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Foreword

The application of porous media mechanics which traditionally was mostly
focussed upon geomechanics, has spread to a vast area of science. This area in-
cludes polymer science, biomechanics, biomaterials, ceramics. Many of these
areas of application require the integration of many physical phenomena into
one single porous media model. Electrochemistry, statistical physics, fluid
mechanics, molecular biology and electromagnetism are just a few examples
of these.

Particularly biomedical applications are engulfing the scientific literature.
The scientific community is realising more and more that all tissues of the
human body are porous media in which quantification of the dynamic rela-
tions between fluid flow, solute diffusion-convection, stresses and strains are
of paramount importance in medical applications. Increasing evidence shows
that living cells are very sensitive to mechanical stress, and that they shape the
tissue that surrounds them according to the stimuli to which they are subjected.
Bone cells and endothelial cells respond to fluid flow. Even the functioning cell
itself is understood today as a versatile porous medium in which water and ions
play an important role in the translation of the genetic code encripted into the
DNA-molecule. Now that the genetic code has been uncovered, the focus of
science shifts towards the unraveling of the mechanisms by which this code
manifests itself into a living cell, organs and bodies. Continuum mechanics
and poromechanics in particular may play a mayor role in this undertaking.

The chair of the symposium concluded the opening address of this sym-
posium by claiming that (1) poromechanics has transformed the geotechnical
sciences in the 20th century and (2) the applications of poromechanics in the
biomedical sciences in the 21st century may well supersede by far the applica-
tions of poromechanics in the field of geomechanics. This IUTAM symposium
focussed upon bringing together people who deal with the mechanics of in-
teractions in deforming porous media. These interactions include physico-
chemical (solvation forces, adsorption), electrochemical (streaming potentials,
electro-osmosis, electrophoresis), thermal and biological events. Generally the
visitors were experts from the fields of biomechanics, geomechanics or poly-

ix



x Physicochemical and Electromechanical Interactions

mer science. The communication between these fields has been fostered by the
organization of this symposium.

The topics chosen for the sessions were typically chosen so as to represent
problems common to all three fields of application. For example, Micromech-
anics of Porous Media, Electromechanical Interactions, Chemical and Electro-
osmosis, Nuclear Magnetic Resonance in Porous Media, Dual Porosity. The
symposium included 49 oral presentations and a dozen poster presentations.
The meeting attracted 60 participants from 15 countries: Australia, Belgium,
Brazil, Canada, Finland, France, Germany, Italy, The Netherlands, Poland,
Portugal, Sweden, Switzerland, United Kingdom, United States.

Jacques Huyghe
Associate Professor
Eindhoven University of Technology
Department of Biomedical Engineering
Eindhoven, The Netherlands
September 2004
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BONES HAVE EARS:

An Application of Bone Poroelasticity

Stephen C. Cowin
The New York Center for Biomedical Engineering
Departments of Biomedical and Mechanical Engineering
The School of Engineering of The City College and
The Graduate School of The City University of New York
New York, NY 10031, U.S.A.

Abstract The mechanosensory mechanisms in bone include (i) the cell system that is stim-
ulated by external mechanical loading applied to the bone; (ii) the system that
transduces that mechanical loading to a communicable signal; and (iii) the sys-
tems that transmit that signal to the effector cells for the maintenance of bone
homeostasis and for strain adaptation of the bone structure. The effector cells are
the osteoblasts and the osteoclasts. These systems and the mechanisms that they
employ have not yet been unambiguously identified. A summary is presented of
the current theoretical and experimental evidence suggesting that osteocytes are
the principal mechanosensory cells of bone, that they are activated by the effects
of fluid flowing through the osteocyte canaliculi, and that the electrically coupled
three-dimensional network of osteocytes and lining cells is a communications
system for the control of bone homeostasis and structural strain adaptation. A
bone poroelastic (BP) model is employed to model the fluid flow behavior caused
by the mechanical loading of bone. The similarities of the mechanotransduction
system in bone with the mechanotransduction system used by the cells of the
hearing system will be described. Both cell systems sense mechanical vibra-
tions in a fluid domain.

Keywords: mechanosensation, bone, hearing, cell systems

Introduction

It has long been known that living adult mammalian bone tissue adapts its
material properties, and that whole bones adapt their shape, in response to
altered mechanical loading [204–206, 57, 58, 191, 92, 110]. Progress is being
made in understanding the cellular mechanisms that accomplish the absorp-
tion and deposition of bone tissue. The physiological mechanism by which the
mechanical loading applied to bone is sensed by the tissue, and the mechanism
by which the sensed signal is transmitted to the cells which accomplish the

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 3–36.
© 2005 Springer. Printed in the Netherlands.
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surface deposition, removal and maintenance, have not been identified. The
purpose of this contribution is to review some of the background research on
these mechanosensory mechanisms and to outline candidates for the mechano-
sensory system. See [35] for an earlier review of similar literature.

Mechanoreception is the term used to describe the process that transmits
the informational content of an extracellular mechanical stimulus to a receptor
cell. Mechanotransduction is the term used to describe the process that trans-
forms the mechanical stimulus’ content into an intra-cellular signal. The term
mechanosensory is employed to mean both mechanoreception and mechan-
otransduction. Additional processes of inter-cellular transmission of trans-
duced signals are required at tissue, organ and organismal structural levels.
The mechanosensing process(es) of a cell enables it to sense the presence of,
and to respond to, extrinsic physical loadings. This property is widespread
in uni- and multicellular animals [54, 101, 53, 74, 73, 36]; plants [201, 65]
and bacteria [152]. Tissue sensibility is a property of a connected set of cells
and it is accomplished by the intracellular processes of mechanoreception and
mechanotransduction.

The Connected Cellular Network (CCN)

The bone cells that lie on all bony surfaces are osteoblasts, either active or
inactive. Inactive osteoblasts are called bone-lining cells; they have the poten-
tial of becoming active osteoblasts (Figure 1). The bone cells that are buried
in the extracellular bone matrix are the osteocytes. Each osteocyte, enclosed
within its mineralized lacuna, has many (perhaps as many as 80) cytoplasmic
processes (Figure 1, Figure 2). These processes are approximately 15 mm long
and are arrayed three-dimensionally in a manner that permits them to intercon-
nect with similar processes of up to as many as 12 neighboring cells. These
processes lie within mineralized bone matrix channels called canaliculi (Figure
2, Figure 3). The small space between the cell process plasma membrane and
the canalicular wall is filled with bone fluid and macromolecular complexes
of unknown composition. All bone cells except osteoclasts are extensively
interconnected by the cell process of the osteocytes forming a connected cel-
lular network (CCN) [152]. The interconnectivity of the CCN is graphically
illustrated by Figure 4 which is a scanning electron micrograph showing the
replicas of lacunae and canaliculi in situ in mandibular bone from a young
subject aged 22 years. The inset of Figure 4 shows enlarged lacunae identified
by a rectangle.

The touching cell processes of two neighboring bone cells contain gap junc-
tions [8, 46, 47, 95, 182, 96, 67, 25]. A gap junction is a channel connecting
two cells. The location of the gap junction is indicated by the arrowheads in
Figure 2. The walls of the channel consist of matching rings of proteins pier-
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Figure 1. Diagram of a thin bone tra-
becula (5) showing the four types of bone
cells. Osteoblasts (8) and their precursors
(7) are shown on the upper surface over a
layer of uncalcified osteoid matrix (9), os-
teocytes (6) are shown in their lacunae, an
osteoclast (l) and a bone lining cell (3) are
shown on the lower surface. Capillaries
(4), containing red blood cells in their lu-
mina, and a fibroblast (2) are shown near
the trabecula. Adapted from Krstic (1978).

Figure 2. Diagram of two osteocytes (1)
in the lamellar bone of calcified bone mat-
rix (3). Two neighboring lamellae (2) with
different collagen fiber orientations (7) are
visible. The osteocytic cell bodies are loc-
ated in lacunae and are surrounded by a
thin layer of uncalcified matrix (4). Their
cell processes (5) are housed in canaliculi
(6). Some of the gap junctions between the
cell processes are indicated (arrows). Mod-
ified from Krstic (1978).

cing the membrane of each cell, and when the rings associated with two cells
connect with each other, the cell-to-cell junction is formed. This junction al-
lows ions and compounds of low molecular weight to pass between the two
cells without passing into the extracellular space. The proteins making up a
gap junction are called connexins; in bone the protein is either connexin 43
or 45, with 43 predominating (the number refers to the size of the proteins
calculated in kilodaltons) [130, 131, 113]. A ring of connexins in one cell
membrane is generally called a connexon or hemichannel. Both mechanical
strain and fluid shear stress cause increased expression of the connexin 43 in
vascular tissues [28]. In cardiac tissue the turnover rate of connexin 43 is very
rapid [7]. The rapid dynamics of gap junction turnover and the plasticity of gap
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junction expression in response to various stimuli offer the possibility for re-
modeling of the intercellular circuits both within and between communication
compartments in the cardiovascular system [187]. In bone, gap junctions con-
nect superficial osteocytes to periosteal and endosteal osteoblasts. All osteo-
blasts are similarly interconnected laterally on a bony surface; perpendicular to
the bony surface, gap junctions connect periosteal osteoblasts with preosteo-
blastic cells, and these, in turn, are similarly interconnected. Effectively, each
CCN is a true syncytium [47, 182, 165, 96]. Gap junctions are found where the
plasma membranes of a pair of markedly lapping canalicular processes meet
[165]. In compact bone, canaliculi cross the cement lines that form the outer
boundary of osteons. Thus extensive communication exists between osteons
and interstitial regions [38].

Bone cells are electrically active [10, 11, 24, 121, 170]. In addition to per-
mitting the intercellular transmission of ions and small molecules, gap junc-
tions exhibit both electrical and fluorescent dye transmission [93, 183, 187,
133]. Gap junctions are electrical synapses, in contradistinction to interneur-
onal, chemical synapses; and, significantly, they permit bi-directional signal
traffic (e.g., biochemical, ionic, electrical etc.). In a physical sense, the CCN
represents the hard wiring [30, 140, 141, 150] of bone tissue.

Mechanosensation in Bone: Stimuli

The stimulus for bone remodeling is defined as that particular aspect of the
boneís stress or strain history that is employed by the bone to sense its mechan-
ical load environment and to signal for the deposition, maintenance or resorp-
tion of bone tissue. The bone tissue domain or region over which the stimulus
is felt is called the sensor domain. When an appropriate stimulus parameter
exceeds threshold values, loaded tissues respond by the triad of bone adapta-
tion processes: deposition, resorption and maintenance. The CCN is the site
of intracellular stimulus reception, signal transduction and intercellular signal
transmission. It is thought that stimulus reception occurs in the osteocyte [30],
and that the CCN transduces and transmits the signal to the surface lining or
osteoblast. The osteoblasts alone directly regulate bone deposition and main-
tenance, and indirectly regulate osteoclastic resorption [119]. The possible role
of the osteoblast as a stimulus receptor has not yet been thoroughly investig-
ated [156]. Although it is reasonably presumed that initial mechanosensory
events occur at the plasma membrane of the osteocytic soma and/or canalicu-
lar processes, the initial receptive, and subsequent transductive, processes are
not well understood.

It follows that the true biological stimulus, although much discussed, is not
precisely known. A variety of mechanical loading stimuli associated with am-
bulation (at a frequency of one to two Hz) have been considered for bone re-
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Figure 3. A pie-shaped section of an os-
teon. The osteonal canal is on the upper
right, the cement line to the left. The os-
teonal canal is part of the vascular poros-
ity (PV), the lacunae and the canaliculi
are part of the lacunar-canalicular poros-
ity (PLC) and the material in the space
that is neither PV or PLC contains the
collagen-apatite porosity (PCA).The three
interfaces, the cement line, the cellular in-
terface (IC) and the lacunar-canalicular in-
terface are each indicated. The radius of
an osteon is usually about 100 mm, and the
long axis of a lacuna is about 15 mm. Us-
ing this information it should be possible to
establish the approximate scale of the prin-
ted version of this illustration. Previously
published in Cowin (1999).

Figure 4. A scanning electron micro-
graph showing the replicas of lacunae and
canaliculi in situ in mandibular bone from
a young subject aged 22 years. The in-
set shows enlarged lacunae identified by a
rectangle. This micrograph illustrates the
interconnectivity of the connected cellu-
lar network (CCN). Copied from Atkinson
and Hallsworth (1983).

modeling. The majority has followed Wolff [205, 206] in suggesting that some
aspect of the mechanical loading of bone is the stimulus. The mechanical stim-
uli suggested include strain [29], stress [205, 206], strain energy [60, 86], strain
rate [80–82, 151, 111, 66, 55], and fatigue microdamage [20, 118]. In some
cases the time-averaged values of these quantities are suggested as the mechan-
ical stimulus, and in others the amplitudes of the oscillatory components and/or
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peak values of these quantities are the candidates for the mechanical stimulus.
Two-dozen possible stimuli were compared in a combined experimental and
analytical approach [14]. The data supported strain energy density, longitud-
inal shear stress and tensile principal stress or strain as stimuli; no stimulus that
could be described as rate dependent was among the two dozen possible stim-
uli considered in the study. For a consideration of the stimulus in microgravity
see Cowin [32].

The case for strain rate as a remodeling stimulus has been building over
the last quarter century. The animal studies of Hert and his coworkers [80–
82] suggested the importance of strain rate. Experiments [111, 66, 55] have
quantified the importance of strain rate over strain as a remodeling stimulus.
In order to gain an understanding the cellular mechanism for bone remodeling
Weinbaum et al. [198, 199] suggested that the prime mover is the bone strain
rate driven motion of the bone fluid whose signal is transduced by osteocytes.
The bone poroelastic (BP) model was developed by Weinbaum et al. [198,
199] and Cowin et al. [31] to explain the connection between the mechanical
loading on the whole bone and the signal transduced by osteocytes. In the (BP)
model the shear stress from the bone fluid flow over the osteocytic processes
in the canaliculi is a cellular mechanism-based model suggesting strain rate
as a stimulus. A later study by You et al. [209] showed that it was not shear
stress applied directly to the cell membrane, but rather the force created by
fluid drag on the fibers of the glycocalyx of the cell transmitted to the cell
membrane. This study will be described in greater detail in the section on
strain amplification. Recent studies [70, 128] that showed bone deposition to
be related to strain gradients actually demonstrate a dependence upon strain
rate if the BP model developed in Weinbaum et al. [198, 199] and Cowin et al.
[31] is realistic.

In experiments with cultured cells it has been shown that osteocytes, but
not periosteal fibroblasts, are extremely sensitive to fluid flow, resulting in in-
creased prostaglandin as well as nitric oxide production [104, 105]. Three
different cell populations, namely osteocytes, osteoblasts, and periosteal fibro-
blasts, were subjected to two stress regimes, pulsatile fluid flow and intermit-
tent hydrostatic compression [104]. Intermittent hydrostatic compression was
applied at 0.3 Hz with a 13-kPa peak pressure. The pulsatile fluid flow was a
fluid flow with a mean shear stress of 0.5 Pa with cyclic variations of 0.02 Pa at
5 Hz. The maximal hydrostatic pressure rate was 130 kPa/sec and the maximal
fluid shear stress rate was 12 Pa/sec. Under both stress regimes, osteocytes
appeared more sensitive than osteoblasts, and osteoblasts more sensitive than
periosteal fibroblasts. However, despite the large difference in peak stress and
peak stress rate, pulsatile fluid flow was more effective than intermittent hy-
drostatic compression. Osteocytes, but not the other cell types, responded to 1
hour pulsatile fluid flow treatment with a sustained prostaglandin E2 upregula-
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tion lasting at least one hour after pulsatile fluid flow was terminated. By com-
parison, IHC needed 6 hoursí treatment before a response was found. These
results suggested that osteocytes are more sensitive to mechanical stress than
osteoblasts, which are again more sensitive than periosteal fibroblasts. Fur-
thermore, osteocytes appeared particularly sensitive to fluid shear stress, more
so than to hydrostatic stress. These conclusions are in agreement with the the-
ory that osteocytes are the main mechanosensory cells of bone, and that they
detect mechanical loading events by the canalicular flow of interstitial fluid
which results from that loading event. The BP model developed in Weinbaum
et al. [198, 199] and Cowin et al. [31] used Biot’s porous media theory to
relate loads applied to a whole bone to the flow of canalicular interstitial fluid
past the osteocytic processes. These calculations predicted fluid induced shear
stresses of 0.8-3 Pa, as a result of peak physiological loading regimes. The
findings that bone cells in vitro actually respond to fluid shear stress of 0.2-6
Pa [163, 202, 87, 104, 105] lend experimental support to the BP model [198,
199, 31].

Osteocytes also rapidly release nitric oxide in response to stress [160, 105]
and this NO response seems to be required for the stress-related prostaglandin
release [105]. Therefore, the behavior of osteocytes compares to that of en-
dothelial cells which regulate the flow of blood through the vascular system,
and also respond to fluid flow of 0.5 Pa with increased prostaglandin and nitric
oxide production [79]. The response of endothelial cells to shear stress is likely
related to their role in mediating an adaptive remodeling of the vasculature, so
as to maintain constant endothelial fluid shear stress throughout the arterial site
of the circulation [99].

Skeletal muscle contraction is a typical bone-loading event and has been
suggested [137–139] as a stimulus. Frequency is one of the critical parameters
of the muscle stimulus and it serves to differentiate this stimulus from the direct
mechanical loads of ambulation which occur at a frequency of one to two Hz.
The frequency of contracting muscle in tetanus is from 15 Hz to a maximum
of 50 - 60 Hz in mammalian muscle [126]. It has been observed [123, 166]
that these higher order frequencies, significantly related to bone adaptational
responses, are [169] “. . . present within the (muscle contraction) strain energy
spectra regardless of animal or activity and implicate the dynamics of muscle
contraction as the source of this energy band.” The close similarity of muscle
stimulus frequencies to bone tissue response frequencies is noted below.

Strain Amplification

There is a fundamental paradox in the physiology of bone mechanosensa-
tion. The paradox (Figure 5) is that the strains applied to whole bone (i.e.,
tissue level strains) are much smaller (0.04 % to 0.3 %) than the strains (1 %
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Figure 5. This figure illustrates the paradox addressed in mechanosensation. (a) An illustra-
tion of the small strains that the whole bone experiences, strains that are in the range 0.04 to 0.3
percent and seldom exceed 0.1 percent. The last two panels, (b) Photomicrograph of osteocytes
encased in bone matrix (c) Osteocyte in lacuna, illustrate that large strains (1 to 10 percent) on
cell membrane are needed to induce biochemical intracellular response in vitro. The paradox
in the bone mechanosensing system is that the strains that activate the bone cells are two orders
of magnitude larger than the strains to which the whole bone organ is subjected .Previously
published in You et al. (2001).

to 10 %) that are necessary to cause bone signaling in deformed cell cultures
[55, 167]. Osteocytes (Figure 2) are believed to be the critical mechanical
sensor cells [30, 18], although the mechanism by which osteocytes perceive
mechanical load is not known. One widely held idea is that cell membrane
stretch occurs as a direct result of surrounding tissue deformation. If this is the
case, then strain on osteocyte membranes should be comparable to the bone
tissue strain. However, in vitro studies show that in order to induce any cel-
lular response by direct mechanical deformation of bone cells, deformations
need to be one to two orders of magnitude larger than the bone tissue strains
normally experienced by the whole bone in vivo [209, 17]. Similar cell strain
magnitudes are needed to activate fibroblasts and chondrocytes(15 %) [4]sug-
gesting that in their sensitivity to mechanical strain, osteocytes may not be dif-
ferent from other connective tissue cells. However, in bone the larger strains
needed to stimulate osteocytes cannot be derived directly from matrix deform-
ations, as they would cause bone fracture. Thus, in bone there is an inherent
contradiction between material and biological stimulation requirements. A hy-
pothesis and model to deal with this contradiction is given in You et al. [209].

The flow of bone fluid due to mechanical loading through the lacuno-
canalicular system is an important aspect of the BP model considerations
presented in You et al. [209]. Between the osteocyte cell process membrane
and canalicular wall is the pericellular space through which the bone fluid flows
(Figure 2, Figure 3). A pericellular organic matrix appears to fill the space
[3, 174]. This matrix is supported by transverse fibrils [185] that appear to
anchor and center the cell process in its canaliculus. When a whole bone is
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deformed, the BP model shows that the deformation-induced pressure gradient
will cause bone fluid to flow in the pericellular space of the lacunar-canalicular
system [198, 199, 31, 209, 70, 128] and induce a drag force on the matrix
fibers.

Figure 6. Schematic model showing the structure of the PM, the intracellular actin cyto-
skeleton inside the process and the connection between the PM and the IAC. (a) transverse
cross-section of canaliculus showing the fluid annular shape of the region and transverse (ra-
dial) pericellular fibers. (b) longitudinal cross-section before and after the transverse elements
are deformed by the flow. (c) schematic of the cell process cytoskeletal structure in longitudinal
axial section used to estimate the Young’s modulus in the radial (vertical) direction. Since the
length of the cell process is 300 times its radius, it is considered infinite in the longitudinal (hori-
zontal) direction. The axial actin filaments shown are modeled as continuous infinite beams with
two types of loadings depending on whether the actin filaments are peripheral or interior. The
small vertical arrows indicate the direction of the loading. The (fimbrin) links between these
infinitely long beams are considered to be rigid. (d) Force balance on a transverse element.
Previously published in You et al. (2001).

The effect of fluid drag forces on the pericellular matrix and its coupling to
the intracellular actin cytoskeleton and the strain amplification that results from
this coupling, was examined in You et al. [209]. The fluid drag on an attached
pericellular matrix causes a circumferential (hoop) strain in the membrane-
cytoskeleton of the cell process. The BP model considerations in You et al.
[209] show that, for the loading range 1 to 20 MPa and frequency range 1-20
Hz, it is, indeed, possible to produce cellular level strains in bone that are up
to 100 fold greater than normal tissue level strains (0.04% to 0.3 %). Thus,
the strain in the cell process membrane due to the loading can be of the same
order as the in vitro strains measured in cell culture studies where intracellular
biochemical responses are observed for cells on stretched elastic substrates.
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An idealized model for an individual canaliculus with its central cell process
is a tube containing a centrally positioned osteocyte process and its surround-
ing fluid annulus filled with a mesh-like pericellular matrix is shown in Figure
6. For the pericellular component, only two structural elements are critical
for this mechanical model: 1) a space-filling pericellular matrix with a fiber
spacing D that is sufficiently small, and 2) transverse fibrils which tether the
cell process to the canalicular wall. From a mechanics point of view, any mat-
rix, which has these two characteristics, should function equivalently, although
the degree of strain amplification will change with the fiber spacing D. There is
growing evidence to support this basic structure. First, a space-filling pericellu-
lar matrix surrounding osteocytes is well-established [174, 3, 185–1]. Second,
transverse tethering elements were first clearly identified in Fig.3 [185]. The
pericellular space surrounding the osteocyte process varies from 14 nm to 100
nm [27, 200, 104], depending on species, age, age of osteocyte, histological
bone type, skeletal location etc. EM studies by You et al.[210] on adult mice
indicate a pericellular space of 30-50 nm. You et al.[210] also observed that the
cell process is invariably located at the center of the canalicular cross-section
suggesting that the transverse fibrils are tension elements that anchor and pos-
ition the cell process within the canaliculus.

Figure 7. Strain amplification: A plot of the strain amplification ratio er as a function of the
load frequency for different load magnitudes. Strain amplification ratio is defined as the ratio of
the hoop strain in the cell process membrane to the bone surface strain at the osteonal lumen. e
is the strain on the whole bone; s is the load on the whole bone. Previously published in You et
al. (2001).

Both albumin and proteoglycan exist in the pericellular space [174, 155].
The effective diameter of albumin is approximately 7nm, similar to the spa-
cing of glycosaminoglycans (GAG) side chains along a proteoglycan monomer
[16]. The BP model [198, 199, 31] suggested that the value of pore size leads
to shear stresses of 0.5 to 3.0 Pa for mechanical loads in the physiological range
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and good agreement with the experimental data for the relaxation time of stress
generated potentials (SGP) in bone under four point bending [177, 178, 180].
A pericellular matrix with a most likely pore size of 7nm was assumed for the
BP model considerations in You et al. [209].

Finally, the matrix must be attached to the cell process and the canalicular
wall in order for the drag force to be transmitted to the membrane and its un-
derlying intracellular actin cytoskeleton. If such linker molecules are present,
drag forces exerted on the matrix fibers will produce a tensile stress on these
linker molecules that, in turn, will produce radial (hoop) strain in the intracel-
lular actin cytoskeleton as schematically shown in Figure 6. Possible candid-
ates for these attachment molecules are CD44, laminin, and various integrins.
[64, 149].

Osteocyte processes contain a space-filling actin bundle [103, 189], whose
actin filaments are cross-linked at regular intervals along the axis of the process
by a linker molecule recently identified as fimbrin [189] as shown in Figure 6c.
The axial actin filaments are six nm in diameter. Fimbrin is also found in in-
testinal microvilli [63]as well as non-intestinal cell microvilli [12]. The typical
spacing of fimbrin cross-linked actin filaments in microvilli is approximately
25 nm [23]. This spacing is consistent with the EM observation in [103, 189]
for an osteocyte process.

The strain amplification ratio er is defined as the ratio of the hoop strain in
the cell process membrane to the bone surface strain at the osteonal lumen.
The effect of frequency on the strain amplification ratio at different loading
magnitudes is shown in Figure 7, where the strain amplification ratio is plotted
against the loading frequency from 1 to 20 Hz. The hoop strain is calculated
at the position of maximum flow or pressure gradient, which is located at the
surface of the Haversian canal. Thus, the strain amplification ratio shown in
Figure 7 can be considered as an upper bound. The curves show a monotonic
increase in the amplification ratio as a function of frequency for a prescribed
loading. One observes that the amplification ratio varies from 19 to 122 and
depends significantly on the magnitude of the loading. When the loading mag-
nitude is one MPa, corresponding to 50 mstrain at the osteonal lumen, the strain
amplification ratio er is 122 at 20 Hz. For this loading the cell process strain is
0.68 percent. For a 20 MPa load at 20 Hz, er = 44 and the cell process strain is
4.9 percent. The corresponding values of er at 1 Hz for a 1 and 20 MPa load are
51 and 19 and the corresponding strains are 0.29 and 2.1 percent, respectively.
Strains of the order of 0.3 percent or greater fall in the range where cellular
level biochemical responses have been observed in vitro in four point bending
[160].
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Mechanosensation in bone: Reception and transduction

The osteocyte has been suggested as the stimulus sensor, the receptor of
the stimulus signal [30]; histologic and physiologic data are consistent with
this suggestion [3–1, 112]. The placement and distribution of osteocytes in
the CCN three-dimensional array is architecturally well suited to sense de-
formation of the mineralized tissue encasing them [112]. Since only a popu-
lation of cells, and not an individual receptor [50], can code unambiguously,
the osteocytes in the CCN are potential mechanoreceptors by virtue of their
network organization. Osteocytic mechanotransduction may involve a number
of different processes or cellular systems. These processes include stretch- and
voltage-activated ion channels, cyto-matrix sensation-transduction processes,
cyto-sensation by fluid shear stresses, cyto-sensation by streaming potentials
and exogenous electric field strength. Each of these processes or cellular sys-
tems is discussed below.

Stretch- and voltage-activated ion channels

The osteocytic plasma membrane contains stretch-activated ion channels
[18, 72, 48, 102, 75], vbR133,vbR61 that are also found in many other cell
types [171, 173]. When activated in strained osteocytes, they permit passage
of certain ions [171–173], including K+, Ca2+, Na+ and Cs+. Such ionic flow
may, in turn, initiate cellular electrical events ; e.g., bone cell stretch-activated
channels may modulate membrane potential as well as Ca2+ ion flux [18, 77].
Rough estimates of osteocytic mechanoreceptor strain sensitivity have been
made [30], and the calculated values cover the morphogenetically significant
strain range of 0.1 % to 0.3 % in the literature [111, 167, 168]. This appears to
be too low a strain to open a stretch-activated ion channel.

As in most cells, the osteocytic plasma membrane contains voltage-activated
ion channels, and transmembrane ion flow may be a significant osseous
mechanotransductive process [24, 162, 51, 90]. It is also possible that such
ionic flow generates osteocytic action potentials, capable of transmission
through gap junctions [183].

Cyto-matrix sensation-transduction processes

The mineralized matrix of bone tissue is strained when loaded. Macro-
molecular mechanical connections between the extracellular matrix and the
osteocytic cell membrane exist and these connections may be capable of trans-
mitting information from the strained extracellular matrix to the bone cell nuc-
lear membrane. The basis of this mechanism is the physical continuity of the
transmembrane integrin molecule, which is connected extracellularly with the
macromolecular collagen of the organic matrix and intracellularly with the
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cytoskeletal actin. The latter, in turn, is connected to the nuclear membrane
[185, 85, 197, 68, 164, 26, 52, 45, 186, 176, 127, 22, 88, 91]. It is sugges-
ted that such a cytoskeletal lever chain, connecting to the nuclear membrane,
can provide a physical stimulus able to activate the osteocytic genome [95],
possibly by first stimulating the activity of such components as the c-fos genes
[95, 197, 176, 192, 175, 208, 194, 78, 158, 115, 94].

Cyto-sensation by fluid shear stresses

An hypothesis concerning the mechanism by which the osteocytes housed
in the lacunae of mechanically loaded bone sense the load applied to the bone
by the detection of dynamic strains was suggested in [198, 199, 31]. It was pro-
posed that the osteocytes are stimulated by relatively small fluid shear stresses
acting on the membranes of their osteocytic processes. A hierarchical model
of bone tissue structure that related the cyclic mechanical loading applied to
the whole bone to the fluid shear stress at the surface of the osteocytic cell
process was presented in [198, 199, 31]. In this model the sensitivity of strain
detection is a function of frequency; in the physiological frequency range (1-20
Hz), associated with either locomotion (1-2 Hz) or the maintenance of posture
(15-30 Hz), the fluid shear stress is nearly proportional to the product of fre-
quency and strain. Thus if bone cells respond to strains on the order of 0.1 %
at frequencies of one or two Hz, they will also respond to strains on the order
of 0.01 % at frequencies of 20 Hz. The fluid shear stresses would also strain
the macromolecular mechanical connections between the cell and the extra-
cellular bone matrix mentioned in the section above; thus fluid shear stress is
also potentially capable of transmitting information from the strained matrix to
the bone cell nuclear membrane, where it can effectively regulate its genomic
functions.

Several investigators [159, 115, 108] have examined other aspects of the
lacunar-canalicular porosity using simple circular pore models and have at-
tempted to analyze its possible physiological importance. These studies have
primarily emphasized the importance of the convective flow in the canaliculi
between the lacunae as a way of enhancing the supply of nutrients between
neighboring osteocytes. Previous studies on the relaxation of the excess pore
pressure have been closely tied to the strain generated potentials (SGPs) asso-
ciated with bone fluid motion. The SGP studies are briefly reviewed below.

The cyto-sensation is actually caused by fluid drag rather than fluid
shear

The model of You et al. discussed in the previous section was used to make a
second interesting prediction. It demonstrated that in any cellular system where
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Figure 8. The relationship between force ratio and average fiber spacing . Note the force ratio
at nm is 19.6. nm is typical of the average spacing of GAG side chains along a core protein and
the effective diameter of the albumin molecule which is known to be sieved by an equivalent
matrix in capillary endothelium. This varies between 5 and 12 nm. The force ratio is defined as
the ratio of the drag force on the fibers to the shear force on the cell process membrane per unit
length of cell process. Previously published in You et al. (2001).

cells are subject to fluid flow and tethered to more rigid supporting structures,
the tensile forces on the cell due to the drag forces on the tethering fibers may
be many times greater than the fluid shear force on the cell membrane. As
proposed in the BP model [198, 199, 31] the fluid flow will also induce shear
stress on the cell process membrane. These stresses have been shown to mech-
anically stimulate bone cells [163, 202]. In the case of the extension [209] of
the BP model for fluid flow in the canaliculus, the drag force on the matrix is
larger than the fluid shear force. The matrix must be attached to the cell pro-
cess and the canalicular wall in order for the drag force to be transmitted to the
membrane and its underlying intracellular actin cytoskeleton.

The force ratio Fr is defined as the ratio of the drag force on the fibers to
the shear force on the cell process membrane per unit length of cell process.
The relationship between the force ratio Fr and the average fiber spacing D is
plotted in Figure 8. Note the force ratio at D = 7 nm is 19.6. D = 7 nm is
typical of the average spacing of GAG side chains along a core protein and the
effective diameter of the albumin molecule that is known to be sieved by an
equivalent matrix in capillary endothelium. This varies between 5 and 12 nm.

Cyto-sensation by streaming potentials

The fact that the extracellular bone matrix is negatively charged due to its
proteins means that a fluid electrolyte bounded by the extracellular matrix will
have a diffuse double layer of positive charges. When the fluid moves, the
excess positive charge is convected, thereby developing streaming currents
and streaming potentials (Figure 9). The cause of the fluid motion is the de-
formation of the extracellular matrix due to whole bone mechanical loading.
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Figure 9. Strain-generated potentials (SGP’s) in bone fluid channels. The source of SGP’s
stems from the fact that the extracellular bone matrix is negatively charged due to negative fixed
charges on carbohydrates and proteins; thus a fluid electrolyte bounded by the extracellular
matrix will have a diffuse double layer of positive charges. When the fluid moves, the excess
positive charge is convected, thereby developing streaming currents and streaming potentials. A
conduction current is thought to balance the convection current. The bulk electrolyte is neutral
with respect to charge. The fluid motion is caused by the pore fluid pressure gradients induced
by the deformation of the extracellular matrix due to whole bone mechanical loading.

Pollack and coworkers [177, 178, 161] have laid an important foundation for
explaining the origin of strain-generated potentials (SGPs). However the ana-
tomical site in bone tissue that is the source of the experimentally observed
SGPs is not agreed upon. It was concluded in [178] that this site was the
collagen-hydroxyapatite porosity of the bone mineral, because small pores of
approximately 16 nm radius were consistent with their experimental data if
a poroelastic-electrokinetic model with unobstructed and connected circular
pores was assumed [177]. However in [31] it was shown that the data presen-
ted in [178, 180, 153] are also consistent with the larger pore space (100 nm) of
the lacunar-canalicular porosity being the anatomical source site of the SGPs
if the hydraulic drag and electrokinetic contribution associated with the pas-
sage of bone fluid through the surface matrix (glycocalyx) of the osteocytic
process are accounted for. The mathematical model presented in [177] and
the BP model [198, 199, 31, 209] are similar in that they combine poroelastic
and electrokinetic theory to describe the phase and magnitude of the SGP. The
two theories differ in the description of the interstitial fluid flow and streaming
currents at the microstructural level and in the anatomical structures that de-
termine the flow. In the BP model this resistance resides in the fluid annulus
that surrounds the osteocytic processes, i.e. the cell membrane of the osteo-
cytic process, the walls of the canaliculi and the glycocalyx (also called the
surface matrix or capsule) that exists in this annular region. In [31] the pres-
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ence of the glycocalyx increases the SGPs and the hydraulic resistance to the
strain-driven flow. The increased SGP matches the phase and amplitude of the
measured SGPs. In the [177] model this fluid resistance and SGP are achieved
by assuming that an open, continuous small pore structure (= 16 nm radius)
exists in the mineralized matrix. The BP model has been developed further
[212–215, 193] and a review of the related poroelastic literature has appeared
[34].

Experimental evidence indicating that the collagen-hydroxyapatite porosity
of the bone mineral is unlikely to serve as the primary source of the SGP is
obtained from several sources, including the estimates of the pore size in the
collagen-hydroxyapatite porosity and permeability studies with different size
labeled tracers in both mineralized and unmineralized bone. Such permeabil-
ity studies clearly show time-dependent changes in the interstitial pathways as
bone matures. At the earliest times, the unmineralized collagen-proteoglycan
bone matrix is porous to large solutes. The studies with ferritin (10 nm in
diameter) in two-day old chick embryo [44] show a continuous halo around
primary osteons five minutes after the injection of this tracer. The halo passes
right through the lacunar-canalicular system suggesting that, before mineraliz-
ation, pores of the size predicted in [178] (radii = 16 nm) can exist throughout
the bone matrix. In contrast, a report of an experiment [132] using this same
tracer in adult dogs also found a fluorescent halo surrounding the Haversian
canals; however this halo was not continuous but formed by discrete lines sug-
gesting that the pathways were limited to discrete pores whose spacing was
similar to that observed for canaliculi. This conclusion is supported by the
studies [190] in the alveolar bone of five-day-old rats using the much smaller
tracer, microperoxidase (MP) (2 nm). These studies clearly showed that the
MP only penetrated the unmineralized matrix surrounding the lacunae and the
borders of the canaliculi (see Fig. 13 of this study) and was absent from the
mineralized matrix. Using more mature rats, the study of [6] confirmed the
failure of the small (2 nm) MP tracer to penetrate the mineralized matrix tissue
from the bone fluid compartments.

Exogenous electric field strength

Bone responds to exogenous electrical fields [154]. While the extrinsic
electrical parameters are unclear, field strength may play an important role
[154, 13]. A significant parallelism exists between the parameters of exo-
genous electrical fields and the endogenous fields produced by muscle activ-
ity. Bone responds to exogenous fields in an effective range of 1-10 mV/cm,
strengths that are on the order of those endogenously produced in bone tissue
during normal (muscle) activity [124].
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Mechanosensation in bone: Signal Transmission

From a communications viewpoint the CCN is multiply noded (each osteo-
cyte is a node) and multiply connected (Figure 4). Each osteocytic process is a
connection between two osteocytes, and each osteocyte is multiply connected
to a number of osteocytes that are near neighbors. Cell-to-cell communication
is considered first below, then some speculative considerations of the ability of
the CCN to compute as well as signal are described. It is useful to note the pos-
sibility that bone cells, like neurons, may communicate intercellular informa-
tion by volume transmission, a process that does not require direct cytological
contact, but rather utilizes charges in the environment [59, 117, 181].

Figure 10. Anatomy of the ear. This figure is adapted from one on the web-
site http://www.bcm.tmc.edu/oto/research/cochlea/Hearing/index.html associated with John S.
Oghalai, M.D. in Otolaryngology at the Baylor College of Medicine.

Cell-to-cell communication

In order to transmit a signal over the CCN one osteocyte must be able to
signal a neighboring osteocyte that will then pass the signal on until it reaches
an osteoblast on the bone surface. There are varieties of chemical and elec-
trical cell-to-cell communication methods [42]. The passage of chemical sig-
nals, such as Ca2+, from cell to cell appears to occur at a rate that would
be too slow to respond to the approximately 30 Hz signal associated with
muscle firing. The focus here is on electrical cell-to-cell communication. A
cable model for cell-to-cell communication in an osteon has been formulated
[212, 213]. The spatial distribution of intracellular electric potential and cur-
rent from the cement line to the lumen of an osteon was estimated as the fre-
quency of the loading and conductance of the gap junction were altered. In
this model the intracellular potential and current are driven by the mechan-



20 Physicochemical and Electromechanical Interactions

ically induced strain generated streaming potentials (SGPs) produced by the
cyclic mechanical loading of bone. The model differs from earlier studies [76]
in that it pursues a more physiological approach in which the micro-anatomical
dimensions of the connexon pores, osteocytic processes and the distribution of
cellular membrane area and capacitance are used to quantitatively estimate the
leakage of current through the osteoblast membrane, the time delay in signal
transmission along the cable and the relative resistance of the osteocytic pro-
cesses and the connexons in their open and closed states. The model predicts
that the cable demonstrates a strong resonant response when the cable coupling
length approaches the osteonal radius. The theory also predicts that the pore
pressure relaxation time for the draining of the bone fluid into the osteonal
canal is of the same order as the characteristic diffusion time for the spread of
current along the membrane of the osteocytic processes. This coincidence of
characteristic times produced a spectral resonance in the cable at 30 Hz. These
two resonances led to a large amplification of the intracellular potential and
current in the surface osteoblasts, which could serve as the initiating signal for
osteoblasts to conduct remodeling.

Signal processing and integration

When a physical representation of a CCN, such as Figure 1, is viewed by
someone familiar with communications there is often an intuitive response that
the CCN may function as a neural network for processing the mechanical load-
ing stimulus signals being felt over the network. That idea is explored here
with no justification other than shared intuition. A CCN is operationally ana-
logous to an artificial neural network in which massively parallel, or parallel
distributed, signal processing occurs [50, 43, 120].

A CCN consists of a number of relatively simple, densely interconnected,
processing elements (bone cells), with many more interconnections than cells.
Operationally these cells are organized into layers: an initial input, a final out-
put and one or more intermediate or hidden layers. However such networks
need not be numerically complex to be operationally complex [109].

The operational processes are identical, in principle, for all bone cells in all
layers. Each cell in any layer may simultaneously receive several weighted
(i.e., some quantitative measure) inputs. In the initial layer these are the load-
ing stimuli (mechanoreception). Within each cell independently, “. . . all the
weighted inputs are then summed . . . ” [196]. This net sum is then com-
pared, within the cell, against some threshold value. If this liminal value is
exceeded, a signal is generated (mechanotransduction in input layer cells) that
is then transmitted identically to all the hidden layer cells (adjacent osteocytes)
to which each initial layer cell is connected. Similar processes of weighted sig-
nal summation, comparison and transmission occur in these layers until final
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layer cells (osteoblasts) are reached. The outputs of these surface situated cells
regulate the specific adaptation process of each group of osteoblasts [157]. All
neighboring osteoblasts that carry out an identical bone adaptational process
form a communication compartment, a cohort of structurally and operation-
ally similar cells, since all these cells are interconnected by open, functional
gap junctions. At the boundary between such compartments that are carrying
out different adaptational processes, the intervening gap junctions are closed
and are incapable of transmitting information. These boundaries are probably
changing continuously as some of the cells have some down time [188, 93].

Information is not stored discretely in a CCN, as is the case in conventional
computers. Rather it is distributed across all or part of the network, and several
types of information may be stored simultaneously. The instantaneous state of
a CCN is a property of all of its cells and of their connections. Accordingly its
informational representation is redundant, assuring that the network is fault, or
error, tolerant; i.e., one or several inoperative cells causes little or no noticeable
loss in network operations [196].

Figure 11. An exposed cross-section
of the cochlea illustrating its three cham-
bers. Adapted from an illustration on the
website http://www.finchcms.edu/anatomy
/histohome/lectures/ear/sld001.htm.

Figure 12. The organ of Corti. The
organ of Corti is the structure that
partitions the chambers of the cochlea
illustrated in Figure 11. This figure
is adapted from one on the website
http://www.bcm.tmc.edu/oto/research
/cochlea/Hearing/index.html associ-
ated with John S. Oghalai, M.D. in
Otolaryngology at the Baylor College of
Medicine.
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CCNs exhibit oscillation; i.e., iterative reciprocal (feedback) signaling
between layers enables them to adjustively self-organize. This is related to
the fact that CCNs are not preprogrammed, rather they learn by unsupervised
training [56], a process involving the adaptation of the CCNs to the responses
of the cytoskeleton to physical activity [41]. In this way the CCN adjusts to the
customary mechanical loading of the whole bone [111]. In a CCN, structur-
ally more complex attributes and behavior gradually self-organize and emerge
during operation. These are not reducible; they are neither apparent nor pre-
dictable from a prior knowledge of the behavior of individual cells.

As noted above, gap junctions as electrical synapses permit bi-directional
flow of information. This is the cytological basis for the oscillatory behavior
of a CCN. The presence of sharp discontinuities between groups of pheno-
typically different osteoblasts is related also to an associated property of gap
junctions, i.e., their ability to close and so prevent the flow of information
[98, 106]. Significantly, informational networks can also transmit inhibitory
signals, a matter beyond our present scope [116].

It is suggested that a CCN displays the following attributes: Development-
ally it is self-organized and self-adapting and, in the sense that it is epigenet-
ically regulated, it is untrained. Operationally it is a stable, dynamic system,
whose oscillatory behavior permits feedback; in this regard, it is noted that a
CCN operates in a noisy, non-stationary environment, and that it also employs
useful and necessary inhibitory inputs.

The CCN permits a triad of histological responses to a (seemingly) unitary
loading event. Although in this chapter, as in almost all the related literature,
the organization of bone cells is treated as if it existed only in two dimensions,
and as if bone tissue loadings occurred only at certain discrete loci, and that
without consideration of loading gradients, the biological situation is other-
wise. Given such a loading event, a three-dimensional bone volume, gradi-
ents of deformation must exist, and each osteocyte may sense correspondingly
different strain properties. Moreover, it is probable that each osteocyte po-
tentially is able to transmit three different signals in three different directions,
some stimulatory and some inhibitory: such states have not yet been modeled
[142, 143].

A tentative mechanotransduction synthesis

The molecular lever mechanisms that permit muscle function to directly
regulate the genomic activity of strained bone cells, including their phenotypic
expression, when combined together with electric field effects and contraction
frequency energetics, provides a biophysical basis for an earlier hypothesis of
epigenetic regulation of skeletal tissue adaptation [135, 136, 146, 147].



Bones Have Ears 23

Figure 13. Left : An array of hair cells. Right :The movement of a hair cell’s cilia bundle
(left panel) opens ion channels at the tips of the cilia. When the bundle tilts to the right (middle
panel), tip links from the higher cilia pull up the gates of the ion channels on adjoining, shorter
cilia. This (still middle panel) close-up shows how a tip link between two cilia opens an ion
channel on the shorter cilium. Even more highly magnified in the right panel, the open channel
allows ions into the cell. This illustration is by Jennifer Jordan, RCW Communications, Inc.
(adapted from a sketch by James Hudspeth, HHMI, University of Texas Southwestern Medical
Center at Dallas).

It is probable [144, 145] that electrical and mechanical transductive pro-
cesses are neither exhaustive nor mutually exclusive. While utilizing differing
intermediate membrane mechanisms and/or processes, they share a common
final pathway [185]; i.e., both mechanical and electrical transductions result in
transplasma membrane ionic flow(s), creating a signal(s) capable of intercel-
lular transmission to neighboring bone cells via gap junctions [198, 199, 31,
212, 213, 211]. These signals are inputs to a CCN, whose outputs regulate the
bone adaptational processes.

The primacy of electrical signals is suggested here, since while bone cell
transduction may also produce small biochemical molecules that can pass
through gap junctions, the time-course of mechanosensory processes is be-
lieved to be too rapid for the involvement of secondary messengers [18, 201,
21]. As noted above, the passage of chemical signals, such as Ca2+, from
cell to cell appears to occur at a rate that would be too slow to respond to the
approximately 30 Hz signal associated with muscle firing.

Mechanosensation in the auditory system

Hearing works by the ear detecting sound waves, converting them into
neural signals and then sending the signals to the brain.* The ear has three
divisions: the external ear, the middle ear, and the inner ear (Figure 10). The
external ear collects sound waves and funnels them down the ear canal, where
they vibrate the eardrum. Within the middle ear, the eardrum is connected to
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the middle ear bones. These are the smallest bones in the body, and they mech-
anically carry the sound waves to the inner ear. The eustachian tube connects
the middle ear to the upper part of the throat, equalizing the air pressure within
the middle ear to that of the surrounding environment. The inner ear contains
the cochlea. This organ converts sound waves into neural signals. These sig-
nals are passed to the brain via the auditory nerve.

Mechanosensation occurs in the cochlea (Figure 10). A section through
the cochlea is shown in Figure 11. Coiling around the inside of the cochlea,
the organ of Corti (Figure 12) contains the cells responsible for hearing, the
hair cells (Figure 13, left). There are two types of hair cells: inner hair cells
and outer hair cells. These cells have stereocilia or “hairs” that stick out. The
bottom of these cells is attached to the basilar membrane, and the stereocilia are
in contact with the tectorial membrane. Inside the cochlea, sound waves cause
the basilar membrane to vibrate up and down. This creates a shearing force
(Figure 12) between the basilar membrane and the tectorial membrane, causing
the hair cell stereocilia to bend back and forth (Figure 14). The movement of
a hair cellís cilia bundle opens ion channels at the tips of the cilia (Figure 13,
right). When the bundle tilts to the right (middle panel of righthandside of
Figure 13), tip links from the higher cilia pull up the gates of the ion channels
on adjoining, shorter cilia. A close-up shows how a tip link between two cilia
opens an ion channel on the shorter cilium. Even more highly magnified at
the right of Figure 13, the open channel allows ions into the cell. This leads
to internal changes within the hair cells that create electrical signals. Auditory
nerve fibers rest below the hair cells and pass these signals on to the brain.
Therefore, the bending of the stereocilia is how hair cells sense sounds.

Outer hair cells have a special function within the cochlea. They are shaped
cylindrically, like a can, and have stereocilia at the top of the cell (Figure 13),
and a nucleus at the bottom. When the stereocilia are bent in response to a
sound wave, an electromotile response occurs. This means the cell changes in
length. Therefore, with every sound wave, the cell shortens and then elong-
ates. This pushes against the tectorial membrane, selectively amplifying the
vibration of the basilar membrane. This allows us to hear very quiet sounds.

The similarities between the cytoplasmic processes of bones cells and the
stereocilia of hair cells are that they both (1) measure mechanical deforma-
tions (vibrations of a fluid domain), (2) communicate their measurement to a
network, (3) do this with dendritic structures, (4) the dendrites of both cells
are constructed of similar materials (e.g., actin and fimbrin) and (5) the ini-
tial signaling in both cases consists of opening ion channels. While the hair
cells communicate their information to a network that feeds to the brain, the
bones cells connect to a lower level network (CCN) with (potentially) local
decision-making software.
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Abstract We present a method for simulation of collagen gels and more generally for
materials comprised of a fibrillar network. The method solves a representative
microstructural problem on each finite element in lieu of a constitutive equation.
The method captures key features of microstructural rearrangement while main-
taining the ability to perform simulations on the (large) functional length scale.

Keywords: Fiber, Network, Multi-scale Model

Introduction

Hierarchical materials - those that function on the macroscopic scale but
contain a microscopic substructure - present particular modeling challenges
because of the large difference between the functional and structural length
scales. Macroscopic models are necessary to predict function, but purely mac-
roscopic models cannot fully account for structural-level behavior. Models
that account explicitly for the structural level rapidly become intractable on
the functional scale because of the large number of components. Hierarchical
materials are well studied, leading to poroelasticity theory, mixture theory, and
volume averaging theory. All of the treatments consider phase variation in a
smoothed way, with the fraction and phase properties of each phase treated as
continuous on the functional scale even though the phases are discrete on the
structural scale. The resulting equations, in terms of stresses or free energies,
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require constitutive relations for each phase and for interphase coupling.
Homogenization theory is an important technique to convert from the micro-
scopic to macroscopic scale. In homogenization theory, a representative piece
(the "repeat unit") of the microstructure is subjected to test strains. By rigor-
ously solving for the force/stress in the repeat unit, a constitutive law is de-
veloped for the macroscopic level. Homogenization theory has been used for
many biomedical problems, and it has proven to be an invaluable tool. Homo-
genization fomulations exist for cases in which the primary mechanism of load
transfer is between fiber and continuum (as in fiber-reinforced composites), or
when the microstructure is relatively unchanged by the deformations of interest
(as in bone). When the dominant interaction is fiber-fiber and the fiber matrix
rearranges as the material deforms, however, there is no repeat unit or explicit
equation for the stress response, rendering the homogenization formulation, in
current form, insufficient.

Collagen fibers form the structural basis of many tissues, including skin,
artery, and articular cartilage. Also important are tissue equivalents (TEs), first
produced by trapping fibroblasts in a type I collagen lattice [1]. TEs are used
to provide an in vitro model of the in vivo environment. Recently, TEs have
emerged as precursors for artificial tissues [2]. TEs are biocompatible and
highly cellularized, but their use as tissue replacements is limited by strength
considerations.

Early investigators (e.g., [3]) devised continuum constitutive equations de-
scribing fibrillar tissues, providing the foundation for later research. Most the-
oretical treatments of articular cartilage (e.g., [4]) account for many important
features such as interstitial flow, nonlinear elasticity, and osmotic pressure. The
behavior of the underlying collagen network is lumped by a macroscopic con-
stitutive law. This approach restricted the applicability to the range of deform-
ations studied experimentally. There is no good mechanism to relate network
properties (collagen fibril density and orientation) with macroscopic tissue be-
havior or to incorporate collagen fibril damage.

Some researchers have used approximate microscopic descriptions to de-
velop more rigorous macroscopic constitutive laws. A microstructural model
of AC [5] linked the directionality of mechanical stiffness of cartilage to the
orientation of its microstructure. The biphasic composite model of [6] uses an
isotropic fiber network described by a simple linear-elastic equation. A ho-
mogenization method based on a unit cell containing a single fiber and a sur-
rounding matrix was used to predict the variations in AC properties with fiber
orientation and fiber-matrix adhesion. A recent model of heart valve mechan-
ics [8] accounts for fiber orientation and predicts a wide range of behavior but
does not account for fiber-fiber interactions.
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Representative Microstructure Finite Elements

Our approach [9], which we refer to as Representative Microstructure Finite
Elements (RMFE), probes both the structural and the functional length scales
of the material. The method is a variant on standard finite elements in that the
constitutive equation is replaced with a representative microstructural problem
based on the local microstructure within each element (cf. [10]). In the follow-
ing paragraphs, we summarize the major features and recent improvements in
our method and then demonstrate it on a test problem.

We consider a macroscopic model of a two-dimensional, hyperelastic net-
work, incorporating the microstructural details in a systematic manner. The
model equations at equilibrium reduce to stress continuity,

∇ · σ = 0 (1)

where the stress σ is a function only of the displacement u. To obtain the
weak formulation of Eq. 1 we multiply it by a test function w and integrate the
equation by parts over the domain Ω.

∫
Ω

w · (∇ · σ) dV =
∫

δΩ
w · (n · σ) dA −

∫
Ω

(∇w : σ) dV = 0 (2)

where n is the outward normal to the boundary δΩ. At this point, the finite
element method is implemented by restricting w to a finite-dimensional sub-
space of the vector function space. Boundary conditions are introduced in the
standard finite-element manner.

The Microscopic-Scale Problem

A representative microscopic network is introduced within each finite ele-
ment allowing macroscopic strain to be transferred to the network boundaries.
The representative network is designed to capture the essential features of the
collagen mesh in a tissue equivalent - interconnectivity and fiber nonlinearity.
The network within each finite element is chosen so as to be the smallest rep-
resentative unit of the microstructure within the material space of the element.
The fibers in each element are assumed to be independent of those in other
elements. The macroscopic spatial variations are captured by the element-to-
element variations in the network. The representative network is generated
randomly and has these features:

Each intersection of collagen fiber segments is assumed to be a crosslink.

Each segment of a collagen fiber between nodes is free to move inde-
pendently of other segments but may not move through crosslinks.

All segments have the same diameter and material properties.
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Fiber segments are nonlinear, exhibiting an exponential constitutive
equation that makes them much stiffer in tension than in compression.

Having constructed the microscopic mesh, we specify the microscopic problem
based on the macroscopic nodal displacements. The displacements of the ele-
mental boundaries are given by the macroscopic solution (although the internal
microscopic scale displacements are not necessarily affine). The microscopic
problem is to find node positions and segment lengths such that the boundary
nodes are as specified by the macroscopic displacements and the internal nodes
experience no net force. The boundary nodes have displacement specified and
are subjected to a non-zero net force. The next step in the solution process is
to convert those forces into the macroscopic stress tensor.

Stress Averaging

In our current model, the stress is assumed to be constant over the element
(i.e., the stress is treated as piecewise constant on the macroscopic scale). We
therefore assign the macroscopic stress a value equal to the spatial average of
the microscopic stress:

σ =
1
A

∫
A

σ∗dA, (3)

where σ is the macroscopic stress, A is the area of the representative micro-
structural network, and σ∗ is the stress in the microstructural network. The
micro-scale stress σ∗ is difficult to work with explicitly because it is zero in
non-fiber regions and is different on each fiber segment. We therefore intro-
duce a factor of ∇x (which is trivially equal to the identity because it is the
gradient of a vector with respect to itself), integrate by parts, and apply the
divergence theorem (cf. [11]):

∫
A

σ∗ · (∇x) dA =
∫

A
∇ · (σ∗x) dA −

∫
A

x (∇ · σ∗) dA (4)

=
∫

δA
n · (σ∗x) ds −

∫
A

x (∇ · σ∗) dA (5)

where n is the unit normal to the boundary δA. The second term on the RHS
is zero because the microscale network is at mechanical equilibrium, so

σ =
1
A

∫
δA

n · (σ∗x) ds =
1
A

∑
δA

fx, (7)

where f is the force exerted on the boundary by a fiber segment attached thereto
at position x. Summing over the entire boundary and dividing by the area gives
the macroscopic stress from the force and position data.
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Test Problem

To explore the effect of structural changes on mechanical function, we simu-
lated a sample (Figure 1, crudely representing a damaged or scarred tissue) that
was homogeneously aligned horizontally except for the central five elements,
which were isotropic. Figure 1 also shows the calculated deformation of the
sample for 25% stretch. Although the isotropic region contains the same col-
lagen density (by total segment length), it undergoes a 5% greater area change
than the surrounding tissue. In addition, the total force required for 25% stretch
was approximately 5% lower for the case for the "damaged" than for an "un-
damaged" sample in which the internal elements were aligned.

Figure 1. Uniaxial Extension of a Non-Homogeneous Sample. The figure shows simulation
results for uniaxial extension of an initially (a) square sample whose orientation is primarily
left-to-right, except for the central cross-shaped region, which is isotropic. After 25% stretching
(b), the cross-shaped region is deformed more than the surrounding tissue, with roughly a 5%
greater increase in area.

Discussion

We have presented a multi-scale method to simulate a fibrillar structure such
as a collagen tissue equivalent. The method is able to predict macroscopic be-
havior based on microscopic properties, and it also demonstrates the micro-
scopic restructuring that can occur during deformation. Although the method
is computationally demanding, the potential for parallelization is high, and
three-dimensional problems should not be out of reach.

An important issue, particularly in light of the symposium goals, is that of
interstitial flow. The RMFE framework should be compatible with a biphasic
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or mixture-theory approach, in which interstitial flow could be accounted for
by the addition of a Darcy-like term. The question of whether the effect is
best incorporated at the microscopic scale (drag on individual fibrils) or the
macroscopic level (an extra term in the stress balance) is still open.
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Abstract Particulate materials are inherently multiphase. The solid phase includes the
load-carrying granular skeleton and mobile particles. The fluid that fills the
pores may be polar or non-polar, Newtonian or Maxwellian, and either single-
phase or the mixture of non-miscible fluids. Fluids and viscous drag forces
lead to unique phenomena in particulate materials, including the displacement
of mobile particles and formation clogging, particle migration in asymmetric
AC-electric fields, non unique contact angles, and the relative motion of non-
miscible permeating fluids.

Keywords: clogging, contact angle, particle drift, fluid drift

Introduction: Phenomena

Particulate materials are inherently porous, pervious, non-linear and non-
elastic. Interparticle forces determine the mechanical properties of the gran-
ular skeleton, including its strength, stiffness and volume change. The pore
space is filled with a single fluid or mixed fluids. The presence of fluids alters
interparticle forces, sustains various energy coupling mechanisms, changes all
forms of conduction and diffusion properties, and gives rise to various linear
and non-linear phenomena. Table 1 lists some of these processes.

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 45–51.
© 2005 Springer. Printed in the Netherlands.



46 Physicochemical and Electromechanical Interactions

Table 1. Some fluid-related effects in particulate media

Hydrostatic Archimedes buoyancy.
(single-phase fluid) Effective stress - established at the boundary.

Alters interparticle electrical forces
(repulsion, van der Waals attraction, hydration).

Constant hydraulic Hagen-Poiseuille leading to Kozeny-Carman fluid flow.
gradient Effective stress gradient due to viscous drag:
(single-phase fluid) volume and strength changes.

Coupled gradients: chemical, thermal, electrical.
Particle alignment. Fines migration.
Relates to clogging, non-linear flow, sand production.

AC hydraulic Particle alignment (relaxation) and fabric formation control.
gradient Seismoelectric. In electrolytes:
(single-phase fluid) relative size and charge of cations and anions in pore fluid.

In porous medium (even if water is de-ioninzed):
particle size, surface charge, counterions size and charge.
Pressure diffusion.
Liquefaction - fluidization.
Terzaghi-Biot effects including slow P-wave.
Frequency dependency of viscous forces.
Resonance and relaxation. Dispersion-attenuation.
Even at small strains, the presence of fluids
increases attenuation more than 10 times,
both in single and mixed fluid phase.(Kramers-Kroning).
Strain-rate effects on strength and stiffness.

Asymmetric AC Fluid displacement (single and multiphase).
(DC=0) Preventing fingering and percolation in multiphase flow.
Non-linear Mixed Fluid-phase.

Young’s contact angle. Fluid pressure: Laplace and Kelvin.
Capillary interparticle forces affect strength,
stiffness and volume change (shrinkage).
Changes in conduction and diffusion -
Percolation and scaling. Residual saturation.
Mixed fluids exhibit Maxwellian behavior.
Viscous effects triggered by other gradients - Energy coupling.

DC:electro-osmosis. Particle alignment.
AC:electro-seismic. Asymmetric AC-field and particle drift.

Chemo-osmosis.
Thermal consolidation - Desiccation shrinkage.
DC: electro-osmosis. AC: electro-seismic.

The purpose of this paper is to report on three fluid-related phenomena in
particulate materials: fines migration and formation clogging, particle drift in
AC-electric fields, and mixed fluid conditions. Processes are analyzed at the
microscale.
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Table 2. Important relations related to fluid flow in granular media

Re = ρadV

η
Reynold’s number. Ratio between inertial and viscous forces

Fdrag = 3πdηV Stoke’s viscous drag on spherical particle (diameter d,
fluid velocity V ). Applies to Re < 1

Fdrag = 8πLηV Poiseuille’s drag against cylindrical tube
(diameter d, fluid velocity V , Turbulence Re > 2000)

u=
ε0εrζ

η
B Smoluchowski’s electrophoretic particle velocity u in

an electric field E as a function of the zeta potential.
∆.U = Tc( 1

r1
+ 1

r1
) Laplace-Kelvin equation.

= − ρaRT
M

ln P
P0

Difference in fluid pressure ∆.U across two-fluid interface.
Related to surface tension Tc and the curvature radii r1 and r2

cosθ = hcρaE

4Tc
c Contact angle related to capillary rise hc

Parameters and Equations

Salient mathematical expressions related to fluid flow are summarized in
Table 2. The terminal sedimentation velocity is reached when the buoyant
weight balances Stokes’ viscous drag. Likewise, the Kozeny-Carman expres-
sion for flow rate in a pervious medium reflects the balance between the driving
force and Poiseuille’s drag. Viscous drag converts a hydraulic gradient into an
effective stress gradient in the granular skeleton.

The fluid phase that fills the voids between particles can be multiphase,
such as oil-and-water or water-and-air. Molecules at the interface between
the two fluids experience asymmetric time-average van der Waals forces. This
results in a curved interface that tends to decrease in surface area of the in-
terface. The pressure difference between the two fluids ∆µ = u1 − u2 de-
pends on the curvature of the interface characterized by radii r1 and r2, and
the surface tension, TS (Table 2). In fluid-air interfaces, the vapor pressure
is affected by the curvature of the air-water interface as expressed in Kelvin’s
equation. Curvature affects solubility in liquid-liquid interfaces. Unique force
equilibrium conditions also develop near the tripartite point where the interface
between the two fluids approaches the solid surface of a particle. The resulting
contact angle θ captures this interaction.

Flow and Fines Migration – Clogging

The transport of mobile particles within the porous network is called fines
migration and is governed by particle-level forces and geometrical constraints.
In some cases, migrating fines are retained at pore throats, clog the porous
network and produce a severe decrease in permeability. Fines migration and
clogging are relevant in multiple fields ranging from biological filters to pet-



48 Physicochemical and Electromechanical Interactions

roleum recovery. Fines mobilization, retardation, and bridging cause radial
clogging. Each of these mechanisms are briefly discussed next. For more de-
tails see Valdes [3].

Mobilization. Fluid drag can yield particle detachment and mobiliza-
tion. Mobilization depends on the balance among participating particle-level
forces (gravitational and electrical), the magnitudes of which are controlled by
particle size, and electrochemical fluid characteristics.

Retardation. A mobilized particle inherently falls behind the moving fluid
since the drag force experienced by the particle is proportional to the relative
velocity. Hydrodynamic conditions around the tortuous geometry of the pore
space, gravity, inertial effects, high flow velocity and collisions enhance re-
tardation. Retardation increases the local concentration of particles near pore
throats.

Bridging. Migratory particles can be retained at pore throats that are larger
than the diameter of a single particle by forming bridges. However, bridge
formation requires the simultaneous arrival of a sufficient number of particles.
Therefore, retardation is required for bridging.

Radial Clogging. Radial flow towards a well (Figure 1), implies a radial
velocity field that permits gravity retardation in the far field (particles tend to
sediment), and causes inertial retardation in the near field (particles collide
with pore walls). The interplay between these retardation mechanisms renders
a non-homogeneous ring-like clogging pattern at a characteristic distance that
depends on the interplay between the participating phenomena described above
and the hydrodynamic regime.

Drift in Asymmetric AC-electric Field

Electrophoresis is the motion of charged particles relative to the electro-
lyte in response to an applied DC-electric field: the field causes a shift in the
particle counterion cloud, the counterion-diminished end of the particle attracts
other counterions from the bulk fluid, counterions from the displaced cloud dif-
fuse out into the bulk fluid, and the particle migrates. The particle velocity is
predicted by the Smoluchowski equation.

When a low frequency AC electric field is imposed, the particle oscillates
around its mean position and platy particles may become optimally aligned
with the field. At high frequencies, neither particle shift nor alignment takes
place. However, translational movement of dispersed particles can be attained
in an asymmetric AC field (without a DC component). The observed drift is
attributed to the velocity-dependent viscous drag force in relation to double
layer polarization as sketched in Figure 2; for reference, bacteria swim at 0.02-
1 mm/s. For more details see Palomino [2]. The field frequency ω must be low
enough such that ionic concentrations and hydrodynamic fields may adjust to
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Figure 1. Clogging ring formation in experimental radial flow system

Figure 2. Particle drift in asymmetric AC field

changes in the electric field E. A beat function made of two superimposed
harmonics with a phase shift may be conveniently used for these tests.
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Figure 3. Liquid stability in a tilted capillary tube

Mixed Fluid Phase

Most fluids in engineering are Newtonian. However, fluids such as petro-
leum and blood are Maxwellian, that is, the stress tensor is not only a function
of the strain rate but also a function of strain itself. The Maxwellian relaxation
is the ratio between the fluid viscosity and stiffness.

Capillary forces in mixed fluid phase conditions are inversely proportional
to the curvature of the interface. Therefore, menisci introduce elasticity to the
mixed fluid, and mixtures of two Newtonian fluids exhibit global Maxwellian
response. For more details see Alvarellos [1]. his behavior is experimentally
demonstrated with a capillary tube partially filled with a water droplet. The
tube is tilted at an angle β smaller than the critical angle that causes unstable
displacement. Then, a harmonic excitation is applied to the tube in the axial
direction. For each frequency, the amplitude of the vibration is increased until
the water droplet becomes unstable and flows in the capillary. Data in Figure 3
show a minimum required tube velocity between 40 and 50 Hz. This behavior
indicates resonance of the visco-elastic system. The ratio of the relaxation time
and characteristic time for pure viscous effect is larger than 11.64.
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Abstract The high-frequency behaviour of the dynamic permeability is studied. In the
case that the solid-fluid interface appears locally flat, we give a new derivation
for the characteristic lenght Λ. In the case of wedge-shaped intrusions, the clas-
sical approach is modified by an additional higher-order term, which is depend-
ing on the apex angle of the wedge. Precise numerical simulations confirmed
this dependency.

Keywords: Dynamic permeability, pore roughness, numerical simulations

Introduction

By definition, the dynamic permeability k(ω) describes the (linear) response
of a simple incompressible fluid in a porous medium subjected to a harmonic
pressure drop across the sample. This response has been widely studied be-
fore [2, 6, 10], and is involved in many problems and applications. As an
example, the dynamic permeability is the fundamental ingredient to describe
sound propagation in a fluid-saturated rigid-framed porous medium as long as
the wavelength is large compared to the characteristic sizes of pores and grains
in the medium. Relaxing the assumption of a rigid frame, the concept may be
incorporated in the Biot theory.

Under the assumption that the fluid-solid interface appears locally flat if the
viscous skin depth δ is small enough, Johnson et al. [6] obtained the high-
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frequency result

k(ω) =
ε2φ

α∞
(1 − Cε + . . . ). (1)

Here, ε =
√

ν/iω = (1 − i)δ/2 is the complex viscous skin depth parameter,
and φ, α∞, and C are purely geometrical parameters, respectively the porosity,
tortuosity, and C = 2/Λ, where Λ is a pore size parameter characterizing
transport properties of the porous material [6].

We will first clarify the existing discrepancies between the result (1) and the
expression by Sheng & Zhou [9]. Next, we will consider a rugged geometry in
the form of two-dimensional pore channels with wedge-shaped intrusions (see
Fig. 1), and we will show that the high-frequency result becomes

k(ω) =
ε2φ

α∞
(1 − Cε − Cwεw + . . . ), (2)

where the exponent w (1 < w < 2) is related to the apex angle γ (0 < γ < π)
of the wedges:

w =
2π

2π − γ
. (3)

We found that (3) is different from an expression proposed by Achou & Avel-

Figure 1. Geometry of the two-dimensional channel with intrusive wedges (top picture). The
dimensions of the wedges are drawn at the bottom picture.

laneda [1]. A theoretical study and numerical simulations will show that (3) is
the correct expression.
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Conceptual Model

We define the scaled velocity field ṽ, which solves the following oscillating
Stokes flow problem:

ε−2ṽ = −∇p̃ + ∆ṽ + e, ∇ · ṽ = 0, (4)

where e is the unit macroscopic pressure gradient. Moreover, we assume that
ṽ = 0 on the pore surface Sp, and that p̃ is compact, which means that the field
has a constant pore averaged value, i.e., on the average it does not increase or
decrease in the direction of e. The dynamic permeability is, by definition, the
direct pore volume average

k(ω) =
φ

Vp

∫
Vp

ṽ · edV. (5)

Similarly, we define the scaled potential field E which solves the potential
problem

E = −∇Φ + e, ∇ · E = 0. (6)

Here, E · n = 0 on Sp (Neumann type boundary condition), where n is the
unit outward normal from the pore region, and Φ is compact. E can be inter-
preted as the microscopic electric field induced in the pore space when a unit
macroscopic field e is applied, assuming insulating solid phase and uniform
conductivity in the pore fluid. Its pore volume average is directly related to the
tortuosity α∞:

1
α∞

=
1
Vp

∫
Vp

E · edV. (7)

Using integration by parts it is easily verified that for any compact field Φ
there is the orthogonality relation

∫
Vp

w · ∇ΦdV = 0, (8)

for any divergence-free field w having zero normal component on the pore
surface. Thus, the dynamic permeability and tortuosity may be written in equi-
valent form:

k(ω) =
φ

Vp

∫
Vp

ṽ ·EdV, (9)

1
α∞

=
1
Vp

∫
Vp

E2dV. (10)

We now consider the high-frequency limit ε/Lw → 0 of the scaled field
ṽ, where Lw is a characteristic pore size. As argued by [6], the fluid motion
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is given by potential flow except for a boundary layer of thickness δ near the
pore walls. To leading order, we have ε−2ṽ → E and p̃ → Φ in the bulk
potential flow region. A more exact replacement would be ε−2ṽ → E −∇Π
and p̃ → Φ + Π, with Π being a small, O(ε), compact perturbation induced
by the presence of the boundary layer. Assuming that the boundary layer is
small enough so that the walls of the pores appear locally flat, the perturbation
term may be determined by introducing in the analogous electric conductivity
problem a layer of variable conductivity near the pore walls. The variable
conductivity is chosen to generate for the current the know variations of the
tangential components of the velocity field in the boundary layer. When the
pore walls have a non-trivial shape, the divergence-free nature of the current
naturally implies the existence of normal components near the pore walls that
act as a source for the perturbed potential in the bulk. Following the assumption
of locally plane pore walls, the tangential components of the velocity in the
boundary layer may be written to leading order [7]

ε−2ṽ = (1 − e−β/ε)E, (11)

where β is a local co-ordinate measured from the pore walls into the bulk of
the pore. We thus consider the perturbed potential problem (∇ · ṽ = 0)

ε−2ṽ = σ(r)(E −∇Π). (12)

The field ε−2ṽ is the current induced when a unit electric field is applied for a
medium having insulating solid phase and conductivity σ(r) = 1−exp(−β/ε)
in the pore region. Current conservation yields:

∇ · (σ∇Π) = E · ∇σ. (13)

In the limit ε/Lw → 0, only derivatives normal to the pore walls need to be
considered. Straightforward integration yields the following velocity pattern
in the boundary layer:

ε−2ṽ = (1 − e−β/ε)E + εn[1 − (1 + β/ε)e−β/ε]
(

∂Eβ

∂β

)
β=0

. (14)

Setting β/δ → ∞ in (14) and (12), we derive the boundary condition
∂Π/∂β = ε(∂Eβ/∂β)β=0. The velocity field hence determined in the bulk
is (Cortis et al. 2003):

ε−2ṽ = E + εN, (15)

where the perturbation field N is a purely geometrical vector field, accounting
for the presence tangential components in the boundary layer. Now evaluating
the integral (5), the first term ε2φ/α∞ in (1) stems from the leading bulk term
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E in (15) and the constant boundary layer tangential term E in (14). The second
term (ε2φ/α∞)Cε stems from two contributions leading to the new result:

2
Λ

=

∫
Sp

E · edS∫
Vp

E2dV
−

∫
Sp

Φ(∂Eβ/∂β)dS∫
Vp

E2dV
. (16)

The first is a boundary layer contribution related to the tangential components
− exp (−β/ε)E in (14). The second stems from the perturbation field εN [4].
Sheng & Zhou [9] erroneously identified 2/Λ to be the first term on the right-
hand-side of (16), because they used the incomplete replacement ε−2ṽ → E.
Note that in straight pore channels (E = e) the second contribution vanishes
while the first reduces to the pore surface-to-volume ratio Sp/Vp. In general,
both contributions are of the same order of magnitude. It can also be shown
[4] that (16) can be rewritten as

2
Λ

=

∫
Sp

E2dS∫
Vp

E2dV
, (17)

which is the classical relation obtained by [6]. A more compact way to derive
(16), is to use (9) instead of (5). No bulk contribution arises because of the
ortogonality (8) between E and N.

Corrugated Pore Channels

As argued by Achdou & Avellaneda [1], a two-dimensional reasoning is
sufficient to study the singularity. The periodic geometry is depicted in Fig. 1.
The wedge is defined by its apex angle γ. Introducing polar co-ordinates r, θ,
we set the origin r = 0 on the tip of the wedge and count the angle θ from one
side of the wedge. The singular potential field E(r, θ) may be written [7]

Er = Anrn−1 cos nθ Eθ = −Anrn−1 sinnθ, (18)

where A is an amplitude factor and 1
2 < n = π/(2π − γ) < 1. The contri-

bution of the wedges to the integral (9) may be evaluated noting that the ve-
locity field ṽ matches to leading order the value ε2E on the bounding surface
of the potential flow region. Thus, according to (18), the external potential
fields E and ṽ must vary like εn−1 and εn+1, respectively, when integrating
in the boundary layer around the tip of a wedge. Simultaneously, the spatial
extend of this boundary layer around the tip shrinks like ε2. It thus follows
that the wedge contribution to (9) will be O(ε2εn+1εn−1) = O(ε2+2n), which
yields the result (2), (3). Achdou & Avellaneda [1] used (5), which is perfectly
justified as long as the integration is performed over the entire pore volume
consisting of boundary layer and perturbed bulk flow. The former contribution
is O(ε2εn+1) = O(εn+3), and they obtain the relation w = 1 + π/(2π − γ)
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between the exponent w in (2) and the apex angle γ. The perturbed bulk po-
tential flow should also be taken into account, however, and it happens that it
is now a dominant contribution.

Numerical Computations

Numerical computations of the fields ṽ and E were performed for the peri-
odic geometry depicted in Fig. 1. The values for the apex angle γ and the
wedge height h were varied. The Stokes problem was solved using the vari-
ational fromulation of the problem and a N1 Finite-Element code based on a
Uzawa decomposition method. To ensure accuracy, we have used an iterat-
ive automatic method, i.e., the solution is computed on the N1 mesh, next an
a-posteriori estimate of the error is computed, and finally the mesh is locally re-
fined accordingly by means of a Delaunay technique developed by Rebay [8].
Successful use of this refinement method on sharp-edged wedges was reported
by Firdaouss et al. [5]. Once the flow field is know, the dynamic permeability
is computed using (1). Coherent computations of the potentioal field E and
the parameters (7), (17) were obtained using either the Schwartz-Christoffel
transformation technique [3], or the method by [5]. From (2) it follows that
the real part of the dynamic permeability should satify in the high-frequency
limit, Re{k(ω)}/δ3 = A + Bwδw−1, where the constant A is related to the
formation factor α∞/φ and inverse length C , and the constant Bw is related to
w, Cw, and the formation factor. The values of A, Bw, and w can be obtained
by comparison between the high-frequency numerical data for Re{k(ω)}/δ3

and the above theoretical form.
As an example, we show in Fig. 2 the results obtained for the exponent w

when the wedge angle γ varies between 0 and π/2. The wedge height h is set
0.5. In the singular limit of knife-edge intrusions (γ = 0), the value w = 1
indicates the merging of the different terms. For flat surfaces γ = π, the value
w = 2 will be obtained. The computed data are relatively close to the theory,
the Achdou & Avellaneda predictions being plotted for comparison. As com-
pared to the situation in smooth pore channels, the effect of sharp wedges is to
produce a much slower convergence of the high-frequency dynamic permeab-
ility with respect to the Johnson et al. [6] development (1). In these situations,
the development (2) does a much better job.

Summary

Analyzing in detail the fluid velocity patterns in oscillating tube flow, we
have provided a new derivation of the Johnson et al. high-frequency develop-
ment [6] and a new expression of the characteristic length Λ. Two different
contributions to the dynamic permeability are now apparent. One stems from
the boundary layer; another stems from a perturbation potential flow in the
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Figure 2. Dependence of the exponent w on the wedge apex angle γ for h = 0.5. The circles
represent the numerical computations.

bulk, induced by the presence of the boundary layer. This understanding was
applied to derive the correct form of the leading higher-order terms for sharp-
edged geometries. Numerical computations substantiated this derivation.
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Abstract In this paper the effect of ultrasound on flow through porous media has been
investigated both experimentally and theoretically. Ultrasounds (20 and 40 kHz)
have been proved to increase the flow rate through porous media. Two effects
have been found of relevance. Decrease in viscosity due to dissipation of acous-
tic waves and acoustic streaming. The two effects have been modeled and those
models compared with experimental data.

Keywords: Ultrasounds, temperature effect, acoustic streaming.

Introduction

Fouling of the near wellbore region of an oil reservoir can lead to a dramatic
decrease in oil productivity. Different techniques, such as acid treatment and
fracturing of the reservoir, have been developed to remove the fouling particles
and restore the initial permeability. These techniques have negative side ef-
fects: they are expensive, dangerous, and environment unfriendly. Therefore a
new technique has been proposed and investigated: the irradiation with high-
frequency acoustic waves of the near wellbore region. However the results of
the new technique are rather variable: in some cases an increase in productiv-
ity is recorded while in other cases no effect is measured. A more fundamental
investigation of the ultrasonic cleaning technique is needed. However the ef-
fect of ultrasonic waves on fluid flow through porous material is still not fully
understood and needs attention before considering the effect of acoustic waves
on the removal of fouling particles. Therefore, in this paper we present the
results of a study of the influence of high-frequency acoustic waves on the

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 61–66.
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flow of a liquid through a porous material without fouling particles. In the re-
view article by [2] several mechanisms have been proposed for the influence
of acoustic waves on the flow through a porous material. They mention, for
instance, the reduction in adherence between pore wall and liquid, acoustic
streaming, acoustic cavitation, in-pore turbulence, viscosity decrease due to
energy dissipation, etc. [1] have developed a model based on peristaltic liquid
transport caused by deformation of the pore walls due to the traveling acoustic
waves. However no certainty exists as to which mechanism is the correct one.

In this paper we report on a detailed experimental and theoretical investiga-
tion of the influence of acoustic waves on laminar liquid flow through the Berea
sandstone. We focus our investigation on Berea sandstone, which is represent-
ative for the sandstone of an oil reservoir, with permeability 100 to 300 mD
and on acoustic frequencies below the critical frequency [3].

Description of the Experiments

The experiments were carried out in the set-up shown in Fig. 1. The cores
that were used for the experiments were cylindrically shaped Berea sandstone
samples. The length of the cores was 20 cm and the diameter 7.62 cm. The
porosity was about 0.25. The initial permeability was 100-300 mD for all
samples. During an experiment a core was placed in a rubber sleeve to keep it
fixed during the experiment. It was then placed in a steel vessel in which down-
hole reservoir conditions of up to 150 bars and 100◦C were simulated. An
acoustic horn was placed at one end of the core (see Fig. 1). The high pressure
in the vessel made it possible to avoid cavitation. For pressures lower than
100 bars the influence of cavitation becomes noticeable. The space between
the vessel and sleeve, which was filled with water, was pressurized to 180 bars
to make the rubber sleeve completely seal off.

There were four pressure measurements, two along the core, at 2.54 cm and
10.70 cm, and two at both ends of the core (see Fig. 1). dP1 is the pressure drop
over the first part of the core sample, dP2 the pressure drop over the middle part
and dPc the total pressure drop over the core. The pressure drop over the third
part dP3 can be calculated in the following way dP3 = dPc − (dP1 +dP2). To
measure the temperatures T1 and T2 at two locations in the core we installed
two thermocouples at the sidewall of the porous medium, through the rubber
sleeve (see Fig. 1). Also the temperatures at the front and back sides of the core
were measured. The data were sent to a digital data recorder and processed on
a computer. In front of the core an acoustic horn of 20 or 40 kHz was placed.
A microphone was placed at the end side of the core. It was used to measure
the amplitude of the acoustic signal after passage through the core. In this way
the damping of the signal was determined during the experiments.
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Figure 1. Experimental set-up.

Figure 2. Pressure drop evolution for the middle part of the core (dP2, in Fig. 1) during
acoustic irradiation. The acoustic power is 25% of the maximum power (2 kW).
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Figure 3. Pressure drop evolution with time across the first and the second part of the core
(dP1 and dP2, in Fig. 1): comparison between the experimental measurements and the theoret-
ical predictions.

In order to investigate the effect of high-frequency acoustic waves on the
flow of a brine through the sandstone the following procedure was followed: 1)
we impose a certain flow rate of the liquid by means of a pump and measure the
pressures and temperatures inside the core, 2) the acoustic irradiation is applied
by switching on the acoustic horn, and 3) the pressures and temperatures in
the core are again measured and compared with the initial ones. In Fig.2 an
example is given of the measured pressure drop over the middle part of the core
as function of time during such an experiment. The pressure drop decreases
about 20% during acoustic irradiation. When the acoustic horn is switched off,
the effect disappears again. So the acoustic waves decrease the pressure drop
in case of an applied flow rate, or the acoustic waves increase the liquid flow
rate in case of an applied pressure gradient. In the next section we will study
this interesting phenomenon theoretically in order to find an explanation.

Theoretical Explanation

The velocity, pressure and temperature of the liquid inside the core can be
calculated from the following set of equations:

∂v

∂x
= 0, (1)
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Figure 4. Temperature evolution with time at two distances from the front part of the core
as indicated in Fig. 1: comparison between experimental measurements (continuous lines) and
theoretical predictions (broken lines).

ρf

φ

∂v

∂t
= −∂p

∂x
− µ(T )

K
v + Smom, (2)

(φρfcf + (1 − φ)ρpcp)
∂T

∂t
+ ρfcfv

∂T

∂x
= λ

∂2T

∂x2
+ Stherm, (3)

where

Stherm =
∂I

∂x
Smom = cfast,slow

∂M

∂x
, (4)

I = Ifast,0(1 − e−2αfastx) + Islow,0(1 − e−2αslowx), (5)

M =
I

c2
fast,slow

. (6)

Moreover, v is the fluid velocity, ρf and µ are the density and the viscosity
of the fluid, respectively; φ and K are porosity and permeability of the core;
cf,s are specific heat of the fluid and of the solid respectively; cfast,slow are the
sound propagation speed of the fast and slow waves; Ifast,slow are the intensit-
ies of the fast and slow waves, while αfast,slow are their damping coefficients.
We use an effective medium approach for the liquid, describing the effect of
the acoustic waves as source terms. There are two source terms. First there
is the heat source term Stherm, which is caused by the quick damping of the
acoustic waves in the porous material. However, a traveling acoustic wave has
not only energy but also momentum. So when the wave dissipates its energy, it
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will also loose its momentum which is transferred to the liquid Smom. Eq. (1)
is the continuity equation; the liquid is considered as incompressible. Eq. (2) is
the momentum equation for the fluid; it is an extension of the Darcy equation.
Eq. (3) is the temperature equation. The source terms are given by Eqs.(4), (5)
and (6).

These equations have been used to calculate the effect of the high-frequency
acoustic waves on the pressures and temperatures of the liquid inside the core.
A typical example of a comparison between experimental measurements and
theoretical predictions for pressures and temperatures are shown in Figs. 3
and 4 respectively. The agreement is rather good.

Discussion

During the evaluation of our calculations we noticed, that the dissipation
of the acoustic waves has an important influence on the temperature of the
liquid. The dissipation caused an increase of the liquid temperature, which in
its turn caused a decrease of the liquid viscosity and, as a result, the pressure
gradient over the core decreased at constant liquid flow rate. This phenomenon
is completely responsible for the pressure drop effect. It is a measurable effect
and has to be taken into account when studying acoustic irradiation of porous
materials. From the evaluation of the calculations we could also conclude,
that the momentum transfer of the acoustic waves to the liquid, i.e. acoustic
streaming, has a negligible effect on pressures and temperatures of the liquid,
although the effect is measurable.
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Abstract Materials like soft biological tissues undergo large viscoelastic deformations
during the swelling process. Following this, it is the goal of this contribution
to merge the advances of finite viscoelasticity laws and the state of the art in
electrochemical swelling theories within a well-founded multiphasic concept.
The numerical treatment is carried out fully 3-d in the framework of the FEM.
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Multiphasic Formulation

The Theory of Porous Media (TPM) is a macroscopic continuum theory
which is based on the theory of mixtures and the concept of volume fractions.
For more details see [1] and citations therein.

Constituents, volume fractions and densities

Proceeding from a binary mixture consisting of solid and fluid constituents
ϕα denoted by α = {S, F}, the solid phase is extended by incorporating
the volume free fixed charges ϕfc. Furthermore, the interstitial fluid ϕF is
assumed to be composed of three components ϕβ , namely the liquid solvent,
the cations and the anions, in the following indicated by β = {L, +, −}.
By introducing the volume fractions nα = dvα/dv, the saturation constraint
yields ∑

α

nα = nS + nL + n+ + n−︸ ︷︷ ︸
nF

= 1 . (1)
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The introduction of the volume fractions motivates the definition of two dens-
ity functions, the effective density ραR = dmα/dvα and the partial density
ρα = dmα/dv, which relate the mass mα of ϕα to its volume vα and to the
bulk volume v. The density functions are coupled by ρα = nαραR. Fur-
thermore, ρβ = nF cβ

m Mβ
m denotes the partial density of ϕβ [5]. Herein, the

concentration cβ
m = dnβ

m/dvF relates the moles nβ
m to the volume vF , and the

molar mass Mβ
m = dmβ/dnβ

m relates the mass mβ to the moles.

Kinematics

Following the idea of superimposed continua, each constituent follows its
individual motion χα(Xα, t) and has its own velocity field with respect to
different reference positions Xα:

x = χ(Xα, t) ,
′
xα=

dαχα(Xα, t)
dt

. (2)

Therein, ( · )′α denotes the material time derivative with respect to ϕα.
The model under consideration incorporates seven independent fields,

namely the solid displacement uS = x − XS , the seepage velocity wF =
′
xF − ′

xS , the relative ion velocities wγ =
′
xγ − ′

xS , the entire fluid pressure p
and the ion concentrations cγ

m. Herein, γ = {+, −} only indicates the mobile

ions. For the liquid solvent, it is assumed that
′
xL ≈ ′

xF , i. e. , wL ≈ wF .

Balance relations

Proceeding from materially incompressible constituents without any mass
exchanges due to chemical reactions, volume balances for the constituents ϕα

and concentration balances for the components ϕβ are introduced:

(nα)′α + nαdiv
′
xα= 0 , (nF cβ

m)′β + nF cβ
mdiv

′
xβ= 0 . (3)

The volume balance of the charged solid and of the fixed charges can be integ-
rated analytically leading to [4]

nS = nS
0S det F−1

S , cfc
m = cfc

m0S

nF
0S

nF
det F−1

S , (4)

where nS
0S , nF

0S = 1 − nS
0S and cfc

m0S are initial values and FS is the material
deformation gradient. Following Truesdell’s metaphysical principles, the mix-
ture volume balance can be obtained as the sum of the partial volume balances:

(nS + nF )′S = div [(uS)′S + nFwF ] = 0 . (5)

For the numerical implementation, the component concentration balances are
rewritten in terms of the solid motion leading to

nF (cβ
m)′S + cβ

m div (uS)′S + div (nF cβ
mwβ) = 0 . (6)
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Note that under the assumptions cL
m = const. and {n+, n−}�nL, the volume

balance of the liquid component ϕL is equivalent to that of the entire fluid.
Moreover, the quasi static momentum balances are given by

0 = div Tα + ρα b + p̂α . (7)

Therein, Tα = (Tα)T are the symmetric partial Cauchy stress tensors, ρα b
represent the body forces and p̂α are the momentum productions, where p̂S +
p̂F = 0 must hold due the overall conservation of momentum.

Constitutive equations

To close the set of governing equations, additional constitutive relations
must be introduced. Following the general effective stress principle, one finds

Tα = −nαP I + Tα
E , p̂F = P grad nF + p̂F

E , (8)

where the Lagrangean multiplier P maintains the incompressibility condition.
For the so-called extra quantities ( · )E , some further constitutive assumptions
are needed. From thermodynamical considerations, it follows that

Tα
E =−nα

∑
β

µβ
F I+Tα

E mech., p̂F
E =

∑
β

µβ
F grad nF − (nF )2γFR

kF
wF , (9)

where µβ
F are the electrochemical potentials of ϕβ per fluid volume [J/m3] and

Tα
E mech. is the purely mechanical part of Tα

E , where, a priori, TF
E mech. ≈ 0.

Moreover, γFR is the effective fluid weight and kF denotes the Darcy per-
meability which may depend on the deformation state [2]. Following this, one
can introduce the entire (hydraulic and osmotic) fluid pressure as p = P + π,
where π :=

∑
β µβ

F is the osmotic pressure.
In finite viscoelasticity, it is convenient to proceed from a multiplicative

split of the solid deformation gradient FS = FSe FSi into elastic and in-
elastic parts. Furthermore, from rheological considerations, one obtains the
ansatz of a decomposed solid extra Kirchhoff stress τS

E mech.(FS ,FSe) =
τS

EQ(FS) + τS
NEQ(FSe) into equilibrium parts (Index EQ) describing the basic

elasticity and non-equilibrium parts (Index NEQ) vanishing in the thermody-
namic equilibrium, where τS

E mech. = JS TS
E mech., where JS = det FS .

Proceeding from an Ogden-type material formulation, which is extended
towards an inelastic porous media application, volumetric extension terms are
developed which describe the finite volume change including the concept of
a volumetric compaction point. Thus, the equilibrium part of the mechanical
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solid extra stress can be obtained by

τS
EQ = µS

0

3∑
j=1

3∑
k=1

µ∗
k0

(
λ

αk0/2
j − 1

)
Nj+

+
ΛS

0

γ0−1+ γ0+1

(1−nS
0S)2

(
J

γ0
S − JS (1 − nS

0S)γ0

(JS − nS
0S)γ0+1

+
JS nS

0S

1 − nS
0S

)
I ,

(10)

whereas the non-equilibrium part is computed from

τS
NEQ = µS

3∑
j=1

3∑
k=1

(µ∗
k)

[
λ

αk/2
ej − 1

]
Nej +

+
ΛS

γ − 1 + γ+1
(1−nS

i )2

[
(JSe)γ−

JSe

(
1 − nS

i

)γ

(
JSe − nS

i

)γ+1 +
JSe nS

i

1 − nS
i

]
I .

(11)

In (10) and (11), λj are the eigenvalues of the Cauchy-Green deformation
tensors CS = FT

S FS or BS = FS FT
S , λej are the eigenvalues of the elastic

Cauchy-Green deformation tensors CSe = FT
Se FSe or BSe = FSe FT

Se and
Nj = ∂λj/∂BS and Nej = ∂λej/∂BSe denote the eigentensors correspond-
ing to the eigenvalues λj and λej . Furthermore, µS

0 and µS are the first macro-
scopic Lamé constants and µ∗

k0, αk0 and µ∗
k, αk are the dimensionless Ogden

parameters. Moreover, in the volumetric extension terms, ΛS
0 and ΛS are the

second Lamé constants, γ0 and γ are parameters that influence the volumetric
non-linearity, JSe = det FSe is the determinant of the elastic part of the de-
formation gradient, and nS

i = nS
0S det F−1

Si is the inelastic solidity with respect
to the intermediate configuration [2].

The inelastic strain as an internal state variable is obtained from a linear
evolution equation formulated with respect to the intermediate configuration:

D̂Si =
4

D̂−1 τ̂S
NEQ ,

4

D̂−1 =
1

2ηS
(I ⊗ I)

23
T − ζS

2ηS(2ηS + 3ζS)
(I ⊗ I) . (12)

Therein,
4

D̂−1 is the positive definite, isotropic, fourth order viscous compli-
ance, where ηS and ζS are the macroscopic viscosity parameters, D̂Si is the
inelastic solid deformation rate and τ̂S

NEQ = F−1
Se τS

NEQ FT−1
Se is the correspond-

ing non-equilibrium stress tensor. Furthermore, the superscript ( ·̂ ) indicates
the belonging to the intermediate configuration.

To solve equations (9), the molar electrochemical potentials [J/mol] of the
fluid components are needed which are given by

µL
m = µL

m0 + R θ ln
cL
m∑

β cβ
m

, µγ
m = µγ

m0 + R θ ln cγ
m + zγFξ . (13)

These terms are related to µβ
F via µβ

m = µβ
F /cβ

m. Moreover, µβ
m0 are the initial

chemical potentials of the components, R is the universal gas constant, θ is the
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absolute Kelvin’s temperature, zγ are the valences of the ions, F is the Faraday
constant and ξ is the electrical potential.

Interstitial fluid flow, ion diffusion and osmotic pressure

The interstitial fluid flow is described by an extended Darcy filter law via

nFwF = − kF

γFR

(
grad P − ρFR b +

∑
β

grad µβ
F

)
, (14)

whereas the ion diffusion is governed by an extended Nernst-Planck equation

cγ
mwγ = −Dγ

[
grad cγ

m + zγcγ
m

F

R θ
grad ξ

]
+ cγ

mwF . (15)

Therein, nF wF is the so-called filter velocity. Note that cγ
mwF is added to the

ion velocities to get the velocities relative to the solid motion.
To describe macromolecular solutions, the Donnan theory is used in form

of the Donnan equation
c+
m c−m = c̄+

m c̄−m . (16)

Therein, the quantities c̄+
m and c̄−m indicate the ion concentrations of the ex-

ternal solution. The osmotic pressure π is computed from the osmolarity dif-
ference of the internal and the external solution:

π = R θ [(c+
m + c−m) − (c̄+

m + c̄−m)] . (17)

Reduction to monovalent solutions

For simplicity, the model equations are reduced for the description of mono-
valent salt solutions. In particular, the model is verified for a Na+Cl− solution.
Thus, with the valences z+ = 1, z− = −1 and zfc = −1, an external concen-
tration c̄m and an internal concentration cm are defined via the electroneutrality
condition of the external and the internal solutions, respectively:

z+c̄+
m + z−c̄−m = 0 −→ c̄+

m = c̄−m =: c̄m ,

z+c̄+
m + z−c̄−m + zfccfc = 0 −→ cm := c−m , c+

m = cm + cfc
m .

(18)

Following this, c+
m is no more an independent field and, thus, the governing

equations can be transformed into a displacement-pressure-concentration for-
mulation allowing for an efficient numerical treatment within the FEM.

Moreover, with the electroneutrality condition (18)2, the equations (16) and
(17) can be used to compute the equilibrium concentration and the osmotic
pressure of the internal solution [3]:

cm =

√
c̄ 2
m +

(
cfc
m

2

)
2 − cfc

m

2
, π = R θ (2 cm + cfc

m − 2 c̄m) . (19)
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Finally, by use of the ion diffusion equation (15), the assumption that there is
no electrical current

I = FA (c+
mw+ − c−mw−) = 0 , (20)

yields a conditional equation for the gradient of the electrical potential which
is needed in (14) and (15).

Numerical Example

To demonstrate the capability of the presented model, a free swelling ex-
periment on hydrogel is simulated by the FE tool PANDAS. Therefore, a 3-
dimensional block is discretized with hexagonal extended Taylor-Hood ele-
ments with a quadratic approximation of uS and linear approximations of p
and cm. To initiate swelling, the concentration of the external solution is de-
creased from 0.15 mol/l to 0.125 mol/l within 10 sec.

Figure 1. Qualitative comparison of a free swelling experiment on a soot-coloured hydrogel
disc (experiment by J. M. Huyghe, 1999) with the 3-d FEM simulation via PANDAS
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Abstract A general theoretical and finite element model (FEM) for soft tissue structures is
described including arbitrary constitutive laws based upon a continuum view of
the material as a mixture or porous medium saturated by an incompressible fluid
and containing charged mobile species. Example problems demonstrate coupled
electro-mechano-chemical transport and deformations in FEMs of layered ma-
terials subjected to mechanical, electrical and chemical “loading” while under-
going small or large strains.

Keywords: Finite element models; coupled electrical, mechanical, chemical transport; large
strain; soft tissues

Introduction

The development of biomechanical models derived from continuum formu-
lations for transport of water and charged species in porous media has been
carried out for various soft tissues [1-3] and implemented using finite element
models (FEMs) [4-8]. Such models provide quantitative views of the response
of these complex structures that is especially useful in the study of orthopedic,
vascular, ocular, and soft tissue substitutes developed by tissue engineering. In
this paper a formulation and FEM are described that incorporate and extend
these works in a very general model that identifies physical material properties
and allows transient analyses of both natural and artificial soft tissue structures.
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Theory

Soft biological structures exhibit finite strains and nonlinear anisotropic ma-
terial response. The hydrated tissue can be viewed as a fluid-saturated porous
medium or a continuum mixture of incompressible solid (s), mobile incom-
pressible fluid (f), and three (or an arbitrary number) mobile charged spe-
cies (α, β = p,m, b). A mixed Electro-Mechano-Chemical-Porous-Media-
Transport or “EMCPMT” theory (previously denoted as the “LMPHETS” the-
ory) is presented with (a) primary fields (continuous at material interfaces):
displacements, ui and generalized potentials, ν̃ξ∗ (ξ, η = f, e,m, b) and (b)
secondary fields (discontinuous): pore fluid pressure, pf ; electrical poten-
tial, µ̃e; and species concentration (molarity), cα = dnα/dV f or appar-
ent concentration, ĉα = ncα and c̃α = Jncα = dnα/dV0. The porosity,
n = 1 − J−1(1 − n0) and n0 = n0(Xi) = dV f

0 /dV0 for a fluid-saturated
solid. Fixed charge density (FCD) in the solid is defined as cF = dnF /dV f ,
ĉF = ncF , and c̃F

0 = c̃F
0 (Xi) = JncF = dnF /dV0.

Lagrangian field equations

The field equations given in Lagrangian form are (a) the conservation of
momentum (quasi-static, no body forces) and mass equations

Tji,j = 0, j̃ξr
k,k + Q̃ξ = 0 (1)

with Q̃f = J̇ , Q̃e = 0, Q̃ᾱ = ˙̃cᾱ, (ᾱ = m, b) and relative fluxes, j̃ξr
i : j̃fr

i =
ṽfr
i , j̃er

i = ĩeri = Σαzαj̃αr
i , j̃ᾱr

i = cᾱṽᾱr
i ; (b) the kinematic equations defining

engineering strain, Green’s strain, and gradients in potentials as

eij = (ui,j + uj,i)/2 Eij = (FkiFkj − δij)/2 ẽξr
i = ν̃ξr

,i (2)

with J = det Fij , Fij = xi,j , and Hij = F−1
ik F−1

jk ; and (c) the constitutive
equations including an “effective stress principle” and a generalized Darcy law

σij = σeff
ij − pfδij , j̃ξr

i = −Σ
η

L̃ξη
ij ẽ

η∗
j (3)

where Sij = Seff
ij − J Hijp

f and Seff
ij = J F−1

ik σeff
kmF−1

jm. If a porohy-

perelastic theory is used, then Seff
ij = ∂U eff /∂Eij and e.g. a “Fung form”

(associated with an LMPHETS model [5] defines ϕ = ϕ(Ekl, J, n, ν̃ξ∗, θ)
so that U eff = U eff (ϕ) and L̃ξη

ij = L̃ξη
ij(ϕ). For the isotropic, “expo-

nential Fung” constitutive model, U eff = (1/2)C0[exp(ϕ) − 1] and ϕ =
ϕ(I ′1, I ′2, J, n, ν̃ξ∗, θ). The invariants are defined as I ′1 = J−2/3I1, I1 =
3 + 2Ekk, I

′
2 = J−4/3I2, and I2 = 3 + 4Ekk + 2[Ekk]2 − 2EijEij . The
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generalized Darcy law can be written (using the PHETS formulation [4]) in
the form ṽfr

i = −k̃ff
ij {pf

,j + Σα[Σβ b̃fβ
jk cβ(∂µ̃β/∂cα) + δjk(∂p0/∂cα )cα

,k +

b̃fα
jk cαFcz

αµ̃e
,k]} and Fick’s law j̃αr

i = −Σβ d̃αβ
ij cβ

,j − d̃αe
ij µ̃e

,j + b̃αf
ij cαṽfr

j

(using the “PHETS” model) where the permeability, k̃ff
ij ; diffusivities, d̃αβ

ij

and d̃αe
ij ; and convection coefficients, b̃αf

ij are directly related to L̃ξη
ij; e.g.,

L̃ff
ij = k̃ff

ij , L̃fα
ij = cαk̃ff

ik b̃fα
kj = L̃αf

ji , etc. The electro-neutrality (con-

straint) is Σα (zαc̃α) + c̃F
0 = 0 and the generalized potentials, ν̃ξ∗ are

ν̃f∗ = µ̃f∗, ν̃e∗ = (Fcz
p)−1µ̃p∗, and ν̃ᾱ∗ = −(zᾱ/zp)µ̃p∗ + µ̃ᾱ∗. Total fluid

pressure is µ̃f∗ = pf + po, the osmotic pressure, po = po
0 − Rθ Σ

α
φαcα, and

electro-chemical potentials µ̃α∗ = Fcz
αµ̃e + µ̃α with µ̃α∗ = Fcz

αµ̃e + µ̃α.
The required material properties for the Fung effective stress principle are
U eff (ϕ), L̃ξη

ij(ϕ), ϕ = ϕ(Ekl, J, ν̃ξ∗, θ), as well as R,Fc, φ
α, γα, and zα;

and the initial porosity, n0(Xi); FCD, c̃F
0 (Xi); and (uniform) temperature, θ.

Lagrangian finite element model

The field equations form an initial boundary value problem that can be
solved (subject to constraints and the initial-boundary conditions) using a
FEM. Interpolations in each finite element are u = Nuū; e = Buū,
E = e + eNL = [Bu + (BNL

u )/2]ū, Ė = ė + ėNL = B̄u ˙̄u, J̇ = B̂u ˙̄u with
Nu = Nu(X), Bu = LXNu, B̄u = (Bu+BNL

u ), B̂u = JHTB̄u, BNL
u =

AθG; and ν̃ξ∗ = Nξν̄
ξ and ẽξ = Bξν̄

ξ . The spatial gradients LX and ∇X

and matrices E, e, eNL,BNL
u ,Aθ, and G; etc. are given in vector-matrix nota-

tion [9]. Elemental residuals are ψu =
∫

B̄T
u SdV0 − ∫

NT
u t(σ)dA = 0 and

ψξ = − ∫
NT

ξ QξdV0−
∫

BT
ξ j̃ξ∗dV0−

∫
NT

ξ t(ξ)dA = 0 where t(σ) = [σjin̂j]

and t(ξ) = [jξr
k n̂k]. Incremental residuals are ∆ψ = [ĉ(p)]∆ṗ+ [k̂(p)]∆p−

∆P̂ext= 0 where ψT =< ψT
u ψT

ξ > and pT =< ūT ν̄ξT >. A time in-

tegrator is applied yielding [k∗] = (θ̂ ∆t)−1[ĉ] + [k̂] that is assembled to the
global form, [K∗]∆r = −Ψ; and solved using an iterative predictor-corrector
algorithm.

Representative Results

EMCPMT models will be described that can simulate transient electro-
mechano-chemo diffusion, convection, and osmosis in one-dimensional FEMs
composed of one and/or multiple layers of porous material with prescribed
n0(Xi) and FCD, c̃F

0 (Xi) in the solid. The left (L) and right (R) interfaces are
water baths containing prescribed concentrations of up to three charged species
(p,m, b). Mechanical force (stress) or displacement; fluid pressure, and elec-
trical potential will also be prescribed on these interfaces. The first example is
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classical diffusion and convection of a single neutral species with small strains
in a single layer of deformable porous media. The Eulerian properties (kff ,
bfc, etc.) are constant. The initial-boundary conditions are: σL = −pf

L =
ramp to −PL, cb

L = cL; and uR = 0., pf
R = 0., cb

R = cR < cL. Figure
1 illustrates the time history of the concentration, cb(X, t) with the expected
diffusion from high to low concentration and convection species transport due
to the gradient in pf . For this relatively low level of applied load/pressure the
strains are small and there are associated small changes in porosity as time in-
creases. Although the strains are relatively small, there is a slight change in

Figure 1. Concentration, cb(X, t), for small strain.

porosity during the response that affects the concentrations and other fields.
Figure 2 shows the porosity for the same problem in which the applied stress
is increased to produce finite straining in the material. Figure 3 illustrates

Figure 2. Porosity, n(X, t), for finite strain.

the marked effects on concentration associated with a significant reduction in
porosity (due to material compression). The last representative FEM simu-
lates diffusion and convection of three charged species (zp = +1, zm = −1,
zb = −1) with small strains in two layers of deformable porous media. There
are two baths (L,R) and the FCD = +1 in left material and FCD = -1 in right
material, The initial-boundary conditions are the same as the first example.
However, cp

L > cp
R, cm

L < cm
R, and µ̃e

L > µ̃e
R = 0. Figure 4 illustrates the

time history of the concentration and shows the diffusion with convection of
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Figure 3. Concentration, cb(X, t), for finite strain.

the mobile charged species transport from high to low concentrations coupled
with electrical diffusion due to charge interactions and convection associated
with relative pore fluid motion in the material. The expected discontinuities in
concentration are evident at the material interface as well as at the left and right
interfaces with the bath solutions. Other complex FEMs have been developed

Figure 4. Transient small strain diffusion-convection in two materials.

to demonstrate the versatility of this EMCPMT formulation. These include
more complicated finite strain problems with electrical, chemical, and mech-
anical coupling effects (including osmosis) for various known initial porosity
(tissue fluid) and FCD distributions.

Conclusions

The methods and FEMs described have application to biomechanics and
tissue engineering research in cardiovascular, orthopedic, and local drug deliv-
ery systems. Two- and three-dimensional FEMs can be generated for vari-
ous biological structures once experimental data is available for the neces-
sary anisotropic material properties as well as the appropriate structural geo-
metry/anatomy and initial/boundary conditions. Current applications include
study of large arteries and arterial grafts where coupled transport is of interest
for normal and pathological conditions and tissue engineered graft designs.
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These procedures are also applicable for the analysis of nonlinear, coupled
electro-mechano-chemical transport phenomena in soils and geomechanics.
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Abstract Granular mixtures are porous media of immense importance in geophysical and
industrial applications. Snow avalanches, debris- and mud-flows, landslides and
rockslides are examples of rapid flows of geomaterials whereas flows of fine
granular materials in silos, hoppers, rotating drums and heap formations are
examples from process engineering. In order to understand these phenomena
properly, one needs physical–mathematical descriptions including appropriate
constitutive relations and suitable numerical simulations. We present recently
developed model equations by Pudasaini & Hutter for free gravity-driven flows
of a single phase dry granular material down complicated real mountain terrains
generated by arbitrary space curves with slowly varying curvature and torsion.
These are very important extensions to the successful Savage-Hutter (SH) the-
ory. Because of the density preserving assumption the effect of the porosity
can only be accounted for in the closure statements. This is done here and its
consequences are illustrated. Shock-capturing numerical schemes are used to
integrate the model hyperbolic conservation system of equations in order to con-
trol spurious jumps in the mapping of the descending masses. The physical
significance of the numerical simulations is discussed.

Introduction

Avalanches, debris-, mud-flows and landslides are common natural phenom-
ena to mountain inhabitants. Accidents involving damage of property and life
and devastating singular incidences have regularly occurred in the past. These
are the major reasons why the study of avalanches is a topic of public concern.
The physics of the formation of the rapid motion of a large mass of soil, gravel
or snow and the dynamics of the motion must be understood, if the danger
due to the release of a certain mass of gravel or snow should be avoided or
the impact of a moving mass on the avalanche track or on obstructing build-

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 81–89.
© 2005 Springer. Printed in the Netherlands.



82 Physicochemical and Electromechanical Interactions

ings be estimated. The last few years have witnessed increased efforts devoted
to the physical understanding of the avalanche formation and motion in com-
plex topography. We present here an extended Savage-Hutter theory [10] by
Pudasaini and Hutter [9] to rapid shear flows of dry granular masses in a non–
uniformly curved and twisted channel having both curvature and torsion. This
makes the extended model amenable to realistic snow and debris motions down
arbitrary guiding topographies ([6, 9]). One prerequisite of this model is the
assumption of the density preserving of the underlying continuum equations,
and so the effects of the pore space are formally not accounted for. However,
the constitutive equations may in an indirect way account for porous effects,
and here in this paper we shall propose such an indirect dependence for the
basal friction law. The equations as derived by Pudasaini and Hutter [9] re-
main formally the same, only the basal bed friction angle is no longer constant
but now experiences a pressure dependence. We present results of numerical
integrations for a particular case of the extended theory, namely for the cyl-
indrical channel which is curved in the down-hill direction. To account for
the shock phenomena a shock-capturing numerical scheme is used. The res-
ults disclose fundamental features of the dynamics of avalanches when porous
effects are significant.

Model Equations

In this paper, (x, y) form a curved reference surface, where x is the coordin-
ate along the talweg of a mountain valley, while y is the circular arc length in
a cross-sectional plane perpendicular to the talweg whose value is determined
by the relation y = εθzT , where ε is the aspect ratio between the avalanche
height and the extent, θ is the azimuthal angle and zT is the radial distance
between the master curve and the talweg. The channel topography and the
geometry of the avalanche in the lateral and longitudinal directions are illus-
trated in Figs. 1a) and 1b), respectively. As in the previous models of the
SH–theory, Pudasaini & Hutter [9] recently formulated the balance laws of
mass and momentum for curved and twisted channels in these slope fitted co-
ordinates. The final thickness averaged non-dimensional balance laws of mass
and momentum in the down-slope and cross-slope directions take the form

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (1)

∂

∂t
(hu)+

∂

∂x

(
hu2

)
+

∂

∂y
(huv)=hsx− ∂

∂x

(
βxh2

2

)
, (2)

∂

∂t
(hv)+

∂

∂x
(huv)+

∂

∂y

(
hv2

)
=hsy− ∂

∂y

(
βyh

2

2

)
, (3)
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Figure 1. a) For a given value of the arc length, the avalanche domain in the lateral direction
occupies a region in a circular section of a plane perpendicular to the talweg of the valley and
θ is the azimuthal angle in this plane. The depth of the avalanche in this section is represented
by a height function (of the avalanche) which at different positions are not parallel but radial.
OÕ = zT is the radial distance between the master curve and the talweg. The lateral coordin-
ate, y, is determined by the transformation y = εθzT , where ε is the aspect ratio between the
avalanche height and the extent. {T,N,B} is the moving orthonormal unit triad following the
talweg (equivalently the master curve). ζ̃ is the slope angle of the talweg with the horizontal.
b) Avalanche passing from the downslope region into the run-out zone in a vertical plane con-
taining the talweg of the valley. In this picture, xl and xr are the left and right end points of
the continuous transition between the straight inclined upper part with inclination angle ζ̃0 and
horizontal run-out in the valley. For simplicity, torsion effects are not shown.

where h is the depth of the avalanche measured along the normal direction
of the reference surface and the factors βx and βy are defined, respectively, as
βx = −εgzKx, βy = −εgzKy. Net driving accelerations, sx and sy in the
down-slope and cross-slope directions, respectively, and are given by

sx = gx − u

|u| tan δ
(−gz + λκηu2

)
+ εgz

∂b

∂x
, (4)

sy = gy − v

|u| tan δ
(−gz + λκηu2

)
+ εgz

∂b

∂y
; (5)

with |u| =
√

u2 + v2. gx, gy and gz are the components of the gravity accel-
eration along the down-slope, cross-slope and normal directions, respectively,

gx = [b1n2 − b2n1] /∆,

gy = [t2 (n1η + b1ζ) − t1 (n2η + b2ζ)] /∆,

gz = [t1 (b2η − n2ζ) − t2 (b1η − n1ζ)] /∆, (6)

∆= t1 (n2b3−b2n3)+t2 (b1n3−n1b3)+t3 (n1b2−b1n2) ,

η=cos (θ + ϕ(x) + ϕ0) , ζ =sin (θ + ϕ(x) + ϕ0) , ϕ(x)=−
∫ x

x0

τ(x′)dx′,

where ϕ0 is an arbitrary constant and ϕ(x) accounts for the accumulation of
the torsion. Also, b = b(x, y) is the basal topography and the aspect ratio
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ε, and the measure of curvature λ relative to the typical avalanche length, are
both small numbers. (ti), (ni) and (bi), 1 ≤ i ≤ 3, are the components of
T,N and B, respectively, of the talweg with respect to the standard Cartesian
basis. The first terms on the right-hand side of (4) and (5) are due to the gravity
accelerations in the down- and cross-slope directions, respectively. The second
terms emerge from the dry Coulomb friction and the third terms are the pro-
jections of the topographic variations along the normal direction. Kx and Ky

are called the earth pressure coefficients. These values can be determined as
functions of the internal (φ) and basal (δ) angles of friction [2],

Kxact/pass
=2 sec2 φ

(
1 ∓

√
1−cos2 φ sec2 δ

)
− 1,

Kyact/pass
=

1
2

(
Kx+1 ∓

√
(Kx−1)2+4 tan2 δ

)
,

(7)

where Kx, Ky are active during dilatational motion (upper sign) and pass-
ive during compressional motion (lower sign). Equations (1)–(3) constitute
a two-dimensional conservative system of equations. These extended model
equations can reproduce all previous model equations of the SH-theory [1, 2,
8, 11].

Given the material parameters δ and φ and the elevation of the basal topo-
graphy, b, above the curved reference surface, equations (1)– (3) allow h, u and
v to be computed as functions of space and time once appropriate initial and
boundary conditions are prescribed, where h is the avalanche depth, and (u, v)
are the depth-averaged velocity profiles parallel to the flow path.

Pressure Dependence of the Friction Angles

A pressure dependence of the internal angle of friction is known to represent
the quantification of the pore space dependence of internal friction [3]. Such
a dependence has also been observed in wall friction experiments for the bed
friction angle [5, 13] of soil. So, we must assume δ = δ(p) and φ = φ(p),
where p is the pressure. However, since the SH-theory has only manifested a
weak dependence of the avalanche geometry on the values of φ, we shall ignore
a pressure dependence of φ, so φ = const. Experiments indicate a decrease of
the bed friction angle with pressure [3, 5, 13] , the simplest parameterisation is
linear and we choose

δ = δ0 − δ0 − δ1

p1
p, (8)

in which δ0 is the pressure independent bed friction angle and δ1 is its value at
p = p1. Scaling p and p1 according to p = �g[H]p, p1 = �g[H1], equation
(8) takes the form

δ = δ0

{
1 − [H]

[H1]
δ0 − δ1

δ0
p

}
, (9)
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in which p at the base is given by p =
(−gz + λκηu2

)
h is the dimensionless

pressure. Formula (9) is remarkable in the following respect: the pressure de-
pendent term is not scale invariant because it involves the factor [H]/[H1]. We
shall choose the following notation and study its influence upon the avalanche
motion

Π =
[H]
[H1]

δ0 − δ1

δ0
. (10)

Numerical Integration

Due to the hyperbolicity and nonlinearity of the model equations, associated
with possible shocks in granular flows over non-trivial topography, numerical
solutions with the traditional high-order accuracy methods are often accom-
panied with numerical oscillations of the depth profile and velocity field. This
usually leads to numerical instabilities unless these are properly counteracted
by a sufficient amount of artificial numerical diffusion. Here, a non-oscillatory
central (NOC) difference scheme with a total variation diminishing (TVD)
limiter for the cell reconstruction is employed, see e.g. [4], [12]; we obtain
numerical solutions without spurious oscillations. In order to test the model
equations, we consider an ideal mountain subregion in which the talweg is
defined by the slope function

ζ̃(x) =

⎧⎪⎪⎨
⎪⎪⎩

ζ̃0, 0 ≤ x ≤ xl,

ζ̃0

(
xr − x

xr − xl

)
, xl ≤ x ≤ xr,

0, x ≥ xr,

(11)

where ζ̃0 = 50◦ is the straight upper part of the talweg which merges into a
horizontal run-out as shown in Fig. 1b), and xl = 13 and xr = 17 are the
initial and the final points of the continuous transition. The azimuthal angle
θ ∈ [−17.9◦, 17.9◦], which accounts for a (shallow) circular variation of the
bed topography in the lateral direction, and the non-dimensional distance zT =
16 corresponding to y ∈ [−5, 5], Fig. 1a). A hemi-spherical cap with radius
R0 = 1.85 holding the granular material in it is placed at (x0, y0) = (5.0, 0.0)
of the chute and suddenly released. The phenomenological parameters are
chosen as δ0 = 26.5◦ and φ = 37◦ which correspond to Vestolen, a sort of
plastic particles of lens-like shape and 4 mm diameter on drawing paper. The
values of ε and λ are taken to be unity. For more detail, see [8].
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Discussion

Results for Π = 0

Figure 2a) depicts the evolution of the avalanching body at 10 non-dimen-
sional time steps in a vertical plane containing the talweg of the valley. The first
four panels clearly show that once the cap is opened, the avalanche accelerates
and spreads rapidly in the downslope direction due to the channelling effect
in the cross-slope direction, the gravity and dilatation. Although the front is
descending rapidly, the tail moves a bit upward (second panel) because of the
fluidisation of the mass and the support of the material from the down-hill
(front) side. At t = 4 the front reaches the transition zone and the tail also
starts to move downward. At t = 6, the front part of the body has fully reached
the transition zone. Therefore the mass at the front is contracting due to the
effect of the passive earth pressure coefficient, but the mass in the tail is still
extending. At t = 7, the deposition of the mass starts in the vicinity of the
lower part of the transition zone. Owing to the effect of the curvature, the
flowing body starts contracting. For t > 8, a steep surface (height) gradient
starts to develop on the tail side of the avalanche. Although the front of the
body is almost in stillstand the mass from the tail is still continuously flowing
down and deposited on the tail side of the body. This leads to the shock front
moving upstream. The physical explanation for this is that from the front there
is a strong resistive force from the bed which prevents the body from further
advecting. So, whatever comes from the upper part of the channel, it must
be deposited at the back side of the body. Consequently, the mass body must
extend upward. The last four panels show the continuous development of the
upcoming shock, while there is no simultaneous motion at the front.

Scale effects due to the pressure dependence of δ

As an example, the value of the parameter Π is taken to be 0.4 which cor-
responds to the reference values δ1 = 20◦ and H/H1 = 1.6. Figure 2b)
represents a series of numerical results for the same data as in Fig. 2a) but with
the pressure dependent bed friction angle as given by (9). The granular body is
more fluidised since this angle decreases. Consequently, the run-out distance
is larger and the height of the deposit is shallower compared with the con-
stant bed friction angle. The last panels indicate that the front of the avalanche
for variable bed friction angle is about 20% farther away than for a constant
bed friction angle. Similarly, the maximum pile height of the final deposit for
variable bed friction angle is about 25% less than in the previous case. These
conclusions are more or less applicable right after the release of the mass, but
the comparison is more pronounced as time elapses. Due to the excess fluidity,
the formation of the shock is weaker in the last four panels.
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Figure 2. a) A series of numerical simulations of avalanche motion with internal and basal
friction angles φ = 37◦ and δ = 26.5◦ , for different time points. The avalanche thickness is
plotted using curvilinear coordinate x which runs from left to right along the talweg of length
26.5. We do not explicitly see here the volume preserving of the material since we have plotted
only the central section of the avalanche in the vertical plane that contains the talweg. The
remaining mass goes in the sidewise direction. b) Same as in a) but with the variable bed
friction angle. In this case the avalanche body is more fluidised, the travel distance (indicated
by

∣∣ in the last panels) increases and the height of the deposit decreases considerably.
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Conclusion

We have considered the extended Savage-Hutter theory by Pudasaini and
Hutter [9] and its simulations using the NOC difference scheme with TVD
limiter which gives high resolution of shock solutions without any spurious
oscillations near the discontinuities. The simulations presented here demon-
strate the fact that the inclusion of the pore pressure via the bed friction angle
considerably influences the dynamics of avalanches. The increase in pressure
decreases the bed friction which leads to the effective fluidisation of the des-
cending mass resulting to a remarkably larger run-out zone. Further tasks may
be the verification of these results by field or laboratory events of avalanches
and debris.
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Abstract A fully coupled model of hygro-thermo-chemo-mechanical phenomena in con-
crete is presented. A mechanistic approach has been used to obtain the governing
equations, by means of the hybrid mixture theory. The final equations are writ-
ten in terms of the chosen primary and internal variables. The model takes into
account coupling between hygral, thermal, chemical phenomena (hydration or
dehydration), and material deformations, as well as changes of concrete proper-
ties, caused by these processes, e.g. porosity, permeability, stress-strain relation,
etc.

Keywords: heat and mass transport, concrete deformations, high temperature, hydration.

Introduction

Hygro-themo-chemo-mechanical behaviour of concrete is of great practical
importance in many fields of civil engineering. Modelling these phenomena,
especially in fresh concrete structures or concrete elements exposed to fire, is a
complex problem. Several non-linear phenomena, like heat and mass sources
associated with hydration or dehydration processes, phase changes, hysteresis
of sorption isotherms, material properties dependent on moisture content, tem-
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perature and gas pressure, and some inherent couplings between chemical,
hygro-thermal and material deformation processes should be taken into ac-
count. Usually a phenomenological approach is used in modelling of concrete,
e.g. [1, 2], often omitting its multiphase nature. In this paper we present a gen-
eral, mechanistic model which allows for numerical analysis of concrete, both
at early ages and at high temperature, considering hygro-themal and chemical
processes, and material deformations, as well as interactions between them and
several non-linearities of the material properties.

Mathematical Model

Concrete is modeled as a multi-phase material, which is assumed to be in
thermodynamic equilibrium state locally. The voids of the skeleton are filled
partly with liquid water and partly with a gas phase (mixture of dry air and va-
pour). The liquid phase consists of bound water, which is present in the whole
range of moisture content, and capillary water, which appears when water con-
tent exceeds the upper limit of the hygroscopic region, Sssp. Moisture content
is described here by the degree of saturation with water, Sw. The gas phase is
a mixture of dry air and water vapor (condensable constituent), and is assumed
to be an ideal gas. The chosen primary variables of the model are: gas pressure
pg, capillary pressure pc = pg − pw, (pw denotes water pressure) temperature
T , displacement vector of the solid matrix u. The internal variables are degree
of cement hydration Γhydr, mechanical and thermo-chemical damage paramet-
ers, d and V respectively. Physical explanation of our model, including energy
and mass transport mechanisms considered, can be found in [3]-[10].

The mathematical model consists of four balance equations. These equa-
tions have been obtained in [3] by use of Volume Averaging Theory also called
hybrid mixture theory, [11]-[13]. The mass balance of the dry air includes both
diffusive and advective components of the mass fluxes,

−n
∂Sw

∂t
− βs (1 − n) Sg

∂T

∂t
+ Sgdivvs +

Sgn

ρa

∂ρa

∂t
+

1
ρa

divJa
g+

+
1
ρa

div (nSgρ
avgs) +

(1 − n)Sg

ρs

∂ρs

∂Γhydr

∂Γhydr

∂t
=

ṁhydr

ρs
Sg

(1)

and has been summed with the solid skeleton mass balance equation in order to
eliminate the time derivative of porosity. Because of this, some terms related
to thermal dilatation and mechanical deformation of the skeleton (the second
and third terms on L.H.S.), as well as the mass source (sink) resulting from
chemical reactions of the skeleton (hydration or dehydration) appear in (1).
Symbol t denotes time, ṁhydr mass source (or sink) related to the hydration
(or dehydration) process, βs cubic thermal expansion coefficient of the solid
skeleton, vgs gas velocity relative to the solid skeleton, Ja

g- diffusive flux of the
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dry air; the subscripts and superscripts: s, w, a, v and g are related to solid,
liquid water, dry air, water vapor and gas phase, respectively.

The mass balances of liquid water and of vapor, summed together to elim-
inate the source term related to phase changes (evaporation-condensation or
adsorption-desorption), form the mass balance equation of water species, [3],

n (ρw − ρv)
∂Sw

∂t
− βswg

∂T

∂t
+ (ρvSg + ρwSw) divvs + Sgn

∂ρv

∂t
+

+divJv
g + div (nSgρ

vvgs) + div (nSwρwvws)+

+
(1 − n) (Sgρ

v + ρwSw)
ρs

∂ρs

∂Γhydr

∂Γhydr

∂t
=

ρvSg + ρwSw − ρs

ρs
ṁhydr

(2)

where βswg = βs (1 − n) (Sgρ
v + Swρw) + nβwSwρw , vws denotes water

velocity relative to the solid skeleton. As before, also these balance equations
are summed up with the solid phase mass conservation equation in order to
eliminate the time derivative of porosity.

The enthalpy conservation equation of the multiphase medium, obtained
from the sum of the appropriate balance equations of the constituents includes
the heat effects due to phase changes and hydration (dehydration) process, as
well as the convectional and latent heat transfer,

(ρCp)ef

∂T

∂t
+

(
ρwCw

p vws + ρgC
g
pv

gs
) · gradT − div (λefgradT ) =

= −ṁvap∆Hvap + ṁhydr∆Hhydr,
(3)

where (ρCp)ef is effective thermal capacity, Cp isobaric specific heat, λef ef-
fective thermal conductivity, ∆Hvap and ∆Hhydr specific enthalpies of the
phase change and the hydration (dehydration) process, ṁvap mass source or
sink of vapor related to the evaporation (desorption) or condensation (adsorp-
tion) process. In the hygroscopic moisture range, Sssp, the terms in equations
(2) and (3), which describe the liquid phase, concern the bound water, thus
∆Hvap should be substituted by ∆Hads, i.e. enthalpy of adsorption. In equa-
tion (3) the phase change term has been substituted using the liquid water mass
balance equation.

Introducing Bishop’s stress tensor σ′′, called also effective stress tensor,
[3], responsible for all the deformations of a concrete, the linear momentum
conservation equation of the whole medium is given by, [8, 14],

div
(
σ′′ − αIps

)
+ [(1 − n) ρs + nSwρw + n (1 − Sw) ρg]g = 0 (4)

where I is unit, second order tensor, α Biot’s coefficient, g acceleration of
gravity. Pressure in the solid phase ps is given by the following formula [14],

ps = pg − χws
s pc (5)
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where χws
s means the solid surface fraction in contact with the wetting film,

depending on saturation degree, Sw, of the pores.
The evolution equation for the degree of cement hydration Γhydr, appearing

in (2), has the following form [10, 15],

∂Γhydr

∂t
= ÃΓ (Γhydr) · βϕ (ϕ,Γhydr) · exp

(
− Ea

RT

)
(6)

where ÃΓis hydration degree-related, normalized affinity, βϕ an experimental
coefficient describing effect of relative humidity on the hydration rate, Ea ac-
tivation energy of hydration, and R universal gas constant.

When the dehydration process at high temperature is analyzed, because of
its irreversible nature, one can assume, [7], that,

Γhydr = Γhydr (Tmax) (7)

where Tmax(t) is the highest temperature reached by the concrete till time
instant t.

At elevated temperature a joint action of thermo-chemical concrete degrad-
ation, V , accounting for high temperature related micro-cracking and dehyd-
ration, and external load-related cracking, d, is described by the total damage
parameter, D, given by [7],

D = 1 − E (T )
E0 (T )

E0 (T )
E0 (To)

= 1 − (1 − d) · (1 − V ) (8)

where E and E0 are values of Young’s modulus of the mechanically damaged
and undamaged concrete, T and To mean the actual and initial values of tem-
perature.

The evolution equation for thermo-chemical damage, V (t), which should
be experimentally determined, has the following form,

V = V (Tmax) (9)

The evolution equation for mechanical damage, d, (both for concrete at early
ages and at high temperature) is assumed according to the non-local, isotropic
damage theory by Mazars and Pijaudier-Cabot [16],

d = d (ε̃) (10)

where ε̃ is equivalent strain.
The governing equations (1) - (10) are completed by an appropriate set

of state and thermodynamic equations as well as boundary conditions and
constitutive relationships. The latter ones express some inherent couplings
between chemical and hygro-thermal phenomena and medium deformations.
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For sake of brevity, only general forms of the most important relations are
given below.

For concrete at early ages the most important is the effect of chemical pro-
cesses on its transport and strength properties, e.g. porosity n=f(Γhydr), in-
trinsic permeability k=f(Γhydr,d), and mass source related to the hydration
ṁhydr = f(Γ̇hydr). Creep of concrete is modeled by means of the solidific-
ation theory [17], where the degree of cement hydration Γhydr is used as the
volume fraction of the load-bearing portion of hydrated cement.

For concrete at high temperature the most important is the effect of cracking
and dehydration process on the material properties, e.g. porosity n=f(Γhydr),
intrinsic permeability k=f(Γhydr ,D,T ), and its deformations. Irreversible part
of strains and so called thermal creep are expressed as functions of thermo-
chemical damage parameter V , [8].

The governing equations of the model are discretized in space by means of
the finite element method [3, 18], and in time through a fully implicit finite dif-
ference scheme (backward difference) [18], resulting in the nonlinear equation
set of the following form, [4, 7],

C (xn+1)
xn+1 − xn

∆t
+ K (xn+1)xn+1 − f (xn+1) = 0 (11)

where xT =
{
p̄g, p̄c, T̄, ū

}
, n is the time step number and ∆t the time

step length, and the nonlinear (matrix) coefficients C(x), K(x) and f(x) are
given in detail in [7].

The presented model has been successfully applied for solution of several
1-D and 2-D problems, concerning performance of concrete structures at high
temperature, e.g. [4]-[8], and at early ages [9, 10].

Conclusions

A finite element model of concrete based on a mechanistic approach has
been presented. Concrete is considered as multiphase porous visco-elastic ma-
terial in which phase changes, different fluid flows and non-linearities with
respect to temperature, moisture content and hydration degree have been taken
into account. The particular approach permits to consider the different coupled
phenomena, which take place in concrete during maturing and when it is ex-
posed to high temperature. Further research on introducing a direct coupling
between hydration degree and material creep described by the solidification
theory is in progress, as well as the development of fully coupled thermal creep
model.
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Abstract Numerical modelling of moisture flow, drying shrinkage and crack phenomena
in cement microstructure, by coupling a Lattice Gas Automaton and a Lattice
Fracture Model, highlighted the importance of a shrinkage coefficient (αsh) as
the most significant parameter for achieving realistic numerical results. There-
fore, experiments on drying of cement paste samples were conducted in an En-
vironmental Scanning Electron Microscope to find the shrinkage coefficient re-
lating shrinkage deformations and moisture contents. Illustration of moisture
flow in the heterogeneous sample by the Lattice Gas Automaton analysis is also
presented.

Keywords: Lattice Gas Automaton, Lattice Fracture Model, Environmental Scanning Elec-
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Introduction

The focus of our current research is on understanding of the drying shrink-
age and cracking phenomenon in porous cement-based composites through
modelling and experimentation. The goal is to find the causes of early age
cracks in order to improve the material microstructure. Moisture flow model-
ling is done using a modified Lattice Gas Automaton (LGA), whereas crack-
ing is simulated using the Lattice Fracture Model (LFM) [1]. The modelling
is supported by recent experimental observations of drying shrinkage crack-
ing in model concrete, using an Environmental Scanning Electron Microscope
(ESEM) [2],[3] fluorescent microscopy and Acoustic Emission (AE) monit-
oring [4], and measurements of moisture profiles during drying by Nuclear
Magnetic Resonance (NMR) [3],[5]. Drying tests conducted in the ESEM
were used to get a better understanding of the shrinkage process. The ESEM
test results were analyzed by means of the digital image correlation [2] in the
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program Vic-2D, to find differential displacements and strains due to relative
humidity variations. These measurements should lead to the determination of
a moisture dependent shrinkage coefficient, which is the key-parameter in the
numerical model.

Link between Drying Experiment in the ESEM and Numerical
Simulation

Moisture flow due to evaporation from young, porous cement paste causes
early volume changes in the complex, yet not completely known, process of
drying shrinkage. Non-uniform shrinkage in the heterogeneous early age ce-
ment microstructure may induce stresses that result in microcracks. We believe
that, although re-wetting is usually applied, as early age curing in concrete
structures, microcracks remain open [3]. They become the weakest spots in
the cement microstructure, influencing together with eigenstresses, the mech-
anical properties of concrete and long term durability of the structures in the
presence of mechanical load [6]. This especially concerns the porous, bond
zone between aggregate and cement paste, intensively researched in 1960s [7],
[8]. In the formulation of the shrinkage law [9] (Eq. 1), the differential shrink-
age deformations ∆εsh are assumed to depend on the shrinkage coefficient αsh

and moisture content as follows:

∆εsh = αsh∆h = αsh(El − EL), (1)

where El is evaporated water and EL is total free water, and ∆εsh represents
the difference in the deformations between the two subsequent steps. The value
of αsh is found to be constant, provided the equilibrium relative humidity (RH)
is reached in the cement paste and is in the range of 40% and 100% 9. However,
the relation between shrinkage deformations and moisture content below 40%
RH is not known. In order to find this relation, a drying procedure, including
casting, polishing and curing of thin cement paste samples (size 10 x 10 x
1 mm3), was developed [2] and drying to low relative humidity (20%) was
performed in the ESEM.

ESEM Tests

The moisture content of samples, in equilibrium, in the ESEM is varied at
constant temperature (10◦C), while lowering the pressure in the ESEM cham-
ber from 9 torr to 2 torr. At the same time, relative humidity varies from 100%
to 20%. The created chamber climate induces evaporation of the unbound
(free) water in the cement paste (CP) samples without or with an embedded
aggregate (to model simple concrete). It has been observed that curing con-
ditions, sample age, water/cement (w/c) ratio, the presence of an aggregate,
as well as the value of the RH, gives rise to different drying behaviour of the
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Figure 1. Microcracks in pure cement paste (CP) samples at 7 days (left); crack noticed after
re-wetting to 60% RH and at 51 days (right); crack noticed after re-wetting to 30% RH.

Figure 2. Drying shrinkage images of 32-days old CP with aggregate (glass pearl). Images
are taken with GSE detector: a gap is observed near the obstacle at (a) 100% RH (left). Owing
to the non-uniform shrinkage, deformations in the bond zone (ITZ) are clearly visible at high
magnification, in the matrix during drying from (b) 100% (middle) to (c) 40% RH (right).

samples. The weight loss due to water evaporation was measured on unpol-
ished samples at three stages: at the fresh state (after 5 min of mixing), after 1
day, and after 7 days. The total weight loss was 11% after 7 days. This is in a
good agreement with the 12% moisture loss reported by L’Hermite [9], where
however different drying methods and sizes of samples had been used. Ob-
servations of a single sample spot in the ESEM have shown that, under these
drying conditions, the CP samples deformed. The deformations were more
significant in wet cured samples than in dry cured ones. Larger deformations
as well as microcracks developed in the wet cured cement paste samples of
ages ranging from a minimum of 4 days, to a maximum of 51 days, both in
samples with or without an aggregate (Fig. 1).

In the cement paste samples with an embedded aggregate, circumferential
gaps, approximately 1 µ m wide, sometimes emerged between aggregate (glass
pearl) and CP prior to the drying tests. These gaps are enlarged due to drying
in Fig. 2.

The existing gap could result from the sample preparation, but testing of
the samples at different ages proved the age influence. We can assume that,
at the start of hydration, CP and aggregate stick together. They are practically
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Figure 3. (left) Drying shrinkage strains in wet cured cement paste samples after drying at
different RH, (middle) drying shrinkage in time (unpublished results from the tests at DTU,
Denmark), (right) drying shrinkage strains (εxx and εyy) of 32 days old cement paste sample
with a glass pearl inclusion.

“glued” by the water film on the aggregate surface, which is formed in the
mixing process and still present at early age. There is no gap in the 4-5 days
old CP sample. As the aging of the samples continues (32 days), the process
of hydration slows down. Shrinkage deformation that develops at the sample
edges, is probably a product of the inner desiccation, caused by hydration.
When the early shrinkage begins the smoothness of the obstacle surface and
consequent low adhesion may only contribute to the gap formation around the
obstacle (Fig. 2). Since in the ESEM the whole 10 x 10 mm2 surface of a
specimen cannot be observed at the same time during drying, it is not possible
to draw conclusions about the exact RH value that is critical for crack growth.

To calculate the shrinkage coefficient (αsh), digital image correlation ana-
lysis is used to infer the drying deformations (strains) due to the changes in
relative humidity from the ESEM tests [2],[10]. It has been observed that the
relation between plane deformations (swelling or shrinkage) and variations in
RH, depends on the age of the cement paste. In very young CP samples, swell-
ing occurred (Fig. 3a), while samples mostly older than 28 days demonstrated
shrinkage, independently of the presence of a single aggregate.

Besides the mentioned tests, calculation of the shrinkage coefficient follow-
ing Equation 1 demands additional ESEM tests to be performed. The proced-
ure would be to save several digital images (not just one as was done in the
previous experiments) during the equilibrium time at every relative humidity
(chamber relative humidity equals relative humidity of CP sample), in a num-
ber of sequential steps, in order to relate deformations and drying time.

The moisture dependent shrinkage coefficients resulting from Eq. 1, are
used as input in the coupled model for drying and cracking of virtual CP
samples [1]. Cracking is caused by the “moisture load”, applied in the finite
element Lattice Fracture Model (LFM), as an axial “eigen” force F as follows:

Fsh = ∆σshA = ∆εshEA = αsh∆hEA, (2)
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where ∆h is a moisture content, E is Young’s modulus of concrete, assumed
a constant throughout the analysis and A is a cross sectional area of a beam
element in the LFM.

The moisture content ∆h is obtained from numerical simulations with the
Lattice Gas Automaton (LGA). A two dimensional isotropic lattice gas, i.e.
a modified FHP (Frisch-Hasslacher-Pomeau) model suggested in the 80s [11]
is used for mimicking moisture flow. Due to the relatively simple input and
allowance of complex boundary conditions in porous concrete, the LGA turned
out to be very suitable in comparison with other numerical models.

To simulate sample drying, the LGA model removes particles in the course
of time [1]. The density, i.e. the number of particles per node, changes since
particles move from one node to another and accordingly change relative hu-
midity of the sample

Lattice Gas Automaton, FHP Model

The LGA is a variant of a cellular automaton, introduced as an alternative
numerical approximation to the partial differential equation of Navier-Stokes
and the continuity equations, whose analytical solution leads to the macro-
scopic approach of fluid dynamics. The microscopic behavior of the LGA has
been shown to be very close to the Navier-Stokes (N-S) equations for incom-
pressible fluids at the macroscopic level.

In order to bridge the gap between the discretized micro- and macro-worlds,
averaging of the variables is necessary. Macroscopic variables in the N-S equa-
tion, are the density ρ and the momentum I, which are functions of the lattice
space vector r and time t. The local density ρ is the summation of the average
number of particles travelling along each of six (hexagonal) directions, with
velocity ci. Multiplication of the density ρ by the velocity vector u equals lin-
ear momentum (I = ρu). Boolean algebra is applied for the expressions of the
discretized variables density and momentum, respectively, as follows:

ρ(r, t) =
∑

i

Ni(r, t) (3)

I = ρ(r, t)u(r, t) =
∑

i

ciNi(r, t) (4)

where ρ(r, t) is the density per node, u is the mean velocity, (I = ρu) is the
momentum, ci is the velocity of a single particle in any of six directions (i =
0, . . . , 5) and Ni(r, t) is the average particle population of the cell expressed as
the Fermi-Dirac distribution. Further derivations and theoretical explanations
of the LGA and FHP models can be found in the literature [12].

In the LGA model for moisture flow and drying of porous media (Fig. 4), a
maximum of seven fluid particles is present at each node of a regular, triangular
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Figure 4. Lattice Gas Automaton (lattice 1024x1024): drying in a heterogeneous sample with
small sized obstacles (20 x 20 lattice sites) after (left) 500, (middle) 1500 and (right) 3500 LGA
steps (r = 0).

lattice [12]. Six fluid particles can move freely in any of six (hexagonal) lattice
directions, at each time step, from one lattice node to the other, with a unit
velocity ci. The seventh particle stays at rest, having zero velocity.

Inputting solid particles at fixed positions, of different sizes simulates a solid
phase in the fluid lattice (Fig. 4). The number of fluid particles per node and
their interaction law (collisions) affect the physical properties of real fluid such
as viscosity. Particle movements are divided into the so called propagation
step (spatial shift) and collisions. Not all particles take part in the collisions.
It strongly depends on their current positions on the lattice in a certain LGA
time step. In order to avoid an additional spurious conservation law [13], a
minimum of two- and three-body collisions (FHP1 rule) is necessary to con-
serve mass and momentum along each lattice line. Collision rules FHP2 (22
collisions) and FHP5 (12 collisions) have been used for most of the previous
analyses [1],[2],[14], since the reproduction of moisture flow in capillaries, in
comparison to the results from NMR tests [3], is then the most realistic.

Example: LGA simulation of heterogeneous media

The LGA models can reproduce flow in homogenous and heterogeneous
media [3] with different-sized solid particles. An example is presented in Fig-
ure 5. Drying of the LGA sample is initiated from the left side by an input of
low density particles. Boundary conditions are periodic in the vertical direc-
tion, while on the left side a solid wall is placed. Collision among fluid particles
is defined by the FHP2 collision rule, while the no slip (bounce-back) condi-
tion is assumed between the solid wall and the fluid particles. To determine the
influence of boundary conditions on the speed of drying and moisture gradient,
both specular-reflection (r = 1), and bounce-back (r = 0) rules are used to
represent the interaction between the solid and fluid particles (Fig. 5). Drying
is always faster in the samples where specular-reflection rule is applied, while
the moisture gradient is slightly higher with the application of bounce-back
reflection rule, including an increase in noise.

104



Study of Drying Shrinkage

Figure 5. Moisture flow distribution for samples with added solid clusters (20 x 20 lattice
sites) with (top) bounce-back rule (r = 0) and (bottom) specular-reflection rule (r = 1).
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Observations and Discussion

Modelling of moisture flow in porous media can be successfully done by
applying cellular automata methods, such as the simple 2-D LGA. Generally,
there is good qualitative agreement between the numerical results and NMR
data [3]. In both LGA and NMR, time and space are variables. Matching
LGA and NMR results requires matching their Re numbers. This will couple
LGA steps to a real time scale and facilitates quantitatively fitting the paramet-
ers to experimental observations like the NMR data [3]. The good agreement
between LGA flow and real flow ensures that the moisture content ∆h is real-
istic enough for the input in Eq. 2 in order to create drying cracks in the
coupling analysis. In that respect, the Reynolds number (Re = lu/n) must
be kept low (Re << 1), while kinematic viscosity (n = m/r) must increase
(two-, three- to five-body collision, must be kept low).

The current experimental research, in comparison to the tests from the liter-
ature [9],[10],[15], shows that moisture flow and subsequent drying deforma-
tions could be successfully tested on thin cement paste samples (d = 1 mm).
In order to get a better understanding of the deformation processes and influen-
tial parameters, observations must be performed at different ages of the cement
paste. Although still in a developing phase, ESEM as a tool shows advantages
for measuring moisture dependent deformations in drying samples.

Both experimental and numerical work is currently in progress. Coupling of
the drying, deformation and fracture processes is a complex problem, where,
for the sake of simplicity, possible coupling between flow in cracks in the solid
has not been considered
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Abstract Osmosis through a clay membrane, and osmotic swelling of a capsule formed
from an HSA-alginate membrane, are compared. Compacted clay acts as an
imperfect semipermeable membrane. When the clay membrane separates two
salt solutions of different concentrations, osmotic effects are observed, and two
relaxation processes control the rate at which the salt solutions come into equi-
librium. Capsules, created with an HSA-alginate membrane, exhibit osmotic
swelling when the salt concentration of the surrounding fluid is changed. Their
return to a new equilibrium exhibits only a single relaxation rate. Analysis ex-
plains why two relaxation rates are observed in one case and not in the other.

Introduction

Transport of water and ions between two solutions separated by a clay mem-
brane was studied in [1], using linear transport relations valid when chemical
potential differences across the membrane are small [2]. Two relaxation pro-
cesses were found to control the rate at which the solutions came into equilib-
rium with each other, and both relaxation rates were observed in experiments.
Transport was characterised by three independent coefficients, all of which
could be estimated from the experimental results.

Transport of salt and water into a capsule was considered in [3]. Os-
motic swelling of the capsule was assumed to be due to Donnan equilibrium
between the salt solution outside the capsule and the interior solution which
also contained polyelectrolyte molecules. The polyelectrolyte was unable to
pass through the membrane which formed the wall of the capsule, but salt
could pass freely. A model similar to that used for the clay membrane predicts
two relaxation rates, only one of which was observed in experiments in which
the salt concentration was varied in the external reservoir [4].

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 111–116.
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(i) (ii)
Figure 1. (i) The clay membrane cell. (ii) Differential pressure ∆p as a function of time t.
(a) SWy-2, CaCl2, 3 M & 0.5 M; (b) STx-1, CaCl2, 3 M & 0.5 M; (c) SWy-2, NaCl, 3 M
& 0.5 M; (d) STx-1, NaCl, 3 M & 0.5 M.

Transport of Salt and Water Through a Clay Membrane

We consider first transport of water and salt across a clay membrane. The
salt dissociates into ν+ cations of valence z+ and ν− anions of valence z−
We assume that all solutions are ideal, so that the the chemical contribu-
tions to the electrochemical potentials within the solution on side i of the
membrane are µiw = piVw + RT ln xiw ≈ piVw − RT (xi+ + xi−) and
µi± = piV±+RT ln xi±, where the subscripts (w,±) indicate water and ions,
R is the gas constant, T the absolute temperature, p the pressure, xw, x± are
mole fractions and Vw, V± are partial molar volumes. There will be an addi-
tional electrical contribution Fz±φ, where φ is the electrical potential and F is
the Faraday. Transport through the membrane depends upon the difference in
electrochemical potentials across the membrane. If these differences are small,
there will be linear transport relations of the form [2]

fw = λ11∆µw + λ12(∆µ+ + z+F∆φ) + λ13(∆µ− + z−F∆φ) (1a)

f+ = λ21∆µw + λ22(∆µ+ + z+F∆φ) + λ23(∆µ− + z−F∆φ) (1b)

f− = λ31∆µw + λ32(∆µ+ + z+F∆φ) + λ33(∆µ− + z−F∆φ) (1c)

where (fw, f±) are the flux of water and ions, measured in moles, from side
1 to side 2, and ∆ indicates a difference, e.g. ∆p = p1 − p2. By Onsager’s
principle we expect λij = λji.

The experimental cell, depicted in figure 1(i), is built of insulating materials.
A jump in potential ∆φ will quickly be established across the membrane so that
electroneutrality is maintained and no current flows. We can therefore consider
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the flux of salt fs = f−/ν− = f+/ν+ rather than the fluxes of the individual
ionic species. We define a chemical potential µs = ν+µ++νiµ− for salt. Zero
current implies z+f+ + z−f− = 0, which enables us to eliminate ∆φ from (1)
and obtain transport relations

fw = λww∆µw + λws∆µs (2a)

fs = λsw∆µw + λss∆µs (2b)

where λsw = λws. Thus there are three independent transport coefficients.
In practice we measure changes in pressure and salt concentration, rather

than chemical potential, and it can be helpful to think of transport coefficients
in terms of Darcy flow and diffusion. We define xs = ns/(nw + ns), where
nw, ns are the number of moles of water and salt, and write the change in
chemical potential of salt across the membrane as

∆µs = (ν+V+ + ν−V−)∆p + RT [ν+∆(ln x+) + ν−∆(ln x−)] (3a)

≈ Vs∆p + (ν+ + ν−)RT (∆xs)/xs. (3b)

The transport relations (2) can then be re-written in terms of ∆p and ∆xs.
Sherwood & Craster [1] chose to write these transport relations in the form

fw = (1 − xs)k∆p − V −1
w [(1 − λ)(ν+ + ν−)RTk + λVsD]∆xs (4a)

fs = λxsk∆p + λD∆xs, (4b)

where k is a Darcy transmission coefficient, D a diffusivity, and λ is a trans-
mission coefficient such that λ = 1 corresponds to unimpeded flow of salt and
λ = 0 corresponds to a perfect ion-exclusion membrane. Thus 1 − λ is a re-
flection coefficient. If the liquid viscosity is µ, then k = kd/(Vwµh), where kd

is the standard Darcy permeability of the clay membrane.
If a volume δV of fluid moves across the membrane the level of liquid in

each capillary (of cross-sectional area Ac) will change by an amount δh =
δV/Ac. Changes in the liquid density ρ0 are negligible, and hence the rate of
change of pressure with time t is

d(∆p)
dt

= −2Sρ0g(Vwfw + Vsfs)/Ac = A∆p + B∆xs, (5)

where g is the acceleration due to gravity and

A = −2Sgρ0kVw/Ac , B = 2Sgρ0(1 − λ)(ν+ + ν−)RTk/Ac. (6)

The rate of change of salt concentration is

d(∆xs)
dt

= −2S
n0

w

(fs − xsfw) = C∆p + E∆xs, (7)
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where

C = 2Skx0
s(1 − λ)/n0

w (8)

E = −2S
n0

w

{
λD +

x0
s(1 − λ)(ν+ + ν−)RTk

Vw

}
, (9)

and n0
w is number of moles of water in each reservoir at equilibrium. Equations

(5) and (7) have solution

∆p = ∆p0
(λ2e

−k1t − λ1e
−k2t)

λ2 − λ1
+ λ1λ2∆x0

s

(e−k1t − e−k2t)
λ2 − λ1

(10a)

∆xs = ∆p0
(e−k1t − e−k2t)

λ1 − λ2
+ ∆x0

s

(λ1e
−k1t − λ2e

−k2t)
λ1 − λ2

, (10b)

where ∆p0,∆x0
s are the initial values of ∆p,∆xs at t = 0, the λi are given

in [1], k1 � −E corresponds to a diffusion rate and k2 � −A to the rate of
Darcy flow.

Figure 1(ii) shows experimental results obtained when a membrane of com-
pacted clay separates salt solutions initially at 3 M and 0.5 M. The salt reflec-
tion coefficient 1 − λ � 1, so that ∆p � RT/Vw and both ∆p and ∆xs are
eventually zero. However, before this equilibrium is attained transient pres-
sures are observed: the curves in fig. 1(ii) are best fits to the form (10a). From
the two rate constants and magnitude of the pressure we may estimate the three
transport coefficients in (4).

Donnan Equilibrium

We now consider a capsule which consists of liquid surrounded by a closed
semi-permeable membrane (figure 2); details are provided in [3, 4]. Water and
salt can pass through the membrane from side 1 (inside the capsule) to side 2
(outside), and vice versa, but large polymer molecules cannot. Trapped inside
the capsule are n1p polyelectrolyte molecules of valence zp and partial molar
volume V1p. The resulting Donnan equilibrium is reviewed in [5, 6]. Inside
the capsule, electroneutrality requires zpn1p + z+n1+ + z−n1− = 0. We now
assume the salt to be monovalent. At equilibrium there is a jump in electrical
potential across the membrane; inside the capsule x1+x1− ≈ x2+x2− ≈ x2

2s

with x1± = 1
2(Q ∓ zpx1p) where

Q = x1+ + x1− = (4x1+x1− + z2
px2

1p)1/2. (11)

The jump in pressure across the membrane is

Vw∆p = RT ln
x2w

x1w
≈ RT (Q + x1p − 2x2s). (12)
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(i) (ii)

Figure 2. (i) The swelling capsule. (ii) The radius r(t) of a capsule as a function of time t
after removal at t = 0 from a solution of NaCl at 11 g/l and immersion in a solution at 3.5 g/l.
Experiment ◦ ; predicted response assuming D = 4.5 mmol m−2s−1 .

The total volume of solution within the capsule is V1 = Vwn1w + V+n1+ +
V−n1− +Vpn1p. When the pressure within the capsule varies, the surrounding
membrane deforms by an amount that depends upon its mechanical properties.
If the change in capsule volume is small, we may assume a linear relation

∆p = G(V1 − V0) = G(Vwn1w + V+n1+ + V−n1− + Vpn1p − V0), (13)

where V0 is some reference volume and G is related to the elastic properties
(and thickness) of the membrane. The volume change is assumed small i.e.
|V − V0| � V0 and hence G � ∆p/V .

When we consider transport into the capsule, we must be wary of using (2).
At equilibrium the electrochemical potentials of water and ions are equal on
the two sides of the membrane, but the chemical potentials are not. We assume
that transport through a membrane separating two reservoirs at fixed chem-
ical potentials has been characterised and can be represented by (2). We then
assume that (2) can be used to estimate transport into and out of the capsule
when the jumps in chemical potential are replaced by small departures from
the equilibrium jumps. The analysis follows closely that of §3, and predicts
two relaxation rates for the salt concentration, pressure and capsule volume, as
in (10). However, a change in x2s outside the capsule excites only the diffus-
ive eigensolution: the amplitude of the Darcy transport eigensolution is much
smaller. Since the volume change of the capsule is small, the new equilibrium
salt concentration within the capsule can be achieved only by exchange of salt
and water, and the process is controlled by diffusion. As the salt concentration
inside the capsule changes, so does the osmotic pressure, and the consequent
changes in volume can be accomodated by the more rapid Darcy flow.
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Experiments were performed using capsules with membranes made of co-
valently linked human serum albumin (HSA) and alginate [7, 8]. Details are
given in [4]. Figure 2 shows the evolution of a capsule after removal at time
t = 0 from a solution of NaCl at 11 g/l and immersion in a solution at 3.5 g/l.
The experimental results fit well to a single exponential, leading to an estimate
for D [3].

Pressure applied to the external solution would also increase the pressure in-
side the capsule, and in the absence of fluid compressibility there would be no
change in the capsule volume. Without access to the inside of the capsule we
cannot apply a pressure difference to investigate Darcy flow through the mem-
brane. One possiblity, yet to be tested experimentally, is to add to the external
solution an uncharged polymer which cannot pass through the membrane. The
external chemical potential of water is thereby reduced [9], and the resulting
flow out of the capsule can be shown to depend upon the permeability k of the
membrane.
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Abstract The aim of this contribution is to derive macroscopic equations describing flow
of two-ionic species electrolytes through porous piezoelectric media with ran-
dom, not necessarily ergodic, distribution of pores. Under assumption of ergodi-
city the macroscopic equations simplify and are obtained by using the Birkhoff
ergodic theorem.

Introduction

In modelling and analysis of flows through porous media one can distinguish
deterministic and stochastic approaches. Many porous media, both natural
ones as well as man-made reveal random distribution of pores. The synthetic
article [13] provides an account of effective models of flows through random
rigid porous media (transport problem). Electrokinetics in such media was
studied by [2].

In this paper the problem of stationary flow of two-ionic species electro-
lyte through random piezoelectric porous media is studied, thus extending our
earlier paper [14], where periodicity was assumed. To derive the macroscopic
equations we use the method od stochastic two-scale convergence in the mean
developed by [4]. Solid phase was assumed to be piezoelectric since accord-
ing to [9] wet bone reveals piezoelectric properties, cf. also [15]. We recall
that a strong conviction prevails that for electric effects in bone only streaming
potentials are responsible.

Macroscopic equations are given in Sect. 4 without the assumption of er-
godicity. In Sect. 5 we provide comments on the case where ergodicity applies.
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Description of Random Porous Media and the Method of
Stochastic Two-scale Convergence in the Mean

Natural and man-made porous media usually possess formidably complex
microstructure, often hierarchical. In this paper we shall not discuss hierarch-
ical microstructures revealed, for instance by fractured porous media and biolo-
gical tissues like bone and soft tissue. However, recently developed stochastic
reiterated homogenisation enables one to determine macroscopic properties of
random porous media with hierarchical architecture, cf. [11].

Let (Ω,F , µ) denote a probability space where F is a complete σ -algebra
and µ is the probabilistic measure. Assume that Ω is acted on by an n-
dimensional dynamical system T (x) : Ω → Ω, such that for each x ∈ IRn,
both T (x) and T (x)−1 are measurable, and such that the following condi-
tions are satisfied: (a) T (0) is the identity map on Ω and for x1,x2 ∈ IRn,
T (x1 + x2) = T (x1)T (x2); (b) for each x ∈ IRn and measurable set F ∈ F ,
µ(T (x)−1F ) = µ(F ), i.e. µ is an invariant measure for T ; (c) or each F ∈ F ,
the set {(x, ω) ∈ IRn × Ω|T (x)ω ∈ F} is a dx × dµ measurable subset of
IRn × Ω, where dx stands for the Lebesgue measure on IRn, cf. [4].

We observe that T (x)−1 = T (−x). The dynamical system satisfying (a)-
(c) is also called a measure preserving flow. We can now introduce random
homogeneous fields, starting from the random variable f :

f ∈ L1(Ω), f̃(x, ω) ≡ f(T (x)ω). (1)

We observe that f̃ is also called the statistically homogeneous (i.e. stationary)
random process. Statistical homogeneity means that two geometric points of
the space are statistically undistinguishable, or the statistical properties of the
medium are invariant under the action of translation. Then we have a group
{Ux|x ∈ IRn} of isometries on L2(Ω) = L2(Ω,F , µ) defined by

(U(x)f) (ω) = f (T (x)ω) , x ∈ IRn, ω ∈ Ω, f ∈ L2(Ω).

A dynamical system is said to be ergodic, if every invariant function, i.e. sat-
isfying f(T (x)ω) = f(ω) is constant almost everywhere in Ω.

Examples of statistically homogeneous media are provided in [11], also
(2002a, 2003).

Let g ∈ L1
loc(IR

n), i.e. g is integrable on every measurable bounded set
K ⊂ IRn. A number M{g} is called the mean value of g if

lim
ε→0

∫
K

g(ε−1x)dx = |K|M{g}. (2)

Here |K| denotes the Lebesgue measure of K. Of crucial importance is the
Birkhoff ergodic theorem which states that for f ∈ Lα(Ω), α ≥ 1,

f(T (
x
ε
)ω) ⇀ M{f(T (x)ω)} weakly in Lα

loc (3)
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and M{f(T (x)ω)}, considered as a function of ω ∈ Ω, is invariant. Moreover,
we have

〈f〉 df=
∫

Ω
f(ω)dµ =

∫
Ω

M{f(T (x)ω)}dµ. (4)

In particular, if the system T (x) is ergodic, then

M{f(T (x)ω)} = 〈f〉 for almost all ω ∈ Ω.

Let Q be a given, deterministic, bounded domain in IRn and let G ∈ F . We
set

G(ω) = {x ∈ IRn|T (x)ω ∈ G}, (5)

Qε(ω) = Q \ Gε(ω), where Gε(ω) = {x ∈ IRn|ε−1x ∈ G(ω)}. (6)

Such a definition of random domain Qε(ω) is suitable for theoretical consider-
ations. In practice, the random sets G(ω) or Gε(ω) have to be described more
precisely, cf. [1, 11, 13] and the references therein.

To carry out stochastic homogenisation, elements of local stochastic calcu-
lus are needed. For more details, the reader is referred to [4, 11, 13].

Anyway, one can define the stochastic gradient ∇ωf , stochastic divergence
divωv, etc.

In the periodic case ω is to be identified with local variable y ∈ Y , where
Y is the so-called basic cell.

The set of all functions f ∈ L2(Ω) invariant for T (i.e. f(T (x)) = f, µ
− a.e. on Ω, for all x ∈ IRn) is a closed subset of L2(Ω) and denoted by
I2(Ω). We set M2(Ω) = [I2(Ω)]⊥. We introduce a projection E : L2(Ω) →
L2(Ω) determined by

(Ef)(ω) = lim
λ→∞

1
(2λ)n

∫
[−λ,λ]n

f(T (x)ω)dx, µ − a.e. ω ∈ Ω. (7)

We have M2(Ω) = ker E; moreover: (i) if f ∈ L2(Ω) then f ∈ I2(Ω) if and
only if ∇ωf = 0, (ii) for any multi-index α = (α1, . . . , αn),

∂αϕ(T (x)ω) = (Dαϕ)(T (x)ω), ϕ ∈ D∞(Ω)

where ∂α = ∂|α|/∂xα1
1 · · · ∂xαn

n , (iii) let u ∈ L2(Ω)n, v ∈ L2(Ω)n, curlωu =
0, divωv = 0, then ∫

Ω
u · v dµ =

∫
Ω

E(u) · E(v) dµ. (8)

Furthermore, if T is ergodic then (8) yields an extension of the Hill-type rela-
tion: ∫

Ω
u · v dµ =

∫
Ω

u dµ ·
∫

Ω
v dµ. (9)
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Now we are in a position to introduce the fundamental notion.

Definition1. A sequence {uε}ε>0 in L(Q×Ω) is said to stochastically two-
scale converge in the mean to u ∈ L2(Q × Ω) if for all ψ ∈ L(Q × Ω)

lim
ε→0

∫
Q×Ω

uε(x, ω)ψ(x, T (ε−1x)ω)dxdµ =
∫

Q×Ω
u(x, ω)ψ(x, ω)dxdµ.

(10)
The properties of stochastically two-scale convergent sequences like {uε}ε>0

and {ε∇uε} are studied in [4], cf. also [11]. These properties will be exploited
in Sect. 4 of the present paper. We also need to extend the mapping E in
order to cope with the so-called stochastic nonuniform homogenisation. To
this end for each y ∈ IRn we define the mapping T̃ (y) : Q × Ω → Q × Ω
by T̃ (y)(x, ω) = (x, T (y)ω). We observe that {T̃ (y)|y ∈ IRn} is an n-
dimensional dynamical system on Q × Ω. Replacing Ω, T by (Q × Ω, T̃ ) we
extend (7) as follows

T̃ g(x, ω) = E[g(x, ·)](ω)

or

Ẽg(x, ω) = lim
λ→∞

1
(2λ)n

∫
[−λ,λ]n

g(x, T (y)ω)dy (11)

Eg̃ does not depend on ω ∈ Ω (µ - a.e.) provided that µ is ergodic for T .

Equations of Flow of Electrolyte Through Piezoelectric Ran-
dom Porous Medium

Let Qs
ε(ω) = Q \ Qε(ω) and Q�

ε(ω) = Q \ Q
s
ε(ω), where ε > 0 is a small

parameter characterizing microstructure. We assume that the sets Q�
ε(ω) are

connected. By uε(t,x, ω) and vε(t,x, ω) we denote fields of displacement
in the piezoelectric phase Qs

ε(ω) and velocity in the fluid-ionic phase Q�
ε(ω),

respectively. The pressure field, volume density of positive (negative) ions, and
the corresponding current vectors are denoted by pε(t,x, ω), q(+)ε

(t,x, ω) ,
q(−)ε

(t,x, ω) , and J(±)ε(t,x, ω), respectively. Obviously, t stands for the
time variable, t ∈ [0, τ ]. By Φε(t,x, ω) we denote the electric potential field.

The set of equations for the fields uε,vε, pε,Φε, q(±)ε
, and J(±)ε assume

the following form:

in the solid piezoelectric phase Qs
ε(ω)

ρsüε = divx[aεe(uε) − πε(∗)E(Φε)],

divx[πεe(uε) + [εsεE(Φε)] = 0
(12)
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where aε(x, ω) = a(x, T (ε−1x)ω), πε(x, ω) = π(x, T (ε−1x)ω),
εsε(x, ω) = ε(x, T (ε−1x)ω), Ex(Φε) = −∇xΦε,

(
πε(∗)Ex(Φε)

)
ij

= −πε
kij

∂Φε

∂xk
.

Here
(
εsε
ij

)
=

(
εsε
ij (x, ω)

)
is the matrix of dielectric moduli in the solid

phase, e(u) stands for the small strain tensor, and

u̇ =
∂u
∂t

;

in the fluid-ionic phase Q�
ε(ω)

ρ�v̇ε = ε2η∆x(vε) −∇xpε + f g + qεEx(Φε) − κ∇xqε,

divxvε = 0,

divx

(
ε�εEx(Φε)

)
= qε,

∂q±

∂t
+ divxJ(±)ε = 0, qε = q(+)ε + q(−)ε.

(13)

More precisely, (12) holds in (0, τ ) × Qs
ε(ω) whilst (13) in (0, τ ) × Q�

ε(ω).
The scaling of the viscosity is typical for the flow of Stokesian fluid through
porous media, cf.[12],[14]. The assumptions on the moduli aε,πε and εsε are
similar to those specified in [10] for microperiodic piezocomposites. In our
case it suffices to extend conditions (A1) and (A2) given in [12] for elastic
solid phase.

The conditions on the interface solid-fluid Γε(ω) are specified by the fol-
lowing relations and hold for t ∈ (0, τ ) :

[[σεn]] = 0, [[Φε]] = 0, [[Dεn]] = ζε,

vε = u̇ε, J(+)ε · n = 0, J(−)ε · n = 0,
(14)

where

σε =

{
aεe(uε(t,x, ω)) − πε(∗)Ex(Φε(t,x, ω)) in (0, τ ) × Qs

ε(ω),

−pε(t,x, ω)I + ε2ηe(vε(t,x, ω)) in (0, τ ) × Q�
ε(ω);

(15)

Dε =

{
πεe(uε(t,x, ω)) + εsεEx(Φε(t,x, ω)) in (0, τ ) × Qs

ε(ω),

ε�εEx(Φε(t,x, ω)) in (0, τ ) × Q�
ε(ω);

(16)
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J(±)ε = b(±)εq(±)εEx(Φε) + q(±)εvε

−d(±)∇xq(±)ε in (0, τ ) × Q�
ε(ω).

(17)
Here I = (δij) denotes the identity matrix. The interface potential (ζ-potential)
ζε may by assumed to be constant. We consider a more general case where
ζε = ζ(x, T (ε−1x)ω). Since we are interested in the macroscopic equations,
we do not consider boundary conditions on ∂Qε(ω). For the sake of simplicity
we assume homogeneous initial conditions for uε,vε,Φε and q(±)ε

.

Stochastic Homogenisation and Macroscopic Relations

Letting ε tend to zero in the sense of stochastic two-scale convergence in
the mean we arrive at the homogenized equations. Without the assumptions of
ergodicity the fields involved still depend on ω ∈ Ω.

Let F ⊂ Ω and G = Ω \ F ; F is assumed to be T -open and T -connected,
cf. [11, 13]. We observe that F plays the role of voids in local problems in the
case of periodic microstructure. We set Ψ = µ(F ), Qτ = (0, τ ) × Q.

Selected results
(i) T is not necessarily ergodic:
• Under physically plausible assumptions {uε,∇xuε,Φε,∇xΦε,vε}
stochastically two-scale converges in the mean to

(
χΩ\Fu, χΩ\F (ξ + ∇xu), Φ, (θ + ∇xΦ), χF v

)

and, for instance u ∈ H1(Q, I2(Ω))n, ξ ∈ L2(Q,M2(Ω))n
2
. Here χA de-

notes the characteristic function of set A.
• The Darcy-Wiedemann law is nonlocal in time:

Ẽ[χF (ω)(v − u̇)(t,x, ω)] =
1
ρ�

∫ t

0
A(t − s, ω)(fg −∇xp − q∇xΦ − κ∇xq)(s,x)ds

where f g depends on (s,x) whilst q and Φ on (s,x, ω); q = q(+) + q(−).
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The permeability matrix A = (Aij) is defined by

Aij = E[χF (ω)ẇ(i)(t, ω) · ej ], i, j = 1, 2, 3.

Here ej stands for the jth standard basis vector of IR3. The matrix A is sym-
metric and positive definite, cf. [11, 12]. The function w(i) is a solution to the
flow cell problem, given by Eqs. (4.14) in [11], cf. also [12].

(ii) T is ergodic on Ω:
• The macroscopic fields u, p,Φ and q do not depend on ω.
• The Darcy-Wiedemann law takes the form

〈χF (ω)(v(t,x, ω) − u̇)(t,x)]〉 =
1
ρ�

∫ t

0
A(t − s)(fg −∇xp − q∇xΦ − κ∇xq)(s,x)ds

where Aij = 〈χF (ω)ẇ(i)(t, ω) · ej ]〉.
• The macroscopic moduli ah(x), etc., can be found by solving cell local
problems, being stochastic counterpart of the local problems formulated in [14]
for the periodic case. For instance, we have

ah
ijpq(x) = 〈χΩ\F (ω)[aijpq + aijmneω

mn(B(pq)) − πkijE
ω
k (R(pq))](x, ω)〉

• The macroscopic stress tensor 〈σ(0)〉(t,x), x ∈ Q is expressed by

〈σ(0)〉(t,x) = 〈χΩ\F (ω)σs(0)(t,x, ω)〉 + 〈χF (ω)σ�(0)(t,x, ω)〉.

Explicit formula for 〈σ(0)〉(t,x) generalizes that given by Eqs.(4.19)-(4.21) in
[14].
• The stationary Darcy-Wiedemann law is obtained by letting t tend to infinity,
cf. [3].

Final Remarks

For other models of flow of electrolytes through porous media the reader is
referred to [2], [5], [6]. To take into account FCD (fixed charge density) one
has to impose additional condition on the interface Γε(ω) and the electroneut-
rality condition. A challenging problem is to use homogenisation methods for
the case of finitely deformable skeleton, even hyperelastic. The permeability
would then necessarily depend on strains. Such a dependence (nonlinear) is
important even for small strain, cf. [7]. It is also important to include ion
channels [8].
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Abstract This paper is concerned with the experimental identification of some chemo-
poroelastic parameters of a reactive shale from data obtained in pore pressure
transmission - chemical potential tests. The parameter identification is done
by matching the observed pressure response with a theoretical solution of the
experiment. This solution is obtained within the framework of Biot theory of
poroelasticity, extended to include physico-chemical interactions. Results of an
experiment on a Pierre II shale performed in a pressure cell are reported and
analyzed.

Introduction

The so-called pore pressure transmission-chemical potential test is used in
the petroleum industry to assess the osmotic membrane efficiency of a shale
in contact with a drilling fluid ([6, 7, 12–1]). It is motivated by the need to
assess the capacity of improving the stability of a borehole in a chemically act-
ive shale by increasing the salt concentration of the drilling fluid. In this test,
a saturated cylindrical sample of shale is subjected sequentially to a hydraulic

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 125–132.
© 2005 Springer. Printed in the Netherlands.
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Figure 1. Principle of the pressure transmission-chemical potential test

and a chemical loading on the upstream end of the sample (z = 0), with the
downstream end (z = L) connected to a closed reservoir, see Figure 1. The
fluid pressure in the reservoir is monitored during the test. The hydraulic
loading consists of applying a pressure pm at z = 0 with the solution used
during the saturation phase. In the chemical loading the end z = 0 is placed
in contact with a solution of a different salt concentration but at the same hy-
draulic pressure pm. During both loading phases water and salt ions move
through the shale sample, driven by differences in pressure and salt concen-
tration between the upstream and downstream reservoir solutions. The main
outcome of the experiment is the determination of the membrane efficiency
coefficient, a parameter which quantifies the departure of the shale from an
ideal osmotic membrane (for which movement of the salt ions is completely
impeded). This parameter is determined from the maximum pressure drop
(with respect to pm) in the downstream reservoir during the chemical loading
phase.

In this paper, we analyze this experiment within the framework of Biot the-
ory of poroelasticity, extended to include physico-chemical interactions, and
study the parameters that are influencing the fluid pressure response in the
downstream reservoir due to hydraulic and chemical loadings.

Chemoporoelasticity

The Biot theory of poroelasticity ([4, 2]) can be extended to account for the
physico-chemical interactions taking place between the dissolved salt, pore
fluid, and a chemically active shale ([8, 9]). For example, a sample of reactive
shale surrounded by a fluid initially in thermodynamic equilibrium with the
saturating fluid experiences a contraction (ε < 0) accompanied by a decrease
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of fluid content (ζ < 0) if the salt concentration of the surrounding fluid in-
creases (∆x > 0). These mechanical and hydraulic effects are a consequence
of the electrical interaction between the electrolyte and the negatively charged
clay platelets at the microscale ([3]).

The volumetric constitutive equations for a chemoporoelastic material can
be formulated in terms of the “stress” S = {σ, p, π} and the “strain” E =
{ε, ζ, θ}, i.e., in terms of the mean Cauchy stress σ, pore pressure p, osmotic
pressure π, volumetric strain ε, variation of fluid content ζ, and relative in-
crement of salt content θ. Note that the stress and strain are measured from a
reference initial state where all the “stress” fields are equilibrated. The osmotic
pressure π is related to the change in the solute molar fraction x according to
π = N∆x where N = RT/υ is a parameter with dimension of a stress, which
is typically of O(102) MPa (with R = 8.31 J/K·mol denoting the gas con-
stant, T the absolute temperature, and υ the molar volume of the fluid). The
solute molar fraction x is defined as ms/m with m = ms + mw and ms (mw)
denoting the moles of solute (solvent) per unit volume of the porous solid.
The quantities ζ and θ are defined in terms of the increment ∆ms and ∆mw

according to

ζ = υw∆mw + υs∆ms, θ =
υ

xo
∆ms − υ

1 − xo
∆mw (1)

where υw and υs denote the molar volume of the solvent and the solute, re-
spectively and where xo is the reference salt molar fraction (e.g. at the initial
state). For an ideal solution, υ = (1 − x)υw + xυs.

The volumetric constitutive relationships can be written as
⎧⎨
⎩

σ
p
π

⎫⎬
⎭ =

⎡
⎣ C bC −αbC

bC Sσ −βSσ

−αbC −βSσ γ

⎤
⎦

⎧⎨
⎩

ε
ζ
θ

⎫⎬
⎭ (2)

The set of constitutive parameters contains the (drained) elastic volumetric
compliance C and two poroelastic constants: the Biot stress coefficient b, and
the unconstrained storage coefficient Sσ = ∂ζ/∂p|σ which can be expressed
as Sσ = bB−1C ([13]), where B is the Skempton pore pressure coefficient.
The other three parameters, α, β, and γ quantify the physico-chemical interac-
tions. Both α and β are constrained to vary from 0 when there is no chemical
interaction to 1 when the salt ions are trapped in the pore network (this limiting
case is referred to as the “perfect ion exclusion membrane model”). The coef-
ficient γ can simply be approximated by γ � xo/n, where n is the porosity of
the shale.

Next, we introduce the specific discharge q and the relative solute flux r as

q = υwIw + υsIs, r =
υ

x
Is − υ

1 − x
Iw (3)

127



Physicochemical and Electromechanical Interactions

where Iw and Is are mass fluxes of solvent and solution, expressed in number
of moles crossing a unit surface of porous rock per unit time. Hence, the
transport equations can be rewritten as

q = −κ∇p + Rκ∇π, r = Rκ∇p − Dc

N
∇π (4)

where κ is the mobility coefficient defined as the ratio of the intrinsic permeab-
ility k over the dynamic viscosity µ, and R is a so-called reflection coefficient.
The ion diffusion coefficient Dc is of similar nature than the classical coeffi-
cient that appears in Fick’s law ([5]). However, Dc is smaller than the Fick’s
coefficient, as it must account for the extra “resistance” associated with the tor-
tuous path to be taken by the salt ions as they diffuse in the shale pore network
([10]). Note that 0 ≤ R ≤ 1, with the lower bound corresponding to the limit-
ing case of no chemical interaction and the upper bound corresponding to the
ideal ion exclusion membrane model. In terms of q and r, the mass balance
laws take the simple form

∇ · q = −ζ̇ , ∇ · r = −θ̇ (5)

Equations (2), (4), and (5) can be combined with the deviatoric elasticity
equation and the equilibrium equations to form a set of field equations con-
sisting of a Navier-type equation and two coupled diffusion equations. For
the class of problems characterized by an irrotational displacement field with
chemical and hydraulic loadings only, the two coupled diffusion equations sim-
plify to

AhhDh∇2p + AhcDh∇2π =
∂p

∂t
, AchDh∇2p + AccDh∇2π =

∂π

∂t
(6)

where

Ahh =
ϕ − CR
ϕ − C2

, Ahc =
Cψω −Rϕ

ϕ − C2
, Ach =

C −R
ϕ − C2

, Acc =
ψω − CR
ϕ − C2

(7)
Two new numbers C and ϕ have been introduced to characterize the chemo-
mechanical interactions

C = α − (α − β)χ, ϕ = γψ − α2(χ − 1) (8)

In the above, ω = Dc/Dh is the ratio of the chemical to the hydraulic diffusiv-
ity, ψ = 1/NS and χ = Sσ/S ≥ 1 with S = b [η/G + (1/B − b) C] denoting
the poroelastic oedometric storage coefficient ([13]), η = b(1 − 2ν)/2(1 − ν)
is a number defined over the interval [0, 1/2], G is the shear modulus, and ν is
the Poisson ratio. Generally, ψ = O(10), ϕ = O(1), and ω = O(10−2). If
the fluid and solid phases can be assumed to be incompressible compared to
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the skeleton, S � η/G in which case ψ � G/ηN and ϕ � γG/ηN . Also
since α = β = 0 for a chemically inert rock and α = β = 1 in the case
of an ideal ion exclusion membrane model, 0 ≤ C ≤ 1 with C � α near
the two bounds. However, there are restrictions on the parameters, namely
(ϕω −R2)(ψ − C2) > 0 (which in practice implies that R2 < ϕω if ϕω < 1)
to guarantee that the smallest eigenvalue of the matrix of coefficients A′s is
positive, as the diffusion equations would be ill-posed otherwise.

Once p and π have been determined for a hydraulic and/or a chemical load-
ing, then the volumetric strain can be computed according to ε = η(p−απ)/G.

Mathematical Model of Experiment

In order to facilitate the modeling as well as the physical interpretation of
the pressure transmission - chemical potential test, the loading is decomposed
into two fundamental modes corresponding to a hydraulic and a chemical per-
turbation. The upstream boundary conditions at z = 0 for each of the loading
modes can then be written as

hydraulic: p = σhH(t) , π = 0; chemical: p = 0, π = σcH(t) (9)

where H(·) is the Heaviside function and σh = pm−po and σc = πm−πo are
the characteristic stresses for the hydraulic and the chemical mode, respectively
(with subscript o denoting an initial field). The existence of a fluid reservoir of
volume Vd at the downstream end of the sample translates into the following
boundary conditions at z = L

Bhh∇p + Bhc∇π =
L

Dh
ṗ, Bch∇p + Bcc∇π =

L

Dh
π̇ (10)

where the coefficients Bhh, Bhc, Bch and Bcc are linearized with respect to
the mean molar concentration c̄s of the salt and the corresponding value of the
osmotic pressure π̄, i.e.,

Bhh = −ξ, Bhc = ξR, Bch =
ξπ̄

Kf
[(1 − c̄svs)R− 1] ,

Bcc =
ξπ̄

Kf
[R− (1 − c̄svs) ψω] (11)

The parameter ξ = V SKf/Vd (with Kf denoting the fluid bulk modulus)
encapsulates the influence of the experimental set-up.

The coupled diffusion equations (6) together with the boundary conditions
(9) and (10) can be solved in close form in the Laplace transform space, and
numerically inverted to the time domain. At early time, the solution behaves
according to the solution for a semi-infinite domain. At large time, the solution
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Figure 2. Evolution of the reservoir pressure for a hydraulic and a chemical loading. The
pressure is scaled by the corresponding characteristic pressure while time is scaled according to
the diffusion characteristic time Th.

corresponds to the solution of the membrane problem ([10]), where only the
jumps of p and π across the sample are of relevance. In the membrane mode,
the two fields p and π vary linearly along the sample as they are equilibrated.
The large time solution evolves according to a time scaled by the reservoir
characteristic time Tr = L2Vd/κV Kf , which is a function of the hydraulic
storage of the reservoir.

The parameter ξ, which enters into the downstream boundary conditions,
can actually be interpreted as ξ = Th/Tr, where Th = L2/Dh is the hydraulic
diffusion time scale. When ξ � 1, there exists an intermediate asymptotic
behavior corresponding to the zero-flux solution at z = L. When ξ � 1, the
solution is essentially the membrane solution.

Figure 2 illustrates the evolution of the downstream reservoir pressure in
response to a hydraulic and a chemical loading. The chemical response is
characterized by a pressure drop taking place over a time scale similar to the
hydraulic response and a return to equilibrium over a time scale that reflects
ionic diffusion throughout the sample. Interestingly, the downstream pressure
response is hardly affected by the constitutive parameters α, β, and γ and
depends essentially on Dh, Dc, ξ, and R. In fact, the minimum reservoir
pressure pmin reached during chemical loading is approximately given by pm−
pmin � (πm − πo)R (with a strict equality if the solution behaves according
to the membrane solution). Note that pmin (and thus the interpreted R) is
virtually independent of the experimental set-up (as embodied in the parameter
ξ) and of the sample length.

Results and Parameter Identification

A series of experiments on Pierre II shale (a shale from the Rocky Moun-
tains in Colorado) has been carried out with the Membrane Efficiency Screen-
ing Equipment (MESE) in the laboratory of CSIRO Petroleum, Australia. The
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Figure 3. Downstream fluid pressure response for a pore pressure transmission test with a
Pierre II Shale, for successive hydraulic and chemical loading (experimental data and matched
theoretical response).

samples had a diameter of 25.4 mm and a length of either 13 mm or 25 mm.
The saturation stage was conducted with a pressure po of about 10 MPa applied
on the upstream end of the sample with Pierre II shale simulated pore fluid.

The results of one of the experiments is shown in Figure 3. This particu-
lar experiment was conducted on a sample with a length L = 13 mm, for a
hydraulic load σh � 4.2 MPa applied for about 4 days and a chemical load
σc � 7.1 MPa applied for about 3 days (and stopped once the minimum down-
stream pressure was reached). The chemical loading resulted from increasing
the NaCl concentration of the solution from 3.9 wt % to 16.7 wt %. The ex-
perimental set-up is characterized by ξ � 5.1, corresponding to Vd � 4 mm3.

Identification of the parameters by matching the theoretical and experi-
mental downstream pressure gives R � 0.27, Dh � 7.2 · 10−9 m2/s, and Dc

� 4.3 · 10−10 m2/s. A comparison between the theoretical and experimental
downstream pressure response is shown in Figure 3.

Concluding Remarks

A mathematical model of the pressure transmission - chemical potential ex-
periment indicates that the two diffusivities Dh and Dc and the reflection coef-
ficient R can robustly be identified from the downstream pressure response.
The analysis also confirms the experimental practice of identifying R with
the membrane efficiency coefficient deduced from the minimum of the down-
stream pressure ([7, 11]) whose justification is based on simplified considera-
tions.
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Abstract When a biological tissue is subjected to a mechanical load, an electrical potential
gradient is generated. Such potential gradient is associated with the flow of
charged particles through a matrix with fixed charges. A deformation of the
matrix causes a fluid flow relatively to the solid matrix. This fluid flow tends to
separate the freely moving ions in the fluid from the oppositely charged particles,
that are attached to the matrix. In this way, an electrical field is created collinear
to the fluid flow. This results in an electrical potential. A similar effect appears
when charged particles start moving because of a chemical load.

In this study, uniaxial confined swelling and compression experiments were
performed on a hydrogel that mimics the behaviour of biological tissues. The
deformation of the sample and the electrical potential difference over the sample,
caused by varying mechanical and chemical loads, were measured successfully.

Introduction

When a biological tissue is subjected to a chemical or mechanical load, an
electrical potential gradient is generated [1, 2, 7, 8, 13]. Such potential gradient
is associated with the flow of charged particles through a matrix with fixed
charges. This is caused by a concentration gradient or by a flow induced by a
deformation as predicted by, for example, [6, 10–13]. The deformation of the
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matrix causes a fluid flow relatively to the solid matrix. This fluid flow tends
to separate the freely moving ions in the fluid from the oppositely charged
particles, that are attached to the matrix. In this way, an electrical field is
created collinear to the fluid flow. This results in an electrical potential.

In articular cartilage, streaming potentials have been demonstrated by per-
meation experiments and confined compression experiments [2, 4, 7, 9, 14,
15]. In the permeation experiments, a hydrostatic pressure gradient is applied
across the sample. The pressure generates a fluid flow and a streaming poten-
tial that can be measured [9, 15].

Streaming potentials are also generated by deformation of the tissue. Lee et
al. [14] and Frank et al. [4] measured streaming potentials generated by oscil-
latory compression experiments. Chen et al. [2] measured streaming potentials
in confined compression experiments. In these experiments, bovine cartilage
discs were subjected to step changes of the compressive stress.

The goal of this study is the measurement of the electrical potential gradient
caused by mechanical and chemical loads in a confined swelling and compres-
sion experiment.

Material and Methods

We choose to do the experiments with a tissue that mimics the behaviour of
biological tissues: a hydrogel. A hydrogel is a synthetic material that consists
of large charged polymers that are linked to each other.

Sample preparation

The sample material was a hydrogel, that was made out of 11 g acrylic
acid monomer (AA), 11 g acrylamide monomer (AAm), 100 g water (H20),
0.5 g cross linker MBAAm (N,N’-methylenebisacrylamide) and 0.1 g of the
initialisators (NH4)2S2O8 and K2S2O5. The solution was neutralised by 6.2
g NaOH. The constituents were put in a test tube where they react with each
other as described by de Heus [3]. After the reactions between the components
stopped, the material was submerged in a 0.15 molar NaCl-solution for one or
two days. Then, the hydrogel was put in a cup filled with a 0.15 molar NaCl
solution and was stored at room temperature.

After taking the hydrogel out of the test tube, it was cut by a scalpel in slices
with a thickness of about 1 mm. The diameter of these samples was 4.0 mm.

Experimental set-up

The samples were put in an uniaxial swelling and compression testing
device (figure 1). In a uniaxial confined swelling and compression experiment,
a cylindrical sample was enclosed in an impermeable confining ring made out
of Athlon� (Trespa International B.V., The Netherlands). This was done in
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order to have an electrical insulating ring around the sample. Athlon� was
used because it was an insulator and it did not swell due to water absorption
(water absorption < 1 weight%, according to the manufacturer). A mechanical
load was applied on top of the sample via a loading piston, made out of glass.
Inside the piston was a chamber filled with a 0.15 M NaCl solution (figure 1).
This chamber was closed at the bottom with a dense glass filter. Inside the
chamber, a Ag/AgCl electrode was placed ( MI-402 Micro-Reference Elec-
trode, Microelectrodes Inc., USA). At the bottom of the sample was a glass
filter through which a NaCl solution flowed. The permeability of the glass fil-
ter (pore size 16 – 40 µm, permeability 10−12 m4N−1s−1) was much larger
than the permeability of the sample. Thus, the boundary conditions were well
defined for the fluid flow and for the ion concentrations along the filter-sample
interface. A chemical load was applied by altering the salt concentration of the
bathing solution. A similar electrode as in the piston was mounted in the fluid
channel.

Figure 1. Schematic representation of the experimental set-up.

The deformation of the sample and the electrical potential difference over
the sample were measured. The electrical potential difference between both
electrodes were amplified by a Unicam 9460 amplifier (Unicam, USA). Dur-
ing the experiments, the displacement of the piston was recorded via a linear
variable displacement transducer (LVDT, Schaevitz, USA). The data acquisi-
tion sampling was 0.5 Hz. A vibrator was attached to the set-up in order to
overcome the sticking of the piston to the wall. This device vibrated intermit-
tently at 50 Hz during 1 second. The vibration started 0.5 second after the
data-acquisition. Lateral forces on the piston were minimised by allowing free
lateral motion of the measuring chamber floating on a silicon oil film. Further-
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more, the piston was greased with vaseline to prevent leakage between the wall
and the piston.

Before the experiment started, the electrodes were filled with an electrolyte
solution from Microelectrodes Inc., USA (3.0 M KCl solution saturated with
AgCl).

Experimental protocol

The experimental protocol is shown in figure 2 (top). In the first three stages
an equilibrium was reached. Thereafter, a faster change in the external salt
concentration was applied. In these stages no equilibrium was reached for
both the sample height and the electrical potential difference. The values for
the ion concentration were chosen such that the shrinking of the sample due to
the mechanical load was about the same as the swelling due to the chemical
load.

Results

The results of 2 representative experiments out of 11 are shown in figure 2
[5].

After 4.5 hours, the sample started swelling due to a change in the chemical
load: the concentration of the bathing solution was decreased from 0.45 M to
0.15 M. The tissue swelling was in the range of 30% – 36%.

After 12.5 hours, the sample shrank due to an extra mechanical load. The
load was increased from 0.078 MPa to 0.195 MPa. The tissue shrinking was in
the range of 33% – 36%. An equilibrium was reached after about 1 to 3 hours,
depending on the sample thickness.

In the last part (t > 20 hours), the sample started swelling and shrinking
because of changes of the chemical loads. These changes were prescribed
before a new equilibrium was reached. The change of the salt concentration
in the bathing solution was also responsible for the forming of an electrical
potential difference over the sample. This is shown in the lower graphs of
figure 2.

Discussion

In our experiment, we measured an electrical potential difference between
both electrodes. Since the salt concentrations inside the sample can alter, the
electrical potential is the sum of a streaming potential and a diffusion potential
[13]. We assume that there is a thin layer of fluid on top of the sample, that
is in equilibrium with the inner salt concentration. As long as we only alter
the mechanical load, we measure a streaming potential. In the other cases,
the measured electrical potential difference is a combination of a streaming
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Figure 2. Experimental results for 2 confined swelling and compression experiments per-
formed on hydrogel. The boundary conditions are given in the corresponding top figures.
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potential, a diffusion potential and an electrical potential jump over the sample
boundaries.

Also in other confined compression experiments, a streaming potential was
measured when a mechanical load was applied [2]. This streaming potential is
characterised by an electrokinetic coefficient ke:

ke :=
∆ξ

∆σ
. (1)

Here, ξ is the electrical potential and σ is the mechanical load. The value for
the electrokinetic coefficient ke for bovine cartilage was found to be in the
range from -2 to -12 mV MPa−1 [2].

In our confined swelling and compression experiment, we also applied a
mechanical load to the sample (t = 12.5 h). We measured a streaming po-
tential ∆ξ = 0.85 ± 0.65 mV. The change in the mechanical load ∆σ equals
-0.117 MPa. Thus, the value for the electrokinetic coefficient is −7.3 ± 5.6
mV MPa−1. This was in the same range as measured for bovine cartilage.

In the experiments, it is seen that the equilibrium values for the electrical
potential difference were different for different concentrations of the bathing
solution. The difference between the equilibrium values of the first and the
second stage is −0.93 ± 2.96 mV . This may indicate that there was a small
leakage over the electrode filters.

Conclusions

We were able to measure the electrical potential difference over a sample,
that was caused by a change in the mechanical load or by a change in the chem-
ical load. When altering only the mechanical load, the measured electrical
potential difference was in the same range as reported for bovine cartilage.
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INCORPORATING CHEMICAL EFFECTS
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FORMULATION AND APPLICATION
TO INCLINED BOREHOLES
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Abstract A poromechanics formulation for transversely isotropic chemically active
poroelastic media under non-isothermal conditions is presented. The forma-
tion pore fluid is modeled as a two-species constituent comprising of the solute
and the solvent. The model is applied to study the thermo-chemical effects on
the stress and pore pressure distributions in the vicinity of an inclined bore-
hole drilled in a chemically active transversely isotropic formation under non-
isothermal conditions.

Keywords: porochemothermoelasticity, poromechanics, anisotropy, borehole

Introduction

The coupling effects of various poromechanical processes on the response
of a porous medium have been successfully addressed by Biot’s theory of
poroelasticity and its extensions [3,4,5,8,2]. The chemical effects have also
been addressed by considering interaction between the porous matrix and a
pore fluid comprising of a solute and solvent [10, 7, 6]. Comprehensive an-
isotropic poromechanics formulations and corresponding solutions for the in-
clined borehole problem have been presented [4–2]. However, the coupled
chemo-thermo-hydro-mechanical response of an anisotropic porous medium
has not been addressed to date.

In this paper, the focus is on the development of a poromechanics model
which addresses the chemical effects within the framework of the anisotropic
porothermoelastic model [2]. The resulting model, termed as porochemo-
thermoelastic, accounts for fully coupled chemo-thermo-hydro-mechanical re-
sponse of a chemically active formation saturated with a pore fluid compris-
ing of two species under non-isothermal conditions. The numerical example
presented demonstrates the thermo-chemical effect on the stress and pore pres-
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sure distributions in the vicinity of an inclined borehole drilled through a trans-
versely isotropic formation.

Transversely Isotropic Porochemothermoelasticity

We consider a porous system comprising of the solid matrix completely
saturated with a pore fluid containing two chemical species; a solute and a
solvent with mole fractions m̄s and m̄w, respectively, and chemical potentials
given by [9]

µs = pVs + RT ln(�sm̄s) (1)

µw = pVw + RT ln(�wm̄w) (2)

where µs and µw are the chemical potentials for the solute and solvent, Vs

and Vw are the partial molar volumes of the solute and solvent, p is the ther-
modynamic pore pressure, R is the universal gas constant, T is the temperat-
ure, �s and �w are the activity coefficients of the solute and the solvent, and
m̄w = 1 − m̄s. The solution is assumed to be ideal with �s = �w = 1. It is
assumed that the transversely isotropic material bears an isotropic plane (x−y)
and a transverse direction (z-axis) along which the material properties are dif-
ferent. The constitutive relations for a chemically active transversely isotropic
medium are given as follows

σxx = M11εxx + M12εyy + M13εzz − αp − βsT + γsms (3)

σyy = M12εxx + M11εyy + M13εzz − αp − βsT + γsms (4)

σzz = M13εxx + M13εyy + M33εzz − α
′
p − βs′

T + γs′
ms (5)

τxy = Gγxy; τyz = G′γyz; τ zx = G′γzx (6)

ςs = m̄s Vs

Vsol

[ p

M
+ α(εxx + εyy) + α

′
(εzz) − βsfT

]
+ β̄

c
ms (7)

ςw = (1 − m̄s)
Vw

Vsol

[ p

M
+ α(εxx + εyy) + α

′
(εzz) − βsfT

]
− β̄

c
ms (8)

where σij is the total stress tensor, εij is the solid strain tensor, ςs is the vari-
ation of solute content, ςw is the variation of the solvent content, p is the pore
pressure, T is the temperature, ms is the variation of the solute mole fraction,
M11, M12, M13 are components of the drained elastic modulus tensor, M is
Biot’s modulus, α and α

′
are the Biot’s effective stress coefficients, γs and

γs′
are the chemo-mechanical coupling coefficients, βc is the hydro-chemical

coupling coefficient, βs and βs′
are the thermic coefficients related to the solid

skeleton, βsf is the thermic coefficient related to the fluid constituent. βs, βs′

and βsf are related to the expansion coefficients of the solid matrix and fluid
[2,6]. The transport equations for the solute and solvent flux are given by
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Figure 1. The thermo-chemical effect on the pore pressure distribution for ms
w < ms

o with
Tw > To at t = 0.001, 0.01 day

Figure 2. The thermo-chemical effect on the radial stress distribution for ms
w < ms

o with
Tw > To at t = 0.001, 0.01 day
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qs
i = −(1 − χ)

[
m̄sκijp,j + Dijm

s
,j

]
(9)

qw
i = −(1 − m̄s)κijp,j +

1
Vw

[χRTκij + (1 − χ)VsDij] ms
,j + DT

ijT,j (10)

where qs
i is the solute flux, qw

i is the solvent flux, κij is the mobility coefficient
tensor, Dij is the solute diffusivity tensor, DT

ij is a phenomenological coeffi-
cient tensor associated with thermo-osmosis and χ is the reflection coefficient.

The constitutive relations are combined with the equilibrium equations to
give the Navier-type equations which are expressed as

1
2
(M11−M12)ui,jj+

1
2
(M11+M12)uj,ji = αp,i+βsT.i−γsms

,i (i, j = 1, 2)
(11)

Energy conservation yields the heat diffusion equation given as follows

∂T

∂t
− ch∇2T = 0; ch =

λ

ρCv
(12)

Also, following the steps outlined in [7], the coupled diffusion equations can
be expressed as

∂

∂t
(Πi) − ci∇2 (Πi) = li

∂T

∂t
; i = 1, 2 (13)

where Π1, Π2, c1, c2, l1 and l2 are as given by [7].

Application to the Inclined Bore Hole Problem

The borehole is assumed to be infinitely long and inclined with respect to
the in-situ three-dimensional state of stress. The axis of the borehole is as-
sumed to be perpendicular to the plane of isotropy of the transversely isotropic
formation. Details of the problem geometry, boundary conditions and solu-
tions for the stresses, pore pressure and temperature are available in [7]. The
solution is applied to assess the thermo-chemical effects on stresses and pore
pressures. Both the formation pore fluid and the wellbore fluid are assumed
to comprise of two chemical species, i.e., a solute fraction and solvent frac-
tion. The formation material properties are those of a Gulf of Mexico shale [7]
given as E = 1853.0 MPa; ν = 0.22; B = 0.92; k = 10−4 md; µ = 10−9

MPa.s; ch = 8.64 × 10−5 m2/day; χ = 0.9; φ = 0.14; ch = 0.13824 m2/day;
αsm = 6.0 × 10−6 /◦C; αsf = 3.0 × 10−4 /◦C. A simplified example is con-
sidered wherein the in-situ stress gradients are assumed to be trivial and pore
pressure gradients of the formation fluid and wellbore fluid are assumed to
be = 9.8 kPa/m. The difference between the formation temperature and the
wellbore fluid temperature is assumed to be 50◦C. The solute concentration in
the pore fluid is assumed to be more than that in the wellbore fluid such that
ms

w − ms
o = −1.8 × 10−2.
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Figure 3. The thermo-chemical effect on the tangential stress distribution for ms
w < ms

o with
Tw > To at t = 0.001, 0.01 day

Figure 1 shows the pore pressure variation along the radial distance. Res-
ults are shown for the porothermoelastic and the porochemothermoelastic ana-
lysis for t = 0.001, 0.01 day. A higher wellbore fluid temperature results in
a temperature-induced pore pressure which is seen in the porothermoelastic
curves. In the porochemothermoelastic case, the higher chemical potential of
the water in the wellbore fluid induces an even higher pore pressure which is
the thermo-chemical effect. As seen in figure 1, the magnitude of the pore
pressure is higher for small time intervals and reduces as time increases. Fig-
ures 2 and 3 show the total radial and tangential stresses respectively generated
by the thermo-chemical effect. These stresses are compressive in nature and
higher for the porochemothermoelastic case.

Conclusions

A transversely isotrpoic porochemothermoelastic model has been presented
in this paper. The model has been applied to the problem of an inclined bore-
hole and the thermo-chemical effects on stress and pore pressure distributions
have been isolated in a simplified example. Results from the simplified ex-
ample show that a higher temperature along with a lower solute concentration
of the wellbore fluid results in increased magnitudes of the pore pressure near
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the wellbore. For the same case, incorporating thermo-osmotic effects results
in even higher near wellbore pore pressures.
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Abstract Salt weathering is one of the major causes of deterioration of buildings and
monuments. We have determined the underlying moisture and ion transport
within a representative building material by measuring the time evolution of
NaCl saturated samples during one-sided drying with Magnetic Resonance Ima-
ging. The obtained NaCl concentration profiles reflect the competition between
advection to the surface and redistribution by diffusion. By representing the
measured moisture and NaCl profiles in a so-called efflorescence pathway dia-
gram (EPD) also information about the crystallization process is obtained. The
pathways followed in the EPDs indicate that for historical objects in general
crystallization at the surface cannot be avoided, when evaporation cannot be
prevented.

Introduction

Although salt damage has been studied for many years ([2]; [3]; [11]; [7]),
the mechanisms that control salt crystallization in porous building materials
and the resulting damage by crystal growth are poorly understood. A better
knowledge of the transport of water and ions during drying and salt crystal-
lization in porous materials is needed to explain salt damage in different ma-
terials and under various conditions. The development of realistic models for
combined moisture and ion transport is hampered by the lack of adequate and
reliable experimental data. However, using NMR imaging techniques non-
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Figure 1. A schematic diagram of the one-sided drying of a sample saturated with a salt
solution. vl is the moisture fluid velocity

destructive measurements of the moisture and ion profiles in these materials
are possible ([4]; [8]). This offers new possibilities to approach the problem.

In this paper we focus on the one-dimensional drying of a fired-clay brick
initially saturated with a NaCl solution. First we discuss the moisture and ion
transport during evaporation. The NMR method and setup for measuring the
moisture and Na distribution during drying is discussed in section 3. Finally,
we discuss results for fired-clay brick and a new representation of these results
in a so-called efflorescence pathway diagram (EPD) in section 4.

Moisture and Ion Transport

In figure 1 a schematic representation is given of the drying process in a
sample saturated with a salt solution. During this process moisture is transpor-
ted to the drying surface. Given that the influence of gravity is neglible, the
moisture transport for a one-dimensional problem, considered in this paper,
can be described with a nonlinear diffusion equation ([1]):

∂θ

∂t
=

∂

∂x
Dw (θ)

∂θ

∂x
, (1)

where θ [m3m−3] and Dw(θ) [m2s−1] are the volumetric liquid moisture con-
tent and the so-called isothermal moisture diffusivity, respectively. In this
’lumped’ model all mechanisms for moisture transport, i.e., liquid flow, sur-
face flow and vapour diffusion, are combined into a single moisture diffusivity
which depends on the actual moisture content. Note that the transport of water
due to a salt gradient has been neglected, although salts might have a direct
influence on the capillary action, viscosity, and permeability and therefore on
the moisture diffusivity. During drying the ions are transported by advection
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with the moisture and diffusion within the moisture. If the interactions between
the ions and the walls are neglected, which is justified for fired-clay brick, the
transport of ions can be described by ([1]):

∂cθ

∂t
=

∂

∂x

[
θcvl − θDs (θ)

∂c

∂x

]
− R. (2)

In this equation c [mol l−1], Ds (θ) [m2s−1], vl [ms−1] and R [mol l−1s−1]
respectively are the ion concentration in the water, the diffusion coefficient of
the ions in the moisture, velocity of the moisture flow and and the crystalliz-
ation rate. Expression 2 makes clear that during a drying experiment there is
a competition between advection, which forces ions to move to the top of the
sample and thereby causes accumulation, and diffusion, which levels off any
accumulation. It has been shown that the following Peclet number determines
the behaviour of the system ([6]):

Pe ≡ hL

θmDs (θm)
,

where h [m3m−2s−1], L [m] and θm [m3m−3] are the drying rate, the sample
length and the maximum fluid content by capillary saturation, respectively.
For Pe � 1 diffusion dominates and the distribution of ions will be uniform,
whereas for Pe � 1 advection dominates and ions will accumulate at the
drying surface. Note that h/θm is in fact the intial the velocity of water at the
drying surface.

Nuclear Magnetic Resonance Technique

In a nuclear magnetic resonance (NMR) experiment the magnetic moments
of the nuclei are manipulated by suitably chosen radio frequency fields, res-
ulting in a so-called spin-echo signal. The amplitude of this signal is propor-
tional to the number of nuclei excited by the radio frequency field. NMR is a
magnetic resonance technique, where the resonance condition for the nuclei is
given by:

f = γB0 (3)

In this equation f is the frequency of the radio frequency field, γ is the gyro-
magnetic ratio (γ = 42.6 MHz/T for 1H, 11.3 MHz/T for 23Na and 4.2 MHz/T
for 35Cl) and B0 is the externally applied static magnetic field. Because of this
condition the method can be made sensitive to one type of nuclei and therefore
to hydrogen (and thus to water), sodium or chloride. Because the sensitivity of
chloride is very low this ion was not considered in the present study.

For the experiments described here a home-built NMR scanner is used,
which incorporates an iron-cored electromagnet operating at a field of 0.78
T. In order to perform quantitative measurements a Faraday shield was placed
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Figure 2. A schematic diagram of the NMR set-up for measuring the moisture and Na distri-
bution during drying.

between the tuned circuit of the probe head and the sample ([8]). In addition
the quality factor of the LC circuit was chosen rather low (Q ≈ 40), to suppress
the effects of the (electrically conducting) NaCl solution.

The sample, a fired-clay brick cylinder with a length of 45 mm and a dia-
meter of 20 mm, was placed inside a closed teflon holder to prevent evapor-
ation. A constant magnetic field gradient of up to 0.3 T/m was applied using
Anderson coils, giving a one-dimensional resolution of the order of 2 mm for
both water and Na. The spin-echo experiments were performed at a fixed fre-
quency, corresponding to the centre of the RF coil (fig. 2). The sample, which
has a cylindrical shape with a diameter of 20 mm and a length of 45 mm, is
moved vertically through the magnet with the help of a step motor. It is sealed
at all sides, except for the top over which air with a relative humidity of 5% is
blown. In this way a one-dimensional drying process is created.

While the sample is drying, first the moisture content in the small region of
the sample near the centre of the RF coil is measured. Next, the frequency is
changed from 33 MHz (1H) to 9 MHz (23Na) and the Na concentration in that
region is measured. After these two measurements the sample is moved in the
vertical direction by the step motor and the moisture and Na concentration are
measured again. The measurement time for the moisture content was 1 minute
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Figure 3. Moisture profiles measured during drying of a fired-clay brick sample of 45 mm
length after 0, 1, 3, 6, 9, 12, and 15 days. The drying surface is at 0 mm.

whereas it took 4 minutes to measure the Na content with a similar signal
to noise ratio. This procedure is repeated until a complete moisture and Na
profile have been measured. A time stamp is given to each measurement point.
Measuring an entire Na concentration profile takes about 3 hours. Since the
typical time of a drying experiment is several days, the variation of the moisture
and ion profiles during a single scan can be neglected. With NMR settings used
in these experiments only the Na nuclei in the solution are measured, i.e., no
signal is obtained from NaCl crystals.

Efflorescence Pathway Diagram

We have performed experiments on fired-clay bricks, because they show al-
most no adsorption of ions at the pore wall. As an example of a typical experi-
ment, we first discuss the results for a 3 M NaCl solution. A few representative
moisture profiles are shown in figure 3. This figure shows that the moisture
profiles are nearly flat, which indicates that the moisture distribution within
the sample remains homogeneous during this evaporation experiment, i.e., up
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Figure 4. Absolute content of dissolved Na ion profiles measured during drying of a fired-
clay brick sample of 45 mm length after 0, 1, 3, 6, 9, 12, and 15 days. The drying surface is at
0 mm.

to 14 days we did not observe a receding drying front. This was observed in
all experiments performed within this study. We attribute this to the wetting
properties of the NaCl solution and the low drying rates used in these experi-
ments. The Na ion profiles are shown in figure 4. This figure makes clear that
within 1 day after the start the Na profiles develops a peak just below the dry-
ing surface. At 12-15 days after the start of the drying process the Na profiles
are flat again. This behaviour is more clearly visible in the Na concentration
profiles, that are obtained via point by point division of the corresponding Na
and H profiles. We have plotted these concentration profiles in figure 5. Dur-
ing the initial drying, Na ions are advected to the surface (position 0 mm) and
the NaCl concentration increases to 6 M, which is the saturation concentration
of a NaCl solution. From this point on any additional advection will lead to
crystallization at the top of the sample, which is indeed observed as a white
efflorescence. From this point on the NaCl concentration profile starts to level
off until the salt concentration is everywhere at 6 M. The total moisture content
of the sample can be obtained directly by integrating the moisture profiles. Its
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Figure 5. NaCl concentration profiles measured during drying of a fired-clay brick sample of
45 mm length after 0, 1, 3, 6, 9, 12, and 15 days. The drying surface is at 0 mm.

time derivative, together with the sample dimensions, yields the drying rate, h.
We have used a value of Ds of the order of 10−9 m2s−1 to estimate the Peclet
number ([5]). Initially the evaporation rate gives rise to Pe ≈ 3, corresponding
to situation in which salts accumulate at the surface, whereas after a few days
Pe decreases to 0.7, corresponding to the levelling off of the ion profile. To
quantify the crystallization occurring at the surface, the data resulting from the
drying experiment, shown in the figures 3-5, have been plotted in a so-called
efflorescence pathway diagram, EPD ([10]), figure 6.In an EPD the product of
the average salt concentration and the average moisture saturation, CavgSavg ,
is plotted against the average moisture saturation, Savg . Note that CavgSavg

is proportional to the total amount of dissolved NaCl present in the solution
(with the NMR no signal is obtained from NaCl crystals). Two limiting situ-
ations can be distinguished. In the first case the system dries very slow drying,
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Figure 6. Efflorescence pathway diagram: CavgSavg , which represents the total amount of
NaCl present in the solution, as a function of the average saturation Savg . The data correspond
to the drying experiment plotted in the figures 3-5.

Figure 7. Efflorescence pathway diagram: CavgSavg , which represents the total amount of
NaCl present in the solution, as a function of the average saturation Savg for all experiments
performed on fired-clay brick with initial concentrations of 1M and 3M.
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Pe � 1. The ion profiles will remain homogeneous and for some time no
crystallization will occur. The average NaCl concentration slowly increases
(line A) until the saturation concentration, 6 M, is reached. From this point on
any additional drying results in crystallization (line B). The second case cor-
responds with a fast drying system, Pe � 1. Ions are strongly advected with
the moisture to the top of the sample and a 6 M peak will build up with a very
small width. If the rate of crystallization is high enough, i.e., given that there
are enough nucleation sites close to the surface, the average NaCl concentra-
tion in the solution in the sample itself will remain constant at nearly the initial
concentration (line C).

In any point within the region bounded by the lines A, B and C moisture re-
moval results in an increase of the NaCl concentration. A decrease of CavgSavg

can only be caused by crystallization. This requires that salt is transported to
a region with a local concentration of 6 M, that is, the drying surface in our
experiments. Because the transport is driven by evaporation, crystallization al-
ways happens via a (small) change of Savg . The total amount of NaCl ions in
the solution, CavgSavg , and the average saturation, Savg , have been obtained by
integrating the Na profiles and the H profiles measured by NMR, respectively.
The resulting pathway for the experiment, shown in the figures 3-5, indicates
that a peak in the NaCl concentration is present during the first 9 - 12 days and
salt crystallizes at the top, i.e., salt efflorescence occurs. After this period the
concentration is at 6 M in the entire sample.

Various additional experiments have been done with different air-flow rates
over the samples and different salt concentrations. In figure 7. we have plotted
all pathways for the experiments performed with the various samples starting
at initial concentrations of 1 and 3 M.In a few experiments indeed the boundary
line of Pe � 1 is followed. This indicates that the salt crystallization is indeed
fast enough and is not a limiting factor; that is, there are enough nucleation
sites in this type of material and no supersaturation occurs. In contrast to the
experiments for 3 M, it is possible to follow the Pe � 1 boundary line for 1
M.

Conclusion

The NMR measurements on combined moisture and ion transport during
drying in combination with the efflorescence pathway diagrams, EPD, prove
to be a powerful tool for studying salt weathering. The EPDs reflect the com-
petition between advection to the surface and redistribution by diffusion, but
also visualize the crystallization. The EPDs indicate that in general, crystalliz-
ation at the surface cannot be avoided. However, it is evident that the evapor-
ation rate is the key parameter in the process. Therefore, the solution for salt
damage problems strongly depends on the environmental conditions. When
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historical objects are preserved indoors, where climatological conditions can
be controlled easily, the relative humidity has to be kept as constant as pos-
sible and airflow around the object should be prevented, in order to avoid wet-
ting/drying cycles. Outdoor monuments and buildings are exposed to wind
and fluctuations of the relative humidity. High drying rates (and thus high Pe
numbers) cannot be avoided and hence one should limit the sources of salts,
e.g., preventing flooding and hindering rising damp.
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Abstract We use Nuclear Magnetic Resonance relaxometry (i.e. the frequency variation of
the NMR relaxation rates) of quadrupolar nucleus (23Na) and 1H Pulsed Gradi-
ent Spin Echo NMR to determine the mobility of the counterions and the wa-
ter molecules within aqueous dispersions of clays. The local ordering of iso-
tropic dilute clay dispersions is investigated by NMR relaxometry. In contrast,
the NMR spectra of the quadrupolar nucleus and the anisotropy of the water
self-diffusion tensor clearly exhibit the occurrence of nematic ordering in dense
aqueous dispersions. Multi-scale numerical models exploiting molecular orbital
quantum calculations, Grand Canonical Monte Carlo simulations, Molecular and
Brownian Dynamics are used to interpret the measured water mobility and the
ionic quadrupolar relaxation measurements.

Keywords: Colloids, Nuclear Magnetic Resonance, Relaxation, Diffusion.

Introduction

Clays are ubiquitous materials used for many industrial applications whose
optimisation requires an accurate knowledge of the structure of the clay dis-
persions [1–5] and the mobility of their labile components (solvent molecules,
neutralizing counterions, salt molecules). Nuclear Magnetic Resonance is a
powerful tool for deriving structural and dynamical information [6]. We chose
to use relaxation measurements of monovalent counterions [7–9] (sodium) be-
cause of the high sensitivity of the corresponding nuclear magnetic probes
(23Na) and because these counterions interact strongly with the ionised clay
surfaces, leading to structural and dynamical information on the colloid it-
self. Supplementary information on the structure of the clay dispersions is also
obtained by measuring the water self-diffusion tensor by means of 1H Pulsed
Gradient Spin Echo NMR measurements [10, 11]. The analysis of these PGSE-
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NMR measurements is performed by numerical simulations with a multi-scale
modelling [11] of the structure of the clay dispersions and the diffusion of the
water molecules or the sodium counterions, by using Brownian Dynamics in
order to bridge the gap between the time scale accessible by Molecular Dynam-
ics (typically a few ps) and that explored by the NMR measurements (from ns
to ms).

Materials and Methods

Sodium Laponite RD from Laporte was used without purification. Dilute
dispersions (maximum concentration 10% w/w) were prepared by stirring dur-
ing one hour in 10−2M (NaCl) aqueous solution at pH 10. Concentrated clay
samples (23-66% w/w) were obtained by oedometric uniaxial compression of
dilute dispersions using external pressures between 0.5 and 2 MPa. 23Na NMR
spectra were recorded [7–9] on DSX360, MSL200 and DSX100 Bruker spec-
trometers at fields of 8.465, 4.702 and 2.351 T, respectively obtained with
superconducting magnets. 1H PGSE-NMR was used to determine the mac-
roscopic mobility [10, 11] of the water molecules along the three principal
directors of the diffusion tensor within the Laponite dispersions.

Results and Discussion

Isotropic dilute suspensions
23Na spectra recorded in dilute Laponite dispersions (less than 10% w/w)

display no residual coupling and so these dilute suspensions, at least as far
as NMR is concerned, appear macroscopically isotropic. Despite the lack of
residual quadrupolar coupling, structural and dynamical information may be
extracted from the frequency variation of the relaxation measurements [7, 8]
(see Figure 1). The cross-over frequency displayed in Figure 1 corresponds to
the diffusion time required by the sodium counterions to escape from locally
ordered micro-domains whose size corresponds to the clay diameter. Increas-
ing this clay size by one order of magnitude reduces this cross-over frequency
by two orders of magnitude because of the simultaneous increase of the ordered
micro-domains (Figure 1). In addition to 23Na measurements the self-diffusion
tensor describing the water mobility in dilute Laponite dispersions is perfectly
isotropic (see Table 1).

Concentrated nematic dispersions

Typical 23Na NMR spectra recorded within dense Laponite dispersion are
shown in Figure 2, clearly exhibiting a large residual quadrupolar splitting [9]
fingerprint of the macroscopic nematic ordering of these dense Laponite dis-
persions (more than 23% w/w). The cancellation of this residual quadrupolar
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Figure 1. Frequency variation of the
23Na relaxation rates in dilute aqueous dis-
persions of two different clays.

Figure 2. Splitting of the 23Na reson-
ance lines in the presence of dense Lapon-
ite dispersion (44% w/w).

splitting at the magic angle (θM = 54.7◦) results from the existence of a single
macroscopic director in these dense dispersions. The water mobility measured
by 1H PGSE-NMR experiments confirms [10, 11] this macroscopic ordering
of the dense Laponite suspensions because of the anisotropy of the tensor de-
scribing the water self-diffusion (see Table 1).

A multi-scale modelling [11] of the water self-diffusion is necessary to in-
terpret these data by extrapolating the dynamical information accessible by
Molecular Dynamics simulations to the time scale investigated by the NMR
measurements. We first performed MD simulations of the trajectories of the
water molecules and sodium. The density of the solvent molecules and the
initial configurations of the water molecules and the sodium counterions was
determined by preliminary GCMC simulations. For these GCMC and MD nu-
merical simulations we used an empirical model of bulk water (TIP4P) com-
patible with an inter-atomic force field extracted from quantum calculations
of the water/clay short-range interactions. The self-diffusion coefficient Dα

quantifying the water mobility along any direction (denoted �eα) is evaluated
by integrating the velocity autocorrelation function (see Figure 3):

Dα = lim
t→+∞

∫ t

0
< �vα(0)�vα(τ ) > dτ (1)

Brownian Dynamics is then used to simulate the macroscopic mobility of
the water molecules. The water mobility near to the clay surface is identified
to the water mobility calculated by MD simulations. The ordering of the simu-
lated dispersions was selected to be compatible with the information obtained
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from the line-shape analysis of the 23Na NMR spectra. Two different ordered
phases were generated corresponding either to a simple orientational ordering
(in nematic phase) or including also some positional ordering of the Laponite
disks within a columnar phase. In order to check the influence of the size of
the clay particles, the BD simulations were performed for two disk diameters:
200 and 300 Å.

Figure 3. Anisotropy of the water mo-
bility near the clay surface for logitudinal
and transverse directions.

Figure 4. Water transverse mobilities
ν(∆) as a function of the diffusion time ∆.
The horizontal line corresponds to the wa-
ter macroscopic mobility measured by 1H
PGSE-NMR.

The correlation between the structure of the clay dispersions and the
water mobility is investigated by the use of the self-diffusion propagator
Ps(�r ′,∆ |�r, 0), i.e. the probability density of finding at time ∆ and position
�r ′ a diffusing probe initially located at a position �r:

Ψ(�r ′,∆) =
∫

Ψ(�r, 0)Ps(�r ′,∆ |�r, 0) d�r (2)

where Ψ(�r, 0) is the bulk density at equilibrium. The Fourier Transform of the
self-diffusion propagator along a single direction (�eα) is directly comparable
with the PGSE-NMR measurements; it is Gaussian for unrestricted motions.
However, in the case of diffusion restricted by the collisions of the water mo-
lecules at the solid/liquid interfaces, the self-diffusion propagator along a se-
lected director is no longer Gaussian except in two limiting dynamical regimes:

- at very short diffusion times (∆=10−10 s), when the fraction of colliding
water molecules remains negligible;

- at long diffusion times (∆ >3×10−7 s), when the mobility of the wa-
ter molecules has been averaged over the whole structure of the solid/liquid
interfaces, leading to an effective macroscopic mobility.

162



Macroscopic Ordering of Charged Anisotropic Colloids

Table 1. The tortuosity is defined by the ratio τα = D0/Dαα where D0 is the self-coefficient
of the bulk water (1.92×10−9 m2s−1). ∆νmax

Q is the maximum quadrupolar splitting detec-
ted by 23Na NMR. The Laponite samples noted by an asterisk were prepared by oedometric
compression.

Sample τ⊥ τ‖ ∆νmax
Q (kHz)

H2O 1.00 1.00 0
3% w/w 1.07 1.05 0
6% w/w∗ 1.18 1.13 0
23% w/w∗ 1.75 1.24 14 ± 2
29% w/w∗ 1.90 1.33 16 ± 2
32% w/w∗ 2.20 1.55 16 ± 2
44% w/w∗ 2.71 1.33 22 ± 2
45% w/w∗ 2.69 1.32 28 ± 2
66% w/w∗ 4.31 1.49 30 ± 2

The transverse mobility of the water molecules in the intermediate dy-
namical regime is displayed in Figure 4 as a function of the diffusion
time. A continuous decrease of the apparent water mobility is detec-
ted within the pure nematic phases (with only orientational order) signific-
antly underestimating the transverse mobility measured by 1H PGSE-NMR
(Dtrans=(0.73±0.02)×10−9 m2/s). Decreasing the diameter of the disks at
constant density of the Laponite particles was shown to enhance the apparent
water mobility. By contrast, the apparent transverse mobility of the water mo-
lecules evaluated within the columnar phases is a non-monotonic function of
the diffusion time, leading to a macroscopic mobility significantly larger than
the experimental value. Nervertheless, the agreement between simulated and
experimental data is satisfactory since no fitted parameters were used for these
simulations. Our numerical simulations clearly exhibit the great sensitivity of
the measurements of the solvent mobility by PGSE-NMR as a structural probe
of the porous media.

Conclusion

By detecting the residual splitting of the resonance line of quadrupolar
cations (23Na) and the anisotropy of the water self-diffusion tensor measured
by 1H PGSE-NMR, we have demonstrated the occurrence of nematic ordering
within dense (>23% w/w) aqueous dispersions of Laponite clays. In contrast,
our analysis of the 23Na relaxometry is compatible with only local ordering
of the Laponite particles within dilute (<10% w/w) isotropic suspensions. A
multi-scale modelling of the dilute and concentrated clay dispersions was ne-

163



Physicochemical and Electromechanical Interactions

cessary to fully interpret these measured water mobility and ionic relaxation
on the basis of the structure of the clay dispersions. The same structural in-
formation could be extracted from the measurements of the solvent or ionic
diffusion performed in other porous media also limited by ionised solid/liquid
interfaces.
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Abstract A three-phase multi-species electro-chemo-mechanical model of articular cartil-
age is developed that accounts for the effect of two water compartments, namely
intrafibrillar water stored in between collagen fibrils and extrafibrillar water cov-
ering proteoglycans. The collagen fibers constitute the solid phase while intrafib-
rillar water and dissolved NaCl on one hand and extrafibrillar water, ions Na+

and Cl− and proteoglycans on the other hand form the two fluid phases. Chem-
ical equilibrium between the fluid phases is assumed and only the mechanical
aspects of the behaviour are considered.

Keywords: Articular cartilage; chemo-mechanical couplings; swelling.

Introduction

Articular cartilage is a porous medium bathed in an electrolyte and in which
electro-chemo-mechanical couplings play a key role. Appropriate hydration
is an essential ingredient that allows articular cartilage to support compress-
ive stresses. Hydration is mainly due to the presence of negatively charged
proteoglycans. The gel formed by hydrated proteoglycans is reinforced by
collagen fibers. Collagen fibers form fibrillar structures that trap their own
water.

Articular cartilage has to sustain changes of chemical composition of the
electrolyte and mechanical loads. Its overall bearing capacity is believed to

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 167–172.
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be due to the water pressure generated by proteoglycans that is equilibrated
by tension of collagen fibers and external loads. Moreover, in order to sustain
external loads, articular cartilage adapts and modifies its internal configuration,
through exchanges between intra- and extrafibrillar waters and ions.

In line with the idea of [4], collagen fibrils behave as a semipermeable
membrane, impermeable to macromolecules of molecular mass larger than
4000 gm, and permeable to dissolved ions Na+ and Cl− and water. They are
viewed as separating the two fluid phases.

The presence of proteoglycans in the extrafibrillar compartment would res-
ult in water depletion in the intrafibrillar compartment when the salinity of the
synovial joint, or of the bath in laboratory experiments, is decreased. Therefore
there should be mechanisms that retain intrafibrillar water within fibrils. Here,
hydration forces that act at short distances, a few angströms, are postulated to
be the main factor that limit the exchangeability of intrafibrillar water.

The constitutive equations use a thermodynamic framework, that in fact
embodies not only purely mechanical aspects, but also transfers of masses
between the phases and diffusion of matter through the extrafibrillar phase.
Since focus is on the chemo-mechanical couplings, we use experimental data
that display different salinities. The structure of the constitutive functions and
the state variables on which they depend are briefly motivated. Calibration of
material parameters is defined and simulations of confined compression tests
and of free swelling tests with a varying chemistry are described and compared
with available data in [3]. The evolution of internal entities entering the model,
e.g. the masses and molar fractions of water and ions, during some of these
tests is also documented to highlight the main microstructural features of the
model.

Definition of the Phases

Our definition of the phases is mechanically motivated. A kinematical cri-
terion on the other hand would sort species according to their velocities. Car-
tilage is viewed as a three-phase, multi-species, porous medium:
- the solid phase S contains the collagen fibers;
- the intrafibrillar fluid phase I contains three species, intrafibrillar water w,
sodium ions Na+ and chloride ions Cl−;
- the extrafibrillar fluid phase E contains four species, proteoglycans PG, ex-
trafibrillar water, sodium and chloride ions.

A certain minimal concentration of sodium cations is required to ensure
electroneutrality of the extrafibrillar phase.

Exchanges of water and ions occur between the fluid phases, but only the
extrafibrillar phase communicates with the exterior, Figure 1.
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SOLID INTRAFIBRILLAR EXTRAFIBRILLAR EXTERIOR

PHASE PHASE PHASE (reservoir/
synovial joint)

collagen

exchangeable

intrafibrillar water

Na+

Cl-

extrafibrillar water

exchangeable Na+

Cl-

proteoglycans

non-exchangeable Na+

non-exchangeable

water

Na+

Cl-

Figure 1. Articular cartilage is partitioned in three phases, one solid phase and two fluid
phases. Each fluid phase contains several species. Some of these species are exchangeable, at
least partially: water and ions can enter and leave the intrafibrillar space defined by collagen
fibrils. Proteoglycans which are macromolecules are too large to be admitted into that space, at
least in absence of osteo-arthritis. Water and ions can also be exchanged between the extrafib-
rillar phase and the exterior.

The three-phase multi-species framework follows the strongly interacting
model of [1], namely:
(H1) The mass balance is required for each species. Mass balance for each
phase is obtained via mass balances of the species it contains.
(H2) Momentum balance is required for the mixture as a whole. Water and
ions in the extrafibrillar phase are endowed with their own velocities so as to
allow the latter to diffuse in their phase (possibly involving electrical effects)
and satisfy their own balance of momentum.
(H3) The velocity of any species in the intrafibrillar phase is that of the solid
phase, i.e. of collagen, vkI = vS , ∀k ∈ I . The velocity of the proteoglycans
which do not diffuse through the cartilage is also equal to vS . Therefore,
the balance of momentum of the above species is not required explicitly, but
accounted for by the balance of momentum of the mixture. Note that this
assumption does not hinder exchange of water and ions between the two fluid
phases, this exchange being viewed as a mass transfer and not as a diffusion
process.
(H4) In the intrafibrillar phase, the pressure pI is uniform, while, in the ex-
trafibrillar phase, water and ions are endowed, through constitutive equations,
with their own intrinsic pressure.
(H5) Electroneutrality is required for the extrafibrillar phase alone, and for the
solid and intrafibrillar fluid phases together.
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As already mentioned, the definition of phases in articular cartilage is not
unambiguous, because the mechanical, chemical and electrical roles of pro-
teoglycans (PG’s) may dictate contradictory choices. In fact, if the phase cri-
terion was kinematically based (that is on velocity), PG’s would be classified
as part of the solid phase. However, its osmotic effect is important, not so much
because of its concentration or molar fraction itself, but because of its effective
charge and the latter should be involved in the electroneutrality condition of
the extrafibrillar phase.

The Chemo-Mechanical Model

It is crucial to define a reference configuration, or state, to which all tests can
be reckoned. Such a reference state, referred to as hypertonic state, is defined
as the state of maximum salinity of the extrafibrillar compartment: then as the
salt content overweights the presence of proteoglycans, the latter have a very
small mechanical effect: the hypertonic configuration is such that the stress is
equal to the bath pressure. Therefore, stresses and pressures can be reckoned
to their values at the hypertonic state from which all tests start and at which by
convention the strain vanishes as well.

As a consequence of electroneutrality in the two fluid phases, the mass con-
tent of chloride anions is no longer an independent variable and it can be elim-
inated in favor of the mass content of the cations sodium. A direct consequence
is that the electrical field does not enter the elastic constitutive equations, that
can be phrased in terms of chemical, rather than electro-chemical, potentials.

All species are assumed to be incompressible so that the total volume change
of the cartilage is equal to the sum of the volume changes of the two fluid
phases, δ tr ε = δvI + δvE . The constitutive equations will thus be phrased
in terms of shifted generalized stresses, and the intrafibrillar pressure has to
be obtained by boundary conditions. The chemical energy of the intrafibrillar
phase does not contribute to the chemo-mechanical elastic potential that serves
to formulate the constitutive equations. This potential is due to three contribu-
tions: a purely chemical contribution to recover the classical logarithmic term
in the chemical potentials, a chemo-mechanical coupled contribution, and a
configurational part that represents the history of formation of the cartilage,
and accounts for the initial equilibrium between phases.

Having obtained the elastic equations in terms of shifted entities, and re-
verting to total entities, the constitutive equations express the total stress σ,
the chemical potentials of the extrafibrillar water µwE and of the salt µsE , and
the hydration potential of the intrafibrillar water µhydr, in terms of the general-
ized strains, namely the strain of the porous medium ε, the mass-contents of the
extrafibrillar water mwE and of the cations sodium mNaE , and the mass-content
of intrafibrillar water mwI . The interested reader is directed to [3].
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Figure 2. Confined compression tests at given bath salinity correspond to a linear in-axis
stress-strain relation. The maximal salinity is associated to the minimal elastic moduli, that is
to Λ = 0, or to a zero intercept with the stress axis peff

0 = 0 (reckoning stresses and pressures
from the hypertonic state). A given bath salinity is also assumed to correspond to a given
mass-content of sodium in the extrafibrillar phase mNaE . The function peff

0 (mNaE) embodies the
monotonous increase of the slopes of the confined compression tests, as bath salinity decreases.

Figure 3. Complex loading path involving successive confined compression, at fixed bath sa-
linity, and increase in bath salinity at fixed strain. Shielding of negative charges of proteoglycans
by salt reduces the repulsive forces and the overall compressive stress. (a) Model simulations;
(b) Experimental data.

As a partial illustration of the model, Figure 3 shows simulations of ex-
perimental data by [2] performed sufficiently slowly so that they represent a
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sequence of equilibria. The model provides indications on the internal par-
tition of water during loading tests with controlled mechanical or chemical
conditions. Experimental data are crucially needed to a better quantitative un-
derstanding of the effects on its overall properties of the mechanisms internal
to cartilage.
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Abstract A three-scale model based on a modified convection-diffusion-reaction equa-
tion wherein the partition coefficient governing the instantaneous adsorp-
tion/desorption of the species in the micro-pores appears appears coupled with
the local electric potential sastisfying a Poisson-Boltzmann equation, is pro-
posed to describe contaminant transport in swelling clays characterized by two
levels of porosity (micro and macro-pores). At the microscale the medium is
composed of charged clay particles saturated by a binary monovalent aqueous
electrolyte solution. At the intermediate (meso) scale the two-phase system is
represented in a homogenized fashion with movement of the ionic charges gov-
erned by the Nernst-Planck relations. At the macroscale, the mesoscale mixture
of clay clusters is homogenized with the bulk solution in the macro-pore sys-
tem. A notable consequence of the approach proposed herein is the microscopic
representation for the partition coefficient which can be exploited to derive the
constitutive behavior for this quantity.

Keywords: clay, homogenization, partition coefficient, Poisson-Boltzmann, dual porosity

Introduction

In this article we propose a homogenized form of the modified convection-
diffusion equations to describe contaminant transport in expansive clays char-
acaterized by three disparate length scales and two levels of porosity. The
microscale consists of macromolecular structures saturated by an electrolye
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solution whose local electric potential is governed by the Poisson-Boltzmann
equation. At the meso (intermediate scale) these continua are homogenized
leading a two-scale model wherein flow, ion transport and electric current are
governed by Onsager’s reciprocity relations. Further, a three-scale form of the
convection-dffusion-reaction equation is obtained by homogenizing the two-
scale model : the clay clusters with the bulk water (solvent not within but next
to the swelling particles). In the macroscopic picture of a dual porosity model,
an interconnected network of macro-pores (or fissures) provides most of the
global permeability for the macroscopic transport of species in the bulk water
whereas most of the storage takes place in the clay clusters. Assuming instant-
aneous local thermodynamic equilibrium between the clay and macro-pores we
show that the constitutive law for the distributed mass transfer function of the
species is equivalent to the appearance of a partition coefficient which governs
the instantaneous adsorption/desorption of the species by the micro-pores. The
notable feature of the three-scale approach relies in its capability in providing
a double averaging macro/meso/micro representation for the partition coeffi-
cient in terms of the local electric potential satisfying the Poisson-Boltzmann
problem.

Mesoscale Model for Ion Transport

We begin by presenting the overall mass conservation equation which gov-
erns the movement of the ions in the clay clusters at the mesoscale. The clusters
are regarded biphasic aggregates composed of clay particles (solid phase) sat-
urated by an aqueous electrolyte solution consisting of water and an entirely
dissociated salt with strong electrolytes Na+ and Cl−. For simplicity we
neglect steric and hydration effects assuming the liquid phase a structureless
dielectric solution with ions treated as point charges. The overall mass conser-
vation of the species reads

∂

∂t

(
φ(C+ + C−)

+ ∇ . J c = 0, (1)

where C+ and C− are the averaged concentration of cations (Na+) and anions
(Cl−); Jc = J++J−} the corresponding overall flux and φ is the intra-cluster
porosity. The constitutive equations for the fluxes of each species J± are given
by the Nernst-Planck relations. The diffusion coefficients admitt microscopic
representations [1]. Since c± are discontionuos accross the interface with an
outer saline bath, the above equation is usaly rewritten in terms of the corres-
ponding bulk concentration cb. Following Moyne and Murad [1] denoting T ,
F and R the temperature, Faraday’s constant and the ideal gas constant), define
the dimensionless electric potential ϕ = Fϕ/RT relative to the streaming po-
tential ψ as ϕ = Φ − ψ where Φ is the total electric potential. This leads to a
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local characterization of cb based on the generalized Boltzmann distributions

c± = cb exp
(∓Φ ± ψ

)
= cb exp (∓ϕ) . (2)

An important consequence of (2) is the extension of the Boltzmann distribu-
tions to the non-equilibrium case provided Φ is replaced by the relative poten-
tial ϕ = Φ − ψ. Thus, unlike the streaming potential ψ which only appears
at non-equilibrium conditions, the excess ϕ plays the role of a potential purely
related to electrical double layer effects. Using the above change of variables
one can rephrase (1) in terms of cb and ϕ as follows

∂

∂t

(
φ〈cosh ϕ〉lzcb

)
= −∇ . Jc. (3)

Coupling Between Clay Clusters and Bulk Water

We now establish the coupled clay cluster/macro-pore model at the meso-
scale. For the sake of simplicity we adopt a particular form of mesostructure
wherein the clay clusters are isolated from each other by the fissure (macro-
pore) system.. Denote {V f , C±

f ,D±
f .Jf} the velocity, concentration and dif-

fusion coefficient and the overall flux of species (NaCl), the governing equa-
tions in Ωf reduce to

∂Cf

∂t
+ ∇ . Jf = 0, ∇ . If = 0 ,

Jf = CfV f − Df∇Cf − ∆fCf∇ψf

with Df = (D+
f + D−

f )/2 and ∆f ≡ (D+
f − D−

f )/2.
The above governing equations are supplemented by initial conditions and

boundary conditions on the cluster-macrovoid interface Γfs. Denote N the
unit normal exterior to Ωs. continuity of mass, concentrations, streaming po-
tentials, total flux of the species and the normal component of the stress tensor
give (where ψf = (RTψf/F ))

cb = Cf , ψ = ψf , 2Jf · N = J c · N on Γfs.

Homogenization

To up-scale the previous model to the macroscale we make use of a formal
homogenization procedure based on asymptotic expansions in terms of a per-
turbation parameter ε which quantify the ratio between the meso and macro-
scales. To describe the physics properly, the coefficients must be scaled. Fur-
ther, denoting vref and Dref reference velocity and diffusion coefficint, and
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defining Pe = vrefL/Dref the macroscopic Peclet number which quantifies
the ratio between convective and diffusive effects we assume that these are of
the same order of magnitude such that Pe = O(1). Further, to control the
cluster-macrovoid mass transfer within a fixed volume as ε → 0, it is also ne-
cessary to scale Jc. Following Douglas and Arbogast [2], within the context
of rigid fractured media, this is done by the scaling law {Ke

P = KP ε2, ...}.
This scaling has the effect of making the aggregates progressively less per-
meable and diffusive as ε → 0 and consequently prevents the degeneration of
the cluster-macropore mass transfer (see [2] for details).

The formal homogenization process is accomplished by considering every
property depending on both global and meso-length scales in the form f =
f(x,y), where x and y are the macroscopic and mesoscopic coordinates re-
spectively. The relation between the length scales is y = ε−1x. This shows
that quantities vary ε−1 faster on the meso level than those the macro one. We
then postulate two-scale asymptotic expansions for the unknowns in terms of
the perturbation parameter ε

uε = u0 + εu1 + ε2u2 + ... (4)

with the coefficients ui, Y -periodic in y.
Insert the expansions (4) into the set of mesoscopic governing equations

with the differential operator ∂/∂x replaced by ∂/∂x + ε−1∂/∂y . After a
formal matching of the powers of ε, we obtain a recursive system of cell prob-
lems parametrized by x. For the fluid in the macropore system the orders of
perturbation read as

∇y .
(
Df∇yC

0
f

)
= 0, (5)

∇y .
[−Df

(∇xC0
f + ∇yC

1
f

)
+ C0

fV 0
f

]
= 0, (6)

∂C0
f

∂t
+ ∇x . J0

f + ∇y . J1
f = 0, (7)

J0
f = C0

fV 0
f − Df (∇x C0

f + ∇y C1
f ), (8)

whereas in the clay clusters the perturbed equations are

∂

∂t

(
φ0Gc c0

b

)
+ ∇y . J1

c = 0, (9)

J1
c = J1 + 2v1

Dc0
b , (10)

J1 = −KC∇yp
0
b − DC∇yc

0
b − ∆E∇yψ

0, (11)

along with boundary conditions

c0
b = C0

f ; J0
f · N =

(
C0

fV 0
f − Df (∇xC0

f + ∇yC
1
f )

) · N = 0. (12)
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Begin by noting that C0
f satisfy the Neumann problem given by (5) and

boundary conditions whose solution is C0
f (x,y, t) = C0

f (x, t). We now derive
the overall macroscopic mass balance for the species. To this end we begin
by deriving the closure problem for C1

f . Given Cf (x, t), combine (6) with
boundary conditions and neglect the advection induced by ∂u/∂t, to obtain
the local Neumann problem

∇y.
(
Df ∇yC

1
f

)
= 0 in Yf ,

−Df

(
∇y C1

f + ∇xC0
f

)
.N = 0 on ∂Yfs .

By linearity the solution can be represented as

C1
f = f(y) .∇x C0

f (x, t) + ĉ(x, t), (13)

where f are auxiliary Y -periodical vectorial parameters satisfying the cell
problems with C0

f = I. Using (13) in (8) the averaged flux of species is
given by

〈J0
f 〉y = C0

f 〈V 0
f 〉y−Deff

f ∇x C0
f , where Deff

f ≡ 〈Df (I+∇yf)〉y
(14)

is the effective macroscopic diffusion coefficient of the species in the bulk solu-
tion. By averaging (7) using the boundary conditions along with the divergence
theorem and the periodicity assumption we get

2
∂

∂t
(nfC0

f ) + 2∇x . 〈J0
f 〉y = −2〈∇y . J1

f 〉y

=
2
|Y |

∫
∂Yfs

J1
f · NdΓ

=
1
|Y |

∫
∂Yfs

J1
c · NdΓ

=
1
|Y |

∫
Ys

∇y . J1
cdY

= − 1
|Y |

∫
Ys

∂

∂t

(
φ0 Gc c0

b

)
dY

in which when combined with (14) and neglecting the movement induced by
the velocity of the solid phase leads to

∂

∂t

(
nfC0

f

)
+ ∇x . (C0

fV 0
Df ) − ∇x .

(
Deff

f ∇x C0
f

)
= −1

2
∂

∂t

(〈
φ0Gcc

0
b

〉
y

)
.

The above result shows a macrosopic convection-dffusion equation govern-
ing the concentration of the species in the bulk solution with an additional
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source/sink transfer function which governs the mass exchange of the com-
ponents between the macro-pores and clay aggregates. One may clearly ob-
serve that the influence of electrical effects on the mass transfer is mani-
fested through the additional capacity Gc which acts to enhance the adsorp-
tion/desorption phenomena.

Within the proposed context the quasi-steady assumption is imposed by neg-
lecting the local spatial variability of the concentration c0

b , bulk phase pressure
p0

b , and streaming potential ψ0 in the clusters by assuming these quantities
equal to their corresponding counterparts in the macro-pore system. Therefore
al local equilibrium we postulate c0

b(x,y, t) = C0
f (x, t); ψ0(x,y, t) =

ψ∗. Using the above assumption, the last equation reduces to the form

∂

∂t
(nfC0

f ) + ∇x . (C0
f V 0

Df )− ∇x . (Deff
f ∇xC0

f ) = −1
2

∂

∂t

(〈
φ0Gc

〉
y
C0

f

)
.

Hence, given the pair {nf ,V Df}, we define the sorbed concentration in the
clay peds C0

S ≡ 0.5C0
f 〈φ0 Gc 〉y and obtain the following system in terms of

{C0
f , C0

S}

⎧⎨
⎩

∂

∂t
(nfC0

f ) + ∇x . (C0
fV 0

Df ) − ∇x . (Deff
f ∇xC0

f ) = −∂C0
S

∂t
C0

S = 1
2C0

f 〈φ0Gc〉y,

Hence, under the quasi-steady approximation, the movement of the species
is dictated by a macroscopic convection-diffusion-reaction equation with an
instantaneous adsorption/desorption source term. A notable consequence of
the three-scale approach is the double-averaging representation for the partition
coefficient K∗ which is defined as

K∗ ≡ 1
2
〈φ0Gc〉y = 〈φ0〈cosh ϕ0〉lz〉y = 〈〈cosh ϕ0〉z〉y, (15)

where the microscopic representation for the electric capacity Gc has been
used. The above representation provides new insight in the physics of adsorp-
tion/desorption phenomena in charged clays. The microscopic representation
for K∗ in (15) allows to establish a direct correlation between K∗ and the
microscopic behavior of the electrolyte solution whose electric potential distri-
bution is ruled by the Poisson-Boltzmann problem. It should be noted that the
quasi-steady model for transport of non-ionic species can easily be recovered
from the present formulation by setting ϕ = 0. In this case the capacity of the
medium for adsorption of the contaminant by the micro-pore system is dictated
by the micro-porosity φ.
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Abstract We formulate the balance principles for an immiscible mixture of continua
with microstructure in the broadest sense for include, e.g., phenomena of dif-
fusion, adsorption and chemical reactions. After we consider the flow of a
fluid/adsorbate mixture through big pores of an elastic solid skeleton and pro-
pose suitable constitutive equations to study the coupling of adsorption and dif-
fusion under isothermal conditions.

Keywords: Immiscible mixtures, continua with microstructure, diffusion in porous and
granular materials, adsorption.

Introduction

In [9] Passman, Nunziato and Walsh presented a multiphase mixture in
which each constituent had a simple geometrical structure characterized by
a scalar kinematic parameter, its volume fraction. But when the kinematical
describer is more complex and takes value on a manifold, it is necessary to
consider the more general microstructure introduced, e.g., by Capriz in the es-
say [3], where materials as liquid crystals, granular and porous media, Cosserat
and micromorphic continua are studied.

Therefore this work concerns the formulation of a proposal for the thermo-
chemistry of an immiscible mixture of reacting materials with microstructure
in presence of diffusion; a new form of the integral balance of moment of mo-
mentum appears in the theory, in which the presence of the microstructure is
taken into account. Moreover, the density fields can no longer be regarded as
determined by the deformation fields because chemical reactions are present,
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thus the constitutive assumptions must allow for a dependence on a larger num-
ber of variables.

After, the essential features of a mechanical model of adsorption and diffu-
sion to characterize, e.g., the transport of a contaminant with rainwater through
the soil will be outlined; in particular, the model consists of a fluid carrier of an
adsorbate, the adsorbate in the liquid state and an elastic skeleton with ellips-
oidal microstructure: it means that each pore has different microdeformation
along principal axes, namely a pure strain, but rotates locally with the matrix
of the material (see [5, 6]).

Balance Laws

In our development and notation we mainly follow Truesdell [10] and use a
subscript to indicate a constituent and a prime to denote material time derivat-
ive following the motion of that constituent; thus, vi := x′

i and ai := x′′
i are

the ith peculiar velocity and acceleration, respectively. Fi, Li := grad vi and
Di := 1

2(Li − LT
i ) are the peculiar gradient of deformation, velocity gradient

and rate of deformation, respectively.
We consider a mixture of n reacting constituents Bi which are endowed with

a microstructure and assume that every place x in the body is simultaneously
occupied by a material particle of each constituent which is present at time τ .
Each constituent has its own bulk mass density ρi.

The hypothesis that the constituents of the mixture have a Lagrangian mi-
crostructure (in the sense of Capriz [3]) means that each material element of a
single body reveals a microscopic geometric order at a closer look; then it is
there assigned a measure νi(x) of the peculiar microstructure, read on a man-
ifold Mi of finite dimension mi: e.g., the space of symmetric tensor in the
theory of solids with large pores or the interval [0, ν̄) of real number, with
ν̄ � 1, for fluids in an immiscible mixture (see [5, 9]). We do not fix the rank
of the tensor order parameter νi.

We suppose that exists a non-negative kinetic energy κi(νi, ν
′
i), associated

with each time-rate of change ν ′
i, such that κi(νi, 0) = 0 and ∂2κi

∂ν′2
i

�= 0. In

the absence of κi, the measure νi is sooner termed internal (state) variable and
ruled by a first order evolution equation instead of a balance equation.

Each constituent suffers actions of three kinds: the prescribed actions at
a distance, represented by the densities of body force bi, microforce γi and
heating λi; the contact actions, represented by the stress Ti, the microstress Si

and the heating flux qi; the internal microactions ζi.
For a region V of space, we may consider the actions on the part of the

constituent body Bi presently occupying V and calculate the rates of growth
per unit volume of mass α+

i , linear momentum m+
i , micromomentum φ+

i ,
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rotational momentum w+
i , energy ε+i and entropy η+

i within it. The equations
of balance for the constituent i are:

∫
α+

i dv ≡
(∫

ρi dv

)′
,

∫
m+

i dv ≡
(∫

ρivi dv

)′
−

∫
ρibi dv −

∮
Tin da,

∫
φ+

i dv ≡
(∫

ρi

∂χi

∂ν′
i

dv

)′
−

∫ [
ρi

(
∂χi

∂νi
+ γi

)
− ζi

]
dv −

∮
Sin da,

∫ (
w+

i + p × m+
i + AT

i φ+
i

)
dv ≡

[∫
ρi

(
p × vi + AT

i
∂χi

∂ν′
i

)
dv

]′
(1)

−
∫

ρi

(
p × bi + AT

i γi

)
dv −

∮ [
p × Tin + AT

i (Sin)
]
da,

∫
ε+i dv ≡

[∫
ρi

(
εi +

1

2
v2

i + κi

)
dv

]′

−
∫

ρi

(
λi + bi · vi + γi · ν′

i

)
dv +

∮ (
qi − T T

i vi − ST
i ν′

i

)
· n da,

∫
η+

i dv ≡
(∫

ρiηidv

)′
−

∫
ρiλiθi

−1dv +

∮
θi

−1qi · n da.

In the equations (1),
∫

denotes integration over the volume V;
∮

denotes
integration over its boundary ∂V; χi(νi, ν

′
i) is the density of kinetic co-energy

related to κi by the Legendre transform: κi = ∂χi
∂ν′

i
· ν ′

i − χi; Ai(νi) is the
infinitesimal generator of the local action on Mi of the group of the rotations

of characteristic vector r, i.e., Ai :=
(

∂νi
∂r |r=0

)
(see [3]); the transpose of the

(mi+1)th order tensors Ai (or Si) has the following components (AT
i )α...βι =

(Ai)ια...β ; εi, ηi and θi are peculiar internal energy, entropy and temperature,
respectively.

The formulation of the balance of rotational momentum (1)4 appears to be
a novelty in the theories of microstructures, even if the deduction of its local
form will be in agreement, e.g., with [3]. Equations (1)4,5 take into account the
presence of the microstructure.

The local forms of the equations of balance are

α+
i = ρ′

i + ρi div vi, (2)

m+
i = α+

i vi + ρiv
′
i − ρibi − div Ti, (3)

φ+
i = α+

i

∂χi

∂ν′
i

+ ρi

(
∂χi

∂ν′
i

)′
− ρi

(
∂χi

∂νi
+ γi

)
− divSi + ζi, (4)

w+
i = ETi −AT

i ζi − (gradAT
i )Si, (5)
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ε+i = m+
i · vi + φ+

i · ν′
i + α+

i

(
εi − 2−1v2

i − κi

)
(6)

+ ρiε
′
i − ρiλi + div qi − Ti · Li − ζi · ν′

i − Si · grad ν′
i

η+
i = α+

i ηi + ρiη
′
i − ρiλiθi

−1 + div (θi
−1qi), (7)

where E is the third-order Ricci’s tensor; to obtain equation (5) we used the
invariance of χi under the galilean group, i.e., (AT

i )′ ∂χi
∂ν′

i
= −AT

i
∂χi
∂νi

.
By using the concept of Helmholtz’s free energy per unit volume Ψi :=

ρi(εi − θiηi) and the balances of mass (2) and energy (6), we can recast the
entropy equation (7) in the following form:

η+
i = θi

−1
[
ε+i − m+

i · vi − φ+
i · ν′

i + α+
i

(
2−1v2

i + κi

) − Ψ′
i − ρiθ

′
iηi

+ (Ti − ΨiI) · Li + ζi · ν′
i + Si · grad ν′

i − θi
−1qi · grad θi

]
. (8)

In a mixture we assume that chemical reactions and physical transfers are ex-
changes rather than true processes of creaction of destruction, thus we require
that the mass, linear and rotational momentum and energy are conserved for
the whole mixture, i.e., we have from balances (1) that

∑
α+

i = 0,
∑

m+
i = 0,

∑
w+

i = 0,
∑

ε+i = 0; (9)

here and henceforth,
∑

stands for summation from i = 1 to i = n.
Following [10], we do not restrict η+

i except for the requirement that the
total growth of entropy for the mixture remain non-negative, i.e., our axiom of
dissipation is

∑
η+

i ≥ 0. (10)

Finally, we require that the growth of micromomentum φ+
i should assure the

consistency of the axiom of dissipation with constitutive equations; thus, for
the subsequent chapters, we must impose the following balance:

∑
θ−1

i

(
α+

i κi − φ+
i · ν′

i

)
= 0. (11)

Adsorption in Porous Materials

Now, we specialize the theory to an isothermal flow of a fluid component
through the channels of a solid skeleton, namely a part of soil. It serves as
carrier for an adsorbate whose mass balance contains a source term α+

a = α,
so that we admit mass exchanges between the solid and the adsorbate phase
due to adsorption/desorption processes only.
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We assume that the fluid component and the adsorbate in the fluid phase,
present in a very low concentration, have the same kinematics given by the
common velocity field vf , so that there is no flux of molecular diffusion in
the fluids. Thus we can reduce to consider an atypical two-phase immiscible
mixture of a solid with big pores, of subscript s, and a particular bi-component
fluid, of subscript f (see §8.4 of [11]).

The microstructural kinematic variable νs for the skeleton is a 2nd order
symmetric tensor with positive determinant Us (∈ Sym+), that is the left mi-
crostretch, which takes into account for contractions or expansions of the large
pores in the material (see [5, 6]). Instead the fluid variable νf is the volume
fraction βf , i.e., the proportion of space occupied by the fluid constituent of
the body (see [9]). Therefore we have that Af = 0, because a proportion does
not change for a rotation, while νs (≡ Us) changes as a 2nd order tensor, thus
As has the following components (As)αβι = (Us)αγEγβι − Eαγι(Us)γβ (see,
also, §3 of [3]).

We observe that the solid volume fraction βs is closely related to the de-
terminant of the microstretch Us and that the sum of volume fractions is equal
or less to one depending on whether the pores are completely filled by the fluid
inclusion or not: βf + βs = 1 − βv ≤ 1, where βv is the volume fraction
of the bare sites of matter in pores. Here, we suppose that the solid matrix is
unsaturated, so βv > 0.

The kinetic co-energy χi is assumed to be a quadratic form in ν ′
i, as is cus-

tomary for immiscible fluid mixtures or for materials with affine microstructure
(see, e.g., [4, 5]); then χi coincides with the kinetic energy κi and it is

κf = χf := 2−1µf (βf ) β′
f
2

and κs = χs := 2−1µsU
′
s · U ′

s; (12)

here the solid microinertia tensor field is taken spherical with a constant and
non-negative coefficient µs. The kinetic energies express the inertia due to the
local microvariations of the volume of inclusions, as well as that related to the
admissible expansional motion of pores’ boundaries.

With these hypotheses, the mechanical balance equations reduce to the fol-
lowing ones:

α = ρ′
f + ρf div vf , −α = ρ′

s + ρs div vs, (1 − c)α = ρf c′f , (13)

m = αvf + ρfv′
f − ρf bf − div Tf , −m = −αvs + ρsv

′
s − ρsbs − div Ts, (14)

φ+
f = αµfβ′

f + ρf

(
µfβ′′

f +
1

2

dµf

dβf

(β′
f )2 − γf

)
− div Sf + ζf ,

φ+
s = −αµsU

′
s + ρsµsU

′′
s − ρsγs − div Ss + ζs, (15)

M = skw Tf , −M = skw (Ts − Usζs − grad Us � Ss) . (16)
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In these equations we used the balances for the whole mixture (9) and intro-
duced the following notations: the concentration of adsorbate c := ρa/ρf ; the
fluid growth of linear and angular momentum, m := m+

f and M := 1
2Ew+

f ,
respectively; the script ‘skw’ to indicate the skew part of a tensor and the tensor
product ‘�’ of components (grad Us � Ss)ij := (Us)ih,k(Ss)jhk.

We notice that stress tensors are not ‘a priori’ symmetric for (16) and that
φ+

s , γs, (div Ss) and ζs are all 2nd order symmetric tensors. Further, the 3rd

order microstress tensor Ss is normally related to boundary microtractions,
even if, in some cases, it could express weakly non-local internal effects; γs

is interpreted as an externally controlled pore pressure; ζs includes interactive
forces between the gross and fine structures.

From equation (14)1 we could obtain the Darcy’s law, if we neglect the
inertial terms and the mass exchange and make suitable constitutive hypotheses
on fields m, bf and Tf . The equation of balance (15)1 for the volume fraction
βf generalize the classical Langmuir’s evolution equation, while the balance
(15)2 for the microstretch Us includes the Wilmanski’s porosity balance as well
as the equation which rules the changes of internal surfaces area of the pores
(see [8, 11, 1], respectively). The energy balance equations do not appear at all
because the process is assumed to be isothermal.

Finally, by means of relation (8) and (11) with θi = θ̄ = const., the ax-
iom of dissipation (10) is transformed into the following reduced dissipation
inequality for our mixture of continua with microstructure:

∑ (
ρiK

T
i · Li + Ψ′

i

)
− ζfβ′

f − ζs · U ′
s (17)

−Sf · grad β′
f − Ss · grad U ′

s + u · (m + 2−1αu − αvs

) ≤ 0,

where ρiKi := ΨiI −T T
i is the ith chemical potential tensor and u := vf − vs

the relative velocity, a measures of the diffusion of the fluid in the porous solid.

Constitutive Principles

As with any theory of material behavior, we have to make constitutive as-
sumptions in order to define the peculiar mixture of a poroelastic material and a
compressible bi-component fluid. Among other quantities, we must state con-
stitutive relations for the mass supply α and the momentum supply m, which
give rise to adsorption/desorption and to diffusion, respectively.

Let E :=
{
ρf , c, p := grad c, Fs, βf , d := grad βf , Us,Υ := grad Us

}
be

the array of fields describing the elastic state of our isothermal process and,
in addition, let us enclose the relative velocity u and the solid one vs; by im-
posing the principle of equipresence, we postulate that constitutive quantities
Ψi,Ki, ζi,Si,m,M and α are all twice continuously differentiable functions
with respect to all constitutive fields and require the consistency with the in-
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equality (17). Therefore, by introducing the inner part of the free energy of the
mixture Ψ :=

∑
Ψi, we obtain from the requested consistency that:

Ψ = Ψ̃(E), ζf = Ψ,βf
, ζs = Ψ,Us , Sf = Ψ,d, Ss = Ψ,Υ,

ρfKf = ρfΨ,ρf
I + Ψ,d ⊗ d + Ψ,p ⊗

(
p − 1 − c

ρf

α,u

)
− u ⊗ Ψf,u,

ρsKs = −FsΨ
T
,Fs

+ Υ � Ψ,Υ + u ⊗ (Ψs,vs − Ψs,u) (18)

+
1 − c

ρf

Ψ,p ⊗ (α,u − α,vs ), sym

(
Ψs,p ⊗ u − 1 − c

ρf

Ψ,p ⊗ α,p

)
= 0,

(Ψsu),ρf
= (1 − c)Ψ,p

∂

∂ρf

(
α

ρf

)
, sym

(
Ψs,d ⊗ u − 1 − c

ρf

Ψ,p ⊗ α,d

)
= 0,

(
Ψf,Υ ⊗ u +

1 − c

ρf

α,Υ ⊗ Ψ,p

)
A = 0, ∀A ∈ Sym,

(
Ψf,Fs ⊗ u +

1 − c

ρf

α,Fs ⊗ Ψ,p

)
(AF−1

s ) = 0, ∀A ∈ Sym, and

0 ≤ D := α

(
u · vs − 1

2
u2 − Ψ,ρf

− 1 − c

ρf

Ψ,c + ρ−1
f Ψ,p · p

)
(19)

−1 − c

ρf

Ψ,p ·
(
α,βf

d + ΥT α,Us + α,c p
)
− u ·

(
m − Ψs,βf

d + ΥT Ψf,Us − Ψs,c p
)

,

where we indicate with a comma after a function the partial derivation with
respect to the specified variable and we used the mass balances (13) and the
relation F ′

sF
−1
s = Ls. The residual inequality (19), defining the dissipation

D, is clearly due to the adsorption, through the intensity of the mass source
of adsorbate α and to the diffusion u between components, while from equa-
tions (18)1−5 we have that the Helmholtz free energy Ψ, as well as the micro-
structural fields ζi and Si, depend upon the elastic state of the material only.
Moreover, equations (18)8−12 place restrictions on Ψi and α and do imply cer-
tain results that will be examined in a forthcoming work, e.g., if we set the
velocities equal to zero or if we differenziate the relations and evaluate it at
vi = 0, we have informations on the partial derivatives of Ψi and α, when
vi = 0.

From equations (16) and (18)1,3,5,6,7, we obtain the expression for the
growth M and another restriction on the free energies and the source α:

M = skw

[
Ψ,d ⊗ d + Ψ,p ⊗

(
p − 1 − c

ρf

α,u

)
− u ⊗ Ψf,u

]
, (20)

0 = skw

[
FsΨ

T
,Fs

+ UsΨ,Us + d ⊗ Ψ,d + p ⊗ Ψ,p +

(
1 − c

ρf

αΨ,p − uΨs

)
,vs

]
.

Finally, we observe that, when microstructures are absent, our results are
in agreement with those of Bowen [2] for classical mixtures in the isothermal
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case. In particular, from equation (20)2 we obtain the classical condition of
simmetry of the Cauchy stress tensor for the whole mixture, while results
(18)1,6,7,8 reduce to (6.12), (6.15) and (6.17) of [2]; besides, we recover the
accordance with his entropy inequality (6.16) if we include the gradients of ρf

and Fs in our constitutive variables.

Summary

We propose the balance principles for an immiscible mixture of continua
with microstructure in presence of phenomena of chemical reactions, adsorp-
tion and diffusion by generalizing previous multiphase mixture [9] and use a
new formulation for the balance of rotational momentum. New terms are also
included in the energy equations corresponding to work done by respective
terms in the micromomentum balances.

As an example we consider the flow of a fluid/adsorbate mixture through the
big pores of a skeleton, thought like an elastic solid with an ellipsoidal micro-
structure, and propose suitable constitutive equations to study the coupling of
adsorption and diffusion under isothermal conditions; in particular, we insert
the concentration of adsorbate and its gradient in the usual variables, other than
microstructural ones. Finally, the expression of the dissipation shows clearly
its dependence on the adsorption and the diffusion, other than on the micro-
structural interactions. The model was already applied by G. and Palumbo [7]
to describe the transport of pollutants with rainwater in soil.
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Abstract Electrical conductivity of agarose gels in 0.15 M KCl was measured. From the
experimental data, a functional relation of solute diffusivity to tissue permeabil-
ity and solute size was derived. This relationship agreed with the experimental
results on macromolecule diffusivity in agarose gel published in the literature.

Keywords: electrical conductivity, ion diffusivity, agarose gel, tissue porosity

Introduction

The long-term objective of this study is to understand the mechanism of nu-
tritional transport in normal and degenerated human intervertebral discs and
other cartilaginous tissues under mechanical loading. The intervertebral disc
(IVD) is the largest avascular structure in the human body and subjected to
mechanical loading in vivo. Poor nutritional supply is suggested to be one of
the mechanisms involved in IVD degeneration [1, 6, 7, 18, 21]. With disc de-
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generation, there are changes in its hydration and fixed charge density (FCD).
The mechanical loading also causes the variation of tissue hydration and FCD,
leading to an alteration in solute transport in the IVD.

The transport of solute is driven by the gradients of chemical potentials of
solute and solvent. The rate of solute transport in tissue is in general governed
by hydraulic permeability and solute diffusivities. The hydraulic permeability
is a measure of the mechanical interaction between fluid and solid matrix of
the tissue. The solute diffusivity is related to the drag coefficients between
solute and solvent and between solute and solid matrix [4, 8, 12]. It has been
reported that diffusion is the major mechanism for the transport of small solutes
in IVD [10, 22, 23]. Many studies have been done on the solute diffusion in
cartilage and IVD tissues, e.g., [16, 20, 22, 24], however, little information is
available in literature on the regulation of mechanical deformation on solute
diffusivity in cartilaginous tissues. The functional relationship between solute
diffusivity and mechanical deformation is important to understanding the effect
of mechanical loading on the nutrient transport in IVD tissues.

The major factors governing the diffusion coefficients are the solute size and
the pore size of the tissue which is related to the tissue hydration. The FCD
seems to have little effect on ion (charged solute) diffusivity in tissue with nor-
mal saline (0.15 M NaCl) [13, 15, 16]. When a hydrated soft tissue is subjected
to mechanical loading, its porosity (or hydration) will change, leading to an in-
crease or decrease in diffusion coefficient of solute within the tissue. In spite of
the fact that numerous studies have been conducted on investigating solute dif-
fusion in gels and soft tissues, to date, there is no universal, theoretical model
capable of describing the diffusion behavior of solute in gels or biological soft
tissues with satisfaction, e.g., [17].

In this paper, we studied ion diffusivity in uncharged gels in order to gain
an insight into solute diffusion in charged cartilaginous tissues, because the
FCD of the tissues under physiological conditions is not an important factor for
regulating solute diffusivity. The major purposes of this study are to investigate
the effect of gel porosity on ion (K+ and Cl−) diffusion. The other objective of
this study is to explore a conductivity method for investigating solute diffusion
in gels.

Theoretical Background

Considering a charged porous medium containing monovalent electrolyte,
the electrical current (Ie) carried by ions (per unit area) is related to the ion
fluxes and given by [4, 8, 12]

Ie = Fc

(
c+ − c−

)
Jw − Fcφ

wD+∇c+ + Fcφ
wD−∇c− − χ∇Ψ, (1)

where Jw is the solvent flux relative to the solid, c+ and c− are cation and an-
ion concentrations (per unit volume of solvent) respectively, φw is the volume
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fraction of water (or porosity), D+ and D− are ion diffusivities within the tis-
sue respectively, Fc is the Faraday constant, R is the gas constant, T is absolute
temperature, Ψ is the electrical potential, and χ is the electrical conductivity of
tissue measured in the absence of convention and diffusion effects:

χ = F 2
c φw

(
c+D+ + c−D−)

/RT. (2)

For uncharged agarose gels (cF = 0), Equation (2) reduces to

χ = F 2
c φwc∗

(
D+ + D−)

/RT, (3)

where c∗ is the bathing solution concentration. If the diffusivity of cation is
equal to that of anions, i.e., D+ = D− = D, one can obtain the following
equation

χ

χ0

=
φwD

D0
, (4)

where χ0 is the conductivity of such electrolyte solution, and D0 is the solute
diffusivity in free solution.

Experimental Methods

Specimen preparation

Agarose gel, an uncharged fibrous medium, was used in this study. Low-
melting temperature SeaPlaqueő agarose powder (Cambrex Bio Science,
Rockland, ME) was dissolved in 0.15 M KCl solution. The nominal gel con-
centration was varied from 2% to 24%. The agarose powder was mixed in the
KCl solution and heated in covered beakers for 5 - 24 hours. After gelling at
room temperature (22 oC), cylindrical specimens (d = 5 mm, h∼3 mm) were
prepared. The specimens were equilibrated in 0.15 M KCl solution and stored
at 4 oC. Before testing, the exact height of each specimen was measured using
a current-sensing digital micrometer at room temperature [3].

Porosity measurement

After height measurement, the weight of the specimens in air, Wwet, and
in the KCl solution in which it was prepared, WKCl, was measured using the
density-determination kit of a Sartorius analytical balance (Model LA120S,
Goettingen, Germany). The difference between Wwet and WKCl, which is
due to the buoyancy force, was related to the specimen volume and the mass
density of solution (ρKCl ). After the conductivity testing, the specimens were
lyophilized and the dry weights, Wdry , were recorded. The volume fraction of
water (φw) of the specimens was calculated by [3, 5]

φw =
Wwet − Wdry

Wwet − WKCl

ρKCl

ρw

, (5)
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where ρKCl is the mass density of the KCl solution and ρw is the mass density
of water. The volume fraction of gel (φs) can be calculated by φs = 1 − φw.

Conductivity measurement

An apparatus and technique for measuring conductivity of hydrated soft
tissues under the condition of zero fluid flow (no convection) were recently
developed for this investigation [3]. Briefly, the apparatus consisted of two
(stainless steel) current electrodes (d = 5 mm), two (Ag/AgCl) voltage sensing
electrodes made from Teflon coated silver wire (d = 0.38 mm ), a specimen
chamber, a Keithley Sourcemeter, and a current-sensing digital micrometer
(for height measurement). The apparatus was calibrated using a conductivity
standard (0.1 M KCl) in the range of 2 - 4 mm. Using the four-wire method,
the conductivity of specimens was measured with constant direct current of 3
µA (density: 0.015 mA/cm2) at room temperature (22 ± 1 oC). The electrical
conductivity (χ) of gel was calculated according to the following formula:

χ = h/rA (6)

where r is the resistance measured by the instrument, h is the sample thickness,
and A is the cross-sectional area of the sample.

Results

The electrical conductivity of agarose gel increased with increasing water
volume fraction, Figure 1. This is attributed primarily to the dependence of
ion diffusivity on water volume fraction [14]. An empirical model for relative
ion diffusivity (D/D0) is proposed to be a function of the hydrodynamic radius
(rs) of solute and intrinsic Darcy permeability (κ) of gel:

D

D0
= e

−α
(

rs√
κ

)β

, (7)

where α and β are parameters. For agarose gels, the Darcy permeability is
related to the water volume fraction by [5]

κ = 0.00339
(

φw

φs

)3.236

(nm2). (8)

For KCl the hydrodynamic radii for cation and anion are very close [11], so
the average radius rs = 0.14 nm could be used in Equation (7) for this study.
Curve-fitting of conductivity data using Equations (4, 7, 8) yielded α = 1.274
and β = 0.693 with R2 = 0.964 (n=72).
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Figure 1. Dependence of normalized
conductivity on gel porosity

Figure 2. Comparison of model predic-
tion to data from the literature

Discussion

The major objective of this study is to investigate ion diffusivity in un-
charged gels using the electrical conductivity method. The dependence of the
electrical conductivity for agarose gels measured in this study is similar to that
for biological soft tissues in the literature e.g., [2]. From the conductivity data,
the functional dependence of the relative solute diffusivity on the ratio of solute
radius to the square root of Darcy permeability is obtained. The relative dif-
fusion coefficients of proteins, dextrans, and polymer beads (with radii in the
range of 2 - 61 nm) in 2% agarose gel with 0.1M PBS has been reported in the
literature [19]. Using κ = 616 nm2 for 2% agarose gel [9], Equation (7) with
(α = 1.274 and β = 0.693) can predict the relative diffusion coefficients of
macromolecules up to rs =∼ 27 nm (Figure 2). For the solute with rs = 61
nm, Equation (7) overestimates the value of relative diffusivity considerably
(Figure 2). This is because Equation (7) is not valid for solute with radius
much larger than the pore size of the gel [19].

In summary, the effect of porosity on electrical conductivity and ion diffus-
ivity in agarose gels is studied. Both electrical conductivity and ion diffusivity
increase with porosity. The model obtained from the electrical conductivity
data, i.e., Equation (7), can predict the diffusivity of macromolecules in 2%
agarose gel for solutes with hydrodynamic radius less than the pore size of
the gel. This study suggests that electrical conductivity method used in this
study can be applied to investigating diffusion behavior of macromolecules in
uncharged porous media.
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Abstract Unsteady liquid flow and chemical reaction characterize hydrodynamic disper-
sion in soils and other porous materials and flow equations are complicated by
the need to account for advection of the solute with the water, and competitive
adsorption of solute components. Advection of the water and adsorbed species
with the solid phase in swelling systems is an additional complication. Com-
puters facilitate solution of these equations but it is often physically more re-
vealing when we discriminate between flow of the solute with and relative to,
the water and the flow of solution with and relative to, the solid phase. Space-
like coordinates that satisfy material balance of the water, or of the solid, achieve
this separation. Advection terms are implicit in the space-like coordinate and the
flow equations are focused on solute movement relative to the water and water
relative to soil solid. This paper illustrates some of these issues.

Introduction

Transfer of solute with and relative to the moving water and competitive
adsorption of solutes are central to amelioration of saline and alkali soils, agri-
cultural chemical location in soils and management of wastes in soils. This pa-
per illustrates how space-like coordinates based on the distribution of the solid
and the water help analyse these problems. We focus on the macroscopic or
Darcy scale of discourse [6], which permits unambiguous measurement of the
key elements of the flow equations, and we restrict ourselves to 1-dimensional
flow, because that seems to limit analysable experiments.

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 201–206.
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Theory

Water movement

One-dimensional material balance for water in soil may be written [8]

(
∂ϑ

∂t

)
m

= −
(

∂F

∂m

)
t

. (1)

In this equation ϑ is the volume of water per unit volume of solid, t is time,
F is the Darcy flux of water relative to the solid, and m is a space like co-
ordinate defined in terms of the distribution of the solid phase. Substitution of
Darcy’s law in this equation results in equations similar to the Richards equa-
tion and, at least in 1-dimension, these can be solved like their non-swelling
analogues. This equation implicitly deals with volume change that might ac-
company change in water content.

Solute movement

In this material convention, the one-dimensional balance equation for a
solute is (

∂ (Cwϑ + ρcCc)
∂t

)
m

= −
(

∂ (f + CwF )
∂m

)
t

, (2)

with Cw the solute concentration in the water, Cc that associated with the soil
solid, and ρc the soil solid density. The solute flux, Fs, has components advec-
ted with the water CwF , and relative to it f . Thus

f = Fs − CwF = −Ds
∂Cw

∂m
. (3)

Equation 3 is Fick’s law of diffusion. The diffusion coefficient Ds is char-
acteristic of the porous material and its water content. Dispersion theory and
experiments deal with Eqns 1-3 [1, 8]. Early analysis resulted in breakthrough
experiments such as those of Day [4], where perturbation, at the outflow end, of
a step change or pulse in concentration at the inflow end of a column of porous
material, is used to infer detail of the hydraulic and chemical consequences of
passage through the column. Day [4] explicitly identified a material coordin-
ate that reduces the solute flow equation to a diffusion equation in such an
experiment. Reiniger and Bolt [1] explored competitive reaction during steady
saturated flow and related characteristic exchange isotherms to the shapes of
reaction fronts and their displacement relative to the notional ’piston front’ that
separates the invading water from that originally present. Smiles et al. [10] ex-
tended experiments and analysis to unsteady unsaturated flow. They showed
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that, for initial and boundary conditions of the form{
t = 0 m ≥ 0 θw = θi Cw = Ci

t ≥ 0 m = 0 θw = θ0 Cw = C0
(4)

the substitution λ = mt−1/2 eliminates m and t from Eqns (1) and (2) as well
as Eqns (4) so that, if Eqns (1) and (2) are valid, then ϑ (λ) and Cw (λ) profiles
observed in experiments performed over different elapsed times, are similar.
Smiles et al. [11] extended these analyses to constant flux absorption and used
a water-based coordinate, g (m, t), to better describe the solute flow in their
experiments. Cation exchange is complex, however [2], and for modelling
purposes simple relations between Cw and Cc are desirable. The most simple
is written [3]

βCw = Cc, (5)

whence
dg (m, t) = (ϑ + β) dm − Fdt. (6)

and the constant β term displaces the solute profile in the water profile relative
to piston front and also changes the effective diffusion coefficient that describes
the shape of the solute front. In principle, Eqn (5) is the exception rather than
the rule and adsorption isotherms for each competing cation pair must be estab-
lished in the presence of all others. [2, 5], for example, discuss such isotherms
and the latter tabulate 350 selectivity coefficients for reversible exchange reac-
tions in soils and clays. The consequences of this theory are complicated but
experimental data involving cation exchange during non-steady water flow in
non-swelling as well as swelling materials appears to permit, to at least a first
approximation, simple data presentation and semi-quantitative explanation.

Experimental Observations and Comments

Two experimental sets where the flow equations apply and conditions (4)
were imposed illustrate some uses of material coordinates.

Clay filtration experiments

[9] measured the distribution of Na+, K+, Ca2+ and Mg2+ during filtration
of a sodic bentonite in contact with a gypsum ’membrane’ at its outflow sur-
face. Calcium from the gypsum entered the consolidating clay against the flow
of the filtrate where it displaced exchangeable Na+ and other cations. These
were flushed from the clay in the filtrate. At the outflow surface, the clay wa-
ter content decreased to 2 from about 12kg/kg and the length of the filter cake
decreased by more than 40%.

The water content profiles of the clay expressed in physical space, and as
ϑw(M = mt−1/2) in material space preserved similarity as is consistent with
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the flow equations and Eqn (4) [9]. m is the cumulative amount of clay per
unit area of cross section measured from z = 0, and water content profiles are
easy to measure using coordinates defined by the distribution of the solid mass
because we extrude the column from its cylindrical container and measure the
water and solid contents by oven-drying sequential slices.

Cation exchange occurred but we have yet to measure equilibrium sets of
water-soluble and exchangeable cations in these systems so total (soluble plus
exchangeable) Na+ and Ca2+ profiles in the clay were graphed in physical
and M -based spaces and, also, in terms of the water-based coordinate, G(M),
defined by integrating Eqn (6) after dividing by t1/2. These profiles also main-
tained similarity even though a) the volume change is great and non-uniform;
b) exchange among four competing cations occurs; c) the solution content and
fluxes in the region of reaction change greatly; and d) the physical structure
changes in response to the chemistry. Although the theoretical implications of
each of these effects are significant, they culminate in relatively simple sys-
tematic behaviour.

Absorption of solution by dry soil with varying clay content

These experiments [8] explored the absorption of a tritiated solution con-
taining Co-60 by dry soil and sought to define the fate of these nuclides in soils
at potential radioactive waste repositories. The soil clay content varied from
about 8% to 14% and a subset of experiments tested the Boltzmann substitu-
tion by termination at different times. Variation in clay content resulted in an
almost 10-fold change in sorptivity S as well as affecting the cation exchange
capacity and hence the retardation of the Co-60. The non-reactive tritium pro-
files were consolidated using a water based coordinate. The use of a space-like
coordinate based on the distribution of clay, normalised according to S virtually
eliminated variation in the Co-60 profiles and, with care, appears to be a useful
way to generalize results across soils of different clay content and structure
when clay-based chemical reaction occurs. Extension of this type of approach
according to clay mineralogy and cation exchanges capacity may be profitable.
These experiments are consistent with conjectures by [7] who suggested that a
coordinate based on the spatial distribution of an ’irreducible’ solid component
in the soil should be useful when describing chemical reaction accompanied by
volume change in organic soils and potential acid-sulfate soils that oxidise as
they are drained.

Concluding Remarks

Material coordinates simplify flow equations with advective terms so trans-
fer of the component of concern is more simply described relative to the ’nat-
ural’ matrix.
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Water movement

Water flow in 1- dimension is described relative to the soil solid by Darcy’s
law and a material coordinate based on the distribution of soil solid matrix and
well tested flow equations analogous to the Richards equation result, which
are indifferent to volume change accompanying water content change. Matrix
mass distributions are generally measured and often used as a critical outcome
of an experiment or process so the coordinate definition is a primary measure-
ment and, frequently, more accurate than a space measure. The solid based
coordinate is central to description of flow in swelling systems and a general
base for describing solute transfer. Equations (1) and (2) thus provide a gen-
eral and natural point of departure for study of hydrodynamic dispersion, at
least in 1-dimensional flow and solutions of [1] for steady flow, and Bond and
co-workers [2], for transient flow, immediately apply to these equations.

Solute movement

In the absence of chemical reaction, a water based space-like coordinate
can be defined and derived in exactly the same way as the solid-based co-
ordinate used to deal with swelling. The resulting diffusion equation has well-
established solutions. This water based coordinate is not a primary measure-
ment, however, and is derived from the water flow equation. It nevertheless
provides a framework against which flow and the consequences of reaction
can be judged and it is also helps overcome some hydrological consequences of
soil heterogeneity [8]. In the presence of chemical reaction, such as cation ex-
change, a coordinate based on the distribution of exchange sites would seem to
be a useful way to generalise cation data across materials with different cation
exchange capacities and, perhaps, clay mineralogies. In our examples, we were
unable to measure water-soluble salts separately from adsorbed species so the
isotherms that describe competitive exchange among the solute components
could not be assessed. Nevertheless, recent experiments intended to set lim-
its to behaviour of soils irrigated with pig effluent using the methods of [10]
show that simple models such as those identified here provide robust match-
ing of cation distributions under an ’envelope’ defined by the distribution of
the non-adsorbed anions. These studies await extension to water-soluble and
exchangeable cations during transient flow in stiff clays.
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Introduction

In order to reach the stage of clinical applicability a definite need arises for
improved control over the functional properties and composition of tissue en-
gineered constructs; [3]. Tissue function is determined by extracellular matrix
components such as GAG’s and collagen which are produced by cells in re-
sponse to their local biochemical and mechanical environment which can be
partially influenced via global bioreactor input parameters, like nutrient supply
and mechanical stimulation; [6]. Many tissue engineering experiments yield
only qualitative histological data or quantitative data on a volume averaged
basis. This provides valuable clues and indicates research directions, but is
open to much speculation on possible mechanisms that govern tissue devel-
opment. Mathematical models enable a further rationalization of experimental
results and will be a key asset in controlling the development and thus the func-
tionality of tissue engineered constructs; [16]. Since only a combination of a
suitable biochemical and mechanical environment is likely to provide func-
tional tissue engineered constructs, both aspects should be integrated in a nu-
merical model. This requires a description of highly coupled phenomena such
as solute transport, cell growth, matrix biosynthesis and mechanical adaptation.
The objective of this study is to develop an integrated numerical framework
for tissue engineering that is able to relate the evolution of local functional tis-
sue components to both mechanical and biochemical global bioreactor input
parameters. The modeling approach can eventually serve as an aid in tissue
bioreactor design and the development of control strategies. To illustrate the
approach two cases will be considered. First, dynamic compression combined
with supplemented growth factors has been shown to produce synergistic ef-
fects on protein and proteoglycan synthesis; [1]. Therefore, apart from direct
mechanical stimulation, we will investigate the conditions under which com-
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pression induced convection can contribute to increased biosynthesis as well as
increased release of newly synthesized matrix molecules; [17, 19, 5]. Secondly
the focus will be on cell behavior. We will investigate if viability data can be
related to glucose availability in an experimental model of the intervertebral
disk by [8].

Methods

The proposed model consists of a biphasic mechanical description of the
tissue engineered construct. The resulting fluid velocity and displacement
fields are used for evaluating solute transport. Solute concentrations determine
biosynthetic behavior. A finite deformation biphasic displacement-velocity-
pressure (u-v-p) formulation is implemented; [12, 7]. Compared to the more
standard u-p element the mixed treatment of the Darcy problem enables an in-
creased accuracy for the fluid velocity field which is of primary interest here.
The system to be solved increases however considerably and for multidimen-
sional flow the use of either stabilized methods or Raviart-Thomas type ele-
ments is required; [15, 10]. To model solute transport the input features of a
standard convection-diffusion element for compressible flows are employed;
[20]. For flexibility (non-linear) solute uptake is included using Strang oper-
ator splitting, decoupling the transport equations; [9].

Model Application

Solute transport by mechanically induced convection

The first case considered is solute desorption during unconfined compres-
sion. We consider a two dimensional plane strain problem, see Fig. 1. A
sinusoidal strain between 0 and 15 % is applied at 0.001 Hz, 0.01 Hz, 0.1 Hz
and 1 Hz. To account for microscopic solute spreading due to fluid flow a
dispersion parameter is introduced. Against the background of the release of
newly synthesized matrix molecules the diffusion parameter is set to the value
for chondroitin sulfate in dilute solution: DCS = 4 × 10−7 cm2 s−1; [4] The
dispersion parameter Dd is varied in the range from 0 mm to 1 × 10−1 mm.
The fluid volume fraction is set to nf = 0.9, the bulk modulus κ = 8.1 kPa,
the shear modulus G = 8.9 kPa and the permeability K = 1 × 10−13m4 N−1

s−1; [14]. The initial concentration is normalized to 1 and the evolution of the
concentration is followed for a total time period of 4000 s. for the displace-
ment and linear discontinuous. For displacement and fluid velocity a 9 noded
quadrilateral is used, the pressure is taken linear discontinuous.

Next the effect of cyclic loading on the distribution of a limited solute is
investigated. Small and large solutes are considered (glucose, albumin). Both
solutes are assumed limited a priori by diffusion and uptake, resulting in equal
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Figure 1. (a) Unconfined compression setup. (b) Maximum fluid velocity induced by dy-
namic loading in the last cycle before t = 4000 s, plotted in the undeformed geometry.

initial concentration profiles. The diffusion coefficient Dm for the small and
large solute is set to 1 × 10−5 cm2 s−1 and 1 × 10−7 cm2 s−1 respectively;
[13, 18]. Michaelis Menten kinetics are used for solute uptake, the maximum
rate for the small and large solute kmax = 4 × 10−3 mol cell−1 s−1 and kmax

= 4 × 10−5 mol cell−1 s−1 respectively, the half max rate concentration Cm

is set to 0.1 mol mm−3. Unconfined compression is applied at frequencies of
0.001 Hz and 0.1 Hz for 87000 s, dispersion parameters Dd of 0 mm, 0.01 mm
and 0.1 mm are evaluated.

Results

The maximum fluid velocities for the different frequencies are shown in Fig.
1b. For the case without cell activity Fig. 2 shows the effect of dispersion on
solute content. For the case of a large limited solute Fig. 3b indicates that in
correspondence with the fluid velocity profiles in Fig. 1b, the solute penetra-
tion depth is largest for 0.001 Hz, while for 0.1 Hz solute concentrations are
higher in the periphery. Concentration profiles for the small limiting solute are
hardly affected by different dispersion parameters and loading conditions.

Glucose availability and viability

To investigate a relation between glucose and cell viability an one dimen-
sional experimental model of the intervertebral disk consisting of cells embed-
ded in agarose was modeled numerically; [8]. The glucose diffusion constant
was set to Dm = 7.4× 10−6 cm2 s−1; [13]. The glucose consumption rate was
a rough estimate from data for cartilage; [11] 3.6 × 10−12 µmol cell−1 s−1.
The Michaelis Menten constant was set at 2.5× 10−3 µmol mm−1 taken from
C2C12 cells; [2]. Once a critical glucose level is reached it is assumed that
cells start to die at a rate estimated from the experimental case without glucose
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Figure 2. Desorption of an initially homogeneous concentration for different loading con-
ditions and dispersion parameters. Evolution of total content in time (a) Dd = 0 mm, (b)
Dd = 0.1 mm.

Figure 3. Solute concentration profiles at t = 87000 for different loading frequencies and
dispersion parameters (a) small solute, (b) large solute.

6.5× 10−6 s−1; [8]. The critical glucose level is adjusted to match the data for
2 × 103 cells mm−3.

Results

In Fig. 4 it can be observed that the numerical simulations result in viability
profiles qualitatively similar to the experiment. However in contrast to the
experiment, in the simulations a considerable fraction of the cells in the center
remains viable. In addition the critical glucose level fitted is very high, 4.5 ×
10−3 µmol mm−3 compared to the initial glucose concentration of 5 × 10−3

µmol mm−3.

210



Mechanics, Transport and Biosynthesis

Figure 4. (a) Experimental viability data; [8]. (b) Numerical results.

Discussion

The high level of coupling between mechanical and biochemical factors in
functional tissue engineering requires an integrated modeling approach. Com-
pression induced convection can contribute to enhanced biosynthesis in case of
a large limited solute and high dispersion. Higher frequencies lead to a higher
solute concentration in the periphery, low frequencies provide a large solute
penetration depth. As a first approximation friction between solutes and the
solid matrix as well as osmotic and electric effects have not been taken into
account. Without further assumptions glucose alone cannot fully account for
the experimental viability data, particularly the role of lactate accumulation
should be investigated further. Comparison with experimental data is required
for model validation and for establishing better quantified relations for cell
behavior.
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Abstract The fluxes of water and solutes across membranes are expressed as functions of
differences of the hydraulic and osmotic pressures at both sides. Such differ-
ence equations are deduced from more fundamental differential equations. The
distributions of concentration and pressure in a series array of membranes are
derived. The order in which the individual membranes are placed exerts a strong
influence upon the effects of the applied differences of hydraulic and osmotic
pressures. The effect of the interchange of two membranes in a series array of
an arbitrary number of membranes can be summarized in four simple rules. The
special case of reversal of the flow is also discussed.

Keywords: membranes, series arrays, differential description, incremental description, po-
larity

Introduction

The purpose of this paper is to describe steady flow of water and transport
of solutes across single and series arrays of arbitrary numbers of membranes.
Differential forms of the flow and transport equations are used as the point of
departure and from these the incremental forms are derived. This theory allows
one to state concisely some general properties of series arrays of membranes,
with regard to nonlinearity, polarity, and changes of the ordering of individual
membranes. This study is motivated by the problems of flow of water and
transport of solutes in clay soils [1] and of simultaneous uptake of water and
solutes by plant roots [2]. Some of the conclusions are generalizations of res-
ults obtained earlier for special cases: see [3] for a detailed evaluation of the
literature.
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Transport Across a Single Membrane

Preliminaries

Consider N membranes i arranged in series from left to right. For any vari-
able φ, let φi−1 and φi, respectively, denote its values at the left and right hand
sides of membrane i. In particular, let x be the spatial coordinate taken perpen-
dicular to the series array, and xi−1 and xi, respectively, the locations of the
left and right hand sides of membrane i. Other variables of interest are the hy-
draulic pressure p, the ion concentration c, and the osmotic pressure π = RTc,
where R is the gas constant and T is the absolute temperature. Parameters de-
scribing properties of membrane i are given a subscript (i): l(i), σ(i), ω(i), and
k(i) denote, respectively, the hydraulic conductivity, the reflection coefficient,
the osmotic permeability, and the active transport of membrane i. Let ∆φ(i)

denote the change of the variable φ across membrane i. The thickness ∆x(i)

of membrane i is given by ∆x(i) = xi − xi−1.

The volume flux and the distribution of the pressure in a single membrane

The differential expression for the volume flux Jv in membrane i is:

Jv = −l(i)
dp

dx
+ σ(i)l(i)

dπ

dx
. (1)

Integration of (1) gives the distribution of the pressure in membrane i:

p = pi−1 − (Jv/l(i)(x − xi−1) + σ(i)(π − πi−1) . (2)

From (2) it follows that the incremental expression for the volume flux across
membrane i is given by

Jv = −L(i)∆p(i) + σ(i)L(i)∆π(i) . (3)

where L(i) = l(i)/∆x(i) is the hydraulic conductance of membrane i.

The solute flux and the distribution of the concentration in a single mem-
brane

The differential expression for the solute flux in membrane i is:

Js = (1 − σ(i))Jvc − ω(i)RT
dc

dx
+ k(i) . (4)

If Jv and Js are regarded as given, then this equation is a linear ordinary dif-
ferential equation for c. It can be written in the form

Pe−1
(i)

dc

dx/∆x(i)
− c = −c(i) , (5)
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where the Peclet number Pe(i) and the characteristic concentration c(i) of
membrane i are given by:

Pe(i) =
(1 − σ(i))Jv

Ω(i)RT
, c(i) =

Js − k(i)

(1 − σ(i))Jv
, (6)

where Ω(i) = ω(i)/∆x(i) is the osmotic permeance of membrane i. Integration
of (5) gives the distribution of the concentration in membrane i:

c = c(i) + (ci−1 − c(i))exp(Pe(i)(x − xi−1)/∆x(i)) . (7)

Evaluation of (7) at the downstream side of the membrane gives:

ci = c(i) + (ci−1 − c(i))a(i) , (8)

where a(i) = expPe(i) is the adjustment factor of membrane i. The concentra-
tion difference ∆c(i) across membrane i is given by:

∆c(i) = (ci−1 − c(i))(a(i) − 1) . (9)

To write an incremental expression for Js, a choice has to be made for the
effective concentration in the convective component of this flux. This choice
in turn implies a certain choice for the effective osmotic permeance. Three
choices for the partioning of the non-active component of the flux Js − k(i)in
a convective and a diffusive component are:

1. The convective drive (1− σ(i))Jv acts upon the characteristic concentra-
tion c(i), rendering the non-active solute transport seemingly purely convect-
ive:

Js = (1 − σ(i))Jvc(i) + k(i) . (10)

2. The convective drive (1 − σ(i))Jv acts upon the upstream concentration
ci−1:

Js = (1 − σ(i))Jvci−1 − F(i)Ω(i)RT∆c(i) + k(i) , (11)

where

F(i) =
Pe(i)

a(i) − 1
=

Pe(i)

expPe(i) − 1
=

∞∑
n=0

BnPe(i)
n

n!
, (12)

where the series expansion applies if |Pe(i)| < 2π. The first twelve Bernouil-
lian numbers Bn have the values 1, -1/2, 1/6, 0, -1/30, 0, -1/42, 0, -1/30, 0,
5/66, 0.

3. The convective drive (1 − σ(i))Jv acts upon the average concentration
c̄(i):

Js = (1 − σ(i))Jv c̄(i) − Ω(i)RT∆c(i) + k(i) , (13)

where

c̄(i) = (∆x(i))
−1

∫ xi

xi−1

cdx . (14)
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Introducing (7) in (14) and using (12) gives:

c̄(i) = c(i−1) +
F(i) − 1
Pe(i)

∆c(i) = 1/2(ci−1 − ci) +
∞∑

n=2

BnPe(i)
n−1

n!
. (15)

This third choice is the most natural one.
Reversing the flow direction, i.e. changing the directions of Jv, Js, and ki,

will produce hydraulic pressure and concentration profiles that are the mirror
images of the former ones. Later it will be shown that for membranes arranged
in series such apolarity generally does not hold, except in some special cases.

For a steady flow through a single membrane, the solute flux Js is by con-
tinuity also given by:

Js = ciJv . (16)

Substituting the second choice (11) for Js in (16) gives:

ci = (1 − S(i))ci−1 or ∆c(i) = S(i)ci−1 , (17)

with the selectivity S(i) of membrane i given by [2]

S(i) =
σ(i) − k(i)/(ci−1Jv)
1 + F(i)Ω(i)RT/Jv

. (18)

Introducing (17)2 in (3) and (17)1 in (16) gives:

Jv = L(i)(∆p(i) − σ(i)S(i)RTci−1) , (19)

Js = (1 − S(i))ci−1Jv . (20)

Transport Across Series Arrays of Membranes

The pressure increment for a series array

Solving (3) for ∆p(i) and summing over i gives:

∆p = L−1Jv +
N∑

i=1

σ(i)∆π(i) , (21)

where ∆p =
∑N

i=1 ∆p(i) = p0 − pN is the total pressure increment and

L−1 =
∑N

i=1(∆x(i)/l(i)) =
∑N

i=1 ∆L−1
(i) is the total hydraulic resistance of

the series array. The second term on the right hand side of (21) represents
the contributions to ∆p from the differences of osmotic pressure across the
individual membranes weighted according to the reflection coefficients σ(i).
Increases in concentration in membranes with low σ(i) and in unstirred layers
or in compartments between membranes will generally give a contribution to
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∆p in successive membranes with larger reflection coefficients. If and only if
all σ(i)’s are equal to each other, and, say, have the value σ, will equation (21)
reduce to

∆p = L−1Jv + σ∆π , (22)

where ∆π =
∑N

i=1 ∆π(i) = π0 − πN . In all other cases ∆p depends linearly
on the individual ∆π(i)’s. According to equation (22), if all the σ(i)’s are equal
to each other, then the volume flow properties of the array are the same as those
for single membranes, regardless of the values of the ω(i)’s and the individual
L(i)’s.

The concentration increment for a series array

Successive application of the downstream expression for ci, equation (8),
gives for, respectively, the first, the second, and the n-th membrane:

c1 = a(1)c0 − (a(1) − 1)c(1) , (23)

c2 = a(2)a(1)c0 − a(2)(a(1) − 1)c(1) − (a(2) − 1)c(2) , (24)

cn =
n∏

j=1

a(j)c0 −
n∑

i=1

n∏
j=i+1

a(j)(a(i) − 1)c(i) . (25)

The last expression gives the concentration profile in the entire array of mem-
branes. In particular, at the end of the array:

cN =
N∏

j=1

a(j)c0 −
N∑

i=1

N∏
j=i+1

a(j)(a(i) − 1)c(i) . (26)

According to equation (26), the concentration cN is a linear combination of
c0 and all the (a(i) − 1)c(i)’s, with the coefficient of c0 being the product of
the adjustment factors of all the membranes in the array and the coefficient of
(a(i) − 1)c(i) being the product of the adjustment factors of the membranes to
the right (downstream) of membrane i.

The effects upon the distribution of the concentration from reversing the
flow and from interchanging any two members can be read at once from equa-
tions (23) through (26).

Reversing the flow does not affect the coefficient of c0, so that any change
of c0 will continue to have the same effect upon cN . However, the coefficients
of the (a(i) − 1)c(i)-terms will in general all be affected by a reversal of the
flow. The class of symmetric arrays of membranes, for which the properties
of the i-th and the (N + 1 − i)-th membranes are the same, are an important
exception. Of course, the single membrane also belongs to this class. When
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the flow is reversed the coefficient of (a(i) − 1)c(i) changes from
∏N

j=i+1 aj to∏i−1
j=1 aj and the net effect upon cN is

∆cN =
N∑

i=1

(
N∏

j=i+1

a(j) −
i−1∏
j=1

a(j))(a(i) − 1)c(i) , (27)

In particular for two membranes placed in series equation (27) reduces to:

∆cN = (a1a2 − a2 − 1)c(1) − (a1a2 − a1 − 1)c(2) . (28)

Interchanging two membranes also does not affect the coefficient of c0, so that
any change of c0 will continue to have the same effect upon cN . However it
does affect the coefficients of the (a(i) − 1)c(i)-terms of the two membranes
that are interchanged and of all the membranes situated between these two
membranes. More precisely, the results of interchanging the membranes i and
j when i < j are: the coefficients of the (a(n) − 1)c(n) with n <i and n > j
are not affected; the new coefficient of (a(i) − 1)c(i) is the old coefficient of
(a(j) − 1)c(j); the new coefficient of (a(j) − 1)c(j) is the old coefficient of
(a(i)−1)c(i), with the factor aj replaced by ai; the coefficients of (a(n)−1)c(n)

with i < n < j will be ai/aj times the old ones. For two membranes placed in
series, reversing the flow and interchanging the two membranes are equivalent.
The two membrane case is covered entirely by the second and third rules above.
If ai = aj , then only the second rule will cause a change. Existing theories do
not cover all complexity.
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Abstract In this paper we deal with an enlarged theory of binary mixtures: a second gradi-
ent solid constituent and a perfect fluid are considered. On the basis of this as-
sumptions we obtain, for a linear elastic hollow cylinder, a set of density profiles
of the solid matrix, parameterized by a suitable energetic coupling coefficient
and characterized by the presence of boundary layers arising at the external sur-
faces of the body. A structural stability analysis of the partial differential equa-
tions, governing the motion of the mixture, is also developed, in a case which
may be of interest in applications to underground structural engineering.

Introduction

A simplified model for mechanical systems constituted by a solid deform-
able porous matrix filled by a compressible fluid has been developed by [6],
[2] and [10]. The main idea in their works stays in the “homogenization" as-
sumption which leads us to accept the possibility of simultaneous placement of
a solid and a fluid material particle at the same current place. In the literature
when this assumption is accepted one talks about homogeneous mixtures. Ob-
servations of the behavior of fluid saturated solids have shown a not negligible
increase of fluid percolation, through the pores of the solid matrix, with re-
spect to the prediction provided by classical models of homogeneous mixtures
(see e.g. [9]). In other words experimental evidence (see e.g. [3]) makes clear
that the model of homogeneous mixture is not predictive in describing several
phenomena occurring in fluid-saturated solids. A possible explanation for the
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previously described phenomena stays in the circumstances that the increase of
percolation is not simply due to the increase of externally applied pressure but
also to the pore-opening occurring in the vicinity of the boundary (see [3]). In
this paper we do not directly deal with a micro-structured model, but consider
a binary mixture model involving a second gradient solid and a perfect fluid;
for the relationship between micro-structured and second gradient theories we
refer to [7] and [8]. This kind of approach is very close to that based on the
volume fraction concept, as this last reduces to the first one once a suitable con-
straint, among the enlarged set of state parameters, is assumed. On the basis of
this approach and considering a linear elastic model, we study the equilibrium
static configurations assumed by a porous hollow cylinder filled with a liquid.
In particular assuming the energy functional to be split into a first gradient and
a second gradient energy contribution, we address the parametric analysis of
the equilibrium density profiles of the solid matrix with respect to a suitable
energetic coupling coefficient between the solid and the fluid. Since we have
chosen to deal with static deformations of the hollow cylinder we require the
external tractions applied on both constituents to be conservative. Last but not
least we discuss the structural stability properties of the governing equations,
with respect to perturbations of the aforementioned coupling coefficient.

Formulation of the Problem

Material particles of the fluid and the solid are identified respectively by
their position vectors Xf and Xs in fixed reference configurations Ωf

0 and Ωs
0.

As is usually done in the theory of mixtures we presume that, at any time t,
particles of both constituents may occupy the same position x in the present
configuration Ω. The velocity vα (α = f, s) of the material particle Xα is
defined by

vα =
dαuα(Xα, t)

dt
(1)

i.e. the material time derivative of the displacement of the α-th constituent uα

from its reference configuration.
Let ρf and ρs denote the apparent mass densities of the fluid and the solid

then the mean velocity v of the mixture is defined by

ρv = ρfvf + ρsvs. (2)

Details of the theory of mixtures are given in [10], [9].
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Balance laws

We use the principle of virtual power to derive the balance of linear mo-
mentum and the boundary conditions for each constituent. That is,

∫
Ω
(ms · vs + mf · vf + Ts · ∇vs − pfdivvf + Πs · ∇∇vs)dV =

=
∫

Ω
(bs · vs + bf · vf )dV +

∫
∂Ω

(
ts · vs + tf · vf + τ s · ∂vs

∂n

)
dA.

(3)

Here mα is the bulk solid-fluid interaction force, Ts the partial Cauchy stress
in the solid, pf the hydrostatic pressure in the perfect fluid, Πs the second-
order stress in the solid, bα the density of partial body forces, tα the partial sur-
face tractions, τ s the traction corresponding to the second-order stress tensor
in the solid and ∂vs/∂n the directional derivative of vs along the outward unit
normal n to the boundary ∂Ω of Ω.

The physical meaning of Πs and τ s can be grasped in a way similar to that
done in different contexts in [7] and [4]. We remark that the external action
τ s can be regarded as the sum of two different contributions, the first one is a
doubly normal double force, i.e. an external areal action which works on the
rate of opening, ∇vs ·n⊗n, of boundary pores along the outward unit normal
n, the other one a tangential couple working on the vorticity of the apparent
velocity of the solid. This last areal action is considered in the Cosserat model
for granular materials (see e.g. [5]) and in the present approach vanishes. The
objectivity of the left hand side of (3) implies that the sum of the two internal
supplies mf and ms of linear momentum equals zero and Ts is symmetric.

By using the divergence theorem and exploiting the fact that eqn.(3) must
hold for all virtual velocities we obtain:

div
(
Ts − divΠs

) − ms + bs = 0, in Ω, (4)

−∇pf − mf + bf = 0, in Ω, (5)

ms + mf = 0, in Ω, (6)

(Ts − divΠs)n − divs(Πsn) = ts, on ∂Ω, (7)(
Πsn

)
n = τ s, on ∂Ω, (8)

−pfn = tf , on ∂Ω, (9)

where divs is the surface divergence on ∂Ω.

Constitutive relations

The balance laws (4)-(5) are to be supplemented by constitutive relations;
we express these in terms of the internal energy. We presume that the mixture is

223



Physicochemical and Electromechanical Interactions

at a uniform temperature, the constituents are deforming quasi-statically so that
their kinetic energy can be neglected, and no energy is dissipated. The internal
energy density is split into two parts; a part that depends upon the “local”
deformation of the solid and fluid particles and another part that depends upon
a “nonlocal” measure of deformation of the solid particles: the latter is taken
to be proportional to |∇ρs|2. Thus we write the balance of internal energy as

dv

dt

∫
Ω

ρ

[
ε(ρf ,Fs,Xs) +

λs

2ρ
|∇ρs|2

]
dV = (10)

∫
Ω
(bs · vs + bf · vf )dV +

∫
∂Ω

(
ts · vs + tf · vf + τ s · ∂vs

∂n

)
dA

where Fs is the deformation gradient for the solid, λs > 0 is a material para-
meter with units of Newton (meter)6/ Kg2, and dv/dt signifies the material
time derivative following the mean motion of the mixture. According to the
Reynolds transport theorem the following constitutive equations must hold

Ts = ρ
∂ε

∂Fs
F�

s − λs

[
fss

2
(1 + ξf )I + ∇ρs ⊗∇ρs

]
, (11)

pf = ρρf
∂ε

∂ρf

− λs

2
fssξf , (12)

Πs = − λsρsI ⊗∇ρs, (13)

ms = − ρ

[
ξf (∇Fs)

� ∂ε

∂Fs
+ ξfF

−�
s

∂ε

∂Xs
− ξs

∂ε

∂ρf

∇ρf

+
λs

2ρ
∇(ξffss)

]
, (14)

where fss = ∇ρs · ∇ρs, and ξf is the mass fraction of the fluid phase.
In this paper we limit our attention to external actions for which bs = 0

and bf = 0, i.e. only to external surface tractions. In order to find the partial
tractions we assume the existence of a potential function such that the working,
Ẇ ext, of external surface tractions is given by

Ẇ ext =
d

dt

∫
Ω

ψext(x, ρs, ρf ,∇ρs)dV, (15)

where Ẇ ext equals the surface integral on the right-hand side of eqn.(10). The
external surface tractions for which eqn.(15) holds are conservative. Requiring
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that eqn.(15) hold for all choices of the velocity field, we obtain

∂ψext

∂ρs

− div
(

∂ψext

∂ ∇ρs

)
= Cs,

∂ψext

∂ρf

= Cf , in Ω, (16)

ts =
[
−∂ψext

∂ρs

ρs + ξsψ
ext − ∂ψext

∂ ∇ρs

· ∇ρs + div
(

ρs
∂ψext

∂ ∇ρs

)

+ρs

(
∂ψext

∂ ∇ρs

· n
)

tr (∇sn) −
(

∂ψext

∂ ∇ρs

· n
)

∂ρs

∂n

]
n

+ ρs∇s

(
∂ψext

∂ ∇ρs

· n
)

, on ∂Ω, (17)

tf =
(
−∂ψext

∂ρf

ρf + ξfψext

)
n, on ∂Ω, (18)

τ s = −
(

ρs
∂ψext

∂ ∇ρs

· n
)

n, on ∂Ω. (19)

Equations (16) with Cs and Cf as constants are necessary conditions for the
existence of a ψext for which bs = 0 and bf = 0.

Solution of a Boundary-Value Problem

We analyze, within a linearized second gradient theory, the static infinites-
imal deformations of an annular porous cylinder filled with an inviscid fluid
and with the inner and the outer surfaces subjected to uniform external pres-
sures pext

1 and pext
2 respectively. We assume that surface tractions on the inner

and the outer surfaces of the cylinder, in the reference configuration, equal -p0

and postulate that

ε =
1
ρ0

[
−p0I · Hs + γ0

f∆ρf +
1
2
C[Hs] · Hs − 1

4
p0Hs · (Hs − H�

s )

+
1
2
γff (∆ρf )2 + ∆ρfKsfI ·Hs

]
, (20)

where Hs := ∇us and ∆ρα = ρα − ρ0
α, α = s, f ; ρ0

α is the mass density of
the α-th constituent in the reference configuration, C is the elasticity tensor, for
the solid constituent, γ0

f , γff and Ksf are material parameters. The spherical
tensor KsfI accounts for the interaction between the solid and the fluid phases
because of the deformations of the pores. The following form for the elasticity
tensor is prescribed: C[Es] = λtr(Es)I + 2µEs, where λ and µ are the Lamé.

We assume that deformations of the mixture are axi-symmetric, i.e., in cyl-
indrical coordinates the two in-plane components of the displacement, ur and
uθ, are functions of the radial coordinate r only. In order to find boundary
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conditions on the solid and the fluid phases, we consider only those external
tractions for which the following expression for ψext holds:

ψext = Csρs + Cfρf + Cint (r, θ) · ∇ρs ∆ρs + ψ̂(r), (21)

ψ̂(r) = p0 + p1r so that different tractions applied on the inner and the outer
surface can be considered. Because of our interest in studying infinitesimal
deformations, we retain terms bilinear in ∆ρs and ∇ρs.

Influence of coupling coefficient Ksf on density profiles

Through these assumptions the governing equations can be reduced to the
following two uncoupled ordinary differential equations (′= ∂/∂r):

− λsρ
02

s

[
U ′′

r +
1
r
U ′

r

]
+ q(Ksf ) Ur = Γs, U ′

θ +
2
r
Uθ = 0 (22)

q(Ksf ) = 2µ + λ − 2ξ0
fp0 −

(ξ0
sγ

0
f + p0/ρ0 − Ksf )2

2γ0
f/ρ0 + γff

, (23)

where Γs is an integration constant to be determined by boundary conditions,
Ur = (u′

r +1/r ur) = trHs and Uθ = (u′
θ−1/r uθ) are dimensionless quant-

ities; in particular Ur is related to the increment of the solid apparent density
by ∆ρs = −ρ0

sUr. We specify boundary conditions coming from eqns.(7)-(9)
and eqns.(17)-(19). Equation (22)1, for Γs = 0, (homogeneous equation) be-
longs to the family of Classical or Modified Bessel equations, according to the
sign of the coefficient q. Therefore two different solutions for the increment of
the solid apparent density are obtained in dependence of Ksf : if q > 0 then the
solution of eqn.(22)1 is given by a linear combination of Modified Bessel func-
tions I0 (ξ) and K0 (ξ) , conversely if q < 0 it is given by a linear combination
of Classical Bessel functions J0 (ξ) and Y0 (ξ). In particular we notice that

when Ksf ∈ (K(1)
sf ,K

(2)
sf ) the solution of the homogeneous equation is given

by a linear combination of the Modified Bessel functions, as sign (q) = 1;

conversely when Ksf ∈ (−∞,K
(1)
sf ) ∪ (K(2)

sf ,∞) the solution of the homo-
geneous equation is a linear combination of the Classical Bessel functions, as
sign (q) = −1; K

(1)
sf and K

(2)
sf being the values of the coupling coefficient for

which q vanishes. The solution of eqn.(22)1 is obtained by simply adding a
suitable cone stant to solution of the homogeneous equation. In the following
figures we draw plots of the ∆ρs-profiles, for a damaged salt matrix filled with
brine; values of constitutive and geometric parameters and surface tractions are
listed in Table 1.

Note that values for the constitutive coefficients λs and Cint are introduced
without any experimental validation of the model. However, this choice of
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Table 1. In the first column E and ν are the Young modulus and the Poisson ratio of the solid
matrix; in the second one ρ̂0

s and ρ̂0
f are the densities of the solid and the fluid constituent in

the reference configuration, ν0
s and ν0

f their volume fractions (in the reference configuration the
mixture is saturated).

Constitutive parameters Referential state parameters Tensions

E = 200 MPa ρ̂0
s = 1850 Kg/m3 pext

01 = 20 MPa
ν = 0.33 ρ̂0

f = 1300 Kg/m3 pext
02 = 20 MPa

λs = 200 N m4/Kg2 ν0
s = 0.97 p̃0 = − 2.21 MPa

γff = 1.64 106 N m4/Kg2 ν0
f = 1 − ν0

s = 0.03 p1 = 105 N/m3

Cs = Cf ρ0
s = ρ̂0

sν
0
s = 1794.5 Kg/m3

Cint = 1 N m3/Kg2 ρ0
f = ρ̂0

fν0
f = 39 Kg/m3

R1 = 2 m, R2 = 20 m

values is based on the expectation that these values can describe the pore-
opening effect close to the boundary of the mixture.

Figure 1. Qualitative ∆ρs-profiles for Ksf ∈ (K
(1)
sf , K

(2)
sf ).

Figure 2. Qualitative ∆ρs-profiles for Ksf ∈ (−∞, K
(1)
sf ) ∪ (K

(2)
sf ,∞). Figure 2a corres-

ponds to 1.75 < K < 1.81, and Figure 2b to 1.83 < K < 1.9.

In Figure 1 the typical behavior of fields exhibiting boundary layers is
shown, in Figure 2 the solution apparently shows wide oscillations due to the
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change of type occurring in the Bessel equation; this is usually an indication
of instability.

On the basis of the previous remarks on admissible values of the coupling
coefficient Ksf we wish to establish which conditions assure the uniqueness
of the solutions of the elastic problem. In doing this our aim is therefore the
characterization of those coupling parameters which guarantee the so-called
structural stability of the PDEs (defined on the space of the considered state
parameters us and ∆ρf ) which describe the governing equations of the mix-
ture. According to the criterion stated by [1], we discuss the possibility that
for two different representative elements of this family, corresponding to suffi-
ciently close values of Ksf , an homeomorphism on the space of state paramet-
ers exists transforming one solution into the other (topological equivalence).
In order for the aforementioned PDEs to fulfill this requirement it is assumed
that the trajectories of a representative element of the vector field family pre-
scribed by eqns.(22) describes available transformations of a given reference
configuration. Indeed we adopt a physically meaningful energetic criterion:
the reference configuration is stable if the total energy

Etot

(
ρf ,Fs

)
=

∫
Ω

[
ρε(ρf ,Fs) +

λs

2
|∇ρs|2 − ψext(x, ρs, ρf ,∇ρs)

]
dV ;

(24)
attains its minimum in the reference configuration. In particular we prove
structural stability when the coupling coefficient lies in a suitable subset of
the open interval (K(1)

sf ,K
(2)
sf ). The second functional derivative of eqn.(24),

evaluated in the reference configuration, is in this case positive definite.
In order to prove this statement we assume the second functional derivative

of Etot evaluated in the reference configuration to equal the integral over Ω of a
suitable quadratic form multiplied by a scalar quantity α and determine under
which conditions the corresponding spectral problem admits positive eigen-
values. In particular the following quadratic form is assumed for the second
functional derivative of Etot

d2Etot

dt2

∣∣∣∣
(ρ0

f ,ρ0
s)

=
∫

Ω
α

[
(divvs)

2 + skw (∇vs) · skw (∇vs) + (divvf )2
]
dV.

(25)
Numerical simulations show that structural stability is guaranteed in this case
for values of the coupling coefficient which belong to a suitable open sub-
set (K1s

sf ,K2s
sf ) of (K(1)

sf ,K
(2)
sf ). This means that the meaningful solutions of

eqns.(22) are those for coupling coefficients belonging to this open interval
only.
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Concluding Remarks

In this paper a static linear elastic deformation problem for a fluid saturated
solid is formulated in which the behavior of the solid matrix is described by
a second gradient model. The non-deformed configuration, chosen as a refer-
ence configuration, for the considered mixture can not be stress-free: indeed
the saturating fluid must exhibit internal stresses acting both on the solid con-
stituent and on its sub-bodies.

When limiting our attention to purely spherical pre-stress we find analytical
forms for the solutions of Bessel or Modified Bessel equations in dependence
on the coupling coefficient Ksf . The obtained density profiles may show an
oscillating behavior; we prove the conjecture that oscillating profiles are un-
stable as well as the non-oscillating ones which correspond to sufficiently high
absolute values of Ksf .
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Introduction

Mudrocks represent the major constituents of sedimentary basins. They
form aquitards, chemical barriers and seals for hydrocarbon accumulations.
Their low permeabilities and high capillary entry pressures [1, 2] are con-
trolled by rock microstructure and chemical interactions between minerals and
the pore fluid. For a pore system containing two immiscible fluids the sealing
efficiency is characterised by the capillary displacement pressure [2–7]. This is
usually quantified based on Mercury Porosimetry data because other, more dir-
ect measurements are difficult and time-consuming. However, for mudstones
the conversion of Mercury-air Injection data to other fluids has been questioned
in recent papers [8, 9]. The following two sections summarize the findings
from two studies which were performed (a) in order to get a better understand-
ing of the processes that occur during invasion of mercury in very fine-grained
sediments [10] and (b) to compare the pore volume distribution determined by
Mercury Injection and gas breakthrough experiments which were performed
under subsurface conditions.

Pore Space Analysis – Results from Mercury and Wood’s
Metal Porosimetry

In order to visualize the process of non-wetting fluid injection Wood’s
metal Porosimetry was used [11–16]. Wood’s metal Impregnation technique
is based on the same principles as Mercury Porosimetry, i.e., an immiscible,
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non-wetting fluid is injected at very high pressures into the pore space [14,
17–19]. In our experiments molten Wood’s metal (temperature > 70 ◦C) is
injected at pressure up to 100 MPa which corresponds to an equivalent pore
radius of about
8 nm. Images of broken or polished surfaces were subsequently compared
with data from Mercury Injection. For this study nineteen less consolidated
Tertiary mudstone samples were collected from active quarries in the Lower
Rhine Embayment and the Westerwald region. The mineralogy of the samples,
determined by whole rock XRD, varies considerably. Beside quartz most of
the samples contain major amounts of kaolinite and illite with minor smectite
and calcite. Some samples have a well-developed preferred orientation of clay
minerals, while others contain clay minerals arranged in card house structures
(Fig. 1). Water content porosities are in the range of 25 to 45 %. Samples were
dried, by first slow air-drying over a period of two weeks and subsequent oven-
drying at 105 ◦C until weight constancy. Even though the samples had been
slowly dried some samples developed microcracks during drying. Data from
Mercury Injection were corrected for this by discarding intrusion pressures be-

Figure 1. (a, b) Conventional SEM images of broken surfaces illustrating the variation in
microstructure of our samples. (c,d) SEM images of WM-impregnated samples, illustrating the
fine morphology of pore space in mudstones. Light grey: WM, Dark grey: clay.
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low 0.1 MPa. The Mercury Injection pressure which results in a saturation of
10 % is defined as the capillary displacement pressure Pd(Hg). Porosity values
range from 19 to 33 %. Bulk densities vary between 1.8 and 2.2 g/cm3, the av-
erage grain density is 2.7 g/cm3. Woodńs Metal pore casts could be visualized
down to 40 nm in diameter (Fig. 1). The largest pores which were observed
in this study are larger than 5 µm in diameter and are of irregular, round shape
and are interconnected through small pore necks. Fig. 2 is a microstructural
model, summarizing the key features observed in this study. Major findings
from this study are:

(i) Because pore size ranges determined from Mercury Injection only refer
to pore necks, which indeed is important when trying to find charac-
teristic parameters for fluid flow phenomena, the pore size distribution
determined by this method will underestimate the large pore size mode
[13].

(ii) One very fine-grained sample could not be impregnated with the molten
alloy. It is suggested that the sample has been compressed during the ex-
periments. In this case also Mercury Injection will yield underestimated
capillary displacement pressures and is therefore not applicable to such
rocks.

(iiI) Excluding three outliers, two samples with clay contents above 80% and
a strongly cemented sample, a regression was found for C [%] the clay
content and φ [%] the porosity:

Pd(Hg) = −10.24 + 0.47·C − 0.15·φ R2 = 0.88 (n = 16)

Comparison of Pore Size Distributions Determined by
Mercury Injection and Gas Breakthrough Experiments

In a study on the gas sealing efficiency of mudrocks, gas (N2) breakthrough
experiments were performed on two initially water-saturated sample plugs
from the Norwegian Shelf. These experiments were complemented by Wood’s
metal Injection and Mercury Porosimetry on the dry samples for qualitative and
semi-quantitative pore space analysis. The sample showed a lamination in the
sub–mm–range, consisting of alternating siltier and clay-rich layers. Quartz
grains were up to 0.2 mm in diameter and were surrounded by a fine–grained
clay matrix. Microscopic examination of the samples indicated that the main
pathways for Wood’s metal Injection were fissures parallel to bedding having
a width of 10 to 2 µm. Individual pores within were up to 50 µm in dia-
meter. Some pore casts were found to be less than 100 nm in size and squeezed
between clay plates (Fig. 3).
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Figure 2. Microstructural model for cemented mudstones.

Mercury Injection data revealed a porosity of 30 % and a bimodal pore size
distribution with pore size maxima at 20 and 110 nm. The capillary displace-
ment pressure (Pd) for mercury was 2.7 MPa corresponding to an equivalent
Pd(N2)–value of 0.5 MPa. For the conversion from the mercury–air to the gas–
water system the following parameters were used: interfacial tension values of
ρ(Hg-air) = 480 mN/m, and ρ(N2-water) = 70 mN/m; contact angles θ(Hg-air)
= 141◦, and θ(N2-water) = 0◦.

Gas breakthrough experiments were performed by imposing an instantan-
eous, high gas-pressure gradient across the sample. The resulting gas flux was
monitored as a function of time and pressure gradient by means of pressure
changes in a closed downstream reservoir of known volume. The experimental
procedure and its interpretation are described in detail in reference [7]. Trans-
port parameters derived from these experiments are (a) minimum capillary dis-
placement pressure (Pd) (b) effective permeability to the gas phase (keff ) after
gas breakthrough (c) pore size distribution of the conducting pore system (d)
transport porosity occupied by gas during maximum gas flow. Prior to the gas
breakthrough experiments single-phase flow experiments were conducted to
assess the absolute permeability coefficients (kabs) and at the same time estab-
lish the full water saturation of the samples. The results of the measurements
on two sample plugs perpendicular to the bedding plane are summarized in
Tables 1 and 2. Comparison of the resulting pore size distribution and porosity
data with those established by Mercury Injection shows:
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Figure 3. Sample from Norwegian Self which was injected with Wood’s metal at a pressure of
100 MPa; (A) backscatter (BSE) micrograph: differentiation of the alloy into in its compounds
(here Bismuth and Cadmium), (B) SEM (secondary electron microscopy) micrograph: WM
pore casts are smaller than 100 nm in diameter.

Table 1. Petrophysical and fluid flow properties.

Sample Burial clay sand specif. surf. kabs keff(max)

plug depth content content area (BET) [m2] [m2]
[m] (%) (%) [m2/g]

1 1515 48.2 10.5 26.2 2 ∗ 10−20 4 ∗ 10−22

2 1515 48.2 10.5 26.2 3 ∗ 10−20 2 ∗ 10−21

(i) The first pore size mode of ∼ 20 nm, as revealed by Mercury Injec-
tion and by gas breakthrough experiments, represents the major transport
pathway for N2 after gas breakthrough.

(ii) The transport porosity required for gas transport is several orders of mag-
nitude lower than the total porosity determined from Mercury Injection.

(iii) The gas displacement pressure determined from Mercury Injection does
not show a good agreement with the corresponding data from gas break-
through experiments.
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Table 2. Comparison between data from Mercury Injection (Hg) and gas breakthrough exper-
iments (N2); "N2" denotes the N2 displacement pressure converted from mercury data to the
system N2-water.

Sample Porosity Max. of pore Min. cap. displ.
plug size distribution pressure (Pd)

φHg φwater φN2 r(Hg) r(N2) Hg ”N2” N2

(%) (%) (%) [nm] [nm] [MPa] [MPa] [MPa]

1 29.9 42.8 10−5 20 & 110 22 2.7 0.5 2.5
2 29.9 42.8 10−5 20 & 110 24 2.7 0.5 1.2
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OF THE ELECTRO-MAGNETIC PROPERTIES
OF SOILS
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Abstract Given the sensitivity of soils to disturbance, the use of low perturbation (i.e.,
non-destructive) electromagnetic waves provides a viable option for studying
soil properties. The measured parameters during the excitation of a material
by an electromagnetic wave are electrical conductivity, dielectric permittivity,
and magnetic permeability. Electrical conductivity is a measure of charge mo-
bility in response to an electrical field. Dielectric permittivity represents the
polarizability of a material. Magnetic permeability indicates the degree of mag-
netic dipole alignment within a material under the excitation of the magnetic
field. Factors that affect electromagnetic wave parameters include water con-
tent/degree of saturation, porosity, spatial distribution of the phases (e.g., an-
isotropy), particle properties (e.g., specific surface), pore fluid characteristics,
and temperature. This paper presents a review of electromagnetic parameters,
provides experimental data showing the impact of the various factors on the
electromagnetic response, and gives a physical explanation of why these factors
affect electromagnetic properties. Finally, various applications of electromag-
netic wave-based techniques are presented, including monitoring the diffusion
of salt through a soft kaolinite sediment and the hydration process in cemented
paste backfill.

Introduction

The macroscale behaviour of high specific surface particulate minerals is
directly related to microscale interparticle electrical forces, thus, the physical
interpretation of electromagnetic wave parameters allows inferring important
properties about these materials. Furthermore, the properties of high specific
surface particulate materials are environmentally dependent, hence, they are
difficult to determine without altering them in the measurement process. In
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such a medium, small perturbation electromagnetic waves offer the advantage
of having no permanent effect on the medium or the internal processes being
monitored. Given sufficient skin depth, the propagation of electromagnetic
waves permits conducting non-destructive measurements on the boundaries of
the specimen and inference of the spatial distribution of electromagnetic para-
meters within the body. This paper presents a review of electromagnetic para-
meters, summarizes the impact of soil characteristics, including pore fluids, on
the electromagnetic parameters, and gives a physical explanation of why these
factors affect the electromagnetic properties. Selected examples of process
monitoring using electromagnetic waves are presented.

Electromagnetic Properties

It follows from Maxwell’s equations that three material parameters are
needed to describe interactions between electromagnetic waves and the me-
dium: complex dielectric permittivity ε∗ = ε′ + jε′′, electrical conductivity
σ, and complex magnetic permeability µ∗ = µ′ + jµ′′ (j =

√−1 denotes an
imaginary number). Since most particulate materials are non-ferromagnetic,
the magnetic properties of the materials are often assumed to be the same as
air. Electrical conductivity s is a measure of charge mobility in response to
an electric field. In the case of particle-electrolyte mixtures, the conductivity
depends on the characteristics of the pore fluid and particles, and the mix-
ture fabric. Surface conduction λ (ionic movement in the diffuse double layer)
gains relevance in mixtures of low conductivity fluids and high specific surface
minerals [14]. The permittivity of a material is often expressed as the relative
permittivity κ∗ = ε∗/ε0 where ε0 = 8.85 × 10−12F/m is the permittivity
of vacuum. The real relative dielectric permittivity κ′ represents the polariz-
ability of the material, while the imaginary relative permittivity κ′′ captures
polarization losses. Since charge migration is also an energy loss, the ima-
ginary permittivity and conductivity are often reported as a single parameter,
either as effective imaginary permittivity κ′′

eff = κ′′ + σ/(ωε0) or as effective
conductivity σeff = κ′′

effωε0, where ω is angular frequency [rad/s]. Note that
conduction losses may overwhelm the polarization losses at low frequencies in
high conductivity specimens.

Polarization mechanisms: microscale view

The mechanisms that cause polarization depend on the frequency of the
applied electric field and the composition of the material. Real permittivity
increases as frequency decreases since polarizations accumulate (see Figures
1 and 2). Single-phase materials may experience three types of polarization:
electronic (τ ≈ 10−16s), ionic (τ ≈ 10−13s), and orientational (τ =variable).
Non-polar materials do not experience orientational polarization and have very
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low real relative permittivity values (κ′ <≈ 10). Polar molecules, such as
water, have much high permittivity values. Polarization mechanisms that re-
flect interactions between phases in particle-fluid mixtures include Stern layer
polarization, bound water polarization, double layer polarization, and interfa-
cial (Maxwell-Wagner) polarization. Stern layer polarization arises due to the
movement of ions tightly bound to the particle surface. Only local movement
of these ions is permitted due to the presence of large energy barriers coming
from the interactions with surfaces (i.e., high frequency polarization). Water
molecules adsorbed onto the surface of a soil particle experience bound water
polarization due to the application of an electric field parallel to the particle. In
addition, double layer polarization arises due to the relative displacement of the
double layer counterion cloud with respect to the charged particle in response
to an electric field. Interfacial (Maxwell-Wagner) polarization develops when
charges in solution and in double layers accumulate at interfaces normal to the
applied field. A detailed review of polarization mechanisms can be found in
[18].

Water The orientational polarization of water molecules depends on its state,
as evidenced by the data shown in Figure 1. For each state, the relaxation fre-
quency is a function of the structural arrangement: GHz for liquid water, MHz
for bound or adsorbed water, and kHz for ice and hydrate. Some materials
may show a distribution of relaxation times indicating the presence of multiple
polarizations owing to specimen heterogeneity. Pure water and ice tend to
show one relaxation time, while studies have shown that water adsorbed onto
surfaces may have a distribution of relaxation times [3, 4, 16, 21, 11]. Temper-
ature affects both the static permittivity and the relaxation time. The enhanced
thermal agitation due to an increase in temperature shifts the relaxation to a
higher frequency (i.e., shorter relaxation time), but disrupts the alignment of
polarized molecules thereby decreasing the static permittivity [23, 11]. The
static permittivity of ice is slightly greater than liquid water because the dis-
tance between water molecules is less in ice; thus, the enhancing effect of the
neighbouring molecules on the induced dipole moment is greater [8]. Hydrates
have a similar relaxation time and activation energy to ice at 273 K. However,
hydrates have a lower permittivity than ice, most likely due to the lower density
of water molecules in hydrates [5].

Soil-Water Mixtures Figure 2 presents the dielectric spectra of clay-water
mixtures (kaolinite and montmorillonite) after the influence of dc conduct-
ivity is removed. In addition to the orientational polarization of bulk wa-
ter at ≈ 20GHz and adsorbed water at ≈ 10MHz, a low frequency polar-
ization is observed at kHz to MHz frequencies. It should be noted that this
low-frequency relaxation process cannot be generalized for all mineral-water
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Figure 1. Debye-type relaxation spectra for liquid water, adsorbed water, ice, and hydrate.
Solid lines correspond to real relative permittivity κ′ and dotted lines represent imaginary per-
mittivity κ” [3, 5, 11, 10].

systems [9, 10]. The causes of the low frequency polarization may be interfa-
cial polarization and/or double layer polarization.

Figure 2. Dielectric spectral responses of clay-water mixtures at 298 K. Parameters used in
the Debye-type relaxation spectral functions are complied from Ishida et al. (2000).

The nonconformity of electromagnetic properties between soil particles and
the surrounding pore fluid gives rise to interfacial polarization at radio fre-
quencies. For soils with low specific surface, the Maxwell-Wagner model is
used to explain the relaxation. However, for high specific surface soils, the
counterion atmosphere around the soil particle can move tangentially due to an
applied field, resulting in double layer polarization. This polarization mechan-
ism may explain the high permittivity measurements for colloidal suspensions
[20]. Double layer polarization may be impeded by surface conduction at high
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particle contents or due to the exchange of the counterions in the diffuse double
layer with the surrounding electrolyte [18]. In addition, fabric arrangement
may favour interfacial polarization over double layer polarization, as depic-
ted in Figure 3. These observations imply the difficulties associated with ex-
perimentally distinguishing the individual polarization contributions and with
choosing appropriate mechanisms for interpretation. Additionally, the meas-
urement of dielectric responses at frequencies less than approximately 100
MHz may be biased by electrode polarization in high conductivity clay-water
mixtures [13, 12]. Further studies of the mechanisms affecting interfacial and
double layer polarization in clay-water mixtures are needed.

Figure 3. Interfacial and double layer polarization [18].

Relationships Between Electromagnetic Parameters and Soil
Properties

Electromagnetic parameters are sensitive to the properties of soils, including
volumetric water content/porosity, specific surface, ionic concentration, aniso-
tropy, and temperature. The general trends are summarized in Table 1. Table
2 presents selected models relating the electromagnetic parameters to mixture
properties.

Conductivity

Since most conduction takes place in the pore space of soils, pore fluid con-
ductivity is an important parameter. Many models relating fluid conductivity
and pore fluid concentration are applicable only for low ionic concentrations,
since at higher concentrations, ion-ion interactions reduce ionic mobility [15].
Additionally, ionic mobility is sensitive to temperature, increasing as temperat-
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ure increases. In 1942, Archie developed a relationship between conductivity,
porosity, and the connectivity of the pore spaces in soils. This model is only
applicable for low specific surface soils (i.e., surface conduction is negligible).
As the tortuosity of the pore spaces increases, the conductivity decreases due to
the fact that the ions must follow a more complex path in order to respond to the
electric field, and some ions may become trapped at interfaces perpendicular
to the field direction. The accumulation of ions at interfaces has implications
on the real relative permittivity (e.g., interfacial polarization). The impact of
tortuosity on conductivity measurements depends on the frequency of the ap-
plied field. At high frequencies, there is local ion movement, which is min-
imally affected by particle orientation and tortuosity. Measuring the electrical
conductivity of soil-fluid mixtures in different directions gives a good idea of
the fabric anisotropy in the mixture, which also impacts engineering proper-
ties such as hydraulic conductivity. Klein and Santamarina (2003) developed
a model to show the importance of surface conduction in a system of satur-
ated infinitely long particles oriented parallel to the applied electric field. This
model demonstrates that the contribution of surface conduction to the mixture
conductivity increases as pore fluid concentration and porosity decrease, and
as specific surface increases. The mixture conductivity can be greater than the
fluid conductivity in the case of high surface conduction. The impact of surface
conduction on polarization mechanisms has been briefly addressed in Section
“Soil-Water Mixtures”.

Real relative permittivity

The real relative permittivity is sensitive to changes in volumetric water
content and to the presence of less polar fluids [19] due to water’s high polar-
izability. Topp et al. (1980) developed an empirical relationship between the
real relative permittivity and the volumetric water content at 1 GHz. Dirksen
and Dasberg (1993) found that this equation is applicable for soils with specific
surface less than approximately 100 m2/g and bulk densities between 1.35 and
1.50 g/cm3. The real permittivity of high specific soils is less than low specific
surface soils for a given water content at GHz frequencies, since the amount
of free water decreases as specific surface increases. In water, the real relative
permittivity κ′ decreases as ionic concentration increases due to a hindrance of
free water polarization as the water molecules hydrate the ions in the bulk fluid
[8]. In soil-fluid mixtures at frequencies less than about 1 GHz, the interplay
between phases strongly affects the polarization mechanisms and the effects
of volumetric water content, ionic concentration, fabric, specific surface, and
surface conduction are not obvious. Wraith and Or (1999) found that the effect
of temperature on κ′ at ≈ 1 GHz depends on the water content and the specific
surface of the soil. For soils with low specific surface and/or high water con-
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Table 1. Relationships between EM Parameters and Soil Properties

tent, κ′ decreases as temperature increases because the behaviour of the bulk
water governs. For soils with high specific surface and low water content, κ′
increases as temperature increases because the thickness of the adsorbed water
layer decreases as temperature increases [6], thereby increasing the quantity
of free water, which is reflected as an increase in κ′ [17]. Note that adsorbed
water is not polarized at 1 GHz as indicated in Figure 1.

Examples

Examples of process monitoring using conductivity measurements are
presented in Figure 4a for diffusion and cement hydration. The data indic-
ate that conductivity measurements are very sensitive to changes in pore fluid
composition. Figure 4b shows that changes in water content are reflected as
changes in the real relative permittivity during the curing of a cemented mix-
ture.
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Table 2. Selected Models

Figure 4. Examples of process monitoring. (a) Change in effective conductivity at 200 MHz
during the diffusion of salt through a soft kaolinite sediment and the hydration of a cemented
paste backfill. (b) Change in the real relative permittivity at 1.3 GHz during the hydration of a
cemented paste backfill (paste data from D. Simon).

Final Comments

Electromagnetic measurements of high conductivity soil-fluid mixtures at
low frequencies are difficult to obtain due to electrode polarization. Caution
must be used when interpreting data in the literature, as electrode effects may
be viewed as being material behaviour. In addition, difficulties with data inter-
pretation arise at kHz and MHz frequencies for clay-fluid mixtures due to the
possible manifestation of both double layer polarization and interfacial polar-
ization phenomena.
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POROUS MEDIA EVALUATION USING
FREQUENCY-DEPENDENT ELECTROKINETICS
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Abstract Frequency-dependent electrokinetics offers a different approach to obtaining in-
formation about porous media. In this work, we examine the possibility of us-
ing frequency-dependent streaming potential (FDSP) and frequency-dependent
electro-osmosis (FDE) to obtain information concerning porous media. The the-
oretical basis for this work is done using the simple geometry of a capillary
because it allows for an easier interpretation of the underlying physics. Pride
[1994] formulated a more generalized porous media case which has been shown
to give equivalent results to the capillary case for streaming potentials [Reppert
et al., 2001].

Keywords: Porous Media, Electrokinetics, Permeability

Introduction

The underlying physics that governs FDSP and FDE relies on coupled flow
between a fluid and the ions within the fluid. As the frequency of the driv-
ing force is increased, inertial effects in the fluid start to retard the motion of
the fluid in the center of the capillary. Consequently, the ratio of responding
phenomenon to the driving force is reduced. FDSP and FDE are closely re-
lated phenomena, in FDSP an applied pressure causes fluid to move which in
turn cause ions to move setting up convection and conduction currents. On the
other hand, FDE has as its driving force an electric field which moves ions in
the electrical double layer (EDL) that pull the fluid along with them. In both
cases, the coupled flow problem is controlled by the surface/fluid properties
that affect the EDL as well as the geometry of the pore/capillary space. A
schematic representation of the fluid velocity profiles for FDSP and FDE are
shown in Figure 1.

Background

These phenomena arise because at the surface/fluid interface a charge dis-
tribution often exists where there is an abundance of one species of ions close
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Figure 1. Fluid Velocity Profiles Figure 2. FDE & FDSP

to the pore wall. The Stern model can be used to describe the charge distribu-
tion which divides the EDL into two parts, the Helmholtz layer and the diffuse
layer. For this work we are primarily interested in the diffuse layer which in-
cludes the slipping plane which is where the fluid velocity goes to zero when
the fluid motion is parallel to the surface.

Frequency dependent streaming potential

There are different ways of describing the coupled flow problem in stream-
ing potentials, one is by at Onsager’s reciprocity relations and the other is by

Iconv(r) =
∫

2πrvz(r)ρc(r)dr, (1)

where Iconv is the convection current caused by the fluid pulling the ions along
in the EDL, vz is the fluid velocity profile, and ρc is the charge distribution
in the EDL. Once the convection current is determined, the streaming poten-
tial (∆V) can be determined by calculating the resulting conduction current
which is caused by ions trying to return to their original position to maintain
equilibrium condition. The conduction current is then set equal to the convec-
tion current to give the ratio (∆V/∆P) = (εζ/ησ), which is referred to as
the Helmholtz-Smoluchowski equation where ε is the permittivity of the fluid,
∆P is the pressure across the sample, η is the viscosity of the fluid, and ζ
is the zeta potential. In the case of FDSP we have oscillating fluid flow in a
capillary whose fluid motion is governed by

iρωvc(r,ω) = η∇2vc(r,ω) − ∇P(ω). (2)

The inertial terms on the left side of the equation are balanced by the viscous
forces minus the driving force on the right side of the equation. The solution
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to this equation has been previously presented [Crandall, 1926; Reppert et al.,
2001], and is

vc(r,ω) =
∆P(ω)
ηlk2

[
J0(kr)
J0(ka)

− 1
]

. (3)

Where l is the length of the capillary, a is the radius of the capillary, J0, is a
Bessel function of the first kind and k =

√
(−iωρ)/η.

√
(η/ρω) = δ, is the

viscous skin depth, which is the distance at which the amplitude of the vorti-
city (transverse) wave has attenuated by a factor of the natural logarithm “e”.
Inserting (3) into (1) and using Poisson’s equation for the charges distribution
we can solve for the FDSP Helmholtz-Smoluchowski equation [Reppert et al.,
2001],

C(ω) =
∆VSP(ω)
∆PSP(ω)

= −
[

εζ

ση

]
2
ka

J1(ka)
J0(ka)

= −SPDC
2
ka

J1(ka)
J0(ka)

, (4)

whose response (Figure 2) is dependent on the capillary/pore radius. It has
been shown [Reppert et al., 2001], by using Bessel function approximations
and the appropriate permeability model, that (4) goes to the same form as
Pride’s [1994] porous media formulation.

Frequency-dependent electro-osmosis

In the case of FDE the driving force is an electric field, which moves the
ions of the EDL pulling the fluid along with them due to viscous forces in the
fluid. This case can also be described by

iρωv(r,ω) = η∇2v(r,ω) − ε∇2ψ(r)E(ω), (5)

where ψ(r) is the potential distribution. Equation (5) does not have a closed
form solution unless certain restrictions are place on the solution and it is
solved for the near wall and bulk fluid regions which are then combined into a
final solution [Reppert and Morgan, 2002].

For the near wall solution, from the slipping plane to 3 Debye lengths from
the wall, the solution is restricted to cases where there are no inertial effects
within this region. In other words the left hand side of (5) goes to zero and we
are left with an equation of the same form as the DC electro-osmosis equation
but now with an AC electric field. The solution to this equation is

vew(x,ω) =
εζ

η
[exp(−κx) − 1]E(ω) (6)

where κ is the Debye Hückel parameter and the potential distribution is as-
sumed to be the Debye-Hückel approximation, ψ(x) = ζexp(−κx). The
boundary conditions that exist in the bulk fluid are different than those for the
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Figure 3. FDE Theory & Data Figure 4. FDE FEM Simulation

near wall solution. In the bulk fluid the potential distribution ψ(r) drops to
essentially zero, it can also be concluded that in the bulk fluid of the capillary
∇2ψ(x) → 0. Equation (5) now becomes,

iρωveB(r,ω) = η∇2veB(r,ω), (7)

which has a solution

veB(r,ω) = −εζE(ω)
η

J0(kr)
J0(kb)

, (8)

and when combined with the near wall solution gives a velocity profile defined
by

v(r,ω) =
εζE(ω)

η

[
exp(−κr) − J0(kr)

J0(kb)

]
, (9)

where b = (a − 3/κ). For electro-osmosis in an open capillary we are con-
cerned about the volume flow in the capillary. Therefore, calculating the mean
fluid velocity and taking the ratio of veB/E(ω) gives,

u(ω) =
v(ω)
E(ω)

= −εζ

η

2
ka

J1(ka)
J0(kb)

=
2udc

ka
J1(ka)
J0(kb)

. (10)

It can be seen when comparing (10) to (4) that the equations are of the same
form with identical transfer functions multiplied by different constants. How-
ever, we want to compare the FDSP case to the electro-osmosis closed capil-
lary case where the same ratio of ∆V/∆P can be compared. To get this ratio
for the closed capillary the electro-osmosis volume flow must be balance by
counter flow which is caused by a pressure build-up at the ends of the capil-
lary. The counter flow is Poiseuille flow in a capillary and whose solution is
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the same as (4). The volume flows can then be calculated for both the electro-
osmosis flow and the counter flow by integrating the flows across the cross-
sectional area of the capillaries. Setting these volume flows equal to each other
and solving for the ratio ∆V/∆P [Reppert and Morgan. 2002] gives,

∆V(ω)
∆P(ω)

=
a

2εζk

(
2
ka

J1(ka)
J0(ka)

− 1
)

/

(
J1(ka)
J0(kb)

)
. (11)

It can be seen that (11) has a different form than (4) as well as a different
frequency response (Figure 2). The response has the same general shape but a
higher rollover frequency.

These differences in response are due to the differences in voticity waves
associated with the phenomena. In the FDSP case there is one wave that em-
anates from the surface while in the FDE case there are two vorticity waves,
one the emanates from the surface and another the emanates from the second
velocity zero (Figure 1) [Reppert & Morgan, 2001].

We have now demonstrated that both the FDSP and FDE responses are de-
pendent on the capillary/pore dimension. Once the pore dimension is known
this can applied to an appropriate permeability model to obtain more informa-
tion about the porous media. Using an appropriate permeability model along
with formation factor measurements we can estimate the permeability of por-
ous samples. Alternatively, if we measure the permeability of a sample we can
then use the permeability model to determine the formation factor and tortuos-
ity of the sample using measurements that are base on the hydraulic properties
and not the electrical properties. This is currently a work in progress to com-
pare formation factor measurements made using the two methods.

Data

The first data presented is for FDE in a closed 0.127 mm diameter capillary
(Figure 3). It can be seen that the theory has a good fit to the data which
demonstrates that FDE can be used to determine capillary diameters. Figure 4
shows a finite element (FEM) simulation of FDE in a closed capillary where
it can be seen that a circulation/mixing of fluid occurs within the capillary.
The last data is for a porous glass filter with pore radii ranging from 35-50 mm
(Figure 5). The theory has a good fit to the data and provides a pore size for the
glass filter of 40 µm. Using this pore diameter a permeability of 9.8 Darcies
is calculated which compares favorably to the measured permeability of 8.2
Darcies.

Conclusion

It has been demonstrated that FDSP has the potential to provide informa-
tion on the pore microstructure that can be used to estimate permeability. It
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Figure 5. FDSP, Porous Glass Filter

has been demonstrated that FDE may have the same possibility to provide in-
formation on the pore structure. Additionally, FDE may be used as a mixing
mechanism within pore spaces.
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Abstract In a thermodynamic framework which exploits the entropy inequality to obtain
constitutive equations, it is common practice to assume charge neutrality and
enforce this restriction using Lagrange multipliers. In this paper we show that
the Lagrange multiplier used to enforce charge neutrality does not correspond to
any known physical parameter, raising the question of whether charge neutrality
can really be enforced.

Introduction

One method for developing a model for complex porous materials with mul-
tiple phases, constituents, and charges, is to use first principles and build it
based on conservation laws and the second law of thermodynamics. Within
this formulation it has been frequently assumed (including by this author) that
charge neutrality holds [14, 13, 15, 5], with this condition being forced via a
Lagrange multiplier. The interpretation of the Lagrange multiplier is that it is
associated with the electrical potential. In this paper, a Hybrid Mixture The-
ory (HMT) formulation is used to show that the Lagrange multiplier does not
appear to be associated with anything physical.

As a reference to something more familiar, consider the case of a fluid where
incompressibility is enforced via a Lagrange multiplier. For a stokesian fluid, it
is assumed that the constitutive variables (stress, energy, heat flux) are a func-
tion of density, ρ, temperature, T , rate of deformation tensor, d, and possibly
other variables (such as the gradients of density and temperature). Exploiting
the entropy inequality in this framework produces the following constitutive
restriction for the Cauchy stress tensor [10]

t = −pI + fD(d, ρ, T )

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 259–265.
© 2005 Springer. Printed in the Netherlands.
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where p is the pressure defined thermodynamically in terms of the Helmholtz

potential, A, as p = − ∂A

∂ρ−1
. The tensor f is a possibly nonlinear function of

d, ρ, and T , and must be zero at equilibrium. Compare this with the result of
assuming incompressibility. In this case, ρ is not considered an independent
variable, and the incompressibility is enforced with the Lagrange multiplier, λ.
The resulting constitutive restriction for the Cauchy stress tensor is [10]

t = −λI + fD(d, ρ, T ).

Similarly, in results for more complex media such as swelling porous media, it
can be shown that the Lagrange multiplier appears exactly where the thermo-
dynamic pressure appears in every relation derived from exploiting the entropy
inequality [2, 3]. Thus we come to the conclusion that the Lagrange multi-
plier has the physical interpretation of pressure. It is this sort of relation which
is sought when enforcing charge neutrality. We do this in the hybrid mixture
theory setting.

Macroscale Field Equations

Hybrid mixture theory is a hybridization of classical volume averaging of
field equations (conservation of mass, momenta, energy) and classical theory
of mixtures [8] whose theory of constitution results from the exploitation of
the entropy inequality in the sense of Coleman and Noll [9]. In [4] the micro-
scale field equations for each species of each phase, modified appropriately to
include charges, polarization, and an electric field, are averaged to the mac-
roscale, defined to be the scale where the phases are indistinguishable. Thus
at the macroscale the porous media is viewed a mixture, with each thermo-
dynamic property for each constituent of each phase defined at each point in
space.

To simplify the presentation, we limit this discussion to two phases, liquid
and solid, with N constituents per phase, and restrict our discussion to res-
ults pertaining to the continuity equations and momenta balance. Interfacial
effects are assumed negligible, although these effects have been incorporated
into HMT [1, 12]. In [4] the following macroscale equations are derived.

Conservation of mass

The macroscopic mass balance for constituent j in phase α is

Dαj(εαραj )
Dt

+ εαραj (∇ · vαj ) =
∑
β �=α

εαραj ê
αj

β + εαραj r̂αj (1)
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where Dαj

Dt is the material time derivative given by

Dαj

Dt
=

∂

∂t
+ vαj · ∇, (2)

vαj is the mass averaged velocity of species αj , εα is the volume fraction
of phase α, r̂αj is the rate of mass transfer to species j from other species
due to chemical reactions, and ê

αj

β represents the net rate of mass gained by
constituent j in phase α from phase β. The bulk phase counterpart is obtained
by summing over all constituents. The relationship between these macroscale
variables and their microscale counterparts are given in [4].

Conservation of electric charge

The conservation of charge equation at the macroscale is

∇ · (εαJ αj + εαq
αj
e vαj) +

∂

∂t
(εαq

αj
e ) = εαq̂αj + εαραjzαj r̂αj

+
∑
β �=α

εαραj (Ẑ
αj

β + zαj ê
αj

β ) (3)

where zαj is the charge per unit mass, J αj is the free current density in the
material frame of reference, q

αj
e is the charge density (per volume), and q̂αj is

the rate of gain of charge density due to the presence of other constituents but
not due to chemical reactions. Ẑ

αj

β represents the rate of exchange of charge
of constituent j from phase β to phase α not due to mass exchange. Using the
continuity equation, (1), equation (3) may be re-written as:

εαραj
Dαjzαj

Dt
+ ∇ · (εαJ αj ) = εαq̂αj +

∑
β �=α

εαραj Ẑ
αj

β . (4)

Linear momentum balance

The macroscale linear momentum equation is given by

εαραj
Dαjvαj

Dt
− ∇ · (εαtαj) − εαραjg − εαq

αj
e ET

−εαP αj · ∇ET = εαραj î
αj +

∑
β �=α

εαραj T̂
αj

β (5)

where ET is the upscaled (total) electric field, P αj is polarization density
of species αj , tαj is the partial Cauchy stress tensor, g is gravity, and T̂

αj

β

represents the effect constituent j of phase β has on the rate of change of
mechanical momentum of the same constituent in phase α. The exchange
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term, î
αj

, takes into account all gain of momenta due to the presence of other
species but not due to chemical reactions. Note that unlike [11, 16] we assume
it is the total electric field which contributes to the Lorentz and Kelvin forces.

Constitutive Equations and Comparison

The constitutive restrictions are obtained by assuming a set of independent
variables (variables upon which the constitutive variables depend) and then
exploiting the entropy inequality. We compare the results of not assuming
charge neutrality (where the charge of each constituent is included in the list
of independent variables) and enforcing charge neutrality using a Lagrange
multiplier where the list of independent variables does not include the charge of
each constituent, zαj . For a charged porous media we assume the independent
variables (variables upon which the constitutive variables depend) include [4]

εl, ραj , vl,s, vαj ,α, ET , zαj ,

∇εl, ∇ραj , dl, ∇vlj ,l, ∇ET , j = 1, ..., N, α = l, s, (6)

where vl,s = vl − vs is the velocity of the liquid phase relative to the solid,
vαj ,α = vaj − vα is the diffusive velocity of species αj , and dl = 1

2(∇vl +
(∇vl)T ) is the rate of deformation tensor.

Next we present the results of exploiting the entropy inequality which in-
volve the Lagrange multiplier Λ, and/or the charge of a constituent, zαj . In
each case, the first form is the result from enforcing charge neutrality:

Ds

Dt

(
εlql

e + εsqs
e

)
= 0,

and the second form is the result of incorporating charge densities.
The constitutive form of the Cauchy stress tensors for the solid and liquid

phases are [5]

ts = −(ps − qs
eΛ)I + ts

e + εl

εs tl
s tl = −(pl − ql

eΛ)I + µdl (7)

ts = −psI + ts
e + εl

εs tl
s tl = −plI + µdl (8)

where ts
e and tl

s are the effective stress and hydration stress tensors, respect-
ively [7]. Note that in this case the Lagrange multiplier, Λ, has nothing which
corresponds with it.

The electrochemical potential is defined as

µ̃αj = µαj − zαjΛ µ̃αj = µαj − zαj
ρα

ραj

∂Aα

∂zαj
(9)

where µαj =
∂(εαραÃ

α
)

∂(εαραj )
is the chemical potential and Ã

α
= Aα− 1

ρα ET ·P α

is a modified Helmholtz free energy (per unit mass). This definition is chosen
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so that (1) it is a scalar quantity representing change in energy due to change
in quantity of species αj , (2) the chemical potential of one species in two
phases are equal at equilibrium, and (3) as much as possible it is the potential
for diffusion [6]. In this definition we see that Λ corresponds to the change
in energy with respect to charge density of a species. Note that if the charge
density does not change (as in most processes not involving plasma), then this
term is constant up to mass concentration.

With this definition of chemical potential, Fick’s law of diffusion (neglecting
gravitational effects) becomes [4]

rljjvlj ,l = −εlρlj∇µ̃lj − εlρljΛ∇zlj − εl ρ
lj

ρl
ql
eET −

∑
i�=j

rlijvli,l − rljvl,s

rljjvlj ,l = −εlρlj∇µ̃lj − zlj∇
(

ρl

ρlj

∂Ã
l

∂zlj

)
− εl ρ

lj

ρl
ql
eET

−
∑
i�=j

rlijvli,l − rljvl,s

where rlij and rlj are material coefficients which satisfy the Onsager relation-
ship. The terms involving rlij account for coupling due to hydration of charged
particles. Thus the principal driving force is the electrochemical potential as
defined in (9).

Another place the Lagrange multiplier appears is in Darcy’s Law, the equa-
tion which governs the rate of flow through porous media. In this formulation
we get

Rvl,s = −εl∇pl − πl∇εl + εlρlg + εlql
e∇Λ + εlql

eET (10)

Rvl,s = −εl∇pl − πl∇εl + εlρlg + εlql
eET (11)

where πl = εlρl ∂Ã
l

∂εl
is a swelling potential which measures the affinity the

solid and liquid have for each other [7]. So in both Fick’s and Darcy’s law,
there is nothing which clearly correspondence to the Lagrange multiplier.

Conclusion

Unlike the case of an incompressible fluid where the Lagrange multiplier
used to enforce incompressibility weakly can be associated with the pressure,
there is no such correlation for the Lagrange multiplier enforcing charge neut-
rality. The resulting Lagrange multiplier at times appears to be associated with
the electric potential part of the chemoelectric potential, and at other times has
no clear correlation at all.
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As a side remark, the most consistent form of the thermodynamic definition
of the electrochemical potential is

µ̃αj = µαj − zαj
ρα

ραj

∂Aα

∂zαj

so that unless a species changes charge in the process, the electrochemical
potential is simply

µ̃αj = µαj =
(εαραÃ

α
)

∂(εαραj )
,

i.e. the energy required to insert a particle into the system accounting for dens-
ity and charge. The particular constitutive equation for the electrochemical
potential can then include both the chemical part and the part due to charge.
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Abstract Volume reduction of wet non-rigid porous media is at first “normal”, i.e. the void
ratio reduction is equal to the moisture ratio reduction. Upon air entry, with or
without cracking, and further drying, several stages of shrinkage can usually be
observed, such as “structural”, “proportional”, and “zero” shrinkage. The com-
plete shrinkage phenomenon, from the saturated to the oven-dry state, can be
accurately modelled using the Groenevelt-Bolt constitutive shrinkage equation
[2]. The first derivative of this equation (slope) provides the tool to predict how
the water potential will change upon loading the porous body. The second deriv-
ative (curvature) provides the tool to separate the different stages of shrinkage.
The location of these separation points reveals important structural properties of
the porous body. Experimental data for swelling soils will be used to demon-
strate several principles and practical implications.

Keywords: shrinkage curves, loading, bimodal shrinkage

Introduction

The shrinking and cracking of porous and colloidal materials, such as clays,
tooth paste, cheese, shoe polish, and clay-rich soils has important physical and
economical consequences. First we present a general schematic diagram of the
shrinking and cracking process of such a medium under atmospheric pressure
(zero load pressure). The model follows the shrinkage process from the state
where the medium is fully swollen, along the drying range where the medium
stays saturated (normal shrinkage), to the cracking (air-entry) point. Upon
further drying the model describes the ranges of “structural”, “proportional”,
“residual” and “zero” shrinkage. Subsequently we model the bundle of shrink-
age curves for which the lines are for different load (overburden) pressures.
Finally we present a procedure to model the behaviour of media that exhibit
bi-modal shrinkage.

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 267–273.
© 2005 Springer. Printed in the Netherlands.
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General Shrinkage Diagram for Unloaded Porous Media

The theoretical development by Groenevelt and Bolt [2] provides the fol-
lowing equation for the bundle of shrinkage curves for which the lines are for
different load (overburden) pressures, P

ζ(e) = [k2(enP − k1)[k2P + ln[(e − ε)k−1
3 + exp(−k1k2ε

−n)]]−1]
1
n , (1)

where ζ is the moisture ratio (volume water / volume solids), e is the void ra-
tio (volume voids / volume solids), P is the load pressure, ε is the void ratio
at air entry, and k1, k2, k3, and n are fitting parameters. For unloaded (“un-
burdened”) soil the load pressure P = 0 and (1) can be inverted, such that the
void ratio e appears explicitly:

e(ζ) = ε + k3(exp−(
k0

ζn ) − exp−(
k0

εn
)), (2)

where n, k0 = k1k2, and k3 are dimensionless fitting parameters. Differenti-
ation of eqn. (2) produces the slope, σ(ζ), of the shrinkage curve:

σ(ζ) = k3
k0

ζn

n

ζ
exp

−k0

ζn (3)

Differentiation of eqn. (3) produces the curvature, κ(ζ), of the shrinkage curve:

κ(ζ) = k3
k0

ζn

n

ζ
(
n k0

ζn − n − 1

ζ
) exp

−k0

ζn (4)

For the wet part of the shrinkage curve the curvature is negative. In order to
show this part of the curvature line in the diagram, we reverse the sign, i.e. in
effect we plot the absolute value of κ. By differentiating eqn. (4) and setting
the result equal to zero, one finds the locations where the absolute values of the
curvature are maximal:

ζwet

ζdry

= [(2nk0)[3(n + 1)
+
− [9(n + 1)2 − 4(n + 1)(n + 2)]0.5]−1]

1
n (5)

The location of the absolute value of the maximum curvature at the wet end can
be used to separate the regions of “structural” and “proportional” shrinkage [3].
The location of the maximum curvature at the dry end can be used to separate
the regions of “proportional” and “zero” shrinkage [4]. A general diagram of
the shrinkage curve with its derivatives is presented in Fig. 1.
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Figure 1. General diagram of the shrinkage curve and its derivatives. On the horizontal axis
is the moisture ratio (volume of water per unit volume of solids, dimensionless). On the vertical
axis is, for the solid line (the shrinkage curve), the void ratio (volume of voids per unit volume
of solids, dimensionless), and, for the broken line, the value of the slope of the shrinkage curve
(dimensionless), and, for the dotted line, the absolute value of the curvature of the shrinkage
curve (dimensionless). The following values were used for the parameters: k0 = 2, k3 = 1.6,
n = 1.6, and ε = 1.9.

Examples of unloaded shrinkage curves

We analyse here the sets for two of the six British clay-rich cracking subsoils
presented by [7], which they removed from under their overburdens, such that
P = 0. The results are shown in Figs. 2 and 3. The magnitude of the structural
shrinkage that occurs upon drying just after air entry is a clear indicator of
the structural quality of a clay soil. The extent of the structural shrinkage
can easily be seen from the distance between the shrinkage curve to the 1:1
line. The larger this distance, the larger the amount of air that is present in the
soil during water extraction by plant roots, and thus, the higher the structural
quality of the soil. From the above two graphs it can be seen that the structural
quality of Wyre Bw soil is far superior to that of Fladbury soil. The slope of
the shrinkage curve, σ(ζ), can be used to calculate the overburden potential, Ω
[1], which is defined as:

Ω = p − punloaded (6)

where p is the actual matric potential, while the medium is under a load (over-
burden) pressure P , and punloaded is the matric potential that would be ob-
served if the load were removed. The overburden potential Ω(ζ) can be calcu-
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Figure 2. Shrinkage diagram for Wyre Bw soil (data points from [7], showing the shrinkage
curve (solid line), with its first derivative (broken line) and its second derivative (dotted line).
Thefollowing values were used for the parameters: k0 = 1.025, k3 = 1.531, n = 1.361, and
ε = 1.500.

Figure 3. Shrinkage diagram for Fladbury soil (data points from [7], showing the shrinkage
curve (solid line), with its first derivative (broken line) and its second derivative (dotted line).
The following values were used for the parameters: k0 = 1.790, k3 = 3.436, n = 0.977, and
ε = 1.620.

lated from:

Ω(ζ) = Pσ(ζ) (7)
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Figure 4. Shrinkage curves for a remolded clay soil under different load (overburden) pres-
sures (data points from [8]: The following values were used for the parameters: k1 = 1MPa,
k2 = 2MPa−1, k3 = 2 and n = 0.7. The circles and the solid line are the shrinkage data and
the shrinkage curve for the unloaded soil (P = 0) with ε = 1.860. The boxes and the broken
line are the shrinkage data and the shrinkage curve for the soil under a load pressure of 63 mbar
(P = 0.0063MPa) with ε = 1.640 The diamonds and the dotted line are the shrinkage data
and the shrinkage curve for the soil under a load pressure of 112 mbar (P = 0.0112MPa) with
ε = 1.490.

A complete bundle of shrinkage curves under different loads

A data set provided by [8] was analysed using the general Groenevelt-Bolt
[2] shrinkage equation (1) [6]. The results are shown in Fig. 4.

Submodels

The general model was built up from the following sub-models, [2] 1. The
load pressure in saturated porous media is the sum of the matric pressure p and
the swelling pressure Π:

P = p + Π (8)

2. The swelling pressure Π is, under saturated conditions, a function of the
void ratio e according to

Π = k1e
−n (9)

3. The void ratio at air entry eae is a function of the load pressure P and the
void ratio eae0 at air entry for P = 0, according to

eae = eae0exp(−k2P ) (10)
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Figure 5. Shrinkage curve for Nunn clay loam mixed with 10 percent sand (data points from
[9] with bimodal curve fitting: For the wet part of the curve the following values were used for
the parameters: k0 = 0.859, k3 = 1.061, n = 1.695 and ε = 0.676. For the dry part of the
curve the following values were used for the parameters: k0 = 0.111, k3 = 0.082, n = 1.513
and ε = 0.495.

4. The extent of the residual shrinkage, eae − eζ=0, is related to the swelling
pressure at air entry according to

eae − eζ=0 = k3exp(−k2Πae) (11)

5. The shape of the residual shrinkage curve behaves according to

(e − e0) = k3exp[−k2[[1 +
en
ae − en

ζn ]P − ζn
ae

ζn pae]] (12)

These sub-models deserve closer inspection and refinement.

Bi-modal Shrinkage Processes

Experimental data [9, 10] sometimes clearly show the onset of a secondary
shrinkage process while the primary shrinkage process is underway. By using
equation (2) for the wet end and the dry end separately one obtains an excellent
fit (Fig. 5) for the complete data set [5] and can use the fitting parameters and
the curvature maxima for the identification of the two shrinkage phenomena.

Discussion and Conclusions

The analysis of shrinkage data reveals important characteristics of the por-
ous medium of concern [1]. These characteristics include the onset of cracking
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(air entry), which is of interest to the ceramics and the food industry, and the
volumetric air content during the stage of proportional shrinkage of swelling
soils, where water consumption by crops is of utmost importance.
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Abstract An alternative formulation of the model for chemical osmosis in clay membranes
is presented. It is shown that it exhibits the correct behaviour for limiting values
of the reflection coefficient. The model results compare reasonably well with
experimental data and a method is developed to obtain analytical solutions that
agree in most cases with results derived from numerical simulations.

Keywords: chemical osmosis, reflection coefficient, analytical modelling

Introduction

When a compacted clayey soil is subjected to a considerable salt concentration
gradient, groundwater flowing through the soil is not only driven by hydraulic
gradients, but by chemical and electrical gradients as well. These processes are
called chemical-and electro-osmosis, respectively. They may be of importance
in, for instance, the evaluation of contaminant leakage of waste of high salt
concentration from disposal sites with clay as an impermeable liner.

In 2001, the Netherlands Organization for Scientific Research (NWO) star-
ted a project called ‘Chemically and electrically coupled transport in clayey
soils and sediments’ to quantify the role of chemically and electrically coupled
transport in clayey soils and to assess its relevance for the distribution and
emission of contaminants and water. The project involves three Ph.D. students
working on field and laboratory experiments and modelling of chemical-and
electro-osmosis.
In this paper, a continuum model for chemical osmosis in clay membranes
is presented and its novel features, as compared to previous formulations are
shown. A simplified version of the model, that allows for analytical solutions,
is presented, and an application of this method is shown.

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 275–281.
© 2005 Springer. Printed in the Netherlands.
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Theory

In general, the flow of water due to a chemical potential gradient is called
chemical osmosis. When compacted, clay can act as a semi-permeable mem-
brane due to overlapping diffuse double layers. This means that the movement
of solute particles is restricted across the membrane, while solvent is free to
flow. To attain chemical equilibrium in case of an initial concentration gradi-
ent across the clay, water flows from low to high salt concentration. The degree
of semi-permeability is described by the reflection coefficient σ, which ranges
from 0 (no osmosis) to 1 (no solute transport).
The description of coupled flow and transport phenomena is usually based on
non-equilibrium thermodynamics [2]. Application of this theory leads to a set
of linear equations, relating all thermodynamical fluxes J i to all thermody-
namical forces Xj in a system:

J i =
∑

j

LijXj. (1)

The coefficients Lij are called the coupling coefficients and are assumed to
obey the so-called Onsager reciprocity relations Lij = Lji.
In a soil system, the relevant coupled processes that influence groundwater
flow and solute transport arise from hydraulic, chemical, electrical and thermal
driving forces, see Table 1.

Table 1. Direct and coupled flow phenomena

gradient X →
flow J ↓ hydraulic chemical electrical temperature
fluid hydraulic flow chemical osmosis electro-osmosis thermo-osmosis
ion streaming current diffusion electrophoresis Soret effect
current Rouss effect diffusion pot. electrical cond. Seebeck effect
heat conv. heat flow Dufour effect Peltier effect thermal cond.

If we consider only chemical and hydraulic processes, the equations (1) for
specific discharge q and solute mass flux relative to the solution Jd

m in terms
of gradients of pressure p and salt mass fraction ωs reduce to [1]

q = −(k/µ)∇p + λρf∇ωs, (2)

Jd
m = −σρfωsq − Dρf∇ωs. (3)

Here, k is the permeability of the porous medium and µ is the dynamic viscos-
ity; ρf is the fluid density, and λ = (k/µ)σRTds

Ms
, where R is the universal gas
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constant, T is temperature, ds is a salt dissociation factor, and Ms the molar
mass of the solute. The diffusion coefficient D should vanish for σ = 1, so we
assume D = D0(1 − σ), with D0 a Fickian diffusion coefficient; this is called
implicit coupling [5]. The expressions for q and Jd

m reduce to Darcy’s law and
Fick’s law, respectively, for σ = 0.
The difference with other formulations [5, 7] resides mainly in the expression
for solute flux relative to the solution. If we consider the solute mass flux Jm

relative to the porous medium:

Jm = Jd
m + ρfωsq = (1 − σ)ρfωsq − D0(1 − σ)ρf∇ωs, (4)

we see that for σ = 1, Jm vanishes, as it should. This is not the case in other
formulations.
The mass balances for the fluid and the salt are:

∂nρf

∂t
+ ∇ · (ρfq) = 0, (5)

∂nρfωs

∂t
+ ∇ · Jm = 0, (6)

where n is the porosity.
In combination with the flux equations and appropriate equations of state, (5)
and (6) constitute the full set of model equations accounting for chemical os-
mosis in groundwater flow and solute transport.

Analysis

Substitution of the flux equations and the equations of state in the equations
for the mass balance leads to set of non-linear differential equations. Dimen-
sional analysis [1] shows that these equations, expressed in terms of pressure
and concentration, can be reduced to a simple form when the storage para-
meters, i.e. soil compressibility α and liquid compressibility β, are relatively
small:

nSs
∂p

∂t
=

k

µ

∂2p

∂x2
− λMs

∂2c

∂x2
, (7)

n
∂c

∂t
= D

∂2c

∂x2
, (8)

where Ss = β + α/n is an effective storage parameter.
Introduction of a new variable φ = k

µp − λ
1−εc allows one to rewrite (7) and

(8) into

∂φ

∂t
= δ

∂2φ

∂x2
(9)
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with δ = k/µ
nSs

. Using the equations (8) and (9), exact solutions can be obtained
for various experimental situations. The analytical results can be exploited to
investigate model behaviour and to examine results of numerical simulations.
As an application, it can be shown that the model yields the expected pressure
profile for limiting values of σ as depicted in Katchalsky and Curran (1965).
Consider an infinite domain that consists of a clay (x ≤ 0, with initial concen-
tration ci; the subscript 1 refers to this region) and a porous medium without
membrane behaviour (x > 0, with initial concentration 0). Due to chemical
osmosis, water will be drawn into the clay. When the clay is ideal (σ = 1),
pressure will build up in the clay up to an asymptotic value. However, when
the clay is not entirely restrictive (0 < σ < 1), pressure will build up, reach a
maximum value, and decline. This is shown with an (intuitive) picture in e.g.
Katchalsky and Curran (1965), but using our model the exact solution of the
pressure p1 in the clay leads to a similar graph; this solution reads

p1 = A1erfc

( −x

2
√

δ1t

)
− A2erfc

( −x

2
√

D1t

)
, (10)

where

A1 =
λciµ

k1

(
1 +

√
Ss1µD1k1

k2

)
, A2 =

λci(
k1
µ − Ss1D1

)(
1 + k1

k2

) (11)

Figure 1 shows this solution for 0 < σ < 1 and σ = 1 (D1 = 0). The
parameters used were the same as in the analysis in the next paragraph, see
Table 2, except for the concentration and storage coefficient in the porous me-
dium: ci2 = 0, Ss2 = 4.6 · 10−10 and the storage coefficient in the clay, i.e.
Ss1 = 10−6. Figure 1 shows that the model supports the limiting behaviour
for σ.

Comparison with Experiments

The full set of equations was used to model experiments from the literat-
ure using numerical methods. In one of these experiments [3], a clay sample
in a flexible wall permeameter was subjected to a salt concentration gradient
and salinity and pressure profiles were measured. In [4], a scripted finite ele-
ment solver was used to provide numerical simulations. Using a least mean
squares fit, the storage parameter and the reflection coefficient were inferred
from the experimental data. Relevant parameters for this experiment are shown
in Table 2.

The numerical results were compared with analytical expressions, derived
from the simplified set of equations. In Figure 2, it is shown that modelling
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Figure 1. Pressure evolution in clay for an infinite composite domain

Table 2. Parameters Keijzer model

parameter value in clay
ci (mol/l) 0.1
n 0.56
k(m2) 1.2 · 10−19

D(m2/s) 2.6 · 10−13

T (oC) 25
Ss(1/Pa) 1 · 10−8

ε 1.0 · 10−6

σ 0.019
λ 1.85 · 10−13

parameter value in porous stone
ci (mol/l) 0.1 (left) 0.01 (right)
n 0.5
k(m2) 1 · 10−13

D(m2/s) 1.2 · 10−10

Ss(1/Pa) 3.4 · 10−6

results coincide reasonably well with experimental data and that numerical and
analytical graphs show excellent mutual agreement.

Because the storage parameters were small, the approximation that led to
the simplified model, was valid.
In another experiment [6] that was modelled, salinity and pressure profiles
were measured in a field situation. Results of this modelling exercise showed
indeed that when the storage parameters are significant, the approximation
does not hold.
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Figure 2. Pressure evolution: Keijzer experiment

Discussion

The results of the model that was presented compare rather well with ex-
perimental data; moreover, they were shown to be consistent with the expected
behaviour for limiting values of the reflection coefficient σ. The analytical ap-
proximation that was used to obtain exact solutions holds solely for situations
where the storage behaviour is minimal.
Aside from chemical osmosis, we have also been studying electro-osmosis
and streaming potential, i.e. electrical current due to an hydraulic gradient.
Within the research project, experimental results have been obtained for these
phenomena that will be compared with modelling data to eventually acquire a
combined model for chemico-electro-osmotic phenomena in groundwater.
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Abstract A permeameter was developed for measurement of coupled flow phenomena in
clayey materials. Results are presented on streaming potentials in a Na-bentonite
induced by hydraulic flow of electrolyte solutions. Transport coefficients are de-
rived from the experiments, assuming the theory of irreversible thermodynamics
to be applicable. Hydraulic and electro-osmotic conductivities are consistent
with data reported elsewhere. However the electrical conductivity of the clay is
substantially lower. This is ascribed to the high compaction of the clay resulting
in overlap of double layers

Keywords: coupled flow, irreversible thermodynamics, bentonite, clay, streaming potential

Introduction

Clays are generally considered to be effective barriers for flow of water and
solutes due to their low permeability and high ion adsorption capacity. How-
ever, as environmental criteria for the emission of contaminants and water from
clay barriers become increasingly stringent, it is crucial to be aware of all rel-
evant driving forces and fluxes and to take them into account in model as-
sessments. In this respect the processes of chemical and electro-osmosis may
not be neglected in clayey materials of hydraulic conductivity < 10−9 m/s
[7]. At these low conductivities the surface charge of the clay particles and
the counter-ion accumulation in diffuse double layers enable explanation and
quantification of osmotic processes and semi-permeability in clays [1].

During flow of water in clays, be it driven by hydraulic or chemical os-
motic gradients, streaming potentials are being induced due to the accumula-
tion of cations near the particle surfaces. Depending on the thickness of these
diffuse double layers, part of the excess countercharge is mobile, causing an
electric potential gradient in the clay, provided electrical shorting is absent.
Thus downstream movement of cations becomes hampered, which counteracts

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 283–288.
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the movement of water molecules [3, 7]. In laboratory experiments on both
bentonite clay and clayey dredging sludge, [6] applied a gradient of salt con-
centration across a thin slab of material and observed the resulting osmotic
water flow. Since the end faces of their samples were electrically shorted, in-
duction of a streaming potential gradient was prevented. Thus counterflow of
water was excluded. However in the field, and in most laboratory permeamet-
ers, clays are not electrically shorted and electro-osmotic counterflow of water
may become relevant.

The present study is aimed at assessing the magnitude of the counterflow
of water in bentonite clay, using a permeameter without short-circuiting the
clay. In the experiments presented here water flow is initiated by a hydraulic
gradient. By using the theory of irreversible thermodynamics, the counterflow
by induced electro-osmosis, quantified in this paper, will provide an indication
of the effect of active application of electro-osmosis in the clay.

Theory and Literature

In the absence of gradients of salt concentration and temperature, flows of
water and electric current in bentonite clay are coupled through a set of linear
phenomenological equations, derived from the theory of irreversible thermo-
dynamics (Katchalsky and Curran, 1967), making use of Onsager’s Reciprocal
Relations (Groenevelt, 1971):

Jv = k∗
h∇(−h) + ke∇(−E), (1)

I = keγ∇(−h) + κ∇(−E), (2)

where Jv is fluid flux per unit area [m/s], I is electric current density [A/m2], h
is hydraulic head [m], E is electric potential [V], k∗

h is hydraulic conductivity
at shorted condition [m/s], ke is the coefficient of electro-osmotic hydraulic
conductivity [m2/Vs], γ is the unit weight of water (9810 N/m3), and κ is the
electrical conductivity [S/m].

During water flow in clays driven by a hydraulic pressure gradient in ab-
sence of electrical shorting, a streaming potential gradient, ∇(−E), tends to
be induced. In this condition the streaming current I will be zero. From (2) it
then follows that under non-shorted conditions

∇(−E) = −keγ

κ
∇(−h). (3)

On the other hand, under electrically shorted conditions (1) becomes

Jv = k∗
h∇(−h). (4)

Equations (1), (2) and (3) will be used in the analysis of our experimental data.
Numerical values of the three soil parameters in equations (1) and (2) have
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been reported elsewhere in the literature. However, since they strongly depend
on clay type, salt concentration, cation occupation of the exchange complex,
bulk density and overburden load, they are of limited value for reference. [7]
concludes that the value of the electrical conductivity (κ) for saturated soils
is usually in the range of 0.01 to 1.0 S/m. For saturated Na-montmorillonite
at water contents of 170% and 2000%, with fresh water as equilibrium solu-
tion, [2] reports ke-values of 2 · 10−9 and 12 · 10−9 m2/Vs respectively. The
corresponding hydraulic conductivities calculated by Mitchell are 10−11 and
10−10 m/s respectively. For a silty clay of bulk density 1.55 kg/dm3, [9] finds
k∗

h = 7.05 · 10−11 m/s; ke = 3.08 · 10−9 m2/Vs; κ = 0.115 S/m.

Materials and Methods

Experiments were conducted with a flexible wall permeameter in which the
clay sample is connected with two reservoirs. Within a Plexiglas cell (ID 70
mm, OD 90 mm) the sample is mounted between two 0.45 mm Millipore filters
and two porous stones. The porous stones are pasted marginally on a pedestal
on the bottom plate of the cell and on the top cap, respectively, which are both
of hard rubber. On the surface of each porous stone an annular gold wire is
imprinted. In-between the Millipore-filters and the porous stones a nylon filter
is situated. The nylon filter has a vapour deposited gold grid that makes contact
with the gold wire. Thus, the nylon filters act as electrodes by which electrical
potentials can be measured or applied. All tubing and electrical connections
are led through the pedestal and the top cap, and out of the cell in an insulated
and pressure-tight way. From pedestal to top cap the sample is wrapped in two
neoprene membranes, each with a thickness of 0.2 mm, fitted with o-rings.
The cell around the sample is filled with silicone oil in which a pressure can
be created by argon gas. To ensure electrical insulation, the reservoirs consist
of plastics.

In these experiments a commercially available bentonite, marketed under
the name Colclay A90TM (Ankerpoort, Geertruidenberg, The Netherlands)
was used. It is a sodium-montmorillonite with a third of the exchange complex
occupied by calcium. 5.0 g of the air-dried powdered bentonite was weighed
into a stainless steel mould with an ID of 50 mm between two porous stones
of the same diameter. Then the clay was subjected to a compaction pressure of
20.3 MPa for 30 minutes. After compaction, the mould was placed in a bowl
of NaCl-solution for five days in which the clay became saturated and swollen.
Thus samples were obtained with thickness of 3.8 and 2.8 mm respectively and
a diameter of 50 mm.

The sample was placed in the permeameter and the cell was partly filled
with silicone oil. Thereafter a pressure of 1 bar was applied by use of argon
gas. Both reservoirs were filled with the same NaCl-solution used for sat-
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urating the clay, in two experiments at respectively 0.01 M and 0.36 M. So
chemical gradients at the start of the experiments were avoided. In the reser-
voir at the bottom-end of the sample a constant head of 5 m was maintained by
nitrogen gas. In the other reservoir a tube for gravimetrical measurement of the
outflow was installed. A water lock prevented evaporation. The electrodes at
the interface of the sample were connected to a Consort multi-channel control-
ler R305 (Consort, Turnhout, Belgium) to read the induced potential across the
sample in millivolts. The whole set-up is situated in a temperature controlled
room at 25oC ± 0.4oC .

Results and Discussion

The specifications of the samples in the two experiments are presented in
table 1. During the experiments the volume of the samples increased 15 to 20
% by volume due to additional swelling.

Table 1. Sample parameters in the two experiments

0.01 M NaCl 0.36 M NaCl
initial final initial final

volume [cm3] 7.499 8.516 5.435 6.503
cross section [cm2] 19.555 22.147 19.720 21.029
thickness [cm] 0.3835 0.3845 0.2756 0.3092
moisture content [% vol] 79.31 76.30 74.97 64.28

The development of the streaming potential in the first experiment is shown
in Figure 1. The effect of short-circuiting and of closing the reservoirs under
non-shorted conditions are clearly visible. A graph of similar shape is obtained
for the second experiment. Figure 1 clearly shows the disappearance of the
streaming potential upon short-circuiting the clay layer and the reversibility
of the effects of shorting. The streaming potential is well reproducible upon
re-opening the electrical circuit. Upon closure of the reservoirs in the first
experiment, Jv is set equal to zero. Figure 1 indicates that in response this
leads to a small increase of the streaming potential. For at least the first 16 hrs
no dissipation of the induced streaming potential is observed, which implies
slow dissipation of the residual hydraulic pressure gradient.

Table 2 presents the measured water fluxes and driving forces at the two salt
concentrations. The water flux components Jh and Je are defined from (1):
Jv = Jh + Je, with Jh = k∗

h∇(−h) the water flux in short-circuited situation
and Je = ke∇(−E) the water flux driven by the streaming potential.

As expressed by equation (3) the induced streaming potentials counteract
the hydraulic driven water flow. From the fluxes and forces in table 2 the flow
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Figure 1. Development of a streaming potential during flow of a 0.01 M NaCl-solution in
bentonite clay

Table 2. Water fluxes and driving forces
derived from permeameter experiments
with water of two different salt concentra-
tions

0.01 M NaCl 0.36 M NaCl
Jv [m/s] 2.8 · 10−8 3.7 · 10−8

Jh [m/s] 3.2 · 10−8 6.3 · 10−8

Je [m/s] −0.4 · 10−8 −2.6 · 10−8

∇(−h) [−] 1300 1810
∇(−E) [ V

m
] −24 −19

Table 3. Flow parameters derived from
the fluxes and forces in table 2

0.01 M NaCl 0.36 M NaCl
k∗

h [m/s] 2.4 · 10−11 3.5 · 10−11

ke [ m2

V s
] 1.7 · 10−10 1.37 · 10−9

κ [S/m] 9.0 · 10−5 1.28 · 10−3

parameters listed in Table 3 are derived, using equation (3) and the equations
for Jh and Je.

The effect of increased salt concentration on the flow parameters is remark-
able. k∗

h is hardly influenced, consistent with the observations by Heister et al
(submitted) that under an overburden load as applied here, increased salt con-
centration will not result in flocculation and therefore will not have effect on
hydraulic conductivity. However the effect on ke was expected to be opposite,
as explained by [1], using the Gouy Chapman double layer theory. As expec-
ted the electric conductivity increases with salt concentration of the permeating
solution. But both values of κ in table 3 are some orders of magnitude smaller
than κ-values reported in literature. The ratio ∇(−E)/∇(−h) is respectively
18.5 and 10.5 mV/m in the two experiments, and is higher than reported in lit-
erature (Bolt, 1982). These higher values are explained by the very low electric
conductivity. The high degree of compaction and the monovalent ions in the
permeating solution will have caused a strong overlap of diffuse double layers.
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The contribution of free salt ions to the electric conductivity may therefore be
negligible and only the adsorbed countercharge of cations will then contribute
to electric conduction. The derived values of ke enable the prediction of the
electro-osmotic water flux by active application of an electric potential gradi-
ent. Thus, at 0.01 M NaCl in the compacted bentonite, a gradient of 1 V/m
will, in the absence of a hydraulic pressure gradient, cause a water flux of the
order of 10−10 m/s.

Conclusions

The experiments demonstrate the development of a streaming potential in
consolidated bentonite clay when flushed by a NaCl-solution of either low or
high concentration. The streaming potential measured in our experiments is at
least 5 to 10 times larger than values reported for bentonite in the literature.
Apparently this is caused by a very low electric conductivity of the bentonite
samples studied. This low conductivity might be ascribed to overlapping dif-
fuse double layers on the clay particles, caused by the high compaction and the
presence of monovalent ions in the equilibrium solution. The bentonite, thus
compacted, will be a very effective medium for active application of electro-
osmosis. Compared with electrically shorted conditions, chemical osmosis
will be reduced when the clay is not short-circuited.
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Abstract It is known that when the concentration of background electrolyte in a charged
porous medium increases, the permeability of the porous medium also increases.
In this paper, a set of coupled governing equations is derived that describe
Navier-Stokes flow of a pore fluid through a charged porous medium (i.e. flow
in the presence of a diffuse double-layer). The set of coupled partial differential
equations describe the transport of the individual ions along their electrochem-
ical potential gradient, the transport of the pore fluid together with the ions in
solution, and the voltage distribution through the porous medium, while simul-
taneously maintaining electro-neutrality of the system. The governing equations
are solved for an example problem. By using this approach, new insight is gained
into the origin of permeability changes arising from changes in the background
electrolyte concentration.

Keywords: Navier-Stokes equation, diffuse double-layer, Darcy’s law

Introduction

It is well known that the permeability of a clay soil is not only a function
of its porosity, but also of the concentration of ions in the pore fluid, and the
permittivity of the pore fluid. While this may be well known, an explanation
for the behaviour is not well known. In fact, in a recent paper Hueckel iden-
tified the explanation for this behaviour as one of the outstanding problems in
soil mechanics ([4]): ‘The controversy over these two inconsistent data sets (i.e., increased
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permeability but no change in pore size distribution as measured by mercury porosimetry) re-

mains unsolved and awaits a breakthrough in experimental techniques and/or in the way we

understand flow through porous media.’

In this paper, we seek to explain this experimentally observed behaviour
theoretically by calculating the dissipation of power in a flowing fluid caused
by friction in the pore fluid, and by friction between the pore fluid and ions in
a diffuse double-layer. We will do this by formulating a set of governing equa-
tions for fluid flow (using the Navier-Stokes equation) and the transport of the
individual ions in solution (using a generalised Nernst-Planck equation), while
at the same time maintaining electroneutrality of the system (using Gauss’s
electrostatic theorem). The diffuse double-layer will be coupled to the fluid
transport by a body force term in the Navier-Stokes equation. The resulting
system of governing partial differential equations will be fully coupled. This
system of equations will be solved for some simple problems and the results
interpreted in terms of Darcy’s law.

Governing Equations

The key constitutive equation describing microscale multi-ion transport in
the presence of electrochemical forces is the generalised Nernst-Planck (N-P)
equation ([1]):

f i = −Di(∇ci +
F

RT
cizi∇Ψ) + vf ci, (1)

where f i, ci, and ∇ci is the mass flux density, the concentration of the i-th
ion, and the concentration gradient of the i-th ion, respectively. Di is the free-
solution diffusion coefficient of the i-th ion1. The quantities zi and ∇Ψ are
the valence of the i-th ion and the voltage gradient. vf is the fluid velocity and
F , R, and T are the Faraday constant, gas constant, and absolute temperature,
respectively.

The first term inside the brackets results in transport of the i-th ion spe-
cies along minus of the chemical potential gradient (assuming an ideal solu-
tion). The second term inside the brackets results in transport along the voltage
gradient2. The generalized N-P Equation (1) is a generalisation of Fick’s law,
taking into account electrical effects on charged solutes, and taking into ac-
count the movement of the fluid. The voltage Ψ appearing in Equation (1) is
made up of two distinct parts. The first part of the voltage arises from any
external potential applied to the system (for example, the external voltage may
result from the accumulation of excess ions on one side of a clay barrier mem-
brane). The second part of the voltage arises from the potential generated by
the diffusion coefficients of the individual ions being different, leading to the
formation of ion-pair dipoles. This second potential is known as the diffusion
potential. However, the ions in solution are influenced by the electric potential
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irrespective of its origin, so the two voltages arising from either process may
be summed and represented by a single Ψ.

The transport Equations (1) are supplemented by mass conservation equa-
tions. Mass conservation for each conservative ion species is expressed by,

∂ci

∂t
= −∇ · f i, (2)

where ∇· f i is the divergence of the flux vector of the i-th ion and t is the time.
Substitution of the flux Equation (1) into the mass convervation Equation (2)
leads the governing partial differential equation for mass transport. However,
charge conservation of ions in solution exerts an important constraint on the
behaviour of a multi-ion system by enforcing electroneutrality of the system at
all times. This constrained can be expressed by means of Gauss’s electrostatic
theorem for a system consisting of N ions:

∇(ε∇Ψ) = F

N∑
i=1

zici, (3)

where the permittivity ε is the product of the permittivity of free space, ε0,
and the permittivity of water, εw, relative to the permittivity of free space, i.e.,
ε = ε0εw.

Equation (1), (2) and (3) can be employed in order to gain information on
the structure of the diffuse double-layer for any ion composition of the pore
fluid and solid geometry. Further, these equations are suitable for the analysis
of ion diffusion through a charged porous medium containing a stationary fluid,
i.e., vf = 0. For these reasons, it is clear that the equations constitute a very
powerful model, and can solve many problems dealing with colloidal domain
processes and the chemomechanical behaviour of clays3. However, for sys-
tems characterized by movement of the pore fluid (i.e., vf �= 0), an additional
equation describing the fluid flow is required. In this case, there are couplings
between the flow of fluid in the pore spaces and the movement of ions in the
pore fluid (e.g. as occurs in a clay soils or a charged biological tissues).

When pore fluid motion occurs relative to the counterions4 in the pore fluid,
there is initially a drift of counterions in the direction of fluid flow. How-
ever soon after this drift begins, large electrical and chemical forces comes
into play, effectively ‘pinning’ the counterions in solution5. The counterions
pinned in pore fluid can contribute significantly to the dissipation of energy in
the fluid (the counterions can be imagined to be small spheres suspended in the
fluid, interrupting the flow). In clay soils with a high cation exchange capacity,
calculations made here show this may be the principal means for energy dissip-
ation during fluid flow. Assuming no source or sink is present, the governing
equations required for the analysis of this system are the continuity equation
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([5]),
∇ · vf = 0 (4)

and the generalized Navier-Stokes (N-S) equation describing electrohydro-
dynamic flow ([3], pp 553)6,

ρf

(
∂vf

∂t
+ vf · ∇vf

)
= Fm + Fe + Fµ + Fg, (5)

where ρf is the fluid density. Fm, Fe, Fµ, and Fg are force vectors of mechan-
ical, electrical, viscous, and gravitational origin. These forces can be expressed
for an incompressible homogeneous fluid as,

Fm = −∇p, (6)

Fe = qE + ∇
(

ρf E2

2

(
∂ε

∂ρf

)
θ

)
− E2

2
∇ε, (7)

Fµ = µf∇2vf , (8)

Fg = ρfg. (9)

p denotes the fluid pressure in the pore fluid within the porous medium, µf

is the fluid viscosity. θ is the temperature. q = F
∑

zici is the net charge
and E = −∇Ψ is the electric field strength. Ignoring electrostriction and
the gradient of permittivity the electrical force (7), for a strong ionic salt the
equation becomes:

Fe = qE = −F

N∑
i=1

zici∇Ψ. (10)

Considering the N-S Equation (5), in the case of zero fluid velocity, identifies
‘hydrostatic pressures’ arising from ‘electrical body forces’ ([2]). However,
this ‘hydrostatic pressure’ is misleading terminology, as it is in fact a thermo-
dynamic pressure arising from the entropic contribution to the free energy of
the water due to the presence of the solute in the solvent. The ‘electrical body
forces’ can be transformed (using Gauss’s electrostatic equation) to Maxwell
stresses. But once again the terminology is misleading. The Maxwell stresses
do not contribute to a change in pressure in the fluid, but represents stored elec-
trical energy (that changes the free energy of the solvent). We would like to
remove this thermodynamic pressure from the N-S Equation (5).

In the case of hydrostatic pressure arising from gravitational forces, this
may be removed by simply neglecting the gravitational body force in the N-S
Equation (5). For the thermodynamic pressure, it is less obvious what can be
done. However it may be noticed that at equilibrium, the N-P Equation (1) is
satisfied and the ion fluxes are zero. It can now be seen that the thermodynamic
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pressure may be removed (for vf = 0) by introducing a ‘diffusive body force’
that is equal and opposite to the electrical body force (10), that is,

Fe = −
N∑

i=1

(RT∇ci + ziFci∇Ψ) = −
N∑

i=1

zici(vf − vi)
ui

, (11)

where vi is the velocity of the i-th ion and ui denotes the ion mobility.
It is noted that the modified Equation (11) is rather fortuitous, in that it

accounts for both electrical and chemical forces, and so is a generalization of
equation (10). It will be shown that this generalized equation is necessary for
the investigation of coupled fluid flow and diffusion through uncharged and
charged porous media (see for example problem 1 in Section 3).

The total power (energy/time) dissipated per unit volume of fluid in this
system is the sum of the power dissipated due to fluid viscosity and the power
dissipated by friction between the pore fluid the counterions ‘pinned’ in the
fluid7. For two-dimensional flow the power dissipated due to fluid viscosity is
given by ([5]),

Pµ = µf

(
2
(

∂v1

∂x

)2

+ 2
(

∂v2

∂y

)2

+
(

∂v1

∂y
+

∂v2

∂x

)2
)

, (12)

while the power dissipated due to the counterions pinned in the pore fluid under
steady-state conditions is given by (ions fixed in position):

Pe =
ci(vf )2

ui
. (13)

Finally the power dissipated under transient conditions by counterions pinned
in the pore fluid is given by (ions moving):

Pe =
N∑

i=1

ui

ci

(
RT∇ci + ziFci∇Ψ

)2) = −
N∑

i=1

zici(vf − vi)2

ui
. (14)

Numerical Analysis

In the following, the consequences of the proposed theory will be demon-
strated by two example problems. The first problem deals with N-S flow of an
uncharged species through a semipermeable membrane. This example demon-
strates how concentration gradients accounted for in the generalized force term
(Equation (11)) influence fluid flow. The second problem investigates the in-
fluence on fluid flow of a charged slit opening containing an electrolyte. Para-
meters used for the coupled Navier-Stokes–Nernst-Planck equation are given
in Table 1.
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Table 1. Model parameters used for the numerical analyses.

symbol value dimension

ε0 8.85×10−12 C2/(J m)
εw 78 –
D+ 1.5×10−9 m2/s
D− 1.5×10−9 m2/s
F 96500 C/mol
T 293 K
R 8.31 J/(K mol)
µf 0.001 kg/(m s)
ρf 1000 kg/m3

Semipermeable membrane

The first example deals with 2D transient fluid flow through a region
bounded by two semipermeable membranes, permeable to the water flow but
impermeable for solutes. The employed geometry together with the boundary
conditions and the finite element mesh (consisting of 386 triangular elements)
are shown in Figure 1. Initially the (uncharged) solute is uniformly distributed
over the region (c = 10 mol/m3) and the fluid pressure equals zero. At t0 a
pressure gradient (p1 = 1 · 104 N/m2 and p2 = 0 N/m2) is applied leading to
fluid flow. Investigation of the pressure profiles (crossection (x, y = 0)) at t1

(a) (b)

Figure 1. Navier-Stokes flow through a semipermeable membrane: (a) geometry and (b)
finite element mesh.
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and t2 indicate a redistribution of pressure with time (see Figure 2).

Figure 2. Navier-Stokes flow through a semipermeable membrane: plots of the fluid pressure
p (N/m2).

Navier-Stokes flow through a charged slit

The second example deals with 2D stationary fluid flow (∂vf /∂t = 0) of
an electrolyte through a charged slit opening. The geometrical dimensions of
the slit together with a zoom of the employed FE-mesh (consisting of 1344 tri-
angular elements) are shown in Figure 3. The boundary conditions are chosen
such that a pressure p1 of 10 N/m2 is applied at the upper end of the slit whereas
zero pressure p2 is applied to the lower end. At the side walls no slip bound-
ary conditions were used. Two cases are investigated: (i) an idealized problem
where solutes are pinned in the pore fluid (i.e., setting F = 0) demonstrates
the importance of solutes dissipating energy and (ii) fluid flow through charged
pore walls containing an ionic 1:1 background electrolyte. A parameter study
is performed in order to investigate the model predictions under various elec-
trolyte concentrations and charge densities ρ (applied on the side walls of the
slit).
Investigation of the velocity profiles obtained for the first case (crossection
(x, y = 70 nm)) indicates a strong decrease of the maximum fluid velocity with
increasing electrolyte concentration (see Figure 4). Furthermore, a transition
of the velocity curves from a parabolic curve classically obtained from the
Navier-Stokes problem (i.e., c = 0 mol/m3) to a very flattend curve for high
electrolyte concentration (c = 1000 mol/m3) can be seen.
The fluid flux through the slit for Problem 1 (uniformly distributed solute) and
Problem 2 (for a diffuse double-layer in the slit) are shown in Figure 5. Again

295



Physicochemical and Electromechanical Interactions

Figure 3. Navier-Stokes flow through a slit: geometrical dimensions and zoom of finite
element mesh.

Figure 4. Navier-Stokes flow through a slit: velocity profiles for various uniform concentra-
tions c in mol/m3.

it is seen that increasing the concentration of uncharged solutes pinned in the
pore solution strongly decreases the fluid flux (Figure 5(a)). Most importantly
though, it is apparent that increasing the concentration of the ionic background
electrolyte leads to an increase of the fluid flux (Figure 5(b)). This is the crucial
finding. The increased permeability of a slit with a diffuse double-layer is
due to the compression of the double layer upon increasing the background
electrolyte concentration c.
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(a) (b)

Figure 5. Navier-Stokes flow through a slit: solvent flux for: (a) uncharged species and (b)
charged species.

Summary and Conclusions

Based on the numerical results obtained for the electrohydrodynamics equa-
tions the following conclusions can be drawn:

For the example ‘charged slit problem’, a four fold reduction of the fluid flux
through the slit was obtained (Figure 5). This reduction of fluid flux strongly
depends on the surface charge on the slit wall, and on the ionic concentra-
tion of background electrolyte. Increasing the surface charge while keeping
the electrolyte concentration constant leads to a decrease of permeability, as
more counterions are pinned in the solution. On the other hand, increasing the
electrolyte concentration (while keeping the surface charge constant) leads to
a compression of the diffuse double-layer and so to an increase of fluid flow
through the slit as counterions move closer to the slit wall. Consideration of
finite size of the hydrated ions (rather than modelling them as point charges)
may lead to an even more pronounced dependence of the permeability on the
diffuse double-layer. While these early findings are very promising, clearly,
further pore geometries warrant careful investigation.

Acknowledgments

The second author greatfully acknowledge the financial support of this study
by the Austrian Foundation for the Promotion of Scientific Research (FWF) in
the course of an Erwin Schrödinger scholarship.

297



Physicochemical and Electromechanical Interactions

Notes

1. There are several refinements that may be incorporated in the estimated diffusion coefficient, for
example, taking into account the activity of the ions in solution (arising from correlated spatial move-
ments/arrangements of ions, see ([1]) for details).

2. Note that the direction of transport depends on the charge zi of the ion.

3. It is noted that the finite size of ions may be taken into account using a modified Gouy-Chapman
model of the diffuse double-layer. The finite size of ions limits the maximum concentrations of ions close
to the particle surface.

4. Counterions are the ions required to maintain electroneutrality of the charged clay particles.

5. The counterions are pinned in a spatial location in a time-averaged sense (there are thermally induced
fluctuations about the mean position).

6. Use of the N-S equation assumes ρf = const and µf = const, though these restrictions may be
relaxed.

7. The energy dissipated in the fluid must be equal to the rate of work done on the system by pressure-
volume work on the system boundaries.
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Abstract Compact bone is a well-organised, multi-level porous structure. Strain-derived
fluid flow likely steers the activity of cells within the bone matrix, which in turn
orchestrate the concerted activity of bone resorbing and bone forming cells at
the surface. We present a model of the strain-driven bone remodelling proces,
which could explain the mechanically optimised structure of compact bone.

Introduction

Bone is a natural composite with a rich hierarchical structure and at least
three levels of porosity. At the highest level, porous trabecular bone consist-
ing of struts and plates (thickness 200 µm, porosity 60-95 %, pore size >500
µm) is distinguished from dense, compact bone with a porosity of less than
10 %. Compact bone essentially consists of thick-walled cylindrical struc-
tures (osteons - 200 µm) around the vascular canals ( 40 µm). The smallest
porosity both in trabecular and compact bone is a system of lacunae ( 10 µm)
and canals ( 200 nm), which contain mutually connected bone cells (osteo-
cytes) and extracellular fluid. In humans after one year of age, bone is renewed
bit-by-bit and replaced by units of secondary bone. This process is called re-
modelling and involves groups of different cells, which collaborate in basic
multi-cellular units (BMUs). BMUs proceed by tunnelling, during which os-
teoclasts excavate a canal in the main loading direction, which is partly refilled
by osteoblasts, thus forming an osteon (Figure 1). It is unclear, however, how
the concerted activity of osteoclasts and osteoblasts (BMU-coupling) is orches-
trated. There also is no satisfying explanation for the load-alignment of the
remodelling process. A necessary condition for load-directed bone remodel-
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ling would be, that sensors exist to detect mechanical strains. Good candidates
for this are osteocytes, which reside inside the bone matrix and thus have a
good position for mechanosensing. With their long slender protrusions they
form a three-dimensional network that reaches to the bone surface, which also
allows them to signal the effector cells, osteoclasts and osteoblasts, respect-
ively. Another signalling pathway is possible through the extra-cellular fluid
that flows through the lacuno-canalicular porosity upon mechanical loading.
Fluid flow may give rise to at least three biophysical effects: first, an enhanced

Figure 1. The cellular activity during bone remodelling. At the tip (cutting cone) multi-
nucleated osteoclasts (OCLs) excavate the mineralised bone tissue. At some distance, after the
resting zone, osteoblasts (OBLs) refill the tunnel with (osteoid) that is subsequently mineral-
ised. Osteocytes (OCYs) are former osteoblasts that were entombed within the bone matrix,
but remained connected to the bone surface by numerous long slender protrusions (not visible).
Courtesy R. Schenk.

mass transport that ensures osteocytes to receive sufficient nutrients for sur-
vival within the bone matrix, and their waste products to be washed away to
the bone surface. Second, due to the charged bone matrix and the ionic com-
position of the extra cellular fluid, an electro-kinetic effect occurs in the form
of streaming potentials. Streaming potentials might modulate the movement
of ions such as calcium across the cell membrane, and subsequently cell beha-
viour. Thirdly, a fluid shear stress is generated on the cell membrane, which
is a well-known stimulus for cells [2]. It is difficult to estimate the actual role
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of each of the three biophysical effects, because in the in vivo situation they
occur simultaneously. Nevertheless, all three are potentially powerful mod-
ulators of cell behaviour, and strain-induced fluid flow thus appears to be a
good mediator of mechanical information. In order to challenge this theory of
strain-driven bone remodelling and to obtain further understanding of the bio-
physical process of bone adaptation, quantitative models and experiments are
required. Here, we aim to determine the local pattern of fluid flow at a remod-
elling site. In particular, we tested the hypothesis that physiological loading
of cortical bone produces specific patterns of fluid flow along the osteocytes
around a tunnelling osteon.

Model

An axisymmetric finite-element mesh was built representing a typical cor-
tical resorption space (Figure 2,3). The cylindrical tunnel and the spherical
cutting cone have a diameter of 200 µm. The outer diameter was made 700
µm, large enough to allow local strain effects to dampen out. The pressure
within the tunnel itself can be neglected as compared to the pressure within the
lacuno-canalicular porosity of the bone tissue. Bone was modelled as a sat-
urated interconnected porous medium, essentially described by six parameters
[5]. The mineralised matrix was considered an isotropic solid, characterised
by a drained Young’s modulus of 15.8 GPa and a Poisson’s ratio of 0.33. The
porosity at this level of organisation consists of canaliculi and osteocyte la-
cunae, assumed to occupy some 5 % of the total bone volume. The bulk modu-
lus of the bone matrix was determined at 17.7 GPa; that of the cells and extra-
cellular fluid was equalled to water: 2.3 GPa [5]. The resistance against fluid
flow through the porosity was quantified by the hydraulic permeability, which
relates to the fluid viscosity and the geometry of the porosity (for details, see
[5]). As canaliculi mainly run in the transverse plane towards the bone surface
and osteons, we introduced an anisotropy of the permeability, conservatively
estimated at a factor ten. The value used for the hydraulic permeability in the
transverse plane was 2.2 107 m4/(Ns) [5]. The model was loaded in the lon-
gitudinal direction by a typical loading pattern recorded in vivo in a person
walking at 4 km/h [1]. The maximum deformation of the bone matrix was set
at 1500 microstrain (0.15 %), which is in the physiological range of the activit-
ies of daily life. The walking cycle was divided in 40 time increments of 0.025
s. The analyses were performed with the finite-element code DIANA (DIANA
Analysis BV, Delft, The Netherlands) on a Silicon Graphics workstation (Sil-
icon Graphics Inc., Mountain View, CA, USA).
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Figure 2. Volumetric deformation of the bone matrix under maximum load. Values are in
microstrain.

Figure 3. Fluid flow pattern at the bone surface at maximum compression during the walking
cycle.
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Results

At maximal loading during the heel strike of the walking cycle, a typical
volumetric strain pattern appears in the wall of the tunnel around the BMU
(Figure 2). The volumetric strain results in a flow of canalicular fluid that is
different at the tip of the cutting cone and at its base (Figure 3). At the base
of the cutting cone and along the reversal zone, fluid is pressed out of the
canaliculi into the resorption tunnel. At the tip of the cutting cone however,
fluid is sucked into the canaliculi as a result of local volumetric expansion.
Influx occurs only in a shallow layer some 10 micrometer deep, after which the
flow changes into an efflux (Figure 4). So, just below the surface of the cutting
cone, where influx and efflux meet, the net canalicular fluid flow is about zero,
even at maximal loading of the bone. At unloading of the specimen, during
the swing phase of the walking cycle, the fluid pattern is more or less reversed,
resulting in fluid outflow at the tip of the cutting cone and inflow along its base
and the reversal zone. Flow magnitude is now about 5 times lower than during
heel strike loading (data not shown). At both sites, reversal zone and cutting
cone tip, the canalicular flow damps out at a depth of some 100 micrometer
around the tunnel, even at maximal loading during heel strike (Figure 3).

Figure 4. Canalicular fluid flow pattern within the bone tissue at maximum load during the
walking cycle. At the tip of the cutting cone (continuous line), the inflow (resulting from volu-
metric expansion of the superficial bone layer) changes into an outflow because of volumetric
compression of the deeper bone layer. The reversal (indicated by arrow) occurs at a depth of
about 10 micrometer. At this depth, canalicular fluid flow will be zero. At the base of the cutting
cone (dashed line), high volumetric compression leads to high fluid flow in the canaliculi, which
runs towards the resorption tunnel and is maximal near the bone surface.
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Discussion

The different canalicular flow patterns around the tip and the base of a cut-
ting cone during loading, indicate that the osteocytes in these two locations
receive different mechanical information. Both at maximal loading and un-
loading, the flow in the bony wall of the tip was opposite to the flow in the
wall of the base. More important however is the difference in magnitude of
flow at these two locations. At the tip of the cutting cone, a small superfi-
cial zone, some 10 micrometer deep, of volumetric expansion was followed by
volumetric compression which reached it’s maximum at 30 micrometer depth
(Figure 4). As a result, the net fluid flow is close to zero at a depth of some
10 micrometer in the wall of the cutting cone tip. At the base of the cutting
cone, the flow pattern was unidirectional under both loading and unloading.
At loading, fluid was pressed out of the bone, reaching maximal canalicular
flow at the bone surface. At unloading this strain pattern was reversed, but be-
cause strain rate was slower, flow magnitude was considerably lower as well.
What will be the effect of these wholly different stress conditions on the os-
teocytes? Obviously, the osteocytes behind the tip of the cutting cone hardly
experience any fluid flow during the whole loading cycle and will be deprived
of nutrients and mechanical stimulation. Also, they will stop producing nitric
oxide (NO), which is necessary to inhibit osteoclasts form resorbing the mat-
rix. Osteoclasts thus will proceed their resorptive activity in the direction of
loading, as determined by the absence of strain driven fluid flow. By contrast,
the fluid flow at the closing cone is increased due to the void in the bone matrix.
Here the osteocytes are more strongly stimulated, which results in an increased
production of -among others- NO and prostaglandin E2 (PGE2) [3]. NO not
only inhibits the activity of osteoclasts, but also induces -like PGE2- bone
formation by activating osteoblasts. These two antagonistic activities together
explain the concerted action of osteoclasts and osteoblasts in a BMU (BMU-
coupling). The concept of a group of osteoclasts that digs a tunnel in response
to strain-dependent osteocyte signals is attractive, because it not only explains
the alignment of secondary osteons to the dominant loading direction, but also
why the diameter of osteons remains within certain limits. In healthy bone, the
size of osteons is fairly constant, meaning that osteoclasts stop resorbing when
a certain gap size has been reached. Our proposal links this observation to the
magnitude of local strain, as strain induces osteocytes to inhibit further osteo-
clastic resorption. If bone is not strained sufficiently, our model predicts that
osteocytes are not sufficiently activated to inhibit further osteoclastic attack,
which leads to a larger osteon diameter. Also, the inner diameter of the osteon
will be larger, as the stimulation of the osteocytes at the closing zone will be
reduced as well, thereby reducing the production of NO and PGE2, and con-
sequently the activity of osteoblasts. Ultimately, this leads to trabecularisation
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of cortical bone, as observed in situations of disuse. Summarising, we con-
clude that bone remodelling is a local, self-organising process of mechanical
adaptation, and may be regulated by strain-induced flow of extra-cellular fluid
along the osteocytes. As it involves the activity and mutual communication of
all three types of bone cells within well-defined spatial and temporal boundar-
ies, the remodelling osteon is a valuable model for the study of the mechanical
adaptation of bone.
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Abstract Liquid phase transport in heterogeneous media such as gels and biopolymers
may induce very large strains. These produces internal mechanical stresses that
interact with water transport mechanisms. We analyze transfers in porous media
saturated with an ionic solution using the linear thermodynamics of irreversible
processes. The interaction between mass transfer and stress/strain is analyzed
using free energy. A large number of coefficients appears and we proposed the-
oretical and experimental method for their determination. A validation of the
model is given in the simplified case of osmotic dehydration of Agar gel.

Keywords: aqueous solution, ions, coupling, Darcy coefficient, free energy, stress, strain,
dehydration, Agar gel.

Introduction

When a sphere of Agar gel is placed in an aqueous solution of polyethylene
glycol (PEG), a variation of its diameter can be observed during time, which
reveals mass exchanges between the sphere and the solution [8]. This phe-
nomenon depends on the PEG concentration and on the molecule size. It is
possible to add to this transport mechanism, related to the presence of con-
centration gradients, the effect of an electric field [3]. These exchanges come
along with stresses and strains that can induce cracks in the gel (fig. 1 and
2). We propose to establish a model coupling the transfer of an ionic solution
and the stress/strain in an elastic, isotropic, and two-phase (solid-liquid) por-
ous medium under isothermal conditions. Experiments will validate the model
in the case of Agar gel saturated by pure water.

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 307–312.
© 2005 Springer. Printed in the Netherlands.
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Figure 1. View of a sphere of Agar gel
after fast dehydration.

Figure 2. Appearance of a gel crack dur-
ing electro-osmosis tests.

Electro-Osmotic Mass Fluxes

We consider a system made of a solid phase (denoted by s) containing a li-
quid phase (denoted by L). The latter is composed by water (denoted by e) and
by two kinds of ions (denoted by + and −). An electric field is applied. The
methods of the linear thermodynamics of irreversible processes permits the de-
scription of transport phenomena by linear relations. For the liquid phase [9]
(in this paper, the indices or exponents k and m refer to cartesian coordinates):

vk
L − vk

s = −L

T

(
ρeµe,k + ρ+µ+,k + ρ−µ−,k + ρLgz,k + ZLφ,k

)
(1)

where vk
L and vk

s are the velocities of the liquid and solid phases, respectively,
L is a phenomenological coefficient, T is the temperature, ρi are the apparent
mass densities (i = e,+,−, L), µe, µ+ and µ− are the chemical potentials of
water, cation and anion, g is the gravity acceleration, z is the height, ZL is the
electric charge of the liquid phase per unit mass, and φ is the electric potential.

With the expression of the chemical potentials, equation (1) gives the
Darcy’s law [9]:

vk
L − vk

s = −Kw

(
P ∗

L,k

ρ∗eg
+ z,k +

ZLφ,k

g

)
(2)

where Kw is the Darcy coefficient defined by: Kw = Lg/ρLT , P ∗
L is the

pressure of the liquid phase at the pores scale and ρ∗e is the real mass density
of water.

Coupling with the Solid Phase Mechanics

The method used here [2, 10, 4, 6] consists of assuming the existence of a
free energy function Φ that depends on state variables of the medium. With the
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above assumptions, the chosen state variables are w, the water content of the
medium, εkm, the strain of the skeleton, n+ and n−, the numbers of cations
and anions per unit mass of the solid:

Φ = Φ
(
w, εkm, n+, n−

)
(3)

The second order development near a reference state (referred to by expo-
nent 0) leads to the following state relations:

µe = µ0
e +

1
ρs

(
de∆w − 3Kβδkm∆εkm − de

+∆n+ − de
−∆n−

)
(4)

µ+ = µ0
+ +

1
ρsM+

(
−de

+∆w + dε
+δkm∆εkm + d+∆n+ − d+

−∆n−
)

(5)

µ− = µ0
− +

1
ρsM−

(
−de

−∆w + dε
−δkm∆εkm − d+

−∆n+ + d−∆n−
)

(6)

σkm = σkm0 − 3Kβ∆wδkm + λ∆εjjδkm + 2µ∆εkm + dε
+∆n+δkm

+ dε
−∆n−δkm (7)

in which appear the molar mass of the cation M+ and anion M−, the unit
tensor δkm, the coefficient of compressibility K, the Lamé coefficients λ and
µ, and nine partial derivatives of free energy (de, β, de

+, de−, d+, d−, dε
+, dε−

and d+
−). Introducing (4), (5) and (6) in (1) gives an new expression of the

liquid phase transport:

vk
L−vk

s = −Dww,k+Dε (trε),k−D+n+,k−D−n−,k−LρLg

T
z,k−LρLZL

T
φ,k

(8)
where Dw, Dε, D+ and D− can be expressed using Kw and coefficients ap-
pearing in (4), (5), (6) and (7). This equation provides the coupling between
the transport phenomena and the mechanics of the medium.

Although the equation (7) restricts the consideration to small strains, it is
possible to consider large strains by moving the state reference (w0, εkm0, n0

+,
n0−) and by updating the coefficients, which depend all on state variables.

In the general case, the model depends on two mechanical coefficients (the
Young’s modulus E and the Poisson’s ratio ν), one transport coefficient (L or
Kw) and the nine coefficients defined in the equations (4) to (7). Coefficients
d+, d−, de

+, de−, dε
+, and dε− were determined in the case of an ideal solution

[8].

Experimental Determination of Some Coefficients – Case of
Pure Water in Agar Gel

In order to analyze coefficients Dw, Dε, de, and β, the liquid phase is as-
sumed to be pure water. In this case, the chemical potentiel of water is given
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by: µe = µ0
e + P ∗

L/ρ∗e . The relation (4) takes the shape proposed by Biot [1]:

∆P ∗
L =

ρ∗e
ρs

(
de∆w − 3Kβδkm∆εkm

)
(9)

The two coefficients de and β, which can be related to the two physical
coefficients introduced by Biot in the theory of consolidation [1], are defined
by:

de = ρs

(
∂µe

∂w

)
; 3Kβ = −∂ (trσ)

∂w
(10)

For Agar gel, experimental study of these coefficients were performed [7].
The coefficient E was determined by compressive tests. Ultrasonic measure-
ments of the Poisson’s ratio ν showed that it is almost equal to 0.5. Compress-
ibility K (fig. 3) is deduced from K = E/(3(1 − 2ν)).

Agar gel is a hygroscopic medium for w < 60% [7]. In this range, the equa-
tion (10) allows the determination of de from the chemical potential of water
given by the desorption isotherm. Assuming that the two-phase structure of the
medium is conserved, the coefficient β can be expressed by: β = 1/3 (α + w),
where α is the ratio between the specific mass of the water and the specific
mass of the solid. This expression is confirmed by experimental tests (fig. 4).
The coefficient Kw (fig. 5) was measured for a plate of gel placed in a PEG
solution [6]. Dw and Dε (fig. 6) are deduced from:

Dw =
Kwdew

g
; Dε =

Kw3Kβw

g
(11)

Figure 3. Variation of the coefficient K
with water content.

Figure 4. Variation of the coefficient β
with water content.

Experimental Validation

Associated with the mass balance of water and the mechanical equilibrium
equation, relations (7) and (8) give a model of solution transport in a deform-
able porous medium. The result of an incremental numerical method was
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Figure 5. Variation of Darcy coefficient
Kw with water content.

Figure 6. Variation of transport coeffi-
cients Dw and Dε with water content.

compared to experiments accomplished for the case of a sphere with an ini-
tial radius of 2 cm placed in a PEG solution. Figure 7 gives an example of the
comparison between experimental and numerical water content profiles. The
model permits the analysis of the evolution of stress profiles. Figure 8 shows
the evolution of the circumferential stress at different times in the case of the
sphere. Figure 9 represents the final experimental and theoretical deformations
of a cylinder. There is a good agreement between experience and theory.

Figure 7. Experimental an theoretical
water content profiles in the sphere.

Figure 8. Circumferential stresses in the
sphere at different times.

Experience Theory

Figure 9. Experimental and theoretical deformations of a cylinder after dehydration.
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Conclusion

In this paper, we give a model coupling mass transfer and stress/strain in
an elastic porous medium whose pores are filled by an ionic solution. In this
model, the chemical potential and mechanical behaviour laws are developed
from a free energy potential. A large number of coefficients appears and we
proposed theoretical and experimental method for their determination. In the
simple case of pure water, we have shown that it is possible to analyze the coef-
ficients of the model in Agar gel. A good agreement between the experiments
and the numerical model was found in the case of dehydration of a sphere. This
suggests to extend the analysis on the effect of ionic species on the coefficients
of the model and the simulation of electro-osmosis in deformable media.
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Abstract The influence of flow on the crystallization of polymers is divided into four
different regimes, using a molecular description of polymer rheology: (1) close-
to equilibrium configurations, (2) orientated chains, (3) weak chain stretching,
and (4) strong chain stretching where the chain conformation can be affected.
It can be shown that these regimes correlate well with the different morpholo-
gies observed in flow induced crystallization experiments. An explanation for
the change in nucleation dynamics can be given based on kinetic and/or ther-
modynamic processes depending on the orientation and stretch of the polymer
chains. The different morphologies are characterized by Minkowski function-
als, and their development in time are described by the so-called Schneider rate
equations.

Keywords: Flow induced crystallization, polymers melts, molecular based rheology, classi-
fication

Introduction

The application of a flow field has pronounced effects on the crystalliza-
tion dynamics and semi-crystalline morphology of polymeric systems. Under
quiescent, no-flow conditions the crystallization dynamics is governed by the
temperature, T , and spherulites are formed. In the presence of flow, increasing
the flow rate can result in an increase of the nuclei density up to factors of
106, but the morphology remains spherulitic [18]. At even higher flow rates
the so-called ‘shish-kebab’ morphology is observed. This results from the de-

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
ical Interactions in Porous Media, 315–320.
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velopment of a bundle like structure, the ‘shish’, in the flow direction from
which the lamellae, the ‘kebab’, are growing in the direction perpendicular to
the flow. For further details the reader is referred to complete reviews [4, 10].

With respect to the change in crystallization dynamics and the development
of the different morphologies two questions will be addressed. Firstly; which
physical processes govern the influence of flow on the nucleation dynamics
and the development of the different morphologies? Secondly; what are ap-
propriate model parameters to describe the crystallization dynamics? In order
to address and discuss these questions a good understanding of how the flow
affects the orientation and ordering of the polymer chains is important. Hence
the main features of molecular based rheological models are briefly reviewed
in Section 2, before addressing the two questions in Sections 3 and 4, respect-
ively.

Molecular Based Rheological Modeling

In molecular based mean field rheological models a flexible polymer chain
is represented by the contour path [3]. This contour path is a smoothed curve
through the actual configuration of the backbone of a chain and disregards
the atomistic, chemical details of the particular polymer. In general evolution
equations are formulated for the dynamic behavior of the average orientation
and the extension of the contour path. The latter is described by the chain
stretch parameter λ, λ = L/L0, with L the current length and L0 the equilib-
rium length of the contour path.

The relaxation mechanisms for the orientation and chain stretch are differ-
ent and two different time scales need to be considered [3]. The relaxation time
for orientation relaxation is denoted by the reptation time, τ rep, and that for the
chain retraction is the stretching time, τ s. These two time scales are connected
to each other via the relationship τ rep/τ s = 3Z , with Z the number of entan-
glements, valid for well entangled chains (Z > 100) [3]. For typical polymer
melts Z > 60 and the magnitudes of τ rep and τ s are thus separated by at least
two orders of magnitude. This observation directly implies that the contour
path can be orientated at much lower flow rates compared to those required to
stretch it. This is conveniently expressed by the Deborah numbers, De, based
on τ rep and τ s, defined as Derep = τ repγ̇, τ repε̇ and Des = τ sγ̇, τ sε̇ with γ̇
the shear rate and ε̇ the extension rate, respectively.

If the chain is stretched, two different regimes can be identified based on
the global configuration of the chain and the rotational isomerization, RI, (the
change in the distribution of the conformation of the monomers, or sequence of
monomers, due to chain stretching) at temperature well above the melting tem-
perature Tm [1, 20]. For small stretching, λ < λ∗, the chain maintains a Gaus-
sian configuration and the amount of RI is small. For large stretching, λ > λ∗,
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the influence of the finite extensibility of the chain sets in, and the chain con-
figuration becomes non-Gaussian and the amount of RI is large. The transition
between the two different regimes is denoted by λ∗. Hence the orientation and
conformation can be affected on an atomistic level for Des > 1, λ > λ∗. For
T > Tm the magnitude of λmax, and hence λ∗, can be estimated for a particular
melt [3, 20]. However, for T < Tm the conformations of the monomers are not
homogeneously distributed along the chain. This affects the stiffness, or Kuhn
length, of the chain which increases with decreasing T [8]. Accordingly, the
magnitude of λ∗ is temperature dependent, λ∗ = λ∗(T ), and decreases with
decreasing T . The regime Des > 1, λ < λ∗ thus decreases with decreasing
T . Thus the chain conformation becomes similar to that in the crystalline state
by decreasing T or increasing λ.

Summarizing the above, four regimes are identified. For Derep < 1, Des <
1 the chains are randomly oriented and not stretched. Subsequently three trans-
itions can be identified corresponding to increasing orientational order of the
chains, Derep > 1, the onset of chain stretching, Des > 1, and finally strong
chain stretching conditions where the chain conformation can be influenced,
λ > λ∗(T ). In polydisperse melts the enhanced crystallization dynamics is
ascribed to the high molecular weight tail of the system [15]. In the next Sec-
tion the magnitude of Derep, Des and λ refers to this part of the melt only.

Phase Change Dynamics

The change in order between the amorphous melt at T > Tm and the crystal-
line phase can be specified according to different order parameters associated
to (1) the density, (2) the periodic (crystallographic) ordering of the monomers,
(3) the orientational order of the chains and (4) the change in conformational
order of the chain. It should be noted that the ordering of the material in the
nucleus is not necessarily identical to that of the crystalline phase [16]. The
application of the flow field is observed to primarily affect the number density
of spherulites and ‘shish’ as well as the length of the ‘shish’ [4]. The thickness
and growth rate of a lamellae, and hence of a spherulite, are not or only weakly
affected [15]. We focus on the nucleation dynamics only in the discussion be-
low.

From the previous Section it is expected that the application of the flow
field will primarily affect the last two order parameters, i.e. the orientation and
conformation of the chain. In the discussion of the nucleation dynamics, it is
helpful to separate the contributions from the ‘kinetic’ and ‘thermodynamic’
processes. The first represents the fundamental timescale to form a nucleus,
the prefactor, and the second describes the driving force for the phase trans-
ition based on the position of the system in the phase diagram.

First, the kinetic contribution is discussed. Under quiescent conditions,
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Derep < 1, Des < 1, the nucleation dynamics is stochastic in nature as a
critical fluctuation in one, or more, order parameters is required for the devel-
opment of a nucleus. For Derep > 1, Des < 1 the chains become more uni-
formly oriented in the flow direction but the conformation remains unaffected.
Hence a thermally activated fluctuation in the conformation can be sufficient
for the development of a nucleus. For a number of polymers, for example PET
and PEEK, the Kuhn length is larger than the distance between two entangle-
ments. For this class of polymers, the nucleation dynamics is very similar to
the phase transition observed in liquid crystalline polymers under quiescent
[8], and flow conditions [21]. In fast flows, Derep > 1, Des > 1, λ > λ∗(T ),
one reaches the condition where the chains are fully oriented and the chain
conformation becomes similar to that of the crystalline state. Critical fluctu-
ations in the orientation and conformation of the chain are therefore no longer
needed, as these requirements are fulfilled, in a more deterministic manner, by
the applied flow field. Hence, an increase of the parameters Derep, Des and
λ results into a shift of the nucleation dynamics from a stochastic to a more
deterministic process, resulting into an increase of the nucleation rate.

Besides the kinetic contribution, the applied flow field also modifies the
thermodynamic driving force. Following the pioneering work of [6] the influ-
ence of the flow field can again be separated into four different regimes. The
increase in orientational ordering and chain stretching results into an increase
of the equilibrium melting temperature and associated increase of the thermo-
dynamic driving force at given T . The detailed information of conformational
ordering cannot be described by the stretch parameter λ. This can be approx-
imated by means of rubber theory of finite extensible chains [20].

The transition from spherulitic to the shish-kebab morphology is generally
ascribed to ‘strong’ chain stretching conditions [10]. Analysis of experimental
investigations reported in literature [4, 12, 19], in terms of Derep and Des,
indicates that the nuclei density of spherulites is enhanced under the condi-
tions Derep > 1, Des < 1 and the shish-kebab morphology develops for
Des � 1, suggesting λ > λ∗(T ). These findings are discussed in detail
for a more extensive set of experiments in [13]. It is noted that the regime
Derep > 1, Des > 1, λ < λ∗(T ) is in general small, especially in uni-
axial flows, and not always observed experimentally. These findings indicate
that the conformational order of the chain is important for the transition in the
nucleation kinetics. It is however difficult to identify wether this results from
a significant change in (1) the kinetic process, (2) the thermodynamic driving
force, or (3) a cooperative effect of both, as the kinetic and thermodynamic pro-
cesses change at approximately identical flow conditions. It is noted that the
influence of an applied electrical field on the crystallization dynamics of gly-
cine can only be explained from both kinetic and thermodynamic arguments
[7].
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Morphological Description

The requirements on how to describe the morphology of the solid-liquid
system are twofold. Firstly, the separation of nucleation and growth prominent
in polymer crystallization must be reflected in the model. Secondly, the model
must be capable to distinguish properly spherulites from the shish-kebab struc-
ture. These requirements are met by the integral model of Kolmogoroff [11],
Avrami [2], Johnson & Mehl [9] and Evans [5] (but not by most of its sim-
plified versions), which can be reformulated into a set of coupled differential
equations, the so-called Schneider rate equations [4, 17]. For a spherulitic
morphology this results in dynamic equations for four structural variables con-
nected to: (1) the real volume fraction of the crystalline phase, (2) the average
grain surface, (3) the average grain radius and (4) the number density of spher-
ulites. These four structural variables are in direct relation to the Minkowski
functionals as used in integral geometry [14]. Also the dynamic behavior for
the formation of the shish-kebab structure can be formulated into a similar set
of equations, which have been successfully applied to describe experiments
[4, 22].

Conclusion

A realistic rheological model describing both orientation and stretch of the
chain is essential to understand, and describe, the influence of the flow field
on the kinetic and thermodynamic contributions to the crystallization dynam-
ics. Characterizing an experiment according to Derep, Des and λ gives good
agreement with the transitions in the morphologies found experimentally. The
individual contributions from the nucleation and growth dynamics on the de-
velopment of the spherulitic or shish-kebab morphology can be conveniently
described by the Schneider rate equations.
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Abstract When subjected to a mechanical loading, the solid phase of a saturated porous
medium undergoes a dissolution due to strain-stress concentration effects along
the fluid-solid interface. Through a micromechanical analysis, the mechanical
affinity is shown to be the driving force of the local dissolution. For cracked
porous media, the elastic free energy is a dominant component of this driving
force. This allows to predict dissolution-induced creep in such materials.

Keywords: creep, dissolution, micromechanics, damage, chemoporoelasticity

Introduction

Let us consider an elementary volume V of saturated porous material. At the
microscopic scale, the porous material appears as a heteregeneous material in
which the solid and fluid phases occupy two distinct domains. V t

s and V t
f are

the volume of the solid phase and of the fluid phase respectively, and the solid-
fluid interface is denoted by I t

f s . The unit outward normal to the solid phase is
denoted by ns . We denote by x, v , ε and σ , the position vector, the velocity,
the strain and the stress at the microscopic scale, respectively.
Dissolution processes are superficial phenomena taking place along the fluid-
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solid interface I t
f s . The volume of the reactive solid which is dissolved

between times t and t + dt is represented by a rate of reactive mass par unit of
surface ṁ. The celerity of the solid-fluid interface along the dissolution process
is c = vs − ṁ/ρs ns , where ρs is the mass density of the solid matrix phase.
vs is the velocity associated with the strain field in the solid matrix, while the
second term accounts for the dissolution process. The rate of the total porosity
as follows:

φ̇ = φ̇
m + φ̇

c ; φ̇
m = − 1

|V |
∫
I t

f s

vs · ns d� ; φ̇
c = 1

|V |
∫
I t

f s

ṁ

ρs

d� (1)

φ̇
m

represents the rate of porosity induced by the mechanical strain of the solid
matrix. φ̇

c
denotes the change of porosity due to the chemical dissolution of

the solid matrix. Then, integration of (1) with respect to time yields the total
porosity at time t as a function of the strain-induced porosity φm and of the
chemical porosity φc:

φ(t) = φo + φm + φc with φβ =
∫ t

to

φ̇
β
dτ (β = m, c) (2)

In the present study, we assume infinitesimal strains, so that φm � 1.
The free energy of the solid matrix at time t is denoted by �S(t). It involves at
least two components: the elastic potential ψel and the chemical potential ψc

of the crystals bound in the solid phase. At any time t , the elastic energy stored
in the solid phase is denoted by �el(t):

�el(t) =
∫

V t
s

ρsψ
el dV ; �S(t) = �el(t) +

∫
V t

s

ρsψc dV (3)

Dissipation in a Chemomechanical Loading

We aim in the present section at determining the dissipation occuring during
chemomechanical processes in a porous material, in which the solid matrix
phase is submitted to dissolution in addition to the purely mechanical loading.
We are going to investigate the thermodynamic evolutions of the system M
constituted by the material located in the solid domain V t

s at a given time t . At
time t + dt , M is made up of V t+dt

s and of the solute which has dissolved into
the fluid in the interval [t, t + dt]. Only isothermal quasistatic evolutions are
considered. Let �M and D respectively denote the free energy of M and the
dissipation. The latter is subjected to Clausius-Duhem inequality:

D = −P int − d�M
dt

= Pext − d�M
dt

≥ 0 (4)

P int (resp. Pext ) denoting the work of internal (resp. external) forces.
The uniform pore pressure p and the macroscopic strain E are the two inde-
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pendent mechanical loading parameters. The macroscopic strain rate D ≈ Ė is
introduced through Hashin boundary conditions on the velocity at the edge ∂V

of the r.e.v. of the form vs = Ė · x. Accordingly, Ė is related to the rate of the
microscopic strain field through the average rule Ė = 〈ε̇〉 and the macroscopic
stress � is defined as the volume average 〈σ 〉 of the local stress σ over the
r.e.v. The rate of external work Pext can be divided into a mechanical part and
a chemical one. The “mechanical” part comprises the work of the macroscopic
stress (� : Ė) and that of the pore pressure (p φ̇

m
). The “chemical” part is the

external energy supplied to the matrix along the dissolution process:

Pext
c =

∫
I t

f s

p
ṁ

ρs

d� −
∫
I t

f s

pi

ρi

ṁ d� (5)

The last term in (5) is associated to the introduction of the dissolved solid into
the fluid: pi and ρi are respectively the partial pressure and the mass density
of these reacting ions in solution. The total external work thus reads:

Pext = |V |
(

� : Ė + p φ̇
m − 1

|V |
∫
I t

f s

(
pi

ρi

− p

ρs

)
ṁ d�

)
(6)

At time t , the free energy �M(t) of the system M is equal to �S(t) given in
(3). Still, at time t+dt , one part of the system is dissolved in the fluid. The free
energy of M at t + dt thus differs from �S(t + dt) which only represents the
contribution of the solid phase. At time t , the free energy of the solid matrix
system can be expressed as follows:

�M(t) = �el(t) +
∫

V t+dt
s

ρsψ c dV + dt

∫
I t

f s

ψc ṁ d� (7)

At time t+dt , the free energy of the same system is the sum of the contribution
of the remaining solid matrix (domain V t+dt

s ) and of the dissolved material. ϕi

denoting the mass density of the free energy of the ions in solution, the free
energy of the whole system at t + dt reads:

�M(t + dt) = �el(t + dt) +
∫

V t+dt
s

ρsψcdV + dt

∫
I t

f s

ϕi ṁ d� (8)

Comparing (8) and (7), and assuming that ψc is constant in time, yields the
rate of the free energy of the system:

�̇M = �̇el +
∫
I t

f s

(ϕi − ψ c) ṁ d� (9)
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The rate of dissipation D between t and t + dt in (4) is obtained from (6) and
(9). Introducing �el∗ = �el − |V |p φm, that is the potential energy of the solid
matrix (Deude et al., 2002), Clausius-Duhem inequality becomes:

D = |V | (
� : Ė − ṗ φm

) − �̇el
∗ +

∫
I t

f s

(
p

ρs

+ ψ c − ψ i

)
ṁ d� ≥ 0 (10)

where ψ i = ϕi + pi/ρi is the chemical potential of the dissolving ions.

Chemoporoelastic Theory

For an elastic behavior of the solid phase, �el∗ only depends on the loading
parameters, that is the macroscopic strain E and the fluid pressure p, and on
the evolving morphology of the r.e.v.. We formally account for this evolution of
the morphology through a parameter ζ , which micromechanical interpretation
will be obtained in particular cases.

State equations

In an incremental evolution without dissolution (ṁ = 0), the intrinsic dis-
sipation of the material is equal to 0, i.e. �̇el∗ = |V | (

� : Ė − ṗ φm
)
. The

macroscopic state equations thus read:

� = 1

|V |
∂�el∗
∂E

(E, p, ζ ) ; φm = − 1

|V |
∂�el∗
∂p

(E, p, ζ ) (11)

If the solid is linear elastic (stiffness tensor C
s = S

s−1
), the potential energy

�el∗ takes the form (Deude et al., 2002):

1

|V | �el
∗ (E, p, ζ ) = 1

2
E : C

hom(ζ ) : E − p2

2M(ζ )
− pB(ζ ) : E (12)

Then, application of (12) in (11) gives:

� = C
hom(ζ ) : E − p B(ζ ) ; φm = p

M(ζ )
+ B(ζ ) : E (13)

The macroscopic behavior of a saturated porous material undergoing a dissol-
ution of its linear elastic solid matrix is therefore described by the classical
Biot’s theory, where the poroelastic properties now depend on the morpholo-
gical parameter ζ . Formally, ζ plays the role of a “damage” parameter ac-
counting for the dissolution.
Estimates for the macroscopic drained stiffness tensor C

hom(ζ ) as a function of
the morphological parameter ζ can be derived from various micromechanical
techniques. The micromechanical approach classically refers to the concept of
strain concentration tensor, denoted here by A. By definition, in an evolution
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of the r.e.v. defined by ṗ = 0, ṁ = 0 and by a given macroscopic strain rate
Ė, A linearly relates the local strain rate ε̇ to Ė:

ε̇(x) = A(x) : Ė (14)

The macroscopic drained stiffness tensor C
hom(ζ ) and Biot’s coefficient B(ζ )

can then be expressed as a function of the average of A over the fluid saturated
pore space (I=fourth identity tensor):

C
hom = C

s : (
I − φ〈A〉f

) ; B = φoδ : 〈A〉f = δ : (
I − S

s : C
hom)

(15)

Dissolution law at the microscopic scale

Introducing the state equations (13) into (10) yields:

D = −∂�el∗
∂ζ

ζ̇ +
∫
I t

f s

(
p

ρs

+ ψc − ψ i

)
ṁ d� ≥ 0 (16)

with

−∂�el∗
∂ζ

= |V |
(

p2

2

∂

∂ζ

(
1

M

)
+ p

∂B
∂ζ

: E − 1

2
E : ∂C

hom

∂ζ
: E

)
(17)

In particular, when p + ρs(ψc − ψi) is uniform along the solid-fluid interface,
the dissipation can be formulated in terms of the macroscopic variables E, p,
φc and ζ :

D = −∂�el∗
∂ζ

(E, p, ζ )ζ̇ + |V | [
p + ρs(ψc − ψ i)

]
φ̇

c ≥ 0 (18)

(18) could therefore be used in a standard macroscopic modelling of chemo-
poroelasticity. Still, the understanding of the driving forces of dissolution
requires to analyze dissipation at the scale it takes place, namely along the
fluid-solid interface. For this purpose, a micromechanical interpretation of the
macroscopic thermodynamic force associated with ζ is due. Starting from the
definition (3) of �el, its time derivative yields:

d�el

dt
=

∫
V t

s

ρs ψ̇
el

dV −
∫
I t

f s

ψelṁ d� =
∫

V t
s

σ : ε̇ dV −
∫
I t

f s

ψelṁ d� (19)

Recalling that the stress state in the fluid is the uniform pressure p and using
Hill’s lemma in the form 〈σ : ε̇〉 = � : Ė, (19) then yields the rate of total
potential energy and allows to relate the convective term of free energy to the
thermodynamic force associated with ζ :

�̇el
∗ = |V | (

� : Ė − ṗ φm
) −

∫
I t

f s

ψelṁ d� ⇒
∫
I t

f s

ψelṁ d� = −ζ̇
∂�el∗
∂ζ

(20)
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Introducing (20) into (16), the dissipation rate reduces to:

D =
∫
I t

f s

(
ψel + p

ρs

+ ψ c − ψ i

)
ṁ d� = −

∫
I t

f s

Am

ṁ

ρs

d� ≥ 0 (21)

where Am = ρs(ψ i − ψ s) with ψ s = ψc + ψ el + p/ρs . The driving force
of the chemical process thus proves to be the difference between the chemical
potential ψ i of the fluid phase and the chemical potential ψ s of the solid phase.
Am is generally referred to as the ”mechanical” affinity. In order to ensure
the positivity of the local dissipation, the simplest form of the dissolution law
reads (Ghousssoub and Leroy, 2001):

ṁ(x) / ρs = −κ Am(x) (22)

where κ is a positive, assumed constant, kinetic coefficient. It can be determ-
ined from a purely chemical dissolution process, for which the driving force
reduces itself to the Gibbs energy.

Application: dissolution-induced creep in a cracked medium

Let us consider the case where the pore space is a network of saturated cracks.
In order to implement the classical micromechanical estimates of the strain
concentration tensor A introduced in (14), the cracks are modelled as flat oblate
spheroids. For simplicity, a uniform crack radius a is considered. N denotes
the crack density. For an isotropic distribution of crack orientations, the mac-
roscopic behavior derived from (15) is isotropic as well (Deude et al., 2002):

C
hom = C

s : (I− ζQ) ; Q = 16

9

1 − ν2
s

1 − 2νs

J+ 32

45

(1 − νs)(5 − νs)

2 − νs

K (23)

where ζ = Na3, Jijkl = δij δkl/3 and K = I−J. In particular, the macroscopic
bulk modulus and Biot coefficient are derived from (15):

b = βζ with β = 16

9

1 − ν2
s

1 − 2νs

; Khom = Ks(1 − b) (24)

The morphological parameter ζ which controls the damaging effect of cracks
appears to depend only on the crack density and the crack radius. In the case of
cracks, the macroscopic mechanical loading defined by E or p is expected to
induce a strong heterogeneity of the mechanical affinity, due to the stress/strain
concentration in the vicinity of the crack tips.
For simplicity, let us consider perfectly drained conditions (p = 0) and start
from an equilibrium between solid and solute (ψc − ψ i). The equilibrium is
disturbed by application of a constant macroscopic stress � = 	δ (	 > 0).
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The macroscopic strain is E(t)δ and reads:

E(t) = �

3Ks(1 − ζ(t)β)
(25)

The increase of ζ thus induces a macroscopic creep under constant stress. As-
suming an instantaneous diffusion of the solute within the pore space, the
mechanical affinity is Am ≈ −ρsψ

el. The strain concentration effect at the
crack tip then implies that the dissolution process concentrates at this place
and is negligible elsewhere. The rate of crack radius increase ȧ is derived from
(22) and gives the evolution ζ (t) of the damage parameter:

ȧ ≈ κEs

2(1 − ν2
s )

(
Log(

ω(t)

ωo(t)
)

)2

; ω(t) − ωo(t) = 3 β

4π

�

Ks
(26)

where Es is the Young modulus of the solid and ω is the crack aspect ratio
(initial value ωo), and ωo(t) = ωoao/a(t).

Conclusion

Based on a local dissolution law, the micromechanical approach is able to dis-
cuss the effects of the local heterogeneity of the mechanical affinity on the
dissolution process and to predict the evolution of the pore space morphology.
Whenever it is possible to describe the latter by a scalar parameter ζ , (22)
yields its evolution ζ (t) which captures the chemomechanical coupling in so
far as it controls the evolution of the poroelastic coefficients in (13). Never-
theless, the implementation of this modelling requires to be able to determine
the microscopic strain state along the fluid-solid interface by appropriate mi-
cromechanical techniques.
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Abstract A simplified quintuple model for the description of freezing and thawing pro-
cesses in gas and liquid saturated porous materials is investigated by using a
continuum mechanical approach based on the Theory of Porous Media (TPM).
The porous solid consists of two phases, namely a granular or structured porous
matrix and an ice phase. The liquid phase is divided in bulk water in the macro
pores and gel water in the micro pores. In contrast to the bulk water the gel water
is substantially affected by the surface of the solid. This phenomenon is already
apparent by the fact that this water is frozen by homogeneous nucleation.

Keywords: Porous materials, bulk water and pore solution, micro and macro pores, micro-
ice-lenses, frost shrinkage

Introduction

Freezing and thawing are important processens in civil engineering. On the one
hand frost damage of porous building materials like road pavements and con-
crete in regions with periodical freezing is well known. On the other hand, ar-
tificial freezing techniques are widely used, e.g., for tunneling in non-cohesive
soils and other underground constructions as well as for the protection of ex-
cavation and compartmentalization of contaminated tracts.

Bulk or free water and gas are in the macroscopic pores with a hydraulic
diameter greater than 0.1µm. The gel pores are filled with pore solution (gel
water). Their diameter is much smaller (1 - 30 nm). During cooling below the
freezing point of bulk water ice is formed in the larger pores with sufficient su-
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ical Interactions in Porous Media, 329–334.
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percooling by heterogeneous nucleation. The gel water is still liquid because
of its strong surface interactions with the pore walls. Thermodynamics shows
that the unfrozen water is under increasing negative pressure with decreasing
temperature. The pressure reduction is 1.22 MPa/K, see Setzer [1]. The
pressure is balanced by the matrix. The pore walls are under tension which
is macroscopically comparable to a compressive force. The primary mode of
transport of the complete unfrozen water is viscous flow. The unfrozen wa-
ter is squeezed out of the gel matrix and is trapped at the existing ice crystals
in capillaries, leading to the growth of micro-ice-lenses. This is called frost
shrinkage. During melting the pressure difference between unfrozen pore wa-
ter and ice decreases and transport from ice to water takes place. The matrix
expands. If liquid water is available from external sources it will be sucked
into the expanding matrix during the movement of the melting front. The de-
gree of saturation of the system increases and becomes much higher than that
by normal capillary suction.

Taking into account the aforementioned effects of ice formation in porous
materials, a macroscopic quintuple model within the framework of the Theory
of Porous Media (TPM) for the numerical simulation of initial and boundary
value problems of freezing and thawing processes in saturated porous materials
will be investigated. The porous solid is made up of a granular or structured
porous matrix (α = S) and ice (α = I), where it will be assumed that both
phases have the same motion. Due to the different freezing points of water
in the macro and micro pores, the liquid will be distinguished into bulk water
(α = L) in the macro pores and gel water (α = P, pore solution) in the
micro pores. With exception of the gas phase (α = G), all constituents will be
considered as incompressible.

Basics

Within the framework of the TPM, the thermo-mechanical behavior of a sat-
urated porous solid consisting of κ constituents is described by using the local
statements of the balance equation of mass,

(ρα)′α + ρα divx′
α = ρ̂α , (1)

the balance equations of momentum and moment of momentum,

divTα + ρα(bα − x′′
α) = ρ̂αx′

α − p̂α , Tα = (Tα)T , (2)

and the balance equation of energy,

ρα[(Ψα)′α + Θα(ηα)′α + (Θα)′αηα] − Tα ·Dα − ραrα + div qα =

= êα − p̂α · x′
α − ρ̂α(Ψα + Θαηα − 1

2
x′

α · x′
α) ,

(3)
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for each individual constituent as well as the saturation condition:
κ∑

α=1
nα =

κ∑
α=1

ρα/ραR = 1 . (4)

In these equations, Tα is the partial Cauchy stress tensor, x′
α the velocity, x′′

α

the acceleration and bα the external acceleration of the constituent ϕα. The
free Helmholtz energy function, the specific entropy, the absolute temperature,
the external heat supply and the influx of energy are denoted by Ψα, ηα, Θα,
rα and qα. The quantities ρ̂α, p̂α and êα represent the local supply terms
of mass, momentum and energy of ϕα arising out of all other constituents
κ− 1 that occupy the same position as ϕα at time t. The second representation
form of the saturation condition implies that each of the individual constituents
ϕα has a real density ραR, which is defined as the mass of ϕα per unit of
the partial volume vα. With the aid of volume fractions nα, these properties
can be “smeared" over the control space and one obtains the partial density
ρα = nαραR. The tensor Dα is the symmetric part of the velocity gradient
Lα = gradx′

α. In addition, “div” is the divergence operator and the symbol
(. . . )′α defines the material time derivative with respect to the trajectory of ϕα.
With respect to the supply terms of mass, momentum and energy the following
conservation relationships apply:

κ∑
α =1

ρα = 0 ,
κ∑

α = 1
p̂α = o ,

κ∑
α = 1

êα = 0 . (5)

Readers interested in the foundation of the governing equations of the TPM
are referred to de Boer [2].

Field Equations and Constitutive Relations

In view of the numerical simulation of ice formation in porous solids, in this
section the field equations for a simplified 5-phase model will be derived.

In saturated porous media viscous fluid flow is slow. This can be observed
in reality as well as in standard experiments. Therefore, dynamic effects will
be neglected in the model (x′′

α = o). Furthermore, it will be postulated that
the local temperatures of all constituents are equal and that the motions of
solid χS, ice χI, and gel water χP are the same, i.e., Θα = Θ and χS =
χI = χP. The distance and response time for movement from gel to ice are
negligible. Experiments have shown that the motion occurs in situ, compare
Stockhausen & Setzer [3].

Concerning the mass supply terms it will be assumed that the mass exchange
is restricted to the ice, gel water and liquid phase and the mass exchanges of
solid and gas phases are negligible.

Considering the aforementioned assumptions and provided that solid, ice,
gel water and liquid are incompressible, i.e., ρβR = ρβR

0 = const. for β ∈
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{S, I,P,L}, one obtains a set of coupled field equations for the determination
of the following set of unknown field quantities:

U = {χS,χL,χG,Θ,nSIP,nS,nP,nL, ρGR} , (6)

where nSIP = nS + nI + nP. The field equations are a combination of the
balance equations of mass,

(nSIP)′S + nSIP div x′S = ρ̂P(1/ρPR
0 − 1/ρIR

0 ) − ρ̂L/ρIR
0 ,

(nS)′S + nS divx′
S = 0 , (nP)′S + nP divx′

S = ρ̂P/ρPR
0 ,

(nL)′L + nL divx′
L = ρ̂L/ρLR

0 ,

−[(nSIP)′S + (nL)′L]ρGR − (nSIP + nL)(ρGR)′G divx′
G−

− grad nSIP ·wGS + grad nL · (wLS − wGS) = 0 ,

(7)

and the balance equations of momentum,

div(−nSIPλI + TSIP
E ) + ρSIPb = −ρ̂Lx′

S + p̂L + p̂G ,

div(−nLλI + TL
E) + nLρLR

0 b = ρ̂Lx′
L − p̂L ,

div[−(1 − nSIP − nL)λI + TG
E ] + (1 − nSIP − nL)ρGRb = −p̂G ,

(8)

as well as the balance equation of energy for the mixture,

nSρSR
0 (ηS)′S + (nSIP − nS − nP)ρIR

0 (ηI)′S + nPρPR
0 (ηP)′S+

+nLρLR
0 (ηL)′L + (1 − nSIP − nL)ρGR(ηG)′G + divqSIPLG+

+λ[nSIP(DS − DG) + nL(DL − DG) + DG] · I =

= −p̂L ·wLS − p̂G · wGS − ρ̂P[ΨP − ΨI + Θ(ηP − ηI)]−

−ρ̂L[ΨL − ΨI + Θ(ηL − ηI) − 1
2
(x′

L · x′
L − x′

S · x′
S)] ,

(9)

in which the external heat supply terms of the constituents ϕα have been neg-
lected. Furthermore, in (7) – (9) the saturation condition, the relations for
partial densities and the restrictions for the supply terms have been used. The
quantities wLS = x′

L−x′
S and wGS = x′

G−x′
S are the velocities of liquid and

gas relative to the solid. The remaining quantities in the set of field equations
require constitutive assumptions.

With the constitutive assumptions
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ΨS = ΨS(Θ,CS) , ΨI,P = ΨI,P(Θ,CS, ρI,P) ,

ΨL = ΨL(Θ, JL, ρL) , ΨG = ΨG(Θ, ρG, ρGR)
(10)

for the free Helmholtz energy functions of the constituents, from the second
law of thermodynamics for the mixture, extended by the material time deriv-
ative of the saturation condition following the solid motion, one obtains the
following constitutive equations for the stress tensors TSIP

E = TS + TI + TP,
TL

E, TG
E and the interaction pressure λ:

TSIP
E = −[(ρI)2

∂ΨI

∂ρI
+ (ρP)2

∂ΨP

∂ρP
− ρPJP

∂ΨP

∂JP
]I+

+FS[2ρS ∂ΨS

∂CS
+ 2ρI ∂ΨI

∂CS
]FT

S , λ = (ρGR)2
∂ΨG

∂ρGR
I ,

TL, G
E = −[(ρL, G)2

∂ΨL, G

∂ρL, G
− ρL, GJL, G

∂ΨL, G

∂JL, G
]I .

(11)

Therein, CS = FSFT
S and JL, G = detFL, G are the right Cauchy-Green de-

formation tensor of the solid and the Jacobian of the gas and liquid phases
respectively, where Fα denotes the deformation gradient of ϕα. The interre-
lations between the free energies and the specific entropies of the constituents
ϕα are given as ηα = −(∂Ψα)/(∂Θ).

It should be noted, that the constitutive assumptions (10) and the corres-
ponding rates, respectively, as well as the relations (5) and (11) have already
been included in the balance equation of energy. Furthermore, for the phases
which are involved with mass exchange processes (ϕI, ϕP and ϕP), the partial
density and the Jacobian of the corresponding phase have been considered as
process variables. Due to the mass exchange, the partial density of ϕα can not
be expressed by the Jacobian of the phase.

In connection with the dissipation mechanism of the entropy inequality, the
relations for the heat flux vector

qSIPLG =
κ∑

α=1
qα = −α∂Θ grad Θ − αwLS

wLS − αwGS
wGS , (12)

as well as the supply terms of mass and the supply term of momentum

ρ̂L, P = −βL, P
ΨPI(ΨP − ΨI) − βL, P

ΨLI (ΨL − ΨI) ,

p̂L,G = λ grad nL,G − γL,G
∂Θ grad Θ − γL,G

wLS wLS − γL,G
wGS wGS

(13)
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can be derived. In (13)1, Ψα is the chemical potential of each involved phase
which is given by

Ψα = Ψα + nαλ/ρα + (ρα)2
∂Ψα

∂ρα
− 1

2
x′

α · x′
α. (14)

The parameters in (12) and (13) are restricted by

α∂Θ ≥ 0 , βL, P

Ψ(L, P)I ≥ 0 , γL, G
w(L, G)S

≥ 0 ,

αw(L, G)S
+ γL, G

∂Θ = 0 , βP
ΨLI + βL

ΨPI = 0 , γL
wGS

+ γG
wLS

= 0 .
(15)

As a first approximation, the stresses for the solid, ice and gel water can be
formulated with the help of a linearized Hookean type law, where the depres-
sion of the gel water below the macroscopic freezing point of water must be
considered. This can be done by including the micro-ice-lens model of Set-
zer [1] in the constitutive relations for the aforementioned stress tensor. The
gas phase can be described as an ideal gas. Concerning the constitutive as-
sumptions for the liquid stresses, the heat flux and the interactions, the reader
is referred to de Boer et al. [4]. There a ternary model for the numerical
simulation of freezing and thawing processes is discussed.

Conclusions

During cooling, frost-shrinkage described by the micro-ice-lens model takes
place. The volume fraction of the gel phase reduces while the volume fraction
of coarse macroscopic ice filled pores increases. Water transport at a macro-
scopic scale is retarded by the formed ice. During melting the pressure differ-
ence decreases and external water might be sucked in. This is the only possible
significant water transport. By using TPM, it is possible to describe the quin-
tuple phase porous media macroscopically. The nano-structure of the matrix
has been homogenized and put in the concept of thermodynamics.
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Abstract An approach based on the theory of mixtures with the concept of molar volume
fractions and on the basic principles of continuum mechanics and macroscopic
thermodynamics is introduced to model soil freezing of solute saturated soil.
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Introduction

A thermomechanical theory for a porous medium with chemically react-
ing components is introduced. The porous medium is considered as a multi-
component mixture by means of the concept of molar volume fractions, which
makes it possible to deal with immiscible and miscible components equally
at macroscopic level. The basis are the conservation laws and the entropy
inequality which is exploited to derive the constitutive relations through the
specific free energy functions and the dissipation potential in the terms of the
variables of state and of dissipation. The approach is applied to model freezing
of saline water saturated frost-susceptible soil involving the relevant features
of the frost phenomenon, i.e. gradual freezing of adsorbed water at sub-zero
temperatures, creation of cryogenic suction, driving of water from unfrozen
soil to the freezing zone, consolidation of unfrozen soil and heaving of frozen
soil (Williams, 1989), with the implications of pore water salinity, i.e. lower-
ing of freezing point, concentration of salinity during the freezing process and
transportation of solutes (Hivon and Sego, 1995 and Mahar et al, 1983).

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-
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Kinematics

Let a multi-component mixture be a collection of immiscible phases Pκ,
κ = 1, . . . ,m, with the volume fractions βκ = d vκ/

∑m
π=1 dvπ, where dvκ

is the volume element of Pκ, and let each Pκ be a composition of miscible
substances Sκ

λ , λ = 1, . . . , Nκ with the molar fractions ζ κ
λ = nκ

λ/
∑Nκ

π=1 nκ
π,

where nκ
λ is the mole number of Sκ

λ . Hence, the mixture consists of N =∑m
κ=1 Nκ constituents Kα, α = 1, . . . , N coexisting in the molar volume frac-

tions
ξα := ζ κ

λ βκ, (1)

such that for each κ ∈ [1,m] and λ ∈ [1, Nκ] α =
∑κ−1

i=1 Ni + λ and that
∑N

α=1 ξα = 1, ξα ≥ 0, α = 1, . . . , N. (2)

The intrinsic density of each Kα is denoted by ρ̄α while the apparent one is
given by ρα = ξαρ̄α.

The motion of the body of Kα between its reference configuration, Ω0
α, and

the current configuration, Ω, is defined by the mappings

χα : Ω0
α → Ω χ−1

α : Ω → Ω0
α

x 0
α �→ x x �→ x 0

α.
(3)

In general, Ω0
α �= Ω0

γ holds for α �= γ, while it is required that all constituents
coincide with the same current configuration.

The Green strain tensor, e0
α, and the Almansi strain tensor, eα, are given by

e0
α = 1

2

(
F T

α ·Fα − I0
)

eα = 1
2

(
I −F−T

α ·F−1
α

)
, (4)

where the deformation gradient Fα = grad0χα and its inverse F−1
α =

grad χ−1
α have been introduced.

The material time derivatives of the physical quantities Q0(x 0, t) and
Q(x , t) following the motion of Kα are defined as

(Q0)·
α

= ∂
∂t Q0 (Q)·

α
= ∂

∂t Q + grad Q · vα

= (Q)·∗ + grad Q · vα∗,
(5)

where vα is the spatial velocity of Kα and vα∗ = vα − v ∗ gives the objective
relative velocity of Kα with respect to an arbitrary reference motion.

The generalized Darcian flux Jβκ = βκ(V κ − v ∗) and the generalized
Fickian flux Jζκ

λ
= ζκ

λ(vλ−V κ) are introduced with the phase velocity V κ =∑
λ ζκ

λvλ to define the molar volume flux as

Jξα
:= ξαvα∗ = ζκ

λJβκ + βκJζκ
λ
. (6)

The spatial velocity gradient lα = grad vα can be decomposed into sym-
metric and skew-symmetric parts as lα = sym lα +skw lα = dα +wα, where
dα and wα are the deformation rate and the spin tensors, respectively.

336



Thermomechanics of Soil Freezing

Balance Laws and Entropy Inequality

In consideration of the principle of material frame indifference the funda-
mental laws for the multi-component mixture in the Eulerian description are
formulated in the following local forms.

The balance of mass:
∑

α θα = 0, θα = (ρα)·
α

+ ραdiv vα, (7)

where θα is the rate of mass production.
The balance of momentum:

∑
α m

o

α = 0, m
o

α = ρα(vα)·
α
− div σα − ραg + θαvα∗, (8)

where m
o

α, σα and g are the objective rate of momentum production, the
Cauchy stress tensor and the acceleration of gravity, respectively.

The balance of moment of momentum:
∑

α M
o

α = O, M
o

α = skw σα, (9)

where M
o

α is the objective rate of moment of momentum production tensor.
The balance of energy:

∑
α ι

o

α = 0, ι
o

α = ρα(eα)·
α
− sym σα : dα + div qα − rα + (eα+

−1
2vα∗ · vα∗)θα + m

o

α · vα∗ − M
o

α : wα∗,
(10)

where ι
o

α, eα, qα and rα denote the objective rate of energy production, the
specific internal energy, the heat flux vector and the external energy supply,
respectively, and wα∗ = wα − w∗ is the objective relative spin tensor.

The entropy inequality:

∑
α γα ≥ 0, γα = ρα(sα)·

α
+ sαθα + div (qα/Tα) − rα/Tα, (11)

where γα, sα and Tα are the rate of entropy production, the specific entropy
and the absolute temperature, respectively.

Constitutive Theory

Let S = {�a = (Tα, eα, ξα, ρ̄α) , α = 1, . . . , N} and D =
{

�d =(
(Tα)·

α
,dα, (ρ̄α)·

α
, qα, θα, vα∗,wα∗, ι

o

α

)
, α = 1, . . . , N

}
be convex sets of

variables of state and dissipation, respectively, defined by physical proper-
ties and the constraining equations (2), (71) and (101). Further, let the spe-
cific free energies Ψα(�aα) = eα − Tαsα be subdifferentiable functions of
Sα =

{
�aα = (Tα, eα, ξ1, . . . , ξN , ρ̄α)

}
, Sα ⊂ S and let the dissipation po-

tential ϕ
(
�d;S)

be a subdifferentiable function of D such that
(
�d, �d′) ≥ 0
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for all �d ∈ D and all �d′ ∈ ∂ϕ
(
�d
)
, where �d′ is the subgradient of ϕ at �d,

∂ϕ
(
�d
)

=
{

�d′ =
(
(T ′

α)·
α
,d ′

α, (ρ̄′
α)·

α
, q ′

α, θ ′
α, v ′

α∗,w
′
α∗, ι

′o

α

)
, α = 1, . . . , N

}
denotes the subdifferential of ϕ and (•, •) symbolizes the standard Euc-
lidean inner product. Moreover, let Ψα and ϕ be decomposed into Ψα =
Ψ̃α + (Tα/T0)ISα and ϕ = ϕ̃ + ID, respectively, such that the indicator func-
tions (Frémond and Nicolas, 1990)

ISα =
{

0 if �aα ∈ Sα

+∞ if �aα /∈ Sα
, ID =

{
0 if �d ∈ D
+∞ if �d /∈ D (12)

take over the restrictions on Sα and D while Ψ̃α and ϕ̃ involve the remaining
characteristics. Then, from the postulate:

∑
α γα − (

�d, �d′) = 0 for all �d ∈ D
and all �d′ ∈ ∂ϕ

(
�d
)

by making use of (112), (102), (52) and (72) with the

relations (Ψα(eα))·
α

= (Ψ0
α(e0

α))·
α

and (e0
α)·

α
= FT

α · dα · Fα the following
conditions are obtained

C =
{
−ρα

Tα
[sα + ∂Ψα(Tα)] − ∂ϕ

(
(Tα)·

α

)
� 0,

1
Tα

[
symσα − ραFα · ∂Ψ0

α(e0
α) ·FT

α + pth
αI

] − ∂ϕ(dα) � O,

− 1
Tα

[
ρα∂Ψα(ρ̄α) − 1

ρ̄α

pth
α

]
− ∂ϕ

(
(ρ̄α)·

α

)
� 0,

− 1
Tα

grad Tα

Tα
− ∂ϕ(qα) � 0, − 1

Tα
gα − ∂ϕ(θα) � 0,

− 1
Tα

m
o

α −
∑

λ

(
ρα

Tα
∇Ψα(ξλ) − ρλ

Tλ
∇Ψλ(ξα)

)
− ∂ϕ(vα∗) � 0,

1
Tα

M
o

α − ∂ϕ(wα∗) � O,
1
Tα

− ∂ϕ
(
ι
o

α

) � 0, α = 1, . . . , N
}

,

(13)
which hold for any thermodynamic process satisfying the field equations (7)–
(10). Above, the denotations ∂Ψα(Tα) = {T ′

α}, ∂ϕ
(
(Tα)·

α

)
=

{
(T ′

α)·
α

}
,

etc. and the terms pth
α = ξα

∑
λ(Tα/Tλ)ρλ∂Ψλ(ξα) and gα = Ψα +

pth
α/ρα − 1

2vα∗ · vα∗ representing the thermodynamic pressure and the Gibbs
free energy, respectively, have been introduced. Further, ∇Ψα(ξλ) stands for
∂Ψα(ξλ) grad ξλ.

Mathematical Model

Freezing soil is considered as porous medium of skeleton (s) of soil grains
filled up with pore fluid (f ) and ice (i). It is assumed that skeleton and ice
are elastic solids and have equal displacements and velocities, pore fluid is an
ideal solution of water (w) and dissolved salts (c) and governed by adsorption
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and that all constituents are intrinsically incompressible. The reference motion
is the one of skeleton and dissipation is generated by heat conduction, pore
fluid flow and diffusion of solutes. Further, inertia forces and kinetic energy
are negligibly small in the evolution of soil freezing.

The governing field equations deduced from (7), (8) and (10) are given by

θs = 0, θc = 0, θw + θi = 0,
θα = (ρ̄αξα)·s + ρ̄αξαdiv v s + div

(
ρ̄αJξα

) (14)

∑
α (div σα + ραg) = 0, (15)

∑
α

[
ρα(eα)·s + ρ̄αgrad eα · Jξα

+ eαθα + div qα − rα

]
= 0 (16)

and the relevant constitutive relations are derived as follows.
The sets of state variables are defined as

Sα =
{
�aα = (Tα, eα /∈{w,c}, ξs, ξw, ξc, ξi, ρ̄α)

∣∣ ∑
λ ξλ = 1, ξλ ≥ 1,

λ ∈ {s,w, c, i}; ρ̄α = ρ̄α0

}
, α ∈ {s,w, c, i},

(17)
where the molar volume fractions ξs = βs, ξw = ζf

wβf , ξc = ζf
c βf and

ξi = βi comply with (1), and the variables of dissipation are given by

D =
{

�d =
(
qα, θα, vαs,wss, ι

o

α

)
, α ∈ {s,w, c, i} ∣∣ θs = 0, θc = 0,

θw + θi = 0; vss = 0, v is = 0; wss = O;
∑

λ ι
o

λ = 0
}
.

(18)

The expressions for the specific free energies Ψ̃α are given by

Ψ̃s = −csTs ln (Ts/T0) + 1/ρ̄sWs(es),
Ψ̃w = −cw[Tw ln (Tw/T0) − (Tw − T0)] − 
(Tw − T0)/T0

+RTw/Mw ln (ξw/(ξw + ξc)) + RTw/Mwf(ξs, ξw, ξc),
Ψ̃c = −ccTc ln (Tc/T0) + RTc/Mc ln (ξc/(ξw + ξc)) +

+RTc/Mcf(ξs, ξw, ξc),
Ψ̃i = −ci[Ti ln (Ti/T0) − (Ti − T0)] + 1/ρ̄iWi(ei),

(19)

where cα, Mα, R and 
 denote the specific heat capacity, the molecular weight,
the universal gas constant and the latent heat of fusion at T0 = 273.15K,
respectively. Furthermore, Wα(eα), α ∈ {s, i} are strain energy functions
and the function

f(ξs, ξw, ξc) =
{

a [ξs/(ξw + ξc) − b]2 if ξs/(ξw + ξc) ≥ b
0 if ξs/(ξw + ξc) < b

(20)

characterizes adsorption. a and b are material parameters.
The expression for ϕ̃ to characterize dissipation properties is given by

ϕ̃ =
∑

α
1
2Kqαqα · qα + 1

2K
ζf

c
J

ζf
c
· J

ζf
c

+ 1
2Kβf Jβf · Jβf , (21)
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where the dissipation coefficients Kqα = 1/(T 2
αξαλα), K

ζf
c

= (ξw + ξc)3/
(ξwξc)(ρ̄cRTc/Mc)/D and Kβf = (ξw/Tw + ξc/Tc)/(ξw + ξc)µ/κ are func-
tions of the thermal conductivity λα, the diffusion coefficient D, the dynamic
viscosity µ and the permeability κ, which is assumed to be a function of the un-
frozen fluid content χ = (ξw+ξc)/(ξw+ξc+ξi) of the form κ = κ0χ

c, c ≥ 0.
Using (13) choices (19) and (21) yield the following constitutive equations

es = csT, ew = cw(T − T0) + �, ec = ccT, ei = ci(T − T0),

σs = σef
s − p̂th

s I, σw = −p̂th
w I, σc = −p̂th

c I, σi = σef
i − p̂th

i I,

σef
α = ξαFα · ∂W 0

α

∂e0
α

·FT
α, p̂th

α = ξα

[
(ξw + ξc)ρ̄w

RT

Mw

∂f

∂ξα

+ B̂α

]
,

qα = −ξαλα grad T, α ∈ {s,w, c, i},

Jβf = −κ

µ

[
grad

(
p̂th

w + p̂th
c

ξw + ξc

)
− ρw + ρc

ξw + ξc

g + ρ̄w
RT

Mw
grad f

]
,

J
ζf

c
= −D

[
grad

(
ξc

ξw + ξc

)
− Mc − Mw

RT

ξwξc

(ξw + ξc)2
g

]
,

0 = −(cw − ci)
[
T ln

(
T

T0

)
− (T − T0)

]
− �

T − T0

T0

+

+
(

p̂th
w

ρw

− p̂th
i

ρi

)
+

RT

Mw
ln

(
ξw

ξw + ξc

)
+

RT

Mw
f,

(22)

where the relation eα = Ψα − Tα∂Ψα/∂Tα, the feature ρ̄w/Mw = ρ̄c/Mc for
ideal solution, the equalities ĝw = ĝi and Ts = Tw = Tc = Ti = T result-
ing from the constraints θw + θi = 0 and ι

o

s + ι
o

w + ι
o

c + ι
o

i = 0 through the
subdifferentials ∂ID

(
θw, θi

)
and ∂ID

(
ι
o

s, ι
o

w, ι
o

c, ι
o

i

)
, respectively, and the pres-

sure components (B̂s, B̂w, B̂c, B̂i) ∈ T/T0

∑
λ ρλ∂ISλ

(ξs, ξw, ξc, ξi) with the
property B̂s = B̂w = B̂c = B̂i due to the constraint ξs + ξw + ξc + ξi = 1
have been introduced.
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Abstract In this paper we discuss a pore scale model for crystal precipitation and dissolu-
tion in porous media. We consider weak solutions in general domains and dissol-
ution/precipitation fronts in thin strips. The latter yields an upscaled transport–
reaction model.

Keywords: Porous media, precipitation, dissolution, fronts, upscaling

Introduction and Mathematical Formulation

In this paper we consider a pore scale model for crystal dissolution and
precipitation processes. We follow the ideas in [3], where the corresponding
macroscopic model was introduced. Let Ω ⊂ R

d (d > 1) denote the void
region. This region is occupied by a fluid in which cations (M1) and anions
(M2) are dissolved. The boundary of Ω has an internal part (ΓG), which is
the surface between the fluid and the porous matrix (grains), and an external
part, which is the outer boundary of the domain. In a precipitation reaction,

Figure 1. Flow domain with grains.
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n particles of M1, and m particles of M2 can precipitate in the form of one
particle of a crystalline solid M12, which is attached to the surface of the grains
and thus immobile. The reverse reaction of dissolution is also possible.

We assume that the flow geometry, as well as the fluid density and viscosity
(µ > 0, given) are not affected by the reactions and that the flow is described
by the Stokes equations relating the fluid velocity �q and fluid pressure p:

µ ∆�q = ∇p,

∇ · �q = 0,

}
in Ω. (1)

Along the internal grain boundary we assume a no-slip condition, implying

�q = �0 along ΓG. (2)

Let ci be the volumetric molar concentration of Mi in Ω and c12 the surface
molar concentration of M12 on ΓG. Assuming that both types of ions have
the same diffusion coefficient D > 0 and since crystalline is immobile, mass
conservation for Mi gives

∂tci + ∇ · (�qci − D∇ci) = 0, in Ω. (3)

On the interior boundary ΓG the flux of ci is directly related to changes in
crystalline concentration c12. Using (2) we have

∂tc12 = − 1
n

D�ν · ∇c1 = − 1
m

D�ν · ∇c2 on ΓG, (4)

where �ν denotes the normal unit vector pointing into the grains.
A second equation for c12 results from a description of the precipitation and

dissolution processes. Following the detailed discussion in Knabner et al. [3]
we have

∂tc12 = rp − rd on ΓG.

Here rp denotes the precipitation rate expressed by

rp = kpr(c1, c2),

where kp is a positive rate constant and r a rate function depending on c1 and
c2. A typical example is mass action kinetics leading to

r(c1, c2) = cn
1cm

2 . (5)

The dissolution rate rd is constant (kd > 0) in the presence of crystal, i. e.
for c12 > 0 somewhere on ΓG, and has to be such that in the absence of crystal
the overall rate is zero (for a fluid that is not oversaturated, i. e. r(c1, c2) ≤
kd/kp). To achieve this we introduce the set-valued expression

rd(c12) ∈ kdH(c12),
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where H denotes the Heaviside graph,

H(u) =

⎧⎨
⎩

0, if u < 0,
[0, 1], if u = 0,
1, if u > 0.

If c1 and c2 are such that

r(c1, c2) >
kd

kp
somewhere on ΓG,

we have oversaturation and precipitation (∂tc12 > 0) will occur at such points.
If the concentrations c1 and c2 are below the solubility product, i. e.

r(c1, c2) <
kd

kp
somewhere on ΓG,

while crystal is present, we have ∂tc12 < 0 at such points and dissolution
occurs. If it also happen that c12 = 0, we set

rd =
kp

kd
r(c1, c2) < 1,

implying ∂tc12 = 0. Summarizing this discussion we have for the crystalline
solid the equation

∂tc12 ∈ kd

(
kp

kd
r(c1, c2) − H(c12)

)
on ΓG. (6)

Dimensionless form

The unknowns in the model are the fluid velocity �q and fluid pres-
sure p, which can be determined without a–priori knowledge of dissolu-
tion/precipitation, and the concentrations c1, c2 and c12. We note that the total
negative charge

c = mc1 − nc2, (7)

is a conserved quantity with respect to the reactions. Indeed, (3) and (4) imply

∂tc + ∇ · (�qc − D∇c) = 0 in Ω,

and
D�ν · ∇c = 0 on ΓG.

Putting appropriate conditions on c1 and c2 along the outer boundary of Ω,
and thus on c, the total charge in (7) can be determined a–priori as well. With
respect to the reactions, the essential variables therefore are

c1 (say) and c12.
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The other concentration (c2) follows directly from (7).
Let ĉ1 and ĉ12 be characteristic values for the concentrations of cation c1

and precipitate c12. Further, let Q, P and L be characteristic values for flow,
pressure and distance. Rescaling length with L and time with L/Q, and setting

u :=
c1

ĉ1
, v :=

c12

ĉ12
, c :=

c

ĉ1
, �q :=

�q

Q
, p :=

p

P
,

µ :=
µQ

PL
, D :=

D

LQ
, k :=

kdL

Qĉ12
, ε :=

ĉ12

Lĉ1
,

r(u, c) := kp

kd
r
(
ĉ1u, ĉ1

mu−c
n

)
,

gives in the scaled domain Ω the set of equations
⎧⎪⎪⎨
⎪⎪⎩

µ ∆�q = ∇p,
∇ · �q = 0,

∂tc + ∇ · (�qc − D∇c) = 0,
∂tu + ∇ · (�qu − D∇u) = 0.

(8)

On the scaled interior boundary ΓG we have
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�q = 0̄,
�ν · ∇c = 0,

−D�ν · ∇u = ε n∂tv,
∂tv = k(r(u, c) − w),
w ∈ H(v).

(9)

Remark 1 The auxiliary function w plays the role of the scaled dissolution
rate rd/kd. At boundary points where v > 0, w attains its maximal value
(w = 1). At points where v = 0 and ∂tv = 0 we have w = r(u, c).

Remark 2 It seems natural to choose the characteristic values ĉ1 and ĉ12

such that the system contains about the same number of moles for both crystals
and solutes. Mathematically this is expressed by

ĉ12 · meas(ΓG) ≈ ĉ1 · meas(Ω). (10)

Using the above definition of ε we find

εLmeas(ΓG) ≈ meas(Ω).

Hence, on the pore level, ε can be seen as the ratio of two length scales:
the characteristic pore scale length meas(Ω)/meas(ΓG) and the problem re-
lated scale L. The balance (10) is quite natural for a porous medium, where
meas(ΓG) denotes the total surface of the porous skeleton and meas(Ω) the
total void volume. Assuming the medium being periodic with periodicity ε it
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is easy to see that meas(Ω)/meas(ΓG) is of order 1/ε. When upscaling to a
macroscopic model, the total internal surface goes to infinity as ε ↘ 0. The
appearance of ε in the boundary flux in (93) allows us to control this growth,
see, e. g., [2].

Results

Two situations are considered. Existence of solutions is obtained for
general geometries, while for strips we study the occurrence of dissolu-
tion/precipitation fronts.

General domains

Under quite general conditions on the geometry of the flow domain and
the data we show that the model has a solution that satisfies the equations
and boundary conditions in an integrated or weak sense. Clearly, the fluid
velocity �q, as well as the electrical charge c are solved independent of the
chemistry. This part of the model ((81−3) and (91,2)) is standard and its solution
is straightforward. The challenging non-standard issue is the description of the
chemistry ((84) and (93−5)), in particular the multi–valued dissolution rate in
(95). Existence is demonstrated by regularization, where (94,5) are replaced by

∂tv = k(r(u, c) − Hδ(v)). (11)

Here δ > 0 is a small parameter and Hδ a smooth approximation of H . For
given �q and c, this yields a solution triple {uδ , vδ, wδ = Hδ(v)}, which is
shown to converge to {u, v, w} as δ ↘ 0. Details are given in [1].

Thin strips

To mimic flow and transport in porous media we consider here the special
case where the flow domain is the thin strip Ω := {(x, z)/0 < x < 1,−ε <
z < ε}, with 0 < ε << 1. Then the flow is given explicitly by the Poiseuille
formula. Further, under compatible boundary conditions (see [3]), the charge
c is constant in space and time. In this setting the chemical processes given
in (93−5) take place at the side walls ΓG = {(x, z)/0 < x < 1, z = ±ε}.
Initially we assume the system to be in chemical equilibrium throughout Ω,
i. e.

u|t=0 = u∗, where r(u∗, c) = 1. (12)

We consider the following two characteristic cases:
Dissolution fronts. Assuming u < u∗ at the inlet x = 0 and v|t=0 = v0 > 0
on the side walls, a dissolution front occurs after a waiting time that can be
computed explicitly.
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Precipitation fronts. Assuming oversaturation (u > u∗) at the inlet and v|t=0 =
0 on the side walls, a precipitation front occurs instantaneously.

In both cases the front position is a free boundary, which moves in flow
direction and increases continuously with time.

Defining the cross–section average of u as u = 1
2ε

∫ ε
−ε u(t, x, z)dz and let-

ting ε ↘ 0, the triple {u, v, w} converges to the unique weak solution triple
{U, V,W} of the upscaled one–dimensional transport–reaction model intro-
duced in [3],

⎧⎨
⎩

∂t (U + nV ) + Q∂xU = D∂2
x2U,

∂tV = k(r(U) − W ),
W ∈ H(V ).

Here Q = 1
ε

∫ ε
0 q(z) dz is the averaged Poiseuille velocity.
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Abstract The objective of this paper is a fluid saturated capillary-porous material under
drying process. The aim of this paper is to present the theoretical model en-
abling numerical calculation of the drying induced stresses, and the acoustic
emission method (AE) as an experimental method for monitoring on line the
material destruction. It is shown that the period of drying in which the drying
induced stresses reach their maximum is accompanied by an enhanced emis-
sion of acoustic signals. These phenomena are illustrated on the example of a
cylindrically shaped kaolin sample exposed to convective drying.

Introduction

The stresses arising in dried materials due to nonuniform shrinkage generate
an amount of elastic energy. At the beginning of the drying process, when the
strength of the dried material is weak, the stresses give rise to small displace-
ments leading to grain reformulation and as well as small microcracks. Later,
when the strength increases significantly and the accumulated elastic energy
overcomes some critical value, a fracture of the material may occur, the energy
released in this way spreading through the medium in the form of stress waves.
A great part of these waves arrive at the boundary of the body. Registration
of acoustic signals at the boundary surface for the purpose of inspection and
identification of the phenomena occurring in the interior of the material has
been termed the acoustic emission method (AE).

One can state that in the case of moistened capillary-porous materials the
friction between grains, moisture movement, grain reformulation and micro-
and macrocrack formations all create the sources for emission of acoustic sig-
nals. The intensity of acoustic signals, their number and energy, may be used
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for assessment of the state of stresses generated in moist materials during dry-
ing.

The evidence of a correlation between the drying induced stresses and the
AE is illustrated on the cylindrical kaolin sample under convective drying. Al-
though the AE method enables us to point out the period in which the stresses
reach maximal values, we are not able yet to assess the magnitude of these
stresses.

Basic Equations of the Drying Model

The body under drying is a moistened capillary-porous solid. This body is
assumed here to be of isotropic structure and obeying the viscoelastic Maxwell
model of the form

.
sij +

M

η
sij = 2M

.
eij ,

.
σ +

K

κ
σ = K

(
.
ε − .

ε
(TX)

)
(1)

In this equation sij is the deviator and σ is the spherical part of the stress
tensor σij , eij is the strain deviator and ε the volumetric part of the strain tensor
εij , K = (2M + 3A) /3 is bulk modulus with M and A corresponding to the
familiar Lame coefficients in the theory of elasticity, while η and κ can be
termed the viscous shear and bulk moduli.

The temperature and moisture content generate the volumetric thermal-
humid strain, which is expressed as

ε(TX) = 3
(
κ(T )ϑ + κ(X)θ

)
(2)

where κ(T ) and κ(X) are the coefficients of linear thermal and humid expan-
sion, ϑ = T − T0 and θ = X − X0 denote the relative temperature and
the relative moisture content, with X being the specific moisture content (dry
basis).

For the sake of simplicity and clarity of the presentation, we confine further
considerations to the so-called constant drying rate period. In this period, the
temperature of the dried body is constant and equal to the temperature of the
wet bulb thermometer if the drying condition are stable, i.e.,

ϑwb = ϑa − l

α(T )
W · n = const (3)

where ϑa is the temperature of the ambient (drying) medium, l is the latent heat
of evaporation, W is the mass flux of the moisture (proportional to the gradient
of moisture potential [1, 2], and α(T ) is the coefficient of the convective heat
transfer between the body and the ambient medium.

The moisture content distribution is determined from the diffusion equation.
Its very simplified form for the cylindical sample reads
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·
θ = Λm

(
∂2θ

∂r2
+

1
r

∂θ

∂r

)
(4)

where Λm � Λ(µ)C(X)/ρs is the diffusivity, Λ(µ) is the moisture mobility
coefficient, C(X) a coefficient expressing the capillary uplift of moisture [2],
and ρs is the mass density of the dry body.

The boundary conditions for the moisture transfer are as follows

∂θ

∂r
|r=0= 0, −∂θ

∂r
|r=R=

B

R
(θ |r=R −θe) (5)

where B = α(X)R/Λ(µ) is equivalent of the Biot number for moisture transfer,
α(X) is the coefficient of convective moisture exchange between the body and
the ambient medium, R is the cylinder radius, and θe is the equilibrium (final)
moisture content, which is dependent on the external drying conditions, i.e. on
the physical parameters of drying air. Of these two conditions, the former is
the symmetry condition with respect to the center of the cylinder and the latter
presents the convective exchange of the moisture at the cylinder surface.

Assuming a uniform distribution of moisture content in the initial state, i.e.
θ(r, t) |t=0= θ0, we find the following solution for moisture distribution in the
cylinder

θ(r, τ ) − θe

θ0 − θe
= 2B

∞∑
n=1

J0(ωn
r
R )

(ω2
n + B2)J0(ωn)

exp
(−Λω2

nτ
)

(6)

where Λ = ΛmtR/R2 is the dimensionless diffusivity coefficient, tR =
η/M � κ/K is the relaxation time for stresses, τ = t/tR is the dimensionless
time, and ωn denotes the n-th eigenvalue, that is the n-th root of the character-
istic equation

J1 (ωn) =
B

ωn
J0 (ωn) (7)

and J0 and J1 are the Bessel functions of order zero, first and second kind.
The basic statement of this paper is that the magnitude of the drying induced

stresses depends on the moisture distribution. The greater the non-uniformity
in the distribution, the greater stresses arise in the dried body.

The Biot number B is the most important parameter that influences the dry-
ing rate in our model. If the external drying conditions are conducive to drying
(high temperature, high speed of the ambient air) and the mobility of the mois-
ture inside the material is low (high moisture viscosity, small surface tension),
then the coefficient of convective moisture exchange α(X) is high and the mo-
bility coefficient Λ(µ) is low, which results in the high value of the Biot number.
In such a case one can expect a large non-uniformity in moisture distribution.
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Figure 1. Distribution of moisture content along cylinder radius in different instants of time:
a) for B = 0.5, b) for B = 2 (τ = 0 - solid line, τ = 0.2 - dashed line, τ = 0.5 - dadot line,
τ = 1 - dot line).

Indeed, this is shown in the plots constructed on the basis of equation (6). Fig-
ure 1 illustrates the moisture distribution in the cylinder for B = 0.5 and for
B = 2 in different instants of time It is seen from these plots that the differ-
ence between the rate of drying of the cylinder surface (r/R = 1) and its core
(r = 0) is greater for B = 2 than for B = 0.5. Thus, the stresses of a greater
value will be generated by drying with B = 2. Because of page limitation, we
show this statement only for the tangential stresses expressed by the formula

σ
(v)
ϕϕ(r, τ )

σ
= 2B2

∞∑
n=1

[
1 +

ωn

J1(ωn)

(
J1(ωn

r
R)

ωn
r
R

− J0(ωn
r

R
)
)]

× (8)

×exp(−τ) − Λω2
n exp

(−Λω2
nτ

)
(1 − Λω2

n) ω2
n (ω2

n + B2)

were σ is a reference stress defined as

σ =
2M

(
3Kκ(X)

)
2M + A

(θ0 − θe)

Figure 2. illustrates the distribution of tangential stresses in the cylinder for
B = 0.5 and for B = 2 in different instants of time. It is seen from these plots
that the stresses are much greater for B = 2 than for B = 0.5. A characteristic
feature of the tangential stresses is that they are tensional at the cylinder surface
and compressional in the core. If the material was assumed to be elastic, the
stresses would rise from zero to a maximum and then tend to zero, when time
goes to infinity. Quite a different behavior is presented by the viscoelastic
model. Here, the stresses rise from zero to a maximum, then tend to change
their sign and finally go to zero, when time goes to infinity. This means that the
stress reverse phenomenon may occur when the material reveals viscoelastic
properties. Indeed, many materials under drying suffer stress reverse, which
can be detected with the use of the acoustic emission method (AE). Namely,
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Figure 2. Distribution of tangential stresses along cylinder radius in different instants of time:
a) for B = 0.5, b) for B = 2 (τ = 0 - solid line, τ = 0.2 - dashed line, τ = 0.5 - dadot line,
τ = 1 - dot line).

Figure 3. Time evolution of tangential stresses for B = 2: elastic at (r/R = 1) - solid line,
viscoelastic at (r/R = 1) - dashed line, viscoelastic at (r = 0) - dod line.

one obsereves an enhanced emission of acoustic signals when the tensional
stresses are generated in the material. This can be explained by the fact that a
lot of dried materials display smaller strength in tension than in compression.
Therefore, the enhanced emission occurs twice during drying: first, when the
surface of the body is in tension , and second, when the core of the body is in
tension after the stress reverse.

Figure 3 presents the time evolution of tangential stresses at the surface
and the core of the cylinder according to the viscoelastic and elastic models.
The stress reverse can be explained as follows: when the body dries, the drier
surface attempts to shrink but is restrained by the wet core. The surface is
stressed in tension and the core in compression and inelastic strain occurs.
Later, under a surface with reduced shrinkage, the core dries and attempts to
shrink causing the stress state to reverse [4].
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Experimental Monitoring of Material Destruction

When the energy accumulated in a stressed body is released, because of
e.g. body destruction, the stress waves are generated. The waves propagating
through the body create acoustic signals that arrive at the boundary surface
where they can be monitored. The intensity of these signals and their energy
may supply important information on destructive processes that occur inside
the material.

The AE signals are measured on line with the help of an acoustic analyzer
that transduces the acoustic signals into electric current throughout the piezo-
electric sensor [3]. The AE signals are amplified and filtrated in the conversion
unit and converted into voltage current proportional to the value of the trans-
mitted signal. Finally, the envelope of high frequency signals from the logar-
ithmic converter is sent to the computer through a GPIB card. The humidity
and temperature sensors that register the humidity and the temperature in the
drier chamber, and the balance that monitors the loss of moisture in the body
complete the measurement system. All incoming data are analyzed on line and
stored in computer memory.

The commonly used AE activity parameter is called the AE count rate. It
denotes the number of AE impulses crossing the pre-set level. However, be-
cause of different acoustic absorbency of individual materials, instead of count
rate it is convenient to use the AE occurrence that denotes a package of AE
impulses per time increment. Another important indicator of AE is the energy
of acoustic signals. This indicator may reflect the level of stresses existing in
the material. Although we are not able yet to estimate precisely the magnitude
of the stresses generated by drying, we can indicate the period at which the
stresses reach critical values. The moment at which the plot of total emitted
energy suffers a jump denotes a crack of material structure.

Figure 4 presents the AE occurrence rate and the drying curve Three groups
of the AE occurrence rate appear during the process illustrated in figure 4: the
first group appears during the heating of the material at the beginning of the
constant drying rate period, the second one at the end of the period, and the
third one can be sometimes noticed at the final stage of drying. The first group
of AE occurrences is of small energy and is caused by insignificant thermal
stresses. The second group is of high energy and is evidenced for the kaolin
sample when the surface layer shrinks intensively and the tensional stresses
arise at the surface. The number of AE occurrences is the highest in this stage
of drying. The third maximum of AE occurrences depends on the drying con-
ditions. For high temperature or low humidity of the drying medium the third
maximum is quite significant. It is generated by the tensional stresses in the
core after the stress reverse.
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Figure 4. AE occurrence rate (left axis) and the curve of drying (right axis).

Figure 5. AE occurrence rate and the total energy released during drying.

The plot of total energy emitted during drying shown in figure 5 illustrates
the periods at which the stresses reach their maximum, and when the destruc-
tion of the material takes place. The descriptor of total energy may serve as
an indicator of quality of dried products. The number and magnitude of the
straight vertical lines visible in the plot indicate how many cracks arose in the
material during drying and how big they are. A good or optimal drying process
is one which has a smooth plot of total energy.

Very informative plots are presented in figure 6. The envelope of AE occur-
rence rates and the theoretically estimated evolution of circumferential stresses
based on the viscoelastic model are presented together in this figure. We can
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Figure 6. Envelope of AE occurrence rates and the theoretical curve circumferential stresses.

see that the increase of stresses correlates with an increase of the AE occur-
rences rate. The first maximum of the AE occurrence rate corresponds to the
maximal tensional stresses at the cylinder surface, while the second one cor-
responds to the maximal tensional stresses in the core after the stress reverse.

Final Remarks

The obtained results indicate that the enhanced emission of AE occurrences
takes place at the moments when the drying induced tensional stresses reach
their maximum. One can state that the plot of total energy released during
drying may serve for assessment of the destruction of the material during dry-
ing because discontinuities in this plot correspond to cracks occurring in the
material.

The following conclusions can be drawn: a) the AE occurrence rate
descriptor is useful for determination of the periods at which the state of stress
becomes destructive for the material; b) three possible groups of AE occur-
rence rates may arise during drying: first, during the heating of the material;
second, when the tensional stresses at the surface reach their maximum; third,
when the tensional stresses in the core reach their maximum after the stress
reverse; c) the descriptor of total energy reflects accurately the stress state in
the material and indicates whether the material suffers the destruction or not.
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Abstract In this contribution, the coupled flow of liquids and gases in capillary thermo-
elastic porous materials is investigated by using a continuum mechanical model
based on the Theory of Porous Media. The movement of the phases is influ-
enced by the capillarity forces, the relative permeability, the temperature and the
given boundary conditions. In the examined porous body, the capillary effect is
caused by the intermolecular forces of cohesion and adhesion of the constituents
involved. The treatment of the capillary problem, based on thermomechanical
investigations, yields the result that the capillarity force is a volume interaction
force. Moreover, the friction interaction forces caused by the motion of the
constituents are included in the mechanical model. The relative permeability de-
pends on the saturation of the porous body which is considered in the mechanical
model. In order to describe the thermo-elastic behaviour, the balance equation
of energy for the mixture must be taken into account. The aim of this investiga-
tion is to provide with a numerical simulation of the behavior of liquid and gas
phases in a thermo-elastic porous body.

Keywords: Theory of Porous Media (TPM), ternary model, capillarity, thermo-elasticity

Introduction

In the last 20 years, there has been a growing interest in investigations con-
cerning porous multi phase bodies. Due to the fact of the increasing body of
acquired knowledge in the physics of multi body system, connecting with the
wide range of applications, this interest is not remarkable. However, all these
new perceptions have to be embedded in a thermomechanical concept. This
can be afforded by the Theory of Porous Media.

In the following investigation, we use this theory allowing a continuum ther-
momechanical approach to the two-phase flow problem in a porous solid. The
transient and stationary motion of liquids in porous solids with small pores is
complex and not all related problems have been solved yet. The main internal
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forces acting in these systems are the capillary and friction forces which are
both influenced by saturation, though unfortunately not in the same way.

The capillary forces have been recognized as intermolecular forces which
are created by cohesion and adhesion at interfaces. From the evaluation of
the thermomechanical treatment we could clearly make out that these forces
depend on the free Helmholz energy functions of the solid phase and the
density gradient of the liquid.

The friction forces are taken into account using the well known van
Genuchten formulation. Both forces are introduced as interaction forces
between the phases involved. Using these constitutive equations, the equations
of motion of the liquid and gas phases are developed, forming the framework
for the presented ternary calculation concept.

Additionally, the thermo-elastic behaviour will be described. Although, not
all constitutive relations can be identified right now, the theoretical treatment
of the entropy inequality is finished for the three phase model.

Basics

The Theory of Porous Media is the Mixture Theory, restricted by the
concept of the Volume Fractions. Hereby, we have a look at a continuum which
consists of several constituents. In this investigation we deal with a solid phase
(α = S), a Liquid phase (α = L) and a Gas phase (α = G). The components
of the real structure will be statistically distributed over the control space, so
that we gain to a smeared model of the real structure.

In order to keep also the physical properties for the smeared body, such as
the material compressibility or incompressibility of the constituents involved,
the mixture theory is restricted by the concept of volume fractions. Therefore,
the volume V of the control space is divided into the partial volume fractions
nα. The sum of the volume fractions has to fill the whole control space. With
the concept of volume fractions we obtain the partial density ρα for the con-
stituents

ρα = nα ραR . (1)

where nα and ραR are the volume fraction and the real density of ϕα, respect-
ively.

The reader who is interested in a review of the Theory of Porous Media and
the kinematics is referred to de Boer [4].

Field Equations

The system is investigated under the assumption of a material incompress-
ible solid and liquid and a compressible gas. The pores in the solid are restric-
ted to a value in between micro and coarse pores. Moreover, we allow no mass
exchange between the phases and we use a quasi static description. Therefore,
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the local statements of the balance equations of mass and momentum are given
for each individual constituent ϕα by

(ρα)′α + ρα div x′
α = 0, div Tα + ρα b + p̂α = 0, (2)

wherein x′
α denotes the velocities, Tα the partial Cauchy stress tensors, b

the volume forces and p̂α the interaction forces between the phases. Addition-
ally, the balance of energy concerning the whole mixture body must be taken
into account. In order to keep the numerical complexity in a manageable scope,
we assume that all constituents have the same temperature at the same place:

S,L,G∑
α

{
ρα(εα)′α −Tα ·Dα − ρα rα + div qα

}
=

S,L,G∑
α

{
êα − p̂α · x′

α

}
.

(3)
Furthermore, the partial rates of the specific internal energy ε, the symmetric
part of the velocity gradient Dα, the external heat supply rα, the heat flux
qα and the supply of energy between the phases êα are included. Finally, the
physical constrain conditions have to be considered as well as the saturation
condition and the conditions that the sum of all partial interaction forces and
the sum of all partial energy supplies have to be vanished:

nS + nL + nG = 1, p̂S + p̂L + p̂G = 0, êS + êL + êG = 0. (4)

Constitutive Equations

In the above mentioned field equations the number of unknown quantities
does not correspond to the number of equations, thus we have to conclude the
problem with the constitutive equations for the partial stress tensors Tα, the
interaction forces p̂α, the partial internal energies εα and the partial heat flows
qα. From the evaluation of the entropy inequality of the saturated porous body,
see de Boer [4] , we obtain for the solid phase and the mobile phases with
Index β = L,G the constitutive relations for Tα and p̂α:

TS = −nSλ I + TS
E,

Tβ = −pβ I = (−nβ λ + pβ
E) I = − nβ pβR I,

(5)

p̂β = pβR grad nβ + p̂β
E. (6)

Therein, λ denotes the interface pressure (whole pore pressure), pβR the real-
istic pressure, TS

E denotes the partial effective Cauchy stress tensor and I is
the unit tensor. With the expression λ = nS λ+nL pLR +nG pGR (Dalton’s
law), the constrain

pL
E = −pG

E (7)
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has to be considered. In order to describe the pressure behavior of the mobile
phases, for the extra supply terms pα

E the approach

pL
E = nL nG k̂L

√
−log(nL/nF), (8)

has been developed, wherein k̂L characterizes a material parameter and nF =
1 − nS describes the whole pore volume (porosity), see Ricken [7]. Consid-
ering (5), (7) and (8), the volume fractions nβ are given by

nL = nF exp

(
(pLR − pGR)2

−(k̂L nF)2

)
, nG = (1 − nF) exp

(
(pLR − pGR)2

−(k̂L nF)2

)
.

(9)
Moreover, the density of the compressible gas phase can be calculated from
the modified Gas law:

ρGR = ρGR
0 exp

(
pGR

ρGR
0 θ RG

)
, (10)

wherein ρGR
0 is the reference density, θ is the temperature of all phases and RG

is the specific gas constant.
The cause of the capillary motion is indicated in the “extra" supply terms of

momentum p̂α
E in (6), which are postulated for the liquid and gas with

p̂L
E = −cL gradρL − SL wL − S̃G wG,

p̂G
E = −cG gradρL − S̃L wL − SG wG.

(11)

Herein, cL and cG are parameters responding to the capillary forces which has
an effect between the solid and gas phase and between the liquid and gas phase,
respectively. They depend on the form and nature of the pores and of the sur-
face tensions between the phases. This new approach to the interaction forces
allows the description of capillary motion in porous solids, see de Boer &
Didwania [6].

Both last terms on the right side of (11) denotes the friction influence on
each of the fluids in relation to their seepage velocities wβ = x′

β − x′
S. The

material parameter functions Sβ are postulated in dependence on the saturation
se = nL/(1 − nS) with the well known relation by van Genuchten [1],
which is expressed in a modified way as:

S−1
L =

kL
0

(nL)2
s

1
2
e

[
1 −

(
1 − s

1
m
e

)m]2

I,

S−1
G =

kG
0

(nG)2

(
1 − s

1
2
e

) 1
2
[
1 − s

1
m
e

]2m

I.

(12)
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Therein, kβ
0 = kF/µβ represents a specific friction parameter concerning the

Darcy permeability kF and the effective shear viscosity µβ . Moreover, m
denotes a van Genuchten parameter.

In (11), S̃β characterizes the influence of the fluid velocities on each other
and will be neglected in the following.

For further particulars concerning the thermo-elastic modelling of the solid
including the constitutive equations with the heat flux qα and the internal en-
ergy we refer you to Bluhm [5].

Numerical Treatment

In the calculation concept we gained 14 unknown quantities in the case of
a 2 dimensional problem. By using the constitutive equations and the physical
constrain conditions we were able to reduce this number to 10. In order to de-
velop an effective calculation concept, we additionally insert the integral state-
ment of the balance of mass concerning the solid phase with nS = nS

0S det FS,
wherein nS

0S is the reference volume fraction of the solid and det FS denotes
the deformation gradient. Moreover, the velocities of the mobile phases will
be calculated using the balance of momentum in the quasi static Darcy for-
mulation:

nL wL = nL (SL)−1
(−nL grad pLR + ρL b− cL grad nL

)
,

nG wG = nG (SG)−1
(−nG grad pGR + ρG b− cG grad nL

)
.

(13)

Finally, we receive a system of equations with 5 unknown quantities which
are the motion of the solid phase uS, the realistic pressure of the Liquid pLR

and the Gas phase pGR and the temperature θ. Thus, in order to determinate
these quantities we use the weak forms of the balance of momentum and of the
balance of energy for the mixture:

∫

BS

{T · grad δuS − ρ b δuS} dv =
∫

∂BS

{t · δuS} da, (14)

∫

BS

S,L,G∑
α

{
ρα(εα)′α − Tα ·Dα − ρα rα + div qα + p̂α · x′

α

}
dv = 0, (15)

with T = TS + TL + TG, ρ = ρS + ρL + ρG and a Neumann boundary
condition with the external stress tensor t = T n. Additionally, the weak
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forms of the balances of mass for the Liquid and Gas phase are used:
∫

BS

{
(nL)′S δpLR − nL grad δpLR · wL + nL div x′

S δpLR
}

dv =

= −
∫

∂B

{
nL δpLR wL · n}

da ,
(16)

∫

BS

{
(ρG)′S δpGR − ρG grad δpGR ·wG + ρG div x′

S δpGR
}

dv =

= −
∫

∂B

{
ρG δpGR wG · n}

da .
(17)

For the Neumann boundary condition we received a volume stream for the
Liquid and a mass stream for the Gas phase.
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9. J. Angeles and C.S. López-Cajún: Optimization of Cam Mechanisms. 1991

ISBN 0-7923-1355-0
10. D.E. Grierson, A. Franchi and P. Riva (eds.): Progress in Structural Engineering. 1991

ISBN 0-7923-1396-8
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3rd Contact Mechanics International Symposium, Praia da Consolação, Peniche, Portugal,
17-21 June 2001. 2002 ISBN 1-4020-0811-2

104. H.R. Drew and S. Pellegrino (eds.): New Approaches to Structural Mechanics, Shells and
Biological Structures. 2002 ISBN 1-4020-0862-7

105. J.R. Vinson and R.L. Sierakowski: The Behavior of Structures Composed of Composite Ma-
terials. Second Edition. 2002 ISBN 1-4020-0904-6

106. Not yet published.
107. J.R. Barber: Elasticity. Second Edition. 2002 ISBN Hb 1-4020-0964-X; Pb 1-4020-0966-6
108. C. Miehe (ed.): IUTAM Symposium on Computational Mechanics of Solid Materials at Large

Strains. Proceedings of the IUTAM Symposium held in Stuttgart, Germany, 20-24 August
2001. 2003 ISBN 1-4020-1170-9
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109. P. Ståhle and K.G. Sundin (eds.): IUTAM Symposium on Field Analyses for Determination
of Material Parameters – Experimental and Numerical Aspects. Proceedings of the IUTAM
Symposium held in Abisko National Park, Kiruna, Sweden, July 31 – August 4, 2000. 2003

ISBN 1-4020-1283-7
110. N. Sri Namachchivaya and Y.K. Lin (eds.): IUTAM Symposium on Nonlinear Stochastic

Dynamics. Proceedings of the IUTAM Symposium held in Monticello, IL, USA, 26 – 30
August, 2000. 2003 ISBN 1-4020-1471-6

111. H. Sobieckzky (ed.): IUTAM Symposium Transsonicum IV. Proceedings of the IUTAM Sym-
posium held in Göttingen, Germany, 2–6 September 2002, 2003 ISBN 1-4020-1608-5

112. J.-C. Samin and P. Fisette: Symbolic Modeling of Multibody Systems. 2003
ISBN 1-4020-1629-8

113. A.B. Movchan (ed.): IUTAM Symposium on Asymptotics, Singularities and Homogenisation
in Problems of Mechanics. Proceedings of the IUTAM Symposium held in Liverpool, United
Kingdom, 8-11 July 2002. 2003 ISBN 1-4020-1780-4

114. S. Ahzi, M. Cherkaoui, M.A. Khaleel, H.M. Zbib, M.A. Zikry and B. LaMatina (eds.): IUTAM
Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of
Engineering Materials. Proceedings of the IUTAM Symposium held in Marrakech, Morocco,
20-25 October 2002. 2004 ISBN 1-4020-1861-4

115. H. Kitagawa and Y. Shibutani (eds.): IUTAM Symposium on Mesoscopic Dynamics of Fracture
Process and Materials Strength. Proceedings of the IUTAM Symposium held in Osaka, Japan,
6-11 July 2003. Volume in celebration of Professor Kitagawa’s retirement. 2004

ISBN 1-4020-2037-6
116. E.H. Dowell, R.L. Clark, D. Cox, H.C. Curtiss, Jr., K.C. Hall, D.A. Peters, R.H. Scanlan, E.

Simiu, F. Sisto and D. Tang: A Modern Course in Aeroelasticity. 4th Edition, 2004
ISBN 1-4020-2039-2

117. T. Burczyński and A. Osyczka (eds.): IUTAM Symposium on Evolutionary Methods in Mechan-
ics. Proceedings of the IUTAM Symposium held in Cracow, Poland, 24-27 September 2002.
2004 ISBN 1-4020-2266-2

118. D. Ieşan: Thermoelastic Models of Continua. 2004 ISBN 1-4020-2309-X
119. G.M.L. Gladwell: Inverse Problems in Vibration. Second Edition. 2004 ISBN 1-4020-2670-6
120. J.R. Vinson: Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials,

Including Sandwich Construction. 2005 ISBN 1-4020-3110-6
121. Forthcoming
122. G. Rega and F. Vestroni (eds.): IUTAM Symposium on Chaotic Dynamics and Control of

Systems and Processes in Mechanics. Proceedings of the IUTAM Symposium held in Rome,
Italy, 8–13 June 2003. 2005 ISBN 1-4020-3267-6

123. E.E. Gdoutos: Fracture Mechanics. An Introduction. 2nd edition. 2005 ISBN 1-4020-3267-6
124. M.D. Gilchrist (ed.): IUTAM Symposium on Impact Biomechanics from Fundamental Insights

to Applications. 2005 ISBN 1-4020-3795-3
125. J.M. Hughe, P.A.C. Raats and S. C. Cowin (eds.): IUTAM Symposium on Physicochemical and

Electromechanical Interactions in Porous Media. 2005 ISBN 1-4020-3864-X
126. H. Ding and W. Chen: Elasticity of Transversely Isotropic Materials. 2005ISBN 1-4020-4033-4
127. W. Yang (ed): IUTAM Symposium on Mechanics and Reliability of Actuating Materials.

Proceedings of the IUTAM Symposium held in Beijing, China, 1–3 September 2004. 2005
ISBN 1-4020-4131-6

128. J.P. Merlet: Parallel Robots. 2005 ISBN 1-4020-4132-2
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129. G.E.A. Meier and K.R. Sreenivasan (eds.): IUTAM Symposium on One Hundred Years of
Boundary Layer Research. Proceedings of the IUTAM Symposium held at DLR-Göttingen,
Germany, August 12–14, 2004. 2005 ISBN 1-4020-4149-7

130. H. Ulbrich and W. Günthner (eds.): IUTAM Symposium on Vibration Control of Nonlinear
Mechanisms and Structures. 2005 ISBN 1-4020-4160-8

131. L. Librescu and O. Song: Thin-Walled Composite Beams. Theory and Application. 2005
ISBN 1-4020-3457-1
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