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1 Optimization and Metaheuristic
Algorithms in Engineering

Xin-She Yang

Centre for Mathematics and Scientific Computing, National Physical
Laboratory, Teddington, UK

1.1 Introduction

Optimization is everywhere, and thus it is an important paradigm with a wide range

of applications. In almost all applications in engineering and industry, we are trying

to optimize something—whether to minimize the cost and energy consumption or

to maximize profit, output, performance, and efficiency. In reality, resources, time,

and money are always limited; consequently, optimization is far more important in

practice (Yang, 2010b; Yang and Koziel, 2011). The optimal use of available

resources of any sort requires a paradigm shift in scientific thinking because most

real-world applications have far more complicated factors and parameters to affect

how the system behaves.

Contemporary engineering design is heavily based on computer simulations,

which introduces additional difficulties to optimization. Growing demand for

accuracy and ever-increasing complexity of structures and systems results in the

simulation process being more and more time consuming. In many engineering

fields, the evaluation of a single design can take as long as several days or even

weeks. Any method that can speed up the simulation time and optimization pro-

cess can thus save time and money.

For any optimization problem, the integrated components of the optimization

process are the optimization algorithm, an efficient numerical simulator, and a real-

istic representation of the physical processes that we wish to model and optimize.

This is often a time-consuming process, and in many cases, the computational costs

are usually very high. Once we have a good model, the overall computation costs

are determined by the optimization algorithms used for searching and the numerical

solver used for simulation.

Search algorithms are the tools and techniques used to achieve optimality of the

problem of interest. This search for optimality is complicated further by the fact

that uncertainty is almost always present in the real world. Therefore, we seek not

only the optimal design but also the robust design in engineering and industry.
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Optimal solutions, which are not robust enough, are not practical in reality.

Suboptimal solutions or good robust solutions are often the choice in such cases.

Simulations are often the most time-consuming part. In many applications,

an optimization process often involves evaluating objective function many times

(with often thousands, hundreds of thousands, and even millions of configurations).

Such evaluations often involve the use of extensive computational tools such as

a computational fluid dynamics simulator or a finite element solver. Therefore, effi-

cient optimization with an efficient solver is extremely important.

Optimization problems can be formulated in many ways. For example, the com-

monly used method of least squares is a special case of maximum-likelihood

formulations. By far, the best-known formulation is to write a nonlinear optimiza-

tion problem as

minimize fiðxÞ; i5 1; 2; . . . ; M ð1:1Þ

subject to the constraints

hjðxÞ5 0; j5 1; 2; . . . ; J ð1:2Þ

and

gkðxÞ# 0; k5 1; 2; . . . ; K ð1:3Þ

where fi, hj, and gk are general nonlinear functions. Here, the design vector

x5 (x1,x2,. . ., xn) can be continuous, discrete, or mixed in n-dimensional space.

The functions fi are called objective or cost functions, and when M. 1, the

optimization is multiobjective or multicriteria (Sawaragi et al., 1985; Yang,

2010b). It is possible to combine different objectives into a single objective,

though multiobjective optimization can give far more information and insight

into the problem. It is worth pointing out here that we write the problem as a

minimization problem, but it can also be written as a maximization by simply

replacing fi(x) by 2fi(x).

When all functions are nonlinear, we are dealing with nonlinear constrained

problems. In some special cases when fi, hj, gk are linear, the problem becomes

linear, and we can use widely linear programming techniques such as the simplex

method. When some design variables can take only discrete values (often integers),

while other variables are real and continuous, the problem is of mixed type,

which is often difficult to solve, especially for large-scale optimization.

A very special class of optimization is the convex optimization, which has

guaranteed global optimality. Any optimal solution is also the global optimum,

and most importantly, there are efficient algorithms of polynomial time to solve

such problems (Conn et al., 2009). These efficient algorithms, such as the inte-

rior-point methods (Karmarkar, 1984), are widely used and have been implemen-

ted in many software packages.
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1.2 Three Issues in Optimization

There are three main issues in the simulation-driven optimization and modeling,

and they are the efficiency of an algorithm, the efficiency and accuracy of a

numerical simulator, and the assignment of the right algorithms to the right prob-

lem. Despite their importance, there are no satisfactory rules or guidelines for such

issues. Obviously, we try to use the most efficient algorithms available, but the

actual efficiency of an algorithm depends on many factors such as the inner work-

ing of an algorithm, the information needed (such as objective functions and their

derivatives), and implementation details. The efficiency of a solver is even more

complicated, depending on the actual numerical methods used and the complexity

of the problem of interest. As for choosing the right algorithms for the right

problems, there are many empirical observations, but no agreed guidelines. In fact,

there is no universally efficient algorithms for all types of problems. Therefore,

the choice depends on many factors and is sometimes subject to the personal

preferences of researchers and decision makers.

1.2.1 Efficiency of an Algorithm

An efficient optimizer is very important to ensure the optimal solutions are reach-

able. The essence of an optimizer is a search or optimization algorithm implemen-

ted correctly so as to carry out the desired search (though not necessarily

efficient). It can be integrated and linked with other modeling components. There

are many optimization algorithms in the literature, and no single algorithm is

suitable for all problems, as dictated by the No Free Lunch Theorems (Wolpert

and Macready, 1997).

Optimization algorithms can be classified in many ways, depending on the focus

or the characteristics that we are trying to compare. Algorithms can be classified as

gradient-based (or derivative-based) and gradient-free (or derivative-free). The clas-

sic methods of steepest descent and the Gauss�Newton methods are gradient based,

as they use the derivative information in the algorithm, while the Nelder�Mead

downhill simplex method (Nelder and Mead, 1965) is a derivative-free method

because it uses only the values of the objective, not any derivatives.

Algorithms can also be classified as deterministic or stochastic. If an algorithm

works in a mechanically deterministic manner without any random nature, it is

called deterministic. For such an algorithm, it will reach the same final solution

if we start with the same initial point. The hill-climbing and downhill simplex

methods are good examples of deterministic algorithms. On the other hand, if

there is some randomness in the algorithm, the algorithm will usually reach a dif-

ferent point every time it is run, even starting with the same initial point.

Genetic algorithms and hill climbing with a random restart are good examples of

stochastic algorithms.

Analyzing stochastic algorithms in more detail, we can single out the type of

randomness that a particular algorithm is employing. For example, the simplest

3Optimization and Metaheuristic Algorithms in Engineering



and yet often very efficient method is to introduce a random starting point for a

deterministic algorithm. The well-known hill-climbing method with random restart

is a good example. This simple strategy is both efficient in most cases and easy to

implement in practice. A more elaborate way to introduce randomness to an algo-

rithm is to use randomness inside different components of an algorithm, and in

this case, we often call such algorithm heuristic or, more often, metaheuristic

(Talbi, 2009; Yang, 2008, 2010b). A very good example is the popular genetic

algorithms, which use randomness for crossover and mutation in terms of a cross-

over probability and a mutation rate. Here, heuristic means to search by trial and

error, while metaheuristic is a higher level of heuristics. However, modern litera-

ture tends to refer to all new stochastic algorithms as metaheuristic. In this book,

we will use metaheuristic to mean either. It is worth pointing out that metaheuris-

tic algorithms are a hot research topic, and new algorithms appear almost yearly

(Yang, 2008, 2010b).

From the mobility point of view, algorithms can be classified as local or global.

Local search algorithms typically converge toward a local optimum, not necessar-

ily (often not) the global optimum, and such algorithms are often deterministic

and have no ability of escaping local optima. Simple hill climbing is an example.

On the other hand, we always try to find the global optimum for a given problem,

and if this global optimality is robust, it is often the best, though it is not always

possible to find such global optimality. For global optimization, local search algo-

rithms are not suitable. We have to use a global search algorithm. Modern meta-

heuristic algorithms in most cases are intended for global optimization, though the

process is not always successful or efficient. A simple strategy such as hill climb-

ing with random restart may change a local search algorithm into a global search.

In essence, randomization is an efficient component for global search algorithms.

In this chapter, we will provide a brief review of most metaheuristic optimization

algorithms.

Straightforward optimization of a given objective function is not always practi-

cal. In particular, if the objective function comes from a computer simulation,

it may be computationally expensive, noisy, or nondifferentiable. In such cases,

so-called surrogate-based optimization algorithms may be useful where the direct

optimization of the function of interest is replaced by iterative updating and reop-

timization of its model—i.e., a surrogate. The surrogate model is typically con-

structed from the sampled data of the original objective function; however, it is

supposed to be cheap, smooth, easy to optimize, and yet reasonably accurate so

that it can produce a good prediction of the function’s optimum. Multifidelity or

variable-fidelity optimization is a special case of surrogate-based optimization,

where the surrogate is constructed from the low-fidelity model (or models) of the

system of interest (Koziel and Yang, 2011). Using variable-fidelity optimization

is particularly useful, as the reduction of the computational cost of the optimiza-

tion process is of primary importance.

Whatever the classification of an algorithm is, we have to make the right choice

to use an algorithm correctly, and sometimes using a proper combination of algo-

rithms may achieve far better results.
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1.2.2 The Right Algorithms?

From the optimization point of view, the choice of the right optimizer or algo-

rithm for a given problem is crucially important. The algorithm chosen for an

optimization task will largely depend on the type of the problem, the nature of an

algorithm, the desired quality of solutions, the available computing resource, time

limit, availability of the algorithm implementation, and the expertise of the deci-

sion makers (Yang, 2010b; Yang and Koziel, 2011).

The nature of an algorithm often determines if it is suitable for a particular type

of problem. For example, gradient-based algorithms such as hill climbing are not

suitable for an optimization problem with a discontinuous objective. Conversely,

the type of problem we are trying to solve also determines the algorithms we may

choose. If the objective function of an optimization problem at hand is highly non-

linear and multimodal, classic algorithms such as hill climbing and downhill sim-

plex are not suitable, as they are local search algorithms. In this case, global

optimizers, such as particle swarm optimization and cuckoo search, are most

suitable (Yang, 2010a; Yang and Deb, 2010).

Obviously, the choice is also affected by the desired solution quality and avail-

able computing resources. Because computing resources are limited in most appli-

cations, we have to obtain good solutions (if not necessary the best) in a reasonable

and practical time. Therefore, we have to balance resource availability with solution

quality. We cannot achieve solutions with guaranteed quality, though we strive to

obtain the best-quality solutions that we possibly can. If time is the main constraint,

we can use some greedy methods, or hill climbing with a few random restarts.

Sometimes, even with the best possible intentions, the availability of an algo-

rithm and the expertise of the decision makers are the ultimate defining factors for

choosing an algorithm. Even though some algorithms are better for the given prob-

lem at hand, we may not have that algorithm implemented in our system or we do

not have such access, which limits our choice. For example, Newton’s method,

hill-climbing, Nelder�Mead downhill simplex, trust-region methods (Conn et al.,

2009), and interior-point methods are implemented in many software packages,

which may also increase their popularity in applications. In practice, even with the

best possible algorithms and well-crafted implementation, we still may fail to get

the desired solutions. This is the nature of nonlinear global optimization, as most of

such problems are Non-deterministic polynomial-time hard (NP-hard), and no effi-

cient (in the polynomial sense) solutions exist for a given problem. Thus, the chal-

lenges of research in computational optimization and applications are to find the

right algorithms most suitable for a given problem so as to obtain good solutions

(perhaps also the best solutions globally), in a reasonable timescale with a limited

amount of resources. We aim to do this in an efficient, optimal way.

1.2.3 Efficiency of a Numerical Solver

To solve an optimization problem, the most computationally extensive part is prob-

ably the evaluation of the design objective to see if a proposed solution is feasible
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and/or if it is optimal. Typically, we have to carry out these evaluations many

times, often thousands, hundreds of thousands, and even millions of times (Yang,

2008, 2010b). Things become even more challenging computationally, when each

evaluation task takes a long time to complete using some black-box simulators.

If this simulator is a finite element or computational fluid dynamics solver, the run-

ning time of each evaluation can take from a few minutes to a few hours or even

weeks. Therefore, any approach to save computational time either by reducing the

number of evaluations or by increasing the simulator’s efficiency will save time

and money. In general, a simulator can be a simple function subroutine, a multi-

physics solver, or an external black-box evaluator.

The main way to reduce the number of objective evaluations is to use an effi-

cient algorithm, so that only a small number of such evaluations are needed. In

most cases, this is not possible. We have to use some approximation techniques to

estimate the objectives, or to construct an approximation model to predict the sol-

ver’s outputs without actually using the solver. Another way is to replace the origi-

nal objective function by its lower-fidelity model, e.g., obtained from a computer

simulation based on coarsely discretized structure of interest. The low-fidelity

model is faster, but not as accurate as the original one, and therefore it has to be

corrected. Special techniques have to be applied to use an approximation or cor-

rected low-fidelity model in the optimization process so that the optimal design can

be obtained at a low computational cost (Koziel and Yang, 2011).

1.3 Metaheuristics

Metaheuristic algorithms are often nature-inspired, and they are now among the

most widely used algorithms for optimization. They have many advantages over

conventional algorithms, as we can see from many case studies presented in later

chapters in this book. There are a few recent books that are solely dedicated to

metaheuristic algorithms (Talbi, 2009; Yang, 2008, 2010a,b). Metaheuristic algo-

rithms are very diverse, including genetic algorithms, simulated annealing, differ-

ential evolution (DE), ant and bee algorithms, particle swarm optimization,

harmony search, firefly algorithm, cuckoo search, and others. Here, we will intro-

duce some of these algorithms briefly.

1.3.1 Ant Algorithms

Ant algorithms, especially the ant colony optimization (Dorigo and Stütle, 2004),

mimic the foraging behavior of social ants. Primarily, ants use pheromones as a

chemical messenger, and the pheromone concentration can also be considered as

the indicator of quality solutions to a problem of interest. As the solution is often

linked with the pheromone concentration, the search algorithms often produce

routes and paths marked by the higher pheromone concentrations, and therefore,

ant-based algorithms are particularly suitable for discrete optimization problems.
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The movement of an ant is controlled by pheromones that will evaporate over

time. Without such time-dependent evaporation, ant algorithms will lead to prema-

ture convergence to the (often wrong) solutions. With proper pheromone evapora-

tion, they usually behave very well.

There are two important issues here: the probability of choosing a route and the

evaporation rate of the pheromones. There are a few ways of solving these pro-

blems, although this is still an area of active research. For a network routing prob-

lem, the probability of ants at a particular node i to choose the route from node i to

node j is given by

pij 5
φα
ijd

β
ijPn

i;j51 φ
α
ijd

β
ij

ð1:4Þ

where α. 0 and β. 0 are the influence parameters, and their typical values are

α � β � 2. Here, φij is the pheromone concentration on the route between i and j

and dij, the desirability of the same route. Some a priori knowledge about the

route, such as the distance sij, is often used so that dij~1/sij, which implies that

shorter routes will be selected due to their shorter traveling time; and thus the

pheromone concentrations on these routes are higher. This is because the traveling

time is shorter, and thus the less amount of the pheromone has been evaporated

during this period.

1.3.2 Bee Algorithms

Bee-inspired algorithms are more diverse—a few use pheromones, but most do not.

Almost all bee algorithms are inspired by the foraging behavior of honeybees in

nature. Interesting characteristics, such as waggle dancing, polarization, and nectar

maximization, are often used to simulate the allocation of the foraging bees along

flower patches, and thus in different regions of the search space. For a more com-

prehensive review, see Yang (2010a) and Parpinelli and Lope (2011).

Different variants of bee algorithms use slightly different characteristics of the

behavior of bees. For example, in the honeybee-based algorithms, forager bees are

allocated to different food sources (or flower patches) so as to maximize the total

nectar intake (Karaboga, 2005; Nakrani and Tovey, 2004; Pham et al., 2006; Yang,

2005). In the virtual bee algorithm (VBA), pheromone concentrations can be linked

with the objective functions more directly (Yang, 2005). The artificial bee colony

(ABC) optimization algorithm was first developed by Karaboga (2005). In the

ABC algorithm, the bees in a colony are divided into three groups: employed bees

(forager bees), onlooker bees (observer bees), and scouts. Unlike the honeybee

algorithm, which has only two groups of bees (forager bees and observer bees),

bees in ABC are more specialized (Afshar et al., 2007; Karaboga, 2005).

Similar to the ant-based algorithms, bee algorithms are very flexible in dealing

with discrete optimization problems. Combinatorial optimization, such as routing

and optimal paths, has been solved by ant and bee algorithms. In principle, they
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can solve both continuous optimization and discrete optimization problems; how-

ever, they should not be the first choice for continuous problems.

1.3.3 The Bat Algorithm

The bat algorithm is a relatively new metaheuristic (Yang, 2010c). Microbats use a

type of sonar called echolocation to detect prey, avoid obstacles, and locate their

roosting crevices in the dark, and the bat algorithm was inspired by this echoloca-

tion behavior. These bats emit a very loud sound pulse and listen for the echo that

bounces back from the surrounding objects. Their pulses vary in properties and can

be correlated with their hunting strategies, depending on the species. Most bats use

short, frequency-modulated signals to sweep through about an octave, while others

more often use constant-frequency signals for echolocation. Their signal bandwidth

varies depending on the species and often increased by using more harmonics.

The bat algorithm uses three idealized rules: (1) all bats use echolocation to

sense distance, and they also “know” the difference between food/prey and

background barriers in some unknown way; (2) a bat flies randomly with a velocity

vi at position xi with a fixed frequency range [fmin, fmax], varying its emission rate

rA[0,1] and loudness A0 to search for prey, depending on the proximity of their tar-

get; (3) although the loudness can vary in many ways, we assume that it varies

from a large (positive) A0 to a minimum constant value Amin. These rules can be

translated into the following formulas:

fi 5 fmin1 ðfmax 2 fminÞε; vt11
i 5 vti 1ðxti 2 x�Þfi; xt11

i 5 xti 1 vti ð1:5Þ

where ε is a random number drawn from a uniform distribution and x� is the cur-

rent best solution found so far during iterations. The loudness and pulse rate can

vary with iteration t in the following way:

At11
i 5αAt

i; rti 5 r0i ½12 expð2βtÞ� ð1:6Þ

Here, α and β are constants. In fact, α is similar to the cooling factor of a cooling

schedule in the simulated annealing, which will be discussed next. In the simplest

case, we can use α5β, and we have, in fact, used α5β5 0.9 in most simulations.

The bat algorithm has been extended to the multiobjective bat algorithm

(MOBA) by Yang (2011a), and preliminary results suggested that it is very effi-

cient (Yang and Gandomi, 2012).

1.3.4 Simulated Annealing

Simulated annealing is among the first metaheuristic algorithms (Kirkpatrick et al.,

1983). It was essentially an extension of the traditional Metropolis�Hastings algo-
rithm but applied in a different context. The basic idea of the simulated annealing
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algorithm is to use random search in terms of a Markov chain, which not only

accepts changes that improve the objective function but also keeps some changes

that are not ideal.

In a minimization problem, for example, any better moves or changes that

decrease the value of the objective function f will be accepted; however, some

changes that increase f will also be accepted with a probability P. This probability

P, also called the transition probability, is determined by

P5 exp 2
ΔE

kBT

� �
ð1:7Þ

where kB is Boltzmann’s constant, T is the temperature for controlling the anneal-

ing process, and ΔE is the change of the energy level. This transition probability is

based on the Boltzmann distribution in statistical mechanics.

The simplest way to link ΔE with the change of the objective function Δf is to

use ΔE5 γΔf, where γ is a real constant. For simplicity without losing generality,

we can use kB5 1 and γ5 1. Thus, the probability P simply becomes

PðΔf ; TÞ5 e2Δf=T ð1:8Þ

Whether or not a change is accepted, a random number r is often used as a

threshold. Thus, if P. r, the move is accepted.

Here, the choice of the right initial temperature is crucial. For a given change

Δf, if T is too high (T!N), then P!1, which means almost all the changes will

be accepted. If T is too low (T!0), then any Δf. 0 (worse solutions) will rarely

be accepted as P!0, and thus the diversity of the solution is limited, but any

improvement Δf will almost always be accepted. In fact, the special case T!0 cor-

responds to the classical hill-climbing method because only better solutions are

accepted, and the system is essentially climbing or descending a hill. So, a proper

temperature range is very important.

Another important issue is how to control the annealing or cooling process so

that the system cools gradually from a higher temperature, ultimately freezing to a

global minimum state. There are many ways of controlling the cooling rate or the

decrease of the temperature. Geometric cooling schedules are often widely used,

which essentially decrease the temperature by a cooling factor 0,α, 1, so that T

is replaced by αT or

TðtÞ5 T0αt; t5 1; 2; . . . ; tf ð1:9Þ

where tf is the maximum number of iterations. The advantage of this method is that

T!0 when t!N, and thus, there is no need to specify the maximum number of

iterations if a tolerance or accuracy is prescribed.
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1.3.5 Genetic Algorithms

Genetic algorithms are a class of algorithms based on the abstraction of Darwin’s

evolution of biological systems, pioneered by Holland and his collaborators in the

1960s and 1970s (Holland, 1975). Holland was probably the first to use genetic

operators such as the crossover and recombination, mutation, and selection in the

study of adaptive and artificial systems. Three main components or genetic operators

in genetic algorithms are crossover, mutation, and selection of the fittest. Each solu-

tion is encoded in a string (often binary or decimal) called chromosome.

The crossover of two parent strings produce offsprings (new solutions) by swapping

part or genes of the chromosomes. Crossover has a higher probability, typically

0.8�0.95. On the other hand, mutation is performed by flipping some digits of a

string, which generates new solutions. This mutation probability is typically low,

from 0.001 to 0.05. New solutions generated in each generation will be evaluated by

their fitness, which is linked to the objective function of the optimization problem.

The new solutions are selected according to their fitness—i.e., selection of the

fittest. Sometimes, to make sure that the best solutions remain in the population,

the best solutions are passed onto the next generation without much change,

a process called elitism.

Genetic algorithms have been applied to almost all areas of optimization, design,

and applications. There are hundreds of good books and thousands of research

articles. There are many variants and hybridization with other algorithms, and inter-

ested readers can refer to more advanced literature such as Goldberg (1989).

1.3.6 Differential Evolution

DE was developed by Storn and Price (Storn, 1996; Storn and Price, 1997). It is

a vector-based evolutionary algorithm that can be considered as a further development

in genetic algorithms. As with genetic algorithms, design parameters in a d-dimensional

search space are represented as vectors, and various genetic operators are operated over

their bits of strings. However, unlike genetic algorithms, DE carries out operations over

each component (or each dimension of the solution). Almost everything is done

in terms of vectors. For a d-dimensional optimization problem with d parameters, a

population of n solution vectors are initially generated, we have xi where i5 1,2,. . ., n.
For each solution xi at any generation t, we use the conventional notation:

xti 5 ðxt1;i; xt2;i; . . . ; xtd;iÞ ð1:10Þ

which consists of d components in the d-dimensional space. This vector can be

considered as chromosomes or genomes.

DE consists of three main steps: mutation, crossover, and selection. Mutation is

carried out by the mutation scheme. For each vector xi at any time or generation t,

we first randomly choose three distinct vectors xp, xq, and xr at t, and then generate

a so-called donor vector by the mutation scheme

vt11
i 5 xtp 1Fðxtq 2 xtrÞ ð1:11Þ
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where FA[0,2] is a parameter, often referred to as the differential weight. This

requires that the minimum population size is n$ 4. In principle, FA[0,2], but in

practice, a scheme with FA[0,1] is more efficient and stable.

The crossover is controlled by a crossover probability CrA[0,1], and actual

crossover can be carried out in two ways: binomial and exponential. Selection is

essentially the same as that used in genetic algorithms. The goal is to select the fit-

test, and for the minimization problem, the minimum objective value. Therefore,

we have

xt11
i 5

ut11
i if f ðut11

i Þ# f ðxtiÞ
xti otherwise

�
ð1:12Þ

Most studies have focused on the choice of F, Cr, and n, as well as the modifica-

tion of Eq. (1.11). In fact, when generating mutation vectors, we can use many

different ways of formulating Eq. (1.11), and this leads to various schemes with the

naming convention: DE/x/y/z, where x is the mutation scheme (rand or best), y is

the number of difference vectors, and z is the crossover scheme (binomial or expo-

nential). The basic DE/Rand/1/Bin scheme is given in Eq. (1.11). Following a simi-

lar strategy, we can design various schemes. In fact, more than 10 different

schemes have been formulated in the literature (Price et al., 2005).

1.3.7 Particle Swarm Optimization

Particle swarm optimization (PSO) was based on swarm behavior in nature,

such as fish and bird schooling (Kennedy and Eberhart, 1995). Since then, PSO

has generated much wider interest and forms an exciting, ever-expanding

research subject called swarm intelligence. This algorithm searches the space of

an objective function by adjusting the trajectories of individual agents, called par-

ticles, as the piecewise paths formed by positional vectors in a quasi-stochastic

manner.

The movement of a swarming particle consists of two major components: a sto-

chastic component and a deterministic component. Each particle is attracted to the

position of the current global best g� and its own best location x�i in history, while

at the same time, it has a tendency to move randomly. Let xi and vi be the position

vector and velocity for particle i, respectively. The new velocity vector is deter-

mined by the following formula:

vt11
i 5 vti 1αε1 ½g�2 xti�1βε2 ½x�i 2 xti� ð1:13Þ

where ε1 and ε2 are two random vectors, with each entry taking a value between 0

and 1. The Hadamard product of two matrices (u}v) is defined as the entrywise

product, i.e., [u}v]ij5 uijvij. The parameters α and β are the learning parameters

or acceleration constants, which can typically be taken as, for example, α � β � 2.
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The initial locations of all particles should distribute relatively uniformly so that

they can sample over most regions, which is especially important for multimodal

problems. The initial velocity of a particle can be taken as zero, i.e., vt50
i 5 0:

The new position can then be updated by

xt11
i 5 xti 1 vt11

i ð1:14Þ

Although vi can be any value, it is usually located in some range [0, vmax].

There are many variants that extend the standard PSO algorithm (Kennedy

et al., 2001; Yang, 2008, 2010b), and the most noticeable improvement is probably

to use inertia function θ(t) so that vti is replaced by θðtÞvti:

vt11
i 5 θvti 1αε1}½g�2 xti�1 βε2}½x�i 2 xti� ð1:15Þ

where θ takes the value between 0 and 1. In the simplest case, the inertia function

can be taken as a constant, typically θ � 0.5 � 0.9. This is equivalent to introduc-

ing a virtual mass to stabilize the motion of the particles, and thus the algorithm is

expected to converge more quickly.

1.3.8 Harmony Search

Harmony search (HS) is a music-inspired algorithm (Geem et al., 2001), which can

be explained in more detail with the aid of the discussion of a musician’s improvi-

sation process. When a musician is improvising, he or she has three possible

choices: (1) play any famous piece of music (a series of pitches in harmony)

exactly from his or her memory; (2) play something similar to a known piece (thus

adjusting the pitch slightly); or (3) compose new or random notes. If we formalize

these three options for optimization, we have three corresponding components:

usage of harmony memory, pitch adjusting, and randomization.

The usage of harmony memory is important, as it is similar to choose the best-fit-

ting individuals in the genetic algorithms. This will ensure that the best harmonies

will be carried over to the new harmony memory. An important step is pitch adjust-

ment, which can be considered a local random walk. If xold is the current solution

(or pitch), then the new solution (pitch) xnew is generated by

xnew 5 xold 1 bpð2ε2 1Þ ð1:16Þ

where ε is a random number drawn from a uniform distribution [0,1]. Here, bp is

the bandwidth, which controls the local range of pitch adjustment. In fact, we can

see that the pitch adjustment (Eq. (1.16)) is a random walk.

Pitch adjustment is similar to the mutation operator in genetic algorithms.

Although adjusting pitch has a similar role, it is limited to certain local pitch

adjustment, and thus, it corresponds to a local search. The use of randomization
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can drive the system further to explore various regions with high solution diversity

so as to find the global optimality.

1.3.9 Firefly Algorithm

The firefly algorithm (FA), first developed Yang (2008, 2009), was based on the

flashing patterns and behavior of fireflies. In essence, FA uses the following three

idealized rules:

1. Fireflies are unisexual, so one firefly will be attracted to other fireflies regardless of their

sex.

2. Their attractiveness is proportional to their brightness, and both decrease as their distance

increases. Thus, for any two flashing fireflies, the less brighter one will move toward the

brighter one. If a particular firefly does not find a brighter one, it will move randomly.

3. The brightness of a firefly is determined by the landscape of the objective function.

As a firefly’s attractiveness is proportional to the light intensity seen by adjacent

fireflies, we can now define the variation of attractiveness β with distance r by

β5β0 e
2γr2 ð1:17Þ

where β0 is the attractiveness at r5 0.

The movement of a firefly i that is attracted to another more attractive (brighter)

firefly j is determined by

xt11
i 5 xti 1β0e

2γr2ij ðxtj 2 xtiÞ1αεti ð1:18Þ

where the second term is based on the attraction. The third term is randomized,

with α being the randomization parameter and εti is a vector of random numbers

drawn from a Gaussian distribution or uniform distribution at time t. If β05 0, it

becomes a simple random walk. Furthermore, the randomization εti can easily be

extended to other distributions such as Lévy flights.

The Lévy flight essentially provides a random walk whose random step length is

drawn from a Lévy distribution:

Lðs;λÞ5 s2ð11λÞ; 0,λ# 2 ð1:19Þ

which has an infinite variance with an infinite mean. Here the steps essentially form

a random walk process with a power-law step-length distribution with a heavy tail.

Some of the new solutions should be generated by a Lévy walk around the best solu-

tion obtained so far, which will speed up the local search (Pavlyukevich, 2007).

A demo version of FA implementation, without Lévy flights, can be found at

the Mathworks file exchange web site.1 FA has attracted much attention

1 http://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm.
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(Apostolopoulos and Vlachos, 2011; Gandomi et al., 2011; Sayadi et al., 2010).

A discrete version of FA can efficiently solve NP-hard scheduling problems

(Sayadi et al., 2010), while a detailed analysis has demonstrated the efficiency of

FA over a wide range of test problems, including multiobjective load dispatch pro-

blems (Apostolopoulos and Vlachos, 2011). A chaos-enhanced FA with a basic

method for automatic parameter tuning has also been developed (Yang, 2011b).

1.3.10 Cuckoo Search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms

developed by Yang and Deb (2009). CS is based on the brood parasitism of some

cuckoo species. In addition, this algorithm is enhanced by the so-called Lévy

flights (Pavlyukevich, 2007), rather than by simple isotropic random walks. Recent

studies show that CS is potentially far more efficient than the PSO and genetic

algorithms (Yang and Deb, 2010).

Cuckoos are fascinating birds, not only because of the beautiful sounds they can

make but also because of their aggressive reproduction strategy. Some species such

as the ani and Guira cuckoos lay their eggs in communal nests, though they may

remove others’ eggs to increase the hatching probability of their own. Quite a num-

ber of species engage in the obligate brood parasitism by laying their eggs in the

nests of other host birds (often other species).

For simplicity in describing the standard CS, we now use the following three

idealized rules:

1. Each cuckoo lays one egg at a time and dumps it in a randomly chosen nest.

2. The best nests with high-quality eggs will be carried over to the next generation.

3. The number of available host nests is fixed, and the probability that an egg laid by a

cuckoo is discovered by the host bird is paA[0,1]. In such a case, the host bird can either

get rid of the egg or abandon the nest and build a completely new nest.

As a further approximation, this last assumption can be approximated by stat-

ing that a fraction pa of the n host nests are replaced by new nests (with new

random solutions).

For a maximization problem, the quality or fitness of a solution can simply be

proportional to the value of the objective function. Other forms of fitness can be

defined in a similar way to the fitness function in genetic algorithms.

For the implementation point of view, we can use the following simple represen-

tations that each egg in a nest represents a solution, and each cuckoo can lay only

one egg (thus representing one solution), the aim being to use the new and poten-

tially better solutions (cuckoos) to replace less good solutions in the nests.

Obviously, this algorithm can be extended to the more complicated case, where

each nest has multiple eggs representing a set of solutions. For this discussion,

we will use the simplest approach, where each nest has only a single egg. In this

case, there is no distinction between egg, nest, and cuckoo: each nest corresponds

to one egg, which also represents one cuckoo.
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Based on these three rules, the basic steps of the CS can be summarized as the

pseudocode shown in Figure 1.1.

This algorithm uses a balanced combination of a local random walk and the

global explorative random walk, controlled by a switching parameter pa. The local

random walk can be written as

xt11
i 5 xti 1αs� Hðpa 2 εÞ � ðxtj 2 xtkÞ ð1:20Þ

where xtj and xtk are two different solutions selected by random permutation, H(u) is

a Heaviside function, ε is a random number drawn from a uniform distribution, and

s is the step size. On the other hand, the global random walk is carried out using

Lévy flights:

xt11
i 5 xti 1αLðs;λÞ ð1:21Þ

where

Lðs;λÞ5 λΓðλÞsinðπλ=2Þ
π

1

s11λ ; scs0 . 0 ð1:22Þ

Here, α. 0 is the step size scaling factor, which should be related to the

scales of the problem of interest. In most cases, we can use α5O(L/10), where

L is the characteristic scale of the problem of interest, while in some cases,

α5O(L/100) can be more effective and avoid the need to fly too far. Equation

(1.22) is essentially the stochastic equation for a random walk. In general, a ran-

dom walk is a Markov chain whose next status/location only depends on the cur-

rent location (the first term in Eq. (1.22)) and the transition probability (the

second term). However, a substantial fraction of the new solutions should be gen-

erated by far-field randomization and whose locations should be far enough from

Objective function f (x), x = (x1,...,xd)T

Generate initial population of n host nests xi

while (t < MaxGeneration) or (stop criterion)
          Get a cuckoo randomly/generate a solution by Lévy flights
                                     and then evaluate its quality/fitness Fi

          Choose a nest among n (say, j) randomly
          if  (Fi > Fj),
                Replace j by the new solution
          end
          A fraction (pa) of worse nests are abandoned
                            and new ones/solutions are built/generated
          Keep best solutions (or nests with quality solutions)
          Rank the solutions and find the current best
end while

Figure 1.1 Pseudocode of

the CS.
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the current best solution to make sure that the system will not be trapped in a

local optimum (Yang and Deb, 2010).

The pseudocode given here is sequential; however, vectors should be used from

an implementation point of view, as vectors are more efficient than loops.

A Matlab implementation is given by Yang and can be downloaded.2 CS is very

efficient in solving engineering optimization problems (Gandomi et al., 2011).

1.3.11 Other Algorithms

There are many other metaheuristic algorithms that are equally popular and power-

ful, including Tabu search (Glover and Laguna, 1997), artificial immune system

(Farmer et al., 1986), and others (Koziel and Yang, 2011; Yang, 2010a,b).

The efficiency of metaheuristic algorithms can be attributed to the fact that they

imitate the best features in nature, especially the selection of the fittest in biological

systems that have evolved by natural selection over millions of years.

Two important characteristics of metaheuristics are intensification and diversifi-

cation (Blum and Roli, 2003). Intensification intends to search locally and more

intensively, while diversification makes sure the algorithm explores the search

space globally (and hopefully also efficiently). A fine balance between these two

components is very important to the overall efficiency and performance of an algo-

rithm. Too little exploration and too much exploitation could cause the system to

be trapped in local optima, which makes it very difficult or even impossible to find

the global optimum. On the other hand, if there is too much exploration but too lit-

tle exploitation, it may be difficult for the system to converge, which would slow

down the overall search performance. A proper balance itself is an optimization

problem, and one of the main tasks of designing new algorithms is to find an opti-

mal balance concerning this optimality and/or trade-off.

Furthermore, just exploitation and exploration are not enough. During the

search, we have to use a proper mechanism or criterion to select the best solutions.

The most common criterion is to use the Survival of the Fittest, i.e., to keep updat-

ing the solution with the best one found so far. In addition, a certain elitism is often

used, which ensures that the best or fittest solutions are not lost and are passed

onto the next generations.

1.4 Artificial Neural Networks

As we will see, artificial neural networks are in essence optimization algorithms,

working in different contexts (Yang, 2010a).

2 www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm.
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1.4.1 Artificial Neurons

The basic mathematical model of an artificial neuron was first proposed by

W. McCulloch and W. Pitts in 1943, and this fundamental model is referred to as

the McCulloch�Pitts model. Other models and neural networks are based on it.

An artificial neuron with n inputs or impulses and an output yk will be activated if

the signal strength reaches a certain threshold θ. Each input has a corresponding

weight wi. The output of this neuron is given by

yl 5Φ
Xn
i51

wiui

 !
ð1:23Þ

where the weighted sum ξ5
Pn

i51 wiui is the total signal strength, and Φ is the so-

called activation function, which can be taken as a step function. That is, we have

ΦðξÞ5 1 if ξ$ θ
0 if ξ, θ

�
ð1:24Þ

We can see that the output is only activated to a nonzero value if the overall sig-

nal strength is greater than the threshold θ.
The step function has discontinuity; sometimes, it is easier to use a nonlinear,

smooth function called a Sigmoid function:

SðξÞ5 1

11 e2ξ ð1:25Þ

which approaches 1 as U!N and becomes 0 as U!2N. An interesting property

of this function is

S0ðξÞ5 SðξÞ½12 SðξÞ� ð1:26Þ

1.4.2 Neural Networks

A single neuron can perform only a simple task—it is either on or off. Complex

functions can be designed and performed using a network of interconnecting neu-

rons or perceptrons. The structure of a network can be complicated, and one of the

most widely used is to arrange them in a layered structure, with an input layer, an

output layer, and one or more hidden layers (Figure 1.2). The connection strength

between two neurons is represented by its corresponding weight. Some artificial

neural networks (ANNs) can perform complex tasks and can simulate complex

mathematical models, even if there is no explicit functional form mathematically.

Neural networks have been developed over the last few decades and applied in

almost all areas of science and engineering.

The construction of a neural network involves the estimation of the

suitable weights of a network system with some training/known data sets. The task
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of the training is to find the suitable weights wij such that the neural networks not

only can best-fit the known data but also can predict outputs for new inputs. A

good artificial neural network should be able to minimize both errors simulta-

neously—the fitting/learning errors and the prediction errors.

The errors can be defined as the difference between the calculated (or predi-

cated) output ok and real output yk for all output neurons in the least-square sense:

E5
1

2

Xno
k51

ðok2ykÞ2 ð1:27Þ

Here, the output ok is a function of inputs/activations and weights. In order to

minimize this error, we can use the standard minimization techniques to find the

solutions of the weights.

A simple and yet efficient technique is the steepest descent method. For any ini-

tial random weights, the weight increment for whk is

Δwhk 52η
@E

@whk

52η
@E

@ok

@ok
@whk

ð1:28Þ

where η is the learning rate. Typically, we can choose η5 1.

From

Sk 5
Xm
h51

whkoh; k5 1; 2; . . . ; no ð1:29Þ

and

ok 5 f ðSkÞ5
1

11 e2Sk
ð1:30Þ

we have

f 05 f ð12 f Þ ð1:31Þ

Figure 1.2 Schematic representation of a

three-layer neural network with ni inputs,

m hidden nodes, and no outputs.
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@ok
@whk

5
@ok
@Sk

@Sk
@whk

5 okð12 okÞoh ð1:32Þ

and

@E

@ok
5 ðok 2 ykÞ ð1:33Þ

Therefore, we have

Δwhk 52ηδkoh; δk 5 okð12 okÞðok 2 ykÞ ð1:34Þ

1.4.3 The Back Propagation Algorithm

There are many ways of calculating weights by supervised learning. One of the

simplest and widely used methods is to use the back propagation algorithm for

training neural networks, often called back propagation neural networks (BPNNs).

The basic idea is to start from the output layer and propagate backward to esti-

mate and update the weights. From any initial random weighting matrices wih

(for connecting the input nodes to the hidden layer) and whk (for connecting the hid-

den layer to the output nodes), we can calculate the outputs of the hidden layer oh:

oh 5
1

11 exp 2
Pni

i51 wihui
� � ; h5 1; 2; . . . ; m ð1:35Þ

and the outputs for the output nodes:

ok 5
1

11 exp 2
Pm

h51 whkoh
� � ; k5 1; 2; . . . ; no ð1:36Þ

The errors for the output nodes are given by

δk 5 okð12 okÞðyk 2 okÞ; k5 1; 2; . . . ; no ð1:37Þ

where yk(k5 1,2,. . ., no) are the data (real outputs) for the inputs ui(i5 1,2,. . ., ni).
Similarly, the errors for the hidden nodes can be written as

δh 5 ohð12 ohÞ
Xno
k51

whkδk; h5 1; 2; . . . ; m ð1:38Þ

The updating formulas for weights at iteration t are

wt11
hk 5wt

hk 1 ηδkoh ð1:39Þ
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and

wt11
ih 5wt

ih 1 ηδhui ð1:40Þ

where 0, η# 1 is the learning rate.

Here, we can see that the weight increments are

Δwih 5 ηδhui ð1:41Þ

with similar updating formulas for whk. An improved version is to use the so-called

weight momentum α to increase the learning efficiency:

Δwih 5 ηδhui 1αwihðτ2 1Þ ð1:42Þ

where τ is an extra parameter. There are many good software packages for ANNs,

and there are dozens of good books fully dedicated to implementation. ANNs have

been very useful in solving problems in civil engineering (Alavi and Gandomi,

2011a,b; Gandomi and Alavi, 2011).

1.5 Genetic Programming

Genetic programming is a systematic method of using evolutionary algorithms to

produce computer programs in a Darwinian manner. Fogel was probably one of the

pioneers in primitive genetic programming (Fogel et al., 1966), as he first used evo-

lutionary algorithms to study finite-state automata. However, the true formulation

of modern genetic programming was introduced and pioneered by Koza (1992),

and the publication of his book Genetic Programming: On the Programming of

Computers by Means of Natural Selection was a major milestone.

In essence, genetic programming intends to evolve computer programs in an

iterative manner by chromosome representations, often in terms of tree structures

where each node corresponds a mathematical operator and end nodes represent

operands. Evolution is carried out by genetic operators such as crossover, mutation,

and selection of the fittest. In the tree-structured representation, crossover often

takes the form of subtree exchange crossover, while mutation may take the form of

subtree replacement mutation.

According to Koza (1992), there are three stages in the process: preparatory

steps, a genetic programming engine, and a new computer program. The genetic

programming engine has preparatory steps as inputs and a computer program as

its output. First, we have to specify a set of primitive ingredients such as the func-

tion set and terminal set. For example, if we wish a computer program to be able

to design an electronic circuit, we have to specify the basic components such as

transistors, capacitors, and resistors, and their basic functions. Then we have to pro-

duce a fitness measure (such as time, cost, stability, and performance) to define
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what solutions are better than others by that measure. In addition, we have to

produce some initialization of algorithm-dependent parameters, such as population

size and number of generations, and the termination criteria, which essentially

controls when the evolution should stop.

Though computationally expansive, genetic programming has aleady produced

human-competitive novel results in many areas such as electronic design, game

playing, quantum computing, and invention generation. New invention often

requires illogical steps in producing new ideas, and this can often be mimicked as a

randomization process in evolutionary algorithms. As pointed out by Koza et al.

(2003), genetic programming is a systematic method for getting computers to solve

a problem automatically, starting from a high-level statement outlining what needs

to be done, which virtually turns a computer into an “automated invention

machine.” Obviously, that is the ultimate aim of genetic programming.

For applications in engineering, readers can use more specialized literature

(Alavi and Gandomi, 2011a,b; Gandomi and Alavi, 2012a,b). There is an extensive

literature concerning genetic programming; interested readers can refer to works

such as Koza (1992) and Langdon (1998).
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2.1 Introduction

When solving problems in water resources and hydraulic engineering, there are

basically two approaches: knowledge-based and data-driven (Deo, 2011).

Nowadays, engineering practices suffer from unpredictable problems that need

more serious attention and care. The introduction of soft computing techniques

may fulfill the need and demands of solving engineering problems. Soft computing

was initiated by Zadeh (1981) in order to construct the new generation of artificial

intelligence, which was called computational intelligence. Multidisciplinary

approaches were designed to model mathematically the problems associated with

the complexity and uncertainty of logical systems. Soft computing includes

the concepts and techniques used to solve or overcome the difficulties in the real

world, especially in the engineering sciences (Alavi and Gandomi, 2011a,b;

Gandomi and Alavi, 2011, 2012).

The basic method of soft computing consists of fuzzy logic (FL), neural networks

(NNs), and genetic algorithms. These soft computing methods have been applied to

many real-world problems, especially in water resources engineering. The focus of

these applications is more on optimization in predicting the scour phenomenon that

occurs at the laid pipelines under seas or rivers, bridge piers, abutments, culverts,

and spillways. Soft computing applications are also applied to the prediction of sedi-

ment load in hydraulics and the stage�discharge curve in hydrology.

In many cases, good results have been achieved by combining different

soft computing methods. The hybrid system is now growing, as are most of the

neuro-fuzzy systems in which NN techniques are used for calibration and induc-

tion. Deo (2011) stated that problem solving in water engineering has seen four

stages: analytical equations, empirical/experimental methods, numerical methods,

and finally data-driven approaches.
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The author and his research associates have used radial basis function (RBF),

adaptive neuro-fuzzy inference system (ANFIS), gene-expression programming

(GEP), and linear genetic programming (LGP) for a variety of purposes: prediction

of spillway scour depth, bridge pier scour depth, culvert scour depth, dispersion

coefficients, and sediment transport in hydraulics. The application in water

resources includes the development of the stage�discharge curve for the Pahang

River in Malaysia. Details of these studies can be seen in the list of resulting publi-

cations shown on the web portal http://redac.eng.usm.my/html/publication.htm.

This chapter focuses on reviewing some major applications of soft computing

methods in water resources engineering.

2.2 Soft Computing Techniques

2.2.1 Neural Networks

A neural network (NN) represents an interconnection of neurons, each of which

basically carries out the task of combining the input, determining its strength

by comparing the combination with a bias (or, alternatively, passing it

through a nonlinear transfer function), and firing out the result in proportion to

such a strength. The known input�output patterns are first used to train a network,

and strengths of interconnections (or weights) and bias values are accordingly

fixed. A supervised type of training involves feeding input�output examples until

the network develops its generalization capability, while an unsupervised training

would involve classification of the input into clusters by some rule; the former type

of learning is more common. During such training, the network output is compared

to the desired or actual/target one and the error or the difference that results is pro-

cessed through a mathematical algorithm (Azmathullah et al., 2005).

Most of the previous works on NN applications to water resources have included

the feed-forward type of the architecture, where there are no backward connections

(Figure 2.1), trained using the feed-forward back propagation (FFBP) configuration

(Azamathulla et al., 2008). The RBF network (Figure 2.2) is also similar to this, in

that it has three layers of neurons: input, hidden, and output. However, it uses only

one hidden layer, each neuron in which operates as per the Gaussian transfer func-

tion, as against the sigmoid function of the common FFBP. Further, while training

of the latter is fully supervised (where both input�output examples are required),

the training of the former is fragmented, wherein unsupervised learning of the input

information first classifies it into clusters, which in turn are used to yield the output

after a supervised learning. This local tuning could be not only more efficient but

also more satisfactory in modeling nonlinear data than the common FFBP

(Azamathulla et al., 2008).

ANFIS, on the other hand, is a hybrid scheme that uses the learning capability of

the artificial neural network (ANN) to derive the fuzzy if�then rules with

appropriate membership functions worked out from the training pairs leading finally

to the inference (Jang and Gulley, 1995; Tay and Zhang, 1999). The difference
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between the common NN and the ANFIS is that while the former captures the

underlying dependency in the form of the trained connection weights, the latter does

so by establishing the fuzzy language rules. The input in ANFIS (Figure 2.3) is first

converted into fuzzy membership functions, which are combined together, and after

following an averaging process, used to obtain the output membership functions and

finally the desired output.

2.2.2 Gene-Expression Programming

GEP, which is an extension of genetic programming (GP) (Koza, 1992), is a search

technique that involves computer programs (e.g., mathematical expressions,

decision trees, polynomial constructs, and logical expressions). GEP computer

programs are all encoded in linear chromosomes, which are then expressed as or

translated into expression trees (ETs). ETs are sophisticated computer programs
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that have usually evolved to solve a particular problem and are selected according

to their fitness at solving that problem.

GEP is a full-fledged genotype and phenotype system, with the genotype totally

separated from the phenotype, whereas in GP, genotype and phenotype are mixed

together in a simple replicator system. As a result, the full-fledged genotype and

phenotype system of GEP surpasses the old GP system by a factor of 100�60,000
(Ferreira, 2001).

Initially, the chromosomes of each individual in the population are generated

randomly. Then, the chromosomes are expressed, and each individual is evaluated

based on a fitness function and selected to reproduce with modification, leaving

progeny with new traits. The individuals in this new generation are in turn

subjected to several developmental processes, such as expression of the genomes,

confrontation of the selection environment, and reproduction with modification.

These processes are repeated for a predefined number of generations, or until

a solution is achieved (Ferreira, 2001). The functionality of each genetic operator

included in the GEP system has been explained by Guven and Aytek (2009) and

Azamathulla and Ahmad (2012).

2.2.3 Linear Genetic Programming

LGP, which is an extension of conventional tree-based GP, evolves developing

sequences of instructions from an imperative programming language (C or C11)

or from a machine language. The name linear refers to the structure of the

(imperative) program representation; it does not reflect functional genetic programs

that are restricted to only a linear list of nodes. On the contrary, genetic programs

normally represent highly nonlinear solutions (Brameier, 2004). The main differ-

ences between LGP and conventional, tree-based GP are the graph-based data flow

that results from a multiple usage of indexed variable (register) contents and the

existence of structurally ineffective code (introns) (Brameier, 2004; Brameier and

Banzhaf, 2001). This concept was expanded to the Automatic Induction of

Machine code by Genetic Programming (AIMGP) technique, in which the solutions
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are directly computed as binary machine codes and executed without using an

interpreter. In this way, the computer program can evolve very quickly (Brameier

and Banzhaf, 2001).

GEP/LGP can be applied in two different ways. One of them manipulates

computer programs, while the other one operates on equations. The commercial

software gene and DTREG generates the GEP programs (Sherrod, 2008).

2.3 Implementation of Soft Computing Techniques

The applications in hydraulics include spillway scour, bridge pier/abutment scour,

river pipeline scour, and sediment bed load predictions. The readers are referred to

Azmathullah et al. (2005, 2006) and Azmathulla et al. (2008, 2010, 2011) for

hydraulic applications, and to Azamathulla et al. (2011) for river stage�discharge
relationship.

2.3.1 Soft Computing Techniques for Spillway Scour

Spillways are provided as an integral part of a dam or as an auxiliary structure that

is separate from the main dam to release surplus floodwater which is in excess

of the storage space in the reservoir, as provided in the operation plan, and must be

passed downstream. Thus, spillways work as safety valves for a dam and the

adjoining countryside. The discharge intensity is the most predominant factor

in determining the depth of scour. The scour depth also varies with the height of

the falling jet. A great height would cause high kinetic energy of the falling jet

(Damle et al., 1966). The angle of penetration of a ski-jump jet into the pool would

also be important from the perspective of geometry and depth of scour hole.

As such, it would be safer to assume that the energy dissipation due to air entrain-

ment is considerably less for the buckets located near the tail water levels.

Referring to Figure 2.4, the equilibrium depth of scour (ds), measured from the

tail water surface, can be written as a function of discharge per width or unit

discharge of spillway (q), total head (H1), radius of the bucket (R), lip angle of the

bucket (φ), tail water depth (dw), mean sediment size (d50), acceleration due

to gravity (g), densities of water and sediment, ρw, and ρs:.

ds 5 f ðq;H1;R;φ; dw; d50; g; ρw; ρsÞ ð2:1Þ

In the present study, the standard deviation of fragmented bed material σg was not
considered (Table 2.1). The maximum width of scour hole (ws) and the distance of

maximum scour depth from spillway bucket lip (‘s) can be written in a similar form:

ws 5 f ðq;H1;R;φ; dw; d50; g; ρw; ρsÞ ð2:2Þ

‘s 5 f ðq;H1;R;φ; dw; d50; g; ρw; ρsÞ ð2:3Þ
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By using the Buckingham π theorem, nondimensional equations in functional

form were obtained and then nonlinear regression equations were developed.

The same inputs were used to develop the ANN/GEP models.

The width prediction is less satisfactory, indicating that the lateral dissipation of

energy is too uncertain to predict accurately. Although the percentage error and

root mean square error (RMSE) involved in depth prediction are small, the correla-

tion coefficient is low, and absolute deviation is high, indicating that overall,

the prediction may be viewed with skepticism. Hence, the author applied soft

computing techniques to predict scour below spillways. Among 95 pairs of scour

data, 80% of input�output patterns were chosen randomly until the best training

performance appeared and was used for network training, while the remaining data

were used for testing or validating the trained FFBP, FFC, RBF, ANFIS, and GEP

models (Azamathulla, 2011; Azamathulla and Zakaria, 2011) (Table 2.2).

The results were compared with the regression equation formulas and NN

schemes. It was found that the GEP models (Eqs. (2.4)�(2.6); Azamathulla and

Zakaria, 2011)) are highly satisfactory, as seen in Table 2.2, for depth of scour

Table 2.1 Range of Experimental Data

No. Parameter Unit Range

1 Discharge intensity, q m3/s/m 0.0089�0.3810
2 Total head, H1 m 0.2791�1.7962
3 Bucket radius, R m 0.1000�0.6096
4 Lip angle, φ radian 0.1740�0.7800
5 Tail water depth, dw m 0.0286�0.2650
6 Bed material size, d50 m 0.0020�0.0080
7 Depth of scour, ds m 0.0512�0.5500
8 Distance of maximum scour

from bucket lip, ‘s

m 0.4200�2.2400

9 Width of scour hole, ws m 0.6000�2.1400

Reservoir level

Crest

R
q

ls

H1

T.W.L

ds
dw GL

φ

Figure 2.4 Scour below flip bucket spillway.
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downstream of the flip bucket spillway, width, and location of maximum scour

from the bucket lip:

ds

dw
5

d50 1 q

φ
2ðH1 2 q2 1:199Þ 5:616

d50

φ

� �� �
3 0:309φðR1ðd5010:185ÞðH1d50ÞÞ20:5
� � ð2:4Þ

ws

dw
5

q20:006d5011:168R1H1

2:336φ

� �0:5
7:521d5013:955H122q

0:428φ21
115:24φ

� �0:5
ð2:5Þ

‘s
dw

5
eφ

R
ðH12d5010:49512:878ðqÞ21Þ

� �
Rðq1H129:948d50Þ0:5ð2H11q1φÞ� �

ð2:6Þ

Table 2.2 Comparison of Network Yielded and True Values

Parameter Correlation

Coefficient (R)

Average

Error (AE)

Average Absolute

Deviation (δ)
RMSE

GEP
ds/dw 0.970 26.680 12.664 0.583

‘s/dw 0.988 22.054 3.703 1.629

ws/dw 0.992 22.336 11.187 1.777

ANFIS
ds/dw 0.976 20.09882 12.50924 0.56921

‘s/dw 0.936 4.849 14.116 3.515679

ws/dw 0.965 4.6170 18.340 3.995247

FFBP (Azamathulla et al., 2005)
ds/dw 0.970 26.680 13.845 0.579655

‘s/dw 0.989 22.876 3.725 0.720417

ws/dw 0.990 22.336 9.111 1.672423

Feed-forward cascade correlation (FFCC; Azamathulla et al. 2005)
ds/dw 0.949 216.738 19.109 0.841427

‘s/dw 0.972 25.286 10.138 1.740402

ws/dw 0.965 23.625 18.1756 3.053031

RBF (Azamathulla et al. 2005)
ds/dw 0.967 2.390 15.13 0.662571

‘s/dw 0.943 8.801 11.91661 2.722683

ws/dw 0.974 7.663 12.97874 2.624881

Regression equations (Azamathulla et al. 2005)
ds/dw 0.842 21.427 22.790 1.343503

‘s/dw 0.929 3.900 13.550 3.569314

ws/dw 0.883 219.570 20.150 5.612486
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Network Based on Prototype Data

Another study to estimate the scour based on past prototype measurements rather

than against the above-described case of scale model observations was also con-

ducted. A survey of available publications reporting such observations was done.

This indicated that only three types of information (namely, scour depth below tail

water level ds, discharge intensity q, and head drop H1) are uniformly reported in

all references. An NN with two input nodes for q and H1 and one output node for

the scour depth ds were developed (see Figure 2.1). In total, there were 91

input�output pairs formed out of the published data.

RBF and ANFIS yielded more or less similar predictions, with ANFIS producing

middle-ranged estimates in a slightly better way than RBF, which is understandable

considering the similarities in the data processing with these methods. The results

were that adequate training is really necessary while applying the NN; otherwise,

one may not get better results than traditional regression (Table 2.3). In other words,

the scour data are more amenable to fuzzy if�then rules rather than crisp-value

processing in the RBF or FFBP network. ANFIS ensures a localized functioning of

the transfer function against the globalized one of a general FFBP. This results in a

smaller number of values participating in the mapping process, which in turn

requires limited data for training (as against the FFBP). This could also be another

reason for the more acceptable performance of ANFIS in the present case. Thus, the

research showed that traditional equation-based methods of predicting the design

scour downstream of a ski-jump bucket could better be replaced by the NN and simi-

lar soft computing schemes. Within the different networks employed, the relatively

advanced ANFIS could produce more satisfactory results (Azamathulla et al., 2008).

Recently, Guven and Azamathulla (2012) showed that the results of GEP (Eqs. (2.7)

and (2.8)) in predicting spillway scour rivaled those of ANN (Table 2.4):

ds 5 logðH1 2 q2 92:857Þ1 q

H1

19:688H1

� �0:5
1 log

q0:5 2 1027:578

logðqÞ

� �
ð2:7Þ

Table 2.3 Comparison of Network Results with Observed Scour Depths

No. Method R AE δ RMSE

1 NN (FFBP-based) 0.92 28.89 13.27 10.75

2 NN (FFCC-based) 0.90 233.56 24.12 12.44

3 RBF 0.91 10.02 19.93 8.04

4 ANFIS 0.95 13.64 12.09 7.44

5 Martins (1975) 0.69 21.15 28.52 13.92

6 Veronese (1937) 0.73 218.5 22.57 11.40

7 Wu (1973) 0.73 16.94 27.60 11.35

8 Incyth (1982) 0.73 21.96 26.76 12.24

9 Azamathulla et al., 2008 0.78 224.91 26.89 11.69
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ds=H1 520:362ð10F1 2 2:734Þ21 1 ðF2
1 e

0:861=F1 Þ0:5 1ð0:895F0:5
1 2 0:024Þ ð2:8Þ

For future studies on obtaining the pattern of scour, it is suggested to consider

its location with respect to the bucket lip and the rock quality designation (RQD)

for prototype data. The preliminary studies by the author indicated a very good

prediction ability. As such, it is concluded that GEP is more efficient in predicting

scour parameters downstream of the flip bucket to other NN schemes.

2.3.2 Soft Computing Techniques for Submerged Pipeline Scour Depth

Scour underneath the pipeline may expose a section of the pipe, causing it to

become unsupported. If the free span of the pipe is long enough, the pipe may

experience resonant flow-induced oscillations, leading to settlement and potentially

structural failure (Azamathulla and Zakaria, 2011).

Details of the river pipeline studies can be seen in the list of resulting publica-

tions in the REDAC web portal http://redac.eng.usm.my/html/publication.htm.

The performance of the GP model was compared to that of the RBF NN and

conventional regression-based equations (Azamathulla and Zakaria, 2011).

The comparison showed that the GP models have a better ability to predict the

scour depth with higher R values. Further, Azamathulla et al. (2011) applied

the LGP technique to predict the scour depth below the pipeline and compared it

with ANFIS. It was concluded that the LGP models have a better ability to predict

the river pipeline scour.

Development of the Stage�Discharge Curve for the Pahang River
The conventional models that predict stage�discharge relationships are the stage-

rating curve (SRC) and regression (REG). Azamathulla et al. (2011) developed the

following explicit formulation of the GEP for discharge as a function of stage (S):

Q5 9:84S2 2 64:391S2 4033:296 ð2:9Þ

Furthermore, GEP was used as an alternative tool for modeling the

stage�discharge relationship for the Pahang River. The overall results produced

Table 2.4 Statistical Performance of GEP, GP, and Other Formulas for the Testing Set

Model RMSE (m) δ R

GEP1 (Eq. (2.7)) 1.596 0.109 0.917

GEP2 (Eq. (2.8)) 1.998 0.210 0.867

GP (Azamathulla et al., 2010) 2.347 0.377 0.842

Veronese (1937) 5.853 0.394 0.816

Wu (1973) 4.415 0.887 0.819

Martins (1975) 2.649 0.277 0.763

35A Review on Application of Soft Computing Methods in Water Resources Engineering

http://redac.eng.usm.my/html/publication.htm


coefficient of determination (R2) values very close to 1, suggesting very little

discrepancy between observed and predicted discharges. Besides, the RMSE values

remained at a very low level, also confirming GEP as an effective tool to be used

for forecasting and the estimation of daily discharge data in flood events.

2.3.3 Soft Computing Techniques to Predict Total Bed Material Load

The rising demand of river sand has led to a mushrooming of river sand mining

activities, which jeopardizes the natural and health of the river, as well as causing

environmental problems. Generally, the conventional approaches used in most

modeling efforts begin with an assumption of empirical and analytical equations.

Although much research on the total bed load transport has been recorded

throughout the last few decades based on conventional approaches, they still have

constrained the wider application of theoretical models. Alternatively, various kinds

of soft computing techniques have been introduced and applied in water engineering

problems since the last two decades (Azamathulla et al., 2011; Nagy et al., 2002;

Yang et al., 2009).

ANNs were developed for sediment data sets, the network input�output. The
ANN model was able to predict total load transport successfully in a wide variety

of fluvial environments, including both sand and gravel rivers. Moreover, the ANN

prediction of mean total load was in almost perfect agreement with the measured

mean total load. The high value of the coefficient of determination (R25 0.958)

implies that the ANN model provides an excellent fit for the measured data.

A few soft computing techniques have been developed to evaluate and predict

the total bed material load; i.e., NNs, ANFIS, and GEP. The study area and data

used for the application cover the six sites at each of the three rivers (i.e., Kurau,

Langat, and Muda) that have different levels of sand mining activities. Table 2.5

shows the range of field data from the three rivers.

The GEP model was able to predict total load transport successfully in a wide

variety of fluvial environments, including both sand and gravel rivers. Also, the

GEP estimation of mean total load was in almost perfect agreement with the mea-

sured mean total load. The high value of the coefficient of determination

(R25 0.97), mean square error (MSE5 0.057) that the GP model provides an

excellent fit for the measured data. These results suggest that the proposed GEP

model is a robust total load predictor. This study demonstrates a successful applica-

tion of the GEP modeling concept to total bed material load transport. From this

study, it can be concluded that only eight parameters are required to predict total

bed material load, which is in agreement with previous works (Yang et al., 2009).

The value of the GEP approach is that the nonlinear function need not be the same

for all fluvial environments (Zakaria et al., 2010).

GEP for Sediment Load

The important parameters that affect the total bed material load during implementa-

tion of GEP for sediment data sets can be given in the form Tj5 f (Q, V, B, Y0, R,
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S0, Ws, d50) (Zakaria et al., 2010). Initially, the training set is selected from

the whole data and the rest is used as the testing set. The implementation of the

GEP includes five major steps: (i) select the fitness function, (ii) In this study,

select the set of functions which consists of four basic arithmetic operators

(1 ,2 ,3 , / ) and some basic mathematical functions (O, x2, x3, power) are uti-

lized. (iii) choose the chromosomal architecture which is the length of the head

and number of genes, (iv) to choose the linking function, and (v) choose the set

of genetic operators that cause variation and their rates. In the present study, the

first step is to choose the fitness function. For this problem, the fitness, fi, of an

individual program, i, is measured by

fi 5
XCt

j51

ðM2 jCði;jÞ2 TjjÞ ð2:10Þ

where M is the range of selection, C(i,j) is the value returned by the individual

chromosome i for fitness case j (out of Ct fitness cases), and Tj is the target value

for fitness case j. If jC(i,j)2 Tjj (the precision) is less than or equal to 0.01, then the

precision is equal to zero, and fi5 fmax5CtM. In this case, M5 100 was used;

therefore, fmax5 1000. The advantage of this kind of fitness function is that the sys-

tem can find the optimal solution by itself. Then, the length of head (lh5 10) and

two genes per chromosome were employed, addition and multiplication were used

as the linking functions and a combination of all genetic operators (mutation, trans-

portation, and crossover) was used in GEP (Table 2.6).

Table 2.5 Range of Field Data from the Kurau, Langat, and Muda Rivers

Parameters Study Area

Kurau River Langat River Muda River

Flow discharge, Q (m3/s) 0.63�28.94 2.75�120.76 2.59�343.71
Flow velocity, V (m/s) 0.27�1.12 0.23�1.01 0.14�1.45
Water-surface width, B (m) 6.30�26.00 16.4�37.6 9.0�90.0
Flow depth, Y0 (m) 0.36�1.91 0.64�5.77 0.73�6.90
Cross-sectional area of flow,

A (m2)

1.43�33.45 8.17�153.57 5.12�278.34

Hydraulic radius, R (m) 0.177�1.349 0.45�3.68 0.55�3.90
Channel slope,

S0

0.00050�0.00210 0.00065�0.00185 0.00008�0.000235

Bed load, Tb (kg/s) 0.080�0.488 0.027�0.363 0�0.191
Suspended load, Tt (kg/s) 0.001�2.660 0.2860�99.351 0.024�15.614
Total bed material load,

Tj (kg/s)

0.089�2.970 0.525�33.398 0.099�15.644

Median sediment size,

d50 (mm)

0.41�1.90 0.31�3.00 0.29�2.10

Manning’s coefficient , n 0.014�0.066 0.034�0.195 0.21�0.108
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The best of generation individual, chromosome 10, had fitness 470 for this GEP

model of sediment transport. The formulations of GEP for total bed material load,

as a function of Q, V, B, Y0, R, S0, Ws, d50, were obtained as

Tj 5 20:393RY0 3
ffiffiffiffiffi
S0
p
 �

=ð20:721 S0Þ
� �

1ðR1 esinðQVRÞÞ
1 tan21 20:163RBÞ1R

ffiffiffiffi
Q
p
 �

1ðd50 2 3:39Þ3 d350 3 S0 1 tan21ðVÞ
3 eV 2 logð6:932 Y0Þ3 ððWs3BÞ=ð22:075ÞÞ

ð2:11Þ

The calibration of the GEP model was performed based on 214 input-target

pairs of collected data. Among the 214 data sets, 64 (30%) were reserved for vali-

dation, and the remaining 150 sets for the calibration purpose and remaining were

used for testing or validating the GEP model. The performance of the GEP model

was compared with the traditional total bed material load equations of Yang

(1972) and Engelund and Hansen (1967). Table 2.7 presents a comparison of R2

and MSE of the predicted total bed material load of the different models, and it

can be concluded that for all the data sets, the GEP model give either better or

comparable results. Overall, particularly for field measurements, the GEP models

give better estimations than the existing models. The GEP model produced the

Table 2.7 Error Measures for Different Sediment Models for Comparison of

Traditional Predictors and the GEP Model for Total Bed Material Load

Model R2 MSE

GEP 0.97 0.057

Yang (1972) 0.722 10.376

Engelund and Hansen (1967) 0.623 12.735

Table 2.6 Parameters of the Optimized GEP Model

Parameter Definition Value

p1 Function set 1,2 ,3 , /, O, power, sin, cos, tan

p2 Mutation rate (%) 40

p3 Inversion rate (%) 30

p4 One-point and two-point

recombination rate (%)

30, 30

p5 Gene recombination rate 95

p6 Gene transposition rate 0.1
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least errors (R25 0.97 and MSE5 0.057). Figure 2.5A�C shows the observed and

estimated total bed material load of the unseen testing data.

2.4 Conclusion

In this chapter, the major applications of different soft computing techiques

(namely RBF, ANFIS, GEP, and LGP) in water resources engineering are

reviewed. The models developed using these techniques have shown great

performance compared to the conventional approcahes. The obtained results sup-

port the use of these intelligent techniques for the prediction of hydraulic and

hydrologic variables. The application of soft computing techniques in water

resources engineering provides the possibility of overcoming the complexity and

uncertainty of the existing problems associated with good and acceptable results.
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Figure 2.5 Observed and estimated total bed material load of the unseen testing data for

three rivers: (A) Muda, (B) Kurau, (C) Langat.
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It is worth mentioning that many investigators have recently compared the

performance of GP with traditional statistical methods, as well as NN. Deo (2011)

concluded in his keynote speech, “GP can automatically select input and tell which

are more important.” Based on the author’s experience, there is good potential to

exploit the full potential of the modern soft computing methods in the future.

However, the relative advantages of most of the soft computing methods over tradi-

tional methods are that they do not assume any dependency between input and

output beforehand—they learn directly from example rather than rules, and they

are more tolerant toward data errors by virtue of their distributed processing and

better adaptability to new data.

Acknowledgments

The writer is grateful to Professor M.C. Deo, IIT Bombay, Mumbai, India, and ASCE/

ELSEVIER/IAHR for giving permission to reproduce figures and text.

References

Alavi, A.H., Gandomi, A.H., 2011a. A robust data mining approach for formulation of

geotechnical engineering systems. Eng. Comput. 28 (3), 242�274.
Alavi, A.H., Gandomi, A.H., 2011b. Prediction of principal ground-motion parameters using

a hybrid method coupling artificial neural networks and simulated annealing. Comput.

Struct. 89 (23�24), 2176�2194.
Azamathulla, H.Md., Ahmad, Z., 2012. Gene-expression programming for transverse mixing

coefficient. J. Hydrol. 434�435, 142�148.
Azamathulla, H.Md., Zakaria, N.A., 2011. Prediction of scour below submerged pipeline

crossing a river using ANN. Water Sci. Tech. 63 (10), 2225�2230.
Azmathullah, H.Md., Deo, M.C., Deolalikar, P.B., 2005. Neural networks for estimation of

scour downstream of a ski-jump bucket. J. Hydraul. Eng. 131 (10), 898�908.
Azmathullah, H.Md., Deo, M.C., Deolalikar, P.B., 2006. Estimation of scour below spillways

using neural networks. J. Hydraul. Res. Int. Assoc. Hydraul. Eng. Res. 44 (1), 61�69.
Azamathulla, H.Md., Deo, M.C., Deolalikar, P.B., 2008. Alternative neural networks to

estimate the scour below spillways. Adv. Eng. Software. 39 (8), 689�698.
Azamathulla, H.Md., Ghani, A.A., Zakaria, N A, Guven, A., 2010. Genetic programming to

predict bridge pier scour. ASCE J. Hydraul. Eng. 136 (3), 165�169.
Azamathulla, H.Md., Guven, A., Demir, Y.K., 2011. Linear genetic programming to scour

below submerged pipeline. Ocean Eng. 38, 995�1000.
Brameier, M., 2004. On linear genetic programming. Ph.D. thesis, University of Dortmund.

Brameier, M., Banzhaf, W., 2001. A comparison of linear genetic programming and neural

networks in medical data mining. IEEE Trans. Evol. Comput. 5, 17�26.
Damle, P.M., Venkatraman, C.P., Desai, S.C., 1966. Evaluation of scour below ski-jump

buckets of spillways. In: Proceedings of the CWPRS Golden Jubilee Symposium,

Poona, India, Vol. I, 154�163.

40 Metaheuristics in Water, Geotechnical and Transport Engineering



Deo, M.C., 2011. Application of data driven methods in hydrology and hydraulics. In: Key

note speech, International Conference on Managing Rivers in the 21st Century, Penang,

Malaysia, 6�9 December 2011.

Engelund, F., Hansen, E., 1967. A Monograph on Sediment Transport in Alluvial Streams.

Teknisk Forlag, Copenhagen, Denmark.

Ferreira, C., 2001. Gene expression programming: a new adaptive algorithm for solving pro-

blems. Complex Syst. 13 (2), 87�129.
Gandomi, A.H., Alavi, A.H., 2011. Multi-Stage genetic programming: a new strategy to non-

linear system modeling. Inform. Sci. 181 (23), 5227�5239.
Gandomi, A.H., Alavi, A.H., 2012. A new multi-gene genetic programming approach to non-

linear system modeling. Part II: geotechnical and earthquake engineering problems.

Neural Comput. Appl. 21 (1), 189�201.
Guven, A., Aytek, A., 2009. A new approach for stage�discharge relationship: Gene-

Expression Programming. J. Hydrolog. Eng. 14 (8), 812�820.
Guven, A., Azamathulla, H.Md., 2012. Gene-expression programming for flip bucket spill-

way scour. Water Sci. Tech. 65 (11), 1982�1987.
Incyth Lha, 1982. Estudio sobre modelo del aliviadero de la Presa Casa de Piedra, Informe

Final. DOH-044-03-82, Ezeiza, Argentina.

Jang, J.S.R., Gulley, N., 1995. Fuzzy Logic Tool Box User’s Guide. The Mathworks, Inc.

Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. A Bradford Book, MIT Press, Cambridge, MA.

Martins, R.B.F., 1975. Scouring of rocky river beds by free jet spillways. Int. Water Power

Dam Constr. 27 (4), 152�153.
Nagy, H.M., Watanabe, K., Hirano, M., 2002. Prediction of sediment load concentration in

rivers using artificial neural network model. J. Hydraulic Eng. 128 (6), 588�595.
Sherrod, P.H., 2008. DTREG predictive modeling software, http://www.dtreg.com/.

Tay, J.H., Zhang, X., 1999. Neural fuzzy modelling of anaerobic biological waste water

treatment systems. J. Environ. Eng. 125 (12), 1149�1159.
Veronese, A., 1937. Erosioni de Fondo a Valle di uno Scarico. Annali dei Lavori Publicci.

75 (9), 717�726, Italy.
Wu, C.M., 1973. Scour at downstream end of dams in Taiwan. In: International Symposium

on River Mechanics, Bangkok, Thailand, vol. I, A 13, pp. 1�6.
Yang, C.T., 1972. Unit stream power and sediment transport. J. Hydraul. Eng. 98 (10),

1805�1826.
Yang, C.T, Reza, M, Aalami, M.T., 2009. Evaluation of total load sediment transport using

AAN. Int. J. Sediment Res. 24 (3), 274�286.
Zadeh, L.A., 1981. What Is Soft Computing, Soft Computing. Springer-Verlag, Germany.

Zakaria, N.A, Azamathulla, H.Md., Chang, C.K., Ab Ghani, A., 2010. Gene-expression pro-

gramming for total bed material load estimation—a case study. Sci. Total Environ. 408

(21), 5078�5085.

41A Review on Application of Soft Computing Methods in Water Resources Engineering

http://www.dtreg.com/


This page intentionally left blank



3 Genetic Algorithms and Their
Applications to Water Resources
Systems

Deepti Rani1, Sharad Kumar Jain2, Dinesh

Kumar Srivastava1 and Muthiah Perumal1

1Department of Hydrology, IIT Roorkee, Roorkee, India, 2Water Resources
Development and Management Department, IIT Roorkee, Roorkee, India

3.1 Introduction

According to Mitchell (1999), “In the 1950s and the 1960s several computer

scientists independently studied evolutionary systems with the idea that evolution

could be used as an optimization tool for engineering problems. The idea was to

evolve a population of candidate solutions to a given problem, using operators

inspired by natural genetic variation and natural selection.” All these techniques

are collectively referred to as evolutionary computation (EC) techniques. EC tech-

niques, also known as heuristic search methods, mostly involve nature-inspired

metaheuristic optimization algorithms such as evolutionary algorithms (EAs), com-

prising genetic algorithms (GAs); evolutionary programming, evolution strategy,

and genetic programming; swarm intelligence, comprising ant colony optimization

and particle swarm optimization; simulated annealing; and tabu search (Rani and

Moreira, 2010).

GAs are a particular class of EA based on the mechanics of natural selection

and natural genetics (Goldberg, 1989). GA uses techniques inspired by evolu-

tionary biology such as inheritance, mutation, selection, and crossover. The

method was invented by John Holland (1975) and was later popularized by

one of his students, David Goldberg, who solved a difficult problem involving

the control of gas-pipeline transmission for his dissertation. His book (Goldberg,

1989) provides GA methodology using both mathematical and computational

aspects. He was the first to develop a theoretical basis for GAs through

the schema theorem. The work of De Jong (1975) showed the usefulness of the

GA for function optimization and made the first concerted effort to find opti-

mized GA parameters. Unlike conventional optimization search methods based

on gradients, GAs work on a population of possible solutions, attempting to find
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a solution set that either maximizes or minimizes the value of a function of

those solution values (Loucks and van Beek, 2005).

Like other optimization algorithms, a GA starts by defining decision variables

and objective function. It terminates like other optimization algorithms too,

by testing for convergence. Nevertheless, it is very different than the others with

regard to the steps involved in the process. GAs are typically implemented as

a computer simulation. GAs have a main generational process cycle. The GA pro-

cess begins with a population of chromosomes, which is the set of possible solu-

tions for the decision variables of an optimization problem, and moves toward

achieving better solutions through evolution. The decision variables are encoded

as binary or real-valued strings (genes) for a given search space. A chromosome

is the set of these substrings (genes). The evolution starts from a population of

completely random chromosomes and occurs in generations. In each generation,

the fitness of the whole population is evaluated, and multiple chromosomes are

stochastically selected from the current population (based on their fitness) and

modified using genetic operators such as crossover and mutation to form a new

population. The new population is then used in the next iteration (generation)

of the algorithm (Davis, 1991). Population size depends on the nature of the

problem, but typically there are hundreds or thousands of possible solutions.

Traditionally, the population is generated randomly, covering the entire range of

possible solutions (the search space). This algorithm is repeated sequentially until

the desired stopping criterion is achieved.

Advantageous features of GAs in solving large-scale, nonlinear optimization

problems are that they can be used with continuous or discrete parameters, require

no simplifying assumptions about the problem, and, unlike gradient methods, they

do not require computation of derivative information during the optimization

(Haupt and Haupt, 2004). Davis (1991) has identified three main advantages of

GAs in optimization: “First, they generally find nearly global optima in complex

spaces. This is important because the search spaces for our problems are highly

multimodal, a property that leads hill-climbing algorithms to get stuck in local

optima. Second, genetic algorithms do not require any form of smoothness, that is,

they can handle nonlinearity and discontinuity and third, considering their ability

to find global optima, genetic algorithms are fast, especially when tuned to the

domain on which they are operating.” Another advantage of GAs is their inherently

parallel nature, i.e., the evaluation of individuals within a population can be con-

ducted simultaneously, as in nature.

Most of the early works in GAs came in the fields of computer science and arti-

ficial intelligence. More recently, interest has extended to essentially all branches

of science, engineering, economy, and research and development, where search and

optimization are of interest. The widespread interest in GAs appears to be due to

the success in solving many difficult optimization problems. Today, many applica-

tions of GAs in different fields can be found in literature. GAs have been applied

to many real-life optimization problems by several researchers. Goldberg and Kuo

(1987) developed a study for pipeline optimization by making use of GAs. Soh

and Yang (1996) used GAs in combination with fuzzy logic for structural-shaped
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optimization problems. Feng et al. (1997) applied GAs to the problem of cost-time

trade-offs in construction projects. Halhal et al. (1997) applied GAs to a network

rehabilitation problem having multiple objectives. A methodology based on GAs

has been developed by Li and Love (1998) for optimizing the layout of construction-

site-level facilities. Wang and Zheng (2002) studied a job shop scheduling problem

with a modified GA. Wei et al. (2005) employed GAs in their research, with the

aim of optimization of truss size and shaping with frequency constraints. In water

resources, GAs have been applied in many fields, for example, rainfall-runoff

modeling (Wang, 1991), water supply network design (Dandy and Engelhardt, 2001;

Simpson et al., 1994), and groundwater management problems (Cieniawski et al.,

1995; McKinney and Lin, 1994; Ritzel et al., 1994). Davidson and Goulter (1995)

used GAs to optimize the layout of rectilinear-branched distribution (natural gas/water)

systems.

Theoretical aspects of GAs are already available in many textbooks, and this

chapter does not aim to discuss them. It is intended here to give a simple presentation

that can be helpful in understanding the basic GA procedure, and one can apply

the GA to solve problems related to water resource development and management.

The references cited within the text and provided at the end of this chapter should

be able to guide the readers to more advanced topics in GAs. Overall, this chapter

will provide enough material for anyone curious about GAs and their applications in

water resources.

This chapter is organized as follows. Section 3.2 provides an overview of GA

and the individual steps involved in a typical GA process. This is followed by

Section 3.3 giving a review of applications of GAs in water resource problems,

followed by an example of a reservoir operation problem and its solution, describing

the steps involved in the GA procedure.

3.2 Genetic Algorithms

There are many publications that give excellent introductions to GAs: see, for

example, Holland (1975), Goldberg (1989), Davis (1991), Michalewicz (1999),

Mitchell (1999), Deb (2003), and Haupt and Haupt (2004). A GA is a mix of

principles behind natural evolution in biology and artificial intelligence in

computer science. Therefore, GA terminology uses both natural and artificial

terms.

As stated earlier, GAs search for the optimum solution from one set of possible

solutions that is an array of decision-variable values. This set of possible solutions

is called a population. There are several populations in a GA run, and each of

these populations is called a generation. Generally, at each new generation, better

solutions (i.e., decision-variable values) that are closer to the optimum solution

as compared to the previous generation are created. In the GA context, the set of

possible solutions (array of decision-variable values) is defined as a chromosome,

while each decision-variable value present in the chromosome is formed by genes.
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Population size is the number of chromosomes present in a population. The GA

process is briefly described below, and the overall GA process is shown in Figure 3.1.

At the start of the GA optimization, the user has to define the GA operator,

such as type of chromosome representation, population size, selection process,

types of crossover and mutation, and crossover and mutation probabilities. The

initial population is generated according to the selected chromosomal representa-

tion at random or using a priori knowledge of the search space. For example,

given the upper and lower bounds for each decision variable, the chromosomes

are created randomly so as to remain within their upper and lower limits. The

initial population provides the set of all possible solutions for the first generation,

according to the user-defined decision-variable ranges, which have been created

randomly. The objective function is used to evaluate each chromosome in the

population. Each chromosome in the population has an assigned fitness value,

which is used to select the chromosomes from the current population. This pro-

cess is known as selection. Genetic operators, such as crossover and mutation,

are performed on the selected chromosomes to create a new set of chromosomes

that make the population for the next generation. This algorithm is repeated sequen-

tially until the stopping criterion is achieved. The stopping criterion of a GA is

governed either by the number of generations or by the rate of change in the objec-

tive function value. Fitness values are expected to improve, indicating the creation of

better individuals in new generations. Several generations are considered in the GA

process until the user-defined termination criteria is reached.

3.2.1 GA Operators

The GA operators, namely chromosome representation, population size, selection

type, and crossover and mutation, control the process of GAs. These operators play

an important role in the efficiency of GA optimization in reaching the optimum

Initial
population

Chromosomes
representation

Start

Stop

Evaluate fitness
for the current

population

Termination
criteria met?

Results
Yes

No

Selection

Crossover

Mutation

Figure 3.1 Overall GA process.
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solution. One of the challenging aspects of using GAs is to choose the optimum

GA operator set for the relevant problem.

Representation of Chromosomes

Physical parameters in the search space constituting the phenotypes are encoded

into genotypes. The genotype of an individual is the chromosome, and the potential

solution to a problem corresponding to the chromosome is the phenotype. In GAs,

genetic operators are applied to the genotype to generate better solutions until the

optimum is obtained. Then the individual (genotype) representing the optimum

solution is decoded to phenotypes. Chromosome representation or encoding is a

process of representing the decision-variable values in GAs such that the computer

can interact with these values. The decision variables, or phenotypes, in the GA are

obtained by applying some mapping from the chromosome representation into the

search space. Coding in GA is defined by the type of gene expression, which may

be expressed using binary, gray, integers, or real coding. In general, a chromosome

(genotype) is presented as

ðx1; x2; . . . ; xnÞ such that x1AX1; x2AX2; . . . ; xnAXn ð3:1Þ

where, x1, x2, . . ., xn are bits, integers, real numbers or a mixture of these, and X1,

X2, . . ., Xn are the respective search spaces for x1, x2, . . ., xn.
In principle, any character set and coding scheme can be used for chromosome

representation. However, the initial GA work of Holland (1975) was done with

binary representation, as it was computationally easy. Furthermore, the binary

character set can yield the largest number of possible solutions for any given

parameter representation, thereby giving more information to guide the genetic

search. The GA operators work directly on this representation of the chromosomes

to get the optimal solution.

The conventional GA operations and theory were developed on the basis of binary

coding, which was used in many applications (Goldberg, 1989). The use of real-

valued genes in GAs is claimed by Wright (1991) to offer a number of advantages in

numerical function optimization over binary coding. Binary coding and real coding

differ mainly in how the crossover and mutation operators are performed in the

GA process. There has been growing interest in real-value coding for GAs. In real-

value coding, each chromosome is coded as an array of real numbers, with the same

length for the decision variable. Gray coding is another type of bit string coding,

which uses adjacent variable values where the code occurs as only one binary digit.

It was developed to overcome a problem called “Hamming Cliffs,” which exists in

binary coding and has been used in a number of studies in the water resources field

(Dandy et al., 1996).

Binary Coding
The most commonly used representation of chromosomes in the GA is binary

coding by using binary numbers 0 and 1. In this coding, each decision variable in
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the parameter set is encoded as a binary string, and these are concatenated to form

a chromosome. The length of the binary substring (i.e., number of bits) for a

variable depends on the size of the search space and the number of decimal places

required for accuracy of the decoded variable values (Michalewicz, 1999). If each

decision variable is given a string of length L, and there are n such variables,

then the chromosome will have a total string length of nL. For example, let there

be two decision variables, x1 and x2, and let the string length be 5 for each variable.

Then the chromosome length is 10, as shown in Figure 3.2.

The search space is divided into 2L intervals, each having a width equal to

(xi,max2 xi,min)/2
L for a binary string of length L, where xi,max is the upper

bound of the decision variable, and xi,min is the lower bound of the decision

variable:

d5 ðxi;max � xi;minÞ=2L defines the solution accuracy ð3:2Þ

The binary numbers have a base of 2 and use only two characters, 0 and 1.

A binary string, therefore, is decoded using Eq. (3.3):

N5 an2
n 1 an212

n21 1?1 a12
1 1 a02

0 ð3:3Þ

where

ai is either 0 or 1 (ith bit in the string),

2n represents the power of 2 of digit ai,

n is the number of bits in binary-coded decision variable (i.e., L2 1),

N is the decoded integer value of the binary string,

and the corresponding actual value of the variables is obtained using Eq. (3.4):

xi 5 xi;min 1
xi;max 2 xi;min

2L 2 1
N ð3:4Þ

For this example, let the search space for decision variables x1 and x2 range

from 0 to 5 and 1 to 10, respectively. For the chromosome shown in Figure 3.2,

the decoded value for the substrings and the corresponding value of the decision

variables will be as shown in Table 3.1.

Using string length L5 5, the entire search space for decision variable x1 can be

divided into 31 intervals of 0.16 width each, as shown in Table 3.2. The solution

accuracy may be increased by increasing the length of the string. The lower and

upper bounds of the real-value search space (i.e., 0 and 5) can be mapped into

binary numbers using Eq. (3.2), and all the other intermediate values (i.e., 0�31)
can also be easily expressed in binary numbers using Eq. (3.3). The entire search

String 1 String 2
Chromosome  10001 01111

Figure 3.2 Formation of chromosome.

48 Metaheuristics in Water, Geotechnical and Transport Engineering



space for x1 in binary encoding and decoded real values are given in Table 3.2.

Different ranges and accuracies can be considered in GAs through different binary

substring lengths for different decision variables. All GA operators are performed

on binary strings and once GA optimization is completed, the binary strings can be

decoded into real values.

Gray Coding
Gray coding is an ordering of binary character sets such that all adjacent numerical

numbers differ by only one bit, whereas in binary coding, adjacent numbers may

differ in many bit positions. Gray coding representation has the property that any

two points next to each other in the search space differ by one bit only (Haupt and

Haupt, 2004). In other words, an increase of one step in the value of the decision

variable corresponds to a change of only a single bit. The advantage of gray coding

is that random bit flips in mutation are likely to make small changes and therefore

result in a smooth mapping between the real search space and the encoded strings.

To convert binary coding to gray coding, truth table conversion, as shown in

Table 3.3, is followed.

When converting from binary to gray, the first bit of the binary code remains

as it is, and the remaining bits follow the truth table conversion, two bits taken

sequentially at a time, giving the next bit in gray coding. An example of representa-

tion of binary and gray coding of numeric numbers of 1�31 is shown in Table 3.4.

The number of bit positions that differ in two adjacent bit strings of equal length

is known as Hamming distance. For example, the Hamming distance between

01111 and 10000 is 5, since all bit positions differ, and require alteration of 5 bits

when converting the number 15 to 16 in binary representation. The Hamming

distance associated with certain strings, such as 01111 and 10000, poses difficulty

in transition to a neighboring solution in real space, as it requires the alteration

of many bits. In gray coding, this distance between any two adjacent binary strings

is always 1. Caruana and Schaffer (1988) reported that gray coding can eliminate

Table 3.1 Coding and Decoding in GAs

Decision Variables

x1 x2

Chromosomes represented as

binary strings assuming string

length, L5 5

10001 01111

Decoded integer value 1.241 0.231 0.22

1 0.211 0.205 17

0.241 1.231 1.221 1.21

1 1.205 15

Corresponding value of decision

variable with solution accuracy

(xmax2 xmin)/(2
L2 1)

2.74 4.84
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Table 3.3 Truth Table Conversions (B1 and B2 are

adjacent bits in a binary string)

B1 1 0

B2

1 0 1

0 1 0

Table 3.2 Binary and Real Value Search Space for Decision

Variable x1

Binary encoding Decoded value Corresponding real value

of x1, in the search space

00000 0 0.00

00001 1 0.16

00010 2 0.32

00011 3 0.48

00100 4 0.65

00101 5 0.81

00110 6 0.97

00111 7 1.13

01000 8 1.29

01001 9 1.45

01010 10 1.61

01011 11 1.77

01100 12 1.94

01101 13 2.10

01110 14 2.26

01111 15 2.42

10000 16 2.58

10001 17 2.74

10010 18 2.90

10011 19 3.06

10100 20 3.23

10101 21 3.39

10110 22 3.55

10111 23 3.71

11000 24 3.87

11001 25 4.03

11010 26 4.19

11011 27 4.35

11100 28 4.52

11101 29 4.68

11110 30 4.84

11111 31 5.00
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the hidden bias in binary coding and that the large Hamming distances in the

binary representation could result in the search process being deceived or unable

to locate the global optimum efficiently. Gray coding has been preferred by

several researchers while using GAs in water resource applications (Wardlaw and

Sharif, 1999).

Real-Value Coding
For problems with a large number of decision variables, having large search spaces,

and requiring a higher degree of precision, binary-coded GAs have performed

Table 3.4 Representations of Integer Numbers in Binary and Gray

Coding

Integers Binary Coding Gray Coding

0 00000 00000

1 00001 00001

2 00010 00011

3 00011 00010

4 00100 00110

5 00101 00111

6 00110 00101

7 00111 00100

8 01000 01100

9 01001 01101

10 01010 01111

11 01011 01110

12 01100 01010

13 01101 01011

14 01110 01001

15 01111 01000

16 10000 11000

17 10001 11001

18 10010 11011

19 10011 11010

20 10100 11110

21 10101 11111

22 10110 11101

23 10111 11100

24 11000 10100

25 11001 10101

26 11010 10111

27 11011 10110

28 11100 10010

29 11101 10011

30 11110 10001

31 11111 10000
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poorly (Michalewicz, 1999). Wright (1991) claims that the use of real-valued genes

in GAs overcomes a number of drawbacks of binary coding. In real coding, each

variable is represented as a vector of real numbers with the same length as that

of the solution vector. Efficiency of the GA is increased because genotype into

phenotype conversion is not required. In addition, less memory is required because

efficient floating-point internal computer representations can be used directly; there

is no loss in precision due to formation of discreteness to binary or other values;

and there is greater freedom to use different genetic operators. Nonetheless, real

coding is more applicable and it seems to fit continuous optimization problems

better than binary coding. Eshelman and Schaffer (1993) suggested choosing any

of these coding mechanisms, whichever is most suitable for the fitness function.

Other authors, such as Michalewicz (1999), justify the use of real coding, showing

their advantages with respect to the efficiency and precision reached compared to the

binary one. Real coding has been the preferred choice for variable representation

in most of the applications found in water resources using GA.

Another form of real number representation is integer coding. In integer coding,

the chromosomes are composed of integer values rather than real numbers. The only

difference between real coding and integer coding is in the operation of mutation.

Population Size

The population size is the number of chromosomes in the population. The size of

a population depends on the nature of the problem, but typically a population

contains hundreds or thousands of possible solutions. Traditionally, the popula-

tion is generated randomly, covering the entire search space. Given upper and

lower bounds for each chromosome (decision variable), chromosomes are created

randomly so as to remain within the given limits. The principle is to maintain a

population of chromosomes, which represents candidate solutions to the problem

that evolve over time through a process of competition and controlled variation.

Each chromosome in the population has an assigned fitness to determine which

chromosomes are used to form new ones in the competition process, which is

called selection. The new ones are created using genetic operators such as cross-

over and mutation.

Larger population sizes increase the amount of variation present in the population

but require more fitness evaluations (Goldberg, 1989). Therefore, when the popula-

tion size is too large, users tend to reduce the number of generations in order to

reduce the computing effort, since the computing effort depends on the multiple of

population size and number of generations. Reduction in the number of generations

reduces the overall solution quality. On the other hand, a small population size can

cause the GAs to converge prematurely to a suboptimal solution. Goldberg (1989)

reported that a population size ranging from 30 to 200 was the general choice of

many GA researchers. Furthermore, Goldberg pointed out that the population size

was both application dependent and related to string length. For longer chromosomes

and challenging optimization problems, larger population sizes were needed to

maintain diversity because it allowed better exploration.
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Selection

Selection is the survival of the fittest within the GA. The selection process

determines which chromosomes are preferred for generating the next population,

according to their fitness values in the current population. The key notion in selection

is to give a higher priority or preference to better individuals. During each genera-

tion, a proportion of the existing population is selected to breed a new generation;

therefore, the selection operator is also known as the reproduction operator. All

chromosomes in the population, or in a proportion of the existing population, can

undergo the selection process using a selection method. This percentage is known as

the generation gap, which is defined by the user as an input in GAs. The selection

process emphasizes to copy the chromosomes with better fitness for the next genera-

tion than those with lower fitness values. This may lose population diversity or the

variation present in the population and could lead to a premature convergence.

Therefore, the method used in the selection process should be able to maintain the

balance between selection pressure and population diversity. There are several selec-

tion techniques available for GA optimization. Proportional selection, rank selection,

and tournament selection (Goldberg and Deb, 1991) are among the most commonly

used selection methods. These are briefly discussed below.

Proportional Selection Method
The proportional selection method selects chromosomes for reproduction of the

next generation with a probability proportional to the fitness of the chromosomes.

In this method, the probability (P) of selecting a chromosome for reproduction can

be expressed as

P5
ftiPN
i51 fti

ð3:5Þ

where fti is the fitness value of the ith chromosome in the current population of

size N, and
PN

i51 fti is the total fitness, which is the sum of fitness values of all

chromosomes in the current population.

This method provides noninteger copies of chromosomes for reproduction.

Therefore, various methods have been suggested to select the integer number of

copies of selected chromosomes for the next generation, including Monte Carlo,

roulette wheel, and stochastic universal selection. The roulette wheel selection

method is discussed next.

Roulette Wheel Selection The most common selection method is roulette wheel

selection. Goldberg (1989) reported that it is also the simplest method. The basic

implementation of the roulette wheel selection method assigns each chromosome

a “slice” of the wheel, with the size of the slice proportional to the fitness value of

the chromosome. In other words, the fitter a member is, the bigger slice of the

wheel it gets. To select a chromosome for selection, the roulette wheel is “spun,”

and the chromosome corresponding to the slice at the point where the wheel stops

is grabbed as the one to survive in the offspring generation.
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The main steps for the roulette wheel selection algorithm may be generalized as

follows:

1. The fitness of each chromosome, fti, and their sum
PN

i51fti are calculated, where the

population size is N.

2. A real random number, rand ( ), within the range [0,1] is generated, and s is set to be

equal to the multiplication of this random number by the sum of the fitness values,

s5 rand ð�Þ3 PN
i51 fti:

3. A minimal k is determined such that s#
Pk

i51 fti; and the kth chromosome is selected for

the next generation.

4. Steps 2 and 3 are repeated until the number of selected chromosomes becomes equal to

the population size, N.

Tournament Selection
Another selection technique is tournament selection, where randomly selected pairs

of chromosomes “fight” to become parents in the mating pool through their fitness

function value (Goldberg, 1989). Tournament selection runs a “tournament” among

two or more chromosomes chosen at random from the population, and selects the

winner in accordance with their fitness values, such that the one with the best

fitness is selected for crossover. This process is continued until the required number

of chromosomes is selected for the next generation. Selection pressure can be easily

adjusted by changing the tournament size. If the tournament size is larger, weak

chromosomes have less chance to be selected. In general, in tournament selection,

N chromosomes are selected at random and the fittest is selected. The most

common type of tournament selection is binary tournament selection, where just

two chromosomes are selected.

Rank Selection
In the rank-selection approach, each population is sorted in order of fitness, assigning

a numerical rank to each chromosome based on fitness, and the chromosomes are

selected based on this ranking rather than the fitness value using the proportionate

selection operator. The advantage of this method is that it can prevent very fit

chromosomes from gaining dominance early at the expense of less fit ones, thereby

increasing the population’s genetic diversity (Goldberg and Deb, 1991).

Roulette wheel selection, tournament selection, and rank selection are considered

to be the most common and popular selection techniques and have been used

frequently in many studies. However, there are many other selection techniques,

namely, elitist selection, generational selection, steady-state selection, and hierarchical

selection. These techniques may be used independently or in combination. Brief intro-

duction of those selection techniques are given next. A detailed review of selection

techniques used in GAs is presented by Shivraj and Ravichandran (2011).

Elitist Selection
The fittest chromosomes from each generation are selected for the next generation,

a process known as elitism. Most GAs do not use pure elitism, but instead use a

modified form where a single chromosome or a few of the best chromosomes from
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each generation are copied into the next generation. Elitism can be combined with

any other selection technique.

Generational Selection
The offspring of the chromosomes selected from each generation become the entire

next generation. No chromosomes are retained between generations.

Steady-State Selection
The offspring of the chromosomes selected from each generation go back into the

previous generation and replaces some of the less fit members. This process helps

to keep some chromosomes between generations.

Hierarchical Selection
Chromosomes go through multiple rounds of selection each generation. Lower-level

evaluations are faster and less discriminating, while those that survive to higher

levels are evaluated more rigorously. The advantage of this method is that it reduces

overall computation time by using faster, less selective evaluation to weed out the

majority of chromosomes that show little or no promise, and subjecting only those

who survive this initial test to more rigorous and more computationally expensive

fitness evaluation.

Crossover

The crossover operator is used to create new chromosomes for the next generation

by combining randomly two selected chromosomes from the current generation.

Crossover helps to transfer the information between successful candidates—

chromosomes can benefit from what others have learned, and schemata can be mixed

and combined, with the potential to produce an offspring that has the strengths of

both its parents and the weaknesses of neither. However, some algorithms use an

elitist selection strategy, which ensures that the fittest chromosome from one genera-

tion is propagated into the next generation without any disturbance. The crossover

rate is the probability that crossover reproduction will be performed and is an input

to GAs. For example, a crossover rate of 0.9 means that 90% of the population

is undergoing the crossover operation. A higher crossover rate encourages better

mixing of the chromosomes.

There are several crossover methods available for reproducing the next genera-

tion. In general, crossover methods can be classified into two groups depending on

the chromosomes representation (i.e., binary coding or real-value coding).

A number of crossover methods are discussed by Herrera et al. (1998) for binary

coding and real coding. The choice of crossover method primarily depends on the

application.

Crossover Operators for Binary Coding
In bit string coding, crossover is performed by simply swapping bits between the

crossover points. Different types of bit string crossover methods (Davis, 1991;

Goldberg, 1989) are discussed next.
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Single-Point Crossover Two parent chromosomes are combined randomly at a

randomly selected crossover point somewhere along the length of the chromosome,

and the sections on either side are swapped. For example, consider the following

two chromosomes, each having 6 binary bits. After crossover, the new chromo-

somes (i.e., referred as offspring or children) are created as follows if the randomly

chosen crossover point is 2 (Figure 3.3).

Multipoint Crossover In multipoint crossover, the number of crossover points are

chosen at random, with no duplicates, and sorted in ascending order. Then, the bits

between successive crossover points are exchanged between the two parents to

produce two new chromosomes. The section between the first bit and the first

crossover point is not exchanged between chromosomes. For example, consider the

same example of two chromosomes used in a single crossover. If the randomly

chosen crossover points are 2 and 4, the new chromosomes are created as shown in

Figure 3.4.

The two-point crossover is a subset of the multipoint crossover. The disruptive

nature of multipoint crossover appears to encourage the exploration of the search

space, rather than favoring the convergence to highly fit chromosomes early in the

search, thus making the search more robust.

Uniform Crossover Single-point and multipoint crossover define crossover points

between the first and last bit of two chromosomes to exchange the bits between

them. Uniform crossover generalizes this scheme to make every bit position a

potential crossover point. In uniform crossover, one offspring is constructed by

choosing every bit with a probability P from either parent, as shown next using the

same example, by exchanging bits at the first, third, and fifth position between

the parents (Figure 3.5).

Parents

Chromosome 1 0 1 1 1 1                                Offspring 1 0 1 0 0 0

Chromosome 2 1 0 0 0 0 Offspring 2 1 0 1 1 1

Crossover point

Figure 3.3 Single-point crossover.

Parents

Chromosome 1 0 1 1 1 1                                Offspring 1 0 1 0 0 1

Chromosome 2 1 0 0 0 0                                Offspring 2 1 0 1 1 0

Crossover points

Figure 3.4 Multipoint crossover.
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Crossover Operators for Real Coding
In real coding, crossover is simply performed by swapping real values of the genes

between the crossover points. Different types of real-value crossover methods have

been used. Assume that x1 5 ðx11; x12; . . . ; x1nÞ and x2 5 ðx21; x22; . . . ; x2nÞ are the two

chromosomes selected for crossover operation from the current population.

Different crossover operators that can be used in real-coded GAs are discussed

next.

Two-Point Crossover Two points of crossover i,j A (1,2, . . ., n2 1) are randomly

selected, provided that i, j and the segments of the parent, defined by them, are

exchanged for generating two offspring (Eshelman et al., 1989), y1 and y2, such that:

y1 5 ðx11; x12; . . . ; x2i ; x2i11; . . . ; x
2
j ; x

1
j11; . . . ; x

1
nÞ ð3:6Þ

y2 5 ðx21; x22; . . . ; x1i ; x1i11; . . . ; x
1
j ; x

2
j11; . . . ; x

2
nÞ ð3:7Þ

Random Crossover Two offspring are created:

y1 5 ðy11; y12; . . . ; y1nÞ and y2 5 ðy21; y22; . . . ; y2nÞ

The value of each gene in the offspring is determined by the random uniform

choice of the values of this gene in the parents:

yki 5
x1i if u5 0

x2i if u5 1

( )
; k5 1; 2 ð3:8Þ

where u is a random number that can have a value 0 or 1 (Syswerda, 1989).

Arithmetic Crossover Two offspring, y15 ðy11; y12; . . . ; y1nÞ and y2 5 ðy21; y22; . . . ; y2nÞ; are
produced, such that

y1i 5λ � x1i 1ð12λÞ � x2i ð3:9Þ

y2i 5λ � x2i 1ð12λÞ � x1i ð3:10Þ

where λ A[0,1].

Parents

Chromosome 1 0 1 1 1 1                                Offspring 1 1 1 0 1 0

Chromosome 2 1 0 0 0 0                                Offspring 2 0 0 1 0 1

Figure 3.5 Uniform crossover.
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Geometrical Crossover Two offspring, y1 5 ðy11; y12; . . . ; y1nÞ and y2 5 ðy21; y22; y2nÞ; are
created, where

y1i 5 x
1μ
i � x2ð12μÞ

i ð3:11Þ

y2i 5 x
2μ
i � x1ð12μÞ

i ð3:12Þ

where μA[0,1].

Geometric crossover in shown in Figure 3.6 (Michalewicz, 1999).

BLX-α Crossover Two offspring, y1 5 ðy11; y12; . . . ; y1nÞ and y2 5 ðy21; y22; . . . ; y2nÞ are

generated. where, yki is a randomly, uniformly chosen number from the interval

[Xmin2 Iα, Xmax1 Iα] and Xmax, Xmin, and I are defined as shown here:

Xmax 5maxfx1i ; x2i g ð3:13Þ

Xmin 5minfx1i ; x2i g ð3:14Þ

I5Xmax 2Xmin ð3:15Þ

Generally, BLX-α crossover gives the best results. And it is observed that the

higher value of α results in better solutions. As α increases the exploration level

increases, since the relaxed exploitation zones are spread over exploration zones,

thereby increasing the diversity levels in the population (Herrera et al., 1998).

For detailed descriptions of these and other crossover operators (e.g., Fuzzy,

SBX (Simulated binary crossover), UNDX (Unimodal normally distributed cross-

over), and simplex crossover), real-coding readers are referred to Deb (2003) and

Herrera et al. (1998).

Mutation

One further operator in GA is the mutation operator, which works on the level

of chromosome genes by randomly altering a gene value (Deb, 2003). Mutation

introduces innovation into the population by randomly modifying the chromosomes.

The operation is designed to prevent GA from premature termination, since it

prevents the population from becoming saturated with chromosomes that look alike.

Usually considered as a background operator, the role of the mutation operator is

often seen as guaranteeing that the probability of searching any given chromosome

3

xi
1 xi

2ai bi

2 3
μ=  2 μ= 1 μ=1

Figure 3.6 Geometrical crossover with different values

for μA[0,1].
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will never be zero. In GAs, mutation is randomly applied with low probability and

modifies elements in the chromosomes. Large mutation rates increase the probability

of destroying good chromosomes but prevent premature convergence. The muta-

tion rate determines the probability that mutation will occur. For example, if the

population size is 200, string length is 10, and mutation rate is 0.005, then only

10-bit positions will mutate in the whole population (i.e., 2003 103 0.0055 10).

Similar to crossover techniques, mutation methods can be classified according

to the binary coding or real-value coding of the GA.

Mutation for Binary and Gray Coding
In binary and gray coding systems, a chromosome mutation is performed at

randomly chosen genes by flipping bit 0 to l and vice versa (Goldberg, 1989;

Holland, 1975).

Mutation for Real Coding
Mutation in real-coded GA is performed, either by disarranging the gene values or

by randomly selecting the new values. For example, let x5 ðx1; x2; . . . ; xnÞ be a

chromosome and xi be a gene to be mutated. Then a random number x0i may be

chosen from a given search space of xi and will replace xi. Mutation for integer

coding is performed analogous to real-value coding, except that after mutation, the

value for that gene is rounded to the nearest integer.

A detailed discussion of other mutation operators may be found in related

textbooks and publications, for instance, see Herrera et al. (1998) and Deb (2003).

3.3 Review of GA Applications to Water Resource Problems

GAs can successfully deal with a wide range of problem areas. Briefly, the reasons

for this success, according to Goldberg (1994), are “(1) GAs can solve hard

problems quickly and reliably, (2) GAs are easy to interface to existing simulations

and models, (3) GAs are extensible, and (4) GAs are easy to hybridize. All these

reasons may be summed up in only one statement: GAs are robust.” GAs are

more powerful in difficult environments where the search space usually is large,

discontinuous, complex, and poorly understood. They are not guaranteed to find

the global optimum solution to a problem, but they are generally efficient at finding

acceptable solutions to many real-life problems.

Goldberg (1989) gives a comprehensive review of GA applications before 1989.

During the recent years, GA applications have grown enormously in many fields.

GAs have been the most commonly applied nature-inspired metaheuristic algorithms

in the water resource planning and management literature. Reviews of their applica-

tion in different fields of water resources are reported in Nicklow et al. (2010), Rani

and Moreira (2010), Labadie (2004), and Cunha (2002).

In this section, applications of GAs in the field of water resources have been

classified in different groups.
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3.3.1 Water Distribution Systems and Pump Scheduling Problems

Over the past two decades, considerable investment has been made in developing

and applying GAs to improve the design and performance of water distribution

systems. Interestingly, one of the earlier applications of GAs in water engineering

was the optimization of pump schedules for a serial liquid pipeline (Goldberg and

Kuo, 1987). Since then, there has been increasing interest in the application of GAs

to a wide variety of water distribution system problems, such as calibration of water

distribution models, optimal system design, and operation and pump scheduling.

Simpson et al. (1994) were the first to use GAs for water distribution systems.

They applied and compared a GA solution to enumeration and to nonlinear pro-

gramming. Vairavamoorthy and Ali (2005) presented a GA for the least-cost pipe

network design problem that discards the regions of the search space where

impractical or infeasible solutions are likely to exist, therefore improving search

efficiency.

Dandy and Engelhardt (2001) demonstrated the use of a GA to find a near-

optimal pipe replacement schedule so as to minimize the present value of capital,

repair, and damage costs. Mackle et al. (1995) were among the first to apply a

binary GA to pump scheduling problems by minimizing energy costs, subject

to reservoir filling and emptying constraints. Subsequently, Savic et al. (1997)

developed a multiobjective GA (MOGA) approach to determine pump scheduling.

To reduce the excessive run times required by the GA, van Zyl et al. (2004) devel-

oped a hybrid optimization approach, in which they combined a steady-state GA

with the Hooke and Jeeves hill-climbing method. Rao and Salomons (2007) devel-

oped a process based on the combined use of an artificial neural network (ANN)

for predicting the consequences of different pump and valve control settings and

a GA for selecting the best combination of those settings. The methodology has

successfully been demonstrated on the distribution systems of Valencia (Spain)

and Haifa (Israel). Munavalli and Mohan-Kumar (2003) and Prasad et al. (2004)

used GA for optimal scheduling of multiple chlorine sources.

Besides the above-mentioned papers, many other applications of MOGAs have

appeared in the water distribution system literature (Savic and Walter, 1997).

Prasad and Park (2004) and Vamvakeridou-Lyroudia et al. (2005) employed the

MOGA approach for optimal design of water distribution networks.

3.3.2 Sewer System Design Optimization

The optimal design of a sewer network aims to minimize construction costs while

ensuring adequate system performance under specified design criteria. GAs have

been the most popular and successful optimization techniques for the design of

sewer systems (Afshar et al., 2006; Farmani et al., 2006). Hybrid GAs and MOGAs

are becoming attractive in this field of study as well. Farmani et al. (2006) and

Guo et al. (2006) employed local search techniques to seed an NSGA II (Non-

dominated sorting genetic algorithm II) in the design of sewer networks.
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3.3.3 Water Quality and Waste Management

GAs have been applied successfully in the design and operation of water and

wastewater treatment plants and to other water quality management problems.

GA was applied by Suggala and Bhattacharya (2003) to identify process parameters

to remove organics from wastewater cost-effectively to meet pollutant removal

standards. For operation of a domestic wastewater treatment plant, Chen et al.

(2003) investigated the use of a GA to identify real-time control strategies, such as

pH and nutrient levels, electricity consumption, and effluent flow rates, for meeting

cost goals and effluent standards. Chen and Chang (1998) introduced a GA to solve

a nonlinear fuzzy multiobjective programming model, considering biochemical

oxygen demand and dissolved oxygen as water quality parameters, where the water

quality calculation was based on the Streeter�Phelps equation. Burn and Yulianti

(2001) explored waste load allocation problems using GAs. Yandamuri et al.

(2006) similarly proposed optimal waste load allocation models for rivers using

NSGA II. Kerachian and Karamouz (2005) extended some of the classical waste

load allocation models for river water quality management for determining the

monthly treatment or removal fraction to evaporation ponds. The high dimensionality

of the problem (large number of decision variables) was handled by using a sequen-

tial dynamic GA.

3.3.4 Watershed Planning and Management

Yeh and Labadie (1997) introduced the application of GAs to watershed planning

and presented a multiobjective watershed-level planning of stormwater detention

systems using MOGAs to generate nondominated solutions for the system cost and

detention effect for a watershed-level detention system. Harrell and Ranjithan

(2003) applied a GA-based methodology to identify detention pond designs and

land-use allocations within subbasins to manage water quality at a watershed scale.

Combined use of GA and simulation models can be seen in many watershed man-

agement studies. Muleta and Nicklow (2005) linked a GA with the Soil and Water

Assessment Tool to identify land-use patterns to meet water quality and cost objec-

tives. Perez-Pedini et al. (2005) combined a distributed hydrologic model with GA

for an urban watershed to determine the optimal location of infiltration-based best

management practices for stormwater management.

3.3.5 Groundwater System Optimization

Groundwater optimization problems include groundwater remediation design,

monitoring network design, groundwater and coastal aquifer management, param-

eter estimation, and source identification. Cunha (2002) and Mayer et al. (2002)

presented reviews of design optimization problems that apply traditional and

heuristic solution approaches to solving groundwater flow and contaminant trans-

port processes and remediation problems, while Qin et al. (2009) also reviewed

both simulation and optimization approaches used in groundwater systems.
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Rogers et al. (1995) was the first to apply a GA to a field-scale remediation

problem by using an ANN in place of numerical groundwater flow and the contam-

inant transport simulation model. Yan and Minsker (2006) proposed an adaptive

neural network GA that incorporates an ANN as an approximation model that

is adaptively and automatically trained within a GA, to reduce the computational

requirement of groundwater remediation problems. Zheng and Wang (2002)

applied a GA with response functions to solve a field-scale remediation problem

at the Massachusetts Military Reservation that included 500,000 nodes in the

simulation model and a 30-year planning horizon. Espinoza et al. (2005) proposed

the self-adaptive hybrid GA and demonstrated its ability to reduce computation

cost for groundwater remediation problems. Sinha and Minsker (2007) proposed

multiscale island injection GAs, which includes multiple population functions at

different spatial scales, to reduce the computational time to solve a field-scale

pump-and-treat remediation optimization problem.

Many studies have considered parameter uncertainty in solving groundwater

remediation optimization problems. Smalley et al. (2000) applied a noisy GA to

bioremediation design, with health risk included in the formulation. Wu et al.

(2006) compared a Monte Carlo simple GA (SGA) with a noisy GA to solve a sam-

pling network problem with uncertainty in the hydraulic conductivity. Hu et al.

(2007) presented an application of two-objective optimization of an in situ biore-

mediation system for a hypothetical site under uncertainty. Singh and Minsker

(2008) developed a probabilistic MOGA, which combines a method similar to the

noisy GA, with an additional archiving step with the NSGA II, and applied it to

two pump-and-treat problems—a hypothetical and a field-scale case study.

A number of works have proposed GA approaches to groundwater monitoring

network design (Chadalavada and Datta, 2008).

3.3.6 Parameter Identification

Parameter identification can be defined as a generalized term that denotes any

practice, including field or experimental work, to identify parameters for a model.

The parameter identification problem for most hydrologic applications is ill-posed,

multimodal, nonlinear, and nonconvex (Yeh, 1986). Wang (1991) was among the

first to apply the “simple” GA to the calibration problem (Nicklow et al., 2010).

Subsequently, many other studies have applied GAs and their variants to watershed

calibration. Zechman and Ranjithan (2007) developed a combined GA and genetic

programming methodology to address the difficulties associated with models used

for parameter estimation.

Tsai et al. (2003) and Mahinthakumar and Sayeed (2005) presented a similar

global�local optimization approach, where a GA was used as a global optimizer

to provide approximately optimal solutions that were fed in local optimization

approaches. Other applications of GAs for groundwater calibration can be found in

Wang and Zheng (1998).

NSGA II (Deb et al., 2000) and its variants have been widely used for multiob-

jective parameter identification in watershed modeling (Khu and Madsen, 2005;
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Tang et al., 2006). NSGA II, used for watershed calibration, has employed the

Pareto ranking scheme (used in Goldberg (1989)) to deal with multiple objectives.

3.3.7 Optimization of Reservoir System Operation

Optimization of reservoir operations involves allocation of resources, development

of stream flow regulation strategies, formulating operating rules, and making real-

time release decisions. A reservoir regulation plan, which is also referred to as an

operating procedure or a release policy, is a group of rules quantifying the amount

of water to be stored, released, or withdrawn from a reservoir or system of reser-

voirs under various conditions.

In a multireservoir system, input to a reservoir includes natural inflows, including

all other inflows from surface runoffs, streams, and undammed rivers and all releases

from adjacent upstream reservoirs on the same river or its tributaries. The output

from a reservoir may be through diversion (for irrigation or other uses), spillways

(for flood management), release to maintain ecological flow required in the river,

and penstocks (to generate power). Also, some water is lost due to evaporation from

the water surface and seepage into the ground.

A typical reservoir operation optimization model deals with constraints such as

the continuity equation, maximum and minimum storage in the reservoirs, maximum

and minimum releases from the reservoirs, and some case-specific obligations.

The most commonly accepted objectives are the optimality of the water supply for

irrigation, industrial and domestic use, hydropower generation, water quality improve-

ment, recreation, fish and wildlife enhancement, flood control, and navigation.

The reservoir operation rule is commonly defined by a function in which the

release of water from a reservoir for the given time interval is computed by using

the values of current reservoir storage and current and expected demands and

inflows. Generally speaking, the optimization problem takes the following form.

Maximization or minimization of the objective function, subject to the following

constraints:

� The continuity equation is satisfied.
� Storage is within the upper and lower bounds.
� Releases are within the upper and lower bounds.
� Final storages are satisfied.

Several approaches have been developed for the optimization of reservoir opera-

tions, defining reservoir operating rules, and many different techniques have been

studied with regard to this optimization problem. Numerous optimization models

have been proposed and reviewed by many scientists (Labadie, 2004).

Esat and Hall (1994) applied a GA to the four-reservoir problem. The objective

of this problem was to maximize the benefits from power generation and irrigation

water supply, having constraints on both storage and release from the reservoirs.

They concluded that GAs have a significant potential in reservoir operation

optimization, and GAs are superior over standard dynamic programming (SDP)

techniques in many aspects.
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Oliveira and Loucks (1997) used a GA to evaluate operating rules for multire-

servoir systems and indicated that optimum reservoir operating policies can be

determined by means of GAs. Wardlaw and Sharif (1999) evaluated GA formula-

tion to different reservoir operation problems, along with a range of sensitivity

analysis using different combinations of chromosome representation (binary, gray,

and real coding) and crossover and mutation probabilities. Further, they applied

GAs to the optimization of multireservoir systems (Sharif and Wardlaw, 2000), and

the results were found to be comparable with DDDP (Discrete differential dynamic

programming). Jothiprakash and Shanthi (2006) developed a GA model to derive

optimal operational strategies for a single reservoir and concluded that GA can be a

good alternative for real-time operation. It is important to highlight here that most

researchers have agreed that GA could be a potential alternative to SDP.

A number of researchers have come to advocate that a real-coded (or floating-

point) GA has a definite advantage over a binary-coded GA (Michalewicz, 1999).

In real-value coding, there is no discretization of decision-variable space. Attempts

have been made by many researchers to compare the performance of both GA

approaches in the context of reservoir systems optimization. Chang et al. (2005)

and Jian-Xia et al. (2005) compared the two approaches and found that real-coded

GAs were more efficient and faster than binary-coded GAs. Chen and Chang

(2007) proposed a real-coded, hypercubic-distributed GA (HDGA). Application

of this method to a multireservoir system in northern Taiwan showed that HDGAs

can provide much better performance than conventional GAs.

To reduce the computational requirements of the GA, it has been applied

in combination with other optimization methods. Cai et al. (2001) presented a

combined genetic algorithm�linear programming (GA�LP) strategy to solve the

large nonlinear reservoir systems optimization model. GA was used to linearize the

original problem in each time period, which is later solved sequentially using LP.

The hybrid GA�LP approach was able to find good approximate solutions to the

nonlinear models. In view of the computational advantages of combined GA�LP
strategies to deal with nonlinearities, Reis et al. (2006) proposed and evaluated a

stochastic hybrid GA�LP approach to the operation of reservoir systems, which

admits a variety of future inflow variability through a treelike structure of syntheti-

cally generated inflows.

Huang et al. (2002) presented a GA-based SDP model to cope with the

dimensionality problem of a multiple-reservoir system. A combination of GA and

DDDP was proposed by Tospornsampan et al. (2005) for the irrigation reservoir

operation problem. The main advantage of the hybrid approach is to save computa-

tional resources for optimizing parameters. Also, the good solutions obtained from

the GA are used as the initial policy for DDDP, therefore reducing the probability

of DDDP to trap in the local optima. Kuo et al. (2006) used a hybrid-neural GA for

water quality management of the Feitsui Reservoir in Taiwan.

Ganji et al. (2007) developed a modified version of the SGA, for application to

a reservoir operation problem. The SGA reduces the overall run time compared

to the SGA through dynamically updating the length of chromosomes. Karamouz

et al. (2007) solved a similar problem using a GA-K nearest neighborhood
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(GA-KNN) based optimization model. In this methodology, the lengths of chromo-

somes are increased based on the results of a K-nearest neighborhood (KNN) fore-

casting model. Nagesh Kumar et al. (2006) developed a GA model for obtaining an

optimal reservoir operating policy, but focusing on optimal crop water allocations

from an irrigation reservoir in the state of Karnataka, India. The objective of the

study was to maximize the relative yield from a specified cropping pattern.

Kerachian and Karamouz (2006, 2007) used an algorithm combining a water qual-

ity simulation model and a stochastic conflict resolution GA-based optimization

technique for determining optimal reservoir operation rules. Zahraie et al. (2008)

solved a similar problem using a GA KNN-based optimization model. The KNN

method is a nonparametric regression methodology that uses the similarity

between observations of predictors and K similar sets of historical observations to

obtain the best estimate for a dependent variable. K vectors of the past observa-

tions are obtained based on the minimum Euclidean norm from the present condi-

tion among all candidates.

Recently, Hinçal et al. (2011) applied GAs to a multireservoir system operation

to maximize the energy production in the system by using two different approaches:

the conventional (monthly) approach and the real-time approach. Comparison of

the results revealed that the energy amounts optimized by using the conventional

approach were higher than the energy produced in a real-time operation. However,

by using the real-time approach, a close approximation to the real operational data

had been achieved.

3.4 The GA Process for a Reservoir Operation Problem

The purpose of optimal reservoir operation is to obtain a policy to specify how

water in a reservoir is regulated to satisfy the desired objectives. The optimal

operating policy serves to reap the maximum benefit from the reservoir system

satisfying the system demands. Here, we assume that the operating policy is

composed of a decision variable, which is the release from the reservoir at each

time period. The benefit is the return from release of water, and the benefit function

is supposed to be given for each time period. Figure 3.7 shows a single reservoir

system and the variables associated with a reservoir operation problem.

Evpt (Evaporation)

It + Ppt (Inflow + precipitation)

Rt

Target release

Spill

Figure 3.7 Variables associated with a reservoir

operation problem.

65Genetic Algorithms and Their Applications to Water Resources Systems



Optimization aims to find the optimum combination of releases that will

maximize the return for the system. There are upper and lower limits for releases and

storages. These limitations form the constraints of the problem. Another constraint of

the problem is that the continuity equation is to be satisfied for each time period.

In general, a reservoir operation optimization problem may be expressed as follows:

The objective function is:

Maximization of net benefit

gtðRtÞ5Max
XN

t51
½NBtðRtÞ� ð3:16Þ

where NBt(Rt) is the benefit function, which is a function of the release at time

period t. Rt is the release for period t.

The objective function is subject to:

The continuity equation being satisfied, which is stated as:

St11 5 St 1 It 2Rt 1 Ppt 2Evpt ’t5 1; . . . ;N ð3:17Þ

where St, It, and Rt are the storage, inflow, and releases for the given reservoir

at time period t, and N is the time horizon for the problem under consideration.

Ppt and Evpt are precipitation over reservoir surface and evaporation from reservoir

surface during time period t, respectively.

Limits on storage impose constraints are of the form,

Smin # St # Smax ’t5 1; . . . ;N ð3:18Þ

which ensures that storage (St) will be within specified minimum and maximum

values.

Limits on release are as follows:

Rmin #Rt #Rmax ’ t5 1; . . . ;N ð3:19Þ

and release (Rt) should be within specified minimum and maximum ranges.

Releases are the decision variables in the problem. Decision variables exist

in the composition of the chromosomes of the population in the GA. Constraints

of releases are identified during the generation of the initial population, and as a

matter of fact, they are satisfied. The continuity equation is readily satisfied since

the storages are computed by using the continuity equation given in Eq. (3.17).

Other constraints are embedded into the objective function as a penalty function

(Chang et al., 2010; Hinçal et al., 2011). Thus, the constrained optimization

problem is converted to an unconstrained optimization problem. The reason why a

constraint problem is transformed into an unconstrained problem is to be able to

handle the problem by means of the GA. This is done as follows:

If St. Smax, then the penalty term
PN

t51fc1ðSmax2StÞ2g is introduced in an

objective function, i.e., Eq. (3.16).
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If St, Smin, then the penalty term
PN

t51fc2ðSmin2StÞ2g is introduced in an objec-

tive function, i.e., Eq. (3.16), where the deviations from maximum and minimum

storage are penalized by the square of deviation from constraints. Constants c1, and

c2 are defined as the weight of the penalty term in order for them to be in the order

of the benefit terms. The optimization problem, the objective function, and con-

straints of which are given above are adapted into the GA. Forthcoming steps will

show how GAs are used to solve this problem.

3.4.1 Generation of Initial Population

A chromosome representing search space will be

Cj 5 fR1;R2; . . . ;Rt; . . . ;RNg ð3:20Þ

Each gene within the chromosome represents a release made from a reservoir at

a specific time period and can take up any value between the upper and lower

bounds of releases. Since the decision variables are releases (Rt), and the maximum

and minimum releases are known for the reservoir, the number of chromosomes

generated within these upper and lower limits represent the entire search space for

the problem. The population may be generated using binary or real coding. In real

coding, randomly generated numbers within the upper and lower limits of the

releases will constitute chromosomes of the population. The number of chromo-

somes generated will depend on the assumed size of the population (population

size j5 1, . . ., M).

3.4.2 Calculation of State Variables

After the generation of the initial population, which is composed of chromosomes

containing releases (decision variables), calculation of storages (state variables)

comes next. Storage for every gene of the individuals is computed making use

of continuity Eq. (3.17), which is the equality constraint of the problem. Usage of

Eq. (3.17) in calculation of storage ensures that the continuity equation is satisfied

for every gene created. The inequality constraints ensure that the storages remain

within their limits and are satisfied by incorporating the related penalty terms into

the objective function.

3.4.3 Calculation of Fitness Values

In the next step, the fitness value for each chromosome is calculated. The fitness

assigned to each gene has direct influence on the eligibility for each chromosome

to live in the next generation. Penalty terms originating from violation of the con-

straints will make sure that the chromosomes violating the storage constraints will

not be selected in the next population.
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3.4.4 GA Operators

GA operators and selection, crossover, and mutation operators are implemented

on the population to get the best solution, as already discussed in Section 3.3.

The choice of selection technique depends on the nature of the problem, and

various techniques may be applied and compared to choose the best solution for

a particular problem.

Crossover operation is performed using a predefined crossover probability.

Crossover probability leads to deciding whether to put the parent chromosomes

under the process of crossover. A random number is generated and compared with

the crossover probability to specify whether to apply the crossover operators.

The selected chromosomes undergo crossover operation only if the random number

generated is greater than the probability of crossover. There is no rule to define

crossover probability, and usually a sensitivity analysis is carried out to get the best

value for crossover probability for a particular problem. The crossover operator

chosen also depends on the problem, and different crossover techniques may be

compared to select the best one for the problem chosen.

Mutation is randomly applied with low probability, typically in the range 0.001

and 0.02, to modify the genes of some chromosomes. The role of mutation is often

seen as a safety net to recover good genetic material that may be lost during selec-

tion and crossover operations. The mutation operator has been constructed to alter

the gene randomly with consideration to the predefined probability of mutation.

Ifthe random number generated is greater than the probability of mutation, the gene

is reproduced using a suitable mutation operator; otherwise, it remains the same.

3.4.5 Example: A Four-Time-Period Reservoir Operation Problem

To illustrate the main features of GAs, let us consider a reservoir operation problem.

The reservoir has an active storage capacity of 20 Million Cubic Meter (MCM). The

active storage volume, St, in the reservoir can vary from 0 to 20. Let Rt be the release

or discharge from the reservoir in time period t. Each variable is expressed as a vol-

ume unit for the period, t5 1, 2, 3, 4. In these time periods, the inflows to the reser-

voir are It5 14, 12, 6, and 8, respectively. The net benefit function for each time

period for unit release from the reservoir is defined by ft 5 11:51 1:5R2
t : Suppose

that only integer solutions are to be considered and the maximum release from the

reservoir cannot exceed 9, which is fixed as the target demand for each time period.

What is the optimal release Rt for each time period? Evaporation losses and precipi-

tation may be ignored.

Solution

Here, the objective of the problem is to maximize the net benefit from the released

water; therefore, the overall objective function may be written as

Max
X4

t51
ð11:51 1:5R2

t Þ2 cðRt29Þ2 ð3:21Þ
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where the first term defines the benefit from releases and the second term

minimizes the deviation from target demand. In this problem, c is a coefficient to

be chosen such that the objective function remains positive, and the value of c is

supposed to be 0.1.

The following are the constraints for this function:

The continuity equation:

St11 5 St 1 It 2Rt ’t ð3:22Þ

Limits on storages are as follows:

0# St # 20 ’t ð3:23Þ

Limits on releases are as follows:

0#Rt # 9 ’t ð3:24Þ

Since GA cannot explicitly handle constraints, these are taken care of by penalty

functions. If St$ 20, then penalty term
P4

t51fc1ð202StÞ2g will be introduced in

the objective function, and if St# 0, then penalty term
P4

t51fc1ð02StÞ2g will be
introduced instead.

Each individual solution set contains the values of all the decision variables

whose best values are being sought. For example, if there are four decision vari-

ables x1, x2, x3, and x4 to be obtained, these variables are arranged into a string

or chromosome, x1x2x3x4. If each decision variable is expressed using three digits,

then the chromosome 005021050279 would represent x15 5, x25 21, x35 50, and

x45 279.

Pairs of chromosomes from two parents join together and produce offspring,

who in turn inherit some of the genes of the parents. Altered genes may result in

improved values of the objective function. These genes will tend to survive from

generation to generation, while those that are inferior will tend to die.

A population of possible feasible solutions is generated randomly. Each chromo-

some contains the values of all the decision variables whose best values are being

sought. In this example, we are using numbers to the base 10; therefore, a sample

chromosome 8376 will represent the releases R15 8, R25 3, R35 7, and R45 6.

Another chromosome representing the solution to this problem, chosen randomly,

would be 2769. These two chromosomes, each containing four genes, can pair up

and have two children. Population size is a GA parameter—that is, the number

of solutions being considered. To show the iterations for this example, we assume

a population of 10 individuals. However, the best values of GA parameters are

usually decided by trial and error.

The GA process begins with the random generation of an initial population

of feasible solutions, proceeds with selection, random crossover, and mutation

operations, and then randomly generates the new population for the next iteration.

This process repeats itself with the new population and continues until there is no

significant improvement in the best solution found.
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For this example, the process includes the following steps:

1. Initial population is randomly generated, which is a set of solutions/chromosomes having

randomly generated decision-variable values within the range 0�9. The release cannot

exceed 9, therefore satisfying the release constraint.

2. The corresponding storages in the reservoir are calculated using the continuity Eq. (3.22),

assuming that the storage at the beginning of operation is 0. This ensures that the continu-

ity equation is satisfied. If the value of storage for any chromosome is bigger than 20 or

less than 0, then the penalty terms are added in the objective function. A negative value

of penalty coefficients is considered here, which will decrease the value of objective

function and the chromosome will not appear in the next generation. This will prevent

the violation of storage constraints.

3. The initial population undergoes the selection operation, and best decision variables are

selected using the roulette wheel selection method, as discussed in section “Selection”

earlier in this chapter.

4. The selected chromosomes are paired to determine whether a crossover is to be per-

formed on each pair, assuming that the probability of a crossover is 60% (Pc5 0.6). If a

crossover is to occur, we find the crossing site randomly, by creating a random number

between 1 and 3. Note that not all five pairs will undergo crossover operation. With 60%

probability, in iteration 1, it was seen that only the first, second, and fifth pairs (shown in

bold in Table 3.5) will crossover at randomly chosen site 3. The single-point crossover

operation is used in this example.

5. Next, determine if any chromosome in the resulting intermediate population is to be

mutated. For mutation, we assume the probability of mutation (Pm5 0.05) for each gene.

For this example, we assume that mutation increases the value of the number by 1, or

if the original number is 9, mutation does not change it to 10; rather, it keeps it as it is.

With this probability (103 43 0.055 2), two chromosomes will undergo mutation

randomly. In iteration 1, chromosomes 3 and 6 are randomly chosen for the mutation

operation, and for these chromosomes, the genes to be mutated are also chosen randomly

by generating a random number between 1 and 4. The mutated genes are shown in bold

and italics for iteration 1 in Table 3.5.

6. The last step creates a new population, and steps 2�5 are repeated for a predefined

number of generations or until the best solution is obtained.

These steps are performed for two iterations (see Table 3.5). The solution found

in the second iteration increases the sum of the fitness value from 2949.2 to 3747.2.

This process can continue till the process has converged to the best solution it can

find. The whole process may be repeated for different probabilities of crossover and

mutation to find out the optimal parameters for the GA process for this problem.

3.5 Conclusions

The GA has become a popular tool for researchers to solve a wide variety of water

resource management problems. This chapter has presented a brief review of the

theory of GAs and their applications to reservoir operation, groundwater manage-

ment, water quality, parameter estimation, and other problems related to water

resource management. GA has its own advantages and limitations when applied to
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Table 3.5 GA Iteration for Reservoir Operation Example

Index for

Chromosomes

Initial

Population

(R1 R2 R3 R4)

Storages Fitness

(fti)

Probability of

Selection (P)

R and

( )

s Cumulative

Fitness

Selected

Index

Selected

Chromosome

Crossover

(Pc5 0.5)

Mutation

(Pm5 0.05)
S1 S2 S3 S4

Iteration 1
1 2695 12 18 15 18 257.6 0.09 0.35 1039.33 257.6 4 8279 8279 8279

2 3595 11 18 15 18 249.2 0.08 0.41 1199.69 506.8 4 8279 8279 8279

3 9849 5 9 11 10 406.4 0.14 0.56 1653.02 913.2 6 3497 3499 3599

4 8279 6 16 15 14 337.6 0.11 0.93 2734.76 1250.8 10 6799 6797 6797

5 6538 8 15 18 18 240.8 0.08 0.20 580.40 1491.6 3 9849 9849 9849

6 3497 11 19 16 17 272 0.09 0.01 20.63 1763.6 1 2695 2695 3695

7 2676 12 18 17 19 226.4 0.08 0.92 2720.55 1990 10 6799 6799 6799

8 5882 9 13 11 17 274.8 0.09 0.04 121.27 2264.8 1 2695 2695 2695

9 2687 12 18 16 17 269.2 0.09 0.62 1837.25 2534 7 2676 2679 2679

10 6799 8 13 10 9 415.2 0.14 0.97 2868.57 2949.2 10 6799 6796 6796

Total
XN

i51
fti

5 2949:2

Iteration 2

1 8279 6 16 15 14 337.6 0.10 0.15 502.67 337.6 2 8279 8299 8299

2 8279 6 16 15 14 337.6 0.10 0.66 2203.79 675.2 7 6799 6779 6779

3 3599 11 18 15 14 334.8 0.10 0.62 2077.63 1010 7 6799 6779 6779

4 6797 8 13 10 11 366.8 0.11 0.87 2910.91 1376.8 9 2679 2699 2699

(Continued)



Table 3.5 (Continued)

Index for

Chromosomes

Initial

Population

(R1 R2 R3 R4)

Storages Fitness

(fti)

Probability of

Selection (P)

R and

( )

s Cumulative

Fitness

Selected

Index

Selected

Chromosome

Crossover

(Pc5 0.5)

Mutation

(Pm5 0.05)
S1 S2 S3 S4

5 9849 5 9 11 10 406.4 0.12 0.63 2135.69 1783.2 7 6799 6749 6749

6 3695 11 17 14 17 266.4 0.08 0.43 1457.26 2049.6 5 9849 9899 9899

7 6799 8 13 10 9 415.2 0.12 0.40 1354.91 2464.8 4 6797 6797 6797

8 2695 12 18 15 18 257.6 0.08 0.29 970.45 2722.4 3 3599 3599 3699

9 2679 12 18 17 16 294.8 0.09 0.52 1747.39 3017.2 5 9849 9849 9849

10 6796 8 13 10 12 346.8 0.10 0.09 311.00 3364 1 8279 8279 8279

Total
XN

i51
fti

5 3364

Iteration 3
1 8299 6 12 5 5 386

2 6779 8 7 7 5 366.8

3 6779 8 7 7 5 366.8

4 2699 12 8 5 5 343.2

5 6749 8 7 10 5 315.2

6 9899 5 6 5 5 506.4

7 6797 8 7 5 7 366.8

8 3699 11 8 5 5 352

9 9849 5 6 10 5 406.4

10 8279 6 12 7 5 337.6

Total
XN

i51
fti

5 3747:2



these complex problems, and researchers continue to modify the algorithm itself

or combine the use of the algorithm with other techniques. The description of the

GA procedure, along with the illustrative example given at the end of the chapter,

will be helpful for understanding the basics of the algorithm and its application to a

water resource problem.
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4.1 Introduction

Mathematical simulation models are essential tools to analyze and manage ground-

water systems. These models are based on analytical or numerical solutions of

partial differential equations (PDEs), which represent groundwater flow for any

given set of initial and boundary conditions. Analytical solutions are possible only

for simplified cases where the solution space has a fairly regular shape and aquifer

properties are homogeneous. However, these simplifications may not always be

valid. Therefore, numerical solutions are used. Many numerical solutions have

been proposed to solve the governing PDEs. Among them, the finite difference

(FD) and finite element methods are perhaps the most widely used techniques, and

many commercial and public domain software packages have been developed to

solve groundwater modeling problems by implementing one of these methods.

Although mathematical simulation models are widely used in groundwater

modeling, they are not capable of solving management problems per se. Therefore,

they are usually integrated with optimization algorithms to determine the best man-

agement strategies for utilizing groundwater resources efficiently. It is notable that

in groundwater modeling, mathematical models are integrated with optimization

algorithms using the so-called response matrix or embedding approach. In the

response matrix approach, an external mathematical simulation model is developed

to compute groundwater hydraulic head values at available observation locations

for given unit changes in pumping or injection rates. This approach is based on the

principles of superposition and requires a linear relationship between the ground-

water system and the given pumping or injection rates. After establishing mathe-

matical relationships between rates and groundwater heads, these relationships can
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be integrated into optimization algorithms to determine optimum groundwater

withdrawal or recharge strategies. Although this approach is an easy way of deter-

mining optimum pumping rates, it cannot be used for problems where pumping or

injection rates and groundwater heads are not linearly correlated. On the other

hand, in the embedding approach, a mathematical relationship between the individ-

ual pumping rates and the response of the aquifer (i.e., hydraulic heads) is not

sought. Instead, the hydraulic head distribution for a given set of observation wells

is determined by running the simulation model for the developed pumping scheme.

The embedding approach provides more comprehensive results than the response

matrix approach; however, its computational burden is usually greater, especially

for large flow domains and/or transient flow simulations.

It should be noted that the solution of a groundwater management problem using

simulation�optimization procedures requires the use of an independent

optimization model. In this model, the solution can be obtained using deterministic

and stochastic optimization algorithms. Deterministic algorithms are mostly gradi-

ent-based local search methods that require substantial information on the gradient

of the objective function to find a solution. Among them, linear programming (LP),

nonlinear programming (NLP), mixed-integer programming (MIP), and dynamic

programming (DP) are the most important solution algorithms. In order to solve an

optimization problem using these algorithms, partial derivatives of the objective

function and constraint sets with respect to the decision variables must be calcu-

lated. Although these algorithms are computationally effective, finding a globally

optimal solution using them is not an easy task unless the solution space of the

problem is convex. On the other hand, many problems in practice have nonconvex

solution spaces such that taking the partial derivatives may not be possible due to

nondifferentiability, discontinuity, and other factors. For such problems, obtaining

a globally optimal solution usually depends on the appropriateness of the initial

solutions. Therefore, stochastic optimization algorithms are usually preferred over

deterministic ones because of these potential pitfalls.

Stochastic optimization algorithms get their computational basis from processes

observed in nature. For instance, in the case of genetic algorithms (GAs), the

solution of an optimization problem is based on the mechanics of natural selection

(Goldberg, 1989; Holland, 1975), whereas the particle swarm optimization (PSO)

algorithm is adopted from social behaviors of bird or fish colonies (Kennedy and

Eberhart, 1995). Most widely used stochastic optimization algorithms are GA,

PSO, tabu search (TS Glover, 1977), simulated annealing (SA; Kirkpatrick et al.,

1983), ant colony optimization (ACO Dorigo and Di Caro, 1999), and harmony

search (HS; Geem et al., 2001). A vast number of published studies that provide

mathematical structures and application areas of these algorithms exist in the

literature. Although these algorithms are effective in exploring the entire solution

space without requiring any special initial solution, they usually require long

computational times to find precise, globally optimal solutions.

Recently, the number of applications of hybrid global�local optimization

approaches to the solution of optimization problems increased. In these algorithms,

the global search algorithm (stochastic optimization) starts the search process with

80 Metaheuristics in Water, Geotechnical and Transport Engineering



multiple solution points and explores the entire solution space through heuristic opti-

mization procedures. After this process, the local search algorithm gets the results of

global search as the initial solution and precisely solves the problem through

gradient-based optimization procedures. This solution sequence renders finding

globally optimum solutions by virtue of the strong exploring capabilities and fine-

tuning capabilities of global and local search methods, respectively. However, the

implementation of these algorithms can require advanced programming skills since

most of the local search methods requires the computation of partial derivatives, and

subsequently, the generation of the Jacobian and/or Hessian matrices.

This chapter focuses on a recently proposed optimization algorithm, HS�Solver
(Ayvaz et al., 2009), which is a viable tool to solve groundwater management pro-

blems. HS�Solver is a hybrid global�local optimization algorithm that combines

the HS algorithm with the spreadsheet application called Solver (Frontline

Systems, 2011). Solver is a built-in nonlinear optimization add-in that solves opti-

mization problems based on information provided in the cells of the spreadsheet.

This information includes user-defined constraints, lower and upper bounds of deci-

sion variables, and convergence criteria. The main advantage of using HS�Solver
as a local optimizer is that it does not require advanced programming skills to per-

form the mathematical calculations mentioned earlier. The performance of the

HS�Solver optimization algorithm is demonstrated here using two examples. In

the first example, a groundwater-pumping maximization problem for a well-known

hypothetical aquifer is solved. This problem was previously studied and solved by

several researchers using a variety of solution methods. In the second example, the

HS�Solver procedure is applied to a real-world groundwater flow model. The

model was previously developed for the Tahtalı watershed, located near the city of

Izmir in Turkey, which is a key component of the city’s water supply system.

4.2 Development of the Hybrid HS�Solver Algorithm
4.2.1 The HS Optimization Algorithm

HS is a recently proposed stochastic optimization algorithm that is inspired from

the improvisation process in music. In music, the purpose of improvisation is to

seek a better harmony by making several trials. This process is analogous to the

optimization process since the purpose of the optimization is to seek a better objec-

tive function value by making several iterations. In this analogy, the musicians in

the orchestra are analogous to decision variables, whereas the notes in the

musicians’ memories are analogous to the possible values of these variables. When

the musicians find a fantastic harmony through the notes in their memories, then,

in mathematical terms, an optimal solution is obtained through the corresponding

values of the decision variables. This is referred to as finding an elite harmony. In

music, generation of a new harmony is usually performed by playing a note from

memory, by playing a note that is close to another one in the memory, and by ran-

domly playing a note from the possible note range. Adaptation of these musical
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rules to optimization problems is performed by selecting a decision variable from

memory, by replacing the selected variable with another one that is close to the

current value, and by randomly selecting a decision variable from the possible

random number range. Figure 4.1 explains this analogy in detail.

As can be seen from Figure 4.1, we have a jazz trio in which each member

has some notes in his memory. The main goal of the trio is to find a musically

pleasing harmony by performing several improvisations. If we replace this trio

with a decision variable set, the problem of finding a musically pleasing harmony

can be converted to the problem of finding a globally optimum solution.

Figure 4.1 Analogy between the musical improvisation process and mathematical

optimization.

Source: Adapted from Ayvaz (2010).
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Depending on this analogy and the musical rules given earlier, solution of an opti-

mization problem can be performed as follows (Ayvaz, 2010).

Rule 1 (Memory Consideration): The first musician in Figure 4.1 has three notes, {Do,Si,

La}, in his memory. Let us assume that these notes correspond to the numbers

{2.7,3.1,1.2} in the optimization process. If this musician decides to select and play {La}

from his memory, it is equivalent to selecting and using a value of {1.2} as the first deci-

sion variable.

Rule 2 (Pitch Adjusting): The second musician in Figure 4.1 has also three notes, {Mi,Re,

Do}, in his memory, and these notes correspond to the numbers {1.1,5.1,1.9} in the opti-

mization process. Unlike the first one, this musician selects {Do} from his memory and

plays its neighbor {Do#}. This note corresponds to {1.9}, which is a small random neigh-

bor to {2.0}.

Rule 3 (Random Selection): The third musician in Figure 4.1 has also three notes, {La,Fa,

Sol}, in his memory. Although these notes were previously used, this musician decides to

select and play a note randomly; in this case, {Mi}. As opposed to the possible data set

stored in memory, {4.9} is randomly selected and used in this case, even if it does not

exist among the possible values in memory. After generating a new harmony, {La,Do#,

Mi}, through memory consideration, pitch adjusting, and random selection, the new deci-

sion variable set is generated as {1.2,2.0,4.9} in the optimization process.

Although HS is a recently proposed optimization algorithm, it has already been

applied to solve a wide variety of problems, such as aquatic environment�related
applications, structural design, operations research, information technology, trans-

port-related problems, energy applications, and medical studies. The mathematical

statement of HS algorithm can be given as follows.

Let f ðx!Þ be an objective function to be minimized or maximized, N be the

number of decision variables, xk be a decision variable (k5 1, 2,. . ., N), and x
!

be a

vector which contains xk, such that x
!

5 ½x1; x2; . . .; xN �T; where T is the transpose

operator, M is the number of inequality constraints, giðx!Þ is an inequality constraint

(i5 1, 2,. . ., M), P is the number of equality constraints, hjðx!Þ is an equality

constraint (j5 1, 2,. . ., P), and xk,min and xk,max are the lower and upper bounds of

decision variables (k5 1, 2,. . ., N).
Based on these definitions, the optimization problem can be formulated as

follows:

min or max f ð x!Þ ð4:1Þ

subject to

gið x!Þ$ 0; i5 1; 2; . . .;M ð4:1aÞ

hjð x!Þ5 0; j5 1; 2; . . .;P ð4:1bÞ

xkA½xk;min; xk;max�; k5 1; 2; . . .;N ð4:1cÞ
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Just as the other heuristic algorithms do, HS includes some solution parameters,

which are harmony memory size (HMS), harmony memory considering rate

(HMCR), pitch adjusting rate (PAR), and the termination criterion. Harmony mem-

ory (HM) is a two-dimensional solution array that includes decision variables and

calculated objective function values. HMCR and PAR parameters are the probabili-

ties that are used to generate new solution vectors and maintain the diversity of the

solution. After setting these parameters (recommended parameter ranges will be

provided later), elements of the HM are randomly filled, such that

xlk 5 xk;min 1 rð0; 1Þ3 ðxk;max 2 xk;minÞ , ðk5 1; 2; . . .;N; l5 1; 2; . . .;HMSÞ where r

(0,1) is a uniform random number between 0 and 1. After the filling process, the

value of the objective function is calculated using Eq. (4.2):

x11 x12 ? x1N21 x1N

x21 x22 ? x2N21 x2N

^ ^ & ^ ^

xHMS21
1 xHMS21

2 ? xHMS21
N21 xHMS21

N

xHMS
1 xHMS

2 ? xHMS
N21 xHMS

N

f ðx1Þ
f ðx2Þ
^

f ðxHMS21Þ
f ðxHMSÞ

���������������

3
7777777775

2
6666666664

ð4:2Þ

Note that the value of HMS depends on the problem type. Nevertheless, a value

of 10#HMS# 50 is recommended, which suits the solution of many optimization

problems. Normally, HS or other stochastic optimization methods cannot solve

constrained optimization problems by themselves, and some auxiliary equations are

needed to facilitate the optimization. Therefore, it is necessary to implement the

so-called penalty functions. These functions are used to satisfy the inequality and

equality constraints given in Eqs. (4.1a) and (4.1b). They also replace a constrained

problem with a series of unconstrained problems whose solutions ideally converge

to the solution of the constrained problem. There are many penalty approaches in

literature, including static, dynamic, adaptive, and death penalties. For instance, a

static penalty function can be used to calculate the objective function values subject

to the given constraint sets as follows:

f 0ð x!Þ5 f ð x!Þ1
XM
i51

αi 3Gi 1
XP
j51

βj 3Hj ð4:3Þ

Gi 5min½0; gið x!Þ�2 i5 1; 2; . . .;M ð4:3aÞ

Hj 5 jhjð x!Þj2 j5 1; 2; . . .;P; ð4:3bÞ

where f 0ðx!Þ is the penalized objective function value; αi and βj are the penalty

coefficients, which are mostly problem-dependent; and Gi and Hj are the constraint

functions. After generating the initial HM and calculating the corresponding
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objective function values, the next task is to generate a new solution vector

x05 ðx01; x02; x03; . . .; x0NÞ; such that the elements of this vector are selected from either

HM or any other possible random range. This process is controlled by the HMCR

parameter. Note that this parameter is defined as the probability of selecting a deci-

sion variable from HM or otherwise. With this purpose, N uniform random num-

bers are generated ðe:g:; rið0; 1Þ; i5 1; 2; . . .;NÞ and compared to HMCR. If the

condition of ri (0,1),HMCR is satisfied, it means that the value of the ith decision

variable is randomly selected from HM such that x0iA½x1i ; x2i ; . . .; xHMS
i �: Otherwise,

it is randomly selected from the possible random range such that x0iAðxi;min; xi;maxÞ:
After this process, decision variables that are selected from HM are evaluated to

determine whether pitch adjusting is necessary. This procedure is controlled by the

PAR parameter, which is the probability of pitch adjusting. Therefore, N uniform

random numbers are generated ðe:g:; rjð0; 1Þ; j5 1; 2; . . .;NÞ and compared to

PAR. If rj (0,1), PAR, then the jth decision variable is subject to a slight change.

Otherwise, nothing is done. These procedures can be stated as follows:

If rið0; 1Þ,HMCR

x0i’x0iA½x1i ; x2i ; . . .; xHMS
i �

If rjð0; 1Þ, PAR

x0j’x0j 6 rjð0; 1Þ3 bw

Else

x0j’x0j
End If

Else

x0i’x0iAðxi;min; xi;maxÞ
End If

ð4:4Þ

where bw is a bandwidth that is used to perform slight changes. The values of

HMCR and PAR largely affect the convergence behavior. For instance, if the value

selected from HMCR is too low, only a few elite harmonies are selected and the

algorithm may converge slowly; on the other hand, if the value selected is too

high, the pitches in HM are mostly used and other random possibilities may not be

explored (Yang, 2009). However, if the value selected from PAR is too low, a slow

convergence is observed due to the exploration of a small subspace; a high value

from PAR may cause the algorithm to work in a random search (Yang, 2009).

According to experiences in practice, 0.70#HMCR# 0.95 and 0.20# PAR# 0.50

are plausible parameter ranges for solving optimization problems. After generating

a new solution vector, the value of the objective function is calculated and

compared to the worst one in HM. If the new objective function value is better

than the worst one, the newly generated solution vector is replaced with the worst

one in HM. Note that HS algorithm searches for an optimum solution by iterating

from steps 3 to 5 until the given termination criterion is satisfied. The termination

criterion is problem specific and is determined by the programmer. In some studies,

terminating the solution after a given number of iterations is also possible, as is

done in the example given in this chapter.
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4.2.2 The Hybrid HS�Solver Optimization Algorithm

Stochastic optimization algorithms are effective in finding global or near-global

optimum solutions. However, they can require long computational times to find a

solution precisely. Therefore, the use of hybrid optimization algorithms is usually

preferred due to their ability to find global optimum solutions. The main idea of

hybrid algorithms is to combine the strong exploration of the global search

approach and the fine-tuning capabilities of the local search approach. Although

these algorithms provide better results than both global and local searches by them-

selves, they may require high-level programming skills; therefore, implementing

them may not be an easy task for less experienced users.

HS�Solver, first proposed by Ayvaz et al. (2009), is a new global�local optimi-

zation algorithm, which does not require knowledge about programming gradient-

based optimization algorithms. Solver is a gradient-based optimization add-in, and

most commercial spreadsheet products (e.g., Microsoft Excel, which is used in

the example in this chapter) include it. It solves optimization problems using the

GRG2 algorithm (Lasdon et al., 1978) by using quasi-Newton and conjugate

gradient methods in finding the search directions. Since Solver works with Excel,

the development of a hybrid solution approach in Excel is necessary. Therefore,

three separated Microsoft Visual Basic for Applications (VBA) codes have been

developed using the Visual Basic Editor in Excel. The first VBA code is for the

HS algorithm and aims to solve an optimization problem on the VBA platform.

The second code calls the Solver add-in, which is created with the macro recording

feature in Excel. A macro is a series of commands to accomplish a task

automatically, and the source code of a macro can be easily modified in the Visual

Basic Editor. The main advantage of using the macro recorder is that the recorded

VBA code runs Solver automatically instead of having to call it manually. Finally,

the developed final VBA code is used to link both running codes. In this linkage, if

the newly improvised solution vector is better than the worst one stored in HM,

this vector is subjected to a local search using Solver with a probability of Pc. The

reason to use Pc is to prevent the application of local searching to all the solutions,

since this can lead to slow convergence. Our trials, as well as the recommendations

of other researchers (Fesanghary et al., 2008) indicate that Pc5 0.10 is sufficient to

solve many optimization problems. After the selected convergence criterion of

Solver is satisfied (default convergence criteria are used), the solution is updated as

outlined in the previous section.

4.3 Formulation of the Management Problem

Groundwater management can be defined as selecting the best management

strategy to maximize the economic, environmental, and hydraulic benefits (Willis

and Yeh, 1987). In this maximization process, some managerial and technical con-

straints (e.g., well capacities, hydraulic heads, water demands, and drawdowns)

must be taken into account by the optimization model. The response of the
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groundwater system is determined by running the groundwater flow model for a

particular management scenario. For this purpose, the analytical or numerical solu-

tion of the governing groundwater flow equation is linked to the optimization

model. Groundwater management problems are usually studied at the basin scale;

therefore, two-dimensional areal groundwater models are generally used, where

the thickness of the aquifer is negligible compared to the lateral dimension of

the model domain. The governing equation for two-dimensional, isotropic, transient

groundwater flow for an unconfined aquifer can be given as follows:

@

@x
Kh

@h

@x

� �
1

@

@y
Kh

@h

@y

� �
1R2

XN
i51

Qiδðxi; yiÞ5 Sy
@h

@t
ð4:5Þ

where x and y are the Cartesian coordinates, K is the hydraulic conductivity, h is

the hydraulic head, R is the areal recharge rate, N is the number of pumping/injec-

tion wells, Qi is the pumping/injection rate at well i, δ(xi,yi) is a Dirac delta

function evaluated at point (xi,yi), and Sy is the specific yield. As indicated previ-

ously, the solution of Eq. (4.5) can be obtained with analytical and numerical

solution methods. However, analytical solutions can be used only for simplified

cases where the model domain has a simple geometry and aquifer properties are

homogeneous. Therefore, numerical solution methods are usually preferred to solve

this equation. Although numerical solutions do not provide the exact solutions that

analytical solutions do, in a practical sense, they are usually a very efficient way to

solve optimization problems. Note that for the case studies presented in this

chapter, Eq. (4.5) is solved within the framework of MODFLOW (Harbaugh,

2000), which is a modular, FD-based groundwater flow model developed by the

US Geological Survey (USGS). This model, which is an open-source code, is

widely used by hydrogeologists to simulate the flow of groundwater through aqui-

fer systems. In MODFLOW, the flow domain is subdivided into grid blocks where

soil properties and sinks/sources are assumed to be uniform. Combination of these

grid blocks in three dimensions generates a block-centered grid structure, as shown

in Figure 4.2. As can be seen, the generated grid structure consists of some grid

blocks with dimensions of Δxj3Δyi3Δzk, where the subscripts i, j, and k corre-

spond to the row, column, and layer numbers, respectively. The dashed lines on the

grid structure represents the flow domain, where each block inside this domain cor-

responds to active FD cells. In order to simulate the groundwater flow process, the

FD form of Eq. (4.5) is assigned to all the active cells (e.g., the black circles) and

thereby, the partial differential equation governing groundwater flow is replaced

with a set of much simpler algebraic equations. The resulting algebraic, linear

equation set is solved by the built-in matrix solvers of MODFLOW. As indicated

previously, groundwater flow problems usually are solved in two dimensions for

cases where variations in geometry and aquifer properties in the vertical dimension

are not significant. So, only one layer of Figure 4.2 is considered for all the solu-

tions given in this chapter. After developing the two-dimensional MODFLOW
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model, it is integrated into the HS�Solver-based optimization model to get the

aquifer’s response for the generated pumping rates. With this purpose, the optimi-

zation model calls MODFLOW in each iteration to solve for hydraulic heads. Then

the MODFLOW solution results are passed to the optimization model to evaluate

the objective function.

Groundwater management problems can be classified as either the hydraulic

management or the groundwater quality management model. In the hydraulic man-

agement model, the main objective is to maximize the groundwater-pumping rate

or minimize the total pumping cost. In either scenario, the decision variables are

the pumping rates of available wells. The constraints for pumping rates can be set

as a range consisting of lower and upper bounds. Similarly, hydraulic head values

at certain wells can be constrained by defining a specified lower bound or a water

demand can be specified that must be met. On the other hand, for the groundwater

quality management model, the main objective is usually to minimize the remedia-

tion cost to satisfy any given water quality standards at the pumping wells. In this

chapter, the solution of the pumping maximization management problem (hydraulic

management) is illustrated.

Depending on the constraints, the management model can be stated in the

following manner:

z5max
XN
i51

Qi 2PðhÞ
( )

ð4:6Þ

Figure 4.2 MODFLOWs three-dimensional grid structure.

Source: Adapted from Harbaugh (2000).
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subject to

hi $ hi;min i5 1; 2; 3; . . .;N ð4:6aÞ

Qi;min #Qi #Qi;max i5 1; 2; 3; . . .;N ð4:6bÞ

PðhÞ5 λjhi;min 2 hij if hi , hi;min

0 if hi $ hi;min
i5 1; 2; 3; . . .;N

�
ð4:6cÞ

where hi,min is the minimum permissible hydraulic head value at well i; Qi,min and

Qi,max are the lower and upper bounds of the pumping rates at well i; P(h) is the

penalty function, which takes a zero value if no hydraulic head constraint is vio-

lated (otherwise, it varies linearly with the magnitude of constraint violation); and

λ is a problem-dependent penalty coefficient. Note that a larger λ means that

greater emphasis will be put on satisfying the constraints. Equation (4.6) states in

simpler terms that the amount of pumped groundwater from the aquifer is

maximized until the predefined hydraulic head limits at certain well locations are

triggered. Figure 4.3 shows the flowchart of the proposed solution model.

4.4 Numerical Applications

In this section, the application of the hybrid HS�Solver optimization algorithm is

demonstrated with two examples. The first example deals with the solution of a

groundwater-pumping maximization problem. The model domain is a hypothetical

aquifer model that was studied previously by other researchers for illustrating dif-

ferent solution approaches. The second example is a real-world case, which aims to

solve the same optimization problem on the Tahtalı watershed (in Izmir, Turkey).

For both case studies, HS solution parameters are set as follows: HMS5 10,

HMCR5 0.95, and PAR5 0.50.

4.4.1 Example 1

This example deals with the solution of groundwater-pumping maximization

problem on a hypothetical unconfined aquifer system. This problem was first

studied by McKinney and Lin (1994) using LP and GA approaches. Several years

later, the same problem was solved using GA and SA (Wang and Zheng, 1998), the

GA-based SA penalty function approach (GASAPF) (Wu et al., 1999), the shuffled

complex evolution (SCE) (Wu and Zhu, 2006), and HS (Ayvaz, 2009). Figure 4.4

shows the plan view and cross-section of the hypothetical aquifer system.

As can be seen from Figure 4.4, the aquifer system has no-flow boundary condi-

tions in the north and south and a specified head condition in the east and west.

Hydraulic conductivity distribution is assumed to be homogeneous with a value of

50 m/day. It is also assumed that a constant recharge of 0.001 m/day is applied
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throughout the flow domain. There are 10 pumping wells in the aquifer and the

main objective is to maximize the pumping rates of these wells using the hybrid

HS�Solver algorithm subject to certain constraints. The solution for hydraulic

head is obtained using a MODFLOW model by discretizing the flow domain into

rectangular FD-grid blocks. Maximization of the pumping rates of 10 wells is per-

formed subject to hmin
i 5 0; Qmin

i 5 0; and Qmax
i 5 7000 ði5 1; 2; . . .; 10Þ: Value of

the weighting factor (λ) and the maximum number of iterations are both set to

10,000. For these settings, comparison of identification results with those obtained

by other solution approaches is given in Table 4.1.

Figure 4.3 Flowchart of the proposed solution model.
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Figure 4.4 Hypothetical aquifer system used in the example.

Table 4.1 Comparison of the Identified Pumping Rates (m3/day)

Well No. LP1 GA1 GA2 SA2 GASAPF3 SCE�UA4 HS5 HS�
Solver

1 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000

2 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000

3 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000

4 6,000 7,000 5,000 6,200 6,056 5,987 5,904 6,197

5 4,500 2,000 5,000 4,700 4,290 4,477 4,590 3,973

6 6,000 6,000 6,000 6,200 6,056 5,986 5,904 6,197

7 6,800 7,000 7,000 6,650 6,774 6,814 6,821 6,800

8 4,100 4,000 4,000 4,000 4,064 4,094 4,121 4,157

9 4,100 4,000 4,000 4,000 4,064 4,094 4,120 4,156

10 6,800 7,000 7,000 6,650 6,774 6,814 6,820 6,800

Total Pumping 59,300 58,000 59,000 59,400 59,078 59,266 59,279 59,281

Number of

Simulations

N/A 640 27,800 17,200 N/A N/A 8,843 3,260

1McKinney and Lin (1994)
2Wang and Zheng (1998)
3Wu et al. (1999)
4Wu and Zhu (2006)
5Ayvaz (2009)
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It can be observed from Table 4.1 that although the pure HS-based solution

model found an objective function value of 59,279 m3/day, this value improved

slightly to 59,281 m3/day with the addition of Solver to the optimization model.

This result agreed closely with LP (59,300 m3/day), the global optimum solution

for this problem. More important, comparison of the required number of simula-

tions also implies that HS�Solver is more efficient because HS required 8843

iterations to find a solution. This number was reduced to 3260 (this number is the

sum of HS and Solver iterations) with the inclusion of Solver.

4.4.2 Example 2

In this example, the applicability of the HS�Solver approach is demonstrated for a

groundwater management problem of the semiurban Tahtalı watershed located in

Izmir, Turkey. This watershed has a drainage area of 550 km2 and is a subwa-

tershed of the K. Menderes River watershed. As of 2010, the Tahtalı dam reservoir

(38	080N; 27	060E) provides about 36% of Izmir’s total water supply.

An areal, steady-state groundwater flow model was previously developed by

Elçi et al. (2010) to calculate groundwater fluxes and the water budget for the

surficial aquifer of the Tahtalı watershed. This one-layered model is set up for stea-

dy-state groundwater flow conditions and is based on MODFLOW. The spatial res-

olution of the FD grid is 1503 150 m2. The boundaries of the model were defined

such that they encompass the entire area of interest and coincide with hydrological

boundaries (e.g., sea, lake, or watershed boundaries). Figure 4.5 shows the general

location map of the study area, boundaries of the groundwater flow model, and the

locations of the pumping wells. The watershed is under environmental stress, in

particular with respect to groundwater. There are many small communities, green-

houses, and farms in the study area, and each of them relies on groundwater to sat-

isfy their water demand. Although many water supply wells were drilled in the

surficial aquifer, only 17 wells with high pumping rates are considered since

the solution with all the pumping wells may not be feasible (Figure 4.5). Therefore,

the number of decision variables for this example is 17.

The solution of this problem by the HS�Solver algorithm is subject to

Qmin
i 5 0; Qmax

i 5 20; 000; and hmin
i 5 0:75 ~hi where ~hi represents the hydraulic head

value with no pumping at the ith well, (i5 1,2,. . .,17). The values of λ and the

maximum number of iterations is the same as for Example 1. It should be noted

that this problem is solved using both pure HS and HS�Solver algorithms in order

to compare the identification results. For both solutions, same initial HM is used,

which means that the optimization procedures begin with the same initial solutions.

This situation can be seen in the convergence plot given in Figure 4.6, where both

HS and HS�Solver start out with the exact same objective function value. Because

the constraint set given in Eq. (4.6c) is not satisfied in the first iteration steps, the

objective function inherently takes on some penalty values. Reaching a solution

without penalty values requires 92 iterations in HS, while this number is reduced to

13 in HS�Solver. For these solutions, the comparison of the identified pumping

rates is shown in Table 4.2.
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Figure 4.5 General location map of the study area and the boundaries of regional

groundwater flow.

Source: Adapted from Elçi et al. (2010).
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The results given in Table 4.2 show that the orders of magnitude of the identified

pumping rates are comparable and that there are some differences between the solu-

tions of HS and HS�Solver, which can be associated with the used solution

schemes. While HS resulted with an objective function value of 192,878 at the end

of the 10,000th iteration, HS�Solver obtained a function value of 194,478. Note

that HS�Solver found approximately the same objective function value with HS at

the end of the 4761st iteration, which corresponds to a reduction of approximately

50% in the required number of iterations.

4.5 Conclusions

In this chapter, a linked simulation�optimization procedure to solve groundwater

management problems is introduced and illustrated. In this procedure, groundwater
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Figure 4.6 Convergence histories of pure HS and HS�Solver solutions.
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flow processes are simulated using MODFLOW as the flow modeling code. This

code is then coupled to an optimization model where the hybrid HS�Solver
optimization algorithm is used as the solution method. The performance of this pro-

cedure is illustrated with two examples with hypothetical and real-world model

domains. The following conclusions can be drawn from the results of this chapter:

� Most of the local search algorithms require programming of some mathematical opera-

tions such as partial derivatives and Jacobian or Hessian matrices. However, HS�Solver
does not require vast knowledge of programming local search methods, which is an

important advantage of this method.
� The optimization procedure outlined in this chapter can solve some optimization pro-

blems within reasonable computation times. The applications given in this chapter are

appropriate examples for this type of optimization problem. Larger flow domains, finer

finite-difference grids, or the consideration of transient flow conditions result in having a

higher computational burden.
� Typically, problems do not occur in HS�Solver when taking the partial derivatives of

the objective function with respect to the decision variables, as it is the case for any

other gradient-based algorithm. However, it is possible to face difficulties in taking the

partial derivatives when working with different problem setups. This problem can be

observed, for instance, if the decision variables are discrete as opposed to continuous. In

such cases, the inclusion of Solver into a HS-based optimization model cannot improve

the objective function value.

Table 4.2 Comparison of the Identified Pumping

Rates (m3/day)

Well No. HS HS�Solver

1 20,000 20,000

2 20,000 20,000

3 4,513 4,924

4 20,000 20,000

5 20,000 20,000

6 20,000 20,000

7 3,043 3,166

8 3,150 4,121

9 519 1,632

10 0 0

11 12,663 12,807

12 7,507 6,392

13 9,415 9,263

14 9,454 9,368

15 20,000 20,000

16 19,843 20,000

17 2,771 2,806

Total Pumping 192,878 194,478
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support of this study.

References

Ayvaz, M.T., 2009. Application of harmony search algorithm to the solution of groundwater

management models. Adv. Water Resour. 32 (6), 916�924.
Ayvaz, M.T., 2010. Solution of groundwater management problems using harmony search

algorithm. In: Geem, Z.W. (Ed.), Recent Advances in Harmony Search Algorithm.

Springer, Berlin/Heidelberg.

Ayvaz, M.T., Kayhan, A.H., Ceylan, H., Gurarslan, G., 2009. Hybridizing harmony search

algorithm with a spreadsheet solver for solving continuous engineering optimization

problems. Eng. Optim. 41 (12), 1119�1144.
Dorigo, M., Di Caro, G., 1999. Ant colony optimisation: a new meta-heuristic. In:

Proceedings of the Congress on Evolutionary Computation, Vol. 2, pp. 1470�1477.
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Genetic Algorithm and Game Theory
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5.1 Introduction

Traditionally, optimization of water distribution networks (WDNs) was done based

on the simulation as well as experience, but in recent decades, scientists have used

mathematical programming methods to optimize the networks. The optimal design

of WDN is the real problem of optimization that includes finding the best way to

transfer the water from the sources to the users and satisfy their requirements.

Many researchers have reported algorithms for minimizing the network cost by

applying a large variety of techniques, such as linear programming, nonlinear pro-

gramming, and global optimization methods. However, a reliable and efficient

method has not been found yet. Most results of the researches are scientific and

have been tested on small WDNs, but some of the methods have been tested on

large-scale real networks (Banos et al., 2010). In this research, optimization of

WDNs by biobjective genetic algorithm (GA) (minimizing cost and maximizing

pressure) is done. There is a trade-off between the benefit and the pressure; thus by

increasing the pressure, the benefit will be decreased. Classical optimization meth-

ods usually produce one solution, while GA analysis produces all the possible solu-

tions and finally will present the best solution.

For example, Goulter and Bouchart (1990) optimized a WDN with two

objectives, including maximizing of the reliability and minimizing the cost.

They concluded that the WDN with the objective function of reliability is a

complex problem, as there is no exact definition for reliability in the network.

Also Simpson et al. (1994) have compared using GAs with other methods in

optimization of water pipelines and pointed out the advantages of this algo-

rithm. Savic and Walters (1997) have used GA for minimizing WDN cost.

Todini (2000) presented a heuristic method considering cost function and resil-

ience index, a reliability measure, as the objectives. This method solves for

minimum cost networks, heuristically, by fixing a value of resilience index

between 0 and 1. Walski (2001) stressed the need for the development of new

Metaheuristics in Water, Geotechnical and Transport Engineering. DOI: http://dx.doi.org/10.1016/B978-0-12-398296-4.00005-2

© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398296-4.00005-2


models, which addresses not only the minimization of network cost but also the

maximization of net benefits. In recent studies, Behzadian (2008) presents opti-

mal methods for sampling in designing the WDN with multiobjective decision-

making approaches and also the GA. Matijasevic et al. (2010) have used the

MATLAB software to optimize a WDN. Wu et al. (2010) have done a study

on greenhouse gas emissions and their effect on the optimization of water dis-

tribution systems, in which reducing costs and the effect of the greenhouse

gases were considered.

There is more than one output solution of GA; therefore, the optimum point

selection will be the next step. As this optimization problem has two objective

functions, game theory has been used in this study to select the optimum solu-

tion. Lippai and Heaney (2000) have used the game theory to solve the water

conflict problem in a WDN. Madani (2010) studied the applicability of game

theory to water resource management and conflict resolution through a series of

noncooperative water resource games. The chapter illustrates the dynamic struc-

ture of water resource problems and the importance of considering the game’s

evolution path while studying such problems. Wei et al. (2010) applied game

theory�based models to analyze and solve water conflicts concerning water

allocation and its quality in the Middle Route of the South-to-North Water

Transfer Project in China. The game simulation comprised two levels, including

one main game with five players and four subgames where every game

contains three subplayers. Salazar et al. (2007) applied the game theory to a

multiobjective conflict problem for the Alto Rio Lerma Irrigation District,

located in the state of Guanajuato in Mexico, where economic benefits from

agricultural production should be balanced with associated negative environmen-

tal impacts. The short period of rainfall in this area, combined with high

groundwater withdrawals from irrigation wells, has produced severe aquifer

overdraft. In addition, current agricultural practices of applying high loads of

fertilizers and pesticides have contaminated regions of the aquifer. The net eco-

nomic benefit to this agricultural region in the short term lies with increasing

crop yields, which require large pumping extractions for irrigation as well as

high chemical loading. In the longer term, this can produce economic loss due

to higher pumping costs, or even loss of the aquifer as a viable source of

water. Negative environmental impacts are continued diminishment of

groundwater quality and declining groundwater levels in the basin, which can

damage surface water systems that support environmental habitats.

The aim of this study is to optimize the WDN by using the biobjective GA

based on the earlier studies. In this study, unlike previous studies, the Pareto

frontier is derived to reveal the best solution and the most preferred point is

selected by using game theory. The section 2 describes the biobjective

optimization model. The case study is introduced in the section 3, and in the

section 4, the different optimum points are obtained with the GA. Finally, the

preferred point is determined with game theory. In fact, the innovation of this

study is combining two main methods by using GA and game theory in a

WDN optimization problem.
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5.2 The Objectives of WDN Optimization

In recent decades, in most regions of the world, especially in hot and dry climates,

water shortage crisis have caused major water resource problems. These problems

influence the use of demand management techniques. Water shortage is one of the

main factors that limit the development of economic activities in Iran. Therefore,

balancing water supply and demand is the essential principle. Regarding urbaniza-

tion and new construction of residential and industrial towns, especially in big cit-

ies, the design of water supply network requires a comprehensive management of

water distribution in urban areas due to shortage of drinking water.

This chapter describes the cost and pressure management of a WDN.

A biobjective optimization problem with minimizing the cost and balancing the

pressure in the network is the result of this optimization. In WDN projects, the

main part of the cost is related to the pipes that are used in construction of the net-

work. Therefore, minimizing the pipe diameter while considering the allowable

pressure range will be the main concern. High pressure increases water loss, and

low pressure causes water to return to the network so that the pressure optimization

will be important. Cost and pressure are the main components in designing a

WDN; if these components are the objective functions, then the length and diame-

ter of the pipes will be the decision variables of the problem.

In Iran, most of the WDNs are designed by Loop or EPANET (hydraulic simula-

tion software). Modern software programs like WaterGEMS1 or WaterCAD may

have been used as well, to a lesser extent. Traditionally, the pressure and cost opti-

mization have been done by the designer without using any special software.

In this case, the experience and skill of the engineer are key factors for optimiza-

tion, and different engineers will get different results. The optimization tool in

WaterGEMS solves this problem.

5.3 The Hydraulic of WDN

In WDN, the numerous pipes generally join and transfer the water from the res-

ervoir to the place of consumption. The reservoir, tank, pumps, control valves,

and mechanical and electrical tools are the components of WDN.

For simplicity, they are generally described as follows:

� Pipes: Transfer water from one node to another.
� Nodes: The junction of the pipes and the water consumption points. In general, supplying

normal water pressure for these points is important.
� Reservoirs and tanks: Used for water storage in the network. The hydraulic gradient and

the primary conditions are defined for them.
� Pump: When the gravity transfer is not possible, the pump supplies the required energy to

increase the water head.
� Valves: Have many functions, controlling flow, and regulating water pressure in the pipes.

1 www.haestad.com
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With the aforementioned components, modeling of the network will be possible,

but it should be mentioned that for network simulation, the mass and energy con-

servation laws must be used. The distribution network can be simulated by

two assumptions: the steady state and the extended period. Steady-state analyses

determine the operating behavior of the system at a specific point of time or under

steady-state conditions (flow rates and hydraulic grades remain constant over time).

This type of analysis is suitable for determining pressures and flow rates under

minimum, average, peak, or short-term effects on the system due to fire flows. For

this type of analysis, the network equations are solved with tanks being treated as

fixed grade boundaries. The results of this type of analysis are instantaneous and

may or may not be representative of the values of the system a few hours (or even

a few minutes) later. When the variation of the system attributes over time is

important, an extended period simulation is needed. This type of analysis succeeds

in modeling tank filling and draining, regulating valves opening and closing, and

changing pressures and flow rates throughout the system in response to varying

demand conditions and automatic control strategies formulated by the modeler.

5.3.1 The Energy Equation

The energy equation in WDN problems is composed of three components in the

length dimension:

1. Pressure head (L): (P/γ))—P: pressure (pa), γ: water-specific gravity (pa/m)

2. Elevation (L): (Z)

3. Velocity head (L): (V2/2g)—V: velocity.

Then, the energy equation between two nodes is represented as

P1

γ
1 Z1 1

V2
1

2g
1 hp 2 ht 5

P2

γ
1 Z2 1

V2
2

2g
1 h1 ð5:1Þ

where

hp: the added head with pump,

ht: the consumable head,

hl: headloss between two nodes.

In this equation, the pressure head and velocity head are inversely related,

which means that when water velocity increases, the pressure head decreases.

Also, the friction between water and pipe increases, so that the water velocity

and headloss have a direct relation (Figure 5.1).

5.3.2 The Principle of Mass Conservation

According to mass conservation law, in a specified time period (Δt), the total

input water flow to any pipe in a WDN is equal to the total output water flow,
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considering the total water losses along the way (Δvs). The definition of mass con-

servation law has been represented with the following equation:

ΣQin:Δt5ΣQout:Δt1Δvs ð5:2Þ

5.3.3 Energy Conservation Law

There will be different paths for transferring the water from a node to another; the

water energy headloss will be similar between two nodes. This is the definition of

the energy conservation law (Figure 5.2).

5.3.4 Water Headloss

Hazen�Williams, Manning, Chezy and Darcy�Weisbach are equations that are

used to calculate water headloss. In this study, the Hazen�Williams headloss equa-

tion is used.

Q5KUCUAUR0:63US0:54 ð5:3Þ
where

Q: discharge in the section (m3/s, cfs)

C: Hazen�Williams coefficient

A: flow area (m2, ft2)

V = 0

P = 0

Datum

P/γ

E.G.L

H.G.L

hl

v2

2g

Figure 5.1 Water transfer pipeline.

Figure 5.2 The paths between two nodes.
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R: hydraulic radius (m, ft)

S: friction slope (m/m, ft/ft)

K: constant (0.85 for SI units, 1.32 for US units).

The values for the roughness coefficient in the headloss equations are given in

the literature for different pipe material. Also, if energy and hydraulic gradient lines

descend in a section, minor energy losses occur. The magnitude of these losses

depends primarily upon the shape of the fitting, which directly affects the flow

lines in the pipe. The equation commonly used for minor losses is as follows:

hm 5 kUV2=2g ð5:4Þ

where

hm: minor losses (m)

V: velocity (m/s)

k: loss coefficient for the specific fitting

g: gravitational acceleration constant (m/s2).

5.4 Basic Concepts: GA, Multiobjective Optimization,
and Game Theory

During the past 10 years, more than 200 Ph.D. dissertations have been published

on the studies of GA and applications in multidisciplinary areas. The GA was

developed originally as a technique of function optimization derived from

evolutionary ideas. In recent years, it has been found to be very useful for solving

many problems in different fields. Combinatorial optimization problems are a

major research aim in the GA community. GA has demonstrated great power, with

very promising results for many difficult problems. Engineering design occupies

a major body of research and applications of GA, e.g., topological structural design,

network design, dynamic system design and integration, manufacturing cell design,

pollution control, and reservoir operation. Since the early 1970s, when Holland

(1962) first specified the GA, enormous effort has been devoted to theoretical

investigation of GA to explain why and how it works. The foundational issues are

coding and representation, variation, and recombination. The other items include

the fitness land scopes and genetic operators, selection and convergence,

parallelization, deception, genetic diversity, and parameter adaptation (Gen and

Cheng, 2000). Today, GA is used as a searching and optimization tool in most

commercial and engineering problems. The vast domain of applications and easy

operation of this algorithm are some reasons for its success. Holland (1962) have

been used this method for the first time, then the algorithm has been extended by

him and his students.

Some of the basic ideas of genetics have been derived and then applied

artificially in the GA. This algorithm is very powerful and needs only minimal
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information to solve problems. Darwin’s natural theory method has been used for

finding the optimization formula in this algorithm. Using GA as a forecasting

technique on the basis of regression is also a good choice, and the nonparametric

term could be used for this algorithm. As an evolutionary algorithm, it uses opera-

tors like choice, crossover, and mutation in solution collection in any generation.

5.4.1 Advantages of Using Evolutionary Algorithms

The classical optimization methods are separated into two categories: direct search

methods and gradient-based methods. In the direct search method, optimization

problems can be solved by using only objective function and constraints, while in

the gradient-based method, the first and second derivative of objective function and

constraints could be used. The first method takes too long to achieve the solution

process; and the deficiency of the second method is in solving discontinuous

functions. Also, in some classical methods, the convergence of the optimized solu-

tion depends on the initial selected solution and most of the algorithms prefer to

find out the optimum solution. The efficiency of this algorithm regarding various

optimization problems is different, and normally, for problems with discrete

frontiers, misses their efficiency. The evolutionary algorithm does not use the

differentiation, and it is categorized as the direct method and their application

amplitude increases.

In this approach, unlike the classic optimization methods, which update one

solution in each iteration (a point approach), lots of solutions are used, in any itera-

tion. This point of view is called the population approach; the use of the population

approach has a number of advantages as follows (Branke et al., 2008):

1. It provides an evolutionary optimization with a parallel processing control, achieving

a computationally quick overall search.

2. It lets the evolutionary optimization to find multiple optimal solutions, thereby facilitating

the solution of multimodal and multiobjective optimization problems.

3. It gives the evolutionary optimization with the ability to normalize decision variables (as

well as objective and constraint functions) within an evolving population using the popu-

lation-best minimum and maximum values.

However, the flip side of working with a population of solutions is the computa-

tional cost and memory associated with executing each iteration.

Also, the evolutionary optimization uses stochastic operators, while most

classic methods use deterministic operators. Therefore, this algorithm has a global

perspective in its search and good operation in multiobjective optimization pro-

blems. The operators in this method tend to solve problems using biased

probability distributions to achieve desirable results, as opposed to using predeter-

mined and fixed transition rules (Branke et al., 2008). Also, by definition, all the

possible solutions will be accepted. But the evolutionary algorithm has

a disadvantage. To find the answer with the evolutionary algorithm, an objective

function must be used. Determination of the objective function is the most
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important part of the evolutionary algorithm. Having an unsuitable objective func-

tion results in mistakes, and the best solution is not found.

5.4.2 Biobjective Optimization

Optimization deals with the problem of identifying optimum solutions from a set of

possible choices by satisfying certain criteria. If there is only one criterion to con-

sider, it becomes a single-objective optimization problem, which has been studied

in the past 50 years. If there is more than one objective function, it will become a

multiobjective optimization problem. Multiobjective problems are faced in the

design modeling and planning of many complex real-life systems in many areas

like industrial production, urban transportation, capital budgeting, and reservoir

management. Almost every important decision problem involves multiple and con-

flicting objectives that need to be considered while respecting various

constraints, leading to overwhelming problem complexity. The GA has received

considerable attention as a novel approach to multiobjective optimization problems,

resulting in many research and applications known as genetic multiobjective opti-

mizations (Gen and Cheng, 2000).

Optimization of a WDN has two subordinate objectives covering minimizing the

cost and maximizing the pressure. As already mentioned, increasing the pressure

requires pipes with large diameters; and in opposition, minimizing the cost requires

pipes with small diameters. Therefore, in the optimization problem of selecting the

preferred pipes, there are counteracting objectives. Actually, it is considered

a biobjective problem and needs an algorithm with multiobjective solvability. The

multiobjective GA is an optimization evolutionary algorithm, and it has the

capability of solving complex, nonlinear problems. So in this study, this algorithm

will be used as the optimization method. For starting the process, the objective

function and constraints must be defined.

5.4.3 Biobjective GA

The multiobjective optimization problems have more than one objective function.

Traditionally, due to lack of the appropriate method, they were solved as single-

objective problems. All of the objective functions must be considered to find an

optimized solution. Therefore, in biobjective optimization, the optimum point con-

siders both of the objective functions. This solution may be just to supply the maxi-

mized pressure, or it may be the opposite. If the objective function determines all

the solutions, then the results are drawn on the diagram. The resulting curve will be

the Pareto frontier curve.

There is a striking difference between single-objective and multiobjective

optimization. In multiobjective optimization, the objective functions and the usual

decision variable spaces consist of multidimensional space. In single-objective

optimization, the decision to accept or reject the solutions is based on the value of

the objective function, and there is just one search space.
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Traditionally, for solving multiobjective problems, you convert the objective

functions to one objective function. The designers used various methods to do this.

For example, the weighing method creates a complex objective function. This prob-

lem is dispelled in multiobjective optimization. Some extra principles that have

been used in multiobjective optimization have not been applied to single-objective

optimization.

Using different methods in multiobjective problems creates a trade-off between

different objectives. The final solution must be compatible with other objectives,

and it is not correct to select an optimization point considering just one objective

function. Multiobjective optimization follows two objectives. The first is finding

the solution that determines the limits of the Pareto curve, and the second is finding

the final optimized solutions that are on the Pareto frontier. Figure 5.3 represents

an example of the Pareto optimization frontier.

5.4.4 Definition of Domination

In principle, multiobjective optimization problems are very different than single-

objective optimization problems. In the single-objective case, one attempts to

obtain the best solution, superior to all other alternatives. In the case of multiple

objectives, there is not necessarily a solution that is better than all other objectives

because of incommensurability and conflict among objectives. A solution may be

best for one objective but worst for other objectives. Therefore, there usually exists

a set of solutions for the multiobjective case, which cannot simply be compared to

each other. In such solutions, called nondominated solutions or Pareto optimal
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Figure 5.3 An example of a Pareto frontier.
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solutions, no improvement in any objective function is possible without sacrificing

at least one of the other objective functions. For a given nondominated point in the

criterion space Z, its image point in the decision space S is called efficient or

noninferior. A point in S is efficient if its image in Z is nondominated (Gen and

Cheng, 2000).

Multiobjective algorithms have mostly been used to find domination. The domina-

tion between two solutions is defined as follows (Branke et al., 2008).

A solution p is said to dominate the other solution of q, if both of the following

conditions are true:

1. In all objectives, the solution p is no worse than q.

2. The solution p is strictly better than solution q in at least one objective.

In domination relations, any solution could not be dominated by itself and the

relation is not reflexive; it is asymmetric and antisymmetric. But it is a transitive

relation, and if the p solution is dominant over the q solution and q is dominant over

the r solution, so p is dominant over r:

(¢: domination symbol)

If p¢q and q¢r!p¢r

and there is an important relation:

If p¢q!q¢p or q£p!then q will not necessarily dominate p

5.4.5 Game Theory

Game theory is based on mathematics and is usually applied where selecting the

preferred solution on the Pareto frontier is the problem. It studies the problems

with different objective functions that are in a trade-off with each other.

Outcomes predicted by game theory often differ from results suggested by optimi-

zation methods, which assumes that all parties are willing to achieve the best sys-

temwide outcome. In a specific game, each individual player tries to maximize

his or her benefit. This theory predicts the behavior of players and investigates

the member’s strategy to achieve better results.

Using game theory in multiobjective problems has several advantages, since

it could consider different objective functions for finding the optimum point, but

in classical optimization methods, they combine different objectives for defining

only one objective function. Another advantage of game theory over traditional

quantitative simulation and optimization methods is its ability to simulate differ-

ent aspects of the conflict, incorporate various characteristics of the problem,

and predict the possible resolutions in absence of quantitative payoff information

(Madani, 2010).

5.5 Methodology

In this study, data of the WDN first are collected considering the principles of mass

and energy balance and hydraulics rules, and are imported into the hydraulic
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simulation software. In this case, the optimization problem is solved with two objec-

tive functions: minimizing the cost and maximizing the optimum pressure. It means

optimizing the pressure function considering the limits and standards. If the objective

function is only to minimize the cost, then the smallest diameters will be chosen, and

the water network will lose pressure. Therefore, a multiobjective problem is consid-

ered. In the first objective function, the stockholder is Water and Wastewater

Company, and the construction cost must be paid by them; but in the second objective

function, the stockholders are the consumers and they will pay the water tariffs, but

they ask for appropriate pressure in the water network. The equations of the objective

functions and constructs are as follows:

Minimize F1 5
Xn
i51

ðCiðDi; LiÞÞ ð5:5Þ

Maximize F2 5
XND

k51

XNj

i51

JQi;k

JQtotalk

� �
Pik2PREF

ik

PREF
ik

� �b
" #

ð5:6Þ

subject to:

gjðH;DÞ5 0; j5 1; 2; . . .; nn ð5:7Þ

Hj $Hmin
j ; j5 1; 2; . . .; nn ð5:8Þ

DiAfAg; i5 1; 2; . . .; np ð5:9Þ
where

Ci (Di, Li): pipe cost with various diameters and lengths

ND: number of design events

Nj: numbers of nodes

JQi,k: demand at junction i for demand alternative k

JQtotal k: total junction demand for demand alternative k

Pi,k: post-rehabilitation pressure at junction i for demand alternative k

PREF
i;k : reference junction pressure is defined by the user to evaluate the pressure improve-

ment. The reference pressure is taken as the minimum required for the junction.

Equations (5.5) and (5.6) are showing the cost and pressure objective functions. As

shown in Eq. (5.6), this function is defined as the difference of real pressure and the

minimum pressure is considered by the designer. The demand factor is used to normal-

ize this difference. The b coefficient is the parameter indicating the importance of the

difference. If b5 1, the importance of pressure increasing is not specified; however, it

usually is selected as 0.5. In Eq. (5.7), the continuity equation (5.10) and energy con-

servation law (5.11) are applied to nodes. Equation (5.8), which refers to the water

head, must be more than the specific value. Equation (5.9) refers to determining the

pipe diameters, and it should use the series of the specific and commercial sizes.

Σ
n

i51
Qin 2 Σ

n

i51
Qout 5 0 ð5:10Þ
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where

Qin: entrance discharge

Qout: outlet discharge.

Xn
i51

ΔHi 5 0 ð5:11Þ

where

n: number of loops

ΔHi: energy conservation.

In Eq. (5.7), hf refers to the headloss in pipes, and it is computed with the

Hazen�Williams equation, which causes Eq. (5.7) to be nonlinear (Chu et al.,

2008; Kapelan et al., 2005). Ep shows the amount of energy needed by pumps.

This model is a complex and nonlinear optimization model that can be solved with

an evolutionary algorithm, and in this model, the multiobjective GA has been used.

Considering all of the constraints is the main limitation of the GA. To solve this

problem, we will use WaterGEMS, hydraulic simulation software which considers

the mass and energy conservation laws.

5.6 Case Study

The longitude and latitude of the case study (set in the city of Sahand, in Iran) are

between E 46	300, E 46	150 and 37	530, 37	590. This area is situated southwest of

Tabriz, and its elevation difference from its neighbors is more than 100 m. The

average elevation of this area is about 1600 m above sea level (Figure 5.4).

The maximum water pressure in Iran’s water networks has been recommended

to be 5 atmospheres (atm). Since the area topography has limitations and it pro-

duces major costs, it is considered realistically to be between 5 and 7 atm. The

minimum allowable water pressure for the first floor is 1.4 atm, and for each extra

floor, 0.4 atm must be added. According to water network standards, the maximum

allowable water velocity is 2 m/s, and during fires, 2.5 m/s is recommended. The

minimum water velocity in pipes is assumed to be 0.3 m/s (Florescu et al., 2010).

In addition, regarding the allowable limits, shrinking the diameter in the network

should not reduce the water head. The minimum allowable diameter in pipes with

hydrants is 100 mm, and for those without hydrants, it is 60 mm. Also in this study,

for the pipes of the WDN, several design groups by different diameters are deter-

mined. For example, the diameters in design group of the main pipeline are larger

than 500 mm. The main pipelines transfer water from the reservoir to the entrance

of the network. This process improves the operation of the GA for finding the opti-

mum solution.

110 Metaheuristics in Water, Geotechnical and Transport Engineering



5.7 The Biobjective Optimization Problem

To define the problem, the constraints must be determined. The first constraint is

the pressure limits of the nodes. For example, in Iran, it must not be less than 22 m

(for the buildings with three floors) and more than 70 m. The second constraint is

water velocity limits at pipes. In this study, the maximum velocity is proposed to

be 3 m/s.

After determining the hydraulic constraints, the materials for the pipes of the

network and the available diameters must be defined. In this study, the proposed

material for the pipes with large diameters is ductile iron, and for the pipes with

small diameters, it is polyethylene (PE). In this method, for any pipe, the design

groups are defined with different sizes, diameters, and material of the pipes. In this

study, for different pipes, three separate groups have been defined as in

Tables 5.1�5.3.
Table 5.1 shows the design groups for the main pipeline that transfers water

from the reservoir to the city. Table 5.2 refers to groups that have pipes with small

diameters. Table 5.3 refers to the groups that cover the other pipes of WDN in this

study. It must be noted that, because of the large thickness of PE pipes, the internal

diameters of the pipes must be considered. After determining the designing groups

Figure 5.4 The water network in Sahand.
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and defining them for the network pipes, the GA parameters should be specified. In

the results section, the GA parameters and defined ranges are mentioned.

Any solution provides the determined diameters for the pipes in the network.

Considering the objectives, these solutions are different. The solutions that are

positioned in the beginning and end of the Pareto curve are undesirable and would

like to supply only one objective.

5.7.1 The Pareto Frontier

To obtain the Pareto frontier, objective function values must be calculated for all

solutions. One of the axes is the cost function values; another is pressure function

values. Then the calculated points will be located from a scatter diagram. The line

that is fitted to the points will be the Pareto curve. In this study, the values of the

objective function are calculated, and after normalization of numbers, the Pareto

curve is drawn as shown in Figure 5.5.

To find the optimum solution using the usual game theory, the Pareto curve is

better if it is convex. Therefore, both of the objective functions must be maximized,

as in this study, and one of the objective functions is cost minimizing; thus, benefit

maximizing is used to solve this problem.

Table 5.1 First Design Group

Material Diameter (mm) Material Diameter (mm)

Ductile iron 600 Ductile iron 450

Ductile iron 500 Ductile iron 400

Table 5.2 Second Design Group

Material Diameter (mm) Material Diameter (mm)

PE 131 PE 90

Table 5.3 Third Design Group

Material Diameter (mm) Material Diameter (mm)

Ductile iron 450 Ductile iron 350

Ductile iron 400 Ductile iron 300

Ductile iron 250 Ductile iron 200
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5.7.2 Preparing the GA

In this study, GA was used to solve the biobjective problem. This algorithm tests

all the available solutions and gives all the dominant solutions, while the classical

optimization algorithms give only one solution. We also applied the classical

GAMS software, and probably its result was not technically

acceptable (nonoptimal). It must be mentioned that if GAs parameters are selected

incorrectly, its operation will not be correct (Tabesh et al., 2011). The maximum

era number and population size are the parameters with the most affection in the

biobjective GA. By increasing these parameters, the number of solutions also will

increase. Another parameter is the penalty factor. For the maximum era number,

parameters starting from number 1 and number 2 also will be accepted for other

alternatives. Considering the population size, the value will be increased. Also, the

parameters of population size start from the number 150 and will increase to the

next alternatives. These parameters and their values are shown in Table 5.4. Also,

the stopping criterion for GAs is important, and it covers the maximum trials and

nonimprovement generations. The first one determines the maximum number of

trials before the GA stops. The value of that is the product of three parameters,

including the numeric value of the maximum starting point, the nonimprovement

numeric value, and the population size.

Whenever penalty factor is large, the GA concentrates to solutions that are in

the defined limits. If this factor is less than 5000, then the results will be impracti-

cal solutions. The practical solution is the same as the applied solution. Next, con-

vergence analysis must be done on the objective functions of GA. In this study, the
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Figure 5.5 Pareto curve with normalized values.
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convergence analysis is done, and the results of this analysis show that the opera-

tion of GA is correct.

5.7.3 Convergence Test of GA

After the initial design, the biobjective optimization process will be done by the GA.

But at first, the convergence test should be applied to the results of the biobjective

GA. This test determines whether, with increasing the generation number, the resulted

values of objective functions with multiobjective GA will be converged or not.

In this method, at any level, with an increased generation number parameter

with different intervals, the function values are determined, and the convergence

curve, related to the two functions, is drawn. The convergence curves are shown in

Figures 5.6 and 5.7, and the results are shown in Table 5.5.

5.7.4 Curve Fitting and Selecting the Optimum Point

For selection of the optimum solution, drawing the fitting curve and finding the

function are necessary. Usually, the calculated values of the objective function for

various solutions are large numbers, so integration from this function will be diffi-

cult. When using normalized numbers, the problem must be solved. In this study,

the values of the objective functions first are calculated and normalized. The result

is plotted in Figure 5.8.

After importing the data to the hydraulic solver software and the initial design,

the WDN is optimized by GA, and 20 of the optimization results are selected.

After the normalization of the objective function values, the fitted Pareto curve

(Eq. (5.12)) is fitted on the solutions (Figure 5.8). In this figure, the horizontal axis

values are related to the pressure objective function (F1) and vertical axis values

are related to the cost objective function (F2):

F2 5212:92F1
5 1 26:31F1

4 2 19:93F1
3 1 6:633F1

2 2 1:038F1 1 1 ð5:12Þ

Table 5.4 The GAs Parameters

Parameter Lower Bound Upper Bound

Maximum era number 1 10

Population size 50 150

Era generation number 1 Larger than 1

Cut probability 1% 10%

Mutation probability 1% 10%

Splice probability 50% 90%

Random seed 0 1

Penalty factor 1000 5000
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Figure 5.7 Convergence curve of pressure function.

Table 5.5 The Results of Biobjective Optimization and Game Theory

Weight of

Pressure

Function

Weight of

Cost

Function

x g(x) Answer Cost

Thousand

(dollars)

Pressure

Function

Solution

Number

0.8 0.2 0.943 0.373 0.938 16,380 282.33 1

0.7 0.3 0.911 0.502 0.906 15,638 279.97 2

0.9 0.1 0.968 0.248 0.975 17,620 285.04 4

0.5 0.5 0.817 0.728 0.818 13,592 273.46 8

0.2 0.8 0.541 0.897 0.484 12,183 248.71 11

0.1 0.9 0.435 0.904 0.484 12,183 248.71 11

0.6 0.4 0.871 0.621 0.881 14,244 278.09 14

0.3 0.7 0.646 0.852 0.654 12,398 261.28 16

0.4 0.6 0.742 0.808 0.713 12,878 265.69 20
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According to the results, the objective functions are in competition with each

other, and if one of the objective functions increases, another one decreases.

Therefore, this problem can be solved by applying game theory.

With the area monotonic method, using the game theory allows us to select the

optimum point by considering the different objective functions together. In this sec-

tion, the area monotonic method is used to select the optimum point as an innova-

tion for solving the water network optimization problem. This method is based on

the linear segment that divides the areas under the Pareto frontier into two subsets

of equal area. If objective functions are asymmetric and have different weights,

then nonlinear equation (Eq. (5.13)) could be used to find the optimum point as

follows:

w2

Ð x
d1
gðtÞdt2 1=2ðx2 d1ÞðgðxÞ1 d2Þ

� �
5w1

Ð f �
1

x
gðf Þdt2ðf �1 2 xÞd2 1 1=2ðx2 d1ÞðgðxÞ2 d2Þ

h i ð5:13Þ

where d1, d2 are the undesirable points and the f �1 ; f �2 are the desirable points.

By determining the desirable and undesirable points in the objective functions,

we can calculate the value of the optimum points for different weight percentages.

The points transfer to the Pareto curve to determine the values of objective func-

tions. The results of this process are represented in Table 5.5.

According to the results, when the weight coefficients of the objective function

are not close together, the answers will be undesirable. For example, when the

weight coefficient of the pressure objective function is 10%, the answer will be

close to the minimum cost (or maximum benefit) and minimum pressure, but when

the weight coefficient of benefits objective function is 10%, the answer will be

close to maximum cost (minimum benefit) and maximum pressure (Nikjoofar

et al., 2012).

By trial and error, we found that the best answers will result when the weight

coefficients are either the same or close to each other. So the best selected answers
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Figure 5.8 The fitted curve drawn

on the solutions.
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are 8, 20, and 14. Then, by using hydraulic simulation software, the selected dia-

meters for pipes and the network will be solved again. According to the result,

answer 14 is selected as the most preferred one. The final cost for this new city net-

work is about 14,870,000,000 IR Rial, which is 13% less than the cost of the tradi-

tional network (Nikjoofar et al., 2012).

With the Kalai�Smorodinsky method, the Kalai�Smorodinsky solutions can be

described as follows. Consider the linear segment between the disagreement point

(d1, d2) and the “ideal” point ðf �1 ; f �2 Þ: Then the solution is the unique intercept of

this segment with the Pareto frontier. Hence, we have to compute the unique solu-

tion of Eq. (5.14) in interval ðd1; f �1 Þ: by solving Eq. (5.14):

d2 1 ½ðf �2 2 d2Þ=ðf �1 2 d1Þ�U ðf1 2 d1Þ2 gðf1Þ5 0 ð5:14Þ

If both objectives are normalized, then d15 d25 0 and f �1 and f �2 5 1: In the

case of importance weights, the more important objective has to be improved more

rapidly. This idea leads to the nonsymmetric Kalai�Smorodinsky solution, which

computes the unique intercept between the Pareto frontier and the straight line

where the two coordinate directions are the normalized objective functions (Salazar

et al., 2007):

gðf1Þ5 ðw2=w1Þf1 ð5:15Þ

In this study, F1 is the pressure objective function. The numerical values of the

variables are presented in Table 5.6.

The resulting value for the F1 function is 0.78, according to Table 5.5, and the

selected optimum solutions are 14, 8, and 20. The area monotonic method shows

that solutions 8 and 14 are closer to the optimum solution. In this study, w1 and w2

are weight coefficients and are assumed to be equal together. Determining the

proper weight coefficient depends on the designer’s viewpoint. If the weight coeffi-

cients are not equal, Eq. (5.15) could be used (Nikjoofar et al., 2012).

5.7.5 Discussion and Conclusion

Based on the convergence test, the proper operator for the GA is selected, and

regarding the monotonic area and Kalai�Smorodinsky methods, solutions 8, 14,

and 20 are determined to be the most preferred solutions. Then, the relevant

Table 5.6 The Numerical Values of Equation Variables of Eq. (5.14)

Variable Numerical Value Variable Numerical Value

d1 0.33 f1
� 0.99

d2 0.13 f2
� 0.93
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diameters for these solutions must be used in hydraulic simulation software, and by

this iteration, the final point will be determined.

Pressure is the most important function of the network; without supplying the

requested pressure, other functions like cost minimizing could not be accepted.

After simulating the three mentioned solutions, the pressure head must be con-

trolled, and if the three solutions could supply the requested pressure of the net-

work, the solution with the lower cost would be selected as the optimum solution.

In addition to pressure, other factors, including the water rate and headloss in the

pipes, must be controlled.

It must be mentioned that in both approaches of the game theory, the weight

coefficients are the same. Therefore, solution 8 is selected as the optimum point.

However, solution 14 has more cost, and solution 20 supplies lower pressure.

Therefore, solution 8 is best.

In this research, a WDN as part of the city of Sahand is optimized. This model

includes two objectives: minimizing the cost and maximizing the pressure. The

simulation�optimization model of WaterGEMS, which benefits the GA, is used to

design the network; and for selecting the final preferred point, game theory is used

as an innovation. The results indicate a reduction of 13% in cost and a fair increase

in the pressure. Then, for the new WDN design, using this evolutionary multiobjec-

tive model is recommended.
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6.1 Introduction

Relating the magnitudes of extreme events to their frequencies of occurrence with the

use of probability distributions constitutes the main objective of frequency analysis

(Chow et al., 1988). Hydrologic frequency analysis entails selecting a probability dis-

tribution, estimating distribution parameters and fitting the distribution to hydrologic

data, selecting the most appropriate distribution function based on goodness of fit

tests, and determining desired quantiles from the selected frequency distribution.

Therefore, the type of statistical distribution and parameter estimation technique will

affect the accuracy of hydrologic frequency analysis. Although there are many proba-

bility distributions to choose among, selecting a suitable model is still one of the major

problems in frequency analysis. In addition, there are several methods of parameter

estimation, among which the most popular are the methods of maximum likelihood,

moments, and probability-weighted moments (PWMs) (Hassanzadeh et al., 2011).

There are two common sources of errors associated with quantile estimation.

The first source of errors results from the selection of a distribution from among

different ones or the inability to determine the real unknown distribution. The

second one is the error in parameter estimation when using sample data. There is a

possibility of error in the sample data, and then the method of fitting should mini-

mize these errors (Kite, 1977).

The optimization methods are generally divided into two groups: classical

methods and metaheuristic approaches. Classical optimization methods are often

based on mathematical programming and have computational drawbacks (Kaveh

and Talatahari, 2009, 2011a). The metaheuristic search techniques often avoid

these problems by using the ideas inspired from nature.
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The genetic algorithm (GA) (Goldberg, 1989), the particle swarm optimizer

(Eberhart and Kennedy, 1995), ant colony optimization (ACO) (Dorigo et al.,

1996), the imperial competitive algorithm (Atashpaz-Gargari and Lucas, 2007;

Kaveh and Talatahari, 2010a; Talatahari et al., 2012), charged system search (CSS)

(Kaveh and Talatahari, 2010b,c,d, 2011b,c, 2012), Big Bang-Bug Crunch (BB-BC)

(Erol and Eksin, 2006), the firefly algorithm (Gandomi et al., 2011), Cuckoo

Search (Gandomi et al., 2012), and the bat algorithm (Yang and Gandomi, 2012)

are some of the most familiar metaheuristic methods. These methods are applied to

optimization problems because of their high potential for modeling engineering

problems in environments that have not been solvable by classic techniques.

ACO is a discrete metaheuristic approach that has been applied in recent years

to different engineering optimization problems. It is a multiagent randomized

search technique in which a number of search space points are tested in each cycle.

The random selection and the information obtained in each cycle are used to

choose new points in subsequent cycles. Thus, in ACO, it is not necessary for a

given function to be differentiable (Kaveh et al., 2008).

In this chapter, an improved algorithm based on ACO is developed for estimat-

ing the parameters of commonly used flood frequency distributions. Results are

compared with some conventional methods using annual maximum discharge data

of 14 rivers from East Azerbaijan, Iran.

6.2 A Review of Previous Work

There have been a number of investigations on parameter estimation using conven-

tional approaches. Singh (1998) compared for a large number of probability distri-

butions with different methods of parameter estimations, including the method of

moments (MOM), PWMs, L-moments, maximum likelihood estimation (MML),

and entropy method. He found that no method was uniformly superior to other

methods. The superiority of a method depended on the goodness of fit, such as

bias, root-mean-square error (RMSE), or robustness, as well as the sample size.

Nevertheless, in most cases, the entropy and MML methods were better. The

entropy-based method with the MOM, L-moments, and MML estimation were

compared by Singh and Deng (2003) using four data sets of annual maximum rain-

fall and annual peak flow discharge. Results demonstrated that both the entropy

and L-moments methods enabled the four-parameter Kappa (KAP) distribution to

fit the data well. The generalized PWM, generalized moments, and MML estima-

tion methods were applied by Mahdi and Ashkar (2004) to estimate parameters of

the Weibull distribution and the MML produced better results than the other two.

Öztekin (2005) estimated parameters of the three-parameter generalized Pareto

(GPAR) distribution for observed annual maximum discharge data for 50 rivers,

most of them in Turkey, by using the MOM, PWM, MML, principle of maximum

entropy, and least squares. It is concluded that the MOM was superior to all other

methods employed. Ashkar and Tatsambon (2007) proposed methods of MML,
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MOM, PWM, and generalized PWMs for fitting the GPAR distribution. The

42 low-flow events for hydrometric station on the Fish River in New Brunswick,

Canada, were used and the MML method was seen to provide the best fit for that

particular data set. Hassanzadeh et al. (2008) investigated six distributions, includ-

ing generalized extreme value (GEV), Pearson type 3 (PE3), generalized logistic

(GLOG), GPAR, normal, and exponential, for 14 data series of annual maximum

discharges. They showed that the MML method was the best parameter estimation

method.

As an alternative to conventional methods, the GA has been known to be a useful

tool in solving optimization engineering problems. For example, Karahan et al. (2007)

developed and used a GA to predict the rainfall intensities for given return periods.

For the known problem formulation, GA found the solution. Results showed that the

proposed GA can be used to solve the rainfall intensity�duration�frequency relations

with the lowest mean-squared error between measured and predicted intensities. They

concluded that predicted intensities were in good agreement with measured values for

given return periods. Optimizing the parameters of the instantaneous unit hydrograph

was performed by Dong (2008) using GA and an approximate formula method,

as well as the moment method. Results showed that GA was more effective than the

other two methods. Optimization of looped water distribution systems by several

metaheuristic techniques containing GA, simulated annealing, tabu search, and itera-

tive local search was performed in Reca et al. (2008). The medium-sized benchmark

networks, as well as a large irrigation water distribution network, were used as numer-

ical examples. Results showed that GA was more efficient when dealing with a

medium-sized network, but other methods outperformed it when dealing with a real

complex one.

Recently, Rai et al. (2009) employed GA to derive the unit hydrograph (UH).

Nine different distributions, such as beta, exponential, gamma, normal, lognormal,

Weibull, logistic, GLOG, and PE3, were used for the determination of UH.

Parameters of nine distribution functions were estimated using the real-coded GA

optimization technique, and the distributions were tested on 13 watersheds of

different characteristics. It was observed that except for the exponential distribution

function, most distribution functions produced UHs that were in satisfactory

agreement with the observed UHs. Also, Reddy and Adarsh (2010) used two meta-

heuristic search algorithms containing GAs and the PSO to obtain optimal solutions

to the design of irrigation channels.

Similarly, ACO has been applied to different engineering problems. Water distribu-

tion system optimization (Maier et al., 2003), optimal design of open channels (Kaveh

and Talatahari, 2010e; Nourani et al., 2009), optimization of soil hydraulic parameters

(Abbaspour et al., 2001), identifying optimal sampling networks that minimize the

number of monitoring locations in groundwater design optimization (Li and Chan,

2006), and determining the optimum design of skeletal structures containing optimum

weights (Kaveh and Talatahari, 2010f) are some recent examples. The advantages of

applying ACO to engineering problems are similar to those of GA. Both are multia-

gent randomized search techniques in which a number of search space points are

selected and tested in each cycle. The random selection and the information obtained
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in each cycle are used to choose new points (design vectors) in subsequent cycles.

ACO and GA, contrary to many conventional algorithms, are global optimizers.

ACO was used to derive operating policies for a multipurpose reservoir system

by Kumar and Reddy (2006). To formulate the ACO for reservoir operation, they

modified the problem by considering a finite time series of inflows, classifying the

reservoir volume into several class intervals, and determining the reservoir release

for each period with respect to a predefined optimality criterion. ACO was then

applied to a case study of Hirakud reservoir, which is a multipurpose reservoir sys-

tem located in India. Results of the two models indicated good performance of the

ACO model in terms of higher annual power production, satisfying irrigation

demands, and flood control restrictions. Applying ACO to estimate parameters of

flood frequency distributions was performed by Hassanzadeh et al. (2011). They

used the GA and ACO methodologies to estimate parameters of flood frequency

distributions and compared them with conventional methods.

On the other hand, since the ACO algorithms generally target discrete optimiza-

tion problems, there have been a few adaptations of ACO to continuous space

function optimization problems until now. One of the first attempts to apply an

ant-related algorithm to the continuous optimization problems was the continuous

ACO (CACO; Bilchev and Parmee, 1995). Although the authors of CACO claim

that they draw inspiration from the original ACO formulation, CACO employs the

notion of nest, which does not exist in the ACO approach. Also, CACO does not

perform an incremental construction of solutions, which is one of the main charac-

teristics of ACO. Another ant-related approach to continuous optimization is the

continuous interacting ant colony (CIAC; Dreo and Siarry, 2002). CIAC uses two

types of communication between ants: indirect communication (spots of phero-

mone deposited in the search space) and direct communication. CIAC has many

differences with the original concept of ACO. There is a direct communication

between ants and no incremental construction of solutions. The other ant-based

approach is ACOR, introduced by Socha and Dorigo (2008). ACOR tries to use all

operators of the original ACO, but in each construction step, an ant chooses a value

for variables using the Gaussian kernel probability density function (PDF) com-

posed of a number of regular Gaussian functions that does not exist in the original

ACO. In ACOR, the pheromone information is stored as a solution archive, and

pheromone update is accomplished by adding the set of newly generated solutions

to the solution archive and removing the same number of worst solutions while in

the original ACO, pheromone matrix contains the information of all possible states

that an ant can select, and pheromone updating is done in a different manner.

Kaveh and Talatahari (2010e) introduced an improved CACO to optimize the over-

all reliability and cost-effectiveness of composite channels. The models were

developed to minimize the total cost, while satisfying the specified probability of

channel capacity being greater than the design flow. Also, Madadgar and Afshar

(2009) proposed an improved CACO to water resource problems. Results of a few

well-known benchmark problems and a real-world water resource problem empha-

sized the robustness of the ACO in searching the continuous space more

efficiently.
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6.3 Standard ACO

6.3.1 General Aspects

In 1992, Dorigo developed a paradigm known as ACO, a cooperative search tech-

nique that mimics the foraging behavior of ant colonies (Dorigo, 1992; Dorigo

et al., 1996). The ant algorithms mimic the techniques employed by real ants to

rapidly establish the shortest route from food source to their nest and vice versa.

Ants start searching the area surrounding their nest in a random manner.

Ethologists observed that ants can construct the shortest path from their colony to

the feed source and back using pheromone trails (Deneubourg and Goss, 1989;

Goos et al., 1990), as shown in Figure 6.1A. When ants encounter an obstacle

(Figure 6.1B), at first, there is an equal probability for all ants to move right or left,

but after a while (Figure 6.1C), the number of ants choosing the shorter path

increases because of the increase in the amount of pheromone on that path. With

the increase in the number of ants and pheromone on the shorter path, all of the

ants will choose and move along the shorter one, as shown in Figure 6.1D.

In fact, real ants use their pheromone trails as a medium for communication of

information among them. When an isolated ant comes across some food source in

its random sojourn, it deposits a quantity of pheromone on that location. Other ran-

domly moving ants in the neighborhood can detect this marked pheromone trail.

Further, they follow this trail with a very high degree of probability and simulta-

neously enhance the trail by depositing their own pheromone. More and more ants

follow the pheromone-rich trail, and the probability of the trail being followed by

other ants is further enhanced by the increased trail deposition. This is an autocata-

lytic (positive feedback) process, which favors the path along which more ants pre-

viously traversed. The ant algorithms are based on the indirect communication

capabilities of ants. In the ACO algorithms, virtual ants are deputed to generate

Figure 6.1 Ants finding the shortest path around an obstacle. (A) Ants from nest to food,

(B) ants encounter an obstacle, (C) ants choose all paths, and (D) ants choose the shortest path.
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rules by using heuristic information or visibility and the principle of indirect phero-

mone communication capabilities for the iterative improvement of rules.

ACO was initially used to solve the traveling salesman problem (TSP). The aim

of TSP is to find the shortest Hamiltonian graph, G5 (N,E), where N denotes the

set of nodes and E is the set of edges. The general procedure of the ACO algorithm

manages the scheduling of three steps (Dorigo and Caro, 1999):

Step 1. Initialization. The initialization of the ACO includes two parts: the first consists

mainly of the initialization of the pheromone trail. Second, a number of ants are arbi-

trarily placed on the nodes chosen randomly. Then, each of the distributed ants will per-

form a tour on the graph by constructing a path according to the node transition rule

described next.

Step 2. Solution construction. In the iteration, each ant constructs a complete solution to

the problem according to a probabilistic state transition rule. The state transition rule

depends mainly on the state of the pheromone and visibility of the ants. Visibility is an

additional ability used to make this method more efficient. For the path between i to j, it

is represented asηij and in TSP, it has a reverse relation with the distance between i to j.

The node transition rule is probabilistic. The ant decision table is obtained by combining

the visibility and pheromone trails as

aijðtÞ5
½τijðtÞ�αU ½ηij�βP
lANi
½τilðtÞ�αU ½ηil�β

’jANi ð6:1Þ

Here, the ant is in the city i, τij(t) is the amount of pheromone in the i to j path, Ni is the

set of neighboring cities from city i, and parameters α and β represent constants that

determine the relative influence of pheromone and visibility, respectively. For the kth ant

on node i, the selection of the next node j to follow is according to the node transition

probability:

Pk
ijðtÞ5

aijðtÞP
lANk

i
ailðtÞ

’jANk
i ð6:2Þ

where Nk
i ANi is the list of neighboring nodes from node i available to ant k at time t.

Step 3. Pheromone updating rule. When every ant has constructed a solution, the inten-

sity of pheromone trails on each edge is updated by the pheromone updating rule (global

pheromone updating rule). The global pheromone updating rule is applied in two phases.

First, an evaporation phase where a fraction of the pheromone evaporates, and then a

reinforcement phase where the elitist ant, which has the best solution among others,

deposits an amount of pheromone:

τijðt1 dÞ5 ð12 ρÞUτijðtÞ1 ρUΔτ1ij ð6:3Þ

where ρ (0, ρ, 1) represents the persistence of pheromone trails ((12 ρ) is the

evaporation rate), d is the number of variables or movements an ant must take to

complete a tour, and Δτ1ij is the amount of pheromone increase for the elitist ant

and equals:

Δτ1ij 5
1

L1
ð6:4Þ

where L1 is the length of the solution found by the elitist ant.

126 Metaheuristics in Water, Geotechnical and Transport Engineering



At the end of each movement, the local pheromone update reduces the level of the

pheromone trail on paths selected by the ant colony during the preceding iteration. When

an ant travels to node j from node i, the local update rule adjusts the intensity of phero-

mone on the path connecting these two nodes as follows:

τijðt1 1Þ5 ξUτijðtÞ ð6:5Þ

where ξ is an adjustable parameter between 0 and 1 representing the persistence of the

pheromone.

This process is iterated until a stopping criterion is met.

6.3.2 Implementation for Solving Engineering Optimization Problems

In order to use the ACO method for design of engineering problems, the

method explained in the previous section must be modified. Since ACO is a dis-

crete optimization method, discrete values for each design variable (xi) should

be defined, and any amount of this discrete value for each variable is considered

as a virtual path for the ants. In order to fulfill this goal, the permitted range

and accuracy for the variables are determined. Unlike TSP, which had only one

path between two nodes, in engineering optimization problems, the number of

virtual paths between two nodes equals the number of allowable values. The tar-

get of the optimization of an engineering problem is to find the best path

among all available virtual paths.

The length of each path equals a permissible amount of a variable:

xi;j 5 xi;min 1ðj2 1Þx�i
i5 1; 2; . . .; d
j5 1; 2; . . .; nmi


ð6:6Þ

where x�i is the accuracy rate of the ith design variable, j is the number of virtual

path from 1 to nmi, and nmi is the maximum number of virtual paths for the ith

variable selected considering the required accuracy for the solved problem.

The amount of visibility for each path is

ηij 5
1

xi;j

i5 1; 2; . . .; d
j5 1; 2; . . .; nmi


ð6:7Þ

For each variable, a vector called the pheromone vector developed to record the

amount of pheromone trails upon each path and is defined as TiðtÞ5 ½τijðtÞ�: The
initial amount of pheromone for all paths can be written as

τijð0Þ5
1

fcostðfxi;mingÞ
ð6:8Þ

where fcost ({xi,min}) is obtained by setting the minimum values for the variables in

the cost function.
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For engineering problems, the ant decision table and probability function are the

same as (Kaveh et al., 2008):

Pk
ijðtÞ5

aijðtÞP
lANk

i
ailðtÞ

5
½τijðtÞ�αU ½ηij�β=

P
lANi
½τilðtÞ�αU ½ηil�β

� �
P

lANk
i
½τijðtÞ�αU ½ηij�β=

Pn
llANi
½τillðtÞ�αU ½ηill�β

� �

5
½τijðtÞ�αU ½ηij�β=

P
lANi
½τilðtÞ�αU ½ηil�β

� �
P

lANk
i
½τilðtÞ�αU ½ηil�β=

P
llANi
½τillðtÞ�αU ½ηill�β

� �

5
½τijðtÞ�αU ½ηij�βP
lANk

i
½τilðtÞ�αU ½ηil�β

5
½τijðtÞ�αU ½ηij�βP
lANi
½τilðtÞ�αU ½ηil�β

5 aijðtÞ ð6:9Þ

Therefore, it is enough to calculate the ant decision table. As the denominator of

the decision table is constant for each member in a cycle, it can be concluded that

aijðtÞ5 ½τijðtÞ�αU ½ηij�β ð6:10Þ

The position of ants at the start of each cycle is expressed by the scatter vec-

tor. In this vector, subscript i is an integer and random digit between 1 and the

number of variables that shows the first location of each ant. Using Eq. (6.10),

the transition vector ½Pk
ijðtÞ�nmi

determines the movements of ants at time t, and

each ant selects a path for the first location (variable) and then moves to the

next location. This movement is achieved by considering the number of vari-

ables. It means that when an ant is located in the ith variable, the next location

is i1 1, and when it is in the last variable, the next location is the first variable.

This process is continued until all ants select a value for each variable.

Equations (6.3) and (6.5) are used for the pheromone updating in design pro-

blems. Since the shortest Hamiltonian graph in TSP is analogous with the minimum

cost function in the engineering optimization problems, in Eq. (6.4), the minimum

amount of cost function in the kth iteration ½minðf kcostÞ� may be used instead of the

shortest length of the graph as

Δτ1ij 5
1

minðf kcostÞ
ð6:11Þ

6.4 Improved ACO

6.4.1 Suboptimization Mechanism Added to ACO

Here, we add the suboptimization mechanism (SOM) to ACO. SOM is based

on the principles of the finite element method (Kaveh and Talatahari, 2010e).
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SOM divides the search space into subdomains and performs optimization into

these patches, and then, based on the resulting solutions, the undesirable parts are

deleted, and the remaining space is divided into smaller parts for more investiga-

tion in the next stage. This process continues until the remaining space gets smaller

than the required accuracy.

SOM can be supposed to be the repetition of the following steps for definite

times, nc (in stage k of the repetition) (Kaveh and Talatahari, 2010e):

Step 1. Calculate permissible bounds for each variable. If x
ðk21Þ
i is the solution obtained

from the previous stage (k2 1) for the ith variable, then:

If x
ðk21Þ
i , ð12α1ÞUxðk21Þ

i;min 1α1Ux
ðk21Þ
i;max .

x
ðkÞ
i;min 5 x

ðk21Þ
i;min

x
ðkÞ
i;max 5 x

ðk21Þ
i;min 1 2Uα1Uðxðk21Þ

i;max 2 x
ðk21Þ
i;min Þ

8><
>:

If x
ðk21Þ
i .α1Ux

ðk21Þ
i;min 1ð12α1ÞUxðk21Þ

i;max .
x
ðkÞ
i;min 5 x

ðk21Þ
i;max 2 2Uα1U ðxðk21Þ

i;max 2 x
ðk21Þ
i;min Þ

x
ðkÞ
i;max 5 x

ðk21Þ
i;max

(

Else .
x
ðkÞ
i;min 5 x

ðk21Þ
i 2α1U ðxðk21Þ

i;max 2 x
ðk21Þ
i;min Þ

x
ðkÞ
i;max 5 x

ðk21Þ
i 1α1Uðxðk21Þ

i;max 2 x
ðk21Þ
i;min Þ

(

ð6:12Þ

where i5 1, 2,. . ., d; k5 2, . . ., nc, α1 is an adjustable factor that determines the amount

of the remaining search space, nc is the maximum number of repetitious stages for SOM,

and x
ðkÞ
i;min and x

ðkÞ
i;max are the minimum and the maximum allowable values for the ith vari-

able at stage k, respectively. In stage 1, the amounts of x
ð1Þ
i;min and x

ð1Þ
i;max are set at

x
ð1Þ
i;min 5 xi;min; x

ð1Þ
i;max 5 xi;max i5 1; 2; :::; d ð6:13Þ

Step 2. Determine the accuracy for the variables. In each stage, the number of permissi-

ble values for each variable is considered to be α2, and therefore, the amount of the accu-

racy rate of each variable equals

x
�ðkÞ
i 5

ðxðkÞi;max 2 x
ðkÞ
i;minÞ

ðα2 2 1Þ i5 1; 2; . . .; d ð6:14Þ

where x
�ðkÞ
i is the amount of increase in the ith variable, and α2 is the number of sub-

domains considered instead of nmi, and it has less value than nmi in SOM.

Step 3. Create the series of allowable values for the variables. The set of allowable

values for variable i can be defined by using Eqs. (6.12) and (6.14) as

x
ðkÞ
i;min; x

ðkÞ
i;min 1 x

�ðkÞ
i ; . . .; xðkÞi;min 1ðα2 2 1ÞUx�ðkÞi 5 x

ðkÞ
i;max i5 1; 2; . . .; d ð6:15Þ

Step 4. Determine the optimum solution of the current stage. The last step is performing

an optimization process using the ACO algorithm when Eq. (6.15) is considered as

permissible values for the variables.

8>>>>>>><
>>>>>>>:
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SOM ends when the amount of accuracy rate of the last stage (i.e., x
�ðncÞ
i ) is less

than the amount of accuracy rate of the primary problem (i.e., x�i ):

x
�ðncÞ
i # x�i i5 1; 2; . . .; d ð6:16Þ

SOM improves the search process with updating the search space from one stage

to the next stage. By applying this mechanism, the size of pheromone vectors and

decision vectors decreases from nmi to α2. The search space reduces from Πd
i51nmi

to αd
2 3 nc: As an example, if nmi5 104, d5 4, α25 30, and nc5 16, then

Πd
i51nmi 5 1016 while αd

2 3 nc5 1:33 107 (Kaveh and Talatahari, 2010e).

6.4.2 Parameter Setting

The standard ACO is parameterized by α, β, ρ, ξ, and the number of ants.

Parameters α and β represent constants that control the relative contribution

between the intensity of pheromone laid on edge (i,j) reflecting the previous experi-

ences of ants about this edge, and the value of visibility determined by a greedy

heuristic for the original problem. In this study, α is set to 1.0, but β is set to 0.4

(Kaveh et al., 2008).

Parameter ρ determines the pheromone evaporation in the global updating rule,

and ξ represents the persistence of the pheromone trail in the local updating rule.

These parameters have an influence on the exploratory behavior of ants. Herein,

the values of ρ and ξ are set to ρ5 0.2 and ξ5 0.1 according to Nourani et al.

(2009).

For engineering problems, the number of ants can be set to 20, because with

smaller values, the success rates decrease and with greater values, the number of

function evaluations and the running times increase (Kaveh et al., 2008).

In addition to the previous parameters, for improved ACO (IACO), the value of

α1 and α2 should be determined. It can be shown that 0,α1, 0.5 (Kaveh and

Talatahari, 2010e). In the first stage, where there is less information about the

search space, it is necessary that α1 has a large value. Also, in the last stage where

the aim of continuing the search process is to improve the previous solutions (as a

local search process), the large value for α1 may perform more appropriately than a

small one. Meanwhile, whenever α1 is close to 0.5, the number of function evalua-

tions increases. Instead, if α1 is selected as very small, probably the optimum solu-

tion is lost. Therefore, in this chapter, α1 is set to 0.3.

The amount of α2 highly influences the IACO performance. If α2 is too

small, the search process will end rapidly; on the contrary, if selected α2 is too

large, IACO will perform similarly to the original ACO algorithm and the effect

of SOM will be eliminated, and a desirable solution cannot be obtained in less

evaluations. In addition, α2 can greatly affect the optimization time. A vast

number of simulation investigations show that α25 30 is suitable (Kaveh and

Talatahari, 2010e).
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6.5 Other Well-Known Methods of Parameter Estimation

Results of the present algorithm are compared with some well-known parameter esti-

mation methods; here, a brief review of these algorithms is presented (Hassanzadeh

et al., 2011).

6.5.1 Probability-Weighted Moments

The PWMs for a random variable x and its cumulative distribution function (CDF)

F(x) can be defined as (Greenwood et al., 1979)

Mp;r;s 5Efxp½FðxÞ�r½12FðxÞ�sg5
ð1
0

xp½FðxÞ�r½12FðxÞ�sdF ð6:17Þ

where p, r, and s are real numbers. One of its special cases relates to s5 0, p5 1:

βr 5M1;r;0 5Efx½FðxÞ�rg5
ð1
0

x½FðxÞ�rdF; r5 0; 1; 2; . . . ð6:18Þ

where βr is linear in x and of sufficient generality for parameter estimation

(Hosking, 1986).

Hosking (1990) introduced L-moments, which are linear functions of PWMs.

For any distribution, the rth L-moment λr is calculated as follows:

λr11 5
Xr
j50

P�r;jβj; r5 0; 1; 2; . . . ð6:19Þ

P�r;j 5 ð21Þr2j r

j

� �
r1 j

j

� �
5
ð21Þr2jðr1 jÞ!

j!ðr2 jÞ! ð6:20Þ

For example, the first four moments expressed as linear combinations of PWMs

are (Hosking, 1990):

λ1 5β0 ð6:21Þ

λ2 5 2β1 2β0 ð6:22Þ

λ3 5 6β2 2 6β1 1β0 ð6:23Þ

λ4 5 20β3 2 30β2 1 12β1 2β0 ð6:24Þ

Also, ratios of L-moments are expressed as τr5λr/λ2 for r5 3,4,. . ..
In the above-mentioned relations, λ1 is the mean, λ2 is the L-standard deviation,

λ2/λ1 is the L-coefficient of variation (L-Cv), τ3 is the L-coefficient of skewness
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(L-Cs), and τ4 is the L-coefficient of kurtosis (L-Ck). The relationships for evaluat-

ing sample L-moments are defined as

br 5
1

n

Xn
i51

ði2 1Þði2 2Þ?ði2 rÞ
ðn2 1Þðn2 2Þ?ðn2 rÞ xi; x1 # x2 #?# xn; r5 0; 1; . . .; n2 1

ð6:25Þ
lr11 5

Xr
j50

P�r;jbj; r5 0; 1; . . .; n2 1 ð6:26Þ

Also, the ratio of L-moments is introduced by tr5 lr/l2 estimators considering

r5 3, 4,. . ..

6.5.2 Method of Moments

Estimates of parameters of a probability distribution function are obtained in the

MOM by equating the moments of the sample to the moments of the probability

distribution function. For a distribution with k parameters, α1, α2, . . ., αk, which

are to be estimated, the first k sample moments are set equal to the corresponding

population moments that are given in terms of unknown parameters. These k equa-

tions are then solved simultaneously for the unknown parameters α1, α2, . . ., αk.

For a distribution with PDF f(x), the moment of r rank about the origin is

μ0r 5
ð1N

2N
xrf ðxÞdx ð6:27Þ

and the corresponding central moments will be

μr 5

ð1N

2N
ðx2μ01Þrf ðxÞdx ð6:28Þ

6.5.3 Method of Maximum Likelihood

Estimation by the MML involves the choice of parameter estimates that produce a

maximum probability of occurrence of observations. For a distribution with a PDF

given by f(x) and parameters α1, α2, . . ., αk, the likelihood function is defined as the

joint PDF of observations conditional on given values of parameters α1, α2, . . ., αk

in the form

Lðα1;α2; . . .;αkÞ5 L
n

i51

f ðxi;α1;α2; . . .;αkÞ ð6:29Þ

The values of α1, α2, . . ., αk that maximize the likelihood function are computed

by partial differentiation with respect to α1, α2, . . ., αk and the setting of these
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partial derivatives to zero, as in Eq. (6.30). The resulting set of equations is then

solved simultaneously to obtain the values of α1, α2, . . ., αk:

@Lðα1;α2; . . .;αkÞ
@αi

5 0; i5 1; 2; . . .; k ð6:30Þ

In many cases, it is easier to maximize the natural logarithm of the likelihood

function by using

@ ln Lðα1;α2; . . .;αkÞ
@αi

5 0; i5 1; 2; . . .; k ð6:31Þ

6.6 Frequency Distributions

The utilized statistical distributions are presented in this section.

6.6.1 Generalized Extreme Value

The PDF of the GEV distribution can be expressed as

f ðxÞ5 1

α
12k

x2u

α

� �h i1=k21

exp 2 12k
x2u

α

� �h i1=k� �
ð6:32Þ

The range of variable x depends on the sign of parameter k. When k is negative,

variable x can take on values in the range u1α/k, x,N, which make it

suitable for flood frequency analysis. However, when k is positive, variable x

becomes upper bounded and takes on values in the range 2N, x, u1α/k, which
may not be acceptable for analyzing floods unless there is sufficient evidence that

such an upper bound does exist. When k5 0, the GEV distribution reduces to the

type I extreme value distribution (EV1). The GEV CDF is of the form

FðxÞ5 exp 2 12k
x2u

α

� �h i1=k� �
ð6:33Þ

6.6.2 Pearson Type 3

The PDF of the PE3 distribution is given as

f ðxÞ5 1

αΓ ðβÞ
x2γ
α

� �β21

exp 2
x2 γ
α

� �� �
ð6:34Þ

The variable x can take on values in the range γ, x,N. Generally, α can be

positive or negative, but for negative values of α, the distribution becomes upper

133Ant Colony Optimization for Estimating Parameters of Flood Frequency Distributions



bounded and therefore is not suitable for analyzing flood maxima. The PE3 CDF is

of the form

FðxÞ5 1

αΓðβÞ
ðx
γ

x2γ
α

� �β21

exp 2
x2 γ
α

� �� �
ð6:35Þ

The Wilson�Hilferty approximation is quite accurate for Cs# 1 and may be

sufficiently accurate for Cs values as high as 2:

KT 5
2

Cs

Cs

6
u2

Cs

6

� �
11

� �3
2 1

( )
; Cs . 0 ð6:36Þ

where Cs is the skewness coefficient of the data, and u is the standardized normal

variable:

u5
logðx2 aÞ2μy

σy

ð6:37Þ

6.6.3 Lognormal Type 3

The PDF of the lognormal type 3 (LN3) distribution is given as

f ðxÞ5 1

ðx2 aÞσy

ffiffiffiffiffiffi
2π
p exp 2

1

2σ2
y

½logðx2aÞ2μy�2
( )

ð6:38Þ

where μy and σ2
y are the location and scale parameters, respectively, which corre-

spond to the mean and variance of the logarithm of the shifted variable (x2 a).

6.6.4 Generalized Logistic

The PDF of the generalized logistic (GLOG) distribution is given as

f ðxÞ5 1

α
12k

x2ξ
α

� �� �1=k21

11 12k
x2ξ
α

� �� �1=k( )22

ð6:39Þ

The variable x takes on values in the range ξ1α/k# x,N for k# 0, and

2N, x# ξ1α/k for k. 0. The GLOG CDF is of the form

FðxÞ5 11 12k
x2ξ
α

� �� �1=k( )21

ð6:40Þ
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6.6.5 Generalized Pareto

The PDF of the GPAR distribution is given as

f ðxÞ5 1

α
12k

x2ξ
α

� �� �1=k21

ð6:41Þ

The CDF is written as

FðxÞ5 12 12k
x2ξ
α

� �� �1=k
ð6:42Þ

Variable x takes on values in the range: ξ# x,N for k# 0 and ξ# x# ξ1α/k
for k. 0. The special case of k being 0 yields the exponential distribution, whereas

the special case of k5 1 yields the uniform distribution on (ξ, ξ1α).

6.6.6 Four-Parameter KAP Distribution

The KAP distribution has received only limited attention from the hydrologic

community. Hosking and Wallis (1993) were probably the first to employ this dis-

tribution to generate artificial data for assessing the goodness of fit of different

frequency distributions. Hosking (1994) described the properties of the KAP distri-

bution, derived using the L-moments method of parameter estimation, and

discussed an application for modeling maximum precipitation data (Singh and

Deng, 2003). The PDF of the KAP distribution is given as

f ðxÞ5 1

α
12k

x2ξ
α

� �� �1=k21

12h 12k
x2ξ
α

� �� �1=k( )1=h21

ð6:43Þ

The distribution function is given as

FðxÞ5 12h 12k
x2ξ
α

� �� �1=k( )1=h

ð6:44Þ

The lower and upper bounds of random variable x will also depend on the

parameter values as follows:

ξ1 ½αð12 1=hkÞ=k�# x# ξ1α=k if h. 0; k. 0

ξ1α log h# x,N if h. 0; k5 0

ξ1 ½αð12 1=hkÞ=k�# x,N if h. 0; k, 0

2N, x# ξ1α=k if h# 0; k. 0

2N, x,N if h# 0; k5 0

ξ1α=k# x,N if h# 0; k, 0

ð6:45Þ

Of the four parameters in Eq. (6.44), ξ is a location parameter, α is a scale

parameter, and k and h are shape parameters. Apart from the restriction α. 0,
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all parameter values yield valid distribution functions (Hosking, 1994). Equation (6.44)

specializes into the following distribution functions, depending on the values of the

shape parameters h and k, introduced in Table 6.1 (Parida, 1999).

6.6.7 Five-Parameter Wakeby Distribution

The quantile function of the Wakeby (WAK) distribution is given by

xðFÞ5 ξ1α½12 ð12FÞβ�=β2 γ½12 ð12FÞ2δ�=δ ð6:46Þ

The WAK distribution is analytically defined only in the inverse form in

Eq. (6.46). Therefore, explicit expressions cannot be obtained for either the PDF or

the distribution function. Although moments of x can be obtained as functions of

the parameters, the inverse relationship cannot be readily derived. Consequently,

moment estimates of the parameters are not feasible. Similarly, maximum likeli-

hood estimates of the parameters are not easily obtained. Only the PWM method is

presently considered for this distribution.

The WAK distribution was proposed for flood frequency analysis by Houghton

(1978), and was considered to be a superior distribution for this purpose. The

PWM method was used to estimate the parameters of the WAK distribution by

Landwehr et al. (1979).

The WAK distribution is potentially useful in flood frequency analysis for

several reasons, as discussed by Greenwood et al. (1979). One of these is the large

number of parameters in the WAK distribution, which permits better fitting of data

than by distributions characterized by fewer parameters. Another reason is that it

can accommodate a variety of flows ranging from low flows to floods.

In Eq. (6.46), ξ is a location parameter, α and γ are scale parameters, and β and

δ are shape parameters. The range of x is such that ξ# x,N if δ$ 0 and γ. 0;

ξ# x# ξ1α/β2 γ/δ if δ, 0 and γ5 0.

Table 6.1 Family of Distributions Generated by the KAP Distribution with Different Values

of h and k

h k Distribution

1 6¼ 0 GPAR distribution

0 6¼ 0 GEV distribution

21 6¼ 0 GLOG distribution

1 0 Exponential distribution

0 0 Gumbel distribution

21 0 Logistic distribution

1 1 Uniform distribution

0 1 Reverse exponential distribution

136 Metaheuristics in Water, Geotechnical and Transport Engineering



6.7 Simulation and Application

To evaluate the efficiency of the new algorithm, a region in Iran was considered

(Hassanzadeh et al., 2011). The present study was carried out for the catchments of

East Azerbaijan, which lie between latitude 36	 to 39	 North and longitude 45	 to
48	 East. The total geographical area spans over 45,491 km2. Annual maximum

discharge data from 14 stream-flow gauging sites lying in East Azerbaijan,

northwest of Iran (Figure 6.2), and varying over 27�50 years in record length were

obtained from the East Azerbaijan regional water corporation of the Iranian

Ministry of Energy (Table 6.2).

Various criteria can be employed to evaluate the suitability of a probability

distribution for describing a set of data. Statistical goodness of fit tests are used to

determine whether selected distributions are consistent with the given set of obser-

vations (Stedinger et al., 1993). Three test criteria, such as coefficient of determina-

tion (CD), coefficient of efficiency (CE), and RMSE, are well-known statistical test

criteria (Kite, 1977; Nash and Sutcliffe, 1970; Wang et al., 2009):

CD5

Pn
i51½ðQoi 2QoÞðQci 2QcÞ�Pn

i51 ðQoi2QoÞ2
Pn

i51 ðQci2QcÞ2
� �1=2 ; 21#CD# 1 ð6:47Þ

Figure 6.2 Plan of rivers and hydrometrical stations.

137Ant Colony Optimization for Estimating Parameters of Flood Frequency Distributions



CE5 12

Pn
i51 ðQoi2QciÞ2Pn
i51 ðQoi2QoÞ2

; 2N,CE# 1 ð6:48Þ

RMSE5
1

n

Xn
i51

ðQoi2QciÞ2
" #1=2

ð6:49Þ

where Qo is the average of observed discharges, Qc the average of computed dis-

charges, Qoi the ith observed discharge, and Qci the discharge computed from the

selected distribution.

Here, for calculating statistical distribution parameters using the IACO

algorithm, the objective function was calculated as

Minimize

Pn
i51 ðQoi2QciÞ2Pn
i51 ðQoi2QoÞ2

 !
ð6:50Þ

After the estimation of distribution parameters, quantiles [x(F)] were estimated

by using the equations (Rao and Hamed, 2000) in Table 6.3, where F represents

the cumulative probability of nonexceedance, and u,k,h,α,β,ξ,γ, and δ are para-

meters of statistical distributions.

6.8 Results and Discussion

A ranking scheme was developed to evaluate the overall goodness of fit of each

distribution by comparing the three categories of test criteria described earlier.

Table 6.2 Characteristics of Stations Selected for the Study

No. Station Sample Size (Year) Geographical Characteristics

Height (m) Latitude Longitude

1 Bostan Abad 33 1725 37	 500 46	 500

2 Daryan 33 1616 38	 140 45	 360

3 Ghirmizi Ghol 40 1800 37	 430 46	 060

4 Gheshlaghe Amir 29 1520 37	 190 46	 170

5 Hervi 32 1920 37	 550 46	 290

6 Lighvan 50 2150 37	 500 46	 260

7 Maghanjigh 27 1650 37	 200 46	 250

8 Pole Sanikh 39 1352 38	 110 46	 090

9 Sahzab 29 1855 37	 590 47	 390

10 Saeed Abad 29 1850 37	 590 46	 350

11 Shishavan 38 1270 37	 280 45	 530

12 Shirin Kandi 38 1365 37	 010 46	 160

13 Tazekand 30 1610 37	 290 46	 160

14 Zinjanab 38 2100 37	 510 46	 190
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Ranking was assigned to each distribution for every test category according to the

relative magnitude of the test statistic. Table 6.4 presents the values of estimated

parameters of different distributions obtained by IACO for all stations. Results of

the CE for selection of the most appropriate distribution function for IACO, as well

as conventional methods, are presented in Table 6.5.

A distribution with the highest CE was given the best rank. From Table 6.5, the

results of goodness of fit tests for selection of the most appropriate distribution

function showed that the proposed method was the best for parameter estimation.

The goodness of fit assessment for all 14 stations reveals that the WAK distribution

and then KAP distribution produced better fits.

Table 6.6 compares the values of CE obtained by IACO, standard ACO, and GA

for the Shirin Kandi station. When the required time to find the optimum para-

meters was compared, the superiority of IACO was proved. IACO can find the

results almost 2.2 times faster than the standard ACO. The reason is the use of

SOM, which causes a decrease in the size of the pheromone vectors, decision vec-

tor, and search space; the number of function evaluations; and finally the required

optimization time. SOM performs as a search-space-updating rule, and it can

exchange discrete-continuous search domains with each other.

6.9 Conclusions

The main content of this chapter is an application of an improved ACO-based

method for estimating parameters of statistical distributions, and an evaluation of

the performance of this algorithm by comparison with the standard ACO and the

classical methods, such as MML, MOM, and PWM. Various statistical distributions

are used to find the most suitable distribution for annual maximum discharge.

IACO using SOM can exchange a continuous problem for a discrete one and con-

tinue the search process until reaching a solution with the required accuracy. IACO,

contrary to previous CACO approaches, does not change the ACO-based principles;

instead, it uses SOM to make handling continuous problems possible. Therefore,

IACO has the capacity to deal with continuous as well as discrete problems.

Table 6.3 Quantile Functions of Various Distributions Studied

No. Distribution Quantile Estimation

I GEV X(F)5 u1α/k[12 (2 ln F)k]

II PE3 XðFÞ5αβ1 γ1KT

ffiffiffiffiffiffiffiffi
α2β

p
a

III LN3 X(F)5 a1 exp(μ1σu)b

IV GLOG X(F)5 ξ1α/k[12 {(12F)/F}k]

V GPAR X(F)5 ξ1α/k[12 {1/(12F)}2k]

VI KAP X(F)5 ξ1α/k[12 {(12Fh)/h}k]

VII WAK X(F)5m1 a[12 (12F)b]2 c[12 (12F)2d]

aKT: Frequency factor.
bu: Standardized normal variable.
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Table 6.4 Values of Parameters of Different Distributions Estimated by IACO

Distribution Parameter Station

1 2 3 4 5 6 7

GEV u 5.5276 1.2379 3.0020 8.1817 1.8887 2.0945 1.7810

α 3.1155 0.7742 1.2631 3.4291 0.8296 0.8309 0.6874

k 0.0854 2 0.0366 0.2057 2 0.0582 2 0.0637 0.0380 0.1209

PE3 γ 2 1.6465 2 0.2039 2 9.1688 2.62450 0.2768 0.3209 2 0.4999

α 1.3253 0.5571 0.1378 2.8186 0.5931 0.4456 0.2472

β 6.4658 3.3002 92.0433 2.7121 3.5858 4.9543 10.527

LN3 α 2 4.8884 2 1.3462 2 11.8079 2 0.6312 2 0.5596 2 0.4155 2 1.8772

μ 2.4393 1.0380 2.7249 2.2979 1.0293 1.0278 1.3652

σ 0.2912 0.3354 0.0887 0.4112 0.3687 0.3368 0.1995

GLOG ξ 6.6227 1.4903 3.5153 9.5574 2.2426 2.3745 2.0636

α 1.9472 0.5180 0.7201 2.3739 0.5940 0.5242 0.4341

k 2 0.1302 2 0.2179 2 0.0125 2 0.1902 2 0.1591 2 0.1473 2 0.0950

GPAR ξ 2.1685 0.3442 1.3863 4.8109 1.0136 1.2046 1.0902

α 6.5789 1.8885 3.8447 6.7179 1.7387 1.8487 1.4375

k 0.3747 0.4048 0.8122 0.2292 0.2683 0.3909 0.4022

KAP ξ 3.4496 0.3618 2.7263 7.7746 2.3944 1.5112 2.2554

α 5.4397 1.7843 1.7106 3.9098 0.5182 1.4522 0.3305

k 0.3329 0.3434 0.3725 0.0109 2 0.2084 0.2790 2 0.1711

h 0.7181 1.0229 0.3050 0.1868 2 1.7316 0.7475 2 2.5928

WAK ξ 1.0831 0.4688 0.6718 3.3277 0.6368 1.11691 0.6652

α 1.3026 4.9806 1.2125 3.7230 1.1070 0.1301 1.1753

β 21.448 0.48247 12.2331 4.4810 3.9714 15.713 3.5327

γ 2 16.022 0.5707 2 4.9000 2 152.949 16.2558 2 4.6832 5.5794

δ 2 0.4147 2 2.0202 2 0.5080 2 0.0266 0.0522 2 0.3946 0.0864
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Distribution Parameter Station

8 9 10 11 12 13 14

GEV u 1.9118 2.1068 0.6322 6.7286 4.8687 11.9697 0.8526

α 1.2598 0.9002 0.3207 3.4011 2.5513 5.6448 0.4331

k 2 0.1592 0.1932 0.0674 2 0.3682 2 0.1119 0.0858 0.0907

PE3 γ 0.7266 2 0.7362 2 0.7358 5.3474 0.9888 2 2.5865 2.2506

α 1.7801 0.3260 0.0932 13.658 2.4130 2.5138 2 0.2051

β 1.2152 9.8048 16.5640 0.3769 1.9653 6.9417 5.7609

LN3 α 2 0.3778 2 2.9630 2 1.3150 1.5725 2 0.3406 2 11.1816 2 1.7256

μ 1.0174 1.6728 0.7360 1.8461 1.8068 3.2302 1.0071

σ 0.5768 0.1836 0.1749 0.8081 0.5158 0.2462 0.1826

GLOG ξ 2.3924 2.4416 0.7590 8.1908 5.9130 14.173 1.0238

α 0.9365 0.5411 0.2073 3.0248 1.8229 3.6161 0.2732

k 2 0.2953 2 0.0594 2 0.0842 2 0.3995 2 0.2366 2 0.1154 2 0.0918

GPAR ξ 0.8346 0.8578 0.2815 3.7317 2.5363 6.2379 0.4081

α 2.0748 2.9484 0.7892 5.1864 4.3815 11.9856 0.8973

k 0.0221 0.8231 0.5293 2 0.2259 0.0830 0.4022 0.3846

KAP ξ 2.2539 0.1684 0.7620 7.7715 5.0597 10.7596 0.7731

α 0.9576 3.9176 0.2239 3.0673 2.2974 6.9258 0.5279

k 2 0.2743 0.9254 2 0.0433 2 0.3951 2 0.1542 0.1622 0.1741

h 2 0.6149 1.2931 2 0.7923 2 0.6639 2 0.1527 0.3022 0.2745

WAK ξ 0.1211 0.8804 2 0.2431 2 0.6724 1.1280 4.6413 0.1362

α 1.1908 2.8548 0.7488 5.4457 2.9236 10.4458 0.3715

β 8.4682 0.8796 13.0670 18.3524 5.4645 1.7040 13.3292

γ 9.9072 2 0.9625 2 2.3967 12.7496 20.8401 21.573 2 2.2273

δ 0.1453 2 0.3088 2 0.1742 0.3212 0.1301 0.14195 2 0.3586
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Table 6.5 Values of CE for Various Distributions at 14 Hydrometrical Stations in

East Azerbaijan

No. Station Estimator Statistical Distribution

GEV PE3 LN3 GLO GPA KAP WAK

1 Bostan Abad MML 0.9798 0.9790 0.9762 0.8927 0.9841 � �
MOM 0.9838 0.9835 0.9823 0.9648 0.9909 � �
PWM 0.9815 0.9845 0.9823 0.9672 0.9905 0.9888 0.9920

IACO 0.9840 0.9794 0.9830 0.9697 0.9888 0.9920 0.9926

2 Daryan MML 0.9352 0.9556 0.9419 NaN 0.9793 � �
MOM 0.9663 0.9679 0.9653 0.9421 0.9840 � �
PWM 0.9590 0.9693 0.9632 0.9434 0.9818 0.9789 NaN

IACO 0.9646 0.9650 0.9631 0.9433 0.9829 0.9840 0.9855

3 Ghirmizi Gol MML 0.9831 0.9810 0.9812 0.9632 NaN � �
MOM 0.9844 0.9816 0.9816 0.9680 0.9773 � �
PWM 0.9834 0.9810 0.9808 0.9667 0.9774 0.9824 0.9879

IACO 0.9836 0.9815 0.9808 0.9667 0.9781 0.9872 0.9867

4 Gheshlaghe

Amir

MML 0.9869 0.9877 0.9878 0.9755 0.9666 � �
MOM 0.9853 0.9857 0.9847 0.9729 0.8120 � �
PWM 0.9884 0.9881 0.9884 0.9846 0.9767 0.9874 0.9884

IACO 0.9882 0.9882 0.9876 0.9852 0.9806 0.9887 0.9864

5 Hervi MML 0.9827 0.9826 0.9833 0.9862 0.9422 � �
MOM 0.9832 0.9825 0.9828 0.9776 0.9658 � �
PWM 0.9842 0.9827 0.9839 0.9859 0.9565 0.9865 0.9867

GA 0.9855 0.9835 0.9850 0.9869 0.9667 0.9873 0.9874

IACO 0.9838 0.9834 0.9844 0.9865 0.9663 0.9876 0.9871

6 Lighvan MML 0.9845 0.9865 0.9822 0.8832 0.9843 � �
MOM 0.9884 0.9889 0.9874 0.9700 0.9923 � �
PWM 0.9867 0.9903 0.9879 0.9723 0.9918 0.9925 0.9943

IACO 0.9887 0.9901 0.9885 0.9742 0.9923 0.9942 0.9921

7 Maghanjigh MML 0.9823 0.9836 0.9836 0.9824 0.9562 � �
MOM 0.9831 0.9833 0.9832 0.9776 0.9634 � �
PWM 0.9827 0.9834 0.9834 0.9814 0.9583 0.9825 0.9892

IACO 0.9829 0.9841 0.9838 0.9812 0.9626 0.9871 0.9894

8 Pole Sanikh MML 0.9834 0.9707 0.9790 NaN 0.9496 � �
MOM 0.9763 0.9780 0.9776 0.9616 0.9746 � �
PWM 0.9870 0.9773 0.9845 0.9879 0.9669 0.9880 0.9885

IACO 0.9884 0.9797 0.9853 0.9886 0.9773 0.9912 0.9914

9 Sahzab MML 0.9651 0.9092 0.9395 0.7879 0.9846 � �
MOM 0.9680 0.9644 0.9640 0.9412 0.9926 � �
PWM 0.9640 0.9639 0.9624 0.9400 0.9915 0.9866 0.9928

IACO 0.9655 0.9644 0.9640 0.9418 0.9904 0.9935 0.9913

10 Saeed Abad MML 0.9680 0.9687 0.9690 0.9735 0.8696 � �
MOM 0.9694 0.9698 0.9701 0.9730 0.9313 � �
PWM 0.9698 0.9699 0.9704 0.9749 0.9285 0.9741 0.9785

IACO 0.9678 0.9694 0.9703 0.9733 0.9357 0.9749 0.9761

(Continued)
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The obtained results show that the IACO method can efficiently identify para-

meters of statistical distributions, which in turn can provide reasonable estimates of

various flood quantiles at 14 sites located in East Azerbaijan, Iran. Comparing to

the standard ACO, investigations prove the robustness of the proposed method in

determining parameters of statistical flood frequency distributions.
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7.1 Introduction

The growing demand for water has required efficient utilization in the irrigation

sector. In many countries, efforts to raise levels of agricultural production have led

to a greater dependence not only on irrigation but also on other resources. This

pressure has been most severe in developing countries, where many irrigation sys-

tems are primitive (Bouwer, 2002). Frederiksen (1996) opined that innovations are

needed in both the technological and policy dimensions of water resource manage-

ment to achieve the gains in productivity required to feed the world’s increasing

population. Also, it is required to formulate mathematical models and introduce

new techniques to plan and manage efficient strategies (Ranjithan, 2005).

The escalating complexity of real-world applications similar to the one stated

above has demanded that researchers find possible ways of solving such pro-

blems. This has motivated the researchers to take ideas from the nature and

implant it in the engineering sciences. This way of thinking has led to the emer-

gence of many biologically inspired algorithms that have proved to be efficient

in handling the computationally complex problems with competence such as

evolutionary algorithms and swarm intelligence (SI) algorithms (Kennedy and

Eberhart, 2001). Recent studies have emphasized that evolutionary algorithms

and SI algorithms are attractive solutions to many practical optimization pro-

blems because they are independent of the problem types (Deb, 2001). In the

present study, a heuristic optimization algorithm (namely, the particle swarm

optimization (PSO) algorithm) is applied to a case study of the Mahi Bajaj

Sagar Project (MBSP) in Rajasthan, India, with the objective of optimizing

annual net benefits that gives the optimum cropping pattern, storage, and release

policy with consideration of conjunctive use of surface water and groundwater;

study the applicability of the algorithm in irrigation planning and assess its

capability in solving high-dimensional problems; and explore it as an alternative
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methodology. The study is divided into a review of the research literature, a

description of the SI algorithm, a description of the case study, mathematical

modeling, results and discussion, and finally a conclusion.

7.2 Literature Review

For the purpose of planning and management of water resources, systems analysis

techniques have been increasingly and extensively used for the last few decades.

The important literature pertaining to the new techniques that are relevant to the

present study are presented briefly in the following section, with relevance to opti-

mal reservoir operation for irrigation planning aspects.

Chang and Chen (1998) applied real-coded and binary-coded algorithms for

the case study of a flood control reservoir model. It is concluded that both varia-

tions of the genetic algorithm (GA) are more efficient and robust than the random

search technique. It is also observed that real-coded GA performs better in terms

of efficiency and precision than binary-coded GA. Wardlaw and Sharif (1999)

evaluated several alternative formulations of a GA for the four-reservoir, deter-

ministic, and finite-horizon problem. They concluded that real-value coding, tour-

nament selection, uniform crossover, and modified uniform mutation are

suitable for the planning problem. It is also concluded that real-value coding

operates significantly faster than binary coding and produces better results. In

addition, a nonlinear four-reservoir problem and a 10-reservoir problem are also

considered with previously published results. They concluded that the GA

approach is robust and is easily applied to complex systems. Similar studies are

reported by Sharif and Wardlaw (2000) and Wardlaw and Bhaktikul (2004). Kuo

et al. (2000) developed on-farm irrigation scheduling and the GA optimization

model in irrigation project planning with the objective of optimizing economic

profits. The model was applied to an irrigation project (namely, the Wilson canal

system) located in Delta, Utah. Two other optimization techniques, namely simu-

lated annealing (SA) and iterative improvement techniques, were also used, and

the results were compared with those of GA. It was concluded that GA and SA

consistently obtained near-optimal values, whereas the iterative improvement

technique occasionally found the local optimum values.

Mardle and Pascoe (2000) emphasized the basic features, advantages, and

disadvantages of the use of the evolutionary techniques, specifically GA.

Ranjithan (2005) stressed on the role of evolutionary computation in environ-

mental, water resources system analysis, and briefly discussed the various tech-

niques; namely, SA, tabu search, GAs, evolutionary strategies, the PSO

technique, and ant colony optimization (ACO). He concluded that new areas

that shape the direction of a beneficial integration of evolutionary computation

into environmental and water resources systems are essential. Raju and Nagesh

Kumar (2004) applied binary-coded GA for irrigation planning to a case study

of the Sri Ram Sagar Project in Andhra Pradesh, India. The GA technique is

used to derive the cropping pattern, a reservoir operating policy that yields
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optimum annual net benefits. The results obtained by GA were compared to

those of linear programming, and it was concluded that GA is an effective opti-

mization tool for irrigation planning and can be used for any similar irrigation

system. Vasan and Raju (2007) explored the applicability of differential evolu-

tion (DE) in irrigation planning and concluded that DE can be used as a success-

ful alternative methodology. Similar studies are reported by Gupta et al. (2009),

Vasan and Simonovic (2010), Raju et al. (2012), and Schardong et al. (2012).

Ramesh and Simonovic (2002) applied SA to a case study of a four-

reservoir system that had previously been solved using a linear programming

formulation to maximize the benefits. SA is also applied to a system of four

hydropower-generating reservoirs in Manitoba, Canada, to derive optimal oper-

ating rules with an objective of minimizing the cost of power generation.

Results obtained from these two applications suggest that SA can be used as

an alternative approach for solving reservoir operation problems that are com-

putationally intractable. Rao et al. (2003) developed a management model

within a simulation (a sharp interface-flow model) optimization (SA algorithm)

framework to determine the optimal groundwater extraction in a hypothetical

deltaic region with specified Indian conditions. The objective is to determine

optimal configuration of pump rates and their locations. They concluded that

the model provided near-optimal solutions. Similar studies are reported by

Cunha and Sousa (1999) and Rao et al. (2004). Application of SA for the case

study in the irrigation planning context is limited except those reported by Kuo

et al. (2000) and Vasan and Raju (2009).

Application of the PSO algorithm for irrigation planning is relatively

new. Wegley et al. (2000) successfully applied this algorithm to optimize

pump operations in water distribution systems. Coelho et al. (2005) showed

that it was more efficient than the GA and sequential quadratic program-

ming (SQP) to solve constrained optimization air temperature control pro-

blems. Shawn Matott et al. (2006) opined that PSO is a potential

optimization algorithm for solving problems related to plume containment

using pump and treat technology, compared to other algorithms such as GA

and SA. Janga Reddy and Nagesh Kumar (2007) applied elitist-mutation

particle swarm optimization (EMPSO) to optimize an operational model for

short-term reservoir operation for irrigation of multiple crops. Economic

benefits in the objective function were considered by the water allocation

decisions for multiple crops per unit area. Afshar and Rajabpour (2009)

used the PSO algorithm for the optimal design and operation of irrigation

pumping systems. The results showed that this algorithm was a more com-

petent tool than GA. The PSO algorithm has been credibly adopted for

many optimization problems. It has performed superior as compared with

other optimization techniques with fewer parameter adjustments and a sig-

nificantly lower number of iterations for its approximation. It is observed

from this literature review that very few studies have been reported of irri-

gation planning using the SI algorithm. The description of the various

nontraditional optimization methods are given in the next section.
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7.3 Method Description

Nontraditional optimization methods are gaining importance due to their advantage

of handling nondifferentiable, nonlinear, multimodal functions having a complex

search space with many local optimal solutions in a systematic and effective way.

However, the difficulty of using nontraditional methods as seen by researchers is

the number of input parameters and the determination of their precise values, thus

making the solution process rather complex. In the present section, four heuristic

optimization methods (namely, GA, DE, SA, and SI) are described in detail.

7.3.1 Genetic Algorithm

The GA is based on the mechanics of natural selection and natural genetics. They

combine survival of the fittest with a structured but randomized information

exchange to form a search algorithm (Goldberg, 1989). The GA works with an ini-

tial population of a string of variables known as chromosomes, which hold the

parameters or genes and the population size. The chromosome can be represented

using binary code or decimals and accordingly, it is termed as binary-coded GA or

real-coded GA. There are three operators (namely, selection, crossover, and muta-

tion) to generate a new population of points from the old population. In the selec-

tion operator, a set of chromosomes is selected as initial parents at the reproduction

stage on the basis of their fitness, subject to the constraints posed by the problem.

The fittest are given a greater chance of survival as well as a greater probability of

reproducing more offspring. The process of mating is implemented through the

crossover operator. Mutation, an arbitrary change of the genes, is implemented to

preserve the genetic diversity in the population. Mutation probability of occurrence

can be kept low because it can disrupt the good solution.

A stochastic selection process, biased toward the fitter individuals, is implemen-

ted to select the new population set for the next generation. In the present study,

the tournament selection operator is used to select the good solutions. The newly

created population is further evaluated and tested for termination, to decide the

maximum number of generations. If the termination criterion is not met, the popu-

lation is iteratively operated further by these three operators and evaluated. One

cycle of these operations and its subsequent evaluation is known as a generation.

This process is continued until the termination criterion of a preset maximum num-

ber of generations is met. The main feature of GA is its ability to operate on many

solutions simultaneously, thereby exploring the search space of the objective func-

tion thoroughly. This resolves the problem of trapping in the local minimum.

A difficulty with population-based optimizers is that once the search has narrowed

such that it is near the previous optimal solution, the diversity in the population

may not be enough for the search to come out and proceed toward the new optimal

solution. To overcome this problem, the self-adaptive behavior of real-coded genetic

algorithms (RGAs) with a simulated binary crossover (SBX) operator and parameter-

based mutation operator are explored in the present planning problem (Deb, 2001).
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The SBX operator uses a probability distribution around two parents to create two

child solutions (Deb and Agarwal, 1995). Unlike other real-parameter crossover opera-

tors, SBX uses a polynomial probability distribution that is similar in principle to the

probability of creating child solutions in crossover operators used in binary-coded GA.

The value of the distribution index for SBX controls the distance of the child solutions

from the parents. Similarly, the distribution index for parameter-based mutation decides

the effect of perturbance in the parent solutions. There are two aspects that give RGA

with SBX their self-adaptive power: (1) child solutions closer to parent solutions are

more likely to be created and (2) the span of child solutions is proportional to the span

of parent solutions. Both the properties are essential for a crossover operator to exhibit

self-adaptive behavior in GA. This is because with these properties, the diversity in

child solutions is directly controlled by the diversity in parent solutions. Movement of

the parent population in the search space is dictated by the fitness function through the

selection operator. This selection operator (i.e., SBX crossover) allows the GA to

search for a region near the parent population that exhibits self-adaptation. The popula-

tion size, crossover probability, and mutation probability are the three important

parameters that govern the successful working of the RGA.

7.3.2 Differential Evolution

The DE algorithm is a population-based search technique that uses population size

NP as the population of D-dimensional parameter vectors for each generation. DE

maintains two arrays, each of which holds a population of NP, D-dimensional, real-

valued vectors. The primary array holds the current vector population, while the

secondary array accumulates vectors that are selected for the next generation.

In each generation, NP competitions are held to determine the composition of the

next generation. Every pair of vectors (Xa,Xb) defines a vector differential as

(Xa2Xb). When Xa and Xb are chosen randomly, their weighted differential is

used to perturb another randomly chosen vector Xc. This process can be mathemati-

cally expressed as

X0c 5Xc 1FðXa 2XbÞ ð7:1Þ

The weighting factor or scaling factor F is a user-supplied constant in the opti-

mal range of 0.5�1 (Price et al., 2005). In every generation, each primary array

vector Xi is targeted for crossover with a vector like X0c to produce a trial vector Xt.

Thus, the trial vector is the child of two parents, a noisy random vector and the tar-

get vector against which it must compete. Nonuniform crossover is used with a

crossover constant CR, in the optimal range of 0.5�1 (Price et al., 2005), which

represents the probability that the child vector inherits the parameter values from

the noisy random vector. Then the cost of the trial vector is compared with that of

the target vector, and the vector that has the lower cost of the two would survive

for the next generation. This process is continued until the termination criterion of

a preset maximum number of generations is met and the difference of function
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values between two consecutive generations reaches a small value. In all, three fac-

tors control evolution under DE: the population size NP, the weight applied to the

random differential F, and the crossover constant CR.

Different strategies can be adopted in the DE algorithm depending on the type

of problem to which it is applied. The strategies can vary based on the vector to

be perturbed, the number of difference vectors considered for perturbation, and the

type of crossover used. Price and Storn (1997) gave the working principle of DE

with single-strategy DE/rand/1/bin. Later, they added nine more different strategies,

namely, DE/best/1/bin, DE/best/2/bin, DE/rand/2/bin, DE/rand-to-best/1/bin, DE/

rand/1/exp, DE/best/1/exp, DE/best/2/exp, DE/rand/2/exp, and DE/rand-to-best/1/

exp (Price et al., 2005). Here, in the name DE/x/y/z, DE indicates differential evo-

lution, x represents a string denoting the vector to be perturbed (rand: random vec-

tor; best: best vector), y is the number of difference vectors considered for

perturbation of x, and z stands for the type of crossover being used (exp: exponen-

tial; bin: binomial). The working algorithm outlined above is for the strategy

DE/rand/1/bin.

7.3.3 Simulated Annealing

The SA solution methodology resembles the cooling process of molten metals

through annealing. At high temperatures, the atoms in the molten metal can move

freely with respect to each other, but as the temperature is reduced, the movement

of the atoms gets restricted. The atoms start to get arranged and finally form crys-

tals having the minimum possible energy. However, the formation of the crystal

mostly depends on the cooling rate (CoR). If the temperature is reduced at a very

fast rate, the crystalline state may not be achieved at all; instead, the system may

end up in a polycrystalline state, which may have a higher energy state than the

crystalline state. Therefore, in order to achieve the absolute minimum energy state,

the temperature needs to be reduced slowly. The process of slow cooling is known

as the annealing process.

The SA procedure simulates this process of slow cooling of molten metals to

achieve the minimum function value in a minimization problem. The cooling phe-

nomenon is simulated by controlling a parameter, namely, temperature T, that is

introduced with the concept of the Boltzmann probability distribution. According

to the Boltzmann probability distribution, a system in thermal equilibrium at a tem-

perature T has its energy distributed probabilistically according to PðEÞ5 eð2E=kbTÞ;
where E is the energy of the system and kb is the Boltzmann constant. This expres-

sion indicates that a system at a high temperature has almost uniform probability of

being at any energy state, but at a low temperature, it has a small probability of

being at a high energy state. Therefore, by controlling the temperature T and

assuming that the search process follows the Boltzmann probability distribution,

the convergence of an algorithm can be controlled. Metropolis (Kirkpatrick et al.,

1983) suggested a way to implement the Boltzmann probability distribution in

simulated thermodynamic systems that can also be used in the function minimiza-

tion context. For example, at any instant, the current point is x(t0) and the function
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value at that point is E(t0)5 f(x(t0)). Using the Metropolis algorithm, the probability

of the next point being x(t01 1) depends on the difference in the function values at

these two points, or ΔE5E(t01 1)2E(t0). Probability value P(E(t01 1)) is calcu-

lated using the Boltzmann probability distribution:

PðEðt01 1ÞÞ5minð1; eð2ΔE=kbTÞÞ ð7:2Þ

If ΔE# 0, the above probability is 1 and the point x(t01 1) is always accepted.

In the function minimization context, this is meaningful because if the function

value at x(t01 1) is better than at x(t0), the point x(t01 1) must be accepted. When

ΔE. 0, which implies that the function value at x(t01 1) is worse than that at x(t0).
According to the Metropolis algorithm, there is a finite probability of selecting the

point x(t01 1), even though it is worse than the point x(t0). This probability depends

on the relative magnitude of ΔE and T values. If the parameter T is large, this

probability is more or less high for points with largely different function values.

Thus, any point is almost acceptable for a large value of T. On the other hand, if

the parameter T is small, the probability of accepting an arbitrary point is small.

Thus, for small values of T, the points with only a small deviation in function value

are accepted. In order to simulate the thermal equilibrium at every temperature, a

number of iterations are performed at a particular temperature before reducing the

temperature. The algorithm is terminated when a sufficiently small temperature is

obtained and a small-enough change in function values is found. The initial temper-

ature, cooling rate, and number of iterations performed at a particular temperature

are the three important parameters that govern the successful working of the SA

procedure.

7.3.4 Swarm Intelligence

The SI algorithm is a new area of research inspired by the social behavior of bird

flocking and shares many similarities with evolutionary algorithms such as the GA

and the DE algorithms. PSO is a population-based stochastic optimization algo-

rithm in SI (Kennedy and Eberhart, 2001). This algorithm is becoming popular due

to its simplicity of implementation and ability to converge to a reasonably good

solution quickly (Shi and Eberhart, 1998). The system is initialized with a popula-

tion of random solutions and searches for optima by updating generations.

However, unlike GA, PSO has no evolution operators such as crossover and muta-

tion. In PSO, the potential solutions, called particles, fly through the search space

by following the current optimum particles. Each particle keeps track of its coordi-

nates in the problem space that are associated with the best solution (fitness) it has

achieved so far. The fitness value is also stored and is called pbest. Another value

that is tracked by PSO is the best value obtained so far by any particle in the neigh-

borhood of the particle. This location is called lbest. When a particle takes the

entire population as its topological neighbors, the best value is a global best and is

called gbest. The PSO concept consists of changing the velocity of (accelerating)
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each particle toward its pbest and lbest locations at each time step. Acceleration is

weighted by a random term, with separate random numbers being generated for

acceleration toward the pbest and lbest locations. The velocity (v) and the position

(x) of the ith swarm are manipulated according to the following two equations:

vk11
ij 5χ½ωvkij 1C1R1ðpkij 2 xkijÞ1C2R2ðpkgj 2 xkijÞ� ð7:3Þ

xk11
ij 5 xkij 1 vk11

ij ð7:4Þ

where i denotes the number of particles; j denotes number of decision variables;

k denotes the iteration counter; χ is the constriction factor that controls and con-

stricts the magnitude of the velocity; g denotes the gbest of a particle; p denotes

the pbest of a particle; ω denotes the inertia weight, which is often used as a param-

eter to control exploration and exploitation in the search space; R1 and R2 are ran-

dom variables uniformly distributed within [0,1]; and C1, C2 are acceleration

coefficients, also called the cognitive and social parameters, respectively. C1 and

C2 are popularly chosen to vary within [0,2] (Chatterjee and Siarry, 2006).

The search is terminated if either of the following criteria is satisfied: (1) the

number of iterations reaches the maximum allowable number or (2) the accuracy

between the best solution of two successive generations reached a prespecified

number. The flowchart of PSO is presented in Figure 7.1.

In the past several years, PSO has been successfully applied to many research

and application areas. It is demonstrated that PSO gets better results in a faster,

cheaper way than other methods. Another reason that PSO is attractive is that there

are few parameters to adjust. One version, with slight variations, works well in a

wide variety of applications. PSO has been used for approaches that can be used

across a wide range of applications, as well as for specific applications focused on

a specific requirement.

7.4 Case Study

The MBSP is situated near the village of Borkhera, about 16 km northeast of

Banswara in the southern part of Rajasthan state, bordering the states of Madhya

Pradesh and Gujarat in India. Global coordinates of the site are 24	220 N latitude

and 73	190 E longitude (Water Resources Planning for Mahi River Basin, 2001).

The project includes a dam, a system of canals, and two hydroelectric power

houses, PH1, located near Banswara with an installed capacity of 23 25 MW, and

PH2, near Lilvani village, with an installed capacity of 23 45 MW. Gross and live

storage capacities of the reservoir are 2180.39 Mm3 and 1829.27 Mm3, respec-

tively. The culturable command area (CCA) of the project (Phase 1) is 80,000 ha.

Out of these, 57,531 ha have been opened for irrigation thus far. The MBSP has

three main canal systems, namely, Left Main Canal (LMC), Right Main Canal

(RMC), and Bhungra Canal (BC), with canal capacities of 62.53, 30.00, and
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3.19 cumecs, respectively. The principal crops grown in the command area in Kharif

and Rabi seasons are paddy, cotton, wheat, gram, and pulses. An interstate agreement

also exists to reserve 368.11 Mm3 of Mahi water for upstream use in Madhya Pradesh

and 1132.67 Mm3 for downstream use in Gujarat (Mahi Bajaj Sagar Project Report,

1978; MBSP Report on Status June 2002 at a Glance, 2002). Figure 7.2 presents the

index map of MBSP.

7.5 Mathematical Modeling

Mathematical modeling of the irrigation planning problem of MBSP command area

is explained in the following sections.

Initialize particles

Calculate fitness values
for each particle

Is current fitness value
better than pbest?

Assign current
fitness as new pbest

Keep previous pbest

Assign best particle’s
pbest value to gbest

Calculate velocity for
each particle

Use each particle’s
velocity value to update

its data values

Target or maximum
epochs reached?

YesNo

End

NoYes

Figure 7.1 Flowchart of PSO.
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7.5.1 Objective Function: Maximization of Annual Net Benefits

The annual net benefits (BEN) from the planning region under different crops after

meeting the costs of seeds, fertilizer, labor, surface water, groundwater, and plant

protection are to be maximized. Mathematically, this concept can be expressed as

Max BEN5
X36
i51

BiUAi 2PGW

X12
t51

GWt ð7:5Þ

where i5 crop index [15maize (LMC), 25 paddy (LMC), 35 cotton (LMC),

45 pulses (LMC), 55 sugarcane (LMC), 65 zaid Crop (LMC), 75wheat (LMC),

85 barley (LMC), 95 gram (LMC), 105 barseen (LMC), 115mustard (LMC),

125 fruits and vegetables (LMC), 135maize (RMC), 145 paddy (RMC),

155 cotton (RMC), 165 pulses (RMC), 175 sugarcane (RMC), 185 zaid crop

(RMC), 195wheat (LMC), 205 barley (RMC), 215 gram (RMC), 225 barseen

(RMC), 235mustard (RMC), 245 fruits and vegetables (RMC), 255maize (BC),

265 paddy (BC), 275 cotton (BC), 285 pulses (BC), 295 sugarcane (BC),

305 zaid crop (BC), 315wheat (BC), 325 barley (BC), 335 gram (BC),

345 barseen (BC), 355mustard (BC), 365 fruits and vegetables (BC)],

LMC5Left Main Canal, RMC5Right Main Canal, BC5Bhungra Canal, t5 time

Figure 7.2 Index map of the MBSP.
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index (15 January. . .125December). BEN5 annual net benefits from the whole

planning region (Rs);Bi 5 net return from ith crop excluding groundwater cost

(Rs/ha); Ai5 area of crop i grown in the command area (ha); PGW5 groundwater

cost (Rs/Mm3); GWt5monthly groundwater withdrawal (Mm3).

The mathematical model is subjected to the following constraints:

Continuity Equation at the Main Reservoir

Reservoir operation includes water transfer, storage, inflow, and spillage activities.

Water transfer activities consider the transport of water from the reservoir to the

producing areas through canals to meet the water needs. A monthly continuity

equation for the reservoir storage (Mm3) can be expressed as

St11 5 St 1 It 2 IDBt 2 PH1t 2EVt 2USMPt; t5 1; . . .; 12 ð7:6Þ

where St115 reservoir storage volume at the end of month t or at the beginning of

month (t1 1) (Mm3); It5monthly inflows into the reservoir (Mm3);

IDBt5 irrigation demand for BC for the month t (Mm3); PH1t5water requirement

for PH1 for the month t (Mm3); EVt5monthly evaporation loss (Mm3);

USMPt5 upstream requirement of water to Madhya Pradesh for the month t (Mm3).

This constraint assumes that the monthly inflows into the reservoir are known with

certainty. When uncertainty is incorporated in the inflow terms, Eq. (7.6) changes to

St11 2 St 1 IDBt 1 PH1t 1EVt 1USMPt 5 It
α0 ; t5 1; . . .; 12 ð7:7Þ

where Iα
0

t is dependable inflow value at level α0.

Continuity Equation at Kagdi Pickup Weir

The Kagdi pickup weir acts as a balancing reservoir and water released from PH1

and the available groundwater potential should satisfy the demands of the LMC,

the RMC, and PH2 for each month t. Conjunctive use of groundwater and surface

water is also considered in the following equation:

PH1t 1GWt $ IDLt 1 IDRt 1 PH2t; t5 1; . . .; 12 ð7:8Þ

where IDLt5 irrigation demand for LMC for the month t (Mm3); IDRt5 irrigation

demand for RMC for the month t (Mm3); PH2t5water requirement for PH2 for

the month t (Mm3)

Command Area Limitations

The total area allocated for different crops in a particular season should be less

than or equal to the CCA:

X6
i51

Ai # pkiUCCAL; Kharif season ð7:9Þ
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X12
i57

Ai # priUCCAL; Rabi season ð7:10Þ

X18
i513

Ai # pkiUCCAR; Kharif season ð7:11Þ

X24
i519

Ai # priUCCAR; Rabi season ð7:12Þ

X30
i525

Ai # pkiUCCAB; Kharif season ð7:13Þ

X36
i531

Ai # priUCCAB; Rabi season ð7:14Þ

where CCAL5CCA under LMC (ha); CCAR5CCA under RMC (ha);

CCAB5CCA under BC (ha); pki5 percentage cropping intensity for each crop i in

Kharif season (same percentage value for the three canal command areas);

pri5 percentage cropping intensity for each crop i in Rabi season (same percentage

value for the three canal command areas).

Crop Diversion Requirements

Monthly crop diversion requirements CWRit are calculated based on crop water

requirements (the water required per hectare of crop activity i times the number of

hectares of planted crop activity in that month t for each canal command area) and the

overall efficiency. In the absence of any crop activity, CWRit is taken as zero. Water

releases from the reservoir must satisfy the irrigation demands of the command area:

X12
i51

CWRitAi 2 IDLt 5 0; t5 1; . . .; 12 ð7:15Þ

X24
i513

CWRitAi 2 IDRt 5 0; t5 1; . . .; 12 ð7:16Þ

X36
i525

CWRitAi 2 IDBt 5 0; t5 1; . . .; 12 ð7:17Þ

where CWRit5 crop diversion requirements per hectare of crop i in month t (m).
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Other constraints incorporated into the mathematical model are the water

requirements for hydropower generation, upstream requirements, minimum and

maximum areas of crops, groundwater withdrawals, canal capacity, and live stor-

age restrictions.

7.6 Results and Discussion

A 75% dependable inflow level (Patra, 2002) is considered for the planning problem.

Dependable inflow values into the reservoir for the months of June, July, August,

September, and October are 14.73, 73.26, 669.13, 1066.69, and 1057.12 Mm3,

respectively. Inflows into the reservoir for other months are not significant and are

disregarded. The present study is analyzed for CCA that is opened for irrigation and

is targeted. Accordingly, the lower and upper limits are fixed based on cropping

intensity values of 89%, i.e., 89% of 57,531 ha and 89% of 80,000 ha.

The developed mathematical model for irrigation planning is solved using the SI

algorithm. The results obtained are compared with those by the DE algorithm

(Vasan and Raju, 2007). The penalty function approach is used to convert the con-

strained problem into an unconstrained problem. Due to this, the solution falling

outside the restricted solution region is given a high penalty, which forces the solu-

tion to adjust itself in such a way that after a few generations/iterations, it may fall

into the restricted solution space. In the present study, a second-order penalty term

is used (Deb, 2001). The total numbers of variables and constraints are 160 and 93,

respectively. It has been inferred from the literature that the best set of parameters

for reservoir operation problems for PSO are constriction coefficient χ5 0.9, iner-

tia weight ω5 1, and acceleration coefficients C15 1 and C25 0.5 (Janga Reddy

and Nagesh Kumar, 2009). The initial trials were tried with population sizes of

500, 750, 1,000, and 1,200. Each trial was tested with a different randomly chosen

initial population. The number of iterations and accuracy between two successive

iterations is set at 3,000 and 1027, respectively. The above chosen parameters are

given as input to the developed model.

The results obtained by SI were compared with those of DE, and it was observed

that SI produced the same results. Table 7.1 presents the cropping pattern.

Table 7.2 presents the release policy for irrigation for LMC, RMC, and BC.

Figure 7.3 presents the monthly storage policy values (including that of overflow),

whereas Figure 7.4 presents the release policy for hydropower in PH1.

The following observations were made from the analysis of the results:

� It was observed from the LMC cropping pattern that paddy, cotton, pulses, and zaid crop

reach the upper limit, whereas maize and sugarcane have a percentage deviation from the

upper limit of 23.09 and 23.06, respectively. Similarly, wheat, gram, mustard, and fruits

and vegetables reach the upper limit, whereas barley and barseen deviate 23.12% and

23.09%, respectively, from the upper limit. It is also observed that the ratio of total area

to lower limit (expressed as a percentage) is 126.32.
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Table 7.1 Optimal Cropping Pattern Obtained by SI and DE

Crops Crop Area (ha) Percentage

Deviation

from Upper

Limit (%)

Lower

Limit

Upper

Limit

Crop

Area

Maize (LMC)—K 9.36 12.17 9.36 23.09

Paddy (LMC)—K 12.48 16.23 16.23 0.00

Cotton (LMC)—K 28.07 36.51 36.51 0.00

Pulses (LMC)—K 15.60 20.29 20.29 0.00

Sugarcane (LMC)—K 6.24 8.11 6.24 23.06

Zaid Crop (LMC)—K 6.24 8.11 8.11 0.00

Area in Kharif (LMC) 77.99 101.42 96.74 4.61

Wheat (LMC)—R 93.57 121.71 121.71 0.00

Barley (LMC)—R 13.10 17.04 13.10 23.12

Gram (LMC)—R 78.60 102.24 102.24 0.00

Barseen (LMC)—R 5.93 7.71 5.93 23.09

Mustard (LMC)—R 6.86 8.93 8.93 0.00

Fruits & Veg. (LMC)—R 1.56 2.03 2.03 0.00

Area in Rabi (LMC) 199.62 259.66 253.94 2.20

Total area (Kharif1Rabi) (LMC) 277.61 361.08 350.68 2.88

Ratio of total area to lower limit (LMC) (%) 126.32 �
Maize (RMC)—K 7.54 10.78 7.54 30.06

Paddy (RMC)—K 10.06 14.38 14.38 0.00

Cotton (RMC)—K 22.63 32.35 32.35 0.00

Pulses (RMC)—K 12.57 17.97 17.97 0.00

Sugarcane (RMC)—K 5.03 7.19 5.03 30.04

Zaid Crop (RMC)—K 5.03 7.19 7.19 0.00

Area in Kharif (RMC) 62.86 89.86 84.46 6.01

Wheat (RMC)—R 75.42 107.82 107.82 0.00

Barley (RMC)—R 10.56 15.09 10.56 30.02

Gram (RMC)—R 63.36 90.57 90.57 0.00

Barseen (RMC)—R 4.78 6.83 4.78 30.01

Mustard (RMC)—R 5.53 7.91 7.91 0.00

Fruits & Veg. (RMC)—R 1.26 1.80 1.80 0.00

Area in Rabi (RMC) 160.91 230.02 223.44 2.86

Total area (Kharif1Rabi) (RMC) 223.77 319.88 307.90 3.75

Ratio of total area to lower limit (RMC) (%) 137.60 �
Maize (BC)—K 0.36 1.05 0.36 65.71

Paddy (BC)—K 0.48 1.40 0.48 65.71

Cotton (BC)—K 1.08 3.14 3.14 0.00

Pulses (BC)—K 0.60 1.75 0.60 65.71

Sugarcane (BC)—K 0.24 0.70 0.24 65.71

Zaid Crop (BC)—K 0.24 0.70 0.70 0.00

Area in Kharif (BC) 3.00 8.74 5.52 36.84

Wheat (BC)—R 3.60 10.47 3.60 65.62

(Continued)
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Table 7.1 (Continued)

Crops Crop Area (ha) Percentage

Deviation

from Upper

Limit (%)

Lower

Limit

Upper

Limit

Crop

Area

Barley (BC)—R 0.50 1.47 0.50 65.99

Gram (BC)—R 3.02 8.79 8.10 7.85

Barseen (BC)—R 0.23 0.66 0.23 65.15

Mustard (BC)—R 0.26 0.77 0.77 0.00

Fruits & Veg. (BC)—R 0.06 0.17 0.06 64.71

Area in Rabi (BC) 7.67 22.33 13.26 40.62

Total area (Kharif1Rabi) (BC) 10.67 31.07 18.78 39.56

Ratio of total area to lower limit (BC) (%) 176.01 �
Total area (Kharif)

(LMC1RMC1BC)

143.85 200.02 186.72 6.65

Total area (Rabi)

(LMC1RMC1BC)

368.20 512.01 490.64 4.17

Total area (Kharif1Rabi)

(LMC1RMC1BC)

512.05 712.03 677.36 4.87

Ratio of total area to lower limit (LMC1RMC1BC) (%) 132.28 �
K, Kharif; R, Rabi; LMC, Left Main Canal; RMC, Right Main Canal; BC, Bhungra Canal.

Table 7.2 Release Policy for Irrigation for LMC, RMC, and BC (Mm3)

Month Surface Water Groundwater

LMC RMC BC

January 56.14 49.28 2.82 3.99

February 59.11 51.92 3.01 2.34

March 16.37 14.31 0.67 0.00

April 0.90 0.73 0.03 0.00

May 2.40 1.94 0.09 0.00

June 12.58 10.84 0.57 0.00

July 22.67 19.69 1.05 24.74

August 28.16 24.52 1.46 0.00

September 26.74 23.31 1.51 0.00

October 18.75 16.38 1.25 0.00

November 14.73 12.95 0.86 0.00

December 45.11 39.63 2.30 0.00

Total 303.66 265.50 15.62 31.07

LMC, Left Main Canal; RMC, Right Main Canal; BC, Bhungra Canal.
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� It was observed from the RMC cropping pattern that maize, sugarcane, barley, and bar-

seen has an approximate deviation of 30% from the upper limit, whereas the other crops

reach the upper limit. It was also observed that the ratio of total area to lower limit

(expressed as a percentage) is 137.60.
� Similarly, in the case of the BC cropping pattern, only cotton, zaid crop, and mustard

reach their upper limits. The ratio of total area to lower limit (expressed as a percentage)

is 176.01.
� The total area irrigated is 67,736 ha, and the corresponding maximum annual net benefits

from the project is Rs. 113.15 crores. The annual net benefits per ha is DRs. 16,705.
� It was observed from Figure 7.3 that empty storage is observed in the month of August

and maximum live storage in the month of November.
� It was observed from Table 7.2 that releases for irrigation for LMC, RMC, and BC are

high during the months of January, February, and December, whereas they are very low

during the months of April and May.
� The annual releases (surface water) for LMC, RMC, and BC are 303.65, 265.50, and

15.63 Mm3, respectively.
� It was observed that monthly irrigation releases to LMC, RMC, and BC are far less than

the corresponding canal capacities.
� It was observed from Figure 7.4 that maximum and minimum requirements for PH1 are

during December and July.
� It was observed that groundwater withdrawal is during the months of January, February,

and July, which may help augment the surface water.

7.7 Conclusions

Based on the analysis of the results of the irrigation planning problem of MBSP,

the following conclusions are drawn:

1. It is observed that the annual net benefits are Rs. 113.15 crores, resulting from the total

irrigated area of 67,736 ha. The ratio of annual net benefits to irrigated area is Rs. 16,705

per hectare.

2. The maximum live storage is observed in the month of November, whereas significant

overflows of around 424 Mm3 are observed in the month of October. On the other hand,

empty storage is observed in the month of August.

3. It is observed that the groundwater is used to its maximum potential of 31.07 Mm3, of

which 79% is in the month of July.

4. The annual releases into LMC, RMC, and BC are 303.65, 265.50, and 15.63 Mm3, respec-

tively. Monthly releases into the canal are always less than their maximum capacity.

5. It can be concluded that the SI algorithm can be used effectively as a potential alternative

optimization algorithm to other heuristic algorithms for optimal use of a reservoir’s avail-

able water resources.
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8.1 Introduction

Geotechnical engineering deals with materials (e.g., soil and rock) that, by their

very nature, exhibit varied and uncertain behavior due to the imprecise physical

processes associated with the formation of these materials. Modeling the behavior

of such materials is complex and usually beyond the ability of most traditional

forms of physically based engineering methods. Artificial intelligence (AI) is

becoming more popular and particularly amenable to modeling the complex

behavior of most geotechnical engineering materials because it has demonstrated

superior predictive ability compared to traditional methods. Over the last decade,

AI has been applied successfully to virtually every problem in geotechnical

engineering. However, despite this success, AI techniques are still facing classical

opposition due to some inherent reasons such as lack of transparency, knowledge

extraction, and model uncertainty, which will be discussed in detail in this chapter.

Among the available AI techniques are artificial neural networks (ANNs),

genetic programming (GP), evolutionary polynomial regression (EPR), support

vector machines, M5 model trees, and K-nearest neighbors (Elshorbagy et al.,

2010). In this chapter, the focus will be on three AI techniques, including ANNs,

GP, and EPR. These three techniques are selected because they have been proved

to be the most successful applied AI techniques in geotechnical engineering.

Of these, ANN is by far the most commonly used one.

8.2 AI Applications in Geotechnical Engineering

In this section, the applications of the three selected AI techniques (i.e., ANNs,

GP, and EPR) are briefly examined. Note that only post-2005 ANN applications
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are acknowledged, for brevity; interested readers are referred to Shahin

et al. (2001), where the pre-2001 applications are reviewed in some detail, and

Shahin et al. (2009), where the post-2001 papers are briefly examined.

The behavior of foundations (deep and shallow) in soils is complex, uncertain,

and not yet entirely understood. This fact has encouraged many researchers to

apply the AI techniques to the prediction of behavior of foundations. For example,

ANNs have been used extensively for modeling the axial and lateral load capacities

of pile foundations in compression and uplift, including driven piles (Ahmad

et al., 2007; Ardalan et al., 2009; Das and Basudhar, 2006; Pal and Deswal, 2008;

Shahin, 2010), drilled shafts (Goh et al., 2005; Shahin, 2010), and ground anchor

piles (Shahin and Jaksa, 2005, 2006). Predictions of the settlement and

load�settlement response of piles have also been modeled by ANNs (Alkroosh

and Nikraz, 2011b; Ismail and Jeng, 2011; Pooya Nejad et al., 2009). On the other

hand, the prediction of the behavior of shallow foundations has been investigated

by ANNs, including settlement estimation (Chen et al., 2006; Shahin et al., 2005a)

and bearing capacity (Kuo et al., 2009; Padmini et al., 2008). The GP applications

in foundations include the bearing capacity of piles (Alkroosh and Nikraz, 2011a;

Gandomi and Alavi, 2012), uplift capacity of suction caissons (Gandomi et al.,

2011), and settlement of shallow foundations (Rezania and Javadi, 2007). The sin-

gle EPR application in foundations is the uplift capacity of suction caissons

(Rezania and Javadi, 2008).

Classical constitutive modeling based on elasticity and plasticity theories has

only a limited capability to simulate the behavior of geomaterials properly. This is

attributed to reasons associated with the formulation complexity, idealization of

material behavior, and excessive empirical parameters (Adeli, 2001). In this regard,

AI techniques have been proposed as a reliable and practical alternative to model-

ing the constitutive monotonic and hysteretic behavior of geomaterials, including

ANNs (Banimahd et al., 2005; Chen et al., 2010; Fu et al., 2007; Garaga and

Latha, 2010; Johari et al., 2011; Najjar and Huang, 2007; Obrzud et al., 2009; Peng

et al., 2008; Shahin and Indraratna, 2006), GP (Alkroosh and Nikraz, 2012;

Cabalar et al., 2009; Shahnazari et al., 2010), and EPR (Javadi and Rezania, 2009).

Liquefaction during earthquakes is one of the very dangerous ground failure

phenomena that can cause a large amount of damage to most civil engineering struc-

tures. Although the liquefaction mechanism is well known, the prediction of liq-

uefaction potential is very complex (Baziar and Ghorbani, 2005). This fact has

attracted many researchers to investigate the applicability of AI techniques,

including ANNs, for predicting liquefaction (Alavi and Gandomi, 2011a; Baziar and

Ghorbani, 2005; Hanna et al., 2007a,b; Javadi et al., 2006; Khozaghi and

Choobbasti, 2007; Samui and Sitharam, 2011; Shuh-Gi and Ching-Yinn, 2009;

Young-Su and Byung-Tak, 2006), GP (Alavi and Gandomi, 2011b, 2012; Baziar

et al., 2011; Gandomi and Alavi, 2011, 2012; Javadi et al., 2006; Kayadelen, 2011),

and EPR (Rezania et al., 2010, 2011).

Geotechnical properties of soils are controlled by factors such as mineralogy,

fabric, and pore water, and the interactions of these factors are difficult to

establish solely by traditional statistical methods due to their interdependence
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(Yang and Rosenbaum, 2002). Based on the application of AI techniques,

methodologies have been developed for estimating several soil properties including,

for ANNs, preconsolidation pressure and soil compressibility (Celik and Tan, 2005;

Jianping et al., 2011; Park and Lee, 2011), shear strength parameters and stress history

(Baykasoglu et al., 2008; Byeon et al., 2006; Dincer, 2011; Gunaydin et al., 2010;

Kaya, 2009; Kayadelen et al., 2009; Narendara et al., 2006; Tawadrous et al., 2009),

soil swelling and swell pressure (Ashayeri and Yasrebi, 2009; Doostmohamadi

et al., 2008; Erzin, 2007; Ikizler et al., 2009), lateral earth pressure (Das and

Basudhar, 2005; Uncuoglu et al., 2008), soil permeability (Erzin et al., 2009; Park,

2011), and properties of soil dynamics (Baziar and Ghorbani, 2005; Garcia

et al., 2006; Kamatchi et al., 2010; Kogut, 2007; Shafiee and Ghate, 2008; Singh and

Singh, 2005; Tsompanakis et al., 2009). For GP, properties include hydraulic conduc-

tivity and shear strength (Johari et al., 2006; Kayadelen et al., 2009; Mollahasani

et al., 2011; Narendara et al., 2006; Parasuraman et al., 2007), and for EPR,

they include soil permeability (Ahangar-Asr et al., 2011).

Other applications of ANNs in geotechnical engineering include earth-retaining

structures (Goh and Kulhawy, 2005; Kung et al., 2007; Yildiz et al., 2010), dams

(Kim and Kim, 2008; Yu et al., 2007), blasting (Lu, 2005), mining (Singh and

Singh, 2005), rock mechanics (Cevik et al., 2010; Garcia and Roma, 2009; Ma

et al., 2006; Maji and Sitharam, 2008; Sarkar et al., 2010; Singh et al., 2005, 2007;

Sitharam et al., 2008), site characterization (Caglar and Arman, 2007), tunneling

and underground openings (Alimoradi et al., 2008; Boubou et al., 2010; Chen

et al., 2009; Hajihassani et al., 2011; Neaupane and Adhikari, 2006; Santos et al.,

2008; Tsekouras et al., 2010; Yoo and Kim, 2007), slope stability and landslides

(Cho, 2009; Das et al., 2011a; Ferentinou and Sakellariou, 2007; Kanungo et al.,

2006; Lee et al., 2008; Sakellariou and Ferentinou, 2005; Samui and Kumar, 2006;

Wang and Sassa, 2006), deep excavation (Soroush et al., 2006), soil composition

and classification (Bhattacharya and Solomatine, 2006; Kurup and Griffin, 2006),

soil stabilization (Das et al., 2011b; Liao et al., 2011; Park and Kim, 2011; Tekin

and Akbas, 2011), scouring of soils (Firat and Gungor, 2008; Zounemat-Kermani

et al., 2009), and soil compaction and permeability (Abdel-Rahman, 2008;

Sinha and Wang, 2008; Sivrikaya and Soycan, 2011; Sulewska, 2010). Other appli-

cations of GP include dams (Alavi and Gandomi, 2011b), slope stability (Adarsh

and Jangareddy, 2010; Alavi and Gandomi, 2011b), tunneling (Alavi and Gandomi,

2011b; Gandomi and Alavi, 2012), soil classification (Alavi et al., 2010), and

rock modeling (Feng et al., 2006). Other applications of EPR include slope

stability (Ahangar-Asr et al., 2010) and compaction characteristics (Ahangar-Asr

et al., 2011).

8.3 Overview of AI

AI is a computational method that attempts to mimic, in a very simplistic way,

human cognition capability (e.g., emulating the operation of the human brain
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at the neural level) to solve engineering problems that have defied solution using

conventional computational techniques (Flood, 2008). The essence of AI techni-

ques in solving any engineering problem is to learn by examples of data inputs

and outputs presented to them so that the subtle functional relationships among

the data are captured, even if the underlying relationships are unknown or the

physical meaning is difficult to explain. Thus, AI models are data-driven models

(DDMs) that rely on the data alone to determine the structure and parameters that

govern a phenomenon (or system) and do not make any assumptions about the

physical behavior of the system. This is in contrast to most physically based

models that use the first principles (e.g., physical laws) to derive the underlying

relationships of the system and usually justifiably simplified with many assump-

tions, and require prior knowledge about the nature of the relationships among

the data. This is one of the main benefits of AI techniques when compared to

most physically based empirical and statistical methods.

The AI modeling philosophy is similar to a number of conventional statistical

models, in the sense that both are attempting to capture the relationship between

a historical set of model inputs and corresponding outputs. For example, imagine

a set of x-values and corresponding y-values in two-dimensional space, where

y5 f(x). The objective is to find the unknown function f, which relates the input

variable x to the output variable y. In a linear regression statistical model,

the function f can be obtained by changing the slope tanφ and intercept β of the

straight line in Figure 8.1A, so that the error between the actual outputs and the

outputs of the straight line is minimized. The same principle is used in AI

(A)

(B)

x (Input)

y (Output)

y = (tanφ) x + β 

Intercept
β

φ

Slope (tanφ)

Input data 
Modelled 

system

Machine-learning
(data-driven)

model

x (Input) y (Actual output)

y' (Predicted output)

Learning is aimed
at minimizing this
difference 

Figure 8.1 Linear regression versus AI modeling. (A) Linear regression modeling (Shahin

et al., 2001); (B) AI data-driven modeling.

Source: Adapted from Solomatine and Ostfeld (2008).
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models. AI can form the simple linear regression model by having one input and

one output (Figure 8.1B). AI uses available data to map between the system

inputs and the corresponding outputs using machine learning by repeatedly pre-

senting examples of the model inputs and outputs (training) in order to find the

function y5 f(x) that minimizes the error between the historical (actual) outputs

and the outputs predicted by the AI model.

If the relationship between x and y is nonlinear, statistical regression analysis

can be applied successfully only if prior knowledge of the nature of the

nonlinearity exists. On the contrary, this prior knowledge of the nature of the non-

linearity is not required for AI models. In the real world, it is likely that complex

and highly nonlinear problems are encountered, and in such situations, traditional

regression analyses are inadequate (Gardner and Dorling, 1998). In this section,

a brief overview of three selected AI techniques (i.e., ANNs, GP, and EPR) is

presented below.

8.3.1 Artificial Neural Networks

ANNs are a form of AI that attempt to mimic the function of the human brain and

nervous system. Although the concept of ANNs was first introduced in 1943

(McCulloch and Pitts, 1943), research into applications of ANNs has blossomed

since the introduction of the back-propagation training algorithm for feed-forward

multilayer perceptrons in 1986 (Rumelhart et al., 1986). Many authors have

described the structure and operation of ANNs (Fausett, 1994; Zurada, 1992).

Typically, the architecture of an ANN consists of a series of processing elements

(PEs), or nodes, that are usually arranged in layers: an input layer, an output layer,

and one or more hidden layers, as shown in Figure 8.2.

The input from each PE in the previous layer xi is multiplied by an

adjustable connection weight wji. At each PE, the weighted input signals are summed

and a threshold value θj is added. This combined input Ij is then passed through

a nonlinear transfer function f( � ) to produce the output of the PE yj. The output of

Processing element 

X1 wj1

Ij yj = f (Ij)f (Ij)
wj2

wjn i=1

X2

Xn

... n

wjixiIj = θj + ∑

Artificial neural network

Input
layer

Output
layerHidden 

layer

X1

X2

X3

Xn

...

Figure 8.2 Typical structure and operation of ANNs (Shahin et al., 2009).
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one PE provides the input to the PEs in the next layer. This process is summarized

in Eqs. (8.1) and (8.2) and illustrated in Figure 8.2:

Ij 5
X

wjixi 1 θj summation ð8:1Þ

yj 5 f ðIjÞ transfer ð8:2Þ

The propagation of information in an ANN starts at the input layer, where the

input data are presented. The network adjusts its weights on the presentation of

a training data set and uses a learning rule to find a set of weights that produces the

input and output mapping that has the smallest possible error. This process is called

learning or training. Once the training phase of the model has been successfully

accomplished, the performance of the trained model needs to be validated using an

independent validation set. The main steps involved in the development of an

ANN, as suggested by Maier and Dandy (2000a), are illustrated in Figure 8.3, and

several of these steps are discussed in some detail in the following section.

8.3.2 Genetic Programming

GP is an extension of genetic algorithms (GAs), which are evolutionary computing

search (optimization) methods that are based on the principles of genetics and

natural selection. In GA, some of the natural evolutionary mechanisms, such as

reproduction, crossover, and mutation, are usually implemented to solve function

identification problems. GA was first introduced by Holland (1975) and developed

by Goldberg (1989), whereas GP was invented by Cramer (1985) and further devel-

oped by Koza (1992). The difference between GA and GP is that GA is generally

used to evolve the best values for a given set of model parameters (i.e., parameter

optimization), whereas GP generates a structured representation for a set of input

variables and corresponding outputs (i.e., modeling or programming).

GP manipulates and optimizes a population of computer models (or programs)

that have been proposed to solve a particular problem, so that the model that best

fits the problem is obtained. A detailed description of GP can be found in many

publications (e.g., Koza, 1992), and a brief overview is given herein. The modeling

steps by GP start with the creation of an initial population of computer models

(also called individuals or chromosomes) that are composed of two sets (i.e., a set

of functions and a set of terminals) that are defined by the user to suit a certain

problem. The functions and terminals are selected randomly and arranged in a tree-

like structure to form a computer model that contains a root node, branches of

functional nodes, and terminals, as shown by the typical example of GP tree

representation in Figure 8.4. The functions can contain basic mathematical

operators (e.g., 1 , 2 , 3 , / ), Boolean logic functions (e.g., AND, OR, and NOT),

trigonometric functions (e.g., sin and cos), or any other user-defined functions.

The terminals, on the other hand, may consist of numerical constants, logical

constants, or variables.
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Training speed
Processing speed during recall
Prediction accuracy

Choice of performance criteria

Number of data sets  (e.g., two, three, holdout method)
Method for data division

Choice of data sets

Scaling
Transformation to normality
Removal of nonstationarities

Data preprocessing

Choice of variables
Choice of lags

Choice of model inputs

Connection type (e.g., feedforward, feedback)
Degree of connectivity (e.g., fully connected)
Number of layers
Number of nodes per layer (trial and error, constructive or pruning methods)

Choice of model architecture

Fixed number of iterations
Training error
Cross-validation

Choice of stopping criteria

Local first order (e.g., back propagation)
Local second order (e.g., Levenberg–Maquardt, conjugate gradient)
Global (e.g., simulated annealing, genetic algorithm)

Choice of optimization method

Validation

Figure 8.3 The main steps in ANN model development (Maier and Dandy, 2000a).
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Once a population of computer models has been created, each model is executed

using available data for the problem at hand, and the model fitness is evaluated

depending on how well it is able to solve the problem. For many problems, the

model fitness is measured by the error between the output provided by the model

and the desired actual output. A generation of new population of computer models is

then created to replace the existing population. The new population is created by

applying the following three main operations: reproduction, crossover, and mutation.

These three operations are applied on certain proportions of the computer models in

the existing population, and the models are selected according to their fitness.

Reproduction is copying a computer model from an existing population into the new

population without alteration. Crossover is genetically recombining (swapping) ran-

domly chosen parts of two computer models. Mutation is replacing a randomly

selected functional or terminal node with another node from the same function or

terminal set, provided that a functional node replaces a functional node and a termi-

nal node replaces a terminal node. The evolutionary process of evaluating the fitness

of an existing population and producing new population is continued until a termina-

tion criterion is met, which can be either a particular acceptable error or a certain

maximum number of generations. The best computer model that appears in any gen-

eration identifies the result of the GP process. There are currently three variants of

GP available in the literature, including linear genetic programming, gene expres-

sion programming (GEP), and multi expression programming (Alavi and Gandomi,

2011b). More recently, multi-stage genetic programming (Gandomi and Alavi,

2011) and multi-gene genetic programming (Gandomi and Alavi, 2012) are also

introduced. However, GEP is the most commonly used GP method in geotechnical

engineering and is thus described in some detail next.

GEP was developed by Ferreira (2001) and utilizes the evolution of mathemati-

cal equations that are encoded linearly in chromosomes of fixed length and

expressed nonlinearly in the form of expression trees (ETs) of different sizes and

shapes. The chromosomes are composed of multiple genes, each of which is

encoded in a smaller subprogram or subexpression tree (Sub-ET). Every gene has

a constant length and consists of a head and a tail. The head can contain functions

and terminals (variables and constants) required to code any expression, whereas

the tail solely contains terminals.

sqrt

/

–

4 x1

+

x2
x3

Root node

Terminal nodes

Functional nodes

Figure 8.4 A typical example of

GP tree representation for the

function [(42 x1)/(x21 x3)]
2.
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The genetic code represents a one-to-one relationship between the symbols of

the chromosome and the function or terminal. The process of information decoding

from chromosomes to ETs is called translation, which is based on sets of rules that

determine the spatial organization of the functions and terminals in the ETs and the

type of interaction (link) between the Sub-ETs (Ferreira, 2001). The main strength

of GEP is that the creation of genetic diversity is extremely simplified as the

genetic operators work at the chromosome level. Another strength is regarding the

unique multigenetic nature of GEP, which allows the evolution of more powerful

models/programs composed of several subprograms (Ferreira, 2001).

The major steps in the GEP procedure are schematically represented in

Figure 8.5. The process begins with choosing sets of functions F and terminals T to

create randomly an initial population of chromosomes of mathematical equations.

One could choose, for example, the four basic arithmetic operators to form the set

of functions, i.e., F5 {1 ,2 ,3 , /}, and the set of terminals will obviously consist

of the independent variables of a particular problem; for example, for a problem that

has two independent variables, x1 and x2 would be T5 {x1, x2}. Choosing the chro-

mosomal architecture, i.e., the number and length of genes and linking functions

(e.g., addition, subtraction, multiplication, and division), is also part of this step.

The chromosomes are then given in the form of ETs of different sizes and shapes,

and the performance of each individual chromosome is evaluated by comparing

the predicted and actual values of presented data. One could measure the fitness fi
of an individual chromosome i using the following expression:

fi 5
XCt

j51

ðM2 jCði;jÞ2 TjjÞ; ð8:3Þ

Figure 8.5 The algorithm of GEP

(Teodorescu and Sherwood, 2008).
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where M is the range of selection, C(i.j) is the value returned by the individual chro-

mosome i for fitness case j (out of Ct fitness cases), and Tj is the target value for the

fitness case j. There are, of course, other fitness functions available that can be

appropriate for different problems. If the desired results (according to the measured

errors) are satisfactory, the GEP process is stopped; otherwise, some chromosomes

are selected and mutated to reproduce new chromosomes, and the process is repeated

for a certain number of generations or until the desired fitness score is obtained.

Figure 8.6 shows a typical example of a chromosome with one gene, and its ET

and corresponding mathematical equation. It can be seen that, while the head of a

gene contains arithmetic and trigonometric functions (e.g., 1 ,2 ,3 , /, O, sin, cos),

the tail includes constants and independent variables (e.g., 1, a, b, c). The ET is codi-

fied reading the ET from left to right in the top line of the tree and from top to bottom.

8.3.3 Evolutionary Polynomial Regression

EPR is a hybrid regression technique based on evolutionary computing that was

developed by Giustolisi and Savic (2006). It constructs symbolic models by

integrating the soundest features of numerical regression, with GP and symbolic

regression (Koza, 1992). This strategy provides the information in symbolic form,

as usually defined in the mathematical literature. The following two steps roughly

describe the underlying features of the EPR technique, which aimed to search for

polynomial structures representing a system. In the first step, the selection of expo-

nents for polynomial expressions is carried out, employing an evolutionary

searching strategy by means of GAs (Goldberg, 1989). In the second step, numer-

ical regression using the least squares method is conducted, aiming to compute

the coefficients of the previously selected polynomial terms. The general form of

expression in EPR can be presented as follows (Giustolisi and Savic, 2006):

y5
Xm
j5i

FðX; f ðXÞ; ajÞ1 a0 ð8:4Þ

where y is the estimated vector of output of the process, m is the number of terms

of the target expression, F is a function constructed by the process, X is the matrix

Choromosome with one gene

0  1  2  3  4  5  6  7  8 9  0  1  2  3  4  5  6
+  * Q a  b  –   a  b  a b  a  a   a  b  b  a  b

Head Tail

Gene

(a–b)+   (a*b)

Corresponding mathematical equation

ET

a

a

–

*b

b

+ Figure 8.6 Schematic

representation of a

chromosome with one gene

and its ET and corresponding

mathematical equation

(Kayadelen, 2011).
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of input variables, f is a function defined by the user, and aj is a constant. A typical

example of EPR pseudo-polynomial expression that belongs to the class of

Eq. (8.4) is as follows (Giustolisi and Savic, 2006):

Ŷ 5 a0 1
Xm
j5i

aj � ðX1ÞESðj;1Þ?ðXkÞESðj;kÞ � f ½ðX1ÞESðj;k11Þ?ðXkÞESðj;2kÞ� ð8:5Þ

where Ŷ is the vector of target values, m is the length of the expression, aj is the

value of the constants, Xi is the vector(s) of the k candidate inputs, ES is the matrix

of exponents, and f is a function selected by the user.

EPR is suitable for modeling physical phenomena, based on two features (Savic

et al., 2006): (1) the introduction of prior knowledge about the physical system/pro-

cess, to be modeled at three different times, namely before, during, and after EPR

modeling calibration; and (2) the production of symbolic formulas, enabling data

mining to discover patterns that describe the desired parameters. In EPR feature

(1), before the construction of the EPR model, the modeler selects the relevant

inputs and arranges them in a suitable format according to their physical meaning.

During the EPR model construction, model structures are determined by following

user-defined settings such as general polynomial structure, user-defined function

types (e.g., natural logarithms, exponentials, and tangential hyperbolics) and

searching strategy parameters. The EPR starts from true polynomials and also

allows for the development of nonpolynomial expressions containing user-defined

functions (e.g., natural logarithms). After EPR model calibration, an optimum

model can be selected from among the series of models returned. The optimum

model is selected based on the modeler’s judgment, in addition to statistical perfor-

mance indicators such as the coefficient of determination. A typical flow diagram

of the EPR procedure is shown in Figure 8.7, and a detailed description of the tech-

nique can be found in Giustolisi and Savic (2006).

8.3.4 Current Development and Future Directions in the Utilization
of AI

Based on the author’s experience, there are several factors in the use of AI

techniques that need to be systematically investigated when developing AI models,

so that model performance can be improved. These factors include the determina-

tion of adequate model inputs, data division, data preparation, model validation,

model robustness, model transparency and knowledge extraction, model extrapola-

tion, and model uncertainty. Some of these factors have received recent attention;

others require further research. Each of these is discussed below.

Determination of Model Inputs

An important step in developing AI models is to select the model input variables

that have the most significant impact on model performance. A good subset of
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input variables can substantially improve model performance. Presenting as large a

number of input variables as possible to AI models usually increases the model

size, resulting in a decrease in processing speed and model efficiency. A number of

techniques have been suggested in the literature to assist with the selection of input

variables. An approach that is usually utilized in the field of geotechnical engineer-

ing is that appropriate input variables can be selected in advance based on a priori

Create initial population of exponent
vectors, randomly

Start

Initialize the input matrix

Assign exponent vectors to the
corresponding columns of the input

matrix (to create a population of
mathematical structures)

Evaluate co-efficients using
least square method (to create a

population of equations)

Evaluate fitness of equations in 
the population

Is the termination criterion satisfied?

Select two exponent vectors
(to perform crossover)

Select individuals from mating 
pool of exponent vectors

Select one exponent vectors
(to perform mutaion)

Create offspring generation of 
exponent vectors

Yes

GA tool

No

Output results

End

Figure 8.7 A typical flow diagram of the EPR procedure (Rezania et al., 2011).
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knowledge. Another approach used by some researchers (Goh, 1994; Najjar et al.,

1996; Ural and Saka, 1998) is to develop many models with different combinations

of input variables and to select the model that has the best performance. A stepwise

technique described by Maier and Dandy (2000b) can also be used in which sepa-

rate models are trained, each using only one of the available variables as model

inputs, and the model that performs the best is then retained, combining the vari-

able that results in the best performance with each of the remaining variables.

This process should be repeated for an increasing number of input variables, until

the addition of additional variables results in no further improvement in model per-

formance. Another useful approach is to employ a GA to search for the best sets of

input variables (NeuralWare, 1997). For each possible set of input variables chosen

by the GA, a model is trained and used to rank different subsets of possible inputs.

A set of input variables derives its fitness from the model error obtained based on

those variables. The adaptive spline modeling of observation data algorithm pro-

posed by Kavli (1993) is also a useful technique that can be used for developing

parsimonious models by automatically selecting a combination of model input vari-

ables that have the most significant impact on the outputs.

A potential shortcoming of these approaches is that they are model based.

In other words, the determination as to whether a parameter input is significant or

not is dependent on the error of a trained model, which is not only a function of

the inputs but also model structure and calibration. This can potentially obscure the

impact of different model inputs. In order to overcome this limitation, model-free

approaches can be utilized, which use linear dependence measures, such as correla-

tion, or nonlinear measures of dependence, such as mutual information, to obtain

the significant model inputs prior to developing the AI models (Bowden et al.,

2005, May et al., 2008).

Data Division

As described earlier, AI models are similar to conventional statistical models in the

sense that model parameters are adjusted in the model calibration phase (training)

so as to minimize the error between model outputs and the corresponding measured

values for a particular data set (the training set). AI models perform best when they

do not extrapolate beyond the range of the data used for calibration. Therefore, the

purpose of AI models is to nonlinearly interpolate (generalize) in high-dimensional

space between the data used for calibration. Unlike conventional statistical models,

AI models generally have a large number of model parameters and can therefore

overfit the training data, especially if the training data are noisy. In other words,

if the number of degrees of freedom of the model is large compared with the num-

ber of data points used for calibration, the model might no longer fit the general

trend, as desired, but might learn the idiosyncrasies of the particular data points

used for calibration leading to memorization, rather than generalization.

Consequently, a separate validation set is needed to ensure that the model can gen-

eralize within the range of the data used for calibration. It is a common practice to

divide the available data into two subsets: a training set, to construct the model,
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and an independent validation set, to estimate the model performance in a deployed

environment. Usually, two-thirds of the data are suggested for model training and

one-third for validation (Hammerstrom, 1993). A modification of this data division

method is cross-validation in ANNs (Stone, 1974), in which the data are divided

into three sets: training, testing, and validation. The training set is used to adjust

the model parameters, whereas the testing set is used to check the performance of

the model at various stages of training and to determine when to stop training to

avoid overfitting. The validation set is used to estimate the performance of the

trained network in the deployed environment. In an attempt to find the optimal pro-

portion of the data to use for training, testing, and validation in ANN models,

Shahin et al. (2004) investigated the impact of the proportion of data used in various

subsets on model performance for a case study of settlement prediction of shallow

foundations and found that there is no clear relationship between the proportion of

data for training, testing, and validation and model performance; however, they

found that the best result was obtained when 20% of the data were used for valida-

tion and the remaining data were divided into two parts, 70% for training and 30%

for testing.

In many situations, the available data are small enough to be solely devoted to

model training, and collecting any more data for validation is difficult. In this situa-

tion, the leave-k-out method (Masters, 1993), which involves holding back a small

fraction of the data for validation and using the rest of the data for training, can be

used. After training, the performance of the trained network has to be estimated

with the aid of the validation set. A different small subset of data is held back and

the model is trained and tested again. This process is repeated many times with dif-

ferent subsets until an optimal model can be obtained from the use of all of the

available data.

In the majority of AI applications in geotechnical engineering, the data were

divided into their subsets on an arbitrary basis. However, some studies have found

that the way the data are divided can have a significant impact on the results

obtained (Tokar and Johnson, 1999). As AI models have difficulty extrapolating

beyond the range of the data used for calibration, in order to develop the best AI

models, given the available data, all of the patterns that are contained in the data

need to be included in the calibration set. For example, if the available data contain

extreme data points that were excluded from the calibration data set, the model

cannot be expected to perform well because the validation data will test the mod-

el’s extrapolation ability rather than its interpolation ability. If all of the patterns

that are contained in the available data are contained in the calibration set, the

toughest evaluation of the generalization ability of the model is if all the patterns

(and not just a subset) are contained in the validation data. In addition, if cross-

validation is used in ANN models, the results obtained using the testing set have to

be representative of those obtained using the training set, as the testing set is used

to decide when to stop training or, for example, which model architecture or learn-

ing rate is optimal. Consequently, the statistical properties (e.g., mean and standard

deviation) of the various data subsets (e.g., training, testing, and validation) need to

be similar to ensure that each subset represents the same statistical population
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(Masters, 1993). If this is not the case, it may be difficult to judge the validity of

AI models.

This fact has been recognized for some time (ASCE, 2000; Maier and Dandy,

2000b; Masters, 1993), and several studies have used ad hoc methods to ensure

that the data used for calibration and validation have the same statistical properties

(Braddock et al., 1998; Campolo et al., 1999; Ray and Klindworth, 2000; Tokar

and Johnson, 1999). Masters (1993) strongly confirms the above strategy of data

division as he says, “if our training set is not representative of the data on which

the network will be tested, we will be wasting our time.” However, it was not until

a few years ago that systematic approaches for data division have been proposed in

the literature. Bowden et al. (2002) used a GA to minimize the difference between

the means and standard deviations of the data in the training, testing, and validation

sets. While this approach ensures that the statistical properties of the various data

subsets are similar, there is still a need to choose which proportion of the data to

use for training, testing, and validation. Kocjancic and Zupan (2000) and Bowden

et al. (2002) used a self-organizing map (SOM) to cluster high-dimensional input

and output data in two-dimensional space and divided the available data so that

values from each cluster were represented in the various data subsets. This ensures

that data in the different subsets were representative of each other and had the addi-

tional advantage that there was no need to decide what percentage of the data

to use for training, testing, and validation. The major shortcoming of this approach

is that there are no guidelines for determining the optimum size and shape of

the SOM (Cai et al., 1994; Giraudel and Lek, 2001). This has the potential to have

a significant impact on the results obtained, as the underlying assumption of the

approach is that the data points in one cluster provide the same information in

high-dimensional space. However, if the SOM is too small, there may be signifi-

cant intracluster variation. Conversely, if the map is too large, too many clusters

may contain single data points, making it difficult to choose representative subsets.

To overcome the problem of determining the optimum size of clusters associated

with using SOMs, Shahin et al. (2004) introduced a data division approach that uti-

lizes a fuzzy clustering technique so that data division can be carried out in a sys-

tematic manner.

Data Preparation

Data preparation is the process of presenting the data in a suitable form before they

are presented to the AI techniques. Once the available data have been divided into

their subsets (e.g., training and validation), it is important to preprocess the data

to ensure that all variables receive equal attention during training. Preprocessing

of the data also usually speeds up the learning process, and it can be in the form of

data scaling or transformation (Masters, 1993). Scaling of the data is not necessary

but almost always recommended (Masters, 1993). Transformation of the data into

normal distribution or some known forms (e.g., linear, log, and exponential) may

be helpful to improve the performance of AI models. The influence of data trans-

formation was undertaken in a study carried out by Bowden et al. (2003) using
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different transformation methods, including linear, logarithmic, and seasonal trans-

formations, histogram equalization, and a transformation to normality. In this

study, it was found that the model using the linear transformation resulted in the

smallest error, whereas more complex transformations did not improve model

performance. Moreover, empirical trials carried out by Faraway and Chatfield

(1998) showed that the model fits were the same, regardless of whether raw or

transformed data were used. The author’s own experience in geotechnical engi-

neering is that data scaling is useful, but data transformation does not improve

model performance.

Model Validation

Once the training phase of the model has been successfully accomplished,

the performance of the trained model should be validated. The purpose of the

model validation phase is to ensure that the model has the ability to generalize

within the limits set by the training data in a robust fashion, rather than simply

having memorized the input�output relationships that are contained in the train-

ing data. The approach that is generally adopted in the literature to achieve this

is to test the performance of trained AI models on an independent validation set

that has not been used as part of the model building process. If such performance

is adequate, the model is deemed to be able to generalize and is considered to be

robust.

The choice of a suitable error function to investigate model validation is quite

important, and the main measures that are often used in the literature to evaluate

the performance of AI models include the coefficient of correlation, r; the root

mean squared error, RMSE; and the mean absolute error, MAE. The formulas of

these measures are as follows:

r5

PN
i51ðOi 2OÞðPi 2PÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i51 ðOi2OÞ2PN
i51 ðPi2PÞ2

q ð8:6Þ

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i51 ðOi2PiÞ2

N

s
ð8:7Þ

MAE5
1

N

XN
i51

jOi 2Pij ð8:8Þ

where N is the number of data points presented to the model; Oi and Pi are the

observed and predicted outputs, respectively; and O and P are the mean of

observed and predicted outputs, respectively.

The coefficient of correlation, r, is a measure that is used to determine the rela-

tive correlation and the goodness-of-fit between the predicted and the observed

184 Metaheuristics in Water, Geotechnical and Transport Engineering



data. Smith (1986) suggested the following guide for values of jrj between 0.0 and

1.0:

� jrj$ 0.8—Strong correlation exists between two sets of variables,
� 0.2, jrj, 0.8—Correlation exists between the two sets of variables, and
� jrj# 0.2—Weak correlation exists between the two sets of variables.

However, Das and Sivakugan (2010) argued that the use of r could be mislead-

ing because sometimes higher values of r may not necessarily indicate better model

performance due to the tendency of the model to deviate toward higher or lower

values, particularly when the data range is very wide and most of the data are

distributed about their mean. It was suggested that the coefficient of efficiency, E,

proposed by Nash and Sutcliffe (1970), can give an unbiased estimate and would

be a better measure for model performance. E is calculated as follows:

E5 12

PN
i51 ðOi2PiÞ2PN
i51 ðOi2OÞ2 ð8:9Þ

According to Eq. (8.9), E may range from �N to 1.0, where a value of 90%

and above indicates very satisfactory performance and a value below 80% indicates

unsatisfactory performance. However, Legates and McCabe (1999) raised the issue

that E is oversensitive to extreme values (caused by squaring the difference terms),

and introduced the modified coefficient of efficiency, E1, which uses the absolute

differences rather than their squares and can be computed as follows:

E1 5 12

PN
i51jðOi 2PiÞjPN
i51jðOi 2OÞj ð8:10Þ

The RMSE is the most popular error measure and has the advantage that large

errors receive much greater attention than small errors (Hecht-Nielsen, 1990).

However, as indicated by Cherkassky et al. (2006), there are situations when

RMSE cannot guarantee that the model performance is optimal. Moreover, it was

also argued by Das and Sivakugan (2010) that RMSE reflects only the short-term

(overall) performance of the model information, showing the overall difference

between the predicted and the measured values. Das and Sivakugan (2010) sug-

gested that the use of the normalized mean biased error, NMBE, provides informa-

tion with respect to overestimation or underestimation predictions and thus can

give a better estimation in relation to the long-term model performance. In contrast

with RMSE, MAE eliminates the emphasis given to large errors. Both RMSE and

MAE are desirable when the evaluated output data are smooth or continuous

(Twomey and Smith, 1997).

It is advised by Guven and Aytek (2009) that the combined use of RMSE, E, and

E1 provides a sufficient assessment of AI model performance and allows

comparison of the accuracy of different AI modeling approaches. On the other hand,

Elshorbagy et al. (2010) suggested that four different error statistics including
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RMSE, mean absolute relative error (MARE), mean bias (MB), and coefficient

of correlation (r), along with the visual comparison between the observed and the

predicted output values, are sufficient to reveal any significant differences among

the various modeling techniques with regard to their prediction accuracy. However,

Elshorbagy et al. (2010) mentioned that sometimes conflicting results may arise due

to the use of various measures and proposed a new error measure that combines

the effects of the above-mentioned four error measures in one indicator. The new

indicator is called the ideal point error (IPE), and it is calculated as follows

(Elshorbagy et al. 2010):

IPEij 5 0:25
RMSEij20:0

max RMSEij

� �2
1

MAREij20:0

max MAREij

� �2"(

1
MBij20:0

maxjMBijj

����
����21 rij21:0

1=max rij

� �2#)1=2

ð8:11Þ

where i and j denote model (i) and technique (j), respectively; and MARE and MB

are calculated as follows:

MARE5
1

N

XN
i51

Oi 2Pi

Oi

����
���� ð8:12Þ

MB5
1

N

XN
i51

ðOi 2PiÞ ð8:13Þ

The IPE relies on identifying the ideal point in the four-dimensional error

(space) that a model aims to reach. The ideal point should have the following coor-

dinates: RMSE5 0.0, MARE5 0.0, MB5 0.0, and r5 1.0. The IPE measures how

far a model performance is from the ideal point. All individual error measures are

given equal relative weights and normalized using their maximum error, so

the final IPE value ranges from 0.0 (for the best model performance) to 1.0 (for the

worst model performance).

Model Robustness

Model robustness is the predictive ability of AI models to generalize over a range

of data similar to that used for model training. With regard to ANNs, Kingston

et al. (2005b) stated that if “ANNs are to become more widely accepted and reach

their full potential. . ., they should not only provide a good fit to the calibration and

validation data, but the predictions should also be plausible in terms of the relation-

ship modeled and robust under a wide range of conditions,” and that “while ANNs

validated against error alone may produce accurate predictions for situations similar
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to those contained in the training data, they may not be robust under different

conditions unless the relationship by which the data were generated has been ade-

quately estimated.” This agrees with the investigation into the robustness of ANNs

carried out by Shahin et al. (2005b) for a case study of predicting the settlement of

shallow foundations on granular soils. Shahin et al. (2005b) found that good perfor-

mance of ANN models on the data used for model calibration and validation does

not guarantee that the models will perform in a robust fashion over a range of data

similar to those used in the model calibration phase. For this reason, Shahin et al.

(2005b) proposed a method to test the robustness of the predictive ability of ANN

models by carrying out a parametric study to investigate the response of ANN

model outputs to changes in its inputs. The robustness of the model can then be

determined by examining how well model predictions are in agreement with the

known underlying physical processes of the problem in hand over a range of inputs.

Shahin et al. (2005b) presented two different ANN models, which have the

performance given in Table 8.1. Both the models were developed using the same

software, model parameters, and architecture (i.e., five inputs: footing width,

applied pressure, average Standard Penetration Test (SPT) blow count, footing

geometry, and embedment ratio, and one hidden layer with two nodes and a single

output: a foundation settlement), except that the models were optimized with differ-

ent sets of random starting weights. It can be seen from Table 8.1 that both the

models perform very well when assessed against traditional measures such as the

coefficient of correlation, r, RMSE, and MAE. In the absence of any further infor-

mation, one would normally adopt either of the two models and use it for predic-

tive purposes within the range of the input data used to train the models.

Figure 8.8 shows the results of the parametric study performed to assess the gen-

eralization ability of both models. In order to carry out the parametric study, all

input variables except one were fixed to the mean values used for training and a set

of synthetic data (whose values lie between the minimum and the maximum values

used for model training) were generated for the single input that was allowed to

vary. The synthetic data were generated by increasing their values in increments

equal to 5% of the total range between the minimum and the maximum values.

These input values were then entered into both ANN models and the corresponding

outputs were obtained. The robustness of the models was then determined by exam-

ining how well the predicted output (in this case, the footing settlement) agrees

Table 8.1 Performance of the ANN Models Developed by Shahin et al. (2005b)

Model No. Data Set r RMSE (mm) MAE (mm)

1 Training 0.92 10.8 7.4

Testing 0.94 8.4 5.8

Validation 0.88 12.9 9.8

2 Training 0.94 9.1 6.3

Testing 0.94 9.1 6.8

Validation 0.89 11.8 9.6
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with the known underlying physical processes over the range of inputs examined.

It can be seen that the results obtained for Model-1 agree with what one would

expect based on the known physical behavior of the settlement of shallow founda-

tions on granular soils. For example, in Figure 8.8A, B, and D, there is an increase

in the predicted settlement, in a relatively consistent and smooth fashion, as the

footing width, footing net applied pressure, and footing geometry, respectively,

increase. On the other hand, in Figure 8.8C and E, the predicted settlement

decreases, also in a consistent and smooth fashion, as the average SPT blow count

and footing embedment ratio, respectively, increase. In contrast, it can be seen
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Figure 8.8 Results of the parametric study to test the robustness of the ANN models

(Shahin et al., 2005b).
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from Figure 8.8 that the results obtained for Model-2 have an unexpected shape

that is difficult to justify from a physical understanding of footing settlement.

For example, there are abrupt changes in the predicted settlement in some instances

and no change in predicted settlement for a range of inputs in others.

Shahin et al. (2005b) argued that since cross-validation (Stone, 1974) was

adopted during the model development phase and an independent validation set

was used to test the predictive ability of both models, the only plausible explana-

tion for the different behaviors exhibited by both models was the connection

weights included in each model. Shahin et al. (2005b) then advised that the

connection weights should be examined as part of the interpretation of ANN model

behavior, using, for example, the method suggested by Garson (1991). On the other

hand, Kingston et al. (2005b) adopted the connection weight approach of Olden

et al. (2004) for a case study in hydrological modeling in order to assess the rela-

tionship modeled by the ANNs. On the other hand, GP and EPR are claimed to

provide better generalization ability than ANNs and therefore are worth further

consideration in relation to achieving improved model robustness. However, it is

also important to assess the relationship that has been modeled in the validation of

AI models, rather than basing it on an error measure alone.

Model Transparency and Knowledge Extraction

Model transparency and knowledge extraction are the feasibility of interpreting AI

models in a way that provides insights into how model inputs affect outputs.

Figure 8.9 shows a representation of the classification of modeling techniques

based on colors (Giustolisi et al., 2007) in which the higher the physical knowledge

used during model development, the better the physical interpretation of the phe-

nomenon that the model provides to the user. It can be seen that the color coding

of mathematical modeling can be classified into white-, black-, and gray-box
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Figure 8.9 Graphical classification

of modeling techniques.

Source: Adapted from Giustolisi

et al. (2007).
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models, each of which can be explained as follows (Giustolisi et al., 2007).

White-box models are systems that are based on first principles (e.g., physical

laws) where model variables and parameters are known and have physical mean-

ing by which the underlying physical relationships of the system can be explained.

Black-box models are data-driven or regressive systems in which the functional

form of relationships between model variables are unknown and need to be esti-

mated. Black-box models rely on data to map the relationships between model

inputs and corresponding outputs rather than to find a feasible structure of the

model input�output relationships. Gray-box models are conceptual systems in

which the mathematical structure of the model can be derived, allowing further

information of the system behavior to be resolved.

According to the above classification of modeling techniques based on color,

whereby meaning is related to three levels of prior information required, ANNs

belong to the class of black-box models due to their lack of transparency and the

fact that they neither consider nor explain the underlying physical processes explic-

itly. This is because the knowledge extracted by ANNs is stored in a set of weights

that are difficult to interpret properly; and due to the large complexity of the net-

work structure, ANNs fail to give a transparent function that relates the inputs to

the corresponding outputs. Consequently, it is difficult to understand the nature of

the input�output relationships that are derived. This issue has been addressed by

many researchers with respect to hydrological engineering. For example, Jain et al.

(2004) examined whether the physical processes in a watershed were inherent in a

trained ANN rainfall-runoff model. This was carried out by assessing the strengths

of the relationships between the distributed components of the ANN model,

in terms of the responses from the hidden nodes, and the deterministic components

of the hydrological process, computed from a conceptual rainfall-runoff model,

along with the observed input variables, using correlation coefficients and scatter

plots. They concluded that the trained ANN, in fact, captured different components

of the physical process and a careful examination of the distributed information

contained in the trained ANN can be informative about the nature of the physical

processes captured by various components of the ANN model. Sudheer (2005) per-

formed perturbation analysis to assess the influence of each individual input vari-

able on the output variable and found it to be an effective means of identifying the

underlying physical process inherent in the trained ANN. Olden et al. (2004),

Sudheer and Jain (2004), and Kingston et al. (2006) also addressed this issue of

model transparency and knowledge extraction.

In the context of geotechnical engineering, Shahin et al. (2002) and Shahin and

Jaksa (2005) expressed the results of the trained ANNs in the form of relatively

straightforward equations. This was possible due to the relatively small number of

input and output variables and hidden nodes. Neuro-fuzzy applications are another

means of knowledge extraction that facilitate model transparency via extraction of

rules. Neuro-fuzzy networks use the fuzzy logic system to store knowledge

acquired from a set of input variables (x1, x2, . . ., xn) and the corresponding output

variable (y) in a set of linguistic fuzzy rules that can be easily interpreted, such as

IF (x1 is high AND x2 is low) THEN (y is high), c 5 0.9, where (c5 0.9) is the
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rule confidence, which indicates the degree to which the above rule has contributed

to the output. Examples of such applications in geotechnical engineering include

Ni et al. (1996), Shahin et al. (2003), Gokceoglu et al. (2004), Provenzano et al.

(2004), and Padmini et al. (2008). More recently, Cao and Qiao (2008) introduced

the so-called neural network committee�based sensitivity analysis strategy to

reveal the underlying relationships among the influential factors affecting a system

through estimation of the relative contribution of each explicative (input) variable

and dependent (output) variables. The strategy was applied to a case study of strata

movement and provides employing a factor sensitivity analysis, instead of conven-

tional single neural network analysis, to reveal the underlying mechanism of strata

movement. This involves the following steps (Cao and Qiao, 2008): (i) the entire

data set on strata movement is randomly split into two subsets, a training subset

(4/5 of the samples) and a testing subset (1/5 of the samples); (ii) the model con-

nection weights are adjusted using the training subset, and the model performance

is tested using the testing subset; (iii) this process is repeatedly carried out many

times so as to determine the best configuration of ANN, which captures the intrin-

sic mechanism of strata movement and transfers the observed data to implicit

knowledge carried by the successfully trained neural network model.

Other researchers proposed the use of sensitivity analyses to explore the AI mod-

els by measuring the effects on the output of a given model when the inputs are var-

ied through their range of values. This approach allows a ranking of the inputs based

on the amount of output changes produced due to disturbances in a given input,

enabling the model to be explained. The quantification of this process is determined

by holding all input variables at a fixed baseline values (e.g., their average values),

except one input attribute that is varied between its range (xaA{x1, . . ., xn}), with
(jA{1, . . ., L}) levels. The sensitivity response ðŷa;jÞ is determined for xa to obtain

the input relevance (Ra) using the sensitivity measure (Sa), as follows:

Ra 5 Sa=
Xn
i51

Si 3 100 ð%Þ ð8:14Þ

For continuous regression tasks, the sensitivity measures (Sa) can take one of the

following three measures, including the range (ra), gradient (ga), and variance (va),

as follows:

Sa 5 ra 5maxðŷaÞ2minðŷaÞ ð8:15Þ

Sa 5 ga 5
XL
i52

jŷa;j 2 ŷa;j21=ðL2 1Þj ð8:16Þ

Sa 5 va 5
XL
i52

ðŷa;j2ŷaÞ2=ðL2 1Þ ð8:17Þ
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For more input influence details, Cortez and Embrechts (2011) proposed the

global sensitivity analysis algorithm in combination with several visualization tech-

niques, such as the variable effect characteristics (VEC) curve. For a given input

variable, the VEC curve plots the L level values on the x-axis versus the sensitivity

analysis responses on the y-axis, enabling increased interpretability of the AI mod-

els. Another sensitivity method introduced by Francone (2001) for the GP-based

models and applied in geotechnical engineering by Alavi et al. (2010) allows

the determination of the contribution of input variables to predict target outputs in

the form of frequency values of input variables. The frequency value evaluates the

importance of an input variable by determining how many times the variable

appears in the contribution of the fitness of the GP-evolved programs (Alavi et al.,

2010). A frequency value of 1.0 indicates that the input variable appears in 100%

of the best GP-evolved programs, indicating that the predictive model is more sen-

sitive to this input variable.

The GP and EPR, on the other hand, can be classified as gray-box techniques

(conceptualization of physical phenomena); despite the fact that they are based on

observed data, they return a mathematical structure that is symbolic and usually

uncomplicated. The nature of obtained GP/EPR models permits the global explora-

tion of expressions, which provides insights into the relationship between the model

inputs and the corresponding outputs; i.e., it allows the user to gain additional

knowledge of how the system performs. An additional advantage of GP/EPR over

ANNs is that the structure and network parameters of ANNs (e.g., the number of

hidden layers and their number of nodes, transfer functions, and the learning rate)

should be identified a priori and are usually obtained using ad hoc, trial-and-error

approaches. However, the number and combination of terms, as well as the values

of GP/EPR modeling parameters, are all evolved automatically during model cali-

bration. At the same time, the prior physical knowledge based on engineering judg-

ment or other human knowledge can be used hypothesize about the elements of the

objective functions and their structure, hence enabling refinement of final models.

It should be noted that while white-box models provide maximum transparency,

their construction may be difficult to obtain due to many geotechnical engineering

problems where the underlying mechanism is not entirely understood.

Model Extrapolation

Model extrapolation is the model’s ability to appropriately predict outside the range

of the data used for model calibration. It is generally accepted that DDMs perform

best when they do not extrapolate beyond the range of the data used for model cali-

bration, which is considered to be an important limitation of AI models because it

restricts their usefulness and applicability. Extreme value prediction is of particular

concern in several areas of civil engineering, such as hydrological engineering,

when floods are forecast, as well as in geotechnical engineering, when liquefaction

potential and the stability of slopes are assessed. Sudheer et al. (2003) highlighted

this issue and proposed a methodology, based on the Wilson�Hilferty transforma-

tion, for enabling ANN models to predict extreme values with respect to peak river
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flows. Their methodology yielded superior predictions compared to those obtained

from an ANN model using untransformed data. More recently, Ismail and Jeng

(2011) suggested the use of nonasymptotic PEs such as high-order neural networks

(HONs) in modeling the load�settlement behavior of piles. A HON uses polyno-

mial functions to map inputs into outputs and can be trained through error back-

propagation algorithm. It uses high-order neurons instead of summation neurons

(e.g., sigmoid) as PEs and the advantage of this is that the input and output para-

meters do not have to be normalized within a certain range. This is because HON

models are not asymptotic and do not have a limited dynamic range. To the author’s

knowledge, this type of neural networks has not been applied in geotechnical engi-

neering and therefore is worth further consideration in relation to achieving improved

model extrapolation.

Model Uncertainty

Finally, a further limitation of AI models is that the uncertainty in model predic-

tions is seldom quantified. Failure to account for such uncertainty makes it impossi-

ble to assess the quality of AI model predictions, which may limit their efficacy. In

addition, estimating uncertainty associated with predictions provided by DDMs is

very important for decision making regardless of the generalization ability of the

predictive model. This is because, from the point of view of a decision maker, the

value of a prediction depends on the availability of additional information that

helps to estimate the risks associated with decisions taken upon this prediction

(Cherkassky et al., 2006).

In an effort to address the issue of model uncertainty, a few researchers have

applied Bayesian techniques to ANN training (Buntine and Weigend, 1991;

Kingston et al., 2005a, 2008; MacKay, 1992) in the context of hydrological engi-

neering and Goh et al. (2005) did the same with respect to geotechnical engineer-

ing. In these studies, various Bayesian methods have been used to estimate the

uncertainties in ANN parameters (weights) and Goh et al. (2005) observed that the

integration of the Bayesian framework into the back-propagation algorithm

enhanced neural network prediction capabilities and provided assessment of the

confidence associated with network predictions. Research to date has demonstrated

the value of Bayesian neural networks, although further work is needed in the area

of geotechnical engineering. Shahin et al. (2005a) also incorporated uncertainty in

the ANN process by developing a series of probabilistic design charts expressing

the reliability of settlement predictions for shallow foundations on cohesionless

soils. In the context of hydrological engineering, Shrestha and Solomatine (2006)

introduced an approach to estimate model uncertainty using machine learning, and

the method was tested in forecasting river flows. The idea is to build local models

in which uncertainty is expressed in the form of the two quantiles (constituting the

prediction interval) of the underlying distribution of prediction errors. Clustering

and fuzzy logic are then used to model the propagation of integral uncertainty

through the models.
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8.4 Discussion and Conclusions

In the field of geotechnical engineering, it is possible to encounter some types of

problems that are very complex and not well understood. In this regard, AI provides

several advantages over more conventional computing techniques. For most tradi-

tional mathematical models, the lack of physical understanding is usually supple-

mented by either simplifying the problem or incorporating several assumptions into

the models. Mathematical models also rely on assuming the structure of the model

in advance, which may be less than optimal. Consequently, many mathematical

models fail to simulate the complex behavior of most geotechnical engineering pro-

blems. In contrast, AI techniques are a data-driven approach in which the model can

be trained on input�output data pairs to determine its structure and parameters. In

this case, there is no need to either simplify the problem or incorporate any assump-

tions. Moreover, AI models can always be updated to obtain better results by pre-

senting new training examples as new data become available. These factors combine

to make AI techniques a powerful modeling tool in geotechnical engineering.

Despite the success of AI techniques in geotechnical engineering and other dis-

ciplines, they suffer from some shortcomings in relation to model transparency and

knowledge extraction, ability of extrapolation, and model uncertainty, which need

further attention in the future. For example, special attention should be paid to

incorporating prior knowledge about the underlying physical process based on

engineering judgment or human expertise into the learning formulation, checking

of model robustness, and evaluation of model results. Furthermore, the standard

RMSE error functions conventionally used in AI applications have to be updated

and replaced with more representative error measures. Moreover, according to

Flood (2008), ANNs in civil engineering (including geotechnical engineering) were

used mostly as simple vector-mapping devices for function modeling of applica-

tions that require rarely more than a few tens of neurons without higher-order struc-

turing. Together, improvements in these issues will greatly enhance the usefulness

of ANN models and will provide the next generation of applied ANNs with the

best way for advancing the field to the next level of sophistication and application.

The review of geotechnical engineering literature indicates that findings with

regard to superiority of one AI technique over the other traditional methods are

sometimes contradictory. Consequently, such findings should be treated as data

specific and should not be generalized. The author suggests that for the time being,

AI techniques might be treated as a complement to conventional computing techni-

ques rather than as an alternative, or may be used as a quick check on solutions

developed by more time-consuming and in-depth analyses.
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9.1 Introduction

In many practical problems, the determination of the most economical and/or

shortest path is required. Many engineering, scientific, and mathematical

problems can also be cast into a form of optimum determination. For example,

the minimum energy principle is one of the methods of solving engineering

problems, and it also forms the fundamental principle of the finite element

method. Due to the various needs for the determination of the optimum solution

in various disciplines, different methods have been proposed and used. Resource

allocation, packing, and scheduling, as well as many other similar problems, are

traditionally analyzed using the linear and integer programming methods. Such

methods usually require the objective function and constraints to be linear func-

tions, but the optimum solution can usually be determined easily. The uses of

gradient-type methods, which require the differentiability of the objective

functions, have also found applications in many types of engineering problems.

The differential of the objective function is also commonly formed by the finite

difference method if the objective function cannot be expressed by simple mathe-

matical expressions. These methods are limited, however, by the continuity

requirement, and the global minimum may not be determined unless a good ini-

tial solution is used in the analysis. In geotechnical engineering as well as many

other disciplines where multiple minima and discontinuity exist in the solution

domain, the uses of the previous two groups of methods are seldom adopted. In

general, the optimization process can be either unconstrained or constrained, and

constrained analysis is actually more common in practice. The objective functions

in many geotechnical or transportation problems are usually nonpolynomial hard
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type problems (difficult to be proved, but is commonly believed) with the

following features:

1. The objective functions are usually nonsmooth and nonconvex, and they may not be

continuous over the whole solution domain (such as failure to converge in geotechnical

problems and unacceptable traffic arrangement in transportation problems). It is also pos-

sible that the critical solution is not associated with the condition that the gradient of the

objective function is zero.

2. Multiple local minima will exist in general, and many classical optimization methods can

be trapped easily by the existence of a strong local minimum.

3. A good initial trial failure surface for a general global minimization problem is usually

difficult to estimate for general complicated conditions. Furthermore, every heuristic

global optimization method requires some kind of optimization parameters, and a good initial

trial for these optimization parameters is difficult to establish for general conditions.

Due to the special difficulties of the objective functions and the needs of the

engineers, many researchers have adopted different methods to search for the

global minimum with various success and limitations, and a detailed discussion is

given by Cheng et al. (2007a,b, 2008a,b, 2012). The modern heuristic global opti-

mization methods that have evolved in recent years have attracted the attention of

many geotechnical engineers recently. For slope stability problems, genetic algo-

rithm (GA) has been used by McCombie and Wilkinson (2002), Zolfaghari et al.

(2005), Cheng et al. (2007b), and Jianping et al. (2008). Bolton et al. (2003) have

used the leap-frog optimization technique, while Cheng et al. (2008b) and

Kahatadeniya et al. (2009) have applied the ant colony optimization (ACO)

method in slope stability problems. Cheng et al. (2003, 2007a,b, 2008b) have also

applied the simulated annealing (SA) method, particle swarm optimization (PSO),

harmony search (HS), tabu search, and fish swarm methods for slope stability

analysis. Cheng et al. (2007b) have also made a detailed comparison between six

major types of heuristic global optimization methods for slope stability problems,

and the sensitivity of these methods under different optimization parameters are

investigated and compared. These efforts will not be reproduced here. Cheng

et al. (2007b) have commented that no particular optimization method is superior

in all cases, but some methods (ACO and tabu search) may be less effective for

problems where the objective functions are highly discontinuous.

The authors have come across many practical slope stability problems from

projects in different countries. One of the interesting projects worth mentioning is

a complicated hydropower project in China where there are several strong local

minima in the solution domain. Different methods have been used to search for

the critical failure surface and the corresponding factor of safety of the foundation,

and no method is found to be satisfactory by the engineers. To overcome these dif-

ficult cases, the authors propose a coupled optimization procedure based on the

PSO and HS methods (Cheng et al., 2012). The authors will also introduce another

coupling method based on the complex method and tabu search in this chapter.

Actually, many heuristic optimization methods can be coupled to form a more

stable solution algorithm. Since the performances between different coupling
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schemes are usually similar, the authors concentrate on two methods in this chapter,

and part of the content of this chapter is based on Cheng et al. (2012).

9.2 Some Basic Heuristic Optimization Algorithms

9.2.1 Particle Swarm Optimization

Before the discussion of the coupling method, a brief review of PSO will be given.

PSO is a heuristic global optimization algorithm developed by Kennedy and

Eberhart (1995), which has been applied to many continuous and discrete optimiza-

tion problems. PSO optimizes a problem by using a population of candidate solu-

tions or particles, and the particles move stochastically around in the search space

according to some simple mathematical formulas for the particle’s position and

velocity. The movement of each particle is influenced by its local best-known posi-

tion, and the position and velocity are guided toward the best-known positions in

the search space. The velocities and positions are updated if better positions are

found by other particles, and this is expected to move the swarm toward the best

solutions. Unlike the ACO method, where stigmergy is the main communication

among the particles, the system communication between the particles that does not

alter the environment is adopted in PSO because it is a population-based algorithm.

The PSO method is recognized as an effective method for global optimization

and has received much attention in systems and control engineering, automatic

recognition, radio systems, and other fields. Originally targeted toward simulating

social behavior, the application of PSO has now been extended to many types

of problems, with contributions from different researchers. Yin (2004) proposed a

hybrid version of the PSO for the optimal polygonal approximation of digital curves;

Salman et al. (2002) adopted PSO for the task assignment problem; and Ourique et al.

(2002) used it for dynamic analysis in chemical processes. PSO does not require much

computer memory, and the speed of computation is relatively fast.

In PSO, a group of particles (generally double the number of the control

variables M), referred to as the candidates or potential solutions (given as X in

Eq. (9.1)) enter the problem and search the search space to determine their opti-

mum position. The optimum position is usually specified by the best solution of

the objective function. Each “particle” is represented by a vector ðXk
i Þ in the multi-

dimensional space to characterize its position, and another vector ðVk
i Þ to character-

ize its velocity at the current time step k. Conceptually, a group of birds determine

the average direction and speed of flight during the search for food based on the

amount of food normally found in certain regions of the search space. The results

obtained at the current time step k will then be used to update the positions of the

next time step. If a good source of food in a certain region of the space can be

found, the group of particles will take this new piece of information into the con-

sideration to formulate the “flight plan.” Therefore, the best results obtained

throughout the current time step are considered to generate the new set of positions

for the whole group.
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To evaluate the optimum of the objective function, the velocity Vk
i and the

position Xk
i of each particle is adjusted in each time step according to the procedures

as outlined below. The updated velocity Vk11
i is a function of three major

components:

1. the old velocity of the same particle ðVk
i Þ;

2. the difference between the ith particle’s best position found so far (called Pi) and the

current position,

3. the difference between the best position of any particle within the context of the

topological neighborhood of the ith particle found so far (called Pg—its objective

function value is fg) and the current position of the ith particle Xk
i :

For components 2 and 3, each component is stochastically weighted and added

to component 1 to update the velocity of each particle with enough oscillations

according to Eq. (9.1) to empower each particle to search for a better pattern within

the problem space. Without sufficient oscillation, PSO can be trapped by the local

minimum easily:

Vk11
i 5ωVk

i 1 c1r1ðPi 2Xk
i Þ1 c2r2ðPg 2Xk

i Þ
Xk11
i 5Xk

i 1Vk11
i i5 1; 2; . . .; 2n

ð9:1Þ

In Eq. (9.1), c1 and c2 are the stochastic weighting factors to components 2 and

3, respectively. These parameters are commonly given as 2, which will also be

used in this study. Cheng et al. (2007b) has found that for normal problems, these

optimization parameters are generally adequate. r1 and r2 are random numbers in

the range [0,1], while ω is the inertia weight coefficient. A larger value for ω will

enable the algorithm to explore the search space, while a smaller value of ω will

lead the algorithm to exploit the refinement of the results. The flowchart for the

PSO is shown in Figure 9.1.

Based on the experience on many slope stability problems, the authors have

found that if the number of control variables is large, the number of trials required

by the original PSO also will be large. To improve the efficiency of the solution

for large-scale problems, a modified PSO (MPSO) is proposed by Cheng et al.

(2007a). In MPSO, only several flights within the whole group of particles are

allowed. In addition, particles with better objective function values are allowed to

fly more within one iteration step than those with worse objective function values.

The procedures for MPSO are:

1. Instead of one flight for each particle in the group, several flights are now performed.

In addition, one particle can fly more than one time according to its objective function

value. The better the objective function value of one particle, the more times it can fly.

A parameter η (0, η, 1.0) is used to implement this procedure of the flight. Suppose that

Na (#M) flights are allowed in MPSO within each iteration step. The current M particles

are sorted in ascending order by the values of the objective function, and the probability of

each particle flight (namely the flight probability) is determined according to Eq. (9.2):�
pri 5 ð1:02ηÞi21 3 η
i5 1; 2; . . .;M

ð9:2Þ
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where pri means the flight probability of the ith particle. The accumulated probability is

represented by the array AP(i):

APðiÞ 5
Xi
j51

prðjÞ

i 5 1; 2; . . .;M

8><
>: ð9:3Þ

A random number r0, falling within the range from 0 to AP(M), is generated in

MPSO. If AP(i2 1), r0#AP(i), then the ith particle will fly one time. It must be noted

that after the ith particle flies to the new position, it will go back to the current position

and the velocity will remain unchanged in this stage. The updating velocity will not be

carried out until Na flights have completed, which is a major difference with the original

PSO, and this algorithm is more robust toward the presence of a local minimum.

2. After Na flights are completed, the following procedure will be checked particle by

particle. If a particle has the chance to fly more than one time, a new position and a new

velocity are randomly chosen for the next iteration from the flights of that particle, and

other randomly generated positions will be assigned to those having no chance to fly in

the current iteration. This procedure is called the updating rule of the MPSO.

The procedures for MPSO for a given value of Na are shown in Figure 9.2. fsf
and Xsf are used to restore the objective function value of the optimum solution and

Generate M particles randomly and the
velocity and position, Vi and Pi

Update the positions of all the particles by Eq. (9.1)
and j = j + 1, one iteration is performed, perform the check 

Define the initial
parameters: c1, c1 and ω,
M, and counter

Determine the particles and their objective
functions and identify, Pi and Pg

No 

Pg can be taken as the optimum

Yes 

Tolerance meet ? 

Figure 9.1 Flowchart for PSO (M

is commonly taken to be twice the

number of control variables and is

related to the number of potential

solutions; N1 refers to the number

of inner loop trials; and N3 is a

parameter to control the

termination of the trials).
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the optimum solution found so far. The initial value of the objective function

(factor of safety) fsf can be set to a large number, which is 1.0e1 10 in this chapter.

The parameters N1, N2, and N3 are used to decide the termination criterion, and j1
and j2 are used to calculate the value of η. In the proposed coupled analysis, the

MPSO by Cheng et al. (2007a) is used because a better performance is usually

achieved by the MPSO compared to the original PSO.

9.2.2 HS Algorithm

Geem et al. (2001) and Lee and Geem (2005) have developed an HS metaheuristic

algorithm (phenomenon-mimicking algorithm) that was inspired by the

Randomly generate M particles 

Determine η = 0.2 + 0.3 × j1
j2

and apply Eq. (9.2), Na

flies are performed and one iteration is finished, set 

j = j + 1; j1 = j1 + 1

N3 = N3 + N2

j < N3

Take  Vsf  as the optimum
solution 

Yes

No

Vsf  = Pg

fsf  = fg

Yes

No

If j ≠ 0, update the positions and velocities of 
the particles by the updating rule in Eq. (9.1)

Define the initial parameters: c1,

c2 and ω, M, N1, N2, fsf , Vsf , Na, 

set counter,  j = 0; j1 = 0; j2 = N1

If j = 0, evaluate the particles while their objective 
functions are restored; otherwise evaluate those 
particles having chances to fly; identify Pi and Pg

≤ εfg − fsf

j1 = 0; j2 = N2

Figure 9.2 Flowchart for MPSO.
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improvisation process of musicians in searching for a perfect state of harmony.

Each musician (control variable) plays a note (objective function) to search for the

harmony (global optimum). The harmony in music is analogous to the optimization

solution vector, and the musician’s improvisations are analogous to local and global

search schemes in the optimization process. The HS algorithm is a population-

based search method that uses a stochastic random search based on the harmony

memory (HM) considering rate HR and the pitch adjusting rate PR. By its nature

(discrete musical note), the HS algorithm does not require continuous control vari-

ables. An HM of size M is used to generate a new harmony, which is probably bet-

ter than the optimum in the current HM. The HM consists of M harmonies (slip

surfaces), and M harmonies are usually generated randomly. Consider

HM5 fhm1; hm2; . . .;hmMg and
hmi 5 ðvi1; vi2; . . .; vimÞ ð9:4Þ

where each element of hmi corresponds to that in vector V described above.

Consider the following function optimization problem, where M5 6, m5 3.

Suppose that HR5 0.9 and PR5 0.1:

min f ðx1; x2; x3Þ5 ðx121Þ2 1 x2
2 1 ðx322:0Þ2

s: t: 0# x1 # 2; 1# x2 # 3; 0# x3 # 2

�
ð9:5Þ

Six randomly generated harmonies comprise the HM shown in Table 9.1. The

new harmony can be obtained by the HS algorithm with the following procedure.

A random number in the range [0,1] is generated (e.g., 0.6 (,HR)), and one of the

values from {1.0, 1.5, 0.5, 1.8, 0.9, 1.1} should be chosen as the value of x1 in the

new harmony. Take 1.0 as the value of x1; then another random number of 0.95

(.HR) is obtained. A random value in the range [1,3] for x2 is generated (say,

1.2), and similarly, 0.5 is chosen from the HM as the value of x3; thus, a coarse

new harmony hm0n 5 ð1:0; 1:2; 0:5Þ is generated. The improved new harmony is

obtained by adjusting the coarse new harmony according to the parameter PR.

Suppose that three random values in the range [0,1] (say, 0.7, 0.05, 0.8) are gener-

ated. Since the former value 0.7 is greater than PR, the value of x1 in hm0n remains

unchanged. The second value 0.05 is lower than PR, so the value of 1.2 should be

Table 9.1 The Structure of the HM

HM Control Variables

x1 x2 x3 Objective Function

hm1 1.0 1.5 0.5 4.50

hm2 1.5 2.0 1.8 4.29

hm3 0.5 1.5 1.0 3.50

hm4 1.8 2.5 0.9 8.10

hm5 0.9 2.2 1.2 5.49

hm6 1.1 1.9 1.5 3.87
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adjusted (say, to 1.10). These procedures continue until the final new harmony

hmn5 (1.0, 1.10, 0.5) is obtained. The objective function of the new harmony is

determined as 3.46. The objective function value of 3.46 is better than that of the

worst harmony, hm4; thereby, hm4 is excluded from the current HM, while hmn is

included in the HM. Up to this stage, one iteration step has finished. The algorithm

will continue until the termination criterion is achieved.

The iterative steps of the HS algorithm in the optimization of Eq. (9.5) are

as follows:

Step 1: Initialize the algorithm parameters: HR, PR, and M, randomly generate M harmo-

nies (slip surfaces) and evaluate the harmonies.

Step 2: Generate a new harmony (shown in Figure 9.3) and evaluate it.

Step 3: Update the HM. If the new harmony is better than the worst harmony in the HM,

the worst harmony is replaced with the new harmony. Take the ith value of the coarse

harmony h0n; v
0
ni for reference. Its lower and upper bounds are named vi,min and vi,max,

respectively. A random number r0 in the range [0,1] is generated. If r0. 0.5, then v0ni is
adjusted to vni using Eq. (9.6) to calculate the new value of vni:

vni 5 v0ni 1ðvi;max 2 v0niÞ3 rand r0 . 0:5

vni 5 v0ni 2ðv0ni 2 vi;minÞ3 rand r0 # 0:5 ð9:6Þ

where rand means a random number in the range [0,1].

Step 4: Repeat steps 2 and 3 until the termination criterion is achieved. The details of the

HS method can be found in works by Geem et al. (2001).

i = 1

Generate a random number r1 in (0,1)

Yes

No Generate v′M+1,i in 
the range (li,ui)

Generate a random 
number r1 in (0,1)

r1<HR

r2<HR
NovM+1,i = v′M+1,i

v ′M+1,i = vNi

N ∈{1,2,...,M}

Yes

Adjust v′M+1,i by Eq. (9.9)i<m

Stop

Yes

No

i = i + 1

Figure 9.3 Generation of new harmony and the search procedure from Cheng et al. (2007a).
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9.2.3 Tabu Search Algorithm

The tabu search algorithm, which searches for a solution using memory and expec-

tation criteria, was introduced by Glover and Laguna (1996). The main idea of the

algorithm is as follows: find the best local solution ans in a given solution and

neighborhood, set the current best solution as ans�5 ans, and then search for the

best local solution ans0 in the current neighborhood. This best local solution,

however, could be the same as the last one. In order to avoid such situations, a tabu

form to record the recent operation has to be defined. If the current operation

is in the tabu form, the search will stop; otherwise, ans will be replaced by ans0.
The objective function value of ans0 may be worse than ans, so the tabu

search algorithm can accept a worse solution. For those useful operations that can

improve the current best solution, they will be put at the top of the form to find a

better solution rapidly.

In a tabu search, the neighborhood tabu is adopted instead of the solution tabu

used in the discrete variable algorithm. The procedure of the spatial discretization is

as follows: an n-dimensional hypercube can be formed from given upper and lower

limits, as defined by U5 (u1,u2,. . .,un), L5 (l1,l2,. . .,ln). In the variable spaces,

divide the ith dimension into Ni pieces to form an Nadj5N13N23?Nn rectangle,

which represents a neighborhood. Determine the length of the tabu from Numtabu;

then the algorithm can tabu on Numtabu neighborhoods to the maximum.

If the newly found solution ans0 is in a neighborhood that has not been tabu,

then replace ans with ans0, and put this neighborhood into the tabu form. If ans0 is
better than the current best solution ans�, then remove this neighborhood using the

expectation criteria. Replace ans with ans0, or keep the current solution ans and

search again until the termination condition is reached. The advantage of the tabu

search algorithm is that it can avoid the duplication and push the algorithm to

search a new space; however, it depends heavily on the initial solution. When a

new solution is generated in the annealing process, the tabu search algorithm can

avoid redundant search. Cheng et al. (2007b) have shown that tabu can be very

efficient for some problems, but its performance in complicated problems is less

reliable compared to other heuristic optimization methods.

9.2.4 Complex Method

The complex method, developed by Box (1966), is based on the simplex method.

The main ideas of the complex method are: (1) choose some vertices in a bounded

multidimensional space to form a polyhedron (complex); (2) compare the function

value that corresponds to every vertex; (3) discard the vertex associated with

inferior values and replace it with a new vertex which is not only within the

constraints but also improves the solution; and (4) repeat these procedures until the

minima is approached gradually. The complex method includes the production of

initial complex, reflection, and contraction operators, and termination criteria simi-

lar to the simplex method. The flowchart for the complex method is shown in

Figure 9.4.
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The k initial vertices are Vi 5 ðxi1; . . .xinÞ; i5 1; 2; . . .; k: The center point is

given by

Vo 5
1

k2 1

Xk
i51
i 6¼b

Vi ð9:7Þ

Vr 5Vo 1αðVo 2VbÞ ð9:8Þ

Equation (9.8) is used to find the improve point r. α is the reflection coefficient,

and the initial value αini is usually set to 1.3, and then it contracts to half repeatedly

until the improvement point is found. If the improvement point is not found for

α, ξ (ξ, 1025), then the reflection has failed. The termination criteria is the dif-

ference of the maximum and minimum in the objective functions of vertices being

less than ε (ε5 1023). α is a positive number during the reflection and contraction,

which means that the contraction operator searches the points on the dotted line

only in the complex algorithm, as shown in Figure 9.5, but the points on the solid

line are ignored. So the basic complex method is called the partial scope complex

method. If a complete search need to be done on the line bo, the reflection coeffi-

cient has to be determined. Point b Vb 5 ðxb1; . . .; xbnÞ; center point V0 5 ðxo1; . . .; xonÞ;
and the reflection efficient α (αmin and αmax) can be determined as follows:

No

Determine the vertex of the biggest objective function value as

the bad design point b, calculate the center point of the other

vertexes, conduct reflection optimization on the line bo to find

the improvement point r   

Replace b with r

Generate the initial complex

Yes 

Termination?

Stop

Figure 9.4 Flowchart for the original complex method described in this chapter.
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For i5 1 to n:

αli 5 ðli 2 xoi Þ=ðxoi 2 xbi Þ αui 5 ðui 2 xoi Þ=ðxoi 2 xbi Þ
αi;1 5minðαli ;αuiÞ αi;2 5maxðαli ;αui Þ

next i:

αmin 5maxfαi;1gi51;2;...;n αmax 5minfαi;2gi51;2;...;n ð9:9Þ

First, set α5αmax, and then reduce it to half repeatedly. Then the new solutions

are on the dotted line. If the improvement point is not found when α, ξ, then set

α5αmin and reduces to half repeatedly. Then the new solutions are on the solid

line, which is reverse reflection and contraction efficient. If the improvement point

is not found when abs(α), ξ, then the forward reflection contraction efficient

optimization has failed. This approach can expand the reflection and contraction

forward and backward easily and form the full scope complex method.

The complex method that is adopted in the present chapter is slightly different

from the basic complex method in the reflection contraction efficient and the bad

design point b. The vertex that is most similar to the others is the bad design point

b, a, and the authors find that such a minor change is usually more effective in the

solution compared to the original scheme. The flowchart is shown in Figure 9.6.

9.2.5 PSO Coupled with HS

In the original PSO, the locations of the particles are updated by modifying the cor-

responding velocity vectors, and it is found that an incorrect value of ω may lead

to the trap into the local minimum, which will be demonstrated in a later section.

Generally speaking, a moderate value of 0.5 for ω is used for all the problems.

Alternatively, a larger value of ω can be applied at the initial analysis to search the

solution space, which is then reduced linearly to a small value to find better results

near the existing best position. There is another way to simulate the PSO procedure

in Eq. (9.1) as given by Wang and Liu (2008) which is based on: (1) the current

positions of particles; (2) the best position found so far (Pi); (3) the best position of

any particle within the context of the topological neighborhood of the ith particle

found (Pg).

The HS method is another efficient and effective global optimization method

when the number of control variables is less than 25 for many geotechnical

problems, which is discussed by Cheng et al. (2008a). Cheng et al. (2008a)

have also described a detailed procedure in the implementation of the modified HS

(MHS) algorithm, which is adopted in the present coupling proposal. When the

b

o

Figure 9.5 Illustration of the reflection and retraction line.
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problem is large, it can be trapped by the local minimum easily, judging from

various internal tests done by the authors, and Cheng et al. (2008a) have proposed

an MHS search method to overcome the limitation of the original HS method. The

utilization of the MHS is intuitively more exhaustive, generating several new har-

monies rather than generating a new harmony during each iteration. Two para-

meters, HR and PR, for HS are required in the analysis, and the detailed procedure

is shown in Figure 9.3.

If we take the above-mentioned positions (flights) from PSO as the harmonies in

the HM in HS, a new position can be obtained by the HS procedure. In Figure 9.3,

zi,min and zi,max are the minimum and maximum values of the ith element in vector

X. zij is the jth element of Xi. Similar to the modified PSO, Na (#M) flights within

Generate k = 6 vertexes V1,..,V6 to form the initial complex set 
ε = 10–3, ξ = 10–5, calculate the objective function value S(i) of 
all the vertexes, set order=1

Calculate the sharing degree of all the vertexes SHi, set the vertex 
which is in descending order of sharing degree as the bad design 
point b

Find out the vertexes Vh, Vg, which has the biggest and smallest 
objective function value, see if fulfill the condition |Vg–Vh| < ε

Calculate the centre point o of the other points except b, conduct 
forward and reverse reflection optimization on the line bo to 
find the improvement point

Fulfill

Find r

Output Vg and stop

Order = 1, replace b
with r

Order = order + 1

Order > 6

Yes

Yes

YesNo

No

No

Figure 9.6 The modified complex method used in this chapter.
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each iteration step are allowed with different approaches. It is possible to choose

Na particles randomly from the total generation rather than based on the fitness of

the particles in the modified PSO. In this way, the choice of flight is controlled by

the procedure in HM rather than the original procedure as outlined in Eqs. (9.2)

and (9.3). This is a minor and simple trick to combine the two methods. Cheng

et al. (2007b) have tried the GA, the SA method, PSO, HM, tabu search, and ACO,

and have commented that no single method can outperform other methods in all cases.

Each optimization method has its own merits and limitations, and the combination of

two optimization methods may result in a better performance in difficult cases.

The flowchart of the coupled PSO and HS by Cheng et al. (2012), which is

denoted as HMPSO, is shown in Figure 9.7. It should be noted that the flowchart in

Figure 9.7 is a simple combination of those in Figures 9.2 and 9.3, and the authors

do not attempt to propose a highly complicated procedure to combine these two

methods (for simplicity). In Figure 9.2, the updating of the positions of all the

Randomly generate M particles and the
velocity and position, Vi and Pi

Randomly choose Na particles to fly.For the particles,
its corresponding Pi and Pg are taken as three 
harmonies in HM and using procedure as shown in
Figure 9.3 to generate one new position to replace the
current position of flying particle, j = j + 1

Take  Vsf  as the optimum
solution 

Yes

No

Yes

No

Define the initial parameters: c1, c2 
and ω, M, N1, N2, fsf , Vsf , Na and
set counter,  j = 0; j1 = 0

If j = 0, evaluate the particles and their objective 
functions are then restored; otherwise evaluate those 
particles having chances to fly; identify Pi and Pg

Vsf  = Pg

N3 = N3 + N2

j < N3

≤ εfg − fsf

fsf  = fg

Figure 9.7 The flowchart of the coupled optimization method HMPSO.
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particles is replaced by HS generation, as shown in Figure 9.3. Such a minor

change can retain the simplicity of both optimization methods so that the proposed

algorithm is easy to use and does not require a lot of computer memory. The

authors have come across several very complicated cases in some projects, and the

presently proposed coupled algorithms are more stable and robust for such pro-

blems. It is true that the present method will be less efficient than the simple

method, and it is not recommended for such purposes because it is less efficient

(though effective) for such cases. The proposed coupled algorithms are targeted

toward those complicated problems (discontinuous objective functions with multi-

ple strong local minima and sudden major changes in the material properties) in

which the other algorithms may fail to perform satisfactorily.

Besides the coupling of PSO and HM, it is also possible to couple the tabu

search, SA, the GA with the HS method, and the authors have also successfully

implemented these coupling methods. As discussed by Cheng et al. (2007a,b), there

is no single heuristic search method that can outperform other methods in all cases.

Each method has its merits and limitations. By combining two optimization meth-

ods, the resulting search algorithm is usually more effective in dealing with more

complicated problems and is less likely to be trapped by the presence of local min-

ima. It should be emphasized that the adoption of the coupling method usually

requires more computation than the individual method for simple problems. In this

respect, there is no simple way to achieve both effectiveness and efficiency under

all cases. With the advancement in computer technology and increasing complexi-

ties of the problems, the authors view that a more stable and effective algorithm is

more important than a fast but less robust algorithm (keeping in mind that the

increase in the computation is not significant for the coupling method, which will

be illustrated in a later section).

9.2.6 Tabu SA Complex Method

To take advantage of tabu search and to improve its performance for more compli-

cated problems, this method can be coupled with SA and the complex, denoted as

TSAC, method in the following way. For example, to search the minimum safety

factor of slip slope, the calculation steps can be put as follows:

1. Determine the number of design variables n (say, n5 3 for the circular slope stability

problem) and the upper and lower limits of design variables U5 (u1,u2,. . .,un), L5
(l1,l2,. . .,ln). Generate six vertices to form the initial complex and determine To (annealing

temperature), Nx, Ny, Nz, and Numtabu, where Nx, Ny, Nz are the distances for equal parti-

tion of the three control variables. Meanwhile, put the neighborhoods of the six initial

vertices into the tabu form, order5 1 and Tc5 To.

2. Calculate the geometric center Vo of the other vertices except Vb and conduct optimiza-

tion of the tabu annealing reflection contraction operator using these two points. If the

optimization is successful, then set order5 1, Tc5Tc3 0.95 and then turn back to find

point b; if it failed, set order5 order1 1 and check if order is bigger than 6. If not, turn

back to find point b. If order is bigger than 6, then begin the calculation of the complex search.
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In this method, there are five parameters to be defined. The tabu annealing com-

plex method has five parameters To, Nx, Ny, Nz, and Numtabu. To and Numtabu are

chosen to be 10 and 60 by the authors (relatively insensitive to these parameters for

most problems), while the other three parameters will depend on the geometry

requirement of the specific problem.

9.3 Demonstration of the Coupling Methods

To demonstrate the effectiveness of the present coupled optimization method

against different versions of PSO methods, several standard test problems by

Taillard (1993) and Lawrence (1984) are considered by Cheng et al. (2012), and

the results are shown in Tables 9.2 and 9.3. In these standard problems, the coupled

methods are always ranked as the best in the optimized results, compared to the

GA and different versions of the PSO. These encouraging results have supported

the applicability of the proposed coupled optimization method.

For the results as shown above, the parameters used for PSO are c15 c25 2.0,

ω5 0.5, while M is taken as four times the number of control variables N. For

the HS, the parameters are M5 2N, HR5 0.98, and PR5 0.1. For the TSAC, To
and Numtabu are chosen to be 10 and 60, while the number of partition is set as

10, which will indirectly define the partition distance. The authors have also var-

ied the parameters and found that the optimum results are practically insensitive

to these parameters unless these parameters are set to an unreasonably large or

small value. The efficiency of the analysis, however, is more affected by the

Table 9.2 Comparison of the Coupled Methods by Cheng et al. (2012) with GA and

Different Versions of PSO by Taillard (1993)

Problem Size GA DPSO DPSO1 DPSO2 DPSO3 HMPSO TSAC

203 5 10.06 10.31 10.24 9.84 9.85 9.84 9.845

203 20 46.1 48.87 49.44 45.41 45.39 45.38 45.38

503 20 50.17 51.59 51.9 46.69 46.66 46.66 46.66

Discrete particle swarm optimization (DPSO), DPSO1, DPSO2, and DPSO3 are different variants of the PSO method.

Table 9.3 Comparison of the Coupled Methods by Cheng et al. (2012) with Different

Versions of PSO by Lawrence (1984)

Problem Problem

Size

Best-Known

Solution

Best from

PSO

Worst from

PSO

HMPSO TSAC

LA21 (15,10) 15,10 1046 1046 1088 1046 1046

LA36 (15,15) 15,15 1268 1269 1297 1268 1268

LA26 20,10 1218 1218 1409 1218 1218
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choice of these parameters. In modern computing, this issue appears to be less

critical than obtaining a good optimum result.

9.4 Application of Coupling Methods in the Slope Stability
Problem

The authors have worked on many types of geotechnical problems and found that

most existing global optimization methods can work well for relatively simple

problems. When the problem is complicated in geometry, with major differences in

the soil parameters between different soils that have been experienced by the

authors for several hydropower projects in China, the solution will be sensitive to

the precise values of the control variables. Actually, the engineers have used

different programs and solution methods for this problem, but the results from the

existing programs and solution algorithms are still not satisfactory. The difficulty

of this problem is that there are several strong local minima within the solution

domain, and some commercial programs fail to escape from the local minima dur-

ing the analysis. Furthermore, a good initial trial is difficult to be established for

this problem. Due to this special case, the authors have developed several coupling

methods, two of which are discussed in this chapter.

For the slope stability/foundation problem, it can be stated as a constrained

global minimization problem as given by Eq. (9.10), where the factor of safety f(X)

is minimized subject to the coordinates of the slip surface being convex:

min f ðXÞ
s: t: xl # x1 # xu xL # xn11 # xU

ð9:10Þ

In Eq. (9.10), the factor of safety function is evaluated by the Spencer method

(1967). The requirement on the convexity is given by Cheng (2003), and the lower

and upper bounds are dynamic in that the actual lower and upper bounds for vari-

ables i1 1 to N depends on the bounds for variables from 1 to i. That means, based

on the trial x1 and x2, the upper and lower bounds for variable x3 will be deter-

mined. There is no need to predefine the upper and lower bounds for variables

from i5 3 to N, while the upper and lower bounds for the first two variables can

be defined easily for the present problem (or use a conservatively large domain).

On the other hand, classical optimization problems require the upper and lower

bounds of all the control variables to be defined before the analysis. Cheng (2003)

has demonstrated that this dynamic bound can give very high efficiency in the opti-

mization analysis and is recommended for the slope stability problem. This

dynamic bound requirement is also different from classical problems where the

bounds are static.

For the first vertical retaining wall problem, shown in Figure 9.8, the ground

surface behind the wall is inclined at an angle of 20	 from the horizontal. The soil

parameters are friction angle5 30	 and cohesive strength5 0. For this problem,
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the classical Coulomb solution gives an exact solution of the active pressure coeffi-

cient equal to 0.441, with a failure surface inclined at an angle of 52	 from horizon-

tal. Using HM, PSO, HMPSO, and TSAC, the same results are obtained as the

classical analytical solutions. It is interesting, however, to note that the numbers of

computations required to evaluate the critical solutions are 7260, 8234, 9546, and

9873 for HM, PSO, HMPSO, and TSAC, respectively, with 20 control variables.

The results indicate that for simple problems, the use of the coupling method is

effective but is not efficient for the analysis. This result is not surprising because

the coupled methods explore more trials in the analysis.

For the second slope stability problem, shown in Figure 9.9A, there are three

layers of soil, a water table, and a vertical surcharge on the slope. The soil para-

meters for this problem are given in Table 9.4. Soil layer 2 has a thickness of only

1 mm, which is very small; hence soil layer 2 appears to be missing from the fig-

ure. There is a sudden change of soil parameters within a narrow region, which is a

very difficult problem for global optimization analysis. Such geotechnical condi-

tions are possible in nature, however, and the Fei Tsui Road slope failure in Hong

Kong is similar to that shown in Figure 9.9. The critical factor of safety for this

problem is 0.495, which is obtained by both HMPSO and TSAC, while a factor of

safety 0.552 is obtained by HM (PSO gives 0.543). Most of the failure surface lies

within soil layer 2 with very low soil parameters, and this result is consistent with

the simple sense of engineering. Furthermore, the critical failure surfaces given by

HM or PSO are far from the critical solution shown in Figure 9.9A. Based on the

simple sense of engineering, the critical solution must pass through soil layer 2,

which is predicted by HMPSO and TSAC (which also happened in the Fei Tsui

Road slope failure). On the other hand, the solution shown in Figure 9.9B is

obviously not correct; the critical solution does not pass through soil layer 2, which

is in conflict with the simple sense of engineering. On the other hand, HMPSO and

TSAC require 13,627 and 14,264 computations, while only 7324 computations are

–1 0 1 2 3 4 5 6

–1

0

1

2

3

4

5

6

7
Figure 9.8 Generation of Coulomb earth pressure

from optimization analysis.
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required for HM. Once again, coupled analysis requires more computation, but the

results are much better than the single heuristic analysis. The results from these

first two examples have clearly demonstrated that it is difficult to maintain both

effectiveness and efficiency for general conditions. A more robust and

stable algorithm will require more computations compared to a fast but less robust

algorithm. The authors have uploaded this input file to http://www.cse.polyu.edu.

hk/Bceymcheng/ so that readers can test the performance of single and coupled

heuristic optimization analysis.

Before the discussion of a hydropower project in China, the authors would like to

discuss a special problem covered by Cheng et al. (2012) and shown in Figure 9.10.

This function is fluctuating rapidly about x5 3.25, and the relation between

the dimensionless variables x and y are given in Table 9.5 and Figure 9.10.
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Figure 9.9 (A) Critical solution from HMPSO and TSAC; (B) critical solution from HM

(20 control variables).

Table 9.4 Geotechnical Parameters for the Soils in Example 2

Layers γ (kN/m3) c0 (kPa) φ0 (degree)

1 19.0 3.0 30.0

2 19.0 0.0 20.0

3 19.0 2.0 32.0

γ5 unit weight of soil, c05 effective cohesive strength, and φ05 effective angle of friction.
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Actually, there are several fluctuating zones over a small region, and this condition

can be taken as a simplification of the next example. This special function is given

by Eq. (9.11), and the maximum and minimum of f(y) are given by 25.45 and 0.461

over the solution domain of x5 1�6:
f ðyÞ5 tanð y3π=8Þ ð9:11Þ

To search for the critical one-dimensional solution, the authors have used the

GA, HS, PSO, and ACO methods, which are independent of the initial trials in the

solutions. The authors have also adopted a starting point of x5 1.0 in the SA
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Figure 9.10 A simple one-

dimensional function with the

presence of several “strong”

maxima and minima for the

illustration of optimization by

Cheng et al. (2012).

Table 9.5 Values for x and y in Figure 9.10 by

Cheng et al. (2012)

Points x y

a 1.0 2.1

b 1.5 2.4

c 2.1 1.9

d 2.5 3.0

e 3.2 1.6

f 3.25 3.3

g 3.252 1.1

h 3.255 3.9

i 3.3 2.0

j 3.35 3.0

k 3.4 1.95

l 3.5 3.4

m 3.8 2.2

n 4.0 2.4

o 5.0 2.0

p 6.0 2.2
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method, and determined point e (with a value 0.727) from the above-mentioned

heuristic optimization algorithms. These results are clearly far from the true critical

solution, as point e can be obtained easily from all classical optimization methods,

while point g is highly localized within a very narrow range and is shortly after

point e. If the global minimum point g is to be determined, a very good initial trial

is required for the SA, while specially tuned optimization parameters have to be

used (which are obtained by trial and error). This situation occurs because the

change from point d to e is less extreme as compared with the section from f to g.

A trial within the region d to e is easily generated, while trials between points f, g,

and h are difficult to generate because this region is too small. Because of this spe-

cial geometrical requirement, the absolute minimum is missed in the optimization

search unless special treatment (which may be problem dependent) is adopted. For

the present simple one-dimensional problem, the absolute minimum can be

obtained with ease by observation. For multidimensional problems, particularly

when there are also regions of discontinuity, this situation will become highly com-

plicated and will be missed in the optimization analysis. Although the situation

shown in Figure 9.10 is a hypothetical problem, such conditions actually exist for

the practical project that will be illustrated in the next example.

The next problem, shown in Figure 9.11, is one of the sections of a major hydro-

power project in China founded at a location with complicated ground conditions.

In this site, there are several different layers of soft materials that are shaded in

Figure 9.11, while the material parameters are shown in Table 9.6. For this project,

several commercial programs have been used, giving different critical results.
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Figure 9.11 Soft soil in a shaded area for a dam project. The weak zones are shaded and

marked with arrows for illustration.

Source: From Cheng et al. (2012).
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Mindful of the importance of this project, the authors have carried out a detailed

study using the coupling method. For most of the sections of this project, classical

heuristic optimization methods can still work properly. There are, however, some

special sections for which no satisfactory results can be obtained, and a wide range

of minimized results is obtained, as shown in Table 9.7. Conceptually, the nature

of this problem is similar to that as shown in Figure 9.10. As shown in Table 9.6,

there are several layers of soil that are thin, and the soil parameters are low. This

geological condition corresponds to the presence of several strong local minima,

similar to those in Figure 9.10. The ability of the algorithm to escape from strong

local minima is a difficult task worth considering.

To carry out their analysis, Cheng et al. (2012) defined the left exit end of the

failure surface to lie within the domain of x5 260�330 m, while the right exit end

is defined to lie within the domain of x5 520�575 m. The bounds for the left and

right exit ends were actually more than enough, as a good initial trial cannot be

established easily. In Figure 9.12, the failure surfaces based on the MHS and

MPSO are close to the original MHS and MPSO methods, and, for the purposes of

clarity, they are not shown. It is interesting to note that the failure surfaces from

different optimization methods were virtually the same at the right side. This is

possibly due to the constraints from the local soil profiles and the geometry of this

project. To the right exit end, there were major differences between the failure sur-

faces from different methods of optimization, which are shown in Figure 9.12. The

first difference was that the starting point of the critical failure surface from

HMPSO was x5 278.0, while it ranged from 320.25 to 320.38 for all the other

methods. The second difference was that the exit angle of the failure surface for

Table 9.6 Geotechnical Parameters for the Problem in Figure 9.11 by Cheng et al. (2012)

Layer γ (kN/m3) c0 (kPa) φ0 (degree)

1 16.00 2000 56.31

2 24.00 2000 56.31

3 24.00 2000 56.31

4 26.00 1000 50.20

5 26.00 1400 54.50

6 26.00 1000 44.70

7 26.00 100.0 19.30

8 26.00 100.0 19.30

9 26.00 1000 44.70

10 26.00 1400 54.50

11 26.00 100.0 19.30

12 26.00 100.0 19.30

13 26.00 100.0 19.30

14 23.00 130.0 22.30

15 26.00 1400 54.50

16 26.00 100.0 19.30

17 26.00 1400 54.50
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HMPSO method was smaller than all the other methods. Finally, all the

optimization methods except for the HMPSO were more attracted by soil 13 in the

analysis, so the critical failure surfaces were deeper than those by the HMPSO.

Table 9.7 shows that most of the global optimization methods are not satisfactory

except for the artificial fish swarm algorithm (AFSA), which gives a factor of

safety less than 2.0 (this is still not good enough, but HM and PSO perform more

poorly) but requires 394,527 trials in the analysis. Actually, the authors (Cheng

et al., 2008a) found that HS can be very inefficient and sometimes is not effective

when the number of control variables is large, and this situation is also reflected in

the current example. From these results, it can be seen that all the single optimiza-

tion methods are attracted by the presence of strong local minima during the

search, except for the coupled HMPSO analysis, which is less affected by the

attraction of the local minima. Based on HMPSO, the minimum factor of safety is

Table 9.7 Minimum Factors of Safety for Example 3 Based on Spencer Method (41 Control

Variables) by Cheng et al. (2012)

Method of Global Optimization PSO MPSO AFSA MHM HMPSO TSAC

Minimum factor of safety (FOS) 2.18 2.15 1.83 1.98 1.65 1.652

Number of trials 121,124 59,288 394,527 132,098 130,156 142,362

Minimum FOS at evaluation

number

99,824 35,460 219,284 98,426 112,342 98,462
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Figure 9.12 Critical failure surfaces by different global optimization methods based on the

Spencer method by Cheng et al. (2012). Note that the critical failure surfaces by MHS and

MPSO are not shown for clarity. The gray colored line represents the critical weak zone

in soil.
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1.65, with 130,156 evaluations, and the result is the best of all the five different

global optimizations, as shown in Table 9.7. The authors have also applied TSAC

to this problem, and the results are virtually the same as that achieved by HMPSO

(but, for clarity, this is not shown in Figure 9.12). It is true that the coupled optimi-

zation method is less efficient for simple problems, which is demonstrated in

Example 1 as shown in Figure 9.8, but the method is also more stable for problems

where there are several strong local minima. For the present large-scale construc-

tion work, a good result is much more important than the time of computation

required to find it, and the proposed coupled method has provided good results

without excessive computations.

9.5 Discussion and Conclusions

Many geotechnical engineering problems are governed by critical solutions, and

various optimization methods have been used in various computer programs to find

such solutions. In the past, the classical simplex or gradient method has been used

for to solve simple problems with regular geometry. These methods, however, are

easily trapped by a local minimum and fail to work for discontinuous problems,

which is the fundamental nature of many geotechnical problems. Many researchers

are now turning to modern global optimization methods, which are not limited by

the presence of a local minimum during the optimization process. Actually, some

commercial programs have also adopted heuristic optimization methods in the

search for critical solutions. In general, these programs can perform well for normal

problems, which is reported from the experience of some engineers.

Cheng et al. (2007b) have clearly demonstrated that no single heuristic global

optimization problem can outperform other methods in all cases, and every method

has its own merits and drawbacks. While commercial programs usually adopt the

basic heuristic optimization algorithms (usually with modifications), for compli-

cated problems, particularly for those discontinuous problem or problems with

several strong local minima, the authors have found that existing methods may

sometimes fail to give the best solution. Due to the needs of some critical construc-

tion projects, coupling methods have been developed that can usually give a better

performance with less dependence on the choice of parameters. The coupling meth-

ods presented in this chapter are new approaches to global optimization. The advan-

tages of one optimization method can balance the disadvantages of another. The

final outcome will be a more robust and stable solution algorithm, which is applica-

ble over a wider range of problems. The new method has been used for several

major construction projects in China where existing methods have been found to be

ineffective. The problem, as shown in Figure 9.12, has created major difficulties in

optimization analysis. The authors tried many exiting methods in vain before the

development of the present coupled algorithms. The coupled methods are relatively

simple to implement, and an arbitrary initial trial failure surface far from the critical

solution can be used for the analysis. The authors have found that the present pro-

posal works well in all the practical cases that they have encountered, and the
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method is particularly useful for problems governed by several strong local minima,

similar to those shown in Figure 9.10. For more difficult problems, it has been

demonstrated in the present study that the coupled method is stable in operation and

can work well despite having poor initial trials. The coupled algorithm is actually

suitable for general problems with multiple local minima within the solution

domain, as the optimization method is not attached to the objective function in the

present proposal.

This chapter has reviewed the basic formulation of coupled optimization

analysis, and several examples (both theoretical and practical problems) are used to

illustrate the capability of the coupled analysis. As demonstrated by the numerical

examples, the proposed method is less efficient (though still effective) for simple

problems and is not recommended for such cases, but it is more stable in the analy-

sis because it is less attracted by the local minima for difficult problems. The

authors believe that effectiveness and efficiency cannot be maintained simulta-

neously for such difficult problems. There is no simple way to ensure both

effectiveness and efficiency in all cases. More importantly, there is also no simple

way to assign suitable optimization parameters suitable for all general cases. The

use of the coupling method, which employs the advantages of one optimization

method to counterbalance the disadvantages of another, has been demonstrated to

be more stable and robust, and this approach is recommended for generally difficult

problems where the initial trials or parameters are difficult to establish.
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10 Artificial Neural Networks
in Geotechnical Engineering:
Modeling and Application Issues
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10.1 Introduction

The evolution of computational geotechnical engineering analyses closely follows

the development in computational methods. At the early stage of geotechnical engi-

neering, analytical methods and the simple limit equilibrium method, coupled with

engineering expertise, were used to develop physical models of geotechnical

engineering problems. Over the years, finite element methods, finite difference

methods, and discrete element methods are used for difficult and complex pro-

blems. Unlike other engineering materials, the success of the above-mentioned

methods in applications in geotechnical engineering is hindered due to difficulty in

obtaining an accurate constitutive model and spatial variability of soil, particularly

for complex issues like liquefaction and pile capacity problems. Hence, based on

case histories/field tests, statistically derived empirical methods and semiempirical

methods based on analytical methods are more popular in such cases. The success

of these empirical and semiempirical methods depends to a great extent on the

chosen statistical/theoretical model for the system to be analyzed matching the

input�output data, as well as on the statistical methods used to find out the model

parameters (Das and Basudhar, 2006a). Very often, it is difficult to develop theoret-

ical/statistical models due to the complex nature of the problem and uncertainty in

soil parameters. These are situations where the data-driven approach has been

found to be more appropriate than the model-oriented approach. To take care of

such problems, artificial neural networks (ANNs) based on artificial intelligence

(AI) have been developed in the computational methods. Within a short period, it

found wide applicability, cutting across various disciplines. This has led to a

growth in research activities into the art of applying such methods to solve real-life

problems, highlighting the latent capabilities and drawbacks of such methods.

The application of ANNs in geotechnical engineering started in the early 1990s

by Goh (1994) and Ghaboussi and Sidarta (1998). With this pioneering work,
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Goh (1994) described the capability of ANNs to predict the highly complex lique-

faction potential of soil and described the intrinsic constitutive relationships of

sand using ANN. ANNs are receiving increased attention in geotechnical engineer-

ing as a powerful and flexible statistical modeling technique for solving some com-

plex problems.

Shahin et al. (2001) and Das (2005) presented applications of ANNs to different

geotechnical engineering problems. Recently, Shahin et al. (2009) presented the

current status and future development in ANNs, which are becoming more reliable

than statistical methods due to their special attributes of identifying complex sys-

tems when input and output are known from either laboratory or field experiments.

However, there is no comprehensive literature on the critical evaluation of applying

the modeling aspects of ANN in geotechnical engineering. The efficiency of all

numerical methods is generally problem dependent, and no technique can be the

universal tool for solving all types of problems. There are certain issues that need

to be addressed in order to understand the ANN method and its successful applica-

tion properly.

With this in mind, this chapter highlights the basic formulation, modeling, and

application issues of ANNs in general. These issues have been described and

explained with suitable examples of geotechnical engineering problems and expla-

nations. An overview of the application of ANNs in geotechnical engineering is

also discussed and presented.

10.2 Basic Formulation

10.2.1 Biological Model of a Neuron

ANN is a problem-solving algorithm modeled on the structure of the human brain.

Neural network technology mimics the brain’s own problem-solving process. The

neuron (cell) is the fundamental unit of the biological nervous system. It is a simple

processing unit, which receives and processes the signal (input) from other neurons

through its input path, called a dendrite. The activity of a neuron is an all-or-

nothing process. If the combined signal is strong enough, it generates the output

signal to its output path (called an axon), which splits up and connects to other neu-

rons’ input paths through a junction referred to as a synapse (Figure 10.1). The

amount of signal transferred depends on the synaptic strength of the junction,

which is chemical in nature. This synaptic strength is modified during the learning

process of the brain; therefore, it can be considered as a memory unit of each

interconnection.

10.2.2 Mathematical Modeling of Neurons

The neurons are described as processing elements or nodes in the mathematical

model of the ANN. A network with an input vector of elements xl (l5 1,. . .,Ni) is
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transmitted through a connection that is multiplied by weight wjl to give the hidden

unit zj (j5 1,. . .,Nh):

zj 5
XNi

l51

wjlxl 1 bj0 ð10:1Þ

where Nh is the number of hidden units, and Ni is the number of input units. The

hidden units consist of the weighted input and a bias (bj0). A bias is simply a

weight with constant input of 1, which serves as a constant added to the weight.

This is similar to multilinear regression analysis in statistics. Figure 10.2 shows the

basic operation of a single neuron. To incorporate nonlinearity in the input�output
relationship, these inputs are passed through a layer of transfer function/activation

function f, which produces

rj 5 f
XNi

l51

wjlxl 1 bj0

" #
ð10:2Þ

Figure 10.3 shows some common activation functions used in ANNs. The most

commonly used activation functions are the sigmoid, logistic sigmoid (Eq. (10.3)),

Cell body
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Nucleus

Schwann cell

Node of Ranvier
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Axon
terminal (synaptic 
knob)

Axon

Figure 10.1 Simplified configuration

of an organic neuron.
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Figure 10.2 An artificial (mathematical) model of a neuron.
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and hyperbolic tangent sigmoid (Eq. (10.4)) functions. The basic properties of the

sigmoid function are continuous, differentiable, and bounded:

f ðzÞ5 1

11 e2z
ð10:3Þ

f ðzÞ5 ez 2 e2z

ez 1 e2z
ð10:4Þ

The outputs from hidden units pass another layer of neurons:

vk 5
XNh

j51

wkjrj 1 bk0 5
XNh

j51

wkjf
XNi

l51

wjlxl 1 bj0

" #
1 bk0 ð10:5Þ

and are fed into another activation function F to produce output y (k5 1,. . .,No):

yk 5FðvkÞ5F
XNh

j51

wkjf
XNi

l51

wjlxl 1 bj0

" #
1 bk0

" #
ð10:6Þ

It continues in this way, depending upon the number of hidden layers and

finally the output layer. The most common activation functions used in geotech-

nical engineering are either the logistic sigmoid function or the hyperbolic tan-

gent sigmoid function. As these functions are bounded, the extrapolation is not

recommended. However, if extrapolation is desired, the linear activation function

may be used for the output layer (Maier and Dandy, 2000). This multilayer

arrangement (hidden layer and output layer) with the nonlinear transfer function

is termed as the universal approximator. But it gives rise to a highly nonlinear

function with a number of unknown parameters in terms of weights and biases.

Figure 10.4 shows the typical architecture of a three-layer ANN: input layer,

hidden layer, and output layer. With four input-layer neurons, three hidden-layer

neurons, and two output-layer neurons, it is called a 4-3-2 ANN architecture. It

should be mentioned here that the human nervous system has approximately

33 1010 neurons, whereas the neurons in ANNs may number in a few hundred,

and in geotechnical engineering, the number of neurons are even less than a

hundred.

–1.0
–1.0

1.0(A) (B) (C) (D)1.0 1.0

Figure 10.3 Different transfer functions: (A) stepped, (B) linear, (C) logistic sigmoid, and

(D) hyperbolic tangent sigmoid.
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10.2.3 ANN and Statistical Methods

Studies dealing with various engineering applications indicate that although an

ANN mimics the human brain, ANN models are not significantly different from sta-

tistical models (Warner and Mishra, 1996). Table 10.1 shows ANN terminology and

corresponding statistics. The statistician’s primary objective is to develop universal

methodology under strict statistical rules and guidelines. The rules governing sophis-

ticated statistical models have been generally considered to be too restrictive, which

makes it too difficult to use them for real-life applications. ANNs were developed

by engineers and computer scientists in a process inspired by AI. The learning and

training phase in ANNs are no different than the parameter estimation phase in con-

ventional statistical models. The engineers and computer scientists have used this

terminology to distinguish rule-based approaches, such as expert systems, from

those that “learn” from empirical examples. In contrast, neural network practitioners

are primarily concerned about prediction accuracy and finding methods that work.

In general, the problems dealt by ANNs are more complex, and as such, the

dimensionality of the models tends to be much higher. However, the interaction

between statistical communities and the neural network experts is limited.

10.3 Modeling and Application Issues in General

10.3.1 The Basic ANN Architecture

As per architectural differences, ANNs can be classified as back-propagation neural

networks (BPNNs), categorical learning (unsupervised) networks (self-organizing

maps (SOMs)), and probabilistic neural networks (PNNs) (Hagan et al., 2002).

BPNNs are better suited for prediction problems, while categorical learning ANNs

are generally used for classification problems. Back propagation uses gradient

descent laws, categorical, uses Kohonen learning laws and probabilistic neural net-

work (PNN) uses both Kohonen and probabilistic learning laws. Determination of

appropriate network architecture (geometry) is one of the most important and diffi-

cult tasks in the model building process. Figure 10.4 shows the typical architecture

of a BPNN. The recurrent neural network is another form of BPNN. In BPNN,

nodes in one layer are only connected to nodes in the next layer. However, in

O1

O2

H1

H3

H2

I1

I4

I2

I3

Figure 10.4 The typical architecture of an

ANN.
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recurrent networks, the nodes in one layer can be connected to nodes in the next

layer, the previous layer, or the same layer. Figure 10.5 shows a recurrent neural

network. In geotechnical engineering, BPNN is the most common architecture.

Recurrent networks are used to model stress�strain characteristics (Ghaboussi and

Sidarta, 1998). The generalized regression neural network (GRNN) and radial basis

neural network (RBNN) are part of the PNN (Hagan et al., 2002). GRNNs perform

regression, where the target variable is continuous, whereas probabilistic networks

perform classification where the target variable is categorical. Figure 10.6 shows a

typical radial basis function neural network. The application of GRNN in geotech-

nical engineering is very much limited. Abu-Keifa (1998) used GRNN to figure the

capacity of driven pile in cohesionless soil; Juang et al. (2001) and Kurup and

Griffin (2006) used GRNN for site characterization based on cone penetration test

(CPT) data; and Juang et al. (2003) used RBNN for site characterization using CPT

data. A typical architecture of a SOM neural network is presented in Figure 10.7.

Das and Basudhar (2009) used an unsupervised learning network (a SOM) for the

clustering of CPT data for soil stratification. The soil stratification based on SOM

is found to similar to that obtained using fuzzy-C clustering, but different from

commonly used hierarchical clustering (Hegazy and Mayne, 2002). Ferentinou and

Sakellariou (2007) used SOM for the slope stability analysis problem. In this chap-

ter, only modeling and application issues related to BPNN are presented.

Once the type of network is selected, it is necessary to determine the optimum

network geometry. The network geometry determines the number of connection

weights and how they are arranged. This is generally done by fixing the number of

hidden layers and choosing the number of nodes in each of these layers.

Small networks usually have better generalization ability than large networks,

and this aspect is discussed later in this chapter. Small networks require fewer

Table 10.1 The Terminology Used in ANN and Corresponding Meanings in Statistical

Methods (Warren, 2003)

Neural Network Jargon Statistical Definition

Neuron, neurode A linear or nonlinear computing element accepts one or more

inputs, computes a function thereof, and may direct the

result to one or more computing elements

Neural networks A class of flexible nonlinear regression and discriminant

models, data reduction models

Architecture A model

Training, learning Model parameter estimation

Classification Discriminant analysis

Supervised learning Regression

Unsupervised learning,

self-organization

Cluster analysis

Training set Construction set

Test set, validation set Holdout sample
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storage space, have higher processing speed, can be implemented more easily, and

make rule extraction simpler. However, the error surface of smaller networks is

more complicated and contains more local minima (Maier and Dandy, 2000). This

aspect has not been discussed properly in the application of ANNs in geotechnical

engineering, where the number of data points is limited, and small architecture net-

works are used.

It has been found that ANNs with one hidden layer can approximate any func-

tion, assuming that sufficient degrees of freedom are provided. However, in prac-

tice, many functions are difficult to approximate with one hidden layer and require

a prohibitive number of hidden layers. The use of more than one hidden layer pro-

vides greater flexibility and enables the approximation of complex functions with
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Figure 10.5 Typical architecture of a

recurrent neural network.
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Figure 10.6 Typical architecture of a radial basis function neural network.
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fewer connection weights in many situations. However, it must be stressed that

optimal network geometry is highly problem dependent. In geotechnical engineer-

ing applications, ANNs with a single hidden layer generally have been adopted.

10.3.2 Learning Process—Training

The weights are adjustable parameters of the network and are determined from a

set of data with known inputs and the corresponding output through the process of

learning or training. The learning process in ANN is referred to as the ability of the

network to learn from its environment and improve its performance. The learning

techniques may be divided into two main categories: supervised learning and un-

supervised learning. In the case of supervised learning, the weights are adjusted to

match the output from the network to the known output (target). However, in the

case of unsupervised learning, the output is unknown and the weights are adjusted

based on another criterion, known as the Kohonen learning rule (Hagan et al.,

2002).

So, in the case of supervised learning, the objective is to minimize the sum of

the squares of the residuals between the measured and predicted output. The vari-

ables are the weights

EðW ;UÞ5
XNs

l51

XNo

k51

ðy_lkðxlÞ2ylkÞ2 ð10:7Þ

where Ns is the number of samples; No is the number of outputs; W and U are the

weights of the hidden and output layer, respectively; and y
_ðxÞ is the predicted out-

put from inputs x. The most commonly used algorithm for this process is known as

the back-propagation algorithm. Figure 10.8 shows the typical architecture of

Input 
value

Input
layer

Weight 
matrix

Feature  map Figure 10.7 Typical architecture of a SOM

neural network.
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a back-propagation algorithm. In back-propagation algorithm�based learning, the

weights of connection are randomly chosen. Based on the initial weight values, the

algorithm tries to minimize the square root of the above mean square error (MSE)

(Eq. (10.7)).

In each subsequent training step, the initial set of weight vectors are adjusted

toward the direction of maximum decrease of E, which is scaled by a learning rate

lambda (λ). Mathematically, a weight is updated to its new value as follows:

wnew 5wold 2λrE; where rE5
@E

@w1

;
@E

@w2

; . . .;
@E

@wn

� �
ð10:8Þ

One useful property of sigmoid function is that

df ðxÞ
dx

5 f ðxÞð12 f ðxÞÞ ð10:9Þ

This means that the derivative (gradient) of the sigmoid function can be calcu-

lated by applying a simple multiplication and subtraction operator itself. This prop-

erty simplifies the computation of new weights from initial random values. Most

supervised learning applications use back propagation. However, when the number

of layers, number of variables, and data point increase, the learning time tends to

slow during neural network training. The learning time increases with the size of

the problem. Again, as it is a gradient-based algorithm, it may reach a local mini-

mum in weight space. These problems in back propagation have been taken care of

by increasing the step size (learning rate) to increase the speed of the algorithm,

and using a momentum factor to avoid the local minima.

Figure 10.8 A typical BPNN.
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The other method to increase the learning efficiency of the network is using various

second-order optimization techniques, mostly a modified Newton’s method like the

Fletcher�Reeve, Davidon�Fletcher�Powell, Broydon�Fletcher�Goldfarb�Shanno,
and Levenberg�Marquardt (LM) algorithm (Hagan et al., 2002). Other techniques,

such as the least squares optimization method and the constrained optimization tech-

nique, have been used to improve the basic back-propagation problem.

10.3.3 Testing of the Network

At the end of the training phase, the associated trained weights of the neurons are

stored in the ANN’s memory. In the next phase, testing, the trained network is fed

with a new set of data. The ANN predictions (using the trained weight) are com-

pared to the target output values to assess the ability of the network to produce

(generalize) correct responses to the testing patterns. This is similar to the valida-

tion stage of the statistical models. Once the training and testing phases are found

to be successful, the corresponding ANN can be used in practical application.

10.3.4 Selection of Model Inputs

The statistical approaches are model driven, where the data points are used to find

the model parameters only. In contrast, the ANN is a data-driven approach, i.e., the

input and output data decided the type of model and the model parameters

suitable for that particular problem. Data-driven approaches have the ability to

determine which model inputs are critical. Thus, in ANNs, little attention is given

to the selection of proper input variables. However, presenting a large number of

inputs to ANNs usually increases the network size and the amount of data required

to estimate the connection weights efficiently, thereby causing a decrease in the

processing speed. Hence, there is a need in using analytical techniques to determine

suitable inputs for the ANN models (Bowden et al., 2004; Guyon and Elisseeff,

2003; Olden et al., 2004).

The choice of input variable is based on a priori knowledge of causal variables

in conjunction with the inspection of plots of potential inputs and outputs. If the

relationship to be modeled is less understood, analytical techniques such as cross-

correlation analysis and principal component analysis can be used. A stepwise

approach can also be used in which separate networks are trained for each variable.

The best-performing network is then retained, and the effect of adding each of the

remaining inputs in turn is assessed. This is continued until the addition of an extra

variable does not result in a significant improvement in model performance.

However, this approach is computationally intensive and has the disadvantages of

being unable to capture the importance of certain combinations of variables that

might be insignificant on their own (Guyon and Elisseeff, 2003). In geotechnical

engineering, in general, the important inputs to the ANNs are determined by trial

and error. The combination of inputs with minimum error in the testing phase and

better correlation between predicted and observed outputs are considered to be

important inputs.
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10.3.5 Division of Data and Preprocessing

To study the generalization of applying neural network models, it is a common

practice to divide the data into two subsets: a training set and an independent test-

ing set. However, depending upon the number of data points, a set of data may be

used as a validation set to avoid overfitting (Shahin et al., 2002). It is also essential

that the training, testing, and validation sets are representative of the same popula-

tion (data set). ANNs are generally not used to extrapolate, i.e., they are not used

to find the correlations for data values outside the range of values for which they

were trained. In geotechnical engineering, generally data are randomly divided into

different subsets. However, Shahin et al. (2002) have divided the data points in

such a manner that the statistical parameters like mean, standard deviation, maxi-

mum, and minimum values of the input parameters are consistent for the three sub-

sets (training, testing, and validation). Shi (2002) grouped the total data set into

number of clusters based on fuzzy clustering and used ANNs separately in different

clusters. Shahin et al. (2004) found that division of data based on SOM clustering

and fuzzy clustering have advantages over the random division of data points.

Once the data have been divided into training, testing, and/or validation sets, it is

important to preprocess the data to a suitable form before applying ANNs. The pre-

processing helps in avoiding the dimensional dissimilarities of different input para-

meters. Figure 10.9 shows the bar chart of data for hydraulic conductivity of clay

liner in (A) absolute and (B) logarithmic values. It can be noted that the logarithmic

value shows a symmetric distribution of data points, and the skewness decreases

from 2.69 to 0.203. The skewness is a measure of the degree of asymmetry of a

distribution.

The variables have to be scaled in such a way as to be commensurate with the

limits of the activation function used in the output layer. As described earlier, the

commonly used activation functions are log sigmoid (logsig) (Figure 10.3C) and

tangent hyperbolic (tanh) (Figure 10.3D) functions. It can be seen that logsig is

between [0,1], and tanh is between [2 1,1]. Hence, it is recommended to either nor-

malize the data in [2 1,1] for the tanh activation function and in the range [0,1] for

using the logistic sigmoid function. For example, if the outputs of the logistic func-

tions are between 0 and 1, the data are generally scaled in the range 0.1�0.9 or

0.2�0.8. If the hyperbolic tangent sigmoid function is used, then the data need to be

scaled in the range [2 1,1]. In geotechnical engineering, data processing is mostly

between 0.1�0.9 and 0, with 1 as the logistic sigmoid type of transfer functions used.

However, Kurup and Dudani (2002) normalized the data 21 to 1.0 in commensurate

with the hyperbolic tangent sigmoid function. Habibagahi (1998) used a different nor-

malization procedure, from 0.0 to 2.4 for one variable and from 0 to 0.8 for others.

Shi (2000) has used a nonlinear type normalization based on suitable statistical distri-

bution of the data. The scaling is not strictly required, if the transfer function in the

output layer is unbounded (linear). However, scaling to a uniform range is recom-

mended for the efficient application of ANNs. The prediction of value beyond the

training data range may be obtained by increasing the maximum value in the data set

by a factor in excess of 1 (1.5 or 2.0) for scaling purposes (Maier and Dandy, 2000).
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10.3.6 Transfer/Activation Function

The transfer functions that are most commonly used are sigmoid type functions,

such as logistic and hyperbolic tangent functions. However, another transfer function

can be used so long as its derivative exists. It has been observed that the nonsigmoid

type (polynomial, rational function, and Fourier series) transfer function performs

better when the data were noiseless and contained a highly nonlinear relationship.

However, when the data are noisy and contained a mildly nonlinear relationship, the

performance of the polynomial transfer function is inferior and performances of

others are comparable (Maier and Dandy, 2000). Maier and Dandy (1998) observed

from empirical results that the hyperbolic tangent transfer function should be used.
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Figure 10.9 Variation of skewness: (A) actual value and (B) logarithmic value of hydraulic

conductivity of clay liners.
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Generally, the same transfer function is used in all layers. However, Rahman

et al. (2001) have used hyperbolic tangent transfer function for connection between

input layer and hidden layer and logistic sigmoid function between hidden layer

and output layer. It should be noted that the type of transfer function used affects

the size of the step taken in weight space. The sigmoid type function in hidden

layers and linear transfer functions in the output layer can be an advantage when it

is necessary to extrapolate beyond the range of training data (Maier and Dandy,

1998). But this has not been explored in geotechnical engineering, particularly for

the problem where, standard penetration (N) values have been extrapolated for site

characterization (Itani and Najjar, 2000).

10.3.7 Training—Optimization

The general learning or training process in ANN is a nonlinear optimization of an

error function, and the terminology used to describe it has been borrowed from

electrical science. This is equivalent to the parameter estimation phase in conven-

tional statistical models, in which the parameters (weights and biases in ANN) are

obtained by minimizing the error function. The error associated with weights and

sigmoid function is a highly nonlinear optimization with many local minima

(Shahin et al., 2002). Figure 10.10 shows a typical description of local minima,

where point B is the local minima and whereas A is the true minima.

The aim is to find a global solution of a highly nonlinear optimization. As dis-

cussed earlier, the error surface of a smaller network, which appears very fre-

quently in geotechnical engineering, is more complicated and contains more local

minima. The error function, E, that is most commonly used is the MSE function.

Local and global optimization methods are used to find the weight vectors. The

local optimization methods are generally gradient-based algorithms of first-order

and second-order methods. First-order methods are based on gradient descent,

whereas second-order models are based partly on Newton’s method. In both cases,

iterative techniques are used to minimize the error function. The steepest descent

algorithm, which is known as gradient descent algorithm, is mostly used in geo-

technical engineering. The LM algorithm is the other optimization used in the

implementation of ANNs in geotechnical engineering, because the training process

is very fast compared to the gradient descent algorithm (Das and Basudhar, 2006b;

Juang and Elton, 1997). The LM algorithm may be considered to be a hybrid

Figure 10.10 A typical diagram showing the local minima.
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between the classical Newton and steepest descent algorithms. When far from a

local minimum, the algorithm’s behavior is similar to that of the steepest descent

methods; however, in the vicinity of a local minimum, it has a convergence rate of

the second order.

As the characteristics of the traditional nonlinear programming-based optimiza-

tion method are initially point dependent, the results obtained using the back-propa-

gation algorithm are sensitive to initial conditions (i.e., the weight vector) (Shahin

et al., 2002). Generally, the weights are initialized randomly with adequate upper

and lower bounds (XL �XU). If the range is too small, it may hinder the training.

On the other hand, if the range is too wide, it may slow down training and result in

the cessation of training at suboptimal levels.

These limits have not been discussed in the implementation of ANNs in geo-

technical engineering. However, Das and Basudhar (2008) and Das et al. (2011c)

have used the Bayesian regularization neural network (BRNN), where the error

function is such that the function with higher weights are penalized to adapt to

lower weight values. It is also reported that the magnitude of weights leads to over-

fitting, not the number of weights (Bartlett, 1998). The overfitting issue will be dis-

cussed in the following sections.

The increase in step size of the weight vector is controlled by the learning rate.

Generally, the learning rate is kept fixed during training and optimal learning rates

are found out by trial and error. The iteration of BPNN has been further augmented

with the introduction of the momentum term, which reduces the oscillation in the

error value and increases the speed of the convergence. The suitable combination

of learning rate and momentum factor gives the optimum weight vector during

training. The use of global optimization algorithms like genetic algorithm (GA),

simulated annealing, and differential evolution (DE), though being widely used in

other field of engineering (Ilonen et al., 2003; Jain and Srinivasulu, 2004; Morshed

and Kaluarachchi, 1998), its use in geotechnical engineering is limited. Goh (2002)

used GA to find the optimum spread of the probabilistic network for liquefaction

analysis, and Goh et al. (2005) used GA for training the BPNN. Recently, Das

et al. (2010, 2011a) used DE for the BPNN, while predicting swelling pressure of

expansive soil and factor of safety of slope, respectively.

DE Neural Network

In the recent past, heuristic global optimization called DE, introduced by Storn and

Price (1995), has been used successfully in aerodynamic shape optimization and

mechanical design. The training of the feed-forward BPNN using DE optimization

is known as the DE neural network (DENN) (Ilonen et al., 2003). DE optimization

is a population-based heuristic global optimization method. Unlike other evolution-

ary optimization, in DE, the vectors in current populations are randomly sampled

and combined to create vectors for the next generation. The real-valued crossover

factor and mutation factor govern the convergence of the search process. The detail

of DENN is available in Ilomen et al. (2003).
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The prediction of factor of safety using the ANN model trained with DENN is

found to be more efficient compared to traditional learning algorithms, the

Bayesian regularization method (BRNN) and the LM-trained neural network

(LMNN) (Das et al., 2011a). The database consisting of case studies of 23 dry and

23 wet slopes with 29 failed and 17 stable slopes, available in Sah et al. (1994), is

considered. The input data consist of parameters like height of slope H (m), unit

weight γ (kN/m3), cohesion C (kPa), internal friction angle φ (	), slope angle β (	),
and pore pressure parameters ru. The output database consists of qualitative infor-

mation (stable or failed) and quantitative information (factor of safety as per the

limit equilibrium method). The ANN models developed with the output of the

stable slope as 1 and that of the failed slope as 0. Out of 46 data points, 32 were

used for training and 14 data points were used for testing.

As the efficiency of the model should be judged in terms of its performance to

the new data set, the results pertaining to testing data are only presented in

Table 10.2. It can be seen that DENN could exactly classify the stable and failed

slope, but BRNN could misclassify it for one case. However, more prediction mod-

els need to be developed for comparison of the above algorithms.

10.3.8 Generalization

The aim of training is to minimize the error function to get the optimized weight

vectors. However, when dealing with noisy data, reducing it beyond a certain point

might lead to overtraining. The overtraining is referred to as the large error in the

network when new data is presented to the trained network. The overfitting gener-

ally occurs when the data points in training set are scanty, but the error in the

Table 10.2 Performance of ANN Models for the Classification Problem Using the Testing

Data Set

γ (kN/

m3)

C

(kPa)

φ (	) β (	) H (m) ru Field

Condition

BRNN LMNN DENN

22.40 10.00 35.00 45.00 10.00 0.40 0 0 0 0

20.00 20.00 36.00 45.00 50.00 0.25 0 0 0 0

20.00 20.00 36.00 45.00 50.00 0.50 0 0 0 0

20.00 0.00 36.00 45.00 50.00 0.25 0 0 0 0

20.00 0.00 36.00 45.00 50.00 0.50 0 0 0 0

22.00 0.00 40.00 33.00 8.00 0.35 1 1 1 1

20.00 0.00 24.50 20.00 8.00 0.35 1 0 1 1

18.00 5.00 30.00 20.00 8.00 0.30 1 1 1 1

16.50 11.49 0.00 30.00 3.66 0.00 0 0 0 0

26.00 150.05 45.00 50.00 200.0 0.00 1 1 1 1

22.00 20.00 36.00 45.00 50.00 0.00 0 0 0 0

19.63 11.97 20.00 22.00 12.19 0.41 0 0 0 0

18.84 0.00 20.00 20.00 7.62 0.45 0 0 0 0

24.00 0.00 40.00 33.00 8.00 0.30 1 1 1 1
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network is a very small value. Some of the rules are based on the concept that the

number of weights should not exceed the number of training samples (Roger and

Dowla, 1994), while others are based on the rule that the ratio of number of train-

ing samples to the number of connection weights should be 2 to 1 (Masters, 1993)

or 10 to 1 (Maier and Dandy, 2000). Amari et al. (1997) suggest that overfitting

does not occur if the number of training samples is at least 30 times the number of

free parameters. The number of weights (w) in a network is defined as

w5 ðI1 1Þ3H1ðH1 1Þ3O

where H is the number of neurons in the hidden layer, I is the number of inputs, and O

is the number of outputs. Table 10.3 shows the number of weights and number of

training data for some example problems in geotechnical engineering. It can be seen

that except in a few cases (Das et al., 2011c; Goh, 1994; Hanna et al., 2004; Rahman

et al., 2001; Shahin and Indraratna, 2006), the number of training samples is more

than the number of weights. In these cases, overfitting has not been analyzed.

The network needs to be equally efficient for new data during testing and valida-

tion, which is called generalization. Generalization is the most important aspect for

successful implementation of ANN. There are different methods for generalization,

like early stopping or cross-validation (Basheer, 2001; Shahin et al., 2002). In the case

of early stopping criteria, the error in the validation/testing set is monitored during the

training process. The validation error normally decreases during the initial phase of

training, as does the training set error. However, when the network begins to overfit

the data, the error on the validation set will typically begin to rise. When the validation

error increases for a specified number of iterations, the training is stopped, and the

weights and biases at the minimum of the validation error are returned.

Das (2005) discussed the early stopping criteria with an example, shown in

Figure 10.11, while developing the ANN model to predict the hydraulic conductivity

of clay liners. It can be seen that as the number of epochs (iterations) increases, there is

decrease in errors during training; but for the testing set data, initially there is a

decrease in error up to certain iterations, and thereafter, the error continues to increase

or remains constant. The correlation between the predicted and observed values of soil

permeability for training and testing data with 100 iterations is shown in Figure 10.12.

It can be seen that the correlation coefficient (R) value for training data is 1.0, whereas

for testing data, it is 0.756. This shows poor generalization of the model for data out-

side the training set. Figure 10.13 shows the agreement between the predicted and

observed permeability value when the network training is stopped after 10 iterations.

Although there was a decrease in the value of R (0.962) for the training set, the results

of the testing phase (R5 0.914) suggest that the ANN model was capable of generali-

zation. This is known as early stopping criteria, i.e., the training is stopped when testing

phase error increases, although errors during the training phase may go on decreasing.

In cross-validation, an independent test set is used to assess the performance of

the model at various stages of learning. The available data need to be divided into

three subsets: a training set, a testing set, and a validation set, which is very data

intensive.
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Table 10.3 Sample of Problems Showing the Number of Weights and Number of Training Data

S. No. Problem Description Network

Architecture

Number

of

Weights

Number

of

Training

Samples

1 Soil liquefaction potential (Goh, 1994) 8-8-1 81 59

2 Friction capacity of driven pile (Goh, 1995a,b) 4-3-1 19 45

3 Deflection of braced excavation (Goh et al.,

1995)

7-3-1 28 196

4 Liquefaction potential (Goh, 1996b) 5-5-1 36 74

5 Compaction characteristic (Najjar et al.,

1996b)

(i) 4-5-1

(ii) 11-1-1

(i) 31

(ii) 14

33

6 Swelling pressure (Najjar et al., 1996a) 3-2-1 11 310

7 Stress�strain of sand and volcanic soil

(Zhu et al., 1998)

8-20-2 222

8 Liquefaction-induced horizontal displacement

(Wang and Rahman, 1999)

8-9-1 91 367

9 Limit state function for liquefaction

(Juang et al., 2000)

5-4-1 29 163

10 Compaction curve (Basheer, 2001) 5-3-1 22 420

11 Uplift capacity of suction caisson

(Rahman et al., 2001)

5-10-1 71 50

12 Soil liquefaction potential (Juang et al., 2003) 4-3-1 19 151

13 Stress�strain behavior of unsaturated soil

(Habibagahi and Bamdad, 2003)

9-5-3 68 5731

14 Unsaturated shear strength (Lee et al., 2003) 5-2-1 15 20

15 Prediction of pile group efficiency

(Hanna et al., 2004)

23-17-1 426 130

16 Coefficient of earth pressure at rest (K0)

(Das and Basudhar, 2005)

4-3-1 20 25

17 Settlement prediction of shallow foundation

(Shahin et al., 2005)

5-2-1 15 106

18 Prediction of preconsolidation pressure

(Celik and Tan, 2005)

6-4-1 33 53

19 Deviator stress and excess pore pressure

(Banimahd et al., 2005)

(i) 9-10-1

(ii) 9-15-1

(i) 111

(ii) 166

107

20 Prediction of deviator stress and volumetric

strain evaluation (Shahin and Indraratna,

2006)

10-10-2 132 24

21 Lateral load-carrying capacity of pile (Qp)

(Das and Basudhar, 2006b)

4-2-1 13 29

22 Liquefaction resistance of sand (Kim and Kim,

2006)

9-11-1 122 260

23 Hydraulic conductivity of clay liner (laboratory

data) (kl) (Das and Basudhar, 2007)

8-2-1 21 35

(Continued)
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Figure 10.14 shows a typical run of BPNN with a validation data set.

Poor validation can also be due to network architecture, a lack of inadequate

data preprocessing, and normalization of training/validation data. However, a

cross-validation method is not suitable if data points are scanty, and in geotechnical

engineering, it is very difficult to get sufficient reliable data points. In such cases,

another method to achieve good generalization is the BRNN method (Demuth and

Beale, 2000).

BRNN Method

In BPNN, overfitting is due to unbounded values of weights (parameters) during

minimization of the error function, MSE. The other method, called regularization,

in which the performance function is changed by adding a term that consists of the

MSE of weights and biases, as shown here:

MSEREG5λMSE1ð12λÞMSW ð10:10Þ

Table 10.3 (Continued)

S. No. Problem Description Network

Architecture

Number

of

Weights

Number

of

Training

Samples

24 Soil suction and swell pressure (Erzin, 2007) (i) 2-9-9-1

(ii) 4-9-9-1

(i) 73

(ii) 109

(i) 87

(ii) 69

25 Prediction of maximum deflection of

diaphragm walls (Kung et al., 2007)

5-7-1 50 2324

26 Kinematic soil pile interaction response

parameters (Ahmad et al., 2007)

(i) 3-4-1

(ii) 3-5-1

(iii) 4-5-1

(iv) 2-2-1

(i) 21

(ii) 26

(iii) 31

(iv) 9

�

27 Residual friction angle of clay (φr) (Das and

Basudhar, 2008)

2-4-1 17 39

28 Relative crest settlement of concrete-faced

rock-fill dams (Kim and Kim, 2008)

3-4-1 21 21

29 Prediction of maximum dry density (MDD)

and specific gravity (G) of fly ash (Das and

Sabat, 2008)

(i) 4-3-1

(ii) 3-3-1

(i) 19

(ii) 16

(i) 25

(ii) 80

31 Prediction of swelling pressure (Das et al.,

2010)

5-3-1 22 167

32 Prediction of factor of safety of slopes

(Das et al., 2011a)

6-4-1 33 32

33 Hydraulic conductivity of clay liners

(Das et al., 2011c)

9-4-1 45 32

34 Prediction of MDD and unconfined

compressive strength (UCS) of cement

stabilized soil (Das et al., 2011b)

7-4-1 37 37
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where MSE is the mean square error of the network, λ is the performance ratio,

and

MSW5
1

n

Xn
j51

w2
j ð10:11Þ
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Figure 10.12 The observed soil permeability versus predicted soil permeability for 100

iterations.

M
ea

n 
sq

ua
re

 e
rr

or

102

100

10–2

10–4

10–6

0 10 20 30 40 50

Number of iteration

Training

Testing

Performance is 3.5118e–007, goal is 0

60 70 80 90 100

Figure 10.11 Performances

of the proposed model during

training and testing.

249Artificial Neural Networks in Geotechnical Engineering: Modeling and Application Issues



This performance function will cause the network to have smaller weights

and biases, thereby making networks less likely to be overfit. The optimal regulariza-

tion parameter λ is determined through the Bayesian framework (Demuth and Beale,

2000) because the low value of λ will not adequately fit the training data and the high

value of λ may result in overfitting. The number of network parameters (weights and

biases) is being effectively used by the network and it can be found out by the above

algorithm. The above combination works best when the inputs and targets are scaled

in the range [21,1] (Demuth and Beale, 2000). Figure 10.15 shows the trials of BPNN

in the prediction of the residual friction angle of clay, where Figure 10.15A shows 200

epochs and Figure 10.15B 400 epochs. But in both cases, it shows equal performances.

The BRNN model is more stable in terms of variation with trials.

10.3.9 Choice of Performance Criteria for Comparison of ANNs

The acceptability and efficiency of ANNs are compared in terms of coefficient of cor-

relation (Goh, 1994, 1995a,b, 1996b; Goh et al., 1995; Habibabaghi, 1998). But the

coefficient of correlation is a biased estimate, so later the performance criteria like

coefficient of determination/efficiency (R2), root mean square error (RMSE), and

mean absolute error (MAE) are being used. The RMSE is biased to large errors,

whereas MAE measures the variation of error term by term. Dawson and Wilby

(2001) noticed that performance statistics based on the squared error provide a mea-

sure of model performance, but they do not identify specific regions where a model is

deficient. Therefore, it will be desirable to have certain other statistical measures that

are unbiased and have different forms in order to test the effectiveness of the devel-

oped models in terms of their predictability criteria. Measures of prediction accuracy
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Figure 10.13 The observed soil permeability versus predicted soil permeability for 10 iterations.
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that take parsimony into account include the Akaike’s Information Criterion (AIC)

and Schwarz’s Bayesian Information Criterion (BIC) (Wilby et al., 2003). AIC and

BIC scoring penalize the model with superfluous parameters. However, these criteria

have not been considered in the application of ANNs in geotechnical engineering.

Although R has been widely used in geotechnical engineering problems, it is a

biased estimate. Sometimes, higher values of R may not necessarily indicate better

performance of the model because of the tendency of the model to be biased

toward higher or lower values, particularly when the data range is very wide and

most of the data are distributed about their mean. Lately, the unbiased estimate

coefficient of efficiency (Nash and Sutcliffe, 1970) is being used as a better way to

compare the ANN models (Das and Basudhar, 2006b, 2008), which is an unbiased

estimate and defined as

E5
E1 2E2

E1

ð10:12Þ

E1 5
XN
t51

ðQum2 Qum Þ2

E2 5
XN
t51

ðQuann2QumÞ2

where Quann is the predicted value as per the ANN model, Qum is the measured

value, and Qum is the average of measured values.
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Figure 10.14 A typical run of BPNN with a validation data set in Matlab (MathWorks Inc.,

2005).
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Figure 10.15 Implementation of BRNN in Matlab with (A) 200 epochs and (B) 400 epochs

for the prediction of residual friction angle of clay.
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The E is used to provide an assessment of overall model performance, but it is

also sensitive to differences in the observed and predicted means and variances and

insensitive to the size of the data set. For the hypothetical data set shown in

Figure 10.16, the R values are comparable with 0.946 and 0.944 for data set A and

B, respectively, but it can be seen that the A data set overpredicts. However, the E

values are 20.546 and 0.890, respectively, for data set A and B, respectively,

showing the advantage of using E.

10.3.10 Extraction of Knowledge

ANN is considered to be a black-box system, unable to explain the input�output
relationship and the interpretation of its weights. However, several attempts have

been made to explain the weights to express in terms of a model equation (Das and

Basudhar, 2006b, 2008; Goh et al., 2005). The trained weights of the ANN model

also have been used to perform sensitivity analysis in order to find the relationship

between inputs and outputs. These aspects are discussed next.

Model Development Based on Trained Neural Networks

After the ANN is trained, a model equation can be established, with the weights as

the model parameters. The mathematical equation relating input variables (X) and

the output (Y) can be written as

Y 5 fsig b0 1
Xh
k51

wk 3 fsig bhk 1
Xm
i51

wikXi

 !" #( )
ð10:13Þ

where

b05 the bias at the output layer,

wk5 the connection weight between the kth neuron of the hidden layer and the single out-

put neuron,

bhk5 bias at the kth neuron of hidden layer,
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Figure 10.16 Example showing the importance of coefficient of efficiency (E) over

correlation of coefficient (R).
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h5 the number of neurons in the hidden layer,

wik5 the connection weight between ith input variable and kth neuron of hidden layer,

Xi5 normalized input variable i, and

fsig5 the sigmoid transfer function.

The following example is presented for the lateral load capacity of piles under

the undrained condition following Das and Basudhar (2006b). The weights

obtained as per the trained model are shown in Table 10.4.

Qpn 5
eC1 2 e2C1

eC1 1 e2C1
ð10:14Þ

The Qp value as obtained from Eq. (5.10) is in the range [2 1,1], and this needs

to be denormalized as

Qp 5 0:5ðQpn 1 1ÞðQm;max 2Qm;minÞ1Qm;min ð10:15Þ

where Qm,max and Qm,min are the maximum and minimum values of Qm, respec-

tively, in the data set, and

C1 52 0:86451B1 1B2 1B3 1B4 ð10:16Þ

B1 5 2:24133
eA1 2 e2A1

eA1 1 e2A1
ð10:17Þ

B2 5 2:05933
eA2 2 e2A2

eA2 1 e2A2
ð10:18Þ

A1 5 2:99161 1:4121D1 0:2503L1 0:6842e1 3:7774Cu ð10:19Þ

A2 52 1:60052 0:7871D1 1:9661L2 2:5228e2 1:8843Cu ð10:20Þ

Table 10.4 Connection Weights and Biases for Pile Capacity (Qp)

Neuron Weights (wik) Biases

Diameter

(D)

Length

(L)

Eccentricity

(e)

Cohesion

(Cu)

Qp bhk b0

Hidden

neuron 1

(k5 1)

1.4121 0.2503 0.6842 3.7774 2.2413 2.9916 20.8645

Hidden

neuron 2

(k5 2)

2 0.7871 1.9661 2 2.5228 2 1.8843 2.0593 2 1.6005 �
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10.3.11 Sensitivity Analysis

The sensitivity analysis is an important aspect of model development to know

input�output dependencies. As discussed earlier, the generalization of the ANN

model depends upon the ratio of the number of training data to the number of ANN

parameters, and the ANN parameters depend upon the number of input variables.

So with limited data, there is a need to identify proper input variables for ANNs to

increase the generalization of the model. However, as ANN is a data-driven

approach rather than a statistical approach, the important inputs are selected based

on the performances of the ANN models or by sensitivity analysis using Garson’s

algorithm (Garson, 1991) and the connection weight approach (Olden et al., 2004).

Garson’s Algorithm

Garson (1991) proposed a method of partitioning the neural network weights to

determine the relative importance of each input variable in the network which has

been modified and used by Goh (1994), Shahin et al. (2002), and Das (2005), and

other researchers. The input-hidden and hidden-output weights are partitioned, and

the absolute values of the weights are taken to select the important input variables.

The details of the algorithm with an example have been described in Goh (1994)

and Das (2005).

Connection Weight Approach

Garson’s algorithm (Garson, 1991) uses the absolute values of the connection

weights when calculating variable contribution as described above. So it does not

provide information on the effect of input variables in terms of directly or inversely

related to the output. Olden et al. (2004) presented a connection weight approach in

which the actual values of input-hidden and hidden-output weights are taken. This

method sums the products across all the hidden neurons. The details of this

approach, with examples, have been described in Das (2005).

The above methods have been described using examples as discussed above for

the lateral load capacity of pile in clay under undrained conditions (Das and

Basudhar, 2006b). Following the methodology described in Goh et al. (2005) and

Das (2005), and using weights as per Table 10.4, the sensitivity analysis is pre-

sented in Table 10.5. Here, Cu is found to be the most important input parameter,

followed by e, D, and L, as per Garson’s method. It can also be seen that as per the

method described in Olden et al. (2004), L and Cu are the most important input

parameters, followed by e and D. So, it can be concluded that the interpretation of

the weights to find the important input parameters based on Garson’s algorithm

and the connection weight approach matches the physical meaning for the lateral

load-carrying capacity of piles. However, using the connection weight approach, it

can be seen that the pile capacity increases with the increase in Cu with a positive

Sj value (4.59) and decreases with eccentricity (e) with a negative Sj value (23.66).

Similarly, sensitivity analysis as per Garson’s algorithm and the connection

weight approach is presented for other problems in Table 10.6. It can be seen that
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in most cases, the most important input in both approaches match, but the connec-

tion weight approach has the added advantages of knowing the positive or negative

effect of input on output.

Neural Interpretation Diagram

Ożesmi and Ożesmi (1999) proposed a neural interpretation diagram (NID) for

visual interpretation of the connection weight among the neurons. In the NID, the

lines joining the input-hidden and hidden-output neurons represent the magnitude

of weights and their directions. Positive weights are represented by black lines and

negative weights by gray lines, and the thickness of the lines is proportional to their

magnitude. The relationship between the input and output is determined in two

steps. The positive effect of the input variables is depicted by positive input-hidden

and positive hidden-output weights, or negative input-hidden and negative hidden-

output weights. The positive input-hidden and negative hidden-output and negative

input-hidden and positive hidden-output weight indicates the negative effect of the

input variables.

So, unlike absolute multiplication of weights, in this case, multiplication of

actual weights of input-hidden and hidden-output indicates the effect of that input

variable on the output. The input having positive effect on the output is represented

with a gray circle and the input having negative effect is represented with a white

circle. The connection weight approach as proposed by Olden et al. (2004) is based

on this concept. Figure 10.17 explains the NID showing positive and negative

weights and inputs that are directly or indirectly proportional to the output for the

lateral load capacity of pile, as discussed above using weights and biases in

Table 10.4.

10.3.12 Application of ANN in Geotechnical Engineering

ANNs have been successfully applied to difficult geotechnical engineering pro-

blems. Most of these applications include liquefaction analysis, pile foundations,

Table 10.5 The Relative Importance of Different Inputs as per Garson’s Algorithm and the

Connection Weight Approach

Parameters Garson’s Algorithm (%) Connection Weight Approach

Relative

Importance

(%)

Ranking of Inputs

as per Relative

Importance

Si Values as per

Connection Weight

Approach

Ranking of Inputs

as per Relative

Importance

D 17.02 3 1.54 4

L 15.78 4 4.61 1

e 23.20 2 2 3.66 3

Cu 44.0 1 4.59 2
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slope stability, and constitutive relations, particularly where finding analytical solu-

tions is difficult. Other applications include settlement of foundation, soil proper-

ties, site characterization, parameter estimation, and prediction of movement of

slopes. Table 10.7 presents a comprehensive list of application of ANNs to differ-

ent geotechnical engineering problems. Because ANN is a data-driven approach, in

situ data and reliable laboratory data have been used for model development. As it

is a difficult and costly business to obtain reliable data in geotechnical engineering,

validation data have been used in only a few cases (Alavi and Gandomi, 2011;

Alavi et al., 2009, 2010; Basheer, 2001; Hanna et al., 2004, 2007; Kaya, 2009;

Shahin and Jaksa, 2005; Shahin et al., 2002). The random data partition also was

found to be more popular than other types of data partitioning. BPNNs are the

most widely used ANNs, followed by GRNN and SOM.

Table 10.6 Sensitivity Analysis of Inputs as per Garson’s Algorithm and the Connection

Weight Approach for Other Problems

Problem Parameters Garson’s

Algorithm

Connection Weight

Approach

Relative

Importance

(%)

Ranking of

Inputs as per

Relative

Importance

Sj
Values

Ranking of

Inputs as per

Relative

Importance

Undrained side

resistance of

drilled shafts

(Goh et al., 2005)

σ0vm (kPa) 19.44 2 2 0.25 2

su (CIUC)

(kPa)

80.56 1 95.57 1

Liquefaction

assessment

(Baziar and

Jafarian, 2007)

b0mean (kPa) 9.843 5 2 0.546 4

Dr (%) 23.583 3 4.107 2

FC (%) 27.477 1 2 5.782 1

Cu 12.481 4 2 2.931 3

D50 (mm) 26.614 2 2 0.178 5

Settlement of

shallow

foundation

(Shahin et al.,

2002)

B 22.429 3 2 7.123 3

q 28.692 2 3.676 4

N 30.862 1 2 12.485 1

L/B 3.143 5 1.476 5

Df /B 14.872 4 2 7.412 2

Coefficient of

lateral earth

pressure at rest

(Das and

Basudhar, 2005)

ID 25.300 2 1.638 2

PI 22.050 4 0.097 4

KD 29.600 1 3.736 1

su/σv0 23.020 3 0.272 3

Residual friction

angle of clay

(Das and

Basudhar, 2008)

CF 33.6 2 2 8.55 2

ΔPI 66.33 1 2 9.65 1
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10.4 Future Challenges

ANN is still considered to be a black-box system with poor generalization, though

various attempts have been made about refinement and explanations. Recently, a

support vector machine (SVM), based on statistical learning theory and structural

risk minimization is being used as an alternative prediction model (Das et al.,

2010, 2011c). The SVM uses structural constrained minimization that penalizes the

error margin during training (Vapnik, 1998). The error function being a convex

function better generalization used to be observed in SVM (Das et al. 2010, 2011c)

compared to ANN. Another technique, characterized as a gray box model

(Giustolisi et al., 2007), is genetic programming (GP) (Koza, 1992), which mimics

the biological evolution of living organisms and uses the principle of GA. Various

attempts have been made recently to use GP to solve some geotechnical engineer-

ing problems (Gandomi and Alavi, 2011, 2012). GP helps in achieving a greatly

simplified model formula compared to the ANN model, but a trade-off is made

between the complexity of the formula and the accuracy of the model. Another

class of model, which may be termed a white box model, is the multivariate adap-

tive regression spline (MARS), which was developed based on statistical model

developed by Friedman (1991). MARS can adjust any functional form, and there-

fore it is suitable for exploratory data analysis. Samui et al. (2011) observed that

the MARS model for uplift capacity of suction caisson has better statistical perfor-

mance than the ANN and finite element method models. Hence, more research is

required in ANN regarding the generalization, control on the model parameters,

extrapolation, and depiction of the simplified model equation.

10.5 Conclusions

The basic formulation, modeling, and applications of ANN in geotechnical engi-

neering have been discussed in this chapter. In geotechnical engineering, ANN has

mostly been used as a prediction model, with the BPNN as a widely used algo-

rithm, followed by the probabilistic algorithm with very limited use of categorical

learning algorithms (SOM). Mostly, ANN has been applied to difficult geotechnical

D

L

e

A

B

O

Qp

Cu

Figure 10.17 The NID showing

axons representing the connection

weights and effects of inputs on Qp.
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Table 10.7 Summary of Applications of ANN in Geotechnical Engineering

S. No. Reference Network Problem Data

Type

Data

Partition

Number of

Training

Data

Number of

Testing

Data

1 Goh (1994) BPNN Soil liquefaction potential Field Random 59 26

2 Goh (1995a) BPNN Skin friction of driven pile in clay Field Random 45 20

3 Goh (1995b) BPNN (i) CPT cone resistance

(ii) Hydraulic conductivity of clay liners

Field/Lab Random (i) 93

(ii) 31

(i) 74

(ii) 16

4 Goh et al. (1995) BPNN Deflection of braced excavation Field Random 196 57

5 Chan et al.

(1995)

BPNN Pile bearing capacity Field Random 34 34

6 Ellis et al. (1995) BPNN,

recurrent

Stress�strain relationship Lab Random 18 7

7 Goh (1996a) BPNN Liquefaction potential Field Random 74 35

8 Goh (1996b) BPNN Ultimate pile capacity in cohesionless soil Field Random 59 35

9 Lee and Lee

(1996)

BPNN Ultimate pile capacity in cohesionless soil Lab/Field Even for training

odd for testing

14�21 14�7

10 Najjar et al.

(1996b)

BPNN Compaction characteristic (MDD,

optimum moisture content (OMC))

Lab Random 33 6

11 Najjar et al.

(1996a)

BPNN Swelling pressure Lab Random 310 103

12 Teh et al. (1997) BPNN Static pile capacity Field Random 27 4�10
13 Abu-Keifa (1998) GRNN Ultimate pile capacity Field Random 38 21

14 Ghaboussi and

Sidarta (1998)

NANN Soil stress�strain relationship Lab Random 15 sets 15 sets

15 Zhu et al. (1998) Recurrent Stress�strain of sand and volcanic soil Lab Random 160�240 80�120
16 Habibagahi

(1998)

RBF Reservoir-induced earthquake Field Random 25 5

(Continued)



Table 10.7 (Continued)

S. No. Reference Network Problem Data

Type

Data

Partition

Number of

Training

Data

Number of

Testing

Data

17 Wang and

Rahman (1999)

BPNN Liquefaction-induced horizontal

displacement

Field Random 367 99

18 Penumadu and

Zhao (1999)

Recurrent Stress�strain of sand and gravel Lab Random (i) 81

(sand)

(ii) 80

(Gravel)

(i) 20

(sand)

(ii) 20

(gravel)

19 Itani and Najjar

(2000)

BPNN Spatial soil properties Field Random 4 sets 2 sets

20 Juang et al.

(2000)

BPNN Limit state function for liquefaction Field Random 163 62

21 Shi (2000) BPNN Settlement of tunnel Field Random 312 28

22 Romo et al.

(2001)

Recurrent Pore pressure�stress�strain of sand Lab Random 14 sets 4 sets

23 Juang et al.

(2001)

GRNN

(RBF),

BPNN

Spatial soil characteristics Field Random 23 sets 9 sets

24 Basheer (2001) BPNN Compaction curve Lab Random 420 771 77a

25 Chiru-Danzer

et al. (2001)

BPNN Liquefaction-induced horizontal

displacement

Field Random 137 68

26 Rahman et al.

(2001)

BPNN Predict the uplift capacity Field Random 50 10

27 Rahman and

Wang (2002)

BPNN Liquefaction potential Field Random 176 28

28 Mayoraz and

Vulliet (2002)

BPNN,

recurrent

Slope movement prediction Field Random � �



29 Kurup and

Dudani (2002)

BPNN Prediction of overconsolidation ratio

(OCR)

Field Random (i) 122

(ii) 123

(i) 45

(ii) 72

30 Shahin et al.

(2002)

BPNN Settlement of shallow foundation Field Random 106 451 38a

31 Goh (2002) PBNN Liquefaction analysis: Field Random (i) 73

(ii) 125

(i) 36

(ii) 61(i) CPT data

(ii) Shear wave velocity

32 Juang et al.

(2003)

BPNN Soil liquefaction potential Field Random 151 75

33 Lee et al. (2003) BPNN Ultimate increment of apparent cohesion Lab Random 20 7

34 Habibagahi and

Bamdad (2003)

Recurrent Stress�strain behavior of unsaturated soil Lab Random 5,731 910

35 Shahin et al.

(2004)

BPNN Settlement of shallow foundation Field SOM, fuzzy

clustering

106 451 38a

36 Hanna et al.

(2004)

BPNN Pile group efficiency Field, Lab Random 130 231 23a

37 Goh et al. (2005) BPNN Undrained side resistance of drilled shaft Field Random 85 42

38 Das and

Basudhar

(2005)

BPNN Coefficient of lateral earth pressure at rest Field Random 25 11

39 Celik and Tan

(2005)

BPNN Preconsolidation pressure Lab Random 53 23

40 Shahin and Jaksa

(2005)

BPNN Prediction of ultimate pullout capacity of

marquee ground anchors

Field Random 67 291 23a

41 Shahin et al.

(2005)

BPNN Settlement of shallow foundation Field Random 106 451 38a

42 Singh and Singh

(2005)

BPNN Dominant frequency of blast vibration in

mines

Field Random 200 15

(Continued)



Table 10.7 (Continued)

S. No. Reference Network Problem Data

Type

Data

Partition

Number of

Training

Data

Number of

Testing

Data

43 Banimahd et al.

(2005)

BPNN Deviator stress, excess pore pressure Lab Random 107 121 10a

44 Kuzniar et al.

(2005)

BPNN Normalized acceleration response

spectrum

Experimental

data

Random (i) 22,968

(ii) 20,196

(i) 5,940

(ii) 5,148

45 Dihoru et al.

(2005)

BPNN Displacement error in three directions Lab Random 36 �

46 Shahin and

Indraratna

(2006)

BPNN Deviator stress and volumetric strain

evaluation

Lab Random 24 5

47 Shahin and Jaksa

(2006)

BPNN Pullout capacity of small ground anchors Field Random 119 �

48 Chen et al.

(2006)

BPNN Displacement of a foundation pit Field Random 24 �

49 Das and

Basudhar

(2006b)

BPNN Undrained lateral load capacity of piles Field Random 29 9

50 Kim and Kim

(2006)

BPNN Cyclic resistance ratio (CRR) of sands Lab Random 260 86

51 Narendara et al.

(2006)

BPNN,

RBFN

UCS of soft grounds using cement

stabilization

Lab Random 154 32

52 Pradeep et al.

(2006)

GRNN Soil composition (coarse/fine grained) Field Random 100 42

53 Das and

Basudhar

(2007)

BPNN Prediction of hydraulic conductivity of

clay liners

Field Random 32 10



54 Erzin (2007) BPNN (i) Soil suction

(ii) Swell pressure

Lab Random (i) 87

(ii) 69

(i) 5

(ii) 5

55 Hanna and

Saygili (2007)

GRNN Liquefaction potential Field Random 413 1121 95a

56 Kung et al.

(2007)

BPNN Maximum deflection of diaphragm walls Numerical Random 2,324 1,162

57 Najjar and Huang

(2007)

Recurrent Total stress and pore water pressure Lab Random 4,453 167

58 Ahmad et al.

(2007)

BPNN Kinematic soil pile interaction response

parameters

Analytical Random 50% 50%

59 Yoo and Kim

(2007)

BPNN Tunneling performance of crown

settlement, maximum ground surface

settlement

Numerical Random 52 23 20�

60 Ferentinou and

Sakellariou

(2007)

BPNN,

SOM

Factor of safety of slope Field Random 31 15

61 Baziar and

Jafarian (2007)

BPNN Logarithm of strain energy density

required to trigger liquefaction

Lab Random 199 85

62 Abdel-Rahman

(2007)

BPNN MDD, OMC of cohesionless soil Lab Random 150 25

63 Kim and Kim

(2008)

BPNN Relative crest settlement of concrete-faced

rock-fill dams

Lab Random 21 09

64 Das and Sabat

(2008)

BPNN MDD and G of fly ash Lab Random (i) 25

(ii) 80

(i) 15

(ii) 33

65 Das and

Basudhar

(2008)

BPNN Residual friction angle of clay Lab Random 39 15

66 Padmini et al.

(2008)

ANFIS,

BPNN

Ultimate bearing capacity of shallow

foundations

Lab Random 78 19

(Continued)



Table 10.7 (Continued)

S. No. Reference Network Problem Data

Type

Data

Partition

Number of

Training

Data

Number of

Testing

Data

67 Sinha and Wang

(2008)

BPNN MDD, OMC of soil Lab Random 45 12

68 Maji and

Sitharam

(2009)

BPNN,

RBF

Elastic modulus ratio of jointed rocks Lab Random 726 170

69 Kaya (2009) BPNN Secant residual friction angle Lab Random 51 261 25a

70 Alavi et al.

(2009)

RBF OMC and MDD Lab Random 100 461 46a

71 Alavi et al.

(2010)

BPNN OMC and MDD Lab Random 100 461 46a

72 Park and Cho

(2010)

BPNN Total resistance, shaft resistance, and tip

resistance of driven piles

Field Random 148 17

73 Alavi and

Gandomi

(2011)

BPNN Ground motion parameter Field Random 1,971 5631 281a

74 Mollahasani et al.

(2011)

BPNN Soil cohesion intercept Lab Random 69 12

75 Das et al. (2010) BPNN Swelling pressure of soil Lab Random 167 63

76 Das et al. (2011a) BPNN Factor of safety of slopes Lab Random 32 14

77 Das et al. (2011c) BPNN Hydraulic conductivity of clay liners Field Random 32 9

78 Das et al. (2011b) BPNN MDD and UCS of cement-stabilized soil Lab Random 37 14

aValidation data set.



engineering problems like liquefaction analysis, pile foundations, slope stability,

and constitutive relations, particularly where finding an analytical solution is diffi-

cult. Although ANN is being used as an alternate statistical method, its prediction

capability is described in terms of the correlation coefficient between predicted and

observed values and RMSE. However, in this chapter, the need for other statistical

performance criteria has been emphasized. One of the most important aspects of

applying ANN is generalization, i.e., the performance of the model with a new data

set. This topic was discussed extensively in this chapter, as well as the prediction

model equations based on weights and biases, NID, and connection weight

approaches to find the relationship between input and output variables. This chapter

explained that ANN should not be considered a black-box system, and profes-

sionals can use the model equations developed by ANN with ease. Other prediction

algorithms included SVM, GP, and MARS.
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11.1 Introduction

In geotechnical engineering design, empirical relationships are often employed to

estimate design parameters and engineering properties, as well as predict the

behavior of geotechnical structures. Generally, the behavior of the system, such as

the performance of a braced retaining wall system, is characterized by a number of

interacting factors in which the relationship between these factors is not precisely

known. In addition, the data associated with these parameters are usually incom-

plete or erroneous (i.e., noisy). The extraction of knowledge from the data to

develop these empirical relationships is a formidable task requiring sophisticated

modeling techniques as well as human intuition and experience. This chapter

demonstrates the use of Bayesian neural network learning to alleviate this problem.

The neural network is a product of artificial intelligence research. Neural networks

have been successfully used in pattern recognition and the modeling of nonlinear

relationships involving a multitude of variables, in place of conventional techniques

such as regression analysis. One of the strengths of neural networks is its capability

to “learn” from example patterns and find meaningful solutions without the need to

specify the relationship between variables. Therefore, they are useful for finding

solutions for which there is a lack of understanding of the problem or the behavior

of the problem. For example, in geotechnical engineering, this methodology has

been successfully applied to seismic liquefaction (Goh, 1994; Juang et al., 1999),

constitutive modeling (Banimahd et al., 2005; Ghaboussi et al., 1991), ground prop-

erty estimation (Alavi and Gandomi, 2011; Alavi et al., 2009), dam analysis (Kim

and Kim, 2008; Yu et al., 2007), and tunneling (Benardos and Kaliampakos, 2004).

First, an overview of the conventional neural network and Bayesian neural network

methodologies are presented. This is followed by some practical examples in geo-

technical engineering to demonstrate the potential of this approach for capturing

nonlinear interactions between variables in complex engineering systems.
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11.2 Neural Networks

Neural networks are biologically inspired computer models that essentially mimic

the operations of the human brain. By far, the most commonly used neural network

model is the back-propagation algorithm. Detailed description of this algorithm can

be found in the literature (Caudill and Butler, 1991; Rumelhart et al., 1986). A neu-

ral network has a parallel-distributed architecture with a number of interconnected

nodes commonly referred to as neurons, as shown in Figure 11.1. The neurons inter-

act with each other via weighted connections. Each neuron is connected to all the

neurons in the next layer. Data is presented to the neural network through the input

neurons, and an output neuron transmits the response of the network to the input.

The processing of the inputs through the intermediate (hidden) neurons enables the

network to represent and compute complicated associations between patterns.

In the back-propagation algorithm, the neural network is presented with a series

of examples of associated input and target output values. Neural network “learning”

involves presenting a pattern to the input layer, passing the signal through the

hidden layer where the input data is transformed via a nonlinear transfer function,

and determining the output. The actual output from the output neuron is then com-

pared with the target value and any difference corresponds to an error. The main

objective in “training” the neural network is to modify the connection weights to

reduce the errors between the actual output values and the target output values

through the minimization of the defined error function (e.g., sum-squared error)

using the gradient descent approach. Validation of the performance of the neural net-

work, to assess the generalization capability of the trained neural network model to

produce the correct input�output mapping even when the input is different from the

examples used to train the network, is carried out by “testing” with a separate set of

data that was never used in training the neural network. Generalization is influenced

Connections

Input layer

Hidden layer

Output layer

x1 x2 x3 x4

Neuron

Figure 11.1 Neural network architecture.
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by factors such as the size of the training data, how representative the data is of the

problem to be considered, and the physical complexity of the problem. The neural

network architecture is also important. Too few hidden neurons may mean that the

network is unable to model the nonlinear problem correctly. An excessive number

of neurons may cause a phenomenon called overfitting, in which the network learns

insignificant aspects of the training set (i.e., the intrinsic noise in the data).

Determining the optimal number of hidden neurons is commonly carried out by

a trial-and-error approach through repeatedly increasing the number of hidden neu-

rons until no further improvement in the network performance is obtained.

11.3 Bayesian Neural Network

To simplify the network architecture selection for the conventional back-propagation

algorithm and to produce a network that generalizes well, Mackay (1991) and Neal

(1992) proposed the use of Bayesian back-propagation neural networks. The method

is based on the Bayesian statistical approach (Box and Tiao, 1973) and originated in

the field of maximum entropy (Gull, 1988). The Bayesian back-propagation algorithm

involves constraining the size of the network parameters through a regularizer that

penalizes the more complicated weight functions in favor of simpler functions by add-

ing a penalty term to the sum-squared error.

Instead of searching for a unique optimal value for the unknown weights (as is

done in conventional back propagation), the Bayesian network models the weights

with a probability density function, i.e., the uncertainty in the weight space is

assigned a probability distribution representing the degree of belief in the different

values of the weight vector. Mackay (1991) has shown that maximizing the poste-

rior distribution corresponds to minimizing the regularized error function.

11.4 Evolutionary Bayesian Back-Propagation Neural
Network

The two main components of the evolutionary Bayesian back-propagation (EBBP)

developed by Chua and Goh (2003) are evolutionary training and Bayesian infer-

ence procedures. The following sections give an overview of these two procedures.

11.4.1 Evolutionary Training

In the evolutionary training phase, the genetic algorithms (GAs) and gradient

descent methods are used to locate the most probable parameters. The GAs enhance

the searching capacity in locating the global minima for the neural network model.

First, a series of initial weight vectors w1, w2, w3,. . ., wi is assigned to the popula-

tion using the Nguyen�Widrow (1990) method, which distributes the active region
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of each neuron in the layer evenly across the layer’s input space. Updating of the

weights w is carried out using the stochastic gradient descent approach:

wnew 5wold 2 ρrEpðwÞ1ψΔwold ð11:1Þ

where rEp denotes the gradient of the error function of every presentation of an

input pattern and ρ and ψ are the learning rate and the momentum terms that con-

trol the step of change in weight for every updating. The modified Metropolis algo-

rithm (Metropolis et al., 1953) is used to decide whether to accept a new search

point based on the error function Ep performance:

wnew 5
wold 2 ρrEpðwÞ1αΔwold IfðEpnew � EpoldÞ, 0

wold 2 0:9ðρrEpðwÞ1αΔwoldÞ otherwise

�
ð11:2Þ

The testing error is then determined from an independent set of testing data.

The fitness function used to assess how well an individual wi of the population

performs is defined by

FitnessðwiÞ5
1

0:5 � ðMSEðwiÞ1 TSEðwiÞÞ1 0:01
ð11:3Þ

where MSE(wi) and TSE(wi) are the mean-squared error for the training data and

testing data, respectively. The small constant value of 0.01 is to prevent the fitness

value from growing to infinity.

The GA operations consisted of four procedures: selection, crossover, mutation,

and elitism. A roulette-wheel approach (Holland, 1975), based on the proportional

fitness of individual weights wi with respect to the fitness probability distribution

of the population, is used as the selection operator. The crossover operation per-

forms a multidirectional search and exchanges good subsolutions without deterio-

rating the learning process of neural networks. It replaces the poor individual with

good offspring and ensures a fitter population at the end of the evolution. The

mutation operation introduces some extra diversity to the population by introducing

weights that were not present in the initial population. The elitism operation (De

Jong, 1975) ensures that the fittest wi survives in the evolutionary process. Before

the crossover and mutation processes, the fitness of the population is ranked

according to Eq. (11.3). As the population size is kept constant, in order to keep

the good seeds of population and their offspring, the remaining (elite) members of

the population are selected from the wi that rank at the top in terms of fitness.

The first part of learning is stopped when 5% of the population achieves the

defined most probable state, the maximum iteration number has been reached, or

the performance of the fittest individual deteriorates after 10 consecutive iterations.

11.4.2 Bayesian Regularization

In the next phase of EBBP, only the stronger population (20% of the top rank)

determined from the first phase is selected to perform Bayesian regularization.
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The Bayesian framework essentially provides better generalization and a statistical

approach to deal with data uncertainty in comparison to the conventional back

propagation. This is carried out using the Levenberg�Marquardt (LM; Levenberg,

1994; Marquardt, 1963) second-order gradient descent algorithm to minimize the

regularized objective function:

MðwÞ5 βED 1α1Ew1
1α2Ew2

1?1αcEwc
ð11:4Þ

where β and α1 to αc are hyperparameters to regularize learning. ED is defined by

ED 5
XN
l51

1

2
ðyl2tlÞ2 ð11:5Þ

where yl and tl denote the lth network output and the lth target value, respectively,

and N denotes the product of the number of output units and the number of input

patterns.

Ewc
5
Xnc
i51

1

2
wi

2 ð11:6Þ

where nc denotes the number of weights for the group of wc. The αc hyperpara-

meters correspond to the weight decay parameters for the weights of each input

unit to the hidden layer, the biases to the hidden units, and the weights of the out-

put layer that consist of its biases and all the weights in that particular layer.

The updating rule for the LM algorithm is

wnew 5wold 2 ½βJTJ1ðμI1αÞ�21JTε ð11:7Þ

where J is the Jacobian matrix, ε is the error vector that defines the differences

between output values and target values, I is the unit matrix, μ is the step control

parameter, and α is the diagonal matrix consisting of regularizers α1, α2, α3,. . .,
αc. The N3 n J matrix and the ε vector are as follows:

J5

@ε1
@w1

@ε1
@w2

?
@ε1
@wn

@ε2
@w1

@ε2
@w2

?
@ε2
@wn

^

@εN
@w1

@εN
@w2

?
@εN
@wn

2
66666666666664

3
77777777777775

ð11:8Þ
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and

ε5

y1 2 t1
y2 2 t2
^
yN 2 tN

2
664

3
775 ð11:9Þ

where yN and tN denote the network Nth output value and Nth target value.

The step control parameter μ is initially set to 0.01. The change in the regular-

ized objective function M(w) is monitored after each iteration. If the M(w)

decreases after an iteration using Eq. (11.7), the new weight vector is accepted, the

value of μ is decreased by a factor of 10, and the process repeats. However, if the

M(w) increases, then μ is increased by a factor of 10, the old weight vector is

restored, and a new weight update is computed. When the scalar μ is small, this

is the exact Newton’s method, using the approximate Hessian matrix. When μ is

large, this becomes the gradient descent with a small step size.

During the minimization process, the M(w) is monitored and compared to the

defined most probable state. The most probable state is defined as a state that gives

the maximum posterior probability. The Bayesian regularization process is trig-

gered once the most probable state is reached. In this study, the most probable state

is initially set to a value that is close to or less than the minimum value of the out-

put unit or a tolerable value based on the problem domain to be learned. It is then

adjusted to the average squared error obtained in the first phase of training.

Once the most probable (MP) state is reached, the log of the evidence (E) of the

learning process is evaluated as follows:

lnðEÞ52α1E
MP
W1

2α2E
MP
W2

. . .2αcE
MP
Wc

2 βEMP
D 2

1

2
ln jAj

1
W1

2
ln α1 1

W2

2
ln α2 1?1

Wc

2
ln αc 1

N

2
ln β2

N

2
lnð2πÞ ð11:10Þ

where W1, W2,. . ., Wc comprise the weights for each input unit, bias of the hidden

layer, and weights and biases of the output layer.

ln jAj5
X
i

lnðλi1 1α1Þ1
X
i

lnðλi2 1α2Þ1?1
X
i

lnðλic 1αcÞ ð11:11Þ

where A is equal to ½βJTJ1α� and λic is the eigenvalue corresponding to the

particular wi of regularizer αc.

The log evidence is monitored during the learning process as well. The regulari-

zation parameters are updated as shown here each time the evidence is increased:

γc 5Wc 2αcðTrace A21Þsub

276 Metaheuristics in Water, Geotechnical and Transport Engineering



γc 5Wc 2αc

X 1

λic 1αc

ð11:12Þ

and

γ5
X
c

γc ð11:13Þ

where γ is the number of well-determined parameters that measure the effective

number of weights whose values are controlled by the data rather than the prior

and (Trace A21)sub is the subdomain of Trace A21:

αc 5
γc

2EMP
wc

ð11:14Þ

and

β5
N2 γ
2EMP

D

ð11:15Þ

Because of the high computational effort involved in the second part of the

EBBP, only 20% of the top-ranked population are selected to undergo this

Bayesian process.

In practice, due to the intrinsic noise of the data and uneven distribution of the

data density, it is unlikely that perfect learning (MSE5TSE5 0) will be achieved.

Therefore, the following stopping criteria are used:

1. Neither the MSE or TSE nor evidence has shown improvement in five consecutive itera-

tions. This is an indication that learning has started to deteriorate or is trapped in local

minima with a long valley.

2. The total norm of the gradient of the error function ED is smaller than 13 10210.

This indicates that the minimization of the error function ED has descended to the local

minima, and that overall, the error is generally small.

3. The μ is greater than 13 1010. The large μ will give a very small step in gradient

descent. This implies that the learning is probably trapped in singular local minima or a

saddle point.

4. The determinant of A is a negative value or zero. This indicates that poor conditioning

exists in the matrix A and the inverse matrix is unattainable.

By assuming that the trained neural network has arrived at the most probable

state and a Gaussian function for the posterior distribution of the connection

weights, the error bar (standard deviation, σt) of every prediction y made by the

model is given as

σt 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

β
1 gTA21g

s
ð11:16Þ

where g 
 rwyjwMP
:
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11.5 Examples

This section demonstrates the efficiency of the EBBP to locate the minima and han-

dle the uncertainties in data for complicated nonlinear problems through reviewing

some of the practical geotechnical applications previously studied by the authors.

11.5.1 Example 1—Pile Skin Friction for Driven Piles

A common method to estimate the skin friction capacity of driven piles in cohesive

soils is the alpha (α) method developed by Tomlinson (1957). From field load test

data mainly from driven piles, the skin friction was related to the undrained shear

strength su by an empirical coefficient denoted α. Subsequent studies by Randolph

and Murphy (1985) and Semple and Ridgen (1986) showed that α is also influenced

by factors such as the mean effective overburden stress σ0vm; the overconsolidation

ratio, OCR, the effective stress friction angle φ’, the pile width D, and the pile

length L.

In this example, 65 data records of driven pile load tests taken from the litera-

ture were used to assess the skin friction fs using the EBBP. The data records are

summarized in Goh (1995). The four input parameters were the pile length, the pile

diameter, the average effective vertical stress, and the average undrained shear

strength. The training data consisted of 45 randomly selected patterns, and the

remaining 20 patterns were used for the testing phase. The EBBP architecture con-

sisted of four input neurons, three hidden neurons, and an output neuron.

A plot of the EBBP-predicted values versus the measured values is shown in

Figure 11.2, with the corresponding coefficient of correlation R (between the
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predicted and the measured values) of 0.993 (training data) and 0.968 (testing

data). Using the conventional Semple and Rigden method, the corresponding coeffi-

cient of correlation R was 0.976 (training data) and 0.885 (testing data). The results

indicate that the predictions using the EBBP were an improvement over those by the

conventional method.

11.5.2 Example 2—Pile Skin Friction for Drilled Shafts

In the second example, the EBBP was used to model the skin friction fs for drilled

shafts. The training and testing data were based on the field load test data compiled

by Chen and Kulhawy (1994), in which the measured undrained shear strength

su values were converted to a consistent test type (triaxial CIUC) denoted as

su(CIUC) values.

Of the 127 field load test data patterns, 85 patterns were randomly selected as

the training data, and the remaining 42 patterns were used for the testing data (Goh

et al., 2005). The shaft diameters ranged from 0.18 to 1.8 m, while the shaft lengths

were in the range of 1.62 to 77 m. The σ0vm were in the range from 11 to 343 kPa,

su(CIUC) was in the range from 21 to 483 kPa, and αCIUC was in the range from

0.24 to 1.03. The majority of the soils were overconsolidated. Most of the patterns

had suðCIUCÞ=σ0vm ratios in the range from 0.49 to 6.9. The EBBP architecture

used in the analyses consisted of two input neurons representing σ0vm and su(CIUC),

four hidden neurons, and an output neuron representing αCIUC.

The following regression equation proposed by Chen and Kulhawy (1994) was

used for comparison:

αCIUC 5 0:311 0:17=½suðCIUCÞ=pa� ð11:17Þ

in which pa is the atmospheric pressure.

A plot of the EBBP predicted values versus the measured αCIUC values for both

the training and the testing data is shown in Figure 11.3. A similar plot of

predictions based on Eq. (11.17) is shown in Figure 11.4. The “measured αCIUC

value” is defined in the most general sense of having been inferred from the back-

calculated field load test data. The EBBP predictions show less scatter compared to

the predictions using Eq. (11.17). The corresponding coefficient of correlation R

(between the predicted and the measured values) was 0.867 (training data) and

0.891 (testing data) using the EBBP method. Using Eq. (11.17), the corresponding

coefficient of correlation R was 0.651 (training data) and 0.814 (testing data).

The results indicate that the EBBP predictions were an improvement over those

based on Eq. (11.17), particularly for the training data set.

For the EBBP, every neural network prediction is associated with an error bar.

These error bars are the standard deviations for the predictions based on the data

distribution and inherent noise. For clarity, they have been omitted in

Figures 11.2�11.4. The calculation of the standard deviation of αCIUC for the 42

testing data patterns ranged from 0.0896 to 0.1051.

279Geotechnical Applications of Bayesian Neural Networks



1.2

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0 1.2
Load test ααCIUC

Neural network

P
re

d
ic

te
d

 α
C

IU
C

Training
Testing
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The variation of αCIUC was further examined through a parametric study for σ0vm
in the range of 25�200 kPa, and undrained shear strength ratio (USR) su=σ0vm in

the range of 0.75�3. The EBBP predictions for USR5 0.75 and 2.0, with the error

bars, are plotted in Figure 11.5, along with the measured results that were close to

the corresponding USR ratios. The plots show that the EBBP gives logical and con-

sistent trends with the measured results. The general trend was for the αCIUC value

to decrease with increasing σ0vm and with increasing USR.

11.5.3 Example 3—Retaining Wall Deflection

For fairly deep excavations, braced retaining wall support systems are commonly

used to provide lateral support for the soil around the excavation. One of the

major concerns in carrying out an excavation using a braced retaining wall system

in a congested urban environment is that the excavation-induced ground move-

ments will damage adjacent buildings and utilities. Some of the critical factors

that influence the magnitude of ground movements are the width and depth of the

excavation, the soil type and properties, the bracing system, and the stiffness of

the wall. Various methods (Clough and O’Rourke, 1990; Hashash and Whittle,

1996; Long, 2001; Peck, 1969) have been proposed for estimating lateral wall
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Figure 11.5 Neural network predicted αCIUC for drilled shafts (USR of 0.75 and 2).
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deflections and ground deformations around deep excavations. Neural networks

have also been successfully used for predicting the wall deflection of braced exca-

vation systems (Goh et al., 1995; Jan et al., 2002). In both these studies, seven

input variables were considered.

This study expands on the approach by Goh et al. (1995). The EBBP model

consisted of 35 different input parameters, which take into account the wall length

and stiffness (EI), width (B) and depth of excavation (H), support stiffness and

location, in situ stress state, nonhomogeneous soil conditions, and variation of soil

properties with depth (Chua and Goh, 2005). Figure 11.6 shows a schematic repre-

sentation of the excavation geometry and the main parameters considered in the

analyses. Five different soil layers were considered, as depicted in Figure 11.6.

The inputs for each clay layer comprised the undrained shear strength cu, the

undrained elastic modulus Eu, the soil unit weight, the coefficient of earth pressure

at-rest K0 and the thickness of the layer. The output variable was the normalized

maximum lateral wall deflection δh,max/H. The training and testing data were

obtained from finite element method (FEM) analysis using the program

EXCAV97 (Wong and Goh, 1997). A large database of 6925 patterns was used.

The data obtained from the analyses were randomly separated into 3844 training

patterns and 3081 testing patterns.

The range of soil profiles considered encompassed excavations in soft clay,

stiff clay, and mixed soil comprising both soft and stiff clay. The range of values

of the variables is also shown in Figure 11.6 in parentheses. The excavation width

ranged from 11 to 95 m. The retaining structures consisted of either flexible or

stiff walls. Situations of walls either floating in the clay, resting on the stiff stra-

tum, or penetrating into the stiff stratum were considered. Excavations with two

or three strut levels to depths of up to 20 m were considered. The final optimal

architecture of the EBBP model consisted of 35 input neurons, 14 hidden neurons,

and 1 output neuron (35:14:1).

Wall EI (8–2332 MNm2/m)

Strut 
H (4–20 m) 

(0–42 m)

(0–43 m)

Clay layer 1 cu (7–118 kPa)

Stiffness (30–4000 MN/m/m) 

Clay layer 2 cu (6–250 kPa)

Clay layer 3 cu (10–408 kPa)

Clay layer 4 cu (18–633 kPa)

Clay layer 5 cu (13–745 kPa)

Eu/cu = 150–450
K0 = 0.5–0.7

Eu/cu = 400–900
K0 = 0.8–1.4

Figure 11.6 Cross section of braced excavation geometry.
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The EBBP-predicted wall deflections versus the actual (FEM) wall deflections

are shown in Figures 11.7 and 11.8. The corresponding coefficient of correlation R

was 0.993 (training data) and 0.968 (testing data). The plot of the results in

Figures 11.7 and 11.8 and the coefficient of correlation statistics show a good fit

between the predicted and the actual output values. Seven instrumented case histo-

ries of braced excavations were also used to further validate the generalization

capability of the trained EBBP model. The case histories were extracted from the

literature and involved excavations in soft clay and stiff clay. The results of the

EBBP predictions and measured results are also shown in Table 11.1. The range of

predictions (6 one standard deviation) for the EBBP is shown in the far-right col-

umn of Table 11.1. Figure 11.9 shows the plot of the predicted wall deflection ver-

sus the average measured wall deflections. Generally, the predictions were in good

agreement with the measured data.

11.6 Conclusions

The EBBP is a hybrid neural network that incorporates the GA search methodology

with Bayesian neural network learning. The algorithm overcomes the overfitting

problem by penalizing complicated weight models through a regularization term.

With the Bayesian regularization, the uncertainty of data can be indicated as an

error bar. The error bar gives the standard deviation of every prediction based on

the data distribution and intrinsic noise. Three examples, all with high coefficient

of correlations, were presented to demonstrate the capability of the EBBP to locate
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the minima and handle the uncertainties in data for nonlinear multivariate pro-

blems. EBBP can be applied to domains where there is incomplete understanding

of the problem to be solved, but where training data are readily available. They are

particularly useful for approximating complicated nonlinear problems. Unlike other
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Figure 11.8 Comparison of

EBBP- and FEM-

normalized maximum wall

deflection (testing data).

Table 11.1 Summary of Measured Deflections and EBBP Predictions for Case Histories

Case B (m) H (m) Measured

δh,max (mm)

Range of EBBP

δh,max (mm)

Reference

(a) Vaterland 11.0 8.1 105�145 104�126 Mana (1978)

(b) New Palace 50.0 10 18.5 22�38 Burland and Hancock

(1977)13 20.5 27�47
(c) Lion Yard 45.0 8.2 11.5 8�21 Lings et al. (1991)

10.2 14.5 10�26
(d) Telecom 27.0 5.75 58�82 60�71 Lee et al. (1986)

7.4 100�130 90�104
(e) MOE 70.0 3.7 135 157�171 Tan et al. (1985)

5.1 180 205�222
7.0 310 282�302

(f) CH1167w 42.0 9.9 28 42�59 Poh (1996)

(g) Rochor 95.0 4.2 46�85 84�92 Lee and Ng (1994)

6.3 125�150 137�140
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nonlinear statistical modeling techniques, the relationships between the variables

do not have to be specified in advance. Therefore, one can avoid making assump-

tions that may not be correct or relevant. It is a useful adjunct to other mathemati-

cal methods to model complex problems. A trained model is particular useful for

parametric studies to demonstrate explicitly the captured relationships between

each input parameter, as well as confidence level of each prediction. This helps to

identify the range of low-density data domains that require improvement, as well

as the influence of each input parameter.
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12.1 Introduction

Various methods can be employed for the behavioral modeling of geotechnical

engineering systems. Owing to the large variety of methods available in this

field, no one method can be considered as a universally applicable solution. The

modeling of geotechnical engineering problems is a difficult task because of the

need to estimate both the structure and the parameters of such systems.

Different criteria can be characterized for model classification while dealing

with a system-modeling task (Gandomi and Alavi, 2011; Torres et al., 2009). A

model can be classified as phenomenological or behavioral (Metenidis et al.,

2004). A phenomenological model is derived by considering the physical rela-

tionships governing a system. As a result, the structure of the model is selected

according to prior knowledge about the system. It is not always possible to

design phenomenological models for geotechnical engineering systems because

of their complexity. To deal with this issue, the behavioral models are com-

monly employed. These models approximate the relationships between the inputs

and the outputs on the basis of a measured set of data, without the need for

prior knowledge about the mechanisms that produced the experimental data.

Behavioral models can provide very good results with minimal effort (Gandomi

and Alavi, 2011). Traditional statistical regression techniques are usually used
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for behavioral modeling purposes. However, regression analysis can have large

uncertainties. Further, it has major drawbacks in terms of idealization of com-

plex processes, approximation, and averaging widely varying prototype condi-

tions. Regression analysis often assumes linear (or in some cases nonlinear)

relationships between the output and the predictor variables; these assumptions

do not always hold (Gandomi and Alavi, 2011).

Several alternative computer-aided pattern recognition and data classifica-

tion approaches have been developed for behavioral modeling. An example in

this field is pattern recognition systems, which learn adaptively from experi-

ence and extract various discriminators. Artificial neural networks (ANNs)

are the most widely used pattern recognition procedure. ANNs have been

used for a wide range of geotechnical engineering problems (Alavi and

Gandomi, 2011a, b; Alavi et al., 2009, 2010a; Cabalar and Cevik, 2009a, b;

Goh, 1994; Juang et al., 2001; Kim and Kim, 2008; Shahin et al., 2001,

2008, 2009). Despite the acceptable performance of ANNs in most cases,

they do not usually provide a definite function to calculate the outcome. In

addition, ANNs require the structure of the network to be identified a priori.

The ANN approach is mostly suited to being used as part of a computer

program.

Empirical modeling of geotechnical engineering problems by genetic pro-

gramming (GP; Banzhaf et al., 1998; Koza, 1992) can be regarded as an

alternative approach to conventional methods (e.g., the finite element

method). GP is based on the data alone to determine the structure and para-

meters of the model. It is a specialization of genetic algorithms (GAs), where

the solutions are computer programs rather than fixed-length binary strings.

The computer programs created by standard GP are represented as tree struc-

tures (Gandomi et al., 2011a; Koza, 1992). This classical approach is also

referred to as tree-based genetic programming (TGP). Linear genetic program-

ming (LGP; Brameier and Banzhaf, 2007) is a particular subset of TGP. LGP

evolves programs of an imperative language or machine language instead of

the standard TGP expressions of a functional programming language (Brameier

and Banzhaf, 2001, 2007). LGP has shown to be an efficient alternative to tra-

ditional TGP (Oltean and Grossan, 2003).

This chapter illustrates the feasibility of using TGP and LGP paradigms to

simulate the complex behavior of geotechnical engineering systems. The for-

mulation capabilities of TGP and LGP are demonstrated by applying them to

the formulation of effective angle of shearing resistance of soils. Further, a

comparative study is conducted using the results obtained via TGP, LGP, and

other existing methods. The chapter is organized as follows: Section 12.2 pre-

sents a brief review of the literature on the applications of TGP and LGP.

Section 12.3 provides descriptions of the TGP and LGP methodologies.

Section 12.4 outlines a numerical example and reviews the results.

Section 12.5 presents a general discussion of the capabilities of TGP and LGP.

Finally, Section 12.6 gives concluding remarks.
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12.2 Previous Studies on Applications of TGP and LGP
in Geotechnical Engineering

GA is a powerful stochastic optimization method based on the principles of genet-

ics and natural selection. For nearly two decades, GA has been shown to be suit-

ably robust for a wide variety of complex geotechnical problems (Levasseur et al.,

2007, 2009; McCombie and Wilkinson, 2002; Pal et al., 1996; Simpson and Priest,

1993). In contrast with GA and ANN, application of TGP and LGP in the field of

civil engineering is totally new and original. For the last 10 years, TGP and LGP

have been pronounced as new methods for simulating the behavior of geotechnical

engineering problems. The first application of TGP in the fields of geotechnical

engineering is carried out by Yang et al. (2004) to analyze the stability of slopes.

Afterward, TGP and its variants have been successfully applied to other geotechni-

cal engineering problems, such as identification of nonlinear dynamics of land-

slides (Yang and Feng, 2005), formulation of the unconfined compressive strength

of soft ground (Narendra et al., 2006), evaluation of liquefaction-induced lateral

displacements (Javadi et al., 2006), prediction of the soil�water characteristic

curve (Johari et al., 2006), predicting the settlement of shallow foundations

(Rezania and Javadi, 2007), modeling of the angle of shearing resistance of soils

(Kayadelen et al., 2009), constitutive modeling of Leighton Buzzard sands (Cabalar

et al., 2009), modeling the damping ratio and shear modulus of sand�mica mix-

tures (Cevik and Cabalar, 2009), deriving attenuation relationships (Cabalar and

Cevik, 2009a, b), prediction of uplift capacity of suction caissons (Alavi et al.,

2010b), formulation of soil classification (Alavi et al., 2010c), prediction of the

vmax/amax ratio of strong ground motions (Jafarian et al., 2010), modeling of

stress�strain behavior of sand under cyclic loading (Shahnazari et al., 2010), non-

linear system modeling of geotechnical engineering problems (Gandomi and Alavi,

2012), prediction of time-domain parameters of ground motions (Gandomi et al.,

2011b), and formulation of soil deformation moduli obtained from plate load test-

ing (Mousavi et al., 2011a).

LGP is a robust variant of the GP method. This linear variant of TGP makes a

clear distinction between the genotype and the phenotype of an individual (Oltean

and Grossan, 2003). More specifically, LGP operates on programs that are repre-

sented as linear sequences of instructions of an imperative programming language.

Unlike TGP and other soft computing tools like ANNs, the LGP applications are

even restricted to fewer geotechnical areas. LGP is first applied to geotechnical

engineering problems by Alavi et al. (2008) to predict the performance characteris-

tics of the stabilized soil. Thereafter, this powerful technique is used by researchers

to solve problems in geotechnical engineering. Some important studies in this area

include prediction of circular pile scour (Guven et al., 2009), formulation of

geotechnical engineering systems (Alavi and Gandomi, 2011a, b), assessment of

soil liquefaction (Alavi and Gandomi, 2012), simulation of soil shear strength

parameters (Mousavi et al., 2011b), modeling of uplift capacity of suction caissons

(Alavi et al., 2011), and modeling of soil deformation modulus using pressure
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meter test results (Rashed et al., 2012). However, recent studies have shown that

the GP-based techniques possess some obvious superiority over ANN in dealing

with geotechnical engineering problems (Alavi et al., 2010c; Rezania and Javadi,

2007).

12.3 Tree-Based Genetic Programming

GP uses the principle of Darwinian natural selection to create computer programs.

A breakthrough in GP is made by conducting experiments of Koza (1992) on sym-

bolic regression. This classical GP technique is also referred to as TGP (Koza,

1992). GP was introduced by Koza (1992) as an extension of GAs. Most of the

genetic operators used in GA can also be implemented in GP with minor changes.

The main difference between GP and GA is the representation of the solution. GA

creates a string of numbers that represent the solution. The GP solutions are com-

puter programs represented as tree structures and expressed in a functional pro-

gramming language like List Processing (LISP) (Koza, 1992). In other words, the

individuals (programs) evolved by GP are parse trees that can vary in length

throughout the run, rather than fixed-length binary strings. Essentially, this is the

beginning of computer programs that program themselves (Koza, 1992). Since GP

often evolves computer programs, the solutions can be executed without post-pro-

cessing, while coded binary strings typically evolved by GA require post-proces-

sing. Traditional optimization techniques like GA are generally used in parameter

optimization to evolve the best values for a given set of model parameters. GP, on

the other hand, gives the basic structure of the approximation model with the

values of its parameters. GP optimizes a population of computer programs accord-

ing to a fitness landscape determined by a program’s ability to perform a given

computational task. The fitness of each program in the population is evaluated

using a fitness function. Thus, the fitness function is the objective function that GP

aims to optimize (Gandomi et al., 2011c; Torres et al., 2009).

In tree-based GP (TGP) a random population of individuals (trees) is created to

achieve high diversity. A population member in TGP is a hierarchically structured

tree comprising functions and terminals. The functions and terminals are selected

from a set of functions and a set of terminals. The functions and terminals are cho-

sen at random and put together to form a computer model in a treelike structure

with a root point with branches extending from each function and ending in a ter-

minal (Gandomi et al., 2011a). An example of a simple tree representation of a

TGP model is illustrated in Figure 12.1.

Creating an initial population is a blind random search for solutions in the large

space of possible solutions. Once a population of models has been created at ran-

dom, the TGP algorithm evaluates the individuals, selects individuals for reproduc-

tion, and generates new individuals by mutation, crossover, and direct

reproduction. Finally, TGP creates the new generation in all iterations (Gandomi

et al., 2011a). During the crossover procedure, a point on a branch of each program

is selected at random and the set of terminals and/or functions from each program
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are then swapped to create two new programs. The evolutionary process continues

by evaluating the fitness of the new population and starting a new round of repro-

duction and crossover. During the mutation process, the TGP algorithm occasion-

ally selects a function or terminal from a model at random and mutates it

(Gandomi et al., 2011a).

As shown in Figure 12.2, linear and graph-based GPs are types of GP other than

traditional TGP (Alavi et al., 2011). The emphasis of the present study is placed on

linear-based GP techniques. LGP is a robust linear-based GP method. There are

some reasons for using LGP. Basic computer architectures are fundamentally the

same now as they were 20 years ago, when GP began. Almost all architectures rep-

resent computer programs in a linear fashion. Moreover, computers do not naturally

run tree-shaped programs. Hence, slow interpreters have to be used as part of GP

(TGP). Conversely, by evolving the binary bit patterns actually obeyed by the com-

puter, the use of an expensive interpreter (or compiler) is avoided, and GP can run

several orders of magnitude faster (Alavi and Gandomi, 2011a, b). The enhanced

speed of the linear variants of GP (e.g., LGP) permits conducting many runs in

realistic time frames, which leads to deriving consistent, high-precision models

with little customization (Francone and Deschaine, 2004).

12.3.1 Linear Genetic Programming

LGP is a subset of GP with a linear representation of individuals. The main charac-

teristic of LGP in comparison with traditional TGP is that expressions of a func-

tional programming language like LISP are substituted by programs of an

imperative language like C/C11 (Brameier and Banzhaf, 2001, 2007).

Figure 12.3 presents a comparison of the program structures in LGP and TGP. As

shown in Figure 12.3A, an LGP can be seen as a data flow graph generated by

+

√

3

/

N

M

Figure 12.1 The tree representation of a GP model (O(M1 3/N)).

GP

TGP LGP Graph-based GP

Figure 12.2 Different types of GP.
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multiple usages of register content. That is, on the functional level, the evolved

imperative structure denotes a special directed graph. As can be observed from

Figure 12.3B, in TGP, the data flow is more rigidly determined by the tree structure

of the program (Brameier and Banzhaf, 2001, 2007).

In the LGP system described here, an individual program is interpreted as a vari-

able-length sequence of simple C instructions. The instruction set or function set of

LGP consists of arithmetic operations, conditional branches, and function calls.

The terminal set of the system is composed of variables and constants. The instruc-

tions are restricted to operations that accept a minimum number of constants or

memory variables, called registers (r), and assign the result to a destination register

(e.g., r05 r11 1). A part of an LGP in C code is represented in Figure 12.4, in

which register r[0] holds the final program output.

LGP allows structurally ineffective codes to coexist with effective codes in pro-

grams (Brameier and Banzhaf, 2001). An instruction of an LGP is called “effec-

tive” at its position if it affects the program output. The ineffective codes in

genetic programs represent instructions without any influence on the program’s

behavior. These codes act as a protection, reducing the effect of variation on the

effective code. Because of the program structure in LGP, the ineffective codes can

be detected and eliminated much easier than in TGP and other comparable inter-

preting systems (Francone and Deschaine, 2004). Thus, the linear genetic code is

interpreted more efficiently. Another feature of the LGP system is that the ineffec-

tive codes can be removed before an LGP is executed during fitness calculation.

This is done by copying all effective instructions to a temporary program buffer,

and it results in an enormous acceleration in the LGP execution speed.

y = f [0] = (v[1]/3) + v[4] 

f [0] = 0; 
L0: f [0] += v[1]; 
L1: f [0] /= 3; 
L2: f [0] += v[4]; 
return f [0]; 

+

v[4]/

v[1] 3

(B) (A) Figure 12.3 Comparison of the

GP program structures: (A) LGP,

(B) TGP (Gandomi et al., 2008).

Figure 12.4 An excerpt of an LGP.
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Automatic Induction of Machine code by Genetic Programming (AIMGP) is a

particular form of LGP. In AIMGP, evolved programs are stored as linear strings

of native binary machine code and are directly executed by the processor during fit-

ness calculation. The absence of an interpreter and complex memory handling

results in a significant speedup in the AIMGP execution compared to TGP

(Brameier and Banzhaf, 2001). This machine-code-based LGP approach searches

for the computer program and the constants at the same time. Here are the steps

the machine-code-based LGP system follows for a single run (Brameier and

Banzhaf, 2007):

1. Initializing a population of randomly generated programs and calculating their fitness

values: To evaluate the fitness of the evolved programs, mean absolute error is commonly

used.

2. Running a tournament: In this step, four programs are selected from the population ran-

domly. They are compared and based on their fitness, and two programs are designated

the winners and two the losers.

3. Transforming the winner programs: After that, two winner programs are copied and

transformed probabilistically into two new programs via crossover and mutation

operators.

4. Replacing the loser programs in the tournament with the transformed winner programs:

The winners of the tournament remain without changing.

5. Repeating steps 2 through 4 until termination or convergence conditions are satisfied.

Crossover occurs between instruction blocks. During this process, a segment of

random position and arbitrary length is selected in each of the two parents and

exchanged. If one of the two children would exceed the maximum length, cross-

over is aborted and restarted with exchanging equal-sized segments (Brameier and

Banzhaf, 2001). The mutation operation occurs on a single instruction.

Comprehensive descriptions of the basic parameters used to direct a search for an

LGP can be found in Brameier and Banzhaf (2007).

12.4 Application to Geotechnical Engineering Problems

12.4.1 Modeling of the Effective Angle of Shearing Resistance

One of the most important engineering properties of soil is its ability to resist slid-

ing along internal surfaces within a mass. The stability of structures built on soil

depends upon the shearing resistance offered by the soil along the probable sur-

faces of slippage. The shear strength of geotechnical materials is generally repre-

sented by the Mohr�Coulomb theory. According to this theory, the soil shear

strength varies linearly with the applied stress through two shear strength compo-

nents known as the cohesion intercept and angle of shearing resistance. The tan-

gent to the Mohr�Coulomb failure envelopes is represented by its slope and

intercept. The slope expressed in degrees is the angle of shearing resistance, and

the intercept is cohesion (Mousavi et al., 2012; Murthy, 2008). The cohesion inter-

cept and angle of shearing resistance are treated as constants over the range of
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normal stresses. The values of these empirical parameters for any soil depend upon

several factors, such as the soil’s textural properties, its past history, its initial state,

its permeability characteristics, and the conditions of drainage allowed to take place

during the test (Mousavi et al., 2012; Murthy, 2008). If the cohesion intercept and

angle of shearing resistance are determined using the total stresses, they are named

the total or undrained cohesion intercept (c) and the angle of shearing resistance

(φ). The effective stress is the difference between the total stress and the excess

pore water pressure. If the pore water pressures are measured during the test, the

effective circles can be plotted and the effective strength parameters (c0 and φ0) are
obtained.

Accurate determination of φ0 is a major concern in the design of different geo-

technical structures such as foundations, slopes, underground chambers, and open

excavations. This key parameter can be determined either in the field or in the labo-

ratory. The triaxial compression and direct shear tests are the most common tests for

determining the φ0 values in the laboratory. The triaxial test is more suitable for

clayey soils. The direct shear test is commonly used for sandy soils and requires a

simpler test procedure than the triaxial test. The tests employed in the field include

the vane shear test or any other indirect method (Mousavi et al., 2012; Murthy,

2008). However, experimental determination of the strength parameters is extensive,

cumbersome, and costly. Also, it is not always possible to conduct the tests in every

new situation. In order to cope with such problems, numerical solutions have been

developed to estimate the φ0 values. The fact that most of the available empirical

models are based on limited experimental data raises doubts about their generality.

On the other hand, despite the multivariable dependency of soils such correlations

are developed on the basis of only one soil index property (Kayadelen et al., 2009).

Incorporating simplifying assumptions into the development of the statistical and

numerical methods may also lead to very large errors (Shahin et al., 2001).

In this chapter, the TGP and LGP techniques are used to obtain generalized rela-

tionships between φ0 and the physical properties of the clayey and sandy soils. The

proposed correlations are developed based on the consolidated-drained (CD) triax-

ial test results obtained from the literature. The most important factors representing

the φ0 behavior are selected based on the literature review (Kayadelen et al., 2009;

Korayem et al., 1996; Mousavi et al., 2012; Murthy, 2008) and after a trial study.

Consequently, the φ0 (	) formulation is considered to be as follows:

φ05 f ðFC; LL; γÞ ð12:1Þ

where

FC (%): fine-grained content,

LL (%): liquid limit,

γ (g/cm3): soil bulk density.

The significant influence of these parameters in determining φ0 is well under-

stood. FC and LL represent the intrinsic soil properties and γ carries information on
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the state of the soil and its compressibility and previous history. The best TGP and

LGP correlations are chosen on the basis of a multiobjective strategy as follows:

1. The simplicity of the model, although this is not a predominant factor.

2. The best fitness value on the learning set of data.

3. The best fitness value on a validation set of data.

Performance Measures

The correlation coefficient (R), root mean square error (RMSE), and mean absolute

percent error (MAPE) are used to evaluate the performance of the proposed corre-

lations. R, RMSE, and MAPE are given in the form of equations as follows:

R5

Pn
i51ðhi2 hi Þðti2 tiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i51 ðhi2hiÞ2
Pn

i51 ðti2tiÞ2
q ð12:2Þ

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i51 ðhi2tiÞ2

n

s
3 100 ð12:3Þ

MAPE5
1

n

Xn

i51

jhi 2 tij
hi

� �
3 100 ð12:4Þ

where hi and ti are, respectively, the actual and predicted output values for the ith

output; hi and t are, respectively, the average of the actual and predicted outputs;

and n is the number of samples.

Experimental Database

A comprehensive database containing the results of 135 CD triaxial tests presented

by Kayadelen et al. (2009) and Mousavi et al. (2012) is used for the model devel-

opment. For the TGP and LGP analyses, the available data sets are randomly

divided into learning, validation, and testing subsets. The learning data are used for

training (genetic evolution). The validation data are used for model selection. In

other words, the learning and validation data sets are used to select the best-

evolved programs and included in the training process. Thus, they are categorized

into one group, referred to as training data. The testing data are used to measure

the performance of the models obtained by TGP and LGP on data that play no role

in building the models. A trial study is conducted to find a consistent data division.

The selection is such that the statistical properties (e.g., mean and standard devia-

tion) of the training and testing subsets are similar. Out of the 135 data sets, 108

are used as the training data (96 sets as the learning data and 12 sets as the valida-

tion data). The remaining 27 data sets are taken for testing of the generalization

capability of the models. Although normalization is not strictly necessary in the
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GP-based analyses, better results are usually reached after normalizing the vari-

ables. This is mainly due to influence of unification of the variables, no matter their

range of variation. Thus, both input and output variables are normalized between 0

and 1. The ranges, normalized values, and statistics of different input and output

parameters involved in the model development are given in Table 12.1.

TGP-Based Formulation of the Angle of Shearing Resistance

A TGP analysis is performed to compare LGP with a classical GP approach. Various

parameters involved in the TGP predictive algorithm are shown in Table 12.2. It is

worth mentioning that a notable limitation of GP and its variants is that these methods

are parameter sensitive, especially when difficult experimental training data sets are

employed. Using any form of optimally controlling the parameters of the run (e.g.,

GAs) can improve the performance of the TGP and LGP algorithms. In this study,

several runs are conducted considering different values for the TGP parameters. The

parameters are selected based on some previously suggested values (Javadi et al.,

2006; Johari et al., 2006) and after a trial-and-error approach. Basic arithmetic opera-

tors and mathematical functions are used to get the optimum TGP models. Three

levels are set for the population size and two levels are considered for the crossover

and mutation rates. There are 33 23 25 12 different combinations of the parameters.

All of these combinations are tested and 10 replications for each combination are per-

formed. This makes 120 runs for the TGP algorithm. A fairly large number of genera-

tions are tested on each run to find models with minimum error. The program is run

until the runs terminated automatically. A TGP software, GPLAB (Silva, 2007), is

used in this study in conjunction with subroutines coded in MATLAB.

The prediction equation for φ0, for the best result by the TGP algorithm, is as

follows:

φ0TGPð3Þ5 8γ2 1
LLðFC2 2 100FCÞð8γ2 2 25Þ

250; 000
ð12:5Þ

where FC, LL, and γ are the predictor variables shown in Table 12.1. A compari-

son of the experimental versus predicted φ0 values is shown in Figure 12.5.

Table 12.1 The Variables Used in Model Development

Parameters Inputs Output

FC (%) LL (%) γ (g/cm3) φ0 (	)

Mean 61.39 41.00 1.81 26.41

Standard deviation 20.51 11.19 0.14 3.39

Sample variance 420.72 125.16 0.02 11.46

Range 84.00 76 0.84 22

Minimum 15.00 22 1.43 18

Maximum 99.00 98 2.27 40

Normalized form FCn5FC/100 LLn5LL/100 γn5 γ/2.5 φ0n 5φ0=50
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LGP-Based Formulation of the Angle of Shearing Resistance

The available database is used for generating an LGP prediction model relating φ0 to
FC (%), LL (%), and γ (g/cm3). Various parameters involved in the LGP algorithm

are shown in Table 12.3. The parameter selection will affect the model generalization

capability of LGP. Several runs are conducted to come up with a parameterization of

LGP that provided enough robustness and generalization to solve the problem. The

parameters are selected based on previously suggested values (Alavi and Gandomi,

2011a, b, 2012; Alavi et al., 2008, 2011) and also after a trial study. Three levels are

set for the population size and two levels are considered for the crossover and muta-

tion rates. The success of the LGP algorithm usually increases as the initial and maxi-

mum program size parameters increase. In this case, the complexity of the evolved
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Figure 12.5 Experimental versus predicted φ0 values using the TGP model: (A) training

data, (B) testing data.

Table 12.2 Parameter Settings for the TGP Algorithm

Parameter Settings

Function set 1,2 ,3 , /, sin, cos

500, 1500, 3000

Maximum tree depth 10

Total generations 4000

Initial population Ramped half-and-half

Sampling Tournament

Expected number of offspring method Rank 89

Fitness function error type Linear error function

Termination Generation 40

Crossover rate (%) 50, 95

Mutation rate %) 50, 95

Real max level 30

Survival mechanism Keep best
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functions increases, and the speed of the algorithm decreases. The initial and maxi-

mum program sizes are set to optimal values of 80 and 256 bytes, respectively, as

trade-offs between the running time and the complexity of the evolved solutions. The

number of demes is set to 20. This parameter is related to the way that the population

of programs is divided. Note that demes are semi-isolated subpopulations in which

evolution proceeds faster than in a single population of equal size (Brameier and

Banzhaf, 2001). In this study, basic arithmetic operators and mathematical functions

are used to get the optimum LGP models. There are 33 23 25 12 different combina-

tions of the parameters. All of these combinations are tested and five replications for

each combination are carried out. Therefore, the overall number of runs is equal to

123 105 120. A fairly large number of tournaments are tested on each run to find

models with minimum error. For each case, the program is run until there is no longer

significant improvement in the performance of the models or the runs terminate auto-

matically. Each run is observed for overfitting while in progress. In checking for over-

fitting, situations are examined in which the fitness of the samples for the learning of

LGP is negatively correlated with the fitness on the validation data sets. For the runs

showing signs of overfitting, the LGP parameters are progressively changed to reduce

the computational power available to the LGP algorithm until observed overfitting is

minimized. The resulting run is then accepted as the production run. For the LGP-

based analysis, the Discipulus software (Conrads et al., 2004) is used, which works on

the basis of the AIMGP platform.

The LGP-based formulation of φ0 is as follows:

φ0LGPð3Þ58γ22
ðFC22100FCÞLLð2210:01FCÞðð110:01FCÞð0:4γ20:01FC11Þ1ðγ25Þ=γÞ

20;000

2
50ðFC22100FCÞLL2ð0:01FC20:4γÞ

1;000;000FC2200;000;000

ð12:6Þ

Table 12.3 Parameter Settings for the LGP Algorithm

Parameter Settings

Function set 1, 2 , 3 , /, O, sin, cos

Population size 500, 1500, 3000

Maximum number of tournaments 900,000

Maximum program size 256

Initial program size 80

Crossover rate (%) 50, 95

Homologous crossover (%) 95

Mutation rate (%) 50, 95

Block mutation rate (%) 30

Instruction mutation rate (%) 30

Data mutation rate (%) 40

Number of demes 20

300 Metaheuristics in Water, Geotechnical and Transport Engineering



where FC, LL, and γ, respectively, denote the fine-grained content, liquid limit,

and soil bulk density. Figure 12.6 shows a comparison of the experimental versus

predicted φ0 values.

Performance Analysis

According to Smith (1986), if a model gives a correlation coefficient (R). 0.8, and

the error (e.g., RMSE and MAPE) values are at minimum, there is a strong correla-

tion between the predicted and the measured values. The model can therefore be

judged as very good. It can be observed from Figures 12.5 and 12.6 that the TGP

and LGP models with high R and low RMSE and MAPE values predict the target

values with a high degree of accuracy. The performance of the models on the test-

ing data is better than that on the training (learning and validation) data. The LGP-

based correlation has produced better results on the training and testing data than

the TGP correlation.

It is known that the models derived using soft computing techniques have a pre-

dictive capability within the data range used for their calibration in most cases.

Thus, the amount of data used in the training process is an important issue, as it

bears heavily on the reliability of the final models. To cope with this limitation,

Frank and Todeschini (1994) argue that the minimum ratio of the number of

objects over the number of selected variables for model acceptability is 3. It is also

suggested that considering a higher ratio, perhaps 5, is safer. In the present study,

this ratio is much higher and is equal to 135/35 45. Furthermore, new criteria

recommended by Golbraikh and Tropsha (2002) are checked for the external vali-

dation of the TGP and LGP models on the testing data sets. It is suggested that at

least one slope of regression lines (k or k0) through the origin should be close to 1.

Also, the performance indexes of m and n should be lower than 0.1. Recently, Roy

and Roy (2008) introduced a confirm indicator (Rm) of the external predictability
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Figure 12.6 Experimental versus predicted φ0 values using the LGP model: (A) training

data, (B) testing data.
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of models. For Rm. 0.5, the condition is satisfied. Either the squared correlation

coefficient (through the origin) between predicted and experimental values (Ro2),

or the coefficient between experimental and predicted values (Ro02) should be close

to 1. The validation criteria and the relevant results obtained by the models are pre-

sented in Table 12.4. As is seen, the models satisfy the required conditions. These

facts ensure that the derived models are strongly valid, have good prediction power,

and are not chance correlations.

Comparative Study

Kayadelen et al. (2009) employed a new variant of GP, namely genetic expression

programming (GEP), to predict the φ0 of soils. Recently, Mousavi et al. (2012) pre-

sented a novel hybrid method coupling GP and orthogonal least squares algorithm

(OLS), called GP/OLS, and least squares regression technique (LSR) to formulate

φ0. The results obtained by these methods are included in the comparative study

and are shown in Table 12.5. A comparison of the predictions made by different

methods for the entire database is displayed in Figure 12.7. It can be observed from

Table 12.5 and Figure 12.7 that TGP and LGP have remarkably better generaliza-

tion capabilities than GEP, GP/OLS, and LSR.

Sensitivity Analysis

Sensitivity analysis is of utmost concern for selecting the important input variables.

The contributions of the predictor variables to the prediction of φ0 are evaluated

Table 12.4 Statistical Parameters of the TGP and LGP Models for the External Validation

Item Formula Condition TGP LGP

1 R 0.8,R 0.917 0.930

2 k5

Pn
i51ðhi 3 tiÞ

h2i

0.85,K, 1.15 1.011 0.993

3 k05
Pn

i51ðhi 3 tiÞ
t2i

0.85,K0, 1.15 0.986 1.004

4
m5

R2 2Ro2

R2

m, 0.1 �0.181 �0.153

5
n5

R2 2Ro02

R2

n, 0.1 �0.176 �0.154

6 Rm 5R2 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR2 2Ro2j

p� �
0.8,R 0.513 0.551

where
Ro2 5 12

Pn
i51 ðti2hoi Þ2Pn
i51 ðti2ti Þ2

; hoi 5 k3 ti
0.994 0.997

Ro02 5 12

Pn
i51 ðhi2toi Þ2Pn
i51 ðhi2hi Þ2

; toi 5 k03 hi
0.990 0.999
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Table 12.5 Performance Statistics of the φ0 Prediction Models for the Testing Data

Model Performance

R RMSE MAPE

TGP 0.917 159.75 5.10

LGP 0.930 142.25 4.39

GEP (Kayadelen et al., 2009) 0.879 216.21 5.80

GP/OLS (Mousavi et al., 2012) 0.909 160.61 5.12

LSR (Mousavi et al., 2012) 0.874 194.54 5.90
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Figure 12.7 A comparison of the φ0 predictions made by different models for the entire

database: (A) LGP, (B) TGP, (C) GEP, (D) GP/OLS, and (E) LSR.
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through a sensitivity analysis. To this aim, frequency values of the variables are

obtained. A frequency value equal to 1 for an input indicates that this variable has

been appeared in 100% of the best 30 programs evolved by TGP and LGP. This is

a common methodology for the sensitivity analysis in GP-based studies (Alavi

et al., 2011; Gandomi et al., 2010, 2011d). The frequency values of the input para-

meters of the correlations are presented in Figure 12.8. According to these results,

it can be found that among the three influencing parameters, φ0 is more sensitive to

γ and FC than is LL.

Besides, Figure 12.9 shows the variations of the experimental/predicted φ0

values with FC, LL, and γ. As the scattering increases in these figures, the accu-

racy of the model consequently decreases. It can be observed from these

figures that the predictions made by the proposed models have a very good accu-

racy with no significant trend with respect to the design parameters. In the case of

LL (see Figure 12.9C), the scattering slightly decreases as this parameter increases.

12.5 Discussion and Future Directions

TGP and LGP introduce completely new characteristics and traits. One of the major

advantages of the TGP and LGP approaches over the traditional regression analyses

is their ability to derive explicit relationships without assuming prior forms of the

existing relationships. The best solutions (equations) evolved by these techniques

are determined after controlling numerous preliminary models, even millions of lin-

ear and nonlinear models. For instance, the proposed LGP model for the estimation

of φ0 is selected among approximately 413,116,600 programs. This is the sum of

the programs evolved and evaluated during the conducted 120 runs.

It is worth mentioning that the GP- and ANN-based approaches are well suited

to modeling the complex behavior of most geotechnical engineering problems with

extreme variability in their nature (Gandomi and Alavi, 2012; Shahin et al., 2009).

Despite some similarities, there are some important differences between GP
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Figure 12.8 Contributions of the predictor variables in the TGP and LGP models.
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and ANN. ANNs suffer from a few shortcomings, including lack of transparency

and knowledge extraction. The main advantage of GP over ANN is that GP

generates a transparent and structured representation of the system being studied.

An additional advantage of GP over ANN is that determining the ANN architecture

is a difficult task. In GP, the number and combination of terms are automatically

evolved during model calibration (Gandomi and Alavi, 2012; Shahin et al., 2009).

It is notable that the underlying assumption that the input parameters are reliable

is not always the case. Since fuzzy logic can provide a systematic method to deal

with imprecise and incomplete information, the process of developing hybrid fuzzy

and GP-based models for such problems can be a suitable topic for further studies.
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Figure 12.9 The ratio between the experimental and the predicted φ0 values with respect to

the design parameters.
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However, one of the goals of introducing expert systems, such as GP-based

approaches, into the design processes is better handling of the information in the

predesign phase. In the initial steps of design, information about the features and

properties of targeted output or process are often imprecise and incomplete

(Gandomi and Alavi, 2012; Kraslawski et al., 1999; Shahin et al., 2009).

Nevertheless, it is ideal to have some initial estimates of the outcome before per-

forming any extensive laboratory or field work. The TGP and LGP approaches

employed in this research are based on the data alone to determine the structure

and parameters of the models. Thus, the derived constitutive models can particu-

larly be valuable in the preliminary design stages. For more reliability, the results

of the TGP- and LGP-based analyses are suggested to be treated as a complement

to conventional computing techniques. In any case, the importance of engineering

judgment in interpretation of the obtained results should not be underestimated. In

order to develop a sophisticated prediction tool, TGP and LGP can be combined

with advanced deterministic geomechanical models. Assuming the geomechanical

model captures the key physical mechanisms, it needs appropriate initial conditions

and carefully calibrated parameters to make accurate predictions. An idea could be

to calibrate the geomechanical parameters by the use of TGP and LGP, which takes

into account historic data sets and laboratory or field test results. This allows inte-

grating the uncertainties related to in situ conditions which the geomechanical

model does not explicitly account for. TGP and LGP provide a structured represen-

tation for the constitutive material model that can readily be incorporated into the

finite element or finite difference analyses. In this case, it is possible to use a suit-

ably trained GP-based material model instead of a conventional (analytical) consti-

tutive model in a numerical analysis tool such as finite element code or finite

difference software (like FLAC). Consequently, the need for complex yielding/

plastic potential/failure functions or flow rules is avoided. It is notable that the

numerical implementation of ANN in the finite element analyses has already been

presented by several researchers (Javadi et al., 2005). This strategy has led to some

qualitative improvement in the application of the finite element method in engi-

neering (Javadi and Rezania, 2009).

12.6 Conclusions

In this chapter, the TGP and LGP paradigms were introduced for the behavioral

modeling of geotechnical engineering systems. The viabilities of these techniques

to model the behavior of the geotechnical phenomena were demonstrated through

solving a complex, prediction-type example. The representative problem considered

was the assessment of the effective angle of shearing resistance. The results indi-

cated that TGP and LGP are effectively capable of simulating the nonlinear behav-

ior of the investigated systems. LGP had better overall behavior for the analysis of

the considered problem than TGP. For more validity verification, the models cre-

ated by TGP and LGP were applied to a part of the experimental results that were
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not included in the training process. New criteria were also checked for the external

validation of TGP and LGP. The proposed methods provided more accurate predic-

tions of the angle of shearing resistance than the existing methods (i.e., GEP, GP/

OLS, and LSR). TGP and LGP have an advantage that once the evolved models

are trained, they can be used as quick and accurate tools for prediction purposes.

The verification phases confirmed the effectiveness and robustness of these meth-

ods for their future applications to geotechnical problems. A major advantage of

utilizing the TGP and LGP methods is that the geotechnical design parameters can

be estimated directly from the available experimental data. Thus, there is no need

to go through sophisticated and time-consuming field experiments. TGP- and LGP-

based models are expected to be very useful for the evaluation of design parameters

in the preplanning and predesign stages. TGP and LGP are especially practical for

cases where the conventional methods are unable to describe various aspects of the

behavior effectively.
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13.1 Introduction

Some engineering problems lack precise analytical theories or models for their

solutions. This is usually because of inadequate understanding of the phenomena

involved and the factors affecting them, as well as a limited quantity and poor qual-

ity of available information. In order to cope with the complexity of engineering

problems, traditional forms of engineering design solutions have been widely

developed. The information has been usually collected, synthesized, and presented

in the form of design charts, tables, or empirical formulas (Rezania et al., 2008).

In recent years, computers have become an inseparable integral part of every-

day engineering computations and design activities. Through rapid developments

in computer software and hardware in the past few decades, several alternative

computer-aided data classification and pattern recognition methods have been

developed. The main idea behind a pattern recognition system (e.g., neural net-

works or fuzzy logic) is that it learns adaptively from experience and extracts

various discriminants, each appropriate for its purpose. Genetic programming

(GP) has been used in modeling different engineering problems (Alavi and

Gandomi, 2011a, b; Gandomi and Alavi, 2012a, b; Gandomi et al., 2010); how-

ever, artificial neural networks (ANNs) are the most widely used pattern recogni-

tion system to capture nonlinear interactions between various parameters in

complex systems. So far, ANNs have been used for a wide range of civil engi-

neering disciplines, such as in geotechnical engineering (Abu-Kiefa, 1998; Alavi

and Gandomi, 2011a, b; Javadi, 2006; Juang, et al., 2001), structural engineering
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(Ankireddi and Yang, 1999; Feng and Bahng, 1999; Huang and Loh, 2001), con-

struction engineering (Adeli and Karim, 1997; Adeli and Wu, 1998; Arditi et al.,

1998), environmental and water resources engineering (Coulibaly et al., 2000; Liu

and James, 2000; Thirumalaiah and Deo, 1998), and transportation engineering

(Celikoglu and Cigizoglu, 2007; Gagarin et al., 1994), among many others (Alavi

et al., 2010; Javadi and Rezania, 2009).

A neural network consists of a large number of interconnected processing ele-

ments, commonly referred to as neurons. The neurons are arranged into two or

more layers and interact with each other via weighted connections. The data are

presented to the neural network using an input layer; and an output layer holds the

response of the network to the input. The input�output relationship is captured by

repeatedly presenting examples of the input�output data sets to the ANN and

adjusting the model coefficients (i.e., connection weights) in an attempt to mini-

mize an error function between the desired outputs and the outputs predicted by the

model (Javadi et al., 2005).

Although it has been shown by many researchers that ANNs offer great advan-

tages in the analysis of many engineering applications, they are also known to suf-

fer from a number of drawbacks. One of these is that the optimum structure of the

network (such as number of inputs, hidden layers, and transfer functions) must be

identified a priori, which is usually done through a time-consuming trial-and-error

procedure. Furthermore, the main disadvantage of the neural network�based mod-

els is the large complexity of the network structure, as it represents the knowledge

in terms of a weight matrix that is not accessible to the user.

In this research, a new data mining technique is used to model some engineering

systems. This new technique is called evolutionary polynomial regression (EPR),

and it uses evolutionary searching to find polynomial expressions that represent the

behavior of a system. Previous applications of EPR have proved to be effective in

the fields of environmental modeling (Giustolisi et al., 2007) and water system

management (Savic et al., 2006). The capabilities of the EPR technique will be

demonstrated here by applying it to a number of practical examples.

An important application of material modeling is the numerical analysis of

boundary value problems, and recently, it has been shown that neural net-

work�based constitutive models can be practically incorporated in a finite element

code as a material model (Hashash et al., 2004, 2011; Osouli et al., 2010; Savic

et al., 2006). Javadi and his colleagues carried out extensive research on the appli-

cation of neural networks in constitutive modeling of complex materials in general

and soils in particular. They have developed an ANN-based finite element model

(NeuroFE code) based on the integration of a back-propagation neural network in

finite element analysis. The ANN-based finite element model has been applied to a

wide range of boundary value problems, including several geotechnical applica-

tions (Javadi et al., 2003, 2004a, b, 2009) and has shown that neural networks can

be very effective in learning and generalizing the constitutive behavior of complex

materials. The third example in this research will be presented to demonstrate the

capabilities of the EPR-based models in constitutive modeling of materials in finite

element analysis.
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13.2 Evolutionary Polynomial Regression

EPR is a data-driven method based on evolutionary computing, aimed to search for

polynomial structures representing a system. It integrates numerical and symbolic

regression to perform EPR. The strategy uses polynomial structures to take advan-

tage of their favorable mathematical properties. The key idea behind the EPR is to

use evolutionary search for exponents of polynomial expressions by means of a

genetic algorithm (GA) engine. This allows (i) easy computational implementation

of the algorithm, (ii) efficient search for an explicit expression, and (iii) improved

control of the complexity of the expression generated (Giustolisi and Savic, 2006).

A physical system, having an output y, dependent on a set of inputs X, and para-

meters θ, can be mathematically formulated as

y5FðX; θÞ ð13:1Þ

where F is a function in an m-dimensional space and m is the number of inputs.

To avoid the problem of the length of mathematical expressions growing rapidly

with time, in EPR, the evolutionary procedure is conducted in a way that it

searches for the exponents of a polynomial function with a fixed maximum number

of terms. During one execution, EPR returns a number of expressions with increas-

ing numbers of terms up to a limit set by the user, to allow the optimum number of

terms to be selected. The general form of expression used in EPR can be presented

as (Giustolisi and Savic, 2006):

y5
Xm
j51

FðX; f ðXÞ; ajÞ1 a0 ð13:2Þ

where y is the estimated vector of output of the process, aj is a constant, F is a

function constructed by the process, X is the matrix of input variables, f is a func-

tion defined by the user, and m is the number of terms of the target expression. The

first step in identification of the model structure is to transfer Eq. (13.2) into the

following vector form:

YN3 1ðθ;ZÞ5 ½IN3 1Z
j
N3m�3 ½a0 a1. . .am�T 5 ZN3 d 3 θTd3 1 ð13:3Þ

where YN3 1(θ,Z) is the least squares (LS) estimate vector of the N target values;

θ13 d is the vector of d5m1 1 parameters aj and a0 (θT is the transposed vector);

and ZN3 d is a matrix formed by I (unitary vector) for bias a0 and m vectors of

variables Zj. For a fixed j, the variables Zj are a product of the independent predic-

tor vectors of inputs, X5 hX1X2?Xki.
In general, EPR follows a two-stage procedure for constructing symbolic mod-

els. Initially, using a standard GA, it searches for the best form of the function

structure (i.e., a combination of vectors of independent inputs, Xs51:k); second, it

performs an LS regression to find the adjustable parameters θ for each combination

of inputs. In this way, a global search algorithm is implemented for both the best
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set of input combinations and related exponents simultaneously, according to the

user-defined cost function (Giustolisi and Savic, 2006). The adjustable parameters

aj are evaluated by means of the linear LS method based on minimization of the

sum of squared errors (SSE) as the cost function. The SSE function, which is used

to guide the search process toward the best-fit model, is as follows:

SSE5

PN
i51 ðya2ypÞ2

N
ð13:4Þ

where ya is the target values in the training data set and yp is the model predictions.

The global search for the best form of the EPR equation is performed by means of

a standard GA over the values in the user-defined vector of exponents. The GA

operates based on Darwinian evolution, which begins with the random creation of

an initial population of solutions. Each parameter set in the population represents

the individual’s chromosomes, and each individual is assigned a fitness based on

how well it performs in its environment. Through crossover and mutation opera-

tions, with the probabilities Pc and Pm, respectively, the next generation is created.

Fit individuals are selected for mating, whereas weak individuals die off. The

mated parents create a child (offspring) with a chromosome set that is a mix of the

parents’ chromosomes. In EPR, integer GA coding with a single-point crossover is

used to determine the location of the candidate exponents.

The EPR process stops when the termination criterion, which can be either the

maximum number of generations, the maximum number of terms in the target

mathematical expression, or a particular allowable error, is satisfied. A typical flow

diagram for the EPR procedure is illustrated in Figure 13.1.

In the evolutionary process of building EPR models, a number of constraints

can be implemented to control the output models in terms of the type of functions

used, number of terms, range of exponents, number of generations, etc. In this pro-

cess, there is the potential to achieve different models for a particular problem,

which enables the user to gain additional information for different scenarios

(Rezania et al., 2008). Applying the EPR procedure, the evolutionary process starts

from a constant mean of output values. By increasing the number of evolutions, it

gradually picks up different participating parameters in order to form equations

describing the relationship between the parameters of the system. Each proposed

model is trained using the training data and tested using the testing data provided.

The level of accuracy at each stage is evaluated based on the coefficient of deter-

mination (COD); i.e., the fitness function is

COD5 12

P
NðYa2YpÞ2P

N Ya 2ð1=NÞ
P

NYa

 � ð13:5Þ

where Ya is the actual output value, Yp is the EPR-predicted value, and N is the

number of data on which COD is computed. If the model fitness is not

acceptable or the other termination criteria (in terms of maximum number of gen-

erations and maximum number of terms) are not satisfied, the current model goes

through another evolution in order to obtain a new model.
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13.3 Data Preparation

In every case, to select the most robust representation, a statistical analysis was

performed on the input and output parameters on several randomly selected

training and validation data sets. The aim of this analysis was to ensure that the

statistical properties of the data in each of the subsets were as close to the

others as possible and thus represented similar statistical populations (Rezania

and Javadi, 2008). The testing sets of data were chosen in a way that all para-

meters were in the range between the maximum and the minimum values in the

training data set. The minimum, maximum, mean, and standard deviation values

were calculated for all contributing parameters for different random combina-

tions of training and testing data sets. Among these cases, the most statistically

consistent ones were chosen to be used in training and validation of the EPR

models.

Input

Random initial population

Assign exponent vectors to the 
input matrix 

Use LS method to evaluate coefficients 

Check the fitness of the 
population of equations  

Criteria
satisfied? 

Select individuals from 
mating pool 

Select exponent vector 

New generation of 
exponent vectors

G A

Results
Yes

No

Figure 13.1 General

representation of the EPR

procedure.
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13.4 Stability Analysis of Slopes Using EPR

Although the conventional methods have been widely used to analyze the stability

of soil and rock slopes, these methods have a number of shortcomings. For exam-

ple, the existing methods of stability analysis for slopes on cohesive soils are based

on (i) assuming a slip surface and a center about which it rotates, (ii) studying the

equilibrium of the forces/moments acting on this surface, and (iii) repeating the

analysis on several different trial failure surfaces from different centers, until the

most critical slip surface is found.

A number of researchers have implemented some metaheuristic algorithms in the

stability analysis of slopes (Samui, 2008; Samui and Kothari, 2011). Sakellariou and

Ferentinou (2005) used a neural network to acquire a relationship between the para-

meters involved in analyzing the stability of slopes. They used the models intro-

duced by Hoek and Bray (1981) in order to produce test data to validate the quality

of training of the ANN model. In this research, a new approach is introduced for the

analysis of the stability of slopes using EPR. The methodology involved the devel-

opment and verification of an EPR model for determination of factor of safety (FS)

for soil slopes. The input data consisted of six input parameters for the case of circu-

lar failure mechanism for cohesive soils. The output of the EPR model presented an

FS that demonstrated the status of stability of the slope.

Two data sets consisting of 67 case studies of slopes with a circular critical fail-

ure mechanism were used in this study (Sakellariou and Ferentinou, 2005). A total

of 25 cases involved dry soil conditions, and the other 42 were in wet conditions.

The main parameters contributing to the stability of a slope can generally be cate-

gorized in two classes of geotechnical properties and geometrical characteristics of

the slope. More specifically, the parameters used for the circular failure mechanism

in soils were unit weight (γ), cohesion (c), angle of internal friction (φ), slope angle
(β), height (H), and pore water pressure parameter (ru).

The data was divided into two sets: the training set (57 out of 67 cases) used for

developing the EPR model and the testing set (10 out of 67 cases) kept for valida-

tion and evaluation of the generalization capabilities of the developed EPR model.

Among the resulting equations developed by the EPR process, the one with the

highest COD was selected:

Fs 52
1:49H

γ2
2 1:8Ur2u 1 tanðϕÞ 2:592 2:18 tanðβÞ½ �

1 0:014Uc2 5:193 1025c2 1 0:817

ð13:6Þ

Figure 13.2 shows the comparison of the results in terms of FS predicted by the

EPR model together with the ones from ANN analysis (Sakellariou and Ferentinou,

2005) and the field data for the training cases. The results of the EPR model are in

close agreement with the field data, as well as those predicted by the ANN model.

After training, the performance of the trained EPR model was validated based on

the validation data that was not used during the model development process. Equation

(13.6) was used to predict the FS for the unseen data cases, and the results are shown
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in Figure 13.3. A very good agreement can be seen between the model results and the

field data demonstrating the excellent capability of the EPR-based model in generaliz-

ing the relationship with unseen cases. The COD values for the developed EPR model,

as well as the ANN model, are shown in Table 13.1. It is shown that the EPR model

outperforms the ANN model in terms of both finding the COD values for the training

and testing and providing a transparent and easy-to-implement expression.

A parametric study was carried out to evaluate the prediction capabilities of the

proposed EPR model, the extent to which it represents the physical relationships

between different parameters, and the effects of different input parameters on the

output model. This was done through a basic approach to sensitivity analysis that is

to set all but one input variable to their mean values and vary the remaining one

within the range of its maximum and minimum values. This procedure was

repeated consecutively for all input parameters, and the results are shown in

Figure 13.4. These results indicate that the developed EPR model has been able to

capture, with very high accuracy, the important physical patterns of behavior of

slopes, and the relationship between the slope stability and its contributing factors.

13.5 EPR Modeling of the Behavior of Rubber Concrete

In recent years, much research has been carried out to investigate the possibilities

for the reuse of abandoned tires by grinding them into small particles (crumb rub-

ber or tire chips) and using in asphalts, sealants, and rubber sheets. Of particular

interest has been the use of waste tires as aggregate in Portland cement concrete

(Sukontasukkul and Chaikaew, 2006). Studies revealed that the addition of rubber

aggregates leads to the reduction in the basic engineering properties of concrete,

and the reduction in strength appears to be more remarkable as the rubber content

in the composite increases (Benazzouk et al., 2003; Eldin and Senouci, 1993;

Khatip and Bayomy, 1999; Topcu, 1995). In this research, EPR is introduced as a

new approach to model the compressive strength of rubber concrete.
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Figure 13.2 EPR training results versus ANN and field measurements for soil slope

analysis.
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Data from an experimental study (Guneyisi et al., 2004) was used to develop an

EPR model. Out of the 70 experimental data cases, 56 were used to train the EPR

model while the remaining data were used to validate the developed model. The

same training and testing data sets as those used by Guneyisi et al. (2004) for devel-

oping ANN and GP models were considered, so that direct comparison between the

results of the EPR model with those of ANN and GP models became possible.

The computational time for the model development with an Intel Core 2 Quad

CPU Q6600 @ 2.40 GHz processor was about 4 min. Among the resultant models

developed using EPR, the one with the highest value of COD was selected to repre-

sent the compressive strength (fc) of rubber concrete:

fc 5 2
986:15FA3

SP2 � CA3 � ðW=CÞ3 1 6:593 1023 SP � CR W

C

0
@

1
A

0
@

1
A0:5

� CA

FA

0
@

1
A3

TC

2
379:13FA3

CA3 � SP2
W

C

0
@

1
A2

� SF � CR
TC

0
@

1
A0:5

2 1:45 SP
W

C

0
@

1
A

0
@

1
A0:5

� FA

CA

0
@

1
A3

TC1 100:21 ð13:7Þ

where C, SF, W, SP, CA, FA, CR, and TC are cement, silica fume, water, super-

plasticizer, coarse aggregate, fine aggregate, crumb rubber, and tire chip contents,

respectively.
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Figure 13.3 EPR testing results versus ANN and field measurements for soil slope analysis.

Table 13.1 COD Values (Soil Slope Analysis Example)

Model COD Training (%) COD Testing (%)

ANN 97.6 93.7

EPR 98.3 97.1
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Figure 13.5 shows the comparison between the results of the EPR model predic-

tions with the experimental data for the training and testing data cases, and a very

close agreement between the EPR model predictions and the experimental data can

be seen. The CODs for EPR, linear regression, ANN, and GP (Gesoglu et al.,

2009) techniques are presented in Table 13.2. The results indicate that EPR is able

to model the compressive strength of rubber concrete with high accuracy.

To verify the proposed model, a sensitivity analysis was conducted in a way

similar to what was described in the case of the slope stability model. The results

show that increasing the amount of fine-grained aggregate and tire chips decreases

the compressive strength of the mixture, but any increase in the coarse-grained

aggregate content improves the compressive strength of the rubber concrete
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Figure 13.4 Results of the parametric study conducted on the EPR model developed for soil

slope analysis.
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(Figure 13.6), which was consistent with the expected behavior. It can be seen that

the EPR model, with the advantage of being directly developed from experimental

data, is capable of capturing and representing the complex mechanical behavior of

rubber concrete.
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Figure 13.5 Rubber concrete compressive strength: (A) training and (B) testing data cases

compared to the EPR model.

Table 13.2 COD Values (%) for Different Models

Different Models COD Value (fc)—Testing

LR 86.89

GP 98.18

ANN 99.94

EPR 99.5
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13.6 Application of EPR in Constitutive Modeling of
Materials

A plane stress beam (Figure 13.7) under a uniformly distributed load is consid-

ered here. ABAQUS (a commercial finite element software) was used to create

data corresponding to a material with elastoplastic behavior, and the data was

used to develop and validate the EPR-based material model. After training, the
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Figure 13.6 Sensitivity analysis results for EPR compressive strength model (rubber concrete).
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following equation was selected as the best EPR model based on the COD

value:

σ5 2:17 3 1011ε2 6:33 1015ε3 1 1:033 1018ε4 2 8:033 1019ε5 1 3:44
3 1021ε6 2 8:023 1022ε7 1 8:773 1023ε8 2 2:543 1024ε9 2 6:53 106

ð13:8Þ
where ε is the strain and σ is the corresponding stress. Figure 13.8 shows the

stress�strain curve predicted by the EPR model (Eq. (13.8)), together with the data

used in the model development and validation. It is seen that the EPR model has cap-

tured the nonlinear stress�strain behavior of the material with very high accuracy.

The material model is used to provide the material stiffness matrix. For infinites-

imal strain increments (dε), J is the Jacobian continuum:

J5
@ðdσÞ
@ðdεÞ ð13:9Þ

Equation (13.9) was employed to build the material stiffness matrix. The consti-

tutive relationships are generally given in the form of (Owen and Hinton, 1980):

Δσ5DΔε ð13:10Þ

where D is the material stiffness matrix. For an elastic and isotropic material matrix,

D is represented in terms of Young’s modulus (E) and Poisson’s ratio (v) (Stasa,

1986). The developed EPR constitutive model (Eq. (13.8)) was used to describe the

material behavior in the finite element analysis. Linear behavior was assumed for

small load increments in the nonlinear finite element analysis, and the following

equation was used to calculate the tangential elastic modulus of the material:

Et 5
dσ
dε

5 2:173 1011 2 1:893 1016ε2 1 4:143 1018ε3 2 4:023 1020ε4

1 2:063 1022ε5 2 5:623 1023ε6 1 7:013 1024ε7 2 2:273 1025ε8

ð13:11Þ

The stiffness matrix was developed using the elastic Young’s modulus (Eq. (13.11))

and used to conduct the finite element analysis. To evaluate the proposed methodology,

L

H

UDL

Figure 13.7 Beam under uniformly distributed load (hinge supports).

322 Metaheuristics in Water, Geotechnical and Transport Engineering



displacement of the midspan of the beam predicted using the EPR-based finite element

analysis was compared with that of conventional finite element analysis results.

Figure 13.9 shows the load�displacement curves in the middle point of the beam

obtained using both the elastoplastic finite element analysis and the proposed EPR-

based finite element model. It is shown that the results of the EPR-based finite element

model closely agree with the ones from elastoplastic finite element analysis.

13.7 Summary and Conclusion

Most of the current analysis and design processes in civil engineering involve the use

of conventional/empirical techniques to evaluate the field or experimental data that

involve complex relationships between various parameters. The traditional methods

usually suffer from the lack of physical understanding, and the simplifying assump-

tions that are usually made to develop the traditional methods may lead to large errors

in some cases. A number of alternative pattern recognition techniques like ANNs have

recently begun to be implemented in the analysis of engineering problems. These

methods have the advantage that they do not require any simplifying assumptions in

developing the model. However, the neural network�based models also suffer from a

number of shortcomings, including (i) their inability to present an explicit relationship

between the input and the output parameters, (ii) the fact that they require the structure

of the neural network (e.g., number of inputs, kernel type, transfer functions, and num-

ber of hidden layers) to be identified a priori, and (iii) that the optimum structure and

the parameters of the network are obtained by trial and error.

In this contribution, a new approach was introduced for the analysis of complex

civil engineering problems using EPR. The capabilities of the EPR methodology

were illustrated by applying it to two practical problems involving the prediction

of the stability status of slopes and the compressive strength of rubber concrete.
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The proposed EPR models generate a transparent and structured representation of

the system allowing physical interpretation of the problem, which gives the user an

insight into the relationship between input and output data. In the EPR approach,

no preprocessing of the data is required and there is no need for normalization or

scaling of the data. Another major advantage of the EPR approach is that as more

data becomes available, the quality of the prediction can be improved by retraining

the EPR model using the new data. However, it should be noted that the EPR mod-

els should not be used for extrapolation and if used, the predicted results should be

taken with caution and allowance should be made for the uncertainty.

Implementation of the EPR-based model in the finite element analysis was also

presented. EPR model was used to create the stiffness matrix for implementation in

finite element analysis. The results of the analysis were compared to those obtained

from an elastoplastic finite element analysis. Comparison of the results showed

very good agreement between the conventional elastoplastic finite element analysis

and the proposed EPR-based finite element approach. The results also showed

the capability of the EPR-based models in representing the material constitutive

behavior in the numerical analysis of boundary value problems.
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14.1 Introduction

In civil engineering, a slope is an unsupported, inclined surface of soil and/or rock.

Slopes are formed for railway formations, highway embankments, earth dams,

canal banks, levees, and many other locations. The failure of slope is a major con-

cern in civil engineering, so the determination of the stability of slope is a major

task. The design of slope is often carried out with the use of stability numbers, as

originally introduced by Taylor (1948). The charts, providing the variation of sta-

bility numbers, are available in the literature for homogeneous soil slopes (Chen,

1975; Michalowski, 1994, 2002; Taylor, 1948). Geotechnical engineers use limit

equilibrium to determine slope stability (Bishop, 1955; Bishop and Morgenstern,

1960; Fellenius, 1936; Morgenstern and Price, 1965). However, a major disadvan-

tage of this method is that it does not address the issue of kinematics (Kumar and

Samui, 2006). A number of investigations have been performed recently that deal

with the stability of slopes using upper-bound limit analysis (Chen and Liu, 1990;

Chen et al., 1969; Karal, 1977a,b; Kumar, 2000, 2004; Michalowski, 1994, 1995,

2002). Fellenius (1936) used the method of slices to assess the stability of slopes.

In order to solve the stability problem, Fellenius assumed that the result of inter-

slice forces acts in a direction parallel to the base of each slice. It was seen that

this method generally provides a conservative estimate of the factor of safety

(FOS). Taylor (1948) used the friction circle method to obtain the stability numbers

(Ns) for homogeneous soil slopes; the stability number (Ns) was defined by the

expression Ns5 (γHc/c), where Hc is the critical height of the slope (on the verge

of failure) that is associated with the critical failure surface. Taylor provided the

charts indicating the variation of stability number (Ns) for homogenous slopes with

changes in slope angle (β) for various values of soil friction angle φ. It was indi-

cated that for slope angle (β) greater than 53	, with ru5 kh5 0, toe failure invari-

ably occurs. If the value of β is less than 53	, there were found to be two
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possibilities: slope failure and the base failure. Bishop (1955) used the method of

slices in obtaining stability of slopes. In order to solve the problem, Bishop

assumed that the result of interslice forces acts in the horizontal direction. This

method is being used very widely in the literature, and the results obtained from it

compare very closely to more rigorous approaches such as the finite element

method. Janbu (1957) solved the problem by assuming the point of application of

the interslice forces. Janbu not only used his method to obtain the stability of slopes

but also extended it to deal with the determination of the bearing capacity of foun-

dations. Morgenstern and Price (1965) attempted to satisfy all the equations of stat-

ical equilibrium in obtaining the solution of the stability problem using the method

of slices. They assumed different distributions of interslice forces to obtain the

solution.

It should be mentioned that the previously available methods of slices (Bishop,

1955; Fellenius, 1936; Janbu, 1957) do not satisfy all the conditions of statical

equilibrium. Chen (1975) used the upper-bound theorem of the limit analysis to

obtain the critical heights for homogenous soil slopes. A rotational discontinuity

mechanism was assumed in this analysis; it was indicated that in order for the rup-

ture surface to remain kinematically admissible, its shape should become an arc of

the logarithmic spiral. However, Chen (1975) did not incorporate in his analysis

either the effect of pseudostatic earthquake body forces or the pore water pressure.

Michalowski (1994) also used the upper-bound theorem of limit analysis in order

to obtain the stability numbers for homogenous soil slopes. Similar to Chen (1975),

a rigid body rotation of the soil mass, bounded by an arc of log-spiral failure sur-

face, was assumed in his analysis. Michalowski (1994) also incorporated the effect

of pore water pressure in his work; it was taken into account by using the pore

water pressure coefficient ru5 u/γz, where u is the pore water pressure at any point

along the failure surface, γ is the total average bulk unit weight of the soil mass

vertically above the failure surface, and z is the depth of the point below the soil

surface.

Using upper-bound limit analysis, Michalowski (1995) presented a stability

analysis of slopes based on a translational mechanism failure mechanism. A col-

lapse mechanism was selected in the form of rigid vertical blocks similar to the tra-

ditional methods of slices. This allows one to relate the proposed analysis to the

traditional method of slices and to assess the consequences of the statical assump-

tions made in them. The effect of the pore water pressure was also included in this

work. Michalowski (2002) also used the upper-bound theorem of limit analysis in

order to obtain the stability numbers for homogeneous slopes in the presence of

pore water pressures as well as pseudostatic horizontal earthquake body forces.

This work was an extension of the previous work of Michalowski (1994).

Researchers use different metaheuristic models in geotechnical engineering (Alavi

and Gandomi, 2011a,b; Gandomi and Alavi, 2011, 2012). Sah et al. (1994) used

the maximum likelihood method, gave an equation for prediction of the FOS, and

observed that the value matches well with that obtained using the limit equilibrium

method. FOS, derived from the ratio of the resistance to the disturbance force,
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can be considered more as an index of stability than as a physical parameter.

A FOS. 1.0 is considered a stable slope; otherwise, it is a failed slope.

Yang et al. (2004) used genetic programming and also presented an equation

for the FOS. Gao (2009) successfully adopted ant colony clustering algorithm for

slope stability analysis. Hwang et al. (2009) applied decision trees for slope sta-

bility analysis. Recently, the artificial neural network (ANN) has been success-

fully used in the slope stability problem (Chen and Yang, 2005; Fu et al., 2003;

Lan et al., 2009; Li and Liu, 2005; Lu and Rosenbaum, 2003; Samui and Kumar,

2006; Wang et al., 2005). Chen et al. (2011) successfully used adaptive neuro-

fuzzy inference system for prediction of stability of slope. However, ANN has

some limitations:

� Unlike other statistical models, ANN does not provide information about the relative

importance of the various parameters (Park and Rilett, 1999).
� The knowledge acquired during the training of the model is stored in an implicit manner;

hence, it is very difficult to come up with a reasonable interpretation of the overall struc-

ture of the network (Kecman, 2001).
� In addition, ANN has some inherent drawbacks, such as slow convergence speed, less

generalized performance, arriving at the local minimum, and overfitting problems.

Researchers have used the support vector machine (SVM), least squares support

vector machine (LSSVM), and relevance vector machine (RVM) to overcome these

limitations of ANN (Samui, 2008; Samui and Kothari, 2011; Samui et al., 2010).

SVM was developed based on statistical learning theory (Vapnik, 1998), and it is a

very powerful classification and regression tool (Ying, 2012). RVM was proposed

by Tipping (2000), and it is a probabilistic version of SVM. It is highly insensitive

to dimensionality. LSSVM is a modified version of SVM that was introduced by

Suykens and Vandewalle (1999). The main difference between SVM and LSSVM

is that LSSVM uses a set of linear equations for training, while SVM uses a qua-

dratic optimization problem (Tsujinishi and Abe, 2003).

This chapter examines the capability of multivariate adaptive regression spline

(MARS) for predicting the FOS of slope. MARS was developed by Friedman

(1990). It creates an explicit model. Researchers have successfully used MARS to

solve various problems in engineering (Ekman and Kubin, 1999; Jin et al., 2000;

Ko and Osei-Bryson, 2004; Okine et al., 2003, 2009; Prasad and Iverson, 2000;

MacLean and Mix, 1991; Sharada et al., 2008; Veaux et al., 1993). This chapter

has taken the data set from the work of Sakellatiou and Ferentinou (2005). The

data set contains information about unit weight (γ), cohesion (c), angle of internal

friction (φ), slope angle (β), height (H), pore pressure ratio (ru), and FOS. It has

the following aims:

� to investigate the feasibility of MARS for predicting FOS of slope,
� to develop an equation for prediction of FOS of slope based on MARS,
� to make a comparative study between the developed MARS and the other metaheuristic

models,
� to do sensitivity analysis to determine the effect of each input parameter.
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14.2 Method

14.2.1 Details of MARS

This section will describe the details of MARS for predicting FOS of slope. It is a

procedure for adaptive nonparametric regression (Friedman, 1990). The general

expression of nonparametric regression is given as follows:

yi 5 f ðxi1; xi2; . . .; xikÞ1 εi ð14:1Þ
The main goal of the nonparametric regression is to estimate the regression

function f (xi1,xi2,. . .,xik) directly, rather than to estimate parameters. In nonpara-

metric regression, it is assumed that f (xi1,xi2,. . .,xik) is a smooth, continuous func-

tion, except for wavelet regression (Fox, 2002).

MARS uses the following expression for predicting output (y):

y5 c0 1
XM
m51

cmBmðxÞ ð14:2Þ

where x is the input variable, c0 is a constant, Bm(x) is basis function (Figure 14.1),

and cm is the coefficient of Bm(x). In this study, the input variables are γ, c, φ, ψ,
H, and ru. The output of MARS is FOS. So, x5 [γ,c,φ,ψ,H,ru] and y5 [FOS].

The spline function consists of two segments, i.e., truncated functions of the left

side of Eq. (14.3) and the right side of Eq. (14.4) separated from each other by a

so-called knot location (Friedman, 1990), as follows:

b2q ðx2 tÞ5 ½2ðx2tÞ�q1 5
ðt2xÞq if x. t

0 otherwise

�
ð14:3Þ

b1q ðx2 tÞ5 ½1ðx2tÞ�q1 5
ðx2tÞq if x. t

0 otherwise

�
ð14:4Þ

where t is the knot location and b2q ðx2 tÞ and b1q ðx2 tÞ are the spline functions.

x
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t
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Figure 14.1 The basis function and knot

location.
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In general, MARS contains the following three steps:

1. The constructive phase

2. The pruning phase

3. Selection of optimum MARS.

In the constructive phase, the basis functions are introduced to define Eq. (14.2),

and the selection of these basis functions is carried out using the generalized cross-

validation (GCV) statistic. The value of GCV is determined by the following equation:

GCVðMÞ5 1

n

� �PM
m51 ðyi2ŷiÞ2
ð12CðMÞ=nÞ2 ð14:5Þ

where n is the number of data objects, yi is the response value for object i, ŷi is the

predicted response value for object i, and C(M) is a penalty factor. The value of C

(M) is determined from the following expression:

CðMÞ5M1 dM ð14:6Þ

where d is a cost penalty factor for each basis function optimization. Overfitting can

occur due to many basis functions, and to prevent this, some basis functions are

deleted in the pruning phase. In the third step, the optimum MARS model is selected.

Analysis of variance (ANOVA) decomposition of the MARS model is given by

the following expression:

f ðxÞ5β0 1
X
B5 1

fiðxiÞ1
X
B5 2

fijðxi; xjÞ1
X
B5 3

fijkðxi; xj; xkÞ1? ð14:7Þ

P
B51 fixi is overall basis functions that involve only a single variable,P

B52 fijðxi; xjÞ is overall basis functions that involve exactly two variables, andP
B53 fijðxi; xj; xkÞ represents the contributions from three variable interactions (if

present).

14.3 Application of MARS to Slope Stability Analysis

The above MARS has been adopted for the prediction of FOS. The data are nor-

malized against their maximum values. To develop MARS, the data (Table 14.1)

were divided into the following two groups:

� Training data set: This was required to develop the model. This chapter uses 32 out of 46

data sets as the training data set (Table 14.2).
� Testing data set: This was required to verify the developed model. The remaining 14 data

sets were used as the testing data set (Table 14.3).

The statistical parameters of all the data are given in Table 14.4. Tables 14.5

and 14.6 show the statistical parameters of the training and testing data sets, respec-

tively. The program of MARS was developed by using MATLAB.
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Table 14.1 Data Set Used in This Study

γ (kN/m3) c (kPa) φ (	) β (	) H (m) ru FOS

18.68 26.34 15 35 8.23 0 1.11

16.5 11.49 0 30 3.66 0 1

18.84 14.36 25 20 30.5 0 1.875

18.84 57.46 20 20 30.5 0 2.045

28.44 29.42 35 35 100 0 1.78

28.44 39.23 38 35 100 0 1.99

20.6 16.28 26.5 30 40 0 1.25

14.8 0 17 20 50 0 1.13

14 11.97 26 30 88 0 1.02

25 120 45 53 120 0 1.3

26 150.05 45 50 200 0 1.2

18.5 25 0 30 6 0 1.09

18.5 12 0 30 6 0 0.78

22.4 10 35 30 10 0 2

21.1 10 30.34 30 20 0 1.7

22 20 36 45 50 0 1.02

22 0 36 45 50 0 0.89

12 0 30 35 4 0 1.46

12 0 30 45 8 0 0.8

12 0 30 35 4 0 1.44

12 0 30 45 8 0 0.86

23.47 0 32 37 214 0 1.08

16 70 20 40 115 0 1.11

20.41 24.9 13 22 10.67 0.35 1.4

19.63 11.97 20 22 12.19 0.405 1.35

21.82 8.62 32 28 12.8 0.49 1.03

20.41 33.52 11 16 45.72 0.2 1.28

18.84 15.32 30 25 10.67 0.38 1.63

18.84 0 20 20 7.62 0.45 1.05

21.43 0 20 20 61 0.5 1.03

19.06 11.71 28 35 21 0.11 1.09

18.84 14.36 25 20 30.5 0.45 1.11

21.51 6.94 30 31 76.81 0.38 1.01

14 11.97 26 30 88 0.45 0.625

18 24 30.15 45 20 0.12 1.12

23 0 20 20 100 0.3 1.2

22.4 100 45 45 15 0.25 1.8

22.4 10 35 45 10 0.4 0.9

20 20 36 45 50 0.25 0.96

20 20 36 45 50 0.5 0.83

20 0 36 45 50 0.25 0.79

20 0 36 45 50 0.5 0.67

22 0 40 33 8 0.35 1.45

(Continued)
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Table 14.1 (Continued)

γ (kN/m3) c (kPa) φ (	) β (	) H (m) ru FOS

24 0 40 33 8 0.3 1.58

20 0 24.5 20 8 0.35 1.37

18 5 30 20 8 0.3 2.05

Table 14.2 Training Data Set for Developing the MARS Model

γ (kN/m3) c (kPa) φ (	) β (	) H (m) ru Actual FOS Predicted FOS

by MARS

18.68 26.34 15 35 8.23 0 1.11 1.09

18.84 14.36 25 20 30.5 0 1.875 1.90

28.44 29.42 35 35 100 0 1.78 1.81

28.44 39.23 38 35 100 0 1.99 1.96

14.8 0 17 20 50 0 1.13 1.10

14 11.97 26 30 88 0 1.02 1.01

25 120 45 53 120 0 1.3 1.29

26 150.05 45 50 200 0 1.2 1.19

18.5 25 0 30 6 0 1.09 0.98

18.5 12 0 30 6 0 0.78 0.90

21.1 10 30.34 30 20 0 1.7 1.68

22 20 36 45 50 0 1.02 0.99

12 0 30 35 4 0 1.46 1.37

12 0 30 45 8 0 0.8 0.90

12 0 30 45 8 0 0.86 0.90

23.47 0 32 37 214 0 1.08 1.07

19.63 11.97 20 22 12.19 0.405 1.35 1.28

20.41 33.52 11 16 45.72 0.2 1.28 1.28

18.84 15.32 30 25 10.67 0.38 1.63 1.64

21.43 0 20 20 61 0.5 1.03 1.00

19.06 11.71 28 35 21 0.11 1.09 1.15

18.84 14.36 25 20 30.5 0.45 1.11 1.20

14 11.97 26 30 88 0.45 0.625 0.59

18 24 30.15 45 20 0.12 1.12 1.08

23 0 20 20 100 0.3 1.2 1.19

22.4 100 45 45 15 0.25 1.8 1.80

22.4 10 35 45 10 0.4 0.9 0.87

20 20 36 45 50 0.5 0.83 0.81

20 0 36 45 50 0.25 0.79 0.77

20 0 36 45 50 0.5 0.67 0.70

24 0 40 33 8 0.3 1.58 1.58

18 5 30 20 8 0.3 2.05 2.04
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Table 14.3 Testing Data Set for Developing the MARS Model

γ (kN/m3) c (kPa) φ (	) β (	) H (m) ru Actual FOS Predicted FOS

by MARS

16.5 57.46 0 30 3.66 0 1 0.97

18.84 16.28 20 20 30.5 0 2.045 2.00

20.6 10 26.5 30 40 0 1.25 1.43

22.4 0 35 30 10 0 2 1.92

22 0 36 45 50 0 0.89 0.82

12 70 30 35 4 0 1.44 1.40

16 24.9 20 40 115 0 1.11 1.09

20.41 8.62 13 22 10.67 0.35 1.4 1.40

21.82 0 32 28 12.8 0.49 1.03 1.01

18.84 6.94 20 20 7.62 0.45 1.05 0.95

21.51 20 30 31 76.81 0.38 1.01 0.98

20 0 36 45 50 0.25 0.96 0.93

22 0 40 33 8 0.35 1.45 1.44

20 0 24.5 20 8 0.35 1.37 1.40

Table 14.4 Statistical Parameters of All the Data

Input Variable Mean Standard Deviation Kurtosis Skewness

γ (kN/m3) 19.71 3.88 3.18 2 0.15

c (kPa) 20.47 31.71 9.66 2.60

φ (	) 27.51 10.98 3.55 2 0.83

β (	) 32.93 10.08 1.86 0.11

H (m) 43.91 48.68 6.31 1.81

ru 0.17 0.19 1.51 0.42

FOS 1.24 0.38 2.55 0.66

Table 14.5 Statistical Parameters of the Training Data

Input Variable Mean Standard Deviation Kurtosis Skewness

γ (kN/m3) 19.80 4.28 2.78 2 0.03

c (kPa) 22.38 35.32 8.45 2.49

φ (	) 28.20 11.18 3.62 2 0.84

β (	) 33.93 10.66 1.77 2 0.03

H (m) 49.77 53.52 5.36 1.65

ru 0.16 0.19 1.64 0.52

FOS 1.22 0.39 2.34 0.56
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14.4 Results and Discussion

The performance of the developed MARS was assessed by the coefficient of corre-

lation (R). The value of R was determined using the following equation:

R5

Pn
i51ðFOSai 2 FOSaÞðFOSpi 2 FOSpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i51ðFOSai 2 FOSaÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i51ðFOSpi 2 FOSpÞ
q ð14:8Þ

where FOSai and FOSpi are the actual and predicted FOS values, respectively; FOSa

and FOSp are the mean of the actual and predicted FOS values corresponding to n

patterns. Figure 14.2 shows the flowchart of the MARS. To develop the MARS

model, a different number of basis functions was introduced in the constructive

phase. Figure 14.3 shows the effect of the number of basis functions on testing per-

formance (R). It is clear from Figure 14.3 that 12 basis functions gave the best per-

formance. In the pruning phase, 4 basis functions were deleted. So, the final MARS

contained 8 basis functions. The expression of the final MARS is given as follows:

FOS5 0:0571
X8
m51

cmBmðxÞ ð14:9Þ

This is achieved by putting y5 FOS, M5 8, and c05 0.057 in Eq. (14.2).

Table 14.7 shows the details of cm and Bm(x).

Equation (14.8) was used to determine the performance of the training and test-

ing data sets. Figures 14.4 and 14.5 depict the performance of training and testing

data sets, respectively.

It can be seen from Figures 14.4 and 14.5 that the value of R is close to 1 for training

as well as testing the data set. So, the developed MARS is a robust model for predicting

FOS of slope. The performances of the training and testing data sets were almost

the same, so there is no overtraining in the MARS and it has good generalization capa-

bility. The developed MARS has been applied in several studies (Hoek and Bray,

1981; Hudson, 1992b; Lin et al., 1988; Madzie, 1988). Table 14.8 shows the data in

the literature. The developed MARS has been compared with ANN (Sakellatiou and

Table 14.6 Statistical Parameters of the Testing Data

Input Variable Mean Standard Deviation Kurtosis Skewness

γ (kN/m3) 19.49 2.92 4.05 2 1.31

c (kPa) 15.30 22.24 4.21 1.57

φ (	) 25.92 10.74 3.43 2 0.91

β (	) 30.64 8.53 2.14 0.32

H (m) 60.50 33.07 4.02 1.37

ru 0.18 0.20 1.27 0.20

FOS 1.28 0.36 3.03 1.04
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Ferentinou, 2005), SVM (Samui, 2008), RVM (Samui et al., 2010), and LSSVM

(Samui and Kothari, 2011) for the data sets in the literature. The comparison was car-

ried out in terms of root mean square error (RMSE) and mean absolute error (MAE).

The values of RMSE and MAE were determined by using the following equations:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i51 ðFOSai2FOSpiÞ2

n

s
ð14:10Þ

MAE5

Pn
i51 jFOSai 2 FOSpij

n
ð14:11Þ

where FOSa and FOSp are the actual and predicted FOS values, respectively; n is the

number of data. Table 14.9 depicts the values of MAE and RMSE for the ANN,

Constructive phase:
1. Input: γ, c, φ, ψ, H
    and ru
2. Output: FOS
3. Number of basis
    function

Pruning phase: 
1. Determination
    of GCV  
2. Delete 
    redundant basis 
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2. Check testing 
    performance 
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Figure 14.2 Flowchart of MARS.
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SVM, LSSVM, RVM, and MARS models. It is clear from Table 14.9 that the devel-

oped MARS outperforms the ANN model, and the performance of MARS is compa-

rable to the SVM, RVM, and LSSVM models. SVM and LSSVM use two tuning

parameters (for SVM: capacity factor (C) and kernel parameter; for LSSVM:

Table 14.7 Values of Bm(x) and cm

Basis Function {Bm(x)} Equation Coefficient (cm)

B1(x) max (0,γ2 0.010)3max (0,H2 0.316) 2.402

B2(x) max (0,γ2 0.010)3max (0,φ2 0.074) 1.257

B3(x) max (0,γ2 0.010)3max (0,0.0742φ) 2 1.246

B4(x) B1(x)3max (0,0.5922 ru) 35.346

B5(x) max (0,ψ2 0.453) 0.763

B6(x) B5(x)3max (0,c2 0.275) 2.528

B7(x) B5(x)3max (0,0.2752 0.275) 2 3.988

B8(x) max (0,γ2 0.010)3max (0,0.3162H)3
max (0,c2 0.052)

2.293
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regularization parameter (γ) and kernel parameter). Meanwhile, RVM and MARS

use only one tuning parameter (for RVM, kernel parameter; for MARS, number of

basis functions). In ANN, there is a larger number of tuning parameters, including

the number of hidden layers, number of hidden nodes, learning rate, momentum

term, number of training epochs, transfer functions, and weight initialization meth-

ods. The developed RVM model has some limitations, such as a highly nonlinear

optimization process and difficulties in finding the optimum solution for the large

data set. Table 14.10 shows the result of ANOVA decomposition.

The value of GCV is comparable for all the functions. However, the value of

GCV is at its maximum for γ, H, and ru. Therefore, γ, H, and ru have the maxi-

mum effect on the predicted FOS.

Table 14.8 Data from Different Case Histories

Reference γ (kN/m3) c (kPa) φ (	) β (	) H (m) ru FOS

Hoek and Bray (1981) 21 20 40 40 12 0 1.84

21 45 25 49 12 0.3 1.53

21 30 35 40 12 0.4 1.49

21 35 28 40 12 0.5 1.43

20 10 29 34 6 0.3 1.34

20 40 30 30 15 0.3 1.84

18 45 25 25 14 0.3 2.09

19 30 35 35 11 0.2 2

20 40 40 40 10 0.2 2.3

Hudson (1992b) 18.85 24.8 21.3 29.2 37 0.5 1.07

18.85 10.34 21.3 34 37 0.3 1.29

Lin et al. (1988) 18.8 30 10 25 50 0.1 1.4

18.8 25 10 25 50 0.2 1.18

18.8 20 10 25 50 0.3 0.97

19.1 10 10 25 50 0.4 0.65

18.8 30 20 30 50 0.1 1.46

18.8 25 20 30 50 0.2 1.21

18.8 20 20 30 50 0.3 1

19.1 10 20 30 50 0.4 0.65

Madzie (1988) 22 20 22 20 180 0 1.12

22 20 22 20 180 0.1 0.99

Table 14.9 Comparison Between the ANN, SVM, LSSVM, and MARS Models

Model RMSE MAE R

ANN 0.374 0.313 0.523

SVM 0.281 0.241 0.745

LSSVM 0.284 0.232 0.769

RVM 0.249 0.211 0.789

MARS 0.272 0.267 0.800
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A sensitivity analysis has been done to determine the effect of each input param-

eter. The basic idea was that each input of the model is offset slightly, and the cor-

responding change in the output was reported. The procedure has been taken from

the work of Liong et al. (2000), in which the sensitivity (S) of each input parameter

was calculated by the following formula:

Sð%Þ5 1

N

XN
j51

% change in ouput

% change in input

� �
j

3 100 ð14:12Þ

where N is the number of data points. The analysis was carried out on the trained

model by varying each input parameter, one at a time, at a constant rate of 20%.

Figure 14.6 shows the result of the sensitivity analysis.

It is clear from Figure 14.6 that γ, H, and ru have the maximum effect on the

predicted FOS.

14.5 Conclusion

This chapter successfully applied MARS for the prediction of FOS of slope. The

performance of the developed MARS is encouraging, in that it was better than the

performance of ANN. The developed equation can be used to predict FOS of slope.

Table 14.10 Results of ANOVA Decomposition

Function Standard Deviation GCV Basis Function Variable

1 0.073 0.018 1 ψ
2 0.096 0.022 2 γ, c
3 0.072 0.016 1 γ, H
4 0.077 0.017 2 c, ψ
5 0.054 0.012 1 γ, c, H
6 0.099 0.023 1 γ, H, ru
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Figure 14.6 Sensitivity

analysis of the input

parameters.
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The developed MARS proves the generalization capability to handle the data cited

in the literature. ANOVA and sensitivity analysis indicate that the effect of γ, H,
and ru is at its maximum on FOS. In summary, it can be concluded that MARS can

be used as an efficient tool for solving various problems in civil engineering.
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15.1 Introduction

Heuristic and metaheuristic algorithms are nature- or bio-inspired, as they were

developed based on the successful evolutionary behavior of natural systems. Nature

has been solving various problems over millions or even billions of years. Only the

best and robust solutions remain, based on the principle of the survival of the fit-

test. Similarly, heuristic algorithms use trial and error, learning, and adaptation to

solve problems. Modern metaheuristic algorithms are almost guaranteed to perform

efficiently to solve a wide range of optimization problems. The main aim of

research in optimization and algorithm development is to design and/or choose the

most suitable and efficient algorithms for a given optimization problem. Loosely

speaking, modern metaheuristic algorithms for engineering optimization include

the genetic algorithms (Goldberg, 1989), simulated annealing (Kirkpatrick et al.,

1983), particle swarm optimization (Kennedy and Eberhart, 1995), ant colony algo-

rithm (ACO; Dorigo and Stützle, 2004), artificial bee colony algorithm (Bozorg

et al., 2005), harmony search (HS; Geem et al., 2001), and firefly algorithm (Yang,

2008), among many others.

Natural hazards such as earthquakes, floods, tsunamis, and hurricanes can cause

enormous damage to both social and infrastructure networks. Following such disas-

ters, local communities and search and rescue crews are faced with rapidly degrad-

ing infrastructure networks, which may result in much slower response times,

delays in population evacuation, and significant complications in infrastructure

repair. Because of the obvious importance of minimizing the adverse impacts from
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natural disasters, the literature has systematically dealt with what are considered

the four main steps in disaster response (Altay and Greene, 2006). First, there is

mitigation, which includes assessing seismic hazards (Dong et al., 1987), probabi-

listic damage projection (Peizhuangm et al., 1986; Tamura et al., 2000), and deci-

sion support systems for integrating the emergency process (Mendonca et al., 2001,

2006). Second is preparedness, which has mainly focused on preparing infrastruc-

ture networks for dealing with potential disasters and for accommodating evacua-

tion needs (Nicholson and Du, 1997; Sakakibara et al., 2004; Sohn, 2006; Song

et al., 2003; Verter and Lapierre, 2002; Viswanath and Peeta, 2003). Third is

response, which has evolved around two main research paths: (i) planning the

response�relief logistics operations (Barbarosoglou and Arda, 2004; Barbarosoglou

et al., 2002; Fiedrich et al., 2000; Ozdamar et al., 2004) and (ii) assessing the perfor-

mance of the infrastructure system following a natural disaster (Bell, 2000; Chang

and Nojima, 2001; Karaouchi et al., 2001; Li and Tsukaguchi, 2001). Fourth is

recovery operations, which have attracted limited attention despite their importance

in practice; for example, work has concentrated on infrastructure element protection

(Cret et al., 1993), general assessment of relief performance (Song et al., 1996), and

fund allocation for infrastructure repairs following disasters (Karlaftis et al., 2007;

Lagaros and Karlaftis, 2011; Plevris et al., 2010). Recovery operations are very

important in all natural disasters, particularly for the speedy revitalization of com-

munity activities. However, the mathematical complexity of organizing postdisaster

operations has hampered research efforts. Frequently, following a disaster, civil

infrastructure elements must be inspected and evaluated, and repairs prioritized. In

order to deal with these problems efficiently, it is required to formulate and solve

complex districting and routing problems. For example, the affected area must be

partitioned into districts of responsibility for repair crews and, then, inspection

sequences—infrastructure elements to be inspected first, second, and so on—must

be determined.

Reliability analysis can be performed either with simulation methods, such as

the Monte Carlo simulation (MCS) method, or with other approximation methods.

First- and second-order reliability methods (FORM and SORM, respectively)

require prior knowledge of the mean and the variance of each random variable.

Furthermore, these methods require a differentiable failure function. On the other

hand, although the major advantage of MCS is that accurate solutions can be

obtained for almost every problem, yet it requires excessive computational cost in

many cases. Variance reduction techniques, such as importance sampling, direc-

tional simulation, antithetic variates, and adaptive sampling, have been proposed in

order to reduce the computational effort of MCS. The disadvantage of these meth-

ods is that they require prior knowledge of the behavior of the system and the char-

acteristics of the problem at hand in order to determine the most effective sampling

region, which for many practical problems is not clearly identifiable. Recent results

(Koutsourelakis et al., 2004) reveal that variance reduction techniques still require

a significant number of system response evaluations to estimate probabilities of the

order less than 1023. Other recently proposed simulation methods, such as line

sampling (Koutsourelakis et al., 2004) and subset simulation (Au and Beck, 2001),
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proved to be very efficient in reducing the required sample size and the computa-

tional cost; however, their performance and ergodicity were sensitive to the values

of certain parameters that were not known a priori. For the application of a compu-

tationally efficient MCS method to complex models, it would be necessary to have

an approximate knowledge of the limit-state function g(x). On the other hand, since

complex reliability problems are characterized by the implicit nature of the limit-

state functions, the implementation of FORM or SORM requires an explicit

approximation of either the entire limit-state function g(x) or its limit-state surface

g(x)5 0 in the space of the random variable x (Hurtado, 2004; Rajashekhar and

Ellingwood, 1993).

In this chapter, two distinct optimization problems are considered for assessing

the performance of metaheuristics. In particular, the problem of infrastructure net-

work restoration and minimization of the adverse impacts of natural hazards on

civil infrastructure and the problem of reliability analysis of geostructures, which is

formulated as an optimization problem, are considered. In the first problem, an

important issue within the scope of postnatural disaster actions is taken into

account; we formulate the districting and routing problems for scheduling infra-

structure inspection crews following a natural disaster in urban areas and a com-

bined treatment of these two separate problems is performed. In the second

problem, based on the Lasofer�Lind reliability index, the problem of reliability

analysis is formulated as an optimization problem and it is implemented in a real-

life piled foundation test case. In both problems, the HS algorithm is implemented

for solving optimization problems, while the ACO algorithm is also considered for

solving the routing problem.

15.2 Problem Statement and Research Impact

Natural disasters have always affected human life and activities, but it is some of

the major transformations of the modern world and society that have increased the

impacts and associated risks of natural catastrophes. Factors such as the increased

size and density of human communities and the introduction of critical infrastruc-

tures in areas prone to natural catastrophes have enhanced the impact of cata-

strophic events. National and local economies depend on efficient and reliable civil

infrastructures that provide added value and competitive advantage to an area’s

social and economic growth. Inevitably, a catastrophic event will severely affect

the structural integrity and operation of civil infrastructures and will lead to both

immediate and long-term economic losses for surrounding communities and even

the national and international economies. The recent earthquake and tsunami events

in Japan yielded an estimated immediate cost of over h100 billion due to the

destruction of the country’s infrastructure, while the impact on the international

economy is still undocumented. The impacts and the associated risks of natural dis-

asters can be mitigated through careful planning; disaster management is a multi-

stage process which begins with predisaster planning and system improvement,
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and extends to postdisaster system response, recovery, and reconstruction. The

postdisaster stage involves tactical and operational decision making for providing

critical emergency, recovery, and reconstruction services to support society.

The theory and methods of structural reliability analysis have been developed sig-

nificantly during the last 20 years and have been documented in an increasing number

of publications. These advancements in structural reliability theory and the attainment

of more accurate quantification of the uncertainties associated with structural loads

and resistances have stimulated the interest in the probabilistic treatment of structures.

The reliability of a system or its probability of failure under various loading scenarios

is an important factor in the design, construction monitoring, and maintenance proce-

dures of a structure or geostructure since it investigates the probability of the structure

or geostructure to complete its design requirements successfully. Therefore, reliability

analysis is at the heart of risk analysis methodologies that have been developed

for very important structures or geostructures and subsidies (essentially the decision-

making procedures), leading to safety measures that the owners and the engineers

have to take into account due to the aforementioned uncertainties. Although from a

theoretical point of view, the field has reached a stage where the developed methodol-

ogies are becoming widespread, from a computational point of view, serious obstacles

have been encountered in practical implementations.

The problems considered in this study are inherently complex because of their

stochastic characteristics and combinatorial nature. Indeed, as can be seen from the

literature, existing modeling efforts exploit advanced mathematical programming

formulations and optimization methods for obtaining realistic results while keeping

these models computationally tractable. In this context, this work is focused on

developing novel, computational intelligence (CI) methodologies for addressing the

two optimization problems. CI methodologies were introduced 30 years ago as a

new family of computational methods that are based on heuristic approaches rather

than on rigorous closed-form mathematics. Optimization is a field where extensive

research has been conducted over the last several decades, where many intricate pro-

blems have been addressed and many algorithms have been developed. Engineers

are constantly challenged with the desire to search for optimal solutions in complex

system analysis and designs. The ever-increasing advances in computational power

have fueled this temptation, and the oft-used brute force design methodologies are

systematically replaced by state-of-the-art, nature-inspired techniques.

Many optimization problems in diverse fields have been solved using different

optimization algorithms. Traditional optimization techniques such as linear pro-

gramming, nonlinear programming (NLP), and dynamic programming (DP) have

had major roles in solving these problems. However, their drawbacks generate

demand for other types of algorithms, such as heuristic optimization approaches;

the most promising of these are algorithms based on the analogies between natural

and artificial phenomena (and even the development of hybrid approaches). These

algorithms are frequently referred to as nature-inspired optimization techniques and

have been proved to be quantitatively appealing in that they converge, in general,

to satisfactory solutions, in an effective and efficient way even for the most

complex problems examined.
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15.3 Metaheuristic Algorithms

The two metaheuristic optimization algorithms tested in this chapter appear to be

very promising, as they have been implemented in various challenging problems

with success. We present here a short description of the algorithms.

15.3.1 Harmony Search

The HS algorithm was originally inspired by the improvisation process of jazz musi-

cians (Geem et al., 2001). According to the analogy between improvisation and opti-

mization, each musician (saxophonists, bassists, guitarists, etc.) corresponds to each

decision variable; each musical instrument’s pitch range corresponds to a decision

variable’s value range. Musical harmony at certain times corresponds to a solution

vector at certain iterations, and the audience’s esthetics corresponds to the objective

function. According to this algorithmic concept, the HS algorithm consists of the fol-

lowing five steps: parameter initialization, harmony memory initialization, new har-

mony improvisation, harmony memory update, and termination criterion check.

Parameter initialization: In the first step, the optimization problem is specified

where n is the number of decision variables (equivalent to the number of music

instruments), while sLi # si # sUi ; i5 1; 2; . . .; n determines the range of the ith deci-

sion variable’s value. The HS algorithm parameters are also specified in this step:

HMS is the harmony memory size that corresponds to the number of simultaneous

solution vectors stored in harmony memory, HMCR defines the harmony memory

considering rate, and PAR is the pitch-adjusting rate.

Harmony memory initialization: In the second step, the harmony memory (HM)

is initialized with HMS randomly generated solution vectors defining the musi-

cian’s harmony memory matrix:

HM5

s11 s12 s13 ? s1n

s21 s22 s23 ? s2n

^ ^ ^ & ^

sHMS
1 sHMS

2 sHMS
3 ? sHMS

n

2
66664

3
77775 ð15:1Þ

New harmony improvisation: In the third step, a new harmony vector is impro-

vised following three rules: memory consideration, memory consideration, and

pitch adjustment. According to the memory consideration, the value of the decision

variable si is chosen randomly from the pitches stored in HM5 ½s1i ; s2i ; . . .; sHMS
i �

with probability of HMCR (0#HMCR# 1) or according to random selection it is

randomly chosen with a probability of (1�HMCR) within its value range, as a

musician plays any pitch within the instrument’s pitch range:

si 5
siA½s1i ; s2i ; . . .; sHMS

i � with probability HMCR

sLi # si # sUi with probability ð12HMCRÞ
�

ð15:2Þ

After the value si is randomly picked according to this memory consideration

process, it can be further adjusted into neighboring values by adding certain amount
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to the value, with probability of HMCR3 PAR (0# PAR#1), while the original

pitch obtained in HM consideration is just kept with a probability of HMCR3
(1�PAR):

si 5
siðk1mÞ with probability HMCR3 PAR

si with probability HMCR3 ð12 PARÞ
�

ð15:3Þ

Harmony memory update: If the new generated harmony vector is better than

the worst harmony vector of the HM, with reference to the objective function

value, the worst harmony is replaced by the new harmony vector.

15.3.2 Ant Colony Algorithm

The ACO algorithm (Dorigo, 1992; Dorigo and Stützle, 2004) is a population-based

probabilistic optimization method inspired by the behavior of real ants in nature

and implemented mainly for finding optimal paths through graphs. In ACO, a set

of software agents called artificial ants search for good solutions to the optimiza-

tion problem of finding the best path on a weighted graph. The ants incrementally

build solutions by moving on the graph. Consider a population of m ants where, at

each iteration, every ant defines a “route” by visiting every node sequentially.

Initially, ants are set on randomly chosen nodes. At each construction step during

an iteration, ant k applies a random action choice rule, called the random propor-

tional rule, to decide which node to visit next. While defining the route, an ant k

currently at node i maintains a memory Mk, which contains the nodes already vis-

ited, in the order they were visited. This memory is used to define the feasible

neighborhood Nk
i that is the set of nodes that have not yet been visited by ant k. In

particular, the probability with which ant k, currently at node i, chooses to go to

node j is

pki;j 5
ðτi;jÞαUðηi;jÞβP

‘ANk
i
ððτi;‘ÞαUðηi;‘ÞβÞ

; if jANk
i ð15:4Þ

where τi,j is the amount of pheromone on connection between i and j nodes, α is a

parameter to control the influence of τi,j, β is a parameter to control the influence

of ηi,j, and ηi,j is heuristic information that is available a priori, denoting the desir-

ability of connection i,j, given by

ηi;j 5
1

di;j
ð15:5Þ

According to Eq. (15.4), the heuristic desirability of going from node i to node j

is inversely proportional to the distance between cities i and j. By definition,

the probability of choosing a city outside Nk
i is zero. By this probabilistic rule, the

probability of choosing a particular connection i,j increases with the value of the
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associated pheromone trail τi,j and of the heuristic information value ηi,j. The selec-
tion of parameters α and β is very important. After all, ants have defined their

routes, the amount of pheromone for each connection between i and j nodes is

updated for the next iteration t1 1 as follows:

τi;jðt1 1Þ5 ð12 ρÞUτi;jðtÞ1
Xm
k51

Δτki;jðtÞ; ’ði; jÞAA ð15:6Þ

where ρ is the rate of pheromone evaporation, a constant parameter of the method,

A is the set of arcs (edges or connections) that fully connect the set of nodes, and

Δτki;jðtÞ is the amount of pheromone ant k deposits on the connections that it has

visited through its tour Tk, typically given by

Δτki;j 5
Q

LðTkÞ if connection ði; jÞ belongs to Tk

0 otherwise

8<
: ð15:7Þ

The coefficient ρ must be set to a value ,1 to avoid unlimited accumulation of

trail (Dorigo and Stützle, 2004), while Q is a constant. In general, connections that

are used by many ants and are parts of short tours receive more pheromone, and

therefore they are more likely to be chosen by ants in future iterations of the

algorithm.

15.4 Scheduling Transportation Networks

This part of the study deals with developing an innovative postdisaster management

methodology. Given the catastrophe, the postdisaster phase includes actions for

emergency relief and evacuation. Combining the initial conditions with information

regarding the natural phenomenon, as well as additional data by other sources, the

authorities will be able to prioritize their interventions effectively and assist the

population immediately following the disaster. Therefore, postdisaster management

is vital in immediate and effective restoration of urban activities. Following a seis-

mic event, all structures must be inspected in the shortest time possible. Scheduling

inspection crews is a combinatorial problem on which metaheuristics can be

applied, while it is formulated as a two-step problem. In the first step, the structural

blocks to be inspected are optimally assigned into a number of inspection areas (a

districting problem), while in the second step, the scheduling problem (inspection

prioritization) is solved for each of the areas obtained from the first step. In formu-

lating the optimization problems, the area examined is composed of NSB structural

blocks, while NIG is the number of crews available for inspecting the condition of

the area’s infrastructure system.
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15.4.1 Step 1: The Optimal Districting Problem

The optimal districting problem is defined as an NLP optimization problem as follows:

min
XNIG

i51

XnðiÞSB
k51

DðkÞ
Uin

1
dðSBk;CiÞ

Utr

2
4

3
5 ; DðkÞ5AðkÞUBPðkÞ ð15:8Þ

where n
ðiÞ
SB is the number of structural blocks assigned to the ith district (frequently

referred to in the infrastructure literature as an inspection group), d(SBk,Ci) is the

distance between the SBk building block from the starting block of the crew

responsible for the ith group of structural blocks, Uin is the inspection speed of

crews, and Utr is the traveling speed of crews, while D(k) is the “demand” for

inspection for the kth building block defined as the product of the building block

total area A(k) times the built-up percentage BP(k) (i.e., percentage of the area with

structures). This is a discrete optimization problem since the design variables s are

integers and denote the inspection groups to which each built-up block has been

assigned. Therefore, the total number of the design variables is equal to the number

of structural blocks and the range of the design variables is [1, NIG].

15.4.2 Step 2: The Inspection Prioritization Problem

The inspection prioritization problem is a typical traveling salesman problem

(TSP), also defined as an integer optimization problem. In TSP, the task is to find a

Hamiltonian tour of minimal length; i.e., to find a closed tour of minimal length

that visits each node of a network once. For an N number of cities TSP, there are

(N2 1)! different tours; the TSP can be represented by a complete weighted graph

G5 (N,A), with N the set of nodes and A the set of arcs (edges or connections) that

fully connects the components of N. A cost function is assigned to every connec-

tion between two nodes i and j, represented by the distance between the two nodes

di,j (i 6¼ j). A solution to the TSP is a permutation p5 {p(1), . . ., p(N)} of the node

indices {1, . . ., N}, as every node must appear only once in a solution. The optimal

solution is the one that minimizes the total length L(p) given by

LðpÞ5
XN21

i51

ðdpðiÞ; pði11ÞÞ1 dpðNÞ; pð1Þ ð15:9Þ

Thus, the corresponding scheduling problem is defined as follows:

min
XnðiÞSB21

k51

dðSBk;SBk11Þ1 dðSB
n
ðiÞ
SB

; SB1Þ
2
4

3
5; i5 1; . . .;NIG ð15:10Þ
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where d(SBk, SBk11) is the distance between the kth and kth1 1 building blocks.

The main objective is to define the shortest possible route between the structural

blocks that have been assigned to each inspection group in Step 1.

15.4.3 Case Study

In order to assess the performance of the metaheuristic formulation discussed in the

districting and TSP frameworks, we consider the city of Patras, in Greece. The city

is composed of NSB5 112 grouped structural blocks with different areas and built-

up percentages. We assume that a total of 10 crews are available for the inspection

of the city, divided into two 8 h shifts. This means that for 16 h/day, 5 inspection

crews are available. A reduction of computational loads can be achieved by group-

ing several small building blocks into bigger ones. This can be applied in neighbor-

ing building blocks with equal building factors which are surrounded by major

road arteries. These grouping parameters ensure the quality of the solution.

In order to identify the performance of the algorithm, a sensitivity analysis

regarding all parameters is performed. The sensitivity analysis is performed with

reference to the following parameters: (i) the HM size is defined in the range of [5,

20], (ii) the first action probability of the HS algorithm is defined in the range of

(0.0, 0.7], (iii) the second action probability of the HS algorithm is defined in the

range of (0.0, 1.0), (iv) the number of ants in the colony are defined in the range of

[1, 100], (v) the pheromone influence rate is defined in the range of [0.0, 2.0], (vi)

the desirability influence rate is defined in the range of [21.0, 1.0], (vii) the phero-

mone evaporating rate is defined in the range of [0.0, 1.0), while (viii) the phero-

mone depositing rate is defined in the range of [0.0, 1.0]. On the other hand, the

following parameters remain unchanged: (i) the harmony maximum iterations are

equal to 23 105, (ii) the ant colony maximum iterations are equal to 400, (iii) the

inspection speed is equal to 50 m2/min, and (iv) the traveling speed is equal to

10 km/h. In order to identify the best combination of the parameters for each meta-

heuristic algorithm, 32 combinations of the parameters are generated by means of

the Latin hypercube sampling method, while for each combination, 100 optimiza-

tion runs are performed to calculate the mean and the coefficient of variation with

reference to the objective function value (Kallioras, 2011). The optimal parameters

for the problem are defined based on the minimum time required for the inspection

of the city and on the minimum variance of the working hours among the crews.

The completion time is defined as the working time of the last finishing crew and

minimum difference is defined by the standard deviation of the working time

between the crews. The optimal parameters are obtained for the 12th test run, while

its parameters are HMS5 10, HMCR5 0.1726, PAR5 0.658, m5 63, α5 0.910,

β5 0.970, p5 0.210, and q5 0.306. A detailed description of the sensitivity analy-

sis performed with reference to the algorithm parameters can be found in Kallioras

(2011). The objective function value for optimal parameters is 6193.56 h, which

represents the sum of working time required for each crew. The working time for

each crew is 1062.906, 1193.225, 1100.856, 1397.140, and 1436.904 h for the first
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to the fifth crew, respectively. As can be seen, the HS method is efficient, resulting

in equal distribution of the demand to the five inspection crews.

In the second part of this study, the best combinations of the parameters, found

in the previous part of the investigation, are used for solving the problem defined

in Eq. (15.8). Figure 15.1 depicts the solution obtained for the optimal allocation

problem for the five inspection groups considered. As it can be seen from this fig-

ure, a balanced decomposition of the city of Patras is obtained with the implemen-

tation of the HS algorithm. In order to compare the resulted optimum designs, the

scheduling problem has to be solved for each inspection group by means of the

ACO method. Therefore, the inspection prioritization problem defined in Eq. (15.10)

is solved by means of the ACO algorithm. Figure 15.2 depicts the optimal routes

achieved when the five inspection groups are employed. These solutions corre-

spond to the least time-consuming route required for each inspection crew depart-

ing from their base.

15.5 Reliability Analysis of Geostructures

The advancements in reliability theory during the last 20 years and the attainment

of more accurate quantification of the uncertainties associated with loads and resis-

tances have stimulated the interest in the probabilistic treatment of the systems

(Schuëller, 2006). The reliability of a system or its probability of failure is an

important factor in the design procedure since it investigates the probability of the

system to accomplish its design requirements successfully. Reliability analysis

leads to safety measures that a design engineer has to take into account due to the

aforementioned uncertainties. Although from a theoretical point of view, the field

has reached a stage where the developed methodologies are becoming widespread,

Figure 15.1 Subdivision into structural blocks.
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from a computational point of view, serious obstacles have been encountered in

practical implementations. First- and second-order reliability methods that have

been developed to perform system reliability, although they lead to elegant formu-

lations, they require prior knowledge of the means and variances of the component

random variables and the definition of a differentiable limit-state function. On the

other hand, the MCS method is not restricted by the form and the knowledge of the

limit-state function but is characterized by high computational cost.

15.5.1 Monte Carlo Simulation

The MCS method is applied in stochastic mechanics when an analytical expression

of the limit-state function is not attainable. This is mainly the case in complex pro-

blems with a large number of random variables, where all other stochastic analysis

methods are not applicable. In stochastic analysis problems, the probability of vio-

lation of the behavioral constraints can be written as

pviol 5

ð
gðxÞ$ 0

fxðxÞdx ð15:11Þ

where fx(x) denotes the joint probability of violation for the random variables, the

limit-state function g(x), 0 defines the safe region and x is the vector of the m ran-

dom variables. Considering that MCS is based on the theory of large numbers

(NN), an unbiased estimator of the probability of violation is given by

pviol 5
1

NN

XNN

j51

IðxjÞ ð15:12Þ

Figure 15.2 Best route for each inspection group.
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where xj is the jth vector of the random parameters and I(xj) is an indicator for suc-

cessful and unsuccessful simulations, defined as

IðxjÞ5 1 if gðxjÞ$ 0

0 if gðxjÞ, 0

�
ð15:13Þ

In order to estimate pviol, an adequate number of Nsim independent random sam-

ples is produced using a specific, uniform probability density function of the vector

xj. The value of the violation function is computed for each random sample xj and

the Monte Carlo estimation of pviol is given in terms of sample mean by

pviolD
NH

Nsim

ð15:14Þ

where NH is the number of successful simulations and Nsim is the total number of

simulations.

The basic MCS is simple to use and has the ability to handle practically every

possible case regardless of its complexity. However, for typical reliability problems,

the computational effort involved becomes excessive due to the enormous sample

size required. To reduce the computational effort, more elaborate simulation meth-

ods, called variance reduction techniques, have been developed. Their efficiency,

though, is limited for larger probability values. Moreover, despite the improvements

achieved on the efficiency of computational methods, they still require dispropor-

tional computational effort for reliability analysis of realistic problems.

15.5.2 First-Order Reliability Method

In the general case of a nonlinear limit-state function, the main objective of the

first-order reliability method is to calculate the reliability index β. The

Hasofer�Lind reliability index β (Jiang et al., 2007) is calculated by a process of

minimization, and the probability of violation is approximated by

pviol 5Φð2βÞ ð15:15Þ

where Φ is the standard normal cumulative distribution function. This equation is

exact when the failure criterion is linear and all random variables have normal dis-

tributions. Given a vector of basic variables x, a failure surface @ω, on which the

failure criterion g(x)5 0 is satisfied, and a safe region denoted by g(x). 0, the vec-

tor of the reduced variables z is defined as follows:

z 
 S21
x Uðx2μxÞ ð15:16Þ

where Sx is a diagonal matrix of the standard deviations and μx is the vector of

mean values. Then, the Hasofer�Lind reliability index β is defined as

β 
 min
zA@ω

ffiffiffiffiffiffiffi
zTz
p

ð15:17Þ

The point on the failure surface g(x)5 0, where its transformation to the z space

satisfies Eq. (15.16), is called the design or most probable point and will be
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denoted as zD. The design point zD is located on the limit-state surface, g(x)5 0 and

has a minimum distance from the origin in the standard normal space. For applying

either first- or second-order methods to complex structural models, it is necessary to

have an explicit expression or an approximation of either the entire limit-state func-

tion g(x) or its limit-state surface g(x)5 0 in the space of the random variable x. This

is because these methods require knowledge not only of the function but also of its

gradient in the vicinity of its limit-state surface. In the case of unknown expressions,

the limit-state function is usually approximated by the response surface method.

15.5.3 Case Study

In the design of structural or geostructural systems, limiting uncertainties and increas-

ing safety is an important issue to consider. Probabilistic analysis of structures or geos-

tructures, which is defined as the probability that the system meets some specified

demands for a specified time period under specified environmental conditions, is used

as a probabilistic measure to evaluate the reliability of the system. The performance

function of a structural or geostructural system must be determined to describe the sys-

tem’s behavior and to identify the relationship between the basic parameters in the

system. It should be noted that in the earthquake-loading environment, the uncertain-

ties related to seismic demand and structure or the geostructure’s capacity are strongly

coupled. The main scope of the present study is to compare the MCS-based reliability

analysis procedure with that of the FORM-based one implemented by the HS method.

For this purpose, a real-life pile-group design is considered for a particular soil type

and for a given axial load corresponding to the weight of the superstructure and reli-

ability analysis is performed. For clay soil conditions, an elastic�plastic material exhi-

biting plasticity in the deviatoric stress�strain response only is employed. The

volumetric stress�strain response is linear-elastic and is independent of the deviatoric

response. This material law can simulate monotonic or cyclic response of materials

whose shear behavior is insensitive to the confinement change, such as organic soils

or clay under undrained loading conditions. During the application of gravity load,

material behavior is linear-elastic. In the subsequent dynamic loading phase(s), the

stress�strain response is considered elastic�plastic. Plasticity is formulated based on

the multisurface (nested surfaces) concept, with an associative flow rule, while the

yield surfaces are of the von Mises type.

Nonlinear static or dynamic analysis needs a detailed simulation of the pile foun-

dation in the regions where inelastic deformations are expected to develop. In order

to consider the inelastic behavior of the piles either the plastic-hinge or the fiber

approach can be adopted. The plastic-hinge approach has limitations in terms of

accuracy, particularly in cyclic loading, and therefore, the fiber beam-column ele-

ments are preferred (Fragiadakis and Papadrakakis, 2008). According to the fiber

approach, each structural element is discretized into a number of integration sections

restrained to the beam kinematics, and each section is divided into a number of

fibers with specific material properties. Every fiber in the section can be assigned to

different material properties, e.g., concrete, structural steel, or reinforcing bar mate-

rial properties (Figure 15.3). The sections are located at the Gaussian integration
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points of the elements. The main advantage of the fiber approach is that every fiber

has a simple uniaxial material model allowing an easy and efficient implementation

of the inelastic behavior. This approach is considered to be suitable for inelastic

beam-column elements under dynamic loading and provides a reliable solution com-

pared to other formulations. In the numerical test examples section that follows, all

analyses were performed using the OpenSees platform (McKenna and Fenves,

2001). A bilinear material model with pure kinematic hardening is adopted for the

steel reinforcement of the piles. For the simulation of the concrete, the modified

Kent and Park (1971) model, as extended by Scott et al. (1982), is employed. This

model was chosen because it allows an accurate prediction of the demand for flexure-

dominated reinforced concrete (RC) members despite its relatively simple formulation.

The transient behavior of the reinforcing bars was simulated with the Menegotto and

Pinto (1973) model. Spring elements are implemented for modeling the interaction

between piles and the surrounding soil in order to simulate the soil�pile interface.

Without the use of springs, the soil and pile elements move together when subjected to

any loading or ground motion. With the use of these springs, a more realistic model is

achieved, and the relative displacements between the soil and each pile can be simu-

lated. Tz springs were used for the vertical components of the pile interface and Py

springs for the horizontal components (Figure 15.4; Sherif and Elgamal, 2003). All the

nodes of the ground base are fully constrained in both x (horizontal) and y (vertical)

directions, while the side boundaries are constrained in the x (horizontal) direction.

One real-world building was considered: The 31-story building of the Hyde Park

Cavalry Barracks founded on clay (Figure 15.5; Tomlinson and Woodward, 2008), in

London. The building is 90 m tall and its weight was calculated to be 228 MN. It is

estimated that at the end of construction, 60% (0.60 MN3 228 MN5 136.80 MN) of

the building load is carried by the piles and 40% by the raft. In this study, various

sources of uncertainty are considered: on the ground motion excitation, which influ-

ences the level of seismic demand, and on the modeling and the material properties,

which affects the structural capacity. The characteristics of the random variables are

provided in Table 15.1. The reliability problem is defined as follows:

Pviol 5Pðdf . 2:0Þ ð15:18Þ

where df is the horizontal displacement of the foundation at the superstructure level

and the objective is to define the probability of exceeding the limit state of 2.0 cm

Afib,Efib

Z

Y
X

Figure 15.3 Modeling of the inelastic behavior—the fiber approach.
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for the 10% in the 50-year hazard level. The probability that horizontal displace-

ment exceeds the value of 2.0 cm calculated by means of MCS and FORM is given

in Table 15.2, along with the number of finite element (FE) analyses required. It

can be seen that the FE analyses required by FORM is almost three orders of mag-

nitude less than those required by MCS, while a very good approximation of the

probability is achieved. It is worth mentioning that a parametric study was per-

formed with reference to the FE analyses required by MCS in order to define the

less required (Piliounis, 2011).

15.6 Conclusions

In this chapter, we presented two successful implementations of metaheuristics. In

the first one, a crew-scheduling problem in densely populated metropolitan regions

(A) 

(B) 

Tz spring

Py spring

2xLpile

2x
L

pi
le

2xLpileSuperstructure

Lstruct

Lstruct + 4xLpile

L
pi

le

Figure 15.4 (A) Components of the soil�pile interface (Tz and Py springs) and (B) mesh

dimensions.
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for critical infrastructure inspection following an earthquake was solved; while in

the second, a problem of reliability analysis of a piled foundation was formulated

as an optimization problem. Both problems were dealt with efficiently with the HS

optimization method, and for the first one, the ACO algorithm was also used suc-

cessfully. In both problems, a large number of solutions needed to be found and

evaluated in search of the optimum one. The two metaheuristics employed in this

Figure 15.5 The Hyde Park Cavalry

Barracks.

Table 15.1 Random Variables

Random Variable Distribution Mean COV (%)

Rho Uniform 1.8 15

Shear modulus Uniform 1.503 105 15

Reference bulk modulus Uniform 7.503 105 15

Cohesion Uniform 75.0 15

Maximum shear strength Uniform 0.10 15
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study were found to be efficient in finding an optimized solution, overcoming

excessive computational effort, local optima while they are capable of dealing with

discrete variables when needed. Metaheuristics offer a broad field for further

research and development of sophisticated methods in structural seismic design,

reliability analysis, and postseismic infrastructure network restoration. Excessive

use of these methods will inevitably lead to further improved metaheuristics and its

implementation fields.
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16 Metaheuristic Applications in
Highway and Rail Infrastructure
Planning and Design:
Implications to Energy and
Environmental Sustainability

Manoj K. Jha

Center for Advanced Transportation and Infrastructure Engineering
Research, Department of Civil Engineering, Morgan State University,
Baltimore, MD

16.1 Introduction

Highway and rail infrastructure planning and design present a complex combina-

torial optimization problem since many conflicting objectives have to be consid-

ered simultaneously in the optimization process. Many metaheuristic applications

have been proposed to solve the highway and rail infrastructure planning and

design problem, among which genetic algorithms (GAs) are most popular. This

is primarily due to GA’s ability to perform exhaustive searches and avoid local

optima.

The traditional optimization models for highway and rail infrastructure plan-

ning do not necessarily feature the minimization of environmental impact and

energy (power) consumption. Due to a greater recognition for building green

infrastructure and rising gasoline prices, there is a need for considering environ-

mental and energy aspects in sustainable highway and rail infrastructure plan-

ning and design.

This chapter presents an overview of two metaheuristic applications, namely,

GAs and ant colony optimization (ACO) in highway and rail infrastructure plan-

ning and design. A brief overview of the problems dealing with highway and rail

infrastructure planning and design is presented, followed by a description of GA

and ACO. Finally, a methodological framework for GA and ACO application in

highway and rail infrastructure design is presented, followed by a discussion of

energy and environmental aspects in sustainable transportation infrastructure plan-

ning and design.
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16.2 Highway Infrastructure Planning and Design

Highway infrastructure planning and design involves the selection of the best eco-

nomical route, subject to design and operational constraints. In highway design,

points of intersection (PIs) are treated as decision variables. Appropriate curves are

fitted to represent a three-dimensional highway alignment. The traditional method

of highway design involves laying out the horizontal alignment first and then fitting

appropriate vertical alignment (Jha et al., 2006; Jong et al., 2000), to come up with

the full scope of the three-dimensional alignment. In recent years, newer methods

have been introduced to obtain a three-dimensional course of alignment using

spline functions and Beazer curves (Jha et al., 2011a, b; Karri et al., 2012; Kuhn

and Jha, 2011; Kuhn et al., 2011). These methods eliminate the need for designing

horizontal and vertical alignments in separate stages, which may prevent design

inconsistencies when combining horizontal and vertical alignments.

As noted earlier, among the available metaheuristic applications for highway

infrastructure planning and design, GAs have been extensively applied to obtain an

optimized alignment, subject to design and operational constraints. Other search

methods are generally not appropriate due to the indirect relationship between the

decision variables (which are the PIs) and the objective function (which is a sum of

alignment costs). This issue is discussed in detail in Jong et al. (2000).

16.3 Rail Infrastructure Planning and Design

Similar to highway infrastructure planning and design, rail infrastructure planning

and designing an optimal route for railway track is desired (Jha et al., 2007).

However, the design and operational conditions for railway track design are differ-

ent than that for highways since the geometric curves of the railway track should

accommodate the safe passage of the entire length of the train. For subway, metro,

and light rail systems designed to serve an urban area, identifying locations of sta-

tions become the most important criteria. The station locations can be identified

from the analysis of an origin�destination trip matrix and prevailing demand of the

analysis area. GAs have been used in recent works (Samanta and Jha, 2008, 2011)

to optimally locate station points under variable demand conditions along railway

track routes.

16.4 Discussion of Metaheuristics Commonly Applied in
Highway and Rail Infrastructure Planning and Design

16.4.1 Genetic Algorithms

The GA is a powerful search algorithm that has been used in many fields for opti-

mization. It is a technique for solving optimization problems, but not all problems
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can be solved in its default format. For different systems, one may have to develop

different solution procedures based on the philosophies and principles of GAs and

the nature of the problem. There is no rigorous proof to show why a GA will con-

verge toward the global optimum. Nevertheless, several theorems and hypotheses

have been developed to give a theoretical explanation to the effectiveness of GAs.

It has been shown that GAs work quite successfully in many practical applications

(Jha et al., 2006; Jong and Schonfeld, 2003).

The theoretical foundations of GAs rely on a binary string representation of

solutions (called chromosomes) and the notation of a schema. A schema is a string

of symbols taken from the alphabet {0,1,�}, where � is a “don’t care” symbol,

which can be 0 or 1. The number of 0s and 1s in a chromosome is called the order.

The distance between the positions of the first and the last non-� symbol in a chro-

mosome is called the defining length.

The schema theorem and the building block hypothesis (BBH) explain the power

of GAs in terms of how schemata are processed. The schema theorem (Goldberg,

1989; Holland, 1975) states that schemata with short defining length, low-order, and

better fitness (called building blocks) receive exponentially increasing trials in sub-

sequent generations of a GA. The BBH states that a GA seeks near-optimal perfor-

mance through the juxtaposition of building blocks and genetic operators.

Limitations of GAs

The schema theorem is widely taken to be the foundation for explanations of the

power of GAs. Yet some disagreement (Jha et al., 2004; Lee, 1995; Lovell and Jha,

2005; Poli, 2001; Poli et al., 1998; Shakya, 2003; Stephens and Waelbroeck, 1997,

1998, 1999a, b; Yang and Li, 2003) has been expressed in recent years as to its

implications. Interpretations of the schema theorem have implicitly assumed that a

correlation exists between parent and offspring fitnesses. However, this assumption

may be misleading. According to Holland (1975), a particular schema grows as the

ratio of the average fitness of the schema to the average fitness of population, i.e.,

the selection process allocates an increasing number of samples to above-average

fit schemata. However, the selection process alone does nothing to promote explo-

ration of new regions of the search space, i.e., it selects only the chromosomes that

are already present in the current generation. To avoid such a case, crossover and

mutation operators are needed. But crossover and mutation both can create sche-

mata as well as destroy them. The schema theorem considers only the destructive

effect of crossover and mutation, i.e., the effect that decreases the number of

instances of the schema that occur in subsequent generations.

We can conclude that the short, low-order, above-average fit schemata receive

increasing samples in subsequent generations. These short, low-order, above-

average fit schemata are known as building blocks. The BBH states that the GA

seeks the near-optimal performance through the juxtaposition of these building

blocks (Goldberg, 1989).

It is important to understand that GAs depend upon the recombination of build-

ing blocks to seek the best point. However, if the building blocks are misleading
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due to the coding used or the function itself, the problem may require long waiting

times to arrive at the near-optimal solution. The schema theorem, by itself,

addresses the positive effect of selection allocating increasing samples of schemas

with observed high performance, but only the negative aspect of crossover

(Mitchell, 1998), i.e., it takes into account only the lower bound of survival of

schema after crossover takes place. However, many researchers have seen cross-

over as the major source of the search power of GAs. The schema theorem does

not address the question of how crossover works to recombine highly fit schemas.

The BBH states that crossover combines short, low-order, highly fit schemas into

increasingly fit candidate solutions but does not describe how this combination

takes place (Mitchell, 1998).

In schema theory, the search space is partitioned into subspaces of varying

levels of generality, and mathematical models are constructed that estimate how

the number of individuals in the population belonging to certain schema can be

expected to grow in the next generation. The BBH attempts to explain how a GA

solves a problem by positing that near-optimal solutions were forged from small,

low-order, fitter-than-average schemata. Although long-term solutions can be

obtained from certain schema theorems, the mathematics of it becomes quite

difficult without the inclusion of infinite population assumptions and the use of

Markov modeling methods (Davis and Jose, 1993; Nix and Vose, 1992; Spears and

De Jong, 1997). Moreover, the vast majority of schema theoretic results have con-

centrated on what happens from one generation to the next. For this reason, schema

theory can be considered a local analysis method. Much controversy has sur-

rounded the schema theory. The main contention has been its apparent lack of util-

ity. Opponents of schema theory argue that it tells us very little about what is really

going on inside the optimal search. Moreover, the traditional Holland/Goldberg

schema theorem is pessimistic in the sense that it provides only a lower bound on

expected schema growth. Further, it was traditionally developed for GAs with

fixed-length, binary representation using standard GA genetic operators.

16.4.2 Ant Colony Optimization

ACO is inspired by the concept of self-organization of swarms and is derived from

swarm intelligence. The fundamental idea is that ants organize themselves to travel

to the food source and have the ability to follow each other. The two important

properties of ACO that basically simulate the real ant system are as follows

(Bonabeau et al., 1999):

� Stigmergy: This is a property that plays an important role in developing a collective

behavior of the social insects. The stimulatory factor pheromone trail is secreted from an

ant, the amount of which decides the preference for the next ant to choose a path. This

basically depicts the property called self-organization.
� Autocatalysis: According to this property, the shorter the path, the sooner the pheromone is

deposited by the ants, and the more ants use the shorter path. This ensures the fact that

the algorithm introduces the chance of rapid convergence while heading toward the opti-

mal solution. The important property of this algorithm is the decaying of pheromone,
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which influences the convergence by governing the amount of accumulation of pheromone

in the paths. It ensures that the search process does not get stuck in the local optima.

The principle of ACO can be explained by the following simple example

(Figure 16.1). Suppose that there are two different reversible paths,
 !
ECADF and !

ECBDF available to a group of ants. The ants can travel in either direction, with

the objective of deriving the shortest path. The
 !
CAD leg is twice as long as the !

CBD leg. The underlying concept is that ants lay pheromone along the traveled

path, which evaporates over time. Thus, the shorter a traveled leg, the longer

the pheromone lasts. An ant traveling in the ECDF
���!

direction is faced with two

options, CBD
��!

or CAD
��!

at point C. The decision of choosing a path over the other at

point C is purely arbitrary and has equal probability. But the probability of choosing

the shorter path CBD
��!

grows in time for the follower ants, as the pheromone trail left

by preceding ants lasts longer on the shorter path. After sufficient time intervals, all

ants converge to the shortest path. A three-time-interval scenario with a 30-ant sam-

ple is shown in Figure 16.1.

So far, ACO has been widely and successfully implemented for solving discrete

optimization problems. It has been tried on both static and dynamic combinatorial

optimization problems (Dorigo et al., 1999). A few examples of static optimization

problem are given as follows:

Traveling salesman problem: In this problem, n cities are traveled in such a way that the

total traveling cost is minimized. ACO has shown better performance than the GA for a

small problem (30-city problem), but not for a larger problem (Dorigo et al., 1997).

Quadratic assignment problem: It is the problem of assigning n facilities in n locations so

that the total cost of assignment is minimized. The results obtained for this problem is

shown in Dorigo et al. (1999).

A
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B

(d = 0.5)

D

C

E

F

30 ants

E

F
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(d = 1)
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(d = 0.5)
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F
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C
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(A) (B) (C)

Figure 16.1 An example of ACO: (A) t5 0, (B) t5 1, and (C) t5 2.
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Job-shop scheduling problem: A set J of jobs are to be assigned on M machines in such a

fashion that the total completion time is minimal, satisfying the constraint that no two jobs

can be processed on the same machine at the same time. ACO was able to find 10% of the

optimal value of the results for a 15-machine, 15-job problem (Dorigo et al., 1999).

Vehicle routing problem: This problem is about obtaining minimum-cost vehicle routes

for a fleet of vehicles starting from a depot or more than one depot. Dorigo et al. (1999)

applied ACO on this problem and obtained reasonable results.

Some of the dynamic optimization problems where ACO is applied are the con-

nection-oriented network routing problem and the connectionless network routing

problem.

ACO for Searching in a Continuous Space

Although ACO has been applied to many discrete optimization problems, not many

applications (Bilchev and Parmee, 1995; Kaveh and Talatahari, 2010) to continuous

optimization problems have been observed. Bilchev and Parmee (1995) tried to

solve a flight trajectory for an air-launched winged rocket that will achieve orbit

before returning to atmosphere for a conventional landing by discretizing the con-

tinuous search space.

This approach says that the continuous nest neighborhood is divided in a finite

number of directions represented by vectors (Figure 16.2). Feasible regions are first

randomly placed in the search space, or they may correspond to regularly sampled

directions from the nest. The agent then chooses a random direction and moves a

short distance from the region’s center in that direction with a probability propor-

tional to the virtual pheromone concentration of the path that goes from the nest to

the region. Agents reinforce their paths according to their performance, depending

on the diffusion, evaporation, and recombination of the trails.

Limitations of ACO

Essentially, then, it can be concluded that ACO fails to exploit a continuous search

space the way that GA does. The continuous space must be discretized for ACO

application, one of the inherent impediments in ACO application that is often

ignored by researchers. Using the discretization concept for ACO application

described in Bilchev and Parmee (1995), many real-world problems can be solved

V1

V2

The actual path from the source to the destination

Figure 16.2 Discretization of a continuous search space.
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and results compared with those obtained with GAs. We have performed a compar-

ative assessment of GA and ACO in highway and rail-alignment optimization in

some of our recent works (Jha and Samanta 2006; Samanta and Jha, 2012). Using

the discretization concept, we attempted to reformulate the highway alignment opti-

mization (HAO) problem in order to seek its solution with ACO. Preliminary anal-

yses were presented in some of our earlier works (Jha, 2001, 2002).

16.5 GA Application in Highway and Rail Infrastructure
Planning and Design

In highway infrastructure planning and design, an optimal highway alignment

needs to be obtained that connects any two given end points in the feasible solution

space. Since numerous possibilities exist to connect two points in space, one cannot

start with a given set of alignments and then implement the search algorithm, as it

will not necessarily ensure a global optimum. Our research team (Jha et al., 2006),

therefore, devised a procedure based on what is called “orthogonal cutting planes”

in our previous studies to generate a highway alignment randomly.

It was assumed that a highway alignment can be sufficiently described by a set

of intermediate points P0is between given start and end points. In order to describe

an alignment, first a straight line is drawn, connecting the given start and end

points. Next, orthogonal planes (lines for two-dimensional alignments) at random

intervals are cut across that line (Figure 16.3). P0is are randomly placed along these

lines. If a Pi falls along the straight line, then a tangent section is obtained; other-

wise, a curved section is obtained. Appropriate curves can be fitted using American

Association of State Highway and Transportation Officials design criteria. Thus, an

alignment can be sufficiently described by (i) random location of cutting planes

and (ii) random location of P0is along the planes. Once an alignment is described,

its associated costs (such as right-of-way, pavement, construction, environmental

P1 P2

P3

P4

O1

O2

O3

O4

d1

d2

d3

d4

S (xs, ys, zs)

E (xe, ye, ze)

Figure 16.3 Representation of a three-dimensional alignment for optimization formulation

(Jha et al., 2006).
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impact, accident, travel-time delay, and vehicle operating costs) can be calculated

by developing cost functions in sufficient detail (Jong and Schonfeld, 1999). Note

that in Figure 16.3, each intersection point in the three-dimensional space can be

determined by only two decision variables (the abscissa and ordinate on the vertical

cutting plane). This helps to reduce the dimension of the search space. Then, by

trigonometry, we can transform these intersection points further into the Cartesian

coordinate system. Let Oi be the point at which the line segment SE intersects the

ith cutting plane, where S and E are the start and end points of the alignment. Then

the X and Y coordinates of Oi can be obtained by simple trigonometric transforma-

tion. On each vertical cutting plane, the abscissa, denoted by di, is defined as the

axis that passes through Oi and parallels the XY plane, with Oi as its origin. The

ordinate on the ith cutting plane is simply defined as the Z coordinate in the

Cartesian coordinate system to reduce coordinate transformation requirements.

Let Pi be the intersection point on the ith cutting plane, whose coordinates are (di,zi).

Then, the Cartesian coordinates of Pi, denoted by ðxPi
; yPi

; zPi
Þ can be obtained by:

xPi

yPi

zPi

2
4

3
55

xOi

yOi

0

2
4

3
51

dicosθ
disinθ
zi

2
4

3
5 ð16:1Þ

where ðxOi
; yOi
Þ are the coordinates of the origin of the abscissa on the ith cutting

plane and θ is the angle of cutting planes on the XY plane.

16.5.1 Optimization Formulation

The single-objective optimization included formulation of a single-objective func-

tion and a set of constraints. The objective function consists of alignment-sensitive

costs, such as user cost (CU), right-of-way cost (CR), pavement cost (CP), earthwork

cost (CR), and structure cost (CS), as shown in Eq. (16.2a). These costs are formu-

lated as functions of decision variables. Additional cost functions can be formulated

as desired.

Minimize
xP1 ;yP1 ;zP1 ;...;xPn ;yPn ;zPn

CT 5CU 1CR 1CP 1CE 1CS ð16:2aÞ

subject to xO # xPi
# xmax; ’ i5 1; . . .; n ð16:2bÞ

yO # yPi
# ymax; ’ i5 1; . . .; n ð16:2cÞ

zO # zPi
# zmax; ’ i5 1; . . .; n ð16:2dÞ

where (xO,yO)5 the X,Y coordinates of the bottom-left corner of the study region

(shown in Figure 16.4):

ðxPi
; yPi
Þ5 the X; Y coordinates of PIs, Pi;

(xmax,ymax)5 the X,Y coordinates of the top-right corner of the study region.
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The user cost consists of travel-time cost, vehicle operating cost, and accident cost.

The right-of-way cost consists of the land area taken by the alignment and damage to

the properties (Jha and Schonfeld, 2000) and is calculated directly from a Geographic

Information System (GIS) and transmitted to GAs during optimal search. The detailed

formulations of alignment-sensitive costs shown in Eq. (16.2a) are provided in previ-

ously published works (Jha and Schonfeld, 2004; Jha et al., 2006) and have been omit-

ted here for brevity. To eliminate any confusion, it is pointed out here that effects of

traffic congestion, travel-time delay, and topography are all considered in the devel-

oped cost functions. There are also many design and operational constraints to be met

in alignment optimization. Among those the minimum length of vertical curves, gradi-

ent constraint, sight-distance constraint, and environmental constraints are important

ones, which have been sufficiently formulated in previous works.

16.5.2 Genetic Encoding of Alignment Alternatives

In GAs, the decision variables are encoded as binary or real numbers, called chromo-

somes. For an alignment represented by n PIs, the encoded chromosome is com-

posed of 3n genes. Thus, the chromosome is defined as (Jong and Schonfeld, 2003):

Λ5 ½λ1;λ2;λ3; . . .;λ3n22;λ3n21;λ3n�5 ½xP1
; yP1

; zP1
; . . .; xPn

; yPn
; zPn
� ð16:3Þ

where

Λ5 chromosome

λi5 the ith gene, for all i5 1, . . . ,3n
ðxPi

; yPi
; zPi
Þ5 the coordinates of the ith point of intersection, for all i5 1, . . . ,n.

For the HAO problem, the chromosomes are encoded by real number

representation.

Dx

Dy

(xo, yo) x = xo+Dx

y = yo+Dy

y = yo+2Dy

x = xmax

y = ymax

Figure 16.4 An example of study area for alignment optimization.
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16.5.3 Genetic Operators

Eight problem-specific genetic operators are designed to work on the encoded PI

rather than on individual genes (Jong and Schonfeld, 2003). Extensive tests are

conducted to ensure that these operators assist in obtaining efficient solutions while

exploiting the entire search space and without getting trapped in local optima.

16.6 GA Application to Rail Infrastructure Planning and
Design

In rail infrastructure planning and design, locating potential station sites based on

the prevailing demand pattern of an urban region is a key problem to be investi-

gated for the met heuristics application (Figure 16.5). In this problem, any point

along the given rail line is a feasible station location so long as the minimum sta-

tion spacing constraint is satisfied. Recall from the HAO formulation that the deci-

sion variables were set to points along the orthogonal cutting planes. Thus, it is

observed that the station location optimization (SLO) problem is a condensed ver-

sion of the HAO problem with the following differences: (i) the rail line is avail-

able a priori and (ii) curve fitting is not required.

16.6.1 The Genetic Station Location Optimization Algorithm

The genetic station location optimization algorithm (GSLOA) to the proposed research

problem can be described as follows (Jha and Oluokun, 2004; Jha and Samanta, 2006).

Let there be N possible intermediate stations that can be accommodated between

the starting station (S) and destination (CBD). The total rail line length is L. Let the

minimum distance to be maintained between station pairs for acceleration and decel-

eration be ΔSmin. Therefore, N# {(L/ΔSmin)2 1}, where N is a positive integer.

Further, let us assume that once the stations Z5 {S,S1,S2, . . . ,Sk, . . . ,SN, CBD} are

Destination 
(CBD)

Intermediate station locations 
(to be determined) 

Transit rail line 

Figure 16.5 The transit rail station location optimization problem.
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specified, the approximate travel times from a demand node Pi (i5 1,2,. . .,R) to a

station (or if driving directly to the CBD is attractive, the user can so choose) can be

obtained from a GIS database.

Steps of the GSLO Algorithm

Step 1: Generate a random number (positive integer) between 1 and N: rd(1,N)5 k, where

k is an integer. This is the number of intermediate stations.

Step 2: Generate k random numbers (rd1,rd2,. . .,rdk)5 [λ1,λ2,. . .,λk] in the interval

(ΔSmin, L2ΔSmin), which represent the interstation spacings. This also represents the

initial population. λ1,λ2,. . .,λn represent the distances of the possible intermediate stations

from the starting station.

Step 3: Calculate the fitness (total cost function) of the population members.

Step 4: Apply mutation and crossover operators. Mutation operator is developed by ran-

domly selecting a gene and replacing it by a randomly selected real number within the

limiting values. The mutated chromosome becomes [λ1,λ2,. . .,λ0k,. . .,λn], where λ0k is the

replaced value (the changed distance from the starting station).

Step 5a: Develop the crossover operator by selecting two solutions from the population

randomly. A part containing one or more than one station is identified from each of these

two solutions, and they are exchanged maintaining the feasibility conditions to produce

two new solutions.

Step 5b: Develop a selection�replacement scheme to ensure efficient convergence toward

the global optimum.

Step 6: Iterate through the specified number of generations by repeating steps 1�5.
Step 7: Stop when a specified number of generations have been searched or improvement

in the objective function value is negligible (within 1%). Obtain the optimal station

sequence and associated optimal cost.

The total cost function (or the fitness function) for the SLO problem may consist

of user, operator, and construction costs. Let TC be the total cost incurred for a sta-

tion location, and the objective function is defined as

Minimize TC5UC1OC1CC ð16:4Þ
where

UC5 user cost5 unit travel cost (UTC)3 total travel time,

total travel time5 access time (ta)1waiting time (tw)1 in-vehicle travel time (ti)

OC5 operator cost5 unit operator cost (UOC)3 [vehicle travel time (tv)1 standing time

(ts)1 time loss in acceleration�deceleration (tloss)].

These costs have to be formulated as a function of the decision variables, which

are the coordinates of the station points.

16.7 The Ant Highway Alignment Optimization Algorithm

Recall that the orthogonal cutting plane principle of alignment representation in the

preceding section. In this study, we limit our analysis to two-dimensional HAO and
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leave the three-dimensional coverage for future works. A set of possible PI points

are generated randomly along each orthogonal line. We assume that the number of

possible PIs, which is equal to the number of orthogonal cuts, is fixed in the search

space. We then assume that each artificial ant always starts at the “start point” and

ends its tour at the “end point.” Let k5 1,. . .,m be the number of ants; i5 1,. . .,n
be the number of orthogonal lines (0 and n1 1 represent start and end points,

respectively); and j(i)5 1,. . .,p(i) be the number of PIs along the ith orthogonal

line (Figure 16.6). Now, m ants will select the best point as the PI among the set of

possible points along each orthogonal line depending on the minimum cost. The

pheromone intensities are updated locally and globally. We start with the first

orthogonal line. The steps are repeated for jth iterations to obtain the best PI on the

first orthogonal line. The same procedure is performed for the other orthogonal

lines. There may be different number of PIs along each vertical cut ’i5 1,. . .,n.
After we obtain n PIs on n orthogonal lines, the total cost is calculated. Further, let

jΔhj(i)l(i11)j, jΔrj(i)l(i11)j, and jΔdj(i)l(i11)j be the absolute values of elevation differ-

ences (for three-dimensional alignment), unit land cost differences, and the distance

between j(i) and j(i1 1), respectively. Now, let us define the ant visibility as

ηjðiÞlði11Þ5α
minjΔhjðiÞξhði11Þj
jΔhjðiÞlði11Þj

1 β
minjΔrjðiÞξrði11Þj
jΔrjðiÞlði11Þj

1 γ
minjΔdjðiÞξdði11Þj
jΔdjðiÞlði11Þj

ð16:5Þ

where ξh(i1 1) is the point whose height difference with that at j(i) is the minimum

among all points along the vertical cut (i1 1). Similarly, ξr(i1 1) is the point

whose unit land cost difference with that at j(i) is the minimum and ξd(i1 1) is the

S

E

PIs along orthogonal linesSearch space

S Start point of alignment construction

E End point of alignment construction

Figure 16.6 Configuration of the search space.
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point that is nearest to j(i). α, β, and γ are user-defined parameters such that

α1 β1 γ5 1. The redefinition of the visibility in this problem is based on the fact

that the less differences in terrain elevations and unit land costs for any pair of

points between successive vertical cuts, and the closer those points are to each

other, the more desirable the connecting path becomes. This is because a lower

value of terrain elevation difference will result in a smaller earthwork cost.

Similarly, a low value of unit land cost difference will result in a smaller earthwork

cost, and shorter links will result in smaller user costs (i.e., travel time, vehicle

operating, and accident costs). Thus, the total cost, which is the objective function,

will be smaller, and the resulting alignment more desirable.

Let lk(x) be the tour length of the kth ant between time t and t1 x and Qlk ðxÞ be
the objective function value of the alignment corresponding to lk(x). It is noted that

using the intermediate PIs that form lk(x), a smooth alignment (Figure 16.7) is con-

structed by fitting appropriate curves using the procedure of Jong and Schonfeld

(2003). The total cost (objective function value) of the alignments is computed

using the cost functions developed by Jha et al. (2006). The pheromone laid at link

{j(i)l(i1 1)} by the kth ant between time t and t1 x is specified as

ΔτkjðiÞlði11Þ5

minfQlgðxÞg
Qlk ðxÞ

if the kth ant uses edge
fjðiÞlði1 1Þg in its tour between time t and t1 x

0 otherwise

8<
:

ð16:6Þ

Straight lines connecting the IPs, which
forms the tour length

Smoothed alignment

S

E

Search space PIs along orthogonal lines

S Start point of alignment construction

E End point of alignment construction

Figure 16.7 Tour length and smoothed alignment.
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where min fQlg ðxÞg is the minimum value of the objective function corresponding

to the tour lengths formed by all ants between time t and t1 x. This equation

implies that the lower the value of Qlk ðxÞ; the higher the amount of pheromone laid.

The trial intensity, τj(i)l(i11){t1 x} on edge j(i)l(i1 1) at time t1 x, is specified as

τjðiÞlði11Þft1 xg5 ρτjðiÞlði11Þftg1ΔτjðiÞlði11Þ ð16:7Þ

where ρ is the coefficient such that (12 ρ) represents the evaporation of trail

between time t and t1 x. Δτj(i)l(i11) is expressed as

ΔτjðiÞlði11Þ5
Xm
k51

ΔτkjðiÞlði11Þ ð16:8Þ

The transition probability Pk
jðiÞlði11Þ for ant k from point j(i) to l(i1 1) is specified

as

Pk
jðiÞlði11Þ5

½τjðiÞlði11Þftg�α1 ½ηjðiÞlði11Þ�β1P
vði11ÞAΩkði11Þ ½τjðiÞvði11Þftg�α1 ½ηjðiÞvði11Þ�β1

if lði1 1ÞAΩkði11Þ

0 otherwise

8><
>:

ð16:9Þ

where Ωk(i11) is the set of all feasible nodes to be visited by ant k along the vertical

cut (i1 1), which is updated for every ant after every move.

16.7.1 Convergence Criteria

The algorithm is terminated when the objective functions corresponding to the tour

lengths of every ant is nearly identical, i.e., if Ql1ðt1 xÞ5Ql2ðt1 xÞ5?5
Qlmðt1 xÞ; then stop.

16.8 The Ant Algorithm Applied to the SLO Problem

It is worth noting that the Ant Algorithm (AA) concept is based on “ant move-

ment,” and therefore, a suitable path must be designed along which artificial ant

movement can occur. Using this concept for the SLO problem, we assume that m

number of ants reside at r demand nodes (population centers) at t5 0. Here, it is

assumed that transit demand of the catchment area is concentrated at r different

population centers. Further, it is assumed that the demand pattern is many to one, i.

e., every transit rider from the demand nodes is destined to the final station along

the rail line (typically, the CBD).

For the SLO problem, n sets of stations are generated first. Each of these sets

contains k intermediate stations. At t5 1, the first ant from each of the demand
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nodes selects a set of feasible transit stations along the rail line with equal probabil-

ity. At this stage, the problem reduces to the classic AA, with the exception that

the objective is to minimize the total cost rather than the travel distance. As time

elapses, the follower ants will select the set where some pheromone trail exists.

Following this trend after sufficient time intervals, the ants will choose the set that

results in the minimum total cost. The total cost corresponding to the selected num-

ber of stations at every iteration (the movement of the m ants between t5 0 to

t5 t1m for every station set is called an iteration) is calculated for every iteration

of randomly generated station sets at the conclusion of t1m ant moves. After a

sufficient number of iterations, the solutions converge to an optimum, i.e., an opti-

mum number of stations and their positions along the transit line are obtained.

Let τij(t) be the intensity of pheromone trail on the path connecting the ith

demand node to the jth set of stations at time t. After every ant move, the next ant

experiences a pheromone trail, given as

τijðΔtÞ5 ρτijðtÞ1Δτij ð16:10Þ

where ρ is a coefficient such that (12 ρ) represents the evaporation of trail during

the Δt time interval. Δτij is the quantity per unit cost of pheromone laid on the

path ij in the Δt time interval and is given by:

Δτij 5
Xm
k51

Δτkij ð16:11Þ

where Δτkij is the pheromone quantity per unit cost laid on path ij in the Δt time

interval by the kth ant. It is given as

Δτkij 5
Q

Ck
ij

if the kth ant travels link ði; jÞ in time Δt

0 otherwise

8<
:

9=
; ð16:12Þ

Each ant chooses a set of stations with a probability that is an inverse function

of the total cost and of the amount of pheromone trail present on the connecting

path. It chooses the set of stations to go to with a probability given by:

pkij 5

½τijðtÞ�α½ηij�βP
kAallowedk

½τikðtÞ�α½ηik�β
if j belongs to allowedk

0 otherwise

8><
>: ð16:13Þ

where allowedk5 {m2 tabuk} and α and β are parameters that control the relative

importance of trail versus visibility. Therefore, the movement probability is a

trade-off between visibility (which implies that economical stations should be cho-

sen with high probability, thus implementing a greedy constructive heuristic) and

trail intensity at time t (which implies that if many ants travel along link (i,j), then

379Implications to Energy and Environmental Sustainability



it is highly desirable, thus implementing the autocatalytic process). The ant visibil-

ity ηij is given as

ηij 5
1

TCij

ð16:14Þ

where TCij5 total cost incurred to travel to the jth set of stations from the demand

node i.

16.8.1 The Ant Station Location Optimization Algorithm

The steps of the ant station location optimization algorithm are given here:

Step 1: Generate a random number (an integer) between 1 and N: rd(1,N)5 k, where k is

an integer. This is the number of intermediate stations.

Step 2: Generate k random numbers (rd1,rd2,. . .,rdk)5 [λ1,λ2,. . .,λk] in the interval

(ΔSmin, L2ΔSmin), which represent the interstation spacings. λ1,λ2,. . .,λn represent the

distances of the possible intermediate stations from the starting station. The decision vari-

ables are the coordinates of the points representing the intermediate stations.

Step 3: Generate n such sets of points, each representing a set of intermediate stations

such as S15 [λ1,λ2,. . .,λk], S2 5 ½λ01;λ02; . . .;λ0k�. . .Sn:
Step 4a: Perform the first ant move to any of the sets probabilistically at t5 t1 1.

Step 4b: Update pheromone trail intensity depending on the associated total cost.

Step 5: Make the next ant move to any of the sets. The movement occurs probabilistically

depending on the intensity of pheromone present on the corresponding link.

Step 6: Go to step 4a and continue with m ants. The option with the least cost involved

will be the best option for that particular iteration.

Step 7: Update the pheromone intensities globally.

Step 8: Perform step 4a�7 for j iterations.

Step 9: Stop when the solution converges and obtain the optimal station sequence and

associated optimal cost.

16.9 Implications to Environment and Energy
Sustainability

In the highway and rail infrastructure planning procedures described in the preced-

ing sections, the factors contributing to environmental and energy sustainability are

not comprehensively formulated. Some of the environmental factors, such as

impacts to floodplains, wetlands, and other environmentally sensitive regions, are

considered in the highway and rail-alignment optimization modeling framework by

imposing appropriate penalties (Davis and Jha, 2011; Kang et al., 2012; Samanta

and Jha, 2011). In addition, the travel-time delay and vehicle operating costs

(including fuel consumption costs) are also formulated in previous works for HAO

(Jong and Schonfeld, 1999).
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16.9.1 Air Pollution due to Vehicular Traffic

Air pollution is a phenomenon by which particles (solid or liquid) and gases con-

taminate the environment. Such contamination can result in health effects on the

population, which might be either chronic (arising from long-term exposure) or

acute (due to accidents). The vehicular emission is the highest contributor (as high

as 60%) to the total pollution in the air; therefore, measures should be taken to

reduce the traffic volume, especially during rush hours. An assessment of the

potential air pollution impact of a proposed road development relies on the follow-

ing information:

Traffic volume: The key factor in air emissions is the traffic volume (measured as vehi-

cle�kilometers per hour by vehicle type). Often, an understanding of traffic peaks and

their duration will be required in order to make meaningful projections of emission

levels.

Traffic composition: A percentage breakdown of the number of vehicles by type. Heavy

trucks and buses are distinguished from light passenger vehicles, newer vehicles from

older ones, and diesel-powered vehicles from those that are gasoline-powered.

Speed of traffic: Average speed of vehicles, with some indication of the consistency of

speed (degree of traffic congestion).

Dispersion dynamics: Dispersion of pollutants is dictated by prevailing wind direction,

weather conditions, roadside vegetation, topography, and distance from road.

Vehicle emission levels, by major pollution: Useful indicators might be mean annual

emissions, hourly concentration peaks, and daily value exceeded once a year.

Road surface: Whether the road is paved or not makes a difference to the amount of dust

generated. Once the current and projected pollution levels have been determined, compar-

isons can be made with industrial, regional, and national standards for air quality.

Generally, there is no penalty to the road user due to the vehicular emission that

each vehicle contributes toward the atmospheric pollution. In future works, a modi-

fied user equilibrium formulation can be developed to penalize the road user by

imposing a toll for elevated levels of vehicular emission (Jha et al., 2011a, b).

16.9.2 Suggested Approaches to Considering Environmental and Energy
Sustainability in Highway and Rail Infrastructure Planning

An alternate approach to considering environmental sustainability in the highway

infrastructure planning process is by developing a modified user equilibrium for-

mulation under the assumption that users consider the impact of vehicular pollution

in addition to travel time minimization in choosing their routes between specified

Origin-Destination (O-D) pairs (Jha et al., 2011a, b). For rail infrastructure plan-

ning, noise seems to be the main contributor to environmental impact. Therefore,

various competing corridors for railway route planning can be analyzed based on

the objective of noise level reduction. A formulation for perceived noise level due

to railway movement can be provided and considered in the rail transit optimization

models (Samanta and Jha, 2009, 2011).
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For considering energy sustainability in highway infrastructure planning, high-

way alignments should be analyzed based on the criteria of fuel cost minimization.

Generally, congestion- and obstruction-free, flatter, and straighter roads will require

less frequent acceleration and deceleration, resulting in savings in fuel costs.

Similarly, rail tracks along flatter grades and express trains with less frequent stop-

pages will reduce energy costs related to train motion. A comprehensive formula-

tion of factors contributing to environmental and energy sustainability will be

developed in future works.

16.10 Conclusions and Future Works

In this chapter, two metaheuristic applications (namely, GA and ACO) have been

extensively discussed for highway and rail infrastructure planning. In the past 15

years, the problem of HAO has been extensively studied and solved by GAs.

However, ACO are not fully explored for both highway and rail infrastructure plan-

ning. In general, ACO works well for discrete optimization problems (Samanta and

Jha, 2012). But only a few studies have been done to test ACO in continuous

search spaces by developing specialized procedures to discretize the search space.

The comparison of GAs and ACO is done only on limited problem sets. Therefore,

additional study should be done in future works.

In this study, we also discussed the implication of environmental and energy

sustainability, which seems to be a critical element for future infrastructure plan-

ning and design problems. We provided a brief framework to incorporate environ-

mental and energy sustainability in highway and rail infrastructure planning.

Additional work, including comprehensive formulation of the associated factors,

need to be done in future studies.
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17.1 Introduction

When optimizing a network of traffic signals, the traffic engineer aims to set signal

timings so as to minimize or maximize one or more objective criteria. The most com-

monly used criteria are delay and the number of stops. These measures of quality of

service have been cited as the most important factors in user perception of level of

service (Flannery et al., 2005; Pecheux et al., 2004; Sutaria and Haynes, 1977). It is

not possible in general to obtain a utopian signal timing plan that simultaneously mini-

mizes both these objectives. Instead, a compromise between these two important but

competing objectives has to be made. The trade-off between delay and the number of

stops has been demonstrated in several studies (Berg and Do, 1981; Jovanis and May,

1978; Leonard and Recker, 1997; Leonard and Rodegerdts, 1998).

In practice, delay and the number of stops are usually combined into a single mea-

sure and a single-objective optimization methodology is applied to this composite mea-

sure. For example, the commercial signal timing optimization package TRANSYT-7F

(Hale, 2005) minimizes a weighted sum of delay and the number of stops called the

disutility index. Weights can be chosen to reflect excess fuel consumption or operating

cost of vehicles. Often, a pure delay-minimization strategy is used, as it has been found

to provide a reasonable compromise with respect to the number of stops and other com-

peting objectives (Berg and Do, 1981; Jovanis and May, 1978; Park et al., 2000).

Ultimately, the weightings applied to these noncommensurable quantities are subjec-

tive, and optimization will result in a single-compromise solution. Furthermore, the

weightings must be chosen without any knowledge of the set of possible solutions.

A more informed decision could be made if the entire set of trade-off solutions

could be identified. This can be accomplished by performing multiobjective optimi-

zation. Using the concept of Pareto-optimality, multiobjective optimization can be

used to identify the set of solutions that offer the best possible compromise

between delay and the number of stops. Multiobjective optimization also allows
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the traffic engineer to evaluate and understand the compromise between these

competing objectives.

Genetic algorithms (GAs), which are heuristic optimizers based on the evolutionary

concepts, have emerged as a proven and widely accepted technique for optimizing

traffic signal timing, with many successful applications in the case of a single objec-

tive1. GAs have also been found to be most successful in multiobjective optimization

(Deb, 2001). The Nondominated Sorting Genetic Algorithm II (NSGA-II) is one of

the most popular and best performing multiobjective GAs (Deb et al., 2002).

In this chapter, we investigate the feasibility of applying NSGA-II to the multiob-

jective problem of minimizing delay and the number of stops in large traffic networks

under fixed-time signal control. Under- and oversaturated traffic conditions will be

considered. This is a challenging optimization problem due to the presence of a large

number of decision variables. Furthermore, detailed microscopic stochastic traffic

simulation models are required to perform realistic modeling in signalized networks.

These models are computationally expensive, placing a limit on the number of signal

timing policies that can be examined in the GA search. Furthermore, these simulation

models can only provide estimates of mean delay and the number of stops.

Furthermore, simple modifications to NSGA-II will be tested to obtain the

optimal algorithm design. After identifying the optimal design for NSGA-II, multi-

objective optimization will be compared to single-objective optimization as fol-

lows: The minimum delay solutions from the set of compromise solutions

produced by multiobjective optimization will be contrasted with those arising from

a pure delay-minimization strategy and evaluated in terms of delay and the associ-

ated number of stops. A similar comparison will be made for the solution with the

minimal number of stops. This comparison will serve to highlight any advantages

and disadvantages offered by multiobjective optimization.

The trade-off between delay and the number of stops will be evaluated by exam-

ining the set of optimal compromise solutions produced by multiobjective optimi-

zation. Finally, the role of signal timings in this trade-off is examined to provide

further insight.

The material in the remainder of this chapter is organized as follows:

� Section 17.2 provides background information, covering fundamental concepts in multi-

objective optimization, a description of the NSGA-II multiobjective optimization algo-

rithm, and a review of applications of GAs in traffic signal optimization.
� Section 17.3 covers the potential modifications to the design of NSGA-II that will be

tested in order to identify the most efficient algorithm design for multiobjective optimiza-

tion of delay and the number of stops.
� Section 17.4 is an exposition of the study methodology. The Microscopic Stochastic

Traffic Network Simulator (MSTRANS), the traffic simulation model used for estimating

delay and the number of stops, is covered first. The encoding scheme used to transform

signal timing variables into genetic material amenable to manipulation by genetic opera-

tors follows. Details of the study test cases are given next. The approach for ranking and

comparing optimization results from the execution of NSGA-II with different designs is

1 A thorough review will be provided in a later section of this chapter.
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also described. Finally, further details on the implementation of the multi- and single-

objective optimizers are given.
� Section 17.5 presents and interprets the results from the experiments performed. The

alternative designs of NSGA-II are examined and the optimal design is identified based

on the results. After identifying the optimal design for NSGA-II, results from single- and

multiobjective optimization runs are compared. The trade-off between delay and the num-

ber of stops are examined next. Finally, the role of cycle length, green splits, and signal

phasing in this trade-off are examined.
� Section 17.6 is the conclusion, which summarizes the findings, recommendations, and

ideas for further research on the topic considered in this chapter.
� References are provided at the end of the chapter.

17.2 Background

17.2.1 Pareto-optimality

Suppose that we have three separate signal timing plans, A, B, and C, with associ-

ated delay and number of stops, as illustrated in Figure 17.1.

Clearly, signal timing plan B is preferable to A, as it produces less delay for the

same number of stops. A solution is said to “Pareto-dominate” another if it is no

worse in all objectives and provides an improvement in at least one objective.

Thus, points B and C dominate A. However, B and C do not dominate each other.

Comparing B and C, we find that B provides a reduction in delay at the cost of an

increased number of stops. The set of feasible solutions that are not dominated by

any other solutions is called the Pareto-optimal set. The set of objective vectors

associated with the Pareto-optimal set is called the Pareto front and is illustrated in

Figure 17.1. Solutions in the Pareto-optimal set represent the best possible compro-

mises with respect to the competing objectives. In multiobjective optimization, the

aim is to obtain or approximate this set.

17.2.2 Nondominated Sorting Genetic Algorithm II

NSGA-II (Deb et al., 2002) is a heuristic multiobjective optimizer based on the GA

optimization approach. Unlike most conventional search algorithms, GAs search

from a population of points, producing an entire set of solutions as the optimization

Delay 

Stops 

A B 

C 
Pareto front 

Figure 17.1 Pareto-dominance

and Pareto-optimality.
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outcome. The multiobjective GA can thus produce a set of solutions that approxi-

mates the Pareto-optimal set in a single run. The search progresses by manipulating

a population of N solutions using operators that mimic the evolutionary process in

biology. The individual solutions are analogous to the individuals in an evolving

population. A generational approach is used in that the entire population of points

is evolved from one generation to the next. The algorithm details are discussed

under the following headings:

� Problem encoding
� Initialization
� Selection
� Reproduction
� Replacement
� Stopping criteria.

Problem Encoding

The decision variables of each individual are encoded into a form of genetic mate-

rial that is acted upon by genetic operators. The most common encoding scheme is

binary encoding, where the decision variables are transformed into a binary string.

For the optimization of a problem in a single, real-valued variable xA[a,b], a binary

string of length l can be used. If

y5 ylyl21. . .y2y1; ykAf0; 1g ’ kAf1; 2; . . .; lg ð17:1Þ

denotes a particular point in the search space in the binary coding, then the corre-

sponding value in the problem space, x, can be computed by converting the binary

value to a decimal value in the range {0,1,2,. . .,2l2 1} and then converting this

into a value in the range [a,b] using a linear mapping, i.e.,

x5 a1
b2 a

2l 2 1

Xl

k51
yk2

k21 ð17:2Þ

For a multiparameter optimization problem, each decision variable xj may have

its own search domain [aj,bj] and binary string zj of length lj. The vector of decision

variables x5 ðx1; x2; . . .Þ can then be represented by a single binary string of length

L5
P

j51lj which is the concatenation of the binary strings z1,z2,. . ..

Initialization

The initial population or generation of N individuals is allocated to random

points in the search domain. This can be performed by independently setting the

bit values in the binary strings for each individual to either 0 or 1 with equal

probability.
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Selection

Selection is employed to form a mating pool of individuals. The selection process

is biased so as to guide the search toward higher-performance and less-represented

regions in the objective space. First, a ranking of the points based on dominance is

obtained. The set of nondominated individuals in the population are assigned a

domination rank of 1. The nondominated individuals in the remaining set of points

are assigned a domination rank of 2 and so on. A set of solutions with the same

domination rank is referred to as a nondominated front.

After ranking by dominance is performed, a crowding distance measure is com-

puted for each individual in each nondominated front. For the case of the bivariate

traffic signal optimization problem with m individuals in the nondominated front

illustrated in Figure 17.2, the crowding distance for individual i is obtained as the

perimeter of the rectangle formed by using the nearest neighbors as the vertices. In

order to allow for the different scales along each dimension in the objective space,

the length of the rectangle along the dimension of delay is standardized by dividing

it by Delaymax2Delaymin. A similar standardization is performed for the length of

the rectangle along the dimension of stops. The crowding distance for individuals

1 and m at the edge of the nondominated front are assigned a crowding distance

of N.

Binary tournament selection is then applied to insert individuals into the mating

pool by randomly selecting two individuals and choosing the individual with the

lower domination rank. If the two individuals have the same domination rank, the

one with the larger crowding distance measure is chosen. This procedure is

repeated until a mating pool of the same size as the population is obtained.

Discrimination between individuals based on dominance and crowding distance

encourages the discovery of a diverse approximation to the Pareto set. Individuals

in the mating pool are then paired for reproduction.

Reproduction

Crossover and mutation are employed to generate two children from each pair in

the mating pool. These operators act on the encoded genetic material. Crossover

randomly combines or blends genetic material of the two parents. For the case of a

binary problem encoding, uniform crossover is recommended (Eshelman et al.,

1989; Syswerda, 1989). With uniform crossover, individual bits in the binary

Delay

Stops

2 

1 

i–1

i+1i 

m

DelaymaxDelaymin

Figure 17.2 Illustration of

crowding distance measure.
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strings of two parents are swapped independently with probability 0.5 forming two

children. Crossover allows for the combination of useful traits. For example, two

solutions, one with a favorable cycle length and another with a favorable phase

sequence may be combined to form an offspring inheriting positive traits from the

parents. Mutation induces random alterations to the decision variables to allow the

examination of new search points, as well as the restoration of lost genetic material.

Mutation is performed by flipping each bit in the children independently based on

a specified probability.

Replacement

An elitist replacement scheme is used to determine the constituents of the subse-

quent generation. The parent and child populations are combined, forming a popu-

lation of 2N individuals. The individuals in the combined population are sorted by

increasing order of domination rank first and then by decreasing order based on the

crowding distance measure. After sorting, the first N individuals are retained to

form the constituents of the subsequent generation.

Stopping Criteria

Initialization is performed and the remaining steps are repeated until a stopping

criterion is met. The most common stopping condition is the completion of a pre-

specified number of objective function evaluations. The individuals with a domina-

tion rank of 1 in the final generation are taken as the approximation of the

Pareto-optimal set. A flowchart encompassing the various steps of NSGA-II is

shown in Figure 17.3.

17.2.3 GAs in Traffic Signal Optimization

Single-Objective Optimization

Foy et al. (1992) were the first to apply GAs to the traffic signal timing problem,

considering delay minimization for a hypothetical four-signal network. Memon and

Bullen (1996) compared the optimization efficiency of a quasi-Newton search and

a GA on a five-signal traffic network and noted superior performance of the GA

for more complicated optimization scenarios. Oda et al. (1996) found that GA opti-

mization outperformed both hill-climbing and random searching on two large-grid

networks. Park (1998) also found GA optimization to provide an improvement over

hill-climbing for hypothetical two- and four-signal networks. For a simplified two-

signal network, the GA found a solution with delay only 1% larger than that of a

full enumerative search. Other successful applications of GAs in single-objective

optimization of traffic signals are Park et al. (2000, 2001), Stevanovic et al. (2007),

and Kesur (2009, 2012). Commercial signal timing software packages such as

TRANSYT-7F (Hale, 2005) and PASSER V (Chaudhary et al., 2002) now have

support for signal timing optimization by GAs.
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Multiobjective Optimization

Sun et al. (2003) applied NSGA-II to the minimization of average control delay

and the average number of stops for an isolated intersection under two-phase

control. Delay and the number of stops were computed via an analytical formula.

Branke et al. (2007) also applied NSGA-II to an isolated intersection, but they

considered a traffic-actuated controller and emphasized the minimization of travel

time and the number of stops.

Although Abbas et al. (2007) already considered multiobjective optimization of

delay and the number of stops for a small, three-signal network, NSGA-II chose

signal settings from a predetermined set obtained from a single-objective optimiza-

tion at different cycle lengths. Thus, the multiobjective optimizer only considered

Yes

Eliminate dominated solutions

Start 

End

Mutation

Decode decision variables

Evaluate objective vectors

Compute crowding distance

Replacement

No

NSGA-II random number generator seed = Random

Initialize population

Decode decision variables

Evaluate objective vectors

Selection

Crossover

Stopping criterion met? 

Figure 17.3 NSGA-II flowchart.
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variations in the cycle length, simplifying the exercise considerably. In this study,

the full range of signal timings will be examined in the optimization.

The author has already applied some of the findings from this chapter, which were

unpublished at the time, for the minimization of both overall delay and the

inequitable distribution of delay along various routes through a network using NSGA-II

(Kesur, 2010). The multiobjective optimizer was successfully applied and was found to

offer considerable advantages over single-objective optimization. The work in this chap-

ter serves as a precursor for this application of multiobjective optimization.

Stevanovic et al. (2011) have applied a multiobjective GA to the optimization of

both throughput and a surrogate safety measure in a 12-signal arterial network. The

multiobjective GA used was identical to NSGA-II, but without a crowding distance

mechanism for discriminating between solutions with identical domination rank.

However, the quality of the approximate Pareto-optimal front was not examined,

and a comparison with single-objective optimization was not made.

17.3 Modifications to NSGA-II Design

From an extensive review of literature on multiobjective GAs, several alternatives

to the NSGA-II design have been identified as potential methods for improving the

efficiency of the optimization.

GAs traditionally use a binary encoding of the decision variables. Most applica-

tions in the optimization of traffic signal timings have used binary encoding. Real or

integer representations have become more popular over time. With these representa-

tions, encoding and problem spaces correspond. Genetic operators thus manipulate

genetic material directly in the problem space. A real encoding of signal timing vari-

ables has been found to improve optimization in the case of a single objective

(Kesur, 2009). When applying a real-problem encoding, crossover and mutation

operators need to be modified. Blend crossover (BLX-α), which is a generalization

of a number of proposed real crossover operators will be tested (Deb, 2001). BLX-α
crossover is applied independently to each decision variable and requires a parame-

ter of α$ 0. For the ith decision variable, let xi and yi denote the values of the deci-

sion variables in the two parents and without loss of generality, assume that xi# yi.

The value of this same decision variable in an offspring is computed by simulating a

uniform random variable on the interval (xi2 εi, yi1 εi), where

εi 5αðyi 2 xiÞ ð17:3Þ

A graphical illustration of the interval above is seen in Figure 17.4.

α (yi–xi) α (yi–xi)yi–xi

xi yi

Figure 17.4 Graphical illustration of

blend crossover.
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The value of α5 0.5 has been shown to be optimal for the traffic signal timing

problem (Kesur, 2009). Mutation with real encoding can be achieved by replacing

the value of a decision variable with a uniformly distributed value in the allowable

search domain (Deb, 2001). The potential improvement in multiobjective optimiza-

tion using the real encoding is investigated in this chapter.

A further avenue for improvement is the selection mechanism. NSGA-II uses

tournament selection, which favors better-performing individuals. This may lead to

predominant dissemination of genetic material from nondominated individuals,

leading to premature convergence. In single-objective optimization, the selective

pressure induced by the elitist replacement mechanism alone has been found to be

sufficient in guiding the search toward better-performing regions of the search

space (Eshelman, 1991). Selective pressure can be reduced using the following uni-

form selection mechanism: The mating pool is obtained by copying the individuals

from the current population in random order. This ensures that each individual

receives exactly one reproductive opportunity. This is the selection mechanism

used in the Cross-generational elitist selection, Heterogeneous recombination, and

Cataclysmic mutation single-objective optimization algorithm (CHC) (Eshelman,

1991) which has shown excellent performance. There is some limited evidence

demonstrating the effectiveness of uniform selection methods in multiobjective

optimization (Kim et al., 2004; Mumford, 2004; Toffolo and Benini, 2003). The

uniform selection method will be evaluated on the multiobjective traffic signal

optimization problem.

The uniform selection method has been recommended for application in con-

junction with reproduction without mutation (Eshelman, 1991). A highly explor-

ative binary crossover operator (HUX) is recommended in this case. HUX

randomly swaps half the differing bits from the two parents to form the two chil-

dren. Uniform selection and HUX slow convergence, allowing for reproduction to

take place without the need for the disruptive effect of mutation to reintroduce

diversity. The augmentation of uniform selection with HUX and the removal of

mutation will be tested.

The sensitivity of NSGA-II to the choice of the population size will also be

examined. GAs are known to be sensitive to parameter settings, the population

size being of particular importance. Although parameter tuning for traffic signal

optimization has been performed (Kesur, 2009), it has been done for the single-

objective case.

17.4 Methodology

17.4.1 Microscopic Stochastic Traffic Network Simulation

The MSTRANS model is a stochastic microscopic traffic simulation model devel-

oped by Kesur (2011). The logic and parameters are based on findings from the

literature on driver behavior and vehicle characteristics. The model applies a fixed

increment time step to advance the simulation. Vehicle status and kinematics are
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updated each second, along with the traffic signal indications. New vehicles are

generated at the network boundary with exponentially distributed headways.

Vehicle routing through the network is generated stochastically based on the speci-

fied expected turning proportions. Linear acceleration and constant deceleration

models are applied to lead vehicles, and the behavior of following vehicles is based

on the Gipps microscopic car-following model (Gipps, 1981). Left-turning vehicles

receiving an unprotected green signal use a gap-acceptance model, where the prob-

ability of accepting a gap increases with the gap size according to a logistic func-

tion. Stopping decisions on amber signals are also made using a logistic model.

Response delays are modeled and lane changes are governed by pragmatic rules.

The delay measure considered in this study is control delay, which is computed as

the difference between actual and uninterrupted travel time in MSTRANS. The

number of stops is computed using the approach of Rakha et al. (2001). According

to their approach, the partial stops for a vehicle at time step t are given by:

st 5
maxðvt21 2 vt; 0Þ

vf
ð17:4Þ

where

vt5 instantaneous speed of vehicle at time step t and

vf5 free-flow speed.

The number of stops experienced by a vehicle is computed by summing the par-

tial stops over all time steps. By accounting for partial stops, the measurement for

the number of stops is appropriate in both under- and oversaturated conditions.

An initialization period is completed before results are recorded. Delay and the num-

ber of stops are averaged for all vehicles that complete their trips through the network

during the specified simulation period. However, to account for the delay and stops

being experienced by residual queues remaining at the end of the simulation period, the

run length is extended until all remaining vehicles have cleared the network.

Several validation exercises have been performed, and MSTRANS has been

found to give results comparable to the Corridor Simulation Model (CORSIM)

(FHWA, 2003; Kesur, 2011), a commerically available and widely used micro-

scopic traffic simulator. A thorough account of the functional details of the model

and a review of the literature justifying the logic is given in Kesur (2011). A full

code listing is provided in Kesur (2007).

17.4.2 Problem Encoding

The encoding of the signal timing variables is performed using the fraction-based

encoding scheme of Kesur (2009). This encoding allows for all signal timing vari-

ables to be considered in the optimization; namely, cycle length, green times, signal

offsets, and phase structure and sequence. The encoding of phase structure and

sequence is discussed first, followed by the specification of the encoding of all

other signal timing variables.
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Encoding of Phase Structure and Sequence

For the case of a signal controlling conflicting flow from two perpendicular two-

way streets, there are four approaches, which can be labeled North (N), East (E),

South (S), and West (W). It is assumed that green indications are given to vehicles

on the N and S approaches (the N/S green phase), followed by green indications for

vehicles on the E and W approaches (the E/W green phase).

For approach E, green indications can be given for all movements for the entire

duration of the E/W green phase. Alternatively, a green indication can be given for

only part of the E/W green phase. If this is the case, then the remainder of the phase

can be used to allow for protected left-turn movements approach W. Let δE5 green

staging for traffic movements on approach E.

The three staging possibilities of green indications for approach E are:

1. δE5 0, i.e., no protected stage for opposing left-turning movements

2. δE5 1, i.e., protected stage for opposing left-turning movements at the end of the green

stage (lagging stage)

3. δE5 2, i.e., protected stage for opposing left-turning movements at the beginning of the

green stage (leading stage).

Let

ρ5 the duration of E/W green phase(s)

g1E 5 the duration of stage with green indications for all traffic movements on approach

E(s), and

g2E 5 the duration of stage allowing protected left-turn movements for left-turning

vehicles on approach W(s).

The staging possibilities are illustrated in Figure 17.5.

Similarly, three staging possibilities can be defined for green indications for

approach W. Taking the cross-product of the staging possibilities for the E and W

approaches, we obtain nine phasing possibilities for the E/W green phase. Green

indications applied in the N/S green phase can also be allotted in nine possible ways.

Taking the cross-product, we obtain 81 phasing possibilities at each traffic signal.
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Figure 17.5 Staging of green time for traffic movements on approach E.
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Genetic Encoding of all Signal Timing Variables

Let

Ns5 the number of traffic signals in the network under study

i5 a particular traffic signal A{1,2,. . .,Ns}

j5 green phase A{N/S, E/W}

k5 the approach at signal A{N,E,S,W}

G(k)5 the green phase corresponding to a particular approach

5
N=S for kAfN; Sg
E=W for kAfE;Wg

� �
ð17:5Þ

A5 the duration of the amber interval (s)

R5 the duration of the all-red interval (s)

Cmin5 the minimum cycle length to search (s)

Cmax5 the maximum cycle length to search (s)

gmin,stage5 the minimum duration of any green stage (s), and

gmin,phase5 the minimum duration of the green phase, including signal change period (s)2:

5 2ðgmin;stage 1AÞ1R ð17:6Þ
Now, for a particular individual in the genetic search, let

C5 the cycle length (s)

φi5 the offset of traffic signal i with respect to the beginning of its N/S green phase

relative to the start of the N/S green phase at signal 1 (s)

ρi,j5 the duration of green phase j at traffic signal i, including the amber and all-red

transition periods (s)

δi,k5 the sequence of green stages for approach k at traffic signal i, (δi,kA{0,1,2})

g1i;k 5 the duration of the stage with green indications for all traffic movements on

approach k at traffic signal i (s), and

g2i;k 5 the duration of stage allowing for protected left-turn movements on the approach

with vehicle flow opposing that on approach k at traffic signal i (s).

For a particular decision variable, let

x5 the value of the decision variable in the problem space

l5 the number of bits in the binary encoding representing x

y5 ylyl21. . .y15 the binary value mapping to x, and

D(x)5 the decoded value of x expressed as a fraction in the range [0,1]:

5
1

2l 2 1

Xl

m51
ym2

m21 ð17:7Þ

Two bits are used for the encoding of each δi,k. Let yi,k,1 and yi,k,2 denote

the values of these two bits. The binary genetic material of a particular individual

can be decoded into a traffic signal timing scheme using the following formulas:

2 An allowance must be made for the possibility of two green stages during each green phase.
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C5Cmin 1 ðCmax 2CminÞDðCÞ
� � ð17:8Þ

φi 5
0

ðC2 1ÞDðφiÞ
� � for i5 1

for iAf2; 3; . . .;Nsg
�

ð17:9Þ

ρi;N=S 5 gmin;phase 1 ðC2 2gmin;phaseÞDðρi;N=SÞ
j k

ð17:10Þ

ρi;E=W 5C2 ρi;N=S ð17:11Þ

δi;k 5
0 for ðyi;k;1 5 0Þ
1 for ðyi;k;1 5 1; yi;k;2 5 0Þ
2 for ðyi;k;1 5 1; yi;k;2 5 1Þ

8<
: ð17:12Þ

g1i;k 5
ρi;GðkÞ2A2R

gmin;stage 1 ðρi;GðkÞ2 gmin;phaseÞDðg1i;kÞ
j k for δi;k 5 0

for δi;k 6¼ 0

(
ð17:13Þ

g2i;k 5
0

ρi;GðkÞ2 g1i;k 2 2A2R
for δi;k 5 0

for δi;k 6¼ 0

�
ð17:14Þ

When a real problem encoding is applied, the blend crossover and real mutation

operators are applied to the normalized values of the decision variables (i.e., {D(x)}).

The decision variables related to the structure and sequence of signal phases (i.e.,

{δi,k}) are binary in nature and are always subject to binary crossover and mutation

operators.

17.4.3 Test Networks

The study objectives are achieved by analyzing the results from the optimization of

a 9-signal arterial network and a 14-signal grid network. Applying the problem

encoding from the previous section produces optimization problems with 90 and

140 decision variables for the arterial network and the grid network, respectively.

The specifications for both networks are based on real work data sets. The arterial

network is Canal Street in New Orleans, LA (Gartner et al., 1990), and the grid net-

work is based on a data set for downtown Ann Arbor, MI (Stamatiadis and Gartner,

1996). The structure and spacing for each network are given in Figure 17.6.

Two through lanes, exclusive turning lanes, and a free-flow speed of 54 ft/s

(37 mph) have been assumed for each link. The average total flows into the arterial

and grid networks are 8191 and 6546 vehicles/h, respectively. A breakdown of the

average flows by individual entry nodes and the expected turning proportions at

each approach are given in Gartner et al. (1990) and Kesur (2011) for the arterial

and grid networks, respectively. A 15 min initialization period is used, followed by

a 15 min analysis period for each network when evaluating the quality of signal

397Multiobjective Optimization of Delay and Stops in Traffic Signal Networks



timing plans in MSTRANS. The flow rates for the arterial and grid network as

given constitute undersaturated conditions. The average flows were increased by

50% and 60%, respectively, to construct oversaturated conditions. The following

four test networks are thus considered:

1. Arterial undersaturated

2. Arterial oversaturated

3. Grid undersaturated

4. Grid oversaturated

A minimum green stage time of 5 s is implemented (i.e., gmin,stage5 5). An

amber period of 3 s and an all-red interval of 2 s are assumed for all phase transi-

tions (i.e., A5 3 and R5 2). The domains of cycle lengths examined in the optimi-

zation are given in Table 17.1.

17.4.4 Evaluating Multiobjective Optimizers

In this chapter, we evaluate several modifications to the NSGA-II search process

to determine the algorithm design that best approximates the Pareto set when opti-

mizing traffic signal timings. Evaluating the closeness of an approximate Pareto

front to the true Pareto front becomes difficult when the true Pareto front is

unknown, as is the case in this study. The hypervolume metric (Deb, 2001), which
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Figure 17.6 Test networks.
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can be applied when the true Pareto front is unknown, has been selected as the

measure of the quality of the approximate Pareto-optimal set.

Hypervolume

The hypervolume measure is explained using an example. Suppose that a multi-

objective optimizer provides the three solutions, labeled A1, A2, and A3 in

Figure 17.7, as an approximation of the Pareto front.

The area of the region dominated by these points up to a reference point W is

given by the area shaded in gray. For more than three objective dimensions, this

region becomes a hypervolume. Clearly, the hypervolume is increased as the

following occurs:

� The approximate set moves closer to the Pareto front.
� More points are added to the approximate nondominated set.
� The extent of the approximate set increases.

Thus, hypervolume provides a composite measure of the quality of the approxi-

mate Pareto set and allows the different approximate Pareto sets to be evaluated

and compared.

Multiple Runs and the Attainment Surface

NSGA-II is a stochastic search algorithm with random elements in the initializa-

tion, selection, and reproductive stages. Thus, the outcome of an optimization run

is not always the same. When comparing alternative designs of NSGA-II, it is

important to perform several independent runs of the search algorithm to produce

more stable results and allow for statistical comparisons to be made. The sample

values of a hypervolume can be used to test for differences in the population mean

of a hypervolume using a two-sample t-test.

However, a graphical illustration of the approximate Pareto front becomes diffi-

cult to create with multiple runs. Superimposing the approximate Pareto front from

each independent run may clutter the display. A summary of the approximate

Pareto sets can be made using the attainment surface approach (Deb, 2001) which

is explained with the aid of an example. Suppose that three independent runs of a

Table 17.1 Domain of Cycle Lengths Examined in Optimization

Network Cycle Length (s)

Cmin Cmax

Arterial undersaturated 50 120

Arterial oversaturated 100 200

Grid undersaturated 50 120

Grid oversaturated 60 180
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fixed design of NSGA-II are performed on a particular traffic signal network, and

they produce the three approximate sets shown in Figure 17.8.

For a delay value of D, NSGA-II produces solutions with stops that dominate S1

in all three runs. A solution with stops that dominates S2 is obtained in two out of

the three runs. A solution that dominates S3 is obtained in the other run. We can

take the median of S1, S2, and S3 to obtain a measure of centrality. We do this for

all D and obtain a curve called the attainment surface. Solutions that dominate

points to the right and above the curve are obtained in half the NSGA-II runs. The

curve can be interpreted as the “average” Pareto front obtained by the multiobjec-

tive optimizer.

17.4.5 Multiobjective Optimizer Specification

For this study, NSGA-II has been executed with a population size of 100, crossover

probability of 1.0, and mutation probability of 0.01. For each problem, NSGA-II is

run for 200 generations, which for a population size of 100 amounts to the examina-

tion of F5 20,000 signal timing policies. Intermediate results after 100 generations

are also examined to allow comparison of alternative algorithms for a smaller level of

computational resources. For each test network, 20 independent runs of each search

algorithm are performed. Within each run, a signal replication of MSTRANS is per-

formed to estimate delay and the number of stops. The same random number seed is

used in MSTRANS when evaluating each individual in a particular run of a GA, thus

subjecting each signal timing policy to identical arrival and routing patterns. This

reduces the variability in the estimated delay and stops, allowing the GA to identify

improved solutions with higher accuracy (Kesur, 2009). A different random number

seed is applied in MSTRANS for each independent run of NSGA-II. The nondomi-

nated solutions in the final generation are taken as the outcome of each run. Each of

these points is re-evaluated using 100 replications of MSTRANS to obtain an unbiased

and accurate measure of delay and stops. Although these points are nondominated

based on evaluations performed during the optimization run, this is not necessarily

true after re-evaluation. Using the revised estimates of mean delay and the number of

stops from the re-evaluations, some points may now dominate others. The dominated

points are removed to provide the final nondominated set based on precise estimates

of delay and the number of stops. A flowchart illustrating the process discussed here is

given in Figure 17.9.

Delay

Stops

Pareto front

A1

A2

A3

W Figure 17.7 Illustration of the

hypervolume measure.
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17.4.6 Single-Objective Optimizer Specification

In this study, results from the multiobjective optimization of delay and the number

of stops are compared to those arising from optimization with a single objective.

Single-objective minimization of delay or the number of stops is performed using a

modification of the CHC GA (Eshelman, 1991) called Real CHC (Kesur, 2009),

with a population size of 50. This GA includes an incest prevention mechanism to

prevent similar individuals from mating and cataclysmic mutation to reintroduce

diversity. This has been found to be the most efficient GA for single-objective opti-

mization of traffic signals (Kesur, 2009). To ensure fair comparisons, a total of

20,000 signal timing policies are examined by the single-objective optimizer. We

perform 20 independent runs of Real CHC on each test network. As with the multi-

objective optimizer, a single replication of MSTRANS with the same random num-

ber seeds is performed to evaluate delay in a particular run of the GA. Unbiased and

precise measures of delay and the number of stops of the best solution from each run

are obtained by performing 100 re-evaluations of the solution in MSTRANS.

17.5 Results

17.5.1 Identifying the Most Efficient Design of NSGA-II

Optimization with NSGA-II using binary encoding with uniform crossover and bit-

flip mutation is compared to optimization using real encoding with BLX-0.5 cross-

over and real mutation in Table 17.2.

With a real encoding, the sample mean of hypervolume is increased in each

instance, with highly statistically significant differences measured for a number of

cases. We can thus conclude that multiobjective optimization is enhanced using the

real encoding. Subsequent optimization runs were all performed using real encod-

ing with BLX-0.5 crossover and real mutation.

A comparison of standard tournament selection with the uniform selection pro-

cedure is given in Table 17.3.

With uniform selection, the sample mean of a hypervolume is reduced in most

cases, with the reductions being statistically significant in two instances. The

Delay

Stops

S1
S2

S3

NSGA-II Run 1 

NSGA-II Run 2 

NSGA-II Run 3 

D

Figure 17.8 Construction of the attainment surface.
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uniform selection procedure was then combined with the HUX crossover operator

and real mutation was removed. The results of this process are given in Table 17.4.

With uniform selection, HUX, and no mutation, the sample mean of a hypervolume

is increased in all cases except two, where statistically insignificant reductions are

observed. The increase in hypervolume for the grid network in undersaturated condi-

tions for F5 10,000 is statistically significant. Thus, uniform selection in conjunction

with HUX and reproduction without mutation provides equivalent or improved
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Eliminate dominated solutions 
based on the re-evaluations
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Seed[Evaluation] = Random

Is evaluation = 100? 

No 

NSGA-II Design = First 

Run = 1

Perform NSGA-II optimization as 
per Figure 17.3, based on NSGA-II 
Design, using a single replication 
of MSTRANS with the same seed 
as determined above for all 
individuals, returning m
non-dominated solutions
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MSTRANS Seed = Random 

MSTRANS Seed = Seed[Evaluation]

Re-evaluate m solutions in MSTRANS
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based on the 100 re-evaluations for 
each of the m solutions 
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Figure 17.9 Process flowchart for performing multiple runs of NSGA-II.
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multiobjective optimization relative to tournament selection. Subsequent optimization

runs were all performed using uniform selection with HUX and no mutation.

Other variants to the search algorithm, such as use of the neighborhood selection

mechanism (Kim et al., 2004), the inclusion of genetic diversity as an additional

objective (Toffolo and Benini, 2003), and the use of more complex mechanisms for

discrimination between individuals with identical domination ranks (Deb et al.,

2005), were tested. However, these were not found to improve optimization, and

those results are not discussed here.

Finally, the effect of the population size, N, was investigated. Optimization runs

at population sizes of 60, 80, 100, 120, and 140 were compared. For each popula-

tion size, intermediate output after 10,000 and 20,000 signal timing policies were

examined. The number of generations of evolution before considering output was

adjusted for each population size, allowing for comparisons to be made for the

same level of computation resources (e.g., 125 generations of evolution with a

Table 17.2 Comparison of NSGA-II Using Binary and Real Encoding

Network F Sample Mean of Hypervolume p Value (%)

Binary Encoding Real Encoding

Arterial undersaturated 10,000 59.95 61.55 27.44

Arterial undersaturated 20,000 62.54 63.99 31.51

Arterial oversaturated 10,000 886.38 998.41 0.92

Arterial oversaturated 20,000 993.72 1042.09 21.57

Grid undersaturated 10,000 11.80 15.34 0.00

Grid undersaturated 20,000 14.08 16.73 0.00

Grid oversaturated 10,000 115.00 137.67 0.00

Grid oversaturated 20,000 138.54 146.89 3.84

Table 17.3 Comparison of NSGA-II Using Tournament and Uniform Selection

Network F Sample Mean of Hypervolume p Value (%)

Tournament Selection Uniform Selection

Arterial undersaturated 10,000 61.55 57.54 0.41

Arterial undersaturated 20,000 63.99 61.81 11.38

Arterial oversaturated 10,000 998.41 955.35 8.49

Arterial oversaturated 20,000 1042.09 1014.19 29.84

Grid undersaturated 10,000 15.34 15.22 62.77

Grid undersaturated 20,000 16.73 16.77 76.34

Grid oversaturated 10,000 137.67 129.69 1.62

Grid oversaturated 20,000 146.89 150.64 24.61
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Table 17.4 Comparison of NSGA-II Using Tournament Selection Against Uniform Selection with HUX and No Mutation

Network F Sample Mean of Hypervolume p Value (%)

Tournament Selection Uniform Selection with

HUX and No Mutation

Arterial undersaturated 10,000 61.55 58.40 7.89

Arterial undersaturated 20,000 63.99 61.20 10.58

Arterial oversaturated 10,000 998.41 1006.99 63.76

Arterial oversaturated 20,000 1042.09 1046.66 84.78

Grid undersaturated 10,000 15.34 16.23 0.04

Grid undersaturated 20,000 16.73 17.09 8.27

Grid oversaturated 10,000 137.67 138.35 83.03

Grid oversaturated 20,000 146.89 150.03 37.63



population size of 80 correspond to the examination of 10,000 signal timing plans).

Summary statistics are given in Table 17.5.

A one-factor ANOVA to test for statistically significant differences in the mean

hypervolume due to the choice of population size could not be applied, as

Bartlett’s test (Snedcor and Cochran, 1989) revealed that the required assumption

of equal variances was violated for the oversaturated grid network at both

F5 10,000 and F5 20,000 (p value less than 0.01% in both cases). Instead, Welch

test (Welch, 1951), which allows for unequal variance when testing for equality of

means, was applied. This test was applied consistently across all cases, even those

for which there was no evidence of heteroscedasticity. The p values from the

Welch test are given in Table 17.5 and reveal that choice of population size has a

statistically significant effect on the mean optimization outcome for the larger and

more complex grid network.

The Games�Howell multiple-comparison test (Games and Howell, 1976) was

then used to identify which particular choices for the population sizes degrade the

quality of the mean optimization outcome in the grid network. All comparisons

were performed assuming a 5% significance level. For F5 10,000, the mean opti-

mization outcome using N5 140 is significantly inferior to all other choices of

population size in undersaturated conditions and significantly inferior to NA
{100,120} in oversaturated conditions. In addition, for F5 10,000, N5 120 is sig-

nificantly inferior to N5 100 in undersaturated conditions. For F5 20,000, N5 60

is significantly inferior to NA{100,120,140} in undersaturated conditions and sig-

nificantly inferior to N5 120 in oversaturated conditions. Thus, for the grid net-

work, optimization is less efficient if the population is set too large for a less

extensive search. For a more thorough search, optimization performance is

degraded if the population size is too small. Overall, a population size of 100 is a

robust choice for the multiobjective optimization.

Evaluation of the multiobjective optimization approach in the subsequent sec-

tions consider only the most efficient design; namely, NSGA-II with real encoding,

uniform selection, HUX, no mutation, and a population size of 100.

17.5.2 Comparison to Single-Objective Optimization

Multiobjective optimization is compared to single-objective optimization by con-

sidering solutions at the edge of the approximate Pareto front. For instance, the

solution with minimum delay from the Pareto front represents the traffic signal

timing plan with minimum delay and the best possible compromise with regard to

the number of stops. The quality of this solution is compared to that from a pure

delay-minimization strategy. The mean of the solution with minimum delay from

each Pareto front over the 20 optimization runs of NSGA-II is given in Table 17.6.

The sample mean of the minimum delay solution from the 20 optimization runs of

Real CHC are also given. In addition, the corresponding number of stops associated

with these minimum delay solutions are averaged over each of the 20 optimization

runs and are also presented. The relative improvement/degradation in delay and the
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Table 17.5 Comparison of NSGA-II with Different Choices of Population Size N

Network F Sample Mean of Hypervolume p Value (%)

N5 60 N5 80 N5 100 N5 120 N5 140

Arterial undersaturated 10,000 59.14 60.15 58.40 59.04 58.72 84.92

Arterial undersaturated 20,000 60.19 61.32 61.20 62.00 63.35 40.84

Arterial oversaturated 10,000 980.16 993.41 1006.99 965.51 974.23 12.00

Arterial oversaturated 20,000 994.89 1014.42 1046.66 1019.81 1025.61 24.98

Grid undersaturated 10,000 15.99 16.32 16.23 15.77 15.06 0.00

Grid undersaturated 20,000 16.27 16.84 17.09 17.23 16.99 0.03

Grid oversaturated 10,000 137.73 139.07 138.35 137.44 129.16 0.17

Grid oversaturated 20,000 141.66 146.06 150.03 153.61 153.32 1.49



Table 17.6 Comparison of NSGA-II with Real CHC Using Delay Minimization

Network F Sample Mean of Delay (s/vehicle) Sample Mean of Corresponding

Number of Stops (per vehicle)

Relative Improvement

Using NSGA- II

Real CHC Minimum Delay Solution

from NSGA-II

Real CHC Minimum Delay Solution

from NSGA-II

Delay (%) Stops (%)

Arterial undersaturated 10,000 37.65 40.39 1.29 1.21 27 6

Arterial undersaturated 20,000 37.20 39.81 1.28 1.18 27 8

Arterial oversaturated 10,000 133.58 136.33 1.29 1.15 22 11

Arterial oversaturated 20,000 133.36 134.43 1.29 1.09 21 16

Grid undersaturated 10,000 35.76 36.21 1.36 1.24 21 9

Grid undersaturated 20,000 35.48 35.61 1.35 1.22 0 9

Grid oversaturated 10,000 106.16 108.92 1.42 1.21 23 15

Grid oversaturated 20,000 103.39 106.84 1.39 1.19 23 14



number of stops using the multiobjective optimization relative to single-objective

optimization is also given.

We find that in all cases, the sample mean of delay is marginally higher with mul-

tiobjective optimization. Applying a two-sample t-test, we find that the difference is

statistically insignificant for the arterial network in oversaturated conditions when

F5 20,000 (p value5 32.81%) and for the grid network in undersaturated condi-

tions for both F5 10,000 (p value5 9.68%) and F5 20,000 (p value5 59.7%). The

degradation in the minimum delay solution is only practically significant for the

arterial network in undersaturated conditions. However, in all cases, the multiobjec-

tive optimizer produces substantial improvements in the associated number of stops.

These improvements are highly statistically significant in all cases (p value

,0.02%) and improvements of up to 16% are achieved. The improvement in the

associated number of stops is larger in oversaturated conditions.

A similar exercise is performed by comparing the solution with the minimal

number of stops from the Pareto front with single-objective optimization that tar-

gets the minimization of the number of stops. Results are given in Table 17.7. The

mean delays associated with the solutions with a minimal number of stops are also

given, along with the relative improvement/degradation in delay and the number of

stops using the multiobjective optimization.

Comparing Table 17.6 and Table 17.7, we find that the minimization of the

number of stops produces a relatively poor compromise with respect to delay, par-

ticularly when single-objective optimization is used. Furthermore, since the mea-

surement of the number of stops is based on partial stops, the number of stops can

be lower in oversaturated conditions due to vehicles traveling at lower speeds.

From Table 17.7, we find that the sample mean of the number of stops with multi-

objective optimization is marginally higher in all cases. The differences are statistically

insignificant for the arterial network in oversaturated conditions. The multiobjective

optimizer produces improvements of up to 82% in the associated delay when minimiz-

ing stops relative to single-objective optimization. The improvements in the associated

value of delay are highly statistically significant in all cases and larger in oversaturated

conditions.

Therefore, multiobjective optimization is able to produce solutions of a similar

quality to those from single-objective optimization, while simultaneously improv-

ing the quality of the competing objective.

17.5.3 Trade-Off Between Delay and Stops

The attainment surfaces from the 20 optimization runs of NSGA-II at F5 20,000

are given in Figure 17.10.

Starting from a minimum delay solution, the number of stops can be reduced at

the cost of increasing delay. Table 17.8 presents a numerical quantification of this

trade-off, where reductions in the number of stops (relative to the number of stops

associated with the minimum delay solution) by increasing delay (relative to mini-

mum delay) are given.
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Table 17.7 Comparison of NSGA-II with Real CHC When Minimizing the Number of Stops

Network F Sample Mean of Number of Stops

(per vehicle)

Sample Mean of Delay (s/vehicle) Relative Improvement

Using NSGA- II

Real CHC Minimum Delay Solution

from NSGA-II

Real CHC Minimum Delay Solution

from NSGA-II

Stops (%) Delay (%)

Arterial undersaturated 10,000 1.02 1.09 169.24 51.16 27 70

Arterial undersaturated 20,000 1.01 1.08 178.22 50.28 27 72

Arterial oversaturated 10,000 0.87 0.91 1188.91 222.43 24 81

Arterial oversaturated 20,000 0.86 0.88 1177.63 209.17 22 82

Grid undersaturated 10,000 1.13 1.17 55.06 43.22 23 22

Grid undersaturated 20,000 1.12 1.15 55.32 43.43 22 21

Grid oversaturated 10,000 0.96 1.09 320.03 132.54 213 59

Grid oversaturated 20,000 0.95 1.05 312.07 128.28 210 59



From this table, we find that increases in delay provide progressively smaller

reductions in stops. Thus, for a signal timing exercise where delay minimization is

a primary objective, it may be feasible to further reduce the number of stops by

only a small margin. On the other hand, for applications where the number of stops

is of greater importance, it is possible to obtain large reductions in delay at the cost

of a small increase in the number of stops. Furthermore, sacrifices in delay produce

larger relative reductions in stops in oversaturated conditions.

17.5.4 Role of Signal Timing Variables in the Trade-Off Between Delay
and Stops

In this section, we look at how signal timing plans are adjusted by the multiobjec-

tive optimizer to generate solutions along the Pareto front. This is achieved by plot-

ting the signal timing variables against delay for each Pareto-optimal point in the

20 multiobjective optimization runs performed for F5 20,000. Cycle lengths, green

splits, and signal phasing are considered in turn.

Cycle Length

Cycle length is plotted against delay in Figure 17.11.
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Figure 17.10 Attainment surfaces from 20 optimization runs of best variant of NSGA-II.

410 Metaheuristics in Water, Geotechnical and Transport Engineering



We find that lower delay solutions use the shorter cycle lengths. Since we are con-

sidering signal timing plans on the Pareto front, increases in delay are accompanied

by reductions in the number of stops. Thus, solutions with a smaller number of stops

(and larger delay) are obtained by increasing the cycle length. This is a consequence

of the well-known result that the cycle length that minimizes the number of stops is

larger than the cycle length that minimizes delay. Within the set of Pareto-optimal

solutions, the relationship between delay and cycle length is approximately linear.

Green Splits

The proportion of green time allocated to cross-street movements, averaged over

the nine signals in the arterial network, is plotted against delay in Figure 17.12.

With the majority of traffic flowing along the arterial network, the average pro-

portion of cross-street green time allocated is less than 50% for all points in the

Pareto-optimal set. From the figure, we find that stops are reduced by reducing the

Table 17.8 Trade-Off Between Delay and Stops

Relative Increase

in Delay (%)

Relative Reduction in the Number of Stops

Test Network

Arterial

Undersaturated

(%)

Arterial

Oversaturated

(%)

Grid

Undersaturated

(%)

Grid

Oversaturated

(%)

0 0.00 0.00 0.00 0.00

1 0.00 4.45 3.04 1.63

2 1.97 4.96 4.01 4.16

3 2.32 7.58 4.74 5.05

4 4.87 10.01 5.28 6.25

5 4.97 10.97 5.81 7.31

6 5.94 10.97 5.81 8.80

7 6.50 11.51 5.81 9.79

8 6.89 12.51 6.03 10.26

9 7.30 12.76 6.34 11.15

10 7.99 12.93 6.86 11.34

11 8.13 13.58 6.86 11.66

12 8.23 14.49 6.88 12.05

13 9.77 14.49 7.17 12.05

14 9.91 14.93 7.38 12.05

15 10.14 14.93 7.47 12.24

16 10.61 14.97 7.51 12.24

17 10.64 14.97 8.65 12.24

18 11.12 15.53 8.75 12.27

19 11.87 15.53 8.75 12.27

20 11.87 16.14 8.75 12.35
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proportion of cross-street green time and increasing the proportion of green time to

arterial movements at the cost of increasing delay. Given that the bulk of traffic

eventually flows on the arterial network, it seems sensible that an increase in the

proportion of green time for arterial movements will reduce the incidence of

repeated stops. Even though the reduction in cross-street green time will increase the

number of stops for vehicles originating at cross-streets, many of these vehicles turn

into the arterial network and subsequently benefit from the reduced incidence of

repeated stops along the network. Thus, reductions in cross-street green time result
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Figure 17.12 Delay versus average proportion of cross-street green time in the arterial

network.
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Figure 17.11 Delay versus cycle length.
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in a reduction in the overall number of stops. However, it appears that the resulting

increase in delay for cross-street movements at their first encounter of a traffic signal

outweighs the reduction in delay experienced along arterial links due to an increase

in proportion of green time to arterial movements. The net effect of reducing the

proportion of cross-street green time is an increase in network wide average delay.

Phasing

A composite measure of the degree of multiple phase operation is obtained by sum-

ming the number of phases for all signals and subtracting two for each signal. This

gives the number of additional phases over and above two-phase control. For exam-

ple, if one signal is three phase and all others are two phase, the number of additional

phases is 1. The number of additional phases is plotted against delay in Figure 17.13.

Aside from the grid network in undersaturated conditions, lower delay solutions

tend to use two-phase signal operation at all signals. In order to decrease the num-

ber of stops, multiple phases are required (at the cost of increased delay).

17.6 Conclusion

This chapter has examined minimization of delay and the number of stops in fixed-

time traffic signal networks using the heuristic multiobjective optimizer NSGA-II.
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Figure 17.13 Number of additional phases versus delay.
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On large signalized networks, an adequate approximation of the Pareto-optimal

trade-off surface can be obtained by examining 20,000 signal timing plans. NSGA-

II is found to be most efficient when using a real encoding of the signal timing vari-

ables with blend crossover. Uniform selection using reproduction without mutation

is preferable to tournament selection with mutation. Optimization performance is

robust for a population size of 100.

When compared to a single-objective delay-minimization strategy, the multiobjec-

tive optimizer is able to produce solutions with similar delay and a smaller associated

number of stops. The reductions in the number of stops using the multiobjective opti-

mizer are between 6% and 16% on the test networks considered relative to a pure

delay-minimization strategy. The benefits with multiobjective optimization over single-

objective optimization are greater in oversaturated conditions. The set of Pareto-optimal

solutions generated by multiobjective optimization provide the traffic engineer with an

entire set of trade-off solutions. Trading delay in favor of reducing the number of stops

is found to become increasingly more costly as more delay is sacrificed. Sacrificing

delay so as to reduce the number of stops is more beneficial in oversaturated conditions.

The cycle length plays an important role in this trade-off, with longer cycle

lengths contributing to fewer stops and larger delays. In arterial networks, shifting

green time from cross-street movements to arterial movements reduces the number

of stops at the cost of increasing delay. The addition of protected turning phases

also reduces the number of stops while increasing delay.

Commercial signal timing software packages such as TRANSYT-7F (Hale, 2005)

and PASSER V (Chaudhary et al., 2002) have support for signal timing optimization

by GAs. These single-objective GAs can easily be extended to perform multiobjec-

tive optimization according to the approach suggested in this chapter. Although this

chapter has focused on delay and the number of stops, many of the findings can be

generalized for the case where other objectives are considered. For instance, the

optimal design of NSGA-II identified in this chapter was successfully applied to the

minimization of both overall delay and the extent of inequality in the distribution of

delay along different routes through the network (Kesur, 2010). Extension of the

work in this chapter for actuated traffic signal controllers should also be considered.
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18.1 Introduction

These days, the pollution increment and parking problems in urban areas are becom-

ing increasingly important around the world, having a direct relation with both private

and public transits. In this context, the bus-network design problem (BNDP) deals

with the task of finding a bus network that fulfills various conflicting objectives.

Therefore, for a proper design, it is necessary to consider the interests of several enti-

ties: the user, who is the passenger of the buses; the authorities that impose the system

regulations; and the operator of the lines (Ceder and Israeli, 1998; Deb et al., 2002).

These entities usually have different expectations that are generally confronted.

The BNDP, therefore, involves the determination of many aspects: routes, frequen-

cies, time schedules, fleet size, and number of employees (Bielli et al., 2002;

Bleuler et al., 2003). The whole process can be decomposed into several activities

(Deb et al., 2002). In particular, the design of a route for the determination of the

number of lines and paths, as well as the specification of line frequencies, comprise

the most important ones because their results are directly used to perform the subse-

quent activities. In this context, the initial crucial activity is to find the route’s design

as an arrangement of lines and routes. The second one is to define the frequencies

that vary according to the time of day (midday, midnight, rush hour, etc.) and the

synchronicity of transfers, fleet size, resources, and employees, which should

be assigned for each line. Together with these requirements, the BNDP involves the

optimization of many objectives, such as the maximization of the quality of the

service and the maximization of the benefit for the transport operator. The main

challenging edges of this problem lie on its NP-completeness (Deb, 2002) regarding

computational issues, economic and social interests, and technical difficulties.
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Furthermore, an extra hindrance is constituted by the need to consider temporal fea-

tures in order to build a realistic model of the problem.

In this work, we have focused on undertaking the BNDPs activities of line

scheduling and route design. Also, it is important to mention that the user and oper-

ator entities were given the same level of importance. In this context, the main con-

tribution of this work is constituted by the technique called elastic hybrid algorithm

(Elastic HA), which was carefully designed and implemented as a combination of a

Floyd�Warshall (WFI) algorithm (Fonseca and Fleming, 1993) and a multiobjec-

tive evolutionary algorithm (MOEA) (Gruttner et al., 2002; Zitzler et al., 2001)

with a simulation tool. The main idea behind the core procedure of the method is

that the individuals in the population of the EA are bus networks, and their fitness

values are calculated by simulating their behavior during a working day. This last

component, the simulation for the calculus of the fitness value of each bus network,

was included in order to proportion representative time-related elements, which are

necessary to carry off the dynamics of real scenarios with precision.

This chapter has been divided into five sections. Section 18.1 lays out a review

of the literature and background. In Section 18.2, the equations that are used to

model the entities that participate in the bus-network optimization problem are

introduced. Then, in Section 18.3, each stage of the hybrid procedure is presented:

the WFI algorithm and the hybrid algorithm (HA), which uses simulation to calcu-

late fitness values, are described, culminating with the presentation of the Elastic

HA as an integration of them. Section 18.4 describes experimental studies based on

a real-life case study, with the analysis of the results and of the influence of WFI in

the HA. Finally, Section 18.5 discusses the conclusions and outlines

some speculations about future work on this issue.

18.1.1 Literature Review

A reasonable design of a bus network entails the optimization of several conflicting

objectives under complex constraints. This feature characterizes our problem instance

as a multiobjective optimization problem (MOP). Different methods have been pro-

posed to solve some of the stages of the BNDP: mathematical optimization, heuristics

(Bleuler et al., 2003; Ceder and Israeli, 1998), and several metaheuristics like genetic

algorithms (GAs), ant colonies, simulated annealing (SA), and combinations of them

(Bielli et al., 2002; Bleuler et al., 2003; Olivera et al., 2008; Pattnaik et al., 1998).

The approaches based on mathematical optimization usually have rigorous problem

statements and a complete solution search space. However, these strategies may

be too sensitive to the different settings of certain design parameters (Bleuler et al.,

2003). Moreover, they also have drawbacks such as rapid convergence to a unique

solution, which is clearly not desired in the case of a MOP. The same happens with

traditional heuristic approaches like greedy algorithms, rollout algorithms, tabu search,

and SA (Zitzler and Künzli, 2004). Even more, these techniques usually obtain a local

optimal, a suboptimal, or a unique solution that satisfies a number of requirements,

thus their results are not global in most cases, or, worse, they are not even locally opti-

mal (Bielli et al., 2002). Finally, the biologically inspired metaheuristics like GAs are
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also used for solving the BNDP (Bleuler et al., 2003; Uur, 2008). The main advantage

of EA-based methods is that they can be used naturally to tackle MOPs, since they

work with a population of individuals; therefore, they yield a set of feasible solutions

instead of a single one. Also, it is easy to incorporate constraints into a solution-

searching EA process.

However, EAs used as stand-alone strategies have their shortcomings too.

They cannot guarantee that the optimal solution will be found, and in large-scale

problems, they need to search huge solution spaces with an associated high cost.

However, far too little attention has been paid to the stochastic process of arrival of

the passengers. Even more, whenever this issue is considered, the studies are

carried out in a very simplified manner and the formulation of the problem

is extremely elementary. Therefore, in order to attain better and more realistic

results, the tendency in the last decade has been to combine two or more metaheur-

istics with the objective of dealing with the limitations of the existing studies

(Zhao and Zeng, 2006). In this context, we have integrated several techniques, with

an MOEA as the core of the whole procedure, to solve the BNDP, considering

several issues related to the user. This algorithm was constructed after several

implementation stages. In the first stage, a prototype tested on a simple academic

case study was built on the base of the elitist nondominated sorting genetic algo-

rithm version II (NSGA-II) (Deb et al., 2002; Olivera et al., 2008; Olivera et al.,

2009). Later, a complete study based on the Platform and Programming Language

Independent Interface for Search Algorithms (PISA) platform (Bleuler et al., 2003)

was carried out in order to decide whether the NSGA-II, strength Pareto evolution-

ary algorithm 2 (SPEA2; Zitzler et al., 2001) or indicator-based evolutionary algo-

rithm (IBEA; Zitzler and Künzli, 2004) was the best MOEA (Olivera et al., 2008)

to use. As a result of this study, SPEA2 turned out to be the most suitable method,

and therefore, the whole hybrid procedure presented in this chapter was constructed

on the base of this evolutionary algorithm.

18.1.2 Background

In this section, relevant concepts about the bus-network design and the HA used

for its treatment are introduced.

Bus-Network Design

Ceder and Wilson (1986) established the general planning of the transit network

scheduling problem into five stages: network design, frequency setting,

timetable development, bus scheduling, and driver scheduling. In this chapter, we

focus on network design and bus scheduling, considering both entities (user and

operators) to be at the same level of importance. The goal in the network design is

to define a set of bus routes in a particular area, each route being determined by a

sequence of bus stops. The purpose of bus scheduling is to obtain a feasible

sequence of line runs (also called bus service), thereby determining the number of

buses required for the considered period, usually one day.
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Every day, thousands of people cross cities for different reasons. A proper

scheduling of public urban transportation (and in particular, of the bus network)

gives the user an interesting alternative to private transportation. For the treatment

of the bus-network design, it is necessary to consider two entities with conflicting

objectives: the user of the bus and the operator of the network. A bus has a capac-

ity and a frequency, it has a route (or line) to follow, and this route is shown in a

map of a city. The points of the route where the bus must stop are the bus stops of

a given line. If two lines have a common bus stop, it is called a transfer point.

All the routes in a map create the bus network.

Multiobjective Optimization

The multiobjective optimization refers to the optimization of more than one objec-

tive at the same time. Moreover, these objectives can be in conflict, i.e., the

improvement of an objective can provoke the detriment of the others. There exist

several strategies to deal with multiobjective problems. In this chapter, we use

“inside” our hybrid algorithm the SPEA2 proposes by Zitzler et al. (2001). The

idea of this technique is to find an approximation of the Pareto optimal set.

Pareto Optimal Set
When we talk about several objectives, the notion of optimum changes because in

multiobjective problems, the aim is to find good compromises rather than a single

solution as in global optimization. In the case of bus-network design, both the user

of the bus network and the operator of the service have different, conflicting objec-

tives. The users want to arrive to their destinations quickly, as well as having the

option of several lines and a high frequency of bus arrivals. On the other hand, the

operators need to reduce the cost of maintaining the lines and buses. A solution to

a problem like this is said to “Pareto-dominate” another one if it is no worse in all

objectives and provides an improvement in at least one objective. The set of all

solutions that are not dominated is called the Pareto optimal set.

Strength Pareto Evolutionary Algorithm 2
SPEA2 (Ziztler et al., 2002) is a revised version of SPEA that incorporates three

new features: First is a fine-grained fitness assignment strategy, which takes into

account for each individual the number of individuals that dominate it and the num-

ber of individuals that it dominates. Second, it uses a nearest-neighbor density esti-

mation technique to guide the search; and third, it has an enhanced archive

truncation method that guarantees the preservation of the boundary solutions.

The SPEA2 uses this external archive to preserve nondominated solutions that

were previously found. At each generation, nondominated individuals are copied to

the external set.

The Pareto dominance is used to ensure that solutions are in the Pareto optimal

set. The whole procedure is explained in Section 18.3.2.
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18.2 The Main Entities of the BNDP: The Operator and the
User

In order to optimize the BNDP, the objectives associated to the main entities of the

problem are based on the model proposed by Gruttner et al. (2002). The equations

associated with the operator can be expressed as follows:

XM
L51

FOL 5
XM
L51

ðIOL 2COLÞ ð18:1Þ

IOL 5AFLTL ð18:2Þ

COL 5DLKL ð18:3Þ

where AFL is the total client influx for line L, TL is the price for a journey in

line L, DL is the travel distance for each line L, and KL is the unitary operative cost

of operation per kilometer for line L. In Eq. (18.1), FOL corresponds to the eco-

nomic benefit of the operator. Equation (18.2) represents the total income for line

L (IOL), taking into account the total influx for L (AFL) and the price per trip in

line L (TL). In contrast, Eq. (18.3) represents the cost (COL) that the operator has to

assume, considering traveling distance (DL) and the unitary operative cost per kilo-

meter (KL). In order to model the dynamic influence of clients, access, wait, and

journey times associated with the bus-network services are defined. The access

time ðtAij Þ is defined as the time used by the user to get into the bus once the bus

has arrived. The wait time ðtWij Þ is calculated as the period of time between the

user’s arrival to the bus stop and the bus’s arrival. The period of time that the user

is traveling inside the bus is called the journey time ðtJijÞ; calculated as follows:

XM
L51

FUL 5
XM
L51

XN
i51

XN
j51

ðδtAijL 1 tWijL 1 ηtJijLÞVSTijLVijL ð18:4Þ

where VSTijL is the subjective value for the time that employs line L to travel

between each origin�destiny (OD) (i,j) pair, VijL is the number of journeys for

each pair (i,j) that employs line L, tAijL is the access time for line L, tJijL is the jour-

ney time for line L, tWijL is the waiting time for line L, and δ and η are the relative

weights between access time and waiting time with respect to the journey time.

In Eq. (18.4), FUL represents the cost related to transporting a client in line L.

The customer’s cost FUL considers the access time and the queue for line L.

From the formulation of these equations arises the need to model the attribute of

time. For this reason, as several variables are time-dependent, their estimation will

be explained in the context of the simulation procedure performed during the evalu-

ation of the fitness function in the EA that constitutes the core of the new strategy.
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18.3 Hybrid Method for Stochastic Bus-Network Design

In this section, the complete architecture of a method designed to solve the BNDP

is presented. The main stages of the method comprise the initialization, which

constitutes the estimation of the paths between each pair of bus stops and the corre-

sponding distance; and the core, which yields several entire bus networks.

The routes and distances from any pair of bus stops are defined by means of the

Floyd�Warshall method. Then, it is the turn of the multiobjective EA (Zitzler et al.,

2001), which is based on the SPEA2 and performs the most important task, assisted

by the simulation tool. Under a broad point of view, the individuals of the EA are

bus networks and their fitness values are calculated by simulating a working day for

each of them, considering the equations presented in the previous section. The gen-

eral layout of the whole procedure is depicted in Figure 18.1.

18.3.1 The Initialization: WFI Algorithm

The WFI algorithm (Floyd, 1962) calculates the different paths and distances

between every pair of bus stops, using a directed graph that corresponds to the map

of the city, where the weights represent the meters between each pair of nodes.

The WFI also maintains a matrix such that at iteration k, dij contains the shortest

path from bus stop i to bus stop j using nodes 1,. . .,k as intermediate nodes. After

the algorithm terminates, the shortest path between i and j is dij (Floyd, 1962).

Therefore, the results of this stage are the distances and the routes between every

bus stop in the map. The Elastic HA takes this information and uses it for the cal-

culus of the fitness function during the evolutionary stage, considering the topology

of the lines.

Figure 18.1 A general view of the Elastic HA.
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Algorithm 18.1. Floyd�Warshall

Require: M: Map with n Nodes

1: for ’ (i,j) A M, i 6¼ j do

2: dij’cij
3: end for

4: for i5 1 to n do

5: dij’N
6: end for

7: for j5 1 to n do

8: for i5 1 to n do
9: for k5 1 to n do

10: dik’min {dik, dij1 djk}

11: if dik. dij1 djkXi 6¼ j 6¼ k then

12: eik’j

13: end if

14: end for

15: end for

16: end for
17: return [dij] distances between i to j

18: return [eij] routes between i to j

Algorithm 18.1 gives some details of the implementation of the WFI. It is

important to note that this algorithm was chosen to be the first step of the Elastic

HA since after iteration k, dij is the shortest distance from i to j involving a subset

of nodes in {1,. . .,k} as intermediate nodes. The accomplishment of this property is

imperative in order to minimize the cost of operation of the lines and the time of

journey of the users in the BNDP.

18.3.2 The Core: EA

Several authors have shown that EAs succeed in obtaining suboptimal solutions for

NP-hard problems (Deb et al., 2002). The multiobjective EA proposed in this work is

based on the SPEA2. It starts from a randomly generated initial population, the dis-

tances between the bus stops obtained through the WFI, and a set of parameters. The

parameters are the following: (i) number of bus stops with concentrated demand; (ii)

information of each bus stop (position, time between arrivals); (iii) number of lines

(M); (iv) fee for traveling with each line L (TL); (v) unitary cost of operation per kilo-

meter for each line L (KL); (vi) starting nodes (BS); (vii) return nodes (BF); and (viii)

maximum capacity of buses (Cmax). As will be explained in detail later in this chapter,

the individuals of the population represent bus networks. Then, the EA evolves the

population until several satisfactory bus networks are achieved in the last generation.

The Individuals: Bus Networks

An individual represents a bus network by means of a set of lines. Each route of a line

is modeled by an ordered list of integers, starting from an initial bus stop BS and ending
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with a final bus stop BF. It is important to note that not all the integer strings constitute

feasible solutions. In this regard, restrictions related to the feasibility of individuals

will be defined according to set theory. Consider that L1,. . .,LM are the lines

represented by the individual x. A feasible solution for the BNDP should fulfill the fol-

lowing constraints:

1. The solution should contain the same number of routes as the amount of lines (M) that

were defined as input parameter of the algorithm:

x5 fL1; . . .; LMg ð18:5Þ

2. The network must be connected (Li and Lj are lines of x):

’Li’Lj; i 6¼ j ' a path between i and j ð18:6Þ

3. Every bus stop should be present on at least one of the lines:

fBSg [ fBIg [ fBFg5 fL1g [? [ fLMg ð18:7Þ

For the creation of the population, there are two types of maps that should be

considered: connected and disconnected. In the case of a connected map, the ini-

tialization is performed as follows. The bus stops on each line are determined from

those that constitute the sets of initial (BS), intermediate (BI), and final (BF) bus

stops. Each bus stop in each set has a probability of being chosen that is equal to 1

divided by the amount of elements in the corresponding set. Then, for every line in

the network, a random number between 1 and the amount of possible bus stops in

the set is generated. This first number, namely #BI, corresponds to the quantity of

bus stops that will be selected for that line. Then, #BI random numbers are gener-

ated in order to select the corresponding bus stops for the given line. This task is

repeated for each line. When this job has finished, Eqs. (18.5)�(18.7) are evalu-

ated. If some of them are not satisfied, then the individual is modified according to

some feasibility rules. For example, in the case where a line is not connected with

any other line (Eq. (18.6)), an intermediate bus stop is randomly selected from

another line and inserted into the disconnected one.

Whenever the map is disconnected, a matrix that contains information about the

directly connected bus stops is created and the following procedure is performed:

the bus stops in the set BF are ordered, a random bus stop bi from set BS is selected,

and a random number a is generated between 1 and #BI. The intermediate bus stop

ba is put behind bi. Then a random number between 1 and #BI and a random num-

ber L between 1 and #BI are generated. The matrix with the information about the

bus stops directly connected to ba is generated, the k bus stops in the matrix that

have the lowest cost per kilometer between ba and bk are found, and a probability

of acceptance is calculated that considers whether bk already is in another line (the

probability is 40%) or not (the probability is 60%). If bk is chosen, it is inserted

into the line and bk is the new ba. These steps are repeated until a bus stop does not
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have another bus stop to be chosen, or until the number of intermediate bus stop in

the line reaches L. Finally, a bus stop of BF is selected and inserted into the line L.

Design of the Fitness Function: FOL and FUL

From the modeling of the BNDP described earlier, two objectives arise: FOL

and FUL. Then, it is clear that two contradicting objectives have to be optimized;

therefore, there is not a single solution to the problem. Moreover, both objectives

(FOL and FUL) are equally important. For these reasons, the treatment of the

BNDP has to be tackled as an MOP from a multiobjective perspective. In this con-

text, the multiobjective problem can be formalized as the problem of finding a

decision variable x that minimizes the objective function presented in Eq. (18.8).

Hence, the solution set of the BNDP consists of all the decision vectors whose

objective values cannot be improved in one dimension without degrading the other:

f ðxÞ5 FO

FU

� �
ð18:8Þ

FOðxÞ5 1

11
PM

L51 FOL

ð18:9Þ

FUðxÞ5
XM
L51

FUL ð18:10Þ

Estimation of the Fitness Function: The Simulation

First, it is important to bear in mind that the simulation procedure that will be

explained in this section is performed for each individual of the population (i.e., each

bus network) in order to obtain its fitness value. The manner in which the simulation

is faced depends to a large extent on the optimization model built for the problem at

hand. For the formal BNDP treatment, it was necessary to apply simulation techniques

related to queue theory and access to resources. The static structure of a bus network

is basically composed of different routes, the operator’s fleets, the network users, and

the transfer points. It should be taken into account that a bus moves from the initial

stop to the final one, and then it travels back to the initial point. During the simulation,

each entity is associated with some information that should be obtained, so that this

information is later used to calculate the fitness function of the EA. For each user

modeled in the bus network, we are interested in its own waiting time ðtWijLÞ; trip time

ðtJijLÞ; access time ðtAijLÞ; destination node, and (in case the user is traveling) in which

bus is in. Each node keeps two lists: a list of clients who are queuing (i.e., waiting to

get into a mobile (there is a list for each line crossing that node)) and a list of the users

who will arrive at that stop. It also stores information on the number of users that

arrived to this center (VijL). The line’s attributes include a list of the nodes the line
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goes through, its fleet, and the total influx of trips (AFL). Finally, each mobile has

information about the point it is on, the next node, the current capacity (CA), the maxi-

mum capacity (CM), and the present clock (t
Now).

The simulation time progresses in a discrete and synchronic way. For our prob-

lem instance, the planned event that advances the clock is the arrival of a mobile to

a node. Before effectively beginning the simulation for a mobile’s working day, the

arrival of each client to the respective transfer centers is generated, and the arrivals

are put on the customers’ list that will potentially arrive to the stop.

The simulation begins by generating each mobile’s arrival to its route’s initial

point. The simulation clock advances to the first arrival of the first transport of the

fleet. Two lists are updated: the list of clients that arrived at the node and the list of

clients that will arrive later. Besides, the transport arrival to the next node is planned

considering the present clock and the distance that has been traveled, which

was obtained through the WFI algorithm. The following attributes are updated: those

that belong to the lines (AFL, VijL), to the user ðtWijL; tJijL; tAijLÞ; and to the transport

(CA, t
Now). In this way, the clock moves forward until the simulation is over.

18.3.3 Evolutionary Operators

Crossover

A variation of the two-point crossover operator (OX) was adopted for this problem.

It is interesting to point out that the one-point approach yielded unsatisfactory

results since the children’s fitness value became lower than their parents’.

The crossover method implemented for our technique works in the following man-

ner: The operator selects two edges for each route of each parent. By using the

constraints defined in Eqs. (18.5)�(18.7), the algorithm detects unfeasible indivi-

duals in order to keep feasible individuals in the population. When the crossover

produces unfeasible children, they are discarded and new cut points for their par-

ents are selected.

For example, suppose that the first parent’s routes are as follows: Line 1:

1�5�14�15�24�26�34�35�36; Line 2: 2�6�13�16�23�25�33�37; Line 3:

2�7�12�11�17�23�27�32�38; Line 4: 3�8�11�18�22�28�29�30�40;
Line 5: 4�9�10�20�19�21�29�31�39 (Figure 18.2). The second parent’s

routes are as follows: Line 1: 1�5�14�16�15�24�26�34�35�37; Line 2:

2�7�6�13�16�25�33�36; Line 3: 3�12�17�23�27�33�32�38; Line 4:

3�8�11�18�23�22�28�30�40; Line 5: 4�8�9�10�20�19�21�29�31�39
(Figure 18.3). For the first child (Figure 18.4), the algorithm picks the first half of

each line of the first parent (Line 1: 15�24; Line 2: 23�25�; Line 3: 11�17; Line
4: 18�22�28; Line 5: 20�19�21�29), and they are connected to the final part of

the second parent (Line 1: 26�34�35�37; Line 2: 36; Line 3: 33�32�38; Line 4:

30�40; Line 5: 21�29�31�39). Likewise, the first portion of the second parent

(Line 1: 1�5�14; Line 2: 2�7�6�13; Line 3: 3�12; Line 4: 3�8�11; Line 5:

4�8�9�10) is connected to the final part of the first parent (Line 1: 25; Line 2:
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16�23; Line 3: 23�27; Line 4: 29; Line 5: �). This operator was inspired by the

OX operator designed for the traveling salesman problem (Uur, 2008).

Mutation

As far as mutation is concerned, the children have two options: edge mutation

(Figure 18.5) or bus stop mutation (Figure 18.6). Edge mutation randomly chooses

two edges from two different routes and inverts them (Figure 18.7). On the other

hand, with bus stop mutation, there are two alternatives: the insertion of a randomly

selected node into another route or the inclusion of a randomly selected node into

the same route (Figure 18.8). In both cases, if the resulting individual is unfeasible,

it is discarded. Then, the original individual is mutated again until a feasible

individual is obtained. In the worst case, the mutated child has the same structure

Figure 18.2 Parent 1.

Figure 18.3 Parent 2.
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of the original child. It is important to note that eventually, the mutation always

finds a feasible individual.

18.3.4 Floyd�Warshall1 SPEA2 3 SIMULATION5 Elastic HA

In this section, we will explain how all the aforementioned pieces are assembled in the

Elastic HA. First, starting from the map of the city, the WFI algorithm calculates the

different paths and distances between every pair of bus stops. Then, based on the new

map yielded by the Floyd�Warshall stage, a random population of feasible bus net-

works is built. Later, in order to evaluate the fitness of the individuals in the population,

Figure 18.4 Child.

Figure 18.5 Selection of edges for edge mutation (o).
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it is necessary to calculate the value of each of the objectives, FOL and FUL. For this

aim, the algorithm simulates a day of work of the lines represented by each of the

individuals, and returns the values of all of the variables involved in those equations

shown in Mutation section. With regard to the other features of the evolutionary pro-

cess, it is well known that SPEA2 is a revised version of SPEA. SPEA2 uses an exter-

nal archive containing nondominated solutions previously found, the so-called external

nondominated set. At each generation, nondominated individuals are copied to the

external set. For each individual in this external set, a strength value is computed.

SPEA2 has a fine-grained fitness assignment strategy that takes into account, for each

individual, the number of individuals that dominate it and the number of individuals

that it dominates. Then, it uses a nearest density estimation technique for guiding

Figure 18.6 Random selection of bus stops in an individual instance.

Figure 18.7 Edge mutation.
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the search. Finally, it also has an enhanced archive truncation method that guarantees

the preservation of boundary solutions.

In Algorithm 18.2, we show a simplified pseudocode of the whole procedure.

Furthermore, in this section, a short complexity analysis of the algorithm will be

presented. The initialization algorithm is executed only once at the beginning of

the Elastic HA, with an execution time in the O(nodes3) (Floyd, 1962; Olivera

et al., 2008) being equal to the number of nodes of the map. Concerning the fitness

assignment scheme of SPEA2, each individual is assigned a fitness that is calcu-

lated on the basis of the number of solutions that dominate it. In order to build the

next generation, SPEA2 combines the offspring with the current population.

Subsequently, the best individuals are chosen and the archive incorporates the non-

dominated solutions. For diversity preservation, SPEA2 uses a truncation procedure

that requires a computational complexity of O((N1N0)2log(N1N0)), where N is

the population size and N0 is the archive population size. The simulation takes

O(NM) for a population with a size equal to N, with each individual representing a

bus network with M lines.

In g generations, the entire time of the EA is O(g(N1N0)2). The whole proce-

dure takes O(nodes3), considering that, in a real city, nodes is always larger than N.

18.4 Practical Experience

In this section, the experimental assessment of the new method will be presented. In

the first case, the BNDP was studied in the context of a hypothetical city consisting

of 100 nodes. The results of this experimental phase were compared with those

reported in Olivera et al. (2008), which constituted the first prototype of the tech-

nique developed for a simplified version of the BNDP. The second case study, a tra-

ditional benchmark, is a Swiss city described by Mandl in 1980 with 15 bus stops

Figure 18.8 Bus stop mutation.
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and, in this case, the comparison was performed against two other methods: the tech-

nique presented by Mandl (1980) and the one introduced in Baaj and Mahmassani

(1995).

Algorithm 18.2. Elastic HA

Require: M: Map; BS, BF, BI: set of bus stops

Require: g: integer (g is the number of generations)

Require: N : integer (N is the number of individuals in the population)

1: Floyd�Warshall(M, BS, BF, BI)

2: Generate random population P0

3: Create empty external set N0

4: for xAP0 do

5: for ' line L do

6: simulate(AFL, TL, DL, KL, t
A
ijL; t

J
ijL; t

W
ijL)

7: end for

8: Evaluate Objective FO and FU for each individual x in Qi

9: end for

10: Copy all individual evaluating to nondominated vector P0 and N0 to N0

11: Use the truncation operator to remove elements from E0 when capacity of

the file has been extended

12: if capacity (N0). limitCapacity then

13: Use dominated individuals in P0 to fill N0

14: end if

15: Parents Binary Tournament selection

16: Q0’Crossover (Parents)

17: Mutation (Q0)

18: for i5 0 to g2 1 do

19: for xAQi do

20: for ' line L do

21: simulate(AFL, TL, DL, KL, t
A
ijL; t

J
ijL; t

W
ijL)

22: end for

23: Evaluate Objective FO and FU for each individual x in Qi

24: end for

25: Copy all individual evaluating to nondominated vector Qi and N0 to N0

26: Use the truncation operator to remove elements from N0 when capacity

of the file has been extended

27: if capacity(N0). limitCapacity then

28: Use dominated individuals in Qi to fill N0

29: end if

30: Parents Binary Tournament selection(Qi1N0)
31: Qi’Crossover(Parents)

32: Mutation(Qi)

33: end for

34: return [AFL, TL, DL, KL]: set of real

35: return Pg
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18.4.1 Hypothetical City

The map of the hypothetical city used during the first experimental stage is repre-

sented with 100 nodes, 2 initial stops (BS), 6 intermediate stops (BI), and 2 final

stops (BF). Figure 18.9 shows the node layout and the positions of the stops on the

map. As it can be observed in this figure, BS5 (61,21) (circle), BF5 (70,40) (trian-

gle), and BI5 (17,42,48,65,83,89) (square). For the generation of the initial popula-

tion, the connected bus stop procedure was used. The main goal of this

experimental phase was to design the routes for two bus lines L0 and L1 with the

Elastic HA, and compare the results with those obtained by the algorithm Time

Dependent Hybrid Algorithm (TDHA), presented in (Olivera et al., 2008).

Some rules were established with regard to the BNDP. There is room for 25

people in each bus, so that is the maximum amount to be admitted. Only one time

frequency (the morning) was modeled, which is set at the beginning of the run of

the EA. The client arrivals and the corresponding destinations are arranged on a

table that constitutes the entry to the simulation phase. The bus arrivals at each

line’s initial stop are also stored on a table that is used during the simulation.

Figure 18.9 represents the nodes and bus stops with numbers, and the roads’ direc-

tions are shown with arrows. Table 18.1 shows the OD matrix between 6 a.m.

Figure 18.9 The hypothetical city.
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and 10 a.m., and Table 18.2 illustrates the parameters of the exponential distribu-

tion used for the arrival of passengers to the bus stops. The parameters that were

defined after several preliminary runs and remained fixed during the experimenta-

tion were the following. For the evolutionary stage, pop size5 100, PC5 0.9,

PM5 0.2; and for the simulation procedure, the bus frequency was 20 min.

A total of 20 runs of the TDHA and 20 runs of the Elastic HA were performed,

and the quality of the results regarding the operator’s and user’s perspectives was

analyzed. In Table 18.3, the outcomes yielded by the Elastic HA were compared

with those reported in Olivera et al. (2008). As can be seen mainly in the last

rows of this table, the waiting times and operative costs are represented, and the

nondominated individuals obtained by the new technique exhibit a better behavior

regarding both of the objectives being studied. The comparison is based on the

variables that characterize the quality of the transit-route network configurations

(Desaulniers and Hickman, 2007), such as percentages of trips with zero, one, or

more than one transfers, total travel time in a nondominated solution, and operation

cost. These differences are shown in the operation cost of services and average

length routes, and they reflect the positive influences of the Floyd�Warshall

method on the whole method. Furthermore, this information assesses the impor-

tance of an accurate initialization that also influences the price of the bus’s tax.

Table 18.1 Matrix OD—6 a.m. to 10 a.m.

Bus Stop 17 42 48 65 83 89

17 200 200 80 200 80

42 0 0 400 200 80 200

48 100 800 0 80 200 80

65 0 0 0 0 80 120

83 800 0 0 100 0 400

89 100 400 100 0 0 0

Table 18.2 α Parameter Arrival Distribution Probability—6 a.m. to 10 a.m.

Bus Stop 17 42 48 65 83 89

17 0.000000 0.833333 0.833333 0.333333 0.833333 0.333333

42 0.000000 0.000000 1.666667 0.833333 0.333333 0.833333

48 0.416667 3.333333 0.000000 0.333333 0.833333 0.333333

65 0.000000 0.000000 0.000000 0.000000 0.333333 0.500000

83 3.333333 0.000000 0.000000 0.416667 0.000000 1.666667

89 0.416667 1.666667 0.416667 0.000000 0.000000 0.000000
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18.4.2 The Swiss City

Mandl’s case study (Mandl, 1980) is presented in this section, and the results achieved

by the Elastic HA are reported and analyzed. The experiments were carried out con-

sidering the original map provided by Mandl, which constitutes a traditional bench-

mark in this research area. At this point, it is important to bear in mind the limitation

of the study performed in Mandl’s work, in the sense that they do not consider the

dynamics of the arrivals of the passengers to the bus stops. Therefore, for this experi-

ment, the arrivals were modeled with an exponential distribution in the context of the

OD matrix of Mandl’s case (Table 18.4). Moreover, an estimation of the capacity of

the buses was included for this experience. Finally, for the generation of the initial

population, the disconnected bus stop procedure was used. The map of the Swiss city

Table 18.3 The Hypothetical City’s Outcomes

Statistical Results THDA Elastic HA

% demand 0-transfer 80.36 80.14

% demand 1-transfer 19.64 19.86

% demand 11-transfer 0 0

% unsatisfied demand 0 0

Average total route length Line 0: 5230 Line 0: 3450

Line 1: 4360 Line 1: 3690

Average wait time for a user 4’ 35” 3’ 36”

Average operation cost 3572 m.u. 2745 m.u.

Table 18.4 Matrix OD for Mandl Instance

Bus Stops 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 400 200 60 80 150 75 75 30 160 30 25 35 0 0

1 400 0 50 120 20 180 90 90 15 130 20 10 10 5 0

2 200 50 0 40 60 180 90 90 15 45 20 10 10 5 0

3 60 120 40 0 50 100 50 50 15 240 40 25 10 5 0

4 80 20 60 50 0 50 25 25 10 120 20 15 5 0 0

5 150 180 180 100 50 0 100 100 30 880 60 15 15 10 0

6 75 90 90 50 25 100 0 50 15 440 35 10 10 5 0

7 75 90 90 50 25 100 50 0 15 440 35 10 10 5 0

8 30 15 15 15 10 30 15 15 0 140 20 5 0 0 0

9 160 130 45 240 120 880 440 440 140 0 600 250 500 200 0

10 30 20 20 40 20 60 35 35 20 600 0 75 95 15 0

11 25 10 10 25 15 15 10 10 5 250 75 0 70 0 0

12 35 10 10 10 5 15 10 10 0 500 95 70 0 45 0

13 0 5 5 5 0 10 5 5 0 200 15 0 45 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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provided by Mandl (1980) is represented with 15 bus stops (Figure 18.10). This map

shows the position of the stops and the travel times between the nodes.

The main goal of this experiment is to design the routes for three bus lines: L0,

L1, and L2. This number of lines was set on the basis that each bus has room for 20

people, which is the maximum amount to be admitted. Also, a day of trips with

one time frequency that is set at the beginning of the run was modeled. The client’s

arrivals and the corresponding destinations are arranged on a table that constitutes

the input of the simulation phase. The bus arrivals at each line’s initial stop are

also stored on a table that is used during the simulation.

During the experimentation, 20 runs of the Elastic HA with 200 generations for

the EA were performed. At this point, it is important to note that an average of 20

nondominated solutions was obtained after each execution of the EA. The para-

meters of each technique were as follows: for the EA, pop size5 100, PC5 0.9,

and PM5 0.2; and for the simulation, the bus frequency was 30 min.

Table 18.5 shows a comparison between Mandl’s method (Mandl, 1980), the

procedure in Baaj and Mahmassani (1995), and the Elastic HA. Mandl (1980) and

Figure 18.10 Mandl’s map of a

Swiss city.
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Baaj and Mahmassani (1995) was taken from Zhao and Zeng (2006). The compari-

son is based on the variables that traditionally characterize the quality of the tran-

sit-route network configurations, such as percentages of trips with zero, one, or

more than one transfers, total travel time in a nondominated solution, etc. These

variables are the same as those chosen for their examples by the referents in the

field (Desaulniers and Hickman, 2007). For each user that gets on the bus at stop i

and wants to get off at stop j, the number of transfers he or she has to make, in

order to go from i to j, must be reported. For this reason, all the simulated users

were classified in different rows of the table. If a user needs no transfer between

lines, the journey is called a 0-transfer trip. Similarly, when a user needs q transfers

between lines, the journey is called a q-transfer trip. Then, the transfer percentage

is calculated from the total amount of journeys that took place (see the first three

rows in Table 18.5). The value associated to the unsatisfied demand percentage

(shown in row 4 of Table 18.5) corresponds to the number of users who could not

reach their destinations as the simulation concluded. Therefore, from the informa-

tion provided by the table, it can be inferred that the best results were obtained

with the Elastic HA. Moreover, this method not only yields the best outcomes but

it is also the only one, to the best of our knowledge, that considers several time-

related issues that are relevant to the problem.

18.5 Conclusions and Future Research Work

In this chapter, we have introduced the Elastic HA to solve the BNDP, which inte-

grates three important procedures in an efficient manner: a WFI algorithm, an EA,

and a simulation strategy. The core of the algorithm is constituted by a MOEA, and

the simulation features are used in the calculus of the fitness function in order to

model the time-related aspects of the problem. The WFI algorithm works as the ini-

tialization of the entire method and plays a very important role in producing the final

results of the technique. The performance of the Elastic HA was assessed on the basis

of two different scenarios. In the first scenario, it was established that the magnitude

of the initialization stage and the influence of the distance of the travels in the user’s

and operator’s cost. In the second experiment, the Elastic HA was compared to two

Table 18.5 Mandl’s Outcomes

Elastic HA Results

Mean

Baaj and Mahmassani’s

Solution

Mandl’s

Solution

% 0-transfers 83.1 80.99 69.94

% 1-transfers 16.9 19.01 29.93

% 2-transfers 0 0 0.13

% demand

unsatisfied

0 0 0
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other salient techniques in a real-life case study that is especially accepted in the litera-

ture about BNDP. The evidence of the first stage of the experimentation suggests that

a high-quality initialization of the distances between the bus stops directly contributes

in a positive manner to the final line scheduling cost and user satisfaction, and this is

successfully achieved by the Elastic HA. Moreover, regarding the second experimen-

tal phase, the findings for the study of Mandl’s city clearly suggest that the new

method achieves better results compared to those obtained by two other significant

methods. In addition, these well-known methods do not consider the dynamic aspects

of the problem, which constitutes a major issue in the novel technique presented here.

This research has raised many questions that need further investigation. Mainly,

further work needs to be done with regard to the objectives of the problem. We pro-

pose analyzing the inclusion of a new objective related to the environmental influence

of the bus network in the microcenters of cities. Finally, it would be interesting to

assess the method in a city in Argentina, namely Bahı́a Blanca, which presents several

problems with regard to the BNDP.
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19 The Hybrid Method and its
Application to Smart Pavement
Management
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19.1 Introduction

A pavement management system (PMS) is a crucial system that aggregates inputs

such as distress, condition, and properties gathered from road surface inventory and

used for several goals, such as optimum network and project strategy selection,

enhancement level of serviceability and budget activities, and scheduling mainte-

nance with optimum benefits for entire networks and for projects specifically.

General tasks of PMS include inventorying and evaluating pavement conditions,

classification of networks, segmentation of roads, and maintenance scheduling.

However, the final decision made by humans and PMS propose several alternative

policies (Ismail et al., 2009). Data gathered based on visual or automatic methods

need special software to prepare and enhance to use in the mother PMS engine.

A golden PMS engine plays a crucial role in pavement maintenance and manage-

ment performance selection and analysis. Artificial intelligence (AI) is a branch of

computer science that attempts to replicate human intelligence and make it possible

to perceive, reason, and act on rules by autonomous engines (Luger and

Stubbelfield, 1993; Winston, 1992). AI methods cover a wide range of engineering

applications, such as game playing, speech recognition, computer vision, expert sys-

tems (ES), and civil engineering. The AI methods are used with increasing fre-

quency to solve problems in the civil domain. Based on computer models, AI

methods implemented and replaced our classic models of human reasoning. It uses

frames, rules, cases, and expectations (Alavi and Gandomi, 2011a, b; Gandomi and

Alavi, 2011; Gandomi et al., 2011a, b). Several studies have been done in the field

of pavement engineering based on AI methods (Alavi et al., 2011; Gandomi et al.,

2011a, b; Nejad and Zakeri, 2011a, b, c). Many researchers have looked into the

application of AI in the PMS (Flintsch, 2003).

In the area of pavement engineering, the domain of input of PMS inherently used

expert knowledge, and it has been straightforward to crystallize ambiguous and
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uncertainties (incomplete data). Uncertain, ambiguous, and incomplete inputs in

knowledge base call on all the AI methods to overcome these problems in subsystems

of PMS. These methods are used for condition assessment, evaluation, prediction

(performance, distress, and budget), need analysis, prioritization, and optimization

treatments. Because selection and furniture architects of AI methods are very impor-

tant for such unusual inputs to handle these types of tasks, the aggregating and design

of agents play a crucial role in the general performance of PMS. Hybrid method

(HM) in PMS is a complex collection of methods in the fields of pavement manage-

ment, pavement quantification, and distress detection and classification.

Several hybrid strategies have been proposed for promoting PMS to Smart PMS

(SPMS). Flexible agents which are provided by Hybrid AI systems can be used for

solving the problem. Generally, hybrid systems (HSs) made with intelligent meth-

ods will produce more robust agents in subsystems than traditional agents in PMS.

As in other fields of engineering, the hybrid agent is considered to be an effective

tool to solve complex problems, and indeed it is providing intelligence for huge

system. A PMS generally consists of several agents by different tasks, which can

separate into several subsystems. Every subsystem has a special task, and autono-

mous ability is a first-limited condition for this kind of subsystem.

Recently, in the field of PMS, and especially in evaluation and quantification,

multiresolution analysis such as wavelet analysis provides effective tools for vari-

able scales of pavement surface analysis and distress classification. Automatic

pavement diagnosis systems in the nondestructive testing world of detection and

classification of pavement distress (cracking) based on multiresolution methods is a

very good example of the performance of HSs in the heart of a subsystem.

Chen (2007) has stated that several fields are particularly attractive for platform

of AI individually and complex. These characteristics are uncertain, with ambigu-

ous and incomplete information, objective (numerical) and subjective (linguistic)

knowledge and information, verity of expert knowledge, large amounts of assets,

and several feasible treatments (Chen, 2007).

In this chapter, we first concentrate on the application of elements and architect

of HS which are mostly used for fault diagnosing and treatment selection. Complex

AI techniques have been discussed because they allow us to handle incomplete,

ambiguous, and huge data. Recently, many ES, fuzzy, and NN techniques have been

used in pavement domain for distress detection and classification. These algorithms

show various degrees of success. The image processing techniques, AI methods and

HS, will be introduced. This chapter presents basic theory of HM elements and sev-

eral of its application toward smart decision making in PMS. A quick overview of

the image processing techniques will be discussed in the multiresolution section.

19.2 Methodology

The HM is a combination of several intelligent methods which promotes the whole

system to a new smart one, HS.
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The main goal of HM is combining the advantages of different AI methods

within a single system. HM and its application in smart management in PMS is

a new vision of aggregation AI methods in the fields of automatic pavement

distress detection and classification. Several architect models are predicted for

HSs. The preliminary HSs usually integrate two intelligent methods, such as

(FL1NN), (NN1ES), (NN1NN), (ES1ES), (ES1 FL), and (FL1 FL)

(Figure 19.1).

However, recent applications tend toward hybrid integration containing two

or more intelligent technologies (Hatzilygeroudis and Prentzas, 2001, 2004;

Sahina et al., 2012). Sahina et al. (2012) offers a survey of current approaches

and applications that contains a review from 1988 to 2010; also, Liao (2005)

provides a review of ES methodologies and applications from 1995 to 2004

(Liao, 2003, 2005; Sahina et al., 2012). Robots and fast systems often need a

synergistic integration of the complementary agents into HSs. Some benefits of

hybridized agents in pavement distress detection and classification in smart

pavement management are tractability, robustness, low solution cost, and better

rapport with reality than other HSs. For example, while assessing the feasibility

of using the Fuzzy Type II method for threshold selection in automatic pave-

ment distress detection, because of the high degree of uncertainty in surface

cracking, it can be easily concluded that the ES had potential only in a hybrid-

ized version of Fuzzy Type II, not as a stand-alone solution. A combined HS

makes it possible to use for more complex problem such as pavement quantifi-

cation (Figure 19.2).

User-friendly and decision-support tools play important roles in the increasing

robustness of intelligent techniques in combined HSs. Generally, this complex

agent can handle uncertain, subjective, incomplete, ambiguous information; generate

knowledge by learning from examples and/or experts in self-healing learning; and

promote their performance as it is designed in the center of the PMS. Wavelet, ridge-

let, and curvelet fuzzy NNs and ES hybridization are possible modes for pavement

distress detection and classification (Figure 19.3).

Figure 19.1 General architect of HS.
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It is predictable that these kinds of tools can predominate smart pavement man-

agement in the near future. This section is organized as follows: In Section 19.2.1,

the theory and role of image processing methods in PMS are briefly reviewed.

In Section 19.2.2, the roles of AI methods in PMS and their combinations are

explained.

19.2.1 Image Processing and PMS

Inspection of pavement surface conditions is considered to be a foundation of

the highway PMS because decisions about pavement maintenance are made

based on inspection results. Pavement surface conditions are mostly determined

by manual or visual inspection. The simplest method is for human experts to

visually examine and evaluate the pavement. This approach, however, involves

high labor costs and produces unreliable and inconsistent results. Furthermore, it

Figure 19.2 General architect of a combined HS.

Figure 19.3 Multiresolution HS.
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exposes inspectors to dangerous working conditions on highways. To overcome

the limitations of the subjective visual evaluation process, several attempts have

been made to develop an automatic procedure to replace it. Most current sys-

tems use computer vision and image processing technologies to do this. Surveys

have revealed that operating costs decrease dramatically between manual and

automated methods for collecting data. In recent years, many efforts have been

made to develop a more automated pavement inspection system in both the

pavement image acquisition and the pavement image processing ( Chambon and

Moliard, 2011; Nejad and Zakeri, 2011a, b, c).

Generally speaking, most automated pavement inspection systems lies in

automated analysis and evaluation of pavement distress information (Chambon

and Moliard, 2011; Nejad and Zakeri, 2011a, b, c; Zhou, 2004; Zhou et al.,

2006). The currently existing systems are robust for with collecting pavement

images with distress. In this kind of management system, image processing is a

controversial issue. It includes distress detection and isolation, distress classifica-

tion, pavement condition quantification, image compression and noise reduction,

distress segmentation, and maintenance (Nejad and Zakeri, 2011b; Zhang et al.,

2006). Accurate and real-time information on their condition is necessary for

pavement evaluation and management. With a high-speed Charge-Coupled

Device (CCD) camera-based image-processing device, we can automatically

extract distress from an image and develop the information to characterize it.

Because a huge amount of data is expected to be collected, it is desirable that

initial screening of data is done to detect the existence of distress and isolate

the bad frames from the good ones. Due to the nonuniform background of pave-

ment distress, it is more difficult to find a certain threshold to segment distress

according to the traditional edge detection method (Brown, 2000; Chua and Xu,

1994; Nejad and Zakeri, 2011c).

Imaging techniques tend to result in images with poor contrast and relatively

high noise level. Image enhancement is crucial because it can help to improve the

quantity and quality of information on asphalt pavement distress. Conventional

image enhancement methods such as histogram equalization tend to amplify noise

and at the same time enhance the visibility of an object’s characteristics.

Considerable success has been achieved in the development of wavelet-transform

image enhancement algorithms with noise suppression (Brown, 2000; Candès,

1998; Candès and Donoho, 2000; Candès et al., 2006; Cheng et al., 2001; Claudio

and Jacob, 2003; Do and Vetterli, 2003a, b; Donoho, 2001; Donoho and Duncan,

2000; Farook and Gao, 2003; Laine et al., 1994; Nejad and Zakeri, 2011a, b, c;

Sattar et al., 1997; Shan et al., 2005; Starck et al., 1999; Wang et al., 2007; Zhang

et al., 2009a, b; Zong et al., 1996). Wavelets perform very well for objects with

point singularities, but their performance is not good for representing one-dimen-

sional singularities. As extension of the wavelet multiscale analysis framework, rid-

gelets and curvelets can effectively deal with such linear singularities in two-

dimensional signals (Candès, 1998; Do and Vetterli, 2003, b). Therefore, many

image enhancement algorithms used in ridgelet or curvelet domains develop rapidly

and achieve better enhancement results (Nejad and Zakeri, 2011a, b, c; Shan et al.,
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2005; Wang et al., 2007). Nejad and Zakeri (2011a, b, c) presented an automated

imaging system for fast detection and isolation of distress in asphalt pavement

images obtained by a pavement image acquisition system (PIAS). Classification of

distress in a PMS using shape or gray-level information proves to be a particularly

challenging task. This is due primarily to the changing shape of distress in a section

of pavement images and the gray-level intensity overlap in soft distress. Even so,

pavement without any distress is expected to have a consistent texture within

distress across multiple slices. This research focused on using multiresolution

texture analysis for the classification of distress from normal asphalt pavement.

It offers a comprehensive analysis of three forms of multiresolution analysis.

Texture features were computed from the following multiresolution transforms:

the Haar wavelet (Stollnitz et al., 1995), Daubechies wavelet, Coiflet wavelet

(Rajeev et al., 1997), ridgelet (Donoho, 2001), and curvelet transforms (Candès

et al., 2006; Starck et al., 1999). Multiresolution analysis (Cheng et al., 1999a;

Manjunath et al., 2000; Starck et al., 2003) have been successfully used in

image processing with the recent emergence of applications to texture classifica-

tion. Also, many methods have been proposed to detect and isolated pavement

distress (Nejad and Zakeri, 2011a, b, c).

In the field of soft computing, Cheng et al. (2001) used a neural network (NN)

to select a threshold for separating distress from the background. The main and

standard deviation were used as parameters to train the NN for threshold selection

(Cheng et al., 1999a, b; Nejad and Zakeri, 2011a). Cheng et al, 1999 also proposed

a fuzzy set theory to detect and segment cracks, based on the fact that crack pixels

are always darker than their surroundings. Many other methods have been pro-

posed, such as the Otsu method, the regression method, the relaxation method, and

the Kittler method. All these methods belong to two major categories: edge detec-

tion and thresholding. They all detect and segment distress in the space domain.

Due to circumstances such as different type of pavements or distress, different

lighting or weather conditions, and different external materials on pavement sur-

faces, pavement distress instances always have nonuniform backgrounds. It is diffi-

cult to find a certain threshold to detect and segment a distress according to

traditional edge detection or threshold methods (Nejad and Zakeri, 2011b; Zhou,

2004). Several studies have investigated the discriminating power of wavelet-based

features in various applications, including image compression (Mulcahy, 1997),

image denoising (Li, 2004), and classification of natural textures (Wan and Shi,

2007). Instead of detecting distress in the space domain, wavelet transform (WT) is

used to transform pavement images into the wavelet domain by Zhang et al.

(2006). Zhou and Jian (2004) proposed several distress detection and isolation cri-

teria based on wavelet coefficients in the high-frequency subbands of the wavelet

domain (Zhou, 2004; Zhou et al., 2006).

Recently, the finite ridgelet and curvelet transforms have emerged as a new mul-

tiresolution analysis tool. In recent years, the ridgelet transform has been used in

image contrast enhancement and image denoising (Do and Vetterli, 2003b).

Automatic ridgelet image enhancement algorithm for road crack image, based on

fuzzy entropy and fuzzy divergence, is done by Zhang et al. (2009a, b).
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Experimental results from this research show that an image enhancement algorithm

can effectively enhance the global and local contrast effects on road crack images.

To the authors’ knowledge, applications of ridgelets to texture classification have

been investigated only in the context of natural images (Mulcahy, 1997), and cur-

velet-based applications have been investigated only in the image representation of

astronomical images (Do and Vetterli, 2003b). Nejad and Zakeri, 2011a, b, c com-

pared pavement distress detection and isolation using features derived from the

wavelet, ridgelet, and curvelet transforms. This research shows clearly that curve-

let-based features outperform all other multiresolution techniques in pothole dis-

tress and ridgelet-based features outperform all other multiresolution techniques in

cracking distress, as well as other methods (Nejad and Zakeri, 2011a). The pave-

ment distress detection and isolation algorithm proposed in this chapter consists of

four main steps:

1. Segmentation of regions of interest from pavement images

2. Extraction of the most discriminative distress features

3. Creation of a classifier that automatically identifies the various distresses

4. Isolated distress are compressed and save to a distress database (DDB).

Finally, other images are thrown away.

Generally, in automatic pavement distress detection and isolation systems, the

overall goal is to develop a fast and robust model for distress detection and classifi-

cation toward smart management. In recent years, pavement image thresholding

plays a crucial role in automatic pavement distress detection and classification, and

researchers have paid more attention to this field.

Mainly, ordinary pavement image thresholding algorithms are the Ostu criteria,

iterative threshold, histogram and fuzzy thresholding method, etc. (Albert and Nii,

2008; Wan and Shi, 2007; Zhang et al., 2006). All of these image preprocessing

methods still suffer from the effects of noise when the images have lots of irregu-

larities present (Zhou et al., 2006), as is the case for asphalt concrete surface. Chua

and Xu, (1994) investigated the problem of pavement crack classification using

moment invariant and NNs. Mohajeri and Manning (1991), as part of a fully auto-

mated PMS, described a rule-based system that incorporates knowledge about indi-

vidual crack patterns and classifies by the process of elimination. In addition to

classifying cracking by type, it is capable of quantifying the crack severity with

parameters such as length, width, and area. Indeed, selecting an exact threshold

with high accuracy is very important (Mohajeri and Manning, 1991; Nejad and

Zakeri, 2011b, c).

Nallamothu and Wang (1996) proposed an artificial neural network (ANN) for

pattern recognition for pavement distress classification. Cheng et al. (1999a) used

the Hough transform to determine the type of the crack. Hsu et al. (2001) described

a moment invariant technique for feature extraction and an NN for crack classifica-

tion. The moment invariant technique reduces a two-dimensional image pattern

into feature vectors that characterize the image, such as translation, scale, and rota-

tion of an object in an image. After these features are extracted, the overall results

of this study were satisfactory and the classification accuracy of the introduced
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system was 85% (Nejad and Zakeri, 2011b, c). (Zhou, 2004 and Zhou et al., 2006)

used a two-step transformation method by wavelet and radon transform (RT) to

determine the type of the crack; that method is similar to the method proposed in

this research. Several statistical criteria are developed for distress detection and iso-

lation, which include the high-amplitude wavelet coefficient percentage (HAWCP),

the high-frequency energy percentage (HFEP), and the standard deviation (STD).

These criteria are tested on hundreds of pavement images differing by type, sever-

ity, and extent of distress. Experimental results demonstrate that the proposed crite-

ria are reliable for distress detection and isolation and that real-time distress

detection and screening is feasible; however, the proposed method still suffers from

the effects of noise, which are generated by an asphalt concrete surface (Nejad and

Zakeri, 2011a, b, c; Zhou, 2004; Zhou et al., 2006).

Nejad and Zakeri, 2011a, b, c used a new method for optimum feature extraction

based on the wavelet�radon (WR) transform and dynamic neural network

(DNN) for pavement distress classification. This research demonstrated that the

WR1DNN method can be used efficiently for fast automatic pavement distress

detection and classification. DNN threshold selection played a key role in the high

accuracy of the introduced method (Nejad and Zakeri, 2011b, c). The RT is applied

on the M, Horizontal, Vertical and Diagonal (MHVD) results at the third level since

the highest frequency components transformed into the wavelet coefficient in the

high-frequency subband at the third level. From previous research, it can be seen

that the high values of the wavelet modulus represent distress, while low values rep-

resent noise and background on the pavement surface (Zhou, 2004). When the RT is

applied to wavelet modulus, a crack is transformed into a peak in the radon domain

(Nejad and Zakeri, 2011b, c). Under some circumstances, the intensity of the back-

ground may be closed to the distress, and sometimes there can be some tiny, thin

crack. This property has a tangible effect on threshold selection. To solve this prob-

lem, a new approach is proposed by Nejad and Zakeri (2011a, b, c). Image enhance-

ment methods, the MHVD method, and then the RT are implemented. This

approach makes it much easier to search for peaks in the radon domain. For the

peak in the radon domain, we can use number, position, area, value, and volumes to

describe them and call the patterns of the peaks (Nejad and Zakeri, 2011b, c).

The numbers of the peak correspond to the numbers of cracks. So the numbers

can be used as one of the parameters of the NN to determine if there is a single

crack or multiple cracks (Nejad and Zakeri, 2011a, b, c). Figures 19.4 and 19.5

show the reconstructed image from binary wavelet images and developing a three-

dimensional radon transform (3DRT) from images by combination of the RT at

any direction. Figure 19.5 shows the binarization of 3DRT and pattern extraction;

the threshold of RT was modified by DTM (Nejad and Zakeri, 2011b, c). Despite

of DTM consequences, the outcome is not still flexible.

Radon Transform

The RT uses a set of projections through an image at different angles (Nejad and

Zakeri, 2011a, b, c). The RT can also be used for line detection. A technique for

446 Metaheuristics in Water, Geotechnical and Transport Engineering



using RT to reconstruct a map of polar regions in a planet using a spacecraft in a

polar orbit has also been devised (Nejad and Zakeri, 2011b, c). RT is based on the

parameterization of straight lines and the evaluation of integrals of an image along

these lines. Due to inherent properties of RT, it is a useful tool to capture the direc-

tional features of an image (Nejad and Zakeri, 2011b, c). The classical RT of a

two-variable function u is Ru defined on a family of straight lines. The value of Ru

on a given line is the integral of u along this line. Assuming that the line in the

plane (t,q) is represented as t5 τ1 pq, where p is the slope and τ is the offset of

the line. The RT of the function over this line will be given as

Ruðτ; pÞ5
ð1N
2N

uðτ1 pq; qÞdq ð19:1Þ

Figure 19.4 A reconstructed image from binary wavelet images and developing 3DRT.

Figure 19.5 Binarization of 3DRT and pattern extraction. The threshold of RT was

modified by Dynamic Threshold Method (DTM): (A) wavelet, (B) 3DRT, (C) DTM, and (D)

pattern.
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The RT of a two-dimensional function f(x,y) in (r,θ) plane is defined as

Rðr; θÞ½f ðx; yÞ�5
ð1N
2N

ð1N
2N

f ðx; yÞδðr2 x cos θ2 y sin θÞdx dy ð19:2Þ

where δ ( ) is the Dirac function, rA[2N,N] is the perpendicular distance of a

line from the origin, and θA[0,π] is the angle formed by the distance vector, as

shown in Figure 19.6.

A crack will be projected into a valley in the radon domain. The projection

direction is perpendicular to the orientation of the crack. The angle of projection,

which is the coordinate of the valley, can be used to determine the orientation of

the crack and classify the type of the crack (Zhou, 2004; Zhou et al., 2006). In this

approach, the type of the distresses can be classified by thresholding the value in

the radon domain, and the features from patterns can be extracted for training the

classification NN. The parameters of peaks are demonstrated in Figure 19.7.

Moghadas Nejad and Zakeri, (2011b) defined the semi-flexible threshold as a

DTM (Figure 19.7), which is defined as follows:

if RTF. 0 then T 5RTF1 else T 1RTF2 end ð19:3Þ

where, RTF1 and RTF2 are radon threshold function 1 and radon threshold function 2,

respectively, and T denotes the final threshold (Figure 19.8). If did not come out any

feature after using RTF1, this means that threshold should be pulled down by using

RTF2. (Nejad and Zakeri, 2011b). Generally, researchers tried to select a unique

threshold for the entire object, whereas the flexible threshold is more practical in

many applications. For promoting the performance of thresholding, the fuzzy flexible

threshold is introduced.

WT and New Production of NN

The wavelet neural network (WNN) is constructed based on the wavelet-transform

theory and is an alternative to feed-forward NN. Wavelet decomposition (Avci

et al., 2005b) is a powerful tool for nonstationary signal analysis. Let x(t) be a

piecewise continuous function. Wavelet decomposition allows one to decompose x(t)

Figure 19.6 The principles of RT.
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Figure 19.7 A peak in the radon domain and its parameters (Nejad and Zakeri, 2011a, b, c;

Zhou et al., 2006).

Figure 19.8 The DTM (Nejad and Zakeri, 2011b).

449The Hybrid Method and its Application to Smart Pavement Management



using a wavelet function Ψ: Rn!R. Based on the wavelet decomposition, the wave-

let network structure is defined by Avci and Turkoglu (2003), Avci et al. (2005a,

b), and Avci (2007) as follows:

yðxÞ5
XN
i51

WiΨ ½Diðx2 tiÞ�1 b ð19:4Þ

where Di are dilation vectors specifying the diagonal dilation matrices, Di, ti are

translation vectors, and the additional parameter b is introduced to help deal with

nonzero mean functions on finite domains. An algorithm of the back-propagation

type has been derived for adjusting the parameters of the WNN. Applications of

WNN in the medical field include the classification of coronary artery disease,

characteristics of heart valve prostheses, interpretation of the Doppler signals of

the heart valve diseases, classifying bio signals, and ECG segment classification.

Combination of wavelet and neural network can be used effectively to feature

extraction and selection. The WRNN is constructed based on the wavelet and RT

theory and is an alternative to feed-forward NNs. However, to date, WRNN pave-

ment distress classification is a new approach (Avci, 2007; Avci and Turkoglu,

2003; Avci et al., 2005a).

Discrete WTs and Applications in Pavement Distress Evaluation
Nowadays, most popular methods of texture analysis are multiresolution or multi-

channel analyses such as wavelet decomposition and Gabor filters (Candès, 1998).

Wavelet transform is superior to the Gabor transform, because its provides a true

and framework for the processing of a signal and an image at variety scale. (Zhang

et al., 2006; Zhou et al., 2006). Wavelet has several families, such as Daubechies 2

(D2), Haar (H), and Coiflet (C6; Rajeev et al., 1997; Stollnitz et al., 1995). The

Daubechies, Haar, and Coiflet families were considered since they differ substan-

tially in the number of adjacent pixels used to extract the wavelet coefficients,

from which the pavement distress features are derived. These three families were

investigated by Moghadas and Zakeri (2011) for their increasingly larger filters and

smoother windows (Nejad and Zakeri, 2011a, b, c). A continuous wavelet trans-

form (CWT) can decompose a signal or an image with a series of averaging and

differencing calculations. Wavelets compute average intensity properties, as well as

several detailed contrast levels distributed throughout the image. Wavelets can be

calculated according to various levels of resolution or blurring depending on how

many levels of averages are calculated. The general mother wavelet can be con-

structed from the following scaling ϕ(x) and wavelet functions ω(x) (Dettori and
Semlera, 2007):

ϕðxÞ5 1:414
X

gðkÞϕð2x2 kÞ ð19:5Þ

ωðxÞ5 1:414
X

hðkÞϕð2x2 kÞ ð19:6Þ
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where h(k)5�1kg(N2 12 k), and N is the number of scaling and wavelet coef-

ficients. The sets of scaling h(k) and wavelet g(k) function coefficients vary

depending on their corresponding wavelet bases. Wavelet representation of a signal

is as follows (Zhang et al., 2006; Zhou et al., 2006):

f ðxÞ5 22k
XN

n52N

½ f ðxÞ;[ð22kx2 lÞ�[ð22kx2 lÞ1 22k

1
XN

n52N

½ f ðxÞ;Ψð22kðx2 lÞ�Ψð22kx2 lÞ
ð19:7Þ

The approximation details are defined as follows:

AK 5 h f ðxÞ; 22k=2[ð22k[ð22kx2 lÞi5 22k=2

ð
f ðxÞ[ð22kx2 lÞdx ð19:8Þ

DK 5 h f ðxÞ; 22k=2Ψð22kΨð22kx2 lÞi5 22k=2

ð
f ðxÞΨð22kx2 lÞdx ð19:9Þ

For image decomposition and reconstruction, an image can be decomposed by

projecting the image in the space vk;WH
K ;W

L
K ; and WD

K :

fk21ðx; yÞ 5 22k
X
m;n

LLkðm; nÞ[ð22kx2mÞ[ð22ky2 nÞ

1 22k
X
m;n

HLkðm; nÞ[ð22kx2mÞΨð22ky2 nÞ

1 22k
X
m;n

LHkðm; nÞΨð22kx2mÞ[ð22ky2 nÞ

1 22k
X
m;n

HHkðm; nÞΨð22kx2mÞΨð22ky2 nÞ

ð19:10Þ

where LLk;HLk;LHk; and HHk are the orthogonal projections in the orthogonal

space of VK ;WH
K ;W

L
K ; and WD

K ; and they can be calculated by:

LLkði; jÞ5
X
m;n

lðm2 2iÞlðn2 2jÞLLk21ðm; nÞ ð19:11Þ

HLkði; jÞ5
X
m;n

hðm2 2iÞlðn2 2jÞLLk21ðm; nÞ ð19:12Þ

LHkði; jÞ5
X
m;n

lðm2 2iÞhðn2 2jÞLLk21ðm; nÞ ð19:13Þ

HHkði; jÞ5
X
m;n

hðm2 2iÞhðn2 2jÞLLk21ðm; nÞ ð19:14Þ
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For more details on these wavelet families, see Kara and Watsuji (2003),

Stollnitz et al. (1995), Rajeev et al. (1997), and Mulcahy (1997). The block diagram

for image decomposition algorithm is shown in Figure 19.9, where L and H are the

mirror filters.

There are several ways of generating a two-dimensional WT. The construction

of the digital filters differs mainly in their scaling and wavelet coefficients. Scaling

and wavelet function coefficients are characteristics of their particular families

(Starck et al., 1999). The Haar wavelet uses only two scaling and wavelet function

coefficients and calculates pairwise averages and differences. The Haar transform

uses nonoverlapping windows and reflects changes between adjacent pixel pairs.

The Daubechies wavelet with an order of two is used to decompose distress images

into three levels. A weighted average is computed over four pixels, resulting in a

smoother transform. These tests indicated that in general, the Daubechies wavelet

was preferable. The Coiflet wavelet uses six scaling and wavelet function coeffi-

cients. The Coiflet wavelet presents the same problem with filter size; the mirror

technique was also applied (Nejad and Zakeri, 2011b, c). Each of these wavelet fil-

ters could be applied multiple times to the averages (see C2 in Figure 19.10),

according to the desired level of resolution. In the following application, two levels

of resolution were extracted for each wavelet. At each resolution level, the wavelet

has three detailed coefficient matrices representing the vertical, horizontal, and

diagonal structures of the image. HLk, LHk, and HHk denote wavelet coefficients,

which are also called the details, in the high-frequency horizontal, vertical, and

diagonal subbands at level k. Distress, which is usually the high-

frequency component, is most likely transformed into high-amplitude wavelet coef-

ficients, and noise is transformed into low-amplitude wavelet coefficient in the

high-frequency subbands of HLk, LHk, and HHk (Zhou et al., 2006).

Generally, in good pavement images, their wavelet coefficients have a compact

histogram, and bad pavement images have a widely spread histogram. There are

many statistical parameters, such as the range, standard deviation, and moment to

describe the spread of the histogram at any subband. Three criteria of HAWCP,

Figure 19.9 Image decomposition by WTs (Nejad and Zakeri, 2011a, b, c; Zhou et al.,

2006).

452 Metaheuristics in Water, Geotechnical and Transport Engineering



HFEP, and STD are tested for pavement distress detection. The HAWCP threshold

for distress images selects 45 as a final value. HAWCP has a value between 0%

and 100%. The value 0% represents a good pavement surface and 100% represents

the worst pavement surface. It can be used as a measure of the extent of distress,

and therefore, it serves as a good criterion for distress detection and isolation

(Nejad and Zakeri, 2011a, b, c; Zhou, 2004; Zhou et al., 2006).

One of the best ways to measure the severity of distress based on wavelet coeffi-

cients is to calculate the energy of coefficient. Distresses are transformed into a

high-amplitude wavelet coefficient, which has higher energy than a low-amplitude

coefficient. HFEP also has a value between 0% and 100%, where 0% means a

perfect pavement surface and 100% means the worst pavement. The spread of the

histogram can be used to characterize the type, severity, and extent of the distress.

The STDs of the wavelet coefficients in the horizontal, vertical, and diagonal sub-

bands at the second level are calculated. The largest STD of the horizontal STDh,

vertical STDv, and diagonal STDd subband is chosen to present the STD of the

image. The groups of distress with close STD are similar to those grouped by

HFEP. STD is a good criterion for distress detection and isolation. Previous

research shows that HAWCP, HFEP, and STD are consistent for severe distress

(see Table 19.1; Nejad and Zakeri, 2011a, b, c; Zhou, 2004; Zhou et al., 2006).

In order to detect all distresses, three criteria are combined for final distress

detection and isolation. If any one of the three criteria detects the distress, the

image is regarded as a distress image and is saved in a DDB. Experimental results

demonstrated that the criteria used for distress detection and isolation are robust

(Nejad and Zakeri, 2011a, b, c; Zhou, 2004; Zhou et al., 2006). The corresponding

histograms of the horizontal, vertical, and diagonal wavelet coefficients at the first,

second, and third levels have been plotted in Figure 19.11. For good pavement

images, the wavelet coefficients have compact histograms, and for bad pavement

images, the wavelet coefficients have widely separated histograms (Nejad and

Zakeri, 2011b, c).

LL3

C2 W2,3

W1,3

W1,2W1,1

W2,1 W2,2

HL3

HL2

HL1

HH2

HH1

LH2

LH1

HH3LH3

Figure 19.10 Wavelet decomposition: W (resolution, direction) (Brown, 2000; Nejad and

Zakeri, 2011a, b, c; Zhou et al., 2006).
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Table 19.1 Criteria for Distress Detection and Isolation by the Wavelet Method (Nejad and

Zakeri, 2011a, b, c; Zhou, 2004; Zhou et al., 2006)

Criteria Formula What Is Measured?

HAWCP HAWCP5
PW=2

0

PL=2
0

D2ðp;qÞ3 4
W 3L

W and L are the width and length

of the image, and D2(p,q) is the

binarized wavelet modulus at

the second level.

HFEP HFEP5 12
PW=2k

p50

PL=2k
q50

LL2
kðp; qÞ=

PW
p50

PL
q50

I2ðm; nÞ
Here, I(m,n) is the intensity at a

pixel (m,n) of the original

pavement image. The width

and length of the kth level

subband are W/2k. HFEP can

be obtained by subtracting the

low-frequency energy

percentage from 1 because of

energy conservation. LLk(p,q)

are the wavelet coefficients in

the approximation subband.

STD STD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP1N

i52N
cðiÞ2 P1N

2N
cðiÞpðiÞ

� �2
pðiÞ

s
p(i) is the probability of the

wavelet coefficient c(i) of the

standard deviation STD, which

is a measure of the spread of a

set data. The largest standard

deviation in horizontal,

vertical, and diagonal subband

is chosen to present the STD of

the image.

MWC Mq 5
P1N

2N
jcðiÞ2μjqpðiÞ Mq is the qth moment, The qth

moment is centered at zero,

and (i) is the probability of the

wavelet coefficient c(i).

Figure 19.11 Histograms of wavelet coefficients for the pavement images at level k (Nejad

and Zakeri, 2011a, b, c; Zhou, 2004; Zhou et al., 2006).
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Ridgelet and Curvelet

In 2000, Donoho introduced the ridgelet transform (Candès and Donoho, 2000;

Candès et al., 2006; Donoho, 2001). This section starts with briefly reviewing

the continuous ridgelet transforms (CRTs) and draws its connection with the CWT

(Starck et al., 1999, 2003). The CRT can be defined from a one-dimensional wavelet

function oriented at constant lines and radial directions. The CRT in R2 is defined by:

CRTf ða; b; θÞ5
ð
R2

ϕa;b;θðxÞf ðxÞdx ð19:15Þ

where the ridgelets ϕa,b,θ (x) in two dimensions are defined using a wavelet

function:

ϕa;b;θðxÞ5
1ffiffiffi
2
p ϕ

x1 cos θ1 x1 sin θ2 b

a

� �
ð19:16Þ

Given an integrable bivariate function f(x), we define its ridgelet coefficients by:

Rf ða; b; θÞ5
ð
ϕa;b;θðxÞf ðxÞdx ð19:17Þ

The exact reconstruction formula can be presented as

f ðxÞ5
ð2π
0

ð1N
2N

ðN
0

Rf ða; b; θÞϕa;b;θðxÞ
da

a3
db

dθ
4π

ð19:18Þ

This is oriented at angles h, and constant along the lines of x1 cos h1 x2 -

sin h5 const. For details, see Do and Vetterli (2003a, b). The ridgelet transform is

optimal for detecting cracks in the pavement surface image (Nejad and Zakeri,

2011a, b, c). Generally, wavelets detect objects with point singularities, while rid-

gelets are able to represent objects with line singularities. In 2000, Candès and

Donoho introduced the curvelet transform (Candès and Donoho, 2000; Candès

et al., 2006). The idea is to first decompose the image into a set of wavelet bands

and to analyze each band with a local ridgelet transform. The block size can be

changed at each scale level. Roughly, different levels of the multiscale ridgelet pyr-

amid are used to represent different subbands of a filter bank output. The Continue

Curvelet Transform (CCT) can be defined by a pair of windows W(r) (a radial win-

dow) and V(t) (an angular window), with W as a frequency-domain variable, and r

and h as polar coordinates in the frequency domain:XN
j52N

W2ð2jrÞ5 1; rε
3

4
;
3

2

� �
ð19:19Þ

XN
j52N

V2ðt2 1Þ5 1; rε 2
1

2
;
1

2

� �
ð19:20Þ
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A polar “wedge,” represented by Uj, is supported by W and V, the radial and

angular windows. Uj is defined in the Fourier domain by:

Ujðr; θÞ5 2
23j
4 Wð22jrÞV 20:5jθ

2π

� �� �
ð19:21Þ

The curvelet transform can be defined as a function of x5 (x1,x2) at scale 22j,

orientation θ, and position x
ðj;lÞ
k by:

ϕi;j;kðxÞ5ϕjðRjðx2 x
ðj;lÞ
k ÞÞ ð19:22Þ

where Rj is the rotation in radians. Further details are presented in Candès and

Donoho (2000). Generally, curvelets will be superior to wavelets in optimally

sparse representation of objects with edges (such as potholes and rutting), optimal

image reconstruction in severely ill-posed problems and optimal sparse representa-

tion of wave propagators (Candès and Donoho, 2000; Candès et al., 2006; Donoho,

2001; Donoho and Duncan, 2000; Starck et al., 2003).

19.2.2 AI Methods and PMS

Artificial Neural Networks

ANN is a method that are constructed to make use of some organizational princi-

ples resembling those that mimic the human brain (Avci et al., 2005a, b). ANN can

learn if provided with a range of examples and can produce valid answers from

noisy data. They represent the promising new generation of information processing

systems. ANNs are good at tasks such as pattern matching and classification, func-

tion approximation, optimization, and data clustering, while traditional computers,

because of their architecture, are inefficient at these tasks (Turkoglu et al., 2003).

These neurons are connected to each other through connecting links. Weights are

assigned to these links, by which the signals transmitted in the network are multi-

plied. The output of each neuron is determined by using an activation function

such as a sigmoid or step function. Nonlinear activation functions are usually used

for this purpose. ANNs are trained by experience, and then they can generalize

from past experiences and produce new results when an unknown input is applied

to the networks (Bishop, 1996; Demuth and Beale, 2001; Hanbay et al., 2007;

Karabatak and Cevdet Ince, 2009). The output of the neuron net is determined by

Eq. (19.23). A simple artificial neuron model is shown in Figure 19.12.

yðt1 1Þ5 a
Xm
j51

WijxjðtÞ2 θi

 !
and fi9neti 5

Xm
j51

Wijxj 2 θi ð19:23Þ

where x5 (x1,x2,. . .,xm) represents the m inputs applied to the neuron, Wi represents

the weights for input xi, hi is a bias value, and a is the activation function. NN
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models have been used for pattern matching, nonlinear system modeling, communi-

cations, electrical and electronics industry, energy production, chemical industry,

medical applications, data mining, and control because of their parallel processing

capabilities. When designing an ANN model, a number of considerations must be

taken into account (Bishop, 1996). First of all, the suitable structure of the ANN

model must be chosen. After this, the activation function, the number of layers, and

the number of units in each layer must be selected. Generally, a desirable model

consists of a number of layers. The most general model assumes complete intercon-

nections between all units. These connections can be bidirectional or

unidirectional.

Today, ANNs can be trained to solve problems that are difficult for conventional

computers or human beings (Demuth and Beale, 2001). The following section

introduces our proposed method (Figures 19.12 and 19.13).

The ANN computes the net input, and uses a function to guess the outputs called

out. The performance of the output is then compared to a threshold value. The net

input to an ANN is generally computed as the weighted sum of all input signals;

for a higher order of inputs, product units have been used. This method promoted

information capacity:

net5
Xn
i51

xi �Wij; net5 L
n

i51

xi
Wij ð19:24Þ

The function f(x) used to production the output. Different types of activation

functions are classified in Figures 19.14 and 19.15. Liner and several types of fuzzy

functions can be considered as activation functions. Using a fuzzy function as an

activation function, change a simple ANN to hybrid one.

Main types of learning ANNs are categorized in three ways. If a set consists of

(input, output), errors between the real and the output’s ANN must be minimized

and defined as supervised learning. If discovering patterns in the input data without

any assistance from an external source was the aim, this is categorized as

Weights Bias

Bias

f(0) a(0)

OutputInputs

x1
Wi1

yi

Wi2

Wim–1

Wim

x2

xm–1

xm

Figure 19.12 Artificial neuron model.
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Figure 19.13 Basic

principles of ANNs.
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Figure 19.14 Linear activation functions.

Figure 19.15 Fuzzy activation functions.
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unsupervised learning. Finally, if reward and penalize the neuron applied, it is

known reinforcement learning. Several learning rules have been developed for the

different learning types that can be separated according to Figure 19.16.

Accuracy, complexity, and convergence are three indexes for performance eval-

uation of NNs. The network architecture, the training set size, and the complexity

of the optimization method have important effects on the computational complexity

of ANNs.

Hybrid Neural Networks
For one example of application NN and developing NN toward smart pavement

management, hybrid neural networks (HNNs) are used for modeling the pavement

condition index (PCI). One of these networks is the deduct-value neural network

(DVNN), and the other is the correct deduct-value neural network (CDVNN).

Various hidden layers with different neurons were examined to identify the “opti-

mal architecture” for the analysis. The best test result has an accuracy of more than

97% for DVNN and near or more than 96% for CDVNN. A case study was con-

ducted to clarify the capability of the proposed method. Experimental data obtained

from Road Maintenance and Transportation Organization (RMTO) include type of

distress, quantities, extent, deduct value, cumulative deduct value, and PCI. The

developed HNN model used for the automated pavement condition index (APCI)

has a higher regression value than manual PCI determination. Also, we evaluated

the performance of the HNN based on its ability to correctly classify a section to

the seven different options proposed. The HNN was able to reach a recognition rate

(RR) of about 99.43% for the test data. APCI has the following advantages over

the other model: it is swift and easy to operate, it has a simple structure, and one of

Artificial neural networks

Reinforcement learning

Supervised learning Unsupervised learning

Stochastic training
rule

Feed forward

Product unit

Funtional link Simple recurrent

Time delay

CascadeTypes Types

Batch map

Growing SOM Using SOM

Improving
convergence speed

Clustering and
visulization

Figure 19.16 Learning methods.
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its major benefits is that it does all the tiresome calculations. The proposed method

involves the following five steps:

Step 1: Denote by DVNN the deduct values (DVs) obtained by the newly developed NN.

Step 2: Determine the maximum allowable number of deducts (m).

Step 3: Denote by CDVNN the maximum CDV obtained by the newly developed NN.

Step 4: Calculate APCI by subtracting the maximum CDVNN from 100.

Step 5: Calculate the APCI for the section.

The HNN developed for estimating PCI without any restrictive assumption by

considering a combination of distress types as input variables and APCI panel data

and primary causes (PRCs) of pavement deterioration as output variables. The PCI

model developed based on NNs (i.e., APCI) can be mathematically expressed as

APCI5 1002
Xp
i51

Xmi

j51

net1ij

" #
� net2 ð19:25Þ

where the maximum value for APCI, on a 0�100 scale, net1ij is the deduct value

for distress type i and severity level j based on the HNN DV; i is the counter for

the number of distress types; j is the counter for distress severity levels; p is the

total number of distress types; mi is the total number of distress severity levels for

the ith distress type; net2 is an adjustment function for multiple distresses that var-

ies with TDV and q; TDV is the total deduct value, which is given by the NN

developed (Figure 19.17).

We evaluate the performance of the HNN based on its ability to classify sections

to their corresponding PCI class patterns correctly (Figure 19.18). The RR is

defined as the ratio of the number of correctly classified samples to the total num-

ber of samples:

Recognition rate5 12

P
Number of incorrectly classified samplesP

Total number of samples

� �
3100%

ð19:26Þ

Through the experimentation of the proposed model, we tested APCI on the sec-

tion for each class and with various rating scales (RSs). The results for testing the

data set at seven classes are shown in Table 19.2.

The pavements in different conditions require different maintenance and repair

operations. The pavement rehabilitation and maintenance methods are categorized

into three groups: preventive maintenance (PM), major rehabilitation (MR), and

reconstruction (RE). Figure 19.19 illustrates how the appropriate repair type varies

with the APCI of a pavement section. According to the proposed algorithm and

based on the selected thresholds, which can vary in each country or state depending

on its policies and financial resources, different scenarios arise in selecting pave-

ment maintenance and repair operations. Thus, evaluating the proficiency of the

proposed method with regard to different scenarios is of great importance.
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Figure 19.17 Summary of the APCI calculation for the proposed method based on HNN.

Figure 19.18 (A) Example sample unit condition survey sheet; (B) manually calculated

indexes; (C) automated calculated indexes by HNN; (D) APCI versus PCI error.
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Table 19.3 shows the maintenance and repair based on various RS patterns for the

different conditions. The different options of the suggested maintenance consist of

Insignificant Repair (IR), Current Maintenance (CM), Preventive Maintenance (PM),

Suspension Activity (SA), Maintenance and Repair (MR) and Reconstruction (RE).

According to Table 19.3, RS1 and RS2, RS5, and RS6 have the same pattern

options for suggested maintenance. Also, we evaluate the performance of the HNN

based on its ability to classify sections into the seven different suggested options

correctly. The results for the testing data set at the six classes are shown in

Table 19.4.

The overall APCI method has a good performance and can be guaranteed in dif-

ferent maintenance and repair selection operations because the performance (RR)

of the tested data is very good (98.9%). The types of distress identified during

the APCI inspection provide insight into the cause of pavement deterioration.

Examination of the pavement section’s extrapolated distress types, severities, and

Table 19.2 Results Obtained with Various Thresholds

RS Good Satisfactory Fair Poor Very Poor Serious Failed

RS1 100 90 75 50 45 30 15

RS2 100 89 74 51 44 29 14

RS3 100 87 72 53 42 27 12

RS4 100 85 70 55 40 25 10

RS5 100 83 68 57 38 23 8

RS6 100 81 66 59 36 21 6

RS7 100 80 65 60 35 20 5

Figure 19.19 APCI for various repair types.
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quantities provides valuable information used to determine the cause of pavement

deterioration and eventually its maintenance and repair (M and R) needs.

Table 19.5 classifies distress causes for pavements into load (CAS1), climate

(CAS2), and other factors (CAS3). Quantification of the relative effect of each

cause can be determined corresponding to the automated deduct value (ADV) for

the extrapolated section distresses.

Table 19.3 Appropriate Repair Type with the APCI of a Pavement Section

RS 100 85 70 57 40 25 0

RS1 IR CM PM SA RE RE RE

RS2 IR CM PM MR RE RE RE

RS3 IR CM PM MR RE RE RE

RS4 IR CM SA MR RE RE RE

RS5 IR PM SA MR RE RE RE

RS6 IR PM SA RE RE RE RE

RS7 IR PM SA RE RE RE RE

Table 19.4 Results Obtained with Various Pavement Rehabilitation and Maintenance

Methods

RS Total

Samples

Number CM PM SA MR RE Misclassified

Samples

RR

(%)

IR 11 11 0 0 0 0 0 0 100

CM 35 0 35 1 0 0 0 0 100

PM 42 0 0 41 0 0 0 1 97.5

SA 52 0 0 0 52 0 0 0 100

MR 32 0 0 0 0 32 0 0 100

RE 16 0 0 0 0 0 16 0 100

Total 188 11 34 42 52 32 16 1 99.4

Table 19.5 Case Distress Classification for Asphalt Surfaced and Portland Cement Concrete

Roads

Case Code of Distress Code of Distress

Asphalt Surfaced Portland Cement Concrete

CAS1 (01), (07), (13), (15), (16) (22), (23), (24), (28), (34)

CAS2 (03), (08), (10), (19) (21), (24), (26), (37), (38), (39)

CAS3 (02), (04), (05), (06), (09), (11), (12), (14),

(17), (18)

(25), (27),(29), (30), (31), (32), (33),

(35), (36)
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The total ADV attributable to CAS1 is determined, and those attributable to

load, climate, and other factors are calculated. The percentage of ADVs

attributable to load, climate, and other causes is computed as follows:

CAS1 5

Pn
i50 ðADV1ÞiPn

i50 ðADV1Þi 1
Pm

j50 ðADV2Þj 1
Pp

k50 ðADV3Þk
h i

0
@

1
A3 100

ð19:27Þ

CAS2 5

Pm
j50 ðADV2ÞjPn

i50 ðADV1Þi 1
Pm

j50 ðADV2Þj 1
Pp

k50 ðADV3Þk
h i

0
@

1
A3 100

ð19:28Þ

CAS3 5 1002 ½CAS1 1CAS2� ð19:29Þ

PRC5maxfCAS1;CAS2;CAS3g ð19:30Þ

where ADV stands for the ADV for asphalt pavements i, j, and k are counters for the

number of ADVs classified by cause, m is the maximum number of distress types

considered, and ADV1, ADV2, and ADV3 are the ADVs for distress CAS1, CAS2,

and CAS3, respectively. The percentage of deduct values attributed to each cause is

an indication of the cause(s) of pavement deterioration. Primary pavement deteriora-

tion is determined by the maximum percentage of the CAS(s). We evaluate the per-

formance of the HNN based on its ability to classify sections correctly into CAS1,

CAS2, and CAS3.The results for the testing data set are shown in Table 19.6.

The overall APCI method can be guaranteed to be efficient in section classifica-

tion because the performance (RR) of the tested data is excellent (100%).

Fuzzy Logic Systems

Human reasoning, programming, and analyzing in the PMS, however, are almost

always inexact. In the field of pavement distress detection and classification, fuzzy

classification and thresholding theory require elements to be part of a class—

threshold or not. Logic requires the values of parameters to be either 0 or 1, with

Table 19.6 Results of Classification by Causes Obtained with APCI Method

Case Total

Samples

CAS1 CAS2 CAS3 Misclassified

Samples

RR

(%)

CAS1 123 123 0 0 0 100

CAS2 52 0 52 0 0 100

CAS3 13 0 0 13 0 100

Total 188 123 52 13 0 100
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similar constraints on the outcome of an inference process. Therefore, pavement

assessment methods and reasoning usually include a measure of uncertainty. New

facts by fuzzy logic (FL) can be inferred with a degree of certainty associated with

each fact. Common sense can model by fuzzy sets and FL. The philosophy of FL is

based on vagueness, imprecision, and/or ambiguity. An FL system is well known to a

logical system that works by rule-based reasoning similar to ESs; however, it is more

applicable and effective in ambiguous, vague, and not crisp applications (Hanbay

et al., 2007; Karabatak and Cevdet Ince, 2009; Sandra et al., 2006; Yu, 2007).

FL methods combine data by following a logical decision-making process by

incorporating descriptive linguistic rules (which may be extracted from other soft

methods such as NN, ES, FL, or GA) through FL. Deeply knowledge of expert

play a key role for membership function selection. Ambiguity in membership func-

tion assignment is the main problem with FL sets. Indeed different FL techniques

may have various thresholds, class, and treatments in PMSs. To solve this problem,

the Fuzzy Type II method is introduced.

Under title of Fuzzy Type I, Fuzzy Type II is developed. This method selects the

upper and lower membership functions; however, the Footprints of Uncertainty

(FOU) has a fixed value, 1, in all the upper and lower membership functions

(Ioanniset et al., 2008; Tizhoosh, 2005). One of the applications of the Fuzzy Type

II method is threshold selection based on Fuzzy Type II in automatic pavement dis-

tress detection and classification of an image-based algorithm. According to

Ioanniset et al. (2008), “Type I fuzzy sets are not able to directly model such uncer-

tainties because their membership functions are totally crisp. On the other hand,

Type II fuzzy sets are able to model such uncertainties because their membership

functions are themselves fuzzy. These fuzzy sets are characterized by their

Footprints of Uncertainty (FOU), which in turn are characterized by their bound-

aries—upper and lower membership functions (MF)”. They provided some solu-

tions for nonsymmetrical Type II membership functions (Ioannis and Bob, 2002;

Mendel, 2001; Mendel and Bob John, 2002; Mendel and Wu, 2007). The FOU

implies that there is a distribution that sits on top of that shaded area. When

they all equal 1, the resulting Fuzzy Type II sets are called interval Type II

Fuzzy sets. Fuzzy sets of Type II, therefore, are fuzzy sets for which the mem-

bership function does not deliver a single value for every element but an inter-

val. In an example of a Fuzzy Type II application, ambiguities in 3DRT

assignment in automatic pavement cracking detection may have different thresh-

olds. To solve this problem, Fuzzy Type II thresholding is introduced. The

upper and lower membership functions are selected based on Fuzzy Type II the-

ory (Figure 19.20). The main goal of using Fuzzy Type II is to create a flexible

threshold for automatic thresholding. Building a high-accuracy relationship

between the patterns of the peaks and the properties of the crack using auto-

matic fuzzy threshold selection is the logical way of promoting the flexibility.

Like Type I, Type II has same definitions for membership functions. From

Fuzzy Type I, one can derive the properties of Fuzzy Type II. The meaning of

Fuzzy Type II sets is given by Tizhoosh (2005):

~A5 fððx; uÞ;μ ~Aðx; uÞj’xAX;’uAJxD½0; 1�g ð19:31Þ
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A Type II membership function μ ~Aðx; uÞ is defined for a Type II Fuzzy set ~A;
where xAX and uAJxD[0,1], i.e.,

~A5 fððx; uÞ;μ ~Aðx; uÞj’xAX;’uAJxD½0; 1�g

in which 0#μ ~Aðx; uÞ# 1: ~A can also be expressed in the usual notation of fuzzy

sets:

~A5

ð
xAX

ð
uAJx

ðμ ~Aðx; uÞ=ðx; uÞÞ; JxD½0; 1� ð19:32Þ

where the double integral denotes the union of all x and u. In order to define a

Fuzzy Type II set, one can define a Fuzzy Type I set and assign upper and lower

membership degrees to each element to reconstruct the FOU (Figure 19.21). A

more practical definition for a Fuzzy Type II set can be given as follows:

~A5 fððx; uÞ;μUðxÞ;μLðxÞj’xAX;μLðxÞ#μðxÞ#μUðxÞ;μA½0; 1�g ð19:33Þ

When various rules are activated, the binary rules that define conventional ESs

usually result in discontinuities at the exit of a system. This does not resemble

human behavior, where a smooth relation usually exists between cause and conse-

quence. Smooth relationships can be achieved by using fuzzy rules that include

500
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0
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Figure 19.20 Ambiguities in RT assignment may have different thresholds.

Figure 19.21 A possible way to construct Fuzzy Type II sets. The interval between lower

and upper membership values (shaded region) should capture the FOU.
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descriptive expressions such as poor, fair, or good (Figure 19.21) to categorize lin-

guistic input and output variables. The FL was developed to provide soft algorithms

for data processing that can both make inferences about imprecise data and use the

data. It enables the variables to partially belong to a particular set and, at the same

time, uses the generalizations of conventional Boolean logic operators in data pro-

cessing. The main advantage of this approach is the possibility of introducing and

using rules from experience, intuition, and heuristics, as well as the fact that a

model of the process is not required.

A particular type of fuzzy system that holds great potential is the Fuzzy Type II

system. The concept of a Fuzzy Type II set was introduced by Zadeh to account for

some of the uncertainties in the FL systems (Zadeh, 1975a, b). Type II FL systems are

those in which at least one of the antecedent or consequent sets is Type II. This type of

fuzzy system allows one to consider uncertainty by more accuracy and a wider stretch.

Membership functions for fuzzy sets can be constructed by any heuristic or

metaheuristic method in the domain. Two most important constraints must be con-

sidered for selecting a membership function. First, a membership function must be

restricted between [0 1], and the next μA(x) must be unique. Four possible member-

ship functions are Type I, II, III and polar. Type III and polar are new generation

of fuzzy membership function that can be used in several application in the control

and classification domains (see Figure 19.15). In the field of PMS, this new genera-

tion of membership functions forges a powerful link between several tools such as

multiresolution methods (wavelet and beyond the wavelet), image processing, NN,

and ES. A possible membership function can be defined for every category, with

any tool. For example, using image processing techniques and RT, several member-

ship functions are generated for pavement cracking distress (see Figure 19.15).

Simpler and more complex functions can be used under the form of discrete and

continuous. Generally, the ordinary functions are categorized as Triangular,

Trapezoidal, Γ-membership, S-membership, Logistic, Exponential-like, and

Gaussian functions. Additionally, several more advanced membership functions

generated by an automatic generator is introduced. Cubic smoothing spline (CSS)

is used to generate the membership functions because of nonuniform illumination

of the 3DRTs. The estimation of the MFU and MFL is calculated from the fitting of

a CSS (Mora et al., 2011) to the 3DRT(x,y). The select CSS is a special class of

spline that can capture the low 3DRT value that limited the nonuniformity of the

3DRT (Culpin, 1986). The fitting objective is to minimize the equation

M5P �
Xm
y51

Xn
x51

ð f ðx; yÞ2sðx; yÞÞ2 1ð12 pÞ
ð ð
ðD2Sðx; yÞÞ2dxdy ð19:34Þ

which includes two parts:

1. Compactness: Measures how close the spline is to the data that reflect to the summation

term which is weighed by the smoothing factor p.

2. Smoothness: Measures the spline smoothness using its second derivative that reflect to

the integral term weighed by (12 p).
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The smoothing factor p controls the balance between being an interpolating

spline crossing all data points (with p5 1) and being a strictly smooth spline (with

p5 0). The smoothing spline f minimizes when

P
Xn
j51

ðωðjÞjyð:; jÞ2 f ðxðjÞÞj2Þ
" #

1 ð12 pÞ
ð
λðtÞjD2f ðtÞj2 dt

� �" #
ð19:35Þ

where jzj2 represents the sum of the squares of all the entries of n, in Eq. (19.35),

n and m are the number of entries of x and y in Eq. (19.34) and the integral is over

the smallest interval containing all the values of x and y. The default value for the

weight vector w in the error measure is ones [size(x)]. The default value for the

piecewise constant weight function λ in the roughness measure is the constant

function 1. Further, D2f denotes the second derivative of the function f. The default

value for the smoothing parameter, p, is chosen in dependence on the given data

sites x and y (Pal and Bezdek, 1994). The smoothing parameter is determines the

relative weight to place on the contradictory demands of having f be smooth versus

having f be close to the data. For p5 0, f is the least squares straight-line fit to the

data, while, at the other extreme (i.e., for p5 1), f is the variation, or “natural”

cubic spline interpolate. As p moves from 0 to 1, the smoothing spline changes

from one extreme to the other (Figures 19.22 and 19.23).

The interesting range for p is often near 1/(11 (min(N,M))3/600), with h the

average spacing of the data sites; and it is in this range that the default value for p

is chosen. For uniformly spaced data, one would expect a close following of the

Figure 19.22 A sample membership function type III; as p moves from 0 to 1, the

smoothing spline changes from one extreme to the other.
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data for p5 1/(11 (min(N,M))3/6000) and some satisfactory smoothing for p5 1/

(11 (min(N,M))3/60) � p. 1 can be input, but this leads to a smoothing spline

even rougher than the variational cubic spline interpolate (Mora et al., 2011; Pal

and Bezdek, 1994 ):

p5
1

11ððminðN;MÞÞ3=600Þ

� �
ð19:36Þ

A reference smoothing factor (p5 13 1024) was obtained empirically for con-

structed MF in upper bound and (p5 0.933 1025) for constructed MF in the lower

bound. After testing several thresholds, the general rule extracted from 3DRT

thresholds for upper and lower bounds is

pU 5
1

11ððminðN;MÞÞ3=583:2Þ

� �
U

ð19:37Þ

and

pL 5
1

11ððminðN;MÞÞ3=542:4Þ

� �
L

ð19:38Þ

Figure 19.23 A sample of polar membership function; as p moves from 0 to 1, the

smoothing spline changes from one extreme to the other.
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Fuzzy Operators
The relations and operators in all four types are similar and defined next. For this

purpose, for example, let ‘,Θ be the polar domain, and P1 and P2 be fuzzy sets

defined over the polar fuzzy domain.

Similarity of two polar fuzzy sets: Two fuzzy polar sets, P1 and P2, are similar if

and only if the sets have the same ‘,Θ polar domain, and μP1(x)5μP2(x) for all

xAX. That is, P15P2 (Figure 19.24), all the membership functions are similar

(Figure 19.25).

History of polar fuzzy sets: Polar fuzzy set P1 is a history of polar fuzzy set P2 if

and only if μP1(x)#μP2(x) for all xAX. That is, P1CP2. Figure 19.27 shows mode

P1CP2.

(NOT)—Complement of a polar fuzzy set: The complement of two polar fuzzy

sets is simply the polar set containing the entire domain without the elements of

that polar set. For polar fuzzy sets, the complement of the set O is ~O, the member-

ship degrees differ. Let ~O denote the complement of set O. Then, for all xAX,

μ ~O(x)5 1�μO(x), O\ ~O5[ and ~O[O5Domain (2π‘3 1).

(AND)—t-norms of a polar fuzzy set: The roundabout or intersection is the mini-

mum polar set in both sets at the intersection that is known by t-norms. Several

Figure 19.24 Similarity of polar fuzzy membership functions.

Figure 19.25 Illustration of the history of polar fuzzy membership functions.
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methods are proposed for t-norm calculation in Type I and Type II. All t-norms

can be developed for Type III and polar. If P1 and P2 are two fuzzy sets, then:

Polar min-operator: μP1 (‘,Θ) \ μP2 (‘,Θ)5min {μP1 (‘,Θ), μP2 (‘,Θ)}, ’ (‘,Θ)AO,

Polar product operator: μP1(‘,Θ) \ μP2 (‘,Θ)5μP2 (‘,Θ) 3 μP2 (‘,Θ), ’ (‘,Θ)AO,

μP1(‘,Θ) \ μP2 (‘,Θ)5max{0, (11 p)(μP1(‘,Θ)1μP2(‘,Θ)21)2 pμP1(‘,Θ)3μ
P2(‘,Θ)}, for p$ 21,

μP1ðρ;ϑÞ\μP2ðρ;ϑÞ5
"

1

11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð12μP1ðρ;ϑÞ=PÞP1 ð12μP2ðρ;ϑÞ=PÞP�P

q
#
for p.0

ð19:39Þ

μP1ðρ;ϑÞ \μP2ðρ;ϑÞ5
μP1ðρ;ϑÞ3μP2ðρ;ϑÞ

p1 ½ð12pÞðμP1ðρ;ϑÞ1μP2ðρ;ϑÞ2μP1ðρ;ϑÞμP2ðρ;ϑÞÞ�

� �
for p.0

ð19:40Þ

μP1ðρ;ϑÞ \ μP2ðρ;ϑÞ5
μP1ðρ;ϑÞ3μP2ðρ;ϑÞ

maxfμP1ðρ;ϑÞ3μP2ðρ;ϑÞg

� �
for p 0; 1½ � ð19:41Þ

(OR)—t-conorms of a polar fuzzy set: The roundabout or intersection is the maxi-

mum polar set in both sets at the intersection known as t-conorms. If P1 and P2 are

two fuzzy sets, then:

Polar max-operator: μP1 (‘,Θ) [ μP2 (‘,Θ)5min {μP1 (‘,Θ), μP2 (‘,Θ)}, ’ (‘,Θ)AO,

Polar summation operator: μP1 (‘,Θ) [ μP2 (‘,Θ)5 [μP1 (‘,Θ)1μP2 (‘,Θ)]2 (μP1

(‘,Θ)3μP2 (‘,Θ), ’ (‘,Θ))AO,

μP1ðρ;ϑÞ[μP2ðρ;ϑÞ

5

"
1

11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ððμP1ðρ;ϑÞ=12μP1ðρ;ϑÞÞÞP 1 ððμP2ðρ;ϑÞ=12μP2ðρ;ϑÞÞÞP�P

q
#

for p$ 0

ð19:42Þ
μP1ðρ;ϑÞ [ μP2ðρ;ϑÞ5 12

ð12μP1ðρ;ϑÞÞ3 ð12μP2ðρ;ϑÞÞ
max½ð12μP1ðρ;ϑÞÞ; ð12μP2ðρ;ϑÞÞ; p�

� �
for pA 0; 1½ �

ð19:43Þ
μP1ðρ;ϑÞ[μP2ðρ;ϑÞ

5
μP1ðρ;ϑÞ1μP2ðρ;ϑÞ2μP1ðρ;ϑÞ3μP1ðρ;ϑÞ2 ð12pÞμP1ðρ;ϑÞ3μP2ðρ;ϑÞ

12ð12pÞμP1ðρ;ϑÞ3μP1ðρ;ϑÞ

� �
forp$0

ð19:44Þ

The effect of the operations polar membership function is illustrated in

Figure 19.26. For the illustration in Figure 19.27, assume the polar set μP1(ρ,ϑ), as
an input polar set and μP2(ρ,ϑ), as a rule polar set. The complement of μP1(ρ,ϑ),
the intersection and summation operations are illustrated in Figure 19.27B�D.
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A Measure of Ultrafuzziness
Using a simple method, we change an ultra fuzzy to a 3DRT fuzzy set. According

to a Type II membership function, MF must be in [0,1]. One can take out the non-

dimensional form 3DRT by dividing every point by max 3DRT:

RTMFði;jÞ5 vð3DRTÞhði;jÞ

h i
=max vð3DRTÞhði;jÞ

h i� �1
h ð19:45Þ

μði;jÞ5 vð3DRTÞhði;jÞ

h i
=max vð3DRTÞhði;jÞ

h i� �1
h

1H ð19:46Þ

and

GRði;jÞ5
1

ðMNÞh
XN
j51

XM
i51

vð3DRTÞhði;jÞ

h i
=max vð3DRTÞhði;jÞ

h i� �1
h ð19:47Þ

where M and N denote the size of the 3DRT platform, H is high-platform HA[0,1],

hA(1,N), and vð3DRTÞhði;jÞ is the 3DRT value in position i and j. Select a bigger h is

Figure 19.26 Illustration of the (A) polar fuzzy membership functions and (B) complement

polar membership function (μP1(ρ,ϑ)).

Figure 19.27 Illustration of the t-norm polar fuzzy membership functions: (A) polar

membership functions input, (B) polar membership function rule 1, and (C) polar t-norms.
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Select a bigger parameter is equivalent to more enhanced distress and smoother

noisy background of image. (Figure 19.28). In order to define a Fuzzy Type II set,

one can define a Fuzzy Type I set and assign upper and lower membership degrees

to each element to reconstruct the FOU (Figure 19.29). In order to develop a Fuzzy

Type III set, a Fuzzy Type II set must be published in 3D and assign upper and

lower membership degrees to each element to reconstruct the FOU and for 3D

polar, membership function Type III must be transformed in polar based on R and

Figure 19.28 Basic rules for construction 3D Fuzzy Type III and the polar membership

function.

Figure 19.29 Three-dimensional domain of FOU for 3D fuzzy sets (3DFOU).
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Θ. When RT (an effective tool in pavement cracking detection) is applied to a

wavelet modulus, a distress (crack) is transformed into a peak in the radon domain.

Originally, every distress reflects to RT and has different intensity in 3DRT histo-

grams. For example, the mean of 3DRT has a wide range. According to the above,

the max GR must equal 1. To extend fuzzy thresholding (in the control field) and

thresholding in decision making (in pavement management) to Type III and polar

fuzzy sets, ultrafuzziness should be zero, if the membership function can be

selected without any ambiguity, such as Type I. The amount of ultrafuzziness will

increase by rising the uncertainly bound.

The extreme case of maximal ultrafuzziness, equal to 1, is mean to completely

vagueness. Pal and Bezdek (1994) extensively reviewed a well-known fuzziness

index; two general classes proposed by them were the additive and multiplicative

classes (Pal and Bezdek, 1994). Based on Kaufmanns index of fuzziness for a set

AArn(x),

HkaðAÞ5
2

nk

� �
dðA;AnearÞ ð19:48Þ

where kAR1, d is a metric, and Anear is the crisp set close to A. Generally, based

on d, the weight of k is determined. The d(A,Anear) and linear or quadratic Hka (A)

can be determined by q-norms:

dðA;AnearÞ5
Xn
i51

jμi2μAnear ;ijq
 !1=q

ð19:49Þ

Hkaðq;AÞ5 2

n1=q

� � Xn
i51

jμi2μAnear ;ijq
 !1=q

ð19:50Þ

where qA[1,N). On the other hand, Tizhoosh (2005) developed a simple ultrafuz-

ziness index for the special case as follows:

~γð ~AÞ5 1

MN

XM21

i51

XN21

j51

μUðgijÞ2μLðgijÞ
� � ð19:51Þ

where μU(g)5 [μA(g)]
1/α and μU(g)5 [μA(g)]

1/α, αA(1,2]. In general terms, it is

presented as follows:

~γð ~AÞ5 1

MN

XL21

g50

μUðgijÞ2μLðgijÞ
� �

3 hðgÞ ð19:52Þ
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Based on this theory and with respect to Tizhoosh’s method, for developing

ultrafuzziness on two-dimensional data, we define a Type II fuzzy set, a measure

of ultrafuzziness ~γ for a platform 3DRT with M3N sets and surf 3DRT, and the

membership function μ ~Aði;jÞ can be developed as follows:

~γðAÞ5 1

ðMNÞ1=q

 ! XM21

j51

XN21

i51

jμUði;jÞ � μLði;jÞjq
" #1=q

ð19:53Þ

@

@T
~γðRTði;jÞÞ5

@

@T

1

ðMNÞ1=q

 ! XM21

j51

XN21

i51

jμUðði;jÞ;TÞ � μLðði;jÞ;TÞjq
" #1=q

5 0

This basic definition relies on the assumption that the singletons sitting on the

FOU are all equal in height. The variation in the space can be measured by this

method; therefore, the new index is introduced in a three-dimensional domain of

FOU for 3D fuzzy sets (3DFOU). By this novel method, the Damavand Hat cloud

(DHC) resolves the problems with the ultrafuzziness index. According to Ioannis

et al. (2008), “uncertainty (FOU) has a constant value, that equals one, in all the

intervals of the universe of discourse” introducing a flexible membership function

across the interval path (Figures 19.29 and 19.30).

Every membership function generator algorithm, such as Type I, Type II, Type

III, and polar method can be evaluated based on four conditions minimum ultrafuz-

ziness, maximum ultrafuzziness, equal ultrafuzziness, and reduced ultrafuzziness

that every measure of fuzziness should satisfy, which is introduced by Kaufmann

(1975).

Figure 19.30 Example of 3DFOU using the DHC algorithm.
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Finding the Optimum Thresholding Type III and Polar
The general approach for optimum defuzzification (e.g., in automatic pavement dis-

tress thresholding) based on the upper and lower surface is equal for Type III:

ξ5 12
min ~γði; jÞ
max ~γði; jÞ

� �
;SURFði; jÞ5μLðgijÞ ξ1 1½ �;ORμUðgijÞ 12 ξ½ � ð19:54Þ

Similarly, polar, based on the upper and lower surface, is equal:

ξp 5 12
min ~γð‘;ΘÞ
max ~γð‘;ΘÞ

� �� �
;SURF polarð‘;ΘÞ5μLðg‘;ΘÞ ξp 1 1

� �
;

OR μUðg‘;ΘÞ 12 ξp
� � ð19:55Þ

where (ξ) is the ultrafuzzy coefficient and ~γði; jÞ is the ultrafuzzy value for μU(i,j)

and μL(i,j), in upper and lower threshold in Type III, (ξp) is the ultrafuzzy coeffi-

cient, and ~γð‘;ΘÞ is the ultrafuzzy value for μU(‘,Θ) and μL(‘,Θ), in the upper and

lower thresholds in the polar domain.

Expert Systems

Many kinds of ESs are used in management systems. The use of ES has a tangible

ramification in several fields, such as control, design, diagnosis, monitoring, plan-

ning, perdition, selection, and simulation.

The main components that crystallize a simple ES are knowledge base, inference

engine, and working memory.

1. The knowledge base (KB) is the main element of an ES, and it contains the domain

knowledge.

2. The inference engine (IE) is an element that matched the facts contained in the working

memory with the KB by the aim of drawing conclusions.

3. The working memory (WM) is the part of an ES that discovers the problem during firing

the rules.

4. The user interface (UI) provides a friendly interface between the user and the system.

Antecedent and consequent are the two parts of every rule in the KB. Like

humans, ESs can make mistakes. A chain of acquisition, organization, and study-

ing knowledge is known as knowledge acquisition. In ES rules, the KB can repre-

sent uncertain or fuzzy inference, a large database, NNs, automatic knowledge

generation, image processing, GA, or complex AI methods. These chains can

spark the production of a new engine used to generate a HS in the ES domain.

In the field of PMS, several ESs have been developed for use in pavement man-

agement and rehabilitation, such as Rose, Sceptre, Perserver, Expear, Pavement

Expert, Pares, Paver and Micro Paver, Airpacs, Pmas, Pmdss, and AICPD.
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Most of these systems were developed for flexible pavement and used the visual

surface distress condition to obtain knowledge to draw conclusions and select

recommendations.

For example, a complex ES (CES) can be supported with image processing for

pavement distress detection and classification. This method is related to smart

PMSs by CES for pavement distress classification. An RT ES is used to increase

the effectiveness of the scale-invariant feature extraction algorithm. After prepro-

cessing and binarization, the RT applied to the image modulus. This system first

obtains distress detection information to form a hypothesis. The system then

searches for supporting information to test the hypothesis. Finally, the knowledge

extracted and the changing methods, forward and backward, are used to set CES in

motion. Changing methods automatically shift from backward to forward, and vice

versa.

In brief, CES has been demonstrated to be an effective tool for diagnosing.

However, the proposed method is robustly semiautomatic for pavement distress

detection. The most important aspect of the proposed CES model is the ability of

self-organization in inference engines. These results point out the ability of the

design of a new AI model for automatic acquisition systems. The test performances

of this study show the advantages of proposed ES: it is more rapid than ordinary

ES, easier to operate, and more robust than single chaining. The main steps for gen-

erating this system are (i) load the image of the pavement, (ii) ES interface for

threshold selection, (iii) preprocessing on image and automatic RT, (iv) ES inter-

face, (v) the forward chaining shifts to a backward chain, and vice versa, and (vi)

sound and graphical message.

In the domain of computer sciences, AI dealing the components of intelligence

such as the tuning, learning, and planning, whereas the in the agents world, AI ref-

eree to integrating these same components. Quantification of pavement crack data

is one of the most important criteria in determining optimum pavement mainte-

nance strategies. An intelligent agent can be developed for modeling the PCI. An

intelligent agent is a self-healing intelligent agent based on fuzzy Takagi-Sugeno-

Kang (TSK) and NN for pavement condition evaluation. The new agent has flexi-

ble autonomous action and verifies the general behavior of the system.

The degree of pavement deterioration is a function of distress type, distress

severity, and the amount or density of distress. Producing an index that would take

into account all the three factors was a considerable challenge. To overcome this

problem, DVs were introduced as a weighing factor to indicate the degree of effect

that each combination of distress type, severity level, and distress density has on

pavement conditions. For another example, in a hybrid pavement diagnosing

system, a fuzzy T.S.K is used for rule generation with 6 inputs and 10 rules, and

NNs are used for training and self-healing as an AI HM. As we know in the agent’s

world, AI refers to integrating the same components with each other. Flexibility

and intelligent agent (IA) reflects to (i) reactivity, (ii) proactivity, (iii) social abil-

ity, (iv) mobility, (v) veracity, and (vi) benevolence, rationality, and learning/

adaptation.
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19.3 Conclusions

19.3.1 Hybrid System

HS is a complex of AI techniques that uses, in parallel, a combination of AI methods

or heuristics from various branches or the same one. This method handles uncer-

tainty, ambiguity, and the huge and partial truth inherent as inputs in PMS to achieve

the goal of smart pavement management. ES, FL, and NN can be integrated with

image processing and multiresolution methods and born HS. This system can create

an intelligent agent to handle tremendous calculations. Condition assessment, per-

formance prediction, project selection, treatment selection priorities, and optimiza-

tion are the main parts of PMS. Because of complexity in condition assessment,

HS is an effective technique. Treatment selection is an application of HS.

19.3.2 Condition Assessment

Aggregating the condition of pavement distress can enhance the evaluation of a

pavement section and reduces the various condition measurements into a single

index. NNs (Pant et al., 1993) and FL methods (Type I, Type II, Polar, and T.S.K.)

can be used to combine different pavement value index into a total condition index

(Flintsch, 2003). These techniques can estimate functions from samples without

requiring a mathematical formulation. Learning the ability of these methods from

examples shows effective performance (Flintsch, 2003). Hybridization of NNs and

FL systems, or neuro-fuzzy models, can merge the advantages and benefits of both

techniques and incorporate them with multiresolution methods. Training, tuning,

and learning this method can be easily achieved. HS in condition assessment has

key properties of convergence and stability, as do NNs. Another area that has

received significant contribution from the use of soft computing technologies is

automatic identification distress. NNs, FL, and HS in the field of AI and image pro-

cessing have been used for pavement distress detecting and classifying from detec-

tors (Nejad and Zakeri, 2011b, c).

19.3.3 Performance Prediction

Pavement visual distress prediction, based on image processing, is a new field of

PMS that can lead to a flourishing novel vision in smart pavement management

system. This zone is another area where covers with uncertainty play a crucial role.

Therefore, one potential area is to use HS as prediction performance. Uncertainly

and vagueness in prediction application can be enhanced by the use of HS techni-

ques. For a section, the crack propagation must be predicted over time based on

past history of crack-print. The prediction models are based on general knowledge

gained by training, learning, or even expert knowledge. Complex of NNs, FL, and

ES with a multiresolution image system can build an effective tool to solve this

problem. Neural models have been used for predicting cracking development

pattern recognition, DV, CDV, and pavement index predicting (Flintsch, 2003).
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A Fuzzy Type II method, especially a polar model, can work effectively for crack

rotation prediction and rising distress index prediction. Good performance can be

promoted by combining expert knowledge and ES with fuzzy and NN methods.

19.3.4 Need Analysis

The identification of pavement sections in need of maintenance, rehabilitation,

reinforcement, or replacement, as well as appropriate strategies for the identified

sections, involves a great deal of knowledge about the condition of the assets,

effectiveness of the corrective strategies, and impact of the action on system perfor-

mance (Flintsch, 2003). ESs, NNs, and FL systems are more effective techniques

than traditional decision trees. It is highly recommended that performance of need

analysis can be raised by designing and setting a multiagent combined HS for

maintenance, rehabilitation, reinforcement, or replacement of pavement sections.

FL Types I and II, can be used from a set of feasible treatments prepared using a

HES for selection of maintenance and rehabilitation strategies. As shown in section

19.2.2. HNN, by name of TNN developed based on the distress types and extend

present on the roadway section under evaluation for recommending appropriate

pavement M and R treatments. Fuzzy Type II and III methods, combined with

NNs, can be used for selecting optimum M and R strategies. From the previous dis-

cussion about smart pavement management, HS combined expert knowledge using

AI techniques.

19.3.5 Ranking and Prioritization

Prioritization and ranking depend on core of thinking PMS and without the doubt

to achieve a goal, uncertain, ambiguous, and numerical data. Thus, mixture of

Type III, Polar, ES and ANN can be employed to handle all complex inputs (uncer-

tain, ambiguous, and numerical data). This committee engine, designed in the cen-

ter of complex systems, such as PMS. (Flintsch, 2003).

19.3.6 Optimization

One of the problems with strict mathematical optimization formulations is that the

solution is not very stable. A small change in the budget allocation can result in

significant changes in the optimized work program. For this reason, many decision

makers have been reluctant to use this type of programming tools. PMS decisions

are often based on imprecise or incomplete input parameters. There is often uncer-

tainty surrounding specific annual costs and incomplete input parameters. HS, con-

sisting of fuzzy techniques (such as Fuzzy Type II), can provide more flexibility

with imprecise or incomplete input sets. When parameters in the optimization

model have fuzzy behavior, HS can resolve dynamic programming problems and

promote smart behavior of PMS by creating intelligence in the flexibility and

stability of the programming process.
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19.3.7 HS Implementation

HSs will improve their performance by tuning and learning over time. Self-healing

in agents will improve the ability of the total performance and decrease the need

for maintenance of the system. It simulates the behavior of a smart system.

19.3.8 General Conclusions

Uncertain, ambiguous, and incomplete information and data are inherent characters

of PMS. This lack of data may be generated in all subsystems of PMS. These cases

are hard to handle by traditional PMS methods. Maintenance and updates of such

systems are neither easy nor cost-effective. Several architectures in the form of HS

are proposed to solve these problems. The three main AI techniques as a base for

developing HS elements were reviewed: ANNs, FL systems, and ES additionally,

several examples of HS applications were presented. The following conclusions

were drawn from this chapter:

� NNs, FL (Types I, II, and III), neuro-fuzzy, and multiresolution models are recommended

for pavement distress detection, classification, flexible thresholding, and condition

assessment.
� NNs, FL (type III and polar), and hybrid multiresolution models are recommended for

pavement cracking prediction. An intelligent agent can be modified and updated

intelligently.
� HSs can completely handle the computational role of combined numerical and subjective

information. Complex AI methods such as NN�NN, FL�NN, FL�FL, ES�NN, ES�ES,
and ES�FL have been used with acceptable outcomes.

� HSs could increase the flexibility and solution stability of the programming process. This

ability makes HSs the best option to set in motion PMS toward smart PMS.
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