(x) > a} has ν-measure 0. It is easily
checked that the above definition implies that for any a and b such that
a ≤ f(ξ) ≤ b ν-a.s., oscν (f) ≤ (b− a).

Theorem 9.1.7. For p ≥ 2 and any N ≥ 1, the estimator µ̃IS
ν,N (f) defined

in (9.1) satisfies

E |µ̃IS
ν,N (f)− µ(f)|p ≤ C(p)N−p/2ν

(∣∣∣∣f dµdν − µ(f)
∣∣∣∣p) ,

where the constant C(p) < ∞ only depends on p. Moreover, for any N ≥ 1
and any t ≥ 0,

P
[
|µ̃IS

ν,N (f)− µ(f)| ≥ t
]
≤ 2 exp

[
−2Nt2

/
osc2

ν (fdµ/dν)
]
. (9.6)
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9.1.3 Self-normalized Importance Sampling Estimator

When the normalizing constant of the target distribution µ is unknown, it is
customary to use the self-normalized form of the importance sampling esti-
mator,

µ̂IS
ν,N (f) =

∑N
i=1 f(ξi)dµ

dν (ξi)∑N
i=1

dµ
dν (ξi)

. (9.7)

This quantity is obviously free from any scale factor in dµ/dν. The properties
of this estimator are of course closely related to those of the unnormalized
importance sampling estimator.

9.1.3.1 Consistency and Asymptotic Normality

Theorem 9.1.8. Let f be a measurable function such that µ(|f |) < ∞. As-
sume that µ � ν and let ξ1, ξ2, . . . , be an i.i.d. sequence with distribution ν.
Then

µ̂IS
ν,N (f) a.s.−→ µ(f) as N →∞ .

Assume in addition that f satisfies∫
[1 + f2]

[
dµ

dν

]2

dν <∞ . (9.8)

Then the sequence of estimators µ̂IS
ν,N (f) is asymptotically Gaussian,

√
N

[
µ̂IS

ν,N (f)− µ(f)
] D−→ N

(
0, σ2(ν, f)

)
as N →∞ ,

where

σ2(ν, f) =
∫ [

dµ

dν

]2

[f − µ(f)]2dν . (9.9)

Proof. Strong consistency follows from

N−1
N∑

i=1

f(ξi)
dµ

dν
(ξi) a.s.−→ µ(f) and N−1

N∑
i=1

dµ

dν
(ξi) a.s.−→ 1 .

Write

√
N

[
µ̂IS

ν,N (f)− µ(f)
]

=
N−1/2 ∑N

i=1
dµ
dν (ξi)

[
f(ξi)− µ(f)

]
N−1

∑N
i=1

dµ
dν (ξi)

.

By the central limit theorem, the numerator of the right-hand side above
converges weakly to N(0, σ2(ν, f)) as N → ∞, with σ2(ν, f) given by (9.9),
and as noted above the corresponding denominator converges a.s. to 1. The
second part of the theorem then follows by Slutsky’s theorem (Billingsley,
1995). ��
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9.1.3.2 Deviation Inequalities

Assessing deviance bounds for (9.7) is not a trivial task, because both the
numerator and the denominator of µ̂IS

ν,N (f) are random. The following ele-
mentary lemma plays a key role in deriving such bounds.

Lemma 9.1.9. Let f be a measurable function and assume that µ � ν. Let
c be a real constant and define f̄ = f − c. Then

∣∣µ̂IS
ν,N (f)− µ(f)

∣∣ ≤ ∣∣∣∣∣ 1
N

N∑
i=1

[
dµ

dν
(ξi)f̄(ξi)− µ(f̄)

]∣∣∣∣∣
+

∥∥f̄∥∥
ν,∞

∣∣∣∣∣ 1
N

N∑
i=1

[
dµ

dν
(ξi)− 1

]∣∣∣∣∣ ν-a.s. (9.10)

Proof. First note that µ̂IS
ν,N (f) − µ(f) = µ̂IS

ν,N

(
f̄
)
− µ(f̄). Next consider the

decomposition

µ̂IS
ν,N

(
f̄
)
− µ(f̄) =

1
N

N∑
i=1

[
dµ

dν
(ξi)(f̄(ξi)− µ(f̄))

]

+
∑N

i=1
dµ
dν (ξi)f̄(ξi)∑N

i=1
dµ
dν (ξi)

[
1− 1

N

N∑
i=1

dµ

dν
(ξi)

]
.

Finally, use the triangle inequality and maximize over f̄(ξi) in the second
term. ��

From this result we may obtain moment bounds using the Marcinkiewicz-
Zygmund inequality or, under more stringent conditions, exponential bounds
on tail probabilities.

Theorem 9.1.10. Assume that ν [(dµ/dν)p] <∞ for some p ≥ 2. Then there
exists a constant C <∞ such that for any N ≥ 1 and measurable function f ,

E |µ̂IS
ν,N (f)− µ(f)|p ≤ CN−p/2 oscp

ν (f) . (9.11)

In addition, for any t ≥ 0,

P
[
|µ̂IS

ν,N (f)− µ(f)| ≥ t
]
≤ 4 exp

[
−8Nt2

/
9 ‖dµ/dν‖2ν,∞ osc2

ν (f)
]
. (9.12)

Proof. The bound (9.11) is a direct consequence of Lemma 9.1.9 and the
Marcinkiewicz-Zygmund inequality (Theorem 9.1.5). Note that by minimiz-
ing over c in the right-hand side of (9.10), we may replace

∥∥f̄∥∥
ν,∞ by

(1/2) oscν (f), which is done here.
For the second part pick b ∈ (0, 1) and write, using Lemma 9.1.9,
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P
[
|µ̂IS

ν,N (f)− µ(f)| ≥ t
]
≤ P

[∣∣∣∣∣
N∑

i=1

(
dµ

dν
(ξi)f̄(ξi)− µ(f̄)

)∣∣∣∣∣ ≥ Nbt

]

+ P

[∣∣∣∣∣
N∑

i=1

(
dµ

dν
(ξi)− 1

)∣∣∣∣∣ ≥ N(1− b)t
/∥∥f̄∥∥

ν,∞

]
.

Next apply Hoeffding’s inequality (Theorem 9.1.6) to both terms on the right-
hand side to obtain

P
[
|µ̂IS

ν,N (f)− µ(f)| ≥ t
]
≤ 2 exp

{
−2Nb2t2

/
osc2

ν

[
(dµ/dν)f̄

]}
+ 2 exp

[
−2N(1− b)2t2

/
‖dµ/dν‖2ν,∞

∥∥f̄∥∥2
ν,∞

]
, (9.13)

where the fact that oscν (dµ/dν) ≤ ‖dµ/dν‖ν,∞ (as dµ/dν is positive) has
been used. Now note that when f̄ is such that

∥∥f̄∥∥
ν,∞ = (1/2) oscν (f),

oscν

[
(dµ/dν)f̄

]
≤ ‖dµ/dν‖ν,∞ oscν (f). Hence to equate both terms on the

right-hand side of (9.13) we set b = 2/3 which gives (9.12). ��

9.2 Sampling Importance Resampling

9.2.1 The Algorithm

In this section, we study the sampling importance resampling (SIR) technique,
introduced by Rubin (1987, 1988). It enables drawing an asymptotically inde-
pendent sample ξ1, . . . , ξN from a target distribution µ. The method requires
that we know an instrumental distribution ν satisfying µ � ν and such that
the Radon-Nikodym derivative dµ/dν is known up to a normalizing factor.
Therefore either µ or ν, or both, may be known up to a normalizing constant
only. A tacit assumption is that sampling from the instrumental distribution
ν is doable.

The SIR method proceeds in two steps. In the sampling stage, we draw
an i.i.d. sample ξ1, . . . , ξM from the instrumental distribution ν. The size
M of this intermediate sample is usually taken to be larger, and sometimes
much larger, than the size M̃ of the final sample. In the resampling stage, we
draw a sample ξ̃1, . . . , ξ̃M̃ of size M̃ from the instrumental sample ξ1, . . . , ξM .
There are several ways of implementing this basic idea, the most obvious
approach being to sample with replacement with a probability of picking each
ξi, i = 1, . . . ,M , that is proportional to its importance weight dµ

dν (ξi). That
is, ξ̃i = ξIi

for i = 1, . . . , M̃ , where I1, . . . , IM̃ are conditionally independent
given the instrumental sample and with distribution

P(I1 = i | ξ1, . . . , ξM ) =
dµ
dν (ξi)∑M

j=1
dµ
dν (ξj)

.
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For any measurable real-valued function f , we may associate to this sample
an estimator µ̂SIR

ν,M̃
(f) of µ(f), defined as the Monte Carlo estimator of µ(f)

associated to the resampled particles ξ̃1, . . . , ξ̃M̃ ,

µ̂SIR
ν,M̃

(f) =
1
M̃

M̃∑
i=1

f(ξ̃i) =
1
M̃

M∑
i=1

N if(ξi) . (9.14)

Here N i is the total number of times that ξi was selected from the instrumental
sample. Thus (N1, . . . , NM ) have a multinomial distribution with

E[N i | ξ1, . . . , ξM ] = M̃
dµ
dν (ξi)∑M

j=1
dµ
dν (ξi)

, i = 1, . . . ,M .

The conditional expectation of the SIR estimate with respect to the instru-
mental sample equals the (self-normalized) importance sampling estimator
provided by this sample,

E[µ̂SIR
ν,M̃

(f) | ξ1, . . . , ξM ] =
M∑
i=1

dµ
dν (ξi)∑M

i=1
dµ
dν (ξi)

f(ξi) .

The asymptotic analysis of the SIR estimator involves more sophisti-
cated arguments however, because ξ̃1, . . . , ξ̃M̃ is not an i.i.d. sample from
µ. Nevertheless, for any measurable bounded real-valued function f on X and
j = 1, . . . , M̃ ,

E[f(ξ̃j) | ξ1, . . . , ξM ] =
M∑
i=1

dµ
dν (ξi)∑M

j=1
dµ
dν (ξj)

f(ξi) P−→ µ(f) ,

where the convergence follows from Theorem 9.1.8. Because the conditional
expectation on the left-hand side is bounded by ‖f‖∞, we can take expec-
tations of both sides and appeal to dominated convergence to conclude that
E[f(ξ̃j)] → µ(f) as M →∞. This shows that, whereas marginally the ξ̃i are
not distributed according to µ, the distribution of any ξ̃i is asymptotically
correct in the sense that for any i, the marginal distribution of ξ̃i converges
to the target distribution µ as M → ∞. In the same way, for any i �= j and
f, g ∈ Fb (X) we have

E[f(ξ̃i)g(ξ̃j)] = E[E[f(ξ̃i)g(ξ̃j) | ξ1, . . . , ξM ]]

= E[E[f(ξ̃i) | ξ1, . . . , ξM ] E[g(ξ̃j) | ξ1, . . . , ξM ]]

= E[µ̂IS
ν,M (f) µ̂IS

ν,M (g)] .

Repeating the argument above shows that E[f(ξ̃i)g(ξ̃j)] → µ(f)µ(g). Thus,
whereas the random variables ξ̃i and ξ̃j for i �= j are not independent for any
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given sample size M , they are asymptotically independent as the sample size
M goes to infinity.

The estimation error µ̂SIR
ν,M (f)− µ(f) can be decomposed into two terms,

µ̂SIR
ν,M̃

(f)− µ(f) = µ̂SIR
ν,M̃

(f)− µ̂IS
ν,M (f) + µ̂IS

ν,M (f)− µ(f) . (9.15)

The first term on the right-hand side is the error associated with the approxi-
mation of the importance sampling estimator µ̂IS

ν,M (f) by its sampled version
µ̂SIR

ν,M̃
(f). The second term is the error associated to the importance sampling

estimator. To obtain asymptotic results, we now assume that the instrumen-
tal and final sample sizes are non-decreasing sequences of integers, denoted by
{MN} and {M̃N}, respectively, both diverging to infinity. As shown in Theo-
rem 9.2.15, when µ(|f |) <∞, these two error terms go to zero and therefore
µ̂SIR

ν,M̃N
(f) is a consistent estimator of µ(f).

The next question to answer in the elementary asymptotic theory devel-
oped in this chapter is to find conditions upon which aN{µ̂SIR

ν,M̃N
(f) − µ(f)}

is asymptotically normal; here {aN}, the rate sequence, is a non-decreasing
sequence of positive reals. Again we use the decomposition (9.15). First a
conditional central limit theorem shows that, for any f ∈ L2(X, µ),

M̃
1/2
N

[
µ̂SIR

ν,M̃N
(f)− µ̂IS

ν,MN
(f)

]
= M̃

−1/2
N

⎧⎨⎩
M̃N∑
i=1

f(ξ̃i)− E[f(ξ̃i) | ξ1, . . . , ξMN ]

⎫⎬⎭ D−→ N (0,Varµ(f)) .

Note that N(0,Varµ(f)) is the limiting distribution of the plain Monte Carlo
estimator of µ(f) from an i.i.d. sample from µ. Theorem 9.1.8 shows that if
(1 + f2)(dµ/dν)2 is ν-integrable, then

M
1/2
N

{
µ̂IS

ν,MN
(f)− µ(f)

} D−→ N
(

0,Varν

{
dµ

dν
[f − µ(f)]

})
.

The key result, shown in Theorem 9.2.15, is that M̃1/2
N {µ̂SIR

ν,M̃N
(f)−µ̂IS

ν,MN
(f)}

and M
1/2
N {µ̂IS

ν,MN
(f)− µ(f)} are asymptotically independent.

In many circumstances, and in particular when studying the resampling
step in sequential or iterative applications of the SIR algorithm (such as in
the sequential Monte Carlo framework), it is convenient to relax the condi-
tions on the instrumental sample ξ1, . . . , ξM . In addition, it is of interest to
consider weighted samples (ξ1, ω1), . . . , (ξM , ωM ), where ωi are non-negative
(importance) weights. We now proceed by introducing precise definitions and
notations and then present the main results.

9.2.2 Definitions and Notations

Let {MN}N≥0 be a sequence of positive integers. Throughout this section, we
use the word triangular array to refer to a system {UN,i}1≤i≤MN

of random
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variables defined on a common probability space (Ω,F ,P) and organized as
follows:

U1,1 U1,2 . . . U1,M1

U2,1 U2,2 . . . . . . U2,M2

U3,1 U3,2 . . . . . . . . . U3,M3

...
...

...
...

...
. . .

The row index N ranges over 1, 2, 3, . . . while the column index i ranges from 1
to MN , where MN is a sequence of integers satisfying limN→∞MN

= ∞. It will
usually be the case that M1 < M2 < . . . ; hence the term triangular. It is not
necessary to assume this, however. It is not assumed that the random variables
within each row are independent nor that they are identically distributed. We
assume nothing about the relation between the random variables on different
rows.

Let {GN}N≥0 be a sequence of sub-σ-fields of F . We say that a triangular
array {UN,i}1≤i≤MN

is measurable with respect to this sequence if for any N
the random variables UN,1, . . . , UN,MN are GN -measurable. We say that the
triangular array {UN,i}1≤i≤MN

is conditionally independent given {GN} if for
any N the random variables UN,1, . . . , UN,MN are conditionally independent
given GN . The term conditionally i.i.d. given {GN} is defined in an entirely
similar manner.

In the sequel, we will need a number of technical results regarding trian-
gular arrays. To improve readability of the text, however, these results are
gathered at the end of the chapter, in Section 9.5.1.

Definition 9.2.1 (Weighted Sample). A triangular array of random vari-
ables {(ξN,i, ωN,i)}1≤i≤MN

is said to be a weighted sample if for any N ≥ 1,
ωN,i ≥ 0 for i = 1, . . . ,MN and

∑MN

i=1 ωN,i > 0 a.s.

Let us now consider specifically the case when the variables ξN,i take val-
ues in the space X. Assume that the weighted sample {(ξN,i, ωN,i)}1≤i≤MN

approximates the instrumental distribution ν in the sense that for any f
in an appropriately defined class of functions, W−1

N

∑MN

i=1 ωN,if(ξN,i), with
WN =

∑MN

i=1 ωN,i being the normalization factor, converges in an appropri-
ately defined sense to ν(f) as N tends to infinity. The most elementary way
to assess this convergence consists in requiring that W−1

N

∑MN

i=1 ωN,if(ξN,i)
converges to ν(f) in probability for functions f in some class C of real-valued
functions on X.

Definition 9.2.2 (Consistent Weighted Sample). The weighted sample
{(ξN,i, ωN,i)}1≤i≤MN

is said to be a consistent for the probability measure ν
and the set C ⊆ L1(X, ν) if for any f ∈ C,

MN∑
i=1

ωN,i∑MN

j=1 ω
N,j

f
(
ξN,i

) P−→ ν(f) as N →∞ .
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In order to obtain sensible results, we restrict our attention to classes of sets
that are sufficiently rich.

Definition 9.2.3 (Proper Set). A set C of real-valued measurable functions
on X is said to be proper if the following conditions are satisfied.

(i) C is a linear space: for any f and g in C and reals α and β, αf +βg ∈ C.
(ii) If |g| ∈ C and f is measurable with |f | ≤ |g|, then |f | ∈ C .

For any function f , define the positive and negative parts of it by

f+ def= f ∨ 0 and f− def= (−f) ∨ 0 ,

and note that f+ and f− are both dominated by |f |. Thus, if |f | ∈ C, then
f+ and f− both belong to C and so does f = f+ − f−. It is easily seen that
for any p ≥ 0 and any measure µ on (X,X ), the set Lp(X, µ) is proper.

There are many different ways to obtain a consistent weighted sample.
An i.i.d. sample {ξN,i}1≤i≤MN

with common distribution ν is consistent for(
ν, L1(X, ν)

)
, and {(ξN,i, dµ

dν (ξN,i)}1≤i≤MN
is consistent for (µ,L1(X, µ)). Of

course, when dealing with such elementary situations, the use of triangular
arrays can be avoided. Triangular arrays come naturally into play when consid-
ering iterated applications of the SIR algorithm, as in sequential importance
sampling techniques. In this case, the weighted sample {(ξN,i, ωN,i}1≤i≤MN

is the result of iterated applications of importance sampling, resampling, and
propagation steps. We study several examples of such situations later in this
chapter.

The notion of sample consistency is weak but is in practice only moder-
ately helpful, because it does not indicate the rate at which the estimator
W−1

N

∑N
i=1 ω

N,if(ξN,i) converges to ν(f). In particular, this definition does
not provide a way to construct an asymptotic confidence interval for ν(f). A
natural way to strengthen it is to consider distributional convergence of the
normalized difference aN

∑MN

i=1
ωN,i

WN
{f(ξN,i)− ν(f)}.

Definition 9.2.4 (Asymptotically Normal Weighted Sample). Let A be
a class of real-valued measurable functions on X, let σ be a real non-negative
function on A, and let {aN} be a non-decreasing real sequence diverging to
infinity. We say that the weighted sample {(ξN,i, ωN,i)}1≤i≤MN

is asymp-
totically normal for (ν,A, σ, {aN}) if for any function f ∈ A it holds that
ν(|f |) <∞, σ2(f) <∞ and

aN

MN∑
i=1

ωN,i∑MN

j=1 ω
N,j

[
f(ξN,i)− ν(f)

] D−→ N(0, σ2(f)) as N →∞ .

Of course, if {(ξN,i, ωN,i)}1≤i≤MN
is asymptotically normal for (ν,A,

σ, {aN}), then it is also consistent for (ν,A). If {ξN,i}1≤i≤MN
are i.i.d. with
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common distribution ν then for any function f ∈ L2(X, ν) and any non-
decreasing sequence {MN} such that limN→∞ MN = ∞,

1√
MN

MN∑
i=1

[
f(ξN,i)− ν(f)

] D−→ N
(
0, ν

{
[f − ν(f)]2

})
.

Therefore {(ξN,i, 1)}1≤i≤MN
is an asymptotically normal weighted sample

for
(
ν, L2(X, ν), σ, {

√
MN}

)
with σ2(f) = ν

(
{f − ν(f)}2

)
. In the context

of importance sampling, for each N we draw {ξN,i}1≤i≤MN
independently

from the instrumental distribution ν and assign it weights {dµ
dν (ξN,i)}1≤i≤MN

.
Using an argument as in the proof of Theorem 9.1.8, it also follows that
{(ξN,i, dµ

dν (ξN,i))}1≤i≤MN
is an asymptotically normal weighted sample for

(µ,A, σ, {
√
MN}), with

A =

{
f ∈ L2(X, µ) : ν

({
dµ

dν
[f − µ(f)]

}2
)

<∞
}

and

σ2(f) = ν

({
dµ

dν
[f − µ(f)]

}2
)

, f ∈ A .

When the SIR algorithm is applied sequentially, the rate {aN} can be dif-
ferent from

√
MN because of the dependence among the random variables

{ξN,i}1≤i≤MN
introduced by the resampling procedure.

9.2.3 Weighting and Resampling

Assume that {(ξN,i, 1)}1≤i≤MN
is an i.i.d. sample from the instrumental dis-

tribution ν. In the first stage of the SIR procedure, we assign to these samples
importance weights dµ

dν (ξN,i), i = 1, . . . ,MN , where µ is the target distribu-
tion, assumed to be absolutely continuous with respect to ν. We then draw,
conditionally independently given FN = σ({ξN,1, . . . , ξN,MN }), random vari-
ables IN,1, . . . , IN,M̃N with distribution P(IN,k = ξN,i | FN ) = dµ

dν (ξN,i) and
let ξ̃N,i = ξN,IN,i

for i = 1, . . . , M̃N . Proceeding this way, we thus define
a weighted sample {(ξ̃N,i, 1)}1≤i≤M̃N

. As outlined in the discussion above,
we know that {(ξN,i, 1)}1≤i≤MN

is consistent for (ν, L1(X, ν)). We have al-
ready mentioned that {(ξN,i, dµ

dν (ξN,i))}1≤MN
is consistent for (µ,L1(X, µ));

therefore the weighting operation transforms a weighted sample consistent
for (ν, L1(X, ν)) into a weighted sample consistent for (µ,L1(X, µ)). Similarly,
in the second step, the resampling operation transforms a weighted sample
{(ξN,i, dµ

dν (ξN,i))}1≤i≤MN
into another one {(ξ̃N,i, 1)}1≤i≤M̃N

. It is a natural
question to ask whether the latter one is consistent for µ and, if so, what
an appropriately defined class of functions on X might be. Of course, in this
discussion it is also sensible to strengthen the requirement of consistency into
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asymptotic normality and again prove that the weighting and resampling op-
erations transform an asymptotically normal weighted sample for ν into an
asymptotically normal sample for µ (for appropriately defined class of func-
tions, normalizing factors, etc.)

The main purpose of this section is to establish such results. Because we
apply these results in a sequential context, we start from a weighted sam-
ple {(ξN,i, ωN,i}1≤i≤MN

, with weights ωN,i that are not necessarily identical.
Also, we do not assume that {ξN,i}1≤i≤MN

are conditionally i.i.d. with dis-
tribution ν. In addition, we denote by {GN} a sequence of sub-σ-fields of F .
When studying the single-stage SIR estimator, one may simply set, for any
N ≥ 0, GN equal to the trivial σ-field {∅, Ω}. Indeed, the use of {GN}N≥0
is a provision for situations in which the SIR algorithm is applied sequen-
tially; {GN}N≥0 handles the history of the particle system up to the current
iteration.

Algorithm 9.2.5 (Weighting and Resampling).

Resampling: Draw random variables {IN,1, . . . , IN,M̃N } conditionally indepen-
dently given

FN = GN ∨ σ
{
(ξN,1, ωN,1), . . . , (ξN,MN , ωN,MN )

}
, (9.16)

with probabilities proportional to ωN,1 dµ
dν (ξN,1), . . . , ωN,MN dµ

dν (ξN,MN ). In
other words, for k = 1, . . . , M̃N ,

P(IN,k = i | FN ) =
ωN,i dµ

dν (ξN,i)∑MN

j=1 ω
N,j dµ

dν (ξN,j)
, i = 1, . . . ,MN .

Assignment: For i = 1, . . . , M̃N , set

ξ̃N,i = ξN,IN,i

. (9.17)

We now study in which sense the weighted sample {(ξ̃N,i, 1)}1≤i≤M̃N
ap-

proximates the target distribution µ. Consider the following assumption.

Assumption 9.2.6. {(ξN,i, ωN,i)}1≤i≤MN
is consistent for (ν,C), where C is

a proper set of functions. In addition, dµ/dν ∈ C.

The following theorem is an elementary extension of Theorem 9.1.8. It
shows that the if the original weighted sample of Algorithm 9.2.5 is consistent
for ν, then the reweighted sample is consistent for µ.

Theorem 9.2.7. Assume 9.1.1 and 9.2.6. Then

C̃ def=
{
f ∈ L1(X, µ) : |f |dµ

dν
∈ C

}
(9.18)

is a proper set of functions and {(ξN,i, ωN,i dµ
dν (ξN,i))}1≤i≤MN

is consistent
for (µ, C̃).
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Proof. It is easy to check that C̃ is proper. Because {(ξN,i, ωN,i)}1≤i≤MN
is

consistent for (ν,C), for any function h ∈ C it holds that

MN∑
i=1

ωN,i∑MN

j=1 ω
N,j

h
(
ξN,i

) P−→ ν(h) .

By construction hdµ
dν ∈ C for any h ∈ C̃. Therefore

MN∑
i=1

ωN,i∑MN

j=1 ω
N,j

dµ

dν
(ξN,i)h(ξN,i) P−→ ν

(
h
dµ

dν

)
= µ(h) . (9.19)

The proof is concluded by applying (9.19) with h ≡ 1 and h = f . ��

The next step is to show that the sample {ξ̃N,i}, which is the result of the
resampling operation, is consistent for µ as well. The key result to proving
this is the following theorem, which establishes a conditional weak law of large
numbers for conditionally independent random variables under easily verified
technical conditions.

Theorem 9.2.8. Let µ be a probability distribution on (X,X ) and let f be
in L1(X, µ). Assume that the triangular array {ξN,i}1≤i≤MN

is conditionally
independent given {FN} and that for any non-negative C,

1
MN

MN∑
i=1

E
[
|f |(ξN,i)1{|f |(ξN,i)≥C}

∣∣ FN
] P−→ µ

(
|f |1{|f |≥C}

)
. (9.20)

Then
1

MN

MN∑
i=1

(
f(ξN,i)− E

[
f(ξN,i)

∣∣ FN
]) P−→ 0 . (9.21)

Proof. We have to check conditions (ii)–(iii) of Proposition 9.5.7. Set VN,i =
M−1

N f(ξN,i) for any N and i = 1, . . . ,MN , By construction, the triangular
array {VN,i} is conditionally independent given {FN} and E[|VN,i | FN ] <∞.
Equation (9.20) with C = 0 shows that

MN∑
i=1

E
[
|VN,i| | FN

]
≤M−1

N

MN∑
i=1

E
[
|f(ξN,i)|

∣∣ FN
] P−→ µ(|f |) <∞ ,

whence the sequence {∑MN

i=1 E[|VN,i| | FN}N≥0 is bounded in probability [con-
dition (ii)]. Next, for any positive ε and C we have for sufficiently large N ,
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MN∑
i=1

E
[
|VN,i|1{|VN,i|≥ε}

∣∣ FN
]

=
1

MN

MN∑
i=1

E
[
|f(ξN,i)|1{|f |(ξN,i)≥εMN }

∣∣ FN
]

≤ M−1
N

MN∑
i=1

E
[
|f(ξN,i)|1{|f |(ξN,i)≥C}

∣∣ FN
] P−→ µ(|f |1{|f |≥C}) .

By dominated convergence, the right-hand side of this display tends to zero
as C →∞. Thus, the left-hand side of the display converges to zero in prob-
ability, which is condition (iii). ��

We can now prove that the resampled particles are consistent for µ.

Theorem 9.2.9. Let {(ξ̃N,i, 1)}1≤i≤M̃N
be as in Algorithm 9.2.5 and let C̃ be

as in (9.18). Then under Assumptions 9.1.1, and 9.2.6, {(ξ̃N,i, 1)}1≤i≤M̃N
is

consistent for (µ, C̃).

Proof. We will apply Theorem 9.2.8 and thus need to verify its assumptions.
By construction, {ξ̃N,i}1≤i≤M̃N

is conditionally independent given FN . Pick
f in C̃. Because C̃ is proper, |f |1{|f |≥C} ∈ C̃ for any C ≥ 0. Therefore

1
M̃N

M̃N∑
i=1

E
[
|f |(ξ̃N,i)1{|f |(ξ̃N,i)≥C}

∣∣∣ FN
]

=
MN∑
i=1

ωN,i dµ
dν (ξN,i)∑MN

j=1 ω
N,j dµ

dν (ξN,j)
|f |(ξN,i)1{|f |(ξN,i)≥C}

P−→ µ(|f |1{|f |≥C}) ,

where the convergence follows from Theorem 9.2.7. Thus Theorem 9.2.8 ap-
plies, and taking C = 0, it allows us to conclude that M̃−1

N

∑M̃N

1 f(ξ̃N,i)
converges to µ(f) in probability for any non-negative f . By dividing a general
f in C̃ into its positive and negative parts, we see that the same conclusion
holds true for such f . ��

Our next objective is to establish asymptotic normality of the resampled
particles {(ξ̃N,i, 1)}. Consider the following assumption.

Assumption 9.2.10. The weighted sample {(ξN,i, ωN,i)}1≤i≤MN
is asymp-

totically normal for (ν, A, σ, {aN}), where A is a proper set of functions, σ
is a non-negative function on A, and {aN} is a non-decreasing sequence of
positive constants diverging to infinity. In addition, dµ

dν ∈ A.

We proceed in two steps. In a first step, we strengthen the conclusions of The-
orem 9.1.8 to show that the reweighted sample {(ξN,i, ωN,i dµ

dν (ξN,i))}1≤i≤MN

is asymptotically normal. Then we show that the sampling operation preserves
asymptotic normality.
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Theorem 9.2.11. Assume 9.1.1, 9.2.6, and 9.2.10 and define

Ā def=
{
f ∈ L2(X, µ) : |f |dµ

dν
∈ A

}
.

Then Ā is a proper set and the weighted sample {(ξN,i, ωN,i dµ
dν (ξN,i))}1≤i≤MN

is asymptotically normal for (µ, Ā, σ̄, {aN}) with

σ̄2(f) = σ2
{
dµ

dν
[f − µ(f)]

}
.

Proof. Once again it is easy to see that A is proper. Pick f in Ā. Under the
stated assumptions, dµ

dν ∈ A and f dµ
dν ∈ A. Therefore µ(|f |) = ν(|f |dµ

dν ) < ∞,
showing that f ∈ L1(X, µ). In addition, again as A is a proper, h = dµ

dν {f −
µ(f)} ∈ A. By construction, ν(h) = 0. Write

aN

{
MN∑
i=1

ωN,i dµ
dν (ξN,i)∑MN

j=1 ω
N,j dµ

dν (ξN,j)

[
f(ξN,i)− µ(f)

]}
=

aN

∑MN

i=1 ωN,ih(ξN,i)∑N
i=1 ω

N,i dµ
dν (ξN,i)

.

Because the weighted sample {(ξN,i, ωN,i}1≤i≤MN
is asymptotically normal

for (ν,A, σ, {aN}), h ∈ A, and ν(h) = 0, we conclude that

aN

MN∑
i=1

ωN,i∑MN

j=1 ω
N,j

h(ξN,i) D−→ N
(
0, σ2(h)

)
and note that σ2(h) = σ̄2(f). Moreover, because the same weighted sample is
consistent for ν,

MN∑
i=1

ωN,i∑N
j=1 ω

N,j

dµ

dν
(ξN,i) P−→ ν

(
dµ

dν

)
= 1 .

The proof now follows by Slutsky’s theorem (Billingsley, 1995). ��
In order to proceed to asymptotic normality after resampling, we need

some preparatory results. The following proposition establishes a conditional
CLT for triangular arrays of conditionally independent random variables. It
is an almost direct application of Theorem 9.5.13, which is stated and proved
in Section 9.5.1.

Proposition 9.2.12. Assume 9.1.1 and 9.2.6. Then for any u ∈ R and any
function f such that f2 dµ

dν ∈ C,

E

⎡⎣exp

⎛⎝iu M̃
−1/2
N

M̃N∑
i=1

{f(ξ̃N,i)− E[f(ξ̃N,i) | FN ]}

⎞⎠∣∣∣∣∣∣ FN

⎤⎦
P−→ exp

(
−(u2/2) Varµ(f)

)
, (9.22)

where {FN} and {ξ̃N,i}1≤i≤M̃N
are defined in (9.16) and (9.17), respectively.
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Corollary 9.2.13. Assume 9.1.1 and 9.2.6. Then

M̃
−1/2
N

M̃N∑
i=1

{f(ξ̃N,i)− E[f(ξ̃N,i) | FN ]} D−→ N(0,Varµ(f)) . (9.23)

Proof (of Proposition 9.2.12). We will appeal to Theorem 9.5.13 and hence
need to check that its conditions (ii) and (iii) are satisfied. First,

Var[f(ξ̃N,1) | FN ] =

MN∑
i=1

ωN,i dµ
dν (ξN,i)∑MN

j=1 ω
N,j dµ

dν (ξN,j)
f2(ξN,i)−

{
MN∑
i=1

ωN,i dµ
dν (ξN,i)∑MN

j=1 ω
N,j dµ

dν (ξN,j)
f(ξN,i)

}2

.

The assumptions say that {(ξN,i, ωN,i)}1≤i≤MN
is consistent for (ν,C). Be-

cause dµ
dν ∈ C and f2 dµ

dν ∈ C, the inequality |f |dµ
dν ≤ 1{|f |≤1}

dµ
dν + f2 dµ

dν shows
that |f |dµ

dν ∈ C. Theorem 9.2.7 then implies that

Var[f(ξ̃N,1) | FN ] P−→ µ(f2)− {µ(f)}2 = Varµ(f) .

Condition (ii) follows. Moreover, for any positive constant C,

M̃−1
N

M̃N∑
i=1

E[f2(ξ̃N,i)1{|f |(ξ̃N,i)≥C} | FN ]

=
MN∑
i=1

ωN,i dµ
dν (ξN,i)∑MN

j=1 ω
N,j dµ

dν (ξN,j)
f2(ξN,i)1{|f |(ξN,i)≥C} .

Because f2 dµ
dν belongs to the proper set C, we have f21{|f |≥C}

dµ
dν ∈ C. This

implies that the right-hand side of the above display converges in probability
to µ(f21|f |≥C). Hence condition (iii) also holds. ��

Applying successively Theorem 9.2.11 and Proposition 9.2.12 yields the
following result, showing that the resampling preserves asymptotic normality.

Theorem 9.2.14. Assume 9.1.1, 9.2.6, and 9.2.10, and that a2
N/M̃N has a

limit, α say, possibly infinite. Define

Ã def=
{
f ∈ L2(X, µ) : |f |dµ

dν
∈ A, f2 dµ

dν
∈ C

}
, (9.24)

where A and C are as in Assumptions 9.2.10 and 9.2.6, respectively. Then
Ã is a proper set and the following holds true for the resampled system
{(ξ̃N,i, 1)}1≤i≤M̃N

defined as in Algorithm 9.2.5.
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(i) If α < 1, then {(ξ̃N,i, 1)} is asymptotically normal for (µ, Ã, σ̃, {aN})
with

σ̃2(f) = αVarµ(f) + σ2
(
dµ

dν
{f − µ(f)}

)
, f ∈ Ã . (9.25)

(ii) If α ≥ 1, then {(ξ̃N,i, 1)} is asymptotically normal for (µ, Ã, σ̃, {M̃1/2
N })

with

σ̃2(f) = Varµ(f) + α−1σ2
(
dµ

dν
{f − µ(f)}

)
, f ∈ Ã . (9.26)

Thus, we see that if M̃N increases much slower than aN , so that α = ∞,
then the rate of convergence is M̃

1/2
N and the limiting variance is the basic

Monte Carlo variance Varµ(f). This means that aN is so large compared
to M̃N that the weighted sample {(ξN,i, ωN,i dµ

dν (ξN,i))} approximates µ with
negligible error, and the resampled particles can effectively be thought of as
an i.i.d. sample from µ. On the other hand, when M̃N increases much faster
than aN , so that α = 0, then the rate of convergence is aN and the limiting
variance is that associated with the weighted sample {(ξN,i, ωN,i dµ

dν (ξN,i))}
alone (see Theorem 9.2.11). This means that the size of the resample is so
large that the error associated with this part of the overall procedure can be
disregarded.

Proof (Theorem 9.2.14). Pick f ∈ Ã and write M̃−1
N

∑M̃N

i=1 f(ξ̃N,i) − µ(f) =
AN + BN with

AN =
MN∑
i=1

ωN,i dµ
dν (ξN,i)∑MN

j=1 ω
N,j dµ

dν (ξN,j)
{f(ξN,i)− µ(f)} ,

BN = M̃−1
N

M̃N∑
i=1

{f(ξ̃N,i)− E[f(ξ̃N,i) | FN ]} .

Under the stated assumptions, Proposition 9.2.11 shows that

aNAN
D−→ N

(
0, σ2

{
dµ

dν
[f − µ(f)]

})
.

Combining this with Proposition 9.2.12, we find that for any real numbers u
and v,

E
[
exp(i(uM̃1/2

N BN + vaNAN )
]

= E
[
E
[
exp(iuM̃1/2

N BN )
∣∣∣ FN

]
exp(ivaNAN )

]
→ exp

[
−(u2/2) Varµ(f)

]
exp

(
−(v2/2)σ2

{
dµ

dν
[f − µ(f)]

})
.
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Thus the bivariate characteristic function converges to the characteristic func-
tion of a bivariate normal, implying that(

aNAN

M̃
1/2
N BN

)
D−→ N

(
0 ,

[
σ2

(
dµ
dν {f − µ[f ]}

)
0

0 Varµ{f}

])
.

Put bN = aN if α < 1 and bN = M̃
1/2
N if α ≥ 1. The proof follows from

bN (AN + BN ) = (bNa−1
N )aNAN + (bNM̃

−1/2
N )M̃1/2

N BN .

��

9.2.4 Application to the Single-Stage SIR Algorithm

We now apply the above results to the single-stage SIR algorithm, sampling
from an instrumental distribution ν and then weighting and resampling to
obtain an approximately i.i.d. sample from µ. The procedure is illustrated in
Figure 9.4. Thus {ξN,i}1≤i≤MN

is an i.i.d. sample from ν and the weights are
set to 1; ωN,i ≡ 1. The LLN shows that Assumption 9.2.6 is satisfied with
C = L1(X, ν). Theorem 9.2.9 shows that for any f ∈ C̃ = L1(X, µ) (see the
definition in (9.18)),

1
M̃N

M̃N∑
i=1

f(ξ̃N,i) P−→ µ(f) .

Moreover, the weighted sample {(ξN,i, 1)}1≤i≤MN
satisfies Assumption 9.2.10

with A = L2(X, ν), σ2(f) = ν
(
{f − ν(f)}2

)
, and aN = M

1/2
N , provided

dµ/dν ∈ L2(X, ν). Thus Theorem 9.2.14 shows that {(ξ̃N,i, 1)}1≤i≤M̃N
is

asymptotically normal for µ. We summarize this in the following result.

Theorem 9.2.15. Assume 9.1.1 and let {ξN,i}1≤i≤MN
be i.i.d. random vari-

ables with distribution ν. Then {(ξ̃N,i, 1)}1≤i≤M̃N
given by Algorithm 9.2.5 is

consistent for
(
µ,L1(X, µ)

)
.

Assume in addition that limN→∞ MN/M̃N = α for some α ∈ [0,∞] and
that dµ

dν ∈ L2(X, ν). Define Ã = {f ∈ L2(X, µ) : f dµ
dν ∈ L2(X, ν)}. Then the

following holds true.

(i) If α < 1, then {(ξ̃N,i, 1))}1≤i≤M̃N
is asymptotically normal for (ν, Ã, σ̃,

{M1/2
N }) with

σ̃2(f) def= αVarµ(f) + Varν

{
dµ

dν
[f − µ(f)]

}
, f ∈ Ã .

(ii) If α ≥ 1, then {(ξ̃N,i, 1))}1≤i≤M̃N
is asymptotically normal for (ν, Ã, σ̃,

{M̃1/2
N }) with

σ̃2(f) def= Varµ(f) + α−1 Varν

{
dµ

dν
[f − µ(f)]

}
, f ∈ Ã .
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ν

dµ
dν (ξ

N,MN )dµ
dν (ξ

N,1)

ξ̃N,1 ξ̃N,M̃N

µ

ξN,1 ξN,MN

µ

Fig. 9.4. The single-stage SIR algorithm.

Without loss of generality, we may assume here that M̃N = N . To obtain
a rate

√
N asymptotically normal sample for the target distribution µ, the

cardinality MN of the instrumental sample should grow at least as fast as N ,
limN→∞ MN/N > 0. If limN→∞ MN/N = ∞, then

√
N [µ̂SIR

ν,N (f)− µ(f)] D−→ N(0,Varµ(f)) ,

that is, the SIR estimator and the plain Monte Carlo estimator µ̂MC
N (f)

of µ(f) (the estimator of µ(f) obtained by computing the sample average
N−1 ∑N

i=1 f(ξi) with {ξi} being an i.i.d. sample from the target distribution
µ) have the same limiting Gaussian distribution. In practice, this means that
large values for the instrumental sample should be used when one is asking
for a sample that behaves as an i.i.d. sample from µ.

We conclude this section with some elementary deviations inequalities.
These inequalities are non-asymptotic and allow evaluating the performance
of the SIR estimator for finite sample sizes.

Theorem 9.2.16. Assume 9.1.1 and let {ξN,i}1≤i≤MN
be i.i.d. random vari-

ables with distribution ν. Then for any t > 0, f ∈ Fb (X), a ∈ (0, 1), and
N ≥ 0,
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P

[∣∣∣∣∣M−1
N

MN∑
i=1

f(ξ̃N,i)− µ(f)

∣∣∣∣∣ ≥ t

]
≤ 2 exp

[
−2M̃Na2t2

/
osc2(f)

]
+ 4 exp

[
−8MN (1− a)2t2

/
9 osc2(f) ‖dµ/dν‖2ν,∞

]
.

Proof. Decompose M̃−1
N

∑M̃N

i=1 {f(ξ̃N,i)−µ(f)} as a sum AN +BN of the two
terms

AN (f) = M̃−1
N

M̃N∑
i=1

{f(ξ̃N,i)− E[f(ξ̃N,i) | ξN,1, . . . , ξN,MN ]} ,

BN (f) = M̃−1
N

M̃N∑
i=1

{E[f(ξ̃N,i) | ξN,1, . . . , ξN,MN ]− µ(f)}

=
∑MN

i=1
dµ
dν (ξN,i)f(ξN,i)∑MN

i=1
dµ
dν (ξN,i)

−
ν
(

dµ
dν f

)
ν
(

dµ
dν

) .

Hoeffding’s inequality implies that

P
(
|AN (f)| ≥ at

∣∣ ξN,1, . . . , ξN,MN
)
≤ 2 exp

[
−2M̃Na2t2

/
osc2(f)

]
.

The result also holds unconditionally by taking the expectation of the left-
hand side. For P(|BN (f)| ≥ (1−a)t), use the bound (9.12) of Theorem 9.1.10.

��

Example 9.2.17 (Importance Sampling with Cauchy and Gaussian
Variables, Continued). In this continuation of Example 9.1.3, the target
distribution µ is standard Gaussian and the instrumental distribution ν is
standard Cauchy. In this case dµ/dν is bounded by some finite M , so that

ν

[
f2

(
dµ

dν

)2
]
≤M ν

(
f2 dµ

dν

)
≤M µ(f2) .

Hence Theorem 9.2.15 applies to functions f that are square integrable with
respect to the standard Gaussian distribution. This condition is also required
to establish asymptotic normality of the importance sampling estimator. We
set N =1,000 and investigate the impact of the size M of the instrumental
sample on the accuracy of the SIR estimator for f(x) = exp(−x). Figure 9.5
displays the box-and-whisker plot obtained from 500 independent Monte Carlo
replications of the IS and SIR estimators of µ(f), for instrumental sample
sizes M =100, 1,000, 10,000, and 100,000. As expected, the fluctuations of
the SIR estimate decrease as the ratio M/N increases. Not surprisingly, when
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M =100 (α = 0.1) the fluctuation of µ̂IS
ν,M (f)−µ(f) dominates the resampling

fluctuation µ̂SIR
ν,M,N (f) − µ̂IS

ν,M (f). On the contrary, when M = 10, 000 (α =
10), the resampling fluctuation is much larger than the error associated with
the importance sampling estimate. Likewise, for this M the variance of the
SIR estimator is not significantly different from the variance of the plain
Monte Carlo estimator using an i.i.d. sample of size N =1,000 from the target
distribution µ. To judge the ability of the SIR sample to mimic the distribution
of an independent sample from µ, we applied a goodness-of-fit test.

Figure 9.5 displays observed p-values and observed rejection probabilities
for the Kolmogorov-Smirnov (KS) goodness-of-fit test of the null hypothesis
that the distribution is standard Gaussian (with significance level 5%). For
M =100 and 1,000, the p-values are small and the rejection probabilities are
large, meaning that the KS test detects a deviation from the null hypothesis
of Gaussianity. For M = 10, 000 and 100, 000 the p-values are much higher
and the probabilities of rejection are much smaller. �
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Fig. 9.5. Simulation results for estimation of the integral µ(f) with f(x) = exp(−x)
and sample size N =1,000, using importance sampling (IS) and sampling impor-
tance resampling (SIR) estimators. The instrumental distribution ν was standard
Cauchy and target distribution µ was standard Gaussian. The number of Monte
Carlo replications was 500 and the instrumental sample sizes were M = 100, 1,000,
10,000, and 100,000. Top left: Box-and-whisker plot of the IS estimates. Top right:
Box-and-whisker plot of the SIR estimates. Bottom left: Observed p-values of the
Kolmogorov-Smirnov goodness-of-fit test of the null hypothesis that the distribution
after resampling is standard Gaussian. Bottom right: Observed rejection probabili-
ties of the null hypothesis at significance level 5%.
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9.3 Single-Step Analysis of SMC Methods

We now carry the analysis one step forward to encompass elementary steps
of (some of) the sequential Monte Carlo methods discussed in the previous
chapters. To do that, we need to consider transformations of the weighted
sample that are more sophisticated than weighting and sampling. As outlined
in the previous chapter, many different actions might be considered, and it is
out of the scope of this chapter to investigate all possible variants. We focus in
the following on the SISR approach (Algorithm 7.3.4) and on the variant that
we called i.i.d. sampling (Algorithm 8.1.1). As discussed in Section 8.1.1, each
iteration of both of these algorithms is composed of two simple procedures—
selection and mutation—which we consider separately below.

9.3.1 Mutation Step

To study SISR algorithms, we need first to show that when moving the parti-
cles using a Markov transition kernel and then assigning them appropriately
defined importance weights, we transform a weighted sample consistent (or
asymptotically normal) for one distribution into a weighted sample consistent
(or asymptotically normal) for another appropriately defined distribution. As
before, we let ν be a probability measure on (X,X ), L be a finite transition
kernel on (X,X ), and R be a probability kernel on (X,X ). Define the proba-
bility measure µ on (X,X ) by

µ(A) =

∫
X ν(dx)L(x,A)∫
X ν(dx)L(x,X)

. (9.27)

We then wish to construct a sample consistent for µ, given a weighted sample
{(ξN,i, 1)}1≤i≤MN

from ν. To do so, we move the particles using R as an
instrumental kernel and then assign them suitable importance weights. Before
writing down the algorithm, we introduce some assumptions.

Assumption 9.3.1. νL(X) =
∫
X ν(dx)L(x,X) is positive and finite.

Assumption 9.3.2. {(ξN,i, 1)}1≤i≤MN
is consistent for (ν,C), where C is a

proper set. In addition, the function x 
→ L(x,X) belongs to C.

Assumption 9.3.3. For any x ∈ X, L(x, ·) is absolutely continuous with re-
spect to R(x, ·) and there exists a (strictly) positive version of dL(x, ·)/dR(x, ·).

Now let {αN} be a sequence of integers and put M̃N = αNMN . Consider
the following algorithm.

Algorithm 9.3.4 (Mutation). Draw ξ̃N,1, . . . , ξ̃N,M̃N conditionally indepen-
dently given FN = GN∨ σ(ξN,1, . . . , ξN,MN ) with distribution

P(ξ̃N,j ∈ A | FN ) = R(ξN,i, A)
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for i = 1, . . . ,MN , j = αN (i− 1) + 1, . . . , αN i, and A ∈ X , and assign ξ̃N,j the
weight

ω̃N,j =
dL(ξN,i, ·)
dR(ξN,i, ·) (ξ̃N,j).

Thus each particle gives birth to αN offspring. In many cases, we set
αN = 1; then each particle is propagated forward only once. Increasing the
number αN of offspring increases the particle diversity before the resampling
step and is thus a practical means for contending particle degeneracy. This of
course increases the computational complexity of the algorithm.

Theorem 9.3.5. Assume 9.3.1, 9.3.2 and 9.3.3, and define

C̃ def= {f ∈ L1(X, µ) : x 
→ L(x, |f |) ∈ C} , (9.28)

where µ is given by (9.27). Then C̃ is a proper set and {(ξ̃N,i, ω̃N,i)}1≤i≤M̃N

defined by Algorithm 9.3.4 is consistent for (µ, C̃).

Proof. Checking that C̃ is proper is straightforward, so we turn to the consis-
tency. We prove this by showing that for any f ∈ C̃,

1
M̃N

M̃N∑
j=1

ω̃N,jf(ξ̃N,j) P−→ νL(f) . (9.29)

Under the assumptions made, the function x 
→ L(x,X) belongs to C, implying
that the constant function 1 belongs to C̃; hence M̃−1

N

∑M̃N

j=1 ω̃
N,j converges to

νL(X) in probability. Then for any f ∈ C̃, the ratio of the two sample means
considered tends to νL(f)/νL(X) = µ(f) in probability. This is consistency.

To prove (9.29), pick f in C̃ and note that E[ω̃N,jf(ξ̃N,j) | FN ] = L(ξN,i, f)
for j and i as in Algorithm 9.3.4. Hence

M̃−1
N

M̃N∑
j=1

E[ω̃N,jf(ξ̃N,j) | FN ] = M−1
N

MN∑
i=1

L(ξN,i, f) P−→ νL(f) ,

so that it is sufficient to show that

M̃−1
N

M̃N∑
j=1

ω̃N,jf(ξ̃N,j)− M̃−1
N

M̃N∑
j=1

E[ω̃N,jf(ξ̃N,j) | FN ] P−→ 0 . (9.30)

For that purpose, we put VN,j = M̃−1
N ω̃N,jf(ξ̃N,j) and appeal to Propo-

sition 9.5.7; we need to check its conditions (i)–(iii). The triangular array
{VN,j}1≤j≤M̃N

is conditionally independent given {FN}; this is condition (i).
Next, just as above,
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M̃N∑
j=1

E[|VN,j | | FN ] = M−1
N

MN∑
i=1

L(ξN,i, |f |) P−→ νL(|f |) ,

showing condition (ii). We finally need to show that for any positive C,

AN =
M̃N∑
j=1

E[|VN,j |1{|VN,j |≥C} | FN ] P−→ 0 .

Put h(x, x′) = dL(x,·)
dR(x,·) (x

′)|f |(x′). For any positive C, we then have∫
R(x, dx′)h(x, x′)1{h(x,x′)≥C} ≤

∫
R(x, dx′)h(x, x′) = L(x, |f |) .

Because the function x 
→ L(x, |f |) ∈ C and the set C is proper, this shows
that the left-hand side of the above display is in C. Hence for large enough N ,

AN ≤M−1
N

MN∑
i=1

∫
R(ξN,i, dx′)h(ξN,i, x′)1{h(ξN,i,x′)≥C}

P−→
∫∫

ν(dx)R(x, dx′)h(x, x′)1{h(x,x′)≥C} .

The right-hand side of this inequality is bounded by νL(|f |) <∞ (cf. above),
so that, by dominated convergence, the right-hand side can be made arbitrarily
small by letting C → ∞. This shows that AN tends to zero in probability,
which is condition (iii). Thus Proposition 9.5.7 applies, (9.30) holds, and the
proof is complete. ��

To establish asymptotic normality of the estimators, we must strengthen
Assumption 9.3.2 as follows.

Assumption 9.3.6. The weighted sample {(ξN,i, 1)}1≤i≤MN
is asymptoti-

cally normal for (ν,A, σ, {M1/2
N }), where A is a proper set and σ is a non-

negative function on A.

Theorem 9.3.7. Assume 9.3.1, 9.3.2, 9.3.3, and 9.3.6, and that {αN} has a
limit α, possibly infinite. Define

Ã def=
{
f ∈ L2(X, µ) : x 
→ L(x, f) ∈ A and

x 
→
∫

X
R(x, dx′)

[
dL(x, ·)
dR(x, ·) (x′)f(x′)

]2

∈ C
}

. (9.31)

Then Ã is a proper set and {(ξ̃N,i, ω̃N,i)}1≤i≤M̃N
given by Algorithm 9.3.4 is

asymptotically normal for (µ, Ã, σ̃, {M1/2
N }) with
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σ̃2(f) def=
σ2 {L[f − µ(f)]}+ α−1η2[f − µ(f)]

[νL(X)]2
, f ∈ Ã , (9.32)

and η2 defined by

η2(f) def=
∫∫

ν(dx)R(x, dx′)
[
dL(x, ·)
dR(x, ·) (x′)f(x′)

]2

−
∫

ν(dx) [L(x, f)]2 .

(9.33)

Proof. First we note that by definition, α is necessarily at least 1. Checking
that Ã is proper is straightforward, so we turn to the asymptotic normality.
Pick f ∈ Ã and assume, without loss of generality, that µ(f) = 0. Write

M̃N∑
i=1

ω̃N,i∑M̃N

j=1 ω̃
N,j

f(ξ̃N,i) =
M̃N∑M̃N

j=1 ω̃
N,j

(AN + BN ) ,

with

AN = M̃−1
N

M̃N∑
i=1

E[ω̃N,if(ξ̃N,i) | FN ] = M−1
N

MN∑
i=1

L(ξN,i, f) ,

BN = M̃−1
N

M̃N∑
i=1

{ω̃N,if(ξ̃N,i)− E[ω̃N,if(ξ̃N,i) | FN ]} .

Because M̃N/
∑M̃N

i=1 ω̃N,i converges to 1/νL(X) in probability (cf. the proof of
Theorem 9.3.5), the conclusion of the theorem follows from Slutsky’s theorem
if we prove that M1/2

N (AN +BN ) converges weakly to N(0, σ2(Lf)+α−1η2(f)).
In order to do that, we first note that as the function x 
→ L(x, f) belongs

to A and {(ξN,i, 1)}1≤i≤MN
is asymptotically normal for (ν,A, σ, {M1/2

N }),

M
1/2
N AN

D−→ N(0, σ2(Lf)) .

Next we prove that for any real u,

E
[
exp(iuM̃1/2

N BN )
∣∣∣ FN

]
P−→ exp

[
−(u2/2)η2(f)

]
.

For that purpose, we use Proposition 9.5.12, and we thus need to check
its conditions (i)–(iii). Set VN,i = M̃

−1/2
N ω̃N,if(ξ̃N,i). The triangular array

{VN,i}1≤i≤M̃N
is conditionally independent given {FN} [condition (i)]. More-

over, the function x 
→
∫
R(x, dx′)h2(x, x′) with h(x, x′) = dL(x,·)

dR(x,·) (x
′)f(x′)

belongs to C. Therefore

M̃N∑
i=1

E[V 2
N,i | FN ] P−→

∫∫
ν(dx)R(x, dx′)h2(x, x′) ,
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M̃N∑
i=1

(E[VN,i | FN ])2 P−→
∫

ν(dx)
[∫

R(x, dx′)h(x, x′)
]2

.

These displays imply that condition (ii) holds.
It remains to verify (iii), the Lindeberg condition. For any positive C, the

inequality∫
X
R(x, dx′)h2(x, x′)1{|h(x,x′)|≥C} ≤

∫
X
R(x, dx′)h2(x, x′)

shows that the function x 
→
∫
X R(x, dx′)h2(x, x′)1{|h(x,x′)|≥C} belongs to C.

This yields

M−1
N

MN∑
i=1

∫
R(ξN,i, dx′)h2(ξN,i, x′)1{h(ξN,i,x′)≥C}

P−→
∫∫

ν(dx)R(x, dx′)h2(x, x′)1{h(x,x′)≥C} .

Because
∫∫

ν(dx)R(x, dx′)h2(x′) <∞, the right-hand side of this display can
be made arbitrarily small by letting C →∞. Therefore

M̃N∑
i=1

E[V 2
N,i1{|VN,i|≥ε} | FN ] P−→ 0 ,

and this is condition (iii).
Thus Proposition 9.5.12 applies, and just as in the proof of Theorem 9.2.14

it follows that (
M

1/2
N AN

M̃
1/2
N BN

)
D−→ N

(
0 ,

[
σ2(Lf) 0

0 η2(f)

])
.

The proof is now concluded upon writing M
1/2
N (AN + BN ) = M

1/2
N AN +

α
−1/2
N M̃

1/2
N BN . ��

9.3.2 Description of Algorithms

It is now time to combine the mutation step and the resampling step. This can
be done in two different orders, mutation first or selection first, leading to two
different algorithms that we call mutation/selection and selection/mutation,
respectively. In the mutation/selection algorithm, we first apply the muta-
tion algorithm, 9.3.4, to obtain a weighted sample {(ξ̃N,i, ω̃N,i)}1≤i≤M̃N

, and
then resample according to the importance weights. The selection/mutation
algorithm on the other hand is based on a particular decomposition of µ,
namely
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µ(A) =
∫
ν(dx)L(x,A)

νL(X)
=

∫
µ̄(dx)

L(x,A)
L(x,X)

, (9.34)

where

µ̄(A) def=

∫
A
ν(dx)L(x,X)
νL(X)

, A ∈ X . (9.35)

From a sample {(ξN,i, ωN,i)}1≤i≤MN
, we compute importance weights as

L(ξN,i,X), resample, and finally mutate the resampled system using the
Markov kernel (x,A) 
→ L(x,A)/L(x,X). We now describe the algorithms
formally.

Let {αN} be a sequence of integers and set M̃N = αNMN .

Algorithm 9.3.8 (Mutation/Selection).

Mutation: Draw ξ̃N,1, . . . , ξ̃N,M̃N conditionally independently given FN = GN∨
σ(ξN,1, . . . , ξN,MN ), with distribution P(ξ̃N,j ∈ · | FN ) = R(ξN,i, ·) for i =
1, . . . ,MN and j = αN (i− 1) + 1, . . . , αN i. Assign ξ̃N,j the weight ω̃N,j =
dL(ξN,i,·)
dR(ξN,i,·) (ξ̃

N,j).
Sampling: Draw MN random variables IN,1, . . . , IN,MN conditionally indepen-

dently given F̌N = FN ∨ σ(ξ̃N,1, . . . , ξ̃N,M̃N ), with the probability of out-
come j, 1 ≤ j ≤ M̃N , being proportional to ω̃N,j . Set ξ̌N,i = ξ̃N,IN,i

for
i = 1, . . . ,MN .

To avoid notational explosion, it is assumed here that the sample size after
the resampling stage is identical to the size of the initial sample. Extensions
to general sample sizes are straightforward. The algorithm is illustrated in
Figure 9.6.

For the selection/mutation algorithm, we have to strengthen the assump-
tion on the transition kernel L.

Assumption 9.3.9. For any x ∈ X, L(x,X) > 0.

Algorithm 9.3.10 (Selection/Mutation).

Selection: Draw random variables IN,1, . . . , IN,MN conditionally independently
given FN = GN ∨ σ(ξN,1, . . . , ξN,MN ), with the probability of outcome
j, 1 ≤ j ≤ MN , being proportional to L(ξN,j ,X). Set ξ̄N,i = ξN,IN,i

for
i = 1, . . . ,MN .

Mutation: Draw ξ̌N,1, . . . , ξ̌N,MN conditionally independently given F̄N = FN∨
σ(IN,1, . . . , IN,MN ), with distribution P(ξ̌N,i ∈ · | F̄N ) = L(ξ̄N,i,·)

L(ξ̄N,i,X) .

The algorithm is illustrated in Figure 9.7. As described above, the selec-
tion/mutation algorithm requires evaluation of, for any x ∈ X, the normal-
izing constant L(x,X), and then sampling from the Markov transition kernel
L(x, ·)/L(x,X). As emphasized in Chapter 7, these steps are not always easy
to carry out. In this sense, this algorithm is in general less widely applicable
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Instrumental distribution

Target distribution

ν

νR

ξN,1 ξN,MN

ξ̃N,1 ξ̃N,M̃N

ξ̌N,1 ξ̌N,MN

µ

dL(ξN,1,·)
dR(ξN,1,·)(ξ̃

N,1) dL(ξN,MN ,·)
dR(ξN,1,·) (ξ̃N,M̃N)

µ

Fig. 9.6. The mutation/selection algorithm. The figure depicts the transformation
of the particle system by application of a mutation step followed by a resampling
step. In the first stage, an intermediate sample is generated using an instrumental
kernel R. Each individual particle of the original system has exactly αN offspring.
In a second step, importance weights taking into account the initial and final po-
sitions of the particles are computed. A resampling step, in accordance with these
importance weights, is then applied.
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ξ̌N,MNξ̌N,1

ν

ξN,1 ξN,MN

µ

Initial distribution

µ̄

µ̄

L(ξN,1, X) L(ξN,MN , X)

Final distribution

ξ̄N,1 ξ̄N,MN

Fig. 9.7. The selection/mutation algorithm. The figure depicts the transformation
of the particle system by application of a selection step followed by a mutation step.
In the first stage, the importance weights {L(ξN,i,X)}1≤i≤MN are computed and
the system of particles is resampled according to these importance weights. In the
second stage, each resampled particle {ξ̄N,i}1≤i≤MN is mutated using the kernel
L(ξ̄N,i, ·)/L(ξ̄N,i,X).
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than mutation/selection. However, it is worthwhile to note that the random
variables ξ̌N,1, . . . , ξ̌N,MN are conditionally independent given FN and dis-
tributed according to the mixture of probability kernels

MN∑
i=1

L(ξN,i,X)∑MN

j=1 L(ξN,j ,X)

L(ξN,i, A)
L(ξN,i,X)

.

As pointed out in Section 8.1.4, it is possible to draw from this distribution
without having to follow the selection/mutation steps.

9.3.3 Analysis of the Mutation/Selection Algorithm

Using the tools derived above we establish the consistency and asymptotic
normality of the mutation/selection algorithm, 9.3.8. A direct application of
Theorems 9.3.5 and 9.2.9 yields the following result.

Theorem 9.3.11. Assume 9.3.1, 9.3.2, and 9.3.3, and define

C̃ def= {f ∈ L1(X, µ) : x 
→ L(x, |f |) ∈ C} . (9.36)

where µ is given by (9.27). Then C̃ is a proper set and

(i) {(ξ̃N,i, ω̃N,i)}1≤i≤M̃N
given by Algorithm 9.3.8 is consistent for (µ, C̃);

(ii) {(ξ̌N,i, 1)}1≤i≤MN
given by Algorithm 9.3.8 is consistent for (µ, C̃).

Moreover, Theorems 9.3.7 and 9.2.14 imply the following.

Theorem 9.3.12. Assume 9.3.1, 9.3.2, 9.3.3, and 9.3.6, and that {αN} has
a limit, possibly infinite. Define

Ã def=
{
f ∈ L2(X, µ) : x 
→ L(x, |f |) ∈ A and

x 
→
∫

R(x, dx′)
[
dL(x, ·)
dR(x, ·) (x′)f(x′)

]2

∈ C
}

.

Then Ã is a proper set and

(i) {(ξ̃N,i, ω̃N,i)}1≤i≤M̃N
given by Algorithm 9.3.8 is asymptotically normal

for (µ, Ã, σ̃, {M1/2
N }) with

σ̃2(f) def=
σ2{L[f − µ(f)]}+ α−1η2[f − µ(f)]

[νL(X)]2
, f ∈ Ã ,

and η2 being defined in (9.33);
(ii) {(ξ̌N,i, 1)}1≤i≤MN

given by Algorithm 9.3.8 is asymptotically normal for
(µ, Ã, σ̌, {M1/2

N }) with σ̌2(f) = Varµ(f) + σ̃2(f) for f ∈ Ã.
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9.3.4 Analysis of the Selection/Mutation Algorithm

We now analyze the selection/mutation algorithm, 9.3.10.

Theorem 9.3.13. Assume 9.3.2 and 9.3.9. Then

(i) {(ξN,i, L(ξN,i,X))}1≤i≤MN
given by Algorithm 9.3.10 is consistent for

(µ̄, C̄), where µ̄ is defined in (9.35) and

C̄ def= {f ∈ L1(X, µ̄) : x 
→ |f(x)|L(x,X) ∈ C} ;

(ii) {(ξ̌N,i, 1)}1≤i≤MN
given by Algorithm 9.3.10 is consistent for (µ, Č),

where

Č = {f ∈ L1(X, µ) : x 
→ L(x, |f |) ∈ C} .
Proof. By construction, µ̄ is absolutely continuous with respect to ν and

dµ̄

dν
(x) =

L(x,X)
νL(X)

, x ∈ X . (9.37)

The first assertion follows from Theorem 9.2.7. Theorem 9.2.9 shows that the
weighted sample {(ξ̄N,i, 1)}1≤i≤MN

is consistent for (µ̄, C̄). Assertion (ii) then
follows from the representation (9.34) of µ and Theorem 9.3.5. ��

We may similarly formulate conditions under which the selection/mutation
scheme transforms an asymptotically normal sample from the distribution ν
into an asymptotically normal sample from µ.

Assumption 9.3.14. {(ξN,i, 1)}1≤i≤MN
is asymptotically normal for (ν,A,

σ, {M1/2
N }), where A is a proper set and σ is a non-negative function on A.

In addition the function x 
→ L(x,X) belongs to A.

Theorem 9.2.11, Theorem 9.2.14, and Theorem 9.3.7 lead to the following
result.

Theorem 9.3.15. Assume 9.3.2, 9.3.9, and 9.3.14. Then

(i) {(ξN,i, L(ξN,i,X))}1≤i≤MN
given by Algorithm 9.3.10 is asymptotically

normal for (µ̄, Ā, σ̄, {M1/2
N }), where µ̄ is defined in (9.35),

Ā = {f ∈ L2(X, µ̄) : x 
→ |f(x)|L(x,X) ∈ A}
and

σ̄2(f) =
σ2 {L(·,X)[f − µ̄(f)]}

[νL(X)]2
, f ∈ Ā ;

(ii)
{
(ξ̌N,i, 1)

}
1≤i≤MN

given by Algorithm 9.3.10 is asymptotically normal

for (µ, Ǎ, σ̌, {M1/2
N }), where

Ǎ = {f ∈ L2(X, µ) : x 
→ L(x, |f |) ∈ A and x 
→ L(x, f2) ∈ C}
and

σ̌2(f) = Varµ(f) +
σ2 {L[f − µ(f)]}

[νL(X)]2
, f ∈ Ǎ .



9.4 Sequential Monte Carlo Methods 321

9.4 Sequential Monte Carlo Methods

We are now ready to evaluate the performance of repeated applications of the
basic procedures studied in the previous section. We begin with the muta-
tion/selection or SISR variant.

9.4.1 SISR

Sequential importance sampling with resampling amounts to successively ap-
plying the mutation/selection procedure in order to construct a sample ap-
proximating the marginal filtering distribution. In this case, the initial and
final probability distributions are the marginal filtering distributions φν,k at
two successive time instants. As discussed in Chapter 7, these two distribu-
tions are related by (7.8), which we recall here:

φν,0(A) =

∫
A
ν(dx′) g0(x′)∫

X ν(dx′) g0(x′)
, A ∈ X , (9.38)

φν,k+1(A) =

∫
X φν,k(dx)T u

k (x,A)∫
X φν,k(dx)T u

k (x,X)
, A ∈ X , k ≥ 0 , (9.39)

T u
k (x,A) =

∫
A

Q(x, dx′) gk+1(x′) , A ∈ X , (9.40)

where, as usual, Q stands for the transition kernel of the hidden chain and gk

for the likelihood of the current observation, gk(x) = g(x, Yk)1.
The instrumental distributions are defined by a sequence {Rk}k≥0 of in-

strumental transition kernels on (X,X ) and a probability distribution ρ0 on
(X,X ). In addition, let {αN} denote a sequence of positive integers that con-
trol the size of the intermediate populations of particles (see below). We re-
quire the following assumptions.

Assumption 9.4.1.

(i) ν(g0) > 0.
(ii)

∫
X Q(x, dx′)gk(x′) > 0 for all x ∈ X and k ≥ 0.

(iii) supx∈X gk(x) <∞ for all k ≥ 0.

Assumption 9.4.2. The instrumental distribution ρ0 for the initial state
dominates the filtering distribution φν,0, φν,0 � ρ0.

Assumption 9.4.3. For any k ≥ 0 and all x ∈ X, the instrumental kernel
Rk(x, ·) dominates T u

k (x, ·), T u
k (x, ·) � Rk(x, ·). In addition, for any x there

exists a version of the Radon-Nikodym derivative dTu
k (x,·)

dRk(x,·) that is (strictly)

positive and such that sup(x,x′)∈X×X
dTu

k (x,·)
dRk(x,·) (x

′) <∞.

1Note that in Chapter 7 we defined T u
k with a different scale factor—see (7.8).

As mentioned several times, however, this scale factor plays no role in approaches
based on (self-normalized) importance sampling and SIR. For notational simplicity,
we thus ignore this scale factor here.
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These conditions are not minimal but are most often satisfied in practice. The
first assumption, 9.4.1, implies that for any positive integer k,

0 <

∫
· · ·

∫
ν(dx0) g0(x0)

k∏
i=1

Q(xi−1, dxi) gi(xi) ≤
k∏

i=0

sup
x∈X

gi(x) <∞ ,

so that in particular
0 < φν,kT

u
k (X) <∞ . (9.41)

The SISR approach under study has already been described in Algo-
rithm 7.3.4, which we rephrase below in a more mathematical fashion to
underline the conditioning arguments to be used in the following.

Algorithm 9.4.4 (SISR).

Mutation: Draw {ξ̃N,i
k+1}1≤i≤M̃N

conditionally independently given FN
k , with dis-

tribution
P(ξ̃N,j

k+1 ∈ A | FN
k ) = Rk(ξN,i

k , A)

for i = 1, . . . ,MN , j = αN (i − 1) + 1, . . . , αN i and A ∈ X , and
compute the importance weights

ω̃N,j
k+1 = gk+1(ξ̃

N,j
k+1)

dQ(ξN,i
k , ·)

dRk(ξN,i
k , ·)

(ξ̃N,j
k+1)

for j and i as above.
Selection: Draw IN,1

k+1, . . . , I
N,MN

k+1 conditionally independently given F̃N
k = FN

k ∨
σ(ξ̃N,1

k+1, . . . , ξ̃
N,M̃N

k+1 ), with distribution

P(IN,i
k+1 = j | F̃N

k ) =
ω̃N,j

k+1∑M̃N

j=1 ω̃
N,j
k+1

,

and set ξN,i
k+1 = ξ̃

N,IN,i
k+1

k+1 and FN
k+1 = F̃N

k ∨ σ(ξN,1
k+1, . . . , ξ

N,MN

k+1 ).

Two choices, among many others, of the instrumental kernel are the fol-
lowing.

Prior kernel: Rk = Q. For any (x, x′) ∈ X × X, [dT u
k (x, ·)/dQ(x, ·)](x′) =

gk+1(x′), showing that the importance weights ω̃N,j
k+1 = gk+1(ξ̃

N,j
k+1) only de-

pend on the mutated particle positions. Provided Assumption 9.4.1 holds
true, so does Assumption 9.4.3 as soon as gk+1(x) > 0 for all x ∈ X. Note
that for the prior kernel, {(ξ̃N,i

k+1, 1)}1≤i≤M̃N
is a sample approximating

the marginal predictive distribution φk+1|k = φkQ.
Optimal kernel: Rk = Tk, defined by

Tk(x,A) =
T u

k (x,A)
T u

k (x,X)
.
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For all (x, x′) ∈ X× X, [dT u
k (x, ·)/dTk(x, ·)](x′) = T u

k (x,X), which implies
that the importance weights ω̃N,j

k+1 = T u
k (ξN,i,X), with j and i as above,

only depend on the current particle positions. Provided Assumption 9.4.1
holds true, so does Assumption 9.4.3 because, for all (x, x′) ∈ X × X,
[dT u

k (x, ·)/dTk(x, ·)] > 0 and

sup
(x,x′)∈X×X

dT u
k (x, ·)

dTk(x, ·) (x′) = sup
x∈X

∫
X
Q(x, dx′) gk+1(x′) ≤ sup

x∈X
gk+1(x) <∞ .

For all other instrumental kernels, the importance weights depend on the
initial and final positions of the particles.

Theorem 9.4.5. Assume 9.4.1, 9.4.2, and 9.4.3. Then the following holds
true.

(i) If {(ξN,i
0 , 1)}1≤i≤MN

is consistent for (φν,0, L
1(X, φν,0)) then for any k >

0, {(ξN,i
k , 1)}1≤i≤MN

is consistent for (φν,k, L
1(X, φν,k)).

(ii) If in addition {(ξN,i
0 , 1)}1≤i≤MN

is asymptotically normal for (φν,0,

L2(X, φν,0), σ0, {M1/2
N }) then for any k > 0, {(ξN,i

k , 1)}1≤i≤MN
is asymp-

totically normal for (φν,k, L
2(X, φν,k), σk, {M1/2

N }), where the sequence
{σk} of functions is defined recursively, for f ∈ L2(X, φν,k), by

σ2
k+1(f) = Varφν,k+1(f)

+
σ2

k(T u
k {f − φν,k+1(f)}) + α−1η2

k({f − φν,k+1(f)}2)
(φν,kT u

k (X))2

with

η2
k(f) =

∫∫
φν,k(dx)Rk(x, dx′)

{
dT u

k (x, ·)
dRk(x, ·) (x′)f(x′)

}2

−
∫∫

φν,k(dx){T u
k (x, f)}2 .

Proof. The proof is by induction over k. Starting with (i), we hence assume
that for some k ≥ 0, {(ξN,i, 1)}1≤i≤MN

is consistent for (φν,k, L
1(X, φν,k)). To

prove that consistency then holds for k + 1 as well, we shall employ Theo-
rem 9.3.11 and hence need to verify its underlying assumptions with ν = φν,k

and L = T u
k . To start with, Assumption 9.3.1 is (9.41) and Assumption 9.3.3

is implied by Assumption 9.4.3. Assumption 9.3.2 follows from the induction
hypothesis plus the bound T u

k (x,X) ≤ ‖gk+1‖∞ < ∞ for all x. Finally, to
check that consistency applies over L1(X, φν,k+1), we need to verify that for
any f ∈ L1(X, φν,k+1) the function x 
→ T u

k (x, |f |) belongs to L1(X, φν,k). This
is indeed true, as
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(φν,kT
u
k )(|f |) = (φν,kT

u
k )(X)× φν,k+1(|f |).

Assertion (i) now follows from Theorem 9.3.11 and induction.
We proceed to part (ii), modify the induction hypothesis accordingly, and

use Theorem 9.3.12 to propagate it from k to k+1. The additional assumption
we then need to verify is Assumption 9.3.6, which is the induction hypothesis.
Finally, we need to check that asymptotic normality applies over L2(X, φν,k+1).
Pick f ∈ L2(X, φν,k+1). Then by Jensen’s inequality,

φν,k

[
(T u

k |f |)2
]

= φν,k

(
[Q(gk+1|f |)]2

)
≤ φν,kQ(g2

k+1f
2)

= (φν,kT
u
k )(X)φν,k+1(gk+1f

2)
≤ (φν,kT

u
k )(X) ‖gk+1‖∞ φν,k+1(f2) <∞ ,

saying that T u
k (|f |) is in L2(X, φν,k). Similarly

∫
X
φν,k(dx)

∫
X
Rk(x, dx′)

[
dT u

k (x, ·)
dRk(x, ·) (x′)f(x′)

]2

≤ sup
(x,x′)∈X×X

dT u
k (x, ·)

dRk(x, ·) (x′) (φν,kT
u
k )(X)φν,k+1(f2) <∞ ,

so that the function that φν,k is acting on in the left-hand side belongs to
L1(X, φν,k). Assertion (ii) now follows from Theorem 9.3.12 and induction.

��

9.4.2 I.I.D. Sampling

We now consider successive applications of the selection/mutation procedure.
The resulting algorithm, referred to as i.i.d. sampling in Section 8.1.1, is re-
called below. Because the mathematical analysis of this algorithm is somewhat
simpler, we consider below two additional types of results: uniform (in time)
convergence results under appropriate forgetting conditions (as discussed in
Section 4.3) and exponential tail inequalities. Recall that although the empha-
sis is here put on filtering estimates, the selection/mutation algorithm may
also be applied to approximate the predictive distributions, in which case it is
known as the bootstrap filter (Figure 8.1). Hence all results below also apply
to the analysis of the predictive estimates produced by the bootstrap filter,
with only minor adjustments.

Algorithm 9.4.6 (I.I.D. Sampling).

Selection: Assign to the particle ξN,i
k the importance weight

ωN,i
k+1 = T u

k (ξN,i
k ,X) =

∫
X
Q(ξN,i

k , dx′) gk+1(x′) .
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Draw IN,1
k+1, . . . , I

N,MN

k+1 conditionally independently given FN
k , with distribu-

tion

P(IN,i
k+1 = j | FN

k ) =
ωN,j

k∑MN

j=1 ω
N,j
k

, i, j = 1, . . . ,MN ,

and set ξ̄N,i
k = ξ

N,IN,i
k+1

k .
Mutation: Draw ξN,1

k+1, . . . , ξ
N,MN

k+1 conditionally independently given F̄N
k = FN

k ∨
σ(IN,1

k+1, . . . , I
N,MN

k+1 ), with distribution

P(ξN,i
k+1 ∈ A | F̄N

k ) =
T u

k (ξ̄N,i
k , A)

T u
k (ξ̄N,i

k ,X)
=

∫
A
Q(ξ̄N,i

k , dx′) gk+1(x′)∫
X Q(ξ̄N,i

k , dx′) gk+1(x′)
.

9.4.2.1 Consistency and Asymptotic Normality

Theorem 9.4.7. Assume 9.4.1, 9.4.2, and 9.4.3. Then the following holds
true.

(i) If {(ξN,i
0 , 1)}1≤i≤MN

is consistent for (φν,0, L
1(X, φν,0)) then for any k >

0, {(ξN,i
k , 1)}1≤i≤MN

is consistent for (φν,k, L
1(X, φν,k)).

(ii) If {(ξN,i
0 , 1)}1≤i≤MN

is asymptotically normal for (φν,0, L
2(X, φν,0), σ0,

{M1/2
N }), then for any k > 0, {(ξN,i

k , 1)}1≤i≤MN
is asymptotically normal

for (φν,k, L
2(X, φν,k), σk, {M1/2

N }), where the sequence {σk} of functions
is defined recursively by

σ2
k+1(f) = Varφν,k+1(f) +

σ2
k {T u

k [f − φν,k+1(f)]}
[φν,kT u

k (X)]2
, f ∈ L2(X, φν,k+1) .

(9.42)

Proof. Again the proof is by induction. Hence assume that for some k ≥ 0,
{(ξN,i

k , 1)}1≤i≤MN
is consistent for (φν,k, L

1(X, φν,k)). To carry the induction
hypothesis from k to k + 1, we shall employ Theorem 9.3.13 and thus need
to check its underlying assumptions. Assumption 9.3.2 was verified in the
proof of Theorem 9.4.5, and (9.3.9) is Assumption 9.4.1(ii). What remains to
check is that consistency holds over the whole of L1(X, φν,k+1), and for that
we must verify that for every f in this space, the function T u

k (|f |) belongs to
L1(X, φν,k). This was also done in the proof of Theorem 9.4.5. Hence assertion
(i) follows from Theorem 9.3.13 and induction.

We proceed to part (ii), modify the induction hypothesis accordingly, and
use Theorem 9.3.15 to propagate it from k to k+1. The additional assumption
we then need to verify is Assumption 9.3.14, which follows from the induction
hypothesis and the bound T u

k (x,X) ≤ ‖gk+1‖∞. Finally, we establish that
asymptotic normality applies over L2(X, φν,k+1), which amounts to verifying
that for any f ∈ L2(X, φν,k+1), the function T u

k (|f |) belongs to L2(X, φν,k) and
the function T u

k (f2) belongs to L1(X, φν,k+1). The first of these requirements
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is part of the proof of Theorem 9.4.5, and the proof of the second requirement
is entirely analogous. Assertion (ii) now follows from Theorem 9.3.15 and
induction. ��

It is worthwhile to note that the asymptotic variance of the i.i.d. sampling
algorithm is always lower than that of SISR, whatever choice of instrumental
kernel for the latter. This indicates that whenever possible, i.i.d. sampling
should be preferred. By iterating (9.42), one can obtain an analytic expression
for the asymptotic variance.

Proposition 9.4.8. Assume 9.4.1 and 9.4.3 and that {(ξN,i
0 , 1)}1≤i≤MN

is
asymptotically normal for (φν,0, L

2(X, φν,0), σ0, {M1/2
N }). Then for any k ≥ 0

and f ∈ L2(X, φν,k),

σ2
k(f) =

k∑
l=1

Varφν,l

{
T u

l · · ·T u
k−1[f − φν,k(f)]

}[
φν,lT u

l · · ·T u
k−1(X)

]2
+

σ2
0
{
T u

0 · · ·T u
k−1[f − φν,k(f)]

}[
φν,0T u

0 · · ·T u
k−1(X)

]2 ,

where, by convention T u
i · · ·T u

j (x,A) is the identity transition kernel δx(A)
for i > j.

Proof. The proof is by induction on k. The result holds true for k = 0. Assume
now that the result holds true for some k ≥ 0. We evaluate the right-hand
side of (9.42) with the claimed formula for σ2

k. Doing this, we first note that
T u

k [f−φν,k+1(f)]−φν,kT
u
k [f−φν,k+1(f)] = T u

k [f−φν,k+1(f)], because φν,kT
u
k

equals φν,k+1 up to a multiplicative constant. Thus the right-hand side of
(9.42) evaluates to

Varφν,k+1(f) +
k∑

l=1

Varφν,l
{T u

l · · ·T u
k [f − φν,k+1(f)]}[

φν,lT u
l · · ·T u

k−1(X)
]2 [φν,kT u

k (X)]2

+
σ2

0 {T u
0 · · ·T u

k [f − φν,k(f)]}[
φν,0T u

0 · · ·T u
k−1(X)

]2 [φν,kT u
k (X)]2

.

Comparing this with the claimed expression for σ2
k+1(f), we see that what

remains to verify is that the denominators of the above ratios equal the square
of φν,lT

u
l · · ·T u

k (X).
To do that, we observe that the definition of the filtering distribution—see

for instance (3.13)—shows that for any l ≤ k − 1,
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φν,k(h) = L−1
ν,k

∫
· · ·

∫
ν(dx0) g0(x0)

k∏
i=1

Q(xi−1, dxi) gi(xi)h(xk)

= Lν,lL−1
ν,k

∫
· · ·

∫
φν,l(dxl)

k∏
i=l+1

Q(xi−1, dxi) gi(xi)h(xk)

=
φν,lT

u
l · · ·T u

k−1f

φν,lT u
l · · ·T u

k−1(X)
.

Setting h = T u
k (X) yields [φν,kT

u
k (X)]φν,lT

u
l · · ·T u

k−1(X) = φν,lT
u
l · · ·T u

k (X).
The proof now follows by induction. ��

The expression for the asymptotic variance is rather involved, and it is dif-
ficult in general to make simple statements on this quantity. There is however
a situation in which some interesting conclusions can be drawn. Consider the
following assumption (cf. Lemma 4.3.25).

Assumption 9.4.9. There exist positive constants σ− and σ+ and a proba-
bility distribution λ such that 0 < σ−λ(A) ≤ Q(x,A) ≤ σ+λ(A) < ∞ for all
x ∈ X and A ∈ X .

Also recall the notation ρ
def= 1− σ−/σ+.

Under this condition, it has been shown that the posterior chain is uni-
formly geometrically mixing, that is, it forgets its initial condition uniformly
and at a geometric (or exponential) rate. Exponential forgetting allows us
to prove that the asymptotic variance of the selection/mutation algorithm
remains bounded.

Proposition 9.4.10. Assume 9.4.1, 9.4.3, and 9.4.9. Then for any f ∈
Fb (X), it holds that supk≥0 σ

2
k(f) <∞, where σ2

k is defined in (9.42).

Proof. Consider the numerators of the ratios of the expression for σk in Propo-
sition 9.4.8. Proposition 3.3.2 shows that for any integers l < k,

T u
l · · ·T u

k−1(x,A) = βl|k(x)Fl|k · · ·Fk−1|k(x,A) , x ∈ X, A ∈ X ,

where the Fl|k are forward smoothing kernels (see Definition 3.3.1) and βl|k
is the backward function (see Definition 3.1.6). Therefore

T u
l · · ·T u

k−1f(x)− T u
l · · ·T u

k−1(x,X)φν,k(f)

= βl|k(x)
[
Fl|k · · ·Fk−1|kf(x)− φν,k(f)

]
. (9.43)

Next we consider the denominators of the expression for σk. We have
φν,lT

u
l · · ·T u

k−1(X) = φν,l(βl|k) =
∏k

j=l+1 cν,j , where the first equality follows
from the above and the second one from Proposition 3.2.5, and where the
constants cν,j are defined recursively in (3.22). Moreover, by (3.26) Lν,k =∏k

j=0 cν,j , and hence
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φν,lT
u
l · · ·T u

k−1(X) =
Lν,k

Lν,l
. (9.44)

Combining (9.43) and (9.44) yields for any integers l ≤ k,

Varφν,l

{
T u

l · · ·T u
k−1[f − φν,k(f)]

}[
φν,lT u

l · · ·T u
k−1(X)

]2
= Varφν,l

(
βl|k

Lν,l

Lν,k
{Fl|k · · ·Fk−1|kf − φν,k(f)}

)
. (9.45)

In order to bound this variance, we first notice that Lemma 4.3.22(ii) shows
that

βl|k(x)
Lν,l

Lν,k
=

∫
Q(x, dx′) gl+1(x′)βl+1|k(x′)∫∫

φν,l(dx)Q(x, dx′) gl+1(x′)βl+1|k(x′)
≤ σ+

σ− =
1

1− ρ
.

(9.46)
Next, Proposition 3.3.4 shows that φν,k(f) = φν,l|kFl|k · · ·Fk−1|kf , where
φν,l|k is a smoothing distribution. In addition, by Lemma 4.3.22 again, for
any probability measures ξ and ξ′ on (X,X ),∥∥ξFl|k · · ·Fk−1|k − ξ′Fl|k · · ·Fk−1|k

∥∥
TV ≤ ρk−l ‖ξ − ξ′‖TV .

Applying this bound with ξ = δx and ξ′ = φν,l|k shows that

|Fl|k · · ·Fk−1|k(x, f)− φν,l|k(f)| ≤ 2ρk−l ‖f‖∞ .

Finally, combining with (9.45) and (9.46) shows that

Varφν,l

{
T u

l · · ·T u
k−1[f − φν,k(f)]

}[
φν,lT u

l · · ·T u
k−1(X)

]2 ≤ 4(1− ρ)−2ρ2(k−l) ‖f‖2∞ .

This bound together with Proposition 9.4.8 completes the proof. ��

9.4.2.2 Exponential Inequalities

The induction argument previously used for the central limit theorem may
also be used to derive exponential inequalities for the tail probabilities.

Theorem 9.4.11. Assume 9.4.1 and that there exist some constants a(0) and
b(0) such that for any t ≥ 0 and f ∈ Fb (X),

P

[∣∣∣∣∣M−1
N

MN∑
i=1

f(ξN,i
0 )− φν,0(f)

∣∣∣∣∣ ≥ t

]
≤ a(0) exp

[
− 2MN t2

b(0)2 osc2(f)

]
. (9.47)

Then for any k > 0, t > 0 and f ∈ Fb (X),
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P

[∣∣∣∣∣M−1
N

MN∑
i=1

f(ξN,i
k )− φν,k(f)

∣∣∣∣∣ ≥ t

]
≤ a(k) exp

[
− 2MN t2

b(k)2 osc2(f)

]
, (9.48)

where the constants a(k) and b(k) are defined recursively through

a(k + 1) = 2 (1 + a(k)) ,

b(k + 1) =
(3/2) ‖gk+1‖∞ b(k) + φν,kT

u
k (X)

φν,kT u
k (X)

.

Proof. The proof is by induction; assume that the claim is true for some k ≥ 0.
Decompose M−1

N

∑MN

k=1 f(ξN,i
k+1)−φν,k+1(f) in two terms AN

k+1(f) +BN
k+1(f),

where

AN
k+1(f) = M−1

N

MN∑
i=1

(f(ξN,i
k+1)− E[f(ξN,i

k+1) | F̄N
k ])

BN
k+1(f) = M−1

N

MN∑
i=1

E[f(ξN,i
k+1) | F̄N

k ]− φν,k+1(f)

=
∑MN

k=1 T
u
k f(ξN,i

k )∑MN

k=1 T
u
k (ξN,i

k ,X)
− φν,kT

u
k f

φν,kT u
k (X)

.

Proceeding like in Theorem 9.2.16, for any a ∈ (0, 1) and t ≥ 0,

P(|AN
k+1(f)| ≥ at) ≤ 2 exp

[
−2a2t2MN/ osc2(f)

]
. (9.49)

We now bound BN
k+1(f). First note first for any constant c, BN

k+1(f) =
BN

k+1(f − c). We choose c in such a way that ‖f − c‖∞ = (1/2) osc (f) and
set f̄ = f − c. Writing

BN
k+1(f) =

M−1
N

∑Mn

i=1{T u
k f̄(ξN,i

k )− φν,kT
u
k f̄}

φν,kT u
k (X)

−
∑MN

i=1 T u
k f̄(ξN,i

k )∑MN

i=1 T u
k (ξN,i

k ,X)

M−1
N

∑MN

i=1 {T u
k (ξN,i

k ,X)− φν,kT
u
k (X)}

φν,kT u
k (X)

(9.50)

and using the induction assumption, it holds that for any b ∈ (0, 1),

P
[
|BN

k+1(f)| ≥ (1− a)t
]
≤ a(k) exp

{
−2MN (1− a)2b2t2[φν,kT

u
k (X)]2

b2(k) osc2
(
T u

k f̄
) }

+ a(k) exp

{
−2MN (1− a)2(1− b)2t2[φν,kT

u
k (X)]2

b2(k)
∥∥f̄∥∥2

∞ osc2(T u
k 1)

}
.

By Lemma 4.3.4, for any (x, x′) ∈ X× X,
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|T u
k f̄(x)− T u

k f̄(x′)| = |Q(x, gk+1f̄)−Q(x′, gk+1f̄)|
≤ (1/2) ‖Q(x, ·)−Q(x′, ·)‖TV osc

(
gk+1f̄

)
≤ ‖gk+1‖∞ osc (f) ,

and similarly,

|T u
k (x,X)− T u

k (x′,X)| = |Q(x, gk+1)−Q(x′, gk+1)| ≤ ‖gk+1‖∞ .

Thus, osc
(
T u

k f̄
)

and osc (T u
k 1) are bounded by ‖gk+1‖∞ osc (f) and ‖gk+1‖∞,

respectively. The result follows by choosing b = 2/3 as in the proof of Theo-
rem 9.1.10 and then setting a to equate the bounds on AN

k+1(f) and BN
k+1(f).

��

The bound is still of Hoeffding type, but at each iteration the constants
a(k) and b(k) increase. Hence, the obtained bound is almost useless in practice
for large k, except when the number of iterations is small or the number of
particles is large (compared to the iteration index). It would of course be
more appropriate to derive an exponential bound with constants that do not
depend on the iteration index. Such results hold true when Q satisfies the
strong mixing condition.

Theorem 9.4.12. Assume 9.4.1, 9.4.9, and (9.47). Then there exist con-
stants a and b such that for any n ≥ 0, t ≥ 0 and f ∈ Fb (X),

P

[∣∣∣∣∣M−1
N

MN∑
i=1

f(ξN,i
n )− φν,n(f)

∣∣∣∣∣ ≥ t

]
≤ a exp

[
− 2MN t2

b2 osc2(f)

]
.

Proof. Define φ̂N
k = M−1

N

∑MN

i=1 δξN,i
k

. The difference φ̂N
n (f)− φν,n(f) may be

expressed as the telescoping sum

φ̂N
n (f)− φν,n(f) =

φ̂N
0 T u

0 · · ·T u
n−1f

φ̂N
0 T u

0 · · ·T u
n−1(X)

− φν,n(f)+

n∑
k=1

{
φ̂N

k T u
k · · ·T u

n−1f

φ̂N
k T u

k · · ·T u
n−1(X)

−
φ̂N

k−1T
u
k−1 · · ·T u

n−1f

φ̂N
k−1T

u
k−1 · · ·T u

n−1(X)

}
, (9.51)

with the convention that T u
k · · ·T u

n−1 is the identity mapping when k = n. We
shall show that the tail probabilities of each of the terms on the right-hand
side of (9.51) are exponentially small. Put

AN
n (f) =

φ̂N
0 T u

0 · · ·T u
n−1f

φ̂N
0 T u

0 · · ·T u
n−1(X)

− φν,n(f) (9.52)

=
∑MN

i=1 β0|n(ξN,i
0 ){F0|n · · ·Fn−1|nf(ξN,i

0 )− φν,n(f)}∑MN

i=1 β0|n(ξN,i
0 )

, (9.53)
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where φν,n(f) could also be rewritten as φν,0T
u
0 · · ·T u

n−1(f) (see Section 3.3.1).
Thus by Lemma 4.3.4 and Proposition 4.3.23(i),∥∥F0|n · · ·Fn−1|n(·, f)− φν,n(f)

∥∥
∞ ≤ ρn osc (f) (9.54)

and
osc

(
F0|n · · ·Fn−1|n(·, f)

)
≤ ρn osc (f) . (9.55)

In addition
φν,0(β0|n)

osc
(
β0|n(·)

) ≥ φν,0(β0|n)
2
∥∥β0|n(·)

∥∥
∞
≥ σ−

σ+ = 1− ρ , (9.56)

where Lemma 4.3.22(ii) was used for the second inequality. Writing

AN
n (f) = M−1

N

∑MN

i=1 β0|n(ξN,i
0 ){F0|n · · ·Fn−1|nf(ξN,i

0 )− φν,n(f)}
φν,0(β0|n)

+
∑MN

i=1 β0|n(ξN,i
0 ){F0|n · · ·Fn−1|nf(ξN,i

0 )− φν,n(f)}∑MN

i=1 β0|n(ξN,i
0 )

×
[
1−M−1

N

∑MN

i=1 β0|n(ξN,i
0 )

φν,0(β0|n)

]

we have, using (9.54) and the triangle inequality,

AN
n (f) ≤M−1

N

∣∣∣∣∣
∑MN

i=1 β0|n(ξN,i
0 ){F0|n · · ·Fn−1|nf(ξN,i

0 )− φν,n(f)}
φν,0(β0|n)

∣∣∣∣∣
+ ρn osc (f)M−1

N

∣∣∣∣∣
∑MN

i=1 β0|n(ξN,i
0 )− φν,0(β0|n)

φν,0(β0|n)

∣∣∣∣∣ .

Using (9.56) as well as (9.47) twice (for the functions F0|n · · ·Fn−1|nf and
β0|n) shows that for any t ≥ 0,

P
[
|AN

n (f)| ≥ t
]
≤ 2a(0) exp

[
− MN t2(1− ρ)2

2b2(0) osc2(f) ρ2n

]
. (9.57)

For 1 ≤ k ≤ n, put

∆N
k,n(f) =

φ̂N
k T u

k · · ·T u
n−1f

φ̂N
k T u

k · · ·T u
n−1(X)

−
φ̂N

k−1T
u
k−1 · · ·T u

n−1f

φ̂N
k−1T

u
k−1 · · ·T u

n−1(X)
. (9.58)

Proposition 3.3.2 shows that T u
k · · ·T u

n−1(x,A) = βk|n(x)Fk|n · · ·Fn−1|n(x,A).
Pick x0 ∈ X. Then

φ̂N
k T u

k · · ·T u
n−1f

φ̂N
k T u

k · · ·T u
n−1(X)

− Fk|n · · ·Fn−1|n(x0) =
βk|n(ξN,i

k )ψk|n(ξN,i
k )∑MN

i=1 βk|n(ξN,i
k )

, (9.59)
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where ψk|n(x) = Fk|n · · ·Fk−1|nf(x)− Fk|n · · ·Fk−1|nf(x0). Set

φ̃N
k =

φ̂N
k−1T

u
k−1

φ̂N
k−1T

u
k−1(X)

and µ̃N
k|n(A) =

∫
A
φ̃N

k (dx)βk|n(x)∫
X φ̃N

k (dx)βk|n(x)
.

Then µ̃N
k|n � φ̃N

k , with Radon-Nikodym derivative

dµ̃N
k|n

dφ̃N
k

(x) =
βk|n(x)

φ̃N
k (βk|n)

.

Using these notations,

φ̂N
k−1T

u
k−1 · · ·T u

n−1f

φ̂N
k−1T

u
k−1 · · ·T u

n−1(X)
− Fk|n · · ·Fn−1|nf(x0) =

φ̃N
k

[
βk|n{Fk|n · · ·Fn−1|nf − Fk|n · · ·Fn−1|nf(x0)}

]
φ̃N

k (βk|n)
= µ̃N

k|n(ψk|n) . (9.60)

Combining (9.59) and (9.60), we may express ∆N
k,n(f) as

∆N
k,n(f) =

∑M̃N

i=1
dµ̃N

k|n
dφ̃N

k

(ξN,i
k )ψk|n(ξN,i

k )∑MN

i=1
dµ̃N

k|n
dφ̃N

k

(ξN,i
k )

− µ̃N
k|n(ψk|n) .

Because {ξN,i
k }1≤i≤MN

are conditionally i.i.d. given FN
k−1 with common

distribution φ̃N
k , the first term in the above expression may be seen as an im-

portance sampling estimator of µ̃N
k|n(ψk|n). By Lemma 4.3.22(ii), the Radon-

Nikodym derivative dµ̃N
k|n/dφ̃

N
k (x) is bounded uniformly in k, N and x as

dµ̃N
k|n

dφ̃N
k

(x) ≤ σ+

σ− =
1

1− ρ
.

Proceeding as above, the Hoeffding inequality implies that for any t ≥ 0,

P
[∣∣∆N

k,n(f)
∣∣ ≥ t

]
≤ 2 exp

[
− MN t2(1− ρ)2

2 osc2(f) ρ2(n−k)

]
.

Hence the probability that the sum on the right-hand side of (9.51) is (in
absolute value) at least t is bounded by

2
n−1∑
k=0

exp
[
−MN t2(1− ρ)2b2k

2 osc2(f) ρ2k

]
(9.61)

for any sequence {bk}0≤k≤n−1 of positive numbers summing to one. To obtain
a bound that does not depend on n, take bk = θk(1−θ)/(1−θn) with ρ < θ < 1.
This choice proves that (9.61) is bounded by
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a exp
[
−MN t2(1− ρ)2(1− θ2)

2 osc2(f)

]
,

where a is a constant that depends only on θ and ρ. ��

9.5 Complements

9.5.1 Weak Limits Theorems for Triangular Array

This section summarizes various basic results on the asymptotics of triangular
arrays that are used in the proofs of this chapter.

9.5.1.1 Law of Large Numbers

Throughout this section, {MN}N≥0 denotes a sequence of integers. All random
variables are assumed to be defined on a common probability space (Ω,F ,P).

Proposition 9.5.1. Let {UN,i}1≤i≤MN
be a triangular array of random vari-

ables and let {FN}N≥0 be a sequence of sub-σ-fields of F . Assume that the
following conditions hold true.

(i) The triangular array is conditionally independent given {FN} and for
any N and i = 1, . . . ,MN , E[|UN,i| | FN ] <∞ and E[UN,i | FN ] = 0.

(ii) For some positive ε,

MN∑
i=1

E[U2
N,i1{|UN,i|<ε} | FN ] P−→ 0 , (9.62)

MN∑
i=1

E[|UN,i|1{|UN,i|≥ε} | FN ] P−→ 0 . (9.63)

Then
MN∑
i=1

UN,i
P−→ 0 .

Proof. Consider the truncated random variable ŪN,i = UN,i1{|UN,i|<ε}. Using
(9.63) and E[UN,i | FN ] = 0, we find that

MN∑
i=1

E[ŪN,i | FN ] P−→ 0 . (9.64)

By Chebyshev’s inequality, it follows that for any δ > 0,
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AN (δ) = P

(∣∣∣∣∣
MN∑
i=1

ŪN,i −
MN∑
i=1

E[ŪN,i | FN ]

∣∣∣∣∣ ≥ δ

∣∣∣∣∣ FN

)

≤ δ−2 Var

(
MN∑
i=1

ŪN,i

∣∣∣∣∣ FN

)
,

and hence (9.62) shows that AN (δ) → 0 in probability. Because AN (δ) is
obviously bounded, we also have E[AN (δ)] → 0, that is,

MN∑
i=1

ŪN,i −
MN∑
i=1

E[ŪN,i | FN ] P−→ 0 . (9.65)

Moreover, for any δ > 0,

P

(∣∣∣∣∣
MN∑
i=1

UN,i −
MN∑
i=1

ŪN,i

∣∣∣∣∣ ≥ δ

∣∣∣∣∣FN

)
≤ P

(
MN∑
i=1

|UN,i|1{|UN,i|≥ε} ≥ δ

∣∣∣∣∣FN

)

≤ δ−1
MN∑
i=1

E[|UN,i|1{|UN,i|≥ε} | FN ] P−→ 0 .

Thus,
∑MN

i=1 UN,i−
∑MN

i=1 ŪN,i → 0 in probability. Combining with (9.64) and
(9.65), the proof is complete. ��

Definition 9.5.2 (Bounded in Probability). A sequence {ZN}N≥0 of
random variables is said to be bounded in probability if

lim
C→∞

sup
N≥0

P(|ZN | ≥ C) = 0.

Often the term tight, or asymptotically tight, is used instead of “bounded in
probability”. We recall without proof the following elementary properties.

Lemma 9.5.3.

1. Let {UN}N≥0 and U be random variables. If UN
D−→ U , then {UN} is

bounded in probability.
2. Let {UN}N≥0 and {VN}N≥0 be two sequences of random variables. If {VN}

is bounded in probability and |UN | ≤ |VN | for any N , then {UN} is bounded
in probability.

3. Let {UN}N≥0 and {VN}N≥0 be two sequences of random variables. If
{UN}N≥0 is bounded in probability and VN → 0 in probability, then
UNVN → 0 in probability.

4. Let {UN}N≥0 be a sequence of random variables and let {MN}N≥0 be
a non-decreasing deterministic sequence diverging to infinity. If {UN} is
bounded in probability, then 1{UN ≥MN } → 0 in probability.
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The following elementary lemma is repeatedly used in the sequel.

Lemma 9.5.4. Let {UN}N≥0 and {VN}N≥0 be two sequences of random vari-
ables such that {VN} is bounded in probability. Assume that for any posi-
tive η there exists a sequence {WN (η)}N≥0 of random variables such that

WN (η) P−→ 0 as N →∞ and

|UN | ≤ ηVN + WN (η) .

Then UN
P−→ 0.

Proof. For any δ > 0,

P(|UN | ≥ δ) ≤ P[VN ≥ δ/(2η)] + P[WN (η) ≥ δ/2] .

This implies that for any η > 0,

lim sup
N→∞

P(|UN | ≥ δ) ≤ sup
N≥0

P[VN ≥ δ/(2η)] .

Because the right-hand side can be made arbitrarily small by letting η → 0,
the result follows. ��

Proposition 9.5.5. Let {UN,i}1≤i≤MN
be a triangular array of random vari-

ables and let {FN}N≥0 be a sequence of sub-σ-fields of F . Assume that the
following conditions hold true.

(i) The triangular array is conditionally independent given {FN} and for
any N and i = 1, . . . ,MN , E[|UN,i| | FN ] <∞ and E[UN,i | FN ] = 0.

(ii) The sequence of random variables{
MN∑
i=1

E[|UN,i| | FN ]

}
N≥0

(9.66)

is bounded in probability.
(iii) For any positive η,

MN∑
i=1

E[|UN,i|1{|UN,i|≥η} | FN ] P−→ 0 . (9.67)

Then
MN∑
i=1

UN,i
P−→ 0 .

Proof. We employ Proposition 9.5.1 and then need to check its condition (ii).
The current condition (iii) is (9.63), so it suffices to prove that (9.62) holds
for some (arbitrary) ε > 0. To do that, note that for any η ∈ (0, ε),
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MN∑
i=1

E[U2
N,i1{|UN,i|<ε} | FN ]

≤
MN∑
i=1

E[U2
N,i1{|UN,i|<η} | FN ] +

MN∑
i=1

E[U2
N,i1{η≤|UN,i|<ε} | FN ]

≤ η

MN∑
i=1

E[|UN,i| | FN ] + ε

MN∑
i=1

E[|UN,i|1{|UN,i|≥η} | FN ] .

Now (9.62) follows from Lemma 9.5.4. ��

In the special case where the random variables {UN,i}1≤i≤MN
, for any

N , are conditionally i.i.d. given {FN}, Proposition 9.5.5 admits a simpler
formulation.

Corollary 9.5.6. Let {VN,i}1≤i≤MN
be a triangular array of random vari-

ables and let {FN}N≥0 be a sequence of sub-σ-fields of F . Assume that the
following conditions hold true.

(i) The triangular array is conditionally i.i.d. given FN and for any N ,
E[|VN,1| | FN ] <∞ and E[VN,1 | FN ] = 0.

(ii) The sequence {E[|VN,1| | FN ]}N≥0 is bounded in probability.
(iii) For any positive η, E[|VN,1|1{|VN,1|≥ηMN } | FN ] → 0 in probability.

Then

M−1
N

MN∑
i=1

VN,i
P−→ 0 .

Proposition 9.5.7. Let {VN,i}1≤i≤MN
be a triangular array of random vari-

ables and let {FN} be a sequence of sub-σ-fields of F . Assume that the fol-
lowing conditions hold true.

(i) The triangular array is conditionally independent given {FN} and for
any N and i = 1, . . . ,MN , E[|VN,i| | FN ] <∞.

(ii) The sequence {
∑MN

i=1 E[|VN,i| | FN ]}N≥0 is bounded in probability,
(iii) For any positive ε,

MN∑
i=1

E[|VN,i|1{|VN,i|≥ε} | FN ] P−→ 0 . (9.68)

Then
MN∑
i=1

{VN,i − E[VN,i | FN ]} P−→ 0 .

Proof. We check that the triangular array UN,i = VN,i−E[VN,i | FN ] satisfies
conditions (i)–(iii) of Proposition 9.5.5. This triangular array is conditionally
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independent given FN , and for any N and any i = 1, . . . ,MN , E[|UN,i| | FN ] ≤
2 E[|VN,i| | FN ] <∞ and E[UN,i | FN ] = 0, showing condition (i). In addition

MN∑
i=1

E[|UN,i| | FN ] ≤ 2
MN∑
i=1

E[|VN,i| | FN ] ,

showing that the sequence {∑MN

i=1 E[|UN,i| | FN ]}N≥0 is bounded in probabil-
ity. Hence condition (ii) holds.

We now turn to the final condition of Proposition 9.5.5, (9.67). With
the bounds |UN,i| ≤ |VN,i| + E[|VN,i| | FN ] and 1{|UN,i|≥ε} ≤ 1{|VN,i|≥ε/2} +
1{E[|VN,i| | FN ]≥ε/2} and in view of the assumed condition (iii), it suffices to
prove that for any positive ε,

AN =
MN∑
i=1

E[|VN,i| | FN ] P(|VN,i| ≥ ε | FN ) P−→ 0 , (9.69)

BN =
MN∑
i=1

E[|VN,i| | FN ]1{E[|VN,i| | FN ]≥ε}
P−→ 0 . (9.70)

Bound AN as

AN ≤ P
(

max
1≤i≤MN

|VN,i| ≥ ε

∣∣∣∣ FN

) MN∑
i=1

E[|VN,i| | FN ] .

Considering the assumed condition (ii), it is sufficient to prove that the con-
ditional probability of the display tends to zero in probability. To do that,
notice that

max
1≤i≤MN

|VN,i| ≤ ε/2 +
MN∑
i=1

|VN,i|1{|VN,i|≥ε/2} ,

whence, using condition (iii),

P
(

max
1≤i≤MN

|VN,i| ≥ ε

∣∣∣∣ FN

)
≤ P

(
MN∑
i=1

|VN,i|1{|VN,i|≥ε/2} ≥ ε/2

∣∣∣∣∣ FN

)

≤ (2/ε)
MN∑
i=1

E[|VN,i|1{|VN,i|≥ε/2} | FN ] P−→ 0 .

Thus (9.69) holds. Now bound BN as

BN ≤ 1{max1≤i≤MN
E[ |VN,i| | FN ]≥ε}

MN∑
i=1

E[|VN,i| | FN ] .

To show that BN → 0 in probability, it is again sufficient to prove that so
does the first factor. In a similar fashion as above we have
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1

{
max

1≤i≤MN

E[|VN,i| | FN ] ≥ ε

}
≤ 1

{
MN∑
i=1

E[|VN,i|1{|VN,i|≥ε/2} | FN ] ≥ ε/2

}

≤ (2/ε)
MN∑
i=1

E[|VN,i|1{|VN,i|≥ε/2} | FN ] P−→ 0 .

Thus (9.70) holds. By combining (9.68), (9.69), and (9.70) we find that (9.67)
holds, concluding the proof. ��

9.5.1.2 Central Limit Theorems

Lemma 9.5.8. Let z1, . . . , zm and z′
1, . . . , z

′
m be complex numbers of modulus

at most 1. Then

|z1 · · · zm − z′
1 · · · z′

m| ≤
m∑

i=1

|zi − z′
i| .

Proof. This follows by induction from

z1 · · · zm − z′
1 · · · z′

m = (z1 − z′
1)z2 · · · zm + z′

1(z2 · · · zm − z′
1 · · · z′

m) .

��

In the investigation of the central limit theorem for triangular arrays, the
so-called Lindeberg condition plays a fundamental role.

Proposition 9.5.9. Let {UN,i}1≤i≤MN
be a triangular array of random vari-

ables and let {FN}N≥0 be a sequence of sub-σ-fields of F . Assume that the
following conditions hold true.

(i) The triangular array is conditionally independent given {FN} and for
any N and i = 1, . . . ,MN , E[U2

N,i | FN ] <∞, and E[UN,i | FN ] = 0.
(ii) There exists a positive constant σ2 such that with σ2

N,i = E[U2
N,i | FN ],

MN∑
i=1

σ2
N,i

P−→ σ2 . (9.71)

(iii) For all ε > 0,
MN∑
i=1

E[U2
N,i1{|UN,i|≥ε} | FN ] P−→ 0. (9.72)
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Then for any real u,

E

[
exp

(
iu

MN∑
i=1

UN,i

)∣∣∣∣∣ FN

]
P−→ exp

(
−σ2u2/2

)
. (9.73)

Remark 9.5.10. The condition (9.72) is often referred to as the Lindeberg
condition. If this condition is satisfied, then the triangular array also satisfies
the uniform smallness condition, max1≤i≤MN

E[U2
N,i | FN ] → 0 in probability.

Indeed, for any ε > 0,

σ2
N,i = E[U2

N,i1{|UN,i|<ε} | FN ] + E[U2
N,i1{|UN,i|≥ε} | FN ]

≤ ε2 + E[U2
N,i1{|UN,i|≥ε} | FN ] ,

which implies that

max
1≤i≤MN

E[U2
N,i | FN ] ≤ ε2 +

MN∑
i=1

E[U2
N,i1|UN,i|≥ε | FN ] .

Because ε is arbitrary, the uniform smallness condition is satisfied. The Linde-
berg condition guarantees that large values (of the same order as the square
root of the variance of the sum) have a negligible influence in the central limit
theorem. Such extremely large values have a small influence both on the vari-
ance and on the distribution of the sum we investigate. �

Proof (of Proposition 9.5.9). The proof is adapted from Billingsley (1995,
Theorem 27.1). Because

∑N
i=1 σ

2
N,i

P−→ σ2,

exp

(
−(u2/2)

MN∑
i=1

σ2
N,i

)
P−→ exp

(
−σ2u2/2

)
.

Thus it suffices to prove that

E

[
exp

(
iu

MN∑
i=1

UN,i

)∣∣∣∣∣ FN

]
− exp

(
−u2

2

MN∑
i=1

σ2
N,i

)
P−→ 0 . (9.74)

To start with, using the conditional independence of the triangular array and
Lemma 9.5.8, it follows that the left-hand side of this display is bounded by

MN∑
i=1

∣∣E[exp (iuUN,i) | FN ]− exp(−u2σ2
N,i/2)

∣∣ .
From here we proceed in two steps, showing that both

AN =
MN∑
i=1

∣∣E[exp (iuUN,i) | FN ]− (1− u2σ2
N,i/2)

∣∣ P−→ 0
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and

BN =
MN∑
i=1

∣∣exp(−u2σ2
N,i/2)− (1− u2σ2

N,i/2)
∣∣ P−→ 0 .

These two result suffice to finish the proof.
Now, by Taylor’s inequality,∣∣∣∣eitx −

(
1 + itx− 1

2
t2x2

)∣∣∣∣ ≤ min
{
|tx|2, |tx|3

}
,

so that the characteristic function of UN,i satisfies∣∣E[exp(iuUN,i) | FN ]− (1− u2σ2
N,i/2)

∣∣ ≤ E[min(|uUN,i|2, |uUN,i|3) | FN ] .

Note that this expectation is finite. For positive ε, the right-hand side of the
inequality is at most

E[|uUN,i|3 1{|UN,i|<ε} | FN ] + E[|uUN,i|2 1{|UN,i|≥ε} | FN ]

≤ ε|u|3σ2
N,i + u2 E[|UN,i|2 1{|UN,i|≥ε} | FN ] .

Summing up the right-hand side over 1 ≤ i ≤MN , using the assumed condi-
tions (ii) and (iii) and recalling that ε was arbitrary, we find that AN → 0 in
probability. We now turn to BN . For positive x, |e−x − 1 + x| ≤ x2/2. Thus

BN ≤ u4

8

MN∑
i=1

σ4
N,i ≤

u4

8
max

1≤i≤MN

σ2
N,i

MN∑
i=1

σ2
N,i .

Here the sum on the right-hand side converges in probability and, as remarked
above, the maximum tends to zero in probability (the uniform smallness con-
dition). Thus BN → 0 in probability and the proof is complete. ��

In the special case where the random variables {UN,i}1≤i≤MN
, for any

N , are conditionally i.i.d. given {FN}, Proposition 9.5.9 admits a simpler
formulation.

Corollary 9.5.11. Let {VN,i}1≤i≤MN
be a triangular array of random vari-

ables and let {FN}N≥0 be a sequence of sub-σ-fields of F . Assume that the
following conditions hold true.

(i) The triangular array is conditionally i.i.d. given {FN} and for any N ,
E[V 2

N,1 | FN ] <∞ and E[VN,1 | FN ] = 0.

(ii) There exists a positive constant σ2 such that E[V 2
N,1 | FN ] P−→ σ2.

(iii) For any positive ε, E[V 2
N,11{|VN,1|≥εMN } | FN ] P−→ 0.

Then for any real u,

E

[
exp

(
iuM−1/2

N

MN∑
i=1

VN,i

)∣∣∣∣∣ FN

]
P−→ exp(−σ2u2/2) . (9.75)



9.5 Complements 341

Proposition 9.5.12. Let {VN,i}1≤i≤MN
be a triangular array of random vari-

ables and let {FN}N≥0 be a sequence of sub-σ-fields of F . Assume that the
following conditions hold true.

(i) The triangular array is conditionally independent given {FN} and for
any N and i = 1, . . . ,MN , E[V 2

N,i | FN ] <∞.
(ii) There exists a constant σ2 > 0 such that

MN∑
i=1

{E[V 2
N,i | FN ]− (E[VN,i | FN ])2} P−→ σ2 .

(iii) For all ε > 0,
MN∑
i=1

E[V 2
N,i1{|VN,i|≥ε} | FN ] P−→ 0 .

Then for any real u,

E

[
exp

(
iu

MN∑
i=1

{VN,i − E[VN,i | FN ]}
)∣∣∣∣∣ FN

]
P−→ exp(−(u2/2)σ2) .

Proof. We check that the triangular array UN,i = VN,i − E[VN,i | FN ] satis-
fies conditions (i)–(iii) of Proposition 9.5.9. This triangular array is condi-
tionally independent given {FN} and by construction E[UN,i | FN ] = 0 and
E[U2

N,i | FN ] = E[V 2
N,i | FN ] − {E[VN,i | FN ]}2. Therefore, conditions (i) and

(ii) are fulfilled. It remains to check that for any ε > 0, (9.72) holds true. By
Jensen’s inequality,

U2
N,i ≤ 2(V 2

N,i + E[V 2
N,i | FN ]) ,

1{|UN,i|≥ε} ≤ 1{V 2
N,i≥ε2/4} + 1{E[V 2

N,i | FN ]≥ε2/4} ,

so that the left-hand side of (9.72) is bounded by

2
MN∑
i=1

E[V 2
N,i1{V 2

N,i≥ε2/4} | FN ] + 2
MN∑
i=1

E[V 2
N,i | FN ] P(V 2

N,i ≥ ε2/4 | FN )

+ 4
MN∑
i=1

E[V 2
N,i | FN ]1{E[V 2

N,i | FN ]≥ε2/4} .

The proof is concluded using the same arguments as in the proof of Proposi-
tion 9.5.7. ��

Theorem 9.5.13. Let {ξN,i}1≤i≤MN
be a triangular array of X-valued ran-

dom variables, let {FN}N≥0 be a sequence of sub-σ-fields of F , and let f be
a real-valued function on X. Assume that the following conditions hold true.

(i) The triangular array is conditionally independent given {FN} and for
any N and i = 1, . . . ,MN , E[f2(ξN,i) | FN ] <∞,
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(ii) There exists a constant σ2 > 0 such that

M−1
N

MN∑
i=1

{E[f2(ξN,i) | FN ]− (E[f(ξN,i) | FN ])2} P−→ σ2 .

(iii) There exists a probability measure µ on (X,X ) such that f ∈ L2(X, µ)
and for any positive C,

M−1
N

MN∑
i=1

E[f2(ξN,i)1{|f(ξN,i)|≥C} | FN ] P−→ µ(f21{|f |≥C}) .

Then for any real u,

E

[
exp

(
iuM−1/2

N

MN∑
i=1

{
f(ξN,i)− E[f(ξN,i) | FN ]

}) ∣∣∣∣∣ FN

]
P−→ exp(−σ2u2/2) . (9.76)

Proof. Set VN,i = M
−1/2
N f(ξN,i). We prove the theorem by checking con-

ditions (i)–(iii) of Proposition 9.5.12. Of these conditions, the first two are
immediate, so it remains to verify the Lindeberg condition (iii). Pick ε > 0.
Then for any positive C

MN∑
i=1

E[V 2
N,i1{|VN,i|≥ε} | FN ]

≤M−1
N

MN∑
i=1

E[f2(ξN,i)1{|f(ξN,i)|≥C} | FN ] P−→ µ(f21{|f |≥C}) ,

where the inequality holds for sufficiently large N . Because f ∈ L2(X, µ) the
right-hand side of this display tends to zero as C →∞, so that the Lindeberg
condition is satisfied. ��

9.5.2 Bibliographic Notes

Convergence of interacting particle systems has been considered by many au-
thors in the last decade, triggered by the seminal papers of Del Moral (1996,
1998). Most of the results presented in this chapter have already appeared in
the literature, perhaps in a slightly different form. We have focused here on
the most elementary convergence properties, the law of large numbers, and
the central limit theorem. More sophisticated convergence results are avail-
able, covering for instance large deviations (Del Moral and Guionnet, 1998),
empirical processes (Del Moral and Ledoux, 2000), propagation of chaos (Del
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Moral and Miclo, 2001), and rate of convergence in the central limit theorem.
The ultimate reference for convergence analysis of interacting particle systems
is Del Moral (2004), which summarizes most of these efforts. An elementary
but concise survey of available results is given in Crisan and Doucet (2002).
The approach developed here has been inspired by Künsch (2003).
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Parameter Inference



10

Maximum Likelihood Inference, Part I:
Optimization Through Exact Smoothing

In previous chapters, we have focused on structural results and methods for
HMMs, considering in particular that the models under consideration were
always perfectly known. In most situations, however, the model cannot be fully
specified beforehand, and some of its parameters need to be calibrated based
on observed data. Except for very simplistic instances of HMMs, the structure
of the model is sufficiently complex to prevent the use of direct estimators such
as those provided by moment or least squares methods. We thus focus in the
following on computation of the maximum likelihood estimator.

Given the specific structure of the likelihood function in HMMs, it turns
out that the key ingredient of any optimization method applicable in this
context is the ability to compute smoothed functionals of the unobserved
sequence of states. Hence the methods discussed in the second part of the book
for evaluating smoothed quantities are instrumental in devising parameter
estimation strategies.

This chapter only covers the class of HMMs discussed in Chapter 5, for
which the smoothing recursions described in Chapters 3 and 4 may effectively
be implemented on computers. For such models, the likelihood function is
computable, and hence our main task will be to optimize a possibly complex
but entirely known function. The topic of this chapter thus relates to the
more general field of numerical optimization. For models that do not allow for
exact numerical computation of smoothing distributions, this chapter provides
a framework from which numerical approximations can be built. Those will
be discussed in Chapter 11.

10.1 Likelihood Optimization in Incomplete Data Models

To describe the methods as concisely as possible, we adopt a very general view-
point in which we only assume that the likelihood function of interest may
be written as the marginal of a higher dimensional function. In the terminol-
ogy introduced by Dempster et al. (1977), this higher dimensional function is



348 10 Maximum Likelihood Inference, Part I

described as the complete data likelihood; in this framework, the term incom-
plete data refers to the actual observed data while the complete data is a (not
fully observable) higher dimensional random variable. In Section 10.2, we will
exploit the specific structure of the HMM, and in particular the fact that it
corresponds to a missing data model in which the observations simply are a
subset of the complete data. We ignore these specifics for the moment however
and consider the general likelihood optimization problem in incomplete data
models.

10.1.1 Problem Statement and Notations

Given a σ-finite measure λ on (X,X ), we consider a family {f(·; θ)}θ∈Θ of non-
negative λ-integrable functions on X. This family is indexed by a parameter
θ ∈ Θ, where Θ is a subset of R

dθ (for some integer dθ). The task under
consideration is the maximization of the integral

L(θ) def=
∫

f(x ; θ)λ(dx) (10.1)

with respect to the parameter θ. The function f(· ; θ) may be thought of
as an unnormalized probability density with respect to λ. Thus L(θ) is the
normalizing constant for f(· ; θ). In typical examples, f(· ; θ) is a relatively
simple function of θ. In contrast, the quantity L(θ) usually involves high-
dimensional integration and is therefore sufficiently complex to prevent the use
of simple maximization approaches; even the direct evaluation of the function
might turn out to be non-feasible.

In Section 10.2, we shall consider more specifically the case where f is
the joint probability density function of two random variables X and Y , the
latter being observed while the former is not. Then X is referred to as the
missing data, f is the complete data likelihood, and L is the density of Y alone,
that is, the likelihood available for estimating θ. Note however that thus far,
the dependence on Y is not made explicit in the notation; this is reminiscent
of the implicit conditioning convention discussed in Section 3.1.4 in that the
observations do not appear explicitly. Having sketched these statistical ideas,
we stress that we feel it is actually easier to understand the basic mecha-
nisms at work without relying on the probabilistic interpretation of the above
quantities. In particular, it is not required that L be a likelihood, as any func-
tion satisfying (10.1) is a valid candidate for the methods discussed here (cf.
Remark 10.2.1).

In the following, we will assume that L(θ) is positive, and thus maximizing
L(θ) is equivalent to maximizing

�(θ) def= log L(θ) . (10.2)

In a statistical setting, � is the log-likelihood. We also associate to each function
f(· ; θ) the probability density function p(· ; θ) (with respect to the dominating
measure λ) defined by
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p(x ; θ) def= f(x ; θ)/L(θ) . (10.3)

In the statistical setting sketched above, p(x; θ) is the conditional density of
X given Y .

10.1.2 The Expectation-Maximization Algorithm

The most popular method for solving the general optimization problem out-
lined above is the EM (for expectation-maximization) algorithm introduced,
in its full generality, by Dempster et al. (1977) in their landmark paper. Given
the literature available on the topic, our aim is not to provide a comprehensive
review of all the results related to the EM algorithm but rather to highlight
some of its key features and properties in the context of hidden Markov mod-
els.

10.1.2.1 The Intermediate Quantity of EM

The central concept in the framework introduced by Dempster et al. (1977)
is an auxiliary function (or, more precisely, a family of auxiliary functions)
known as the intermediate quantity of EM.

Definition 10.1.1 (Intermediate Quantity of EM). The intermediate
quantity of EM is the family {Q(· ; θ′)}θ′∈Θ of real-valued functions on Θ,
indexed by θ′ and defined by

Q(θ ; θ′) def=
∫

log f(x ; θ)p(x ; θ′)λ(dx) . (10.4)

Remark 10.1.2. To ensure that Q(θ ; θ′) is indeed well-defined for all values
of the pair (θ, θ′), one needs regularity conditions on the family of functions
{f(· ; θ)}θ∈Θ, which will be stated below (Assumption 10.1.3). To avoid trivial
cases however, we use the convention 0 log 0 = 0 in (10.4) and in similar
relations below. In more formal terms, for every measurable set N such that
both f(x ; θ) and p(x ; θ′) vanish λ-a.e. on N , set∫

N

log f(x ; θ)p(x ; θ′)λ(dx) def= 0 .

With this convention, Q(θ ; θ′) stays well-defined in cases where there exists a
non-empty set N such that both f(x ; θ) and f(x ; θ′) vanish λ-a.e. on N . �

The intermediate quantity Q(θ ; θ′) of EM may be interpreted as the ex-
pectation of the function log f(X ; θ) when X is distributed according to the
probability density function p(· ; θ′) indexed by a, possibly different, value θ′

of the parameter. Using (10.2) and (10.3), one may rewrite the intermediate
quantity of EM in (10.4) as
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Q(θ ; θ′) = �(θ)−H(θ ; θ′) , (10.5)

where
H(θ ; θ′) def= −

∫
log p(x ; θ)p(x ; θ′)λ(dx) . (10.6)

Equation (10.5) states that the intermediate quantity Q(θ ; θ′) of EM differs
from (the log of) the objective function �(θ) by a quantity that has a familiar
form. Indeed, H(θ′ ; θ′) is recognized as the entropy of the probability density
function p(· ; θ′) (see for instance Cover and Thomas, 1991). More importantly,
the increment of H(θ ; θ′),

H(θ ; θ′)−H(θ′ ; θ′) = −
∫

log
p(x ; θ)
p(x ; θ′)

p(x ; θ′)λ(dx) , (10.7)

is recognized as the Kullback-Leibler divergence (or relative entropy) between
the probability density functions p indexed by θ and θ′, respectively.

The last piece of notation needed is the following: the gradient and Hessian
of a function, say L, at θ′ will be denoted by ∇θL(θ′) and ∇2

θL(θ′), respec-
tively. To avoid ambiguities, the gradient of H(· ; θ′) with respect to its first
argument, evaluated at θ′′, will be denoted by ∇θH(θ ; θ′)|θ=θ′′ (where the
same convention will also be used, if needed, for the Hessian).

We conclude this introductory section by stating a minimal set of as-
sumptions that guarantee that all quantities introduced so far are indeed
well-defined.

Assumption 10.1.3.

(i) The parameter set Θ is an open subset of R
dθ (for some integer dθ).

(ii) For any θ ∈ Θ, L(θ) is positive and finite.
(iii) For any (θ, θ′) ∈ Θ ×Θ,

∫
|∇θ log p(x ; θ)|p(x ; θ′)λ(dx) is finite.

.

Assumption 10.1.3(iii) implies in particular that the probability distribu-
tions in the family {p(· ; θ) dλ}θ∈Θ are all absolutely continuous with respect
to one another. Any individual distribution p(· ; θ) dλ can only vanish on sets
that are assigned null probability by all other probability distributions in the
family. Thus both H(θ ; θ′) and Q(θ ; θ′) are well-defined for all pairs of pa-
rameters.

10.1.2.2 The Fundamental Inequality of EM

We are now ready to state the fundamental result that justifies the standard
construction of the EM algorithm.

Proposition 10.1.4. Under Assumption 10.1.3, for any (θ, θ′) ∈ Θ ×Θ,

�(θ)− �(θ′) ≥ Q(θ ; θ′)−Q(θ′ ; θ′) , (10.8)

where the inequality is strict unless p(· ; θ) and p(· ; θ′) are equal λ-a.e.
Assume in addition that
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(a) θ 
→ L(θ) is continuously differentiable on Θ;
(b) for any θ′ ∈ Θ, θ 
→ H(θ ; θ′) is continuously differentiable on Θ.

Then for any θ′ ∈ Θ, θ 
→ Q(θ ; θ′) is continuously differentiable on Θ and

∇θ�(θ′) = ∇θQ(θ ; θ′)|θ=θ′ . (10.9)

Proof. The difference between the left-hand side and the right-hand side
of (10.8) is the quantity defined in (10.7), which we already recognized as
a Kullback-Leibler distance. Under Assumption 10.1.3(iii), this latter term
is well-defined and known to be strictly positive (by direct application of
Jensen’s inequality) unless p(· ; θ) and p(· ; θ′) are equal λ-a.e. (Cover and
Thomas, 1991; Lehmann and Casella, 1998).

For (10.9), first note that Q(θ ; θ′) is a differentiable function of θ, as it
is the difference of two functions that are differentiable under the additional
assumptions (a) and (b). Next, the previous discussion implies that H(θ ; θ′)
is maximal for θ = θ′, although this may not be the only point where the
maximum is achieved. Thus its gradient vanishes at θ′, which proves (10.9).

��

10.1.2.3 The EM Algorithm

The essence of the EM algorithm, which is suggested by (10.5), is thatQ(θ ; θ′)
may be used as a surrogate for �(θ). Both functions are not necessarily com-
parable but, in view of (10.8), any value of θ such that Q(θ ; θ′) is increased
over its baseline Q(θ′ ; θ′) corresponds to an increase of � (relative to �(θ′))
that is at least as large.

The EM algorithm as proposed by Dempster et al. (1977) consists in it-
eratively building a sequence {θi}i≥1 of parameter estimates given an initial
guess θ0. Each iteration is classically broken into two steps as follows.

E-Step: Determine Q(θ ; θi);
M-Step: Choose θi+1 to be the (or any, if there are several) value of θ ∈ Θ

that maximizes Q(θ ; θi).

It is certainly not obvious at this point that the M-step may be in practice
easier to perform than the direct maximization of the function of interest �
itself. We shall return to this point in Section 10.1.2.4 below.

Proposition 10.1.4 provides the two decisive arguments behind the EM
algorithm. First, an immediate consequence of (10.8) is that, by the very
definition of the sequence {θi}, the sequence {�(θi)}i≥0 of log-likelihood values
is non-decreasing. Hence EM is a monotone optimization algorithm. Second,
if the iterations ever stop at a point θ�, then Q(θ ; θ�) has to be maximal at
θ� (otherwise it would still be possible to improve over θ�), and hence θ� is
such that ∇θL(θ�) = 0, that is, this is a stationary point of the likelihood.

Although this picture is largely correct, there is a slight flaw in the second
half of the above intuitive reasoning in that the if part (if the iterations ever
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stop at a point) may indeed never happen. Stronger conditions are required to
ensure that the sequence of parameter estimates produced by EM from any
starting point indeed converges to a limit θ� ∈ Θ. However, it is actually true
that when convergence to a point takes place, the limit has to be a stationary
point of the likelihood. In order not to interrupt our presentation of the EM
framework, convergence results pertaining to the EM algorithm are deferred
to Section 10.5 at the end of this chapter; see in particular Theorems 10.5.3
and 10.5.4.

10.1.2.4 EM in Exponential Families

The EM algorithm defined in the previous section will only be helpful in
situations where the following general conditions hold.

E-Step: It is possible to compute, at reasonable computational cost, the in-
termediate quantity Q(θ ; θ′) given a value of θ′.

M-Step: Q(θ ; θ′), considered as a function of its first argument θ, is sufficiently
simple to allow closed-form maximization.

A rather general context in which both of these requirements are satisfied,
or at least are equivalent to easily interpretable necessary conditions, is when
the functions {f(· ; θ)} belong to an exponential family.

Definition 10.1.5 (Exponential Family). The family {f(· ; θ)}θ∈Θ defines
an exponential family of positive functions on X if

f(x ; θ) = exp{ψ(θ)tS(x)− c(θ)}h(x) , (10.10)

where S and ψ are vector-valued functions (of the same dimension) on X
and Θ respectively, c is a real-valued function on Θ and h is a non-negative
real-valued function on X.

Here S(x) is known as the vector of natural sufficient statistics, and η =
ψ(θ) is the natural parameterization. If {f(· ; θ)}θ∈Θ is an exponential family
and if

∫
|S(x)|f(x ; θ)λ(dx) is finite for any θ ∈ Θ, the intermediate quantity

of EM reduces to

Q(θ ; θ′) = ψ(θ)t

[∫
S(x)p(x ; θ′)λ(dx)

]
− c(θ) +

∫
p(x ; θ′) log h(x)λ(dx) .

(10.11)
Note that the right-most term does not depend on θ and thus plays no role
in the maximization. It may as well be ignored, and in practice it is not
required to compute it. Except for this term, the right-hand side of (10.11)
has an explicit form as soon as it is possible to evaluate the expectation
of the vector of sufficient statistics S under p(· ; θ′). The other important
feature of (10.11), ignoring the rightmost term, is that Q(θ ; θ′), viewed as a
function of θ, is similar to the logarithm of (10.10) for the particular value
Sθ′ =

∫
S(x)p(x ; θ′)λ(dx) of the sufficient statistic.
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In summary, if {f(· ; θ)}θ∈Θ is an exponential family, the two above gen-
eral conditions needed for the EM algorithm to be practicable reduce to the
following.

E-Step: The expectation of the vector of sufficient statistics S(X) under
p(· ; θ′) must be computable.

M-Step: Maximization of ψ(θ)ts−c(θ) with respect to θ ∈ Θ must be feasible
in closed form for any s in the convex hull of S(X) (that is, for any
valid value of the expected vector of sufficient statistics).

For the sake of completeness, it should be mentioned that there are variants
of the EM algorithm that are handy in cases where the maximization required
in the M-step is not directly feasible (see Section 10.5.3 and further references
in Section 10.5.4). In the context of HMMs, the main limitation of the EM
algorithm rather appears in cases where the E-step is not feasible. This latter
situation is the rule rather than the exception in models for which the state
space X is not finite. For such cases, approaches that build on the EM concepts
introduced in the current chapter will be fully discussed in Chapter 11.

10.1.3 Gradient-based Methods

A frequently ignored observation is that in any model where the EM strategy
may be applied, it is also possible to evaluate derivatives of the objective func-
tion �(θ) with respect to the parameter θ. This is obvious from (10.9), and we
will expand on this matter below. As a consequence, instead of resorting to a
specific algorithm such as EM, one may borrow tools from the (comprehensive
and well-documented) toolbox of gradient-based optimization methods.

10.1.3.1 Computing Derivatives in Incomplete Data Models

A first remark is that in cases where the EM algorithm is applicable, the ob-
jective function �(θ) is actually computable: because the EM requires the com-
putation of expectations under the conditional density p(· ; θ), it is restricted
to cases where the normalizing constant L(θ)—and hence �(θ) = log L(θ)—is
available. The two equalities below show that it is indeed also the case for the
first- and second-order derivatives of �(θ).

Proposition 10.1.6 (Fisher’s and Louis’ Identities). Assume 10.1.3 and
that the following conditions hold.

(a) θ 
→ L(θ) is twice continuously differentiable on Θ.
(b) For any θ′ ∈ Θ, θ 
→ H(θ ; θ′) is twice continuously differentiable on Θ.

In addition,
∫
|∇k

θ log p(x ; θ)|p(x ; θ′)λ(dx) is finite for k = 1, 2 and any
(θ, θ′) ∈ Θ ×Θ, and

∇k
θ

∫
log p(x ; θ)p(x ; θ′)λ(dx) =

∫
∇k

θ log p(x ; θ)p(x ; θ′)λ(dx) .
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Then the following identities hold:

∇θ�(θ′) =
∫
∇θ log f(x ; θ)|θ=θ′ p(x ; θ′)λ(dx) , (10.12)

−∇2
θ�(θ

′) = −
∫
∇2

θ log f(x ; θ)
∣∣
θ=θ′ p(x ; θ′)λ(dx)

+
∫
∇2

θ log p(x ; θ)
∣∣
θ=θ′ p(x ; θ′)λ(dx) . (10.13)

The second equality may be rewritten in the equivalent form

∇2
θ�(θ

′) + {∇θ�(θ′)} {∇θ�(θ′)}t =
∫ [

∇2
θ log f(x ; θ)

∣∣
θ=θ′

+ {∇θ log f(x ; θ)|θ=θ′} {∇θ log f(x ; θ)|θ=θ′}t

]
p(x ; θ′)λ(dx) . (10.14)

Equation (10.12) is sometimes referred to as Fisher’s identity (see the
comment by B. Efron in the discussion of Dempster et al., 1977, p. 29). In
cases where the function L may be interpreted as the likelihood associated
with some statistical model, the left-hand side of (10.12) is the score function
(gradient of the log-likelihood). Equation (10.12) shows that the score function
may be evaluated by computing the expectation, under p(· ; θ′), of the function
∇θ log f(X ; θ)|θ=θ′ . This latter quantity, in turn, is referred to as the complete
score function in a statistical context, as log f(x ; θ) is the joint log-likelihood
of the complete data (X,Y ); again we remark that at this stage, Y is not
explicit in the notation.

Equation (10.13) is usually called the missing information principle af-
ter Louis (1982) who first named it this way, although it was mentioned pre-
viously in a slightly different form by Orchard and Woodbury (1972) and
implicitly used in Dempster et al. (1977). In cases where L is a likelihood,
the left-hand side of (10.13) is the associated observed information matrix,
and the second term on the right-hand side is easily recognized as the (nega-
tive of the) Fisher information matrix associated with the probability density
function p(· ; θ′).

Finally (10.14), which is here written in a form that highlights its sym-
metry, was also proved by Louis (1982) and is thus known as Louis’ identity.
Together with (10.12), it shows that the first- and second-order derivatives
of � may be evaluated by computing expectations under p(· ; θ′) of quantities
derived from f(· ; θ). We now prove these three identities.

Proof (of Proposition 10.1.6). Equations (10.12) and (10.13) are just (10.5)
where the right-hand side is differentiated once, using (10.9), and then twice
under the integral sign.

To prove (10.14), we start from (10.13) and note that the second term on
its right-hand side is the negative of an information matrix for the parameter
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θ associated with the probability density function p(· ; θ) and evaluated at θ′.
We rewrite this second term using the well-known information matrix identity∫

∇2
θ log p(x ; θ)

∣∣
θ=θ′ p(x ; θ′)λ(dx)

= −
∫
{∇θ log p(x ; θ)|θ=θ′} {∇θ log p(x ; θ)|θ=θ′}t

p(x ; θ′)λ(dx) .

This is again a consequence of assumption (b) and the fact that p(· ; θ) is a
probability density function for all values of θ, implying that∫

∇θ log p(x ; θ)|θ=θ′ p(x ; θ′)λ(dx) = 0 .

Now use the identity log p(x ; θ) = log f(x ; θ) − �(θ) and (10.12) to conclude
that∫

{∇θ log p(x ; θ)|θ=θ′} {∇θ log p(x ; θ)|θ=θ′}t
p(x ; θ′)λ(dx)

=
∫
{∇θ log f(x ; θ)|θ=θ′} {∇θ log f(x ; θ)|θ=θ′}t

p(x ; θ′)λ(dx)

− {∇θ�(θ′)} {∇θ�(θ′)}t
,

which completes the proof. ��

Remark 10.1.7. As was the case for the intermediate quantity of EM,
Fisher’s and Louis’ identities only involve expectations under p(· ; θ′) of quan-
tities derived from f(· ; θ). In particular, when the functions f(· ; θ) belong to
an exponential family (see Definition 10.1.5), Fisher’s identity, for instance,
may be rewritten as

∇θ�(θ′) = {∇θψ(θ′)}t
(∫

S(x)p(x ; θ′)λ(dx)
)
−∇θc(θ′) ,

with the convention that ∇θψ(θ′) is the dθ × dθ matrix containing the partial
derivatives [∇θψ(θ′)]ij = ∂ψi(θ′)/∂θj . As a consequence, the only practical
requirement for using Fisher’s and Louis’ identities is the ability to compute
expectations of the sufficient statistic S(x) under p(· ; θ) for any θ ∈ Θ. �

10.1.3.2 The Steepest Ascent Algorithm

We briefly discuss the main features of gradient-based iterative optimization
algorithms, starting with the simplest, but certainly not most efficient, ap-
proach. We restrict ourselves to the case where the optimization problem is
unconstrained in the sense that Θ = R

dθ , so that any parameter value pro-
duced by the algorithms below is valid. For an in-depth coverage of the subject,
we recommend the monographs by Luenberger (1984) and Fletcher (1987).
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The simplest method is the steepest ascent algorithm in which the cur-
rent value of the estimate θi is updated by adding a multiple of the gradient
∇θ�(θi), referred to as the search direction:

θi+1 = θi + γi∇θ�(θi) . (10.15)

Here the multiplier γi is a non-negative scalar that needs to be adjusted at each
iteration to ensure, a minima, that the sequence {�(θi)} is non-decreasing—as
was the case for EM. The most sensible approach consists in choosing γi as
to maximize the objective function in the search direction:

γi = arg maxγ≥0 �[θ
i + γ∇θ�(θi)] . (10.16)

It can be shown (Luenberger, 1984, Chapter 7) that under mild assumptions,
the steepest ascent method with multipliers (10.16) is globally convergent,
with a set of limit points corresponding to the stationary points of � (see
Section 10.5 for precise definitions of these terms and a proof that this property
holds for the EM algorithm).

It remains that the use of the steepest ascent algorithm is not recom-
mended, particularly in large-dimensional parameter spaces. The reason for
this is that its speed of convergence linear in the sense that if the sequence
{θi}i≥0 converges to a point θ� such that the Hessian ∇2

θ�(θ�) is negative
definite (see Section 10.5.2), then

lim
i→∞

∣∣θi+1(k)− θ�(k)
∣∣

|θi(k)− θ�(k)| = ρk < 1 ; (10.17)

here θ(k) denotes the kth coordinate of the parameter vector. For large-
dimensional problems it frequently occurs that, at least for some components
k, the factor ρk is close to one, resulting in very slow convergence of the
algorithm. It should be stressed however that the same is true for the EM
algorithm, which also exhibits speed of convergence that is linear, and of-
ten very poor (Dempster et al., 1977; Jamshidian and Jennrich, 1997; Meng,
1994; Lange, 1995; Meng and Dyk, 1997). For gradient-based methods how-
ever, there exists a whole range of approaches, based on the second-order
properties of the objective function, to guarantee faster convergence.

10.1.3.3 Newton and Second-order Methods

The prototype of second-order methods is the Newton, or Newton-Raphson,
algorithm:

θi+1 = θi −H−1(θi)∇θ�(θi) , (10.18)

where H(θi) = ∇2
θ�(θ

i) is the Hessian of the objective function. The Newton
iteration is based on the second-order approximation

�(θ) ≈ �(θ′) +∇�(θ′) (θ − θ′) +
1
2

(θ − θ′)t
H(θ′) (θ − θ′) .
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If the sequence {θi}i≥0 produced by the algorithm converges to a point θ� at
which the Hessian is negative definite, the convergence is, at least, quadratic
in the sense that for sufficiently large i there exists a positive constant β such
that ‖θi+1− θ�‖ ≤ β‖θi− θ�‖2. Therefore the procedure can be very efficient.

The practical use of the Newton algorithm is however hindered by two
serious difficulties. The first is analogous to the problem already encountered
for the steepest ascent method: there is no guarantee that the algorithm meets
the minimal requirement to provide a final parameter estimate that is at least
as good as the starting point θ0. To overcome this difficulty, one may proceed
as for the steepest ascent method and introduce a multiplier γi controlling the
step-length in the search direction, so that the method takes the form

θi+1 = θi − γiH
−1(θi)∇θ�(θi) . (10.19)

Again, γi may be set to maximize �(θi+1). In practice, it is most often impossi-
ble to obtain the exact maximum point called for by the ideal line-search, and
one uses approximate directional maximization procedures. Generally speak-
ing, a line-search algorithm is an algorithm to find a reasonable multiplier γi

in a step of the form (10.19). A frequently used algorithm consists in deter-
mining the (approximate) maximum based on a polynomial interpolation of
�(θ) along the line-segment between the current point θi and the proposed
update given by (10.18).

A more serious problem is that except in the particular case where the
function �(θ) is strictly concave, the direct implementation of (10.18) is prone
to numerical instabilities: there may well be whole regions of the parameter
space where the Hessian H(θ) is either non-invertible (or at least very badly
conditioned) or not negative semi-definite (in which case −H−1(θi)∇θ�(θi) is
not necessarily an ascent direction). To combat this difficulty, Quasi-Newton
methods1 use the modified recursion

θi+1 = θi + γiW
i∇�(θi) ; (10.20)

here W i is a weight matrix that may be tuned at each iteration, just like the
multiplier γi. The rationale is that if W i becomes close to −H−1(θi) when
convergence occurs, the modified algorithm will share the favorable conver-
gence properties of the Newton algorithm. On the other hand, by using a
weight matrix W i different from −H−1(θi), numerical issues associated with
the matrix inversion may be avoided. We again refer to Luenberger (1984)
and Fletcher (1987) for a more precise discussion of the available approaches
and simply mention here the fact that usually the methods only take profit
of gradient information to construct W i, for instance using finite difference
calculations, without requiring the direct evaluation of the Hessian H(θ).

In some contexts, it may be possible to build explicit strategies that are
not as good as the Newton algorithm—failing in particular to reach quadratic

1Conjugate gradient methods are another alternative approach that we do not
discuss here.
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convergence rates—but yet significantly faster at converging than the basic
steepest ascent approach. For incomplete data models, Lange (1995) suggested
to use in (10.20) a weight matrix I−1

c (θi) given by

Ic(θ′) = −
∫
∇2

θ log f(x ; θ)
∣∣
θ=θ′ p(x ; θ′)λ(dx) . (10.21)

This is the first term on the right-hand side of (10.13). In many models of
interest, this matrix is positive definite for all θ′ ∈ Θ, and thus its inversion
is not subject to numerical instabilities. Based on (10.13), it is also to be
expected that in some circumstances, Ic(θ′) is a reasonable approximation to
the Hessian ∇2

θ�(θ
′) and hence that the weighted gradient algorithm converges

faster than the steepest ascent or EM algorithms (see Lange, 1995, for further
results and examples). In a statistical context, where f(x ; θ) is the joint den-
sity of two random variables X and Y , Ic(θ′) is the conditional expectation
given Y of the observed information matrix of associated with this pair.

10.1.4 Pros and Cons of Gradient-based Methods

A quick search through the literature shows that for HMMs in particular and
incomplete data models in general, the EM algorithm is much more popular
than are gradient-based alternatives. A first obvious reason for this is that the
EM approach is more generally known than its gradient-based counterparts.
We list below a number of additional significant differences between both
approaches, giving first the arguments in favor of the EM algorithm.

• The EM algorithm is usually very simple to implement from scratch. This is
not the case for gradient-based methods, which require several specialized
routines, for Hessian approximation, line-search, etc. This argument is
however made less pregnant by the wide availability of generic numerical
optimization code, so that implementing a gradient-based method usually
only requires the computation of the objective function � and its gradient.
In most situations, this is not more complicated than is implementing EM.

• The EM algorithm often deals with parameter constraints implicitly. It
is generally the case that the M-step equations are so simple that they
can be solved even for parameters that are subject to constraints (see the
case of normal HMMs in Section 10.3 for an example). For gradient-based
methods this is not the case, and parameter constraints have to be dealt
with explicitly, either through reparameterization (see Example 10.3.2) or
using constrained optimization routines.

• The EM algorithm is parameterization independent. Because the M-step
is defined by a maximization operation, it is independent of the way the
parameters are represented, as is the maximum likelihood estimator for
instance. Thus any (invertible) transformation of the parameter vector θ
leaves the EM recursion unchanged. This is obviously not the case for
gradient-based methods for which reparameterization will change the gra-
dient and Hessian, and hence the convergence behavior of the algorithm.



10.2 Application to HMMs 359

In contrast, gradient-based methods may be preferred for the following rea-
sons.

• Gradient-based methods do not require the M-step. Thus they may be ap-
plied to models for which the M-step does not lead to simple closed-form
solutions.

• Gradient-based methods converge faster. As discussed above, gradient-
based methods can reach quadratic convergence whereas EM usually con-
verges only linearly, following (10.17)—see Example 10.3.2 for an illustra-
tion and further discussion of this aspect.

10.2 Application to HMMs

We now return to our primary focus and discuss the application of the previous
methods to the specific case of hidden Markov models.

10.2.1 Hidden Markov Models as Missing Data Models

HMMs correspond to a sub-category of incomplete data models known as
missing data models. In missing data models, the observed data Y is a subset
of some not fully observable complete data (X,Y ). We here assume that the
joint distribution of X and Y , for a given parameter value θ, admits a joint
probability density function f(x, y ; θ) with respect to the product measure
λ ⊗ µ. As mentioned in Section 10.1.1, the function f is sometimes referred
to as the complete data likelihood. It is important to understand that f is a
probability density function only when considered as a function of both x and
y. For a fixed value of y and considered as a function of x only, f is a positive
integrable function. Indeed, the actual likelihood of the observation, which is
defined as the probability density function of Y with respect to µ, is obtained
by marginalization as

L(y ; θ) =
∫

f(x, y ; θ)λ(dx) . (10.22)

For a given value of y this is of course a particular case of (10.1), which served
as the basis for developing the EM framework in Section 10.1.2. In missing
data models, the family of probability density functions {p(· ; θ)}θ∈Θ defined
in (10.3) may thus be interpreted as

p(x|y ; θ) =
f(x, y ; θ)∫

f(x, y ; θ)λ(dx)
, (10.23)

the conditional probability density function of X given Y .
In the last paragraph, slightly modified versions of the notations intro-

duced in (10.1) and (10.3) were used to reflect the fact that the quanti-
ties of interest now depend on the observed variable Y . This is obviously
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mostly a change regarding terminology, with no impact on the contents of
Section 10.1.2, except that we may now think of integrating with respect to
p(· ; θ) dλ as taking the conditional expectation with respect to the missing
data X, given the observed data Y , in the model indexed by the parameter
value θ.

Remark 10.2.1. Applying the EM algorithm defined in Section 10.1.2 in the
case of (10.22) yields a sequence of parameter values {θi}i≥0 whose likelihoods
L(y ; θi) cannot decrease with the iteration index i. Obviously, this connects to
maximum likelihood estimation. Another frequent use of the EM algorithm is
for maximum a posteriori (MAP) estimation, in which the objective function
to be maximized is a Bayesian posterior (Dempster et al., 1977). Indeed, we
may replace (10.22) by

L(y ; θ) = π(θ)
∫

f(x, y ; θ)λ(dx) , (10.24)

where π is a positive function on Θ. In the Bayesian framework (see Sec-
tion 13.1 for a brief presentation of the Bayesian approach), π is usually se-
lected to be a probability density function (with respect to some measure
on Θ) and (10.24) is then interpreted as being proportional, up to a factor
that depends on y only, to the posterior probability density function of the
unknown parameter θ, conditional on the observation Y . In that case, π is
referred to as a prior density on the parameter θ. But π in (10.24) may also
be thought of as a regularization functional (sometimes also called a penalty)
that may not have a probabilistic interpretation (Green, 1990).

Whether L is defined according to (10.22) or to (10.24) does not modify
the definition of p(· ; θ) in (10.23), as the factor π(θ) cancels out in the renor-
malization. Thus the E-step in the EM algorithm is left unchanged and only
the M-step depends on the precise choice of π. �

10.2.2 EM in HMMs

We now consider more specifically hidden Markov models using the notations
introduced in Section 2.2, assuming that observations Y0 to Yn (or, in short,
Y0:n) are available. Because we only consider HMMs that are fully dominated
in the sense of Definition 2.2.3, we will use the notations ν and φk|n to refer
to the probability density functions of these distributions (of X0 and of Xk

given Y0:n) with respect to the dominating measure λ. The joint probability
density function of the hidden states X0:n and associated observations Y0:n,
with respect to the product measure λ⊗(n+1) ⊗ µ⊗(n+1), is given by

fn(x0:n, y0:n ; θ) = ν(x0 ; θ)g(x0, y0 ; θ)q(x0, x1 ; θ)g(x1, y1 ; θ)
· · · q(xn−1, xn ; θ)g(xn, yn ; θ) , (10.25)

where we used the same convention as above to indicate dependence with
respect to the parameter θ.
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Because we mainly consider estimation of the HMM parameter vector θ
from a single sequence of observations, it does not make much sense to consider
ν as an independent parameter. There is no hope to estimate ν consistently,
as there is only one random variable X0 (that is not even observed!) drawn
from this density. In the following, we shall thus consider that ν is either fixed
(and known) or fully determined by the parameter θ that appears in q and g.
A typical example of the latter consists in assuming that ν is the stationary
distribution associated with the transition function q(·, · ; θ) (if it exists). This
option is generally practicable only in very simple models (see Example 10.3.3
below for an example) because of the lack of analytical expressions relating
the stationary distribution of q(·, · ; θ) to θ for general parameterized hidden
chains. Irrespective of whether ν is fixed or determined by θ, it is convenient
to omit dependence with respect to ν in our notations, writing, for instance,
Eθ for expectations under the model parameterized by (θ, ν).

Note that for left-to-right HMMs (discussed Section 1.4), the case is rather
different as the model is trained from several independent sequences and the
initial distribution is often a key parameter. Handling the case of multiple
training sequences is straightforward as the quantities corresponding to dif-
ferent sequences simply need to be added together due to the independence
assumption (see Section 10.3.2 below for the details in the normal HMM case).

The likelihood of the observations Ln(y0:n ; θ) is obtained by integrat-
ing (10.25) with respect to the x (state) variables under the measure λ⊗(n+1).
Note that here we use yet another slight modification of the notations adopted
in Section 10.1 to acknowledge that both the observations and the hidden
states are indeed sequences with indices ranging from 0 to n (hence the sub-
script n). Upon taking the logarithm in (10.25),

log fn(x0:n, y0:n ; θ) = log ν(x0 ; θ) +
n−1∑
k=0

log q(xk, xk+1 ; θ)

+
n∑

k=0

log g(xk, yk ; θ) ,

and hence the intermediate quantity of EM has the additive structure

Q(θ ; θ′) = Eθ′ [log ν(X0 ; θ) |Y0:n] +
n−1∑
k=0

Eθ′ [log q(Xk, Xk+1 ; θ) |Y0:n]

+
n∑

k=0

Eθ′ [log g(Xk, Yk ; θ) |Y0:n] .

In the following, we will adopt the “implicit conditioning” convention that we
have used extensively from Section 3.1.4 and onwards, writing gk(x ; θ) instead
of g(x, Yk ; θ). With this notation, the intermediate quantity of EM may be
rewritten as
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Q(θ ; θ′) = Eθ′ [log ν(X0 ; θ) |Y0:n] +
n∑

k=0

Eθ′ [log gk(Xk ; θ) |Y0:n]

+
n−1∑
k=0

Eθ′ [log q(Xk, Xk+1 ; θ) |Y0:n] . (10.26)

Equation (10.26) shows that in great generality, evaluating the intermedi-
ate quantity of EM only requires the computation of expectations under
the marginal φk|n(· ; θ′) and bivariate φk:k+1|n(· ; θ′) smoothing distributions,
given the parameter vector θ′. The required expectations may thus be com-
puted using either any of the variants of the forward-backward approach pre-
sented in Chapter 3 or the recursive smoothing approach discussed in Sec-
tion 4.1. To make the connection with the recursive smoothing approach of
Section 4.1, we simply rewrite (10.26) as Eθ′ [tn(X0:n ; θ) |Y0:n], where

t0(x0 ; θ) = log ν(x0 ; θ) + log g0(x0 ; θ) (10.27)

and

tk+1(x0:k+1 ; θ) = tk(x0:k ; θ) + {log q(xk, xk+1 ; θ) + log gk+1(xk+1 ; θ)} .
(10.28)

Proposition 4.1.3 may then be applied directly to obtained the smoothed
expectation of the sum functional tn.

Although the exact form taken by the M-step will obviously depend on the
way g and q depend on θ, the EM update equations follow a very systematic
scheme that does not change much with the exact model under consideration.
For instance, all discrete state space models for which the transition matrix
q is parameterized by its r × r elements and such that g and q do not share
common parameters (or parameter constraints) give rise to the same update
equations for q, given in (10.43) below. Several examples of the EM update
equations will be reviewed in Sections 10.3 and 10.4.

10.2.3 Computing Derivatives

Recall that the Fisher identity—(10.12)—provides an expression for the gradi-
ent of the log-likelihood �n(θ) with respect to the parameter vector θ, closely
related to the intermediate quantity of EM. In the HMM context, (10.12)
reduces to

∇θ�n(θ) = Eθ[∇θ log ν(X0 ; θ) |Y0:n] +
n∑

k=0

Eθ[∇θ log gk(Xk ; θ) |Y0:n]

+
n−1∑
k=0

Eθ[∇θ log q(Xk, Xk+1 ; θ) |Y0:n] . (10.29)
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Hence the gradient of the log-likelihood may also be evaluated using either
the forward-backward approach or the recursive technique discussed in Chap-
ter 4. For the latter, we only need to redefine the functional of interest, re-
placing (10.27) and (10.28) by their gradients with respect to θ.

Louis’ identity (10.14) gives rise to more complicated expressions, and we
only consider here the case where g does depend on θ, whereas the state
transition density q and the initial distribution ν are assumed to be fixed
and known (the opposite situation is covered in detail in a particular case in
Section 10.3.4). In this case, (10.14) may be rewritten as

∇2
θ�n(θ) + {∇θ�n(θ)} {∇θ�n(θ)}t (10.30)

=
n∑

k=0

Eθ[∇2
θ log gk(Xk ; θ)

∣∣ Y0:n]

+
n∑

k=0

n∑
j=0

Eθ

[
{∇θ log gk(Xk ; θ)} {∇θ log gj(Xj ; θ)}t

∣∣∣ Y0:n

]
.

The first term on the right-hand side of (10.30) is obviously an expression that
can be computed proceeding as for (10.29), replacing first- by second-order
derivatives. The second term is however more tricky because it (seemingly)
requires the evaluation of the joint distribution of Xk and Xj given the ob-
servations Y0:n for all pairs of indices k and j, which is not obtainable by the
smoothing approaches based on some form of the forward-backward decompo-
sition. The rightmost term of (10.30) is however easily recognized as a squared
sum functional similar to (4.4), which can thus be evaluated recursively (in
n) proceeding as in Example 4.1.4. Recall that the trick consists in observing
that if

τn,1(x0:n ; θ) def=
n∑

k=0

∇θ log gk(xk ; θ) ,

τn,2(x0:n ; θ) def=

{
n∑

k=0

∇θ log gk(xk ; θ)

}{
n∑

k=0

∇θ log gk(xk ; θ)

}t

,

then

τn,2(x0:n ; θ) = τn−1,2(x0:n−1 ; θ) + {∇θ log gn(xn ; θ)} {∇θ log gn(xn ; θ)}t

+ τn−1,1(x0:n−1 ; θ) {∇θ log gn(xn ; θ)}t

+∇θ log gn(xn ; θ) {τn−1,1(x0:n−1 ; θ)}t
.

This last expression is of the general form given in Definition 4.1.2, and hence
Proposition 4.1.3 may be applied to update recursively in n

Eθ[τn,1(X0:n ; θ) |Y0:n] and Eθ[τn,2(X0:n ; θ) |Y0:n] .

To make this approach more concrete, we will describe below, in Section 10.3.4,
its application to a very simple finite state space HMM.



364 10 Maximum Likelihood Inference, Part I

10.2.4 Connection with the Sensitivity Equation Approach

The method outlined above for evaluating the gradient of the likelihood is
coherent with the general approach of Section 4.1. There is however a (seem-
ingly) distinct approach for evaluating the same quantity, which does not
require the use of Fisher’s identity, and has been used for a very long time in
the particular case of Gaussian linear state-space models. The method, known
under the name of sensitivity equations (see for instance Gupta and Mehra,
1974), postulates that since the log-likelihood can be computed recursively
based on the Kalman prediction recursion, its derivatives can also be com-
puted by a recursion—the so-called sensitivity equations—which is obtained
by differentiating the Kalman relations with respect to the model parameters.
For such models, the remark that the gradient of the log-likelihood may also
be obtained using Fisher’s identity was made by Segal and Weinstein (1989);
see also Weinstein et al. (1994).

The sensitivity equations approach is in no way limited to Gaussian linear
state-space models but may be applied to HMMs in general. This remark, put
forward by Campillo and Le Gland (1989) and Le Gland and Mevel (1997),
has been subsequently used for finite state-space HMMs (Cappé et al., 1998;
Collings and Rydén, 1998) as well as for general HMMs (Cérou et al., 2001;
Doucet and Tadić, 2003). In the latter case, it is necessary to resort to some
form of sequential Monte Carlo approach discussed in Chapter 7 because exact
filtering is not available. It is interesting that the sequential Monte Carlo
approximation method used by both Cérou et al. (2001) and Doucet and Tadić
(2003) has also been derived by Cappé (2001a) using Fisher’s identity and the
smoothing framework discussed in Section 4.1. Indeed, we show below that
the sensitivity equation approach is exactly equivalent to the use of Fisher’s
identity.

Recall that the log-likelihood may be written according to (3.29) as a sum
of terms that only involve the prediction density,

�n(θ) =
n∑

k=0

log
∫

φk|k−1(xk ; θ)gk(xk ; θ)λ(dxk)︸ ︷︷ ︸
ck(θ)

, (10.31)

where the integral is also the normalizing constant that appears in the predic-
tion and filtering recursion (Remark 3.2.6), which we denoted by ck(θ). The
filtering recursion as given by (3.27) implies that

φk+1(xk+1 ; θ) = c−1
k+1(θ)

∫
φk(xk ; θ)q(xk, xk+1 ; θ)gk+1(xk+1 ; θ)λ(dxk) .

(10.32)
To differentiate (10.32) with respect to θ, we assume that ck+1(θ) does not
vanish and we use the obvious identity

∇θ
u(θ)
v(θ)

= v−1(θ)∇θu(θ)− u(θ)
v(θ)

∇θ log v(θ)
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to obtain

∇θφk+1(xk+1 ; θ) = ρk+1(xk+1 ; θ)− φk+1(xk+1 ; θ)∇θ log ck+1(θ) , (10.33)

where

ρk+1(xk+1 ; θ) def= c−1
k+1(θ)∇θ

∫
φk(xk ; θ)q(xk, xk+1 ; θ)gk+1(xk+1 ; θ)λ(dxk) .

(10.34)
We further assume that as in Proposition 10.1.6, we may interchange in-
tegration with respect to λ and differentiation with respect to θ. Because
φk+1(· ; θ) is a probability density function,

∫
φk+1(xk+1 ; θ)λ(dxk+1) = 1 and

∇θ

∫
φk+1(xk+1 ; θ)λ(dxk+1) =

∫
∇θφk+1(xk+1 ; θ)λ(dxk+1) = 0. Therefore,

integration of both sides of (10.33) with respect to λ(dxk+1) yields

0 =
∫

ρk+1(xk+1 ; θ)λ(dxk+1)−∇θ log ck+1(θ) .

Hence, we may evaluate the gradient of the incremental log-likelihood in terms
of ρk+1 according to

∇θ log ck+1(θ)
def= ∇θ(�k+1(θ)− �k(θ)) =

∫
ρk+1(xk+1 ; θ)λ(dxk+1) . (10.35)

Now we evaluate the derivative in (10.34) assuming also that q and gk are
non-zero to obtain

ρk+1(xk+1 ; θ) = c−1
k+1(θ)

∫ {
[∇θ log q(xk, xk+1 ; θ) +∇θ log gk+1(xk+1 ; θ)]

× φk(xk ; θ) +∇θφk(xk ; θ)
}
q(xk, xk+1 ; θ)gk+1(xk+1 ; θ)λ(dxk) .

Plugging (10.33) into the above equation yields an update formula for ρk+1,

ρk+1(xk+1 ; θ) = c−1
k+1(θ)

∫ {
[∇θ log q(xk, xk+1 ; θ) +∇θ log gk+1(xk+1 ; θ)]

× φk(xk ; θ) + ρk(xk ; θ)
}
q(xk, xk+1 ; θ)gk+1(xk+1 ; θ)λ(dxk)

− φk+1(xk+1 ; θ)∇θ log ck(θ) , (10.36)

where (10.32) has been used for the last term on the right-hand side. We
collect these results in the form of the algorithm below.

Algorithm 10.2.2 (Sensitivity Equations). In addition to the usual filtering
recursions, do:

Initialization: Compute

ρ(x0) = [∇θ log ν(x0 ; θ) +∇θ log q0(x0 ; θ)]φ0(x0 ; θ)

and ∇θ�0(θ) =
∫
ρ(x0)λ(dx0).
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Recursion: For k = 0, 1 . . . , use (10.36) to compute ρk+1 and (10.35) to evaluate
∇θ�k+1(θ)−∇θ�k(θ).

Algorithm 10.2.2 updates the intermediate function ρk(· ; θ), defined in
(10.34), whose integral is the quantity of interest ∇θ log ck(θ). Obviously, one
can equivalently use as intermediate quantity the derivative of the filtering
probability density function ∇θφk(· ; θ), which is directly related to ρk(· ; θ)
by (10.33). The quantity ∇θφk(· ; θ), which is referred to as the tangent filter
by Le Gland and Mevel (1997), is also known as the filter sensitivity and may
be of interest in its own right. Using ∇θφk(· ; θ) instead of ρk(· ; θ) does not
however modify the nature of algorithm, except for slightly more involved
mathematical expressions.

It is interesting to contrast Algorithm 10.2.2 with the smoothing approach
based on Fisher’s identity (10.29). Recall from Section 4.1 that in order to
evaluate (10.29), we recursively define a sequence of functions by

t0(x0) = ∇θ log ν(x0 ; θ) +∇θ log g0(x0 ; θ) ,

and

tk+1(x0:k+1) = tk(x0:k) +∇θ log q(xk, xk+1 ; θ) +∇θ log gk+1(xk ; θ)

for k ≥ 0.
Proposition (4.1.3) asserts that Eθ [tk(X0:k) |Y0:k] =

∫
τk(xk ; θ)λ(dxk),

where τk may be updated according to the recursion

τk+1(xk+1 ; θ) = c−1
k+1(θ)

∫ {
[∇θ log q(xk, xk+1 ; θ) +∇θ log gk+1(xk+1 ; θ)]

× φk(xk ; θ) + τk(xk ; θ)
}
q(xk, xk+1 ; θ)gk+1(xk+1 ; θ)λ(dxk) (10.37)

for k ≥ 0, where τ0(x0 ; θ) = c0(θ)−1ν(x0)t0(x0)g0(x0).
Comparing (10.37) and (10.36), it is easily established by recurrence on k

that ρ0(· ; θ) = τ0(· ; θ) and

ρk(· ; θ) = τk(· ; θ)−
(

k−1∑
l=0

∇θ log cl(θ)

)
φk(· ; θ) (10.38)

for k ≥ 1. Hence, whereas
∫
τk(xk ; θ)λ(dxk) gives access to ∇θ�k(θ), the

gradient of the log-likelihood up to index k,
∫
ρk(xk ; θ)λ(dxk) equals the

gradient of the increment �k(θ)−�k−1(θ), where the second term is decomposed
into the telescoping sum �k−1(θ) =

∑k−1
l=0 ∇θ log cl(θ) of increments.

The sensitivity equations and the use of Fisher’s identity combined with
the recursive smoothing algorithm of Proposition 4.1.3 are thus completely
equivalent. The fundamental reason for this rather surprising observation is
that whereas the log-likelihood may be written, according to (10.31), as a



10.3 The Example of Normal Hidden Markov Models 367

sum of integrals under the successive prediction distributions, the same is
no more true when differentiating with respect to θ. To compute the gradient
of (10.31), one needs to evaluate ρk(· ; θ)—or, equivalently, ∇θφk(· ; θ)—which
depends on all the previous values of cl(θ) through the sum

∑k−1
l=0 ∇θ log cl(θ).

To conclude this section, let us stress again that there are only two different
options for computing the gradient of the log-likelihood.

Forward-backward algorithm: based on Fisher’s identity (10.29) and forward-
backward smoothing.

Recursive algorithm: which can be equivalently derived either through the
sensitivity equations or as an application of Proposition 4.1.3 starting
from Fisher’s identity. Both arguments give rise to the same algorithm.

These two options only differ in the way the computations are organized, as
both evaluate exactly the sum of terms appearing in (10.29). In considering
several examples below, we shall observe that the former solution is generally
more efficient from the computational point of view.

10.3 The Example of Normal Hidden Markov Models

In order to make the general principles outlined in the previous section more
concrete, we now work out the details on selected examples of HMMs. We be-
gin with the case where the state space is finite and the observation transition
function g corresponds to a (univariate) Gaussian distribution. Only the most
standard case where the parameter vector is split into two sub-components
that parameterize, respectively, g and q, is considered.

10.3.1 EM Parameter Update Formulas

In the widely used normal HMM discussed in Section 1.3.2, X is a finite set,
identified with {1, . . . , r}, Y = R, and g is a Gaussian probability density
function (with respect to Lebesgue measure) given by

g(x, y ; θ) =
1√

2πυx
exp

{
− (y − µx)2

2υx

}
.

By definition, gk(x ; θ) is equal to g(x, Yk ; θ). We first assume that the initial
distribution ν is known and fixed, before examining the opposite case briefly in
Section 10.3.2 below. The parameter vector θ thus encompasses the transition
probabilities qij for i, j = 1, . . . , r as well as the means µi and variances
υi for i = 1, . . . , r. Note that in this section, because we will often need
to differentiate with respect to υi, it is simpler to use the variances υi =
σ2

i rather than the standard deviations σi as parameters. The means and
variances are unconstrained, except for the positivity of the latter, but the
transition probabilities are subject to the equality constraints

∑r
j=1 qij = 1
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for i = 1, . . . , r (in addition to the obvious constraint that qij should be
non-negative). When considering the parameter vector denoted by θ′, we will
denote by µ′

i, υ
′
i, and q′

ij its various elements.
For the model under consideration, (10.26) may be rewritten as

Q(θ ; θ′) = Cst − 1
2

n∑
k=0

Eθ′

[
r∑

i=1

1{Xk = i}
(

log υi +
(Yk − µi)2

υi

) ∣∣∣∣∣ Y0:n

]

+
n∑

k=1

Eθ′

⎡⎣ r∑
i=1

r∑
j=1

1{(Xk−1, Xk) = (i, j)} log qij

∣∣∣∣∣∣ Y0:n

⎤⎦ ,

where the leading term does not depend on θ. Using the notations introduced
in Section 3.1 for the smoothing distributions, we may write

Q(θ ; θ′) = Cst − 1
2

n∑
k=0

r∑
i=1

φk|n(i ; θ′)
[
log υi +

(Yk − µi)2

υi

]

+
n∑

k=1

r∑
i=1

r∑
j=1

φk−1:k|n(i, j ; θ′) log qij . (10.39)

In the above expression, we use the same convention as in Chapter 5 and de-
note the smoothing probability Pθ′(Xk = i |Y0:n) by φk|n(i ; θ′) rather than by
φk|n({i} ; θ′). The variable θ′ is there to recall the dependence of the smoothing
probability on the unknown parameters.

Now, given the initial distribution ν and parameter θ′, the smoothing dis-
tributions appearing in (10.39) can be evaluated by any of the variants of
forward-backward smoothing discussed in Chapter 3. As already explained
above, the E-step of EM thus reduces to solving the smoothing problem. The
M-step is specific and depends on the model parameterization: the task con-
sists in finding a global optimum of Q(θ ; θ′) that satisfies the constraints men-
tioned above. For this, simply introduce the Lagrange multipliers λ1, . . . , λr

that correspond to the equality constraints
∑r

j=1 qij = 1 for i = 1, . . . , r
(Luenberger, 1984, Chapter 10). The first-order partial derivatives of the La-
grangian

L(θ, λ ; θ′) = Q(θ ; θ′) +
r∑

i=1

λi

⎛⎝1−
r∑

j=1

qij

⎞⎠
are given by

∂

∂µi
L(θ, λ ; θ′) =

1
υi

n∑
k=0

φk|n(i ; θ′)(Yk − µi) ,

∂

∂υi
L(θ, λ ; θ′) = −1

2

n∑
k=0

φk|n(i ; θ′)
[

1
υi
− (Yk − µi)2

υ2
i

]
,
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∂

∂qij
L(θ, λ ; θ′) =

n∑
k=1

φk−1:k|n(i, j ; θ′)
qij

− λi ,

∂

∂λi
L(θ, λ ; θ′) = 1−

r∑
j=1

qij . (10.40)

Equating all expressions in (10.40) to zero yields the parameter vector

θ∗ =
[
(µ∗

i )i=1,...,r, (υ∗
i )i=1,...,r, (q∗

ij)i,j=1,...,r

]
which achieves the maximum of Q(θ ; θ′) under the applicable parameter con-
straints:

µ∗
i =

∑n
k=0 φk|n(i ; θ′)Yk∑n

k=0 φk|n(i ; θ′)
, (10.41)

υ∗
i =

∑n
k=0 φk|n(i ; θ′)(Yk − µ∗

i )
2∑n

k=0 φk|n(i ; θ′)
, (10.42)

q∗
ij =

∑n
k=1 φk−1:k|n(i, j ; θ′)∑n

k=1
∑r

l=1 φk−1:k|n(i, l ; θ′)
(10.43)

for i, j = 1, . . . , r, where the last equation may be rewritten more concisely as

q∗
ij =

∑n
k=1 φk−1:k|n(i, j ; θ′)∑n

k=1 φk−1|n(i ; θ′)
. (10.44)

Equations (10.41)–(10.43) are emblematic of the intuitive form taken by the
parameter update formulas derived though the EM strategy. These equations
are simply the maximum likelihood equations for the complete model in which
both {Xk}0≤k≤n and {Yk}0≤k≤n would be observed, except that the func-
tions 1{Xk = i} and 1{Xk−1 = i,Xk = j} are replaced by their conditional
expectations, φk|n(i ; θ′) and φk−1:k|n(i, j ; θ′), given the actual observations
Y0:n and the available parameter estimate θ′. As discussed in Section 10.1.2.4,
this behavior is fundamentally due to the fact that the probability density
functions associated with the complete model form an exponential family. As
a consequence, the same remark holds more generally for all discrete HMMs
for which the conditional probability density functions g(i, · ; θ) belong to an
exponential family. A final word of warning about the way in which (10.42) is
written: in order to obtain a concise and intuitively interpretable expression,
(10.42) features the value of µ∗

i as given by (10.41). It is of course possible
to rewrite (10.42) in a way that only contains the current parameter value θ′

and the observations Y0:n by combining (10.41) and (10.42) to obtain

υ∗
i =

∑n
k=0 φk|n(i ; θ′)Y 2

k∑n
k=0 φk|n(i ; θ′)

−
[∑n

k=0 φk|n(i ; θ′)Yk∑n
k=0 φk|n(i ; θ′)

]2

. (10.45)

For normal HMMs, the M-step thus reduces to computing averages and
ratios of simple expressions that involve the marginal and bivariate smoothing
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probabilities evaluated during the E-step. The number of operations associ-
ated with the implementation of these expressions scales with respect to r and
n like r2×n, which is similar to the complexity of forward-backward smooth-
ing (see Chapter 5). In practice however, the M-step is usually faster than the
E-step because operations such as sums, products, or squares are carried out
faster than the exponential (recall that forward-backward smoothing requires
the computation of gθ′(i, yk) for all i = 1, . . . , r and k = 0, . . . , n). Although
the difference may not be very significant for scalar models, it becomes more
and more important for high-dimensional multivariate generalizations of the
normal HMM, such as those used in speech recognition.

10.3.2 Estimation of the Initial Distribution

As mentioned above, in this chapter we generally assume that the initial
distribution ν, that is, the distribution of X0, is fixed and known. There
are cases when one wants to treat this as an unknown parameter however,
and we briefly discuss below this issue in connection with the EM algorithm
for the normal HMM. We shall assume that ν = (νi)1≤i≤r is an unknown
probability vector (that is, with non-negative entries summing to unity), which
we accommodate within the parameter vector θ. The complete log-likelihood
will then be as above, where the initial term

log νX0 =
r∑

i=1

1{X0 = i} log νi

goes into Q(θ ; θ′) as well, giving the additive contribution
r∑

i=1

φ0|n(i ; θ′) log νi

to (10.39). This sum is indeed part of (10.39) already, but hidden within Cst

when ν is not a parameter to be estimated. Using Lagrange multipliers as
above, it is straightforward to show that the M-step update of ν is ν∗

i =
φ0|n(i ; θ′).

It was also mentioned above that sometimes it is desirable to link ν to qθ

as being the stationary distribution of qθ. Then there is an additive contribu-
tion to Q(θ ; θ′) as above, with the difference that ν can now not be chosen
freely but is a function of qθ. As there is no simple formula for the stationary
distribution of qθ, the M-step is no longer explicit. However, once the sums
(over k) in (10.39) have been computed for all i and j, we are left with an
optimization problem over the qij for which we have an excellent initial guess,
namely the standard update (ignoring ν) (10.43). A few steps of a standard
numerical optimization routine (optimizing over the qij) is then often enough
to find the maximum of Q(· ; θ′) under the stationarity assumption. Variants
of the basic EM strategy, to be discussed in Section 10.5.3, may also be useful
in this situation.
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10.3.3 Recursive Implementation of E-Step

An important observation about (10.41)–(10.43) is that all expressions are ra-
tios in which both the numerator and the denominator may be interpreted as
smoothed expectations of simple additive functionals. As a consequence, the
recursive smoothing techniques discussed in Chapter 4 may be used to eval-
uate separately the numerator and denominator of each expression. The im-
portant point here is that to implement the E-step of EM, forward-backward
smoothing is not strictly required and it may be replaced by a purely recursive
evaluation of the quantities involved in the M-step update.

As an example, consider the case of the first update equation (10.41) that
pertains to the means µi. For each pre-specified state i, say i = i0, one can
devise a recursive filter to compute the quantities needed to update µi0 as
follows. First define the two functionals

tn,1(X0:n) =
n∑

k=0

1{Xk = i0}Yk ,

tn,2(X0:n) =
n∑

k=0

1{Xk = i0} . (10.46)

Comparing with the general form considered in Chapter 4, the two func-
tionals above are clearly of additive type. Hence the multiplicative functions
{mk}0≤k≤n that appear in Definition 4.1.2 are constant and equal to one
in this case. Proceeding as in Chapter 4, we associate with the functionals
defined in (10.46) the sequence of signed measures

τn,1(i ; θ′) = Eθ′ [1{Xn = i}tn,1(X0:n) |Y0:n] ,
τn,2(i ; θ′) = Eθ′ [1{Xn = i}tn,2(X0:n) |Y0:n] , (10.47)

for i = 1, . . . , r. Note that we adopt here the same convention as for the
smoothing distributions, writing τn,1(i ; θ′) rather than τn,1({i} ; θ′). In this
context, the expression “signed measure” is also somewhat pompous because
the state space X is finite and τn,1 and τn,2 can safely be identified with vectors
in R

r. The numerator and denominator of (10.41) for the state i = i0 are given
by, respectively,

r∑
i=1

τn,1(i ; θ′) and
r∑

i=1

τn,2(i ; θ′) ,

which can also be checked directly from (10.47), as
∑r

i=1 1{Xn = i} is iden-
tically equal to one. Recall from Chapter 4 that τn,1 and τn,2 are indeed
quantities that may be recursively updated following the general principle of
Proposition 4.1.3. Algorithm 10.3.1 below is a restatement of Proposition 4.1.3
in the context of the finite normal hidden Markov model.
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Algorithm 10.3.1 (Recursive Smoothing for a Mean).

Initialization: Compute the first filtering distribution according to

φ0(i ; θ′) =
ν(i)g0(i ; θ′)

c0(θ′)
,

for i = 1, . . . , r, where c0(θ′) =
∑r

j=1 ν(j)g0(j ; θ′). Then

τ0,1(i0 ; θ′) = φ0(i0 ; θ′)Y0 and τ0,2(i0 ; θ′) = φ0(i0 ; θ′) ,

and both τ0,1(i ; θ′) and τ0,2(i ; θ′) are set to zero for i �= i0.
Recursion: For k = 0, . . . , n− 1, update the filtering distribution

φk+1(j ; θ′) =

∑r
i=1 φk(i ; θ′) q′

ij gk+1(j ; θ′)
ck+1(θ′)

for j = 1, . . . , r, where

ck+1(θ′) =
r∑

j=1

r∑
i=1

φk(i ; θ′) q′
ij gk+1(j ; θ′) .

Next,

τk+1,1(j ; θ′) =

∑r
i=1 τk,1(i ; θ′) q′

ij gk+1(j ; θ′)
ck+1(θ′)

+ Yk+1φk+1(i0 ; θ′)δi0(j) (10.48)

for j = 1, . . . , r, where δi0(j) is equal to one when j = i0 and zero otherwise.
Likewise,

τk+1,2(j ; θ′) =

∑r
i=1 τk,2(i ; θ′) q′

ij gk+1(j ; θ′)
ck+1(θ′)

+ φk+1(i0 ; θ′)δi0(j)

(10.49)
for j = 1, . . . , r.

Parameter Update: When the final observation index n is reached, the updated
mean µ∗

i0
is obtained as

µ∗
i0 =

∑r
i=1 τn,1(i ; θ′)∑r
i=1 τn,2(i ; θ′)

.

It is clear that one can proceed similarly for parameters other than the
means. For the same given state i = i0, the alternative form of the variance
update equation given in (10.45) shows that, in addition to tn,1 and tn,2
defined in (10.46), the functional

tn,3(X0:n) =
n∑

k=0

1{Xk = i0}Y 2
k
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is needed to compute the updated variance υ∗
i0

. The recursive smoother as-
sociated with this quantity is updated as prescribed by Algorithm 10.3.1 for
tn,1 by simply replacing Yk by Y 2

k .
In the case of the transition probabilities, considering a fixed pair of states

(i0, j0), (10.44) implies that in addition to evaluating τn−1,2, one needs to
derive a smoother for the functional

tn,4(X0:n) =
n∑

k=1

1{Xk−1 = i0, Xk = j0} , (10.50)

where t0,4(X0) is defined to be null. Following Proposition 4.1.3, the associated
smoothed quantity

τn,4(i ; θ′) = Eθ′ [1{Xn = i}tn,4(X0:n) |Y0:n]

may be updated recursively according to

τk+1,4(j ; θ′) =

∑r
i=1 τk,4(i ; θ′) q′

ij gk+1(j ; θ′)
ck+1(θ′)

+
φk(i0 ; θ′) q′

i0j0
gk+1(j0 ; θ′)δj0(j)

ck+1(θ′)
, (10.51)

where δj0(j) equal to one when j = j0 and zero otherwise, and ck+1 and φk

should be computed recursively as in Algorithm 10.3.1. Because τ0,4 is null,
the recursion is initialized by setting τ0,4(i ; θ′) = 0 for all states i = 1, . . . , r.

The case of the transition probabilities clearly illustrates the main weak-
ness of the recursive approach, namely that a specific recursive smoother must
be implemented for each statistic of interest. Indeed, for each time index k,
(10.48), (10.49), or (10.51) require of the order of r2 operations, which is
comparable with the computational cost of the (normalized) forward or fil-
tering recursion (Algorithm 5.1.1). The difference is that after application of
the complete forward-backward recursions, one may compute all the statistics
involved in the EM re-estimation equations (10.41)–(10.43). In contrast, the
recursive smoothing recursion only provides the smoothed version of one par-
ticular statistic: in the case of (10.51) for instance, this is (10.50) with a fixed
choice of the pair i0, j0. Hence implementing the EM algorithm with recursive
smoothing requires the order of r2×(n+1)×dim(θ) operations, where dim(θ)
refers to the number of parameters. In the case of the complete (scalar) normal
HMM, dim(θ) equals 2r for the means and variances, plus r × (r − 1) for the
transition probabilities. Hence recursive smoothing is clearly not competitive
with approaches based on the forward-backward decomposition.

To make it short, the recursive smoothing approach is not a very at-
tractive option in finite state space HMMs and normal HMMs in particu-
lar. More precisely, both the intermediate quantity of EM in (10.26) and
the gradient of the log-likelihood in (10.29) are additive. In the terminol-
ogy used in Section 4.1.2, they both correspond to additive functionals of
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the form tn+1(x0:n+1) = tn(x0:n) + sn(xn, xn+1). In such cases, smooth-
ing approaches based on the forward-backward decompositions such as Al-
gorithms 5.1.2 or 5.1.3 that evaluate the bivariate smoothing distributions
φk:k+1|n for k = 0, . . . , n − 1 are more efficient because they do not require
that the functions {sk}k=0,...,n−1 be specified. There are however some situa-
tions in which the recursive smoothing approach developed in Section 4.1 and
illustrated above in the case of normal HMMs may be useful.

• First, because it is recursive, it does not require that the intermediate
computation results be stored, which is in sharp contrast with the other
smoothing approaches where either the forward or backward variables need
to be stored. This is of course of interest when processing very large data
sets.

• When the functional whose conditional expectation is to be evaluated is
not of the additive type, approaches based on the evaluation of bivariate
smoothing distributions are not applicable anymore. In contrast, recursive
smoothing stays feasible as long as the functional follows the general pat-
tern of Definition 4.1.2. The most significant functional of practical interest
that is not additive is the second-order derivative of the log-likelihood func-
tion. The use of recursive smoothing for this purpose will be illustrated on
a simple example in Section 10.3.4.

Finally, another different motivation for computing either the intermediate
quantity of EM or the gradient of the log-likelihood recursively has to do
with recursive estimation. As noted by several authors, including Le Gland
and Mevel (1997), Collings and Rydén (1998), and Krishnamurthy and Yin
(2002), being able to compute recursively the intermediate quantity of EM or
the gradient of the log-likelihood is a key step toward efficient recursive (also
called on-line or adaptive) parameter estimation approaches. It is important
however to understand that recursive computation procedures do not neces-
sarily directly translate into recursive estimation approaches. Algorithm 10.3.1
for instance describes how to compute the EM update of the mean µi given
some observations Y0, . . . , Yn and a fixed current parameter value θ = θ′. In
recursive estimation on the other hand, once a new observation Yk is collected,
the parameter estimate, θ̂k say, needs to be updated. Using the equations of
Algorithm 10.3.1 with θ̂k substituted for θ′ is of course a natural idea, but
not one that is guaranteed to produce the desired result. This is precisely the
objective of works such as Le Gland and Mevel (1997) and Krishnamurthy
and Yin (2002), to study if and when such recursive approaches do produce
expected results. It is fair to say that, as of today, this remains a largely open
issue.

10.3.4 Computation of the Score and Observed Information

For reasons discussed above, computing the gradient of the log-likelihood is
not a difficult task in finite state space HMMs and should preferably be done
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using smoothing algorithms based on the forward-backward decomposition.
The only new requirement is to evaluate the derivatives with respect to θ
that appear in (10.29). In the case of the normal HMM, we already met the
appropriate expressions in (10.40), as Fisher’s identity (10.12) implies that
the gradient of the intermediate quantity at the current parameter estimate
coincides with the gradient of the log-likelihood. Hence

∂

∂µi
�n(θ) =

1
υi

n∑
k=0

φk|n(i ; θ)(Yk − µi) ,

∂

∂υi
�n(θ) = −1

2

n∑
k=0

φk|n(i ; θ)
[

1
υi
− (Yk − µi)2

υ2
i

]
,

∂

∂qij
�n(θ) =

n∑
k=1

φk−1:k|n(i, j ; θ)
qij

.

Recall also that the log-likelihood itself is directly available from the filtering
recursion, following (5.4).

Before considering the computation of the Hessian, we first illustrate the
performance of the optimization methods introduced in Section 10.1.3, which
only require the evaluation of the log-likelihood and its gradient.

Example 10.3.2 (Binary Deconvolution Model). We consider the sim-
ple binary deconvolution model of Cappé et al. (1999), which is somewhat
related to the channel coding situation described in Example 1.3.2, except
that the channel is unknown. This model is of interest in digital communi-
cations (see for instance Krishnamurthy and White, 1992; Kaleh and Vallet,
1994; Fonollosa et al., 1997). It is given by

Yk =
p∑

i=0

hiBk−i + Nk , (10.52)

where {Yk}k≥0 is the observed sequence, {Nk}k≥0 is a stationary sequence
of white Gaussian noise with zero mean and variance υ, and {Bk}k≥0 is a
sequence of transmitted symbols. For simplicity, we assume that {Bk}k≥0 is a
binary, i.e., Bk ∈ {−1, 1}, sequence of i.i.d. fair Bernoulli draws. We consider
below that p = 1, so that to cast the model into the HMM framework, we
only need to define the state as the vector Xk = (Bk, Bk−1)t, which takes one
of the four possible values

s1
def=

(
−1
−1

)
, s2

def=
(
−1

1

)
, s3

def=
(

1
−1

)
, s4

def=
(

1
1

)
.

Hence, upon defining the vector h
def= (h0 h1)t of filter coefficients, we may

view (10.52) as a four-states normal HMM such that µi = st
ih and υi = υ for

i = 1, . . . , 4. The transition matrix Q is entirely fixed by our assumption that
the binary symbols are equiprobable, and is given by
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Q =

⎛⎜⎜⎝
1/2 0 1/2 0
1/2 0 1/2 0
0 1/2 0 1/2
0 1/2 0 1/2

⎞⎟⎟⎠ .

The model parameters to be estimated are thus the vector h of filter co-
efficients and the common variance υ. For simplicity, we assume that the
distribution of the initial state X0 is known.

To make the connection with the general (unconstrained) normal hidden
Markov model discussed previously, we need only take into account the facts
that ∇hµi = si and ∂υi/∂υ = 1, as all variances are equal. Hence, using the
chain rule, the gradient of the intermediate quantity of EM may be evaluated
from (10.40) as

∇hQ(θ ; θ′) =
4∑

i=1

∂

∂µi
Q(θ ; θ′)∇hµi

=
1
υ

4∑
i=1

n∑
k=0

φk|n(i ; θ′)(Yksi − sis
t
ih) (10.53)

and

∂

∂υ
Q(θ ; θ′) =

4∑
i=1

∂

∂υi
Q(θ ; θ′)

∂υi

∂υ

= −1
2

[
n

υ
−

4∑
i=1

n∑
k=0

φk|n(i ; θ′)
(Yk − st

ih)2

υ2

]
. (10.54)

The M-step update equations (10.41) and (10.42) of the EM algorithm should
thus be replaced by

h∗ =

[
4∑

i=1

n∑
k=0

φk|n(i ; θ′)sis
t
i

]−1 [ 4∑
i=1

n∑
k=0

φk|n(i ; θ′)Yksi

]
,

υ∗ =
1
n

4∑
i=1

n∑
k=0

φk|n(i ; θ′)(Yk − st
ih

∗)2

=
1
n

⎧⎨⎩
n∑

k=0

Y 2
k −

[
4∑

i=1

n∑
k=0

φk|n(i ; θ′)Yksi

]t

h∗

⎫⎬⎭ .

For computing the log-likelihood gradient, we may resort to Fisher’s iden-
tity, setting θ = θ′ in (10.53) and (10.54) to obtain ∇h�n(θ′) and ∂

∂υ �n(θ′) ,
respectively.
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We now compare the results of the EM algorithm and of a quasi-Newton
method for this model. In both cases, the forward-backward recursions are
used to compute the smoothing probabilities φk|n(i ; θ′) for k = 0, . . . , n and
i = 1, . . . , 4. To avoid parameter constraints, we compute the partial derivative
with respect to log υ rather than with respect to υ, as the parameter log υ is
unconstrained. This modification is not needed for the EM algorithm, which is
parameterization independent. The quasi-Newton optimization is performed
using the so-called BFGS weight update and cubic line-searches (see Fletcher,
1987, for details concerning the former).

The data set under consideration is the same as in Cappé et al. (1999) and
consists of 150 synthetic observations generated with the model corresponding
to h0 = 1.3, h1 = 0.6 and υ = (h2

0 + h2
1)/4 (6 dB signal to noise ratio). There

are three parameters for this model, and Figures 10.1 and 10.2 show plots
of the profile log-likelihood for values of h0 and h1 on a regular grid. The
profile log-likelihood is �n(h, υ̂(h)) with υ̂(h) = arg maxv �n(h, υ), that is, the
largest possible log-likelihood for a fixed value of h. The figures show that
the profile log-likelihood has a global maximum, the MLE, as well as a local
one. The location of the local maximum (or maxima) as well as its presence
obviously depends on the particular outcome of the simulated noise {Nk}. It is
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Fig. 10.1. Profile log-likelihood surface over (h0, h1) for a particular realization
of the binary deconvolution model. The true model parameters are h0 = 1.3 and
h1 = 0.6, and 150 observations were taken. The two circled positions labeled MLE
and LOC are, respectively, the global maximum of the profile log-likelihood and a
local maximum. Also shown are trajectories of 35 iterations of the EM algorithm,
initialized at four different points marked 1–4.
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Fig. 10.2. Same profile log-likelihood surface as in Figure 10.1. Also shown are
trajectories of 5 iterations of a quasi-Newton algorithm, initialized at the same four
different points marked 1–4 as in Figure 10.1.

a fundamental feature of the model however that the parameters h = (h0 h1)t

and h = (h1 h0)t, which govern identical second-order statistical properties of
the model, are difficult to discriminate, especially with few observations. Note
that as swapping the signs of both h0 and h1 leaves the model unchanged, the
profile log-likelihood surface is symmetric, and only the half corresponding to
positive values of h0 is shown here.

A first remark is that even in such a simplistic model, there is a local max-
imum and, depending on the initialization, both algorithms may converge to
this point. Because the algorithms operate differently, it may even occur that
the EM and quasi-Newton algorithms initialized at the same point eventually
converge to different values, as in the case of initialization at point 1. The
other important remark is that the EM algorithm (Figure 10.1) shows very
different convergence behavior depending on the region of the parameter space
where it starts: when initialized at point 4, the algorithm gets real close to
the MLE in about seven iterations, whereas when initialized at point 1 or 2,
it is still far from having reached convergence after 20 iterations. In contrast,
the quasi-Newton method (Figure 10.2) updates the parameter by doing steps
that are much larger than those of EM, especially during the first iterations,
and provides very accurate parameter estimates with as few as five iterations.
It is fair to say that due to the necessity of evaluating the weight matrix (with
finite difference computations) and to the cubic line-search procedure, each
iteration of the quasi-Newton method requires on average seven evaluations of
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the log-likelihood and its gradient, which means in particular seven instances
of the forward-backward procedure. From a computational point of view, the
time needed to run the 5 iterations of the quasi-Newton method in this ex-
ample is thus roughly equivalent to that required for 35 iterations of the EM
algorithm. �

As discussed earlier, computing the observed information in HMMs is more
involved, as the only computationally feasible option consists in adopting the
recursive smoothing framework of Proposition 4.1.3. Rather than embarking
into the general normal HMM case, we consider another simpler illustrative
example where the parameter of interest is scalar.

Example 10.3.3. Consider a simplified version of the ion channel model (Ex-
ample 1.3.5) in which the state space X is composed of two states that are (by
convention) labeled 0 and 1, and g(0, y) and g(1, y) respectively correspond
to the N(0, υ) and N(1, υ) distributions. This model may also be interpreted
as a state space model in which

Yk = Xk + Vk ,

where {Vk} is an i.i.d. N(0, υ)-distributed sequence, independent of the
Markov chain {Xk}, which takes its values in the set {0, 1}. The transition
matrix Q of {Xk} is parameterized in the form

Q =
(

ρ0 1− ρ0
1− ρ1 ρ1

)
.

It is also most logical in this case to assume that the initial distribution ν
of X0 coincides with the stationary distribution associated with Q, that is,
ν(0) = ρ0/(ρ0 + ρ1) and ν(1) = ρ1/(ρ0 + ρ1). In this model, the distributions
of holding times (number of consecutive steps k for which Xk stays constant)
have geometric distributions with expectations (1− ρ0)−1 and (1− ρ1)−1 for
states 0 and 1, respectively. �

We now focus on the computation of the derivatives of the log-likelihood
in the model of Example 10.3.3 with respect to the transition parameters ρ0
and ρ1. As they play a symmetric role, it is sufficient to consider, say, ρ0 only.
The variance υ is considered as fixed so that the only quantities that depend
on the parameter ρ0 are the initial distribution ν and the transition matrix
Q. We will, as usual, use the simplified notation gk(x) rather than g(x, Yk)
to denote the Gaussian density function (2πυ)−1/2 exp{−(Yk − x)2/(2υ)} for
x ∈ {0, 1}. Furthermore, in order to simplify the expressions below, we also
omit to indicate explicitly the dependence with respect to ρ0 in the rest of
this section. Fisher’s identity (10.12) reduces to

∂

∂ρ0
�n = E

[
∂

∂ρ0
log ν(X0) +

n−1∑
k=0

∂

∂ρ0
log qXkXk+1

∣∣∣∣∣ Y0:n

]
,
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where the notation qij refers to the element in the (1+i)-th row and (1+j)-th
column of the matrix Q (in particular, q00 and q11 are alternative notations
for ρ0 and ρ1). We are thus in the framework of Proposition 4.1.3 with a
smoothing functional tn,1 defined by

t0,1(x) =
∂

∂ρ0
log ν(x) ,

sk,1(x, x′) =
∂

∂ρ0
log qxx′ for k ≥ 0 ,

where the multiplicative functions {mk,1}k≥0 are equal to 1. Straightforward
calculations yield

t0,1(x) = (ρ0 + ρ1)−1
[
ρ1

ρ0
δ0(x)− δ1(x)

]
,

sk,1(x, x′) =
1
ρ0

δ(0,0)(x, x′)− 1
1− ρ0

δ(0,1)(x, x′) .

Hence a first recursion, following Proposition 4.1.3.

Algorithm 10.3.4 (Computation of the Score in Example 10.3.3).

Initialization: Compute c0 =
∑1

i=0 ν(i)g0(i) and, for i = 0, 1,

φk(i) = c−1
0 ν(i)g0(i) ,

τ0,1(i) = t0,1(i)φ0(i) .

Recursion: For k = 0, 1, . . . , compute ck+1 =
∑1

i=0
∑1

j=0 φk(i)qijgk(j) and, for
j = 0, 1,

φk+1(j) = c−1
k+1

1∑
i=0

φk(i)qijgk(j) ,

τk+1,1(j) = c−1
k+1

{ 1∑
i=0

τk,1(i)qijgk+1(j)

+ φk(0)gk+1(0)δ0(j)− φk(0)gk+1(1)δ1(j)
}

.

At each index k, the log-likelihood is available via �k =
∑k

l=0 log cl, and its
derivative with respect to ρ0 may be evaluated as

∂

∂ρ0
�k =

1∑
i=0

τk,1(i) .
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For the second derivative, Louis’ identity (10.14) shows that

∂2

∂ρ2
0
�n +

{
∂

∂ρ0
�n

}2

= E

[
∂2

∂ρ2
0

log ν(X0) +
n−1∑
k=0

∂2

∂ρ2
0

log qXkXk+1

∣∣∣∣∣ Y0:n

]

+ E

⎡⎣(
∂

∂ρ0
log ν(X0) +

n−1∑
k=0

∂

∂ρ0
log qXkXk+1

)2
∣∣∣∣∣∣ Y0:n

⎤⎦ . (10.55)

The first term on the right-hand side of (10.55) is very similar to the case
of τn,1 considered above, except that we now need to differentiate the func-
tions twice, replacing t0,1 and sk,1 by ∂

∂ρ0
t0,1 and ∂

∂ρ0
sk,1, respectively. The

corresponding smoothing functional tn,2 is thus now defined by

t0,2(x) = −ρ1(2ρ0 + ρ1)
ρ2
0(ρ0 + ρ1)2

δ0(x) +
1

(ρ0 + ρ1)2
δ1(x) ,

sk,2(x, x′) = − 1
ρ2
0
δ(0,0)(x, x′)− 1

(1− ρ0)2
δ(0,1)(x, x′) .

The second term on the right-hand side of (10.55) is more difficult, and we
need to proceed as in Example 4.1.4: the quantity of interest may be rewritten
as the conditional expectation of

tn,3(x0:n) =

[
t0,1(x0) +

n−1∑
k=0

sk,1(xk, xk+1)

]2

.

Expanding the square in this equation yields the update formula

tk+1,3(x0:k+1) = tk,3(x0:k) + s2
k,1(xk, xk+1) + 2tk,1(x0:k)sk,1(xk, xk+1) .

Hence tk,1 and tk,3 jointly are of the form prescribed by Definition 4.1.2 with
incremental additive functions sk,3(x, x′) = s2

k,1(x, x
′) and multiplicative up-

dates mk,3(x, x′) = 2sk,1(x, x′). As a consequence, the following smoothing
recursion holds.

Algorithm 10.3.5 (Computation of the Observed Information in Ex-
ample 10.3.3).

Initialization: For i = 0, 1,

τ0,2(i) = t0,2(i)φ0(i) .

τ0,3(i) = t20,1(i)φ0(i) .

Recursion: For k = 0, 1, . . . , compute for j = 0, 1,
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τk+1,2(j) = c−1
k+1

{
1∑

i=0

τk,2(i)qijgk+1(j)

− 1
ρ0

φk(0)gk+1(0)δ0(j)−
1

(1− ρ0)
φk(0)gk+1(1)δ1(j)

}
,

τ0,3(j) = c−1
k+1

{
1∑

i=0

τk,3(i)qijgk+1(j)

+ 2 [τk,1(0)gk+1(0)δ0(j)− τk,1(0)gk+1(1)δ1(j)]

+
1
ρ0

φk(0)gk+1(0)δ0(j) +
1

(1− ρ0)
φk(0)gk+1(1)δ1(j)

}
.

At each index k, the second derivative of the log-likelihood satisfies

∂2

∂ρ2
0
�k +

(
∂

∂ρ0
�k

)2

=
1∑

i=0

τk,2(i) +
1∑

i=0

τk,3(i) ,

where the second term on the left-hand side may be evaluated in the same recur-
sion, following Algorithm 10.3.4.

To illustrate the results obtained with Algorithms 10.3.4–10.3.5, we con-
sider the model with parameters ρ0 = 0.95, ρ1 = 0.8, and υ = 0.1 (using
the notations introduced in Example 10.3.3). Figure 10.3 displays the typi-
cal aspect of two sequences of length 200 simulated under slightly different
values of ρ0. One possible use of the output of Algorithms 10.3.4–10.3.5 con-
sists in testing for changes in the parameter values. Indeed, under conditions
to be detailed in Chapter 12 (and which hold here), the normalized score
n−1/2 ∂

∂ρ0
�n satisfies a central limit theorem with variance given by the limit

of the normalized information −n−1(∂2/∂ρ2
0)�n. Hence it is expected that

Rn =
∂

∂ρ0
�n√

− ∂2

∂ρ2
0
�n

be asymptotically N(0, 1)-distributed under the null hypothesis that ρ0 is
indeed equal to the value used for computing the score and information re-
cursively with Algorithms 10.3.4–10.3.5.

Figure 10.4 displays the empirical quantiles of Rn against normal quantiles
for n = 200 and n =1,000. For the longer sequences (n =1,000), the result
is clearly as expected with a very close fit to the normal quantiles. When
n = 200, asymptotic normality is not yet reached and there is a significant
bias toward high values of Rn. Looking back at Figure 10.3, even if υ was equal
to zero—or in other words, if we were able to identify without ambiguity the
0 and 1 states from the data—there would not be much information about
ρ0 to be gained from runs of length 200: when ρ0 = 0.95 and ρ1 = 0.8, the
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Fig. 10.3. Two simulated trajectories of length n = 200 from the simplified ion
channel model of Example 10.3.3 with ρ0 = 0.95, ρ1 = 0.8, and σ2 = 0.1 (top), and
ρ0 = 0.92, ρ1 = 0.8, and σ2 = 0.1 (bottom).
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Fig. 10.4. QQ-plot of empirical quantiles of the test statistic Rn (abscissas) for
the simplified ion channel model of Example 10.3.3 with ρ0 = 0.95, ρ1 = 0.8, and
σ2 = 0.1 vs. normal quantiles (ordinates). Samples sizes were n = 200 (left) and
n =1,000 (right), and 10,000 independent replications were used to estimate the
empirical quantiles.

average number of distinct runs of 0s that one can observe in 200 consecutive
data points is only about 200/(20 + 5) = 8. To construct a goodness of fit
test from Rn, one can monitor values of R2

n, which asymptotically has a chi-
square distribution with one degree of freedom. Testing the null hypothesis
ρ0 = 0.95 gives p-values of 0.87 and 0.09 for the two sequences in the top and
bottom plots, respectively, of Figure 10.3. When testing at the 10% level, both
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sequences thus lead to the correct decision: no rejection and rejection of the
null hypothesis, respectively. Interestingly, testing the other way around, that
is, postulating ρ0 = 0.92 as the null hypothesis, gives p-values of 0.20 and 0.55
for the top and bottom sequences of Figure 10.3, respectively. The outcome
of the test is now obviously less clear-cut, which reveals an asymmetry in its
discrimination ability: it is easier to detect values of ρ0 that are smaller than
expected than the converse. This is because smaller values of ρ0 means more
changes (on average) in the state sequence and hence more usable information
about ρ0 to be obtained from a fixed size record. This asymmetry is connected
to the upward bias visible in the left plot of Figure 10.4.

10.4 The Example of Gaussian Linear State-Space
Models

We now consider more briefly the case of Gaussian linear state-space mod-
els that form the other major class of hidden Markov models for which the
methods discussed in Section 10.1 are directly applicable. It is worth mention-
ing that Gaussian linear state-space models are perhaps the only important
subclass of the HMM family for which there exist reasonable simple non-
iterative parameter estimation algorithms not based on maximum likelihood
arguments but are nevertheless useful in practical applications. These sub-
optimal algorithms, proposed by Van Overschee and De Moor (1993), rely
on the linear structure of the model and use only eigendecompositions of
empirical covariance matrices—a general principle usually referred to under
the denomination of subspace methods (Van Overschee and De Moor, 1996).
Keeping in line with the general topic of this chapter, we nonetheless consider
below only algorithms for maximum likelihood estimation in Gaussian linear
state-space models.

The Gaussian linear state-space model introduced in Section 1.3.3 is given
in so-called state-space form by (1.7)–(1.8), which we recall here:

Xk+1 = AXk + RUk ,

Yk = BXk + SVk ,

where X0, {Uk}k≥0 and {Vk}k≥0 are jointly Gaussian. The parameters of
the model are the four matrices A, R, B, and S. Note that except for scalar
models, it is not possible to estimate R and S because both {Uk} and {Vk} are
unobservable and hence R and S are only identifiable up to an orthonormal
matrix. In other words, multiplying R or S by any orthonormal matrix of
suitable dimension does not modify the distribution of the observations. Hence
the parameters that are identifiable are the covariance matrices ΥR = RRt

and ΥS = SSt, which we consider below. Likewise, the matrices A and B
are identifiable up to a similarity transformation only. Indeed, setting X ′

k =
TXk for some invertible matrix T , that is, making a change of basis for the
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state process, it is straightforward to check that the joint process {(X ′
k, Yk)}

satisfies the model assumptions with TAT−1, BT−1, and TR replacing A, B,
and R, respectively. Nevertheless, we work with A and B in the algorithm
below. If a unique representation is desired, one may use, for instance, the
companion form of A given its eigenvalues; this matrix may contain complex
entries though. As in the case of finite state space HMMs (Section 10.2.2), it
is not sensible to consider the initial covariance matrix Σν as an independent
parameter when using a single observed sequence. On the other hand, for such
models it is very natural to assume that Σν is associated with the stationary
distribution of {Xk}. Except for the particular case of the scalar AR(1) model
however (to be discussed in Example 11.1.2), this option typically renders the
EM update equations non-explicit and it is thus standard practice to treat
Σν as a fixed matrix unrelated to the parameters (Ghosh, 1989). We shall
also assume that both ΥR and ΥS are full rank covariance matrices so that
all Gaussian distributions admit densities with respect to (multi-dimensional)
Lebesgue measure.

10.4.1 The Intermediate Quantity of EM

With the previous notations, the intermediate quantity Q(θ ; θ′) of EM, de-
fined in (10.26), may be expressed as

− 1
2

Eθ′

[
n log |ΥR|+

n−1∑
k=0

(Xk+1 −AXk)tΥ−1
R (Xk+1 −AXk)

∣∣∣∣∣ Y0:n

]

− 1
2

Eθ′

[
(n + 1) log |ΥS |+

n∑
k=0

(Yk −BXk)tΥ−1
S (Yk −BXk)

∣∣∣∣∣ Y0:n

]
,

(10.56)

up to terms that do not depend on the parameters. In order to elicit the M-step
equations or to compute the score, we differentiate (10.56) using elementary
perturbation calculus as well as the identity∇C log |C| = C−t for an invertible
matrix C—which is a consequence of the adjoint representation of the inverse
(Horn and Johnson, 1985, Section 0.8.2):

∇AQ(θ ; θ′) = −Υ−1
R Eθ′

[
n−1∑
k=0

(AXkX
t
k −Xk+1X

t
k)

∣∣∣∣∣ Y0:n

]
, (10.57)

∇Υ −1
R
Q(θ ; θ′) = −1

2

{
−nΥR (10.58)

+ Eθ′

[
n−1∑
k=0

(Xk+1 −AXk)(Xk+1 −AXk)t

∣∣∣∣∣ Y0:n

]}
,

∇BQ(θ ; θ′) = −Υ−1
S Eθ′

[
n∑

k=0

(BXkX
t
k − YkX

t
k)

∣∣∣∣∣ Y0:n

]
, (10.59)
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∇Υ −1
S
Q(θ ; θ′) = −1

2

{
−(n + 1)ΥS (10.60)

+ Eθ′

[
n∑

k=0

(Yk −BXk)(Yk −BXk)t

∣∣∣∣∣ Y0:n

]}
.

Note that in the expressions above, we differentiate with respect to the inverses
of ΥR and ΥS rather than with respect to the covariance matrices themselves,
which is equivalent, because we assume both of the covariance matrices to be
positive definite, but yields simpler formulas. Equating all derivatives simul-
taneously to zero defines the EM update of the parameters. We will denote
these updates by A∗, B∗, Υ ∗

R, and Υ ∗
S , respectively. To write them down, we

will use the notations introduced in Chapter 5: X̂k|n(θ′) = Eθ′ [Xk |Y0:n] and
Σk|n(θ′) = Eθ′ [XkX

′
k |Y0:n]− X̂k|n(θ′)X̂t

k|n(θ′), where we now indicate explic-
itly that these first two smoothing moments indeed depend on the current
estimates of the model parameters (they also depend on the initial covariance
matrix Σν , but we ignore this fact here because this quantity is considered as
being fixed). We also need to evaluate the conditional covariances

Ck,k+1|n(θ′) def= Covθ′ [Xk, Xk+1 |Y0:n]

= Eθ′ [XkX
t
k+1 |Y0:n]− X̂k|n(θ′)X̂t

k+1|n(θ′) .

For Gaussian models, the latter expression coincides with the definition given
in (5.99), and hence one may use expression (5.100) to evaluate Ck,k+1|n(θ′)
during the final forward recursion of Algorithm 5.2.15.

With these notations, the EM update equations are given by

A∗ =

[
n−1∑
k=0

Ck,k+1|n(θ′) + X̂k|n(θ′)X̂t
k+1|n(θ′)

]t

(10.61)

[
n−1∑
k=0

Σk|n(θ′) + X̂k|n(θ′)X̂t
k|n(θ′)

]−1

,

Υ ∗
R =

1
n

n−1∑
k=0

{[
Σk+1|n(θ′) + X̂k+1|n(θ′)X̂t

k+1|n(θ′)
]

(10.62)

−A∗
[
Ck,k+1|n(θ′) + X̂k|n(θ′)X̂t

k+1|n(θ′)
]}

,

B∗ =

[
n∑

k=0

X̂k|n(θ′)Y t
k

]t

(10.63)

[
n∑

k=0

Σk|n(θ′) + X̂k|n(θ′)X̂t
k|n(θ′)

]−1

,
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Υ ∗
S =

1
n + 1

n∑
k=0

[
YkY

t
k −B∗X̂k|n(θ′)Y t

k

]
. (10.64)

In obtaining the covariance update, we used the same remark that made it
possible to rewrite, in the case of normal HMMs, (10.42) as (10.45).

10.4.2 Recursive Implementation

As in the case of finite state space HMMs, it is possible to implement the pa-
rameter update equations (10.61)–(10.64) or to compute the gradient (10.57)–
(10.60) of the log-likelihood recursively in n. Here we only sketch the general
principles and refer to the paper by Elliott and Krishnamurthy (1999) in
which the details of the EM re-estimation equations are worked out. Proceed-
ing as in Section 4.1, it is clear that all expressions under consideration may
be rewritten term by term as the expectation2 E[tn(X0:n) |Y0:n] of well chosen
additive functionals tn. More precisely, the functionals of interest are of the
form tn(x0:n) = t0(x0) +

∑n−1
k=0 sk(xk, xk+1), where the individual terms in

the sum are of one of the types

sk−1,1(xk) = ht
kxk , (10.65)

sk−1,2(xk) = xt
kMkxk , (10.66)

sk−1,3(xk−1, xk) = xt
k−1Tk−1xk , (10.67)

and {hk}k≥0, {Mk}k≥0, and {Tk}k≥0, respectively, denote sequences of vectors
and matrices with dimension that of the state vectors (dx) and which may
depend on the model parameters or on the observations.

For illustration purposes, we focus on the example of (10.63): the first
factor on the right-hand side of (10.63) is a matrix whose ij elements (ith
row, jth column) corresponds to E[

∑n
k=0 h

t
kXk |Y0:n] for the particular choice

hk =
(

0 . . . 0 Yk(i) 0 . . . 0
)t

.
1 . . . j − 1 j j + 1 . . . dx

(10.68)

Likewise, the ij element of the second factor on the right-hand side of (10.63)—
before inverting the matrix—corresponds to the expectation of a functional
of the second of the three types above with Mk being a matrix of zeros except
for a unit entry at position ij.

Let τn,1 denote the expectation E[
∑n

k=0 h
t
kXk |Y0:n] for an additive func-

tional of the first type given in (10.65). To derive a recursion for τn,1, we use
the innovation decomposition (Section 5.2.2) to obtain

2Note that in this section, we omit to indicate explicitly the dependence with
respect to the model parameters to alleviate the notations.



388 10 Maximum Likelihood Inference, Part I

τn+1,1
def= Eθ′

[
n+1∑
k=0

ht
kXk

∣∣∣∣∣Y0:n+1

]
= ht

n+1X̂n+1|n+1

+
n∑

k=0

ht
k

(
X̂k|n + E[Xkε

t
n+1]Γ

−1
n+1εn+1

)
= ht

n+1X̂n+1|n+1 + E

[
n∑

k=0

ht
kXk

∣∣∣∣∣Y0:n

]

+

(
n∑

k=0

ht
kΣk|k−1Λ

t
k Λt

k+1 . . . Λt
n

)
︸ ︷︷ ︸

rn+1

BtΓ−1
n+1εn+1 ,

where (5.93) was used to obtain the last expression, which also features the
notation Λk = A −HkB with Hk being the Kalman (prediction) gain intro-
duced in the statement of Algorithm 5.2.15. The term that we denoted by
rn+1 is an intermediate quantity that has some similarities with the variable
pk (or more precisely p0) that is instrumental in the disturbance smoothing
algorithm (Algorithm 5.2.15). The same key remark applies here as rn can be
computed recursively (in n) according to the equations

r0 = 0 ,

rn+1 =
(
rn + hnΣn|n−1

)
Λt

n for n ≥ 0 .

Hence the following recursive smoothing algorithm, which collects all neces-
sary steps.

Algorithm 10.4.1 (Recursive Smoothing for a Linear Sum Func-
tional).

Initialization: Apply the Kalman filtering recursion for k = 0 (Algorithm 5.2.13)
and set

r0 = 0 ,

τ0 = E[ht
0X0 |Y0] = ht

0X̂0|0 .

Recursion: For n = 1, 2, . . . , run one step of the Kalman filtering and prediction
recursions (Algorithms 5.2.9 and 5.2.13) and compute

rn =
(
rn−1 + hn−1Σn−1|n−2

)
Λt

n−1 ,

τn = E

[
n∑

k=0

ht
kXk

∣∣∣∣∣Y0:n

]
= ht

nX̂n|n + τn−1 + rnB
tΓ−1

n εn .
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Algorithm 10.4.1 illustrates the fact that as in the case of finite state space
models, recursive computation is in general less efficient than is forward-
backward smoothing from a computational point of view: although Algo-
rithm 10.4.1 capitalizes on a common framework formed by the Kalman filter-
ing and prediction recursions, it does however require the update of a quantity
(rn) that is specific to the choice of the sequence of vectors {hk}k≥0. To com-
pute the first factor on the right-hand side of (10.63) for instance, one needs
to apply the recursion of Algorithm 10.4.1 for the dy × dx possible choices of
{hk}k≥0 given by (10.68). Thus, except for low-dimensional models or partic-
ular cases in which the system matrices A, ΥR, B, and ΥS are very sparse,
recursive computation is usually not the method of choice for Gaussian linear
state-space models (see Elliott and Krishnamurthy, 1999, for a discussion of
the complexity of the complete set of equations required to carry out the EM
parameter update).

10.5 Complements

To conclude this chapter, we briefly return to an issue mentioned in Sec-
tion 10.1.2 regarding the conditions that ensure that the EM iterations indeed
converge to stationary points of the likelihood.

10.5.1 Global Convergence of the EM Algorithm

As a consequence of Proposition 10.1.4, the EM algorithm described in Sec-
tion 10.1.2 has the property that the log-likelihood function � can never de-
crease in an iteration. Indeed,

�(θi+1)− �(θi) ≥ Q(θi+1 ; θi)−Q(θi ; θi) ≥ 0 .

This class of algorithms, sometimes referred to as ascent algorithms (Luen-
berger, 1984, Chapter 6), can be treated in a unified manner following a theory
developed mostly by Zangwill (1969). Wu (1983) showed that this general the-
ory applies to the EM algorithm as defined above, as well as to some of its
variants that he calls generalized EM (or GEM). The main result is a strong
stability guarantee known as global convergence, which we discuss below.

We first need a mathematical formalism that describes the EM algorithm.
This is done by identifying any homogeneous (in the iterations) iterative al-
gorithm with a specific choice of a mapping M that associates θi+1 to θi.
In the theory of Zangwill (1969), one indeed considers families of algorithms
by allowing for point-to-set maps M that associate a set M(θ′) ⊆ Θ to each
parameter value θ′ ∈ Θ. A specific algorithm in the family is such that θi+1

is selected in M(θi). In the example of EM, we may define M as

M(θ′) =
{
θ ∈ Θ : Q(θ ; θ′) ≥ Q(θ̃ ; θ′) for all θ̃ ∈ Θ

}
, (10.69)
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that is, M(θ′) is the set of values θ that maximize Q(θ ; θ′) over Θ. Usually
M(θ′) reduces to a singleton, and the mapping M is then simply a point-to-
point map (a usual function from Θ to Θ). But the use of point-to-set maps
makes it possible to deal also with cases where the intermediate quantity of
EM may have several global maxima, without going into the details of what
is done in such cases. We next need the following definition before stating the
main convergence theorem.

Definition 10.5.1 (Closed Mapping). A map T from points of Θ to subsets
of Θ is said to be closed on a set S ⊆ Θ if for any converging sequences {θi}i≥0

and {θ̃i}i≥0, the conditions

(a) θi → θ ∈ S,
(b) θ̃i → θ̃ with θ̃i ∈ T (θi) for all i ≥ 0,

imply that θ̃ ∈ T (θ).

Note that for point-to-point maps, that is, if T (θ) is a singleton for all θ,
the definition above is equivalent to the requirement that T be continuous on
S. Definition 10.5.1 is thus a generalization of continuity for general (point-
to-set) maps. We are now ready to state the main result, which is proved
in Zangwill (1969, p. 91) or Luenberger (1984, p. 187).

Theorem 10.5.2 (Global Convergence Theorem). Let Θ be a subset of
R

dθ and let {θi}i≥0 be a sequence generated by θi+1 ∈ T (θi) where T is a
point-to-set map on Θ. Let S ⊆ Θ be a given “solution” set and suppose that

(1) the sequence {θi}i≥0 is contained in a compact subset of Θ;
(2) T is closed over Θ \ S (the complement of S);
(3) there is a continuous “ascent” function s on Θ such that s(θ) ≥ s(θ′) for

all θ ∈ T (θ′), with strict inequality for points θ′ that are not in S.

Then the limit of any convergent subsequence of {θi} is in the solution set S. In
addition, the sequence of values of the ascent function, {s(θi)}i≥0, converges
monotonically to s(θ�) for some θ� ∈ S.

The final statement of Theorem 10.5.2 should not be misinterpreted: that
{s(θi)} converges to a value that is the image of a point in S is a simple
consequence of the first and third assumptions. It does however not imply
that the sequence of parameters {θi} is itself convergent in the usual sense,
but only that the limit points of {θi} have to be in the solution set S. An
important property however is that because {s(θi(l))}l≥0 converges to s(θ�)
for any convergent subsequence {θi(l)}, all limit points of {θi} must be in
the set S� = {θ ∈ Θ : s(θ) = s(θ�)} (in addition to being in S). This latter
statement means that the sequence of iterates {θi} will ultimately approach
a set of points that are “equivalent” as measured by the ascent function s.

The following general convergence theorem following the proof by Wu
(1983) is a direct application of the previous theory to the case of EM.
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Theorem 10.5.3. Suppose that in addition to the hypotheses of Proposi-
tion 10.1.4 (Assumptions 10.1.3 as well as parts (a) and (b) of Proposi-
tion 10.1.4), the following hold.

(i) H(θ ; θ′) is continuous in its second argument, θ′, on Θ.
(ii) For any θ0, the level set Θ0 =

{
θ ∈ Θ : �(θ) ≥ �(θ0)

}
is compact and

contained in the interior of Θ.

Then all limit points of any instance {θi}i≥0 of an EM algorithm initialized
at θ0 are in L0 = {θ ∈ Θ0 : ∇θ�(θ) = 0}, the set of stationary points of � with
log-likelihood larger than that of θ0. The sequence {�(θi)} of log-likelihoods
converges monotonically to �� = �(θ�) for some θ� ∈ L0.

Proof. This is a direct application of Theorem 10.5.2 using L0 as the solu-
tion set and � as the ascent function. The first hypothesis of Theorem 10.5.2
follows from (ii) and the third one from Proposition 10.1.4. The closedness
assumption (2) follows from Proposition 10.1.4 and (i): for the EM mapping
M defined in (10.69), θ̃i ∈M(θi) amounts to the condition

Q(θ̃i ; θi) ≥ Q(θ ; θi) for all θ ∈ Θ ,

which is also satisfied by the limits of the sequences {θ̃i} and {θi} (if these
converge) by continuity of the intermediate quantity Q, which follows from
that of � and H (note that it is here important that H be continuous with
respect to both arguments). Hence the EM mapping is indeed closed on Θ as
a whole and Theorem 10.5.3 follows. ��

The assumptions of Proposition 10.1.4 as well as item (i) above are indeed
very mild in typical situations. Assumption (ii) however may be restrictive,
even for models in which the EM algorithm is routinely used (such as the
normal HMMs introduced in Section 1.3.2, for which this assumption does
not hold if the variances υi are allowed to be arbitrarily small). The practical
implication of (ii) being violated is that the EM algorithm may fail to converge
to the stationary points of the likelihood for some particularly badly chosen
initial points θ0.

Most importantly, the fact that θi+1 maximizes the intermediate quantity
Q(· ; θi) of EM does in no way imply that, ultimately, �� is the global maximum
of � over Θ. There is even no guarantee that �� is a local maximum of the log-
likelihood: it may well only be a saddle point (Wu, 1983, Section 2.1). Also,
the convergence of the sequence �(θi) to �� does not automatically imply the
convergence of {θi} to a point θ�.

Pointwise convergence of the EM algorithm requires more stringent as-
sumptions that are difficult to verify in practice. As an example, a simple
corollary of the global convergence theorem states that if the solution set S
in Theorem 10.5.2 is a single point, θ� say, then the sequence {θi} indeed
converges to θ� (Luenberger, 1984, p. 188). The sketch of the proof of this
corollary is that every subsequence of {θi} has a convergent further subse-
quence because of the compactness assumption (1), but such a subsequence
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admits s as an ascent function and thus converges to θ� by Theorem 10.5.2
itself. In cases where the solution set is composed of several points, further
conditions are needed to ensure that the sequence of iterates indeed converges
and does not cycle through different solution points.

In the case of EM, pointwise convergence of the EM sequence may be
guaranteed under an additional condition given by Wu (1983) (see also Boyles,
1983, for an equivalent result), stated in the following theorem.

Theorem 10.5.4. Under the hypotheses of Theorem 10.5.3, if

(iii) ‖θi+1 − θi‖ → 0 as i→∞,

then all limit points of {θi} are in a connected and compact subset of L� =
{θ ∈ Θ : �(θ) = ��}, where �� is the limit of the log-likelihood sequence {�(θi)}.

In particular, if the connected components of L� are singletons, then {θi}
converges to some θ� in L�.

Proof. The set of limit points of a bounded sequence {θi} with ‖θi+1−θi‖ → 0
is connected and compact (Ostrowski, 1966, Theorem 28.1). The proof follows
becuase under Theorem 10.5.2, the limit points of {θi} must belong to L�. ��

10.5.2 Rate of Convergence of EM

Even if one can guarantee that the EM sequence {θ̂i} converges to some point
θ�, this limiting point can be either a local maximum, a saddle point, or
even a local minimum. The proposition below states conditions under which
the stable stationary points of EM coincide with local maxima only (see also
Lange, 1995, Proposition 1, for a similar statement). We here consider that
the EM mapping M is a point-to-point map, that is, that the maximizer in
the M-step is unique.

To understand the meaning of the term “stable”, consider the following
approximation to the limit behavior of the EM sequence: it is sensible to
expect that if the EM mapping M is sufficiently regular in a neighborhood of
the limiting fixed point θ�, the asymptotic behavior of the EM sequence {θi}
follows the tangent linear dynamical system

(θi+1 − θ�) = M(θi)−M(θ�) ≈ ∇θM(θ�)(θi − θ�) . (10.70)

Here ∇θM(θ�) is called the rate matrix (see for instance Meng and Rubin,
1991). A fixed point θ� is said to be stable if the spectral radius of ∇θM(θ�)
is less than 1. In this case, the tangent linear system is asymptotically stable
in the sense that the sequence {ζi} defined recursively by ζi+1 = ∇θM(θ�)ζi

tends to zero as n tends to infinity (for any choice of ζ0). The linear rate
of convergence of EM is defined as the largest moduli of the eigenvalues of
∇θM(θ�). This rate is an upper bound on the factors ρk that appear in (10.17).
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Proposition 10.5.5. Under the assumptions of Theorem 10.1.6, assume that
Q(· ; θ) has a unique maximizer for all θ ∈ Θ and that, in addition,

H(θ�) = −
∫
∇2

θ log f(x ; θ)
∣∣
θ=θ�

p(x ; θ�)λ(dx) (10.71)

and
G(θ�) = −

∫
∇2

θ log p(x ; θ)
∣∣
θ=θ�

p(x ; θ�)λ(dx) (10.72)

are positive definite matrices for all stationary points of EM (i.e., such that
M(θ�) = θ�). Then for all such points, the following hold true.

(i) ∇θM(θ�) is diagonalizable and its eigenvalues are positive real numbers.
(ii) The point θ� is stable for the mapping M if and only if it is a proper

maximizer of �(θ) in the sense that all eigenvalues of ∇2
θ�(θ�) are nega-

tive.

Proof. The EM mapping is defined implicitly through the fact that M(θ′)
maximizes Q(· ; θ′), which implies that∫

∇θ log f(x ; θ)|θ=M(θ′) p(x ; θ′)λ(dx) = 0 ,

using assumption (b) of Theorem 10.1.6. Careful differentiation of this relation
at a point θ′ = θ�, which is such that M(θ�) = θ� and hence ∇θ �(θ)|θ=θ�

= 0,
gives (Dempster et al., 1977; Lange, 1995, see also)

∇θM(θ�) = [H(θ�)]−1 [H(θ�) +∇2
θ�(θ�)

]
,

where H(θ�) is defined in (10.71). The missing information principle—or
Louis’ formula (see Proposition 10.1.6)—implies that G(θ�) = H(θ�)+∇2

θ�(θ�)
is positive definite under our assumptions.

Thus ∇θM(θ�) is diagonalizable with positive eigenvalues that are the
same (counting multiplicities) as those of the matrix A� = I+B�, where B� =
[H(θ�)]−1/2∇2

θ�(θ�)[H(θ�)]−1/2. Thus ∇θM(θ�) is stable if and only if B� has
negative eigenvalues only. The Sylvester law of inertia (see for instance Horn
and Johnson, 1985) shows that B� has the same inertia (number of positive,
negative, and zero eigenvalues) as ∇2

θ�(θ�). Thus all of B�’s eigenvalues are
negative if and only if the same is true for ∇2

θ�(θ�), that is, if θ� is a proper
maximizer of �. ��

The proof above implies that when θ� is stable, the eigenvalues of M(θ�) lie
in the interval (0, 1).

10.5.3 Generalized EM Algorithms

As discussed above, the type of convergence guaranteed by Theorem 10.5.3
is rather weak but, on the other hand, this result is remarkable as it indeed
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covers not only the original EM algorithm proposed by Dempster et al. (1977)
but a whole class of variants of the EM approach. One of the most useful
extensions of EM is the ECM (for expectation conditional maximization) by
Meng and Rubin (1993), which addresses situations where direct maximization
of the intermediate quantity of EM is intractable. Assume for instance that the
parameter vector θ consists of two sub-components θ1 and θ2, which are such
that maximization of Q((θ1, θ2) ; θ′) with respect to θ1 or θ2 only (the other
sub-component being fixed) is easy, whereas joint maximization with respect
to θ = (θ1, θ2) is problematic. One may then use the following algorithm for
updating the parameter estimate at iteration i.

E-step: Compute Q((θ1, θ2) ; (θi
1, θ

i
2));

CM-step: Determine

θi+1
1 = arg max

θ1
Q((θ1, θ

i
2) ; (θi

1, θ
i
2)) ,

and then
θi+1
2 = arg max

θ2
Q((θi+1

1 , θ2) ; (θi
1, θ

i
2)) .

It is easily checked that for this algorithm, (10.8) is still verified and thus �
is an ascent function; this implies that Theorem 10.5.3 holds under the same
set of assumptions.

The example above is only the simplest case where the ECM approach may
be applied, and further extensions are discussed by Meng and Rubin (1993)
as well as by Fessler and Hero (1995) and Meng and Dyk (1997).

10.5.4 Bibliographic Notes

The EM algorithm was popularized by the celebrated article of Dempster et al.
(1977). It is generally admitted however that several published works predated
this landmark paper by describing applications of the EM principle to some
specific cases (Meng and Dyk, 1997). Interestingly, the earliest example of a
complete EM strategy, which also includes convergence proofs (in addition
to describing the forward-backward smoothing algorithm discussed in Chap-
ter 3), is indeed the work by Baum et al. (1970) on finite state space HMMs,
generalizing the idea put forward by Baum and Eagon (1967). This pioneer-
ing contribution has been extended by authors such as Liporace (1982), who
showed that the same procedure could be applied to other types of HMMs.
The generality of the approach however was not fully recognized until Demp-
ster et al. (1977) and Wu (1983) (who made the connection with the theory
of global convergence) showed that the convergence of the EM approach (and
its generalizations) is guaranteed in great generality.

The fact that the EM algorithm may also be used, with minor modifi-
cations, for MAP estimation was first mentioned by Dempster et al. (1977).
Green (1990) illustrates a number of practical applications where this option
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plays an important role. Perhaps the most significant of these is speech pro-
cessing where MAP estimation, as first described by Gauvain and Lee (1994),
is commonly used for the model adaptation task (that is, re-retraining from
sparse data of some previously trained models).

The ECM algorithm of Meng and Rubin (1993) (discussed Section 10.5.3)
was also studied independently by Fessler and Hero (1995) under the name
SAGE (space-alternating generalized EM). Fessler and Hero (1995) also intro-
duced the idea that in some settings it is advantageous to use different ways
of augmenting the data, that is, different ways of writing the likelihood as
in (10.1) depending on the parameter subset that one is trying to re-estimate;
see also Meng and Dyk (1997) for further developments of this idea.
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Maximum Likelihood Inference, Part II:
Monte Carlo Optimization

This chapter deals with maximum likelihood parameter estimation for models
in which the smoothing recursions of Chapter 3 cannot be implemented. The
task is then considerably more difficult, as it is not even possible to evaluate
the likelihood to be maximized. Most of the methods applicable in such cases
are reminiscent of the iterative optimization procedures (EM and gradient
methods) discussed in the previous chapter but rely on approximate smooth-
ing computations based on some form of Monte Carlo simulation. In this
context, the methods covered in Chapters 6 and 7 for simulating the unob-
servable sequence of states conditionally on the observations play a prominent
role.

It is important to distinguish the topic of this chapter with a distinct—
although not entirely disconnected—problem. The methods discussed in the
previous chapters were all based on local exploration (also called hill-climbing
strategies) of the likelihood function. Such methods are typically unable to
guarantee that the point reached at convergence is a global maximum of the
function; indeed, it may well be a local maximum only or even a saddle point—
see Section 10.5 for details regarding the EM algorithm. Many techniques have
been proposed to overcome this significant difficulty, and most of them belong
to a class of methods that Geyer (1996) describes as random search optimiza-
tion. Typical examples are the so-called genetic and simulated annealing al-
gorithms that both involve simulating random moves in the parameter space
(see also Section 13.3, which describes a technique related to simulated an-
nealing). In these approaches, the main motivation for using simulations (in
parameter space and/or hidden variable space) is the hope to design more
robust optimization rules that can avoid local maxima.

The focus of the current chapter is different, however, as we examine below
methods that can be considered as simulation-based extensions of approaches
introduced in the previous chapter. The primary objective is here to provide
tools for maximum likelihood inference also for the class of HMMs in which
exact smoothing is not available.
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11.1 Methods and Algorithms

11.1.1 Monte Carlo EM

11.1.1.1 The Algorithm

Throughout this section, we use the incomplete data model notations intro-
duced in Section 10.1.2. Recall that the E-step of the EM algorithm amounts
to evaluating the function Q(θ ; θ′) =

∫
log f(x ; θ)p(x ; θ′)λ(dx) (see Defi-

nition 10.1.1). We here consider cases where direct numerical evaluation of
this expectation under p is not available. The principle proposed by Wei and
Tanner (1991)—see also Tanner (1993)—consists in using the Monte Carlo
approach to approximate the intractable E-step with an empirical average
based on simulated data:

Q̂m(θ ; θ′) def=
1
m

m∑
j=1

log f(ξj ; θ) , (11.1)

where ξ1, . . . , ξm are i.i.d. draws from the density p(x ; θ′). The subscript m
in (11.1) reflects the dependence on the Monte Carlo sample size. The EM
algorithm can thus be modified into the Monte Carlo EM (MCEM) algorithm
by replacing Q(θ ; θ′) by Q̂m(θ ; θ′) in the E-step. More formally, the MCEM
algorithm consists in iteratively computing a sequence {θ̂i} of parameter es-
timates, given an initial guess θ̂0, by iterating the following two steps.

Algorithm 11.1.1 (MCEM Algorithm). For i = 1, 2, . . . ,

Simulation step: Draw ξi,1, . . . , ξi,mi conditionally independently given

F i−1 def= σ(θ̂0, ξj,l, j = 0, . . . , i− 1, l = 1, . . . ,mj) (11.2)

from the density p(x ; θ̂i−1).

M-step: Choose θ̂i to be the (or any, if there are several) value of θ ∈ Θ which
maximizes Q̂mi(θ ; θ̂i−1), where Q̂mi(θ ; θ̂i−1) is as in (11.1) (replacing ξj by
ξi,j).

The initial point is picked arbitrarily and depends primarily on prior belief
about the location of the maximum likelihood estimate. Like the EM algo-
rithm, the MCEM algorithm is particularly well suited to problems in which
the parametric model {f(x ; θ) : θ ∈ Θ} belongs to an exponential family,
f(x ; θ) = exp(ψt(θ)S(x)− c(θ))h(x) (see Definition 10.1.5). In this case, the
E-step consists in computing a Monte Carlo approximation

Ŝi =
1
mi

mi∑
j=1

S(ξi,j) (11.3)
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of the expectation
∫
S(x)p(x ; θ̂i−1)λ(dx). The M-step then consists in op-

timizing the function θ 
→ ψt(θ)Ŝi − c(θ). In many models, this function is
convex, and the maximization can be achieved in closed form.

In many situations, the simulation of an i.i.d. sample from the density
p(x ; θ̂i−1) may turn out difficult. One may then use Markov chain Monte Carlo
techniques, in which case ξi,1, . . . , ξi,mi is a sequence generated by an ergodic
Markov chain whose stationary distribution is p(x ; θ̂i−1) (see Chapter 6).
More precisely,

ξi,j | F i,j−1 ∼ Πθ̂i−1(ξi,j−1, ·), j = 2, . . . ,mi,

where, for any θ ∈ Θ, Πθ is a Markov transition kernel admitting p(x ; θ) as
its stationary distribution and F i,j = F i−1∨σ(ξi,1, . . . , ξi,j−1). Using MCMC
complicates the control of the MCEM algorithm because of the nested struc-
ture of the iterations: an iterative sampling procedure (MCMC) is used in the
inner loop of an iterative optimization procedure (MCEM).

Compared to i.i.d. Monte Carlo simulations, MCMC introduces two ad-
ditional sources of errors. First, for any i and j = 1, . . . ,mi, the distribution
of ξi,j is only approximately equal to the density p(x ; θ̂i−1), thus inducing a
bias in the estimate. To obtain a reasonably accurate sample, it is customary
to include a burn-in period, whose length should ideally depend on the rate
at which the MCMC sampler actually mixes, during which the MCMC sam-
ples are not used for computing (11.3). The implementation of such procedures
typically requires more or less sophisticated schemes to check for convergence.
Second, the successive realizations ξi,1, . . . , ξi,mi of the missing data are not
independent. This makes the choice of sample size more involved, because the
dependence complicates the estimation of the Monte Carlo error.

11.1.1.2 MCEM for HMMs

The applications of the MCEM algorithm to HMMs is straightforward. We
use the same notations and assumptions as in Section 10.2.2. In this context,
Ln(Y0:n ; θ) is the likelihood of the observations, log f(x0:n ; θ) is the so-called
complete data likelihood (10.25), and p(x0:n ; θ) is the conditional density of
the state sequence X0:n given the observations Y0:n.

In this context, MCEM is (at least conceptually) straightforward to imple-
ment: one first simulates mi trajectories of the hidden states X0:n condition-
ally on the observations Y0:n and given the current parameter estimate θ̂i−1;
(11.1) is then computed using the expression of the intermediate quantity of
EM given in (10.26). As discussed above, the M-step is usually straightfor-
ward at least in exponential families of distributions. To illustrate the method,
we consider the following example, which will serve for illustration purposes
throughout this section.

Example 11.1.2 (MCEM in Stochastic Volatility Model). We con-
sider maximum likelihood estimation in the stochastic volatility model of Ex-
ample 1.3.13,
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Xk+1 = φXk + σUk , Uk ∼ N(0, 1) ,
Yk = β exp(Xk/2)Vk , Vk ∼ N(0, 1) ,

where the observations {Yk}k≥0 are the log-returns, {Xk}k≥0 is the log-
volatility, and {Uk}k≥0 and {Vk}k≥0 are independent sequences of white Gaus-
sian noise with zero mean and unit variance. We analyze daily log-returns,
that is, differences of the log of the series, on the British pound/US dollar
exchange rate historical series (from 1 October 1981 to 28 June 1985) already
considered in Example 8.3.1. The number of observations is equal to 945.

In our analysis, we will assume that the log-volatility process {Xk} is
stationary (|φ| < 1) so that the initial distribution ν is given by X0 ∼
N(0, σ2/(1−φ2)). For this very simple model, the M-step equations are reason-
ably simple both for the “exact” likelihood—assuming that the initial state
is distributed under the stationary distribution—and for the “conditional”
likelihood—assuming that the distribution of X0 does not depend on the
parameters. We use the former approach for illustration purposes, although
the results obtained on this data set with both methods are equivalent. The
stochastic volatility model can naturally be cast into the framework of expo-
nential families. Define S(X0:n) = (Si(X0:n))0≤i≤4 by

S0(x0:n) = x2
0 , S1(x0:n) =

n−1∑
k=0

x2
k , S2(x0:n) =

n∑
k=1

x2
k ,

S3(x0:n) =
n∑

k=1

xkxk−1 , S4(x0:n) =
n∑

k=0

Y 2
k exp(−xk) . (11.4)

With these notations, the complete data likelihood may be expressed, up to
terms not depending on the parameters, as

log f(X0:n ;β, φ, σ) = F (S(X0:n) ;β, φ, σ) ,

where the function s = (si)0≤i≤4 
→ F (s ;β, φ, σ) is given by

F (s ;β, φ, σ) = −n + 1
2

log β2 − 1
2β2 s4 −

n + 1
2

log σ2 +
1
2

log(1− φ2)

− (1− φ2)s0

2σ2 − 1
2σ2

(
s2 − 2φs3 + φ2s1

)
.

Maximization with respect to β yields the update

β∗ =
√

s4

n + 1
. (11.5)

Computing the partial derivative of F (s ;β, φ, σ) with respect to σ2 yields the
relation
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σ2(s ;φ) =
1

n + 1
{
(1− φ2)s0 + s2 − 2φs3 + φ2s1

}
=

1
n + 1

{
(s0 + s2)− 2φs3 + φ2(s1 − s0)

}
. (11.6)

Plugging this value into the partial derivative of F (s ;β, φ, σ) with respect to
φ yields an estimation equation for φ:

− φ

1− φ2 +
φs0

σ2(s ;φ)
+

s3 − φs1

σ2(s ;φ)
= 0 .

The solution of this equation amounts to solving the cubic

φ3[n(s1 − s0)] + φ2[−(n− 1)s3]
+ φ[−s2 + ns0 − (n + 1)s1] + (n + 1)s3 = 0 . (11.7)

Hence the M-step implies the following computations: find φ∗ as the root
of (11.7), selecting the one that is, in absolute value, smaller than one; deter-
mine (σ∗)2 using (11.6); β∗ is given by (11.5).

To implement the MCEM algorithm, we sampled from the joint smooth-
ing distribution of X0:n parameterized by θ̂i−1 using the single-site Gibbs
sampler with embedded slice sampler, as described in Example 6.2.16. Ini-
tially, the sampler was initialized by setting all Xk = 0, and a burn-in period
of 200 sweeps (by a sweep we mean updating every hidden state Xk once
in a linear order from X0 to Xn) was performed before the computation of
the samples averages involved in the statistics Sl (for l = 0, . . . , 4) was ini-
tialized. Later E-steps did not reset the state variables like this, but rather
started with the final realization X

i−1,mi−1
0:n of the previous E-step (thus done

with different parameters). The statistics Sl(X0:n) (for l = 0, . . . , 4) were ap-
proximated by averaging over the sampled trajectories letting, for instance,
Ŝi

3 = 1
mi

∑mi

j=1
∑n

k=1 X
i,j
k Xi,j

k−1. The M-step was carried out as discussed
above.

Figure 11.1 shows 400 iterations of the MCEM algorithm with 25,000
MCMC sweeps in each step, started from the parameter values β = 0.8,
φ = 0.9, and σ = 0.3. Because the number of sweeps at each step is quite
large, the MCEM parameter trajectory can be seen as a proxy for the EM
trajectory. It should be noted that the convergence of the EM algorithm is
in this case quite slow because the eigenvalues of the rate matrix defined
in (10.70) are close to one. The final estimates are β = 0.641, φ = 0.975,
and σ = 0.165, which agrees with figures given by Sandmann and Koopman
(1998) up to the second decimal. �

A key issue, to be discussed in the following, is whether or not such a large
number of MCMC simulation is really needed to obtain the results shown
on Figure 11.1. In Section 11.1.2, we will see that by a proper choice of the
simulation schedule, that is, of the sequence {mi}i≥1, it is possible to obtain
equivalent results with far less computational effort.
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Fig. 11.1. Trajectory of the MCEM algorithm for the stochastic volatility model
and GBP/USD exchange rate data. In the E-step, an MCMC algorithm was used
to impute the missing data. The plots show 400 EM iterations with 25,000 MCMC
sweeps in each iteration.

11.1.1.3 MCEM Based on Sequential Monte Carlo Simulations

The use of Monte Carlo simulations—either Markov chain or i.i.d. ones—
is not the only available option for approximating the E-step computations.
Another approach, suggested by Gelman (1995) (see also Quintana et al.,
1999), consists in approximating the intermediate quantity Q(θ ; θ̂i−1) of EM
using importance sampling (see Section 7.1). In this case, we simulate a sample
ξ̃i,1, . . . , ξ̃i,mi from an instrumental distribution with density r with respect
to the common dominating measure λ and approximate Q(θ ; θ̂i−1) by the
weighted sum

Q̂mi(θ ; θ̂i−1) def=
mi∑
j=1

ωi,j log f(ξ̃i,j ; θ) , ωi,j def=

p(ξ̃i,j ;θ̂i−1)
r(ξ̃i,j)∑mi

k=1
p(ξ̃i,k ;θ̂i−1)

r(ξ̃i,k)

. (11.8)

In most implementations of this method reported so far, the instrumental
distribution is chosen as the density p(x ; θ�) for a reference value θ� of the
parameter, but other choices can also be valuable. We may keep the same
instrumental distribution and therefore the same importance sample during
several iterations of the algorithm. Of course, as the iterations go on, the
instrumental distribution can become poorly matched to the current target
density p(x; θ̂i−1), leading to badly behaved importance sampling estimators.
The mismatch between the instrumental and target distributions can be mon-
itored by controlling that the importance weights remain properly balanced.
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For HMMs, importance sampling is seldom a sensible choice unless the
number of observations is small (see Section 7.3.1). Natural candidates in
this context are the sequential Monte Carlo methods based on resampling
ideas discussed in Chapters 7 and 8. In Section 8.3, we considered the general
problem of estimating quantities of the form E(tn(X0:n)|Y0:n ; θ), when the
function tn complies with Definition 4.1.2, based on sequential Monte Carlo
simulations. As discussed in Section 10.2.2, the intermediate quantity of EM is
precisely of this form with an additive structure given by (10.26). Recall that
the same remark also holds for the gradient of the log-likelihood with respect
to the parameter vector θ (Section 10.2.3). For both of these, an approximation
of the smoothed expectation can be computed recursively and without storing
the complete particle trajectories (see Section 8.3).

For the model of Example 11.1.2, the function tn is fully determined by the
four statistics defined in (11.4). Recursive particle smoothing for the statis-
tics S0, S1, and S3 has already been considered in Example 8.3.1 (see Fig-
ures 8.5 and 8.7). The case of the remaining two statistics is entirely sim-
ilar. Recall from Example 8.3.1 that it is indeed possible to robustify the
estimation of such smoothed sum functionals by using fixed-lag approxima-
tions. The simple method proposed in Example 8.3.1 consists in replacing the
smoothing distributions φl|n by the fixed lag-smoothing distribution φl|l+k∧n

for a suitably chosen value of the delay k. The particle approximation to∑n
l=0

∫
s(x)lφl|l+k∧n(dxl) can be computed recursively using an algorithm

that is only marginally more complex than that used for
∑n

l=0

∫
s(x)lφl|n(dxl).

Results obtained following this approach will be discussed in Example 11.1.3
below.

11.1.2 Simulation Schedules

Although the MCEM algorithm provides a solution to intractable E-step, it
also raises difficult implementation issues. Intelligent usage of the Monte Carlo
simulations is necessary because MCEM can place a huge burden on the user’s
computational resources.

Heuristically there is no need to use a large number of simulations dur-
ing the initial stage of the optimization. Even rather crude estimation of
Q(θ ; θ̂i−1) might suffice to drive the parameters toward the region of interest.
As the EM iterations go on, the number of simulations should be increased
however to avoid “zig-zagging” when the algorithm approaches convergence.
Thus, in making the trade-off between improving accuracy and reducing the
computational cost associated with a large sample size, one should favor in-
creasing the sample size mi as θ̂i approaches its limit. Determining exactly
how this increase should be accomplished to produce the “best” possible re-
sult is a topic that still attracts much research interest (Booth and Hobert,
1999; Levine and Casella, 2001; Levine and Fan, 2004).

Example 11.1.3 (MCEM with Increasing Simulation Schedule). Re-
sults comparable to those of the “brute force” version of the MCEM algorithm
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Fig. 11.2. Same model, data, and algorithm as in Figure 11.1, except that the
number of MCMC sweeps in the E-step was increased quadratically with the EM
iteration number. The plots show results from 400 iterations of the MCEM algorithm
with the number of MCMC sweeps ranging from 1 at the first iteration to 374 at
iteration 200 and 1,492 at iteration 400; the total number of sweeps was 200,000.
Left: 10 independent trajectories of the MCEM algorithm, with identical initial
points. Right: histograms, obtained from 50 independent runs, of the final values of
the parameters.

considered in Example 11.1.2 can in fact can be achieved with a number of
sweeps smaller by an order of magnitude. To allow for comparisons with other
methods, we set, in the following, the total number of simulations of the miss-
ing data sequence to 200,000. Figure 11.2 shows the results when the number
of sweeps of the E-step MCMC sampler increases proportionally to the square
of the EM iteration number. This increase is quite slow, because many EM
iterations are required to reach convergence (see Figure 11.1). The number of
sweeps performed during the final E-step is only about 1500 (compared to the
25,000 for the MCEM algorithm illustrated in Figure 11.1). As a result, the
MCEM algorithm is still affected by a significant fraction of simulation noise
in its last iteration.

As discussed above, the averaged MCMC simulations may be replaced
by time-averages computed from sequential Monte Carlo simulations. To this
aim, we consider the SISR algorithm implemented as in Example 8.3.1 with
systematic resampling and a t-distribution with 5 degrees of freedom fitted
to the mode of the optimal instrumental distribution. The SMC approach re-
quires a minimal number of particles to produce sensible output. Hence we
cannot adopt exactly the same simulation schedule as in the case of MCMC
above, and the number of particles was set to 250 for the first 100 MCEM
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Fig. 11.3. Same model and data as in Figure 11.1. Parameter estimates were
computed using an MCEM algorithm employing SISR approximation of the joint
smoothing distributions. The plots show results from 400 iterations of the MCEM
algorithm. The number of particles was 250 for the first 100 EM iterations, 500 for
iterations 101 to 200, and then increased proportionally to the squared iteration
number. The contents of the plots are as in Figure 11.2.
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Fig. 11.4. Same model and data as in Figure 11.1. Parameter estimates were
computed using an MCEM algorithm employing SISR approximation of fixed-lag
smoothing distributions with delay k = 20. The plots show results from 400 iter-
ations of the MCEM algorithm. The number of particles was as described in Fig-
ure 11.3 and the contents of the plots are as in Figure 11.2.
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iterations, 500 for iterations 101 to 200, and then increases proportionally to
the square of the MCEM iteration number. The total number of simulations
is also equal to 200,000 in this case. The MCEM algorithm was run using both
the particle approximation of the joint smoothing distributions and that of
the fixed-lag smoothing distributions. Figure 11.3 shows that the implementa-
tion based on joint smoothing produces highly variables parameters estimates.
This is coherent with the behavior observed in Example 8.3.1. Given that the
number of observations is already quite large, it is preferable to use fixed-lag
smoothing (here with a lag k = 20), as the bias introduced by this approxi-
mation is more than compensated by the reduction in the Monte Carlo error
variance. As shown in Figure 11.4, the behavior of the resulting algorithm
is very close to what is obtained using the MCEM algorithm with MCMC
imputation of the missing data. When comparing to Figure 11.2, the level of
the Monte Carlo error appears to be reduced in Figure 11.4, and the bias in-
troduced by the fixed-lag smoothing approximation is hardly perceptible. �

11.1.2.1 Automatic Schedules

From the previous example, it is obvious that it is generally advantageous to
vary the precision of the estimate of the intermediate quantity Q(θ ; θ̂i−1) with
i, and in particular to increase this precision as i grows and θ̂i approaches a
limit. In the example above, this was accomplished by increasing the number
of sweeps of the MCMC sampler or by increasing the number of particles of
the SMC algorithm. So far, the increase was done in a deterministic fashion,
and such deterministic schedules may also be given theoretical support (see
Section 11.2.3). Deterministic schemes are appealing because of their simplic-
ity, but it is obvious that because there are only few theoretical guidelines on
how to choose mi, finding an appropriate schedule is in general not straight-
forward.

It has often been advocated that using automatic, or adaptive, procedures
to choose mi would be more appropriate. To do so, it is required to deter-
mine, at each iteration, an estimate of the Monte Carlo error Q̂mi

(θ ; θ̂i−1)−
Q(θ ; θ̂i−1). The dependence of this error with respect to mi should also be
known or determined from the output of the algorithm. Such “data-driven”
procedures require gauging the Monte Carlo errors, which is, in general, a
complicated task. Booth and Hobert (1999) present an automatic method that
requires independent Monte Carlo sample in the E-step. Independent simu-
lations allow for computationally inexpensive and straightforward assessment
of Monte Carlo error through an application of the central limit theorem.

Such independent sampling routines are often unavailable in practical im-
plementations of the MCEM algorithm however, requiring MCMC or SMC
algorithms to obtain relevant Monte Carlo samples. Levine and Casella (2001)
present a method for estimating the simulation error of a Monte Carlo E-step
using MCMC samples. Their procedure is based on regenerative methods for
MCMC simulations and amounts to finding renewal periods across which the
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MCMC trajectories are independent (see for instance Hobert et al., 2002). By
subsampling the chain between regeneration times, Monte Carlo error may be
assessed through the CLT for independent outcomes in a manner analogous
to Booth and Hobert (1999). For phi-irreducible Markov chains, such renewal
periods can be obtained using the splitting procedure, which requires deter-
mining small sets (see Section 14.2 for definitions of the concepts mentioned
here). A drawback of this approach is that it may be difficult, if not impos-
sible, to establish the minorization condition necessary for implementing the
regenerative simulation procedure. Once such a minorization condition has
been established however, implementing the procedure is nearly trivial.

Both of the automatic procedures mentioned above are able to decide
when to increase the Monte Carlo sample size, but the choice of sample size
at each such instance is arbitrary. Levine and Fan (2004) present a method
that overcomes the limitations of the previous algorithm. The Monte Carlo
error is gauged directly using a subsampling technique, and the authors use
asymptotic results to construct an adaptive rule for updating the Monte Carlo
sample size.

Despite their obvious appeal, automatic methods suffer from some draw-
backs. First, the estimation of the Monte Carlo error induces a computational
overhead that might be non-negligible. Second, because the number of simu-
lations at each iteration is random, the total amount of computation cannot
be fixed beforehand; this may be inconvenient. Finally, the convergence of
the proposed schemes are based on heuristic arguments and have not been
established on firm grounds.

11.1.2.2 Averaging

There is an alternative to automatic selection of the Monte Carlo sample size,
developed by Fort and Moulines (2003), which is straightforward to implement
and most often useful. This method is inspired by the averaging procedure
originally proposed by Polyak (1990) to improve the rate of convergence of
stochastic approximation procedures.

To motivate the construction of the averaging procedure, note that pro-
vided that the sequence {θ̂i} converges to a limit θ�, each value of θ̂i may itself
be considered as an estimator of the associated limit θ�. Theorem 11.2.14 as-
serts that the variance of θ̂i − θ� is of order 1/mi. Thus, in the idealized
situation where the random perturbations θ̂i− θ� would also be uncorrelated,
it is well-known that it is possible to obtain an improved estimator of θ� by
combining the individual estimates θ̂i in proportion of the inverse of their
variance (this is the minimum variance estimate of θ�). This optimal linear
combination has a variance that decreases as 1/

∑
i mi, that is, the total num-

ber of simulations rather than the final number of simulations. Although the
MCEM perturbations θ̂i − θ� are not uncorrelated, even when using i.i.d.
Monte Carlo simulation, due to the dependence with respect to θ, Fort and
Moulines (2003) suggested using the averaged MCEM estimator



408 11 Maximum Likelihood Inference, Part II

θ̃i
def=

i∑
j=i0

mj∑i
j=i0

mj

θ̂j , for i ≥ i0, (11.9)

where i0 is the iteration index at which computation of the average is started.
In general, it is not recommended to start averaging too early, when the
algorithm is still in its transient phase.

Example 11.1.4 (Averaging). In Example 11.1.3, the number of sweeps is
increased quite slowly and the number of sweeps during the final EM iter-
ations is not large (about 1500). This scheme is advantageous in situations
when the EM algorithm is slow, because a large number of iterations can be
performed while keeping the total of number of simulations moderate. The
problem is rather that the simulation noise at convergence is still significant
(see Figure 11.2). This is a typical situation in which averaging can prove to
be very helpful. As seen in Figure 11.5, averaging reduces the noise when the
parameters are in the neighborhood of their limits. Averaging is also benefi-
cial when the EM statistics are estimated using sequential Monte Carlo (see
Figure 11.6). �

11.1.3 Gradient-based Algorithms

As discussed in Section 10.2.3, computation of the gradient of the log-
likelihood is very much related to the E-step of EM as a consequence of Fisher’s
identity (Proposition 10.1.6). It is thus rather straightforward to derive Monte
Carlo versions of the gradient algorithms introduced in Section 10.1.3. At
the ith iteration, one may for example approximate the gradient of the log-
likelihood ∇θ�(θ̂i−1), where θ̂i−1 denotes the current parameter estimate, by

∇̂θ�mi
(θ̂i−1) =

1
mi

mi∑
j=1

∇θ log f(ξi,j ; θ̂i−1) , (11.10)

where ξi,1, . . . , ξi,mi is an i.i.d. sample from the density p(x ; θ̂i−1) or a re-
alization of an ergodic Markov chain admitting p(x ; θ̂i−1) as its stationary
density. It is also possible to use importance sampling; if ξ̃i,1, . . . , ξ̃i,mi is a
sample from the instrumental distribution r, then the IS estimate of∇θ�(θ̂i−1)
is

∇̂θ�m(θ̂i−1) =
mi∑
j=1

ωi,j∇θ log f(ξ̃i,j ; θ̂i−1), ωi,j =

p(ξ̃i,j ;θ̂i−1)
r(ξ̃i,j)∑mi

k=1
p(ξ̃i,k;θ̂i−1)

r(ξ̃i,k)
(11.11)

As in the case of MCEM, it is likely that for HMMs, importance sampling
strategies become unreliable when the number of observations increases. To
circumvent the problem, one may use sequential Monte Carlo methods such
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Fig. 11.5. Same model, data, and algorithm as in Figure 11.2, except that aver-
aging according to (11.9) was used to smooth the sufficient statistics of the E-step;
averaging was started after i0 = 200 iterations. The plots show results from 400
iterations of the MCEM algorithm. The contents of the plots are as in Figure 11.2.
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Fig. 11.6. Same model, data, and algorithm as in Figure 11.4, except that aver-
aging according to (11.9) was used to smooth the sufficient statistics of the E-step;
averaging was started after i0 = 200 iterations. The plots show results from 400
iterations of the MCEM algorithm. The contents of the plots are as in Figure 11.2.
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as SISR where (11.11) is not computed directly but rather constructed re-
cursively (in time) following the approach discussed in Section 8.3 and used
in the case of MCEM above. Details are omitted because the gradient of the
log-likelihood (10.29) and the intermediate quantity of EM (10.26) are very
similar. For models that belong to exponential families, the only quantities
that need to be computed in both cases are the smoothed expectation of the
sufficient statistics, and hence both computations are exactly equivalent.

Louis’s identity (see Proposition 10.1.6) suggests an approximation of the
Hessian of �(θ) at θ̂i−1 of the form

Ĵmi(θ̂
i−1) =

1
mi

mi∑
j=1

∇2
θ log f(ξi,j ; θ̂i−1) +

1
mi

mi∑
j=1

[
∇θ log f(ξi,j ; θ̂i−1)

]⊗2

−
[
∇̂θ�mi

(θ̂i−1)
]⊗2

,

where ξi,1, . . . , ξi,mi are as above, for a vector a we have used the notation
a⊗2 = aat, and the estimate of the gradient in the final term on the right-
hand side may be chosen, for instance, as in (11.10). Using this approxima-
tion of the Hessian, it is possible to formulate a Monte Carlo version of the
Newton-Raphson procedure. This algorithm was first proposed by Geyer and
Thompson (1992) in an exponential family setting and then generalized by
Gelfand and Carlin (1993). Gelman (1995) proposed a similar algorithm in
which importance sampling is used as the Monte Carlo method.

Now assume that we have, with the help of a Monte Carlo approximation
of the gradient and possibly also the Hessian, selected a search direction. The
next step is then to determine an appropriate value of the step size γ (see
Section 10.1.3). This is not a simple task, because the objective function �(θ)
cannot be evaluated analytically, and therefore it is not possible to implement
a line search—at least not in an immediate way. A simple option consists in
using a step size that is small but fixed (see Dupuis and Simha, 1991), and to
let mi →∞ as sufficiently fast as i→∞.

If we want to optimize the step size, we have to approximate the objec-
tive function in the search direction. We may for example follow the method
proposed by Geyer and Thompson (1992), which consists in approximating
(locally) the ratio L(θ)/L(θ̂i−1) by

mi∑
j=1

f(ξi,j ; θ)

f(ξi,j ; θ̂i−1)
,

where {ξi,j} are the samples from p(x ; θ̂i−1) used to determine the search
direction. Under standard assumptions, the sum of this display converges in
probability as mi →∞ to∫

f(x ; θ)

f(x ; θ̂i−1)
p(x ; θ̂i)λ(dx) =

L(θ)

L(θ̂i−1)
.
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This suggests approximating the difference �(θ) − �(θ̂i−1) in a neighborhood
of θ̂i−1 by

log

⎡⎣ 1
mi

mi∑
j=1

f(ξi,j ; θ)

f(ξi,j ; θ̂i−1)

⎤⎦ . (11.12)

This type of approximation nevertheless needs to be considered with some
care because the search direction is not necessarily an ascent direction for this
approximation of the objective function due to the Monte Carlo errors. To the
best of our knowledge, this type of approximation has not been thoroughly
investigated in practice.

As for the MCEM algorithm, it is not necessary to estimate the objective
function and its gradient with high accuracy during the initial optimization
steps. Therefore, the Monte Carlo sample sizes should not be taken large at
the beginning of the procedure but should be increased when the algorithm
approaches convergence. Procedures to adapt the sample size mi at each it-
eration are discussed and analyzed by Sakalauskas (2000, 2002) for gradient
algorithms using a (small enough) fixed step size. The suggestion of this au-
thor is to increase mi proportionally to the inverse of the squared norm of the
(estimated) gradient at the current parameter estimate. If this proportional-
ity factor is carefully adjusted, it may be shown, under a set of restrictive
conditions, that the Monte Carlo steepest ascent algorithm converges almost
surely to a stationary point of the objective function.

It is fair to say that in the case of general state space HMMs, gradient-
based methods as less popular than their counterparts based on the EM
paradigm. An important advantage of EM based methods in this context
is that they are parameterization independent (see Section 10.1.4 for further
discussion). This property means that the issue of selecting a proper step size
γ—which is problematic in simulation-based approaches as discussed above—
has no counterpart for EM-based methods, which are scale-free. Remember
that it is also precisely the reason why the EM approach sometimes converges
much more slowly than gradient-based methods.

11.1.4 Interlude: Stochastic Approximation and the
Robbins-Monro Approach

Stochastic approximation is a general term for methods that recursively search
for an optimum or zero of a function that can only be observed disturbed
by some noise. The original work in the stochastic approximation literature
was by Robbins and Monro (1951), who developed and analyzed a recursive
procedure for finding the root(s) of the equation h(θ) = 0. If the function h
was known, a simple procedure to find a root consists in using the elementary
algorithm

θi = θi−1 + γih(θi−1) , (11.13)
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where {γi} is a sequence of positive step sizes. In many applications, the
evaluation of h(θ) cannot be performed, either because it is computationally
prohibitive or analytical formulas are simply not available, but noise-corrupted
observations of the function can be obtained for any value of the parameter
θ ∈ Θ ⊆ R

dθ . One could then, for instance, consider using the procedure
(11.13) but with h(θ) replaced by an accurate estimate of its value obtained
by averaging many noisy observations of the function.

It was recognized by Robbins and Monro (1951) that averaging a large
number of observations of the function at θi−1 is not always the most efficient
solution. Indeed, the value of the function h(θi−1) is only of interest in so far
that it leads us in the right direction, and it is not unreasonable to expect
that this happens, at least on the average, even if the estimate is not very
accurate. Robbins and Monro (1951) rather proposed the algorithm

θ̂i = θ̂i−1 + γiY
i , (11.14)

where γi is a deterministic sequence satisfying

γi > 0, lim
i→∞

γi = 0,
∑

i

γi = ∞ ,

and Y i is a noisy observation of h(θ̂i−1). Although the analysis of the method
is certainly simpler when the noise sequence {Y i−h(θ̂i−1)}i≥1 is i.i.d., in many
practical applications the noise Y i − h(θ̂i−1) depends on θ̂i−1 and sometimes
on past values of θ̂j and Y j , for j ≤ i− 1 (see for instance Benveniste et al.,
1990; Kushner and Yin, 2003). Using a decreasing step size implies that the
parameter sequence {θ̂i} moves slower as i goes to infinity; the basic idea is
that decreasing step sizes provides an averaging of the random errors com-
mitted when evaluating the function h.

Ever since the introduction of the now classic Robbins-Monro algorithm,
stochastic approximation has been successfully used in many applications and
has received wide attention in the literature. The convergence of the stochas-
tic approximation scheme is also a question of importance that has been ad-
dressed under a variety of conditions, which cover most of the applications (see
for instance Benveniste et al., 1990; Duflo, 1997; Kushner and Yin, 2003).

11.1.5 Stochastic Gradient Algorithms

We now come back to the generic incomplete data model, considering several
ways in which the stochastic approximation approach may be put in use. The
first obvious option is to apply the Robbins-Monro algorithm to determine
the roots of the equations ∇θ�(θ) = 0, yielding the following recursions

θ̂i = θ̂i−1 + γi∇θ log f(ξi ; θ̂i−1) , (11.15)

where ξi is a sample from the density p(x ; θ̂i−1). That is, defining the filtration
{F i} such that F i−1 = σ(θ̂0, ξ0, . . . , ξi−1),
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ξi | F i−1 ∼ p(·; θ̂i−1) .

Thus Y i = ∇θ log f(ξi ; θ̂i−1) can be considered as a noisy measurement of
∇θ�(θ̂i−1) because of the Fisher identity, E[Y i | F i−1] = ∇θ�(θ̂i−1). Hence we
can write Y i = ∇θ�(θ̂i−1) + ζi, with

ζi = ∇θ log f(ξi ; θ̂i−1)− E[∇θ log f(ξi) ; θ̂i−1 | F i−1] ;

obviously {ζi} is an {F i}-adapted martingale difference sequence.
Often it is not possible to sample directly from the density p(x ; θ̂i−1).

One can then replace this draw by iterations from a Markov chain admitting
p(x ; θ̂i−1) as its stationary density. Then E[Y i | F i−1] does no longer equal
∇θ�(θ̂i−1), but rather

ξi | F i−1 ∼ Πθ̂i−1(ξi−1, ·) , (11.16)

where for any θ ∈ Θ, Πθ is a transition kernel of an ergodic Markov chain
with stationary density p(x ; θ). Such algorithms were considered by Younes
(1988, 1989) for maximum likelihood estimation in partially observed Gibbs
fields. They were later extended by Gu and Kong (1998) to maximum likeli-
hood estimation in general incomplete data problems by (see also Gu and Li,
1998; Delyon et al., 1999, Section 8). In this case, the noise structure is more
complicated and analysis and control of the convergence of such algorithms
become intricate (see Andrieu et al., 2005, for results in this direction).

Several improvements can be brought to this scheme. First, it is sometimes
recommendable to run a certain number, say m, of simulations before updating
the value of the parameter. That is,

θ̂i = θ̂i−1 + γi

⎧⎨⎩ 1
m

m∑
j=1

∇θ log f(ξi,j ; θ̂i−1)

⎫⎬⎭ , (11.17)

where ξi,1, . . . , ξi,m are draws from p(x ; θ̂i−1). Choosing m > 1 is generally
beneficial in that it makes the procedure more stable and saves computational
time. The downside is that there are few theoretical guidelines on how to set
this number. The above algorithm is very close to the Monte Carlo version
of the steepest ascent method. Another possible improvement, much in the
spirit of quasi-Newton algorithms, is to modify the search direction by letting

θ̂i = θ̂i−1 + γiW
i

⎧⎨⎩ 1
m

m∑
j=1

∇θ log f(ξi,j ; θ̂i−1)

⎫⎬⎭ , (11.18)

where W i is a properly chosen weight matrix (see for instance Gu and Li,
1998; Gu and Kong, 1998).

One of the main appeals of stochastic approximation is that, at least in
principle, the only decision that has to be made is the choice of the step size
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schedule. Although in theory the method converges for a wide variety of step
sizes (see Section 11.3), in practice the choice of step sizes influences the actual
number of simulations needed to take the parameter estimate into the neigh-
borhood of the solution (transient regime) and its fluctuations around the so-
lution (misadjustment near convergence). Large step sizes generally speed up
convergence to a neighborhood of the solution but fail to mitigate simulation
noise. Small step sizes reduce noise but cause slow convergence. Heuristically,
it is appropriate to use large step sizes until the algorithm reaches a neighbor-
hood of the solution and then to switch to smaller step sizes (see for instance
Gu and Zhu, 2001, for applications to the stochastic gradient algorithm).

A way to alleviate the step size selection problem is to use averaging as
in Section 11.1.2. Polyak (1990) (see also Polyak and Juditsky, 1992) showed
that if the sequence of step sizes {γi} tends to zero slower than 1/i, yet fast
enough to ensure convergence at a given rate, then the running average

θ̃i def= (i− i0 + 1)−1
i∑

j=i0

θ̂j , i ≥ i0 , (11.19)

converges at an optimal rate. Here i0 is an index at which averaging starts,
so as to discard the very first steps. This result implies that one should adopt
step sizes larger than usual but in conjunction with averaging (to control the
increased noise due to use of the larger step sizes). The practical value of
averaging has been reported in many different contexts—see (Kushner and
Yin, 2003, Chapter 11) for a thorough investigation averaging, as well as
(Delyon et al., 1999).

11.1.6 Stochastic Approximation EM

We now consider a variant of the MCEM algorithm that may also be inter-
preted as a stochastic approximation procedure. Compared to the stochastic
gradient approach discussed in the previous section, this algorithm is scale-free
in the sense that the step sizes are positive numbers restricted to the inter-
val [0, 1]. Compared to the MCEM approach, the E-step involves a weighted
average of the approximations of the intermediate quantity of EM obtained
in the current as well as in the previous iterations. Hence there is no need to
increase the number of replications of the missing data as in MCEM.

Algorithm 11.1.5 (Stochastic Approximation EM). Given an initial pa-
rameter estimate θ̂0 and a decreasing sequence of positive step sizes {γi}i≥1 such
that γ1 = 1, do, for i = 1, 2 . . . ,

Simulation: Draw ξi,1, . . . , ξi,m from the conditional density p(x ; θ̂i−1).
Maximization: Compute θ̂i as the maximum of the function Q̂i(θ) over the feasible

set Θ, where
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Q̂i(θ) = Q̂i−1(θ) + γi

⎧⎨⎩ 1
m

m∑
j=1

log f(ξi,j ; θ)− Q̂i−1(θ)

⎫⎬⎭ . (11.20)

This algorithm, called the stochastic approximation EM (SAEM) algorithm,
was proposed by Cardoso et al. (1995) and further analyzed by Delyon et al.
(1999) and Kuhn and Lavielle (2004). To understand why this algorithm can
be cast into the Robbins-Monro framework, consider the simple case where
the complete data likelihood is from an exponential family of distributions.
In this case, the SAEM algorithm consists in updating, at each iteration, the
current estimates (Ŝi, θ̂i) of the complete data sufficient statistic and of the
parameter. Each iteration of the algorithm is divided into two steps. In a first
step, we draw ξi,1, . . . , ξi,m from the conditional density p(x ; θ̂i−1) and update
Ŝi according to

Ŝi = Ŝi−1 + γi

⎡⎣ 1
m

m∑
j=1

S(ξi,j)− Ŝi−1

⎤⎦ . (11.21)

In a second step, we compute θ̂i as the maximum of the function ψt(θ)Ŝi−c(θ).
Assume that the function ψt(θ)s − c(θ) has a single global maximum,

denoted θ̄(s) for all feasible values of Ŝi. The difference m−1 ∑m
j=1 S(ξi,j) −

Ŝi−1 can then be considered as a noisy observation of a function h(Ŝi−1),
where

h(s) =
∫

S(x)p(x ; θ̄(s))λ(dx)− s . (11.22)

Thus (11.21) fits into the Robbins-Monro when considering the sufficient
statistic s rather than the associated parameter θ̄(s). This Robbins-Monro
procedure searches for the roots of h(s) = 0, that is, the values of s satisfying∫

S(x)p(x ; θ̄(s))λ(dx) = s .

Assume that this equation has a solution s� and put θ� = θ̄(s�). Now note
that

Q(θ ; θ�) = ψt(θ)
∫

S(x)p(x ; θ�)λ(dx)− c(θ) = ψt(θ)s� − c(θ) ,

and by definition the maximum of the right-hand side of this display is ob-
tained at θ�. Therefore, an iteration of the EM algorithm started at θ� will
stay at θ�, and we find that each root s� is associated to a fixed point θ� of
the EM algorithm.

The SAEM algorithm is simple to implement and has proved to be rea-
sonably successful in different applications. Compared to the stochastic gradi-
ent procedure, SAEM inherits from the expectation-maximization algorithm



416 11 Maximum Likelihood Inference, Part II

most of the properties that made the success of the EM approach (for in-
stance, the simplicity with which it deals with parameter constraints). One
of these properties is invariance with respect to the parameterization. With
the SAEM algorithm, the scale of the step sizes {γi} is fixed irrespectively
of the parameterization as γ1 equals 1. As in the case of the stochastic gra-
dient, however, the rate of decrease of the step sizes strongly influences the
practical performance of the algorithm. In particular, if the convergence rate
of the EM algorithm is already slow, it is unwise to choose fast decreasing
step sizes, thereby even further slowing down the method. In contrast, if EM
converges fast, then large step sizes introduce an unnecessary amount of extra
noise, which should be avoided. Here again, the use of averaging is helpful in
reducing the impact of the choice of the rate of decrease of the step sizes.

Example 11.1.6. We implemented the SAEM algorithm for the stochastic
volatility model and data described in Example 11.1.2, and the results are
displayed in Figure 11.7. In each iteration of the algorithm, a single realiza-
tion of the missing data was obtained using a sweep of the Gibbs sampler.
This draw was used to update the stochastic approximation estimate of the
complete data sufficient statistics, which were then used to update the pa-
rameter estimate. The only tuning parameter is the sequence of step size γn.
Here again the theory of stochastic approximation does not tell much about
the “optimal” way to choose this sequence. In view of the above discussion,
we used slowly decreasing step sizes (γn = n−0.6) to speed up convergence to-
ward the region of interest. As seen in Figure 11.7, the parameters estimates
obtained using this implementation of SAEM are rather noisy. In order to
reduce the fluctuations, we performed averaging, computing

θ̃i = (i− i0 + 1)−1
i∑

j=i0

θ̂i , i ≥ i0 , (11.23)

where i0 was set to 100,000. Averaging is useful only when the parameter
approaches convergence and should be turned off during the initial steps of
the algorithm. Figure 11.8 shows results for the SAEM algorithm with aver-
aging. Figures 11.7 and 11.8 should be compared with Figures 11.2 and 11.5,
respectively, which involve the same sampler and the same overall number of
simulations but were obtained using the MCEM strategy. Both procedures
(SAEM and MCEM) provides comparable results. �

11.1.7 Stochastic EM

The stochastic EM (SEM) algorithm is a method that shares many similar-
ities with the stochastic approximation EM algorithm. The SEM algorithm
was initially proposed as a means to estimate parameters of mixtures dis-
tributions (Celeux and Diebolt, 1985, 1990), but the concept can easily be
generalized to cover more general incomplete data models. The basic idea is
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Fig. 11.7. Parameter estimation in the stochastic volatility model with GBP/USD
exchange rate data, using the SAEM algorithm with MCMC simulations. The plots
show results from 200,000 iterations of the SAEM algorithm with step sizes γn =
n−0.6. The contents of the plots are as in Figure 11.2.
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Fig. 11.8. Same model, data, and algorithm as in Figure 11.7, except that aver-
aging was used starting at 100,000 iterations. The plots show results from 200,000
iterations of the SAEM algorithm. The contents of the plots are as in Figure 11.2.
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to construct an ergodic homogeneous Markov chain whose stationary distri-
bution is concentrated around the maximum likelihood estimate. SEM is an
iterative algorithm in which each iteration proceeds in two steps. In a first
step, the stochastic imputation step, the missing data is drawn from the con-
ditional density p(x ; θ̂i−1), where θ̂i−1 is the current parameter estimate. In a
second step, the maximization step, a new parameter estimate θ̂i is obtained
as the maximizer of the complete data likelihood function with the missing
data being that imputed in the simulation step. The algorithm thus alternates
between simulating (imputing) missing data and computing parameter esti-
mates. In a more general formulation, one may draw several replications of the
missing data in the simulation step and use the average of the corresponding
complete data log-likelihood functions to obtain a new parameter estimate.

Algorithm 11.1.7 (Stochastic EM Algorithm).

Simulation: Draw ξi,1, . . . , ξi,m from the conditional density p(x ; θ̂i−1).
Maximization: Compute θ̂i as the maximum of the function Q̂i(θ) over the feasible

set Θ, where

Q̂i(θ) =
1
m

m∑
j=1

log f(ξi,j ; θ) . (11.24)

The main difference between SAEM and SEM is the sequence of decreasing
step sizes used in the SAEM approach to smooth the intermediate quantities
of EM estimated in successive iterations. In the SEM algorithm, these step
sizes are non-decreasing, γi = 1, so there is no averaging of the Monte Carlo
error as the iterations progress. The SEM iteration is also obviously identical
to the MCEM iteration (see Algorithm 11.1.1) where the difference only lies
in the fact that the number of simulated replications of the missing data is
not increased with the iteration index.

If ξi,1, . . . , ξi,m are conditionally independent given F i−1 defined in (11.2),
with common density p(x; θ̂i−1), then {θi} is a homogeneous Markov chain.
Under a set of (rather restrictive) technical conditions, this chain can be shown
to be ergodic (Diebolt and Ip, 1996; Nielsen, 2000). Then, as the number of
iterations i tends to infinity, the distribution of θ̂i converges in total varia-
tion distance to the distribution of a random variable θ̂∞. The distribution
of this random variable is in general difficult to characterize, but, under ad-
ditional technical assumptions, this stationary distribution may be shown to
converge in the sense that as the number of observations increases, it becomes
increasingly concentrated around the maximum likelihood estimator (Nielsen,
2000). With SEM, a point estimate can be obtained, for example, by comput-
ing sample averages of the simulated parameter trajectories. The theory of
the SEM algorithm is difficult even for elementary models, and the available
results are far from covering sophisticated setups like continuous state-space
HMMs. This is particularly true in situations where imputation of missing
data is done using an MCMC algorithm, which clearly adds an addition level
of difficulty.



11.2 Analysis of the MCEM Algorithm 419

 0.4

 0.6

 0.8

   1

β

0.6 0.8 1
0

2

4

6

D
en

si
ty

0.9

0.95

1

φ

0.9 0.95 1
0

20

40

60

D
en

si
ty

0 0.5 1 1.5 2

x 10
5

0

0.1

0.2

0.3

σ

Number of iterations
0 0.1 0.2 0.3

0

5

10

15

D
en

si
ty

Fig. 11.9. Parameter estimation in the stochastic volatility model with GBP/USD
exchange rate data, using an SEM algorithm. The plots show results from 200,000
iterations of the SEM algorithm with a single replication of the missing data im-
puted in each iteration. Left: 200,000 iterations of a single trajectory of SEM. Right:
histograms, computed from the second half of the run, of parameter estimates.

Example 11.1.8. Figure 11.9 displays one trajectory of parameter estimates
obtained with the SEM algorithm for the stochastic volatility model and data
described in Example 11.1.2, using one sweep of the Gibbs sampler to simulate
the unobserved volatility sequence at each iteration.

The histograms of the parameters have a single mode but are highly
skewed and show great variability (note that the x-scales are here much larger
than in previous figures). The empirical averages for the three parameters are
β = 0.687, φ = 0.982, σ = 0.145, which do not coincide with the maximum
likelihood estimate previously found with other methods (compare with the
numbers given at the end of Example 11.1.2). This remains consistent however
with the theory developed in Nielsen (2000), as the mismatch is small and, in
the current case, probably even less than the order of the random fluctuations
due to the use of a finite number of simulations (here 200,000). �

To conclude this section, we also mention the variant of SEM and MCEM
proposed by Doucet et al. (2002). This algorithm, which uses concepts bor-
rowed from the Bayesian paradigm, will be presented in Section 13.3.

11.2 Analysis of the MCEM Algorithm

In Section 10.5, the EM algorithm was analyzed by viewing each of its it-
erations as a mapping M on the parameter space Θ such that the EM
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sequence of estimates is given by the iterates θi+1 = M(θi). Under mild
conditions, the EM sequence eventually converges to the set of fixed points,
L = {θ ∈ Θ : θ = M(θ)}, of this mapping. EM is an ascent algorithm as each
iteration of M increases the observed log-likelihood �, that is, � ◦M(θ) ≥ �(θ)
for any θ ∈ Θ with equality if and only if θ ∈ L. This ascent property is essen-
tial in showing that the algorithm converges: it guarantees that the sequence
{�(θi)} is non-decreasing and, hence, convergent if it is bounded.

The MCEM algorithm is an approximation of the EM algorithm. Each
iteration of the MCEM algorithm is a perturbed version of an EM iteration,
where the “typical size” of the perturbation is controlled by the Monte Carlo
error and thus by the number of simulations. The MCEM sequence may thus
be written under the form θ̂i+1 = M(θ̂i) + ζi+1, where ζi+1 is the pertur-
bation due to the Monte Carlo approximation. Provided that the number of
simulations is increased as the algorithm approaches convergence, the pertur-
bation ζi vanishes as i→∞. Note that the MCEM algorithm is not an ascent
algorithm, which prevents us from using the general convergence results of
Section 10.5. It is sensible however to expect that the behavior of the MCEM
algorithm closely follows that of the EM algorithm, at least for large i, as the
random perturbations vanish in the limit.

To prove that this intuition is correct, we first establish in Section 11.2.1
a stability result for deterministically perturbed dynamical systems and then
use this result in Section 11.2.2 to deduce a set of conditions implying almost
sure convergence of the MCEM algorithm. To avoid entering into too many
technicalities, we study convergence under elementary assumptions that do
not cover all possible applications of MCEM to maximum likelihood estima-
tion in partially observed models. We feel however that a first exposure to
this theory should not be obscured by too many distracting details that will
almost inevitably arise when trying to cover more sophisticated cases.

Remark 11.2.1 (Stability in Stochastic Algorithms). One topic of im-
portance that we entirely avoid here is the stability issue. We always assume
that it can be independently guaranteed that the sequence of estimates pro-
duced by the algorithm deterministically stays in a compact set. Although
this will obviously be the case where the parameter space Θ is compact, this
assumption may fail to hold in more general settings where the algorithms un-
der study can generate sequences of parameters that either diverge erratically
or converge toward the boundary of the parameter space. To circumvent this
problem, from both practical and theoretical points of view, it is necessary
to modify the elementary recursion of the algorithm, for instance using re-
projections (Kushner and Yin, 2003; Fort and Moulines, 2003; Andrieu et al.,
2005). �

11.2.1 Convergence of Perturbed Dynamical Systems

Let T : Θ → Θ be a (point-to-point) map on Θ. We study in this section
the convergence of the Θ-valued discrete time dynamical system θi+1 = T (θi)



11.2 Analysis of the MCEM Algorithm 421

and the perturbed dynamical system θi+1 = T (θi) + ζi+1, where {ζi} is a
deterministic sequence converging to zero. The study of such perturbed dy-
namical systems was initiated by Kesten (1972), and these results have later
been extended by Pierre-Loti-Viaud (1995), Brandière (1998), and Bonnans
and Shapiro (1998).

To study the convergence, it is useful to introduce Lyapunov functions
associated with the mapping T . A Lyapunov function, as defined below, is
equivalent to the concept of ascent function that we met in Section 10.5 when
discussing the convergence of EM. The terminology “Lyapunov function” is
however more standard, except in numerical optimization texts. Note that
Lyapunov functions are traditionally defined as descent functions rather than
ascent functions. We reverse this convention to be consistent with the fact
that the MLE estimator is defined as the maximum of the (log-)likelihood
function.

Definition 11.2.2 (Lyapunov Function). T : Θ → Θ be a map as above
and let

L def= {θ ∈ Θ : θ = T (θ)} (11.25)

be the set of fixed points of this map. A function W : Θ → R is said to be a
Lyapunov function relative to (T,Θ) if W is continuous and W ◦T (θ) ≥W (θ)
for all θ ∈ Θ, with equality if and only if θ ∈ L.

In other words, the map T is an ascent algorithm for the function W .

Theorem 11.2.3. Let Θ be an open subset of R
dθ and let T : Θ → Θ be a

continuous map with set L of fixed points. Assume that there exists a Lyapunov
function W relative to (T,Θ) such that W (L) is a finite set of points. Let K
be a compact set and {θi} a K-valued sequence satisfying

lim
i→∞

|W (θi+1)−W ◦ T (θi)| = 0 . (11.26)

Then the set L ∩ K is non-empty, the sequence {W (θi)} converges to a point
w� ∈W (L∩K), and the sequence {θi} converges to the set Lw�

= {θ ∈ L∩K :
W (θ) = w�}.

The proof of the theorem is based on the following result.

Lemma 11.2.4. Let ε > 0 be a real constant, let n ≥ 1 be an integer, and let
−∞ < a1 < b1 < . . . < an < bn < ∞ be real numbers. Let {wj} and {ej} be
two sequences such that lim supj→∞ wj <∞, limj→∞ ej = 0 and

wj+1 ≥ wj + ε1Ac(wj) + ej , where A
def=

n⋃
i=1

[ai, bi] . (11.27)

Then there exists an index k� ∈ {1, . . . , n} such that ak� ≤ lim inf wj ≤
lim supwj ≤ bk� .
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Proof. First note that (11.27) implies that the sequence {wj} is infinitely often
in the set A (otherwise it would tend to infinity, contradicting the assump-
tions). Thus it visits infinitely often at least one of the intervals [ak, bk] for
some k. Choose η < ε ∧ inf1≤i≤n−1(ai+1 − bi)/2 and set j0 such that |ej | ≤ η
for j ≥ j0. Let p ≥ j0 such that wp ∈ [ak, bk]. We will show that

for any j ≥ p , wj ≥ ak − η . (11.28)

The property is obviously true for j = p. Assume now that the property holds
true for some j ≥ p. If wj ≥ ak, then (11.27) shows that wj+1 ≥ ak − η.
If ak − η ≤ wj < ak, then wj+1 ≥ wj + ε − η ≥ ak − η. Therefore wj+1 ≥
ak − η, and (11.28) follows by induction. Because η was arbitrary, we find
that lim inf wj ≥ ak. Using a similar induction argument, one may show that
lim supwj ≤ bk, which concludes the proof. ��

Proof (of Theorem 11.2.3). If L ∩ K was empty, then minθ∈ K W ◦ T (θ) −
W (θ) > 0, which would contradict (11.26). Hence L ∩ K is non-empty. For
simplicity, we assume in the following that L ⊆ K, if not, simply replace L by
L ∩ K.

For any α > 0, let [W (L)]α
def= {x ∈ R : infy∈W (L) |x− y| < α}. Because

W (L) is bounded, the set [W (L)]α is a finite union of disjoint bounded open
intervals of length at least equal to 2α. Thus there exists an integer nα ≥ 0
and real numbers aα(1) < bα(1) < . . . < aα(nα) < bα(nα) such that

[W (L)]α =
nα⋃
k=1

(aα(k), bα(k)) . (11.29)

Note that W−1([W (L)]α) is an open neighborhood of L, and define

ε
def= inf

{θ∈K\W −1([W (L)]α)}
{W ◦ T (θ)−W (θ)} > 0 . (11.30)

Write

W (θi+1)−W (θi) =
{
W ◦ T (θi)−W (θi)

}
+

{
W (θi+1)−W ◦ T (θi)

}
.

(11.31)
Because W (θi) �∈ [W (L)]α implies θi �∈W−1([W (L)]α), we obtain

W (θi+1) ≥W (θi) + ε1[W (L)]cα

(
W (θi)

)
+

{
W (θi+1)−W ◦ T (θi)

}
. (11.32)

By (11.26), W (θi+1) − W ◦ T (θi) → 0 as i → ∞. Thus by Lemma 11.2.4,
the set of limit points of the sequence {W (θi)} belongs to one of the intervals
[aα(k), bα(k)]. Because W (L) =

⋂
α>0[W (L)]α and W (L) is a finite set, the

sequence {W (θi)} must be convergent with a limit that belongs to W (L).
Using (11.31) and (11.26) again, this implies that W ◦ T (θi)−W (θi) → 0 as
i → ∞, showing that all limit points of the sequence {θi} belongs to L. The
proof of Theorem 11.2.3 follows. ��
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11.2.2 Convergence of the MCEM Algorithm

Throughout this section, we focus on the case where the complete data like-
lihood is from an exponential family of distributions. To keep the discussion
short, we also consider only the simplest mechanism to draw the missing data,
that is conditionally i.i.d. simulations. Many of the assumptions below can be
relaxed, but the proof of convergence then becomes more cumbersome and
technical (Fort and Moulines, 2003; Kuhn and Lavielle, 2004).

We recall the notations f(x; θ) for the complete data likelihood, L(θ) =∫
f(x; θ)λ(dx) for the likelihood, and p(x; θ) = f(x; θ)/L(θ) for the condi-

tional density of the missing data. We will also need the function

S̄(θ) def=
∫

S(x)p(x ; θ)λ(dx) , (11.33)

where S(x) is the (vector of) sufficient statistic(s) defined below.

Assumption 11.2.5.

(i) Θ is an open subset of R
dθ and {f(·; θ)}θ∈Θ defines an exponential family

of positive functions on X, that is,

f(x ; θ) = exp[ψt(θ)S(x)− c(θ)]h(x) (11.34)

for some functions ψ : R
dθ → R

ds , S : X → R
ds , c : Θ → R, and

h : X → R
+.

(ii) The function L is positive and continuous on Θ.
(iii) For any θ ∈ Θ,

∫
|S(x)|p(x ; θ)λ(dx) <∞, and the function S̄ is contin-

uous on Θ.
(iv) There exists a closed subset S ⊆ R

ds that contains the convex hull of
S(X) and is such that for any s ∈ S, the function θ 
→ ψt(θ)s − c(θ)
has a unique global maximum θ̄(s) ∈ Θ. In addition, the function θ̄(s) is
continuous on S.

Under the assumptions and definitions given above, the EM and the
MCEM recursions may be expressed as

EM: θi+1 def= T (θi) = θ̄ ◦ S̄(θi) , MCEM: θ̂i+1 = θ̄(Ŝi+1) , (11.35)

where {Ŝi} are the estimates of the complete data sufficient statistics given,
for instance, by (11.3) or by an importance sampling estimate of the same
quantity.

Assumption 11.2.6. With

L def= {θ ∈ Θ : θ̄ ◦ S̄(θ) = θ} (11.36)

being the set of fixed points of the EM algorithm, the image by the function L
of this set L is a finite set of points.
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Recall that if the function L is continuously differentiable, then L coincides
with the set of stationary points of the log-likelihood. That is, L = {θ ∈ Θ :
∇θL(θ) = 0} (see in particular Theorem 10.5.3).

To study the MCEM algorithm, we now state conditions that specify how
Ŝi+1 approximates S̄(θ̂i).

Assumption 11.2.7. L[θ̄(Ŝi+1)]− L[θ̄ ◦ S̄(θ̂i)] → 0 a.s. as i→∞.

Theorem 11.2.8. Assume 11.2.5, 11.2.6, and 11.2.7. Assume in addition
that, almost surely, the closure of the set {θ̂i} is a compact subset of Θ.
Then, almost surely, the sequence {θ̂i} converges to the set L and the sequence
{L(θ̂i)} has a limit.

Proof. From Proposition 10.1.4, each iteration of the EM algorithm increases
the log-likelihood, L(θ̄ ◦ S̄(θ)) ≥ L(θ), with equality if and only if θ ∈ L (see
(11.36)). Thus L is a Lyapunov function for T = θ̄ ◦ S̄ on Θ. Because T is
continuous by assumption, the proof follows from Theorem 11.2.3. ��

Assumption 11.2.7 is not a “‘low-level” assumption. It may be expressed
differently, using the conditional version of the Borel-Cantelli Lemma.

Lemma 11.2.9 (Conditional Borel-Cantelli Lemma). Let {Gk} be a fil-
tration and let {ζk} be an {Gk}-adapted sequence of random variables. As-
sume that there exists a constant C such that for any k, 0 ≤ ζk ≤ C. Then if∑∞

k=1 E[ζk | Gk−1] <∞ a.s., it holds that
∑∞

k=1 ζk <∞ a.s.

Proof. Set Mn =
∑n

k=1{ζk − E[ζk | Gk−1]}. Then {Mn} is a square-integrable
{Gn}-adapted martingale. The angle-bracket process of this martingale (see
Dacunha-Castelle and Duflo, 1986, Section 2.6) is bounded by

〈M〉n def=
n∑

k=1

E[M2
k | Gk−1]−M2

k−1 =
n∑

k=1

E[(ζk − E[ζk | Gk−1])2 | Gk−1]

≤ C

n∑
k=1

E[ζk | Gk−1] <∞ P-a.s.

The proof is concluded by applying Proposition 2.6.29 of Dacunha-Castelle
and Duflo (1986), which shows that {Mn} converges a.s. to an a.s. finite
random variable. ��

We may use the conditional Borel-Cantelli lemma to show that Assump-
tion 11.2.7 is implied by the following sufficient condition, which turns out to
be more convenient to check.

Lemma 11.2.10. Assume 11.2.5 and that the following conditions hold.

(i) The closure of the set {θ̂i} is, almost surely, a compact subset of Θ.
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(ii) For any ε > 0 and any compact set K ⊆ Θ,

∞∑
i=1

P{|Ŝi − S̄(θ̂i−1)| ≥ ε | F i−1}1K(θ̂i−1) <∞ a.s. , (11.37)

where Fj def= σ(θ̂0, Ŝ1, . . . , Ŝj).

Then Assumption 11.2.7 is satisfied.

Note that the indicator random variable is F i−1-measurable, as θ̂i−1 is a deter-
ministic function (the M-step) of the previous estimate Ŝi−1 of the sufficient
statistic.

Proof. We first prove that for any ε > 0 and any compact set K ⊆ Θ,

∞∑
i=1

P{|L[θ̄(Ŝi)]− L[θ̄ ◦ S̄(θ̂i−1)]| ≥ ε | F i−1}1K(θ̂i−1) <∞ a.s. (11.38)

In order to do so, note that for any δ > 0 and ε > 0,

P{|L[θ̄(Ŝi)]− L[θ̄ ◦ S̄(θ̂i−1)]| ≥ ε | F i−1} ≤ P{|Ŝi − S̄(θ̂i−1)| ≥ δ | F i−1}
+ P{|L[θ̄(Ŝi)]− L[θ̄ ◦ S̄(θ̂i−1)]| ≥ ε, |Ŝi − S̄(θ̂i−1)| ≤ δ | F i−1} .

In particular, this inequality holds true on the event {θ̂i−1 ∈ K}. Now define
the set T = S ∩ {|s| ≤ supθ∈K ‖S̄(θ)‖+ δ}. Because S̄ is assumed continuous
this set is compact, and therefore the function L ◦ θ̄ is uniformly continuous
on T . Hence we can find an η > 0 such that |L ◦ θ̄(s)− L ◦ θ̄(s′)| ≤ ε for any
(s, s′) ∈ T × T such that |s − s′| ≤ η. We thus see that on the on the event
{θ̂i−1 ∈ K},

P{|L[θ̄(Ŝi)]− L[θ̄ ◦ S̄(θ̂i−1)]| ≥ ε, |Ŝi − S̄(θ̂i−1)| ≤ δ | F i−1}
≤ P{|Ŝi − S̄(θ̂i−1)| ≥ η | F i−1} .

In view of assumption (ii), (11.38) follows.
Combining (11.38) with Lemma 11.2.9 shows that for any compact set

K ⊆ Θ,
lim

i→∞
|L[θ̄(Ŝi)]− L[θ̄ ◦ S̄(θ̂i−1)]|1K(θ̂i−1) = 0 a.s.

The proof is concluded by noting that there exists an increasing sequence
K1 ⊂ K2 ⊂ · · · of compact subsets of Θ such that Θ =

⋃∞
n=0Kn. ��

As discussed previously, there are many different ways to approximate
S̄(θ). To simplify the discussion, we concentrate below on the simple situation
of plain Monte Carlo approximation, assuming that
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Ŝi = m−1
i

mi∑
j=1

S(ξi,j) , i ≥ 1 , (11.39)

where mi is the number of replications in the ith iteration and ξi,1, . . . , ξi,mi

are conditionally i.i.d. given the σ-field F i−1 with common density p(x; θ̂i−1).

Lemma 11.2.11. Assume 11.2.5 and that the closure of the set {θ̂i} is, al-
most surely, a compact subset of Θ. Assume in addition that

∑∞
i=1 m

−r/2
i <∞

for some r ≥ 2 and that supθ∈K
∫
|S(x)|rp(x ; θ)λ(dx) < ∞ for any compact

set K ⊆ Θ. Then the MCEM sequence {θ̂i} based on the estimators {Ŝi} of
the sufficient statistics given by (11.39) satisfies Assumption 11.2.7.

Proof. The Markov and the Marcinkiewicz-Zygmund (Theorem 9.1.5) inequal-
ities state that for any r ≥ 2 and any ε > 0,

∞∑
i=1

P{|Ŝi − S̄(θ̂i−1)| ≥ ε | F i−1}1K(θ̂i−1)

≤ ε−r
∞∑

i=1

E[|Ŝi − S̄(θ̂i−1)|r | F i−1]1K(θ̂i−1)

≤ C(r)ε−r
∞∑

i=1

m
−r/2
i

∫
|S(x)|rp(x ; θ̂i−1)λ(dx) 1K(θ̂i−1)

≤ C(r)ε−r sup
θ∈K

∫
|S(x)|rp(x ; θ)λ(dx)

∞∑
i=1

m
−r/2
i ,

where C(r) is a universal constant. The right-hand side is finite by assumption,
so that the conditions of Lemma 11.2.10 are satisfied. ��

The situation is slightly more complicated when instead of drawing i.i.d.
random variables from the density p(x ; θ̂i−1), we run an ergodic Markov chain
with stationary density p(x ; θ̂i−1). We then need a version of Marcinkiewicz-
Zygmund inequality for ergodic Markov chains (see for instance Fort and
Moulines, 2003, Section 6). We will not develop further the theory in this
direction. All we need to know at this point is that Assumption 11.2.7 still
holds true in this case under reasonable conditions.

11.2.3 Rate of Convergence of MCEM

Recall from Section 10.5.2 that the asymptotic behavior of an EM sequence
{θi} that converges to a local maximum θ� may be (approximately) described
by the linear dynamical system

(θi+1 − θ�) = M(θi)−M(θ�) ≈ ∇θM(θ�)(θi − θ�) , (11.40)

where the eigenvalues of M(θ�) lie in the interval (0, 1) (Proposition 10.5.5).
To use this decomposition, we require some additional regularity assumptions.
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Assumption 11.2.12.

(i) The functions ψ and c of the exponential family characterization, S̄ and
�, are twice continuously differentiable on Θ.

(ii) θ̄ is twice continuously differentiable on the interior of S.
(iii) The set L of stationary points of � is reduced to a single point θ�, which

is a proper maximizer of � and such that s� = S̄(θ�) lies in the interior
of S; the matrices H(θ�) and G(θ�) defined by (10.71) and (10.72) are
positive definite.

Note that in exponential families, the form taken by �(θ) (see Defini-
tion 10.1.5) and the first assumption above imply that the technical condition
(b) in Proposition 10.1.6 holds so that Proposition 10.5.5 applies and θ� is
a stable stationary point of the EM mapping. The third condition above is
overly restrictive and is adopted only to allow for simpler statements. It is
possible to obtain similar results assuming only that L consists of isolated
points by properly conditioning on the events {|θ̂i − θ�| < ε} for θ� ∈ L and
arbitrary values of ε > 0 (see Fort and Moulines, 2003, for details).

It is useful in the following to consider the EM algorithm not directly in
the parameter space Θ but in the space S of the complete data sufficient
statistic. In this space, the EM recursion may be written as

Si+1 def= S̄ ◦ θ̄(Si) = G(Ŝi), θi+1 = θ̄(Ŝi+1) . (11.41)

If θ� is a fixed point of M , then s�
def= S̄(θ�) is a fixed point of G, that

is, s� = G(s�) = S̄ ◦ θ̄(s�). In addition, ∇θM(θ�) = ∇sθ̄(s�)∇θS̄(θ�) and
∇sG(s�) = ∇θS̄(θ�)∇sθ̂(s�), so that ∇sG(s�) and ∇θM(θ�) have the same
eigenvalues (counting multiplicities).

We now apply this principle to the MCEM algorithm, letting again Ŝi

be the estimate of the sufficient statistic at the ith iteration. The difference
Ŝi − s�, where s� = S̄(θ�), may be expressed as

Ŝi − s� = [G(Ŝi−1)−G(s�)] + [Ŝi −G(Ŝi−1)]
= ∇sG(s�)(Ŝi−1 − s�) + (Ŝi − E[Ŝi | F i−1]) + Qi ,

where F i−1 is as in Lemma 11.2.10 and Qi is a remainder term. For con-
ditionally i.i.d. simulations, Ŝi is given by (11.39) and hence E(Ŝi | F i−1) =∫
S(x)p(x ; θ̄(Ŝi−1))λ(dx) = G(Ŝi−1). Thus the remainder term Qi is equal

to the difference between G(Ŝi−1) − G(s�) and its first-order approximation
∇sG(s�)(Ŝi−1 − s�), which we expect to be small for large values of the iter-
ation index i when Ŝi converges to s�.

For technical reasons, we consider instead the equivalent error decomposi-
tion Ŝi − s� = M i + Ri, where M i obeys a linear difference equation driven
by the martingale difference,

M0 = 0 and M i = ∇sG(s�)M i−1 + (Ŝi − E[Ŝi | F i−1])1C(θ̂i−1) , (11.42)
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C ⊂ Θ being a compact neighborhood of θ� = θ̄(s�) and Ri is the remainder
term. Because the stationary point s� is stable, all eigenvalues of ∇sG(s�)
have modulus less than 1, implying that the linear difference equation (11.42)
is stable. To go further, we need to strengthen the assumption on the Monte
Carlo perturbation.

Assumption 11.2.13.
∑

m
−r/2
i < ∞ for some r ≥ 2 and for any compact

set K ⊂ Θ, lim supi→∞ m
1/2
i (E |Ŝi − E[Ŝi | F i−1]|r1K(θ̂i−1))1/r <∞.

This condition implies that

∞∑
j=1

E[|Ŝi − E{Ŝi | F i−1}|r | F i−1]1K(θ̂i−1) <∞ a.s.

Hence by Markov inequality and Lemma 11.2.10, Assumption 11.2.13 implies
Assumption 11.2.7.

The following result (adapted from Fort and Moulines, 2003, Theorem 6),
which we state without proof, establishes the rate of convergence of M i and
Ri.

Theorem 11.2.14. Assume 11.2.5, 11.2.7, 11.2.12, 11.2.13, and that Ŝi →
s� a.s. Assume in addition that 1 ≤ limi mi+1/mi < |λmax(∇sG(s�))|−2. Then
there exists a constant C such that (E ‖M i‖r)1/r ≤ Cm

−1/2
i and m

1/2
i (Ŝi −

s� −M i) → 0 a.s., where M i is as in (11.42).

To understand the impact of the schedule {mi} on the dispersion of the
MCEM estimate, it is appropriate to evaluate the rate of convergence as a
function of the total number of simulations. For any sequence {ai}, we define
the interpolated sequence ai = aφ(i), where for any integer i, φ(i) is the largest
integer such that

φ(i)∑
k=0

mk < i ≤
φ(i)+1∑

k=0

mk .

Hence ai is the original sequence reindexed by simulation number rather than
by iteration number. In particular, θ̂i denotes the fit of the parameter after
the ith simulation while, as usual, θ̂i is the fit of the parameter after the ith
iteration. Assume first that the number of simulations increases at a poly-
nomial rate, mi ∝ iα, for some α > 0. Then φ(i) ∝ [(1 + α)i]1/(1+α) and
θ̂i = θ� + OP (i−

α
2(1+α) ). Whatever the value of α, the rate of convergence is

slower than i−1/2. It is worthwhile to note that the rate improves by choos-
ing large values of α; on the simulation scale, the dispersion of the estimator
decreases when increasing α. Assume now that the schedule is exponential,
mi ∝ ρi for some ρ > 1. This choice has been advocated by Chan and Ledolter
(1995) and in several earlier works on the subject. We obtain similarly that
θ̂i = θ� + OP (i−1/2) whenever 1 < ρ < |λmax[∇sG(s�)]|−2. This analysis



11.3 Analysis of Stochastic Approximation Algorithms 429

suggests that the optimal schedule is exponential, yet the choice of ρ is not
obvious as λmax[∇sG(s�)] is in general unknown.

We now study the averaged algorithm based on the use of (11.9). Then
S̃i− s� may be decomposed as S̃i− s� = M̃i + R̃i, where the leading term M̃ i

is given by

M̃i
def=

⎛⎝ i∑
j=0

mj

⎞⎠−1
i∑

k=0

⎛⎝i−k∑
j=0

mj+k∇sG(s�)j

⎞⎠ (Ŝk − E[Ŝk | Fk−1]) .

Fort and Moulines (2003, Theorem 8) shows that the following result holds
true.

Theorem 11.2.15. Assume 11.2.5, 11.2.7, 11.2.12, 11.2.13, and that Ŝi →
s� a.s. Assume in addition that the following conditions hold true.

(i) 1 ≤ limi mi+1/mi < |λmax[∇sG(s�)]|−2.
(ii) limi→∞ i(

∑i
j=0 mj)−1/2 = 0.

Then there is a constant C such that

(E |M̃i|r)1/r ≤ C

⎛⎝ i∑
j=0

mj

⎞⎠−1/2

,

and ⎛⎝ i∑
j=0

mj

⎞⎠1/2

(S̃i − s� − M̃i) → 0 a.s.

The Lr-norm of the leading term M̃i of the error S̃i − s� thus decreases
as the inverse square root of the total number of simulations up to iteration
i, both for subexponential and exponential schedules. This implies that the
estimator θ̃i = θ̄(S̃i) converges to θ� at a rate inversely proportional to the
square root of the total number of simulations up to iteration i. When ex-
pressed on the simulation timescale, the previous result shows that the rate
of convergence of the interpolated sequence θ̃i is proportional to i−1/2, the
total number of simulations up to time i. Hence the averaging procedure im-
proves the rate of convergence and makes the choice of the sequence {mi} less
sensitive.

11.3 Analysis of Stochastic Approximation Algorithms

11.3.1 Basic Results for Stochastic Approximation Algorithms

Since the early work by Kushner and Clark (1978), convergence of stochas-
tic approximation procedures has been thoroughly studied under various sets
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of assumptions. For a good summary of available results, we recommend in
particular the books by Benveniste et al. (1990), Duflo (1997), and Kushner
and Yin (2003). In the following, we follow the approach recently proposed
by Andrieu et al. (2005), which is of interest here because it parallels the
method adopted in the previous section for the MCEM algorithm. The anal-
ysis again consists in decomposing the study of the convergence of stochastic
approximation algorithms in two distinct steps.

In the first step, we establish deterministic conditions on a noise sequence
{ζi} and a step size sequence {γi} under which a deterministic sequence {θi}
defined as

θ0 ∈ Θ , θi+1 = θi + γi+1(h(θi) + ζi+1) , i ≥ 0 , (11.43)

converges to the set of stationary points of h. This first result (Theorem 11.3.2
below) is the analogy of Theorem 11.2.3, which was instrumental in analyzing
the convergence of the MCEM algorithm. Because the proof of Theorem 11.3.2
is more technical, however, it is postponed to Section 11.4 and may be omitted
in a first reading.

In a second step, which is probabilistic in nature and depends on the
distribution of the process {ζi}, we check that these conditions are satisfied
with probability one.

In order to state Theorem 11.3.2, we first need to adopt a strengthened
version of Definition (11.2.2).

Definition 11.3.1 (Differential Lyapunov Function). Let Θ be a subset
of R

dθ , let w be a real function on Θ, and let h : Θ → R
dθ be a vector-valued

function. The function w is said to be a Lyapunov function relative to (h,Θ)
if w is continuously differentiable on Θ and 〈∇θw(θ), h(θ)〉 ≥ 0 for any θ ∈ Θ,
with equality if and only if θ is such that h(θ) = 0.

In this context, the function h is usually referred to as the mean field and
the points θ such that h(θ) = 0 are called stationary points (of the mean
field). We will denote by L the set of such points, that is,

L def= {θ ∈ Θ : h(θ) = 0} . (11.44)

To make the connection with Definition (11.2.2), note that if W is a Lya-
punov function relative to T in the sense of Definition (11.2.2) and that both
functions are continuously differentiable on Θ, then W also is a (differential)
Lyapunov function in the sense of Definition 11.3.1 relative to the gradient field
h = ∇θT . Recall that we adopt in this chapter a definition that is compati-
ble with maximization tasks, whereas the tradition is to consider Lyapunov
functions as descent functions (hence replacing ≥ by ≤ in Definition 11.3.1).

Theorem 11.3.2. Assume that Θ is an open subset of R
dθ and let h : Θ →

R
dθ be continuous. Let {γi} be a positive sequence such that γi → 0 and

∑
γi =
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∞, and let {ζi} be a sequence in R
dθ satisfying limk→∞ supl≥k |

∑l
i=k γiζ

i| =
0. Assume that there exists a Lyapunov function w relative to (h,Θ) such that
w(L) is finite, where L is as in (11.44). Finally, assume that the sequence
{θi}i≥0 given by

θi = θi−1 + γih(θi−1) + γiζ
i

is such that {θi} ⊆ K for some compact subset K of Θ satisfying L ⊆ K.
Then the sequence {w(θi)} converges to some w� in w(L) and the sequence

{θi} converges to the set Lw�
= {θ ∈ L : w(θ) = w�}.

11.3.2 Convergence of the Stochastic Gradient Algorithm

We consider the stochastic gradient algorithm defined by (11.17). For simplic-
ity, we set the number of simulations m in each iteration to one, bringing us
back to the basic form (11.15). This recursion may be rewritten in Robbins-
Monro form θ̂i = θ̂i−1 + γih(θi) + γiζ

i, where

h(θ) = ∇θ�(θ) , ζi = ∇θ log f(ξi ; θ̂i−1)− h(θ̂i−1) . (11.45)

Because the mean field h is a gradient, the function w = � is a Lyapunov
function relative to (Θ, h). To proceed, one needs to specify how the missing
data is simulated. We consider the following simple assumption.

Assumption 11.3.3. For any i ≥ 1, given F i−1 = σ(θ̂0, ξ1, . . . , ξi−1), the
simulated missing data ξi is drawn from the density p(x ; θ̂i−1).

In addition, for some r > 2, the function
∫
|S(x)|rp(x ; θ)λ(dx) is finite

and continuous on Θ.

This assumption can be relaxed to allow for Markovian dependence, a situ-
ation that is typical when MCMC methods are used for simulation of the miss-
ing data (Andrieu et al., 2005). We may now formulate a general convergence
result for the stochastic gradient algorithm under the assumption that the
complete data likelihood is from an exponential family of distributions. Note
that in the latter case, the representation f(x ; θ) = exp[ψt(θ)S(x)− c(θ)]h(x)
implies that the perturbation ζi defined in (11.45) may be rewritten as
ζi = [∇θψ(θ̂i−1)]t(Ŝi − E[Ŝi | F i−1]), where ∇θψ(θ) is the Jacobian matrix
of ψ and Ŝi = S(ξi) is a simulation of the complete data sufficient statistics
under the density p(x ; θ̂i−1).

Theorem 11.3.4. Assume 11.2.5, 11.2.6, and 11.3.3. Assume in addition
that �(θ) is a continuously differentiable function of θ, that

γk ≥ 0 ,
∑

γk = ∞ and
∑

γ2
k <∞ ,

and that the closure of the set {θ̂i} is a compact subset of Θ. Then, almost
surely, the sequence θ̂i given by (11.15) satisfies limk→∞∇θ�(θ̂k) = 0.
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Proof. Put M i =
∑i

j=1 γiζ
i. The result will follow from Theorem 11.3.2 pro-

vided {M i} has a finite limit a.s., so this is what we will prove.
Using the form of ζi given above, we see that the sequence {M i} is an

{F i}-martingale satisfying

∞∑
i=1

E[|M i+1 −M i|2 | F i] ≤
∞∑

i=1

γ2
i ‖∇θψ(θ̂i−1)‖2

∫
|S(x)|2p(x; θ̂i)λ(dx) .

Under the stated assumptions the sequence {θ̂i)} a.s. belongs to a compact
subset of Θ. Therefore, by Assumption 11.3.3, the right-hand side of the
above display is finite a.s., and Dacunha-Castelle and Duflo (1986, Propo-
sition 2.6.29) then shows that M i has a finite limit almost surely. ��

11.3.3 Rate of Convergence of the Stochastic Gradient Algorithm

The results above are of little help in selecting the step size sequence, because
they do not tell much about the behavior of the sequence {θ̂i} when the
algorithm approaches convergence. This section is concerned with the rate of
convergence, assuming that convergence occurs. To simplify the discussion it
is assumed here that, as in Section 11.2.3, θ̂i → θ�, which is a stable stationary
point. That is, a point θ� in Θ satisfying the following conditions: (i) h(θ�) =
0, (ii) h is twice differentiable in a neighborhood of θ� and (iii) J(θ�), the
Jacobian matrix of h, or, in other words, the Hessian of �(θ�), is negative
definite. All this is guaranteed by Assumption 11.2.12, under which θ� is a
proper maximizer of �.

Write the difference θ̂i − θ� as

θ̂i − θ� = (θ̂i−1 − θ�) + γi[h(θ̂i−1)− h(θ�)] + γiζ
i

= (θ̂i−1 − θ�) + γiJ(θ�)(θ̂i−1 − θ�) + γiζ
i + γiQ

i ,

where Qi = [h(θ̂i−1)− h(θ�)]− J(θ�)(θ̂i−1 − θ�) is the remainder term. This
suggests the error decomposition θ̂i− θ� = M i +Ri, where M i obeys a linear
difference equation driven (under Assumption 11.3.3) by a martingale differ-
ence; M0 = 0 and, for i ≥ 1,

M i = [I + γiJ(θ�)]M i−1 + γiζ
i =

i∑
j=0

γj

i∏
l=j+1

[I + γlJ(θ�)]ζj . (11.46)

The following result is adapted from Delyon et al. (1999, Lemma 6) (see also
Kushner and Yin, 2003, Chapter 10).

Theorem 11.3.5. Assume 11.2.5, 11.2.12, 11.3.3, and that θ̂i → θ� a.s. As-
sume in addition that

∑∞
i=0 γi = ∞,

∑∞
i=0 γ

2
i < ∞ and that γ−1

i+1 − γ−1
i →

0. Then there exists a constant C such that (E[‖M i‖r])1/r ≤ Cγi and
γ

−1/2
i (θ̂i − θ� −M i) → 0 a.s., where M i is as in (11.46).
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Hence M i is the leading term of the error and Ai is a remainder term. Be-
cause the variance of the leading term M i is proportional to the step size γi,
this result suggests taking the smallest possible step size compatible with the
assumptions. Using “small” step sizes is however clearly not a recommendable
practice. Indeed, if the step sizes are not sufficient, it is likely that the algo-
rithm will get stuck at an early stage, failing to come close to the target point.
In addition, it is difficult to detect that the step size is converging too quickly
to zero, or that it is too small, and therefore there is a substantial ambiguity
on how to select an appropriate sequence of step sizes. This difficulty has long
been considered as a serious handicap for practical applications of stochastic
approximation procedures.

Note that it is possible to carry out a different analysis of stochastic ap-
proximation procedures in which the error θ̂i−θ� is normalized by the square
root of the inverse of the step size γi. One may for example prove conver-
gence in distribution of the centered and normalized iterate γ

−1/2
i (θ̂i − θ�),

with the variance of the limiting distribution taken as a measure of how fast
convergence occurs (Benveniste et al., 1990; Duflo, 1997). It is also possible to
analyze scenarios in which the step sizes are essentially constant but assumed
sufficiently small (Kushner and Yin, 2003) or to use approaches based on large
deviations (Dupuis and Ellis, 1997).

As in the case of MCEM, the averaging procedure partly raises the diffi-
culty discussed above: for the averaged sequence {θ̃i} defined in (11.19), the
following result, adapted from Delyon et al. (1999, Theorem 4), holds.

Theorem 11.3.6. Under the assumptions of Theorem 11.3.5,
√
i(θ̃i − θ�)

D−→ N(0, H(θ�)−1Σ�H(θ�)−1) , (11.47)

where

Σ� = ψt(θ∗)
∫

[S(x)− S̄(θ�)][S(x)− S̄(θ�)]tp(x ; θ�)λ(dx) ψ(θ�) .

As shown by Poznyak and Chikin (1984) and Chikin (1988), the rate 1/
√
i

and the asymptotic variance of (11.47) are optimal. This performance may also
be achieved using a Gauss-Newton type stochastic approximation algorithm.
Such an algorithm would however require knowledge, or estimates of H(θ�),
whereas averaging circumvents such difficulties. This result suggests a rather
different philosophy for setting the step sizes: because the optimal rate of 1/

√
i

can be achieved by averaging, the step sizes {γi} should decrease as slowly as
permitted by the assumptions of Theorem 11.3.5 to ensure fast convergence
toward the region of interest (hence the choice of a rate n−0.6 adopted in
Example 11.1.6).

11.3.4 Convergence of the SAEM Algorithm

We consider the stochastic approximation EM (SAEM) algorithm (11.21) and
again, for simplicity, with m = 1 replication of the missing data in each
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iteration. In Robbins-Monro form, this algorithm is defined as Ŝi = Si−1 +
γih(Ŝi−1)+γiζ

i, where the mean field h and the perturbation ζi are given by

h(s) = S̄ ◦ θ̄(s)− s , ζi = S(ξi)− S̄ ◦ θ̄(Ŝi−1) . (11.48)

The log-likelihood function �(θ) is increased at each iteration of the EM
algorithm. We show in the following lemma that this property, in the domain
of complete data sufficient statistics, implies that � ◦ θ̄ is a Lyapunov function
for the mean field h.

Lemma 11.3.7. Assume 11.2.5, items (i) and (ii) of 11.2.12 and set w
def=

� ◦ θ̄. Then 〈∇sw(s), h(s)〉 ≥ 0 for any s ∈ S, where h is the mean field of
(11.48). Moreover,

{s ∈ S : 〈∇sw(s), h(s)〉 = 0} = {s ∈ S : ∇sw(s) = 0} , (11.49)
θ̄({s ∈ S : 〈∇sw(s), h(s)〉 = 0}) = {θ ∈ Θ : ∇θ�(θ) = 0} . (11.50)

Proof. We start by working out an expression for the gradient of w. Under
Assumption 11.2.12, the function S̄ is continuously differentiable on Θ and
the function θ̄ is continuously differentiable on S. Hence h is continuously
differentiable on S, so that h is bounded on every compact subset of S. By
construction for any s ∈ S, the function θ̄ satisfies

−∇θc[θ̄(s)] + st∇θψ[θ̄(s)] = 0 . (11.51)

Put F (s, θ) = ψt(θ)s − c(θ), so that this relation reads ∇θF [s ; θ̄(s)] = 0.
Under the assumptions made, we may differentiate this relation with respect
to s to obtain

∇2
θF [s ; θ̄(s)]∇sθ̄(s) = −∇θψ[θ̄(s)] . (11.52)

On the other hand, the Fisher identity implies that for any θ,

∇θ�(θ) = −∇θc(θ) + S̄(θ)t∇θψ(θ) .

Evaluating this equality at θ̄(s) and using (11.51) yields

∇θ�[θ̄(s)] = {−s + S̄[θ̄(s)]}t∇θψ[θ̄(s)]
= h(s)t∇θψ[θ̄(s)] = −h(s)t∇sθ̄(s)t∇2

θF [s ; θ̄(s)] , (11.53)

whence

∇s� ◦ θ̄(s) = −h(s)t∇sθ̄(s)t∇2
θF [s ; θ̄(s)]∇sθ̄(s) . (11.54)

Because the F (s; θ) as a unique proper maximizer in θ = θ̄(s), ∇2
θF [s ; θ̄(s)]

is negative definite implying that

〈∇sw(s), h(s)〉 = −h(s)t∇sθ̄(s)t∇2
θF [s ; θ̄(s)]∇sθ̄(s)h(s) ≥ 0 . (11.55)

This is the first claim of the lemma.
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Now pick s� ∈ S to be such that 〈∇w(s�), h(s�)〉 = 0. Under Assump-
tion 11.2.12, the matrix ∇2

θF [s� ; θ̄(s�)] is negative definite, whence (11.55)
shows that ∇sθ̄(s�)h(s�) = 0. Inserting this into (11.54) yields ∇sw(s�) = 0,
so that

{s ∈ S : 〈∇sw(s), h(s)〉 = 0} ⊆ {s ∈ S : ∇sw(s) = 0} .

The reverse inclusion is trivial, and the second claim of the lemma follows.
For the final claim, use a similar argument and (11.53) as well as the fact that
if ∇θ�(θ�) = 0 then h(s�) = S̄ ◦ θ̄(s�)− s� = 0 (for the point s� = S̄(θ�)). ��

We may now formulate a result that is the stochastic counterpart of the
general convergence theorem for the EM sequence.

Theorem 11.3.8. Let {θ̂i} and {Ŝi} be sequences of parameters and com-
plete sufficient statistics, respectively, of the SAEM algorithm (11.21). As-
sume 11.2.5, 11.2.6, and items (i) and (ii) of 11.2.12 and 11.3.3. Assume in
addition that

γk ≥ 0 ,
∑

γk = ∞ and
∑

γ2
k <∞ ,

and that the closure of the set {Ŝi} is a compact subset of S. Then, almost
surely, limi→∞ h(Ŝi) = 0 and limi→∞∇θ�(θ̂i) = 0.

The proof is similar to the one of Theorem 11.3.4 and is omitted.

11.4 Complements

We give below the proof of Theorem 11.3.2, which was omitted in Section 11.3.
We first need three lemmas for which the assumptions of Theorem 11.3.2 are
assumed to hold.

Lemma 11.4.1. Let J ⊂ Θ be a compact subset of Θ such that 0 <
infθ∈J 〈∇θw(θ), h(θ)〉. Then, for any 0 < δ < infθ∈J 〈∇θw(θ), h(θ)〉, there
exist constants λ > 0 and β > 0, such that, for any γ, 0 ≤ γ ≤ λ, ζ, |ζ| ≤ β,
and θ ∈ J ,

w[θ + γh(θ) + γζ] ≥ w(θ) + γδ .

Proof. For any 0 < δ < infθ∈J 〈∇θw, h〉, there exist λ > 0 and β > 0 such
that for all γ, 0 ≤ γ ≤ λ, ζ, |ζ| ≤ β and t, 0 ≤ t ≤ 1, we have for all θ ∈ J ,
θ + γth(θ) + γtζ ∈ Θ and

|〈∇θw(θ), h(θ)〉 − 〈∇θw[θ + γth(θ) + γtζ], h(θ) + ζ〉| ≤ inf
θ∈R

dθ \W
〈∇θw, h〉 − δ.

Then, for any γ, 0 ≤ γ ≤ λ and ζ, |ζ| ≤ β,
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w(θ + γh(θ) + γζ)− w(θ) = γ〈∇θw(θ), h(θ)〉

+γ

∫ 1

0
{〈∇θw[θ + tγh(θ) + tγζ], h(θ) + ζ〉 − 〈∇θw(θ), h(θ)〉} dt

≥ γ inf
θ∈R

dθ \W
〈∇θw, h〉 − γ

(
inf

θ∈R
dθ \W

|〈∇θw, h〉| − δ

)
= γδ .

��

Lemma 11.4.2. Let N ⊂ Θ be an open neighborhood of L. There exist pos-
itive constants δ, C, ε, and λ (depending only on the sets N and K), such
that for any δ′, 0 < δ′ ≤ δ, λ′, 0 < λ′ ≤ λ, one can find an integer N and a
sequence {θ̄j}j≥N satisfying θ̄j ∈ Θ for any j ≥ N and

sup
j≥N

|θj − θ̄j | ≤ δ′ , sup
j≥N

γj ≤ λ′ , and sup
j≥N

|w(θj)− w(θ̄j)| ≤ η ,

(11.56)

w(θ̄j) ≥ w(θ̄j−1) + γjε 1N c(θ̄j−1)− γjC 1N (θ̄j−1) for j ≥ N + 1.
(11.57)

Proof. Let us choose δ0 > 0 small enough so that

Kδ0

def= {θ ∈ Θ, inf
θ′∈K

|θ − θ′| ≤ δ0} ⊂ Θ .

The set Kδ0 \ N is compact and infKδ0\N 〈∇w, h〉 > 0. By Lemma 11.4.1, for
any ε, 0 < ε < infθ∈Kδ0\N 〈∇w(θ), h(θ)〉, one may choose λ > 0 and β > 0
small enough so that for any γ, 0 ≤ γ ≤ λ, ζ, |ζ| ≤ β and θ ∈ Kδ0 \ N ,
θ + γh(θ) + γζ ∈ Θ and

w[θ + γh(θ) + γζ] ≥ w(θ) + γε . (11.58)

Because the function h is continuous on Θ, it is uniformly continuous on
each compact subset of Θ, i.e., for any η > 0 one may choose δ, 0 < δ ≤
λ ‖h1K‖∞ ∧ δ0 so that for all (θ, θ̄) ∈ Kδ0 ×Kδ0 satisfying |θ − θ̄| ≤ δ,

|h(θ)− h(θ̄)| ≤ β and |w(θ)− w(θ̄)| ≤ η . (11.59)

Under the stated conditions for any δ′, 0 < δ′ ≤ δ and λ′, 0 < λ′ ≤ λ there
exists an integer N such that for any j ≥ N +1, γj ≤ λ′ and

∣∣∣∑j
i=N+1 γiζ

i
∣∣∣ ≤

δ′. Define recursively for j ≥ N the sequence {θ̄j}j≥N as follows: θ̄N = θN

and for j ≥ N + 1,
θ̄j = θ̄j−1 + γjh(θj−1) . (11.60)

By construction, for j ≥ N + 1, θ̄j − θj =
∑j

i=N+1 γiζ
i, which implies that

supj≥N |θ̄j−θj | ≤ δ′ and thus, for all j ≥ N , θ̄j ∈ Kδ0 and |w(θj)−w(θ̄j)| ≤ η.
On the other hand, for j ≥ N + 1,
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θ̄j = θ̄j−1 + γjh(θ̄j−1) + γj [h(θj−1)− h(θ̄j−1)] , (11.61)

and because |θ̄j−1−θj−1| ≤ δ′ ≤ δ, (11.59) shows that |h(θj−1)−h(θ̄j−1)| ≤ β.
Thus, (11.58) implies that, whenever θ̄j−1 ∈ Kδ0 \N , w(θ̄j) ≥ w(θ̄j−1) + γjε.
Now (11.59) and (11.60) imply that, for any j ≥ N ,

|w(θ̄j)− w(θ̄j−1)| ≤ γj ‖∇θw1K‖∞ ‖h1K‖∞ .

��

Lemma 11.4.3. Let ε and C be real constants, n be an integer and let −∞ <
a1 < b1 < · · · < an < bn < ∞ be real numbers. Let {uj} be a sequence such
that lim supuj <∞ and, for any j,

uj ≥ uj−1 + γjε1Ac(uj−1)− γjC1A(uj−1) A =
n⋃

i=1

[ai, bi] . (11.62)

Then, the limit points of the sequence {uj} are included in A.

Proof. As lim supuj < ∞ is bounded, {uj} is infinitely often in the set A
and thus in at least one of the intervals [ak, bk], k = 1, . . . , n. Choose η,
0 < η < inf1≤i≤n−1(ai+1 − bi)/2 and let J be sufficiently large so that, for all
j ≥ J , γjC ≤ η. Assume that {ui} is infinitely often in the interval [ak, bk],
for some k = 1, . . . , n. Let p ≥ J be such that up ∈ [ak, bk]. We will show by
induction that,

for any j ≥ p , uj ≥ ak − η . (11.63)

The property is obviously true for j = p. Assume now that the property holds
true for some j ≥ p. If uj ≥ ak, then, uj+1 ≥ ak − η. If ak − η ≤ uj ≤ ak,
then uj+1 ≥ uj + γjε ≥ ak − η, showing (11.63). Because η is arbitrary,
lim inf uj ≥ ak, showing that the sequence {uj} is infinitely often in only one
of the intervals. Hence, there exists an index j0 such that, for any j ≥ j0,
uj < ak+1 (with the convention that an+1 = ∞), which is possible only if,
for any j ≥ j0, uj < bk. As a consequence, there cannot be an accumulation
point in an interval other than [ak, bk]. ��

Proof (Theorem 11.3.2). We first prove that limj→∞ w(θj) exists. For any
α > 0, define the set [w(L)]α = {x ∈ R : infy∈w(L) |x − y| < α}. Because
‖w1L‖∞ <∞, [w(L)]α is a finite union of disjoint intervals of length at least
equal to 2α. By applying Lemma 11.4.2 with N = w−1([w(L)]α), there exist
positive constants C, δ, ε, λ, such that for any δ′, 0 < δ′ ≤ δ, λ′, 0 < λ′ ≤ λ
and η > 0, one may find an integer N and a sequence {θ̄j}j≥N such that,

sup
j≥N

|θj − θ̄j | ≤ δ′ , sup
j≥N

γj ≤ λ′ and sup
j≥N

|w(θj)− w(θ̄j)| ≤ η

and, for any j ≥ N + 1,
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w(θ̄j) ≥ w(θ̄j−1) + γjε1[w(L)]cα [w(θ̄j−1)]− γjC1[w(L)]α [w(θ̄j−1)] ,

By Lemma 11.4.3, the limit points of the sequence {w(θ̄j)} are in [w(L)]α and
because supj≥N |w(θj)−w(θ̄j)| ≤ η, the limit points of the sequence {w(θj)}
belong to [w(L)]α+η. Because α and η are arbitrary, this implies that the limit
points of the sequence {w(θj)} are included in

⋂
α>0[w(L)]α. Because w(L) is

finite, w(L) =
⋂

α>0[w(L)]α showing that the limit points of {w(θj)} belong
to the set w(L).

On the other hand, lim supj→∞ |w(θj)−w(θj−1)| = 0, which implies that
the set of limit points of {w(θj)} is an interval. Because w(L) is finite, the
only intervals included in w(L) are isolated points, which shows that the limit
limj→∞ w(θj) exists.

We now proceed to proving that all the limit points of the sequence {θj}
belong to L. Let N be an arbitrary neighborhood of L. From Lemma 11.4.2,
there exist constants C, δ > 0, ε > 0, λ > 0 such that for any δ′, 0 < δ′ ≤ δ,
λ′, 0 < λ′ ≤ λ, and η > 0, one may find an integer N and a sequence {θ̄j}j≥N

such that

sup
j≥N

|θj − θ̄j | ≤ δ′, sup
j≥N

γj ≤ λ′ and sup
j≥N

|w(θj)− w(θ̄j)| ≤ η

and, for any j ≥ N + 1,

w(θ̄j) ≥ w(θ̄j−1) + γjε1N c(θ̄j−1)− γjC1N (θ̄j−1) .

For j ≥ N , define τ(j) = inf
{
k ≥ 0, θ̄k+j ∈ N

}
. For any integer p, define

τp(j) def= τ(j) ∧ p, where a ∧ b = min(a, b).

w(θ̄j+τp(j))− w(θ̄j) =
j+τp(j)∑
i=j+1

[w(θ̄i)− w(θ̄i−1)] ≥ ε

j+τp(j)∑
i=j+1

γi, (11.64)

with the convention that, for any sequence {ai} and any integer l,
∑l

i=l+1 ai =
0. Therefore,

w(θj+τp(j))− w(θj) = w(θj+τp(j))− w(θ̄j+τp(j))+

w(θ̄j+τp(j))− w(θ̄j) + w(θ̄j)− w(θj) ≥ −2η + ε

j+τp(j)∑
i=j+1

γi.

Because {w(θj)} converges, there exists N ′ > N such that, for all j ≥ N ′,

η ≥ w(θj+τp(j))− w(θj) ≥ −2η + ε

j+τp(j)∑
i=j+1

γi .

This implies that, for all j ≥ N ′ and all integer p ≥ 0,
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j+τp(j)∑
i=j+1

γi ≤ 3η/ε . (11.65)

Because
∑j+τ(j)

i=j+1 γi = limp→∞
∑j+τp(j)

i=j+1 γi and
∑∞

i=1 γi = ∞, the previous

relation implies that, for all j ≥ N ′, τ(j) < ∞ and
∑j+τ(j)

i=j+1 γi ≤ 3η/ε. For
any integer p, θj+p−θj =

∑j+p
i=j+1 γih(θi−1)+

∑j+p
i=j+1 γiζ

i, which implies that

∣∣θj+p − θj
∣∣ ≤ ‖h1K‖∞

j+p∑
i=j+1

γi +

∣∣∣∣∣∣
j+p∑

i=j+1

γiζ
i

∣∣∣∣∣∣ .
Applying this inequality for j ≥ N ′ and p = τ(j) and using that, by definition,
θ̄j+τ(j) ∈ N ,∣∣∣θj − θ̄j+τ(j)

∣∣∣ ≤ |θ̄j+τ(j) − θj+τ(j)|+ |θj+τ(j) − θj |

≤ δ′ + ‖h1K‖∞ 3η/ε +

∣∣∣∣∣∣
j+τ(j)∑
i=j+1

γiζ
i

∣∣∣∣∣∣ .

Because η, δ′, and ε′ can be arbitrarily small, and supl≥k |
∑l

i=k γiζ
i| tends

to zero, the latter inequality shows that all limit points of the sequence {θj}
belong to N . Because N is arbitrary, all limit points of {θj} belong to L. ��
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Statistical Properties of the Maximum
Likelihood Estimator

The maximum likelihood estimator (MLE) is one of the backbones of statis-
tics, and as we have seen in previous chapters, it is very much appropriate
also for HMMs, even though numerical approximations are required when the
state space is not finite. A standard result in statistics says that, except for
“atypical cases”, the MLE is consistent, asymptotically normal with asymp-
totic (scaled) variance equal to the inverse Fisher information matrix, and
efficient. The purpose of the current chapter is to show that these proper-
ties are indeed true for HMMs as well, provided some conditions of rather
standard nature hold. We will also employ the asymptotic results obtained to
verify the validity of certain likelihood-based tests.

Recall that the distribution (law) P of {Yk}k≥0 depends on a parameter θ
that lies in a parameter space Θ, which we assume is a subset of R

dθ for some
dθ. Commonly, θ is a vector containing some components that parameterize
the transition kernel of the hidden Markov chain—such as the transition prob-
abilities if the state space X is finite—and other components that parameterize
the conditional distributions of the observations given the states. Throughout
the chapter, it is assumed that the HMM model is, for all θ, fully dominated in
the sense of Definition 2.2.3 and that the underlying Markov chain is positive
(see Definition 14.2.26).

Assumption 12.0.1.
(i) There exists a probability measure λ on (X,X ) such that for any x ∈

X and any θ ∈ Θ, Qθ(x, ·) � λ with transition density qθ. That is,
Qθ(x,A) =

∫
qθ(x, x′)λ(dx′) for A ∈ X .

(ii) There exists a probability measure µ on (Y,Y) such that for any x ∈ X
and any θ ∈ Θ, Gθ(x, ·) � µ with transition density function gθ. That
is, Gθ(x,A) =

∫
gθ(x, y)µ(dy) for A ∈ Y.

(iii) For any θ ∈ Θ, Qθ is positive, that is, Qθ is phi-irreducible and admits
a (necessarily unique) invariant distribution denoted by πθ.
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In this chapter, we will generally assume that Θ is compact. Furthermore,
θ� is used to denote the true parameter, that is, the parameter corresponding
to the data that we actually observe.

12.1 A Primer on MLE Asymptotics

The standard asymptotic properties of the MLE hinge on three basic results:
a law of large numbers for the log-likelihood, a central limit theorem for the
score function, and a law of large of numbers for the observed information.
More precisely,

(i) for all θ ∈ Θ, n−1�n(θ) → �(θ) Pθ�
-a.s. uniformly over compact subsets

of Θ, where �n(θ) is the log-likelihood of the parameter θ given the first
n observations and �(θ) is a continuous deterministic function with a
unique global maximum at θ�;

(ii) n−1/2∇θ�n(θ�) → N(0,J (θ�)) Pθ�
-weakly, where J (θ) is the Fisher in-

formation matrix at θ (we do not provide a more detailed definition at
the moment);

(iii) limδ→0 limn→∞ sup|θ−θ�|≤δ ‖ − n−1∇2
θ�n(θ)− J (θ�)‖ = 0 Pθ� -a.s.

The function � in (i) is sometimes referred to as the contrast function. We note
that −n−1∇2

θ�n(θ) in (iii) is the observed information matrix, so that (iii) says
that the observed information should converge to the Fisher information in
a certain uniform sense. This uniformity may be replaced by conditions on
the third derivatives of the log-likelihood, which is common in statistical text-
books, but as we shall see, it is cumbersome enough even to deal with second
derivatives of the log-likelihood for HMMs, whence avoiding third derivatives
is preferable.

Condition (i) assures strong consistency of the MLE, which can be shown
using an argument that goes back to Wald (1949). The idea of the argument
is as follows. Denote by θ̂n the maximum the ML estimator; �n(θ̂n) ≥ �n(θ)
for any θ ∈ Θ. Because � has a unique global maximum at θ�, �(θ�)− �(θ) ≥ 0
for any θ ∈ Θ and, in particular, �(θ�) − �(θ̂n) ≥ 0. We now combine these
two inequalities to obtain

0 ≤ �(θ�)− �(θ̂n)

≤ �(θ�)− n−1�n(θ�) + n−1�n(θ�)− n−1�n(θ̂n) + n−1�n(θ̂n)− �(θ̂n)

≤ 2 sup
θ∈Θ

|�(θ)− n−1�n(θ)| .

Therefore, by taking the compact subset in (i) above as Θ itself, �(θ̂n) → �(θ�)
Pθ� -a.s. as n → ∞, which in turn implies, as � is continuous with a unique
global maximum at θ�, that the MLE converges to θ� Pθ� -a.s.. In other words,
the MLE is strongly consistent.
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Provided strong consistency holds, properties (ii) and (iii) above yield
asymptotic normality of the MLE. In fact, we must also assume that θ� is
an interior point of Θ and that the Fisher information matrix J (θ�) is non-
singular. Then we can for sufficiently large n make a Taylor expansion around
θ�, noting that the gradient of �n vanishes at the MLE θ̂n because θ� is
maximal there,

0 = ∇θ�n(θ̂n) = ∇θ�n(θ�) +
{∫ 1

0
∇2

θ�n[θ� + t(θ̂n − θ�)] dt
}

(θ̂n − θ�) .

From this expansion we obtain

n1/2(θ̂n − θ�) =
{
−n−1

∫ 1

0
∇2

θ�n[θ� + t(θ̂n − θ�)] dt
}−1

n−1/2∇θ�n(θ�) .

Now θ̂n converges to θ� Pθ� -a.s. and so, using (iii), the first factor on the right-
hand side tends to J (θ�)−1 Pθ�

-a.s. The second factor converges weakly to
N(0,J (θ�)); this is (ii). Cramér-Slutsky’s theorem hence tells us that n1/2(θ̂n−
θ�) tends Pθ� -weakly to N(0,J−1(θ�)), and this is the standard result on
asymptotic normality of the MLE.

In an entirely similar way properties (ii) and (iii) also show that for any
u ∈ R

dθ (recall that Θ is a subset of R
dθ ),

�n(θ�+n−1/2u)−�n(θ�) = n−1/2uT∇θ�n(θ�)+
1
2
uT [−n−1∇2

θ�n(θ�)]u+Rn(u) ,

where n−1/2∇θ�n(θ�) and −n−1∇2
θ�n(θ�) converge as described above, and

where Rn(u) tends to zero Pθ� -a.s. Such an expansion is known as local asymp-
totic normality (LAN) of the model, cf. Ibragimov and Hasminskii (1981,
Definition II.2.1). Under this condition, it is known that so-called regular es-
timators (a property possessed by all “sensible” estimators) cannot have an
asymptotic covariance matrix smaller than J−1(θ�) (Ibragimov and Hasmin-
skii, 1981, p. 161). Because this limit is obtained by the MLE, this estimator
is efficient.

Later on in this chapter, we will also exploit properties (i)–(iii) to derive
asymptotic properties of likelihood ratio and other tests for lower dimensional
hypotheses regarding θ.

12.2 Stationary Approximations

In this section, we will introduce a way of obtaining properties (i)–(iii) for
HMMs; more detailed descriptions are given in subsequent sections.

Before proceeding, we will be precise on the likelihood we shall analyze. In
this chapter, we generally make the assumption that the sequence {Xk}k≥0 is
stationary; then {Xk, Yk}k≥0 is stationary as well. Then there is obviously a
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corresponding likelihood. However, it is sometimes convenient to work with a
likelihood Lx0,n(θ) that is conditional on an initial state x0,

Lx0,n(θ) =
∫

gθ(x0, Y0)
n∏

i=1

qθ(xi−1, xi)gθ(xi, Yi)λ(dxi) . (12.1)

We could also want to replace the fixed initial state by an initial distribution
ν on (X,X ), giving

Lν,n(θ) =
∫

X
Lx0,n(θ) ν(dx0) .

The stationary likelihood is then Lπθ,n(θ), which we will simply denote by
Ln(θ). The advantage of working with the stationary likelihood is of course
that it is the correct likelihood for the model and may hence be expected
to provide better finite-sample performance. The advantage of assuming a
fixed initial state x0—and hence adopting the likelihood Lx0,n(θ)—is that
the stationary distribution πθ is not always available in closed form when
X is not finite. It is however important that gθ(x0, Y0) is positive Pθ� -a.s.;
otherwise the log-likelihood may not be well-defined. In fact, we shall require
that gθ(x0, Y0) is, Pθ� -a.s., bounded away from zero. In the following, we
always assume that this condition is fulfilled. A further advantage of Lx0,n(θ)
is that the methods described in the current chapter may be extended to
Markov-switching autoregressions (Douc et al., 2004), and then the stationary
likelihood is almost never computable, not even when X is finite. Throughout
the rest of this chapter, we will work with Lx0,n(θ) unless noticed, where
x0 ∈ X is chosen to satisfy the above positivity assumption but otherwise
arbitrarily. The MLE arising from this likelihood has the same asymptotic
properties as has the MLE arising from Ln(θ), provided the initial stationary
distribution πθ has smooth second-order derivatives (cf. Bickel et al., 1998),
whence from an asymptotic point of view there is no loss in using the incorrect
likelihood Lx0,n(θ).

We now return to the analysis of log-likelihood and items (i)–(iii) above.
In the setting of i.i.d. observations, the log-likelihood �n(θ) is a sum of i.i.d.
terms, and so (i) and (iii) follow from uniform versions of the strong law of
large numbers and (ii) is a consequence of the simplest central limit theorem.
In the case of HMMs, we can write �x0,n(θ) as a sum as well:

�x0,n(θ) =
n∑

k=0

log
[∫

gθ(xk, Yk)φx0,k|k−1[Y0:k−1](dxk ; θ)
]

(12.2)

=
n∑

k=0

log
[∫

gθ(xk, Yk) Pθ(Xk ∈ dxk |Y0:k−1, X0 = x0)
]
, (12.3)

where φx0,k|k−1[Y0:k−1](· ; θ) is the predictive distribution of the state Xk given
the observations Y0:k−1 and X0 = x0. These terms do not form a station-
ary sequence however, so the law of large numbers—or rather the ergodic
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theorem—does not apply directly. Instead we must first approximate �x0,n(θ)
by the partial sum of a stationary sequence.

When the joint Markov chain {Xk, Yk} has an invariant distribution, this
chain is stationary provided it is started from its invariant distribution. In this
case, we can (and will!) extend it to a stationary sequence {Xk, Yk}−∞<k∞
with doubly infinite time, as we can do with any stationary sequence. Having
done this extension, we can imagine a predictive distribution of the state
Xk given the infinite past Y−∞:k−1 of observations. A key feature of these
variables is that they now form a stationary sequence, whence the ergodic
theorem applies. Furthermore we can approximate �x0,n(θ) by

�s
n(θ) =

n∑
k=0

log
[∫

gθ(xk, Yk) Pθ(Xk ∈ dxk |Y−∞:k−1)
]
, (12.4)

where superindex s stands for “stationary”. Heuristically, one would expect
this approximation to be good, as observations far in the past do not provide
much information about the current one, at least not if the hidden Markov
chain enjoys good mixing properties. What we must do is thus to give a pre-
cise definition of the predictive distribution Pθ(Xk ∈ · |Y−∞:k−1) given the
infinite past, and then show that it approximates the predictive distribution
φx0,k|k−1(· ; θ) well enough that the two sums (12.2) and (12.4), after nor-
malization by n, have the same asymptotic behavior. We can treat the score
function similarly by defining a sequence that forms a stationary martingale
increment sequence; for sums of such sequences there is a central limit theo-
rem.

The cornerstone in this analysis is the result on conditional mixing stated
in Section 4.3. We will rephrase it here, but before doing so we state a first
assumption. It is really a variation of Assumption 4.3.24, adapted to the dom-
inated setting and uniform in θ.

Assumption 12.2.1.
(i) The transition density qθ(x, x′) of {Xk} satisfies 0 < σ− ≤ qθ(x, x′) ≤

σ+ <∞ for all x, x′ ∈ X and all θ ∈ Θ, and the measure λ is a probability
measure.

(ii) For all y ∈ Y, the integral
∫
X gθ(x, y)λ(dx) is bounded away from 0 and

∞ on Θ.

Part (i) of this assumption often, but not always holds when the state space
X is finite or compact. Note that Assumption 12.2.1 says that for all θ ∈ Θ,
the whole state space X is a 1-small set for the transition kernel Qθ, which im-
plies that for all θ ∈ Θ, the chain is phi-irreducible and strongly aperiodic (see
Section 14.2 for definitions). It also ensures that there exists a stationary dis-
tribution πθ for Qθ. In addition, the chain is uniformly geometrically ergodic
in the sense that for any x ∈ X and n ≥ 0, ‖Qn

θ (x, ·)− πθ‖TV ≤ (1 − σ−)n.
Under Assumption 12.0.1, it holds that πθ � λ, and we use the same notation
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for this distribution and its density with respect to the dominating measure
λ.

Using the results of Section 14.3, we conclude that the state space X×Y is
1-small for the joint chain {Xk, Yk}. Thus the joint chain is also phi-irreducible
and strongly aperiodic, and it admits a stationary distribution with density
πθ(x)gθ(x, y) with respect to the product measure λ ⊗ µ on (X × Y,X ⊗ Y)
The joint chain also is uniformly geometrically ergodic.

Put ρ = 1 − σ−/σ+; then 0 ≤ ρ < 1. The important consequence of
Assumption 12.2.1 that we need in the current chapter is Proposition 4.3.26.
It says that if Assumption 12.2.1 holds true, then for all k ≥ 1, all y0:n and
all initial distributions ν and ν′ on (X,X ),∥∥∥∥∫

X
Pθ(Xk ∈ · |X0 = x, Y0:n = y0:n) [ν(dx)− ν′(dx)]

∥∥∥∥
TV
≤ ρk . (12.5)

12.3 Consistency

12.3.1 Construction of the Stationary Conditional Log-likelihood

We shall now construct Pθ(Xk ∈ dxk |Y−∞:k−1) and
∫
gθ(xk, Yk) Pθ(Xk ∈

dxk |Y−∞:k−1). The latter variable will be defined as the limit of

Hk,m,x(θ) def=
∫

gθ(xk, Yk) Pθ(Xk ∈ dxk |Y−m+1:k−1, X−m = x) (12.6)

as m → ∞. Note that Hk,m,x(θ) is the conditional density of Yk given
Y−m+1:k−1 and X−m = x, under the law Pθ. Put

hk,m,x(θ) def= log Hk,m,x(θ) (12.7)

and consider the following assumption.

Assumption 12.3.1. b+ = supθ supx,y gθ(x, y) < ∞ and Eθ�
|log b−(Y0)| <

∞, where b−(y) = infθ

∫
X gθ(x, y)λ(dx).

Lemma 12.3.2. The following assertions hold true Pθ�
-a.s. for all indices k,

m and m′ such that k > −(m ∧m′):

sup
θ∈Θ

sup
x,x′∈X

|hk,m,x(θ)− hk,m′,x′(θ)| ≤ ρk+(m∧m′)−1

1− ρ
, (12.8)

sup
θ∈Θ

sup
m≥−(k−1)

sup
x∈X

|hk,m,x(θ)| ≤ |log b+| ∨ |log(σ−b−(Yk))| . (12.9)
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Proof. Assume that m′ ≥ m and write

Hk,m,x(θ) =
∫∫ [∫

gθ(xk, Yk)qθ(xk−1, xk)λ(dxk)
]

× Pθ(Xk−1 ∈ dxk−1 |Y−m+1:k−1, X−m = x−m) δx(dx−m) , (12.10)

Hk,m′,x′(θ) =
∫∫ [∫

gθ(xk, Yk)qθ(xk−1, xk)λ(dxk)
]

× Pθ(Xk−1 ∈ dxk−1 |Y−m+1:k−1, X−m = x−m)
× Pθ(X−m ∈ dx−m |Y−m′+1:k−1, X−m′ = x′) , (12.11)

and invoke (12.5) to see that

|Hk,m,x(θ)−Hk,m′,x′(θ)| ≤ ρk+m−1 sup
xk−1

∫
gθ(xk, Yk)qθ(xk−1, xk)λ(dxk)

≤ ρk+m−1σ+
∫

gθ(xk, Yk)λ(dxk) . (12.12)

Note that the step from the total variation bound to the bound on the differ-
ence between the integrals does not need a factor “2”, because the integrands
are non-negative. Also note that (12.5) is stated for m = m′ = 0, but its initial
time index is of course arbitrary. The integral in (12.10) can be bounded from
below as

Hk,m,x(θ) ≥ σ−
∫

gθ(xk, Yk)λ(dxk) , (12.13)

and the same lower bound holds for (12.11). Combining (12.12) with these
lower bounds and the inequality |log x− log y| ≤ |x− y|/(x ∧ y) shows that

|hk,m,x(θ)− hk,m′,x′(θ)| ≤ σ+

σ− ρk+m−1 =
ρk+m−1

1− ρ
,

which is the first assertion of the lemma. Furthermore note that (12.10) and
(12.13) yield

σ−b−(Yk) ≤ Hk,m,x(θ) ≤ b+ , (12.14)

which implies the second assertion. ��
Equation (12.8) shows that for any given k and x, {hk,m,x(θ)}m≥−(k−1)

is a uniform (in θ) Cauchy sequence as m → ∞, Pθ� -a.s., whence there
is a Pθ� -a.s. limit. Moreover, again by (12.8), this limit does not depend
on x, so we denote it by hk,∞(θ). Our interpretation of this limit is as
log Eθ [gθ(Xk, Yk) | Y−∞:k−1]. Furthermore (12.9) shows that provided As-
sumption 12.3.1 holds, {hk,m,x(θ)}m≥−(k−1) is uniformly bounded in L1(Pθ�

),
so that hk,∞(θ) is in L1(Pθ�) and, by the dominated convergence theorem, the
limit holds in this mode as well. Finally, by its definition {hk,∞(θ)}k≥0 is a
stationary process, and it is ergodic because {Yk}−∞<k<∞ is. We summarize
these findings.
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Proposition 12.3.3. Assume 12.0.1, 12.2.1, and 12.3.1 hold. Then for each
θ ∈ Θ and x ∈ X, the sequence {hk,m,x(θ)}m≥−(k−1) has, Pθ�-a.s., a limit
hk,∞(θ) as m → ∞. This limit does not depend on x. In addition, for any
θ ∈ Θ, hk,∞(θ) belongs to L1(Pθ�), and {hk,m,x(θ)}m≥−(k−1) also converges
to hk,∞(θ) in L1(Pθ�

) uniformly over θ ∈ Θ and x ∈ X.

Having come thus far, we can quantify the approximation of the log-
likelihood �x0,n(θ) by �s

n(θ).

Proposition 12.3.4. For all n ≥ 0 and θ ∈ Θ,

|�x0,n(θ)− �s
n(θ)| ≤ |log gθ(x0, Y0)|+ h0,∞(θ) +

1
(1− ρ)2

Pθ�
-a.s.

Proof. Letting m′ →∞ in (12.8) we obtain |hk,0,x0(θ)−hk,∞(θ)| ≤ ρk−1/(1−
ρ) for k ≥ 1. Therefore, Pθ� -a.s.,

|�x0,n(θ)− �s
n(θ)| =

∣∣∣∣∣
n∑

k=0

hk,0,x0(θ)−
n∑

k=0

hk,∞(θ)

∣∣∣∣∣
≤ |log gθ(x0, Y0)|+ h0,∞(θ) +

n∑
k=1

ρk−1

1− ρ
.

��

12.3.2 The Contrast Function and Its Properties

Because hk,∞(θ) is in L1(Pθ�) under the assumptions made above, we can

define the real-valued function �(θ) def= Eθ�
[hk,∞(θ)]. It does not depend on

k, by stationarity. This is the contrast function �(θ) referred to above. By
the ergodic theorem n−1�s

n(θ) → �(θ) Pθ� -a.s., and by Proposition 12.3.4,
n−1�x0,n(θ) → �(θ) Pθ� -a.s. as well. As noted above, however, we require this
convergence to be uniform in θ, which is not guaranteed so far. In addition,
we require �(θ) to be continuous and possess a unique global maximum at θ�;
the latter is an identifiability condition. In the rest of this section, we address
continuity and convergence; identifiability is addressed in the next one.

To ensure continuity we need a natural assumption on continuity of the
building blocks of the likelihood.

Assumption 12.3.5. For all (x, x′) ∈ X × X and y ∈ Y, the functions θ 
→
qθ(x, x′) and θ 
→ gθ(x, y) are continuous.

The following result shows that hk,∞(θ) is then continuous in L1(Pθ�
).

Proposition 12.3.6. Assume 12.0.1, 12.2.1, 12.3.1, and 12.3.5. Then for
any θ ∈ Θ,
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Eθ�

[
sup

θ′∈Θ: |θ′−θ|≤δ

|h0,∞(θ′)− h0,∞(θ)|
]
→ 0 as δ → 0 ,

and θ 
→ �(θ) is continuous on Θ.

Proof. Recall that h0,∞(θ) is the limit of h0,m,x(θ) as m→∞. We first prove
that for any x ∈ X and any m > 0, the latter quantity is continuous in θ
and then use this to show continuity of the limit. Recall the interpretation of
H0,m,x(θ) as a conditional density and write

H0,m,x(θ) =∫
· · ·

∫ ∏0
i=−m+1 qθ(xi−1, xi)gθ(xi, Yi)λ(dx−m+1) · · ·λ(dx0)∫

· · ·
∫ ∏−1

i=−m+1 qθ(xi−1, xi)gθ(xi, Yi)λ(dx−m+1) · · ·λ(dx−1)
(12.15)

The integrand in the numerator is, by assumption, continuous and bounded by
(σ+b+)m, whence dominated convergence shows that the numerator is contin-
uous with respect to θ (recall that λ is assumed finite). Likewise the denomina-
tor is continuous, and it is bounded from below by (σ−)m−1 ∏−1

−m+1 b
−(Yi) >

0 Pθ� -a.s. Thus H0,m,x(θ) and h0,m,x(θ) are continuous as well. Because
h0,m,x(θ) converges to h0,∞(θ) uniformly in θ as m → ∞, Pθ�

-a.s., h0,∞(θ)
is continuous Pθ� -a.s. The uniform bound (12.9) assures that we can invoke
dominated convergence to obtain the first part of the proposition.

The second part is a corollary of the first one, as

sup
θ′: |θ′−θ|≤δ

|�(θ′)− �(θ)| = sup
θ′: |θ′−θ|≤δ

|Eθ� [h0,∞(θ′)− h0,∞(θ)]|

≤ Eθ�

[
sup

θ′: |θ′−θ|≤δ

|h0,∞(θ′)− h0,∞(θ)|
]
.

��

We can now proceed to show uniform convergence of n−1�x0,n(θ) to �(θ).

Proposition 12.3.7. Assume 12.0.1, 12.2.1, 12.3.1, and 12.3.5. Then

sup
θ∈Θ

|n−1�x0,n(θ)− �(θ)| → 0 Pθ�-a.s. as n→∞.

Proof. First note that because Θ is compact, it is sufficient to prove that for
all θ ∈ Θ,

lim sup
δ→0

lim sup
n→∞

sup
θ′: |θ′−θ|≤δ

|n−1�x0,n(θ′)− �(θ)| = 0 Pθ� -a.s.

Now write
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lim sup
δ→0

lim sup
n→∞

sup
θ′: |θ′−θ|≤δ

|n−1�x0,n(θ′)− �(θ)|

= lim sup
δ→0

lim sup
n→∞

sup
θ′: |θ′−θ|≤δ

|n−1�x0,n(θ′)− n−1�s
n(θ)|

≤ lim sup
δ→0

lim sup
n→∞

sup
θ′: |θ′−θ|≤δ

n−1|�x0,n(θ′)− �s
n(θ′)|

+ lim sup
δ→0

lim sup
n→∞

sup
θ′: |θ′−θ|≤δ

n−1|�s
n(θ′)− �s

n(θ)| .

The first term on the right-hand side vanishes by Proposition 12.3.4 (note
that Lemma 12.3.2 shows that supθ′ |h0,∞(θ′)| is in L1(Pθ�

) and hence finite
Pθ� -a.s.). The second term is bounded by

lim sup
δ→0

lim sup
n→∞

sup
θ′: |θ′−θ|≤δ

n−1

∣∣∣∣∣
n∑

k=0

(hk,∞(θ′)− hk,∞(θ))

∣∣∣∣∣
≤ lim sup

δ→0
lim sup

n→∞
n−1

n∑
k=0

sup
θ′: |θ′−θ|≤δ

|hk,∞(θ′)− hk,∞(θ)|

= lim sup
δ→0

Eθ�

[
sup

θ′: |θ′−θ|≤δ

|h0,∞(θ′)− h0,∞(θ)|
]

= 0 ,

with convergence Pθ�
-a.s. The two final steps follow by the ergodic theorem

and Proposition 12.3.6 respectively. The proof is complete. ��
At this point, we thus know that n−1�x0,n converges uniformly to �. The

same conclusion holds when other initial distributions ν are put on X0, pro-
vided supθ |log

∫
gθ(x, Y0) ν(dx)| is finite Pθ� -a.s. When ν is the stationary

distribution πθ, uniform convergence can in fact be proved without this extra
regularity assumption by conditioning on the previous state X−1 to get rid of
the first two terms in the bound of Proposition 12.3.4; cf. Douc et al. (2004).

The uniform convergence of n−1�x0,n(θ) to �(θ) can be used—with an
argument entirely similar to the one of Wald outlined in Section 12.1—to
show that the MLE converges a.s. to the set, Θ� say, of global maxima of �.
Because � is continuous, we know that Θ� is closed and hence also compact.
More precisely, for any (open) neighborhood of Θ�, the MLE will be in that
neighborhood for large n, Pθ� -a.s. We say that the MLE converges to Θ� in the
quotient topology. This way of describing convergence was used, in the context
of HMMs, by Leroux (1992). The purpose of the identifiability constraint, that
�(θ) has a unique global maximum at θ�, is thus to ensure that Θ� consists of
the single point θ� so that the MLE indeed converges to the point θ�.

12.4 Identifiability

As became obvious in the previous section, the set of global maxima of � is
of intrinsic importance, as this set constitutes the possible limit points of the
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MLE. The definition of �(θ) as a limit is however usually not suitable for
extracting relevant information about the set of maxima, and the purpose of
this section is to derive a different characterization of the set of global maxima
of �.

12.4.1 Equivalence of Parameters

We now introduce the notion of equivalence of parameters.

Definition 12.4.1. Two points θ, θ′ ∈ Θ are said to be equivalent if they
govern identical laws for the process {Yk}k≥0, that is, if Pθ = Pθ′ .

We note that, by virtue of Kolmogorov’s extension theorem, θ and θ′ are
equivalent if and only if the finite-dimensional distributions Pθ(Y1 ∈ ·, Y2 ∈
·, . . . , Yn ∈ ·) and Pθ′(Y1 ∈ ·, Y2 ∈ ·, . . . , Yn ∈ ·) agree for all n ≥ 1.

We will show that a parameter θ ∈ Θ is a global maximum point of � if
and only if θ is equivalent to θ�. This implies that the limit points of the MLE
are those points θ that govern the same law for {Yk}k≥0 as does θ�. This is
the best we can hope for because there is no way—even with an infinitely
large sample of Y s!—to distinguish between the true parameter θ� and a
different but equivalent parameter θ. Naturally we would like to conclude
that no parameter other than θ� itself is equivalent to θ�. This is not always
the case however, in particular when X is finite and we can number the states
arbitrarily. We will discuss this matter further after proving the following
result.

Theorem 12.4.2. Assume 12.0.1, 12.2.1, and 12.3.1. Then a parameter θ ∈
Θ is a global maximum of � if and only if θ is equivalent to θ�.

An immediate implication of this result is that θ� is a global maximum of �.

Proof. By the definition of �(θ) and Proposition 12.3.3,

�(θ�)− �(θ) = Eθ�

[
lim

m→∞h1,m,x(θ�)
]
− Eθ�

[
lim

m→∞h1,m,x(θ)
]

= lim
m→∞ Eθ� [h1,m,x(θ�)]− lim

m→∞ Eθ� [h1,m,x(θ)]

= lim
m→∞ Eθ� [h1,m,x(θ�)− h1,m,x(θ)] ,

where hk,m,x(θ) is given in (12.7). Next, write

Eθ� [h1,m,x(θ�)− h1,m,x(θ)]

= Eθ�

{
Eθ�

[
log

H1,m,x(θ�)
H1,m,x(θ)

∣∣∣∣ Y−m+1:0, X−m = x

]}
,

where Hk,m,x(θ) is given in (12.6). Recalling that H1,m,x(θ) is the conditional
density of Y1 given Y−m+1:0 and X−m = x, we see that the inner (conditional)
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expectation on the right-hand side is a Kullback-Leibler divergence and hence
non-negative. Thus the outer expectation and the limit �(θ�)− �(θ) are non-
negative as well, so that θ� is a global mode of �.

Now pick θ ∈ Θ such that �(θ) = �(θ�). Throughout the remainder of the
proof, we will use the letter p to denote (possibly conditional) densities of
random variables, with the arguments of the density indicating which random
variables are referred to. For any k ≥ 1,

Eθ�
[log pθ(Y1:k|Y−m+1:0, X−m = x)]

=
k∑

i=1

Eθ� [log pθ(Yi|Y−m+1:i−1, X−m = x)]

=
k∑

i=1

Eθ� [hi,m,x(θ)]

so that, employing stationarity,

lim
m→∞ Eθ�

[log pθ(Y1:k|Y−m+1:0, X−m = x)] = k�(θ) .

Thus for any positive integer n < k,

0 = k(�(θ�)− �(θ))

= lim
m→∞ Eθ�

[
log

pθ�(Y1:k|Y−m+1:0, X−m = x)
pθ(Y1:k|Y−m+1:0, X−m = x)

]
= lim

m→∞

{
Eθ�

[
log

pθ�(Yk−n+1:k|Y−m+1:0, X−m = x)
pθ(Yk−n+1:k|Y−m+1:0, X−m = x)

]
+ Eθ�

[
log

pθ�(Y1:k−n|Yk−n+1:k, Y−m+1:0, X−m = x)
pθ(Y1:k−n|Yk−n+1:k, Y−m+1:0, X−m = x)

]}
≥ lim sup

m→∞
Eθ�

[
log

pθ�
(Y1:n|Yn−k−m+1:n−k, Xn−k−m = x)

pθ(Y1:n|Yn−k−m+1:n−k, Xn−k−m = x)

]
,

where the inequality follows by using stationarity for the first term and noting
that the second term is non-negative as an expectation of a (conditional)
Kullback-Leibler divergence as above. Hence we have inserted a gap between
the variables Y1:n whose density we examine and the variables Yn−k−m+1:n−k

and Xn−k−m that appear as a condition. The idea is now to let this gap tend
to infinity and to show that in the limit the condition has no effect. Next we
shall thus show that

lim
k→∞

sup
m≥k

∣∣∣∣Eθ�

[
log

pθ�(Y1:n|Y−m+1:−k, X−m = x)
pθ(Y1:n|Y−m+1:−k, X−m = x)

]
− Eθ�

[
log

pθ�(Y1:n)
pθ(Y1:n)

]∣∣∣∣ = 0 . (12.16)

Combining (12.16) with the previous inequality, it is clear that if �(θ) = �(θ�),
then Eθ�{log[pθ�(Y1:n)/pθ(Y1:n)]} = 0, that is, the Kullback-Leibler divergence
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between the n-dimensional densities pθ�
(y1:n) and pθ(y1:n) vanishes. This im-

plies, by the information inequality, that these densities coincide except on
a set with µ⊗n-measure zero, so that the n-dimensional laws of Pθ� and Pθ

agree. Because n was arbitrary, we find that θ� and θ are equivalent.
What remains to do is thus to prove (12.16). To that end, put Uk,m(θ) =

log pθ(Y1:n|Y−m+1:−k, X−m = x) and U(θ) = log pθ(Y1:n). Obviously, it is
enough to prove that for all θ ∈ Θ,

lim
k→∞

Eθ�

[
sup
m≥k

|Uk,m(θ)− U(θ)|
]

= 0 . (12.17)

To do that we write

pθ(Y1:n|Y−m+1:−k, X−m = x) =
∫∫

pθ(Y1:n|X0 = x0)Qk
θ(x−k, dx0)

×Pθ(X−k ∈ dx−k |Y−m+1:−k, X−m = x)

and
pθ(Y1:n) =

∫∫
pθ(Y1:n|X0 = x0)Qk

θ(x−k, dx0)πθ(dx−k) ,

where πθ is the stationary distribution of {Xk}. Realizing that pθ(Y1:n|X0 =
x0) is bounded from above by (b+)n (condition on X1:n!) and that the transi-
tion kernel Qθ satisfies the Doeblin condition (see Definition 4.3.12) and is thus
uniformly geometrically ergodic (see Definition 4.3.15 and Lemma 4.3.13), we
obtain

sup
m≥k

|pθ(Y1:n|Y−m+1:−k, X−m = x)− pθ(Y1:n)| ≤ (b+)n(1− σ−)k (12.18)

Pθ� -a.s.. Moreover, the bound

pθ(Y1:n|X0 = x0) =
∫
· · ·

∫ n∏
i=1

qθ(xi−1, xi)gθ(xi, Yi)λ(dxi)

≥ (σ−)n
n∏

i=1

b−(Yi)

implies that pθ(Y1:n|Y−m+1:−k, X−m = x) and pθ(Y1:n) both obey the same
lower bound. Combined with the observation b−(Yi) > 0 Pθ�

-a.s., which fol-
lows from Assumption 12.3.1, and the bound |log(x)− log(y)| ≤ |x− y|/x∧ y,
(12.18) shows that

lim
k→∞

sup
m≥k

|Uk,m(θ)− U(θ)| → 0 Pθ� -a.s.

Now (12.17) follows from dominated convergence provided

Eθ

[
sup

k
sup
m≥k

Uk,m(θ)
]
<∞ .
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Using the aforementioned bounds, we conclude that this expectation is indeed
finite. ��
We remark that the basic structure of the proof is potentially applicable also
to models other than HMMs. Indeed, using the notation of the proof, we may
define � as �(θ) = limm→∞ Eθ� [log pθ(Y1|Y−m:1)], a definition that does not
exploit the HMM structure. Then the first part of the proof, up to (12.16),
does not use the HMM structure either, so that all that is needed, in a more
general framework, is to verify (12.16) (or, more precisely, a version thereof
not containing X−m). For particular other processes, this could presumably
be carried out using, for instance, suitable mixing properties.

The above theorem shows that the points of global maxima of �—forming
the set of possible limit points of the MLE—are those that are statistically
equivalent to θ�. This result, although natural and important (but not triv-
ial!), is however yet of a somewhat “high level” character, that is, not verifiable
in terms of “low level” conditions. We would like to provide some conditions,
expressed directly in terms of the Markov chain and the conditional distribu-
tions gθ(x, y), that give information about parameters that are equivalent to
θ� and, in particular, when there is no other such parameter than θ�. We will
do this using the framework of mixtures of distributions.

12.4.2 Identifiability of Mixture Densities

We first define what is meant by a mixture density.

Definition 12.4.3. Let fφ(y) be a parametric family of densities on Y with
respect to a common dominating measure µ and parameter φ in some set Φ.
If π is a probability measure on Φ, then the density

fπ(y) =
∫

Φ

fφ(y)π(dφ)

is called a mixture density; the distribution π is called the mixing distribution.
We say that the class of (all) mixtures of (fφ) is identifiable if fπ = fπ′

µ-a.e. if and only if π = π′.
Furthermore we say that the class of finite mixtures of (fφ) is identifiable

if for all probability measures π and π′ with finite support, fπ = fπ′ µ-a.e. if
and only if π = π′.

In other words, the class of all mixtures of (fφ) is identifiable if the two
distributions with densities fπ and fπ′ respectively agree only when π = π′.
Yet another way to put this property is to say that identifiability means that
the mapping π 
→ fπ is one-to-one (injective). A way, slightly Bayesian, of
thinking of a mixture distribution that is often intuitive and fruitful is the
following. Draw φ ∈ Φ with distribution π and then Y from the density fφ.
Then, Y has density fφ.

Many important and commonly used parametric classes of densities are
identifiable. We mention the following examples.
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(i) The Poisson family (Feller, 1943). In this case, Y = Z+, Φ = R+, φ is
the mean of the Poisson distribution, µ is counting measure, and fφ(y) =
φye−φ/y!.

(ii) The Gamma family (Teicher, 1961), with the mixture being either on the
scale parameter (with a fixed form parameter) or on the form parameter
(with a fixed scale parameter). The class of joint mixtures over both pa-
rameters is not identifiable however, but the class of joint finite mixtures
is identifiable.

(iii) The normal family (Teicher, 1960), with the mixture being either on the
mean (with fixed variance) or on the variance (with fixed mean). The
class of joint mixtures over both mean and variance is not identifiable
however, but the class of joint finite mixtures is identifiable.

(iv) The Binomial family Bin(N, p) (Teicher, 1963), with the mixture being
on the probability p. The class of finite mixtures is identifiable, provided
the number of components k of the mixture satisfies 2k − 1 ≤ N .

Further reading on identifiability of mixtures is found, for instance, in Titter-
ington et al. (1985, Section 3.1).

A very useful result on mixtures, taking identifiability in one dimension
into several dimensions, is the following.

Theorem 12.4.4 (Teicher, 1967). Assume that the class of all mixtures
of the family (fφ) of densities on Y with parameter φ ∈ Φ is identifiable.
Then the class of all mixtures of the n-fold product densities f

(n)
φ (y) =

fφ1(y1) · · · fφn(yn) on y ∈ Yn with parameter φ ∈ Φn is identifiable. The same
conclusion holds true when “all mixtures” is replaced by “finite mixtures”.

12.4.3 Application of Mixture Identifiability to Hidden Markov
Models

Let us now explain how identifiability of mixture densities applies to HMMs.
Assume that {Xk, Yk} is an HMM such that the conditional densities gθ(x, y)
all belong to a single parametric family. Then given Xk = x, Yk has conditional
density gφ(x) say, where φ(x) is a function mapping the current state x into
the parameter space Φ of the parametric family of densities. Now assume
that the class of all mixtures of this family of densities is identifiable, and
that we are given a true parameter θ� of the model as well as an equivalent
other parameter θ. Associated with these two parameters are two mappings
φ�(x) and φ(x), respectively, as above. As θ� and θ are equivalent, the n-
dimensional restrictions of Pθ� and Pθ coincide; that is, Pθ�(Y1:n ∈ ·) and
Pθ(Y1:n ∈ ·) agree. Because the class of all mixtures of (gφ) is identifiable,
Theorem 12.4.4 tells us that the n-dimensional distributions of the processes
{φ�(Xk)} and {φ(Xk)} agree. That is, for all subsets A ⊆ Φn,

Pθ�
{(φ�(X1), φ�(X2), . . . , φ�(Xn)) ∈ A}

= Pθ{(φ(X1), φ(X2), . . . , φ(Xn)) ∈ A} .
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This condition is often informative for concluding θ = θ�.

Example 12.4.5 (Normal HMM). Assume that X is finite, say X =
{1, 2, . . . , r}, and that Yk|Xk = i ∼ N(µi, σ

2). The parameters of the model
are the transition probabilities qij of {Xk}, the µi and σ2. We thus identify
φ(x) = µx. If θ� and θ are two equivalent parameters, the laws of the pro-
cesses {µ�Xk

} and {µXk
} are thus the same, and in addition σ2

� = σ2. Here
µ�i denotes the µi-component of θ�, etc. Assuming the µ�i to be distinct, this
can only happen if the sets {µ�1, . . . , µ�r} and {µ1, . . . , µr} are identical. We
may thus conclude that the sets of means must be the same for both param-
eters, but they need not be enumerated in the same order. Thus there is a
permutation {c(1), c(2), . . . , c(r)} of {1, 2, . . . , r} such that µc(i) = µ�i for all
i ∈ X. Now because the laws of {µ�Xk

} under Pθ� and {µc(Xk)} under Pθ

coincide with the µis being distinct, we conclude that the laws of {Xk} under
Pθ�

and of {c(Xk)} under Pθ also agree, which in turn implies q�ij = qc(i),c(j)
for all i, j ∈ X.

Hence any parameter θ that is equivalent to θ� is in fact identical, up to a
permutation of state indices. Sometimes the parameter space is restricted by,
for instance, requiring the means µi to be sorted: µi < µ2 < . . . < µr, which
removes the ambiguity. Such a restriction is not always desirable though; for
example, in a Bayesian framework, it destroys exchangeability of the param-
eter in the posterior distribution (see Chapter 13).

In the current example, we could also have allowed the variance σ2 to
depend on the state, Yk|Xk = i ∼ N(µi, σ

2
i ), reaching the same conclusion.

The assumption of conditional normality is of course not crucial either; any
family of distributions for which finite mixtures are identifiable would do. �

Example 12.4.6 (General Stochastic Volatility). In this example, we
consider a stochastic volatility model of the form Yk|Xk = x ∈ N(0, σ2(x)),
where σ2(x) is a mapping from X to R+. Thus, we identify φ(x) = σ2(x). Again
assume that we are given a true parameter θ� as well as another parameter θ,
which is equivalent to θ�. Because all variance mixtures of normal distributions
are identifiable, the laws of {σ2

�(Xk)} under Pθ�
and of {σ2(Xk)} under Pθ

agree. Assuming for instance that σ2
�(x) = σ2(x) = x (and hence also X ⊆

R+), we conclude that the laws of {Xk} under Pθ� and Pθ, respectively, agree.
For particular models of the transition kernel Q of {Xk}, such as the finite
case of the previous example, we may then be able to show that θ = θ�,
possibly up to a permutation of state indices. �

Example 12.4.7. Sometimes a model with finite state space is identifiable
even though the conditional densities g(x, ·) are identical for several x. For
instance, consider a model on the state space X = {0, 1, 2} with Yk|Xk = x ∼
N(µi, σ

2), the constraints µ0 = µ1 < µ2, and transition probability matrix

Q =

⎛⎝ q00 q01 0
q10 q11 q12
0 q21 q22

⎞⎠ .
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The Markov chain {Xk} is thus a (discrete-time) birth-and-death process in
the sense that it can change its state index by at most one in each step. This
model is similar to models used in modeling ion channel dynamics (cf. Fredkin
and Rice, 1992). Because µ1 < µ2, we could then think of states 0 and 1 as
“closed” and of state 2 as “open”.

Now assume that θ is equivalent to θ�. Just as in Example 12.4.5, we may
then conclude that the law of {µ�Xk

} under Pθ� and that of {µXk
} under

Pθ agree, and hence, because of the constraints on the µs, that the laws of
{1(Xk ∈ {0, 1}) + 1(Xk = 2)} under Pθ� and Pθ agree. In other words,
after lumping states 0 and 1 of the Markov chain we obtain processes with
identical laws. This in particular implies that the distributions under Pθ� and
Pθ of the sojourn times in the state aggregate {0, 1} coincide. The probability
of such a sojourn having length 1 is q12, whence q12 = q�12 must hold. For
length 2, the corresponding probability is q11q12, whence q11 = q�11 follows
and then also q10 = q�10 as rows of Q sum up to unity. For length 3, the
probability is q2

11q12 + q10q01q12, so that finally q01 = q�01 and q00 = q�00. We
may thus conclude that θ = θ�, that is, the model is identifiable. The reason
that identifiability holds despite the means µi being non-distinct is the special
structure of Q. For further reading on identifiability of lumped Markov chains,
see Ito et al. (1992). �

12.5 Asymptotic Normality of the Score and
Convergence of the Observed Information

We now turn to asymptotic properties of the score function and the observed
information. The score function will be discussed in some detail, whereas for
the information matrix we will just state the results.

12.5.1 The Score Function and Invoking the Fisher Identity

Define the score function

∇θ�x0,n(θ) =
n∑

k=0

∇θ log
[∫

gθ(xk, Yk) Pθ(Xk ∈ dxk |Y0:k−1, X0 = x0)
]
.

(12.19)
To make sure that this gradient indeed exists and is well-behaved enough for
our purposes, we make the following assumptions.

Assumption 12.5.1. There exists an open neighborhood U = {θ : |θ − θ�| <
δ} of θ� such that the following hold.

(i) For all (x, x′) ∈ X × X and all y ∈ Y, the functions θ 
→ qθ(x, x′) and
θ 
→ gθ(x, y) are twice continuously differentiable on U .
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(ii)
sup
θ∈U

sup
x,x′

‖∇θ log qθ(x, x′)‖ <∞

and
sup
θ∈U

sup
x,x′

‖∇2
θ log qθ(x, x′)‖ <∞ .

(iii)

Eθ�

[
sup
θ∈U

sup
x
‖∇θ log gθ(x, Y1)‖2

]
<∞

and

Eθ�

[
sup
θ∈U

sup
x
‖∇2

θ log gθ(x, Y1)‖
]
<∞ .

(iv) For µ-almost all y ∈ Y, there exists a function fy : X → R+ in L1(λ)
such that supθ∈U gθ(x, y) ≤ fy(x).

(v) For λ-almost all x ∈ X, there exist functions f1
x : Y → R+ and f2

x : Y →
R+ in L1(µ) such that ‖∇θgθ(x, y)‖ ≤ f1

x(y) and ‖∇2
θgθ(x, y)‖ ≤ f2

x(y)
for all θ ∈ U .

These assumptions assure that the log-likelihood is twice continuously differ-
entiable, and also that the score function and observed information have finite
moments of order two and one, respectively, under Pθ� . The assumptions are
natural extensions of standard assumptions that are used to prove asymptotic
normality of the MLE for i.i.d. observations. The asymptotic results to be de-
rived below are valid also for likelihoods obtained using a distribution νθ for
X0 (such as the stationary one), provided this distribution satisfies conditions
similar to the above ones: for all x ∈ X, θ 
→ νθ(x) is twice continuously
differentiable on U , and the first and second derivatives of θ 
→ log νθ(x) are
bounded uniformly over θ ∈ U and x ∈ X.

We shall now study the score function and its asymptotics in detail. Even
though the log-likelihood is differentiable, one must take some care to arrive
at an expression for the score function that is useful. A tool that is often
useful in the context of models with incompletely observed data is the so-
called Fisher identity , which we encountered in Section 10.1.3. Invoking this
identity, which holds in a neighborhood of θ� under Assumption 12.5.1, we
find that (cf. (10.29))

∇θ�x0,n(θ) = ∇θ log gθ(x0, Y0) + Eθ

[
n∑

k=1

φθ(Xk−1, Xk, Yk)

∣∣∣∣∣ Y0:n, X0 = x0

]
,

(12.20)
where φθ(x, x′, y′) = ∇θ log[qθ(x, x′)gθ(x′, y′)]. However, just as when we ob-
tained a law of large numbers for the normalized log-likelihood, we want to
express the score function as a sum of increments, conditional scores. For that
purpose we write



12.5 Asymptotics of the Score and Observed Information 459

∇θ�x0,n(θ) = ∇θ�x0,0(θ) +
n∑

k=1

{∇θ�x0,k(θ)−∇θ�x0,k−1(θ)} =
n∑

k=0

ḣk,0,x0(θ) ,

(12.21)
where ḣ0,0,x0 = ∇θ log gθ(x0, Y0) and, for k ≥ 1,

ḣk,0,x(θ) = Eθ

[
k∑

i=1

φθ(Xi−1, Xi, Yi)

∣∣∣∣∣ Y0:k, X0 = x

]

−Eθ

[
k−1∑
i=1

φθ(Xi−1, Xi, Yi)

∣∣∣∣∣ Y0:k−1, X0 = x

]
.

Note that ḣk,0,x(θ) is the gradient with respect to θ of the conditional log-
likelihood hk,0,x(θ) as defined in (12.7). It is a matter of straightforward al-
gebra to check that (12.20) and (12.21) agree.

12.5.2 Construction of the Stationary Conditional Score

We can extend, for any integers k ≥ 1 and m ≥ 0, the definition of ḣk,0,x(θ)
to

ḣk,m,x(θ) = Eθ

[
k∑

i=−m+1

φθ(Xi−1, Xi, Yi)

∣∣∣∣∣ Y−m+1:k, X−m = x

]

−Eθ

[
k−1∑

i=−m+1

φθ(Xi−1, Xi, Yi)

∣∣∣∣∣ Y−m+1:k−1, X−m = x

]

with the aim, just as before, to let m → ∞. This will yield a definition of
ḣk,∞(θ); the dependence on x will vanish in the limit. Note however that the
construction below does not show that this quantity is in fact the gradient of
hk,∞(θ), although one can indeed prove that this is the case.

As noted in Section 12.1, we want to prove a central limit theorem (CLT)
for the score function evaluated at the true parameter. A quite general way
to do that is to recognize that the corresponding score increments form, un-
der reasonable assumptions, a martingale increment sequence with respect to
the filtration generated by the observations. This sequence is not stationary
though, so one must either use a general martingale CLT or first approximate
the sequence by a stationary martingale increment sequence. We will take the
latter approach, and our approximating sequence is nothing but {ḣk,∞(θ�)}.

We now proceed to the construction of ḣk,∞(θ). First write ḣk,m,x(θ) as

ḣk,m,x(θ) = Eθ[φθ(Xk−1, Xk, Yk) |Y−m+1:k, X−m = x]

+
k−1∑

i=−m+1

(Eθ[φθ(Xi−1, Xi, Yi) |Y−m+1:k, X−m = x]

−Eθ[φθ(Xi−1, Xi, Yi) |Y−m+1:k−1, X−m = x]) . (12.22)
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The following result shows that it makes sense to take the limit as m→∞ in
the previous display.

Proposition 12.5.2. Assume 12.0.1, 12.2.1, and 12.5.1 hold. Then for any
integers 1 ≤ i ≤ k, the sequence {Eθ[φθ(Xi−1, Xi, Yi) |Y−m+1:k, X−m =
x]}m≥0 converges Pθ�

-a.s. and in L2(Pθ�
), uniformly with respect to θ ∈ U

and x ∈ X, as m→∞. The limit does not depend on x.

We interpret and write this limit as Eθ[φθ(Xi−1, Xi, Yi) |Y−∞:k].

Proof. The proof is entirely similar to that of Proposition 12.3.3. For any
(x, x′) ∈ X× X and non-negative integers m′ ≥ m,∣∣Eθ[φθ(Xi−1, Xi, Yi) |Y−m+1:k, X−m = x]

− Eθ[φθ(Xi−1, Xi, Yi) |Y−m′+1:k, X−m′ = x′]
∣∣

=

∣∣∣∣∣
∫∫∫

φθ(xi−1, xi, Yi)Qθ(xi−1, dxi)

× Pθ(Xi−1 ∈ dxi−1 |Y−m+1:k, X−m = x−m)

× [δx(dx−m)− Pθ(X−m ∈ dx−m |Y−m′+1:k, X−m′ = x′)]

∣∣∣∣∣
≤ 2 sup

x,x′
‖φθ(x, x′, Yi)‖ρ(i−1)+m , (12.23)

where the inequality stems from (12.5). Setting x = x′ in this display shows
that {Eθ[φθ(Xi−1, Xi, Yi) |Y−m+1:k, X−m = x]}m≥0 is a Cauchy sequence,
thus converging Pθ� -a.s. The inequality also shows that the limit does not
depend on x. Moreover, because for any non-negative integer m, x ∈ X and
θ ∈ U ,

‖Eθ[φθ(Xi−1, Xi, Yi) |Y−m+1:k, X−m = x]‖ ≤ sup
x,x′

‖φθ(x, x′, Yi)‖

with the right-hand side belonging to L2(Pθ�). The inequality (12.23) thus
also shows that {Eθ[φθ(Xi−1, Xi, Yi) |Y−m+1:k, X−m = x]}m≥0 is a Cauchy
sequence in L2(Pθ�

) and hence converges in L2(Pθ�
). ��

With the sums arranged as in (12.22), we can let m → ∞ and define, for
k ≥ 1,

ḣk,∞(θ) = Eθ[φθ(Xk−1, Xk, Yk) |Y−∞:k]

+
k−1∑

i=−∞
(Eθ[φθ(Xi−1, Xi, Yi) |Y−∞:k]− Eθ[φθ(Xi−1, Xi, Yi) |Y−∞:k−1]) .

The following result gives an L2-bound on the difference between ḣk,m,x(θ)
and ḣk,∞(θ).
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Lemma 12.5.3. Assume 12.0.1, 12.2.1, 12.3.1, and 12.5.1 hold. Then for
k ≥ 1,

(Eθ ‖ḣk,m,x(θ)− ḣk,∞(θ)‖2)1/2

≤ 12

(
Eθ

[
sup

x,x′∈X
‖φθ(x, x′, Y1)‖2

])1/2
ρ(k+m)/2−1

1− ρ
.

Proof. The idea of the proof is to match, for each index i of the sums express-
ing ḣk,m,x(θ) and ḣk,∞(θ), pairs of terms that are close. To be more precise,
we match

1. The first terms of ḣk,m,x(θ) and ḣk,−∞(θ);
2. For i close to k,

Eθ[φθ(Xi−1, Xi, Yi) |Y−m+1:k, X−m = x]

and
Eθ[φθ(Xi−1, Xi, Yi) |Y−∞:k] ,

and similarly for the corresponding terms conditioned on Y−m+1:k−1 and
Y−∞:k−1, respectively;

3. For i far from k,

Eθ[φθ(Xi−1, Xi, Yi) |Y−m+1:k, X−m = x]

and
Eθ[φθ(Xi−1, Xi, Yi) |Y−m+1:k−1, X−m = x] ,

and similarly for the corresponding terms conditioned on Y−∞:k and
Y−∞:k−1, respectively.

We start with the second kind of matches (of which the first terms are a
special case). Taking the limit in m′ →∞ in (12.23), we see that

‖Eθ[φθ(Xi−1, Xi, Yi) |Y−m+1:k, X−m = x]− Eθ[φθ(Xi−1, Xi, Yi) |Y−∞:k]‖
≤ 2 sup

x,x′∈X
‖φθ(x, x′, Yi)‖ρ(i−1)+m .

This bound remains the same if k is replaced by k − 1. Obviously, it is small
if i is far away from m, that is, close to k.

For the third kind of matches, we need a total variation bound that works
“backwards in time”. Such a bound reads

‖Pθ(Xi ∈ · |Y−m+1:k, X−m = x)

−Pθ(Xi ∈ · |Y−m+1:k−1, X−m = x)‖TV ≤ ρk−1−i .

The proof of this bound is similar to that of Proposition 4.3.23 and uses the
time-reversed process. We postpone the proof to the end of this section. We
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may also let m → ∞ and omit the condition on X−m without affecting the
bound. As a result of these bounds, we have

‖Eθ[φθ(Xi−1, Xi, Yi) |Y−m+1:k, X−m = x]
−Eθ[φθ(Xi−1, Xi, Yi) |Y−m+1:k−1, X−m = x]‖

≤ 2 sup
x,x′∈X

‖φθ(x, x′, Yi)‖ρk−1−i ,

with the same bound being valid if the conditioning is on Y−∞:k and Y−∞:k−1,
respectively. This bound is small if i is far away from k.

Combining these two kinds of bounds and using Minkowski’s inequality
for the L2-norm, we find that (Eθ ‖ḣk,m,x(θ)− ḣk,∞(θ)‖2)1/2 is bounded by

2ρk+m−1 + 2× 2
k−1∑

i=−m+1

(ρk−i−1 ∧ ρi+m−1) + 2
−m∑

i=−∞
ρk−i−1

≤ 4
ρk+m−1

1− ρ
+ 4

∑
−∞<i≤(k−m)/2

ρk−i−1 + 4
∑

(k−m)/2≤i<∞
ρi+m−1

≤ 12
ρ(k+m)/2−1

1− ρ

up to the factor (Eθ supx,x′∈X ‖φθ(x, x′, Yi)‖2)1/2. The proof is complete. ��

We now establish the “backwards in time” uniform forgetting property,
which played a key role in the above proof.

Proposition 12.5.4. Assume 12.0.1, 12.2.1, and 12.3.1 hold. Then for any
integers i, k, and m such that m ≥ 0 and −m < i < k, any x−m ∈ X,
y−m+1:k ∈ Yk+m, and θ ∈ U ,

‖Pθ(Xi ∈ · |Y−m+1:k = y−m+1:k, X−m = x−m)

− Pθ(Xi ∈ · |Y−m+1:k−1 = y−m+1:k−1, X−m = x−m)‖TV ≤ ρk−1−i .

Proof. The cornerstone of the proof is the observation that conditional on
Y−m+1:k and X−m, the time-reversed process X with indices from k down
to −m is a non-homogeneous Markov chain satisfying a uniform mixing con-
dition. We shall indeed use a slight variant of the backward decomposition
developed in Section 3.3.2. For any j = −m+ 1, . . . , k− 1, we thus define the
backward kernel (cf. (3.39)) by

Bx−m,j [y−m+1:j ](x, f) =∫
· · ·

∫ ∏j
u=−m+1 q(xu−1, xu)g(xu, yu)λ(dxu) f(xj)q(xj , x)∫

· · ·
∫ ∏j

u=−m+1 q(xu−1, xu)g(xu, yu)λ(dxu) q(xj , x)
(12.24)
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for any f ∈ Fb (X). For brevity, we do not indicate the dependence of the
quantities involved on θ. We note that the integral of the denominator of this
display is bounded from below by (σ−)m+j

∏j
−m+1

∫
gθ(xu, yu)λ(dxu), and is

hence positive Pθ� -a.s. under Assumption 12.3.1.
It is trivial that for any x ∈ X,∫
· · ·

∫ j∏
u=−m+1

q(xu−1, xu)g(xu, yu)λ(dxu) f(xj)q(xj , x) =

∫
· · ·

∫ j∏
u=−m+1

q(xu−1, xu)g(xu, yu)λ(dxu)q(xj , x)Bx−m,j [y−m+1:j ](x, f) ,

which implies that

Eθ[f(Xj) |Xj+1:k, Y−m+1:k = y−m+1:k,X−m = x]
= Bx−m,j [y−m+1:j ](Xj+1, f) .

This is the desired Markov property referred to above.
Along the same lines as in the proof of Proposition 4.3.26, we can show

that the backward kernels satisfy a Doeblin condition,

σ−

σ+ νx−m,j [y−m+1:j ] ≤ Bx−m,j [y−m+1:j ](x, ·) ≤
σ+

σ− νx−m,j [y−m+1:j ] ,

where for any f ∈ Fb (X),

νx−m,j [y−m+1:j ](f) =

∫
· · ·

∫ ∏j
u=−m+1 qθ(xu−1, xu)gθ(xu, yu)λ(dxu) f(xj)∫

· · ·
∫ ∏j

u=−m+1 qθ(xu−1, xu)gθ(xu, yu)λ(dxu)
.

Thus Lemma 4.3.13 shows that the Dobrushin coefficient of each backward
kernel is bounded by ρ = 1− σ−/σ+.

Finally

Pθ(Xi ∈ · |Y−m+1:k−1 = y−m+1:k−1, X−m = x−m)

=
∫

Pθ(Xi ∈ · |Y−m+1:k−1 = y−m+1:k−1, X−m = x−m, Xk−1 = xk−1)

×Pθ(Xk−1 ∈ dxk−1 |Y−m+1:k−1 = y−m+1:k−1, X−m = x−m)

and

Pθ(Xi ∈ · |Y−m+1:k = y−m+1:k, X−m = x−m)

=
∫

Pθ(Xi ∈ · |Y−m+1:k−1 = y−m+1:k−1, X−m = x−m, Xk−1 = xk−1)

×Pθ(Xk−1 ∈ dxk−1 |Y−m+1:k = y−m+1:k, X−m = x−m) ,

so that the two distributions on the left-hand sides can be considered as the
result of running the above-described reversed conditional Markov chain from
index k − 1 down to index i, using two different initial conditions. Therefore,
by Proposition 4.3.10, they differ by at most ρk−1−i in total variation distance.
The proof is complete. ��
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12.5.3 Weak Convergence of the Normalized Score

We now return to the question of a weak limit of the normalized score
n−1/2 ∑n

k=0 ḣk,0,x0(θ�). Using Lemma 12.5.3 and Minkowski’s inequality, we
see that⎡⎣Eθ�

∥∥∥∥∥n−1/2
n∑

k=0

(ḣk,0,x0(θ�)− ḣk,∞(θ�))

∥∥∥∥∥
2
⎤⎦1/2

≤ n−1/2
n∑

k=0

[
Eθ� ‖ḣk,0,x0(θ�)− ḣk,∞(θ�)‖2

]1/2
→ 0 as n→∞ ,

whence the limiting behavior of the normalized score agrees with that of
n−1/2 ∑n

k=0 ḣk,∞(θ�). Now define the filtration F by Fk = σ(Yi, −∞ < i ≤ k)
for all integer k. By conditional dominated convergence,

Eθ�

[
k−1∑

i=−∞
(Eθ�

[φθ�
(Xi−1, Xi, Yi) |Y−∞:k]

− Eθ� [φθ�(Xi−1, Xi, Yi) |Y−∞:k−1]) | Fk−1] = 0 ,

and Assumption 12.5.1 implies that

Eθ� [φθ�(Xk−1, Xk, Yk) |Y−∞:k−1]
= Eθ�

[Eθ�
[φθ�

(Xk−1, Xk, Yk) |Y−∞:k−1, Xk−1] | Fk−1] = 0 .

It is also immediate that hk,∞(θ�) is Fk-measurable. Hence the sequence
{hk,∞(θ�)}k≥0 is a Pθ�

-martingale increment sequence with respect to the
filtration {Fk}k≥0 in L2(Pθ�). Moreover, this sequence is stationary be-
cause {Yk}−∞<k<∞ is. Any stationary martingale increment sequence in
L2(Pθ�) satisfies a CLT (Durrett, 1996, p. 418), that is, n−1/2 ∑n

0 ḣk,∞(θ�) →
N(0,J (θ�)) Pθ�

-weakly, where

J (θ�)
def= Eθ�

[ḣ1,∞(θ�)ḣt
1,∞(θ�)] (12.25)

is the limiting Fisher information.
Because the normalized score function has the same limiting behavior, the

following result is immediate.

Theorem 12.5.5. Under Assumptions 12.0.1, 12.2.1, 12.3.1, and 12.5.1,

n−1/2∇θ�x0,n(θ�) → N(0,J (θ�)) Pθ�-weakly

for all x0 ∈ X, where J (θ�) is the limiting Fisher information as defined
above.

We remark that above, we have normalized sums with indices from 0 to
n, that is, with n+ 1 terms, by n1/2 rather than by (n+ 1)1/2. This of course
does not affect the asymptotics. However, if J (θ�) is estimated for the purpose
of making a confidence interval for instance, then one may well normalize it
using the number n + 1 of observed data.
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12.5.4 Convergence of the Normalized Observed Information

We shall now very briefly discuss the asymptotics of the observed informa-
tion matrix, −∇2

θ�x0,n(θ). To handle this matrix, one can employ the so-called
missing information principle (see Section 10.1.3 and (10.30)). Because the
complete information matrix, just as the complete score, has a relatively sim-
ple form, this principle allows us to study the asymptotics of the observed
information in a fashion similar to what was done above for the score func-
tion. The analysis becomes more difficult however, as covariance terms, arising
from the conditional variance of the complete score, also need to be accounted
for. In addition, we need the convergence to be uniform in a certain sense. We
state the following theorem, whose proof can be found in Douc et al. (2004).

Theorem 12.5.6. Under Assumptions 12.0.1, 12.2.1, 12.3.1, and 12.5.1,

lim
δ→0

lim
n→∞ sup

|θ−θ�|≤δ

‖(−n−1∇2
θ�x0,n(θ))− J (θ�)‖ = 0 Pθ�-a.s.

for all x0 ∈ X.

12.5.5 Asymptotics of the Maximum Likelihood Estimator

The general arguments in Section 12.1 and the theorems above prove the
following result.

Theorem 12.5.7. Assume 12.0.1, 12.2.1, 12.3.1, 12.3.5, and 12.5.1, and that
θ� is identifiable, that is, θ is equivalent to θ� only if θ = θ� (possibly up to a
permutation of states if X is finite). Then the following hold true.

(i) The MLE θ̂n = θ̂x0,n is strongly consistent: θ̂n → θ� Pθ�
-a.s. as n→∞.

(ii) If the Fisher information matrix J (θ�) defined above is non-singular and
θ� is an interior point of Θ, then the MLE is asymptotically normal:

n1/2(θ̂n − θ�) → N(0,J (θ�)−1) Pθ�
-weakly as n→∞

for all x0 ∈ X.
(iii) The normalized observed information at the MLE is a strongly consistent

estimator of J (θ�):

−n−1∇2
θ�x0,n(θ̂n) → J (θ�) Pθ�-a.s. as n→∞.

As indicated above, the MLE θ̂n depends on the initial state x0, but that
dependence will generally not be included in the notation.

The last part of the result is important, as is says that confidence intervals
or regions and hypothesis tests based on the estimate −(n+1)−1∇2

θ�x0,n(θ̂n) of
J (θ�) will asymptotically be of correct size. In general, there is no closed-form
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expression for J (θ�), so that it needs to be estimated in one way or another.
The observed information is obviously one way to do that, while another one
is to simulate data Y ∗

1:N from the HMM, using the MLE, and then computing
−(N+1)−1∇2

θ�x0,N (θ̂n) for this set of simulated data and some x0. An advan-
tage of this approach is that N can be chosen arbitrarily large. Yet another ap-
proach, motivated by (12.25), is to estimate the Fisher information by the em-
pirical covariance matrix of the conditional scores of (12.19) at the MLE, that
is, by (n+1)−1 ∑n

0 [Sk|k−1(θ̂n)− S̄(θ̂n)][Sk|k−1(θ̂n)− S̄(θ̂n)]t with Sk|k−1(θ) =
∇θ log

∫
gθ(x, Yk)φx0,k|k−1[Y0:k−1](dx ; θ) and S̄(θ) = (n+1)−1 ∑n

0 Sk|k−1(θ).
This estimate can of course also be computed from estimated data, then us-
ing an arbitrary sample size. The conditional scores may be computed as
Sk|k−1(θ) = ∇θ�x0,k(θ)−∇θ�x0,k−1(θ), where the scores are computed using
any of the methods of Section 10.2.3.

12.6 Applications to Likelihood-based Tests

The asymptotic properties of the score function and observed information
have immediate implications for the asymptotics of the MLE, as has been
described in previous sections. However, there are also other conclusions that
can be drawn from these convergence results.

One such application is the validity of some classical procedures for testing
whether θ� lies in some subset, Θ0 say, of the parameter space Θ. Suppose
that Θ0 is an (dθ − s)-dimensional subset that may be expressed in terms of
constraints Ri(θ) = 0, i = 1, 2, . . . , s, and that there is an equivalent formula-
tion θi = bi(γ), i = 1, 2, . . . , dθ, where γ is the “constrained parameter” lying
in a subset Γ of R

dθ−s. We also let γ� be a point such that θ� = b(γ�). Each
function Ri and bi is assumed to be continuously differentiable and such that
the matrices

Cθ =
(
∂Ri

∂θj

)
s×dθ

and Dγ =
(
∂bi

∂γj

)
dθ×(dθ−s)

have full rank (s and dθ − s respectively) in a neighborhood of θ� and γ�,
respectively.

Perhaps the simplest example is when we want to test a simple (point)
null hypothesis θ� = θ0 versus the alternative θ� �= θ0. Then, we take Ri(θ) =
θi − θ0i and bi(γ) = θi0 for i = 1, 2, . . . , dθ. In this case, γ is void as s = dθ

and hence dθ − s = 0. Furthermore, C is the identity matrix and D is void.
Now suppose that we want to test the equality θi = θi0 only for i in a subset

K of the dθ coordinates of θ, where K has cardinality s. The constraints we
employ are then Ri(θ) = θi − θ0i for i ∈ K; furthermore, γ comprises θi for
i �∈ K and, using the dθ − s indices not in K for γ, bi(γ) = θ0i for i ∈ K and
bi(γ) = γi otherwise. Again it is easy to check that C and D are constant and
of full rank.
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Example 12.6.1 (Normal HMM). A slightly more involved example con-
cerns the Gaussian hidden Markov model with finite state space {1, 2, . . . , r}
and conditional distributions Yk|Xk = i ∼ N(µi, σ

2
i ). Suppose that we want

to test for equality of all of the r component-wise conditional variances σ2
i :

σ2
1 = σ2

2 = . . . = σ2
r . Then, the R-functions are for instance σ2

i − σ2
r for

i = 1, 2, . . . , r−1. The parameter γ is obtained by removing from θ all σ2
i and

then adding a common conditional variance σ2; those b-functions referring to
any of the σ2

i evaluate to σ2. The matrices C and D are again constant and
of full rank. �

A further application, to test the structure of conditional covariance matri-
ces in a conditionally Gaussian HMM with multivariate output, can be found
in Giudici et al. (2000).

There are many different tests available for testing the null hypothesis
θ� ∈ Θ0 versus the alternative θ� ∈ Θ \ Θ0. One is the generalized likelihood
ratio test, which uses the test statistic

λn = 2
{

sup
θ∈Θ

�x0,n(θ)− sup
θ∈Θ0

�x0,n(θ)
}

.

Another one is the Wald test, which uses the test statistic

Wn = nR(θ̂n)t[Cθ̂n
Jn(θ̂n)−1Ct

θ̂n
]−1R(θ̂n) ,

where R(θ) is the s × 1 vector of R-functions evaluated at θ, and Jn(θ) =
−n−1∇2

θ�x0,n(θ) is the observed information evaluated at θ. Yet another test
is based on the Rao statistic, defined as

Vn = n−1Sn(θ̂0
n)Jn(θ̂0

n)−1Sn(θ̂0
n)t ,

where θ̂0
n is the MLE over Θ0, that is, the point where �x0,n(θ) is maximized

subject to the constraint Ri(θ) = 0, 1 ≤ i ≤ s, and Sn(θ) = ∇θ�x0,n(θ) is the
score function at θ. This test is also known under the names efficient score
test and Lagrange multiplier test. The Wald and Rao test statistics are usually
defined using the true Fisher information J (θ) rather than the observed one,
but as J (θ) is generally infeasible to compute for HMMs, we replace it by the
observed counterpart.

Statistical theory for i.i.d. data suggests that the likelihood ratio, Wald
and Rao test statistics should all converge weakly to a χ2 distribution with
s degrees of freedom provided θ� ∈ Θ0 holds true, so that an approximate
p-value of the test of this null hypothesis can be computed by evaluating the
complementary distribution function of the χ2

s distribution at the point λn,
Wn, or Vn, whichever is preferred. We now state formally that this procedure
is indeed correct.

Theorem 12.6.2. Assume 12.0.1, 12.2.1, 12.3.1, 12.3.5, and 12.5.1 as well
as the conditions stated on the functions Ri and bi above. Also assume that
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θ� is identifiable, that is, θ is equivalent to θ� only if θ = θ� (possibly up to
a permutation of states if X is finite), that J (θ�) is non-singular, and that
θ� and γ� are interior points of Θ and Γ , respectively. Then if θ� ∈ Θ0 holds
true, each of the test statistics λn, Wn, and Vn converges Pθ�-weakly to the
χ2

s distribution as n→∞.

The proof of this result follows, for instance, Serfling (1980, Section 4.4).
The important observation is that the validity of the proof does not hinge on
independence of the data but on asymptotic properties of the score function
and the observed information, properties that have been established for HMMs
in this chapter.

It is important to realize that a key assumption for Theorem 12.6.2 to
hold is that θ� is identifiable, so that θ̂n converges to a unique point θ�. As
a result, the theorem does not apply to the problem of testing the number
of components of a finite state HMM. In the normal HMM for instance, with
Yk|Xk = i ∼ N(µi, σ

2
i ), one can indeed effectively remove one component by

invoking the constraints µ1−µ2 = 0 and σ2
1 −σ2

2 = 0, say. In this way, within
Θ0, components 1 and 2 collapse into a single one. However, any θ ∈ Θ0 is
then non-identifiable as the transition probabilities q12 and q21, among others,
can be chosen arbitrarily without changing the dynamics of the model. Hence
Theorem 12.6.2 does not apply, and in fact we know from Chapter 15 that
the limiting distribution of the likelihood ratio test statistic for selecting the
number of components in a finite state HMM is much more complex than a χ2

distribution. The reason that Theorem 12.6.2 fails is that its proof crucially
depends on a unique point θ� to which θ̂n converges and around which log-
likelihoods can be Taylor-expanded.

12.7 Complements

The theoretical statistical aspects of HMMs and related models have essen-
tially been developed since 1990. The exception is the seminal paper Baum
and Petrie (1966) and the follow-up Petrie (1969), which both consider HMMs
for which X and Y are finite. Such HMMs can be viewed as a process obtained
by lumping states of a Markov chain living on a larger set X × Y, and this
idea lies behind much of the analysis in these early papers. Yet Baum and
Petrie (1966) contains the basic idea used in the current chapter, namely
that of defining log-likelihoods, score functions, etc., conditional on the “in-
finite past”, and bounds that quantify how far these variables are from their
counterparts conditional on a finite past. Baum and Petrie (1966) established
consistency and asymptotic normality of the MLE, while Petrie (1969) took
a closer look at identifiability, and in fact a lot more, which was not studied
in detail in the first paper.

Leroux (1992) was the first to carry out some analysis on more general
HMMs, with finite X but general Y. He proved consistency of the MLE by an
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approach based on Kingman’s subadditive ergodic theorem and did also pro-
vide a very useful discussion on identifiability on which much of the above one
(Section 12.4) is based. Leroux’s approach was thus not based on conditioning
on the “infinite past”; the subadditive ergodic approach however has the draw-
back that it applies to analysis of the log-likelihood only and not to the score
function or observed information. A few years later, Bickel and Ritov (1996)
took the first steps toward an analysis of the MLE for models of the kind
studied by Leroux. Their results imply so-called local asymptotic normality
(LAN) of the log-likelihood, but not asymptotic normality of the MLE with-
out some extra assumptions. This result was instead obtained by Bickel et al.
(1998), who based their analysis on the “infinite past” approach almost en-
tirely, employing bounds on conditional mixing rates similar to those of Baum
and Petrie (1966). This analysis was generalized to models with compact X by
Jensen and Petersen (1999). Finally, as mentioned above, Douc et al. (2004)
took this approach to the point where autoregression is also allowed, using
the mixing rate bound of Proposition 4.3.23. Neither Bickel et al. (1998) nor
Jensen and Petersen (1999) used uniform forgetting to derive their bounds,
but both of them can easily be stated in such terms. Higher order derivatives
of the log-likelihood are studied in Bickel et al. (2002).

A quite different approach to studying likelihood asymptotics is to express
the log-likelihood through the predictor,

�x0,n(θ) =
n∑

k=1

log
∫

X
gθ(x, Yk)φx0,k|k−1(dx; θ) ,

cf. Chapter 3, and then differentiating the recursive formula (3.27) for φx0,k|k−1
with respect to θ to obtain recursive expressions for the score function and
observed information. This approach is technically more involved than that
using the “infinite past” but does allow for analysis of recursive estimators
such as recursive maximum likelihood. Le Gland and Mevel (2000) studied the
recursive approach for HMMs with finite state space, and Douc and Matias
(2002) extended the results to HMMs on compact state spaces.

As good as all of the results above can be extended to Markov-switching
autoregressions; see Douc et al. (2004). Under Assumption 12.2.1, the con-
ditional chain then still satisfies the same favorable mixing properties as in
Section 4.3. The log-likelihood, score function, and observed observation can
be analyzed using the ideas exposed in this chapter; we just need to replace
some of the assumptions by analogs including regressors (lagged Y s). Other
papers that examine asymptotics of estimators in Markov-switching autore-
gressions include Francq and Roussignol (1997), Krishnamurthy and Rydén
(1998), and Francq and Roussignol (1998). Markov-switching GARCH models
were studied by Francq et al. (2001).



13

Fully Bayesian Approaches

Some previous chapters have already mentioned MCMC and conditional (or
posterior) distributions, especially in the set-up of posterior state estimation
and simulation. The spirit of this chapter is obviously different in that it covers
the fully Bayesian processing of HMMs, which means that, besides the hidden
states and their conditional (or parameterized) distributions, the model pa-
rameters are assigned probability distributions, called prior distributions, and
the inference on these parameters is of Bayesian nature, that is, conditional on
the observations (or the data). Because more advanced Markov chain Monte
Carlo methodology is also needed for this fully Bayesian processing, additional
covering of MCMC methods, like reversible jump techniques, will be given in
this chapter (Section 13.2). The emphasis is put on HMMs with finite state
space (X is finite), but some facts are general and the case of continuous state
space is addressed at some points.

13.1 Parameter Estimation

13.1.1 Bayesian Inference

Although the whole apparatus of modern Bayesian inference cannot be dis-
cussed here (we refer the reader to, e.g., Robert, 2001, or Gelman et al., 1995),
we briefly recall the basics of a Bayesian analysis of a statistical model, and
we also introduce some notation not used in earlier chapters.

Given a general parameterized model

Y ∼ p(y|θ), θ ∈ Θ ,

where p(y|θ) thus denotes a parameterized density, the idea at the core of
Bayesian analysis is to provide an inferential assessment (on θ) conditional
on the realized value of Y , which we denote (as usual) by y. Obviously, to
give a proper probabilistic meaning to this conditioning, θ itself must be em-
bedded with a probability distribution called the prior distribution, which
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is denoted by π(dθ). The choice of this prior distribution is often decided
on practicality grounds rather than strong subjective belief or overwhelming
prior information, but there also exist less disturbing (or subjective) choices
called non-informative priors, as we will discuss below.

Definition 13.1.1 (Bayesian Model). A Bayesian model is given by the
completion of a statistical model

Y ∼ p(y|θ), θ ∈ Θ ,

with a probability distribution π(dθ), called the prior distribution, on the pa-
rameter space Θ.

The associated posterior distribution is given by Bayes’ theorem as the
conditional distribution of θ given the observation y,

π(dθ|y) =
p(y|θ)π(dθ)∫

Θ
p(y|ξ)π(dξ)

. (13.1)

The density p(y|θ) is the likelihood of the model and will also be denoted by
L(y|θ) as in previous chapters. Note that in this chapter, we always assume
that both the prior and the posterior distributions admits densities that we
denote by π(θ) and π(θ|y), respectively. For the sake of notational simplicity,
the dominating measure for both of these densities, whose exact specification
is not important here, is denoted by dθ.

Once the prior distribution is selected, Bayesian inference is, in principle,
“over”, that is, completely determined, as the estimation, testing, and evalua-
tion procedures are provided by the prior and the associated loss function. For
instance, if the loss function for the evaluation of estimators is the quadratic
loss function

loss(θ, θ̂) = ‖θ − θ̂‖2 ,

the corresponding Bayes procedure is the expected value of θ, either under the
prior distribution (when no observation is available), or under the posterior
distribution,

θ̂ =
∫

θ π(dθ|y) =
∫
θ p(y|θ)π(dθ)∫
p(y|θ)π(dθ)

.

When no specific loss function is available, this estimator is often used as the
default estimator, although alternatives also are available.

A specific alternative is the maximum marginal posterior estimator, de-
fined as

θ̂i = arg maxθi
πi(θi|y)

for each component θi of the vector θ. A difficulty with this estimator is that
the marginal posteriors

πi(θi|y) =
∫

π(θ|y) dθ−i ,



13.1 Parameter Estimation 473

where θ−i = {θj , j �= i}, are often intractable, especially in the setting of
latent variable models like HMMs.

Another alternative, not to be confused with the previous one, is the max-
imum a posteriori estimator (MAP),

θ̂ = arg maxθ π(θ|y) = arg maxθ π(θ)p(y|θ) , (13.2)

which is thus in principle easier to compute because the function to maximize
is usually provided in closed form. However, numerical problems make the
optimization involved in finding the MAP far from trivial. Note also here
the similarity of (13.2) with the maximum likelihood estimator: the influence
of the prior distribution π(θ) progressively disappears with the number of
observations and the MAP estimator recovers the asymptotic properties of
the MLE. This is, of course, only true if the support of the distribution π
contains the true value, and if latent variables like the hidden states of the
HMM—the number of which grows linearly with n—are not adjoined to the
parameter vector θ. See Schervish (1995) for more details on the asymptotics
of Bayesian estimators.

We will discuss in more detail the important issue of selection of the prior
distribution for HMMs in Section 13.1.2, but at this point we note that when
the model is from an exponential family of distributions, in so-called nat-
ural parameterization (which corresponds to the case ψ(θ) = θ in Defini-
tion 10.1.5),

p(y|θ) = exp
{
θtS(y)− c(θ)

}
h(y) ,

there exists a generic class of priors called the class of conjugate priors,

π(θ|ξ, λ) ∝ exp
{
θtξ − λc(θ)

}
,

which are parameterized by a positive real value λ and a vector ξ of the
same dimension as the sufficient statistic S(y). These parameterized prior
distributions on θ are thus such that the posterior distribution can be written
as

π(θ|ξ, λ, y) = π[θ|ξ′(y), λ′(y)] . (13.3)

Equation (13.3) simply says that the conjugate prior is such that the prior
and posterior densities belong to the same parametric family of densities, but
with different parameters. Indeed, the parameters of the posterior density are
“updated”, using the observations, relative to the prior parameters. To avoid
confusion, the parameters involved in the prior distribution on the model
parameter are usually called hyperparameters.

Example 13.1.2 (Normal Distribution). Consider a normal N(µ, σ2) dis-
tribution for Y and assume we have i.i.d. observations y0, y1, . . . , yn. Assuming
µ is to be estimated, the conjugate prior associated with this distribution is,
again, normal N(α, β), as then
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π(µ|y0:n) ∝ exp{−(µ− α)2/2β}
n∏

k=0

exp{−(yk − µ)2/2σ2}

∝ exp
{
−1

2

[
µ2

(
1
β

+
n + 1
σ2

)
− 2µ

(
α

β
+

S

σ2

)]}
,

where S is the sum of the yk. Inspecting the right-hand side shows that it is
proportional (in µ) to the density of a normal distribution with mean (S +
ασ2/β)/[(n + 1) + σ2/β] and variance σ2/[(n + 1) + σ2/β].

In the case where σ2 is to be estimated and µ is known, the conjugate
prior is instead the inverse Gamma distribution IG(κ, γ), with density

π(σ2|γ, κ) =
γκ

Γ (κ)(σ2)κ+1 e−γ/σ2
.

Indeed, with this prior,

π(σ2|y1:n) ∝ (σ2)−(κ+1)e−γ/σ2
n∏

k=0

1√
σ2

exp{−(yk − µ)2/2σ2}

= (σ2)−[(n+1)/2+κ+1] exp{−(S(2)/2 + γ)/σ2} ,

where S(2) =
∑n

k=0(yk − µ)2. Hence, the posterior distribution of σ2 is the
inverse gamma distribution IG((n + 1)/2 + κ, S(2)/2 + γ). �

As argued in Robert (2001), there is no compelling reason to choose these
priors, except for their simplicity, but the restrictive aspect of conjugate priors
can be attenuated by using hyperpriors on the hyperparameters. Those hy-
perpriors can be chosen amongst so-called non-informative (or vague) priors
to attenuate the impact on the resulting inference. As an aside related to this
point, let us recall that the introduction of vague priors within the Bayesian
framework allows for a “closure” of this framework, in the sense that limits
of Bayes procedures are also Bayes procedures for non-informative priors.

Example 13.1.3 (Normal Distribution, Continued). A limiting case of
the conjugate N(α, β) prior is obtained when letting β go to infinity. In this
case, the posterior π(θ|y) is the same as the posterior obtained with the “flat”
prior π(θ) = 1, which is not the density of a probability distribution but
simply the density of Lebesgue measure! �

Although this sounds like an invalid extension of the probabilistic frame-
work, it is quite correct to define posterior distributions associated with pos-
itive σ-finite measures π, then viewing (13.1) as a formal expression valid as
long as the integral in the denominator is finite (almost surely). More detailed
accounts are provided in Hartigan (1983), Berger (1985), or Robert (2001, Sec-
tion 1.5) about this possibility of using σ-finite measures (sometimes called
improper priors) in settings where true probability prior distributions are too
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difficult to come with or too subjective to be accepted by all. Let us conclude
this aside with the remark that location models

y ∼ p(y − θ)

are usually associated with flat priors π(θ) = 1, whereas scale models

y ∼ 1
θ
f

(
1
θ

)
are usually associated with the log-transform of a flat prior, that is,

π(θ) =
1
θ
.

13.1.2 Prior Distributions for HMMs

In the specific set-up of HMMs, there are typically two separate entities of
the parameter vector θ. That is, θ can be decomposed as

θ = (η, ζ) ,

where η parameterizes the transition pdf q(·, ·) = qη(·, ·) and ζ parameterizes
the conditional distribution of Y0:n given X0:n, with marginal conditional pdf
g(·, ·) = gζ(·, ·). The reason for this decomposition should be clear from Chap-
ter 10 on the EM framework: when conditioned on the (latent) chain X0:n,
the parameter ζ is estimated as in a regular (non-latent) model, whereas the
parameter η only depends on the chain X0:n. A particular issue is the dis-
tribution ν of the initial state X0. In general, it is assumed either that X0
is fixed and known (ν is then degenerate); or that X0 is random, unknown,
and ν is parameterized by a separate parameter; or that X0 is random, un-
known, and with ν being parameterized by η. In the latter case, a standard
setting is that {Xk}k≥0 is assumed stationary—so that the HMM as a whole is
stationary—and ν is then the stationary distribution of the transition kernel
Q = Qη. A particular instance of the second case is to assume that ν is fixed,
for example uniform on X. We remark that if ν is parameterized by a separate
parameter, for instance the probabilities (ν1, . . . , νr) themselves, there is of
course no hope of being able to estimate this parameter consistently, as there
is only one variable X0—that we do not even observe!—whose distribution is
given by ν.

The above is formalized in the following separation lemma about θ.

Lemma 13.1.4. Assume that the prior distribution π(θ) is such that

π(θ) = πη(η)πζ(ζ) (13.4)

and that the distribution of X0 depends on η or on another separate parameter.
Then, given x0:n and y0:n, η and ζ are conditionally independent, and the
conditional posterior distribution of η does not depend on the observations
y0:n.
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Proof. The proof is straightforward: given that the posterior distribution
π(θ|x0:n, y0:n) factorizes as

πη(η)πζ(ζ)νη(x0)
n∏

k=1

qη(xk−1, xk)
n∏

k=0

gζ(xk, yk)

= πη(η)νη(x0)
n∏

k=1

qη(xk−1, xk)× πζ(ζ)
n∏

k=0

gζ(xk, yk) (13.5)

up to a normalizing constant, the two subvectors η and ζ are indeed condi-
tionally independent. Independence of the conditional distribution of η from
y0:n is obvious from (13.5). ��

A practical consequence of Lemma 13.1.4 is therefore that we can conduct
Bayesian inference about η and ζ separately, conditional on the (latent) chain
X0:n (and of course on the observables Y0:n). Conditional inference is of inter-
est because of its relation with the Gibbs sampler (see Chapter 6) associated
with this model, as will be made clearer in Section 13.1.4.

In the case where the latent variables are finite, that is, when X is fi-
nite, a reparameterization of X into {1, . . . , r} allows for use of the “classi-
cal” conjugate Dirichlet prior on the transition probability matrix q = (qij),
Dirr(δ1, . . . , δr). These priors generalize the Beta (of type one) distribution as
priors on the simplex of R

r.

Definition 13.1.5 (Dirichlet Distribution). A Dirichlet Dirr(δ1, . . . , δr)
distribution is a distribution on the subset q1 + . . . + qr = 1 of R

r, given by
the density

π(q1, . . . , qr) =
Γ (δ1 + . . . + δr)
Γ (δ1) · · ·Γ (δr)

qδ1−1
1 · · · qδr−1

r 1{q1 + . . . + qr = 1} ,

where all δi > 0.

We remark that the above density is with respect to Lebesgue measure on
the subset that supports the distribution. Of particular interest is the choice
δi = 1 for all i, in which case the density is constant and hence the distribution
uniform.

Under the assumption that ν is known or with a distribution parameterized
by a separate parameter, we then have the following conjugacy result.

Lemma 13.1.6. The Dirichlet prior is a conjugate distribution for the tran-
sition probability matrix Q of the Markov chain X1:n in the following sense.
Assume that each row of Q has a prior distribution that is Dirichlet,

(qi1, . . . , qir) ∼ Dirr(δ1, . . . , δr) ,

with the rows being a priori independent, and that the distribution ν of X0 is
either fixed or parameterized by a separate parameter. Then, given the Markov
chain, the rows of Q are conditionally independent and
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(qi1, . . . , qir)|x1:n ∼ Dirr(δ1 + ni1, . . . , δr + nir) ,

where nij denotes the number of transitions from i to j in the sequence x0:n.

Proof. Given that the parameters of Q only depend on X0:n, we have

π(Q|x0:n) ∝ π(Q)
n∏

k=1

qxk−1xk
∝

∏
i,j

q
δj+nij−1
ij .

��

We remark that in the case where the distribution ν of X0 is the sta-
tionary distribution of Q, there is no conjugate distribution because of the
non-exponential relation between this stationary distribution and Q. This
does not mean that Bayesian inference is not possible, but simulation from
the posterior distribution of Q is less straightforward in this case.

Simulation from a Dirichlet distribution is easy: if ξ1, . . . , ξr are indepen-
dent with ξi having a Ga(δi, 1) distribution, then the r-tuple(

ξ1∑r
i=1 ξi

,
ξ2∑r
i=1 ξi

, · · · , ξr∑r
i=1 ξi

)
has a Dirr(δ1, . . . , δr) distribution.

Example 13.1.7 (Normal HMM). Assume that {Xk}k≥0 is a finite
Markov chain on X = {1, . . . , r} and that, conditional on Xk = i, Yk has
a N(µi, σ

2
i ) distribution.

A typical prior for this model may look as follows. On the transition prob-
ability matrix Q we put a Dirr(δ1, . . . , δr) distribution on each row, with
independence between rows. A standard choice is to set the δj equal; often
δj = 1. The means and variances of the normal distributions are assumed a
priori independent and with conjugate priors, that is, a N(α, β) prior for each
mean µi and a IG(κ, γ) prior for each variance σ2

i (cf. Example 13.1.2).
The joint prior thus becomes

π(θ) = π(Q,µ1, . . . , µr, σ
2
1 , . . . , σ

2
r)

=
r∏

i=1

Γ (δ1 + . . . + δr)
Γ (δ1) · · ·Γ (δr)

r∏
j=1

q
δj−1
ij

×
r∏

i=1

1√
2πβ

e−(µi−α)2/2β

×
r∏

i=1

γκ(σ2)−(κ+1)

Γ (κ)
e−γ/σ2

.

It is often appropriate to consider one or several of α, β, κ, and γ as unknown
random quantities themselves, and hence put hyperpriors on them. These
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quantities are then adjoined to θ, and their prior densities are adjoined to
the above prior. Richardson and Green (1997) and Robert et al. (2000), for
instance, contain such examples. �

In the above example, the initial distribution ν was not mentioned. In-
deed, it was tacitly assumed that the initial distribution ν is given by Q, for
example as the stationary distribution. From a simulation point of view this
is inconvenient however, as the posterior distributions of the rows of Q are
then no longer Dirichlet; cf. the remark below Lemma 13.1.6. A different as-
sumption, more appealing from this simulation point of view, is to assume
that ν is fixed, typically uniform on {1, . . . , r}. We may also assume that ν is
unknown and equip it with a Dir(δ′

1, . . . , δ
′
r) prior, usually with all δ′

i equal.
Then ν is adjoined to θ and the Dirichlet density goes into the prior. Finally,
we may also assume that X0 is fixed and known, equal to 1, say. This implies
that the prior is not exchangeable though, and the structure of the implied
non-exchangeability is difficult to describe (see below). Therefore, in practice
the two alternatives of setting ν as the uniform distribution or assigning it a
Dirichlet prior are the most appealing. In the latter case, as remarked above
Lemma 13.1.4, ν cannot be estimated consistently.

13.1.3 Non-identifiability and Label Switching

An issue of particular interest for the choice of the loss function or, correspond-
ingly, of the Bayes estimator, is non-identifiability. This is a problem that pri-
marily arises in the case of finite state space X. Hence, assume X = {1, . . . , r}.

To start with, we will make assumptions about the parameterization of the
HMM. We assume that θ decomposes into (η, ζ) as in (13.4), that η simply
comprises the transition probabilities qij themselves, and that ζ further de-
composes as ζ = (ζ1, . . . , ζr), where ζi parameterizes the conditional density
g(i, ·) in a way that is identical for each i. Hence, all g(i, ·) belong to the same
parametric family. A typical example is to take, as in the above example, the
g(i, ·) as normal distributions N(µi, σ

2
i ), in which case ζi = (µi, σ

2
i ). The ini-

tial distribution ν is assumed to be the stationary distribution of Q, or to be
fixed and uniform on X, or to be given by a separate set (ν1, . . . , νr) of prob-
abilities. Under these conditions, the likelihood L(y0:n|θ) is invariant under
permutation of state indices. More precisely, if (s1, . . . , sr) is a permutation
of {1, . . . , r}, then

L[y0:n|(νi), (qij), (ζi)] = L[y0:n|(νsi), (qsi,sj ), (ζsi)] .

This equality simply says that if we renumber the states in X and permute
the parameter indices accordingly, the likelihood remains unchanged.

We now turn to a second set of assumptions. A density on R
r is said to

be exchangeable if it is invariant under permutations of the components. We
will assume that the joint prior for (q(i, j)), (ζi), and (νi) is exchangeable,
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π[(νi), (qij), (ζi)] = π[(νsi
), (qsi,sj

), (ζsi
)] .

This exchangeability condition is very often occurring in practice. It holds,
for instance, if the three entities involved are a priori independent with an
independent Dirichlet Dirr(δ, . . . , δ) prior on each row of the transition prob-
ability matrix, independent identical priors on the ζi and, when applicable, a
Dirichlet Dirr(δ′, . . . , δ′) prior on (νi).

Under the above two sets of assumptions, because π(θ|y0:n) is proportional
to π(θ)L(y0:n|θ) in θ, the posterior will also be exchangeable,

π[(νi), (q(i, j)), (ζi)|y0:n] = π[(νsi
), (q(si, sj)), (ζsi

)|y0:n] .

This non-identifiability feature has the serious consequence that, from a
Bayesian point of view, within each block of parameters all marginals are
the same! Indeed, for example,

π(ζ1, . . . , ζr|y0:n) = π(ζs1 , . . . , ζsr |y0:n) . (13.6)

Thus, for 1 ≤ i ≤ r, the density πζi
defined as

πζi
(ζi|y0:n) =

∫
π(ζ1, . . . , ζr|y0:n) dζ−i ,

is independent of i. Therefore, both the posterior mean and the maximum
marginal posterior estimators are ruled out in exchangeable settings, as they
only depend on the marginals.

A practical consequence of this lack of identifiability is so-called label
switching, illustrated in Figure 13.1. This figure provides an MCMC sequence
for both the standard deviations σi and the stationary probabilities of Q for an
HMM with three Gaussian components N(0, σ2

i ). The details will be discussed
below, but the essential feature of this graph is the continuous shift between
the three levels of each component σi, which translates the equivalence be-
tween (σ1, σ2, σ3) and any of its permutations for the posterior distribution.
As discussed by Celeux et al. (2000), this behavior does not always occur
in a regular MCMC implementation. In the current case, it is induced by
the underlying reversible jump algorithm (see Section 13.2.3). We stress that
label switching as such is not a result of exploring the posterior surface by
simulation but is rather an intrinsic property of the model and its prior.

Lack of identifiability also creates a difficulty with the maximum a poste-
riori estimator in that the exchangeability property implies that there are a
multiple of r! (local and global) modes of the posterior surface, given (13.6). It
is therefore difficult to devise efficient algorithms that can escape a particular
mode to provide a fair picture of the overall, multimodal posterior surface.
For instance, Celeux et al. (2000) had to resort to simulated tempering, a sort
of inverted simulated annealing, to achieve a proper exploration.

A common approach to combat problems caused by lack of identifiabil-
ity is to put constraints on the prior, in that certain parameters are re-
quired to appear in ascending or descending order. For instance, in the above
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Fig. 13.1. Representation of an MCMC sequence simulated from the posterior
distribution associated with a Gaussian HMM with three hidden states, Gaussian
components N(0, σ2

i ), and a data set made of a sequence of wind intensities in
Athens (Greece). The top graph plots the sequence of stationary probabilities of the
transition probability matrix Q and the bottom graph the sequence of σi. Source:
Cappé et al. (2003).

example, we could set the prior density to zero outside the region where
µ1 < µ2 < . . . < µr. That is, we require the normal means to appear in
ascending order. Such a constraint does not affect the MAP, but it does affect
the marginal posterior distributions—obviously, the marginal posterior dis-
tribution functions of the µi become stochastically ordered—and hence, for
instance, the posterior means of individual parameters. It is important to re-
alize that marginal posterior distributions of parameters not directly involved
in the constraint, for instance the σ2

i in the current example, are also affected.
Even more importantly, if an ordering constraint is put on a different set of pa-
rameters, σ2

1 < σ2
2 < . . . < σ2

r for example, then the marginal posterior distri-
butions will be affected in a different way. Hence, ordering constraints are not
a tool that is unambiguous in the sense that any constraint leads to the same
marginal posterior distributions. This is illustrated in Richardson and Green
(1997). From a practical point of view, in an MCMC simulation, ordering can
be imposed at each step of the sampler, but we could also design a sampler
without such constraints and do the sorting as a part of post-processing of
the sampler output. This approach obviously greatly simplifies investigations
of how constraints on different sets of parameters affect the results. Stephens
(2000b) discusses the label switching problem in a general decision theoretic
framework. In particular, he demonstrates that sorting means, variances, etc.,
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sometimes gives results that are difficult to interpret, and he suggests, in the
contexts of i.i.d. observations from a finite mixture, a relabeling algorithm
based on probabilities of the each observation belonging to a certain mixture
component.

If we put a sorting constraint on the parameters, we implicitly construct a
new prior that is zero in regions where the constraint does not hold. Moreover,
because a parameter can be permuted in r! different ways, the new prior is
equal to the original prior multiplied by r! in the region where the constraint
does hold, in order to make it integrate to unity (over the constrained space).
A similar but slightly different view, suggested by Stephens (2000a), is to
think of the r! permutations of a given parameter as a single element of an
equivalence class of parameters; the effective parameter space is then the space
of such equivalence classes. Again, because a parameter of order r can be
permuted in r! different ways, each element of the equivalence class [θ] has a
prior that is r! times the prior π(θ) of any of its particular representations θ.
This distinction between a parameter and its corresponding equivalence class
and the factor r! are not important when r is fixed, but it becomes important
when r is variable, and we attempt to estimate it, as discussed in Section 13.2.

Lack of identifiability can also be circumvented by using a loss function
that is impervious to label switching, that is, invariant under permutation of
the label indices. For instance, in the case of mixtures, Celeux et al. (2000)
employed a loss function for the estimation of the parameter θ may based on
the Kullback-Leibler divergence,

loss(θ, θ̂) =
∫

log
p(y0:n|θ)
p(y0:n|θ̂)

p(y0:n|θ) dy0:n .

13.1.4 MCMC Methods for Bayesian Inference

Analytic computation of Bayesian estimates like the posterior mean or poste-
rior mode is most generally infeasible for HMMs, except for the simplest mod-
els. We now review simulation-based methods that follow the general MCMC
scheme introduced in Chapter 6 and provide Monte Carlo approximations of
the posterior distribution of the parameters θ given the observable Y0:n. As
noted in Chapter 6, the distribution of X0:n given both Y0:n and θ is often
manageable (when X is finite notably). Likewise, the conditional distribution
of the parameters given Y0:n and X0:n is usually simple enough in HMMs, es-
pecially when conjugate priors are used (as in Example 13.1.7). What remains
to be exposed here is how to bridge the gap between these two conditionals.

The realization that for HMMs, the distribution of interest involves two
separate entities, θ and X0:n, for which the two conditional distributions
π(θ|x0:n, y0:n) and π(x0:n|θ, y0:n) are available or may be sampled from, sug-
gests the use of a two stage Gibbs sampling strategy as defined in Chapter 6
(see Algorithm 6.2.13). The simplest version of the Gibbs sampler, which will
be referred to as global updating of the hidden chain, goes as follows.
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Algorithm 13.1.8. Iterate:

1. Simulate θ from π(θ|x1:n, y0:n).
2. Simulate X0:n from π(x0:n|θ, y0:n).

This means that, if we can simulate the parameters based on the completed
model (and this is usually the case, see Example 13.1.10 for instance) and the
missing states X0:n conditionally on the parameters and Y0:n (see Chapter 6),
we can implement this two-stage Gibbs sampler, also called data augmentation
by Tanner and Wong (1987). We note that θ typically is multivariate, and it
is then often broken down into several components; accordingly, the first step
above then breaks down into several sub-steps. Similar comments apply if
there are hyperparameters with their own priors in the model; we can view
them as part of θ even though they are often updated separately.

By global updating we mean that the trajectory of the hidden chain
is updated as a whole from its joint conditional distribution given the pa-
rameter θ and the data Y0:n. This corresponds to the partitioning (θ,X0:n)
of the state space of the Gibbs sampler. Another possible partitioning is
(θ,X0, X1, . . . , Xn), which leads to an earlier and more “rudimentary” ver-
sion of the Gibbs sampler (Robert et al., 1993). In this algorithm, only one
hidden variable Xk is updated at a time, and we refer to this scheme as local
updating of the hidden chain. The algorithm thus looks as follows.

Algorithm 13.1.9. Iterate:

1. Simulate θ from π(θ|x1:n, y1:n).
2. For k = 0, 1, . . . , n, simulate Xk from π(xk|θ, y1:n, x1:k−1, xk+1:n).

This algorithm only updates one state at a time, and, because

π(xk|θ, y0:n, x0:k−1, xk+1:n)

reduces to

π(xk|θ, yk, xk−1, xk+1) ∝ qθ(xk−1, xk)qθ(xk, xk+1)gθ(xk, yk)

where the first factor on the right-hand side is replaced by νθ(x0) for k = 0
and the second factor is replaced by unity for k = n; this means that each Xk

is updated conditional upon its neighbors, as seen in Chapter 6.
In the above algorithm, the Xk are updated in a fixed linear order, but

there is nothing that prevents us from using a different order or from pick-
ing the variable Xk to be updated at random. Of course there are schemes
intermediate between the extremes global and local updating. We might, for
example, update blocks of Xk; like for local updating, these blocks may be
of fixed size and updated in a specific order, but size and order may also be
chosen at random as in (Shephard and Pitt, 1997).
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Example 13.1.10 (Normal HMM, Continued). Let us return to the
HMM and prior given in Example 13.1.7. To compute the respective full con-
ditionals in the Gibbs sampler, we note again that each such distribution, or
density, is proportional (in the component to be updated) to the product of
the prior and the likelihood. For example,

π(µ1, . . . , µr|Q, σ2
1 , . . . , σ

2
r , x1:n, y0:n)

∝ π(Q,µ1, . . . , µr, σ
2
1 , . . . , σ

2
r)

×p(x0:n|Q)L(y0:n|x0:n, µ1, . . . , µr, σ
2
1 , . . . , σ

2
r)

= π(Q)π(µ1) · · ·π(µr)π(σ2
1) · · ·π(σ2

r)p(x0:n|Q)
n∏

k=0

g(µ,σ)(xk, yk) .

By picking out the factors on the right-hand side that contain the appropriate
variables, we can find their full conditional. We now detail this process for each
of the variables involved.

The conditional pdf of µ1, . . . , µr is proportional to

r∏
i=1

exp
{
−(µi − α)2/2β

} n∏
k=0

exp
{
−(yk − µxk

)/2σ2
xk

}
∝

r∏
i=1

exp
{
−1

2
[µ2

i (β
−1 + niσ

−2
i )− 2µi(αβ−1 + Siσ

−2
i )]

}
,

where ni is the number of xk with xk = i and Si is the sum of the corre-
sponding yk; Si =

∑
{k: xk=i} yk. We can conclude that the full conditional

distribution of µ1, . . . , µr is such that these variables are conditionally inde-
pendent and

µi |Q, σ2
1 , . . . , σ

2
r , x0:n, y0:n ∼ N

(
ασ2

i /β + Si

σ2
i /β + ni

,
1

1/β + ni/σ2
i

)
. (13.7)

This can also be understood in the following way: given X0:n all the obser-
vations are independent, and to obtain the posterior for µi we only need to
consider observations governed by this regime. As the µi are a priori inde-
pendent, they will be so a posteriori as well. The above formula is then a
standard result of Bayesian statistics (cf. Example 13.1.2).

In a similar fashion, one finds that

π(σ2
1 , . . . , σ

2
r |Q,µ1, . . . , µr, x0:n, y0:n)

∝
r∏

i=1

(σ2
i )−(κ+ni/2+1) exp

{
−(γ + S

(2)
i /2)/σ2

i

}
,

where S
(2)
i =

∑
{k: xk=i}(yk − µi)2. Hence, the full conditional distribution of

σ2
1 , . . . , σ

2
1 is such that these variables are conditionally independent, and
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σ2
i |Q,µ1, . . . , µr, x0:n, y0:n ∼ IG(κ + ni/2, (γ + S

(2)
i /2)) . (13.8)

This result is indeed also an immediate consequence of Example 13.1.2.
The full conditional distribution of the transition matrix Q was essentially

derived in Lemma 13.1.6; the rows are conditionally independent with the ith
row following a Dirichlet distribution Dirr(δ1 + nij , . . . , δr + nir). Here nij is
the number of transitions from state i to j, that is, nij = #{0 ≤ k ≤ n− 1 :
xk = i, xk+1 = j}.

Several types of MCMC moves are typically put together in what is often
called a sweep of the algorithm. Thus, one sweep of the Gibbs sampler with
local updating for the present model looks as follows.

Algorithm 13.1.11.

1. Simulate the µi independently according to (13.7).
2. Simulate the σ2

i independently according to (13.8).
3. Simulate the rows of Q independently, with the ith row from Dirr(δ1 +

ni1, . . . , δr + nir).
4. For k = 0, 1, . . . , n, simulate Xk with unnormalized probabilities

P(Xk = i | θ, yk, xk−1, xk+1) ∝ q(xk−1, i)q(i, xk+1)
1
σi

e−(yk−µi)2/2σ2
i ;

for k = 0 the first factor is replaced by ν(x0), and for k = n the factor
q(i, xk+1) is replaced by unity.

If ν is the stationary distribution of Q, simulation of Q requires a
Metropolis-Hastings step; a sensible proposal is then the same Dirichlet as
above. If ν is rather a separate parameter, Q is updated as above and, pro-
vided the prior on (ν1, . . . , νr) is a Dirichlet as in Example 13.1.7, this vector
is updated with full conditional distribution Dirr(δ′

1 + t1, . . . , δ
′
r + tr) with

ti = 1{x0 = i}. Of course, global updating of X0:n could have been used as
well, which would modify step 4 of the algorithm only. �

The Gibbs sampler with local updating should mix and explore the poste-
rior surface much more slowly than when global updating is used. It must be
considered, however, that the simulation of the whole vector of states, X1:n,
is more time-consuming in that it requires the use of the forward or backward
formulas (Section 6.1.2). A numerical comparison of the two approaches by
Robert et al. (1999), using several specially designed convergence monitoring
tools, did not exhibit an overwhelming advantage in favor of global updating,
even without taking into account the additional O(n2) computational time re-
quired by this approach. On the other hand, Scott (2002) provided an example
showing a significant advantage for global updating in terms of autocovariance
decay. It is thus difficult to make a firm recommendation on which updating
scheme to use. One may start by running local updating, and if its mixing
behavior is poor, try global updating as well. We do remark, however, that
when the state space X is continuous, there is seldom any alternative to local
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updating. In addition, with continuous X, local updating must in general be
carried out by a Metropolis-Hastings step, as the full conditional distribution
seldom lends itself to direct simulation (see Section 6.3). The next example
demonstrates a somewhat more complicated use of the single site Gibbs sam-
pling strategy.

Example 13.1.12 (Capture-Recapture, Continued). Let us now con-
sider Gibbs simulation from the posterior distribution of the parameters in the
capture-recapture model of Example 1.3.4. The parameters are divided into
(a) the capture probabilities pk(i), indexed by the capture zone i (i = 1, 2, 3),
and (b) the movement probabilities qk(i, j) (i, j = 1, 2, 3, †), which are the
probabilities that the lizard is in zone j at time k + 1 given that it is in zone
i at time k. For instance, the probability qk(†, †) is equal to 1, because of the
absorbing nature of †. We also denote by ϕk(i) the survival probability at time
k in zone i, that is,

ϕk(i) = 1− qk(i, †) ,
and by ψk(i, j) the effective probability of movement for the animals remaining
in the system, that is,

ψk(i, j) = qk(i, j)/ϕk(i) .

If we denote ψk(i) = (ψk(i, 1), ψk(i, 2), ψk(i, 3)), the prior distributions are
chosen to be

pk(i) ∼ Be(a, b), ϕk(i) ∼ Be(α, β), ψk(i) ∼ Dir3(γ1, γ2, γ3) ,

where the hyperparameters a, b, γ1, γ2, γ3 are known.
The probabilities of capture pk(i) depend on the zone of capture i and

the missing data structure of the model, which must be taken into account.
Slightly modifying the notations of Example 1.3.4, we let y∗

km be the position
of animal m at time k and xkm its capture indicator, the observations can
be written in the form ykm = xkmy∗

km, where ykm = 0 corresponds to a
missing observation. The sequence of y∗

km for a given m then corresponds
to a non-homogeneous Markov chain, with transition matrix Qk = (qk(i, j)).
Conditionally on y∗

km, the Xkm then are Bernoulli variables with probability
of success pk(y∗

km).
The Gibbs sampler associated with this model has the following steps.

Algorithm 13.1.13.

1. Simulate y∗
km for sites such that xkm = 0.

2. Generate (0 ≤ k ≤ n)

pk(i) ∼ Be(a + uk(i), b + vk(i)) ,
ϕk(m) ∼ Be(α + wk(i), β + wk(i, †)) ,
ψk(i) ∼ Dir3(γ1 + wk(i, 1), γ2 + wk(i, 2), γ3 + wk(i, 3)) ,
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where uk(i) denotes the number of captures in i at time k, vk(i) the number
of animals unobserved at time i for which the simulated ykm is equal to i,
wk(i, j) the number of passages (observed or simulated) from i to j, wk(i, †)
the number of (simulated) passages from i to †, and

wk(i) = wk(i, 1) + wk(i, 2) + wk(i, 3) .

Step 1. must be decomposed into conditional sub-steps to account for the
Markovian nature of the observations; in a full Gibbs strategy, y∗

km can be
simulated conditionally on y∗

(k−1)m and y∗
(k+1)k when xkm = 0. If k �= n, the

missing data are simulated according to

P(y∗
km = j | y∗

(k−1)m = i, y∗
(k+1)m = �, xkm = 0) ∝ qk−1(i, j)(1− pk(j))qk(j, �)

and
P(y∗

nm = j | y∗
(n−1)m = i, xnm = 0) ∝ qn−1(i, j)(1− pn(j)) .

�

So far, we have dealt with MCMC algorithms for which the state space of
the sampler consists of the parameter θ and the hidden chain X0:n; both are
random, unobserved quantities—θ because we are in a Bayesian framework
and X0:n because of its role in the model as a latent variable. However, it is
quite possible to devise MCMC algorithms for which the sampler state space
comprises θ alone and not the hidden chain. In particular, when the state space
X of the hidden chain is finite, we know that the likelihood may be computed
exactly. In such a case the completion step, that is, the simulation of X0:n,
does not appear as a necessity any longer, and alternative Metropolis-Hastings
steps can be used instead.

Example 13.1.14 (Normal HMM, Continued). In Cappé et al. (2003),
the simulation of the parameters of the normal components, as well as of
the parameters of the transition probability matrix, was done through simple
random walk proposals: for the means µj the proposed move is

µ′
j = µj + εi ,

where εi ∼ N(0, τµ) and τµ is a parameter that may be adjusted to optimize
performance of the sampler. Because the proposal is symmetric, the accep-
tance ratio is simple; it is

π(θ′)L(y0:n|θ′)
π(θ)L(y0:n|θ)

,

where L is the likelihood computed via the forward algorithm (Section 5.1.1).
For the variances σ2

j , the proposed move is a multiplicative random walk

log σ′
j = log σj + εj ,

where εj ∼ N(0, τσ), with acceptance ratio
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π(θ′)L(y0:n|θ′)
π(θ)L(y0:n|θ)

∏
j

σ′
j

σj
,

the last term being the ratio of the Jacobians incurred by working on the log-
scale. To describe the above proposal, we also sometimes say that σ′

j follows
a log-normal LN(log σj , τσ) distribution.

In the case of the transition probability matrix, Q, the move is slightly
more involved due to the constraint on the sums of the rows, Q being a
stochastic matrix. Cappé et al. (2003) solved this difficulty by reparameteriz-
ing each row (qi1, . . . , qir) as

qij =
ωij∑
� ωi�

, ωij > 0 ,

so that the summation constraint on the qij does not hinder the random walk.
Obviously the ωij are not identifiable, but as we are only interested in the qij ,
this is not a true difficulty. On the opposite, using overparameterized represen-
tations often helps with the mixing of the corresponding MCMC algorithms,
as they are less constrained by the data set or the likelihood. The proposed
move on the ωij is

logω′
ij = logωij + εij ,

where εij ∼ N(0, τω), with acceptance ratio

π(θ′)L(y0:n|θ′)
π(θ)L(y0:n|θ)

∏
i,j

ω′
ij

ωij
.

Note that this reparameterization of the model forces us to select a prior
distribution on the ωij rather than on the qij . The choice ωij ∼ Ga(δj , 1) is
natural in that it gives a Dirr(δ1, . . . , δr) distribution on the corresponding
(qi1, . . . , qir). We also note that it is not difficult to show that if (ωi1, . . . , ωir) is
reparameterized into Si =

∑r
1 ωij and (qi1, . . . , qir), then, given x0:n, Si and

(qi1, . . . , qir) are conditionally independent and distributed as Ga(
∑r

1 δj , 1)
and Dirr(δ1+ni1, . . . , δr +nir) respectively. This proves that the ω-parameter-
ization does nothing but introduce a new parameter for each row, the sum
Si, that is independent of everything else and hence totally irrelevant for the
inference. The point of introducing this extra variable is only to simplify the
design of Metropolis-Hastings moves. If the initial distribution ν is also a
parameter of the model, it can be recast in a similar fashion.

Figure 13.1 provides an illustration of this simulation scheme in the special
case of a Gaussian HMM with zero means. Over the 2,000 MCMC iterations
represented on both graphs, there are periods where the value of the σi or
of the stationary probabilities of Q do not change: these periods correspond
to sequences of proposed values that are rejected at the Metropolis-Hastings
stage. Note that the rejection periods are not the same for the σi and the
stationary probabilities. This is due to the fact that there is a Metropolis-
Hastings stage for each group of parameters. �
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Another alternative stands at the opposite end of the range of possibilities:
the parameters of the model can be integrated out when conjugate priors are
used, as demonstrated by Liu (1994), Chen and Liu (1996), and Casella et al.
(2000) in the case of mixture and switching regression models. In such schemes,
each site Xk is typically sampled conditionally on all the other sites, with the
model parameters fully integrated out.

13.2 Reversible Jump Methods

So far we have not touched upon the topic of the unknown number of states
in an HMM and of the estimation of this number via Bayesian procedures.
After a short presentation of variable dimension models and of their meaning,
we introduce the adequate MCMC methodology to deal with this additional
level of complexity.

13.2.1 Variable Dimension Models

In general, a variable dimension model is, to quote Peter Green, a “model
where one of the things you do not know is the number of things you do not
know”. In other words, this pertains to a statistical model where the dimension
of the parameter space is not “known”. This is not a formal enough definition,
obviously, and we need to provide a more rigorous perspective.

Definition 13.2.1 (Variable Dimension Model). A variable dimension
model is defined as a collection of models (or parameter spaces),

Θr, r = 1, . . . , R ,

associated with a collection of priors on these spaces,

πr(θr), r = 1, . . . , R ,

and a prior distribution on (the indices of) these spaces,

&(r), r = 1, . . . , R .

In the following, we shall consider that a variable dimension model is
associated with a probability distribution on the space

Θ =
R⋃

r=1

{r} ×Θr , (13.9)

where the union is of course one of disjoint sets. An element θ of Θ may thus
always be written as θ = (r, θr), where θr is an element of Θr. Obviously, this
convention is somewhat redundant, as we generally know by looking at the
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second component of θ to which of the sets in (13.9) θ belongs, but it will
greatly simplify matters from a notational point of view. The target density
will be denoted by

π(θ) = π(r, θr) = &(r)πr(θr) .

In order to avoid tedious (but straightforward) constructions, we do not fully
specify the dominating measure used for defining the above density, and we
will also, when needed and unambiguous from the context, use the notation
π(dθ) to refer to the probability measure itself. On the individual parameter
spaces Θr, we denote the dominating measure by dθr as previously.

For HMMs, the space Θr is in general that of parameters for HMMs with
r states for the hidden Markov chain. We remark that strictly speaking, a
model is not identical to a parameter space, as the parameter space alone
does not tell anything about the model structure. Two completely different
models could well have identical parameter spaces. In the development below,
this distinction between model and parameter space is not important however,
and we will work with the parameter spaces only.

In the Bayesian framework exposed above, the dimension r of the model
is treated as a usual parameter. The aim is to address the two problems
of testing—deciding which model is best—and estimation—determining the
parameters of the best fitting model—simultaneously. Conceptually, a variable
dimension model is more complicated only because the prior and posterior
distributions live in the space Θ defined in (13.9), whose structure is quite
complex. Interestingly, by integrating out the index part of the model, we
simply end up with mixture representations both for the distribution of the
data,

R∑
r=1

&(r)p(y) ,

and for the predictive distribution (given observations yobs)

R∑
r=1

&(r|yobs)
∫

p(y|θr)πr(θr|yobs) dθr .

This mixture representation, called model averaging in the Bayesian literature,
is interesting because it suggests the use of predictors that are not obtained
by selecting a particular model from the R possible ones but rather consist in
taking all the options into account simultaneously, weighting them by their
posterior odds &(r|yobs). The variability due to the selection of the model is
thus accounted for.

Note also that in defining the variable dimension model, we have chosen
a completely new set of parameters for each model Θr and set the parameter
space as the union of the model parameter spaces Θr, even though some
parameters may have a similar meaning in two different models. For instance,
when comparing an AR(p) and an AR(p+ 1) model, it could be posited that
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the first p autoregressive coefficients would remain the same for the AR(p) and
AR(p + 1) models, i.e., that an AR(p) model is simply an AR(p + 1) model
with an extra zero coefficient. We argue on the opposite that they should be
distinguished as entities because the models are different and also because,
for instance, the best fitting AR(p + 1) model is not necessarily a straight
modification of the best fitting AR(p) model by adding an extra term while
keeping the other ones fixed. Similarly, even though the variance σ2 has the
same formal meaning for all values of p in the autoregressive case, we insist
on using a different variance parameter for each value of p.

This is not the only possible perspective on this problem however, and
many prefer to use some parameters common to all models in order to re-
duce model and computational complexity. In some sense, the reversible jump
technique to be discussed in Section 13.2.3 is based on this assumption of
exchangeable parameters between models, using proposal distributions that
modify only a part of the parameter vector to move between models.

Given a variable dimension model, there is an additional computational
difficulty in representing, or simulating from, the posterior distribution in that
a sampler must move both within and between models Θr. Although the former
pertains to previous developments (Section 13.1.4), the latter requires a sound
measure-theoretic basis to lead to correct MCMC moves, that is, to moves
that validate π(θ|y0:n) as the stationary distribution of the simulated Markov
chain. There have been several earlier approaches in the literature, using for
instance birth-and-death processes (Geyer and Møller, 1994) or pseudo-priors
(Carlin and Chib, 1995), but the general formalization of this problem has
been realized by Green (1995).

13.2.2 Green’s Reversible Jump Algorithm

Green’s (1995) algorithm is basically of Metropolis-Hastings type with spe-
cific trans-dimensional proposals carefully designed to move between different
models in a way that is consistent with the desired stationary distribution of
the MCMC algorithm. We discuss here only the simplest, and more common,
application of Green’s ideas in which the moves from higher to lower dimen-
sional models are deterministic and refer to Green (1995) or Richardson and
Green (1997) for more involved proposals.

We describe below the structure of moves between two different models
Θs and Θl, where Θl say is of larger dimension than is Θs (“s” is for small
and “l” for large). If the Markov chain is currently in state θs ∈ Θs, Green’s
algorithm uses an auxiliary random variable, which we denote by v, and a
function m that maps the pair (θs, v) into a proposed new state θl ∈ Θl. The
only requirement is that m be differentiable with an inverse mapping m−1

that is also differentiable. If (θs, v) is the point that corresponds to θl trough
m−1, we will use the notations

θs = m−1
param(θl) and v = m−1

aux(θl)
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for the associated projections of m−1(θl). The reverse move from Θl to Θs

is deterministic and simply consists in jumping back to the point θs =
m−1

param(θl). Obviously, this dimension-changing move alone may fail to ex-
plore the whole space, and it is necessary to propose usual fixed dimension
moves as well as these trans-dimensional moves. For the moment we can ig-
nore this fact however, as we are going to show that the trans-dimensional
move alone is π reversible. We shall assume that when in state θs ∈ Θs, the
move to Θl is attempted with probability Ps,l and that the auxiliary variable
v has a density p. Conversely, when in Θl, the move to Θs is attempted with
probability Pl,s. The moves are then accepted with probability α(θs, θl) in the
first case and α(θl, θs) in the second one, where it is understood that the chain
stays in its current state in case of rejection.

To determine the correct form of the acceptance probability α, we will
check that the transition kernel corresponding to the mechanism described
above does satisfy the detailed balance condition (2.12) for the target π. A
first remark is that given the structure of the state space Θ, which is a union
of disjoint sets, one can fully specify probability distributions on Θ by their
operation on test functions f̄q of the form

f̄q(θ) = f̄q(r, θr) =
{

0 if r �= q ,
fr(θr) otherwise ,

(13.10)

for some q = 1, . . . , R and fq ∈ Fb (Θq). For such a test function,

Eπ(f̄q) = &(q)
∫

Θq

fq(θq)πq(θq) dθq .

The second important remark is that when examining the proof of the re-
versibility of the usual Metropolis-Hastings algorithm (Proposition 6.2.6), it
is seen that the form of the acceptance probability α is entirely determined by
what happens when the chain really moves. The part that concerns rejection
is fully determined by the fact that the transition kernel must be a probability
kernel, that is, integrate to unity. Hence, in the case under consideration, we
may check the detailed balance condition for test functions of the form given
in (13.10) only, with q = s and q = l. We will denote these functions by f̄s

and f̄l respectively (with associated functions fs ∈ Fb (Θs) and fl ∈ Fb (Θl)).
Denoting by K the transition kernel associated with the move between Θs

and Θl described above, we have∫∫
f̄s(θ)π(dθ)×K(θ, dθ′)f̄l(θ′) =∫

&(s)πs(θs)fs(θs)
{∫

Ps,l α[θs,m(θs, v)]p(v)fl[m(θs, v)] dv
}
dθs .

Now apply the change of variables formula to replace the pair (θs, v) by θl.
This yields
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f̄s(θ)π(dθ)×K(θ, dθ′)f̄l(θ′) =∫
fs[m−1

param(θl)]fl(θl)&(s)πs(m−1
param(θl))

Ps,lα(θs, θl)p[m−1
aux(θl)]

Js,l(θl)
dθl ,

(13.11)

where Js,l(θl) is the absolute value of the determinant of the Jacobian matrix
associated with the mapping m. It may be evaluated either as

Js,l(θl) =
∣∣∣∣∂m(θs, v)
∂(θs, v)

∣∣∣∣
(θs,v)=m−1(θl)

or

Js,l(θl) =
∣∣∣∣∂m−1(θl)

∂θl

∣∣∣∣−1

.

Because the reverse move is deterministic, the opposite case is much simpler
and∫∫

f̄l(θ)π(dθ)×K(θ, dθ′)f̄s(θ′) =∫
&(l)πl(θl)fl(θl)

{
Pl,sα[θl,m

−1
param(θl)]fs[m−1

param(θl)]
}
dθl . (13.12)

To ensure that (13.11) and (13.12) coincide for all choices of the functions fs

and fl, the acceptance probability must satisfy

&(s)πs(θs)Ps,lp(v)
Js,l(θl)

α(θs, θl) = &(l)πl(θl)Pl,sα(θl, θs) , (13.13)

where it is understood that θs, θl and v satisfy θl = m(θs, v). By analogy with
the case of the usual Metropolis-Hastings algorithm, it is possible to find a
solution to the above equation of the form

α(θs, θl) = A(θs, θl) ∧ 1 and α(θl, θs) = A−1(θs, θl) ∧ 1

by setting

A(θs, θl) =
&(l)πl(θl)Pl,s

&(s)πs(θs)Ps,lp(v)
Js,l(θl) . (13.14)

Indeed, with this choice both sides of (13.13) evaluate to

&(l)πl(θl)Pl,s ∧
&(s)πs(θs)Ps,lp(v)

Js,l(θl)
.

Thus (13.14) defines the applicable acceptance ratio to be used with
Green’s reversible jump move. At this level the formulation of Green’s al-
gorithm is rather abstract, but we hope it will be more clear after studying
the following example.
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Example 13.2.2 (Normal HMM, Continued). We shall extend Exam-
ple 13.1.14 to allow for moving between HMMs of different orders using
reversible jump MCMC. We will discuss two different kinds of dimension-
changing moves, or, rather, pair of moves: birth/death and split/combine. In
a birth move, the order of the Markov chain is increased by one by adding a
new state, and the death move works in the reverse way by deleting an exist-
ing state. The split move takes an existing state and splits it in two, whereas
the combine (also called merge) move takes a pair of states and tries to com-
bine them into one. We will now in detail describe these moves and how their
acceptance ratios are computed.

We start with the birth move. Suppose that the current MCMC state is
(r, θr), and that we attempt to add a new state, that we denote by i0, to the
HMM. We first draw the random variables

µi0 ∼ N(α, β), σ2
i0
∼ IG(κ, γ),

ωi0,j ∼ Ga(δj , 1) for j = 1, . . . , r, ωi,i0 ∼ Ga(δi0 , 1) for i = 1, . . . , r,

ωi0,i0 ∼ Ga(δi0 , 1),

all independently. In other words, the parameters that go with the new state
are drawn from their respective priors. These parameters correspond to the
auxiliary variable vbirth for the birth move. The remaining parameters, that
is, the components of θr, are simply copied to the proposed new state θr+1.
Therefore, the corresponding mapping mbirth is simply the identity; no par-
ticular transformation is required to obtain the proposed new state in Θr+1.
In the death move, the attempted move is to delete a state, denoted by i0,
that is chosen at random. The auxiliary variables µi0 , etc., of the associated
birth move are trivially recovered; they are just components of the state i0
that is proposed to be deleted!

Next in turn is the computation of the acceptance ratio, which is in fact
quite simple in this particular case. Because the mapping mbirth is the iden-
tity mapping, its Jacobian is the identity matrix, with determinant one. The
remaining factors of (13.14) become

&(r + 1)πr+1(θr+1)L(y0:n|θr+1)(r + 1)!
&(r)πr(θr)L(y0:n|θr)r!

× Pd(r + 1)/(r + 1)
Pb(r)

× 1
pµ(µi0)pσ2(σ2

i0
)
∏r

i=1 pω(ωi,i0)
∏r

j=1 pω(ωi0,j)pω(ωi0,i0)
. (13.15)

This ratio deserves some further comments. The first factor is the ratio of
posterior densities. The factorials arise from the fact that, as the prior is
exchangeable—the prior as well as the posterior are invariant under permu-
tations of states—we cannot distinguish between parameters that are identi-
cal up to such permutations. Thus our effective parameter space for r-order
HMMs is that of equivalence classes of parameters that are identical up to
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permutations, and the prior of such an equivalence class is r! times the origi-
nal prior of one of its representations (cf. Section 13.1.3). When r stays put,
this distinction between a parameter and its equivalence class is unimportant,
but it becomes important when r is allowed to vary as ignoring it would lead
to incorrect acceptance ratios.

The remaining factors in (13.15) are as follows: Pb(r) is the probability of
proposing a birth move when the current state is of order r, Pd(r + 1) is the
probability of proposing a death move when the current state is of order r+1,
so that Pd(r + 1)/(r + 1) is the probability of proposing to kill the specific
state i0 of θr+1, and the product of densities pµ, pσ2 and pω forms the joint
proposal density pbirth of the birth move.

Now, because the proposal densities pµ, etc., are identical to the priors of
the corresponding parameters, and because the components in θr remain the
same in θr+1, there will be cancellations in (13.15), leading to the simplified
expression

&(r + 1)L(y0:n|θr+1)
&(r)L(y0:n|θr)

× Pd(r + 1)
Pb(r)

. (13.16)

The acceptance ratio for the death move is the inverse of the above, which
completes the description of the birth/death move.

We now turn to the split/combine move. Starting with the split move,
suppose that the current MCMC state is θr, of order r. The split move selects
a state, i0 say, and attempts to split it into two new ones, i1 and i2. The
parameters of the corresponding normal distribution must be “split” as well.
This can be done as follows.

(i) Split µi0 as

µi1 = µi0 − σi0εµ, µi2 = µi0 + σi0εµ, with εµ ∼ N(0, τ ′
µ),

and split σ2
i0

as

σ2
i1 = σ2

i0ξσ, σ2
i2 = σ2

i0/ξσ, with ξσ ∼ LN(0, τ ′
σ).

(ii) Split column i0 as

ωi,i1 = ωi,i0ui, ωi,i2 = ωi,i0(1− ui), with ui ∼ U(0, 1) for i �= i0.

(iii) Split row i0 as

ωi1,j = ωi0,jξj , ωi2,j = ωi0,j/ξj , with ξj ∼ LN(0, τ ′
ω) for j �= i0.

(iv) Split ωi0,i0 as

ωi1,i1 = ωi0,i0ui0ξi1 , ωi1,i2 = ωi0,i0(1− ui0)ξi2 ,

ωi2,i1 = ωi0,i0ui0/ξi1 , ωi2,i2 = ωi0,i0(1− ui0)/ξi2 ,

where ui0 ∼ U(0, 1) and ξi1 , ξi2 ∼ LN(0, τ ′
ξ).
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These formulas deserve some comments. Step (ii) is sensible in the way that
the transition probability of moving from state i to i0 is distributed between
the probabilities of moving to the new states i1 and i2, respectively. We note
that state i0 can be split into states (i1, i2) with corresponding normal param-
eters (µi1 , σ

2
i1

) and (µi2 , σ
2
i2

), but also into the same pair but in reverse order
(the corresponding ω are then also reversed). This gives an identical param-
eter in terms of equivalence classes as defined above. In fact, the densities of
these two proposals are identical, as u and 1− u have the same distribution,
and likewise for ε and −ε, and ξ and 1/ξ, respectively (here subscripts on
these variables are omitted).

The move that reverses the above operations, that is, the combine move,
goes as follows. Select two distinct states i1 and i2 at random, and attempt
to combine them into a single state i0 as follows.

(i’) Let µi0 = (µi1 + µi2)/2 and let σ2
i0

= (σ2
i1
σ2

i2
)1/2.

(ii’) Let ωi,i0 = ωi,i1 + ωi,i2 for i �= i0.
(iii’) Let ωi0,j = (ωi1,jωi2,j)1/2 for j �= i0.
(iv’) Let ωi0,i0 = (ωi1,i1ωi2,i1)

1/2 + (ωi1,i2ωi2,i2)
1/2.

Along the way, we recover the values of the auxiliary variables of the split
move.

The auxiliary variables εµ, ξσ, etc., constitute the vector vsplit of the split
move. The mapping msplit is not the identity, as for the birth move, but
rather given by steps (i)–(iv) above. We will now detail the computation of
the corresponding Jacobian and its determinant. The transformation we need
to examine is thus the one taking the components of an rth order parameter
θr and the auxiliary variables into an (r + 1)-th order parameter θr+1 by a
split move. In this transformation most components, namely all that are not
associated with state i0 that is split, are simply copied to the new parameter
θr+1, and they do not affect any of the other components of θr+1. Thus the
Jacobian will be block diagonal with respect to these components, and the
block corresponding to the copied components is an identity matrix. In effect,
this means that the Jacobian determinant equals the Jacobian determinant
associated with the components actually involved in the split only. Analyzing
this part closer, we find further structure implying diagonal blocks, namely
the structure found in steps (i)–(iv) above. The sets of parameters and aux-
iliary variables involved in each of these steps are disjoint, meaning that the
Jacobian will be block diagonal with respect to the structure of the steps and
its determinant will be the product of the determinants given by each of the
steps.

(i) For this step, taking (µi0 , εµ, σ
2
i0
, ξσ) into (µi1 , µi2 , σ

2
i1
, σ2

i1
), the Jacobian

is ⎛⎜⎜⎝
1 σi0 εµ/2σi0 0
1 −σi0 −εµ/2σi0 0
0 0 ξσ σ2

i0
0 0 1/ξσ −σ2

i0
/ξ2

σ

⎞⎟⎟⎠ ,
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given that we differentiate with respect to σ2
i0

, not σi0 . The (modulus of
the) determinant of this matrix is 4σ3

i0
/ξσ.

(ii) For this step, the Jacobian is further block diagonal with respect to each
i �= i0. For each such i, the step takes (ωi,i0 , ui) into (ωi,i1 , ωi,i2), with
Jacobian (

ui 1− ui

ωi,i0 −ωi,i0

)
and (modulus of the) determinant ωi,i0 . The overall Jacobian determi-
nant of this step is thus

∏
i�=i0

ωi,i0 .
(iii) For this step, the Jacobian is also further block diagonal with respect to

j �= i0. For a specific j, the step takes (ωi0,j , ξj) into (ωi1,j , ωi2,j), with
Jacobian (

ξj 1/ξj

ωi0,j −ωi0,j/ξ
2
j

)
and (modulus of the) determinant 2ωi0,j/ξj . The overall Jacobian deter-
minant of this step is thus 2r−1 ∏

j �=i0
ωi0,j/ξj .

(iv) For this step, taking (ωi0,i0 , ui0 , ξi1 , ξi2) into (ωi1,i1 , ωi1,i2 , ωi2,i1 , ωi2,i2),
the Jacobian is⎛⎜⎜⎝

ui0ξi1 (1− ui0)ξi2 ui0/ξi1 (1− ui0)/ξi1

ωi0,i0ξi1 −ωi0,i0ξi2 ωi0,i0/ξi1 −ωi0,i0/ξi2

ωi0,i0ui0 0 −ωi0,i0ui0/ξ
2
i1

0
0 ωi0,i0(1− ui0) 0 −ωi0,i0(1− ui0)/ξ

2
i2

⎞⎟⎟⎠ .

Some algebra shows that the (modulus of the) determinant of this matrix
is 4ω3

i0,i0
ui0(1− ui0)/ξi1ξi2 .

Finally we arrive at the overall Jacobian determinant (in absolute value) of
the split move,

Jsplit =

∣∣∣∣∣∣2r+3σ
3
i0
ω3

i0,i0
ui0(1− ui0)

ξσξi1ξi2

∏
i�=i0

ωi,i0

∏
j �=i0

ωi0,j

ξj

∣∣∣∣∣∣ .

The acceptance ratio for the split/combine move is thus

&(r + 1)πr+1(θr+1)L(y0:n|θr+1)(r + 1)!
&(r)πr(θr)L(y0:n|θr)r!

× Pc(r + 1)/[(r + 1)r/2]
Ps(r)/r

× 1
2pεµ(εµ)pξσ (ξσ)pξi1

(ξi1)pξi2
(ξi2)

∏
j �=i0

pξj (ξj)
× Jsplit

=
&(r + 1)πr+1(θr+1)L(y0:n|θr+1)

&(r)πr(θr)L(y0:n|θr)
× Pc(r + 1)

Ps(r)

× 1
pεµ(εµ)pξσ (ξσ)pξi1

(ξi1)pξi2
(ξi2)

∏
j �=i0

pξj (ξj)
× Jsplit .
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Here Ps(r)/r and Pc(r + 1)/[(r + 1)r/2] are the probabilities to propose to
split a specific component out of r and to propose to combine a specific pair
out of (r+1)r/2 (the number of pairs selected from r+1 items) possible ones,
respectively. For the auxiliary variable densities, we note that the uniform
variables involved have densities equal to unity, and that the factor 2 arises
from the above observation that there are two different combinations of auxil-
iary variables that have equal density and that result in identical parameters
after the split. The acceptance rate for the combine move is the inverse of the
above.

Just as for MCMC algorithms with fixed r, several types of moves are
typically put together into a sweep. For the current algorithm, a sweep may
look as follows.

(a) Update the means µi while letting r stay fixed.
(b) Update the variances σ2

i while letting r stay fixed.
(c) Update the ωij while letting r stay fixed.
(d) Propose a birth move or a death move, with probabilities Pb(r) and Pd(r),

respectively.
(e) Propose a split move or a combine move, with probabilities Ps(r) and

Pc(r), respectively.

Obviously, Pb(r) + Pd(r) = 1 and Ps(r) + Pc(r) = 1 must hold for all r.
Typically, all these probabilities are set to 1/2, except for Pb(1) = Ps(1) = 1,
Pd(1) = Pc(1) = 0, Pb(R) = Ps(R) = 0, and Pd(R) = Pc(R) = 1, where R
is the maximum number of states allowed by the prior. Steps (a)–(c) above
may be accomplished by Metropolis-Hastings steps as in Example 13.1.14 but
may also be done by completing the data through simulation of the hidden
chain X0:n followed by a Gibbs step for updating µi and σ2

i conditional on
both the data and the hidden chain. The ωij may also be updated this way,
by simulating the row sums and the qij separately and then computing the
corresponding ωij . �

The above reversible jump MCMC algorithm was implemented and run on
a data set consisting of 600 monthly returns (in percent) from the Japanese
stock index Nikkei over the time period 1950–1999; Graflund and Nilsson
(2003) contains a fuller description of this time series as well as an ML-based
statistical analysis using the normal HMMs. The mean of the data was 1.14,
and its minimal and maximal values were –29.8 and 24.6, respectively. In our
implementation, we put a uniform prior on r over the range 1, 2, . . . , R with
R = 10, and took α = 0, β = 40, κ = 1, γ = 2, and δj = 1 for all j.
Updating of the µi and the σ2

i for fixed r was done through imputation of
the hidden chain followed by Gibbs sampling, whereas the ωij were updated
through a N(0, 0.12) increment random walk Metropolis-Hastings proposal
on each logωij . The birth, death, split, and combine proposal probabilities
Pb(r), etc., were all set to 1/2 with the aforementioned modifications at the
boundaries r = 1 and r = R. In the split move, we used τ ′

µ = τ ′
σ = τ ′

ω = 0.5.
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The algorithm was run for 100,000 burn-in sweeps and then for another
2,000,000 sweeps during which its output was monitored. The acceptance rate
for the update-ωij move, the split/combine move, and the birth/death move
was about 34%, 1.8%, and 1.4%, respectively. A higher rate for the dimension-
changing moves would indeed be desirable, and this could perhaps be achieved
with modified moves. We did some experimentation with other values for κ,
γ, and the τ ′, but without obtaining much variation in the acceptance rates.

The estimated posterior probabilities for r were 0.000, 0.307, 0.500, 0.156,
0.029, 0.006, and 0.001 for r = 1, 2, . . . , 7 and below 0.001 for larger r. Graflund
and Nilsson (2003) estimated the same kind of HMM from the data but using
ML implemented through simulated annealing, arriving at the estimated p-
value 0.60 for testing r = 2 vs. r = 3. They thus adopted r = 2 as their order
estimate, whereas the reversible jump MCMC analysis above gives the largest
posterior probability for r = 3. However, our particular choice of prior may
have a substantial effect on the posterior for r, and a Bayes factor analysis,
which we did not carry out, may also give a different conclusion. Indeed,
hierarchical priors are often used to attenuate the effect of the prior on the
posterior (Richardson and Green, 1997; Robert et al., 2000). We stress that the
algorithm outlined above should be viewed as an example of a reversible jump
MCMC algorithm that may be modified and tuned for different applications,
rather than as a “ready-to-use” algorithm that suits every need. As another
example of posterior analysis, we extracted the MCMC samples with r = 2
components, permuted the component indices for each such sample to make
the means µi sorted (there was label switching in the MCMC output), and
computed the posterior means: µ1 = 0.755 and µ2 = 1.568. This is to be
compared to the MLEs µ̂1 = 0.847 and µ̂2 = 1.531 reported by Graflund and
Nilsson (2003). The credibility intervals we obtained were quite wide; the 95%
intervals for µ1 and µ2 (after sorting) read (−0.213, 1.460) and (1.102, 2.074)
respectively, both covering the respective MLE.

13.2.3 Alternative Sampler Designs

Reversible jump MCMC algorithms have in common with more conventional
Metropolis-Hastings algorithms that they generally contain some parameters
that need to be “fine tuned” in order to optimize their performance. In the
example above, these parameters are τ ′

µ, τ ′
σ and τ ′

ω. Often the only way to
do this fine tuning is through a set of pilot runs during which acceptance
probabilities and other statistics related to the mixing of the algorithm are
monitored.

For any particular variable-dimension statistical model, there is an infinite
number of ways of designing reversible jump algorithms. The above example is
only one of them for the normal HMM. Other structures of the split/combine
move, for instance, may prove more efficient with certain combinations of
priors and/or data. Designing a reversible jump algorithm is by no means an
automated procedure but needs to be guided by experimentation and, when
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available, experience. The recent paper by Brooks et al. (2003) does outline,
however, some general ideas about how to construct efficient reversible jump
algorithms by setting up rules to calibrate the jump proposals.

Above, we motivated the factorial r! that is adjoined to the posterior den-
sity by an argument based on equivalence classes of parameters. Richardson
and Green (1997) motivated them by saying that the actual parameter space
is the one only containing parameters such that the normal means, for in-
stance, appear in ascending order: µ1 < µ2 < . . . < µr, cf. Section 13.1.3. We
note that sorting of this kind may become necessary even without restrictions
on the prior, as we have seen that with an exchangeable prior, the marginal
posterior densities of the means, for example, are generally identical. We pre-
fer to view such sorting as a part of the post-processing of the MCMC sampler
output, however, rather than as an intrinsic property of the algorithm itself.
Sorting afterwards simplifies, for example, examination of how sorting with
respect to different sets of parameters (means or variances, for example) affect
the inference.

As a consequence of the assumption of sorted means, Richardson and
Green (1997) also restrict the split move, disallowing it to separate the nor-
mal means so far apart that the ordering is violated, and the combine move is
restricted accordingly in that it may only attempt to combine states with ad-
jacent normal means. We make some comments on this approach. The first is
that this restriction on the split/combine move is by no means necessary; if a
split move violates the ordering, we can view that parameter as the equivalent
one obtained upon sorting the means followed by a corresponding permutation
of the remaining coordinates. The combine move is then allowed to attempt
merging any pair of states. A second comment is that the above restriction on
the split and combine moves may prove useful, even when we do not make any
restrictions on the prior. With r states, there are r(r− 1)/2 different pairs to
combine, and one can imagine that pairs with means (or variances) far apart
are less likely to generate a successful combine move. Therefore, restricting
the combine move to consider states with adjacent means (or variances) only
may lead to an increased acceptance probability for this move. If this strategy
is adopted, the split move must be restricted accordingly, as the split/combine
pair (as all other pairs) must be reversible: what one move may do the other
one must be able to undo.

We also mention the option to include the hidden chain {Xk}k≥0 in the
MCMC state space, that is, adjoining it to the parameter θ. This choice was
made by Richardson and Green (1997) in the setting of mixtures, and followed
up for HMMs by Robert et al. (2000). These papers also provide suggestions
for other designs of split/combine moves. In addition, the latter paper contains
a lot of fine tuning done in the process of increasing acceptance rates. Including
the hidden chain in the MCMC sampler simplifies the computation of the
posterior density, as the likelihood involved is then L(y0:n|x0:n, θr) rather than
L(y0:n|θr), and the former is simply a product of scalars. On the other hand,
in the birth move the new state i0 must be assigned to some Xk and, similarly,
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in the split move each Xk equal to i0 must be relabeled either i1 or i2. The
simulation mechanisms for doing so may be quite complex, cf. (Robert et al.,
2000), and computationally demanding.

13.2.4 Alternatives to Reversible Jump MCMC

Reversible jump MCMC has had a vast impact on variable-dimension Bayesian
inference, but there certainly are some other approaches that deserve to be
discussed.

Brooks et al. (2003) reassess the reversible jump methodology through a
global saturation scheme. They consider a series of models Θr (r = 1, . . . , R)
such that maxr dim(Θr) = rmax < ∞. The parameter θr ∈ Θr is then com-
pleted with an auxiliary variable Ur such that

dim(θr, ur) = rmax

and Ur ∼ qr(ur). Brooks et al. (2003) define in addition a vector ωr of di-
mension rmax with i.i.d. components, distributed from ψ(ωr), and assign the
following joint prior to a parameter in Θr,

π(r, θr) qr(ur)
rmax∏
i=1

ψ(ωi) .

Within this augmented (or saturated) framework, there is no varying dimen-
sion anymore because, for all models, the whole vector (θr, ur, ω) is of fixed
dimension. Therefore, moves between models can be defined just as freely as
moves between points of each model—see also (Godsill, 2001) for a similar
development. Brooks et al. (2003) propose a three stage MCMC update.

Algorithm 13.2.3.

1. Update the current value of the parameter, θr.
2. Update ur and ω conditional on θr.
3. Update the model index r into r′ using the bijection.

(θr′ , ur′) = m(θr, ur) .

Note that, for specific models, saturation schemes appear rather naturally.
For instance, the case of a noisily observed time series with abrupt changes
corresponds to a variable dimension model, when considered in continuous
time (Green, 1995; Hodgson, 1998). Its discrete time counterpart however
may be reparameterized by using indicators Xk that a change occurs at index
k (for all indices) rather than the indices of change points (Chib, 1998; Lavielle
and Lebarbier, 2001). The resulting model is then a fixed dimension model,
whatever the number of change points in the series.

Petris and Tardella (2003) devised an approach that is close to a saturation
scheme in the sense that it constructs a density on the subspace of largest



13.3 Multiple Imputations Methods and Maximum a Posteriori 501

dimension. However, it does not construct the extra variables uk explicitly but
rather embeds the densities on lower dimensional subspaces into a function on
the subspace of largest dimension that effectively incorporates all densities.
This approach has not yet been tested on HMMs.

Reversible jump algorithms operate in discrete time, but similar algorithms
may be formulated in continuous time. Stephens (2000a) suggested such an al-
gorithm, built on birth/death moves only, for mixture distribution, and Cappé
et al. (2003) extended the framework to allow for other kinds of dimension-
changing moves like split/combine. In this continuous time approach, there are
no acceptance probabilities and birth moves are always accepted, but model
parameters that are unlikely, in the sense of having low posterior density, are
assigned large death rates and are hence abandoned quickly. Similar remarks
apply to split/combine moves. Moves that update model parameters without
changing its dimension may also be incorporated. Cappé et al. (2003) also
compared the discrete and continuous time approaches and concluded that
the differences between them are very minor, but with the continuous time
approach generally requiring more computing time.

13.3 Multiple Imputations Methods and Maximum a
Posteriori

We consider in this last section a class of methods, which methods are arguably
less directly connected with the Bayesian framework and which may also be
envisioned as extensions or variants of the approaches discussed in Chapter 11.
Rather than simulating from the posterior distribution of the parameters, we
now consider maximizing it to determine the so-called maximum a posteriori
(or MAP) point estimate. In contrast to the methods of Chapters 10–11,
which could also be used in this context (Remark 10.2.1), the techniques to
be discussed below explicitly use parameter simulation in addition to hidden
state simulation. The primary objective of these techniques is not (only) to
compensate for the lack of exact smoothing computations in many models
of interest, but also to perform some form of random search optimization—
see discussion in the introduction of Chapter 11—which is (hopefully) more
robust to the presence of local maxima in the function to be optimized.

We already mentioned, in conjunction with identifiability issues, the dif-
ficulties in using, in a Bayesian context, marginal posterior means as param-
eter estimates in HHMs. Identifiability can be forced upon the parameter θ
by imposing some artificial identifying constraint such as ascending means, as
mentioned above, or as in Robert and Titterington (1998) for instance. Even
in that case, the posterior mean is a poor candidate for Bayesian inference,
given that it heavily depends on the identifying constraints (see Celeux et al.,
2000, for an illustration in the setting of mixtures). Therefore in many cases,
the remaining candidate is the MAP estimate,
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θ̂MAP = arg maxθ

∫
π(θ, x0:n|y0:n)π(θ, x0:n) dx0:n

= arg maxθ π(θ|y) . (13.17)

As previously discussed, the methods of either Chapter 10 or 11 may be used
to determine the MAP estimator, depending on whether or not the marginal-
ization in (13.17) can be performed exactly. The structure of (13.17) also
suggests a specific class of optimization algorithms which implement the sim-
ulated annealing principle originally proposed by Metropolis et al. (1953).

13.3.1 Simulated Annealing

Simulated annealing methods are a non-homogeneous variant of MCMC al-
gorithms used to perform global optimization. The word “global” is used to
emphasize that the ultimate goal is convergence to the actual maxima of the
function of interest—the so-called global maxima—whether or not the func-
tion does possess local maxima. The terminology is borrowed from metallurgy
where a slow decrease of the temperature of a metal—the annealing process—
is used to obtain a minimum energy crystalline structure. By analogy, sim-
ulated annealing is a random search technique that explores the parameter
space Θ, using a non-homogeneous Markov chain {θi}i≥0 whose transition
kernels Ki are tailored to have invariant probability density functions

πMi
(θ|y0:n) ∝ πMi(θ|y0:n) , (13.18)

{Mi}i≥1 being a positive increasing sequence tending to infinity. The intuition
behind simulated annealing is that as Mi tends to infinity, πMi(θ|y) concen-
trates itself upon the set of global modes of the posterior distribution. It has
been shown under various assumptions that convergence to the set of global
maxima is indeed ensured for sequences {Mi}i≥1 growing at a logarithmic
rate (Laarhoven and Arts, 1987). Using the metallurgic analogy again, the
sequence {Mi}i≥1 is often called a cooling schedule, and the reciprocal of Mi

is known as the temperature.
In simple situations where the posterior π(θ|Y0:n) is known (up to a con-

stant), sampling from a kernel Ki that has (13.18) as invariant density may be
done using the Metropolis-Hastings algorithm (see Section 6.2.3). For HMMs
however, this situation is the exception rather than the rule, and the posterior
is only available in closed form in models where exact smoothing is feasible,
such as normal HMMs with finite state space. To overcome this difficulty,
Doucet et al. (2002) developed a novel approach named SAME (for state aug-
mentation for marginal estimation), also studied by Gaetan and Yao (2003)
under the name MEM (described as multiple-inputed Metropolis version of
the EM algorithm). We adopt here the terminology proposed by Doucet et al.
(2002).
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13.3.2 The SAME Algorithm

The key argument behind SAME is that upon restricting the Mi to be integers,
the probability density function πMi

in (13.18) may be viewed as the marginal
posterior in an artificially augmented probability model. Hence one may use
standard MCMC techniques to draw from this augmented probability model,
and therefore the simulated annealing strategy is feasible for general missing
data models. The concentrated distribution πMi

is obtained by artificially
replicating the latent variables in the model, in our case the hidden states
X0:n.

To make the argument more precise, denote by M the current value of
Mi and consider M artificial copies of the hidden state sequence, denoted by
X0:n(1), . . . , X0:n(M). The fictitious probability model postulates that these
sequences are a priori independent with common parameter θ and observed
sequence Y0:n, leading to a posterior joint density defined by

πM [θ, x0:n(1), . . . , x0:n(M)|y0:n] ∝
M∏

m=1

π[θ, x0:n(m)|y0:n] (13.19)

∝
{

M∏
m=1

p[x0:n(m)|y0:n, θ]

}
π(θ)M ,

where π(·|y0:n) is the joint posterior distribution corresponding to the model,
p(·|y0:n, θ) the likelihood, and π is the prior. This distribution does not corre-
spond to a real phenomenon but it is a properly defined density in that it is
positive, and the right-hand side can be normalized so that (13.19) integrates
to unity.

Now the marginal distribution of θ in (13.19), obtained by integration over
all replications of X0:n, is

πM (θ|y0:n)

=
∫
· · ·

∫
πM [θ, x0:n(1), . . . , x0:n(M)|y0:n] dx0:n(1) · · · dx0:n(M)

∝
∫
· · ·

∫ M∏
m=1

π[θ, x0:n(m)|y0:n] dx0:n(1) · · · dx0:n(M)

= πM (θ|y0:n) .

Hence an MCMC algorithm in the augmented space, with invariant distribu-
tion πM [θ, x0:n(1), . . . , x0:n(M)|y0:n], is such that the simulated sequence of
parameter {θi}i≥0 marginally admits πM in (13.18) as invariant distribution.

An important point here is that when an MCMC sampler is available for
the density π(θ, x0:n|y0:n), it is usually easy to construct an MCMC sam-
pler with target density (13.19) as the replications of X0:n are statistically
independent conditional on θ in this fictitious model, that is,
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πM [x0:n(1), . . . , x0:n(M)|y0:n, θ] =
M∏

m=1

π[x0:n(m)|y0:n, θ] , (13.20)

and for θ, the full conditional distribution satisfies

πM [θ|y0:n, x0:n(1), . . . , x0:n(M)] ∝
M∏

m=1

π[θ|y0:n, x0:n(m)] . (13.21)

According to (13.20), the sampling step for x0:n(k) is identical to its coun-
terpart in a standard data augmentation sampler with target distribution
π[θ, x0:n(k)|y0:n], whereas the sampling step for θ involves a draw from (13.21).
If π(θ|y0:n, x0:n) belongs to an exponential family of densities, then sampling
from (13.21) is straightforward, as the product of conditionals in (13.21) is also
a member of this exponential family. In other cases, (13.21) can be simulated
using a Metropolis-Hastings step—Gaetan and Yao (2003) for instance used
random walk Metropolis-Hastings proposals. For normal HMMs, the SAME
algorithm may be implemented as follows.

Example 13.3.1 (SAME for Normal HMMs). Assume that the state
space X is {1, . . . , r} and that the conditional distributions are normal,
Yk|Xk = j ∼ N(µj , σ

2
j ). Conjugate priors are assumed, that is, µj ∼ N(α, β),

σ2
j ∼ IG(κ, γ) and qj,· ∼ Dirr(δ, . . . , δ) with independence between the µj , the

σ2
j , and the rows of Q. We assume (for simplicity) that the initial distribution

ν is fixed and known. To avoid confusion with simulation indices (which are
indicated by superscripts), we will use the notation υj rather than σ2

j for the
components’ variances.

Examining Example 13.1.10, we find that the full conditional distribution
of the means µj is such that they are conditionally independent with

µj | υj , x0:n(1), . . . , x0:n(M), y0:n (13.22)

∼ N

(
Mαυj/β +

∑M
m=1 Sj(m)

Mυj/β +
∑M

m=1 nj(m)
,

1

M/β +
∑M

m=1 nj(m)/υj

)
,

where Sj(m) =
∑

0≤k≤n: xk(m)=j yk is the sum statistic associated with the
mth replication of X0:n and state j and, similarly, nj(m) = #{0 ≤ k ≤ n :
xk(m) = j} is the number of xk(m) with xk(m) = j.

In an analogous way, we find that the full conditional distribution of the
variances υj is such that they are conditionally independent with

υj |µj , x0:n(1), . . . , x0:n(M), y0:n (13.23)

∼ IG

(
M(κ + 1)− 1 +

1
2

M∑
m=1

nj(m),Mγ +
1
2

M∑
m=1

S
(2)
j (m)

)
,

where S
(2)
j (m) =

∑
0≤k≤n: xk(m)=j(yk − µj)2, and that the full conditional

distribution of Q is such that the rows are conditionally independent with
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(qj1, . . . , qjr) |x0:n(1), . . . , x0:n(M) (13.24)

∼ Dirr

(
M(δ − 1) + 1 +

M∑
m=1

nj1(m), . . . ,M(δ − 1) + 1 +
M∑

m=1

njr(m)

)
,

where njl(m) = #{0 ≤ k ≤ n− 1 : xk(m) = j, xk+1(m) = l} is the number of
transitions from state j to l in the mth replication. Hence the SAME algorithm
looks as follows.

Algorithm 13.3.2. Initialize the algorithm with θ0 =
{
{µ0

j , υ
0
j }j=1,...,r, Q

0
}

and select a schedule {Mi}i≥0. Then for i ≥ 1,

• Simulate the Mi missing data replications Xi
0:n(1), . . . , Xi

0:n(Mi) indepen-
dently under the common distribution π(x0:n|θi−1);

• Simulate µi
1, . . . , µ

i
r independently from the normal distributions (13.22);

• Simulate υi
1, . . . , υ

i
r independently from the inverse Gamma distributions

(13.23), using the newly simulated µi
j to evaluate S

(2)
j (m) for j = 1, . . . , r

and m = 1, . . . ,M ;
• Simulate the rows of Qi independently from the Dirichlet distributions (13.24).

The simulation of the replications Xi
0:n(m) can be carried out using the for-

ward filtering-backward sampling recursion developed in Section 6.1.2. �

It should be clear from the above example that the SAME approach is
strikingly close to the SEM and MCEM methods discussed in Sections 11.1.7
and 11.1.1, respectively. Indeed, taking the log, (13.19) may be rewritten as

log πM [θ, x0:n(1), . . . , x0:n(M)|y0:n] = Cst

+ M

{[
1
M

M∑
m=1

log p(x0:n(m)|y0:n, θ)

]
+ log π(θ)

}
, (13.25)

where the constant does not depend on the parameter θ. The term in braces
in (13.25) is recognized as a Monte Carlo approximation of the intermediate
quantity of EM for this problem, with the addition of the prior term (see
Remark 10.2.1). Hence replacing the parameter simulation step in the SAME
algorithm by a maximization step lead us back to the MCEM approach. In the
example of Algorithm 13.3.2, the MCEM update can be obtained by setting
the new values of the parameter to the modes of (13.22)–(13.24), that is,

µ∗
j =

αυj/β + M−1 ∑M
m=1 Sj(m)

υj/β + M−1
∑M

m=1 nj(m)
,

υ∗
j =

γ + (1/2)M−1 ∑M
m=1 S

(2)
j (m)

(κ + 1) + (1/2)M−1
∑M

m=1 nj(m)
,

q∗
jl =

(δ − 1) + M−1 ∑M
m=1 njl(m)

r(δ − 1) + M−1
∑r

l=1
∑M

m=1 njl(m)
.
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These equations can also be obtained from the M-step update equations
(10.41)–(10.43) of the EM algorithm for the normal HMM, taking into account
the prior terms and replacing the posterior expectations by their Monte Carlo
approximation. It is also of interest that the distributions (13.22)–(13.24),
from which simulation is done in the SAME approach, have variances that
decrease proportionally to 1/M ; hence the distributions get more and more
concentrated around the modes given above as the number of replications
increases.

The interest of SAME, however, is that it exactly implements the simu-
lated annealing principle for which a number of convergence results have been
obtained in the literature. In particular, both Doucet and Robert (2002) and
Gaetan and Yao (2003) provide some conditions under which the distribution
of the ith parameter estimate θi converges to a measure that is concentrated on
the set of global maxima of the marginal posterior. Although very appealing,
these results do imply restrictive conditions on the model, requiring in partic-
ular that the likelihood be bounded from above and below. In addition, those
results apply only for very slow logarithmic rates of increase of {Mi}i≥1, with
appropriate choice of multiplicative constants. Many authors, among which
are Doucet et al. (2002), recommend using faster schedules in practice, re-
porting for instance good results with sequences {Mi}i≥1 that grow linearly.
We conclude this brief exposition with an example that illustrates the impor-
tance of the choice of a proper schedule—see Doucet et al. (2002), Gaetan
and Yao (2003), and Jacquier and Johannes (2004) for further applications of
the method.

Example 13.3.3 (Binary Deconvolution Model, Continued). We con-
sider again the noisy binary deconvolution model of Example 10.3.2, which
served for illustrating the EM and quasi-Newton methods. Recall that this
model is a four-state normal HMM for which the transition parameters are
known, the variances υj are constrained to equal a common value that we
denote by υ, the means are given by µj = st

jh where h is a two-dimensional
vector of unknown filter coefficients, and s1 to s4 are fixed two-dimensional
vectors.

For easier comparison with the results discussed in Example 10.3.2, we
select improper priors for the parameters, which amounts to setting α =
0 and β = ∞ in (13.22) and κ = −1 and γ = 0 in (13.23). Hence the
SAME algorithm will directly maximize the likelihood. Taking into account
the constraints mentioned above, the posteriors in (13.22) and (13.23) should
then be replaced by

h | υ, x0:n(1), . . . , x0:n(M), y0:n

∼ N

(
Π[x0:n(1 :M)]

M∑
m=1

n∑
k=0

ykxk(m), Π[x0:n(1 :M)]

)
,

where
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Π[x0:n(1 :M)] =

[
M∑

m=1

n∑
k=0

xk(m)xk(m)t

]−1

,

and

υ |h, x0:n(1), . . . , x0:n(M), y0:n

∼ IG

(
M(n + 1)

2
− 1 ,

1
2

M∑
m=1

n∑
k=0

[yk − xk(m)xk(m)t]2
)

.

Note that for this discrete-state space model, the likelihood is indeed com-
putable exactly for all values of the parameters h and υ. Hence we could
also imagine implementing the simulated annealing approach directly, with-
out resorting to the SAME completion mechanism. This example nonetheless
constitutes a realistic testbed for the SAME algorithm with the advantage
that the likelihood can be plotted exactly and its maximum determined with
high precision by the deterministic methods discussed in Example 10.3.2.

The data is the same as in Example 10.3.2, leading to the profile likelihood
surface shown in Figure 10.1. Recall that for the sake of clarity, we only
consider the estimated values of h although the variance υ is also treated
as a parameter. For this problem, we fixed the total number of simulations
of the missing state trajectories X0:n to 10,000 and then evaluated different
schedules of the form Mi = 1 + �ai� for various values of a and such that
the overall number of simulations,

∑imax
i=1 Mi, equals 10,000. Hence imax is

not fixed and varies depending on the cooling schedule. These choices will be
discussed below, but we can already note that 10,000 is a rather large number
of simulations for this problem. Recall for instance from Figure 10.1 that the
convergence of EM is quite fast in this problem (compared with the model
of Example 11.1.2 for instance), although it sometimes converges to a local
mode that, as we will see below, is very unlikely compared to the MLE.

Table 13.1 summarizes the results obtained over 100 independent repli-
cations of the SAME trajectories started from the first two starting points
considered in Figure 10.1. The first column shows that the simple MCMC
simulation without cooling schedule (Mi = 1) is indeed very efficient at find-
ing the global mode of the likelihood. Indeed, once in its steady-state, the
MCMC simulations spend about 640 times more time in the vicinity of the
global mode than in the local mode. This finding is coherent with the log-
likelihood difference between the two points (labeled “MLE” and “LOC”,
respectively) in Figure 10.1, which corresponds to a factor 937 once converted
back to a linear scale. Hence the likelihood indeed has a local mode but one
that is very unlikely compared to the MLE. Letting a simple MCMC chain
run long enough is thus sufficient to end up in the vicinity of the global mode
with high probability (640/641). Because of the correlation between successive
values of the parameters however, this phenomenon does not manifest itself as
fast as expected and 210 iterations are necessary to ensure that 95% out of the
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a 0 1/72 1/12 1/2 1
imax 10000 1163 483 198 140
Mimax 1 17 41 100 141

Starting from point 1 in Figure 10.1
# converged 99 92 78 79 95
std. error 0.122 0.028 0.017 0.014 0.010

Starting from point 2 in Figure 10.1
# converged 100 87 61 52 36
std. error 0.121 0.029 0.018 0.013 0.009

Table 13.1. Summary of results of the SAME algorithm for 100 runs and different
rates of increase a. The upper part of the table pertains to trajectories started from
the point labeled “1” in Figure 10.1 and the lower part to those started from the
point labeled “2” in Figure 10.1. “# converged” is the number of sequences that
converged to the MLE and not to the local mode, and “std. error” is the average
L2-norm of the distance to the MLE for those trajectories (for comparison purposes,
the L2-norm of the MLE itself is 1.372). The random seeds used for the simulations
were the same for all values of a.

200 trajectories started from either of the two starting points indeed visit the
neighborhood of the global mode. Likewise, although some of the trajectories
do visit the mirror modes that have identical likelihood for negative values
of h0 (see Example 10.3.2), none of the trajectories was found to switch be-
tween positive and negative values of h0 once converged1. The Gibbs sampler
is thus unable to connect these two regions of the posterior, which are how-
ever equally probable. This phenomenon has been observed in various other
missing data settings by Celeux et al. (2000). In this example these mixing
problems rapidly get more severe as Mi increases. Accordingly, the number of
trajectories in Table 13.1 that do eventually reach the MLE drops down as the
linear factor a is set to higher values. The picture is somewhat more compli-
cated in the case of the first starting point, as the number of trajectories that
reach the MLE first decreases (a = 1/72, 1/12) before increasing again. The
explanation for this behavior is to be found in Figure 10.1, which shows that
the trajectory of the EM algorithm started from this point does converge to
the MLE, in contrast with what happens for the second starting point. Hence
for this first starting point, when Mi increases sufficiently rapidly, the SAME
algorithm mimics the EM trajectory (with some random fluctuations) and
eventually converges to the MLE. This behavior is illustrated in Figure 13.2.

In this example, it turns out that in order to guarantee that the SAME
algorithm effectively reaches the MLE, it is very important that Mi stays ex-
actly equal to one for a large number of iterations, preferably a few hundreds,
but fifty is really a minimum. The logarithmic rates of increase of Mi that

1In Table 13.1, the trajectories that converge to minus the MLE are counted as
having converged, as we know that it corresponds to an identifiability issue inherent
to the model.
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Fig. 13.2. Same profile log-likelihood surface as in Figure 10.1. The trajectories
show the first 200 SAME estimates for, from top to bottom, a = 0, a = 1/12, and
a = 1, started at the point labeled “1” in Figure 10.1. The same random seed was
used for all three cases.
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are compatible with this constraint and with the objective of using an overall
number of simulations equal to 10,000 typically end up with Mimax being of
the order three and are thus roughly equivalent to the MCMC run (a = 0)
in Table 13.1. Note that the error obtained with this simple scheme is not
that bad, being about ten times smaller than the L2 norm of the MLE. The
factor a = 1/72, which gives a reasonable probability of convergence to the
MLE from both points, provides an error that is further reduced by a factor
of ten. �

We would like to point out that—especially when the answer is known
as in this toy example!—it is usually possible to find out by trial-and-error
cooling schedules that are efficient for the problem (data and model) at hand.
In the case of Example 13.3.3, setting Mi = 1 for the first 280 iterations and
letting Mi = 4, 16, 36, 64, 100 for the last five iterations (500 simulations in
total) is very successful with 98 (resp. 96) trajectories converging to the MLE
and an average error of 0.018 (resp. 0.020) when started from the two initial
points under consideration. The last five iterations in this cooling schedule
follow a square progression that was used for the MCEM algorithm in Exam-
ple 11.1.3. Note that rather than freezing the parameter by abruptly increasing
Mi, one could use instead the averaging strategy (see Section 11.1.2) advo-
cated by Gaetan and Yao (2003). Clearly, one-size-fits-all cooling schedules
such as linear or logarithmic rates of increase may be hard to adjust to a par-
ticular problem, at least when the overall number of simulations is limited to
a reasonable amount. This observation contrasts with the behavior observed
for the MCEM and SAEM algorithms in Chapter 11, which are more robust
in this respect, particularly for the latter. Remember however that we are here
tackling a much harder problem in trying not only to avoid all local maxima
but also to ensure that the parameter estimate eventually gets reasonably
close to the actual global maximum.

There is no doubt that simulated annealing strategies in general, and
SAME in particular, are very powerful tools for global maximization of the
likelihood or marginal posterior in HMMs. Their usefulness in practical sit-
uations however depends crucially on the ability to select proper finite-effort
cooling schedules, which may itself be a difficult issue.



Part III

Background and Complements



14

Elements of Markov Chain Theory

14.1 Chains on Countable State Spaces

We review the key elements of the mathematical theory developed for study-
ing the limiting behavior of Markov chains. In this first section, we restrict
ourselves to the case where the state space X is countable, which is conceptu-
ally simpler. On our way, we will also meet a number of important concepts
to be used in the next section when dealing with Markov chains on general
state spaces.

14.1.1 Irreducibility

Let {Xk}k≥0 be a Markov chain on a countable state space X with transition
matrix Q. For any x ∈ X, we define the first hitting time σx on x and the
return time τx to x respectively as

σx = inf{n ≥ 0 : Xn = x} , (14.1)
τx = inf{n ≥ 1 : Xn = x} , (14.2)

where, by convention, inf ∅ = +∞. The successive hitting times σ
(n)
x and

return times τ
(n)
x , n ≥ 0, are defined inductively by

σ(0)
x = 0, σ(1)

x = σx, σ(n+1)
x = inf{k > σ(n)

x : Xk = x} ,
τ (0)
x = 0, τ (1)

x = τx, τ (n+1)
x = inf{k > τ (n)

x : Xk = x} .

For two states x and y, we say that state x leads to state y, which we write
x→ y, if Px(σy <∞) > 0. In words, x leads to y if the state y can be reached
from x. An alternative, equivalent definition is that there exists some integer
n ≥ 0 such that the n-step transition probability Qn(x, y) > 0. If both x leads
to y and y leads to x, then we say that the x and y communicate, which we
write x↔ y.
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Theorem 14.1.1. The relation “↔” is an equivalence relation on X.

Proof. We need to prove that the relation ↔ is reflexive, symmetric, and
transitive. The first two properties are immediate because, by definition, for
all x, y ∈ X, x↔ x (reflexivity), and x↔ y if and only if y ↔ x (symmetry).

For any pairwise distinct x, y, z ∈ X, {σy + σz ◦ θσy < ∞} ⊂ {σz < ∞}
(if the chain reaches y at some time and later z, it certainly reaches z). The
strong Markov property (Theorem 2.1.6) implies that

Px(σz <∞) ≥ Px(σy + σz ◦ θσy <∞) = Ex[1{σy<∞}1{σz<∞} ◦ θσy ]

= Ex[1{σy<∞} PXσy
(σz <∞)] = Px(σy <∞) Py(σz <∞) .

In words, if the chain can reach y from x and z from y, it can reach z from x
by going through y. Hence if x→ y and y → z, then x→ z (transitivity). ��

For x ∈ X, we denote the equivalence class of x with respect to the relation
“↔” by C(x). Because “↔” is an equivalence relation, there exists a collection
{xi} of states, which may be finite or infinite, such that the classes {C(xi)}
form a partition of the state space X.

Definition 14.1.2 (Irreducibility). If C(x) = X for some x ∈ X (and then
for all x ∈ X), the Markov chain is called irreducible.

14.1.2 Recurrence and Transience

When a state is visited by the Markov chain, it is natural to ask how often
the state is visited in the long-run. Define the occupation time of the state x
as

ηx
def=

∞∑
n=0

1x(Xn) =
∞∑

j=1

1{σ
(j)
x <∞} .

If the expected number of visits to x starting from x is finite, that is, if
Ex[ηx] <∞, then the state x is called transient. Otherwise, if Ex[ηx] = ∞, x
is said to be recurrent. When X is countable, the recurrence or transience of
a state x can be expressed in terms of the probability Px(τx < ∞) that the
chain started in x ever returns to x.

Proposition 14.1.3. For any x ∈ X the following hold true,

(i) If x is recurrent, then Px(ηx = ∞) = 1 and Px(τx <∞) = 1.
(ii) If x is transient, then Px(ηx <∞) = 1 and Px(τx <∞) < 1.
(iii) Ex[ηx] = 1/[1− Px(τx <∞)], with 1/0 = ∞.

Proof. By construction,

Ex[ηx] =
∞∑

k=1

Px(ηx ≥ k) =
∞∑

k=1

Px(σ(k)
x <∞) .
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Applying strong Markov property (Theorem 2.1.6) for n > 1, we obtain

Px(σ(n)
x <∞) = Px(σ(n−1)

x <∞, τx ◦ θσ(n−1)
x <∞)

= Ex[1{σ
(n−1)
x <∞} PX

σ
(n−1)
x

(τx <∞)] .

If σ(n−1)
x <∞, then X

σ
(n−1)
x

= x Px-a.s., so that

Px(σ(n)
x <∞) = Px(τx <∞) Px(σ(n−1)

x <∞) .

By definition Px(σx < ∞) = 1, whence Px(σ(n)
x < ∞) = [Px(τx < ∞)]n−1

and

Ex[ηx] =
∞∑

n=1

[Px(τx <∞)]n−1 .

This proves part (iii).
Now assume x is recurrent. Then by definition Ex[ηx] = ∞, and hence

Px(τx <∞) = 1 and Px(τ (n)
x <∞) = 1 for all n ≥ 1. Thus ηx = ∞ Px-a.s.

If x is transient then Ex[ηx] <∞, which implies Px(τx <∞) < 1. ��
For a recurrent state x, the occupation time of x is infinite with probability

one under Px; essentially, once the chain started from x returns to x with
probability one, it returns a second time with probability one, and so on.
Thus the occupation time of a state has a remarkable property, not shared
by all random variables: if the expectation of the occupation time is infinite,
then the actual number of returns is infinite with probability one. The mean
of the occupation time of a state obeys the so-called maximum principle.

Proposition 14.1.4. For all x and y in X,

Ex[ηy] = Px(σy <∞) Ey[ηy] , (14.3)

with the convention 0×∞ = 0.

Proof. It follows from the definition that ηy1{σy=∞} = 0 and ηy1{σy<∞} =
ηy ◦ θσy1{σy<∞}. Thus, applying the strong Markov property,

Ex[ηy] = Ex[1{σy<∞}ηy] = Ex[1{σy<∞} ηy ◦ θσy ]

= Ex[1{σy<∞} EXσy
[ηy]] = Px(σy <∞) Ey[ηy] .

��
Corollary 14.1.5. If Ex[ηy] = ∞ for some x, then y is recurrent. If X is
finite, then there exists at least one recurrent state.

Proof. By Proposition 14.1.4, Ey[ηy] ≥ Ex[ηy], so that Ex[ηy] = ∞ implies
that Ey[ηy] =∞, that is, y is recurrent.

Next, obviously
∑

y∈X ηy = ∞ and thus for all x ∈ X,
∑

y∈X Ex[ηy] = ∞.
Hence if X is finite, given x ∈ X there necessarily exists at least one y ∈ X
such that Ex[ηy] =∞, which implies that y is recurrent. ��
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Our next result shows that a recurrent state can only lead to another
recurrent state.

Proposition 14.1.6. Let x be a recurrent state. Then for y ∈ X, either of the
following two statements holds true.

(i) x leads to y, Ex[ηy] = ∞, y is recurrent and leads to x, and Px(τy <
∞) = Py(τx <∞) = 1;

(ii) x does not lead to y and Ex[ηy] = 0.

Proof. Assume that x leads to y. Then there exists an integer k such that
Qk(x, y) > 0. Applying the Chapman-Kolmogorov equations, we obtain
Qn+k(x, y) ≥ Qn(x, x)Qk(x, y) for all n. Hence

Ex[ηy] ≥
∞∑

n=1

Qn+k(x, y) ≥
∞∑

n=1

Qn(x, x)Qk(x, y) = Ex[ηx]Qk(x, y) = ∞ .

Thus y is also recurrent by Corollary 14.1.5. Because x is recurrent, the strong
Markov property implies that

0 = Px(τx = ∞) ≥ Px(τy <∞, τx = ∞)
= Px(τy <∞, τx ◦ θτy = ∞) = Px(τy <∞) Py(τx = ∞) .

Because x leads to y, Px(τy <∞) > 0, whence Py(τx = ∞) = 0. Thus y leads
to x and moreover Py(τx <∞) = 1. By symmetry, Px(τy <∞) = 1.

If x does not lead to y then Proposition 14.1.4 shows that Ex[ηy] = 0. ��

For a recurrent state x, the equivalence class C(x) (with respect to the
relation of communication defined in Section 14.1.1) may thus be equivalently
defined as

C(x) = {y ∈ X : Ex[ηy] =∞} = {y ∈ X : Px(τy <∞) = 1} . (14.4)

If y �∈ C(x), then Px(ηy = 0) = 1, which implies that Px(Xn ∈ C(x) for all
n ≥ 0) = 1. In words, the chain started from the recurrent state x forever
stays in C(x) and visits each state of C(x) infinitely many times.

The behavior of a Markov chain can thus be described as follows. If a
chain is not irreducible, there may exist several equivalence classes of com-
munication. Some of them contain only transient states, and some contain
only recurrent states. The latter are then called recurrence classes. If a chain
starts from a recurrent state, then it remains in its recurrence class forever.
If it starts from a transient state, then either it stays in the class of transient
states forever, which implies that there exist infinitely many transient states,
or it reaches a recurrent state and then remains in its recurrence class forever.

In contrast, if the chain is irreducible, then all the states are either transient
or recurrent. This is called the solidarity property of an irreducible chain. We
now summarize the previous results.



14.1 Chains on Countable State Spaces 517

Theorem 14.1.7. Consider an irreducible Markov chain on a countable state
space X. Then every state is either transient, and the chain is called transient,
or every state is recurrent, and the chain is called recurrent. Moreover, either
of the following two statements holds true for all x and y in X.

(i) Px(τy <∞) = 1, Ex[ηy] =∞ and the chain is recurrent.
(ii) Px(τx <∞) < 1, Ex[ηy] <∞ and the chain is transient.

Remark 14.1.8. Note that in the transient case, we do not necessarily have
Px(τy <∞) < 1 for all x and y in X. For instance, if Q is a transition matrix
on N such that Q(n, n + 1) = 1 for all n, then Pk(τn <∞) = 1 for all k < n.
Nevertheless all states are obviously transient because Xn = X0 + n. �

14.1.3 Invariant Measures and Stationarity

For many purposes, we might want the marginal distribution of {Xk} not to
depend on k. If this is the case, then by the Markov property it follows that
the finite-dimensional distributions of {Xk} are invariant under translation in
time, and {Xk} is thus a stationary process. Such considerations lead us to
invariant distributions. A non-negative vector {π(x)}x∈X with the property

π(y) =
∑
x∈X

π(x)Q(x, y) , y ∈ X ,

will be called invariant. If the invariant vector π is summable, then we assume
it is a probability distribution, that is, it sums to one. Such distributions are
also called stationary distributions or stationary probability measures. The key
result concerning the existence of invariant vectors is the following.

Theorem 14.1.9. Consider an an irreducible and recurrent Markov chain
{Xk}k≥0 on a countable state space X. Then there exists a unique (up to a
scaling factor) invariant measure π. Moreover 0 < π(x) < ∞ for all x ∈ X.
This measure is summable if and only if there exists a state x such that

Ex[τx] <∞ . (14.5)

In this case, Ey[τy] < ∞ for all y ∈ X and the unique invariant probability
measure is given by

π(x) = 1/Ex[τx] , x ∈ X . (14.6)

Proof. Let Q be the transition matrix of the chain. Pick an arbitrary state
x ∈ X and define the measure λx by

λx(y) = Ex

[
τx−1∑
k=0

1y(Xk)

]
= Ex

[
τx∑

k=1

1y(Xk)

]
. (14.7)
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That is, λx(y) is the expected number of visits to the state y before the first
return to x, given that the chain starts in x. Let f be a non-negative function
on X. Then

λx(f) = Ex

[
τx−1∑
k=0

f(Xk)

]
=

∞∑
k=0

Ex

[
1{τx>k}f(Xk)

]
.

Using this identity and the fact that Qf(Xk) = Ex[f(Xk+1) | FX
k ] Px-a.s. for

all k ≥ 1, we find that

λx(Qf) =
∞∑

k=0

Ex[1{τx>k} Qf(Xk)] =
∞∑

k=0

Ex{1{τx>k} Ex[f(Xk+1) | FX
k ]}

=
∞∑

k=0

Ex[1{τx>k}f(Xk+1)] = Ex

[
τx∑

k=1

f(Xk)

]
,

showing that λx(Qf) = λx(f) − f(x) + Ex[f(Xτx
)] = λx(f). Because f was

arbitrary, we see that λxQ = λx; the measure λx is invariant. For any other
state y, the chain may reach y before returning to x when starting in x,
as it is irreducible. This proves that λx(y) > 0. Moreover, again by irre-
ducibility, we can pick an m > 0 such that Qm(y, x) > 0. By invariance
λx(x) =

∑
z∈X λx(z)Qm(z, x) ≥ λx(y)Qm(y, x), and as λx(x) = 1, we see that

λx(y) <∞
We now prove that the invariant measure is unique up to a scaling factor.

The first step consists in proving that if π is an invariant measure such that
π(x) = 1, then π ≥ λx. It suffices to show that, for any y ∈ X and any integer
n,

π(y) ≥
n∑

k=1

Ex[1y(Xk)1{τx≥k}] . (14.8)

The proof is by induction. The inequality is immediate for n = 1. Assume
that (14.8) holds for some n ≥ 1. Then

π(y) = Q(x, y) +
∑
z �=x

π(z)Q(z, y)

≥ Q(x, y) +
n∑

k=1

Ex[Q(Xk, y)1{x}c(Xk)1{τx≥k}]

≥ Q(x, y) +
n∑

k=1

Ex[1y(Xk+1)1{τx≥k+1}]

=
n+1∑
k=1

Ex[1{y}(Xk)1{τx≥k}] ,

showing the induction. We will now show that π = λx. The proof is by con-
tradiction. Assume that π(z) > λx(z) for some z ∈ X. Then
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1 = π(x) = πQ(x) =
∑
z∈X

π(z)Q(z, x) >
∑
z∈X

λx(z)Q(z, x) = λx(x) = 1 ,

which cannot be true.
The measure λx is summable if and only if

∞ >
∑
y∈X

λx(y) =
∑
y∈X

Ex

[
τx−1∑
k=0

1{Xk=y}

]
= Ex[τx] .

Thus the unique invariant measure is summable if and only if a state x
satisfying this relation exists. On the other hand, if such a state x exists
then, by uniqueness of the invariant measure, Ey[τy] < ∞ must hold for
all states y. In this case, the invariant probability measure, π say, satisfies
π(x) = λx(x)/λx(X) = 1/Ex[τx]. Because the reference state x was in fact
arbitrary, we find that π(y) = 1/Ex[τy] for all states y. ��

It is natural to ask what can be inferred from the knowledge that a chain
possesses an invariant probability measure. The next proposition gives a par-
tial answer.

Proposition 14.1.10. Let Q be a transition matrix and π an invariant prob-
ability measure. Then every state x such that π(x) > 0 is recurrent. If Q is
irreducible, then it is recurrent.

Proof. Let y ∈ X. If π(y) > 0 then
∑∞

n=0 πQ
n(y) =

∑∞
n=0 π(y) = ∞. On the

other hand, by Proposition 14.1.4,

∞∑
n=0

πQn(y) =
∑
x∈X

π(x)
∞∑

n=0

Qn(x, y)

=
∑
x∈X

π(x) Ex[ηy] ≤ Ey[ηy]
∑
x∈X

π(x) = Ey[ηy] . (14.9)

Thus π(y) > 0 implies Ey[ηy] =∞, that is, y is recurrent. ��

Let {Xk} be an irreducible Markov chain. If there exists an invariant
probability measure, the chain is called positive recurrent ; otherwise it is called
null. Note that null chains can be either null recurrent or transient. Transient
chains are always null, though they may admit an invariant measure.

14.1.4 Ergodicity

A key result for positive recurrent irreducible chains is that the transition laws
converge, in a suitable sense, to the invariant vector π. The classical result is
the following.
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Proposition 14.1.11. Consider an irreducible and positive recurrent Markov
chain on a countable state space. Then for any states x and y,

n−1
n∑

i=1

Qn(x, y) → π(y) as n→∞ . (14.10)

The use of the Césaro limit can be avoided if the chain is aperiodic. The
simplest definition of aperiodicity is that a state x is aperiodic if Qk(x, x) > 0
for all k sufficiently large or, equivalently, that the period of the state x is
one. The period of x is defined as the greatest common divisor of the set
I(x) = {n > 0 : Qn(x, x) > 0}. For irreducible chains, the following result
holds true.

Proposition 14.1.12. If the chain is irreducible, then all states have the
same period. If the transition matrix Q is irreducible and aperiodic, then for
all x and y in X, there exists n(x, y) ∈ N such that Qk(x, y) > 0 for all
k ≥ n(x, y).

Thus, an irreducible chain can be said to be aperiodic if the common period
of all states is one.

The traditional pointwise convergence (14.10) of transition probabilities
has been replaced in more recent research by convergence in total variation
(see Definition 4.3.1). The convergence result may then be formulated as fol-
lows.

Theorem 14.1.13. Consider an irreducible and aperiodic positive recurrent
Markov chain on a countable state space X with transition matrix Q and in-
variant probability distribution π. Then for all initial distributions ξ and ξ′

on X,
‖ξQn − ξ′Qn‖TV → 0 as n→∞ . (14.11)

In particular, for any x ∈ X we may set ξ = δx and ξ′ = π to obtain

‖Qn(x, ·)− π‖TV → 0 as n→∞ . (14.12)

The proof of this result, and indeed the focus on convergence in total variation,
follows using of the coupling technique. We postpone the presentation of this
technique to Section 14.2.4 because essentially the same ideas can be applied
to Markov chains on general state spaces.

14.2 Chains on General State Spaces

In this section, we extend the concepts and results pertaining to countable
state spaces to general ones. In the following, X is an arbitrary set, and we
just require that it is equipped with a countably generated σ-field X . By
{Xk}k≥0 we denote an X-valued Markov chain with transition kernel Q. It
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is defined on a probability space (Ω,F ,P), and F
X = {FX

k }k≥0 denotes the
natural filtration of {Xk}.

For any set A ∈ X , we define the first hitting time σA and return time τA

respectively by

σA = inf{n ≥ 0 : Xn ∈ A} , (14.13)
τA = inf{n ≥ 1 : Xn ∈ A} , (14.14)

where, by convention, inf ∅ = +∞. The successive hitting times σ
(n)
A and

return times τ
(n)
A , n ≥ 0, are defined inductively by

σ
(0)
A = 0, σ

(1)
A = σA, σ

(n+1)
A = inf{k > σ

(n)
A : Xk ∈ A} ,

τ
(0)
A = 0, τ

(1)
A = τA, τ

(n+1)
A = inf{k > τ

(n)
A : Xk ∈ A} .

We again define the occupation time ηA as the number of visits by {Xk} to
A,

ηA
def=

∞∑
k=0

1A(Xk) . (14.15)

14.2.1 Irreducibility

The first step to develop a theory on general state spaces is to define a suitable
concept of irreducibility. The definition of irreducibility adopted for countable
state spaces does not extend to general ones, as the probability of reaching
single point x in the state space is typically zero.

Definition 14.2.1 (Phi-irreducibility). The transition kernel Q, or the
Markov chain {Xk}k≥0 with transition kernel Q, is said to be phi-irreducible
if there exists a measure φ on (X,X ) such that for any A ∈ X with φ(A) > 0,
Px(τA < ∞) > 0 for all x ∈ X. Such a measure is called an irreducibility
measure for Q.

Phi-irreducibility is a weaker property than irreducibility of a transition kernel
on a countable state space. If a transition kernel on a countable state space
is irreducible, then it is phi-irreducible, and any measure is an irreducibility
measure. The converse is not true. For instance, the transition kernel

Q =
(

0 1
0 1

)
on {0, 1} is phi-irreducible (δ1 is an irreducibility measure for Q) but not
irreducible.

In general, there are infinitely many irreducibility measures, and two ir-
reducibility measures are not necessarily equivalent. For instance, if φ is an
irreducibility measure and φ̂ is absolutely continuous with respect to φ, then
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φ̂ is also an irreducibility measure. Nevertheless, as shown in the next re-
sult, there exist maximal irreducibility measures ψ, which are such that any
irreducibility measure φ is absolutely continuous with respect to ψ.

Theorem 14.2.2. Let Q be a phi-irreducible transition kernel on (X,X ).
Then there exists an irreducibility measure ψ such that all irreducibility mea-
sures are absolutely continuous with respect to ψ and for all A ∈ X ,

ψ(A) > 0 ⇔ Px(τA <∞) > 0 for all x ∈ X . (14.16)

Proof. Let φ be an irreducibility measure and ε ∈ (0, 1). Let φε be the measure
defined by φε = φKε, where Kε is the resolvent kernel defined by

Kε(x,A) def= (1− ε)
∑
k≥0

εkQk(x,A) , x ∈ X, A ∈ X . (14.17)

We will first show that φε is an irreducibility measure. Let A ∈ X be such
that φε(A) > 0 and define

Ā = {x ∈ X : Px(σA <∞) > 0} = {x ∈ X : Kε(x,A) > 0} . (14.18)

By definition, φε(A) > 0 implies that φ(Ā) > 0. Define Ām = {x ∈ X :
Px(σA < ∞) ≥ 1/m}. By construction, Ā =

⋃
m>0 Ām, and because φ(Ā) >

0, there exists m such that φ(Ām) > 0. Because φ is an irreducibility measure,
Px(τĀm

<∞) > 0 for all x ∈ X. Hence by the strong Markov property, for all
x ∈ X,

Px(τA <∞) ≥ Px(τĀm
+ σA ◦ θτĀm <∞ , τĀm

<∞)

= Ex[1{τĀm
<∞} PXτĀm

(σA <∞)] ≥ 1
m

Px(τĀm
<∞) > 0 ,

showing that φε is an irreducibility measure.
Now for m ≥ 0 the Chapman-Kolmogorov equations imply∫

X
φε(dx) εmQm(x,A) = (1− ε)

∫
X

∞∑
n=m

εnQn(x,A)φ(dx) ≤ φε(A) .

Therefore, if φε(A) = 0 then φεKε(A) = 0, which in turn implies φε(Ā) = 0.
Summarizing the results above, for any A ∈ X ,

φε(A) > 0 ⇔ φε ({x ∈ X : Px(σA <∞) > 0}) > 0 . (14.19)

This proves (14.16)
To conclude we must show that all irreducibility measures are absolutely

continuous with respect to φε. Let φ̂ be an irreducibility measure and let C ∈
X be such that φ̂(C) > 0. Then φε ({x ∈ X : Px(σC <∞) > 0}) = φε(X) >

0, which, by (14.19), implies that φε(C) > 0 . This exactly says that φ̂ is
absolutely continuous with respect to φε. ��
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A set A ∈ X is said to be accessible for the kernel Q (or Q-accessible,
or simply accessible if there is no risk of confusion) if Px(τA < ∞) > 0 for
all x ∈ X. The family of accessible sets is denoted X+. If ψ is a maximal
irreducibility measure the set A is accessible if and only if ψ(A) > 0.

Example 14.2.3 (Autoregressive Model). The first-order autoregressive
model on R is defined iteratively by Xn = φXn−1 + Un, where φ is a real
number and {Un} is an i.i.d. sequence. If Γ is the probability distribution
of the noise sequence {Un}, the transition kernel of this chain is given by
Q(x,A) = Γ (A − φx). The autoregressive model is phi-irreducible provided
that the noise distribution has an everywhere positive density with respect to
Lebesgue measure λLeb. If we take φ = λLeb, it is easy to see that whenever
λLeb(A) > 0, we have Γ (A − φx) > 0 for any x, and so Q(x,A) > 0 in just
one step. �

Example 14.2.4. The Metropolis-Hastings algorithm, introduced in Chap-
ter 6, provides another typical example of a general state-space Markov chain.
For simplicity, we assume here that X = R

d, which we equip with the Borel
σ-field X = B(Rd). Assume that we are given a probability density function
π on with respect to Lebesgue measure λLeb. Let r be a transition density
kernel. Starting from Xn = x, a candidate transition x′ is generated from
r(x, ·) and accepted with probability

α(x, x′) =
π(x′) r(x′, x)
π(x) r(x, x′)

∧ 1 . (14.20)

The transition kernel of the Metropolis-Hastings chain is given by

Q(x,A) =
∫

A

α(x, x′)r(x, x′)λLeb(dx′)

+ 1x(A)
∫

[1− α(x, x′)]r(x, x′)λLeb(dx′) . (14.21)

There are various sufficient conditions for the Metropolis-Hastings algorithm
to be phi-irreducible (Roberts and Tweedie, 1996; Mengersen and Tweedie,
1996). For the Metropolis-Hastings chain, it is simple to check that the chain
is phi-irreducible if for λLeb-almost all x′ ∈ X, the condition π(x′) > 0 implies
that r(x, x′) > 0 for any x ∈ X. �

14.2.2 Recurrence and Transience

In view of the discussion above, it is not sensible to define recurrence and
transience in terms of the expectation of the occupation measure of a state, but
for phi-irreducible chains it makes sense to consider the occupation measure
of accessible sets.
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Definition 14.2.5 (Uniform Transience and Recurrence). A set A ∈ X
is called uniformly transient if supx∈A Ex[ηA] < ∞. A set A ∈ X is called
recurrent if Ex[ηA] = +∞ for all x ∈ A.

Obviously, if supx∈X Ex[ηA] < ∞, then A is uniformly transient. In fact the
reverse implication holds true too, because if the chain is started outside A it
cannot hit A more times, on average, than if it is started at “the most favorable
location” in A. Thus an alternative definition of a uniformly transient set is
supx∈X Ex[ηA] <∞.

The main result on phi-irreducible transition kernels is the following re-
currence/transience dichotomy, which parallels Theorem 14.1.7 for countable
state-space Markov chains.

Theorem 14.2.6. Let Q be a phi-irreducible transition kernel (or Markov
chain). Then either of the following two statements holds true.

(i) Every accessible set is recurrent, in which case we call Q recurrent.
(ii) There is a countable cover of X with uniformly transient sets, in which

case we call Q transient.

In the next section, we will prove Theorem 14.2.6 in the particular case
where the chain possesses an accessible atom (see Definition 14.2.7); the proof
is then very similar to that for countable state space. In the general case,
the proof is more involved. It is necessary to introduce small sets and the so-
called splitting construction, which relates the chain to one that does possess
an accessible atom.

14.2.2.1 Transience and Recurrence for Chains Possessing an
Accessible Atom

Definition 14.2.7 (Atom). A set α ∈ X is called an atom if there exists a
probability measure ν on (X,X ) such that Q(x,A) = ν(A) for all x ∈ α and
A ∈ X .

Atoms behave the same way as do individual states in the countable state
space case. Although any singleton {x} is an atom, it is not necessarily ac-
cessible, so that Markov chain theory on general state spaces differs from the
theory of countable state space chains.

If α is an atom for Q, then for any m ≥ 1 it is an atom for Qm. Therefore
we denote by Qm(α, ·) the common value of Qm(x, ·) for all x ∈ α. This
implies that if the chain starts from within the atom, the distribution of the
whole chain does not depend on the precise starting point. Therefore we will
also use the notation Pα instead of Px for any x ∈ α.

Example 14.2.8 (Random Walk on the Half-Line). The random walk
on the half-line (RWHL) is defined by an initial condition X0 ≥ 0 and the
recursion
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Xk+1 = (Xk + Wk+1)+ , k ≥ 0 , (14.22)

where {Wk}k≥1 is an i.i.d. sequence of random variables, independent of X0,
with distribution function Γ on R. This process is a Markov chain with tran-
sition kernel Q defined by

Q(x,A) = Γ (A− x) + Γ ((−∞ ,−x])1A(0) , x ∈ R+, A ∈ B(R+) ,

where A− x = {y− x : y ∈ A}. The set {0} is an atom, and it is accessible if
and only if Γ ((−∞ , 0]) > 0. �

We now prove Theorem 14.2.6 when there exists an accessible atom.

Proposition 14.2.9. Let {Xk}k≥0 be a Markov chain that possesses an ac-
cessible atom α, with associated probability measure ν. Then the chain is phi-
irreducible, ν is an irreducibility measure, and a set A ∈ X is accessible if and
only if Pα(τA <∞) > 0.

Moreover, α is recurrent if and only if Pα(τα < ∞) = 1 and (uniformly)
transient otherwise, and the chain is recurrent if α is recurrent and transient
otherwise.

Proof. For all A ∈ X and x ∈ X, the strong Markov property yields

Px(τA <∞) ≥ Px(τα + τA ◦ θτα <∞, τα <∞)
= Ex[PXτα

(τA <∞)1{τα<∞}]
= Pα(τA <∞) Px(τα <∞)
≥ ν(A) Px(τα <∞) .

Because α is accessible, Px(τα < ∞) > 0 for all x ∈ X. Thus for any A ∈ X
satisfying ν(A) > 0, it holds that Px(τA < ∞) > 0 for all x ∈ X, showing
that ν is an irreducibility measure. The above display also shows that A is
accessible if and only if Pα(τA <∞).

Now let σ(n)
α be the successive hitting times of α (see (14.13)). The strong

Markov property implies that for any n > 1,

Pα(σ(n)
α <∞) = Pα(τα <∞) Pα(σ(n−1)

α <∞) .

Hence, as for discrete state spaces, Pα(σ(n)
α < ∞) = [Pα(τα < ∞)]n−1 and

Eα[ηα] = 1/[1 − Pα(τα < ∞)]. This proves that α is recurrent if and only if
Pα(τα <∞) = 1.

Assume that α is recurrent. Because the atom α is accessible, for any
x ∈ X, there exists r such that Qr(x, α) > 0. If A ∈ X+ there exists s such
that Qs(α,A) > 0. By the Chapman-Kolmogorov equations,

∑
n≥1

Qr+s+n(x,A) ≥ Qr(x, α)

⎡⎣∑
n≥1

Qn(α, α)

⎤⎦Qs(α,A) = ∞ .



526 14 Elements of Markov Chain Theory

Hence Ex[ηA] = ∞ for all x ∈ X and A is recurrent. Because A was an
arbitrary accessible set, the chain is recurrent.

Assume now that α is transient, in which case Eα(ηα) < ∞. Then, fol-
lowing the same line of reasoning as in the discrete state space case (proof of
Proposition 14.1.4), we obtain that for all x ∈ X,

Ex[ηα] = Px(τα <∞) Eα[ηα] ≤ Eα[ηα] . (14.23)

Define Bj = {x :
∑j

n=1 Q
n(x, α) ≥ 1/j}. Then ∪∞

j=1Bj = X because α is ac-
cessible. Applying the definition of the sets Bj and the Chapman-Kolmogorov
equations, we find that

∞∑
k=1

Qk(x,Bj) ≤
∞∑

k=1

Qk(x,Bj) inf
y∈Bj

j

j∑
�=1

Q�(y, α)

≤ j

∞∑
k=1

j∑
�=1

∫
Bj

Qk(x, dy)Q�(y, α) ≤ j2
∞∑

k=1

Qk(x, α) = j2 Ex[ηα] <∞ .

The sets Bj are thus uniformly transient. The proof is complete. ��

14.2.2.2 Small Sets and the Splitting Construction

We now return to the general phi-irreducible case. In order to prove Theo-
rem 14.2.6, we need to introduce the splitting technique. To do so, we need
to define a class of sets (containing accessible sets) that behave the same way
in many respects as do atoms. We shall see this in many of the results below,
which exactly mimic the atomic case results they generalize. These sets are
called small sets.

Definition 14.2.10 (Small Set). Let Q and ν be a transition kernel and a
probability measure, respectively, on (X,X ), let m be a positive integer and
ε ∈ (0, 1]. A set C ∈ X is called a (m, ε, ν)-small set for Q, or simply a small
set, if ν(C) > 0 and for all x ∈ C and A ∈ X ,

Qm(x,A) ≥ εν(A) .

If ε = 1 then C is an atom for the kernel Qm.

Trivially, any individual point is a small set, but small sets that are not
accessible are of limited interest. If the state space is countable and Q is
irreducible, then every finite set is small. The minorization measure associated
to an accessible small set provides an irreducibility measure.

Proposition 14.2.11. Let C be an accessible (m, ε, ν)-small set for the tran-
sition kernel Q on (X,X ). Then ν is an irreducibility measure.
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Proof. Let A ∈ X be such that ν(A) > 0. The strong Markov property yields

Px(τA <∞) ≥ Px(τC <∞, τA ◦ θτC <∞) = Ex[1{τC<∞} PXτC
(τA <∞)] .

Because C is a small set, for all y ∈ C it holds that

Py(τA <∞) ≥ Py(Xm ∈ A) = Qm(y,A) ≥ εν(A) .

Because C is accessible and ν(A) > 0, for all x ∈ X it holds that

Px(τA <∞) ≥ εν(A) Px(τC <∞) > 0 .

Thus A is accessible, whence ν is an irreducibility measure. ��

An important result due to Jain and Jamison (1967) states that if the
transition kernel is phi-irreducible, then small sets do exist. For a proof see
Nummelin (1984, p. 16) or Meyn and Tweedie (1993, Theorem 5.2.2).

Proposition 14.2.12. If the transition kernel Q on (X,X ) is phi-irreducible,
then every accessible set contains an accessible small set.

Given the existence of just one small set from Proposition 14.2.12, we may
show that it is possible to cover X with a countable number of small sets in
the phi-irreducible case.

Proposition 14.2.13. Let Q be a phi-irreducible transition kernel on (X,X ).

(i) If C ∈ X is an (m, ε, ν)-small set and for any x ∈ D we have Qn(x,C) ≥
δ, then D is (m + n, δε, ν)-small set.

(ii) If Q is phi-irreducible then there exists a countable collection of small
sets Ci such that X =

⋃
i Ci.

Proof. Using the Chapman-Kolmogorov equations, we find that for any x ∈ D,

Qn+m(x,A) ≥
∫

C

Qn(x, dy)Qm(y,A) ≥ εQn(x,C)ν(A) ≥ εδν(A) ,

showing part (i). Because Q is phi-irreducible, by Proposition 14.2.12 there
exists an accessible (m, ε, ν)-small set C. Moreover, by the definition of phi-
irreducibility, the sets C(n,m) = {x : Qn(x,C) ≥ 1/m} cover X and, by
part (i), each C(n,m) is small. ��

Proposition 14.2.14. If Q is phi-irreducible and transient, then every acces-
sible small set is uniformly transient.

Proof. Let C be an accessible (m, ε, ν)-small set. If Q is transient, there ex-
ists at least one A ∈ X+ that is uniformly transient. For δ ∈ (0, 1), by the
Chapman-Kolmogorov equations,
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Ex[ηA] =
∞∑

k=0

Qk(x,A) ≥ (1− δ)
∞∑

p=0

δp
∞∑

k=0

Qk+m+p(x,A)

≥ (1− δ)
∞∑

p=0

δp
∞∑

k=0

∫
C

Qk(x, dx′)
∫

Qm(x′, dx′′)Qp(x′′, A)

≥ ε

∞∑
k=0

Qk(x,C)× (1− δ)
∞∑

p=0

δpνQp(A) = εEx[ηC ] νKδ(A) ,

where Kδ is the resolvent kernel (14.17). Because C is an accessible small
set, Proposition 14.2.11 shows that ν is an irreducibility measure. By The-
orem 14.2.2, νKδ is a maximal irreducibility measure, so that νKδ(A) > 0.
Thus supx∈X Ex[ηC ] <∞ and we conclude that C is uniformly transient (see
the remark following Definition 14.2.5). ��
Example 14.2.15 (Autoregressive Process, Continued). Suppose that
the noise distribution in Example 14.2.3 has an everywhere positive continuous
density γ with respect to Lebesgue measure λLeb. If C = [−M,M ] and ε =
inf |x|≤(1+φ)M γ(u), then for A ⊆ C,

Q(x,A) =
∫

A

γ(x′ − φx) dx′ ≥ ελLeb(A) .

Hence the compact set C is small. Obviously R is covered by a countable col-
lection of small sets and every accessible set (here sets with non-zero Lebesgue
measure) contains a small set. �

Example 14.2.16 (Metropolis-Hastings Algorithm, Continued). Sim-
ilar results hold for the Metropolis-Hastings algorithm of Example 14.2.4 if
π(x) and r(x, x′) are positive and continuous for all (x, x′) ∈ X × X. Sup-
pose that C is compact with λLeb(C) > 0. By positivity and continuity, we
then have d = supx∈C π(x) < ∞ and ε = inf(x,x′)∈C×C q(x, x′) > 0. For any
A ⊆ C, define

Rx(A) def=
{
x′ ∈ A :

π(x′)q(x′, x)
π(x)q(x, x′)

< 1
}

,

the region of possible rejection. Then for any x ∈ C,

Q(x,A) ≥
∫

A

q(x, x′)α(x, x′) dx′

≥
∫

Rx(A)

q(x′, x)
π(x)

π(x′) dx′ +
∫

A\Rx(A)
q(x, x′) dx′

≥ ε

d

∫
Rx(A)

π(x′) dx′ +
ε

d

∫
A\Rx(A)

π(x′) dx′

=
ε

d

∫
A

π(x′) dx′ .
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Thus C is small and, again, X can be covered by a countable collection of
small sets. �

We now show that it is possible to define a Markov chain with an atom,
the so-called split chain, whose properties are directly related to those of the
original chain. This technique was introduced by Nummelin (1978) (Athreya
and Ney, 1978, introduced, independently, a virtually identical concept) and
allows extending results valid for Markov chain possessing an accessible atom
to irreducible Markov chains that only possess small sets. The basic idea is
as follows. Suppose the chain admits a (1, ε, ν)-small set C. Then as long as
the chain does not enter C, the transition kernel Q is used to generate the
trajectory. However, as soon as the chain hits C, say Xn ∈ C, a zero-one
random variable dn is drawn, independent of everything else. The probability
that dn = 1 is ε, and hence dn = 0 with probability 1− ε. Then if dn = 1, the
next value Xn+1 is drawn from ν; otherwise Xn+1 is drawn from the kernel

R(x,A) = [1− ε1C(x)]−1[Q(x,A)− ε1C(x)ν(A)] ,

with x = Xn. It is immediate that εν(A) + (1 − ε)R(x,A) = Q(x,A) for all
x ∈ C, so Xn+1 is indeed drawn from the correct (conditional) distribution.
Note also that R(x, ·) = Q(x, ·) for x �∈ C. So, what is gained by this approach?
What is gained is that whenever Xn ∈ C and dn = 1, the next value of the
chain will be independent of Xn (because it is drawn from ν). This is often
called a regeneration time, as the joint chain {(Xk, dk)} in a sense “restarts”
and forgets its history. In technical terms, the state C × {1} in the extended
state space is as atom, and it will be accessible provided C is.

We now make this formal. Thus we define the so-called extended state space
as X̌ = X × {0, 1} and let X̌ be the associated product σ-field. We associate
to every measure µ on (X,X ) the split measure µ� on (X̌, X̌ ) as the unique
measure satisfying, for A ∈ X ,

µ�(A× {0}) = (1− ε)µ(A ∩ C) + µ(A ∩ Cc) ,
µ�(A× {1}) = εµ(A ∩ C) .

If Q is a transition kernel on (X,X ), we define the kernel Q� on X × X̌ by
Q�(x, Ǎ) = [Q(x, ·)]�(Ǎ) for x ∈ X and Ǎ ∈ X̌ .

Assume now that Q is a phi-irreducible transition kernel and let C be a
(1, ε, ν)-small set. We define the split transition kernel Q̌ on X̌×X̌ as follows.
For any x ∈ X and Ǎ ∈ X̌ ,

Q̌((x, 0), Ǎ) = R�(x, Ǎ) , (14.24)

Q̌((x, 1), Ǎ) = ν�(Ǎ) . (14.25)

Examining the above technicalities, we find that transitions into Cc×{1}
have zero probability from everywhere, so that dn = 1 can only occur if
Xn ∈ C. Because dn = 1 indicates a regeneration time, from within C, this is
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logical. Likewise we find that given a transition to some y ∈ C, the conditional
probability that dn = 1 is ε, wherever the transition took place from. Thus the
above split transition kernel corresponds to the following simulation scheme
for {(Xk, dk)}. Assume (Xk, dk) are given. If Xk �∈ C, then draw Xk+1 from
Q(Xk, ·). If Xk ∈ C and dn = 1, then draw Xk+1 from ν, otherwise from
R(Xk, ·). If the realized Xk+1 is not in C, then set dk+1 = 0; if Xk+1 is in C,
then set dk+1 = 1 with probability ε, and otherwise set dk+1 = 0.

Split measures operate on the split kernel in the following way. For any
measure µ on (X,X ),

µ�Q̌ = (µQ)�. (14.26)

For any probability measure µ̌ on X̌ , we denote by P̌µ̌ and Ěµ̌, respectively, the
probability distribution and the expectation on the canonical space (X̌N, X̌⊗N)
such that the coordinate process, denoted {(Xk, dk)}k≥0, is a Markov chain
with initial probability measure µ̌ and transition kernel Q̌. We also denote by
{F̌k}k≥0 the natural filtration of this chain and, as usual, by {FX

k }k≥0 the
natural filtration of {Xk}k≥0.

Proposition 14.2.17. Let Q be a phi-irreducible transition kernel on (X,X ),
let C be an accessible (1, ε, ν)-small set for Q and let µ be a probability measure
on (X,X ). Then for any bounded X -measurable function f and any k ≥ 1,

Ěµ� [f(Xk) | FX
k−1] = Qf(Xk−1) P̌µ�-a.s. (14.27)

Before giving the proof, we discuss the implications of this result. It implies
that under P̌µ� , {Xk}k≥0 is a Markov chain (with respect to its natural filtra-
tion) with transition kernel Q and initial distribution µ. By abuse of notation,
we can identify {Xk} with the coordinate process associated to the canoni-
cal space XN. Denote by Pµ the probability measure on (XN,X⊗N) such that
{Xk}k≥0 is a Markov chain with transition kernel Q and initial distribution
µ (see Section 2.1.2.1) and denote by Eµ the associated expectation opera-
tor. Then Proposition 14.2.17 yields the following identity. For any bounded
FX

∞-measurable random variable Y ,

Ěµ� [Y ] = Eµ[Y ] . (14.28)

Proof (of Proposition 14.2.17). We have, µ�-a.s.,

Ěµ� [f(Xk) | F̌k−1] = 1{dk−1=1}ν(f) + 1{dk−1=0}Rf(Xk−1) .

Because P̌µ̌(dk−1 = 1 | FX
k−1) = ε1C(Xk−1) P̌µ� -a.s., it holds that

Ěµ� [f(Xk) | FX
k−1] = Ěµ�{Ě[f(Xk) | F̌k−1] | FX

k−1}
= ε1C(Xk−1)ν(f) + [1− ε1C(Xk−1)]Rf(Xk−1)
= Qf(Xk−1) .

��
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Corollary 14.2.18. Under the assumptions of Proposition 14.2.17, X × {1}
is an accessible atom and ν� is an irreducibility measure for the split kernel
Q̌. More generally, if B ∈ X is accessible for Q, then B × {0, 1} is accessible
for the split kernel.

Proof. Because α̌ = X × {1} is an atom for the split kernel Q̌, Proposi-
tion 14.2.9 shows that ν� is an irreducibility measure if α̌ is accessible. Ap-
plying (14.28) we obtain for x ∈ X,

P̌(x,1)(τα̌ <∞) = P̌(x,1)(dn = 1 for some n ≥ 1)

≥ P̌(x,1)(d1 = 1) = εν(C) > 0 ,

P̌(x,0)(τα̌ <∞) = P̌(x,0)((Xn, dn) ∈ C × {1} for some n ≥ 1)

≥ P̌(x,0)(τC×{0,1} <∞ , dτC×{0,1} = 1) = εPx(τC <∞) > 0 .

Thus α̌ is accessible and ν� is an irreducibility measure for Q̌. This implies, by
Theorem 14.2.2, that for all η ∈ (0, 1), ν�Ǩη is a maximal irreducibility mea-
sure for the split kernel Q̌; here Kη is the resolvent kernel (14.17) associated
to Q̌. By straightforward applications of the definitions, it is easy to check
that ν�Ǩη = (νKη)�. Moreover, ν is an irreducibility measure for Q, and νKη

is a maximal irreducibility measure for Q (still by Proposition 14.2.11 and
Theorem 14.2.2). If B is accessible, then νKη(B) > 0 and

ν�Ǩη(B × {0, 1}) = (νKη)�(B × {0, 1}) = νKη(B) > 0.

Thus B × {0, 1} is accessible for Q̌. ��

14.2.2.3 Transience/Recurrence Dichotomy for General
Phi-irreducible Chains

Using the splitting construction, we are now able to prove Theorem 14.2.6 for
chains not possessing accessible atoms. We first consider the simple case in
which the chain possesses a 1-small set.

Proposition 14.2.19. Let Q be a phi-irreducible transition kernel that admits
an accessible (1, ε, ν)-small set C. Then Q is either recurrent or transient. It
is recurrent if and only if the small set C is recurrent.

Proof. Because the split chain possesses an accessible atom, by Proposi-
tion 14.2.9 the split chain is phi-irreducible and either recurrent or transient.
Applying (14.28) we can write

Ěδ�
x
[ηB×{0,1}] = Ex[ηB ] . (14.29)

Assume first that the split chain is recurrent. Let B be an accessible set for
Q. By Proposition 14.2.17, B × {0, 1} is accessible for the split chain. Hence
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Ěδ�
x
[ηB×{0,1}] = ∞ for all x ∈ B, so that, by (14.29), Ex[ηB ] = ∞ for all

x ∈ B.
Conversely, if the split chain is transient, then by Proposition 14.2.9 the

atom α̌ is transient. For j ≥ 1, define Bj = {x :
∑j

l=1 Q̌
l((x, 0), α̌) ≥ 1/j}.

Because α̌ is accessible, ∪∞
j=1Bj = X. By the same argument as in the proof

of Proposition 14.2.9, the sets Bj ×{0, 1} are uniformly transient for the split
chain. Hence, by (14.29), the sets Bj are uniformly transient for Q.

It remains to prove that if the small set C is recurrent, then the chain is
recurrent. We have just proved that Q is recurrent if and only if Q̌ is recurrent
and, by Proposition 14.2.9, this is true if and only if the atom α̌ is recurrent.
Thus we only need to prove that if C is recurrent then α̌ is recurrent. If C is
recurrent, then (14.29) yields for all x ∈ C,

Ěδ�
x
[ηα̌] ≥ εĚδ�

x
[ηC×{0,1}] = εEx[ηC ] =∞ .

Using the definition of δ�
x, this implies that there exists x̌ ∈ X̌ such that

Ěx̌[ηα̌] = ∞. This observation and (14.23) imply that Ěα̌[ηα̌] = ∞, that is,
the atom is recurrent. ��

Using the resolvent kernel, the previous results can be extended to the
general case where an accessible small set exists, but not necessarily a 1-small
one.

Proposition 14.2.20. Let Q be transition kernel.

(i) If Q is phi-irreducible and admits an accessible (m, ε, ν)-small set C, then
for any η ∈ (0, 1), C is an accessible (1, ε′, ν)-small set for the resolvent
kernel Kη = (1− η)

∑∞
k=0 η

kQk with ε′ = (1− η)ηmε.
(ii) A set is recurrent (resp. uniformly transient) for Q if and only if it is

recurrent (resp. uniformly transient) for Kη for some (hence for all)
η ∈ (0, 1).

(iii) Q is recurrent (resp. transient) if and only if Kη is recurrent (resp. tran-
sient) for some (hence for all) η ∈ (0, 1).

Proof. For any η > 0, x ∈ C, and A ∈ X ,

Kη(x,A) ≥ (1− η)ηmQm(x,A) ≥ (1− η)ηmεν(A) = ε′ν(A) .

Thus C is a (1, ε′, ν)-small set for Kη, showing part (i). The remaining claims
follow from the identity ∑

n≥1

Kn
η =

1− η

η

∑
n≥0

Qn .

��
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14.2.2.4 Harris Recurrence

As for countable state spaces, it is sometimes useful to consider stronger recur-
rence properties, expressed in terms of return probabilities rather than mean
occupation times.

Definition 14.2.21 (Harris Recurrence). A set A ∈ X is said to be Harris
recurrent if Px(τA < ∞) = 1 for any x ∈ X. A phi-irreducible Markov chain
is said to be Harris (recurrent) if any accessible set is Harris recurrent.

It is intuitively obvious that, as for countable state spaces, Harris recur-
rence implies recurrence.

Proposition 14.2.22. A Harris recurrent set is recurrent.

Proof. Let A be a Harris recurrent set. Because for j ≥ 1, σ(j+1)
A = τA ◦ θσ

(j)
A

on the set {σ(j)
A <∞}, the strong Markov property implies that for any x ∈ A,

Px(σ(j+1)
A <∞) = Ex

[
PX

σ
(j)
A

(τA <∞)1{σ
(j)
A <∞}

]
= Px(σ(j)

A <∞) .

Because Px(σ(1)
A < ∞) = 1 for x ∈ A, we obtain that for all x ∈ A and all

j ≥ 1, Px(σ(j)
A = 1) and Ex[ηA] =

∑∞
j=1 Px(σ(j)

A <∞) = ∞. ��

Even though all transition kernels may not be Harris recurrent, the fol-
lowing theorem provides a very useful decomposition of the state space of a
recurrent phi-irreducible transition kernel. For a proof of this result, see Meyn
and Tweedie (1993, Theorem 9.1.5)

Theorem 14.2.23. Let Q be a phi-irreducible recurrent transition kernel on
a state space X and let ψ be a maximal irreducibility measure. Then X = N∪H,
where N is covered by a countable family of uniformly transient sets, ψ(N) = 0
and every accessible subset of H is Harris recurrent.

As a consequence, if A is an accessible set of a recurrent phi-irreducible chain,
then there exists a set A′ ⊆ A such that ψ(A \ A′) = 0 for any maximal
irreducibility measure ψ, and Px(τA′ <∞) = 1 for all x ∈ A′.

Example 14.2.24. To understand why a recurrent Markov chain can fail to
be Harris, consider the following elementary example of a chain on X = N. Let
the transition kernel Q be given by Q(0, 0) = 1 and for x ≥ 1, Q(x, x+1) = 1−
1/x2 and Q(x, 0) = 1/x2. Thus the state 0 is absorbing. Because Q(x, 0) > 0
for any x ∈ X, δ0 is an irreducibility measure. In fact, by application of
Theorem 14.2.2, this measure is maximal. The set {0} is an atom and because
P0(τ{0} <∞) = 1, the chain is recurrent by Proposition 14.2.9.

The chain is not Harris recurrent, however. Indeed, for any x ≥ 1 we have
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Px(τ0 ≥ k) = Px(X1 �= 0, . . . , Xk−1 �= 0) =
x+k−1∏

j=x

(1− 1/j2) .

Because
∏∞

j=2(1− 1/j2) > 0, we obtain that Px(τ0 = ∞) = limk→∞ Px(τ0 ≥
k) > 0 for any x ≥ 2, so that the accessible state 0 is not certainly reached
from such an initial state. Comparing to Theorem 14.2.23, we see that the
decomposition of the state space is given by H = {0} and N = {1, 2, . . .}. �

14.2.3 Invariant Measures and Stationarity

On general state spaces, we again further classify chains using invariant mea-
sures. A σ-finite measure µ is called Q-sub-invariant if µ ≥ µQ and Q-
invariant if µ = µQ.

Theorem 14.2.25. A phi-irreducible recurrent transition kernel (or Markov
chain) admits a unique (up to a multiplicative constant) invariant measure
which is also a maximal irreducibility measure.

This result leads us to define the following classes of chains.

Definition 14.2.26 (Positive and Null Chains). A phi-irreducible tran-
sition kernel (or Markov chain) is called positive if it admits an invariant
probability measure; otherwise it is called called null.

We now prove the existence of an invariant measure when the chain admits
an accessible atom. The invariant measure is defined as for countable state
spaces, by replacing an individual state by the atom. Thus define the measure
µα on X by

µα(A) = Eα

[
τα∑

n=1

1A(Xn)

]
, A ∈ X . (14.30)

Proposition 14.2.27. Let α be an accessible atom for the transition kernel
Q. Then µα is Q-sub-invariant. It is invariant if and only if the atom α is
recurrent. In that case, any Q-invariant measure µ is proportional to µα, and
µα is a maximal irreducibility measure.

Proof. By the definition of µα and the strong Markov property,

µαQ(A) = Eα

[
τα∑

k=1

Q(Xk, A)

]
= Eα

[
τα+1∑
k=2

1A(Xk)

]
= µα(A)− Pα(X1 ∈ A) + Eα[1A(Xτα+1)1{τα<∞}] .

Applying the strong Markov property once again yields
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Eα[1A(Xτα+1)1{τα<∞}] = Eα{Eα[1A(X1) ◦ θτα | FX
τα

]1{τα<∞}}
= Eα[PXτα

(X1 ∈ A)1{τα<∞}] = Pα(X1 ∈ A) Pα(τα <∞) .

Thus µαQ(A) = µα(A)− Pα(X1 ∈ A)[1− Pα(τα <∞)]. This proves that µα

is sub-invariant, and invariant if and only if Pα(τα <∞) = 1.
Now let µ be an invariant non-trivial measure and let A be an accessible set

such that µ(A) <∞. Then there exists an integer n such that Qn(α,A) > 0.
Because µ is invariant, it holds that µ = µQn, so that

∞ > µ(A) = µQn(A) ≥ µ(α)Qn(α,A) .

This implies that µ(α) <∞. Without loss of generality, we can assume µ(α) >
0; otherwise we replace µ by µ+µα. Assuming µ(α) > 0, there is then no loss
of generality in assuming µ(α) = 1.

The next step is to prove that if µ is an invariant measure such that
µ(α) = 1, then µ ≥ µα. To prove this it suffices to prove that for all n ≥ 1,

µ(A) ≥
n∑

k=1

Pα(Xk ∈ A, τα ≥ k) .

We prove this inequality by induction. For n = 1 we can write

µ(A) = µQ(A) ≥ µ(α)Q(α,A) = Q(α,A) = Pα(X1 ∈ A) .

Now assume now that the inequality holds for some n ≥ 1. Then

µ(A) = Q(α,A) +
∫

αc

µ(dy)Q(y,A)

≥ Q(α,A) +
n∑

k=1

Eα[Q(Xk, A)1{τα≥k}1{Xk /∈α}]

≥ Q(α,A) +
n∑

k=1

Eα[Q(Xk, A)1{τα≥k+1}] .

Because {τα ≥ k + 1} ∈ FX
k , the Markov property yields

Eα[Q(Xk, A)1{τα≥k+1}] = Pα(Xk+1 ∈ A, τα ≥ k + 1) ,

whence

µ(A) ≥ Q(α,A) +
n+1∑
k=2

Pα(Xk ∈ A, τα ≥ k) =
n+1∑
k=1

Pα(Xk ∈ A, τα ≥ k) .

This completes the induction, and we conclude that µ ≥ µα.
Assume that there exists a set A such that µ(A) > µα(A). It is straight-

forward that µ and µα are both invariant for the resolvent kernel Kδ (see
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(14.17)), for any δ ∈ (0, 1). Because α is accessible, Kδ(x, α) > 0 for all x ∈ X.
Hence

∫
A
µ(dx)Q(x, α) >

∫
A
µα(dx)Q(x, α), which implies that

1 = µ(α) = µKδ(α) =
∫

A

µ(dx)Kδ(x, α) +
∫

Ac

µ(dx)Kδ(x, α)

>

∫
A

µα(dx)Kδ(x, α) +
∫

Ac

µα(dx)Kδ(x, α) = µαKδ(α) = µα(α) = 1.

This contradiction shows that µ = µα.
We finally prove that µα is a maximal irreducibility measure. Let ψ be a

maximal irreducibility measure and assume that ψ(A) = 0. Then Px(τA <
∞) = 0 for ψ-almost all x ∈ X. This obviously implies that Px(τA < ∞) = 0
for ψ-almost all x ∈ α. Because Px(τA < ∞) is constant over α, we find
that Px(τA < ∞) = 0 for all x ∈ α, and this yields µα(A) = 0. Thus µα

is absolutely continuous with respect to ψ, hence an irreducibility measure.
Let again Kδ be the resolvent kernel. By Theorem 14.2.2, µαKδ is a maximal
irreducibility measure. But, as noted above, µαKε = µα, and therefore µα is
a maximal irreducibility measure. ��

Proposition 14.2.28. Let Q be a recurrent phi-irreducible transition kernel
that admits an accessible (1, ε, ν)-small set C. Then it admits a non-trivial
invariant measure, unique up to multiplication by a constant and such that 0 <
π(C) <∞, and any invariant measure is a maximal irreducibility measure.

Proof. By (14.26), (µQ)� = µ�Q̌, so that µ is Q-invariant if and only if µ� is
Q̌-invariant. Let µ̌ be a Q̌-invariant measure and define

µ =
∫

C×{0}
µ̌(dx̌)R(x, ·) +

∫
Cc×{0}

µ̌(dx̌)Q(x, ·) + µ̌(X× {1})ν .

By application of the definition of the split kernel and measures, it can be
checked that µ̌Q̌ = µ�. Hence µ� = µ̌Q̌ = µ̌. We thus see that µ� is Q̌-
invariant, which, as noted above, implies that µ is Q-invariant. Hence we have
shown that there exists a Q-invariant measure if and only if there exists a
Q̌-invariant one.

If Q is recurrent then C is recurrent, and as appears in the proof of Propo-
sition 14.2.28 this implies that the atom α̌ is recurrent for the split chain
Q̌. Thus, by Proposition 14.2.9 the kernel Q̌ is recurrent, and by Proposi-
tion 14.2.27 it admits an invariant measure that is unique up to a scaling
factor. Hence Q also admits an invariant measure, unique up to a scaling
factor and such that 0 < π(C) <∞.

Let µ be Q-invariant. Then µ� is Q̌-invariant and hence, by Proposi-
tion 14.2.27, a maximal irreducibility measure. If µ(A) > 0, then µ�(A ×
{0, 1}) = µ(A) > 0. Thus A × {0, 1} is accessible, and this implies that A is
accessible. We conclude that µ is an irreducibility measure, and it is maximal
because it is Kη-invariant. ��
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If the kernel Q is phi-irreducible and admits an accessible (m, ε, ν)-small set
C, then, by Proposition 14.2.20, for any η ∈ (0, 1) the set C is an accessible
(1, ε′, ν)-small set for the resolvent kernel Kη. If C is recurrent for Q, it is
also recurrent for Kη and therefore, by Proposition 14.2.19, Kη has a unique
invariant probability measure. The following result shows that this probability
measure is invariant also for Q.

Lemma 14.2.29. A measure µ on (X,X ) is Q-invariant if and only if µ is
Kη-invariant for some (hence for all) η ∈ (0, 1).

Proof. If µQ = µ, then obviously µQn = µ for all n ≥ 0, so that µKη = µ.
Conversely, assume that µKη = µ. Because Kη = ηQKη + (1 − η)Q0 and
QKη = KηQ, it holds that

µ = µKη = ηµQKη + (1− η)µ = ηµKηQ + (1− η)µ = ηµQ + (1− η)µ .

Hence ηµQ = ηµ, which concludes the proof. ��

14.2.3.1 Drift Conditions

We first give a sufficient condition for a chain to be positive, based on the
expectation of the return time to an accessible small set.

Proposition 14.2.30. Let Q be a transition kernel that admits an accessible
small set C such that

sup
x∈C

Ex[τC ] <∞ . (14.31)

Then the chain is positive and the invariant probability measure π satisfies,
for all A ∈ X ,

π(A) =
∫

C

π(dy) Ey

[
τC−1∑
k=0

1A(Xk)

]
=

∫
C

π(dy) Ey

[
τC∑

k=1

1A(Xk)

]
. (14.32)

If f is a non-negative measurable function such that

sup
x∈C

Ex

[
τC−1∑
k=0

f(Xk)

]
<∞ , (14.33)

then f is integrable with respect to π and

π(f) =
∫

C

π(dy) Ey

[
τC−1∑
k=0

f(Xk)

]
=

∫
C

π(dy) Ey

[
τC∑

k=1

f(Xk)

]
.
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Proof. First note that by Proposition 14.2.11, Q is phi-irreducible. Equa-
tion (14.31) implies that for all Px(τC <∞) = 1 x ∈ C, that is, C is Harris re-
current. By Proposition 14.2.22, C is recurrent, and so, by Proposition 14.2.19,
Q is recurrent. Let π be an invariant measure such that 0 < π(C) < ∞, the
existence of which is given by Proposition 14.2.28. Then define a measure µC

on X by

µC(A) def=
∫

C

π(dy) Ey

[
τC∑

k=1

1A(Xk)

]
.

Because τC < ∞ Py-a.s. for all y ∈ C, it holds that µC(C) = π(C). Then
we can show that µC(A) = π(A) for all A ∈ X . The proof is along the same
lines as the proof of Proposition 14.2.27 and is therefore omitted. Thus, µC is
invariant. In addition, we obtain that for any measurable set A,∫

C

π(dy) Ey [1A(X0)] = π(A ∩ C) = µC(A ∩ C) =
∫

C

π(dy) Ey [1A(XτC
)] ,

and this yields

µC(A) =
∫

C

π(dy) Ey

[
τC∑

k=1

1A(Xk)

]
=

∫
C

π(dy) Ey

[
τC−1∑
k=0

1A(Xk)

]
.

We thus obtain the following equivalent expressions for µC :

µC(A) =
∫

C

π(dy) Ey

[
τC−1∑
k=0

1A(Xk)

]
=

∫
C

µC(dy) Ey

[
τC−1∑
k=0

1A(Xk)

]

=
∫

C

µC(dy) Ey

[
τC∑

k=1

1A(Xk)

]
=

∫
C

π(dy) Ey

[
τC∑

k=1

1A(Xk)

]
= π(A) .

Hence

π(X) =
∫

C

π(dy) Ey

[
τC−1∑
k=0

1X(Xk)

]
≤ π(C) sup

y∈C
Ey[τC ] <∞ ,

so that any invariant measure is finite and the chain is positive. Finally, under
(14.33) we obtain that

π(f) =
∫

C

π(dy) Ey

[
τC−1∑
k=0

f(Xk)

]
≤ π(C) sup

y∈C
Ey

[
τC−1∑
k=1

f(Xk)

]
<∞ .

��

Except in specific examples (where, for example, the invariant distribution
is known in advance), it may be difficult to decide if a chain is positive or null.
To check such properties, it is convenient to use drift conditions.
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Proposition 14.2.31. Assume that there exists a set C ∈ X , two measurable
functions 1 ≤ f ≤ V , and a constant b > 0 such that

QV ≤ V − f + b1C . (14.34)

Then

Ex[τC ] ≤ V (x) + b1C(x) , (14.35)

Ex [V (XτC
)] + Ex

[
τC−1∑
k=0

f(Xk)

]
≤ V (x) + b1C(x) . (14.36)

If C is an accessible small set and V is bounded on C, then the chain is
positive recurrent and π(f) <∞.

Proof. Set for n ≥ 1,

Mn =

[
V (Xn) +

n−1∑
k=0

f(Xk)

]
1{τC≥n} .

Then

E[Mn+1 | Fn] =

[
QV (Xn) +

n∑
k=0

f(Xk)

]
1{τC≥n+1}

≤
[
V (Xn)− f(Xn) + b1C(Xn) +

n∑
k=0

f(Xk)

]
1{τC≥n+1}

=

[
V (Xn) +

n−1∑
k=0

f(Xk)

]
1{τC≥n+1} ≤Mn ,

as 1C(Xn)1{τC≥n+1} = 0. Hence {Mn}n≥1 is a non-negative super-martingale.
For any integer n, τC ∧ n is a bounded stopping time, and Doob’s optional
stopping theorem shows that for any x ∈ X,

Ex [MτC∧n] ≤ Ex [M1] ≤ V (x) + b1C(x) . (14.37)

Applying this relation with f ≡ 1 yields for any x ∈ X and n ≥ 0,

Ex [τC ∧ n] ≤ V (x) + b1C(x) ,

and (14.35) follows using monotone convergence. This implies in particular
that Px(τC < ∞) = 1 for any x ∈ X. The proof of (14.36) follows similarly
from (14.37) by the letting n→∞ and π(f) is finite by (14.33). ��

Example 14.2.32 (Random Walk on the Half-Line, Continued). Con-
sider again the model of Example 14.2.8. Previously we have seen that sets of
the form [0, c] are small. If Γ ((−∞ ,−c]) > 0, then for x ∈ [0, c],
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Q(x,A) ≥ Γ ((−∞ ,−c])1A(0) ;

otherwise there exists an integer m such that Γ ∗m((−∞ ,−c]) > 0, whence

Qm(x,A) ≥ Γ ∗m((−∞ ,−c])1A(0) .

To prove recurrence for µ < 0, we apply Proposition 14.2.31. Because
µ < 0, there exists c > 0 such that

∫ ∞
−c

wΓ (dw) ≤ µ/2 < 0. Thus taking
V (x) = x for x > c,

QV (x)− V (x) =
∫ ∞

−∞
[(x + w)+ − x]Γ (dw)

= −xΓ ((−∞ ,−x]) +
∫ ∞

−x

wΓ (dw) ≤ µ/2 .

Hence the chain is positive recurrent.
Consider now the case µ > 0. In view of Proposition 14.2.9, we have to

show that the atom {0} is transient. For any n, Xn ≥ X0 +
∑n

i=1 Wi. Define
Cn =

{∣∣n−1 ∑n
i=1 Wi − µ

∣∣ ≥ µ/2
}

and write Dn for {Xn = 0}. The strong
law of large numbers implies that P0(Dn i.o.) ≤ P0(Cn i.o.) = 0. Hence the
atom {0} is transient, and so is the chain.

When µ = 0, additional assumptions on Γ are needed to prove the recur-
rence of the RWHL (see for instance Meyn and Tweedie, 1993, Lemma 8.5.2).

�

Example 14.2.33 (Autoregressive Model, Continued). Consider again
the model of Example 14.2.3 and assume that the noise process has zero mean
and finite variance. Choosing V (x) = x2 we have

PV (x) = E[(φx + U1)2] = φ2V (x) + E[U2
1 ] ,

so that (14.34) holds when C = [−M,M ] for some large enough M , provided
|φ| < 1. Because we know that every compact set is small if the noise process
has an everywhere continuous positive density, Proposition 14.2.31 shows that
the chain is positive recurrent. Note that this approach provides an existence
result but does not help us to determine π. If {Uk} are Gaussian with zero
mean and variance σ2, then one can check that the invariant distribution also
is Gaussian with zero mean and variance σ2/(1− φ2). �

Theorem 14.2.25 shows that if a chain is phi-irreducible and recurrent
then the chain is positive, that is, it admits a unique invariant probability
measure π. In certain situations, and in particular when dealing with MCMC
procedures, it is known that Q admits an invariant probability measure, but it
is not known, a priori, that the chain is recurrent. The following result shows
that positivity implies recurrence.

Proposition 14.2.34. If the Markov kernel Q is positive, then it is recurrent.
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Proof. Suppose that the chain is positive and let π be an invariant probability
measure. If Q is transient, the state space X is covered by a countable family
{Aj} of uniformly transient subsets (see Theorem 14.2.6). For any j and k,

kπ(Aj) =
k∑

n=1

πQn(Aj) ≤
∫

π(dx) Ex[ηAj ] ≤ sup
x∈X

Ex[ηAj ] . (14.38)

The strong Markov property implies that

Ex[ηAj ] = Ex[ηAj 1{σAj
<∞}]

≤ Ex{1{σAj
<∞} EXσAj

[ηAj
]} ≤ sup

x∈Aj

Ex[ηAj
] Px(σAj

<∞) .

Thus, the left-hand side of (14.38) is bounded as k → ∞. This implies that
π(Aj) = 0, and hence π(X) = 0. This is a contradiction so the chain cannot
be transient. ��

14.2.4 Ergodicity

In this section, we study the convergence of iterates Qn of the transition
kernel to the invariant distribution. As for discrete state spaces case, we first
need to avoid periodic behavior that prevents the iterates to converge. In
the discrete case, the period of a state x is defined as the greatest common
divisor of the set of time points {n ≥ 0 : Qn(x, x) > 0}. Of course this
notion does not extend to general state spaces, but for phi-irreducible chains
we may define the period of accessible small sets. More precisely, let Q be a
phi-irreducible transition kernel with maximal irreducibility measure ψ. By
Theorem 14.2.11, there exists an accessible (m, ε, ψ)-small set C. Because ψ
is a maximal irreducibility measure, ψ(C) > 0, so that when the chain starts
from C there is a positive probability that the it will return to C at time m.
Let

EC
def= {n ≥ 1 : the set C is (n, εn, ψ)-small for some εn > 0} (14.39)

be the set of time points for which C is small with minorizing measure ψ.
Note that for n and m in EC , B ∈ X+ and x ∈ C,

Qn+m(x,B) ≥
∫

C

Qm(x, dx′)Qn(x′, B) ≥ εmεnψ(C)ψ(B) > 0 ,

showing that EC is closed under addition. There is thus a natural period for
EC , given by the greatest common divisor. Similar to the discrete case (see
Proposition 14.1.12), this period d may be shown to be independent of the
particular choice of the small set C (see for instance Meyn and Tweedie, 1993,
Theorem 5.4.4).
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Proposition 14.2.35. Suppose that Q is phi-irreducible with maximal irre-
ducibility measure ψ. Let C be an accessible (m, ε, ψ)-small set and let d be the
greatest common divisor of the set EC , defined in (14.39). Then there exist
disjoint sets D1, . . . , Dd (a d-cycle) such that

(i) for x ∈ Di, Q(x,Di+1) = 1, i = 0, . . . , d− 1 (mod d);
(ii) the set N = (∪d

i=1Di)c is ψ-null.

The d-cycle is maximal in the sense if D′
1, . . . , D

′
d′ is a d′-cycle, then d′ divides

d, and if d = d′, then up to a permutation of indices D′
i and Di are ψ-almost

equal.

It is obvious from the this theorem that the period d does not depend
on the choice of the small set C and that any small set must be contained
(up to ψ-null sets) inside one specific member of a d-cycle. This in particular
implies that if there exists an accessible (1, ε, ψ)-small set C, then d = 1. This
suggests the following definition

Definition 14.2.36 (Aperiodicity). Suppose that Q is a phi-irreducible
transition kernel with maximal irreducibility measure ψ. The largest d for
which a d-cycle exists is called the period of Q. When d = 1, the chain is
called aperiodic. When there exists a (1, ε, ψ)-small set C, the chain is called
strongly aperiodic.

In all the examples considered above, we have shown the existence of a
1-small set; therefore all these Markov chains are strongly aperiodic.

Now we can state the main convergence result, formulated and proved by
Athreya et al. (1996). It parallels Theorem 14.1.13.

Theorem 14.2.37. Let Q be a phi-irreducible positive aperiodic transition
kernel. Then for π-almost all x,

lim
n→∞ ‖Q

n(x, ·)− π‖TV = 0 . (14.40)

If Q is Harris recurrent, the convergence occurs for all x ∈ X.

Although this result does not provide information on the rate of conver-
gence to the invariant distribution, its assumptions are quite minimal. In fact,
it may be shown that these assumptions are essentially necessary and suf-
ficient. If ‖Qn(x, ·)− π‖TV → 0 for any x ∈ X, then by Nummelin (1984,
Proposition 6.3), the chain is π-irreducible, aperiodic, positive Harris, and π
is an invariant distribution. This form of the ergodicity theorem is of particu-
lar interest in cases where the invariant distribution is explicitly known, as in
Markov chain Monte Carlo. It provides conditions that are simple and easy
to verify, and under which an MCMC algorithm converges to its stationary
distribution.

Of course the exceptional null set for non-Harris recurrent chain is a nui-
sance. The example below however shows that there is no way of getting rid
of it.
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Example 14.2.38. In the model of Example 14.2.24, π = δ0 is an invari-
ant probability measure. Because Qn(x, 0) = Px(τ{0} ≤ n) for any n ≥ 0,
limn→∞ Qn(x, 0) = Px(τ{0} <∞). We have previously shown that Px(τ{0} <
∞) = 1 − Px(τ{0} = ∞) < 1 for x ≥ 2, whence lim sup ‖Qn(x, ·)− π‖TV �= 0
for such x. �

Fortunately, in many cases it is not hard to show that a chain is Harris.
A proof of Theorem 14.2.37 from first principles is given by Athreya et al.

(1996). We give here a proof due to Rosenthal (1995), based on pathwise
coupling (see Rosenthal, 2001; Roberts and Rosenthal, 2004). The same con-
struction is used to compute bounds on ‖Qn(x, ·)− π‖TV. Before proving
the theorem, we briefly introduce the pathwise coupling construction for phi-
irreducible Markov chains and present the associated Lindvall inequalities.

14.2.4.1 Pathwise Coupling and Coupling Inequalities

Suppose that we have two probability measures ξ and ξ′ on (X,X ) that are
such that 1

2 ‖ξ − ξ′‖TV ≤ 1− ε for some ε ∈ (0, 1] or, equivalently (see (4.19)),
that there exists a probability measure ν such that εν ≤ ξ∧ ξ′. Because ξ and
ξ′ are probability measures, we may construct a probability space (Ω,F ,P)
and X-valued random variables X and X ′ such that P(X ∈ ·) = ξ(·) and
P(X ′ ∈ ·) = ξ′, respectively. By definition, for any A ∈ X ,

|ξ(A)− ξ′(A)| = |P(X ∈ A)− P(X ′ ∈ A)| = |E[1A(X)− 1A(X ′)]| (14.41)
= |E[(1A(X)− 1A(X ′))1{X �=X′}]| ≤ P(X �= X ′) , (14.42)

so that the total variation distance between the laws of two random elements is
bounded by the probability that they are unequal. Of course, this inequality
is not in general sharp, but we can construct on an appropriately defined
probability space (Ω̃, F̃ , P̃) two X-valued random variables X and X ′ with
laws ξ and ξ′ such that P̃(X = X ′) ≥ 1− ε. The construction goes as follows.
We draw a Bernoulli random variable d with probability of success ε. If d = 0,
we then draw X and X ′ independently from the distributions (1−ε)−1 (ξ − εν)
and (1 − ε)−1 (ξ′ − εν), respectively. If d = 1, we draw X from ν and set
X = X ′. Note that for any A ∈ X ,

P̃(X ∈ A) = P̃(X ∈ A | d = 0)P̃(d = 0) + P̃(X ∈ A | d = 1)P̃(d = 1)

= (1− ε){(1− ε)−1[ξ(A)− εν(A)]} = ξ(A)

and, similarly, P̃(X ′ ∈ A) = ξ′(A). Thus, marginally the random variables
X and X ′ are distributed according to ξ and ξ′. By construction, P̃(X =
X ′) ≥ P(d = 1) ≥ ε, showing that X and X ′ are equal with probability at
least ε. Therefore the coupling bound (14.41) can be made sharp by using an
appropriate construction. Note that this construction may be used to derive
bounds on distances between probability measures that generalize the total
variation; we will consider in the sequel the V -total variation.
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Definition 14.2.39 (V-Total Variation). Let V : X → [1,∞) be a measur-
able function. The V -total variation distance between two probability measures
ξ and ξ′ on (X,X ) is

‖ξ − ξ′‖V
def= sup

|f |≤V

|ξ(f)− ξ′(f)| .

If V ≡ 1, ‖ · ‖1 is the total variation distance.

When applied to Markov chains, the whole idea of coupling is to construct
on an appropriately defined probability space two Markov chains {Xk} and
{X ′

k} with transition kernel Q and initial distributions ξ and ξ′, respectively,
in such a way that Xn = X ′

n for all indices n after a random time T , referred
to as the coupling time. The coupling procedure attempts to couple the two
Markov chains when they simultaneously enter a coupling set.

Definition 14.2.40 (Coupling Set). Let C̄ ⊆ X × X, ε ∈ (0, 1] and let
ν = {νx,x′ , x, x′ ∈ X} be transition kernels from C̄ (endowed with the trace
σ-field) to (X,X ). The set C̄ is a (1, ε,ν)-coupling set if for all (x, x′) ∈ C̄
and all A ∈ X ,

Q(x,A) ∧Q(x′, A) ≥ ε νx,x′(A) . (14.43)

By applying Lemma 4.3.5, this condition can be stated equivalently as:
there exists ε ∈ (0, 1] such that for all (x, x′) ∈ C̄,

1
2
‖Q(x, ·)−Q(x′, ·)‖TV ≤ 1− ε . (14.44)

For simplicity, only one-step minorization is considered in this chapter.
Adaptations to m-step minorization (replacing Q by Qm in (14.43)) can be
carried out as in Rosenthal (1995). Condition (14.43) is often satisfied by
setting C̄ = C × C for a (1, ε, ν)-small set C. Indeed, in that case, for all
(x, x′) ∈ C × C and A ∈ X ,

Q(x,A) ∧Q(x′, A) ≥ εν(A) .

The case ε = 1 needs some consideration. If there exists an atom, say
α, i.e., there exists a probability measure ν such that for all x ∈ α and
A ∈ X , Q(x,A) = ν(A), then C̄ = α × α is a (1, 1,ν)-coupling set with
νx,x′ = ν for all (x, x′) ∈ C̄. Conversely, assume that C̄ is a (1, 1,ν)-coupling
set. The alternative characterization (14.44) shows that Q(x, ·) = Q(x′, ·) for
all (x, x′) ∈ C̄, that is, C̄ is an atom. This also implies that the set C̄ contains
a set α1 × α2, where α1 and α2 are atoms for Q.

We now introduce the coupling construction. Let C̄ be a (1, ε,ν)-coupling
set. Define X̄ = X×X and X̄ = X ⊗X . Let Q̄ be a transition kernel on (X̄, X̄ )
given for all A and A′ in X by
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Q̄(x, x′;A×A′) = Q(x,A)Q(x′, A′)1C̄c(x, x′)+

(1− ε)−2[Q(x,A)− ενx,x′(A)][Q(x′, A′)− ενx,x′(A′)]1C̄(x, x′) (14.45)

if ε < 1 and Q̄ = Q ⊗ Q if ε = 1. For any probability measure µ̄ on (X̄, X̄ ),
let P̄µ̄ be the probability measure on the canonical space (X̄N, X̄N) such that
the coordinate process {Xk} is a Markov chain with respect to its natural
filtration and with initial distribution µ̄ and transition kernel Q̄. As usual,
denote the associated expectation operator by Ēµ̄.

We now define a transition kernel Q̃ on the space X̃
def= X × X × {0, 1}

endowed with the product σ-field X̃ by, for any x, x′ ∈ X and A,A′ ∈ X ,

Q̃ ((x, x′, 0), A×A′ × {0}) = [1− ε1C̄(x, x′)]Q̄((x, x′), A×A′) , (14.46)

Q̃ ((x, x′, 0), A×A′ × {1}) = ε1C̄(x, x′)νx,x′(A ∩A′) , (14.47)

Q̃ ((x, x′, 1), A×A′ × {1}) = Q(x,A ∩A′) . (14.48)

For any probability measure µ̃ on (X̃, X̃ ), let P̃µ̃ be the probability measure
on the canonical space (X̃N, X̃⊗N) such that the coordinate process {X̃k} is a
Markov chain with transition kernel Q̃ and initial distribution µ̃. The corre-
sponding expectation operator is denoted by Ẽµ̃.

The transition kernel Q̃ can be described algorithmically. Given X̃0 =
(X0, X

′
0, d0) = (x, x′, d), X̃1 = (X1, X

′
1, d1) is obtained as follows.

• If d = 1, then draw X1 from Q(x, ·) and set X ′
1 = X1, d1 = 1.

• If d = 0 and (x, x′) ∈ C̄, flip a coin with probability of heads ε.
– If the coin comes up heads, draw X1 from νx,x′ and set X ′

1 = X1 and
d1 = 1.

– If the coin comes up tails, draw (X1, X
′
1) from Q̄(x, x′; ·) and set d1 = 0.

• If d = 0 and (x, x′) �∈ C̄, draw (X1, X
′
1) from Q̄(x, x′; ·) and set d1 = 0.

The variable dn is called the bell variable; it indicates whether coupling has
occurred by time n (dn = 1) or not (dn = 0). The first index n at which
dn = 1 is the coupling time;

T = inf{k ≥ 1 : dk = 1}.

If dn = 1, then Xk = X ′
k for all k ≥ n. The coupling construction is carried

out in such a way that under P̃ξ⊗ξ′⊗δ0 , {Xk} and {X ′
k} are Markov chains

with transition kernel Q with initial distributions ξ and ξ′, respectively.
The coupling construction allows deriving quantitative bounds on the

(V -)total variation distance in terms of the tail probability of the coupling
time.

Proposition 14.2.41. Assume that the transition kernel Q admits a (1, ε,ν)-
coupling set. Then for any probability measures ξ and ξ′ on (X,X ) and any
measurable function V : X → [1,∞),
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‖ξQn − ξ′Qn‖TV ≤ 2P̃ξ⊗ξ′⊗δ0(T > n) , (14.49)

‖ξQn − ξ′Qn‖V ≤ 2Ẽξ⊗ξ′⊗δ0 [V̄ (Xn, X
′
n)1{T>n}] , (14.50)

where V̄ : X× X → [1,∞) is defined by V̄ (x, x′) = {V (x) + V (x′)}/2.
Proof. We only need to prove (14.50) because (14.49) is obtained by set-
ting V ≡ 1. Pick a function f such that |f | ≤ V and note that [f(Xn) −
f(X ′

n)]1{dn=1} = 0. Hence

|ξQnf − ξ′Qnf | = |Ẽξ⊗ξ′⊗δ0 [f(Xn)− f(X ′
n)]|

= |Ẽξ⊗ξ′⊗δ0 [(f(Xn)− f(X ′
n))1{dn=0}]|

≤ 2Ẽξ⊗ξ′⊗δ0 [V̄ (Xn, X
′
n)1{dn=0}] .

��
We now provide an alternative expression of the coupling inequality that

only involves the process {X̄k}. Let σC̄ be the hitting time on the coupling
set C̄ by this process, define K0(ε) = 1, and for all n ≥ 1,

Kn(ε) =

⎧⎨⎩1{σC̄≥n} if ε = 1 ;∏n−1
j=0 [1− ε1C̄(X̄j)] if ε ∈ (0, 1) .

(14.51)

Proposition 14.2.42. Assume that the transition kernel Q admits a (1, ε,ν)-
coupling set. Let ξ and ξ′ be probability measures on (X,X ) and let V : X →
[1,∞) be a measurable function. Then

‖ξQn − ξ′Qn‖V ≤ 2Ēξ⊗ξ′ [V̄ (Xn, X
′
n)Kn(ε)] , (14.52)

with V̄ (x, x′) = [V (x) + V (x′)]/2.

Proof. We show that for any probability measure µ̄ on (X̄, X̄ ),

Ẽµ̄⊗δ0 [V̄ (Xn, X
′
n)1{T>n}] = Ēµ̄[V̄ (Xn, X

′
n)Kn(ε)] .

To do this, we shall prove by induction that for any n ≥ 0 and any bounded
X̄ -measurable functions {fj}j≥0,

Ẽµ̄⊗δ0

⎡⎣ n∏
j=0

fj(Xj , X
′
j) 1{T>n}

⎤⎦ = Ēµ̄

⎡⎣ n∏
j=0

fj(Xj , X̄j)Kn(ε)

⎤⎦ . (14.53)

This is obviously true for n = 0. For n ≥ 0, put χn =
∏n

j=0 fj(Xj , X
′
j). The

induction assumption and the identity {T > n + 1} = {dn+1 = 0} yield

Ẽµ̄⊗δ0 [χn+11{T>n+1}] = Ẽµ̄⊗δ0 [χn fn+1(Xn+1, X
′
n+1)1{dn+1=0}]

= Ẽµ̄⊗δ0{χn Ẽ[fn+1(Xn+1, X
′
n+1)1{dn+1=0} | F̃n]1{dn=0}}

= Ẽµ̄⊗δ0{χn[1− ε1C̄(Xn, X
′
n)]Q̄fn+1(Xn, X

′
n)1{dn=0}}

= Ēµ̄[χnQ̄fn+1(X̄n)Kn+1(ε)] = Ēµ̄[χn+1Kn+1(ε)] .

This concludes the induction and the proof. ��
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14.2.4.2 Proof of Theorem 14.2.37

We preface the proof of Theorem 14.2.37 by two technical lemmas that estab-
lish some elementary properties of a chain on the product space with transition
kernel Q⊗Q.

Lemma 14.2.43. Suppose that Q is a phi-irreducible aperiodic transition ker-
nel. Then for any n, Qn is phi-irreducible and aperiodic.

Proof. Propositions 14.2.11 and 14.2.12 show that there exists an accessible
(m, ε, ν)-small set C and that ν is an irreducibility measure. Because Q is
aperiodic, there exists a sequence {εk} of positive numbers and an integer nC

such that for all n ≥ nC , x ∈ C, and A ∈ X , Qn(x,A) ≥ εnν(A). In addition,
because C is accessible, there exists p such that Qp(x,C) > 0 for any x ∈ X.
Therefore for any n ≥ nC and any A ∈ X such that ν(A) > 0,

Qn+p(x,A) ≥
∫

C

Qp(x, dx′)Qn(x′, A) ≥ εnν(A)Qp(x,C) > 0 . (14.54)

��

Lemma 14.2.44. Let Q be an aperiodic positive transition kernel with in-
variant probability measure π. Then Q⊗Q is phi-irreducible, π⊗ π is Q⊗Q-
invariant, and Q ⊗ Q is positive. If C is an accessible (m, ε, ν)-small set for
Q, then C × C is an accessible (m, ε2, ν ⊗ ν)-small set for Q⊗Q.

Proof. Because Q is phi-irreducible and admits π as an invariant probability
measure, π is a maximal irreducibility measure for Q. Let C be an accessible
(m, ε, ν)-small set for Q. Then for (x, x′) ∈ C × C and A ∈ X ⊗ X ,

(Q⊗Q)m(x, x′;A) =
∫∫

A

Qm(x, dy)Qm(x′, dy′) ≥ ε2ν ⊗ ν(A) .

Because ν⊗ ν(C ×C) = [ν(C)]2 > 0, this shows that C ×C is a (1, ε2, ν⊗ ν)-
small set for Q ⊗ Q. By (14.54) there exists an integer nx such that for any
n ≥ nx, Qn(x,C) > 0. This implies that for any (x, x′) ∈ X × X and any
n ≥ nx ∨ nx′ ,

(Q⊗Q)n(x, x′ ;C × C) = Qn(x,C)Qn(x′, C) > 0 ,

showing that C × C is accessible. Because C × C is a small set, Proposi-
tion 14.2.11 shows that Q⊗Q is phi-irreducible. In addition, π⊗π is invariant
for Q ⊗ Q, so that π ⊗ π is a maximal irreducibility measure and Q ⊗ Q is
positive. ��

We have now all the necessary ingredients to prove Theorem 14.2.37.
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Proof (of Theorem 14.2.37). By Lemma 14.2.43, Qm is phi-irreducible for any
integer m. By Proposition 14.2.12, there exists an accessible (m, ε, ν)-small set
C with ν(C) > 0. Lemma 4.3.8 shows that for all integers n,

‖Qn(x, ·)−Qn(x′, ·)‖TV ≤ ‖Qm[n/m](x, ·)−Qm[n/m](x′, ·)‖TV .

Hence it suffices to prove that (14.40) holds for Qm and we may thus without
loss of generality assume that m = 1.

For any probability measure µ on (X×X,X ⊗X ), let P�
µ denote the prob-

ability measure on the canonical space ((X × X)N, (X ⊗ X )⊗N) such that the
canonical process {(Xk, X

′
k)}k≥0 is a Markov chain with transition kernel

Q ⊗ Q and initial distribution µ. By Lemma 14.2.44, Q ⊗ Q is positive, and
it is recurrent by Proposition 14.2.34.

Because π ⊗ π(C × C) = π2(C) > 0, by Theorem 14.2.23 there exist two
measurable sets C̄ ⊆ C ×C and H̄ ⊆ X× X such that π ⊗ π(C ×C \ C̄) = 0,
π × π(H) = 1, and for all (x, x′) ∈ H̄, P�

x,x′(τC̄ < ∞) = 1. Moreover, the set
C̄ is a (1, ε,ν)-coupling set with νx,x′ = ν for all (x, x′) ∈ C̄.

Let the transition kernel Q̄ be defined by (14.45) if ε < 1 and by Q̄ =
Q ⊗ Q if ε = 1. For ε = 1, P̄x,x′ = P�

x,x′ . Now assume that ε ∈ (0, 1). For
(x, x′) �∈ C̄, P̄x,x′(τC̄ = ∞) = P�

x,x′(τC̄ = ∞). For (x, x′) ∈ C̄, noting that
Q̄(x, x′, A) ≤ (1− ε)−2Q⊗Q(x, x′, A) we obtain

P̄x,x′(τC̄ = ∞) = P̄x,x′(τC̄ = ∞| (X1, X
′
1) /∈ C × C) Q̄(x, x′, C̄c)

≤ (1− ε)−2Q⊗Q(x, x′, C̄c) P�
x,x′(τC̄ = ∞| X̄1 /∈ C̄)

= (1− ε)−2 P�
x,x′(τC̄ = ∞) = 0 .

Thus, for all ε ∈ (0, 1] the set C̄ is Harris-recurrent for the kernel Q̄. This
implies that limn→∞ Ēx,x′ [Kn(ε)] = 0 for all (x, x′) ∈ H̄ and, using Proposi-
tion 14.2.42, we conclude that (14.40) is true. ��

14.2.5 Geometric Ergodicity and Foster-Lyapunov Conditions

Theorem 14.2.37 implies forgetting of the initial distribution and convergence
to stationarity but does not provide us with rates of convergence. In this
section, we show how to adapt the construction above to derive explicit bounds
on ‖ξQn−ξ′Qn‖V . We focus on conditions that imply geometric convergence.

Definition 14.2.45 (Geometric Ergodicity). A positive aperiodic transi-
tion kernel Q with invariant probability measure π is said to be V -geometrically
ergodic if there exist constants ρ ∈ (0, 1) and M <∞ such that

‖Qn(x, ·)− π‖V ≤MV (x)ρn for π-almost all x. (14.55)

We now present conditions that ensure geometric ergodicity.
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Definition 14.2.46 (Foster-Lyapunov Drift Condition). A transition
kernel Q is said to satisfy a Foster-Lyapunov drift condition outside a set
C ∈ X if there exists a measurable function V : X → [1,∞], bounded on C,
and non-negative constants λ < 1 and b <∞ such that

QV ≤ λV + b1C . (14.56)

If Q is phi-irreducible and satisfies a Foster-Lyapunov condition outside
a small set C, then C is accessible and, writing QV ≤ V − (1 − λ)V + b1C ,
Proposition 14.2.31 shows that Q is positive and π(V ) <∞.

Example 14.2.47 (Random Walk on the Half-Line, Continued). As-
sume that for the model of Example 14.2.8 there exists z > 0 such that
E[ezW1 ] <∞. Then because µ < 0, there exists z > 0 such that E[ezW1 ] < 1.
Define z0 = arg minz>0 E[ezW1 ] and V (x) = ez0x, and choose x0 > 0 such that
λ = E[ez0W1 ] + P(W1 < −x0) < 1. Then for x > x0,

QV (x) = E[ez0(x+W1)+ ] = P(W1 ≤ −x) + ez0x E[ez0W11{W1>−x}] ≤ λV (x) .

Hence the Foster-Lyapunov drift condition holds outside the small set [0, x0],
and the RWHL is geometrically ergodic. For a sharper choice of the constants
z0 and λ, see Scott and Tweedie (1996, Theorem 4.1). �

Example 14.2.48 (Metropolis-Hastings Algorithm, Continued). Con-
sider the Metropolis-Hastings algorithm of Example 14.2.4 with random walk
proposal kernel r(x, x′) = r(|x− x′|). Geometric ergodicity of the Metropolis-
Hastings algorithm on R

d is largely a property of the tails of the stationary
distribution π. Conditions for geometric ergodicity can be shown to be, es-
sentially, that the tails are exponential or lighter (Mengersen and Tweedie,
1996) and that in higher dimensions the contours of π are regular near ∞ (see
for instance Jarner and Hansen, 2000). To understand how the tail conditions
come into play, consider the case where π is a probability density on X = R

+.
We suppose that π is log-concave in the upper tail, that is, that there exists
α > 0 and M such that for all x′ ≥ x ≥M ,

log π(x)− log π(x′) ≥ α(x′ − x) . (14.57)

To simplify the proof, we assume that π is non-increasing, but this assumption
is unnecessary. Define Ax = {x′ ∈ R

+ : π(x′) ≤ π(x)} and Rx = {x′ ∈
R

+, π(x) > π(x′)}, the acceptance and (possible) rejection regions for the
chain started from x. Because π is non-increasing, these sets are simple: Ax =
[0, x] and Rx = (x,∞) ∪ (−∞, 0). If we relax the monotonicity conditions,
the acceptance and rejection regions become more involved, but because π is
log-concave and thus in particular monotone in the upper tail, Ax and Rx are
essentially intervals when x is sufficiently large.

For any function V : R
+ → [1,+∞) and x ∈ R

+,
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QV (x)
V (x)

= 1 +
∫

Ax

r(x′ − x)
[
V (x′)
V (x)

− 1
]
dx′

+
∫

Rx

r(x′ − x)
π(x′)
π(x)

[
V (x′)
V (x)

− 1
]
dx′ .

We set V (x) = esx for some s ∈ (0, α). Because π is log-concave, π(x′)/π(x) ≤
e−α(x′−x) when x′ ≥ x ≥ M . For x ≥ M , it follows from elementary calcula-
tions that

lim sup
x→∞

QV (x)
V (x)

≤ 1−
∫ ∞

0
r(u)(1− e−su)[1− e−(α−s)u] du < 1 ,

showing that the random walk Metropolis-Hastings algorithm on the positive
real line satisfies the Foster-Lyapunov condition when π is monotone and log-
concave in the upper tail. �

The main result guaranteeing geometric ergodicity is the following.

Theorem 14.2.49. Let Q be a phi-irreducible aperiodic positive transition
kernel with invariant distribution π. Also assume that Q satisfies a Foster-
Lyapunov drift condition outside a small set C with drift function V . Then
π(V ) is finite and Q is V -geometrically ergodic.

In fact, it follows from Meyn and Tweedie (1993, Theorems 15.0.1 and 16.0.1)
that the converse is also true: if a phi-irreducible aperiodic kernel is V -
geometrically ergodic, then there exists an accessible small set C such that V
is a drift function outside C.

For the sake of brevity and simplicity, we now prove Theorem 14.2.49 un-
der the additional assumption that the level sets of V are all (1, ε, ν)-small.
In that case, it is possible to define a coupling set C̄ and a transition ker-
nel Q̄ that satisfies a (bivariate) Foster-Lyapunov drift condition outside C̄.
The geometric ergodicity of the transition kernel Q is then proved under this
assumption. This is the purpose of the following propositions.

Proposition 14.2.50. Let Q be a kernel that satisfies the Foster-Lyapunov
drift condition (14.56) with respect to a (1, ε, ν)-small set C and a function V
whose level sets are (1, ε, ν)-small. Then for any d > 1, the set C ′ = C ∪{x ∈
X : V (x) ≤ d} is small, C ′ × C ′ is a (1, ε, ν)-coupling set, and the kernel Q̄,
defined as in (14.45), satisfies the drift condition (14.58) with C̄ = C ′ × C ′,
V̄ (x, x′) = (1/2)[V (x) + V (x′)], and λ̄ = λ + b/(1 + d) provided λ̄ < 1.

Proof. For (x, x′) �∈ C̄ we have (1 + d)/2 ≤ V̄ (x, x′). Therefore

Q̄V̄ (x, x′) ≤ λV̄ (x, x′) +
b

2
≤

(
λ +

b

1 + d

)
V̄ (x, x′) ,

and for (x, x′) ∈ C̄ it holds that
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Q̄V̄ (x, x′) =
1

2(1− ε)
[QV (x) + QV (x′)− 2εν(V )]

≤ λ

(1− ε)
V̄ (x, x′) +

b− εν(V )
1− ε

.

��

Proposition 14.2.51. Assume that Q admits a (1, ε,ν)-coupling set C̄ and
that there exists a choice of the kernel Q̄ for which there is a measurable
function V̄ : X̄ → [1,∞), λ̄ ∈ (0, 1) and b̄ > 0 such that

Q̄V̄ ≤ λ̄V̄ + b̄1C̄ . (14.58)

Let W : X → [1,∞) be a measurable function such that W (x) + W (x′) ≤
2V̄ (x, x′) for all (x, x′) ∈ X × X. Then there exist ρ ∈ (0, 1) and c > 0 such
that for all (x, x′) ∈ X× X,

‖Qn(x, ·)−Qn(x′, ·)‖W ≤ cV̄ (x, x′)ρn . (14.59)

Proof. By Proposition 14.2.41, proving (14.59) amounts to proving the re-
quested bound for Ēx,x′ [V̄ (X̄n)Kn(ε)]. We only consider the case ε ∈ (0, 1),
the case ε = 1 being easier. Write x̄ = (x, x′). By induction, the drift condi-
tion (14.58) implies that

Ēx̄[V̄ (X̄n)] = Q̄nV̄ (x̄) ≤ λ̄nV̄ (x̄) + b̄

n−1∑
j=0

λ̄j ≤ V̄ (x̄) + b̄/(1− λ̄) . (14.60)

Recall that Kn(ε) = (1− ε)ηn(C̄) for ε ∈ (0, 1), where ηn(C̄) =
∑n−1

0 1C̄(Xj)
is the number of visits to the coupling set C̄ before time n. Hence Kn(ε) is
F̄n−1-measurable. Let j ≤ n+ 1 be an arbitrary positive integer to be chosen
later. Then (14.60) yields

Ēx̄[V̄ (X̄n)Kn(ε)1{ηn(C̄)≥j}] ≤ (1− ε)jĒx̄[V̄ (X̄n)]1{j≤n}
≤ [V̄ (x̄) + b̄/(1− λ̄)](1− ε)j1{j≤n} . (14.61)

Put M = supx̄∈C̄ Q̄V̄ (x̄)/V (x̄) and B = 1 ∨ [M(1 − ε)/λ̄]. For k = 0, . . . , n,
define Zk = λ̄−k[(1 − ε)/B]ηk(C̄)V̄ (X̄k). Because ηn(C̄) is F̄n−1-measurable,
we obtain

Ēx̄[Zn | F̄n−1] = λ̄−nQ̄V̄ (X̄n−1)[(1− ε)/B]ηn(C̄)

≤ λ̄−n+1V̄ (X̄n−1)[(1− ε)/B]ηn(C̄)1C̄c(X̄n−1)

+ λ̄−nMV̄ (X̄n−1)[(1− ε)/B]ηn(C̄)1C̄(X̄n−1) .

Using the relations ηn(C̄) = ηn−1(C̄) + 1C̄(X̄n−1) and M(1 − ε) ≤ Bλ̄, we
find that Ēx̄[Zn | F̄n−1] ≤ Zn−1 and, by induction, Ēx̄[Zn] ≤ Ēx̄[Z0] = V̄ (x̄).
Hence, as B ≥ 1,
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Ēx̄[V̄ (X̄n)Kn(ε)1{ηn(C̄)<j}] ≤ λ̄nBjĒx̄[Zn] ≤ λ̄nBj V̄ (x̄) . (14.62)

Gathering (14.61) and (14.62) yields

Ēx̄[V̄ (X̄n)Kn(ε)] ≤ [V̄ (x̄) + b̄/(1− λ̄)] [(1− ε)j1{j≤n} + λ̄nBj ] .

If B = 1, choosing j = n + 1 yields (14.59) with ρ = λ̄, and if B > 1 then set
j = [αn] with α ∈ (0, 1) such that log(λ̄) + α log(B) < 0; this choice yields
(14.59) with ρ = (1− ε)α ∨ (λ̄Bα) < 1. ��
Example 14.2.52 (Autoregressive Model, Continued). In the model of
Example 14.2.3, we have verified that V (x) = 1 + x2 satisfies (14.56) when
the noise variance is finite. We can deduce from Theorem 14.2.49 a variety of
results: the stationary distribution has finite variance and the iterates Qn(x, ·)
of the transition kernel converge to the stationary distribution π geometrically
fast in V -total variation distance. Thus there exist constants C and ρ < 1 such
that for any x ∈ X, ‖Qn(x, ·)−π‖V ≤ C(1 +x2)ρn. This implies in particular
that for any x ∈ X and any function f such that supx∈X(1+x2)−1|f(x)| <∞,
Ex[f(Xn)] converges to the limiting value

Eπ[f(Xn)] =

√
1− φ2

2πσ2

∫
exp

[
− (1− φ2)x2

2σ2

]
f(x) dx

geometrically fast. This applies for the mean, f(x) = x, and the second mo-
ment, f(x) = x2 (though in this case convergence can be derived directly from
the autoregression). �

14.2.6 Limit Theorems

One of the most important problems in probability theory is the investigation
of limit theorems for appropriately normalized sums of random variables. The
case of independent random variables is fairly well understood, but less is
known about dependent random variables such as Markov chains. The purpose
of this section is to study several basic limit theorems for additive functionals
of Markov chains.

14.2.6.1 Law of Large Numbers

Suppose that {Xk} is a Markov chain with transition kernel Q and initial
distribution ν. Assume that Q is phi-irreducible and aperiodic and has a
stationary distribution π. Let f be a π-integrable function; π(|f |) < ∞. We
say that the sequence {f(Xk)} satisfies a law of large numbers (LLN) if for any
initial distribution ν on (X,X ), the sample mean n−1 ∑n

k=1 f(Xk) converges
to π(f) Pν-a.s.

For i.i.d. samples, classical theory shows that the LLN holds provided
π(|f |) < ∞. The following theorem shows that the LLN holds for ergodic
Markov chains; it does not require any conditions on the rate of convergence
to the stationary distribution.
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Theorem 14.2.53. Let Q be a positive Harris recurrent transition kernel with
invariant distribution π. Then for any real π-integrable function f on X and
any initial distribution ν on (X,X ),

lim
n→∞n−1

n∑
k=1

f(Xk) = π(f) Pν-a.s. (14.63)

The LLN can be obtained from general ergodic theorems for stationary
processes. An elementary proof can be given when the chain possesses an
accessible atom. The basic technique is then the regeneration method, which
consists in dividing the chain into blocks between the chain’s successive returns
to the atom. These blocks are independent (see Lemma 14.2.54 below) and
standard limit theorems for i.i.d. random variables yield the desired result.
When the chain has no atom, one may still employ this technique by replacing
the atom by a suitably chosen small set and using the splitting technique (see
for instance Meyn and Tweedie, 1993, Chapter 17).

Lemma 14.2.54. Let Q be a positive Harris recurrent transition kernel that
admits an accessible atom α. Define for any measurable function f ,

sj(f) =

(
τα∑

k=1

f(Xk)

)
◦ θτ(j−1)

α , j ≥ 1 . (14.64)

Then for any initial distribution ν on (X,X ), k ≥ 0 and functions {Ψj} in
Fb (R),

Eν

⎡⎣ k∏
j=1

Ψj(sj(f))

⎤⎦ = Eν [Ψ1(s1(f))]
k∏

j=2

Eα [Ψj(sj(f))] .

Proof. Because the atom α is accessible and the chain is Harris recurrent,
Px(τ (k)

α < ∞) = 1 for any x ∈ X. By the strong Markov property, for any
integer k,

Eν [Ψ1(s1(f)) · · ·Ψk(sk(f))]
= Eν [Ψ1(s1(f)) · · ·Ψk−1(sk−1(f)) Eα[Ψk(sk(f)) | F

τ
(k−1)
α

]1{τ
(k−1)
α <∞}]

= Eν [Ψ1(s1(f)) · · ·Ψk−1(sk−1(f))] Eα[Ψk(s1(f))] .

The desired result in then obtained by induction. ��

Proof (of Theorem 14.2.53 when there is an accessible atom). First assume
that f is non-negative. Denote the accessible atom by α and define

ηn =
n∑

k=1

1α(Xk) , (14.65)
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the occupation time of the atom α up to time n. We now split the sum∑n
k=1 f(Xk) into sums over the excursions between successive visits to α,

n∑
k=1

f(Xk) =
ηn∑

j=1

sj(f) +
n∑

k=τ
(ηn)
α +1

f(Xk) .

This decomposition shows that

ηn∑
j=1

sj(f) ≤
n∑

k=1

f(Xk) ≤
ηn+1∑
j=1

sj(f) . (14.66)

Because Q is Harris recurrent and α is accessible, ηn →∞ Pν-a.s. as n→∞.
Hence s1(f)/ηn → 0 and (ηn − 1)/ηn → 1 Pν-a.s. By Lemma 14.2.54 the
variables {sj(f)}j≥2 are i.i.d. under Pν . In addition Eν [sj(f)] = µα(f) for
j ≥ 2 with µα, defined in (14.30), being an invariant measure. Because all
invariant measures are constant multiples of µα and π(|f |) <∞, Eα[sj(f)] is
finite. Writing

1
η n

ηn∑
j=1

sj(f) =
s1(f)
ηn

+
ηn − 1
ηn

1
ηn − 1

ηn∑
j=2

sj(f) ,

the LLN for i.i.d. random variables shows that

lim
n→∞

1
η n

ηn∑
j=1

sj(f) = µα(f) Pν-a.s. ,

whence, by (14.66), the same limit holds for η−1
n

∑n
1 f(Xk). Because π(1) = 1,

µα(1) is finite too. Applying the above result with f ≡ 1 yields n/ηn → µα(1),
so that n−1 ∑n

1 f(Xk) → µα(f)/µα(1) = π(f) Pν-a.s. This is the desired
result when f ≥ 0. The general case is is handled by splitting f into its
positive and negative parts. ��

14.2.6.2 Central Limit Theorems

We say that {f(Xk)} satisfies a central limit theorem (CLT) if there is a con-
stant σ2(f) ≥ 0 such that the normalized sum n−1/2 ∑n

k=1{f(Xk) − π(f)}
converges Pν-weakly to a Gaussian distribution with zero mean and variance
σ2(f) (we allow for the special case σ2(f) = 0 corresponding to weak con-
vergence to the constant 0). CLTs are essential for understanding the error
occurring when approximating π(f) by the sample mean n−1 ∑n

k=1 f(Xk) and
are thus a topic of considerable importance.

For i.i.d. samples, classical theory guarantees a CLT as soon as π(|f |2) <
∞. This is not true in general for Markov chains; the CLTs that are available
do require some additional assumptions on the rate of convergence and/or the
existence of higher order moments of f under the stationary distribution.
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Theorem 14.2.55. Let Q be a phi-irreducible aperiodic positive Harris re-
current transition kernel with invariant distribution π. Let f be a measurable
function and assume that there exists an accessible small set C satisfying∫

x∈C

π(dx) Ex

⎡⎣( τC∑
k=1

|f |(Xk)

)2
⎤⎦ <∞ and

∫
C

π(dx) Ex[τ2
C ] <∞ .

(14.67)
Then π(f2) <∞ and {f(Xk)} satisfies a CLT.

Proof. To start with, it follows from the expression (14.32) for the stationary
distribution that

π(f2) =
∫

C

π(dx) Ex

[
τC∑

k=1

f2(Xk)

]
≤

∫
C

π(dx) Ex

⎡⎣( τC∑
k=1

|f(Xk)|
)2

⎤⎦ <∞ .

We now prove the CLT under the additional assumption that the chain
admits an accessible atom α. The proof in the general phi-irreducible case can
be obtained using the splitting construction. The proof is along the same lines
as for the LLN. Put f̄ = f −π(f). By decomposing the sum

∑n
k=1 f̄(Xk) into

excursions between successive visits to the atom α, we obtain

n−1/2

∣∣∣∣∣∣
n∑

k=1

f̄(Xk)−
ηn∑

j=2

sj(f̄)

∣∣∣∣∣∣ ≤ n−1/2s1(|f̄ |) + n−1/2sηn+1(|f̄ |) , (14.68)

where ηn and sj(f) are defined in (14.65) and (14.64). It is clear that the
first term on the right-hand side of this display vanishes (in Pν-probability)
as n→∞. For the second one, the strong LLN (Theorem 14.2.53) shows that
n−1 ∑n

1 s2
j (|f̄ |) has an Pν-a.s. finite limit, whence, Pν-a.s.,

lim sup
n→∞

s2
n(|f̄ |)
n

= lim sup
n→∞

⎡⎣ 1
n

n∑
j=1

s2
j (|f̄ |)−

n + 1
n

1
n + 1

n+1∑
j=1

s2
j (|f̄ |)

⎤⎦ = 0 .

The strong LLN with f = 1α also shows that ηn/n → π(α) Pν-a.s., so that
s2

ηn
(|f̄ |)/ηn → 0 and n−1/2sηn+1(|f̄ |) → 0 Pν-a.s.
Thus n−1/2 ∑n

1 f̄(Xk) and n−1/2 ∑ηn

2 sj(f̄) have the same limiting be-
havior. By Lemma 14.2.54, the blocks {s2

j (|f̄ |)}j≥2 are i.i.d. under Pν . Thus,
by the CLT for i.i.d. random variables, n−1/2 ∑n

2 sj(f̄) converges Pν-weakly
to a Gaussian law with zero mean and some variance σ2 < ∞; that the
variance is indeed finite follows as above with the small set C being the
accessible atom α. The so-called Ascombe’s theorem (see for instance Gut,
1988, Theorem 3.1) then implies that η

−1/2
n

∑ηn

2 f̄(Xk) converges Pν-weakly
to the same Gaussian law. Thus we may conclude that n−1/2 ∑ηn

2 f̄(Xk) =
(ηn/n)1/2η

−1/2
n

∑ηn

2 f̄(Xk) converges Pν-weakly to a Gaussian law with zero
mean and variance π(α)σ2. By (14.68), so does n−1/2 ∑n

1 f̄(Xk). ��
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The condition (14.67) is stated in terms of the second moment of the ex-
cursion between two successive visits to a small set and appears rather difficult
to verify directly. More explicit conditions can be obtained, in particular if we
assume that the chain is V -geometrically ergodic.

Proposition 14.2.56. Let Q be a phi-irreducible, aperiodic, positive Harris
reccurrent kernel that Q satisfies a Foster-Lyapunov drift condition (see Defi-
nition 14.2.46) outside an accessible small set C, with drift function V . Then
any measurable function f such that |f |2 ≤ V satisfies a CLT.

Proof. Minkovski’s inequality implies that

Ex

⎡⎣(τC−1∑
k=0

|f(Xk)|
)2

⎤⎦ ≤ { ∞∑
k=0

√
Ex[f2(Xk)1{τC>k}]

}1/2

≤
{ ∞∑

k=0

√
Ex[V (Xk)1{τC>k}]

}1/2

.

Put Mk = λ−kV (Xk)1{τC≥k}, where λ is as in (14.56). Then for k ≥ 1,

E[Mk+1 | Fk] ≤ λ−(k+1) E[V (Xk+1) | Fk]1{τC≥k+1}
≤ λ−kV (Xk)1{τC≥k+1} ≤Mk ,

showing that {Mk} is a super-martingale. Thus Ex[Mk] ≤ Ex[M1] for any
x ∈ C, which implies that for k ≥ 1,

sup
x∈C

Ex[V (Xk)1{τC≥k}] ≤ λk

[
sup
x∈C

V (x) + b

]
.

��

14.3 Applications to Hidden Markov Models

As discussed in Section 2.2, an HMM is best defined as a Markov chain
{Xk, Yk}k≥0 on the product space (X × Y,X ⊗ Y). The transition kernel
of this joint chain has a simple structure reflecting the conditional indepen-
dence assumptions that are imposed. Let Q and G denote, respectively, a
Markov transition kernel on (X,X ) and a transition kernel from (X,X ) to
(Y,Y). The transition kernel of the joint chain {Xk, Yk}k≥0 is given by, for
any (x, y) ∈ X× Y,

T [(x, y), C] =
∫∫
C

Q(x, dx′)G(x′, dy) , (x, y) ∈ X× Y, C ∈ X ⊗ Y .

(14.69)
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This chain is said to be hidden because only a component (here {Yk}k≥0) is
observed. Of course, the process {Yk} is not a Markov chain, but nevertheless
most of the properties of this process are inherited from stability properties
of the hidden chain. In this section, we establish stability properties of the
kernel T of the joint chain.

14.3.1 Phi-irreducibility

Phi-irreducibility of the joint chain T is inherited from irreducibility of the
hidden chain, and the maximal irreducibility measures of the joint and hidden
chains are related in a simple way. Before stating the precise result, we recall
(see Section 2.1.1) that if φ is a measure on (X,X ), we define the measure
φ⊗G on (X× Y,X ⊗ Y) by

φ⊗G(A) def=
∫∫

A

µ(dx)G(x, dy) , A ∈ X ⊗ Y .

Proposition 14.3.1. Assume that Q is phi-irreducible, and let φ be an irre-
ducibility measure for Q. Then φ⊗G is an irreducibility measure for T . If ψ is
a maximal irreducibility measure for Q, then ψ⊗G is a maximal irreducibility
measure for T .

Proof. Let A ∈ X ⊗ Y be a set such that φ ⊗ G(A) > 0. Denote by ΨA the
function ΨA(x) =

∫
Y G(x, dy) 1A(x, y) for x ∈ X. By Fubini’s theorem,

φ⊗G(A) =
∫∫

φ(dx)G(x, dy) 1A(x, y) =
∫

φ(dx)ΨA(x) ,

and the condition φ ⊗ G(A) > 0 implies that φ ({ΨA > 0}) > 0. Because
{ΨA > 0} =

⋃∞
m=0 {ΨA ≥ 1/m}, we have φ ({ΨA ≥ 1/m}) > 0 for some integer

m. Because φ is an irreducibility measure, for any x ∈ X there exists an integer
k ≥ 0 such that Qk (x, {ΨA ≥ 1/m}) > 0. Therefore for any y ∈ Y,

T k [(x, y), A] =
∫∫

Qk(x, dx′)G(x′, dy′) 1A(x′, y′) =
∫

Qk(x, dx′)ΨA(x′)

≥
∫

{ΨA≥1/m}
Qk(x, dx′)ΨA(x′) ≥ 1

m
Qk (x, {ΨA ≥ 1/m}) > 0 ,

showing that φ⊗G is an irreducibility measure for T .
Morever, using Theorem 14.2.2, we see that a maximal irreducibility mea-

sure ψT for T is given by, for any δ ∈ (0, 1) and A ∈ X ⊗ Y,

ψT (A) =
∫∫

φ(dx)G(x, dy) (1− δ)
∞∑

m=0

δmTm [(x, y), A]

=
∫∫

(1− δ)
∞∑

m=0

δm

∫
φ(dx)Qm(x, dx′)G(x′, dy′) 1A(x′, y′)

=
∫∫

ψ(dx′)G(x′, dy′) 1A(x′, y′) = ψ ⊗G(A) ,
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where

ψ(B) =
∫

φ(dx) (1− δ)
∞∑

m=0

δmQm(x,B) , B ∈ X .

By Theorem 14.2.2, ψ is a maximal irreducibility measure for Q. In addition,
if ψ̂ is a maximal irreducibility measure for Q, then ψ̂ is equivalent to ψ.
Because for any A ∈ X ⊗ Y,

ψ̂⊗G(A) =
∫∫

ψ̂(dx)G(x, dy) 1A(x, y) =
∫∫

ψ⊗G(dx, dy)
dψ̂

dψ
(x)1A(x, y) ,

ψ̂ ⊗ G(A) = 0 whenever ψ ⊗ G(A) = 0. Thus ψ̂ ⊗ G � ψ ⊗ G. Exchanging
ψ and ψ̂ shows that ψ⊗G and ψ̂⊗G are indeed equivalent, which concludes
the proof. ��
Example 14.3.2 (Normal HMM). Consider a normal HMM (see Sec-
tion 1.3.2). In this case, the state space X of the hidden chain is finite,
X = {1, 2, . . . , r} and Y = R. The hidden chain is governed by a transition ma-
trix Q = [Q(x, y)]1≤x,y≤r. Conditionally on the state x ∈ X, the distribution
of the observation is Gaussian with mean µx and variance σ2

x. Hence the tran-
sition kernel T for the joint Markov chain is given by, for any (x, y) ∈ X× Y
and A ∈ B(R),

T [(x, y), {x′} ×A] = Q(x, x′)
∫

A

1√
2πσ2

x′
exp

[
−1

2
(y′ − µx′)2

σ2
x′

]
dy′ .

If the transition matrix Q is irreducible (all states in X communicate), then
Q is positive. For any x ∈ X, δx is an irreducibility measure for Q and T is
phi-irreducible with irreducibility measure δx ⊗ G. Denote by π the unique
invariant probability measure for Q. Then π is also a maximal irreducibility
measure, whence π ⊗G is a maximal irreducibility measure for T . �

Example 14.3.3 (Stochastic Volatility Model). The canonical stochastic
volatility model (see Example 1.3.13) is given by

Xk+1 = φXk + σUk , Uk ∼ N(0, 1) ,
Yk = β exp(Xk/2)Vk , Vk ∼ N(0, 1) ,

We have established (see Example 14.2.3) that because {Uk} has a positive
density on R

+, the chain {Xk} is phi-irreducible and λLeb is an irreducibility
measure. Therefore {Xk, Yk} is also phi-irreducible and λLeb⊗λLeb is a max-
imal irreducibility measure. �

14.3.2 Atoms and Small Sets

It is possible to relate atoms and small sets of the joint chain to those of
the hidden chain. Examples of HMMs possessing accessible atoms are numer-
ous, even when the state space of the joint chain is general. They include in
particular the Markov chains whose hidden state space X is finite.
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Example 14.3.4 (Normal HMM, Continued). For the normal HMM (see
Example 14.3.2), it holds that T [(x, y), ·] = T [(x, y′), ·] for any (y, y′) ∈ R×R.
Hence {x} × R is an atom for T . �

When accessible atoms do not exist, it is important to determine small
sets. Here again the small sets of the joint chain can easily be related to those
of the hidden chain.

Lemma 14.3.5. Let m be a positive integer, ε > 0 and let η be a probability
measure on (X,X ). Let C ∈ X be an (m, ε, η)-small set for the transition
kernel Q, that is, Qm(x,A) ≥ ε1C(x)η(A) for all x ∈ X and A ∈ X . Then
C×Y is an (m, ε, η⊗G)-small set for the transition kernel T defined in (2.14),
that is,

Tm[(x, y), A] ≥ ε1C(x) η ⊗G(A) , (x, y) ∈ X× Y, A ∈ X ⊗ Y .

Proof. Pick (x, y) ∈ C × Y. Then

Tm[(x, y), A] =
∫∫

Qm(x, dx′)G(x′, dy′) 1A(x′, y′)

≥ ε

∫∫
η(dx′)G(x′, dy′) 1A(x′, y′) .

��

If the Markov transition kernel Q on (X,X ) is phi-irreducible (with max-
imal irreducibility measure ψ), then we know from Proposition 14.2.12 that
there exists an accessible small set C. That is, there exists a set C ∈ X with
Px(τC < ∞) > 0 for all x ∈ X and such that C is (m, ε, η)-small for some
triple (m, ε, η) with η(C) > 0. Then Lemma 14.3.5 shows that C × Y is an
(m, ε, η ⊗G)-small set for the transition kernel T .

Example 14.3.6 (Stochastic Volatility Model, Continued). We have
shown in Example 14.2.3 that any compact set K ⊂ R is small for the first-
order autoregression constituting the hidden chain of the stochastic volatility
model of Example 14.3.3. Therefore any set K×R, where K a compact subset
of R, is small for the joint chain {Xk, Yk}. �

The simple relations between the small sets of the joint chain and those
of the hidden chain immediately imply that T and Q have the same period.

Proposition 14.3.7. Suppose that Q is phi-irreducible and has period d.
Then T is phi-irreducible and has the same period d. In particular, if Q is
aperiodic, then so is T .

Proof. Let C be an accessible (m, ε, η)-small set for Q with η(C) > 0. Define
EC as the set of time indices for which C is a small set with minorizing
probability measure η,
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EC
def= {n ≥ 0 : C is (n, ε, η)-small for some ε > 0} .

The period of the set C is given by the greatest common divisor of EC .
Proposition 14.2.35 shows that this value is in fact common to the chain as
such and does not depend on the particular small set chosen. Lemma 14.3.5
shows that C×Y is an (m, ε, η⊗G)-small set for the joint Markov chain with
transition kernel T , and that η⊗G(C×Y) = η(C) > 0. The set EC×Y of time
indices for which C × Y is a small set for T with minorizing measure η ⊗ G
is thus, using Lemma 14.3.5 again, equal to EC . Thus the period of the set C
is also the period of the set C × Y. Because the period of T does not depend
on the choice of the small set C × Y, it follows that the periods of Q and T
coincide. ��

14.3.3 Recurrence and Positive Recurrence

As the following result shows, recurrence and transience of the joint chain
follows directly from the corresponding properties of the hidden chain.

Proposition 14.3.8. Assume that the hidden chain is phi-irreducible. Then
the following statements hold true.

(i) The joint chain is transient (recurrent) if and only if the hidden chain is
transient (recurrent).

(ii) The joint chain is positive if and only if the hidden chain is positive. In
addition, if the hidden chain is positive with stationary distribution π,
then π ⊗G is the stationary distribution of the joint chain.

Proof. First assume that the transition kernel Q is transient, that is, that
there is a countable cover X = ∪iAi of X with uniformly transient sets,

sup
x∈Ai

Ex

[ ∞∑
n=1

1Ai(Xn)

]
<∞ .

Then the sets {Ai×Y}i≥1 form a countable cover of X×Y, and these sets are
uniformly transient because

Ex

[ ∞∑
n=1

1Ai×Y(Xn, Yn)

]
= Ex

[ ∞∑
n=1

1Ai
(Xn)

]
. (14.70)

Thus the joint chain is transient.
Conversely, assume that the joint chain is transient. Because the hidden

chain is phi-irreducible, Proposition 14.2.13 shows that there is a countable
cover X = ∪iAi of X with sets that are small for Q. At least one of these,
say A1, is accessible for Q. By Lemma 14.3.5, the sets Ai × Y are small. By
Proposition 14.3.1, A1 × Y is accessible and, because T is transient, Proposi-
tion 14.2.14 shows that A1 × Y is uniformly transient. Equation (14.70) then
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shows that A1 is uniformly transient, and because A1 is accessible, we con-
clude that Q is transient.

Thus the hidden chain is transient if and only if the joint chain is so.
The transience/recurrence dichotomy (Theorem 14.2.6) then implies that the
hidden chain is recurrent if and only if the joint chain is so, which completes
the proof of (i).

We now turn to (ii). First assume that the hidden chain is positive re-
current, that is, that there exists a unique stationary probability measure π
satisfying πQ = π. Then the probability measure π ⊗G is stationary for the
transition kernel T of the joint chain, because

(π ⊗G)T (A) =
∫
· · ·

∫
π(dx)G(x, dy)Q(x, dx′)G(x′, dy′) 1A(x′, y′)

=
∫∫∫

π(dx)Q(x, dx′)G(x′, dy′) 1A(x′, y′)

=
∫∫

π(dx′)G(x′, dy′) 1A(x′, y′) = π ⊗G(A) .

Because the joint chain admits a stationary distribution it is positive, and by
Proposition 14.2.34 it is recurrent.

Conversely, assume that the joint chain is positive. Denote by π̄ the
(unique) stationary probability measure of T . Thus for any Ā ∈ X ⊗ Y, we
have∫∫

π̄(dx, dy)Q(x, dx′)G(x′, dy′) 1Ā(x′, y′)

=
∫∫

π̄(dx,Y)Q(x, dx′)G(x′, dy′) 1Ā(x′, y′) = π̄(Ā) .

Setting Ā = A× Y for A ∈ X , this display implies that∫
π̄(dx,Y)Q(x,A) = π̄(A× Y) .

This shows that π(A) = π̄(A× Y) is a stationary distribution for the hidden
chain. Hence the hidden chain is positive and recurrent. ��

When the joint (or hidden) chain is positive, it is natural to study the rate
at which it converges to stationarity.

Proposition 14.3.9. Assume that the hidden chain satisfies a uniform Doe-
blin condition, that is, there exists a positive integer m, ε > 0 and a family
{ηx,x′ , (x, x′) ∈ X× X} of probability measures such that

Qm(x,A) ∧Qm(x′, A) ≥ εηx,x′(A), A ∈ X , (x, x′) ∈ X× X .

Then the joint chain also satisfies a uniform Doeblin condition. Indeed, for
all (x, y) and (x′, y′) in X× Y and all Ā ∈ X ⊗ Y,
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Tm[(x, y), Ā] ∧ Tm[(x′, y′), Ā] ≥ εη̄x,x′(Ā) ,

where
η̄x,x′(Ā) =

∫
ηx,x′(dx)G(x, dy) 1Ā(x, y) .

The proof is along the same lines as the proof of Lemma 14.3.5 and is omitted.
This proposition in particular implies that the ergodicity coefficients for the
kernels Tm and Qm coincide; δ(Tm) = δ(Qm). A straightforward but useful
application of this result is when the hidden Markov chain is defined on a finite
state space. If the transition matrix Q of this chain is primitive, that is, there
exists a positive integer m such that Qm(x, x′) > 0 for all (x, x′) ∈ X×X (or,
equivalently, if the chain Q is irreducible and aperiodic), then the joint Markov
chain satisfies a uniform Doeblin condition and the ergodicity coefficient of
the joint chain is bounded as δ(Tm) ≤ 1− ε with

ε = inf
(x,x′)∈X×X

sup
x′′∈X

[Qm(x, x′′) ∧Qm(x′, x′′)] .

A similar result holds when the hidden chain satisfies a Foster-Lyapunov
drift condition instead of a uniform Doeblin condition. This result is of par-
ticular interest when dealing with hidden Markov models on state spaces that
are not finite or bounded.

Proposition 14.3.10. Assume that Q is phi-irreducible, aperiodic, and sat-
isfies a Foster-Lyapunov drift condition (Definition 14.2.46) with drift func-
tion V outside a set C. Then the transition kernel T also satisfies a Foster-
Lyapunov drift condition with drift function V outside the set C × Y,

T [(x, y), V ] ≤ λV (x) + b1C×Y(x, y) .

Here on the left-hand side, we wrote V also for a function on X × Y defined
by V (x, y) = V (x).

The proof is straightforward. Proposition 14.2.50 yields an explicit bound on
the rate of convergence of the iterates of the Markov chain to the stationary
distribution. This result has a lot of interesting consequences.

Proposition 14.3.11. Suppose that Q is phi-irreducible, aperiodic, and sat-
isfies a Foster-Lyapunov drift condition with drift function V outside a small
set C. Then the transition kernel T is positive and aperiodic with invariant
distribution π⊗G, where π is the invariant distribution of Q. In addition, for
any measurable function f : X× Y → R, the following statements hold true.

(i) If supx∈X[V (x)]−1
∫
G(x, dy) |f(x, y)| < ∞, then there exist ρ ∈ (0, 1)

and K < ∞ (not depending on f) such that for any n ≥ 0 and (x, y) ∈
X× Y,

|Tnf(x, y)− π ⊗G(f)| ≤ KρnV (x) sup
x′∈X

[V (x′)]−1 intG(x′, dy) |f(x′, y)| .
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(ii) If supx∈X[V (x)]−1
∫
G(x, dy) f2(x, y) < ∞, then Eπ⊗G[f2(X0, Y0)] < ∞

and there exist ρ ∈ (0, 1) and K <∞ (not depending on f) such that for
any n ≥ 0,

|Covπ[f(Xn, Yn), f(X0, Y0)]|

≤ Kρnπ(V )
{

sup
x∈X

[V (x)]−1/2
∫

G(x, dy) |f(x, y)|
}2

.

Proof. First note that

|Tnf(x, y)− π ⊗G(f)| =
∣∣∣∣∫∫ [Qn(x, dx′)− π(dx′)]G(x′, dy′) f(x′, y′)

∣∣∣∣
≤ ‖Qn(x, ·)− π‖V sup

x′∈X
[V (x′)]−1

∫
G(x′, dy) |f(x′, y)| .

Now part (i) follows from the geometric ergodicity of Q (Theorem 14.2.49).
Next, because π(V ) <∞,

Eπ⊗G[f2(X0, Y0)] =
∫∫

π(dx)G(x, dy) f2(x, y)

≤ π(V ) sup
x∈X

[V (x)]−1
∫

G(x, dy) f2(x, y) <∞ ,

implying that |Covπ[|f(Xn, Yn)|, |f(X0, Y0)|]| ≤ Varπ[f(X0, Y0)] <∞. In ad-
dition

Covπ[f(Xn, Yn), f(X0, Y0)]
= Eπ{E[f(Xn, Yn)− π ⊗G(f) | F0]f(X0, Y0)}

=
∫∫

π ⊗G(dx, dy) f(x, y)
∫∫

[Qn(x, dx′)− π(dx′)]G(x′, dy′) f(x′, y′) .

(14.71)

By Jensen’s inequality
∫
G(x, dy) |f(x, y)| ≤ [

∫
G(x, dy) f2(x, y)]1/2 and

QV 1/2(x) ≤ [QV (x)]1/2 ≤ [λV (x) + b1C(x)]1/2 ≤ λ1/2V 1/2(x) + b1/21C(x) ,

showing that Q also satisfies a Foster-Lyapunov condition outside C with drift
function V 1/2. By Theorem 14.2.49, there exists ρ ∈ (0, 1) and a constant K
such that∣∣∣∣∫∫ [Qn(x, dx′)− π(dx)]G(x′, dy′) f(x′, y′)

∣∣∣∣
≤ ‖Qn(x, ·)− π‖V 1/2 sup

x′∈X
V −1/2(x)

∫
G(x′, dy) |f(x′, y)|

≤ KρnV 1/2(x) sup
x′∈X

V −1/2(x′)
∫

G(x′, dy) |f(x′, y)| .

Part (ii) follows by plugging this bound into (14.71). ��
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Example 14.3.12 (Stochastic Volatility Model, Continued). In the
model of Example 14.3.3, we set V (x) = ex2/2δ2

for δ > σU . It is easily
shown that

QV (x) =
ρ

σU
exp

[
x2

2δ2

φ2(ρ2 + δ2)
δ2

]
,

where ρ2 = σ2
Uδ

2/(δ2 − σ2
U ). We may choose δ large enough that φ2(ρ2 +

δ2)/δ2 < 1. Then lim sup|x|→∞ QV (x)/V (x) = 0 so that Q satisfies a Foster-
Lyapunov condition with drift function V (x) = ex2/2δ2

outside a compact set
[−M,+M ]. Because every compact set is small, the assumptions of Propo-
sition 14.3.11 are satisfied, showing that the joint chain is positive. Set
f(x, y) = |y|. Then

∫
G(x, dy) |y| = βex/2

√
2/π. Proposition 14.3.11(ii) shows

that Varπ(Y0) < ∞ and that the autocovariance function Cov(|Yn|, |Y0|) de-
creases to zero exponentially fast. �
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An Information-Theoretic Perspective on
Order Estimation

Statistical inference in hidden Markov models with finite state space X has to
face a serious problem: order identification. The order of an HMM {Yk}k≥1
over Y (in this chapter, we let indices start at 1) is the minimum size of the
hidden state space X of an HMM over (X,Y) that can generate {Yk}k≥1. In
many real-life applications of HMM modeling, no hints about this order are
available. As order misspecification is an impediment to parameter estimation,
consistent order identification is a prerequisite to HMM parameter estimation.

Furthermore, HMM order identification is a distinguished representative of
a family of related problems that includes Markov order identification. In all
those problems, a nested family of models is given, and the goal is to identify
the smallest model that contains the distribution that has generated the data.
Those problems differ in an essential way according to whether identifiability
does or does not depend on correct order specification.

Order identification problems are related to composite hypothesis testing.
As the performance of generalized likelihood ratio testing in this framework is
still a matter of debate, order identification problems constitute benchmarks
for which the performance of generalized likelihood ratio testing can be in-
vestigated (see Zeitouni et al., 1992). As a matter of fact, analyzing order
identification issues boils down to understanding the simultaneous behavior
of (possibly infinitely) many maximum likelihood estimators. When identi-
fiability depends on correct order specification, universal coding arguments
have proved to provide very valuable insights into the behavior of likelihood
ratios. This is the main reason why source coding concepts and techniques
have become a standard tool in the area.

This chapter presents four kinds of results: first, in a Bayesian setting, a
general consistency result provides hints about the ideal penalties that could
be used in penalized maximum likelihood order estimation. Then universal
coding arguments are shown to provide a general construction of strongly
consistent order estimators. Afterwards, a general framework for analyzing
the Bahadur efficiency of order estimation procedures is presented, following
the lines of Gassiat and Boucheron (2003). Consistency and efficiency results
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hold for HMMs. As explained below, refining those consistency and efficiency
results requires a precise understanding of the behavior of likelihood ratios.
As of writing this text, in the HMM setting, this precise picture is beyond our
understanding. But such a work has been carried recently out for Markov order
estimation. In order to give a flavor of what remains to be done concerning
HMMs, this chapter reports in detail the recent tour de force by Csiszár and
Shields (2000) who show that the Bayesian information criterion provides a
strongly consistent Markov order estimator.

15.1 Model Order Identification: What Is It About?

In preceding chapters, we have been concerned with inference problems in
HMMs for which the hidden state space is known in advance: it might be
either finite with known cardinality or compact under restrictive conditions;
see the assumptions on the transition kernel of the hidden chain to ensure
consistency of the MLE in Chapter 12. In this chapter, we focus on HMMs
with finite state space of unknown cardinality. Moreover, the set Y in which
the observations {Yk}k≥1 take values is assumed to be finite and fixed. Let
Mr denote the set of distributions of Y-valued processes {Yk}k≥1 that can be
generated by an HMM with hidden state space X of cardinality r.

The parameter space associated with Mr is Θr. Note that even if all
finite-dimensional distributions of {Yk}k≥1 are known, deciding whether the
distribution of {Yk}k≥1 belongs toMr or even to ∪rMr is not trivial (Finesso,
1991, Chapter 1). Elementary arguments show that Mr ⊆ Mr+1; further
reflection verifies that this inclusion is strict. Hence for a fixed observation set
Y, the sequence (Mr)r≥1 defines a nested sequence of models. We may now
define the main topic of this chapter: the order of an HMM.

Definition 15.1.1. The order of an HMM {Yk}k≥1 over Y is the smallest
integer r such that the distribution of {Yk}k≥1 belongs to Mr.

Henceforth, when dealing with an HMM {Yk}k≥1, its order will be denoted
by r�, and θ� will denote a parameterization of this distribution in Θr� . The
distribution of the process will be denoted by P� .

Assume for a moment that we are given an infinite sequence of observations
of an HMM {Yk}k≥1: y1, . . . , yk, . . ., that we are told that the order of {Yk}k≥1
is at most some r0, and that we are asked to estimate a parameterization of the
distribution of {Yk}k≥1. It might seem that the MLE in Θr0 would perform
well in such a situation. Unfortunately, if the order of {Yk}k≥1 is strictly
smaller than r0, maximum likelihood estimation will run into trouble. As a
matter of fact, if r� < r0, then θ� is not identifiable in Θr0 . Hence, when
confronted with such an estimation problem, it is highly reasonable to first
estimate r� and then to proceed to maximum likelihood estimation of θ�.

The order estimation question is then the following: given an outcome y1:n
of the process {Yk}k≥1 with distribution in ∪rMr, can we identify r�?
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Definition 15.1.2. An order estimation procedure is a sequence of estima-
tors r̂1, . . . , r̂n, . . . that, given input sequences of length 1, . . . n, . . ., outputs
estimates r̂n(y1:n) of r�.

A sequence of estimators is strongly consistent if the sequence r̂1, . . . r̂n, . . .
converges to r� P�-a.s.

15.2 Order Estimation in Perspective

The ambition of this chapter is not only to provide a state-of-the-art expo-
sition of order estimation in HMMs but also to provide a perspective. There
are actually many other order estimation problems in the statistical or the
information-theoretical literature. All pertain to the estimation of the dimen-
sion of a model. We may quote for example the following.

• Estimating the order of a Markov process. In that case, the order should
be understood as the Markov order of the process (Finesso, 1991; Finesso
et al., 1996; Csiszár and Shields, 2000; Csiszár, 2002). See Section 15.8 for
precise definitions and recent advances on this topic.

• Estimating the order of semi-Markov models, which have proved to be
valuable tools in telecommunication engineering.

• Estimating the order in stochastic context-free grammars, which are cur-
rently considered in genomics (Durbin et al., 1998).

• Estimating the number of populations in a mixture (Dacunha-Castelle and
Gassiat, 1997a,b, 1999; Gassiat, 2002).

• Estimating the number of change points in detection problems.
• Estimating the order of ARMA models (Azencott and Dacunha-Castelle,

1984; Dacunha-Castelle and Gassiat, 1999; Boucheron and Gassiat, 2004).

Hence, HMM order estimation is both interesting per se and as a paradigm
of a rich family of statistical problems for which the general setting is the
following. Let {Mr}r≥1 be a nested sequence of models (sets of probability
distributions) for sequences {Yk}k≥1 on a set Y. For any P in ∪rMr, the
order is the smallest integer r such that P belongs to Mr. Our two technical
questions will be the following.

(i) Does there exist (strongly) consistent order estimators? Is it possible to
design generic order estimation procedures?

(ii) How efficient are the putative consistent order estimators?

The analysis of order estimation problems is currently influenced by the
theory of universal coding from information theory and by the theory of com-
posite hypothesis testing from plain old statistics. The first perspective pro-
vides a convenient framework for designing consistent order estimators, and
the second provides guidelines in the analysis of the performance of order
estimators. As a matter of fact, code-based order estimators turn out to be
analyzed as penalized maximum likelihood estimators.
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Definition 15.2.1. Let {pen(n, r)}n,r denote a family of non-negative num-
bers. A penalized maximum likelihood (PML) order estimator is defined by

r̂n
def= arg maxr

[
sup

P∈Mr

log P(y1:n)− pen(n, r)
]
.

The main point now becomes the choice of the penalty pen(n, r). To ensure
consistency and/or efficiency,

sup
P∈Mr

log P(y1:n)− sup
P∈Mr�

log P(y1:n) (15.1)

has to be compared with

pen(n, r)− pen(n, r�) .

In case r < r�, this is related to Shannon-McMillan-Breiman theorems (see
Section 15.4.2), and if the penalty grows slower than n, PML order estimators
do not underestimate the order (see Lemma 15.6.2). Moreover the probability
of underestimating the order decreases exponentially with rate proportional
to n, and the better the constant is, the more efficient is the estimation.
Asymptotic behavior of this error thus comes from a large deviations analysis
of the likelihood process (see Theorem 15.7.2 and 15.7.7).

The analysis of the overestimation error follows different considerations.
A first simple remark is that it depends on whether the parameter describing
the distribution of the observations is or is not identifiable as an element of a
model of larger order. When the parameter is still identifiable in larger models,
stochastic behavior of the maximum likelihood statistic is well understood and
can be cast into the old framework created by Wilks, Wald, and Chernoff. In
this case, weak consistency of PML order estimators is achieved as soon as the
penalties go to infinity with n and the set of possible orders is bounded. When
the parameter is no longer identifiable in larger models, stochastic description
of the maximum likelihood statistic has to be investigated on an ad hoc basis.
Indeed, for general HMMs, the likelihood ratio statistic is stochastically un-
bounded even for bounded parameters (see Kéribin and Gassiat, 2000), and we
are not even aware of a candidate for penalties warranting weak consistency
of PML order estimators. Note that one can however use marginal likelihoods
to build weakly consistent order estimators (see Gassiat, 2002).

From now on, we will mainly focus on finite sets Y. In this case, ideas
and results from information theory may be used to build consistent order
estimators, without assuming any a priori upper bound on the order (see
Lemma 15.6.3). Though the likelihood ratio (15.1) may be unbounded for
r > r�, its rate of growth is smaller than n. The asymptotic characterization
of the decay of the overestimation error should thus resort to a moderate
deviations analysis of the likelihood process.

Consistency and efficiency theorems are stated in Sections 15.6 and 15.7.
Although they apply to HMMs, in order to outline the key ingredients of the
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proofs, those theorems are stated and derived in a general setting, Though the
results might seem satisfactory, they fall short of closing the story. Indeed, for
example, lower bounds on penalties warranting strongly consistent order iden-
tification for HMMs has only received very partial (and far too conservative)
answers . In practice, the question is important when underestimation has to
be avoided at (almost) any price. The theoretical counterpart is also fascinat-
ing, as it is connected to non-asymptotic evaluation of stochastic deviations
of likelihoods (in the range of large and moderate deviations). This is why we
shall also consider in more detail the problem of Markov order estimation. A
process {Yk}k≥1 with distribution P� is said to be Markov of order r if for
every y1:n+1 ∈ Yn+1,

P�(yn+1 | y1:n) = P�(yn+1 | yn−r+1:n) .

For Markov models, whatever the value of r, the maximum likelihood estima-
tor is uniquely defined and it can be computed easily from a (r-dependent)
finite-dimensional sufficient statistic. Martingale tools may be used to ob-
tain non-asymptotic tail inequalities for maximum likelihoods. Section 15.8
reports a recent tour de force by Csiszár and Shields (2000), who show that
the Bayesian information criterion provides a strongly consistent Markov or-
der estimator. Of course, though this order estimation problem is apparently
very similar to the HMM order estimation problem, this similarity should be
taken cautiously. Indeed, maximum likelihood estimators in an HMM may not
be computed directly using finite-dimensional statistics. However, we believe
that our current understanding of Markov order estimation will provide in-
sights into the HMM order estimation problem. Moreover, designing the right
non-asymptotic deviation inequalities has become a standard approach in the
analysis of model selection procedures (see Barron et al., 1999). This work
still has to be done for HMMs.

We will start the technical exposition by describing the relationship be-
tween order estimation and hypothesis testing.

15.3 Order Estimation and Composite Hypothesis
Testing

If we have a consistent order estimation procedure, we should be able to manu-
facture a sequence of consistent tests for the following questions: is the true
order larger than 1, . . . , r, . . .? We may indeed phrase the following composite
hypothesis testing problem:

H0: The source belongs to Mr0 ;
H1: The source belongs to (∪rMr) \Mr0 .

To put things in perspective, in this paragraph we will focus on testing
whether some probability distribution P belongs to some subset M0 (H0) of
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some set M of distributions over Y∞. Hypothesis H1 corresponds to P ∈
M1 = M \M0.

A test on samples of length n is a function Tn that maps Yn on {0, 1}. If
Tn(y1:n) = 1, the test rejects H0 in favor of H1, otherwise the test does not
reject. The region Kn on which the test rejects H0 is called the critical region.
The power function πn of the test maps distributions P to the probability of
the critical region,

πn(P) def= P(Y1:n ∈ Kn) .

If πn(P) ≤ α for all P ∈ M0, the test Tn is said to be of level α. The goal of
test design is to achieve high power at low level. In many settings of interest,
the determination of the highest achievable power at a given level for a given
sample size n is beyond our capabilities. This motivates asymptotic analysis.
A sequence of tests Tn is asymptotically of level α if for all P ∈M0,

lim sup
n→∞

P(Kn) ≤ α .

A sequence of tests Tn with power functions πn is consistent at level α if all
but finitely many Tn have level α, and if πn(P)→ 1 for all P ∈M1.

When comparing two simple hypotheses, the question is solved by the
Neyman-Pearson lemma. This result asserts that it is enough to compare
the ratio of likelihoods of observations according to the two hypotheses with
a threshold. When dealing with composite hypotheses, things turn out to be
more difficult. In the context of nested models, the generalized likelihood ratio
test is defined in the following way.

Definition 15.3.1. Let M0 and M denote two sets of distributions on Y∞,
with M0 ⊆ M. Then the nth likelihood ratio test between M0 and M \M0

has critical region

Kn
def=

{
y1:n : sup

P∈M0
log P(y1:n) ≤ sup

P∈M
log P(y1:n)− pen(n)

}
,

where the penalty pen(n) defines an n-dependent threshold.

Increasing the penalty shrinks the critical region and tends to diminish
the level of the test. As a matter of fact, in order to get a non-trivial level,
pen(n) should be positive. The definition of the generalized likelihood ratio
test raises two questions.

1. How should pen(n) be chosen to warrant strong consistency?
2. Is generalized likelihood ratio testing the best way to design a consistent

test?

It turns out that the answers to these two questions depend on the properties
of maximum likelihood in the models M0 and M. Moreover, the way to get
the answers depends on the models under consideration. In order to answer
the first question, we need to understand the behavior of
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sup
P∈M

log P(Y1:n)− sup
P∈M0

log P(Y1:n)

under the two hypotheses.
Let M0 denote Markov chains of order r and let M denote Markov chains

of order r+1. If P� defines a Markov chain of order r, then as n tends to infinity,
2[supP∈M log P(Y1:n)− supP∈M0 log P(Y1:n)] converges in distribution to a χ2

random variable with |Y|r(|Y| − 1)2 degrees of freedom. As a consequence of
the law of the iterated logarithm, P�-a.s., it should be of order log logn as n
tends to infinity (see Finesso, 1991, and Section 15.8). Hence in such a case, a
good understanding of the behavior of maximum likelihood estimates provides
hints for designing consistent testing procedures. As already pointed out such
a knowledge is not available for HMMs. As of this writing the best and most
useful insights into the behavior of supP∈M log P(Y1:n)− supP∈M0 log P(Y1:n)
when M denotes HMMs of order r and M0 denotes HMMs of order r′ < r,
can be found in the universal coding literature.

15.4 Code-based Identification

15.4.1 Definitions

The pervasive influence of concepts originating from universal coding theory
in the literature dedicated to Markov order or HMM order estimation should
not be a surprise. Recall that by the Kraft-McMillan inequality (Cover and
Thomas, 1991), a uniquely decodable code on Yn defines a (sub)-probability
on Yn, and conversely, for any probability distribution P on Yn, there ex-
ists a uniquely decodable code for Yn such that the length of the codeword
associated with y1:n is upper-bounded by �log P{y1:n}� + 1. Henceforth, the
probability associated with a code will be called the coding probability, and the
logarithm of the coding probability will represent the ideal codeword length
associated with the coding probability.

For each n, let Rn denote a coding probability for Yn. The family (Rn)
is not necessarily compatible—in other words it is not necessarily the nth
dimensional marginal of a distribution on Y∞. We shall denote by subscripts
the marginals: for a probability P on Y∞, Pn is the marginal distribution of
Y1:n.

The redundancy of Rn with respect to P ∈ M is defined as the Kullback
divergence between Pn and Rn, denoted by

D(Pn |Rn) .

The family (Rn) of coding probabilities is a universal coding probability for
model M if and only if

sup
P∈M

lim
n

n−1D(Pn |Rn) = 0 .
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The quantity supP∈M D(Pn |Rn) is called the redundancy rate of the family
(Rn) with respect to M.

The following coding probability has played a distinguished role in the
areas of universal coding and prediction of individual sequences.

Definition 15.4.1. Given a model M of probability distributions over Yn,
the normalized maximum likelihood (NML) coding probability induced by M
on Yn is defined by

NMLn(y1:n) =
supP∈M P(y1:n)

Cn
,

where
Cn

def=
∑

y1:n∈Yn

sup
P∈M

P(y1:n) .

The maximum point-wise regret of a coding probability Rn with respect to
the model M is defined as

max
y1:n∈Yn

sup
P∈M

log
P(y1:n)
Rn(y1:n)

.

Note that NMLn achieves the same regret log Cn over all strings from Yn. No
coding probability can achieve a smaller maximum point-wise regret. This is
why NML coders are said to achieve minimax point-wise regret over M.

During the last two decades, precise bounds on Cn have been determined
for different kinds of models, notably for the class of product distributions
(memoryless sources), for the class of Markov chains of order r (Markov
sources), and for the class of hidden Markov sources of order r.

The relevance of bounds on Cn to our problem is immediate. Let Cn be
defined with respect to M and let P� denote the true distribution, which is
assumed to belong to M. Then

sup
P∈M

log P(y1:n)− log P�(y1:n) = log NMLn(y1:n)− log P�(y1:n) + log Cn .

On the right-hand side of this inequality, the two quantities that show up
refer to two fixed probabilities. After exponentiation, those two quantities
may take part into summations over y1:n as will be seen for example when
proving consistency of penalized maximum likelihood order estimators (see
Lemma 15.6.3). One possible (conservative) choice of the penalty term will be
made by comparison with normalizing constants Cn

The NML coding probability is one among many universal coding prob-
abilities that have been investigated in the literature. For models like HMMs
with fixed order r, the parameter space Θr can be endowed with a probability
space structure. A prior probability ω can be defined on Θr, and under mild
measurability assumptions this in turn defines a probability distribution P on
Y∞,
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P =
∫

Θr

Pθ ω(dθ) , (15.2)

where Pθ is the probability distribution on Y∞ of the HMM with parameter
θ. Such coding probabilities are called mixture coders. Historically, several
prior probabilities on Θ have been considered. Uniform (or Laplace) priors
were considered first, but Dirichlet distributions soon gained much attention.

Definition 15.4.2. A Dirichlet-(α1, . . . , αr) distribution is a distribution on
the simplex of R

r given by the density

ω(q1, . . . , qr|α1, . . . , αr) =
Γ (α1 + . . . + αr)
Γ (α1) · · ·Γ (αr)

qα1−1
1 · · · qαr−1

r 1q1+...+qr=1 ,

where the αi are all positive.

Though the Dirichlet prior has a venerable history in Bayesian inference, in
this chapter we will stick to the information-theoretical tradition and call the
resulting coding probability the Krichevsky-Trofimov mixture.

Definition 15.4.3. The Krichevsky-Trofimov mixture (KT) is defined by pro-
viding Θr with a product of Dirichlet-(1/2, . . . 1/2) distributions. More pre-
cisely, such a distribution is assigned to νθ(·) in the simplex of R

r, to each
row Gθ(i, ·), in the simplex of R

s where s = |Y|, and to each row Qθ(i, ·) in
the simplex of R

r,

ωKT (dθ) def=

[
Γ

(
r
2

)
Γ

( 1
2

)r

r∏
i=1

νθ(i)−1/2

]

×
r∏

i=1

⎡⎣ Γ
(

r
2

)
Γ

( 1
2

)r

r∏
j=1

Qθ(i, j)−1/2

⎤⎦×
⎡⎣ Γ

(
d
2

)
Γ

( 1
2

)d

d∏
j=1

Gθ(i, j)−1/2

⎤⎦ . (15.3)

Krichevsky-Trofimov mixtures define a compatible family of probability dis-
tributions over Yn for n ≥ 1. This is in sharp contrast with NML distributions
and is part of the reason why KT mixtures became so popular in source coding
theory.

Resorting to coding-theoretical concepts provides a framework for defining
an order estimation procedure known as minimum description length (MDL)
order estimation. MDL was introduced and popularized by J. Rissanen in the
late 1970s. Although MDL has often been promoted by borrowing material
from medieval philosophy, we will see later that it can be justified using some
non-trivial mathematics for Markov order estimation.

Definition 15.4.4. Assume that µ is a probability distribution on the set of
possible orders and that for each order r and n ≥ 1, Rn

r defines a coding prob-
ability for Yn with respect to Mr. Then the MDL order estimator is defined
by

r̂
def= arg maxr[log Rn

r (y1:n) + logµ(r)] .
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Note that if the coding probability BBrn
r turns out to be the normalized

maximum likelihood distribution, the MDL order estimator is a special kind
of penalized maximum likelihood (PML) order estimator.

The Bayesian information criterion (BIC) order estimator is nothing but
another distinguished member of the family of penalized maximum likelihood
order estimators. It is closely related to but different from the MDL order
estimator derived from the NML coding probability.

Definition 15.4.5. Let dim(r) be the dimension of the parameter space Θr

in Mr. Then the BIC order estimator is defined by

r̂
def= arg maxr

[
sup

P∈Mr

log P(y1:n)− dim(r)
2

log n
]
.

Schwarz introduced the BIC in the late 1970s using Bayesian reasoning, and
using Laplace’s trick to simplify high-dimensional integrals. The validity of
this trick and the relevance of Bayesian reasoning to the minimax framework
has to be checked on an ad hoc basis.

15.4.2 Information Divergence Rates

The order estimators we have in mind (MDL, BIC, PML) are related to gen-
eralized likelihood ratio testing. In order to prove their consistency, we need
strong laws of large numbers concerning logarithms of likelihood ratios. In
the stationary independent case, those laws of large numbers reduce to the
classical laws of large numbers for sums of independent random variables.
Such strong laws have proved to be fundamental tools both in statistics and
in information theory. In general (that is, not necessarily i.i.d. settings), the
laws of large numbers we are looking for have been called asymptotic equipar-
tition principles for information in information theory or Shannon-McMillan-
Breiman (SMB) theorems in ergodic theory (Barron, 1985).

Before formulating SMB theorems in a convenient form, let us recall some
basic facts about likelihood ratios. Let P and P′ denote two probabilities over
Y∞ such that for every n, P′

n is absolutely continuous with respect to Pn .
Then under P, the ratio P′

n /Pn is a martingale with expectation less than or
equal than 1. By monotonicity and concavity of the logarithm, log P′

n /Pn is
a super-martingale with non-positive expectation. It follows from a theorem
due to Doob that this super-martingale converges a.s. to an integrable ran-
dom variable. If the expectation of the latter random variable is infinite, P is
singular with respect to P′ . In such a setting, the rate of growth of log P′

n /Pn

is a matter of concern. If the two distributions are product probabilities, the
log-likelihood ratio is a sum of independent random variables and grows lin-
early with n if the factors are identical. Moreover, the strong law of large
numbers tells us that n−1 log P′

n /Pn converges a.s. to a fixed value, which is
called the information divergence rate between the two distributions.

How robust is this observation? This is precisely the topic of SMB theo-
rems.



15.4 Code-based Identification 575

Definition 15.4.6. A set M of process laws over Y is said to satisfy a gen-
eralized AEP if the following holds.

(i) For every pair of laws P and P′ from M, the relative entropy rate (in-
formation divergence rate) between P and P′,

lim
n→∞

1
n
D(Pn | P′

n) ,

exists. It is denoted by D∞(P | P′).
(ii) Furthermore, if P and P′ are stationary ergodic, then

lim
n→∞

1
n

log
P(Y1:n)
P′(Y1:n)

= D∞(P | P′) P-a.s.

Remark 15.4.7. In the i.i.d. setting, the AEP boils down to the usual strong
law of large numbers.

�

The cases of Markov models and hidden Markov models can be dealt with
using Barron’s generalized Shannon-McMillan-Breiman theorem, which we
state here.

Theorem 15.4.8. Let Y be a standard Borel space and let {Yk}k≥1 be a Y-
valued stochastic ergodic process distributed according to P . Let P′ denote a
distribution over Y∞, which is assumed to be Markovian of order r, and such
that for each n, Pn has a density with respect to P′

n. Then

n−1 log
dP
dP′ (Y1:n)

converges P-a.s. to the relative entropy rate between the two distributions,

D∞(P | P′) = lim
n

n−1D(Pn | P′
n) = sup

n
n−1D(Pn | P′

n) .

From Barron’s theorem, it is immediate that the collection of Markov models
satisfies the generalized AEP. The status of HMMs is less straightforward.
There are actually several proofs that HMMs satisfy the generalized AEP (see
Finesso, 1991). The argument we present here simply resorts to the extended
chain device.

Theorem 15.4.9. The collection of HMMs over some finite observation al-
phabet Y satisfies the generalized AEP.

Proof. Let P and P′ denote two HMMs over some finite observation alphabet
Y. Let φn and φ′

n denote the associated prediction filters. Then under P and
P′ the sequence {Yn, φn, φ

′
n} is a Markov chain over Y×R

r ×R
r′
, which may

be regarded as a standard Borel space. Moreover

log P(y1:n) = log P(y1:n, φ1:n, φ
′
1:n) .

Applying Theorem 15.4.8 to the sequence {Yn, φn, φ
′
n} finishes the proof. ��
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Knowing that some collection of models satisfies the generalized AEP al-
lows us to test between two elements picked from the collection. When per-
forming order estimation, we need more than that. If ML estimation is con-
sistent, we need to have for every P� ∈Mr� \Mr�−1,

lim sup
n

sup
P∈Mr�−1

n−1 log
P(Y1:n)
P�(Y1:n)

< 0 P�-a.s.

If the collection of models satisfies the generalized AEP, this should at least
imply that

inf
P∈Mr�−1

D∞(P� | P) > 0 .

We recall here some results concerning divergence rates of stationary
HMMs that may be found in Gassiat and Boucheron (2003). Here Mr is
the set of stationary HMMs of order at most r.

Lemma 15.4.10. D∞(· | ·) is lower semi-continuous on ∪rMr × ∪rMr.

Lemma 15.4.11. If P is a stationary but not necessarily ergodic HMM of
order r, it can be represented as a mixture of ergodic HMMs (Pi)i≤i(r) having
disjoint supports on X× Y,

P =
d∑

i=1

λi Pi ,

where
∑

i λi = 1, λi ≥ 0 and i(r) depends on r only. If P′ is a stationary
ergodic HMM then

D∞(P | P′) =
∑

i

λiD∞(Pi | P′) ,

D∞(P′ | P) = inf
i
D∞(P′ | Pi) .

Lemma 15.4.12. If P� is a stationary ergodic HMM of order r� and r < r�,
then

inf
P∈Mr

D∞(P | P�) > 0 and inf
P∈Mr

D∞(P� | P) > 0 .

15.5 MDL Order Estimators in Bayesian Settings

Under mild but non-trivial conditions on universal redundancy rates, the
above-described order estimators are strongly consistent in a minimax setting.
In this section, we will present a result that might seem to be a definitive one.

Recall that two probability distributions Q and Q′ are orthogonal or mu-
tually singular if there exists a set A such that Q(A) = 1 = Q′(Ac).
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Theorem 15.5.1. Let {Θr}r≥1 denote a collection of models and let Qr de-
note coding probabilities defined by (15.2) with prior probabilities ωr. Let L(r)
denote the length of a prefix binary encoding of the integer r. Assume that the
probabilities Qr are mutually singular on the asymptotic σ-field. If the order
estimator is defined as

r̂n
def= arg minr

[
− log2 Qr(y1:n) + L(r)

]
,

then for all r� and ωr�
-almost all θ, r̂n converges to r� a.s.

Proof. Define Q� as the double mixture

Q� = C
∑
r �=r�

2−L(r)Qr ,

where C ≥ 1 is a normalization factor. Under the assumptions of the theorem
Q� and Qr�

are mutually singular on the asymptotic σ-field. Moreover for all
y1:n,

Q�(y1:n) ≥ C sup
r �=r�

[
2−L(r)Qr(y1:n)

]
,

which is equivalent to

− log2 Q�(y1:n) ≤ − log2 C + inf
r �=r�

[L(r)− log2 Qr(y1:n)] .

On the other hand, a standard martingale argument tells us that Qr�
-a.s.,

log2
Qr�

(y1:n)
Q�(y1:n)

converges to a limit, and the fact that Qr�
and Q� are mutually singular entails

that this limit is infinite Qr�
-a.s. Hence Qr�

-a.s., for all sufficiently large n

− log2 Qr�
(y1:n) + L(r�) < inf

r �=r�

[L(r)− log2 Qr(y1:n)] .

This implies that Qr�
-a.s., for all sufficiently large n, r̂n = r�, which is the

desired result. ��
Remark 15.5.2. Theorem 15.5.1 should not be misinterpreted. It does not
prevent the fact that for some θ in a set with null ωr� probability, the order
estimator might be inconsistent. Neither does the theorem give a way to iden-
tify those θ for which the order estimator is consistent. �

15.6 Strongly Consistent Penalized Maximum Likelihood
Estimators for HMM Order Estimation

In this section, we give general results concerning order estimation in the
framework of nested sequences of models, and we then state their application
to stationary HMMs. We shall consider penalized ML estimators r̂n.
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Assumption 15.6.1.
(i) The sequence of models satisfies the generalized AEP (Definition 15.4.6).
(ii) Whenever P� is stationary ergodic of order r� and r < r�,

inf
P∈Mr

D∞(P� | P) > 0 .

(iii) For any ε > 0 and any r, there exists a sieve (Pi)i∈Ir
ε
, that is, a finite

set Ir
ε such that Pi ∈ Mr with all Pi being stationary ergodic, and a nr

ε

such that for all P ∈Mr there is an i ∈ Ir
ε such that

n−1| log P(y1:n)− log Pi(y1:n)| ≤ ε

for all n ≥ nr
ε and all y1:n.

Non-trivial upper bounds on point-wise minimax regret for the different
models at hand will enable us to build strongly consistent code-based order
estimators.

Lemma 15.6.2. Let the penalty function pen(n, r) be non-decreasing in r
and such that pen(n, r)/n → 0. Let {r̂n} denote the sequence of penalized
maximum likelihood order estimators defined by pen(). Then under Assump-
tion 15.6.1, P�-a.s., r̂n ≥ r� eventually.

Proof. Throughout “infinitely often” will be abbreviated “i.o.” Write

{r̂n < r� i.o.} =
⋃

r<r�

{r̂n = r i.o.}

and note that

{r̂n = r i.o.} ⊆
{

sup
P∈Mr

log P(y1:n) ≥ log P�(y1:n)− pen(n, r�) i.o.
}

⊆
{

max
i∈Ir

ε

log Pi(y1:n) ≥ log P�(y1:n)− nε− pen(n, r�) i.o.
}

⊆
⋃

i∈Ir
ε

{
lim supn−1[log Pi(y1:n)− log P�(y1:n)] ≥ −ε

}
,

where (Pi)i∈Ir
ε

is the sieve for Mr given by Assumption 15.6.1(iii). Now,
by Assumption 15.6.1(i), n−1[log Pi(y1:n)− log P�(y1:n)] converges P�-a.s. to
−D∞(P� | Pi), and by Assumption 15.6.1(ii), as soon as

ε < min
r<r�

inf
P∈Mr

D∞(P� | P) ,

one obtains P�(r̂ < r i.o.) = 0. ��

A possibly very conservative way of choosing penalties may be justified
in a straightforward way by universal coding arguments. Let Cr

n denote the
normalizing constant in the definition of the NML coding probability induced
by Mr on Yn.
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Lemma 15.6.3. Let the penalty function be pen(n, r) =
∑r

r′=0(log Cr′
n +

2 logn) and let {r̂n} denote the sequence of penalized maximum likelihood
order estimators defined by pen(). Then P�-a.s., r̂n ≤ r� eventually.

Proof. Let r denote an integer larger than r�. Then

P�(r̂n = r)

≤ P�

{
log P�(Y1:n) ≤ sup

P∈Mr

log P(Y1:n)− pen(n, r) + pen(n, r�)
}

≤ P�

{
log P�(Y1:n) ≤ log NMLr

n(Y1:n)−
r−1∑

r′=r�+1

log Cr′
n − 2(r − r�) logn

}
≤

∑
y1:n

exp[log P�(y1:n)]

×1{log P�(y1:n)≤log NMLr
n(y1:n)−∑r−1

r′=r�+1
log Cr′

n −2(r−r�) log n}

≤
∑
y1:n

NMLr
n(y1:n) exp

[
−

r−1∑
r′=r�+1

log Cr′
n − 2(r − r�) logn

]

≤ exp

[
−

r−1∑
r′=r�+1

log Cr′
n − 2(r − r�) logn

]
≤ n−2(r−r�) ,

because
∑r−1

r′=r�+1 log Cr′
n = 0 for r = r� + 1.

By the union bound,

P�(r̂n > r�) =
∑
r>r�

P�(r̂n = r) ≤ n−2

1− n−2 ,

whence ∑
n

P�(r̂n > r�) ≤
∑

n

1 ∧ n−2

1− n−2 <∞ .

Applying the Borel-Cantelli lemma, we may now conclude that P�-a.s., order
over-estimation occurs only finitely many times. ��

In order to show the existence of strongly consistent order estimators for
HMMs, it remains to check that Assumption 15.6.1 holds and that the penal-
ties used in the statement of Lemma 15.6.3 satisfy the conditions stated in
Lemma 15.6.2, that is, for all r ≥ 1,

lim
n

1
n

∑
r′≤r

(
log Cr′

n + 2 logn
)

= 0 .

This last point follows immediately from the following result from universal
coding theory.
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Lemma 15.6.4. For all r, all n > r and all y1:n,

log Cr
n = log

supP∈Mr P(y1:n)
NMLr

n(y1:n)
≤ r(r + d− 2)

2
log n + cr,d(n),

where for n ≥ 4, cr,d(n) may be chosen as

cr,d(n) = log r + r

(
− log

Γ
(

r
2

)
Γ

(
d
2

)
Γ

( 1
2

)
Γ

( 1
2

) +
r2 + d2

4n
+

1
6n

)
.

Concerning Assumption 15.6.1, part (i) is Theorem 15.4.9 and part(ii) is
Lemma 15.4.12. Now for any positive δ, let us denote by Θr

δ the set of HMM
parameters in Θr such that each coordinate is lower-bounded by δ.

For any θ ∈ Θr, there exists θδ ∈ Θr
δ such that for any n and any y1:n,

n−1| log Pθ(y1:n)− log Pθδ
(y1:n)| ≤ r2 + d2

2
δ .

A glimpse at the proof of this fact in Liu and Narayan (1994) reveals that this
statement still holds when θδ is constrained to lie in a sieve for Θr

δ , defined as
a finite subset (θi)i∈I such that for all θ ∈ Θr, at least one θi in the sieve is
within L∞-distance smaller than δ away from θ.

This may be summarized in the following way.

Corollary 15.6.5. Let P� be an HMM of order r� and let {r̂n} be the sequence
of penalized ML order estimators defined in Lemma 15.6.3. Then P�-a.s.,
r̂n = r� eventually.

Remark 15.6.6. Resorting to universal coding arguments to cope with our
poor understanding of the maximum likelihood in misspecified HMMs pro-
vides us with a Janus-faced result: on one hand it allows us to describe a
family of strongly consistent order estimators that will prove to be optimal as
far as under-estimation is concerned; on the other hand the question raised
by Kieffer (1993) about the consistency of BIC and MDL for HMM order
estimation remains open. �

15.7 Efficiency Issues

How efficient are the aforementioned order estimation procedures? The no-
tions of efficiency that have been considered in the order estimation literature
have been shaped on the testing theory setting. As a matter of fact, the
classical efficiency notions have emerged from the analysis of the simple hy-
potheses testing problem. Determining how those notions could be tailored to
the nested composite hypothesis testing problem is still a subject of debate.

Among the various notions of efficiency, or even of asymptotic relative
efficiency that are regarded as relevant in testing theory, Pitman’s efficiency
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focuses on the minimal sample size that is required to achieve simultaneously
a given level and a given power at alternatives. Up to our knowledge, Pitman’s
efficiency for Markov order or HMM order estimation related problems has not
been investigated. This is due to the lack of non-asymptotic results concerning
estimation procedures for HMM and Markov chains.

The notion of efficiency that has been assessed in the order estimation lit-
erature is rather called Bahadur relative efficiency in the statistical literature
and error exponents in the information-theoretical literature. When testing a
simple hypothesis against another simple hypothesis in the memoryless set-
ting, a classical result by Chernoff tells us that comparing likelihood ratios
to a fixed threshold, both level and power may decay exponentially fast with
respect to the number of observations. In that setting, Bahadur-efficient test-
ing procedures are those that achieve the largest exponents. Viewing that set
of circumstances, there have been several attempts to generalize those results
to the composite hypothesis setting. Part of the difficulty lies in stating the
proper questions.

Although consistency issues concerning the BIC and MDL criteria for
HMM order estimation have not yet been clarified, our understanding of effi-
ciency issues concerning HMM order identification recently underwent signif-
icant progress. In this section, we give general results concerning efficiency of
order estimation in the framework of nested sequences of models; these results
apply to stationary HMMs.

15.7.1 Variations on Stein’s Lemma

The next theorems are extensions of Stein’s lemma to the order estimation
problem. Theorem 15.7.2 aims at determining the best underestimation ex-
ponent for a class of order estimators that ultimately overestimate the order
with a probability bounded away from 1. Theorem 15.7.4 aims at proving that
the best overestimation exponent should be trivial in most cases of interest.

Assumption 15.7.1.
(i) The sequence of models satisfies the general AEP (Definition 15.4.6).
(ii) For any r, there exists Mr

0 ⊆ Mr such that any P in Mr
0 is stationary

ergodic and has true order at most r, and such that for any P� ∈Mr�
0 ,

inf
P∈Mr

D∞(P | P�) = inf
P∈Mr

0

D∞(P | P�) .

Versions of the following theorem have been proved iby Finesso et al. (1996)
for Markov chains and by Gassiat and Boucheron (2003) for HMMs.

Theorem 15.7.2. Let the sequence {Mr}r≥1 of nested models satisfy As-
sumption 15.7.1. Let {r̂n}n≥1 denote a sequence of order estimators such that
for some α < 1, all r� and all P� ∈Mr�

0 ,

P�(r̂n(Y1:n) > r�) ≤ α
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for n ≥ T1(P�, α, r�). Then for all r� and all P� ∈Mr�
0 ,

lim inf
n→∞ n−1 log P�(r̂n(Y1:n) < r�) ≥ − min

r′<r�

inf
P∈Mr′

D∞(P | P�) .

Proof. Fix P� ∈Mr�
0 . Let P′ ∈Mr′

0 with r′ < r� and define

An(P′) def= {y1:n : r̂n(y1:n) ≤ r′} ,

Bn(P′) def= {y1:n : n−1 log
P′(y1:n)
P�(y1:n)

≤ D∞(P′ | P�) + ε} .

For n > T1(P′, α, r′),
P′(An(P′)) > 1− α ,

and as ∪rMr is assumed to satisfy the generalized AEP, for all n >
T3(ε,P′,P�) it holds that

P′(Bn(P′)) > 1− ε . (15.4)

If n > T2(α, ε,P′) = max[T1(α, r′), T3(ε,P′,P�)], then

P�(r̂n(Y1:n) < r�) = EP�
[1{r̂n<r�}]

is an equality if P� and P′ have the same
support set for finite marginals

≥ EP′

[
P�(Y1:n)
P′(Y1:n)

1{r̂n<r�}

]
as r′ < r�

≥ EP′

[
P�(Y1:n)
P′(Y1:n)

1An(P′)

]
from the definition of Bn(P′)

≥ EP′
[
1An(P′)1Bn(P′)e−n[D(P′ | P�)+ε]

]
≥ EP′

[
1An(P′)1Bn(P′)

]
e−n[D(P′ | P�)+ε]

from the union bound, and by the AEP
≥ (1− α− ε)e−n[D(P′ | P�)+ε] .

Now optimizing with respect to θ′ and r′ and letting ε tend to zero, the
theorem follows. ��

Remark 15.7.3. Assessing that the upper bound on underestimation expo-
nent is positive amounts to checking properties of relative entropy rates. �

Theorem 15.7.2 holds for stationary HMMs. Assumption 15.7.1(i) is The-
orem 15.4.9, and part (ii) is verified by taking Mr

0 as the distributions of
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stationary ergodic HMMs with order at most r. Then Theorem 15.7.2 follows
using Lemmas 15.4.10 and 15.4.11.

Another Stein-like argument provides an even more clear-cut statement
concerning possible overestimation exponents. Such a statement seems to be
a hallmark of a family of embedded composite testing problems. It shows
that in many circumstances of interest, we cannot hope to achieve both non-
trivial under- and overestimation exponents. Versions of this theorem have
been proved by Finesso et al. (1996) for Markov chains and by Gassiat and
Boucheron (2003) for HMMs.

Theorem 15.7.4. Let the sequence {Mr}r≥1 of nested models satisfy As-
sumption 15.7.1. Assume also that for P ∈Mr

0 ⊆Mr there exists a sequence
{Pm}m of elements in Mr+1

0 \Mr such that

lim
m→∞D∞(Pm | P) = 0 .

Assume that {r̂n}n is a consistent order estimation procedure. Then for all
P ∈Mr�

0 having order r�,

lim inf
n→∞

1
n

log P(r̂n > r�) = 0 .

The change of measure argument that proved effective in the proof of Theo-
rem 15.7.2 can now be applied for each P ∈Mr

0.

Proof. Let P denote a distribution in Mr�
0 having order r� and let {Pm} de-

note a sequence as above. Let ε denote a small positive real. Fix m sufficiently
large that D∞(Pm | P) ≤ ε and then n sufficiently large that

Pm

(
n−1 log

dPm

dP
(Y1:n) ≥ D∞(Pm | P) + ε

)
≤ ε

while
Pm

n (r̂n = r� + 1) ≥ 1− ε .

We may now lower bound the overestimation probability as

P(r̂n > r�) ≥ P(r̂n = r� + 1)

≥ EPm

[
dP
dPn 1{r̂n=r�+1}

]
≥ EPm

[
dPn

dPm
n

1{r̂n=r�+1}

]
≥ EPm

[
exp

(
− log

dPm
n

dPn

)
1{r̂n=r�+1}

]
≥ e−2nε(1− 2ε) .

Hence lim infn n−1 log Pn(r̂n > r�) ≥ −2ε . As ε may be arbitrarily small, this
finishes the proof. ��
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This theorem holds for stationary HMMs; see Gassiat and Boucheron
(2003).

The message of this section is rather straightforward: in order estimation
problems like HMM order estimation, underestimation corresponds to large
deviations of the likelihood process, whereas overestimation corresponds to
moderate deviations of the likelihood process. In the Markov order estimation
problem, the large-scale typicality theorem of Csiszár and Shields allows us
to assign a quantitative meaning to this statement.

15.7.2 Achieving Optimal Error Exponents

Stein-like theorems (Theorems 15.7.2 and 15.7.4) provide a strong incentive to
investigate underestimation exponents of the consistent order estimators that
have been described in Section 15.6. As those estimators turn out to be penal-
ized maximum likelihood estimators, what is at stake here is the (asymptotic)
optimality of generalized likelihood ratio testing. In some situations, general-
ized likelihood ratio testing fails to be optimal. We will show that this is not
the case in the order estimation problems we have in mind.

As will become clear from the proof, as soon as the NML normalizing
constant log Cr

n/n tends to 0 as n tends to infinity, NML code-based order
estimators exhibit the same property.

Assumption 15.7.5.
(i) The sequence of models satisfies the AEP.
(ii) Each model Mr can be endowed with a topology under which it is sequen-

tially compact.
(iii) Relative entropy rates satisfy the semi-continuity property: if Pm and

P′,m are stationary ergodic and converge respectively to P and P′, then
D∞(P | P′) ≤ lim infm D∞(Pm | P′,m).

(iv) For any ε > 0 and any r, there exists a sieve (Pi)i∈Ir
ε
, that is, a finite

set Ir
ε such that Pi ∈Mr with all Pi ergodic and such that the following

hold true.
(a) Assumption 15.6.1(iii) is satisfied.
(b) For each stationary ergodic distribution P� ∈ ∪rMr with order

r� and for every finite subset P of the union ∪ε{Pi : i ∈ Ir
ε } ⊆ Mr�

of all sieves, the log-likelihood process {log P(Y1:n)}P∈P satisfies a large
deviation principle with good rate function JP and rate n.
Moreover, any sample path {u(P)}P∈P of the log-likelihood process in-
dexed by P that satisfies JP(u) < ∞ enjoys the representation property
that there exists a distribution Pu ∈Mr� such that

u(P) = lim
n

n−1 EPu [log P(Y1:n)] , P ∈ P ,

JP(u) ≥ D∞(Pu | P�) .

(v) For any r1 < r2, if P1 ∈ Mr1 and P2 ∈ Mr2 satisfy D∞(P2 | P1) = 0,
then P2 = P1 ∈Mr1 .
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(vi) If P ∈ Mr� is not stationary ergodic, it can be represented as a finite
mixture of ergodic components (Pi)i≤i(r�) (where i(r�) depends only on
r�) in Mr� ,

∑
i λi Pi = P, and for all ergodic P′ in M,

D∞(P | P′) =
∑

i≤i(r�)

λiD∞(Pi | P′) .

Remark 15.7.6. Assumption 15.7.5 holds for HMMs. This is not obvious at
all and follows from available LDPs for additive functionals of Markov chains,
the extended chain device, and ad hoc considerations. The interested reader
may find complete proofs and relevant information in Gassiat and Boucheron
(2003). �

Theorem 15.7.7. Assume that the sequence of nested models (Mr) satisfies
Assumptions 15.7.1 and 15.7.5. If pen(n, r) is non-negative and for each r,
pen(n, r)/n → 0 as n → ∞, the penalized maximum likelihood order estima-
tors achieve the optimal underestimation exponent,

min
r<r�

inf
P∈Mr

D∞(P | P�) .

The optimality of this exponent comes from Theorem 15.7.2, which holds un-
der Assumption 15.7.1. Hence the proof of Theorem 15.7.7 consists in proving
that the exponent is achievable.

Proof. An application of the union bound entails that

lim supn−1 log P�(r̂n < r�) ≤ max
r<r�

lim supn−1 log P�(r̂n = r) .

Hence the problem reduces to checking that for each r < r�,

lim sup
1
n

log P�(r̂n = r) ≤ − inf
P∈Mr

D∞(P | P�) .

Fix r < r�. The proof will be organized in two steps. First, we will check
that for each ε > 0 we can find some P̂ε ∈ Ir

ε and some Pε such that

D∞(Pε | P̂ε) ≤ 3ε ,
lim sup

n
n−1 log P�(r̂n = r) ≤ −D∞(Pε | P�) .

In the second step, we let ε tend to 0 to check that there exists some P̄ in Mr

such that
lim
n

n−1 log P�(r̂n = r) ≤ −D∞(P̄ | P�) .

Let us choose ε > 0 and nε large enough that pen(n, r�) ≤ εn for n ≥ nε.
Under Assumption 15.7.5(iv)(a), we get for n ≥ nε ∨ nr

ε ,
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log P�(r̂n = r)

≤ log P�

(
sup

P∈Mr

log P(Y1:n)− sup
P∈Mr�

log P(Y1:n) ≥ pen(n, r)− pen(n, r�)
)

≤ log P�

(
max
i∈Ir

ε

n−1 log Pi(Y1:n)− max
i∈Ir�

ε

n−1 log P(Y1:n) ≥ −2ε
)
.

We may divide by n, take the lim sup of the two expressions as n tends to
infinity, and use Assumption 15.7.5(iv)(b) to obtain

lim supn−1 log P�(r̂n = r) ≤ − inf
{
JP(u) : sup

i∈Ir
ε

u(Pi)− sup
i∈Ir�

ε

u(Pi) ≥ −2ε
}

with
P = {Pi : i ∈ Ir

ε } ∪ {Pi : i ∈ Ir�
ε } .

The infimum on the right-hand side of the inequality is attained at some path
uε. Hence, using again Assumption 15.7.5(iv)(b),

lim supn−1 log P�(r̂n = r) ≤ −D∞(Pε | P�) , (15.5)

where Pε ∈Mr� ,

uε(P) = limn−1 EPε [log P(Y1:n)] , P ∈ P , (15.6)

and
sup
i∈Ir

ε

uε(Pi)− sup
i∈Ir�

ε

uε(Pi) ≥ −2ε . (15.7)

Pick P̃ε ∈ {Pi}i∈Ir�
ε

such that for n ≥ nr�
ε ,

n−1| log P̃ε(y1:n)− log Pε(y1:n)| ≤ ε

and P̂ε such that
sup
i∈Ir

ε

uε(Pr
i ) = uε(P̂ε) . (15.8)

Then

lim supn−1 EPε
[log Pε(Y1:n)] ≤ lim supn−1 EPε

[log P̃ε(Y1:n)] + ε

= uε(P̃ε) + ε

≤ uε(P̂ε) + 3ε

= limn−1 EPε
[log P̂ε(Y1:n)] + 3ε .

Here we used (15.6) for the second step, then (15.8) and (15.7), and finally
(15.6) again. Using Assumption 15.7.5(i) we thus finally obtain

D∞(Pε | P̂ε) ≤ 3ε .
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Let us now proceed to the second step. It remains to check that if we let
ε tend to 0, the sequence (Pε)ε obtained in (15.5) has an accumulation point
in Mr.

Note that P̂ε is ergodic and let
∑

i λi,ε Pi,ε denote the ergodic decomposi-
tion of Pε . Then

D∞(Pε | P̂ε) =
∑

i

λi,εD∞(Pi,ε | P̂ε) .

Extract a subsequence of (λi,ε) and (Pi,ε) converging to λi and Pi, respectively,
and such that P̄ =

∑
i λi Pi, while P̂ is the corresponding accumulation point

of the sequence P̂ε. We may then apply the semi-continuity property to obtain∑
i

λiD∞(Pi | P̂) = 0 .

This leads, using Assumption 15.7.5(v) and (vi), to
∑

i λi Pi = P̂, that is,
P̄ = P̂ ∈Mr. Using the semi-continuity property again we find that

lim
ε

D∞(Pε | P�) = lim
ε

∑
i

λi,εD∞(Pi,ε | P�) ≥ D∞(P̄ | P�) ,

whence
lim supn−1 P�(r̂n = r) ≤ − inf

P∈Mr
D∞(P | P�) .

��

15.8 Consistency of the BIC Estimator in the Markov
Order Estimation Problem

Though consistency of the BIC estimator for HMM order is still far from being
established, recent progress concerning the Markov order estimation problem
raises great expectations. As a matter of fact, the following was established
by Csiszár and Shields and recently refined by Csiszár (Csiszár and Shields,
2000; Csiszár, 2002).

Theorem 15.8.1. For any stationary irreducible Markov process with dis-
tribution P� over the finite set Y and of order r�, the BIC order estimator
converges to r� P�-a.s.

The proof of this remarkable theorem follows from a series of technical
lemmas concerning the behavior of maximum likelihood estimators in models
Mr for r ≥ r�. In the Markov order estimation problem, such precise results
can be obtained at a reasonable price, thanks to the fact that maximum
likelihood estimates coincide with simple functions of empirical measures. Here
we follow the argument presented by Csiszár (2002).
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First note that underestimation issues are dealt with using Lemma 15.6.2.
Theorem 15.8.1 actually follows almost directly from the following result. Let
P̂

r
denote the MLE of the probability distribution in Mr on the sample y1:n.

Theorem 15.8.2. For any stationary irreducible Markov process with distri-
bution P� of order r� over the finite set Y,

sup
r≥r�

1
|Sr|

1
log n

[
log P̂

r
(y1:n)− log P�(y1:n)

]
→ 0 P�-a.s.

Here Sr denotes the subset of patterns from |Y|r that have non-zero stationary
probability. To emphasize the power of this theorem, let us first use it to derive
Theorem 15.8.1.

Proof (of Theorem 15.8.1). The event {r̂n > r� i.o.} equals the event

{∃r > r� : log P̂
r
(y1:n)− log P̂

r�

(y1:n) ≥ pen(n, r)− pen(n, r�) i.o.} ,
which is included in

{∃r > r� : log P̂
r
(y1:n)− log P�(y1:n) ≥ pen(n, r)− pen(n, r�) i.o.} .

By Theorem 15.8.2, it follows that for any η > 0, P�-a.s.,

sup
r≥r�

1
|Sr|

1
log n

{
log P̂

r
(y1:n)− log P�(y1:n)

}
< η .

Finally, for large n, for the BIC criterion, pen(n, r) ≥ (1/2)|Sr|×(|Y|−1) logn.
��

Remark 15.8.3. Viewing the proof of strong consistency of the BIC Markov
order estimator, one may wonder whether an analogous result holds for MDL
order estimators derived from NML coding probabilities or KT coding prob-
abilities. If no a priori restriction on the order is enforced, the answer is neg-
ative: there exists at least one stationary ergodic Markov chain (the uniform
memoryless source) for which unrestricted MDL order estimators overestimate
the order infinitely often with probability one.

But if the search for r in maxr{− log Qn,r(y1:n) − logµ(r)} is restricted
to some finite range {0, . . . , α log n} where α is small enough (depending on
the unknown P�) and does not depend on n, then the MDL order estima-
tor derived by taking NMLn,r as the rth coding probability turns out to be
strongly consistent. The reason why this holds is that in order to prove strong
consistency, we need to control

log Cr
n −

|Sr+1| − |Sr|
2

log n

over a large range of values of r for all sufficiently large n. Sharp estimates
of the minimax point-wise regret of NML for Markov sources of order r have
recently been obtained. It is not clear whether such precise estimates can be
obtained for models like HMMs where maximum likelihood is not as well-
behaved as in the Markov chain setting. �
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Throughout this section, P� denotes the distribution of a stationary irre-
ducible Markov chain of order r� over Y. For all r and all a1:r ∈ Yr,

Nn(a1:r)
def=

n+1−r∑
i=1

1∩r
j=1{Yi+j−1=aj}

is the number of times the pattern a1:r occurs in the sequence y1:n. The MLE
of the conditional distribution in Mr (r-transitions) is

P̂
r
(ar+1 | a1:r) =

Nn(a1:r+1)
Nn−1(a1:r)

for all a1:r+1 ∈ Yr+1, whenever Nn−1(a1:r) > 0.
The proof of Theorem 15.8.2 is decomposed into two main parts. The

easiest part relates log P̂
r
(y1:n)− log P�(y1:n) and a χ2 distance between the

empirical transition kernel P̂
r

n and P�, under conditions that aver to be almost
surely satisfied by sample paths of irreducible Markov chains. This relation-
ship (Lemma 15.8.4) is a quantitative version of the asymptotic equivalence
between relative entropy and χ2 distance (see Csiszár, 1990, for more infor-
mation on this topic). The most original part actually proves that the almost
sure convergence of P̂

r
to P� is uniform over r ≥ r�.

Lemma 15.8.4. Let P and P ′ be two probability distributions on {1, . . . ,m}.
If P ′(i)/2 ≤ P (i) ≤ 2P ′(i) for all i then D(P |P ′) ≤ χ2(P, P ′), where
χ2(P, P ′) =

∑m
i=1{P (i)− P ′(i)}2/P ′(i).

A simple corollary of this lemma is the following.

Corollary 15.8.5. Let r be an integer such that r ≥ r�. If y1:n is such that
for all a1:r+1 ∈ Sr+1,

1
2

P�(ar+1 | a1:r) ≤
Nn(a1:r+1)
Nn−1(a1:r)

≤ 2 P�(ar+1 | a1:r) ,

then

log P̂
r
(y1:n)− log P�(y1:n) ≤

∑
a1:r∈Sr

Nn(a1:r)χ2(P̂
r
(· | a1:r),P�(· | a1:r)) .

15.8.1 Some Martingale Tools

The proof of Theorem 15.8.2 relies on martingale arguments. The basic tools
of martingale theory we need are gathered here.

In the sequel, φ denotes the convex function φ(x) def= exp(x)−x−1 and φ�

its convex dual, φ�(y) = supx(yx− φ(x)) = (y + 1) log(y + 1)− y for y ≥ −1
and ∞ otherwise. We will use repeatedly the classical inequality
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φ�(x) ≥ x2

1 + x/3
, x ≥ 0 .

The following lemma is usually considered as an extension of the Bennett
inequality to martingales with bounded increments. Various proofs may be
found in textbooks on probability theory such as Neveu (1975) or Dacunha-
Castelle and Duflo (1986).

Lemma 15.8.6. Let {Fn}n≥1 denote a filtration and let {Zn}n≥1 denote a
centered square-integrable martingale with respect to this filtration, with incre-
ments bounded by 1. Let 〈Z〉n def=

∑n
s=1 E[(Zs − Zs−1)2 | Fs−1] be its bracket.

Then for all λ, the random variables

exp[λZn − φ(λ)〈Z〉n]

form an {Fn}-adapted super-martingale.

Let us now recall Doob’s maximal inequality and the optional sampling
principle. Doob’s maximal inequality asserts that if {Zn} is a a super-
martingale, then for all n0 and all x > 0,

P
(

sup
n≥n0

Zn ≥ x
)
≤ E[(Zn0)+]

x
. (15.9)

Recall that a random variable T is a stopping time with respect to a filtration
{Fn} if for each n the event {T ≤ n} is Fn-measurable.

The optional sampling theorem asserts that if T1, T2, . . . , Tk, . . . form an
increasing sequence of stopping times with respect to {Fn}, then the sequence
{ZTi

} is a {FTi
}-adapted super-martingale.

Considering a stopping time T and the increasing sequence {T ∨ n} of
stopping times, it follows from Lemma 15.8.6, Doob’s maximal inequality, and
the optional sampling theorem that if {Zn} is a martingale with increments
bounded by 1, then for any stopping time T ,

P
(
∃n ≥ T : |Zn| >

φ(λ)
λ
〈Zn〉+ α

)
≤ 2 exp(−αλ) . (15.10)

Let B1 ≤ B2 be two numbers. If the stopping times T1 and T2 are defined
by T1 = inf{n : 〈Z〉n ≥ B1} and T2 = inf{n : 〈Z〉n ≥ B2}, (15.10) entails
that for any x > 0,

P
(
∃n ∈ {T1, . . . T2} : |Zn| > x

)
≤ 2 exp

{
−B2 sup

λ

[
λ

x

B2
− φ(λ)

]}
= 2 exp

{
−B2φ

�
( x

B2

)}
≤ 2 exp

{
− x2

2
(
B2 + x/3

)} . (15.11)

This inequality will aver to be the workhorse in the proof of Theorem 15.8.2.
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15.8.2 The Martingale Approach

The following observation has proved to be crucial in the developments that
started with Finesso (1991) and culminated in Csiszár (2002). For each r > r�

and a1:r ∈ Yr, the random variables Zn(a1:r) defined by

Zn(a1:r)
def= Nn(a1:r)−Nn−1(a1:r−1)× P�(ar | a1:r−1)

form an {Fn}-adapted martingale. Moreover, this martingale has increments
bounded by 1, and the associated bracket has the form

〈Z(a1:r)〉n = Nn−1(a1:r−1) P�(ar | a1:r−1)[1− P�(ar | a1:r−1)] . (15.12)

Note that |Zn(a1:r)| < x implies that

|P̂r−1
(ar | a1:r−1)− P�(ar | a1:r−1)| <

x

Nn−1(a1:r−1)
.

Hence bounds on the deviations of the martingales Zn(a1:r) for a1:r ∈ Sr ⊆ Yr

are of immediate relevance to the characterization of P̂
r−1

.
The following lemma will be the fundamental bridging block in the proof

of the large scale typicality Theorem 15.8.1.

Lemma 15.8.7. Let ξ and η be two positive reals, r > r�, a1:r ∈ Sr and let
Zn denote the martingale associated with a1:r. Then for any θ > 1 and any
integer m ≥ 0,

P�

{
∃n : θm ≤ 〈Z〉n ≤ θm+1, |Zn| ≥

√
〈Z〉n max[ξr, η log log(〈Z〉n)]

}
≤ 2 exp

(
− max[ξr, η log log(θm)]

2θ{1 + (1/3)
√

max[ξr, η log log(θm)]/θm+2}

)
. (15.13)

Proof. Let the stopping time Tm be defined as the first instant n such that
〈Z〉n ≥ θm. Note that 〈Z〉n ≥ θm for n between Tm and Tm+1, and we may
take x =

√
θm max[ξr, η log log θm] and B2 = θm+1 in (15.11). ��

Remark 15.8.8. If a1:r ∈ Sr, ergodicity implies that P�-a.s., 〈Z(a1:r)〉n con-
verges to infinity. Choosing ξ = 0 and taking η = 2θ(1 + α) with α > 0, the
previous lemma asserts that

P�

{
∃n : θm ≤ 〈Z〉n ≤ θm+1, |Zn| ≥

√
2θ(1 + α)〈Z〉n log log(〈Z〉n)

}

≤ 2 exp

⎡⎣ (1 + α) log log θm

1 + 1
3

√
2(1+α) log log θm

θm+1

⎤⎦ .
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The sum over m of the right-hand side is finite. Thus by the Borel-Cantelli
lemma, P�-a.s., the event on the left-hand side only occurs for finitely many
m. Combining these two observations and letting θ tend to 1 and α tend to 0
completes the proof that P�-a.s.,

lim sup
n

|Zn|√
2〈Z〉n log log〈Z〉n

≤ 1 . (15.14)

Note that by Corollary 15.8.5 this entails that for some fixed r > r�, P�-a.s.,
eventually for all a1:r ∈ Sr,

Nn−1(a1:r)
|Y| χ2[P̂

r
(· | a1:r),P�(· | a1:r)] ≤ 2 log logNn−1(a1:r)

and
1

|Y||Sr|
[log P̂

r
(a1:r)− log P�(a1:r)] ≤ 2 log logn .

If we were ready to assume that r� is smaller than some given upper bound
on the true order, this would be enough to ensure almost sure consistency of
penalized maximum likelihood order estimators by taking

pen(n, r) = 2|Y|r+1 log logn .

�

15.8.3 The Union Bound Meets Martingale Inequalities

The following lemma will allow us to control supr:r�≤r≤α log n{log P̂
r−log P�}.

Lemma 15.8.9. For every δ > 0 there exists α > 0 (depending on P�) such
that eventually almost surely as n → ∞, for all a1:r in Sr with r� < r ≤
α log n,

|Zn(a1:r)| ≤
√

δ〈Z(a1:r)〉n log〈Z(a1:r)〉n .

Let the event Dξ,c,η
n (a1:r) be defined by

Dξ,c,η
n (a1:r)

def=
{
y1:n : 〈Z(a1:r)〉n > cr,

|Zn(a1:r)| ≥
√
〈Z(a1:r)〉n max[ξr, η log log(〈Z(a1:r)〉n)]

}
.

Lemma 15.8.10. Let ξ, η and c be chosen in a way that there exists θ > 1
such that

ξ > 2 log |Y|
[
θ +

√
ξ

3
max(c−1/2, 1

)]
(15.15)

and
η >

ξ
ξ

2[θ+
√

ξ/3 max(c−1/2,1)] − log |Y|
. (15.16)
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Then
lim sup

n

∑
r≥r�

∑
a1:r∈Sr

1Dξ,c,η
n (a1:r) = 0 P�-a.s.

Proof. Fix θ > 1 in such a way that (15.15) and (15.16) are satisfied. For each
integer m, let the event Eξ,c,η

m (a1:r) be defined by

Eξ,c,η
m (a1:r)

def=
{
y1:∞ : θm > cr, ∃a1:r, ∃n ∈ {Tm(a1:r), . . . , Tm+1(a1:r)} ,

|Zn(a1:r)| ≥
√
〈Z(a1:r)〉n max[ξr, η log log(〈Z(a1:r)〉n)]

}
.

The lemma will be proved in two steps. We will first check that P�-a.s.,
only finitely many events Eξ,c,η

m (a1:r) occur. Then we will check that on a set
of sample paths that has probability 1, this entails that only finitely many
events Dξ,c,η

n (a1:r) occur.
Note that

max[ξr, η log log(θm)] =

{
ξr if r ≥ η

ξ log log θm ,

η log log(θm) otherwise .

To alleviate notations, let µ be defined as

µ =
ξ

2
[
θ +

√
ξ

3 max(c−1/2, 1
)] − log |Y| .

Then

E
[∑

m

∑
r

∑
a1:r

1Eξ,c,η
m (a1:r)

]

≤
∑
m

∑
η
ξ log log θm≤r≤θm/c

|Y|r exp

⎡⎣− ξr

2
(
θ + 1

3

√
ξr
θm

)
⎤⎦

+
∑

r�<r≤ η
ξ log log θm

|Y|r exp

⎡⎣− η log log θmξr

2
(
1 + 1

3

√
η log log θm

θm

)
⎤⎦

≤
∑
m

exp
(
− µη

ξ
log log θm

)
×

[ 1
|Y| − 1

+
1

1− exp(−µ)

]
.

Note that as µη > ξ, by (15.15), the last sum is finite. This shows that our
first goal is attained.

Now as P� is assumed to be ergodic, P�-a.s., for all r > r� and all a1:r ∈
Sr, 〈Z(a1:r)〉n tends to infinity. Let us consider such a sample path. Then if
infinitely many events of the form Dξ,c,η

n (a1:r) occur for a fixed pattern a1:r,
also infinitely many events of the form Eξ,c,η

m (a1:r) occur for the same fixed
pattern.
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If there exists an infinite sequence {a1:rn
} of patterns such that the events

Dξ,c,η
n (a1:rn) occur for infinitely many n, then infinitely many events of the

form Eξ,c,η
mn

(a1:rn) also occur. ��

In order to prove Lemma 15.8.9, we will need lower bounds on P�{a1:r}
for r ≤ rn and a1:r ∈ Sr. As P has Markov order r� we have

P�(a1:r) = P�(a1:r�
)

r∏
j=r�+1

P�(aj | aj−1:j−r�
) .

Now let γ = mina1:r� ∈Sr�
P�(a1:r�

) and κ = mina1:r�+1∈Sr�+1 P�(ar�+1 | a1:r�
).

Then
min

a1:r∈Sr

P�(a1:r) ≥ γκr−r� . (15.17)

Proof (of Lemma 15.8.9). We will rely on Lemma 15.8.10 and we thus fix η,
ξ and c to satisfy the conditions of this lemma. The challenge will consist in
checking that for every δ > 0 we can find some α > 0 such that

(i) P�-a.s. all the “clocks” associated with patterns in ∪r∈{r�,...,α log n}Sr

move sufficiently fast, that is, for all sufficiently large n,

〈Z(a1:r)〉n > r for all a1:r ∈ ∪r∈{r�,...,α log n}Sr ;

(ii) For all sufficiently large n,

max[ξr, η log log〈Z(a1:r)〉n] ≤ δ log n for all a1:r ∈ ∪r∈{r�,...,α log n}Sr .

Let us first make a few observations. If 1− εr−1 < |Nn−1(a1:r−1)/(n− r+
1) P�(a1:r−1)| < 1 + εr−1 and

|Zn(a1:r)| <
√
〈Z(a1:r)〉n max[ξr, η log log〈Z(a1:r)〉n] ,

then

Nn(a1:r)
> Nn−1(a1:r−1) P�(ar | a1:r−1)

−
√
〈Z(a1:r)〉n max[ξr, η log log〈Z(a1:r)〉n]

> (n− r + 1) P�(a1:r)×{
1− εr−1 −

√
(1 + εr−1) max[ξr, η log log(2(n− r + 1)) P�(a1:r−1)]√

(n− r + 1) P�(a1:r)

}

> (n− r + 1) P�(a1:r)

{
1− εr−1 −

2
√

max[ξr, η log log(2n)]√
nγκr−r�

}
and
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Nn(a1:r) < Nn−1(a1:r−1) P�(a1:r−1)

+
√
〈Z(a1:r)〉n max[ξr, η log log〈Z(a1:r)〉n]

< (n− r + 1) P�(a1:r)

{
1 + εr−1 +

2
√

max[ξr, η log log(2n)]√
nγκr−r�

}
.

Now P�-a.s., for n large enough and all a1:r� ∈ Sr� ,

1− εr�
< |Nn(a1:r�

)/(n− r + 1) P�(a1:r�
)| < 1 + εr�

.

Let α be such that α < 1/ log(1/κ). Then for r < (η/ξ) log logn, we may
choose εr(n) in such a way that

εr(n) ≤ εr�
(n) +

η

ξ
log log(2n)

2
√
η log log 2n√

nγκ(η/ξ) log log(2n)
+ 2α log n

√
ξα log n
n1/4√γ

for all r ≤ α log n. Hence for sufficiently large n, we have εr(n) ≤ 1/2 for all
r ≤ α log n.

This however implies that P�-a.s. for all sufficiently large n, all r ≤ α log n
and all a1:r ∈ Sr,

〈Z(a1:r)〉n ≥
1
2
(n− r + 1)γκr > cr .

By Lemma 15.8.10, this renders that P�-a.s., for all sufficiently large n, all
r ≤ α log n and all a1:r ∈ Sr,

|Zn(a1:r)| ≤
√
〈Z(a1:r)〉n max[ξr, η log log〈Z(a1:r)〉n] .

If α is sufficiently small, the right-hand side of this display is smaller than√
δ〈Z(a1:r)〉n log〈Z(a1:r)〉n in the range of r considered. ��

The next lemma will prove crucial when checking the most delicate part
of the BIC consistency theorem. It will allow us to rule out (almost surely)
the possibility that the BIC order estimator jitters around logn for infinitely
many values of n.

For any ξ > 0, any c > 0 and any a1:r, define the event Bξ,c
n (a1:r) by

Bξ,c
n (a1:r)

def=
{
y1:n : 〈Z(a1:r)〉n > cr and

|Zn(a1:r)| ≥
√
〈Z(a1:r)〉n max[ξr, 4 log log〈Z(a1:r)〉n]

}
.

Lemma 15.8.11. Let ξ > 0 and c > 0 be such that
√
ξ < 3/2. Then

lim sup
n

sup
r>r�

1
|Sr|

∑
a1:r∈Sr

1Bξ,c
n (a1:r) = 0 P�-a.s.
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Proof. Choose θ > 1 such that θ(1 + 1
3

√
ξ) ≤ 3/2 . In the sequel, we only

consider those m such that θ
(
1 + 1

3

√
4 log log θm

θm+2

)
≤ 3/2. Put

Cξ,c
m (a1:r)

def=
{
y1:∞ : ∃n : θm ≤ 〈Z(a1:r)〉n ≤ θm+1, θm > cr

and |Zn(a1:r)| ≥
√
〈Z(a1:r)〉n max[ξr, 4 log log〈Z(a1:r)〉n]

}
.

The proof is carried in two steps:

(i) Proving that P�-a.s.,

lim sup
M

∑
m>M

∑
r>r�

1
|Sr|

∑
a1:r∈Sr

1Cξ,c
m (a1:r) = 0 ; (15.18)

(ii) Proving that this entails

lim sup
n

sup
r>r�

1
|Sr|

∑
a1:r∈Sr

1Bξ,c
n (a1:r) = 0 . (15.19)

Note that when dealing with |Sr|−1 ∑
a1:r∈Sr

1Cξ,c
m (a1:r), we adapt the time-

scale at which we analyze Zn(a1:r) to the pattern. This allows us to formulate
a rather strong statement: not only does

um =
∑
r>r�

1
|Sr|

∑
a1:r∈Sr

1Cξ,c
m (a1:r)

tend to 0 as m tends to infinity, but the series
∑

m um is convergent.
Let us start with the first step. Thanks to our assumptions on the values

of ξ and m,

E
[ ∑

r>r�

1
|Sr|

∑
a1:r∈Sr

1Cξ,c
m (a1:r)

]

≤
∑

4
ξ log log θm<r< θm

c

exp

[
− ξr

2θ
(
1 +

√
ξ

3

)]

+
∑

r< 4
ξ log log θm

exp

⎡⎣− 4 log log θm

2θ
(
1 + 1

3

√
4 log log θm

θm+2

)
⎤⎦

≤ exp
(
− 4

3
log log θm

)[ 1
1− exp(−1/3)

+
4
ξ

log log θm
]
.

Hence ∑
m>M

E
[ ∑

r>r�

1
|Sr|

∑
a1:r∈Sr

1Cξ,c
m (a1:r)

]
<∞ ,
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which shows that (15.18) holds P�-a.s.
Let us now proceed to the second step. As P� is assumed ergodic, it is

enough to consider sequences y1:∞ such that 〈Z(a1:r)〉n tends to infinity for
all a1:r.

Assume that there exists a sequence {rn} such that for some α > 0, for
infinitely many n,

1
|Srn |

∑
a1:rn∈Srn

1Bξ,c
n (a1:rn ) > α .

If the sequence rn has an accumulation point r, then there exists some a1:r
such that Bξ,c

n (a1:rn
) occurs for infinitely many n. This however implies that

infinitely many events Cξ,c
m (a1:r) occur, which means that whatever M ,∑

m>M

1
|Sr|

1Cξ,r
m (a1:r) = ∞ .

If the sequence rn is increasing then for each n such that

1
|Srn |

∑
a1:rn∈Srn

1Bξ,c
n (a1:rn ) > α

holds, also
1

|Srn
|
∑
a1:rn

∑
m>logθ(crn)

1Cξ,r
m (a1:rn ) > α .

Hence, whatever M ,∑
m>M

∑
r>θm/c

1
|Sr|

∑
a1:r∈Sr

1Cξ,c
m (a1:r) > α .

��

Remark 15.8.12. Lemmas 15.8.10 and 15.8.11 are proved in a very sim-
ilar way, they have a similar form, but convey a different message. In
Lemma 15.8.10, the constant η may be taken rather close to 2 and the con-
stants in the lemma may be considered as trade-offs between the constants
that show up in the law of the iterated logarithm and the constants that may
be obtained if the union bound has to be used repeatedly. Note that if the
conditions of Lemma 15.8.10 are to be met, for a given ξ we cannot look for
arbitrarily small c.

This is sharp contrast with the setting of Lemma 15.8.11. There the con-
stant η was deliberately set to 4, and the freedom allowed by this convention,
as well as by the normalizing factors 1/|Sr|, allows us to consider arbitrarily
small c. �

Proof (of Theorem 15.8.2). First note that if |Sr| does not grow exponentially
fast in r, then the Markov chain has zero entropy rate, it is a deterministic
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process and the likelihood ratios of interest are equal to 1. Thus there is
nothing to do.

Let us hence thus assume that there exists some h > 0 such that for all
sufficiently large r, log |Sr| ≥ hr. Then

1
|Sr|

1
log n

[log P̂
r
(y1:n)− log P�(y1:n)] ≤ e−hr log

1
γκn

.

Hence for r ≥ (C/h) logn with C > − log κ, the quantity tends to 0 as n tends
to infinity. It thus remains to prove that for every δ > 0,

sup
r�≤r≤ C

h log n

1
|Sr|

1
log n

[log P̂
r
(y1:n)− log P�(y1:n)] ≥ δ

occurs only finitely many times.
Assume δ < 1/4. Then by Lemma 15.8.9 there exists some α > 0 depending

on P� and δ such that for all sufficiently large n, all r such that r� < r < α log n
and all a1:r ∈ Sr,

|Zn(a1:r)| <
√

δ〈Z(a1:r)〉n log〈Z(a1:r)〉n . (15.20)

But this inequality shows that

|P̂r
(ar | a1:r−1)− P�(ar | a1:r−1)| ≤

√
δ
P�(ar | a1:r−1) logNn−1(a1:r−1)

Nn−1(a1:r−1)
.

Hence P�-a.s., for all sufficiently large n and all r� < r < α log n,

Nn−1(a1:r−1)
|Y| χ2[P̂

r
(· | a1:r−1),P�(· | a1:r−1)] ≤ δ log n . (15.21)

On the other hand, notice that if

|Zn(a1:r)| ≤
1
2
〈Z(a1:r)〉n ,

then
|P̂r

n(ar | a1:r−1)− P�(ar | a1:r−1)| ≤
1
2

P�(ar | a1:r−1) .

Hence by Corollary 15.8.5, as δ log u < u/4, P�-a.s., for all sufficiently large n
and all r� < r < α log n,

1
|Sr| log n

[log P̂
r

n(y1:n)− log P�(y1:n)] ≤ δ .

Thus P�-a.s., for sufficiently large n,

sup
r<r�<α log n

1
|Sr| log n

[log P̂
r

n(y1:n)− log P�(y1:n)] ≤ δ .
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Let us now consider those r such that α log n ≤ r ≤ (C/h) logn. Choose ξ2
and c2 such that for some (irrelevant) η > 2, the conditions of Lemma 15.8.10
are satisfied. Note that for n sufficiently large, for all r such that α log n ≤
r ≤ (C/h) logn, max(ξ2r, η log logn) = ξ2r.

Let ξ1 > 0 and c1 > 0 be chosen in such a way that c1 + ξ1 < hδ/C. We
will use Lemma 15.8.11 with those constants. Recall that c1 and ξ1 may be
chosen arbitrarily close to 0 (see Remark 15.8.12).

Let Gr,n
1 , Gr,n

2 , Gr,n
3 and Gr,n

4 be defined by

Gr,n
1 = {a1:r−1 : Nn−1(a1:r−1) < c1r} ∩ Sr−1 ,

Gr,n
2 = {a1:r−1 : c1r ≥ Nn−1(a1:r−1)

and for all a ∈ Y, |Zn(a1:r−1, a)| <
√

ξ1r〈Z(a1:r−1, a)〉n} ,
Gr,n

3 = {a1:r−1 : c1r ≤ Nn−1(a1:r−1) < c2r

and for some a ∈ Y, |Zn(a1:r−1, a)| <
√

ξ1r〈Z(a1:r−1, a)〉n} ,
Gr,n

4 = {a1:r−1 : c2r < Nn−1(a1:r−1)

and for all a ∈ Y, |Zn(a1:r−1, a)| <
√

ξ2r〈Z(a1:r−1, a)〉n
}
\Gr,n

2 .

By Lemma 15.8.10, P�-a.s., for sufficiently large n and all r such that
α log n ≤ r ≤ (C/h) logn,

Gr,n
1 ∪Gr,n

2 ∪Gr,n
3 ∪Gr,n

4 = Sr−1 .

Moreover by Lemma 15.8.11, P�-a.s., for sufficiently large n and the same r,

|Gr,n
3 |+ |Gr,n

4 |
|Sr−1|

< δ .

By the definition of Gr,n
2 and Gr,n

4 , we are in a position to use Corollary 15.8.5
to obtain

Nn−1(a1:r−1)D(P̂n(· | a1:r−1) | P�(· | a1:r−1)) ≤
{
ξ1r if a1:r−1 ∈ Gr,n

2 ,

ξ2r if a1:r−1 ∈ Gr,n
4 .

(15.22)

Thus P�-a.s., for sufficiently large n and all r such that α log n ≤ r ≤
(C/h) logn,

log P̂
r
(y1:n)− log P�(y1:n)

≤
∑

i∈Gr,n
i

∑
a1:r−1∈Gr,n

i

Nn−1(a1:r−1)D(P̂n(· | a1:r−1) | P�(· | a1:r−1))

≤ |Gr,n
1 |c1r log

1
κ

+ |Gr,n
2 |ξ1r + |Gr,n

3 |c2r log
1
κ

+ |Gr,n
4 |ξ2r .

Dividing both sides by |Sr| log n, we find for the range of r of interest that
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1
|Sr| log n

[log P̂
r
(y1:n)− log P�(y1:n)]

≤ C

h

[
c1 + ξ1 + c2

|Gr,n
3 |
|Sr|

+
|Gr,n

4 |
|Sr|

ξ2

]
.

As we may choose c1 + ξ1 ≤ hδ/C, P�-a.s., for sufficiently large n,

sup
r: α log n≤r≤ C

h log n

1
|Sr| log n

[log P̂
r
(y1:n)− log P�(y1:n)] ≤ δ .

��

15.9 Complements

The order estimation problem for HMMs and Markov processes became an
active topic in the information theory literature in the late 1980s. Early ref-
erences can be found in Finesso (1991) and Ziv and Merhav (1992). Other
versions of the order estimation problem had been tackled even earlier, see
Haughton (1988). We refer to Chambaz (2003, Chapter 7) for a brief history
of order identification.

The definition of HMM order used in this chapter is classical. A general
discussion concerning HMM order and related notions like rank can be found
in Finesso (1991).

An early discussion of order estimation issues in ARMA modeling is pre-
sented in Azencott and Dacunha-Castelle (1984). Finesso (1991) credits the
latter reference for major influence on his work on Markov order estimation.
The connections between the performance of generalized likelihood ratio test-
ing and the behavior of maximum likelihood ratios was outlined in Finesso
(1991). Using the law of iterated logarithms for the empirical measure of
Markov chains in order to identify small penalties warranting consistency in
Markov order estimation also goes back to Finesso (1991)

The connections between order estimation and hypothesis testing has been
emphasized in the work of Merhav and collaborators (Zeitouni and Gutman,
1991; Zeitouni et al., 1992; Ziv and Merhav, 1992; Feder and Merhav, 2002).
Those papers present various settings for composite hypothesis testing in
which generalized likelihood ratio testing may or may not be asymptotically
optimal.

Though the use of universal coding arguments in order identification is
already present in Finesso (1991), Zeitouni and Gutman (1991), and Ziv and
Merhav (1992), the paper by Kieffer (1993) provides the most striking expo-
sition of the connections between order identification and universal coding.
Versions of Lemmas 15.6.2 and 15.6.3 are at least serendipitous in Kieffer
(1993). Results of Section 15.6 can be regarded as elaboration of ideas ex-
posed by Kieffer.
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The proof of the first inequality in Lemma 15.6.4 goes back to Shtarkov
(1987). The proof of the second inequality for HMMs is due to Csiszár (1990).
Variants of the result have been used by Finesso (1991) and Liu and Narayan
(1994).

Section 15.8 is mainly borrowed from Csiszár (2002), although the re-
sults presented here were already contained in Csiszár and Shields (2000)
but justified with different proofs. The use of non-asymptotic tail inequalities
(concentration inequalities) for the analysis of model selection procedure has
become a standard approach in modern statistics (see Bartlett et al., 2002,
and references therein for more examples on this topic).

Section 15.7 is largely inspired by Gassiat and Boucheron (2003), and fur-
ther results in this direction can be found in Chambaz (2003) and Boucheron
and Gassiat (2004).



Part IV

Appendices



A

Conditioning

A.1 Probability and Topology Terminology and Notation

By a measurable space is meant a pair (X,X ) with X being a set and X being
a σ-field of subsets of X. The sets in the σ-field are called measurable sets. We
will always assume that for any x ∈ X, the singleton set {x} is measurable.
Typically, if X is a topological space, then X is the Borel σ-field, that is, the
σ-field generated by the open subsets of X. If X is a discrete set (that is, finite
or countable), then X is the power set P(X), the collection of all subsets of X.

A positive measure on a measurable space (X,X )1 is a measure such that
µ(A) ≥ 0, for all A ∈ X , and µ(X) > 0. A probability measure is a positive
measure with unit total mass, µ(X) = 1. All measures will be assumed to be
σ-finite.

Let (Ω,F) and (X,X ) be two measurable spaces. A function X : Ω → X
is said to be measurable if the set X−1(A) ∈ F for all A ∈ X . If (X,X ) =
(R,B(R)) where B(R) is the Borel σ-field, X is said to be real-valued random
variable. By abuse of notation, but in accordance with well-established tra-
ditions, the phrase “random variable” usually refers to a real-valued random
variable. If X is not the real numbers R, we often write “X-valued random
variable”.

A σ-field G on Ω such that G ⊆ F is called a sub-σ-field of F . If X is a
random variable (real-valued or not) such that X−1(A) ∈ G for all A ∈ X
for such a sub-σ-field G, then X is said to be G-measurable. If X denotes an
X-valued mapping on Ω, then the σ-field generated by X, denoted by σ(X),
is the smallest σ-field on Ω that makes X measurable. It can be expressed as
σ(X) = X−1(X ) = {X−1(B) : B ∈ X}. Typically it is assumed that X is a
random variable, that is, X is F-measurable, and then σ(X) is a sub-σ-field of

1In some situations, such as when X is a countable set, the σ-field under consid-
eration is unambiguous and essentially unique and we may omit X for notational
simplicity.
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F . If Z is a real-valued random variable that is σ(X)-measurable, then there
exists a measurable function g : X → R such that Z = g ◦X = g(X).

If (Ω,F) is a measurable space and P is a probability measure on F ,
the triplet (Ω,F ,P) is called a probability space. We then write E[X] for
the expectation of a random variable X on (Ω,F), meaning the (Lebesgue)
integral

∫
Ω
X dP. The image of P by X, denoted by PX , is the probability

measure defined by PX(B) = P(X−1(B)). As good as all random variables
(real-valued or not) in this book are assumed to be defined on a probability
space denoted by (Ω,F ,P), and in most cases this probability space is not
mentioned explicitly. The space Ω is sometimes called the sample space.

Finally, a few words on topological spaces. A topological space is a set Y
equipped with a topology T . A topological space (Y, T ) is called metrizable
if there exists a metric d : Y × Y → [0,∞] such that the topology induced
by d is T . If (Y, d) is a metric space, a Cauchy sequence in this space is a
sequence {yn}n≥0 in Y such that d(yn, ym) → 0 as n,m→∞. A metric space
(Y, d) is called complete if every Cauchy sequence in Y has a limit in Y. A
topological space (Y, T ) is called a Polish space if (Y, T ) is separable (i.e., it
admits a countable dense subset) and metrizable for some metric d such that
the metric space (Y, d) is complete. As a trivial example, R

n equipped with
the Euclidean distance is the most elementary example of a Polish space.

A.2 Conditional Expectation

Let (Ω,F ,P) be a probability space. For p > 0 we denote by Lp(Ω,F ,P) the
space of random variables X such that E |X|p < ∞, and by L+(Ω,F ,P) the
space of random variables X such that X ≥ 0 P-a.s. If we identify random
variables that are equal P-a.s., we get respectively the spaces Lp(Ω,F ,P) and
L+(Ω,F ,P). We allow random variables to assume the values ±∞.

Lemma A.2.1. Let (Ω,F ,P) be a probability space, let X ∈ L+(Ω,F ,P),
and let G be a sub-σ-field of F . Then there exists Y ∈ L+(Ω,G,P) such that

E[XZ] = E[Y Z] (A.1)

for all Z ∈ L+(Ω,G,P). If Y ′ ∈ L+(Ω,G,P) also satisfies (A.1), then Y = Y ′

P-a.s.

A random variable with the above properties is called a version of the con-
ditional expectation of X given G, and we write Y = E[X | G]. Conditional
expectations are thus defined up to P-almost sure equality. Hence, when writ-
ing E[X | G] = Y for instance, we always mean that this relations holds P-a.s.,
that is, Y is a version of the conditional expectation.

One can indeed extend the definition of the conditional expectation to ran-
dom variables that do not belong to L+(Ω,F ,P). We follow here the approach
outlined in Shiryaev (1996, Section II.7).
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Definition A.2.2 (Conditional Expectation). Let (Ω,F ,P) be a proba-
bility space, let X be a random variable and let G be a a sub-σ field of F .
Define X+ def= max(X, 0) and X− def= −min(X, 0). If

min{E[X+ | G],E[X− | G]} <∞ P-a.s. ,

then (a version of) the conditional expectation of X given G is defined by

E[X | G] = E[X+ | G]− E[X− | G] ;

on the set of probability 0 of sample points where E[X+ | G] and E[X− | G] are
both infinite, the above difference is assigned an arbitrary value, for instance,
zero.

In particular, if E[|X| | G] <∞ P-a.s., then E[X+ | G] <∞ and E[X− | G] <
∞ P-a.s., and we may always define the conditional expectation in this con-
text. Note that for X ∈ L1(Ω,F ,P), E[X+] < ∞ and E[X−] < ∞. By
applying (A.1) with Z ≡ 1, E[E(X+ | G)] = E[X+] < ∞ and E[E(X− | G)] =
E[X−] < ∞. Therefore, E[X+ | G] < ∞ and E[X− | G] < ∞, and thus the
conditional expectation is always defined for X ∈ L1(Ω,F ,P).

Let Y be a random variable and let σ(X) be the sub-σ-field generated
by a random variable X. If E[Y |σ(X)] is well-defined, we write E[Y |X]
rather than E[Y |σ(X)]. This is called the conditional expectation of Y given
X. By construction, E[Y |X] is a σ(X)-measurable random variable. Thus
(cf. Section A.1), there exists a real measurable function g on X such that
E[Y |X] = g(X). The choice of g is unambiguous in the sense that any two
functions g and g̃ satisfying this equality must be equal PX -a.s. We sometimes
write E[Y |X = x] for such a g(x).

Many of the useful properties of expectations extend to conditional expec-
tations. We state below some these useful properties. In the following state-
ments, all equalities and inequalities between random variables, and conver-
gence of such, should be understood to hold P-a.s.

Proposition A.2.3 (Elementary Properties of Conditional Expecta-
tion).

(a) If X ≤ Y and, either, X ≥ 0 and Y ≥ 0, or E[|X| | G] < ∞ and
E[|Y | | G] <∞, then E[X | G] ≤ E[Y | G].

(b) If E[|X| | G] <∞, then |E[X | G]| ≤ E[|X| | G].
(c) If X ≥ 0 and Y ≥ 0, then for any non-negative real numbers a and b,

E[aX + bY | G] = aE[X | G] + bE[Y | G] .

If E[|X| | G] <∞ and E[|Y | | G] <∞, the same equality holds for arbitrary
real numbers a and b.

(d) If G = {∅, Ω} is the trivial σ-field and X ≥ 0 or E |X| < ∞, then
E[X | G] = E[X].
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(e) If H is a sub-σ-field of F such that G ⊆ H and X ≥ 0, then

E[E(X |H) | G] = E[X | G] . (A.2)

If E[|X| | G] <∞, then E[|X| |H] <∞ and (A.2) holds.
(f) Assume that X is independent of G, in the sense that E[XY ] = E[X] E[Y ]

for all G-measurable random variables Y . If, in addition, either X ≥ 0
or E |X| <∞, then

E[X | G] = E[X] . (A.3)

(g) If X is G-measurable, X ≥ 0, and Y ≥ 0, then

E[XY | G] = X E[Y | G] . (A.4)

The same conclusion holds if E[|XY | | G], |X|, and E[|Y | | G] are all finite.

Proof. (a): Assume that X and Y are non-negative. By (A.1), for any A ∈ G,

E[E(X | G)1A] = E[X1A] ≤ E[Y 1A] = E[E(Y | G)1A] .

Setting, for any M > 0, AM = {E[X | G] − E[Y | G] ≥ 1/M}, the above
relation implies that P (AM ) = 0. Therefore, P{E[X | G] − E[Y | G] > 0) = 0.
For general X and Y , the condition X ≤ Y implies that X+ ≤ Y + and
Y − ≤ X−; therefore E[X+ | G] ≤ E[Y + | G] and E[Y − | G] ≤ E[X− | G], which
proves the desired result.

(b): This part follows from the preceding property, on observing that
−|X| ≤ X ≤ |X|.

(c): Assume first that X, Y , a, and b are all non-negative, Then, for any
A ∈ G,

E[E(aX + bY | G)1A] = E[(aX + bY )1A] = aE[X1A] + bE[Y 1A]
= aE[E(X | G)1A] + bE[E(Y | G)1A]
= E {[aE(X | G) + bE(Y | G)] 1A} ,

which establishes the first part of (c). For arbitrary reals a and b, and X and
Y such that E[|X| | G] < ∞ and E[|Y | | G] < ∞, (b) and the first part of (c)
shows that

E[|aX + bY | | G] ≤ |a|E[|X| | G] + |b|E[|Y | | G] <∞ ,

whence E[(aX + bY ) | G] is well-defined. We will now show that, for two non-
negative random variables U and V satisfying E[U | G] <∞ and E[V | G] <∞,

E[U − V | G] = E[U | G]− E[V | G] . (A.5)

Applying again the first part of (c) and noting that (U−V )+ = (U−V )1{U≥V }
and (U − V )− = (V − U)1{V ≥U}, we find that
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E[U − V | G] + E[V 1{U≥V } | G]− E[U1{V >U} | G]
= E[(U − V )1{U≥V } | G] + E[V 1{U≥V } | G]
−{E[(V − U)1{V ≥U} | G] + E[U1{V >U} | G]}

= E[U1{U≥V } | G]− E[V 1{V >U} | G] .

Moving the two last terms on the left-hand side to the right-hand side estab-
lishes (A.5). Finally, the second part of (c) follows by splitting aX and bY
into their positive and negative parts (aX)+ and (aX)− etc., and using the
above linearity.

(e): Suppose first that X ≥ 0, and pick A ∈ G. Then A is in H as well, so
that, using (A.1) repeatedly,

E (1A E [E(X |H)| G]) = E [1A E (X |H)] = E[1AX] = E [1A E (X | G)] .

This establishes (e) for non-negative random variables. Suppose now that
E[|X| | G] < ∞. For any integer M ≥ 0, put AM = {E[X |H] > M}, and put
A = {E[X |H] =∞}. Then AM is in H, and so is A = ∩MAM . Moreover,

M E[1A | G] ≤ E[M1AM
| G] ≤ E [E (|X| |H) 1AM

| G]
≤ E [E (|X| |H) | G] = E[|X| | G] <∞ .

Because M is arbitrary in this display, E[1A | G] = 0, implying that E[1A] = 0.
Hence, P (A) = 0, that is, E[X |H] < ∞. The second part of (e) now follows
from (c) applied to E[X+ |H] and −E[X− |H].

(f): If X ≥ 0, then (A.1) implies that for any A ∈ G,

E[1A E(X | G)] = E[1AX] = E[1A E(X)] .

This proves the first part of (f). If E |X| <∞, then E[X+] <∞ and E[X−] <
∞, and the proof follows by linearity.

(g): For X ≥ 0 and Y ≥ 0, (A.1) shows that, for any A ∈ G,

E[1A E(XY | G)] = E[1AXY ] = E[1AX E(Y | G)] .

Thus, the first part of (g) follows. For X and Y such that |X|, E[|Y | | G], and
E[|XY | | G] are all finite, the random variables E[X+Y + | G], E[X+Y − | G],
E[X−Y + | G], and E[X−Y − | G] are finite too. Therefore, applying (c),

E[XY | G] = E[X+Y + | G] + E[X−Y − | G]− E[X+Y − | G]− E[X−Y + | G] .

The preceding result shows that the four terms on the right-hand side equal
X+ E[Y + | G], X− E[Y − | G], X+ E[Y − | G], and X− E[Y + | G], respectively.
Because these four random variables are finite, the result follows. ��

Proposition A.2.4. Let {Xn}n≥0 be a sequence of random variables.

(i) If Xn ≥ 0 and Xn ↑ X, then E[Xn | G] ↑ E[X | G].
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(ii) If Xn ≤ Y , E[|Y | | G] < ∞, and Xn ↓ X with E[|X| | G] < ∞, then
E[Xn | G] ↓ E[X | G].

(iii) If |Xn| ≤ Z, E[Z | G] <∞, and Xn → X, then E[Xn | G] → E[X | G] and
E[|Xn −X| | G] → 0.

Proof. (i): Proposition A.2.3(a) shows that E[Xn | G] ≤ E[Xn+1 | G]; hence,
limn→∞ E[Xn | G] exists P-a.s. Because limn→∞ E[Xn | G] is a limit of G-
measurable random variables, it is G-measurable. By (A.1) and the monotone
convergence theorem, for any A ∈ G,

E[1A lim E(Xn | G)] = lim E[1A E(Xn | G)] = lim E[1AXn] = E[1AX] .

Because the latter relation holds for all A ∈ G, Lemma A.2.1 shows that
lim E(Xn | G) = E(X | G).

(ii): First note that, as {Xn} decreases to X, we have X ≤ Xn ≤ Y for all
n. This implies |Xn| ≤ |X| + |Y |, and we conclude that E[|Xn| | G] < ∞ for
all n. Now set Zn = Y −Xn. Then, Zn ≥ 0 and Zn ↑ Y −X. Therefore, using
(i) and Proposition A.2.3(c),

E[Y | G]− E[Xn | G] = E[Zn | G] ↑ E[limZn | G]
= E[Y −X | G] = E[Y | G]− E[X | G] .

(iii): Set Zn = supm≥n |Xm −X|. Because Xn → X, Zn ↓ 0. By Proposi-
tion A.2.3(b) and (c),

|E(Xn | G)− E(X | G)| ≤ E[|Xn −X| | G] ≤ E[Zn | G] .

Because Zn ↓ 0 and Zn ≤ 2Z, (ii) shows that E[Zn | G] ↓ 0. ��
The following equality plays a key role in several parts of the book, and

we thus provide a simple proof of this result.

Proposition A.2.5 (Rao-Blackwell Inequality). Let (Ω,F ,P) be a prob-
ability space, let X be a random variable such that E[X2] < ∞, and let G be
a sub-σ-field of F . Then

Var[X] = Var[E(X | G)] + E[Var(X | G)] , (A.6)

where the conditional variance Var(X | G) is defined as

Var(X | G) def= E[(X − E[X | G])2 | G] . (A.7)

This implies in particular that Var[E(X | G)] ≤ Var[X], where the inequality
is strict unless X is G-measurable.

Proof. Without loss of generality, we may assume that E[X] = 0. Write

E[(X − E[X | G])2 | G] = E[X2 | G]− (E[X | G])2 .

Taking expectation on both sides and noting that E[E(X | G)] = E[X] = 0
yields (A.6). ��
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A.3 Conditional Distribution

Definition A.3.1 (Version of Conditional Probability). Let (Ω,F ,P)
be a probability space and let G be a sub-σ-field of F . For any event F ∈ F ,
P(F | G) = E[1F | G] is called a version of the conditional probability of F
with respect to G.

We might expect a version of the conditional probability F → P(F | G) to
be a probability measure on F . If {Fn}n≥0 is a sequence of disjoint subsets of
F , then Propositions A.2.3–(c) and A.2.4–(i) show that

P

( ∞⋃
n=0

Fn

∣∣∣∣∣ G
)

=
∞∑

n=0

P(Fn | G),

or, more precisely, that
∑∞

n=0 P(Fn | G) is a version of the conditional expecta-
tion of

⋃∞
n=0 Fn given G. This version is defined up to a P-null set. However,

this null set may depend on the sequence {Fn}n≥0. Because unless in very
specific cases the σ-field F is not countable, there is no guarantee that it
is possible to choose versions of the conditional distribution for each set F
that are such that the sub-additive property holds for all sequences {Fn}n≥0
except on a P-null set. This leads to the need for and definition of regular
conditional probabilities

Definition A.3.2 (Regular Conditional Probability). Let (Ω,F ,P) be
a probability space and let G be a sub-σ-field of F . A regular version of the
conditional probability of P given G is a function

PG : Ω ×F → [0, 1]

such that

(i) For all F ∈ F , ω 
→ PG(ω, F ) is G-measurable and is a version of the
conditional probability of F given G, PG(·, F ) = P[F | G];

(ii) For P-almost every ω, the mapping F 
→ PG(ω, F ) is a probability mea-
sure on F .

Closely related to regular conditional probabilities is the notion of regular
conditional distribution.

Definition A.3.3 (Regular Conditional Distribution of Y Given G).
Let (Ω,F ,P) be a probability space and let G be a sub-σ-field of F . Let (Y,Y)
be a measurable space and let Y be an Y-valued random variable. A regular
version of the conditional distribution of Y given G is a function

PY |G : Ω × Y → [0, 1]

such that
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(i) For all E ∈ Y, ω 
→ PY |G(ω,E) is G-measurable and is a version of the
conditional probability of PY given G, PY |G(·, E) = E[1E(Y ) | G];

(ii) For P-almost every ω, E 
→ PY |G(ω,E) is a probability measure on Y.

In the sequel, we will focus exclusively on regular conditional distributions.
When a regular version of a conditional distribution of Y given G exists,
conditional expectations can be written as integrals for each ω.

Theorem A.3.4. Let (Ω,F ,P) be a probability space and let G be a sub-
σ-field of F . Let (Y,Y) be a measurable space, let Y be an Y-valued ran-
dom variable and let PY |G be a regular version of the conditional expecta-
tion of Y given G. Then for any real-valued measurable function g on Y
such that E |g(Y )| < ∞, g is integrable with respect to PY |G(ω, ·), that is,∫
Y |g(y)| PY |G(ω, dy) <∞, for P-almost every ω, and

E[g(Y ) | G] =
∫

g(y) PY |G(·, dy) . (A.8)

That is,
∫
g(y) PY |G(·, dy) is a version of the conditional expectation of g(Y )

given G.

The key question is now the existence of regular conditional probabilities.
It is known that regular conditional probabilities exist under most conditions
encountered in practice, but we should keep in mind that they do not always
exist. This topic requires some care, because the existence of these regular ver-
sions requires some additional assumptions on the topology of the probability
space (see Dudley, 2002, Chapter 10).

Here is a main theorem on existence and uniqueness of regular condi-
tional probabilities. It is not stated under the weakest possible topological
assumptions, but nevertheless the assumptions of this theorem are mild and
are verified in all situations considered in this book.

Theorem A.3.5. Let (Ω,F ,P) be a probability space and let G be a sub-
σ-field of F . Let Y be a Polish space, let Y be its Borel σ-field, and let Y
be an Y-valued random variable. Then there exists a regular version of the
conditional distribution of Y given G, PY |G, and this version is unique in the
sense that for any other regular version P̄Y |G of this distribution, for P-almost
every ω it holds that

PY |G(ω, F ) = P̄Y |G(ω, F ) for all F ∈ F .

For a proof, see Dudley (2002, Theorem 10.2.2).
Finally ,it is of interest to define the regular conditional distribution of a

random variable Y given another random variable X.

Definition A.3.6 (Regular Conditional Distribution of Y Given X).
Let (Ω,F ,P) be a probability space and let X and Y be random variables with
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values in the measurable spaces (X,X ) and (Y,Y), respectively. Then a regular
version of the conditional distribution of Y given σ(X) is a function

PY |X : X× Y → [0, 1]

such that

(i) For all E ∈ Y, x→ PY |X(x,E) is X -measurable and

PY |X(x,E) = E[1E(Y ) |X = x] ; (A.9)

(ii) For PX-almost every x ∈ X, E 
→ PY |X(x,E) is a probability measure
on Y.

When a regular version of a conditional distribution of Y given X exists,
conditional expectations can be written as integrals for each x.

Theorem A.3.7. Let (Ω,F ,P) be a probability space, let X and Y be random
variables with values in the measurable spaces (Y,Y) and (X,X ), respectively,
and let PY |X be a regular version of the conditional expectation of Y given X.

Then if for any real-valued measurable function g on Y such that E |g(Y )| <
∞, g is integrable with respect to PY |X(x, ·) for PX-almost every x and

E[g(Y )|X = x] =
∫

g(y) PY |X(x, dy) . (A.10)

Moreover, for any a real-valued measurable function g on the measurable space
(X×Y,X ⊗Y) such that E |g(X,Y )| <∞, g(x, ·) is integrable with respect to
PY |X(x, ·) for Px-almost every x and

E[g(X,Y )] =
∫ {∫

g(x, y) PY |X(x, dy)
}

PX(dx) , (A.11)

E[g(X,Y )|X = x] =
∫

g(x, y) PY |X(x, dy) . (A.12)

We conclude this section by stating conditions upon which there exists a
regular conditional probability of Y given X.

Theorem A.3.8. Let (Ω,F ,P) be a probability space and let X and Y be
random variables with values in the measurable spaces (X,X ) and (Y,Y),
respectively, with Y being Polish space and Y being its Borel σ-field. Then
there exists a regular version PY |X of the conditional distribution of Y given
X and this version is unique.
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A.4 Conditional Independence

Concepts of conditional independence play an important role in hidden
Markov models and, more generally, in all models involving complex depen-
dence structures among sets of random variables. This section covers the gen-
eral definition of conditional independence as well as some basic properties.
Further readings on this topic include the seminal paper by Dawid (1980) as
well as more condensed expositions such as (Cowell et al., 1999, Chapter 5).

Definition A.4.1 (Conditional Independence). Let (Ω,F ,P) be a prob-
ability space and let G and G1, . . . ,Gn be sub-σ-fields of F . Then G1, . . . ,Gn

are said to be P-conditionally independent given G if for any bounded random
variables X1, . . . , Xn measurable with respect to G1, . . . ,Gn, respectively,

E[X1 · · ·Xn | G] = E[X1 | G] · · ·E[Xn | G] .

If Y1, . . . , Yn and Z are random variables, then Y1, . . . , Yn are said to be
conditionally independent given Z if the sub-σ-fields σ(Y1), . . . , σ(Yn) are P-
conditionally independent given σ(Z).

Intuition suggests that if two random variables X and Y are independent
given a third one, Z say, then the conditional distribution of X given Y and
Z should be governed by the value of Z alone, further information about the
value of Y being irrelevant. The following result shows that this intuition is not
only correct but could in fact serve as an alternative definition of conditional
independence of two variables given a third one.

Proposition A.4.2. Let (Ω,F ,P) be a probability space and let A, B, and C
be sub-σ-fields of F . Then A and B are P-conditionally independent given C
if and only if for any bounded A-measurable random variable X,

E[X | B ∨ C) = E[X | C] , (A.13)

where B ∨ C denotes the σ-field generated by B ∪ C.

Proposition A.4.2 is sometimes used as an alternative definition of condi-
tional independence: it is said that A and B are P-conditionally independent
given C if for all A-measurable non-negative random variables X there ex-
ists a version of the conditional expectation E[X | B ∨ C] that is C-measurable
(Dawid, 1980, Definition 5.1).

Following the suggestion of Dawid (1980), the notation

A ⊥⊥ B | C [P]

is used to denote that the sub-σ-fields A and B are conditionally independent
given C, under the probability P. In the case where A = σ(X), B = σ(Y ), and
C = σ(Z) with X, Y , and Z being random variables, the simplified notation
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X ⊥⊥ Y |Z [P] will be used. In accordance with Definition A.4.1, we shall
then say that X and Y are conditionally independent given Z under P.

The following proposition states a number of useful properties of condi-
tional independence.

Proposition A.4.3. Let (Ω,F ,P) be a probability space and let A, B, C and
D be sub-σ-fields of F . Then the following properties hold true.

1. (Symmetry) If A ⊥⊥ B | C [P], then B ⊥⊥ A | C [P].
2. (Decomposition) If A ⊥⊥ (B ∨ C) | D [P], then A ⊥⊥ B |D [P] and A ⊥⊥
C |D [P].

3. (Weak Union) If A ⊥⊥ (B ∨ D) | C [P], then A ⊥⊥ D |B ∨ C [P].
4. (Contraction) If A ⊥⊥ D |B ∨ C [P] and A ⊥⊥ B | C [P], then A ⊥⊥
B ∨ D | C [P].

In the theory of Bayesian networks (also called graphical models), as in-
troduced by Pearl (1988), these four properties are referred to as the semi-
graphoid inference axioms (Cowell et al., 1999).
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Linear Prediction

This appendix provides a brief introduction to the theory of linear prediction
of random variables. Further reading includes Brockwell and Davis (1991,
Chapter 2), which provides a proof of the projection theorem (Theorem B.2.4
below), as well as Williams (1991) or Jacod and Protter (2000, Chapter 22).
The results below are used in Chapter 5 to derive the particular form taken
by the filtering and smoothing recursions in linear state-space models.

B.1 Hilbert Spaces

Definition B.1.1 (Inner Product Space). A real linear space H is said to
be an inner product space if for each pair of elements x and y in H there is
a real number 〈x, y〉, called the inner product (or, scalar product) of x and y,
such that

(a) 〈x, y〉 = 〈y, x〉,
(b) 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉 for z in H and real α and β,
(c) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

Two elements x and y such that 〈x, y〉 = 0 are said to be orthogonal.
The norm ‖x‖ of an element x of an inner product space is defined as

‖x‖ =
√
〈x, x〉. (B.1)

The norm satisfies

(a) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality),
(b) ‖αx‖ = |α|‖x‖ for real α,
(c) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.

These properties justify the use of the terminology “norm” for ‖·‖. In addition,
the Cauchy-Schwarz inequality |〈x, y〉| ≤ ‖x‖ ‖y‖ holds, with equality if and
only if y = αx for some real α.
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Definition B.1.2 (Convergence in Norm). A sequence {xk}k≥0 of ele-
ments of an inner product space H is said to converge in norm to x ∈ H if
‖xn − x‖ → 0 as n→∞.

It is readily verified that a sequence {xk}k≥0 that converges in norm to
some element x satisfies lim supn≥0 supm≥n ‖xm − xn‖ = 0. Any sequence,
convergent or not, with this property is said to be a Cauchy sequence. Thus
any convergent sequence is a Cauchy sequence. If the reverse implication holds
true as well, that any Cauchy sequence is convergent (in norm), then the space
is said to be complete. A complete inner product space is called a Hilbert space.

Definition B.1.3 (Hilbert Space). A Hilbert space H is an inner product
space that is complete, that is, an inner product space in which every Cauchy
sequence converges in norm to some element in H.

It is well-known that R
k equipped with the inner product 〈x, y〉 =∑k

i=1 xiyi, where x = (x1, . . . , xk) and y = (y1, . . . , yk), is a Hilbert space.
A more sophisticated example is the space of square integrable random vari-
ables. Let (Ω,F ,P) be a probability space and let L2(Ω,F ,P) be the space
of square integrable random variables on (Ω,F ,P). For any two elements X
and Y in L2(Ω,F ,P) we define

〈X,Y 〉 = E(XY ) . (B.2)

It is easy to check that 〈X,Y 〉 satisfies all the properties of an inner product
except for the last one: if 〈X,Y 〉 = 0, then it does not follow that X(ω) = 0
for all ω ∈ Ω, but only that P{ω ∈ Ω : X(ω) = 0} = 1. This difficulty is
circumvented by saying that the random variables X and Y are equivalent if
P(X = Y ) = 1. This equivalence relation partitions L2(Ω,F ,P) into classes
of random variables such that any two random variables in the same class
are equal with probability one. The space L2(Ω,F ,P) is the set of these
equivalence classes with inner product still defined by (B.2). Because each
class is uniquely determined by specifying any one of the random variables
in it, we shall continue to use the notation X and Y for the elements in L2

and to call them random variables, although it is sometimes important that
X stands for an equivalence class of random variables. A well-known result in
functional analysis is the following.

Proposition B.1.4. The space H = L2(Ω,F ,P) equipped with the inner
product (B.2) is a Hilbert space.

Norm convergence of a sequence {Xn} in L2(Ω,F ,P) to a limit X means
that

‖Xn −X‖2 = E |Xn −X|2 → 0 as n→∞.

Norm convergence of Xn to X in an L2-space is often called mean square
convergence.
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B.2 The Projection Theorem

Before introducing the notion of projection in Hilbert spaces in general and
in L2-spaces in particular, some definitions are needed.

Definition B.2.1 (Closed Subspace). A linear subspace M of a Hilbert
space H is said to be closed if M contains all its limit points. That is, if {xn}
is a sequence in M converging to some element x ∈ H, then x ∈M.

The lemma below is a direct consequence of the fact that the inner product
is continuous mapping from H to R.

Lemma B.2.2 (Closedness of Finite Spans). If y1, . . . , yn is a finite fam-
ily of elements of H, then the linear subspace spanned by y1, . . . , yn,

span(y1, . . . , yn) def=

{
x ∈ H : x =

n∑
i=1

αiyi, for some α1, . . . , αn ∈ R

}
,

is a closed subspace of H.

Definition B.2.3 (Orthogonal Complement). The orthogonal comple-
ment M⊥ of a subset M of H is the set of all elements of H that are or-
thogonal to every element of M: x ∈ M⊥ if and only if 〈x, y〉 = 0 for every
y ∈M.

Theorem B.2.4 (The Projection Theorem). Let M be a closed linear
subspace of a Hilbert space H and let x ∈ H. Then the following hold true.

(i) There exists a unique element x̂ ∈M such that

‖x− x̂‖ = inf
y∈M

‖x− y‖ .

(ii) x̂ is the unique element of M such that

(x− x̂) ∈M⊥ .

The element x̂ is referred to as the projection of x onto M.

Corollary B.2.5 (The Projection Mapping). If M is a closed linear sub-
space of the Hilbert space H and I is the identity mapping on H, then there is a
unique mapping from H onto M, denoted proj(·|M), such that I −proj(·|M)
maps H onto M⊥. proj(·|M) is called the projection mapping onto M.

The following properties of the projection mapping can be readily obtained
from Theorem B.2.4.

Proposition B.2.6 (Properties of the Projection Mapping). Let H be
a Hilbert space and let proj(·|M) denote the projection mapping onto a closed
linear subspace M. Then the following properties hold true.
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(i) For all x, y in H and real α, β,

proj(αx + βy|M) = α proj(x|M) + β proj(y|M) .

(ii) x = proj(x|M) + proj(x|M⊥).
(iii) ‖x‖2 = ‖proj(x|M)‖2 + ‖proj(x|M⊥)‖2.
(iv) x 
→ proj(x|M) is continuous.
(v) x ∈ M if and only if proj(x|M) = x and x ∈ M⊥ if and only if

proj(x|M⊥) = 0.
(vi) If M1 and M2 are two closed linear subspaces of H, then M1 ⊆ M2 if

and only if for all x ∈ H,

proj(proj(x|M2) |M1) = proj(x|M1) .

When the space H is an L2-space, the following terminology is often pre-
ferred.

Definition B.2.7 (Best Linear Prediction). If M is a closed subspace
of L2(Ω,F ,P) and X ∈ L2(Ω,F ,P), then the best linear predictor (also
called minimum mean square error linear predictor) of X in M is the element
X̂ ∈M such that

‖X − X̂‖2 def= E(X − X̂)2 ≤ E(X − Y )2 for all Y ∈M .

The “best linear predictor” is clearly just an alternative denomination for
proj(X|M), taking the probabilistic context into account. Interestingly, the
projection theorem implies that X̂ is also the unique element in M such that

〈X − X̂, Y 〉 def= E[(X − X̂)Y ] = 0 for all Y ∈M .

An immediate consequence of Proposition B.2.6(iii) is that the mean square
prediction error ‖X − X̂‖2 may be written in two other equivalent and often
useful ways, namely

‖X − X̂‖2 def= E[(X − X̂)2] = E[X(X − X̂)] = E[X2]− E[X̂2] .
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Notations

C.1 Mathematical

i imaginary unit, i2 = −1
e base of natural logarithm, e = 2.7182818 . . .
�x� largest integer less than or equal to x (integer part)
�x� smallest integer larger than or equal to x
x ∧ y minimum of x and y
x ∨ y maximum of x and y
〈u, v〉 scalar product of vectors u and v
zk:l collection zk, zk+1, . . . , zl

At transpose of matrix A
|S| cardinality of (finite) set S
1A indicator function of set A
‖f‖∞ supremum of function f
osc (f) oscillation (global modulus of continuity) of f
ḟ derivative of (real-valued) f
∇θf(θ′) or ∇θ f(θ)|θ=θ′ gradient of f at θ′

∇2
θf(θ′) or ∇2

θ f(θ)|θ=θ′ Hessian of f at θ′

(Z,Z) measurable space
Fb (Z) bounded measurable functions on (Z,Z)
G ∨ F minimal σ-field generated by σ-fields G and F
µ⊗ ν, µ⊗2 product measures
G⊗n product σ-field
‖ξ‖TV total variation norm of signed measure ξ
‖f‖ν,∞ essential supremum of a measurable function f

(with respect to the measure ν)
oscν (f) essential oscillation semi-norm
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C.2 Probability

P,E probability, expectation
D−→ convergence in distribution
P−→ convergence in probability

a.s.−→ almost sure convergence
L1, L2 integrable and square integrable functions
‖X‖p Lp norm of X ([E |X|p]1/p)
span(X1, X2) linear span in Hilbert space, usually L2(Ω,F ,P)
proj(X|M) projection onto a linear subspace
X ⊥⊥ Y |Z [P] X and Y are conditionally independent given Z

(with respect to the probability P)
N Gaussian distribution, N(µ, σ2)
LN log-normal distribution, LN(log(µ), σ2)
Dir Dirichlet distribution, Dirr(α1, . . . , αr)
Ga gamma distribution, Ga(α, β)
IG inverse gamma distribution
U uniform distribution, U([a, b])
Bin binomial distribution, Bin(n, p)
Be beta distribution, Be(α, β)
Mult multinomial distribution, Mult(n, (ω1, . . . , ωN ))

C.3 Hidden Markov Models

{Xk}k≥0 hidden states
(X,X ) state space of the hidden states
Q(x, dx′) transition kernel of the hidden chain
q(x, x′)λ(dx′) idem, in fully dominated models
ν initial distribution (probability density function

with respect to λ in fully dominated models)
π stationary distribution of {Xk}k≥0 (if any)
r |X| in finite HMMs
{Yk}k≥0 observations
(Y,Y) observation space
G(x, dy) conditional likelihood kernel
g(x, y)µ(dy) idem, in partially dominated models
gk(x) g(x, Yk)—“implicit conditioning convention”
Pν ,Eν probability, expectation under the model,

assuming initial distribution ν
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Smoothing

φν,k or φν,k|k filtering distribution
φν,k|k−1 predictive distribution
cν,k normalization constant for the filter
Lν,n likelihood
�ν,n log-likelihood
φν,k|n, φν,k:l|n marginal of joint smoothing distribution
αν,k forward measure
βk|n backward function
ᾱν,k normalized forward measure
β̄k|n normalized backward function
Fk|n forward smoothing kernel
Bν,n backward smoothing kernel
τν,n recursive smoother

In several chapters, explicit dependence with respect to the initial distribution
ν is omitted; in a few others, the above notations are followed by an expres-
sion of the form [Yk:l] to highlight dependence with respect to the relevant
observations.

Parametric HMMs

θ parameter vector
dθ dimension of the parameter
θ� actual (true) value of parameter
J (θ) Fisher information matrix
�s
n(θ) stationary version of the log-likelihood
�(θ) limiting contrast [of n−1�ν,n(θ)]
Q(θ ; θ′) intermediate quantity of EM
S complete-data sufficient statistic in

exponential family
ds dimension of S

State-Space Models

Xk+1 = AkXk + RkUk state (dynamic) equation
Yk = BkXk + SkVk observation equation
dx, du, dy, dv dimensions of Xk, Uk, Yk and Vk

X̂k|k, Σk|k filtered moments
X̂k|k−1, Σk|k−1 predicted moments
X̂k|n, Σk|n smoothed moments
κk|n, Πk|n idem in information parameterization
εk, Γk innovation and associated covariance matrix
Hk Kalman gain (prediction)
Kk Kalman gain (filtering)
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Hierarchical HMMs

{Ck}k≥0 hierarchic component of the states
(usually indicator variables)

(C, C) space of hierarchic component
QC transition kernel of {Ck}k≥0
νC distribution of C0
{Wk}k≥0 intermediate component of the states
(W,W) space of intermediate component
QW [(w, c), w′)] conditional transition kernel of {Wk}k≥0 given {Ck}k≥0
ψν,k:l|n distribution of Ck:l given Y0:n
ϕk+1|k predictive distribution of Wk+1 given Y0:n and C0:k+1

C.4 Sequential Monte Carlo

µ̂MC
N (f) Monte Carlo estimate of µ(f) (from N i.i.d. draws)

µ̃IS
ν,N (f) unnormalized importance sampling estimate

(using ν as instrumental distribution)
µ̂IS

ν,N (f) importance sampling estimate
µ̂SIR

ν,N (f) sampling importance resampling estimate
T u

k (x, dx′) (Lk+1/Lk)−1Q(x, dx′) gk+1(x′) ∝ Q(x, dx′) gk+1(x′)
Tk “optimal” instrumental kernel (T u

k normalized)
γk normalization function of T u

k

{ξi
k}i=1,...,N population of particles at time index k

{ωi
k}i=1,...,N associated importance weights (usually unnormalized)

ξi
0:k, ξ

i
0:k(l) path particle and lth element in the trajectory

[by convention ξi
k = ξi

0:k(k)]
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Hürzeler, M. and Künsch, H. R. (1998) Monte Carlo approximations for gen-
eral state-space models. J. Comput. Graph. Statist., 7, 175–193.

Ibragimov, I. A. and Hasminskii, R. Z. (1981) Statistical Estimation. Asymp-
totic Theory. Springer.

Ito, H., Amari, S. I. and Kobayashi, K. (1992) Identifiability of hidden Markov
information sources and their minimum degrees of freedom. IEEE Trans.
Inform. Theory, 38, 324–333.

Jacod, J. and Protter, P. (2000) Probability Essentials. Springer.
Jacquier, E. and Johannes, M. Polson, N. G. (2004) MCMC maximum likeli-

hood for latent state models. Tech. Rep., Columbia University.
Jacquier, E., Polson, N. . and Rossi, P. E. (1994) Bayesian analysis of stochas-

tic volatility models (with discussion). J. Bus. Econom. Statist., 12, 371–
417.

Jain, N. and Jamison, B. (1967) Contributions to Doeblin’s theory of Markov
processes. Z. Wahrsch. Verw. Geb., 8, 19–40.

Jamshidian, M. and Jennrich, R. J. (1997) Acceleration of the EM algorithm
using quasi-Newton methods. J. Roy. Statist. Soc. Ser. B, 59, 569–587.

Jarner, H., larsen, T. S., Krogh, A., Saxild, H. H., Brunak, S. and Knud-
sen, S. (2001) Sigma A recognition sites in the Bacilius subtilis genome.
Microbiology, 147, 2417–2424.

Jarner, S. and Hansen, E. (2000) Geometric ergodicity of Metropolis algo-
rithms. Stoch. Proc. App., 85, 341–361.

Jelinek, F. (1997) Statistical Methods for Speech Recognition. MIT Press.



636 References

Jensen, F. V. (1996) An Introduction to Bayesian Networks. UCL Press.
Jensen, J. L. and Petersen, N. V. (1999) Asymptotic normality of the maxi-

mum likelihood estimator in state space models. Ann. Statist., 27, 514–535.
De Jong, P. (1988) A cross validation filter for time series models. Biometrika,

75, 594–600.
De Jong, P. and Shephard, N. (1995) The simulation smoother for time series

models. Biometrika, 82, 339–350.
Jordan, M. I. (ed.) (1999) Learning in Graphical Models. MIT Press.
Jordan, M. I. (2004) Graphical models. Statist. Sci., 19, 140–155.
Julier, S. J. and Uhlmann, J. K. (1997) A new extension of the Kalman filter

to nonlinear systems. In AeroSense: The 11th International Symposium on
Aerospace/Defense Sensing, Simulation and Controls.

Kaijser, T. (1975) A limit theorem for partially observed Markov chains. Ann.
Probab., 3, 677–696.

Kailath, T. and Frost, P. A. (1968) An innovations approach to least-squares
estimation–Part II: Linear smoothing in additive white noise. IEEE Trans.
Automat. Control, 13, 655–660.

Kailath, T., Sayed, A. and Hassibi, B. (2000) Linear Estimation. Prentice-
Hall.

Kaleh, G. K. and Vallet, R. (1994) Joint parameter estimation and symbol
detection for linear or nonlinear unknown channels. IEEE Trans. Commun.,
42, 2406–2413.

Kalman, R. E. and Bucy, R. (1961) New results in linear filtering and predic-
tion theory. J. Basic Eng., Trans. ASME, Series D, 83, 95–108.
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Künsch, H. R. (2000) State space and hidden Markov models. In Complex
Stochastic Systems (eds. O. E. Barndorff-Nielsen, D. R. Cox and C. Klup-
pelberg). CRC Press.

— (2003) Recursive Monte-Carlo filters: algorithms and theoretical analysis.
Preprint ETHZ, seminar für statistics.

Kushner, H. J. and Clark, D. S. (1978) Stochastic Approximation Methods for
Constrained and Unconstrained Systems. Springer.

Kushner, H. J. and Yin, G. G. (2003) Stochastic Approximation and Recursive
Algorithms and Applications. Springer, 2nd ed.

Laarhoven, P. J. V. and Arts, E. H. L. (1987) Simulated Annealing: Theory
and Applications. Reidel Publisher.

Lange, K. (1995) A gradient algorithm locally equivalent to the EM algorithm.
J. Roy. Statist. Soc. Ser. B, 57, 425–437.

Lauritzen, S. L. (1996) Graphical Models. Oxford University Press.
Lavielle, M. (1993) Bayesian deconvolution of Bernoulli-Gaussian processes.

Signal Process., 33, 67–79.
Lavielle, M. and Lebarbier, E. (2001) An application of MCMC methods to

the multiple change-points problem. Signal Process., 81, 39–53.
Le Gland, F. and Mevel, L. (1997) Recursive estimation in HMMs. In Proc.

IEEE Conf. Decis. Control, 3468–3473.



638 References

— (2000) Exponential forgetting and geometric ergodicity in hidden Markov
models. Math. Control Signals Systems, 13, 63–93.

Le Gland, F. and Oudjane, N. (2004) Stability and uniform approximation of
nonlinear filters using the hilbert metric and application to particle filters.
Ann. Appl. Probab., 14, 144–187.

Lehmann, E. L. and Casella, G. (1998) Theory of Point Estimation. Springer,
2nd ed.

Leroux, B. G. (1992) Maximum-likelihood estimation for hidden Markov mod-
els. Stoch. Proc. Appl., 40, 127–143.

Levine, R. A. and Casella, G. (2001) Implementations of the Monte Carlo EM
algorithm. J. Comput. Graph. Statist., 10, 422–439.

Levine, R. A. and Fan, J. (2004) An automated (Markov chain) Monte Carlo
EM algorithm. J. Stat. Comput. Simul., 74, 349–359.

Levinson, S. E., Rabiner, L. R. and Sondhi, M. M. (1983) An introduction to
the application of the theory of probabilistic functions of a Markov process
to automatic speech recognition. Bell System Tech. J., 62, 1035–1074.

Liporace, L. A. (1982) Maximum likelihood estimation of multivariate obser-
vations of Markov sources. IEEE Trans. Inform. Theory, 28, 729–734.

Lipster, R. S. and Shiryaev, A. N. (2001) Statistics of Random Processes: I.
General theory. Springer, 2nd ed.

Liu, C. and Narayan, P. (1994) Order estimation and sequential universal data
compression of a hidden Markov source by the method of mixtures. IEEE
Trans. Inform. Theory, 40, 1167–1180.

Liu, J. (2001) Monte Carlo Strategies in Scientific Computing. Springer.
Liu, J. and Chen, R. (1995) Blind deconvolution via sequential imputations.

J. Am. Statist. Assoc., 430, 567–576.
— (1998) Sequential Monte-Carlo methods for dynamic systems. J. Am.

Statist. Assoc., 93, 1032–1044.
Liu, J., Chen, R. and Logvinenko, T. (2001) A theoretical framework for se-

quential importance sampling and resampling. In Sequential Monte Carlo
Methods in Practice (eds. A. Doucet, N. De Freitas and N. Gordon).
Springer.

Liu, J., Wong, W. and Kong, A. (1994) Covariance structure of the Gibbs sam-
pler with applications to the comparisons of estimators and augmentation
schemes. Biometrika, 81, 27–40.

Liu, J. S. (1994) The collapsed Gibbs sampler with applications to a gene
regulation problem. J. Am. Statist. Assoc., 89, 958–966.

— (1996) Metropolized independent sampling with comparisons to rejection
sampling and importance sampling. Stat. Comput., 6, 113–119.

Louis, T. A. (1982) Finding the observed information matrix when using the
EM algorithm. J. Roy. Statist. Soc. Ser. B, 44, 226–233.

Luenberger, D. G. (1984) Linear and Nonlinear Programming. Addison-
Wesley, 2nd ed.

MacDonald, I. and Zucchini, W. (1997) Hidden Markov and Other Models for
Discrete-Valued Time Series. Chapman.



References 639

MacEachern, S. N., Clyde, M. and Liu, J. (1999) Sequential importance sam-
pling for nonparametric bayes models: The next generation. Can. J. Statist.,
27, 251–267.

Mayne, D. Q. (1966) A solution of the smoothing problem for linear dynamic
systems. Automatica, 4, 73–92.

Meng, X.-L. (1994) On the rate of convergence of the ECM algorithm. Ann.
Statist., 22, 326–339.

Meng, X.-L. and Dyk, D. V. (1997) The EM algorithm–an old folk song sung
to a fast new tune. J. Roy. Statist. Soc. Ser. B, 59, 511–567.

Meng, X.-L. and Rubin, D. B. (1991) Using EM to obtain asymptotic variance-
covariance matrices: The SEM algorithm. J. Am. Statist. Assoc., 86, 899–
909.

— (1993) Maximum likelihood estimation via the ECM algorithm: A general
framework. Biometrika, 80, 267–278.

Mengersen, K. and Tweedie, R. L. (1996) Rates of convergence of the Hastings
and Metropolis algorithms. Ann. Statist., 24, 101–121.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and
Teller, E. (1953) Equations of state calculations by fast computing ma-
chines. J. Chem. Phys., 21, 1087–1092.

Meyn, S. P. and Tweedie, R. L. (1993) Markov Chains and Stochastic Stability.
Springer.

Neal, R. M. (1997) Markov chain Monte Carlo methods based on ‘slicing’ the
density function. Tech. Rep., University of Toronto.

— (2003) Slice sampling (with discussion). Ann. Statist., 31, 705–767.
Neveu, J. (1975) Discrete-Time Martingales. North-Holland.
Niederreiter, H. (1992) Random Number Generation and Quasi-Monte Carlo

Methods. SIAM.
Nielsen, S. F. (2000) The stochastic EM algorithm: estimation and asymptotic

results. Bernoulli, 6, 457–489.
Nummelin, E. (1978) A splitting technique for Harris recurrent Markov chains.

Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 4, 309–318.
— (1984) General Irreducible Markov Chains and Non-Negative Operators.

Cambridge University Press.
Orchard, T. and Woodbury, M. A. (1972) A missing information principle:

Theory and applications. In Proceedings of the 6th Berkeley Symposium on
Mathematical Statistics, vol. 1, 697–715.
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Absorbing state 12
Accept-reject algorithm 166–169, 173

in sequential Monte Carlo 224, 261
Acceptance probability

in accept-reject 169
in Metropolis-Hastings 171

Acceptance ratio
in Metropolis-Hastings 171
in reversible jump MCMC 486

Accessible set 517
AEP see Asymptotic equipartition

property
Asymptotic equipartition property

see Shannon-McMillan-Breiman
theorem, 568

Asymptotically tight see Bounded in
probability

Atom 518
Auxiliary variable 260

in sequential Monte Carlo 256–264
Averaging

in MCEM 403, 424
in SAEM 411
in stochastic approximation 409,

429

Backward smoothing
decomposition 70
kernels 70–71, 125, 130

Bahadur efficiency 559
Balance equations

detailed 41
global 41
local 41

Baum-Welch see Forward-backward
Bayes

formula 71
operator 102
rule 64, 157
theorem 172

Bayesian
decision procedure 466
estimation 358, 465
model 71, 466
network see Graphical model
posterior see Posterior
prior see Prior

Bayesian information criterion 560,
563, 568

BCJR algorithm 74
Bearings-only tracking 23–24
Bennett inequality 584
Bernoulli-Gaussian model 196
BIC see Bayesian information

criterion
Binary deconvolution model 373

estimation using EM 374
estimation using quasi-Newton 374
estimation using SAME 500

Binary symmetric channel 7, 8
Bootstrap filter 238, 254–256, 259
Bounded in probability 334
Bryson-Frazier see Smoothing
Burn-in 395, 491

Canonical space 38
Capture-recapture model 12, 479
Cauchy sequence 600
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CGLSSM see State-space model
Chapman-Kolmogorov equations 36
Coding probability 565, 568

mixture 567
normalized maximum likelihood 566
universal 566

Communicating states 507
Companion matrix 16, 30
Computable bounds 185
Conditional likelihood function 218

log-concave 225
Contrast function 436
Coordinate process 38
Coupling

inequality 536
of Markov chains 536–539
set 537

Critical region 564

Darroch model 12
Data augmentation 476
Dirichlet distribution 470, 567
Disturbance noise 127
Dobrushin coefficient 96
Doeblin condition 97

for hidden Markov model 555
Drift conditions

for hidden Markov model 555
for Markov chain 531–534, 542–545
Foster-Lyapunov 542

ECM see Expectation-maximization
Effective sample size 235
Efficiency 574

Bahadur 575
Pitman 574

Efficient score test 461
EKF see Kalman, extended filter
EM see Expectation-maximization
Equivalent parameters 445
Error

exponent 575
overestimation 562
underestimation 562

Exchangeable distribution 472
Expectation-maximization 347–351

convergence of 387–392
ECM 391
for MAP estimation 358

for missing data models 357
in exponential family 350
intermediate quantity of 347
SAGE 392

Exponential family 350
natural parameterization 467

of the Normal 149
Exponential forgetting see Forgetting

Filtered space 37
Filtering 54
Filtration 37

natural 38
Fisher identity 352, 360, 452
Forgetting 100–120

exponential 109, 440
of time-reversed chain 455

strong mixing condition 105, 108
uniform 100, 105–110

Forward smoothing
decomposition 66
kernels 66, 101, 327

Forward-backward 56–66
α see forward variable
β see backward variable
backward variable 57
Baum-Welch denomination 74
decomposition 57
forward variable 57
in finite state space HMM 123–124
in state-space model 154
scaling 61, 74

Gaussian linear model 128, 149
Generalized likelihood ratio test see

Likelihood ratio test
Gibbs sampler 180–182

in CGLSSM 194
in hidden Markov model 475–480
random scan 181
sweep of 180, 397, 478
systematic scan 181

Gilbert-Elliott channel 6
Global sampling see Resampling,

global
Global updating see Updating of

hidden chain
Gram-Schmidt orthogonalization 135
Graphical model 1, 4
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Growth model
comparison of SIS kernels 230–231
performance of bootstrap filter

240–242

Hahn-Jordan decomposition 91
Harris recurrent chain see Markov

chain, Harris recurrent
Harris recurrent set 526
Hidden Markov model 1–5, 42–44

aperiodic 553
discrete 43
ergodic 33
finite 6–12
fully dominated 43
hierarchical 46–47
in biology 10
in ion channel modelling 13
in speech recognition 13
left-to-right 33
likelihood 53
log-likelihood 53
normal see Normal hidden Markov

model
partially dominated 43
phi-irreducible 553
positive 553
recurrent 553
transient 553
with finite state space 121–126

Hilbert space 612
Hitting time 507, 515
HMM see Hidden Markov model
Hoeffding inequality 292
Homogeneous see Markov chain
HPD (highest posterior density) region

240
Hybrid MCMC algorithms 179
Hyperparameter see Prior
Hypothesis testing

composite 559, 561, 563, 575
simple 564

Ideal codeword length 565
Identifiability 444–451, 462, 472, 559,

562
in Gaussian linear state-space model

382
of finite mixtures 448

of mixtures 448–449
Implicit conditioning convention 58
Importance kernel see Instrumental

kernel
Importance sampling 173, 210–211,

287–295
self-normalized 211, 293–295

asympotic normality 293
consistency 293
deviation bound 294

sequential see Sequential Monte
Carlo

unnormalized 210, 287–292
asymptotic normality 288
consistency 288
deviation bound 292

Importance weights 173
normalized 211

coefficient of variation of 235
Shannon entropy of 235

Incremental weight 216
Information divergence rate 568
Information matrix 458

observed 436
convergence of 459

Information parameterization 148–149
Initial distribution 38
Innovation sequence 136
Instrumental distribution 210
Instrumental kernel 215

choice of 218
optimal 220–224

local approximation of 225–231
prior kernel 218

Integrated autocorrelation time 191
Invariant measure 511, 527

sub-invariant measure 527
Inversion method 242
Irreducibility measure

maximal 516
of hidden Markov model 550
of Markov chain 515

Jacobian 480, 486, 489–490

Kalman
extended filter 228
filter 141–142

gain 141
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filtering with non-zero means 142
predictor 137–139

gain 138
unscented filter 228

Kernel see Transition
Kraft-McMillan inequality 565
Krichevsky-Trofimov mixture 567
Kullback-Leibler divergence 348

Label switching 473
Lagrange multiplier test 461
Large deviations 578
Latent variable model 2
Law of iterated logarithm 565
Level 564

asymptotic 564
Likelihood 53, 357, 437–439

conditional 65, 66, 438
in state-space model 139

Likelihood ratio test 460–462
generalized 461, 559, 564, 568, 578

Linear prediction 131–136
Local asymptotic normality 437
Local updating see Updating of

hidden chain
Log-likelihood see Likelihood
Log-normal distribution 480
Louis identity 352
Lyapunov function 417

differential 426

MAP see Maximum a posteriori
Marcinkiewicz-Zygmund inequality

292
Markov chain

aperiodic 514, 535
canonical version 39
central limit theorem 548, 549
ergodic theorem 514, 536
geometrically ergodic 542
Harris recurrent 526
homogeneous 2
irreducible 508
law of large numbers 546
non-homogeneous 40, 163
null 513, 528
on countable space 507–514
on general space 514–549
phi-irreducible 515

positive 528
positive recurrent 513
recurrent 511
reverse 40
reversible 41
solidarity property 510
strongly aperiodic 535
transient 511

Markov chain Monte Carlo 169–186
Markov jump system see Markov-

switching model
Markov property 39

strong 40
Markov-switching model 4

maximum likelihood estimation 463
smoothing 86

Matrix inversion lemma 149, 152
Maximum a posteriori 358, 467,

495–504
state estimation 125, 208

Maximum likelihood estimator 358,
435

asymptotic normality 437, 459
asymptotics 436–437
consistency 436, 440–444, 459
convergence in quotient topology

444
efficiency 437

Maximum marginal posterior estimator
466

in CGLSSM 208
MCEM see Monte Carlo EM
MCMC see Markov chain Monte

Carlo
MDL see Minimum description length
Mean field in stochastic approximation

426
Mean square

convergence 612
error 614
prediction 614

Measurable
function 599
set 599
space 599

Measure
positive 599
probability 599

MEM algorithm see SAME algorithm
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Metropolis-Hastings algorithm 171
one-at-a-time 187
geometric ergodicity 542
independent 173
phi-irreducibility 517
random walk 176

Minimum description length 567
Missing information principle 459
Mixing distribution 448
Mixture density 448
Mixture Kalman filter 275
ML, MLE see Maximum likelihood

estimator
Model averaging 483
Moderate deviations 562, 578
Monte Carlo

estimate 162
integration 161

Monte Carlo EM 394–395
analysis of 415–425
averaging in 403
in hidden Markov model 395
rate of convergence 422–425
simulation schedule 399–404
with importance sampling 398
with sequential Monte Carlo 398

Monte Carlo steepest ascent 404

Neyman-Pearson lemma 564
NML see Coding probability
Noisy AR(1) model

SIS with optimal kernel 221–224
SIS with prior kernel 218–220

Non-deterministic process 136
Normal hidden Markov model 13–15

Gibbs sampling 476
identifiability 450
likelihood ratio testing in 461
Metropolis-Hastings sampling 480
prior for 471
reversible jump MCMC 486
SAME algorithm 498

Normalizing constant 211
in accept-reject 169
in Metropolis-Hastings 172–173

Occupation time
of set 515
of state 508

Optional sampling 584
Order 559

estimator
BIC 581
MDL 570
PML 571

identification 559
Markov 560, 561, 563, 581
of hidden Markov model 560, 561

Oscillation semi-norm 92
essential 292

Particle filter 209, 237
Penalized maximum likelihood 559,

562, 568
Perfect sampling 185
Period

of irreducible Markov chain 514
of phi-irreducible HMM 553
of phi-irreducible Markov chain 535
of state in Markov chain 514

PML see Penalized maximum
likelihood

Polish space 600
Posterior 65, 71, 358, 466
Power 564

function 564
Precision matrix 149
Prediction 54
Prior 64, 71, 358

conjugate 467
diffuse 148
Dirichlet 567
distribution 465
flat 150, 469
for hidden Markov model 469–472
hyper- 468
hyperparameter 467
improper 150, 468
non-informative 466, 468
regularization 358
selection 467
subjective 466

Probability space 600
filtered 37

Projection theorem 613
Proper set 299
Properly weighted sample 268
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Radon-Nikodym derivative 210
Rao test 461
Rao-Blackwellization 182
Rauch-Tung-Striebel see Smoothing
Rayleigh-fading channel 18
Recurrent

set 517
state 508

Recursive estimation 372
Regeneration time 523
Regret 566
Regularization 358
Reprojection 416
Resampling

asymptotic normality 306
consistency 303
global 267
in SMC 236–242
multinomial 211–213

alternatives to 244–250
implementation of 242–244

optimal 267–273
remainder see residual
residual 245–246
stratified 246–247
systematic 248–250
unbiased 244, 268

Resolvent kernel see Transition
Return time 507, 515
Reversibility 41

in Gibbs sampler 181
of Metropolis-Hastings 171
of reversible jump MCMC 485

Reversible jump MCMC 482, 484
acceptance ratio 486
birth move 486
combine move 487–489
death move 487
merge move 487
split move 487–489

Riccati equation 139
algebraic 141

Robbins-Monro see Stochastic
approximation

RTS see Smoothing

SAEM see Stochastic approximation
EM

SAGE see Expectation-maximization

SAME algorithm 496
for normal HMM 498
in binary deconvolution model 500

Sample impoverishment see Weight
degeneracy

Sampling importance resampling
211–214, 295–310

asymptotic normality 307
consistency 307
deviation bound 308
estimator 213

mean squared error of 213
unbiasedness 213

Score function 451
asymptotic normality 451–458

SEM see Stochastic EM
Sensitivity equations 361–365
Sequential Monte Carlo 209, 214–231

i.i.d. sampling 253, 324
analysis of 324–332
asymptotic normality 325
asymptotic variance 326
consistency 325
deviation bound 328, 330

for smoothing functionals 278–286
implementation in HMM 214–218
mutation step 311–315

asymptotic normality 313
consistency 312

mutation/selection 255, 316
analysis of 319
asymptotic normality 319
consistency 319

optimal kernel 322
prior kernel 322
selection/mutation 253, 255, 316

analysis of 320
asymptotic normality 320
consistency 320

SISR 322
analysis of 321–324
asymptotical normality 323
consistency 323

with resampling 231–242
Shannon-McMillan-Breiman theorem

61, 562, 568, 569
Shift operator 39
Sieve 571
Simulated annealing 496
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cooling schedule 496
SIR see Sampling importance

resampling
SIS see Importance sampling
SISR see Sequential Monte Carlo
Slice sampler 183
Small set

existence 521
of hidden Markov model 552
of Markov chain 520

SMC see Sequential Monte Carlo
Smoothing 51, 54

Bryson-Frazier 143
disturbance 143–146
fixed-interval 51, 59–76
fixed-point 78–79
forward-backward 59
functional 278
in CGLSSM 156–158
in hierarchical HMM 87–89
in Markov-switching model 86
Rauch-Tung-Striebel 66, 130
recursive 79–85
smoothing functional 80
two-filter formula 76, 147–154
with Markovian decomposition

backward 70, 124, 130
forward 66

Source coding 559
Splitting construction 522–524

split chain 522
Stability in stochastic algorithms 416
State space 38
State-space model 3

conditionally Gaussian linear 17–22,
46, 194–208, 273–278

Gaussian linear 15–17, 126–154
Stationary distribution

of hidden Markov model 553
of Markov chain 511

Stein’s lemma 575, 578
Stochastic approximation 407

analysis of 425–429
gradient algorithm 408
rate of convergence 428–429
Robbins-Monro form 408

Stochastic approximation EM 410
convergence of 429–430

Stochastic EM 412

Stochastic process 37
adapted 38
stationary 41

Stochastic volatility model 25–28
approximation of optimal kernel

227–228
EM algorithm 395
identifiability 450
one-at-a-time sampling 187–192
performance of SISR 239–240
single site sampling 183–184
smoothing with SMC 281
weight degeneracy 234–236

Stopping time 39
Strong mixing condition 105, 108
Subspace methods 382
Sufficient statistic 350
Sweep see Gibbs sampler

Tangent filter 364
Target distribution 170
Tight see Bounded in probability
Total variation distance 91, 93

V -total variation 537
Transient

set (uniformly) 517
state 508

Transition
density function 35
kernel 35

Markov 35
resolvent 516
reverse 37
unnormalized 35

matrix 35
Triangular array 297

central limit theorems 338–342
conditionally independent 298
conditionally i.i.d. 298
laws of large numbers 333–338

Two-filter formula see Smoothing

UKF see Kalman, unscented filter
Uniform spacings 243
Universal coding 559, 561, 565
Updating of hidden chain

global 475
local 476
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V -total variation distance see Total
variation distance

Variable dimension model 482
Viterbi algorithm 125

Wald test 461
Weight degeneracy 209, 231–236
Weighted sample 298

asymptotic normality 299, 304
consistency 298, 301

Weighting and resampling algorithm
301

Well-log data model 20–21
with Gibbs sampler 203
with mixture Kalman filter 276




