


Introduction to Soliton Theory: Applications to Mechanics



Fundamental Theories of Physics

An International Book Series on The Fundamental Theories of Physics:
Their Clarification, Development and Application

Editor:
ALWYN VAN DER MERWE, University of Denver, U.S.A.

Editorial Advisory Board:
GIANCARLO GHIRARDI, University of Trieste, Italy
LAWRENCE P. HORWITZ, Tel-Aviv University, Israel
BRIAN D. JOSEPHSON, University of Cambridge, U.K.
CLIVE KILMISTER, University of London, U.K.
PEKKA J. LAHTI, University of Turku, Finland
ASHER PERES, Israel Institute of Technology, Israel
EDUARD PRUGOVECKI, University  of Toronto, Canada
FRANCO SELLERI, Università di Bara, Italy
TONY SUDBURY, University of York, U.K.
HANS-JÜRGEN TREDER, Zentralinstitut für Astrophysik der Akademie der

Wissenschaften, Germany

Volume 143



Introduction to Soliton
Theory: Applications 
to Mechanics

by

Ligia Munteanu
Institute of Solid Mechanics,
Romanian Academy, Bucharest, Romania

and

Stefania Donescu
Technical University of Civil Engineering,
Department of Mathematics, Bucharest, Romania

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW



eBook ISBN: 1-4020-2577-7
Print ISBN: 1-4020-2576-9

©2005 Springer Science + Business Media, Inc.

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

Dordrecht



Contents

Preface   ix 

Part 1.  INTRODUCTION TO SOLITON THEORY 
1. MATHEMATICAL METHODS    1 

             1.1    Scope of the chapter    1 
             1.2    Scattering theory    1 
             1.3    Inverse scattering theory  12 
             1.4 Cnoidal method  17 
             1.5    Hirota method  25 
             1.6    Linear equivalence method (LEM)  31 
             1.7 Bäcklund transformation  39 

          1.8    Painlevé analysis  46 

2.         SOME PROPERTIES OF NONLINEAR EQUATIONS  53 
             2.1    Scope of the chapter  53 
             2.2    General properties of the linear waves  53 
             2.3    Some properties of nonlinear equations  59 
             2.4    Symmetry groups of nonlinear equations  62 
             2.5    Noether theorem  66 
             2.6    Inverse Lagrange problem  69 
             2.7    Recursion operators  73 

3.         SOLITONS AND NONLINEAR EQUATIONS  78 
             3.1    Scope of the chapter  78 
             3.2    Korteweg and de Vries equation (KdV)  78 
             3.3    Derivation of the KdV equation  86 



   vi               INTRODUCTION TO SOLITON THEORY: APPLICATIONS TO MECHANICS 

             3.4    Scattering problem for the KdV equation  90 
             3.5    Inverse scattering problem for the KdV equation   95 
             3.6    Multi-soliton solutions of the KdV equation 101
             3.7    Boussinesq, modified KdV and Burgers equations 107
             3.8    The sine-Gordon and Schrödinger equations 112
             3.9    Tricomi system and the simple pendulum 115

Part 2.   APPLICATIONS TO MECHANICS 
121

4.           STATICS AND DYNAMICS OF THE THIN ELASTIC ROD 121

             4.1    Scope of the chapter 121
             4.2    Fundamental equations 122
             4.3    The equivalence theorem 132
             4.4    Exact solutions of the equilibrium equations 134
             4.5    Exact solutions of the motion equations 146

5.         VIBRATIONS OF THIN ELASTIC RODS 149
             5.1    Scope of the chapter 149
             5.2    Linear and nonlinear vibrations  149
             5.3    Transverse vibrations of the helical rod 155
             5.4    A special class of DRIP media 159
             5.5    Interaction of waves 163
             5.6    Vibrations of a heterogeneous string 166

6.         THE COUPLED PENDULUM 173
             6.1    Scope of the chapter 173
             6.2    Motion equations. Problem E1 173
             6.3    Problem E2 177
             6.4    LEM solutions of the system E2 180
             6.5    Cnoidal solutions 185
             6.6    Modal interaction in periodic structures 191

7.          DYNAMICS OF THE LEFT VENTRICLE 197
              7.1   Scope of the chapter 197
              7.2   The mathematical model 198
              7.3   Cnoidal solutions 206
              7.4   Numerical results 209
              7.5   A nonlinear system with essential energy influx 213



                                                                     CONTENTS                                                                     vii 

8.          THE FLOW OF BLOOD IN ARTERIES 220
              8.1    Scope of the chapter 220
              8.2    A nonlinear model of blood flow in arteries 221
              8.3    Two-soliton solutions 228
              8.4    A micropolar model of blood flow in arteries 235

 9.         INTERMODAL INTERACTION OF WAVES 242
              9.1    Scope of the chapter 242
              9.2    A plate with Cantor-like structure 243

              9.3    The eigenvalue problem 248
              9.4    Subharmonic waves generation 249
              9.5    Internal solitary waves in a stratified fluid 255
              9.6    The motion of a micropolar fluid in inclined open channels 259
              9.7    Cnoidal solutions 265
              9.8    The effect of surface tension on the solitary waves 269

10.   ON THE TZITZEICA SURFACES AND SOME RELATED  
       PROBLEMS 

273

            10.1    Scope of the chapter 273
            10.2    Tzitzeica surfaces 273
            10.3    Symmetry group theory applied to Tzitzeica equations 276

 10.4   The relation between the forced oscillator and a Tzitzeica 
            curve 

283

            10.5    Sound propagation in a nonlinear medium  285
            10.6    The pseudospherical reduction of a nonlinear problem  291
References 298
Index 305



Preface

This monograph is planned to provide the application of the soliton theory to solve 
certain practical problems selected from the fields of solid mechanics, fluid mechanics 
and biomechanics. The work is based mainly on the authors’ research carried out at 
their home institutes, and on some specified, significant results existing in the published 
literature. The methodology to study a given evolution equation is to seek the waves of 
permanent form, to test whether it possesses any symmetry properties, and whether it is 
stable and solitonic in nature. 

Students of physics, applied mathematics, and engineering are usually exposed to 
various branches of nonlinear mechanics, especially to the soliton theory. The soliton is 
regarded as an entity, a quasi-particle, which conserves its character and interacts with 
the surroundings and other solitons as a particle. It is related to a strange phenomenon, 
which consists in the propagation of certain waves without attenuation in dissipative 
media. This phenomenon has been known for about 200 years (it was described, for 
example, by the Joule Verne's novel Les histoires de Jean Marie Cabidoulin, Éd. 
Hetzel), but its detailed quantitative description became possible only in the last 30 
years due to the exceptional development of computers. 

The discovery of the physical soliton is attributed to John Scott Russell. In 1834, 
Russell was observing a boat being drawn along a narrow channel by a pair of horses. 
He followed it on horseback and observed an amazing phenomenon: when the boat 
suddenly stopped, a bow wave detached from the boat and rolled forward with great 
velocity, having the shape of a large solitary elevation, with a rounded well-defined 
heap of water. The solitary wave continued its motion along the channel without change 
of form or velocity. The scientist followed it on horseback as it propagated at about 
eight or nine miles an hour, but after one or two miles he lost it.  Russell was convinced 
that he had observed an important phenomenon, and he built an experimental tank in his 
garden to continue the studies of what he named the wave of translation.

The wave of translation was regarded as a curiosity until the 1960s, when scientists 
began to use computers to study nonlinear wave propagation. The discovery of 
mathematical solutions started with the analysis of nonlinear partial differential 
equations, such as the work of Boussinesq and Rayleigh, independently, in the 1870s.  
Boussinesq and Rayleigh explained theoretically the Russell observation and later 
reproduction in a laboratory experiment. Korteweg and de Vries derived in 1895 the 
equation for water waves in shallow channels, and confirmed the existence of solitons.  
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An explosion of works occurred when it was discovered that many phenomena in 
physics, electronics, mechanics and biology might be described by using the theory of 
solitons. Nonlinear mechanics is often faced with the unexpected appearance of chaos
or order. Within this framework the soliton plays the role of order. The discovery of 
orderly stable pulses as an effect of nonlinearity is surprising. The results obtained in 
the linear theory of waves, by ignoring the nonlinear parts, are most frequently too far 
from reality to be useful. The linearisation misses an important phenomenon, solitons, 
which are waves, which maintain their identity indefinitely just when we most expect 
that dispersion effects will lead to their disappearance.  The soliton as the solution of the 
completely integrable partial differential equations are stable in collision process even if 
interaction between the solitons takes place in a nonlinear way. 

The unexpected results obtained in 1955 by Fermi, Pasta and Ulam in the study of a 
nonlinear anharmonic oscillator, generate much of the work on solitons. Their attempt 
to demonstrate that the nonlinear interactions between the normal modes of vibrations 
lead to the energy of the system being evenly distributed throughout all the modes, as a 
result of the equipartition of energy, failed. The energy does not spread throughout all 
the modes but recollect after a time in the initial mode where it was when the 
experiment was started.  

 In 1965, Zabusky and Kruskal approached the Fermi, Pasta and Ulam problem from 
the continuum point of view. They rederived the Korteweg and de Vries equation and 
found its stable wave solutions by numerical computation. They showed that these 
solutions preserve their shape and velocities after two of them collide, interact and then 
spread apart again.  They named such waves solitons.

Gardner, Green, Kruskal and Miura introduced in 1974 the Inverse Scattering 
Transform to integrate nonlinear evolution equations. The conserved features of solitons 
become intimately related to the notion of symmetry and to the construction of 
pseudospherical surfaces. The Gauss–Weingarten system for the pseudospherical 
surfaces yields sine-Gordon equation, providing a bridge to soliton theory. 

A privileged surface related to the certain nonlinear equations that admit solitonic 
solutions, is the Tzitzeica surface (1910). Developments in the geometry of such surface 
gave a gradual clarification of predictable properties in natural phenomena. 

A remarkable number of evolution equations (sine-Gordon, Korteweg de Vries, 
Boussinesq, Schrödinger and others) considered by the end of the 19th century, 
radically changed the thinking of scientists about the nature of nonlinearity. These 
equations admit solitonic behavior characterized by an infinite number of conservation 
laws and an infinite number of exact solutions.  

In 1973, Wahlquist and Estabrook showed that these equations admit invariance 
under a Bäcklund transformation, and possess multi-soliton solutions expressed as 
simple superposition formulae relating explicit solutions among themselves. 

The theory of soliton stores the information on some famous equations: the 
Korteweg de Vries equation, the nonlinear Schrödinger equation, the sine-Gordon 
equation, the Boussinesq equation, and others. This theory provides a fascinating 
glimpse into studying the nonlinear processes in which the combination of dispersion 
and nonlinearity together lead to the appearance of solitons. 

This book addresses practical and concrete resolution methods of certain nonlinear 
equations of evolution, such as the motion of the thin elastic rod, vibrations of the initial 
deformed thin elastic rod, the coupled pendulum oscillations, dynamics of the left 
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ventricle, transient flow of blood in arteries, the subharmonic waves generation in a 
piezoelectric plate with Cantor-like structure, and some problems of deformation in 
inhomogeneous media strongly related to Tzitzeica surfaces. George Tzitzeica is a great 
Romanian geometer (1873–1939), and the relation of his surfaces to the soliton theory 
and to certain nonlinear mechanical problems has a long history, owing its origin to 
geometric investigations carried out in the 19th century.

The present monograph is not a simple translation of its predecessor which appeared 

outline the way in which the soliton theory is applied to solve some engineering 
problems. In each chapter a different problem illustrates the common origin of the 
physical phenomenon: the existence of solitons in a solitonic medium. 

The book requires as preliminaries only the mathematical knowledge acquired by a 
student in a technical university. It is addressed to both beginner and advanced 
practitioners interested in using the soliton theory in various topics of the physical, 
mechanical, earth and life sciences. We also hope it will induce students and engineers 
to read more difficult papers in this field, many of them given in the references.

Authors

at the Publishing House of the Romanian Academy in 2002. Major improvements



PART 1 

INTRODUCTION TO SOLITON THEORY 

Chapter 1

MATHEMATICAL METHODS 

1.1    Scope of the chapter 
This chapter introduces the fundamental ideas underlying some mathematical 

methods to study a certain class of nonlinear partial differential equations known as 
evolution equations, which possess a special type of elementary solution. These 
solutions known as solitons have the form of localized waves that conserve their 
properties even after interaction among them, and then act somewhat like particles. 
These equations have interesting properties: an infinite number of local conserved 
quantities, an infinite number of exact solutions expressed in terms of the Jacobi elliptic 
functions (cnoidal solutions) or the hyperbolic functions (solitonic solutions or
solitons), and the simple formulae for nonlinear superposition of explicit solutions. Such 
equations were considered integrable or more accurately, exactly solvable. Given an 
evolution equation, it is natural to ask whether it is integrable, or it admits the exact 
solutions or solitons, whether its solutions are stable or not. This question is still open, 
and efforts are made for collecting the main results concerning the analysis of nonlinear 
equations.

Substantial parts of this chapter are based on the monographs of Dodd et al. (1982), 
Lamb (1980), Drazin (1983), Drazin and Johnson (1989), Munteanu and Donescu 
(2002), Toma (1995) and on the articles of Hirota (1980) and Osborne (1995).                             

1.2    Scattering theory 
Historically, the scattering theory was fairly well understood by about 1850. It took 

almost one hundred years before the inverse scattering theory could be applied.
Since 1951, various types of nonlinear equations with a soliton as a solution have 

been solved by direct and inverse scattering theories. However, given any evolution 
equation, it is natural to ask whether it can be solved in the context of the scattering 
theory. This question is related to the Painlevé property. We may say that a nonlinear 
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partial differential equation is solvable by inverse scattering technique if, and only if, 
every ordinary differential equation derived from it, by exact reduction, satisfies the 
Painlevé property (Ablowitz et al.). The Painlevé property refers to the absence of 
movable critical points for an ordinary differential equation.

Let us begin with the equation known as a Schrödinger equation, of frequent 
occurrence in applied mathematics (Lamb) 

[ ( , )]xx u x t 0 ,                                           (1.2.1) 

where  is a dimensionless scalar field in one space coordinate: R R x . The 
potential function  contains a parameter t , that may be the temporal variable, 

. At this point,  is only a parameter, so that the shape of u x varies from t .
Subscripts that involve 

( , )u x t
t0t ( , )t

x  or t  are used to denote partial derivatives, for example 

tu u
t

, x
uu
x

.

If the function u  depends only on x , a x b , where  and can be infinity, the 
equation (1.2.1) for imposed boundary conditions at 

a b
x a  and , leads to certain 

values of the constant  (the eigenvalues 
b

j ) for which the equation has a nonzero 
solution (the eigenfunctions ( )j x ).

For a given function , the determination of the dependence of the solution ( )u x
on the parameter  and the dependence of the eigenvalues j  on the boundary 
conditions is known as a Sturm-Liouville problem.  The solutions of (1.2.1) exist only if 

the function u x  is integrable, that is ( ) | ( ) | d
b

a

u x x . The spectrum of eigenvalues j

is made up of two cases corresponding to 0  and 0 . The case  does not 
occur if u x

0
( ) 0 .

In particular, for u x , and the boundary conditions 2( ) 2sech x ( ) 0
sech

 leads to 
the single eigenvalue  with the associated eigenfunction 1 x . The 
scattering solutions of (1.2.1) are made up of linear combinations of the functions 

1 exp(i )(i tanh )x x , and 2 exp( i )(i tanh )x x .
The solving of the Schrödinger equation (1.2.1) when the potential function  is 

specified is referred to as the direct scattering problem. If u  depends on 
( )u x

x  and t ,
, then we expect the values of the ( , )u u x t j  to depend upon t . It is interesting to 

ask whether or not there are potential functions  for which the ( , )u x t j  remain 
unchanged as the parameter is varied.t

In particular, if satisfies the linear partial differential equation (u u x t) x tu u ,
the variation of  has no effect upon the eigenvalues t j . Also, the eigenvalues are 
invariant to the variation of t , if u x satisfies the nonlinear partial differential 
equation

( , )t

0t x xxxu uu u ,                                               (1.2.2) 
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known as the Korteweg–de Vries equation (KdV) . 
Therefore, solving the KdV equation is related to finding the potentials in a Sturm-

Liouville equation, and vice versa.
The direct scattering problem is concerned with determining of a wave function 

when the potential u  is specified.  Determination of a potential  from information 
about the wave function  is referred to as the inverse scattering problem. 

u

 THEOREM 1.2.1 Let  be a pre-hilbertian space of functions . Let us  
consider the operators ,  having the properties: 

S
:L S

2: R Ry
S :B S S

 a)  1 2 1 2, ,Ly y y Ly , 1 2,y y S.
 b)  L admits only simple eigenvalues, namely ( )t  is an eigenvalue for L if there 

exists the function , so thatS

, ( , ) ( ) ( ,L x t t x )t .                                     (1.2.3)

 c) , ( ) ( ) ,B a t y a t B y , y S , and ( )a t y S .
It follows that the relations

0tL LB BL ,                                            (1.2.4)

,
: , , ( , ) , ( , ) , ( , )t t tt

L S S L y x t L y x t L y x t ,            (1.2.5)

are verified. Also, it follows that
1.  the eigenvalues are constants

( ) R,t Rt ,                                    (1.2.6) 

2.  the eigenfunctions verify the evolution equation 

( , ) ( ), ( , )t x t B I t x t Rx , Rt ,                 (1.2.7)

where  is an arbitrary function of .t
 Proof.  Let  be an eigenvalue so that( )t

, ( , ) ( ) ( ,L x t t x )t , Rx .

 We can write 

, ( , ) , ( , ) ( ) ( , ) ( ) ( , )t t tL x t L x t t x t t xt t ,

, ( , ) , ( , ) ( ) ( , ) ( ) ( , )t t tL x t L x t t x t t xt t , Rx t, .

 From (1.2.4) and (1.2.5) it results 

( ) ( , ) , ( , )t tt x t L B x t ,

and multiplying to , we obtain 

( ) , , ( ) 0.t tS S S
t L B L B t
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 This implies . The function0t tB  is also an eigenfunction for ,
corresponding to non time-dependent 

L
.  Therefore, there exists an arbitrary function 

 so that ( )t

( )tB t .

 Considering a new dependent variable 

( , ) ( , ) exp ( )dtx t x t t ,

the equation (1.2.7) yields 

,t B .                                              (1.2.8) 

 To illustrate this, let us consider the example 

+: R×R R, , 0,xy y y x ,

with the scalar product 

1 2 1 2, ( , ) (
S

y y y x t y x t, )dx ,

and operators , :L B S S

, (xxL y y u x t y, ) ,                                        (1.2.9) 

, 4 6 ( , ) 3 ( ,xxx x xB y y u x t y u x t y) .                      (1.2.10) 

 According to 

, ( ,t tL y u x t y) ,

2, 4 10 15 12 6 3 3 ,xxxxx xxx x xx xx x x xxx xL By y uy u y u y u y u y uu y

2, 4 10 15 12 6 4 9 ,xxxxx xxx x xx xx x x xxx xB Ly y uy u y u y u y u y uu y

it is found that (1.2.3) can be written under the standard form of the KdV equation 

6 0t xxx xu u uu .

 The operators satisfy the properties mentioned in the theorem 1.2.1. For (1.2.5) we 
find

( )xx u 0 ,

and the eigenfunction  corresponding to  verifies 

4 6 3 ( )t xxx x xu u t .

 The new dependent variable, ( , ) ( , ) exp ( )dx t x t t t , states that  is also an 

eigenfunction corresponding to 
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( )xx u 0 ,                                    (1.2.11) 

which verifies the equation 

4 6 3t xxx xu ux .                           (1.2.12) 

 Consequently, finding solutions to the KdV equation is related to solving the 
Schrödinger equation

2[ ( , )]xx k u x t 0 .                              (1.2.13) 

Note that in (1.2.13), t  is playing the role of a parameter,  is a real or a pure complex 
number , , and the potential function u  has the property 

k
ik 0k 0,u x .

For localized potentials , all solutions of (1.2.13) will reduce to a linear 
combination of the functions , and 

( )u x
exp(i )kx exp( i )kx  as x .

Following Faddeev (1967), the solutions of the Schrödinger equation are expressed 
as linear combinations of a solution  that reduces to , as 1( , )f x k exp(i )kx x , and a 
solution  that reduces to exp2 ( , )f x k ( i )kx , as x .

 By definition,  and  are fundamental solutions of (1.2.13) and are 
exact solutions of (1.2.13) and verify 

1( , )f x k 2 ( , )f x k

1( , ) exp(i ),f x k kx x ,

1( , ) exp( i ) 1,f x k kx x ,                           (1.2.14a) 

2 ( , ) exp( i ),f x k kx x ,

2 ( , ) exp(i ) 1,f x k kx x .                          (1.2.14b) 

 THEOREM 1.2.2 Fundamental solutions and verify the equations 1( , )f x k 2 ( , )f x k

1 1
1( , ) exp(i ) sin ( ) ( ) ( , )d

x

f x k kx k x u f k
k

,              (1.2.15a) 

2 1
1( , ) exp( i ) sin ( ) ( ) ( , )d

x

f x k kx k x u f k
k

.           (1.2.15b) 

Proof. The homogeneous equation associated to (1.2.13), 2'' 0k , admits the 
solutions ( ) ( )exp(i ) ( ) exp( i )x A x kx B x kx , with ,A B  arbitrary constants. 

 By applying the method of variation of constants, we obtain 

1'( ) ( ) ( )exp( i )
2i

A x u x x
k

kx ,



INTRODUCTION TO SOLITON THEORY: APPLICATIONS TO MECHANICS6

1'( ) ( ) ( )exp(i )
2i

B x u x x kx
k

,

and then, by integration, we have

1
0

1( ) ( ) ( )exp( i )d
2i

x

A x u k
k

C ,

2
0

1( ) ( ) ( ) exp(i )d
2i

x

B x u k C
k

.

 The constants  are found from (1.2.14a)  1,C C2

1
0

11 ( ) ( )exp( i
2i

C u k
k

)d ,

2
0

1 ( ) ( )exp(i )d
2i

C u k
k

.

 Substitution of these expressions into ( )x , leads to

1( , ) exp(i ) ( ) ( ) expi ( )d
2i

1 ( ) ( ) expi ( )d .
2i

x

x

x k kx u k x
k

u k x
k

 The function  is derived in an analogous manner.                                                  2f
Equations (1.2.15) are the Volterra integral equations, which can be solved by an 

iteration procedure. More specifically, the substitution of  into (1.2.15a) yields 
to the conclusion that the resulting integrals converge for .

exp(i )kx
Im( ) 0k

For integral equations of Volterra, the resulting series expansion is always 
convergent. Hence, the functions  are analytic in the upper half of the complex 

plane. For real  and , we have 
1 2,f f k

( )u x k ( , ) ( , ),i if x k f x k 1,2i , where “ ” is the 
complex conjugate operator.  

From (1.2.15) we see that the functions 1( , ),f x k 1( , )f x k  are independent. The 
functions are also independent. So, there exist the coefficients 2 ( , ),f x k

, 1,2i j
2 ( , )f x k

( ),ijc k , depending on k, so that 

2 11 1 12 1( , ) ( ) ( , ) ( ) ( , )f x k c k f x k c k f x k ,                  (1.2.16a) 

1 21 2 22 2( , ) ( ) ( , ) ( ) ( , )f x k c k f x k c k f x k .                 (1.2.16b) 

From the limiting form of ( , ), 1,2if x k i , we may write 

2 ( , ) exp( i ), ,f x k kx x
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2 11 12( , ) ( ) exp(i ) ( ) exp( i ), ,f x k c k kx c k kx x

which means the solution corresponds to a scattering problem in which the incident 
wave is coming from  with an amplitude , and is reflected with an amplitude 

, and transmitted to  with an amplitude of unity.  
12 ( )c k

11( )c k
In particular, the fundamental solutions for the potential , are 

obtained by solving the equation 

2( ) 2sechu x x

2 2( 2sech )z k x z , x .

By using the substitution tanhy x , 1 1x , we obtain the associated Legendre 
equation (Drazin and Johnson) 

2
2

2

d d[(1 ) ] ( 2 ) 0
d d 1

z ky z
y y y

,

whose general solution is given by 

exp( )( ) exp( )( )z A kx k y B kx k y .

From here we obtain the fundamental solutions 

1
1( , ) exp(i )(i tanh )

i 1
f x k kx k x

k
,

2
1( , ) exp( i )(i tanh )

i 1
f x k kx k x

k
.

Let us introduce the reflection and transmission coefficients for an incident wave of 
unit amplitude (Achenbach).  The ratio 

11

12

( )( )
( )R

c kR k
c k

,                                              (1.2.17) 

is the reflection  coefficient at , and the ratio 

12

1( )
( )RT k

c k
,                                              (1.2.18) 

is the transmission coefficient at . The subscript  refers to a wave incident from the 
right. Similarly, we have 

R

1( , ) exp(i ), ,f x k kx x

1 21 22( , ) ( ) exp(i ) ( ) exp( i ), ,f x k c k kx c k kx x

which means the incident wave from  with an amplitude  is reflected with an  
amplitude c  and transmitted to 

21( )c k

22 ( )k  with an amplitude of unity. 
 The ratio 
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22

21

( )( )
( )L

c kR k
c k

,                                              (1.2.19) 

is the reflection coefficient at , and the ratio 

21

1( )
( )LT k

c k
,                                               (1.2.20) 

is the transmission coefficient al .
 The Wronskian of any two functions 1  and 2 , is defined as

1 2 1, 2 1 2,[ ( ), ( )] ( ) ( ) ( ) ( )xw x x x x x xx .                  (1.2.21) 

 If 1  and 2  are two linearly independent solutions of (1.2.13), then their 
Wronskian is a constant 

1 2[ ( ; ), ( ; )] ( )w x k x k f k , Ck .                      (1.2.22) 

The relation (1.2.22) results by adding (1.2.14) written for 1  and multiplied by 2 ,
to (1.2.13) written for 2  and multiplied by 1 . It results 

1 2
d [ , ] 0
d

w
x

.

According to definition of the Wronskian and (1.2.22), the following properties hold 

1 1[ ( ; ), ( ; )] 2iw f x k f x k k , 2 2[ ( ; ), ( ; )] 2iw f x k f x k k ,      (1.2.23) 

where  are fundamental solutions (1.2.15). 1 2,f f
Substituting  from (1.2.16b) into (1.2.16a), and substituting  from 

(1.2.16a) into (1.2.16b), , and taking account of the independency of 
, the following relations are obtained

1( ; )f x k

)k

2 ( ; )f x k
Ck

2 2( ; ), ( ,f x k f x

11 22 12 21( ) ( ) ( ) ( ) 1,c k c k c k c k

11 21 12 22( ) ( ) ( ) ( ) 0,c k c k c k c k                                 (1.2.24) 

21 12 22 11( ) ( ) ( ) ( ) 1,c k c k c k c k

21 11 22 12( ) ( ) ( ) ( ) 0.c k c k c k c k

The coefficients c  may be written in terms of the Wronskian ij

11 2 1
1( ) [ ( ; ), ( ; )],

2i
c k w f x k f x k

k

22 2 1
1( ) [ ( ; ), ( ; )],

2i
c k w f x k f x k

k
                              (1.2.25) 
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12 21 1 2
1( ) ( ) [ ( ; ), ( ; )],

2i
c k c k w f x k f x k

k

Ck .  That yields T k( ) ( ) ( )R LT k T k . The relations (1.2.25) are obtained from 
(1.2.16) and (1.2.23). Furthermore, from  we have ( ; ) ( ; ), 1,2,i if x k f x k i

( ) ( ) ( ) ( ) 0R LR k T k R k T k , Ck ,                        (1.2.26) 

and

12 12

11 22 22
2 2

12 11 22

2 2 2 2

( ) ( ),

( ) ( ) ( ),

( ) 1 ( ) 1 ( ) ,

( ) ( ) ( ) ( ) 1,

( ) ( ), ( ) ( ),
R L

L L R R

c k c k

c k c k c k

c k c k c k

T k R k T k R k

R k R k R k R k

2                  (1.2.27) 

Rk . The location of the poles of the transmission and reflection coefficients in the 
upper half-plane are important to obtain information about the localized or bound-state 
solutions. Consider now the poles of .( )T k

THEOREM 1.2.3 For real potential functions , any poles of the 
transmission coefficient in the upper half-plane must be on the imaginary axis. More 
precisely, if  is a pole for T k , then 

: R Ru

0 R0k C ( ) 0 0i ,k .

Proof.  Let k  be a pole for 0 C
12

1( )
( )c k

Rk

T k . Then it is a zero for ,

. According to (1.2.27) 3 , for 

12c

12 0( ) 0c k we have 12 ( ) 0c k , and then 
.0Im 0k

Writing (1.2.13) for 0k
2
0'' ( ) 0k u ,

and similarly for 0k
2

0'' ( ) 0k u ,

and subtracting them, it follows that 
2 2
0 0'' '' ( )k k .

 Integrating then over x , from  to , yields 

22 2
0 0( , ) ( , ) ( ) dw w k k x .

The Wronskian of  being a constant, it follows that   ,
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2
0 0Re Im d 0k k x ,

and hence, from Im , it results 0 0k 0Re 0k .
 When , , the fundamental solutions are linearly dependent, and 

then lead to
12 0( ) 0c k 0k C

2 0 11 0 1 0( , ) ( ) ( , )f x k c k f x k ,                                 (1.2.28) 

and

22 0
11 0

1( )
( )

c k
c k

.                                        (1.2.29)

This property results from (1.2.16a,b) written for k 0k .
Next, we show that the value of the residuum of the function T k  in every pole 

 is given by 
( )

i , 0l l lk

12
1 2

1 iRes ( ( ))( )
( )

( , ) ( , )d
l

l
l l

T k k
c k

f x k f x k x
.                  (1.2.30) 

To obtain this, let us differentiate with respect to , the relation (1.2.25)  and set 
. According to (1.2.28) and (1.2.29) we have 

k 3

lk k

12 11 1 22 2
d 1 1( ) ( ) ( , ) ( ) ( , )

d 2i 2i
l

l l l
k k l l

c k c k w x k c k w x k
k k k l ,         (1.2.31) 

where

( , ) [ ( , ) ; ( , )], 1, 2
l

i
i l i l

k k

fw x k w x k f x k i
k

.

To obtain , let us multiply (1.2.13) written for  with , then 
multiply (1.2.13) written for  with , and add the results. We have 

1w 1( , )f x k 1( , )lf x k

1( , )lf x k 1( , )f x k

2 2
1 1 1 1 1 1[ ( , ) ( , ) ( , ) ( , )] ( ) ( , ) ( , ) 0l l l lf x k f x k f x k f x k k k f x k f x k

x x x
.

Differentiating the above relation with respect to Rk , we have 

2
1 1 1[ ( , ); ( , ) ] 2 ( ( , ))

l

l l
k k

w f x k f x k k f x k
x k l .

 Integration from x  to , gives 

2
1 1 1[ ( , ); ( , )] 2 ( ( , )) dl l l l

x

A w f x k f x k k f k
k

,
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1 1lim [ ( , ); ( , )] 0l lx
A w f x k f x k

k
.

It follows that 

2
1 12 [ ( ; )] dl l

x

w k f k .

In a similar way we obtain 

2
2 22 [ ( ; )] d

x

l lw k f k .

Substitution of , into (1.2.31) yields , 1,iw i 2

211
12 1

222
1 2 21

( )
( ) [ ( ; )] d

i

( )1 [ ( ; )] ( ; )d [ ( ; )] d .
i i

l

l
lk k

l
l l l

c kc k f k

c kf k f k f k

Note that 

2
11 1( ) [ ( ; )] d 1l l lc k f x k x ,                              (1.2.32a) 

2
22 2( ) [ ( ; )] d 1l l lc k f x k x .                            (1.2.32b) 

Thus, the quantities [ ( and [ ( are the normalization constants for 
the bound-state wave functions 

1/ 2
11 )]l lc k

( ,f x

1/ 2
22 )]l lc k

), 1,2ii lk .
Using (1.2.30) we may write the normalization constants as 

211
11 1

12

( )( ) i { [ ( ; )] d }
( )

l
Rl l l l

l

c km c k f x k x
c k

1 ,           (1.2.33a) 

222
22 2

12

( )( ) i { [ ( ; )] d }
( )

l
Ll l l l

l

c km c k f x k x
c k

1 ,          (1.2.33b)

where , due to the fact that ,Rl Llm m R ( , ) R, i , 1, 2i l l lf x k k i .
Any poles of the transmission coefficient are simple because, if is a pole for 

, , then it has the properties (1.2.32a), (1.2.33a), and it results 
lk

( ), il lT k k 0l

2
12 11 1( ) i ( ) [ ( ; )] d 0l l lc k c k f x k x .
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1.3    Inverse scattering theory
The inverse scattering theory was firstly considered to solve an inverse physical 

problem of finding the shape of a mechanical object, which vibrates, from the 
knowledge of the energy or amplitude at each frequencies (Drazin and Johnson). 

 In our terms, the methods consist in determination of the potential function u from 
given coefficients , that relate the fundamental solutions of the equation  ( )ijc k

2'' ( ) 0k u .                                             (1.3.1) 

The fundamental solutions of the Schrödinger equation may be written under the 
form 

1( , ) exp(i ) ( , ') exp(i ')d 'R
x

f x k kx A x x kx x ,                  (1.3.2a) 

2 ( , ) exp( i ) ( , ') exp( i ')d
x

Lf x k kx A x x kx x ' .             (1.3.2b) 

 Balanis considered these forms in 1972, by solving the elastically braced vibrating 
string equation

' ' ( ) 0xx x xy y u x y ,                                         (1.3.3) 

for which the solutions are written as 

1( , ') ( ' ) ( ' ) ( , ')Ry x x x x x x A x x ,                    (1.3.4a) 

2 ( , ') ( ' ) ( ' ) ( , '),Ly x x x x x x A x x                  (1.3.4b) 

where  is the Dirac function,  is the Heaviside function, and RA , LA  are functions 
that describe the scattering or wake. Applying the Fourier transform  

[ ( , ')]( , ) ( , ') exp(i ')d 'F y x x x k y x x kx x ,

to (1.3.3), we find  (Lamb) 
2[ ( , ')] ( ( )) [ ( , ')] 0xxF y x x k u x F y x x .                           (1.3.5) 

The equation (1.3.5) admits as solutions the Fourier transform of (1.3.4) 

1[ ( , ')]( , ) exp(i ) ( , ') exp(i ')d 'R
x

F y x x x k kx A x x kx x ,             (1.3.6a) 

2[ ( , ')]( , ) exp( i ) ( , ') exp( i ')d '
x

LF y x x x k kx A x x kx x .       (1.3.6b) 

From (1.3.5), we see that the solutions of (1.3.1) take the form (1.3.6) 

( , ) [ ( , ')]( , ), 1,2i if x k F y x x x k i .
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Substituting  into (1.3.1) we derive the conditions to be verified by 1 2,f f ,R LA A .
For this, we write  as 1f

1 '2

2

2 2

i 1( , ) exp(i )[1 ( , ') ( , ')]
'

1 ( , ') exp(i ')d ',
'

R
R x

R

x

Af x k kx A x x x x
k xk

A x x kx x
k x

x

then integrate it by parts and introduce into (1.3.1). By imposing the conditions  

,'( , '), ( , ') 0, for 'R RxA x x A x x x

we find 

2 2

2 2

dexp(i )[2 ( , ) ( )]
d

[ ( , ') ( , ') ( ) ( , ')]exp(i ')d ' 0.
'

R

R R
R

x

Akx x x u x
x

A Ax x x x u x A x x kx x
x x

Therefore, the equation (1.3.1) is verified for 

d( ) 2 ( , ),
d

RAu x x x
x

( , ') 0, ' ,RA x x x x                                          (1.3.7a) 

2 2

2 2( , ') ( , ') ( ) ( , ') 0, ' .
'

R R
R

A Ax x x x u x A x x x
x x

x

Similarly,  verifies the equation (1.3.1) for2f

d( ) 2 ( , ),
d

LAu x x x
x

( , ') 0, ' ,LA x x x x                                         (1.3.7b) 

2 2

2 2( , ') ( , ') ( ) ( , ') 0, ' ,
'

L L
L

A Ax x x x u x A x x x
x x

x

and the Faddeev condition is verified (Faddeev 1958)

(1 ) ( )dx u x x .

From (1.3.7) we see that for given ,R LA A , we can find the potential function u.
Next, we try to determine the functions ,R LA A in terms of the coefficients, 

( ), , 1, 2ijc k i j , considered specified. For this we write (1.2.14a) under the form 
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2 1 1( ) ( , ) ( ) ( , ) ( , )RT k f x k R k f x k f x k ,                       (1.3.8) 

and derive the corresponding relation in the time domain. Taking the Fourier transform 
does this 

1
1

1[ ( , )]( , ') ( , ) exp( i ')d
2

F f x k x x f x k kx k .

By noting 

1( ) [ ( ) 1]exp( i )d
2

z T k kz k ,                       (1.3.9) 

the Fourier transform on the left-hand side of (1.3.8) yields 

1
2

1[ ( ) ( , )]( , ') (1 ( )exp(i )d )
2

F T k f x k x x z kz z

2( ( , '') exp(i '')d '') exp( i ')dy x x kx x kx k

2 2
,

1( , ') ( ) ( , '') exp[i ( '' ')]d d ''d
2

y x x z y x x k z x x k x z

( ' ) ( ' ) ( , ')

( ') ( ' '') ( , '')d ''.

L

L
x

x x x x A x x

x x x x A x x x
                       (1.3.10) 

In a similar way, by noting 

1( ) ( )exp(i )d
2R Rr z R k kz k ,                              (1.3.11)

the Fourier transform on the right-hand side of (1.3.8)  leads to 
1

1 1[ ( ) ( , ) ( , )]( , ')RF R k f x k f x k x x

1 1
1 ( ) ( , ) exp( i ')d ( , ')

2 RR k f x k kx k y x x

1
1 ( ( )exp(i )d )( exp(i '')d '') exp( i ')d ( , ')

2 Rr z kz z y kx x kx k y x x1

1 1
,

1( ) ( , ''){ exp[i ( '' ')]d }d ''d ( , ')
2Rr z y x x k z x x k x z y x x

1 1( '' ') ( , '')d '' ( , ')Rr x x y x x x y x x
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( ') ( '' ') ( , '')d ''R R R
x

r x x r x x A x x x

( ' ) ( ' ) ( , ').Rx x x x A x x                               (1.3.12) 

Substituting (1.3.10) and (1.3.12) into (1.3.8) we have 

( ' ) ( , ') ( ') ( ' '') ( , '')d ''

( ') ( '' ') ( , '')d '' ( ' ) ( , ').

L L
x

R R R R
x

x x A x x x x x x A x x x

r x x r x x A x x x x x A x x
        (1.3.13) 

We study now the case ' 0x x .  To interpret (1.3.13) we must evaluate the 
function , . ( )z 0z

Case 1.  When the transmission coefficient  possesses neither poles nor zeros 
in the upper half-plane, then

( )T k

( ) 0z .                                              (1.3.14) 

To show this, we consider the closed contour in the complex plane 
 where [ ,RC C R R] RC  a semicircle of radius .R

According to the Cauchy theorem we have 

[ ( ) 1]exp( i )d 0
C

T k kz k ,

due to the fact that the integrant is an olomorphic function in the simple convex domain 
enclosed by the contour .C

Then, we can write 

[ ( ) 1]exp( i )d [ ( ) 1]exp( i )d
R

R

C R

T k kz k T k kz k .            (1.3.15) 

According to the Jordan lemma, if RC  is a semi-circle in the upper half-plane, 
centered in zero and having the radius R, and the function  satisfies the condition 

, in the upper half-plane and on the real axis, and  is a positive 
real number, then we have 

( )G k
( ) 0,G k k m

( ) exp(i )d 0,
RC

G k km k R .

Here Rm z , . If T k , we may write ( ) ( ) 1G k T k ( ) 1, k

[ ( ) 1]exp( i )d 0,
RC

T k kz k R .

From (1.3.15) it results 
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( ) lim [ ( ) 1]exp( i )d 0
R

R
R

z T k kz k .

When T k  contains no poles in the upper half-plane, the equation (1.3.13) becomes ( )

( ') ( '' ') ( , '')d '' ( , ') 0, ' 0R R R R
x

r x x r x x A x x x A x x x x ,

or, denoting 'x y

( ) ( '' ) ( , '')d '' ( , ) 0,R R R R
x

r x y r x y A x x x A x y x y .           (1.3.16a) 

In a similar way we obtain 

( ) ( '' ) ( , '')d '' ( , ) 0,
x

L L L Lr x y r x y A x x x A x y x y ,         (1.3.16b) 

where

1( ) ( )exp( i )d
2L Lr z R k kz k .

Case 2.  If T k contains first-order zeros or poles in the upper half-plane, then they 
are situated on the imaginary axis k l

( )
i , 0, 1, 2,...,l l l n .

From the residuum theorem we find 

1

1 exp( i )( ) [ ( ) 1]exp( i )d 2 i Rez[ ( )]
2 2

n
l

l
l

k zz T k kz k T k

                                (1.3.17) 
1 1

i exp( )i exp( ) ,
n n

l l l l
l l

k z k z

where  is given by (1.2.31).  l

The relation (1.3.13) is written as 

1 1
exp[ ( ')] exp[ ( '')] ( , '')d ''

( ') ( '' ') ( , '')d '' ( , '),

n n

l l l l L
l lx

R R R R
x

k x x k x x A x x x

r x x r x x A x x x A x x
  (1.3.18) 

for .' 0x x
In terms of 'x y , and taking into consideration that 
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2 11 1 11( , i ) (i ) ( , i ) (i )[exp( ) ( , ') exp( '')d ''],l l l l l R l
x

f x c f x c x A x x x x

the equation (1.3.18) becomes 

( ) ( '' ) ( , '')d '' ( , ) 0R R R R
x

x y x y A x x x A x y , x y .        (1.3.19a) 

Similarly, we obtain 

( ) ( '' ) ( , '')d '' ( , ) 0,
x

L L R Lx y x y A x x x A x y x y .      (1.3.19b) 

The functions  and ( )R z ( )L z  are defined as 

11
1

11

112

( ) ( ) (i ) exp( )

( )1 exp(i )d i (i ) exp( ),
2 ( )

n

R R l l l
l

n

Rl l l
l

z r z c k z

c k kz k m z
c k

               (1.3.20a) 

22

112

( )1( ) exp( i )d i (i ) exp( )
2 ( )

n

L L
l

c kz kz k m
c k l l l z ,      (1.3.20b) 

with Rlm and Llm  given by  (1.2.31)

11

12

(i )(i ) i
(i )

l
Rl l

l

cm
c

, 22

12

(i )(i ) i
(i )

l
Ll l

l

cm
c

.

In this case we have obtained the same integral equations (1.3.19) as in the first case, 
with the difference that Rr  is replaced to R .

These equations are known as Marchenko equations (Agranovich and Marchenko), 
and they can be used to determine RA  or LA when one of the reflection coefficients 

Rr or Lr  is specified.    
Solutions of Marchenko equations are the functions ,R LA A , which allow the 

determination of the potential function . The Marchenko equations are also used to 
determine the reflection coefficients when the potential and hence the fundamental 
solutions and the functions 

u

RA or LA  are specified.
We can say that determination of ,R LR R  and ,R Lr r , is made from (1.2.15) and 

(1.2.17), and determination of ,R L from (1.3.20).         

1.4    Cnoidal method 
The inverse scattering theory generally solves certain nonlinear differential 

equations, which have cnoidal solutions. The mathematical and physical structure of the 
inverse scattering transform solutions has been extensively studied in both one and two 
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dimensions (Osborne, Drazin and Johnson, Ablowitz and Segur, Ablowitz and 
Clarkson).  The theta-function representation of the solutions is describable as a linear 
superposition of Jacobi elliptic functions (cnoidal functions) and additional terms, 
which include nonlinear interactions among them.  

Osborne is suggesting that the method is reducible to a generalization of the Fourier 
series with the cnoidal functions as the fundamental basis function. This is because the 
cnoidal functions are much richer than the trigonometric or hyperbolic functions, that is, 
the modulus m  of the cnoidal function, 0 m 1

m
, can be varied to obtain a sine or 

cosine function ( , a Stokes function (0m ) )0.5  or a solitonic function, sech or 
tanh (Nettel).(m 1)

Since the original paper by Korteweg and DeVries, it remains an open question 
(Ablowitz and Segur): “if the KdV linearised equation can be solved by an ordinary 
Fourier series as a linear superposition of sine waves, can the KdV equation itself be 
solved by a generalization of Fourier series which uses the cnoidal wave as the 
fundamental basis function?”

This method requires brief information necessary to describe the cnoidal waves. The
arc length of the ellipse is related to the integral

2 2

2
0

(1 )d
( ) ,

(1 )

z k x x
E z

x

with .  Another elliptical integral is given by  0 k 1

2 2
0

d( )
(1 )(1 )

z xF z
2x k x

.

The integrals and( )E z ( )F z  are Jacobi elliptic integrals of the first and the second 
kinds. Legendre is the first who works with these integrals, being followed by Abel 
(1802–1829) and Jacobi (1804–1851). Jacobi inspired by Gauss, discovered in 1820 that 
the inverse of ( )F z  is an elliptical double-periodic integral 

1( ) sn( ).F

Jacobi compares the integral  

2 1/ 2
0

d
(1 sin )

v
m

,                                        (1.4.1) 

where 0 , to the elementary integral 1m

2 1/ 2
0

d
(1 )

tw
t

,                                              (1.4.2) 

and observed that (1.4.2)  defines the inverse of the trigonometric function sin  if we 
use the notations  and sint sin w . He defines a new pair of inverse functions 
from (1.4.1) 

sn sinv , cn cosv .                                 (1.4.3) 
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These are two of the Jacobi elliptic functions, usually written and
to denote the dependence on the parameter .  The angle 

sn( , )v m cn( , )v m
m  is called the amplitude 

. We also define the Jacobi elliptic function amu 2 1sin ) /dn (v m 21 .
For , we have 0m

v , cn( ,0) cos cosv v ,

v sn( ,0) sin sinv v , dn( ,0) 1v ,                       (1.4.4) 

and for 1m

arcsech(cos )v , cn( ,1) sechv v ,

sn( ,1) tanhv v , dn( ,1) sechv v .                                 (1.4.5) 

The functions  and  are periodic functions with the period sn v cn v
2 / 2

2 1/ 2 2 1/ 2
0 0

d d4 .
(1 sin ) (1 sin )m m

The later integral is the complete elliptic integral of the first kind 
/ 2

2 1/ 2
0

d( )
(1 sin )

K m
m

.                                  (1.4.6) 

The period of the function  is dn v 2K . For 0m  we have . For 
increasing of ,

(0) / 2K
m ( )K m  increases monotonically 

1 16( ) log
2 1

K m
m

.

Thus, this periodicity of  and sn ( ,1)v cn ( ,1) sechv v  is lost for , so 
.

1m
( )K m

Some important algebraic and differential relations between the cnoidal functions 
are given below 

2 2cn +sn 1 , 2 2dn + sn 1m , d cn= sn dn
dv

,

d sn= cn dn
dv

, d dn= sn cn
d

m
v

,                               (1.4.7) 

where the argument  and parameter  are the same throughout relations. v m
Now, consider the function ( )t  introduced by Weierstrass (1815–1897) in 1850, 

which verifies the equation 
2 3

24 3g g ,                                     (1.4.8) 

where the superimposed point means differentiation with respect to t .
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If  are real roots of the equation 1 2 3, ,e e e 3
2 34 0y g y g  with , then 

(1.4.8) can be written under the form 
1 2e e e3

3

3

2
1 24( )( )( )e e e ,                              (1.4.9) 

with
2 2 2

2 1 22( )g e e e ,

3 1 24 3g e e e , e e1 2 3 0e .

Introducing
3
2 27 2

3g g ,                                          (1.4.10) 

when , equation (1.4.9) admits the elliptic Weierstrass function as a particular 
solution, which is reducing in this case to the Jacobi elliptic function    

0
cn

2
2 3 2 2 3 1 3( ; , ) ( )cn (t g g e e e e e t ) ,              (1.4.11)

where   is an arbitrary real constant.
If we impose initial conditions to (1.4.9)   

0(0) , (0) 0p ,                                  (1.4.12) 

then a linear superposition of cnoidal functions (1.4.11) is also a solution for (1.4.8) 

2

0
2 cn [ ;

n

lin k k k
k

t m ] ,                                (1.4.13) 

where  the angular frequencies k , and amplitudes  k depend on 0 , 0p  . 
When  the solution of (1.4.9) is 0

2
2 2

2

1 cn(2 )
1 cn(2 )

t H
e H

t H
,

with

2

2

31
2 4

em
H

, 2 2
2 23

4
gH e .

When , we have e e , e0 1 2 c c3 2 , and the solution of (1.4.9) is 

2

3
sinh ( 3 )

cc
ct

.

Since the calculation of the elliptic functions is very important for practical 
problems, in Chapter 10, the Shen-Ling method to construct a Weierstrass elliptic 
function from the solutions of the Van der Pol’s equation is presented. 

Consider now a generalized Weierstrass equation with a polynomial of  degree in n
( )t
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2 ( )nP .                                           (1.4.14) 

The functional form of solutions of (1.4.14) is determined by the zeros of the right-
hand side polynomial.  

For biquadratic polynomial, 4n , we can have four real zeros, two real and two 
purely imaginary zeros, four purely imaginary zeros or four genuinely complex zeros.  
For n  the functional form of solutions depends also on the zeros of the polynomial. 5

For all cases the solutions are expressed in terms of Jacobi elliptic functions, the 
hyperbolic and trigonometric functions. 

In the following we present the cnoidal method. Osborne discussed this method for 
integrable nonlinear equations that have periodic boundary conditions, in particular for 
the KdV equation. In 2002, Munteanu and Donescu have extended this method to 
nonlinear partial differential equations that can be reduced to Weierstrass equations of 
the type (1.4.14). 

We present the method in context of the KdV equation   

0 0t x x xxxc ,                               (1.4.15) 

where ,  and  are constants. 0c
For , the linearized KdV equation is solved by the Fourier series. The 

solutions are expressed as a sum of sine waves using the linear dispersion relation 
.

0

3k0c k
The general solution to the KdV equation with periodic boundary conditions may be 

written in the terms of the theta function representation (Dubrovin et al.)
2

1 22

2 d( , ) log ( , ,..., )
dx nx t n ,                           (1.4.16) 

where , and is the theta function defined as / 6

1 2
( , ) 1 , 1

1( , ,..., ) exp(i )
2

n n

n n i i i i
M i i j

j jM M B M ,      (1.4.17) 

with  the number of degrees of freedom for a particular solution of the KdV equation, 
and

n

j j jk x t j , 1 j N .                              (1.4.18) 

In (1.4.18), jk  are the wave numbers, the j are the frequencies and the j are the 
phases. Let us introduce the vectors of wave numbers, frequencies and constant phases 

1 2[ , ,..., ],nk k k k 1 2[ , ,..., ],n

1 2[ , ..., ]n , 1 2[ , ,..., ]n .                             (1.4.19) 

The vector  can be written as 

kx t .                                         (1.4.20) 

Also, we can write 
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M Kx t ,

1 2[ , ,..., ]nM M M M ,

K Mk , M , M .

The integer components in M  are the integer indices in (1.4.17). The matrix can
be decomposed in a diagonal matrix  and an off-diagonal matrix , that is  

B
D O

B D O .                                                   (1.4.21) 

THEOREM 1.4.1 (Osborne) The solution ( , )x t  of KdV equation (1.4.15) can be 
written as

2

2

2( , ) log ( ) ( ) ( )n lin intx t
x

,                 (1.4.22) 

where represents a linear superposition of cnoidal waves lin

2

2

2( ) log ( )lin G
x

,                                   (1.4.23) 

1( ) exp(i )
2

T

M
G M M DM ,                          (1.4.24) 

and  represents a nonlinear interaction among the cnoidal waves int

2

int 2

( , )( ) 2 log(1 )
( )

F C
t G

,                         (1.4.25) 

1( , ) exp(i )
2

T

M

F C C M M DM ,                   (1.4.26) 

1exp( ) 1
2

TC M OM .                                (1.4.27) 

Proof.  The decomposition (1.4.22) result easily from (1.4.16), (1.4.17) and (1.4.21). 
Consider the case with no interactions ( O 0 , and then C 0 ).  The function 
yields

( )G

1

( ) ( )
n

m m m
m

G G M ,                                 (1.4.28) 

where

21( ) exp(i )
2

m

m m m m m mm
M

G M M D .                      (1.4.29) 

So, the linear term (1.4.23) becomes 
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2

2
1

2

1

2( ) log ( )

2 cn {( ( ) / )[ , ]},

n

lin m m m
m

n

m m m
m

G M
x

K m x C t mm

                  (1.4.30) 

where ( )K m  is the elliptic integral (1.4.6). The relation (1.4.30) provides the 
interpretation of the first term on the right-hand side of (1.4.22) as a linear superposition 
of cnoidal waves.

The solution (1.4.30) represents the cnoidal wave solution for the KdV equation. 
The moduli  and the phase speeds ,mm mC 1, 2,...,m n , are given by 

2 2( ) 4m mm K m Un ,

2
2 2

0 2

2 ((1 2 )
3

m m
m m

K mC c k h
h

) ,

where 3 3

3
8

m
m

mk h
U is the Ursell number.  

Consider now a nonlinear system of equations that govern the motion of a 
dynamical system 

1 2
d

( , ,..., ), 1,..., , 3
d

i
i nF i n

t
n ,                   (1.4.31) 

with , , T , where R nx [0, ]t T R F  may be of the form  

1 , 1 , , 1

, , , 1 , , , , 1
... ,

n n n

i ip p ipq p q ipqr p q r
p p q p q r

n n

ipqrl p q r l ipqrlm p q r l m
p q r l p q r l m

F a b c

d e
         (1.4.32) 

with , and a b c constants.1, 2,...,i n , , ...
The system of equations has the remarkable property that it can be reduced to 

Weierstrass equations of the type (1.4.14). In the following, we present the cnoidal 
method, suitable to be used for equations of the form (1.4.31). To simplify the 
presentation, let us omit the index i  and note the solution by ( )t .

We introduce the function transformation 
2

2

d2 log (
d n t

t
)

11

,                                        (1.4.33) 

where the theta function are defined as ( )n t

1 11 exp(i )t B ,

2 1 11 2 22 1 21 exp(i ) exp(i ) exp( )t B t B B12 ,
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3 1 11 2 22

3 33 1 2 12

1 3 13 2 3 23

1 2 3 12 13 23

1 exp(i ) exp(i )
exp(i ) exp( )
exp( ) exp( )
exp( ),

t B t B
t B B

B B
B B B

                 (1.4.34) 

and

( , ) 1

1exp(i )
2

n n

n i i
M i i j

ij i jM t B M M ,                     (1.4.35) 

2

exp i j
ij

i j

B , 2exp ii iB .                       (1.4.36) 

Further, consider (1.4.21) and write the solution (1.4.33) under the form
2

2( ) 2 log ( ) ( ) ( )n lin intt
t

,                        (1.4.37) 

for . The first term t lin represents, as above, a linear superposition of 
cnoidal waves.  Indeed, after a little manipulation and algebraic calculus, (1.4.23) gives 

1/ 2
2

2 1
1 0

2[ [ cos(2 1)
21

kn
l

lin l k
l k lll l

q tk
KqK m

] ]l  .         (1.4.38) 

In (1.4.38) we recognize the expression (Abramowitz and Stegun, Magnus et al.)

2

1
cn [ ; ]

n

lin l l l
l

t m ,                                (1.4.39) 

with

exp( )Kq
K

,

/ 2

2
0

d( )
1- sin

uK K m
m u

,

1 1( ) ( ), 1K m K m m m .

The second term represents a nonlinear superposition or interaction among 
cnoidal waves. We write this term as

int

22

2

cn ( , )d ( )2 log[1 ]
( )d 1 cn (

k

k k

t mF t
G tt t2 , )

k

m
.                   (1.4.40) 
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If  take the values 0  or 1 , the relation (1.4.40) is directly verified. For 
, the relation is numerically verified with an error of | | .

Consequently, we have 

km

k0 m 1 75 10e

2

0

2

0

cn [ ; ]
( , )

1 cn [ ;

n

k k k
k

int n

k k
k

t m
x t

t m ]k

 .                               (1.4.41) 

As a result, the cnoidal method yields to solutions consisting of a linear 
superposition and a nonlinear superposition of cnoidal waves. 

1.5    Hirota method 
 In 1971, Hirota showed that certain evolution equations can be reduced to bilinear 

differential equations. He introduces a dependent-variable transformation  (Drazin and 
Johnson, Hirota) 

2

2( , ) 2 ln ( , )u x t f x t
x

,                                  (1.5.1) 

where  has the property f

, , 0x xxf f f ,   as x .

We shall describe the method in the context of the KdV equation 

6 0t x xxxu uu u .

Substituting (1.5.1) into the KdV equation we obtain 
24 3xt x t xxxx x xxx xxff f f ff f f f 0 .                      (1.5.2) 

This equation can be reduced to a bilinear form by using the Hirota operator (Hirota 
and Satsuma) 

'
'

: ,

( , )( , ) ( ) ( ) ( , ) ( ', ') ,
' '

m n
t x

m n m n
t x

x x
t t

D D V V V

D D a b x t a x t b x t
t t x x

       (1.5.3) 

where m, n are positive integers, V  is a functions space, in particular 
, and   two arbitrary functions in V .: R R R, C (R) C (R)n mV f f

, )

,a b
By virtue of the definition (1.5.3), the Hirota operator is 
 1.  Bilinear 

1 2 1 2( , ) ( , ) (m n m n m n
t x t x t xD D a a b D D a b D D a b

1 2 1 2( , ) ( , ) ( , )m n m n m n
t x t x t xD D a b b D D a b D D a b

,

,
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1 2 1 2, , , ,a a b b V R .
 2.  Symmetric       

, ,( , ) ( , )m n m n
t x t xD D a b D D b a ( , ) ( , )m n n m

t x x tD D a b D D a b

,a b V .  For , the Hirota operator (1.5.3) reduces to 1m n

( , )( , ) ( )( , )t x xt t x x t txD D a b x t a b a b a b ab x t ,                     (1.5.4) 

and for , to 0, 4m n
4 ( , )( , ) ( 4 6 4 )( , )x xxxx xxx x xx xx x xxx xxxxD a b x t a b a b a b a b ab x t ,      (1.5.5) 

,a b V .
 The equation for  (1.5.2) can be rewritten in a form of a bilinear differential 

equation
f

4( , ) ( , ) 0x t xD D f f D f f ,                                    (1.5.6) 

or, by denoting
3( )x t xB D D D ,

to

( , ) 0B f f .                                                 (1.5.7)

 To solve (1.5.7), we consider the solutions of the form 

,                                      (1.5.8) 
0

( , ) ( , )
N

n
n

n
f x t f x t

with  a positive, real number, and 0 0 ( , ) 1f x t , ( , ) R×Rx t .
 Substitution of (1.5.8) into (1.5.7) yields 

0 0 1 1

0 0

( , ) [ ( ,1) (1, )] ...

... ( , ) ... ( , ) 0.
n N

n N
n r r N r r

r r

B f f B f B f

B f f B f f
                 (1.5.9)

 From , we obtain 0 0( , ) 0B f f

1

2 1 1

3 2 1 1

( ,1) 0,
2 ( ,1) ( , ),

2 ( ,1) ( , ) ( , ),

B f
B f B f f

B f B f f B f f2

                            (1.5.10) 

1

1
2 ( ,1) ( , ),

n

n n
r

B f B f fr r 2,...,n N ,

that are the sufficient condition for the equation (1.5.9) to be verified,  real and 
positive number. So this time, we calculate some particular expressions for B
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( , )( , ) ( 4
6 4 )( , ),
xt t x x t xt xxxx x xxx x

xx xx x xxx xxxx

B a b x t a b a b a b ab a b a b
a b a b ab x t

where .  For  we find,a b V 1b

( ,1) xt xxxB a a a .

 For 

1( , ) exp( )a x t , 1 1 1 1,k x t

with   real and positive numbers,  we have 1 1 1, ,k ,

1
4

1 1 1 1(exp( ),1) ( )exp( )B k k .                            (1.5.11) 

 Again, for  

1( , ) exp( )a x t , 2( , ) exp( )b x t , , 1,i i i ik x t i 2 ,

it follows that 
4

1 2 2 1 2 1 2 1 1[exp( ),exp( )] [( )( ) ( ) ]exp( ).B k k k k 2

1 1

         (1.5.12) 

 The expressions (1.5.11) and (1.5.12) suggest some forms to be chosen for the 
functions . For ,nf n 1( , ) exp( )f x t , the equation (1.5.10) 1  leads to ,
and the others equations of (1.5.10) are identically verified if 

3
1 1k

0, 2nf n .
 Thus, we obtain 

3
1 1( , ) 1 exp( )f x t k x k t1 1 ,                              (1.5.13) 

2 3
21 1 1 1 ln( , ) sech [ ]

2 2
k k x k tu x t .                        (1.5.14) 

 An initial condition of the form  

,                                        (1.5.15) 2( ,0) 2sechu x x

 leads to .1 1ln , 2k
 We can say that a solution of the KdV equation with the initial condition (1.5.15) is 

given by the soliton wave 

.                                (1.5.16) 2( ,0) 2sech ( 4 )u x x t

 If we consider the function 

1 1( , ) exp( ) exp( )f x t 2 ,

, 1,i i i ik x t i 2 ,

with positive and real numbers, the equation (1.5.10) 1  is verified if 

. For we have 
1 1 1, ,k

3 ,ik i

,

22 1, 1 1( , )B f f
4

1 1 2 1 2 1 2 1 1 2( , ) 2[( )( ) ( ) ]exp( )B f f k k k k .
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Note that  (1.5.10)  suggests the form 2

2 1( , ) exp( )f x t A 2 ,

where A  is a real constant which is determined from (1.5.10) 2

21 2
2 1

1 2

( ) exp(k kA
k k 2 ) .

The constants  are determined so that 1 2,k k 1 2 0k k .
Choosing , the other equations (1.5.10) are identically verified. We 

have
0, 3nf n

2 21 2
1 2 1

1 2

( , ) 1 [exp( ) exp( )] ( ) exp( ),k kf x t
k k 2           (1.5.17) 

2
2 1 2

1 1 2 2 1 2
1 2

2 21 2
1 2 1

1 2

( )exp( ) exp( ) exp( )
( , ) 2 [ ],

1 exp( ) exp( ) ( ) exp( )

k kk k
k kt

k kx
k k 2

2

u x        (1.5.18) 

with  .3 , 1,i i i ik x k t i
An initial condition of the form 

u x ,                                   (1.5.19) 2( ,0) 6sech x

is verified for 1 2 1 2
3ln , 2, 4k k . Consequently, the solution is

6exp( 6 72 ) 6exp( 2 8 ) 12exp( 4 64 )( , ) 2 [ ],
3exp( 2 8 ) 3exp( 4 64 ) exp( 6 72 )

x t x t xu x t
x x t x t x

t
t

3

   (1.5.20) 

and represents the two-soliton solution.

For ,
3

1
1

( , ) exp( )i
i

f x t , 1, 2,i i i ik x t i , the equation (1.5.10) 1  leads 

to .3 , 1,2,3i ik i

 Choosing , the equation (1.5.10)  is verified for
3

2
, 1

( , ) exp( )ij i j
i j

f x t A 2

2

2

( )1 , , 1, 2,
2 ( )

i j
ij

i j

k k
A i

k k
3j .   

For
3

3
, , 1

( , ) exp( ), , , 1,2,3ijl i j l
i j l

f x t A i j l .
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The equation (1.5.10)  yields 3

2

2

( ) ( )( )1 , , 1, 2,3
2 ( )( )( )

i j i l j l i j l
ijl

i l j l i j li j

k k k k k k k k k
A i

k k k k k k kk k
j

j

.

For , equations (1.5.10) are verified and, finally, we have  ( , ) 0, 4nf x t n

3 3
2

1 , 1

3
3

, , 1

( , ) 1 exp( ) exp( )

exp( ), , , 1, 2,3.

i ij i
i i j

ijl i j l
i j l

f x t A

A i j l

In summary, we have 

1 2 3
22

2 3 21 2
1 2 3 22 2

1 2 3 2
2

31 3 1 3 2 31 2
1 32

1 2 1 3 2 31 3
3 3 3
3 1 2 2 3 1 1 2 3

1 2

( , ) 1 [exp exp exp ]

( )( )[ exp( ) exp( )
( ) ( )

( ) ( )( )( )exp( )]
( ) ( )( )( )

( ) ( ) ( )

f x t
k kk k

k k k k

k k k k k kk k
k k k k k kk k

k k k k k k k k k
k k 3 2 3

3

exp( ).
k

         (1.5.21) 

Substitution of  (1.5.21) into (1.5.1) leads to a solution u x , which is a three-
soliton solution. An initial condition of the form  

( , )t

,                                    (1.5.22) 2( ,0) 12sechu x x

is verified for

1 2 3 1 2 3
6 15 10ln , ln , ln , 2, 4, 6k k k .

It follows that 
2

2( , ) 2 [ln(1 6exp( 2 8 ) 15exp( 4 64 )

10exp( 6 216 ) 10exp( 6 72 ) 15exp( 8 224 )
6exp( 10 280 ) exp( 12 288 ))].

u x t x t x t
x

x t x t x
x t x t

t       (1.5.23) 

In an inductive way, the -soliton solution is obtained as N

1
1

( , ) exp( )
N

i
i

f x t  , ,3 , 1,...,i i i ik x k t i N

and the solution is 
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1 1

1

2

1 , 1

...
... 1

( , ) 1 exp( ) exp( ) ...

exp( ... ).
N N

N

N N

i ij i j
i i j

N
N

i i i i
i i

f x t A

A
              (1.5.24) 

We mention that the Hirota bilinear method obtains the exact -soliton solution for 
many evolution equations.  The bilinear method is effective for completely integrable 
systems and also for nearly integrable equations. This method is more useful for 
stability analysis than the ordinary perturbation method or the perturbation treatment of 
the inverse scattering method. 

N

Next, we are going to investigate the stability of the KdV soliton with respect to 
wavefront bending, for example. The amplitude of the wave is calculated for a small 
perturbation of the argument . If the amplitude remains constant, the soliton is stable. 

Consider a particular solution of the KdV equation in the bilinear form (1.5.6) 

01 exp( 2 )f , 0 0 (k x Vt) .                            (1.5.25) 

Now assume the phase and amplitude of the KdV equation are slowly varying 
functions of , perpendicularly to direction y x . To study the stability of the soliton 
against transverse perturbation, it is convenient to introduce the Kadomtsev and 
Petviashvili equation, referred to as the K-P equation (Matsukawa et al.)

( 6 )t x xxx x yyu uu u u 0 ,                               (1.5.26) 

rewritten as a bilinear differential equation 
2 4( )( ,x t y xD D D D f f ) 0 .                               (1.5.27) 

The perturbation modifies (1.5.25) as 
ˆ ˆf f g , ˆ 1 exp( 2 )f ,

ˆ 1g g , (k x Vt) .                                   (1.5.28) 

 Substituting  (1.5.28) into (1.5.27), we obtain 
2 4 2 2 2 4

2 2

ˆ ˆ ˆˆ ˆ[( )( , )] [( )( , )]
ˆ ˆ ˆ ˆ6( ( , ))( ( , )) 0.

x t y x x t y x

x x

D D D D f f g f D D D D g g

D f f D g g

ˆ
        (1.5.29) 

By expanding the expression 

exp( )( , ) [exp( )( , )][exp( )( , )]p q p q p qD D ab ab D D a b D D a b , (1.5.30) 

in a power series of  and ,  two identities are derived 
2 2( , ) ( ( , )) ( ( , ))p q p q p qD D ab ab D D a a b a D D b b ,

4 4 2 2 4 2 2( , ) ( ( , )) ( ( , )) 6( ( , ))( ( , ))p p p p pD ab ab D a a b a D b b D a a D b b .

Inserting (1.5.28) into (1.5.30), the K-P equation (1.5.27) becomes 
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2
0,

2 4 2 2

2
0,

[8( )exp( 2 ) 4 exp( 2 )(1 exp( 2 ))](1 2 )
ˆ ˆ2 32 exp( 2 )(1 2 ) 2 96 exp( 2 )

ˆ4( )exp( 2 )(1 exp( 2 )) 2 0.

t t t

xt xx xx

yy yy yy

k k x k g

f g k g f g k g

k kx f g
k

    (1.5.31) 

The zero-th order estimation in (1.5.31) yields 
2

0, 04tx k ,                                                   (1.5.32) 

where, we observe that the amplitude of the soliton is constant, as is expected.
From the first order estimation in (1.5.31) we have 

2 2 2 2
0,

2 2
0,

(4 )sech sech (1 tanh )

12 sech ( )(1 tanh ) 0,

t t t

xt yy xx xx yy yy

k k x k k

g g g k g k kx
k

     (1.5.33) 

where the phase and amplitude of the soliton are dependent on .y
Introducing a new coordinate which is moving at soliton velocity 

2( 4k x k t) ,                                         (1.5.34) 

we observe that the perturbed solution g  depends only on , and then equation 
(1.5.33) is simplified 

4 2 2
0,[ 4(3sech 1) sech ( )(1 tanh ) 0.t t yy yyk g g k k k kx

k
 (1.5.35) 

Multiplying (1.5.35) by 22sech  and integrating with respect to , it results that 
, satisfies the KdV equation2 2sechu k 6 0t x xxxu uu u .

From (1.5.35) we have 

0,( ) (1 tanh )d (1 tanh )d 0yy
t yy

k
k kx

k
.       (1.5.36) 

Combining (1.5.32) with (1.5.36) the wave equation for the oscillation of the phase 
is obtained 

2
0, 0,4tt yyx k x ,                                         (1.5.37) 

and yields to the conclusion that the soliton is stable against transverse perturbation. 

1.6   Linear equivalence method (LEM) 
 The linear equivalence method (LEM) was introduced by Toma to solve nonlinear 

differential equations with arbitrary Cauchy data.
Consider the Cauchy problem 
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11

22d , ,
d

n n

f xx
f xxx f x x f x

t
x f x

,                             (1.6.1) 

0 0 0 R,x t = x , t I

where
1

j jf x f x , with the coefficients jf  defined on the real interval I . Here 

 is a multi-indices vector with  components, and 1 2 n, ,... )( n
1

n
j

jj
z z . LEM 

consists of applying to (1.6.1) an exponential transform depending on n parameters 
, which maps the equation into a linear first order partial differential 

equation, with respect to the independent variable 
1 2, , , n

,exp ,v t z, ,nR
1

n

j j
j

z, z

n n

,                     (1.6.2) 

or

1 2 1 1 2 2, , ,... exp( ... )nv t z z z , Ri .             (1.6.3) 

Computing v
t

, and taking account of i
i

v vz ,
2

i j
i j

v vz z , the result is a 

linear partial differential equation

1
0

n

j j
j

v f D v
t

,                                   (1.6.4)

where the formal operator from the left-hand side 

1
,

n

j j
j

f D f D ,                  (1.6.5) 

is obtained by replacing x  to in the expression of jf x .

The Cauchy conditions (1.6.1)  become  2

0 , exp ,v t x0 .                  (1.6.6) 

Toma has proved that the solution of the nonlinear Cauchy problem (1.6.1) is 
equivalent to the analytic solutions in  of the linear problem (1.6.4) and (1.6.6). Let us  
consider v of the form 

1
,

!
v t x v t .                     (1.6.7) 
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The coefficients from the right-hand side of (1.6.7) satisfy a linear infinite 
differential equation with constant coefficients 

1,
1 1

, ,
j

n
k

j j j k n
j

v j f v ee           (1.6.8) 

with Cauchy conditions 

0 x , Nv t .                 (1.6.9) 

The first n components of the solution of (1.6.8) and (1.6.9) coincide with the 
solution of the initial problem (1.6.1).  

For a given vector 
1,j j n

g g x , the Lie derivative of an analytic function  is

,gradgL g .              (1.6.10) 

So, we can write 

, ff D L v .         (1.6.11) 

As a result, the following theorems hold. 

THEOREM 1.6.1 (Toma) The linear equation (1.6.4) is expressed in terms of Lie 
derivatives as 

0vLv L v
t f .                (1.6.12) 

and the analytic solution of  (1.6.4) and (1.6.6) have two expansions

0
0

1
, 1 exp ,

!
k

k

t t
v t L x

kf  ,    (1.6.13) 

0
0

1
, 1 , exp ,

!k

t t
v t f D x

k
 .   (1.6.14) 

The important point is that the solution of  (1.6.1) is written as 

grad ,x t v t
0
 ,                   (1.6.15) 

where v  is replaced  by (1.6.13) or (1.6.14). 
The linear infinite system (1.6.8) may be written in the matrix form 

d , ,
d j j jj IN

V AV V V V v t
t

,         (1.6.16) 

where the matrix A  is defined as 
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11 12 13

22 23

33

, 1

0
0 0

0 0 0 jj j j

A A A
A A

A
A

A A

.   (1.6.17) 

It is evident that the rectangular matrices depend only on those , 1, 1, Nj j kA k j ,

jf  for which k .
The diagonal cells jjA  depend only on the linear part of the differential operator 

more precisely, 11A  is the associated Jacobi matrix. 
The Cauchy conditions (1.6.1)  are mapped through (1.6.6) into 2

0 0 N
V t x .                   (1.6.18) 

The first n components of the solution of  (1.6.16) and (1.6.18) coincide to solution 
of (1.6.1), and this holds even for systems with variable coefficients. The proof of this 
result is based on the construction of the inverse matrix for nonlinear operators. In the 
case of constant coefficients, this inverse allows a simplified exponential form and thus, 
the solution of (1.6.16), (1.6.18) may be written as 

0 exp[ ]V t V t A t t0 .     (1.6.19) 

THEOREM 1.6.2 (Toma) The solution of initial problem (1.6.1) coincides with the 
first  components of the vector V  given by (1.6.19).n

We mention that the block structure of A  enables the step-by-step calculus of kA . A 
secondary result is that the first n rows of kA may be expressed by blocks, each of them 
being computable by a finite number of steps. 

Next, denote by  the operator that associates to a matrix its first n rows. Then, by 
theorem 1.6.2 and (1.6.19), it follows that the solution of (1.6.1) coincides with the 
Taylor series expansion 

nP

0
0 N

1 !

k
k

n
k

t t
x t x P A x

k 0 .          (1.6.20) 

The above results enable a comparison with the Fliess expansions in the optimal 
control problems. The Fliess expansion corresponding to solution of  (1.6.1) is obtained 
as a Taylor series 

0
0 0

1
, 1,2...,

!
k

j j f j
k

t t
x t x L x j

k
n  ,   (1.6.21) 
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where  are the k-th order iteratives of the Lie derivative 0
k

jL xf 0jL xf . Comparing 
this with the LEM expansion (1.6.21), we obtain the following result: 

THEOREM 1.6.3 (Toma) The Lie derivative 0
k
f jL x  of order k with respect to  is 

calculated as follows 
f

10

20
0 IN

0

k
f

k
f k

n

k
f n

L x
L x

P A x

L x

 .    (1.6.22) 

We have 

IN
m

n km k
P A S ,                (1.6.23) 

where
1 2

11 12 22 23 1,
1

k
km k k kk

m k
S A A A A A A ,          (1.6.24) 

1 2, , , k

kk

 is a multi-indices vector. The calculus of  is easier if the 
eigenvalues of 

kmS
A are specified. These eigenvalues are 

1
,

n

j j
j

,            (1.6.25) 

where  are the eigenvalues of 1 2, , , n 11A .
Now we are ready to calculate the normal LEM representations, useful for a 

qualitative study of nonlinear equations.

THEOREM 1.6.4 (Toma) The solution of (1.6.13) may be expressed as a series with 
respect to the data 

0 0
1

, 1, 2,...,j
j jx t x u t x j n ,   (1.6.26) 

where k  and j j
k k

tU u  satisfy the linear finite systems 

1
11 1

2
22 2 12 1

, 1 1 1 1

d ,
d

d ,
d

d ,
d

k
kk k k k k k

U A U
t

U A U A U
t

U A U A U A U
t

                (1.6.27) 
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and Cauchy - conditions 

1 0 01,
, 0, 2,j

m sm n
U t U t s k..., .        (1.6.28) 

Here, the star stands for transpose matrix. This completes the description of the 
LEM. To illustrate its application, consider two examples.  

EXAMPLE 1.6.1    Let the problem be (Toma) 
2

ty y , 0(0)y y .                                     (1.6.29) 

 By applying the exponential transform exp( )v y  we obtain the equivalent linear 
equation

2

2

v
t

v ,                                            (1.6.30) 

and the condition

0(0, ) exp( )v y .

 Consider   

( , ) ( ) ( )v t t ,

and  then  (1.6.30) yields

d
dt

 , 
2

2

d ( )
d

,

with an arbitrary constant. Next, consider 

0
( )

!

j

j
j j

,

to yield

1j jj , *Nj .

 We observe that . The coefficients are determined from 0 0

1

1( 1)!

j

j j
, Nj .

 For ( , )v t  it results 
0 1

1
1

( , ) 1 exp( ) d
( 1)! !

j j

j
v t t

j j
,                        (1.6.31)

when . From the initial condition  (1.6.29)  it also results 0t 2

0 1

1 0d
( 1)! !

j j
jy

j j
, Nj .
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 So, we have  

1
0

exp( )
y

,

and the solution  becomes 
0 1

10

0

1 0

0

1( , ) 1 exp[ ( )] d
( 1)! !

11 exp[
1 ! 1

j j

j

j

j

j

v t t
y j j

y
j tyt

y

].

Finally, this solution leads to the solution of (1.6.29) given by 

0

0

( )
1

yy t
ty

.

EXAMPLE 1.6.2   The Troesch problem (Toma). 
Let us have the problem 

sinh( )ttw n nw , (0) 0, (1) 1w w .                      (1.6.32) 

By noting 

, ( )x nt y x nw ,                                 (1.6.33) 

we obtain 

sinhxxy y ,                                        (1.6.34) 

with conditions 

(0) 0, ( )y y n n , (0)y .                      (1.6.35) 

The last condition (1.6.35) with a fictitious parameter , is introduced in order to 
apply LEM.  So, we have

( , , ) exp( )v x y y .                              (1.6.36) 

The linear equivalent equation is given by 
2 1

2 1
0

1 0
(2 1)!

k

k
k

v v v
x k

,                     (1.6.37) 

and  conditions (1.6.35) become 

(0, , ) exp( )v .                                 (1.6.38) 

The equivalent linear system is 



INTRODUCTION TO SOLITON THEORY: APPLICATIONS TO MECHANICS38

d
d
V MV
x

,                                          (1.6.39) 

where V and M  are written as 

2 1[ ],jV V j N 2 1 [ ], 2j ikV V i k j, 1,

1 11 13 15 1,2 1 1,2 1

3 33 35 3,2 1 3,2 1

2 1 2 1,2 1

... ...
0 ... ...
. . . . ... . . ...
0 0 0 0 ... ...
. . . . ... . . ...

j j

j j

j j j

A B B B B B
A B B B B

M
A B

,

2 1,2 2 1 [ ]j k j qsB b , 1 , 1 2q j s k 2 j ,

1( 1)
(2 2 1)!

q
s

qs
qb
k j

,

with ,  the Kronecher symbol.  
 The three-diagonal matrices 2 1jA  defined as

2 1

0 2 1 0 0 ... 0 0 0
1 0 2 2 0 ... 0 0 0
. . . . ... . . .
0 0 0 0 ... 2 2 0 1
0 0 0 0 ... 0 2 1 0

j

j
j

A
j

j

,

have the eigenvalues .(2 2 1), 0 1j k k j
 The initial conditions are 

2 1 2 1(0, ) [ ], 0 2 1, Nk k
qV q k k .                   (1.6.40) 

 Then we subtract from (1.6.39) a truncated system of equations given by 
( )

( ) ( )d
d

m
m mV M V

x
,                                         (1.6.41) 

where the finite matrices ( )mM  are obtained by truncation from M  up to the  order,  
that is,  up to  .

m
2 1mA

  We can show that V  satisfy (1.6.40), and admit the representation ( )m

( ) ( ) ( )( , ) exp( ) (0, )m mV x A x V m .

 The equations (1.6.41) and (1.6.40) are solved by the block partitioning method. 
The solution is obtained as follows
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exp( )1 (0)
exp( ) 32( ) (0) 2ln

exp( )4 1 (0)
32

xy
xy x y

xy
 ,                    (1.6.42) 

where (0)expu y n  satisfies 

1
322 2 ln

2 1
32

u
u

u
.

1.7    Bäcklund transformation
The Bäcklund transformation was developed in 1883, arising from the 

pseudospherical surfaces construction.  The name of Albert Victor Bäcklund (1845– 
1922) is associated with the transformation of surfaces that bears his name, the 
extensions of which have a great impact in soliton theory (Coley et al.). In 1885 Bianchi 
shows that the Bäcklund transformation is related to an elegant invariance of the sine-
Gordon equation. The geometric origins of the Bäcklund and Darboux transformations 
and their applications in modern soliton theory represent the subject of the monograph 
of Rogers and Schief (2002). 

One of the simplest Bäcklund transformations are the Cauchy–Riemann relations 

,x yu v u ,y vx                                           (1.7.1) 

for Laplace equations 

0,xx yyu u 0.xx yyv v                                  (1.7.2) 

If ( , )v x y xy  is a solution of the Laplace equation, then another solution of the 

Laplace equation 2 21( , ) ( )
2

u x y x y , can be determined from 

xu x , yu y .                                        (1.7.3) 

Consider next, the Liouville–Tzitzeica equation 

expxtu u ,                                             (1.7.4) 

and let us introduce another equation, simple to be solved 

0xtv .                                                  (1.7.5) 

Suppose we have a pair of relations that relate the solutions of (1.7.4) and (1.7.5)

2 exp
2x x

u vu v , 2 exp
2t t

u vu v .             (1.7.6) 
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The important point about (1.7.6) is the possibility to determine a solution of (1.7.4) 
for a specified solution of (1.7.5). Indeed, we obtain from (1.7.6) 

1 ( )exp exp
22xt xt t t

u vu v u v u ,

1 ( )exp ex
22tx tx x x

u vu v u v pu ,

which lead to (1.7.4) and (1.7.5).
Therefore, we have the following definition. 

DEFINITION 1.7.1 Let us have two uncoupled partial differential equations
and( ( , )) 0P u x t ( ( , )) 0Q v x t , where  and Q  are nonlinear operators. The pair 

of relations 
P

( , , , , ; , ) 0i x x t tR u v u v u v x t , i 1, 2,

is a Bäcklund transformation if it is integrable for v  when ( ) 0P u  and if the resulting 
 is a solution of , and vice versa. If v ( ) 0Q v P Q , so that  and  satisfy the same 

equation, then , i is called an auto-Bäcklund transformation.
v u

0 1,iR 2,
The Bäcklund transformation reduces the integration of a nonlinear partial 

differential equation to the solutions of an ordinary differential equation, in general of 
low order. The existence of the Bäcklund transformation implies that there is a relation 
between the solutions of  and .P Q

The relations (1.7.6) are therefore the Bäcklund transformation of equations (1.7.4) 
and (1.7.5). 

In the following we will present the original Bäcklund transformation for the sine-
Gordon equation (Rogers and Schief  2002). 

Let  denote the position vector of a point  on surface  in ,
written under the Monge form 

( , , )r r x y z P 3R

1 2 ( , )r xe ye z x y e3 .                                (1.7.7)

The first and second fundamental forms are defined as 
2 2 2 2d 2 d d d (1 )d 2 d d (1 )dx x y y

2 2 ,I E x F x y G y z x z z x y z y

2 2 2

2 2

1d 2 d d d ( d 2 d d d
1

xx xy yy

x y

2 ).II e x f x y g y z x z x y z y
z z

   (1.7.8) 

The mean and Gaussian (total) curvature of  are written as 
2 2

2
2 2 3 / 2

(1 ) 2 (1 )
,

2(1 )
x yy x y xy y xx

x y

z z z z z z z
EG F

z z
           (1.7.9a) 
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22

2 2(1 )2 2
xx yy xy

x y

z z zeg f
EG F z z

.                            (1.7.9b) 

If  is a hyperbolic surface, then total curvature is negative and the asymptotic lines 
on  may be taken as parametric curves. Then 0e g . And the angle  between 
the parametric lines is such that 

cos F
EG

, sin H
EG

.                             (1.7.10) 

In the particular case when 2

1K
a

 is a constant,  is a pseudospherical surface. 

If  is parametrized by arc length along asymptotic lines corresponding to the 
transformation  

d d ( )dx x E x x , d d ( )dy y G y y

2

,

the fundamental forms become, dropping the prime 
2d 2cos d d dI x x y y ,                          (1.7.11a) 

2 sin d dII
a

x y .                                   (1.7.11b) 

The Liouville representation of K  in terms of , G  and E F is given by 
2 2
11 121 H HK

H E E
,                                (1.7.12) 

where i
jk are the Christoffel symbols. If  is a pseudospherical surface, the equation 

(1.7.12) is reduced to the sine-Gordon equation

2

1 sin
a

.                                             (1.7.13) 

The original Bäcklund transformation is related to the pseudospherical surfaces 
construction with the Gaussian curvature

2

1
a

.

If  is the position vector of a pseudospherical surface r , then a new 
pseudospherical surface  with the position vector r and having the same curvature is 
written as

, cr r an n n n os ,                               (1.7.14) 

where  is the angle between the unit normals  and n n  to  and , and it is 
constant because 

| | sinr r L a .
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Mention that r  is tangent to both r  and . The angle  is related to the 

Bäcklund parameter  by the relation 1tan
2

. We write (1.7.14) in terms of 

asymptotic coordinates 

[sin sin ],
sin 2 2

Lr r r r                     (1.7.15) 

where  and  are related

sin ,
2 2a

1 sin .
2 2a

                                   (1.7.16) 

The relations (1.7.16) represent the standard form of the Bäcklund transformation of 
the sine-Gordon equation. Here,  and  are solutions of the sine-Gordon equation.

Indeed, by calculating 
2

and
2

, we have 2

1 sin
a

, and 

2

1 sin
a

. Since both  and  are solutions of the sine-Gordon equations 

(1.7.16) is an auto-Bäcklund transformation for (1.7.13).   
If , the transformation (1.7.13) becomes  0

sin ,
2 2a

1 sin .
2 2a

                    (1.7.17) 

Integrating we obtain 

d 12log | tan | ( )
4sin

2

f
a

,                    (1.7.18)

and

1 12log | tan | ( )
4

g
a

,                             (1.7.19) 

where andf g  are arbitrary functions. From (1.7.18) and (1.7.19) we obtain the kink
solution of the sine-Gordon equation 

1tan exp( )
4

C
a a

1 ,                            (1.7.20) 

or

1( , ) 4arctan{ exp( )}C
a a

,                   (1.7.21) 
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with  a constant. The Bäcklund transformation admits the nonlinear superposition 
principle, namely, if we refer to (1.7.13)  

C

12 2 1 2 1

2 1

tan tan .
4 4

                           (1.7.22) 

If  and  are two solutions for the sine-Gordon equation, generated from  by 
means of Bäcklund transfomation (1.7.16) of parameters 

1 2

1  and 2 , then  given by 
(1.7.21) is a new solution for the sine-Gordon equation, that is a two-soliton solution. 
Writing  into (1.7.21) we have 

12

12 2 1 2 1

2 1

tan tan
4 4

.                            (1.7.23) 

Relations (1.7.22) and (1.7.23) are known as permutability theorem of Bianchi. Any 
proof of permutability theorem is reduced to equality 12 21 . Luigi Bianchi 
established in 1892 that the Bäcklund transformation for the sine-Gordon equation 
admits a commutative property. This property leads to construction of nonlinear 
superposition formulae for solutions of evolution equations.  The Bianchi theorem may 
be interpreted as an integrable discrete equation, if we assume that  is a point into a 
discrete lattice of axes  and 1n 2n

1 2( , )n n ,                                             (1.7.24)

and the solutions , and1 2 12  are neighbor points in this lattice (Rogers and Schief 
1997)

1 1( 1,n n2 ) ,

2 1 2( , 1)n n ,                                            (1.7.25) 

12 1 2( 1, 1n n ) .                                         (1.7.26) 

Therefore, the Bäcklund transformation (1.7.16) can generate discrete 
pseudospherical surfaces , associated to the sine-Gordon equation.

 Let us illustrate the application of the Bäcklund transformation with some examples 
(Lamb, Drazin). 

EXAMPLE 1.7.1 (Lamb) A general class of soluble nonlinear evolution equations are 
derived from linear equations. Let us consider the linear equations 

1 1ixv v q 2v , 2 2ixv v q 1v ,                          (1.7.27) 

where  must be determined, and introduce a set of additional equations q

1 1ixw w 2w , 2 2ixw w 1w ,                      (1.7.28) 

where  must be determined. Suppose that v  and  are related by w
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1 1

2 2

w v v
w v v

1

2

,                                     (1.7.29) 

where is a  matrix of elements .  Taking account of (1.7.27), we rewrite 
(1.7.29) under the form 

2 2 ija

1 1w Av Bv2 , 2 1w Cv Dv2 ,                           (1.7.30) 

where

11 iA a , 12B a q , C a21 q , 22 iD a .

By choosing , so that C21 12a a B , and substituting (1.7.30) into (1.7.28) we 
obtain some relations between  and q

( )xA q B , 2ixB B qA D ,

2ixB B B qD , ( )xD q B .                            (1.7.31) 

These equations admit first integrals 2 2 ( )AD B f t  and 2 ( )A D g t , that 
imply 

2 2 2 ( )B f g A g 2

)

.

So, the relation  can be written as ( ) 2 (xA D B q

2 2( )
xA q

h A g
.                                      (1.7.32) 

Denoting xq z , xz  and integrating, we obtain 

cos( )A g h z z , sin( )B h z z , cos( )D g h z z .    (1.7.33) 

The integration constant has been chosen so that vanishes when  and  vanish. 

Next, we set for simplicity 

B z z
1
2

g h , and obtain from (1.7.31) 

( ) 2i sin(xz z z z ) .                                      (1.7.34) 

The equation (1.7.34) relates  and z z , and is a Bäcklund transformation. The 
second Bäcklund transformation, which relates  and tz tz , depends upon the particular 
evolution equation being considered. According to the permutability theorem, by 
introducing  into (1.7.34), we obtainz z z z

3 0 1 2 2 1

1 2

tan( ) tan( )
2

z z a a z z
z a a

,                           (1.7.35) 

where 2iia i .  Applying (1.7.35) to all evolution equations for which (1.7.27) are 
the appropriate linear equations, we can calculate another solution xq z .
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EXAMPLE 1.7.2   Let us consider the KdV equation 

( ) 6 0t x xxxP u u uu u .

We introduce a new dependent variable ,w xw u , and define the operator
2( ) 3t x xxxQ w w w w ,

so that 

( ( )) ( )xQ w P u .

The Bäcklund transformation is given by 

212 (
2x xw w w w ) ,                                 (1.7.36) 

2( )( ) 2(t t xx xxw w w w w w u uu u 2 ) .              (1.7.37) 

Suppose that  and are two solutions that verify (1.7.36) and (1.7.37), and  is 
a solution of Q w , that is 

1w
( )

2w 0w
0

2
1 0 1 1 0

12 (
2x xw w w w ) ,                        (1.7.38a) 

2
2 0 2 2 0

12 (
2x xw w w w ) .                      (1.7.38b) 

Similarly, we can construct a solution from  and 12w 1w 2 , and another solution 
from  and 21w 2w 1

2
12 1 2 12 1

12 (
2x xw w w w ) ,                     (1.7.38c) 

2
21 2 1 21 2

12 (
2x xw w w w ) .                    (1.7.38d) 

From the Bianchi permutability theorem it results 

12 21w w .

Then, subtract equations (1.7.38a) and (1.7.38b), and similar equations (1.7.38c) and 
(1.7.38d), and add the results to obtain 

2 2 2
1 2 1 0 2 0 12 1 12 2

1 1 1 10 4( ) ( ) ( ) ( ) ( )
2 2 2 2

w w w w w w w w 2 ,

or

1 2
12 0

1 2

4( )w w
w w

.



INTRODUCTION TO SOLITON THEORY: APPLICATIONS TO MECHANICS46

Therefore, this method is remarkable for generation of new solutions. In particular, 
for

0 0w , , 1 1 1 2 tanh( 4 )w x t , 2 4 ,

and

2 4coth(2 32 )w x t ,

we have

12
12( , )

[2coth(2 32 ) tanh( 4 )]
w x t

x t x t
,

that yields to a two-soliton solution 

12 2

3 4cosh(2 8 ) cosh(4 64 )( , ) 12
[3cosh( 28 ) cosh(3 36 )]

x t xu x t t
x t x t

.

1.8    Painlevé analysis 
Before discussing the Painlevé property of an ordinary differential equation, we give 

a short review of singular points and their classification (Gromak). 
Let us consider a nonlinear differential equation in the complex plane 

( , )w f z w ,                                                  (1.8.1) 

where  is an analytic function of complex variable. A solution of 
(1.8.1) is an analytic function, which is determined by its singular points. Here 

1: nf D C Cn

d
d

w w
z

.

DEFINITION 1.8.1 A point at which  fails to be analytic is called a singular 
point or singularity of . Singular points can belong to the following classes:

( )w z
( )w z

a) Isolated singular points. 
b) Nonisolated singular points. 
c) Single-valued points, for which the function does not change its value as 

goes around a given initial point .
z

0z
d) Multi-valued or branch, or critical points. 
e) The points for which the function has a limit, whether finite or infinite, as 

.0z z
f)   The points for which the function  has a limit as , namely  is an 

essential singular point.
( )w z 0z z 0z

We recall that a critical point is a singular point at which the solution is not analytic, 
which is not a pole. 
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PROPOSITION 1.8.1. Consider the system

1 2( , , ,..., )j j nw f z w w w , 0
0( )j jw z w , 1, 2,..., ,j n                      (1.8.2) 

and let  be analytic in the domain f 0| |z z a , 0| |j jw w b  and M  be the upper 
bound of the set  in this domain. Then the system admits a unique solution ,
which is analytic within the circle |

f ( )w z

0 |z z and which reduces to , when ,0w 0z z

[1 p ]
)

a
M n

ex
( 1
b . In the linear case a .

A singular point may have more than one of the above properties. If  is a 
singularity of  then  can have a singularity at .  For example, the equation 

0 0( , )z w
f ( )w z 0z

0zw w ,

admits the general solution 

( ) cw z
z

,

where  is an arbitrary constant. The solution has a simple pole c 0z  for .  The 
nonlinear equations may have movable singularities, whose position does depend on the 
arbitrary constants of integration.  The equation 

0c

2 0w w ,

admits the general solution 

0

1( )w z
z z

,

where  is an arbitrary complex constant, which is a simple movable pole. 0z
The equation 

d exp( )
d
w w
z

,

has the general solution 

0( ) log( )w z z z ,

where  is an arbitrary complex constant. This solution has a logarithmic branch point 
(critical point) at the movable point 

0z

0z z .

DEFINITION 1.8.2 The movable singularities of the solution are the singularities 
whose location depends on the constant of integration. Fixed singularities occur at 
points where the coefficients of equation are singular.

DEFINITION 1.8.3   An ordinary differential equation is said to possess the Painlevé
property when all movable singularities are single-valued (poles), that is when 
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solutions are free from movable critical points but can have fixed multivalued 
singularities.

Consider in the following those equations which do not contain movable singular 
points. In 1884, Fuchs shows that if the first order equation (Drazin and Johnson) 

( , )w F z w ,

where F  is a rational function in , and analytic in , does not contain any movable 
crtical points, then 

w z

2( , ) ( ) ( ) ( )w F z w a z b z w c z w ,                         (1.8.3) 

with  analytic functions. The above equation is the Riccati equation., ,a b c
Painlevé and Gambier (see Gromak) extended these ideas to equations of the second 

order

( , , )w F z w w ,

and showed that there are only 50 equations which have the property of having no 
movable critical points. They showed that 44 equations were integrable in terms of 
known functions, such as elliptic functions and solutions of linear equations, or were 
reductible to one of six new nonlinear differential equations, namely (Gromak) 

26w w z ,

32w zw w ,

2 21 1 1 ( )w w w w w
w z z

3

w
,

2 3 2 21 3 4 2( )
2 2

w w w zw z w
w w

,

2 2
2

3 1 1 1 ( 1( 1) ( )
2 ( 1) 1

w ww w w w w
w w z w z wz

)w ,

2

2 2 2 2 2

1 1 1 1 1 1 1( ) (
2 1 1

( 1)( ) ( 1) ( 1)[ ]
( 1) ( 1) ( 1) ( )

w w
w w w z z w w z

w w w z z z z z
z z w w w z

)

,

w

with  and  arbitrary constants. These equations are known as the Painlevé 
equations. The first three equations were discovered by Painlevé, and the next three by 
Gambier, Ablowitz, Ramani and Segur expressed in 1980, the sufficient and necessary 
conditions of integrability for a nonlinear partial differential equation; every ordinary 
differential equation derived from it by exact reduction, must satisfy the Painlevé 
property.

, ,

Each of the above equations can be analyzed in terms of meromorphic functions 
theory. In particular, let us consider the second Painlevé equation
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32w zw w ,                                              (1.8.4) 

which is a meromorphic function of   In the neighborhood of each pole , the 
solution has the expansion (Gromak) 

.z 0z

2 3
0 0 0 0

0

( ) ( ) ( ) .....
6 4

w z z z z z h z z
z z

, 2 1 ,       (1.8.5) 

where  is an arbitrary constant. The theorem of meromorphic functions implies that 
each solution of  (1.8.4) can be expressed as the ratio of two entire functions, that is 

h

( )( )
( )

v zw z
u z

.                                                 (1.8.6) 

The expansion (1.8.5) leads to 

2 0
02

0

1 (
3( )
zw

z z
)O z z ,                                  (1.8.7) 

and

1

2
0

0

1d (
z

z

w z O z z
z z

)

2

.                                (1.8.8) 

 Therefore the function 

1 1

2( ) exp d d
z z

z z

u z z w z ,                                   (1.8.9) 

has a simple zero at , and it is entire. The function v z  is also entire. From  (1.8.6) it 
follows the equations for u z  and 

0z ( )
( ) ( )v z

2uu u v ,                                           (1.8.10) 

2 2 3 22v u vu u v u v zvu u3 .                        (1.8.11) 

When  is expressed as a polynomial in u , the equation (1.8.10) reduces to a 
Weierstrass equation (1.4.14). It can be proved that all the solutions of (1.8.9) are entire, 
and, if ( , ,  is an arbitrary solution of (1.8.9), then (1.8.6) is a solution of 
(1.8.4).

v

u v) 0u

The equation (1.8.3) has a one-parameter family of solutions, which is defined by 
the general solution of Riccati equation (1.8.3). Indeed from this equation we obtain 

2 2(2 )( )w a w b w c aw b aw bw c ,

and the coefficients  are obtained, , ,a b c 2 1a , 0b ,
2
zc
a

,
2
a .

By employing the Painlevé analysis, the explicit solutions for several nonlinear 
equations can be obtained. To illustrate this, we present further some examples of 
Painlevé analysis application. 
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EXAMPLE 1.8.1 (Satsuma) Exact solutions of a nonlinear reaction–diffusion 
equation of the type 

2( ) ( )t xxu u F u .                                          (1.8.12) 

In (1.8.12) ( )F u  is a polynomial. In population dynamics, this equation is a model for 
the spatial diffusion of biological populations. Let us consider the case 

( ) ( 1)( )F u u u u .                                       (1.8.13) 

Substituting into (1.8.12), we have ( ) ( )u u z u x ct
2( ) ( 1)( ) 0zz zu cu u u u .                               (1.8.14) 

We suppose that the solution is a meromorphic function which can be written as a 
Laurent series, that is 

0( ) ( )n
n

n m
u z a z z .                                    (1.8.15) 

For simplicity we take 0 0z . Substitution of (1.8.15) into (1.8.14) and equating the 

terms with the same power in , yield to mz 2 , 0
5 (1 )

12
a , 1

1
28

a c

4a

, , 

, and so on.  It is easy to verify that the determination of  leads to .
For this particular value of c , the solution (1.8.15) becomes 

1 0a

0c2 20a

2 5 1 520 (1 ) { (1 ) } ...
12 60 16

u z z2 2  .                (1.8.16) 

Analyzing the nature of the singularities in (1.8.16), we choose for  the form  u

fu
g

,

exp( ) exp(2 )f A B kz C kz ,                           (1.8.17) 

2[1 exp( )]g kz ,

where , ,K A B  and  are constants. Substituting (1.8.17) into (1.8.14) we find two 
nontrivial cases: 

C

Case 1. 1A , , 2B 1C , 1
5

k , 3
5

.  It follows that 

2 1tanh , 0,
2 5

0, 0.

z z
u

z
                                         (1.8.18) 
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Case 2. , , 0A 5B 0C , 1 i
2

k , 0 . It results 

25 1sec
4 4

u z .                                              (1.8.19) 

Solution (1.8.18) corresponds to an equilibrium solution. The equilibrium solution 
has the property 

0lim 0z zu , 0lim const.z zzu

By setting , the solution (1.8.18) can be written as a soliton  iz z

25 1sech
4 4

u z .                                             (1.8.20) 

EXAMPLE 1.8.2 (Satsuma) Let us consider the equation 

2 3( ) 16 ( )
4t xxu u u u .                                      (1.8.21) 

By expressing the solution  into a Laurent series, the same procedure as above, 
yields to an equilibrium solution 

u

2cos , | | ,
2

0, | | 0.

x x
u

x
                                             (1.8.22) 

Suppose that , and substituting it into (1.8.21) we obtain 2( ) cosu f t x

2

0

1 cos , | | ,
1 exp(12( )) 2

0, | | ,
2

x x
t tu

x
                          (1.8.23) 

for  and ( 0)u x 1,

2

0

1 cos , | | ,
1 exp(12( )) 2

0, | | ,
2

x x
t tu

x
                           (1.8.24) 

for . The solution (1.8.23) blows up at t( 0)u x 1 0t , and the solution (1.8.24) 
tends to zero as . This result implies that the equilibrium solution (1.8.22) is 
unstable.

t

EXAMPLE 1.8.3 (Satsuma)  For the equation 
2 2 2( ) 6 ( 1)t xxu u u u ,                                     (1.8.25) 
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the Painlevé analysis leads to a traveling wave solution 

tanh(2 ), 2 ,
0, 2 .

t x x t
u

x t
                                        (1.8.26) 

This wave is a kink, which propagates in the positive direction of the axis x .  From 
the symmetry of the equation, the solution 

tanh(2 ), 2 ,
0, 2 ,

tx x t
u

x t
                                      (1.8.27) 

is a traveling wave which propagates in the negative direction. 

EXAMPLE 1.8.4  (Satsuma) For equation
2( )t xxu u u ,                                             (1.8.28) 

the Painlevé analysis  leads to 

2 2 / 3

1/ 3

exp( ) [ (1 exp( )) ], | | (1 exp( )) ,
12(1 exp( ))

0, | | (1 exp( )) ,

t x c t x c t
tu

x c t

1/ 3

     (1.8.29) 

for ,  with  a positive constant.  The solution is meaningful for t . The 
amplitude monotonically decreases to zero, and the width increases to 

0 c 0
2 c .  For 

, two types of solutions are derived 0

2 2 / 3

1/ 3

exp( ) [ (1 exp( )) ], | | (1 exp( )) ,
12(1 exp( ))

0, | | (1 exp( )) ,

t x c t x c t
tu

x c t

1/ 3

          (1.8.30) 

2 2 / 3

1/ 3

exp( ) [ (exp( ) 1) ], | | (exp( ) 1) ,
12(exp( ) 1)

0, | | (exp( ) 1) ,

t x c t x c t
tu

x c t

1/ 3

          (1.8.31) 

where  are  are constants.c c
The amplitude of the solution (1.8.30) monotonically increases to infinity, and the 

amplitude of the solution (1.8.31) admits a minimum for ln 3/ 2t , and then increases 

to infinity.



Chapter 2 

SOME PROPERTIES OF NONLINEAR EQUATIONS 

2.1   Scope of the chapter 
The stability of solitons is explained by the existence of infinitely many 

conservation laws. The conserved geometric features of solitons are related also to the 
symmetries. A symmetry group of an equation consists of variable transformations that 
leave the equation invariant.

In this chapter we summarize some of the elementary principles of linear and 
nonlinear evolution equations, including the symmetries and conservation laws. In the 
classical Sophus Lie theory, the symmetry groups consist of geometric symmetries, 
which are transformations of independent and dependent variables. For example, the 
KdV equation has four such linear independent symmetries, namely arbitrary 
translations in the space and time coordinates, the Galilean boost and the scaling.

The theorem of Emmy Noether (1918) gives a one-by-one correspondence between 
symmetry groups and conservation laws for Euler–Lagrange equations. The generalized 
symmetries introduced by Noether, are groups whose infinitesimal generators depend 
not only on the independent and dependent variables, but also the derivatives of the 
dependent variables.

The generalized symmetries are able to explain the existence of infinitely many 
conservation laws for a given nonlinear evolution equation.

Many authors have studied the properties of nonlinear equations with solitonic 
behavior. We refer to the monographs of Dodd et al. (1982), Teodorescu and 
Nicorovici-Porumbaru (1985) and Engelbrecht (1991) and to works of Wang (1998) and 
Bâl  (1999).

2.2   General properties of the linear waves 
The soliton, described by the hyperbolic secant shape, is a localized disturbance with 

non-oscillatory motion, having the velocity dependent of its amplitude. This contrasts 
strongly with the linear waves for which the velocity is independent of the amplitude. 
Let us consider the one-dimensional string motion equation   

u c2 0tt xxu ,                                             (2.2.1)
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where c is a real positive number. Let x  range from to . For the transverse 

vibrations of a string 2 Tc , where T  is the constant tension and , the mass per unit 

length at the position x . For the compressional vibrations of an isotropic elastic solid in 
which the density and elastic constants are functions of x  only (laminated medium), we 

have 2 2c . For the transverse vibrations of such laminated solid it follows that 

2c . The characteristics are given by d
d
x
t

c , namely the straight lines inclined to 

the axis at tanc .
D’Alembert solution of (2.2.1) is written as 

u x( , ) ( ) ( )t f x ct g x ct .                             (2.2.2)

Functions  are determined from the initial conditions attached to (2.2.1), : R Rf g

( ,0) ( ), ( ,0) ( )tu x x u x x .                           (2.2.3) 

Thus, we have

0

1 1( ) ( ) ( )d
2 2

x af x x
c 2

,                          (2.2.4) 

0

1 1( ) ( ) ( )d
2 2

x ag x x
c 2

, Ra .                 (2.2.5) 

The solution (2.2.2) describes two waves (f x ct) , and respectively ( )g x ct
, , t

.
Geometrically, the function  can be represented as a surface in the space ( u x ).
A section through this surface in the plane t

( , )u x t

0t , is 0( , )u u x t , and represents the 
profile of the vibrating string (a wave) at the time 0t t . A section through the surface 
in the plane 0x x , is u u , and represents the motion phenomenon of the point 0( , )x t

0x . The modified profiles of (f x ct)  can be determined in the following way. 
Consider one observer with a system of coordinates ( ', ')x t so that, at the time t ,
the observer occupies the position 

0 0
0x , and at the time t , the position ct , since it has 

a rectilinear motion with the velocity .c
In the new coordinate system ( ', ')x t , attached to the observer ( ' , ' )t t x x ct ,

the function  is specified, at any time t , by .(f x ct)

0 )

' ( ')f x
The observer sees, at any moment of time the unchanged profile  at the initial 

time . This is the way the function 
( )f x

0 0't t (f x ct  represents a right traveling 
wave or a forward-going wave with the velocity c.  For a similar reason, ( )g x ct

crepresents a left traveling wave or a backward-going wave with the velocity . As a 
consequence, both waves are not interacting between them and do not change their 
shape during the propagation. These waves can be called solitary waves, for the reason 
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they are not changing their shape during propagation process, and do not interact one 
with the other These waves can be superposed by a simple sum, because of the linearity 
of (2.2.1). The most elementary linear wave is a harmonic wave  

( , ) expi( )v x t A kx t ,                                    (2.2.6) 

and represents the solution of (2.2.1). 

 The real number  is the wave number, related to the wavelength by k 2k
c

,

 is the angular frequency related to the frequency by 2 f , and the real number 
A  is the amplitude.  

The phase velocity is the speed of the phase t kx , and represents the velocity 
of propagation of a surface with constant phase

pc
k

 .                                                     (2.2.7) 

The group velocity is the speed of the bulk of the wave

d
dg k

c .                                                   (2.2.8) 

Introducing (2.2.6) into (2.2.1) we obtain the dispersion relation, that is a relation 
between k and 

( , ) 0F k .                                               (2.2.9) 

In particular, for homogeneous and isotropic media the classical one-dimensional 
longitudinal wave propagation equation is 

( 2 ) xx tt ,                                     (2.2.10) 

where  is displacement, ,  the Lamé elastic constants, and  density. The 
dispersion relation is written as 

2 ( 2 )k 2 .                                       (2.2.11) 

Here, const.
k

, and we say that the waves are not dispersive. If  is real, we say 

we have dispersion of waves, if the phase velocity depends on the wavenumber. For 
example, in the case of the linearised  KdV equation 

0t x xxxu u u ,                                        (2.2.12) 

the dispersion relation is 
3 0k k .                                          (2.2.13) 

For Re const.
k

, the waves are nondispersive, and for Im 0
k

, the waves are 

nondissipative. The phase velocity c 21p k , depends on the wavenumber and then 
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we have the dispersion phenomenon.  The group velocity c  differs by the 
phase velocity for , and in consequence, the components of waves scatter and 
disperse in the propagation process.

21 3g k
0k

e( )]t

2) exp( )A tk

xxx

xx

2k
2i k

( ,0)x
(f x 0)

k

The linear Klein–Gordon equation 
2

xx tt m ,                                          (2.2.14) 

yields dispersion relation 
2 2m k 2 .                                           (2.2.15) 

If  is complex , we say we have dissipation of waves.Re i Im , Im 0
The solution in this case is

( , ) exp( Im )expi[ Rv x t A t kx ,                      (2.2.16) 

and the amplitude is exponential decreasing at .t
For the linearised Burgers equation 

u u 0t x xxu ,                                     (2.2.17) 

the dispersion relation is 
2ik k .                                             (2.2.18) 

The phase velocity of the harmonic waves ( , expi (v x t k x t  is 
, and the group velocity, 1pc 1 2igc k .

)

The dissipation appears because 2Im k  is negative for any real . In 
conclusion, the KdV equation is dispersive due to the term 

k
u , and Burgers equation is 

dissipative due to u .
Consider next the linearised Schr dinger equation 

t xx .                                               (2.2.19) 

If , (2.2.19) becomes i

i t xx .                                                (2.2.20) 

It follows that , , pc k 2gc k , and, as we mentioned before, this is a purely 

dispersive equation. If  is real and positive, we obtain , and the real part of 
 vanishes. We do not have dispersion, and the waves decay as exp  when 

. In this case (2.2.19) is the heat equation, and is purely dissipative.t

2( )k t

Coming back to (2.2.19), let us consider the initial conditions ( )f x , with a 
nonharmonic function .  In this case we represent ) ( ,x  by a Fourier integral 

1( ,0) ( )exp(i )d
2

x A k kx ,                               (2.2.21) 

where
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1( ) ( ,0) exp( i )d
2

A k x kx x .                            (2.2.22) 

A solution for  (2.2.19) is given by 

1( , ) ( ) exp{i[ ( ) ]}d
2

x t A k kx k t k ,                       (2.2.23) 

with the amplitude A(k) determined from the initial conditions ( ,0)x .
The solution (2.2.23) can be written under the form (Dodd et al.).

21( , ) d ( ,0)exp( i )d exp[i( i )]
2

x t k k kx k t ,               (2.2.24) 

or

21( , ) exp{i[( ) ]}d ( ,0)d
2

x t x k k t k .             (2.2.25) 

Noting x , (2.2.25) reduces to the evaluation of two integrals 

2
1 cos exp( )dI k k t k 2

2 sin exp( )d, I k k t k .          (2.2.26) 

The integrant of 2I  is odd, and then 2I = 0.

We define  and 2 k t2 a
t

, so that

2
1

1( ) cos exp( )dI a a
t

.                            (2.2.27) 

Differentiating (2.2.27) with respect to , and integrating by parts with respect to 
, yield 

a

1
1 1

d 1 , (0)
d 2
I aI I
a t

,                                (2.2.28) 

2
1

1exp( )
4

I a
t

,                                        (2.2.29) 

where 2exp( )d .  Finally, the solution is 

21( , ) ( ,0) exp[ ]
44

xx t
tt

( ) .                        (2.2.30)

The integral (2.2.30) can be evaluated in a particular case, namely ( ,0)x  is a 
Gaussian function, 2( ,0) exp( )x A x .  The result is 
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2

( , ) exp[ ]
1 41 4

A xx t
tt

.                            (2.2.31) 

If  is real and positive, then 0  as t , the equation being dissipative. If  
, then i  is an oscillatory function, and the initial wave is dispersed. 

Finally, we may say that the cnoidal waves, expressed by Jacobi elliptic functions, 
form a special class of nonlinear waves that bridge the linear waves to solitons. 

Such a class of waves is represented by solutions of the KdV equation 

6t x xxxu uu u 0 .                                        (2.2.32) 

Introducing the new variable x c , equation KdV becomes 
26 ( 1)u u c u .                                         (2.2.33) 

Multiplying (2.2.33) by 2u  and integrating we obtain a Weierstrass equation 
(1.4.8)

2 3 24 ( 1)u u c u C ,                                     (2.2.34) 

where C is a constant.  For 3 2
2 327 0g g  and 0C , we obtain the solution 

2
3 1 3( ) ( )cn ( *, )u e e e u m ,                              (2.2.35) 

where 2

1 3

e em
e e

3  and 1 3*u e e u 3, with , the roots of cubic polynomials 

from the right-hand side of (2.2.34). Coming back to the KdV equation, the solution 
becomes 

1 2e e e

2
0

1 1( ) cn { ( )}
2 2

u c c .                                (2.2.36) 

These constants c  and 0  are determined from the initial conditions 

0(0) , (0)u u u 0c . The solution (2.2.36) is called a cnoidal wave. In the limit, when 
u and its derivatives tend to zero at infinity, we have

2 2
0 0

1 1cn { ( )} sech { ( )}, 1,
2 2

c c m           (2.2.37) 

and the cnoidal wave transforms into a soliton.
On the other hand, for small amplitude waves, when the linearised version of the 

KdV equation is appropriate, we have in the limit 0m

2 2
0 0

1 1cn { ( )} cos { ( )}, 0,
2 2

c c m                   (2.2.38) 

and the cnoidal wave transforms into  a cosine oscillation.
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2.3    Some properties of nonlinear equations 
In nature, each effect admits an opposite, that means a contrary effect. The opposite 

of dispersion is the energy concentration due to nonlinearities of the medium, which 
manifests as a focusing of waves (Munteanu and Donescu, Munteanu and Bo tin ,
Whitham 1974).  

The opposite of dissipation is  amplification. The amplification of waves arises from 
an influx of energy in active media, where the energy is pumping from a source to wave 
motion, or due to some interactions between waves and medium (Chiroiu et al. 2001a).

The mechanism, called the dilaton mechanism, is recently proposed for explaining 
the possible amplification of nonlinear seismic waves (Engelbrecht and Khamidullin, 
Engelbrecht).

Zhurkov and Petrov introduce the dilaton concept to explain the fracture of solids.  
The dilaton is a fluctuation of internal energy of a medium with loosened bonds 
between its structural elements. The dilaton is able to absorb energy from the 
surrounding medium, and when the accumulated energy in it has reached its critical 
value, the dilaton breaks up releasing the stored energy, causing the amplification of 
waves. This mechanism is controlled by the intensity of the propagating wave. Low-
intensity waves give a part of their energy away to the dilatons, and high-intensity 
waves cause the dilatons to break up. 

The dilatons may be distributed in a medium according to a certain order, may be 
absent in some regions, or may be randomly distributed. Sadovski and Nikolaev have 
shown in 1982 that the phase transitions in a multiphased medium can activate the 
dilatonic mechanism of energy pumping from a dilaton to wave motion. We can say 
also, that the tectonic stress concentrations in solids may grow until the stress field 
components reach their critical values at the points of their maximum concentrations, 
causing a seismically active event with the releasing of energy by the dilatons broken 
(Kozák and Šileny).

 Here is an example based on the description of long seismic waves in an elastic 
layer of thickness  resting on an elastic halfspace. The motion equation of a 
continuous medium is (Eringen 1970)  

h

, , 0( ) ( )KL k L K k kx f A 0 ,                              (2.3.1) 

where  is the density in underformed case, 0 KL is the Kirchhoff stress tensor,   the 
body force, 

kf

kA  the acceleration, and kx  the Eulerian coordinates. 
The constitutive laws are given by 

( , )KL
KL KL KL

EE
t

,                                     (2.3.2) 

(k k KLf f E ) ,                                             (2.3.3) 

where KLE  is the Green deformation tensor. The constitutive law (2.3.3) is referred to 
the body forces that result from long-range effects, and depend on KLE .

Noting with U  the transverse displacement, the motion equation of waves in the 
positive direction of the axis X  is obtained from (2.3.2) (Engelbrecht) 
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2 2 2 4
2 2 2 2 2
2 2 2 02 2 2 4( )s s s

U U U U Uc c m c l
Xt X X X

f ,          (2.3.4) 

where X  is directed along the layer,   is a nonlinear material parameter expressed in 
terms of  second, third and fourth order elastic moduli, 

m
i , 1,2i  are Poisson ratio in 

the layer ( i 1) and the halfspace ( 2i ), and c i,si 1,2 , are the velocity of transverse 
waves in layer and in the halfspace 

2 2 2 2 4
2 0( )sc k l k ,

2 2
2 2 22 1
0 2 2

1 2

( 1)s

s

c
c

0l h .                (2.3.5) 

In (2.3.5)  is the angular frequency and  the wave number. The equation (2.3.4) 
may be written under the form 

k

3
2 0

2 2 3
2 2

1 1 0
22 2s s

lu m u uu f
c c

,               (2.3.6) 

where ,2sc t X 2 X , Uu
t

. The small parameter  is related to the absolute 

value of the deformation 1U
X

.

The constitutive law (2.3.3) is written under the form 
2

1 2 3( X Xf bU b U b U 3 )X

3

,                               (2.3.7) 

with , positive constants.  , 1,2,ib i

Since the motion equation (2.3.6) is written in terms of Uu
t

, we express also 

(2.3.7) under the form 
2

1 2 3f B u B u B u3 ,                                            (2.3.8) 

where

1
1

2s

bB
c

, 2
2 2

2s

bB
c

, 3
3 3

2s

bB
c

.

Using the dimensionless variables 

0

uv
u

,
2

1 0

0

a u ,
0

, 2 2
1 2

1 | |
2 sa m c ,

where is the initial amplitude of the velocity, and 0u 0  the wavelength. The equation 
(2.3.6) becomes 

3
2

3sign( ) ( ) 0v v vm v f v ,                        (2.3.9) 
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where
2 2
0 2
2

0 0 | |
sl c

u m
, and 

2
1 2 3( )f v v v v3 ,                                    (2.3.10a) 

1
1 2

0

0BQ
u

, 2
2

0

0BQ
u

, 3 3 0QB , 0 2

| |
sc

m
Q .        (2.3.10b) 

The equation (2.3.9) governs the motion of long transversal waves in a layer in the 
case of a driving force .  Due to the cubic nonlinearity of  (2.3.10a), the equation 

(2.3.9) can be reduced to modified KdV equation that contains the term 

f f

2 vv .

Introducing the initial condition v A 2
0(0) sech

0 / cr

, the equation (2.3.9) admits a 
dilatonic behavior in some circumstances. For A A =1, and 1m , the initial soliton 
transforms into an asymmetric soliton, which becomes unstable at the finite time 

1/ 228( )
45c

a , 2 2
8 0
5

a b  (Figure 2.3.1).   

Figure 2.3.1  The dilatonic behavior of an initial soliton of amplitude 0 / crA A =1  due to a driving force 
( 1f m ) .

The dilatonic behavior depends on the properties of the medium and on critical 

amplitude of the initial soliton 2

015 | |cr
aA

u
. For 0 crA A  the amplitude of the 

soliton decreases, and for 0 crA A  the amplitude of the soliton dramatically increases.  
When the nonlinear and dispersive effects are equilibrated, the perturbed soliton by 

the initial data remains unchanged and propagates without changing its identity 
(velocity, amplitude and shape).  

In Figure 2.3.2 it is represented as the explosive amplification of the dimensionless 
amplitude v  (solution of (2.3.9)) with respect to time t [sec] and coordinate 1X [m], for 
three values of the ratio r A , namely  = 0.98,  = 1 and  = 1.2, for the case 

.
0 0 / crA r r r

1m
As we said, the soliton is a perfect balance between nonlinear and dispersive effects, 

exhibiting a remarkable survivability under conditions where a wave might normally  be 
destroyed.



INTRODUCTION TO SOLITON THEORY: APPLICATIONS TO MECHANICS 62

Figure 2.3.2  Amplitude of   with respect to time  and ,  for = 0.98, = 1 and = 1.2 ( ).v t X r r r 1m

2.4    Symmetry groups of nonlinear equations 
The evolution equations that admit the solitonic solutions have infinitely many 

conservation laws. These conservation laws are related to the symmetry groups of the 
equations. In this section, we adopt the notations and the point of view of Bâl .

Let us consider a system of partial differential equations 
( )( , ) 0nx u , 1,2,..., l ,                                        (2.4.1) 

where
1 2( , ,..., )px x x x , 1 2( , ,..., )pu u u u ,

 and
( ) ( ) ( )

1( , ) ( ( , ),..., ( , ))n n
lx u x u x u n ,

is a differentiable function. All the derivatives of  are denoted by . Any function 
,

u ( )nu
( )u h x : R Rp qh D U

-n
, , induces the function 

called the th prolongation of h , which is defined by 

1 2( , ,...,h h h )qh ( ) ( )n nu pr h
0

j ju h , ,

and for each 

( ) ( ):n nh D Upr

x D ( )npr h,  is a vector whose ( )n n
p nqp C  entries represent the values 

of  and all its derivatives up to order  at the point h n x . The space , whose 
coordinates represent the independent variables, the dependent variables and the 
derivatives of the dependent variables up to the order , is called the th order jet 
space of the underlying space 

( )nD U

-nn
D U . Therefore,  is a map from the jet space 

 to .  The system of equations (2.4.1) determine the subvariety ( )nD U lR
( ) ( ){( , ), ( , ) 0n nS x u x u } ,
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of the total jet space . We can identify the system of equations (2.4.1) with its 
corresponding subvariety .

( )nD U
S

Let ( )nM D U  be an open set. A symmetry group of (2.4.1) is a local group of 
transformations G  acting on M  with the property that wherever u f ( )x is a solution 
of (2.4.1) and whenever g f  is defined for g G , then ( )f xu g is also a solution 
of the system.  

The system (2.4.1) is called invariant with respect to . If G X  is a vector on M
with corresponding 1-parameter group exp( )X  that is the infinitesimal generator of the 
symmetry group of (2.4.1). The infinitesimal generator of the corresponding prolonged 
1-parameter group ( )[exp( )]npr X

( )
( ) ( ) ( )

0( , )

d| [exp( )]( ,
d

n
n n

x u
pr X pr X x u ) |n ,

for any , is a vector field on the jet space ( ) ( )( , )nx u M n -n ( )nM  called the 
prolongation of -n X  and denoted by . The system (2.4.1) is called to be of 

maximal rank if the Jacobi matrix  

( )npr X

( )
0( , ) ,n

i
j

J x u
x u

,

of  , with respect to all the variables  is of rank  whenever ( )( , )nx u l ( )( , ) 0nx u .

THEOREM 2.4.1  (Bâl ) Let 

1 1
( , ) ( , )

p q
i

i
i

X x u x u
x u

,

be a vector field on M D U . The th prolongation of -n X is the vector field 

( ) ( )

1
( , )

q
n n

J j

pr X X x u
u

J ,

defined on the corresponding jet space ( ) ( )n nM D U , and J  is the multi-indices
1( ,..., )kJ j j , 1 , 1kj p k n . The coefficient functions J  are given by 

( )
,

1 1
( , ) ( )

p p
J n i i

J i J
i i

ix u D u u .

THEOREM 2.4.2 (criterion of infinitesimal invariance). Consider the system of
equations (2.4.12) of maximal rank defined over M D U . If G  is a local group of 
transformations acting on M  and 

( ) ( )[ ( , )] 0n npr X x u , 1, 2,..., l ,                      (2.4.2) 
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whenever , for every infinitesimal generator ( )( , ) 0nx u X  of , then  is a 
symmetry group of (2.4.1).

G G

To find the symmetry group of the system (2.4.1) we consider the vector fieldG
X on M  and write the infinitesimal invariance condition (2.4.2). Then eliminate any 

dependence between partial derivatives of u  and write the condition (2.4.2) like 
polynomials in the partial derivatives of u . Equate with zero the coefficients of the 
partial derivatives of  in (2.4.2) and obtain a partial differential equations system 
with respect to the unknown functions 

u
i , , and this system defines the symmetry 

group  of  (2.4.1). G
Now let us study the symmetry group of the system of equations arising from the 

Tzitzeica equations of the surface (Bâl )

uu u va b ,

uv h ,                                                   (2.4.3) 

vv u va b ,

where the independent variables are  and , and  the dependent variable is . We 
associate to (2.4.3) the integrability conditions (see section 10.2) 

u v

uah h ,

va ba h ,

0vb bb ,                                                  (2.4.4) 

vb h h ,

0a aa ,

ub a b h ,

where , are invariant functions  of u  and v . The solutions , , , ...a b a h ( , )x x u v ,
,  of  (2.4.3) and  (2.4.4) define a Tzitzeica surface. Denote ( , )u v z zy y

1

( , )u v
x u , 2x v and .1u

Let 2D U  be the second jet space attached to (2.4.3) and 2M D U  an open set. 
An infinitesimal generator of the symmetry group  of (2.4.3) is given by G

X
u v

,                                   (2.4.5) 

where ,  and  are functions of ,  and u v . The theorem 2.4.1 gives the first and 
the second prolongations of the vector X , namely 

(1) u v

u v

pr X X ,
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(2) (1) uu uv vv

uu uv vv

pr X pr X

uv

,            (2.4.6) 

where

( )u
u u v uuD ,

( )v
v u v uvD vv ,

( )uu
uu u v uuu uuvD ,                          (2.4.7) 

( )uv
uv u v uuv uvvD ,

( )vv
vv u v uvv vvvD .

The existence of a subgroup 1G  of the symmetry group G , which acts on the space 
of the dependent variable , and the existence of a subgroup 2G  of the symmetry 
group G , which acts on the space of the independent variables u and , are proved by 
the following theorems (Bâl  ): 

v

THEOREM  2.4.3   The Lie algebra of the infinitesimal symmetries associated to the 
subgroup 1G  of the full symmetry group G  of (2.4.3) is generated by the vector field

1Y .                                                (2.4.8) 

THEOREM 2.4.4 The general vector field of the algebra of the infinitesimal 
symmetries associated to the subgroup 2G  of the full symmetry group G  of (2.4.3) is

( ) ( )Z u v
u v

,                                     (2.4.9) 

where  and satisfy  

0u v u uua a a ,

2u v u ub b b b 0 ,

( )u v u vh h h 0 ,                                    (2.4.10)

2u v u va a a a 0 ,

0u v v vvb b b .
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2.5    Noether theorem 
In 1918, Emmy Noether proved the remarkable theorem giving a one-by-one 

correspondence between symmetry groups and conservation laws for the Euler– 
Lagrange equations (Teodorescu and Nicorovici-Porumbaru). To understand the 
Noether theorem, let us consider a mechanical system with  degrees of freedom, 
whose states are determined by the independent variable, time , and the dependent 
variables (state functions or generalized coordinates) , i n

n
t

,...iq 1, 2 , .
Suppose that the equations of motion derive from the functional   

1

0
1 2 1 2( , ,..., , , ,..., , )d

t

n nt
L q q q q q q t t ,                       (2.5.1) 

where  is the Lagrangian function, ,L iq 1, 2,...,i n ,  the generalized velocities, and 
. To obtain the motion equation, we introduce the infinitesimal transformation 

of time  
0 1]t[ ,t t

t t t ,                                                (2.5.2) 

 with  an arbitrary infinitesimal quantity. t
In terms of , and q qi iq q qi ii i q , 1, 2,...,i n , the variation of the 

functional  (2.5.1) is 
1 1

0 0

( , , )d ( , , )d
t t

i i i i
t t

L q q t t L q q t t , i 1, 2,..., n .                  (2.5.3) 

When the Lagrangian  does not explicitly depend on time, then L d
di iq q
t

.

Writing the Taylor series expansion,  neglecting the second derivatives

( , , ) ( , , )i i i i i i
i i

L L LL q q t L q q t q q t
q q t

,

where the Einstein’s summation convention for dummy indices is used, the variation of 
the integral becomes 

1

0

d d( ) (
d d

t

i i i i
i i i it

L L L LL t q t q q q t t
t q q q t q

) d ,    (2.5.4) 

where .1, 2,...,i n
The motion equations are obtained from (2.5.4) for assuming that the variation 

and the variation of generalized coordinates are identically zero at t
t

0t and t .1t
Thus, the first term in (2.5.4) vanishes, and the Lagrange equations of motion are 

derived

d 0
di i

L L
q t q

.                                       (2.5.5) 
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The Lagrange equations are invariant if we replace  by L L , where  is an 
arbitrary non-zero constant. This transformation is called the scale transformation.  

The Lagrange equations are also invariant if we replace  by L d
d
fL
t

, where 

, is an arbitrary function. This transformation is called the gauge transformation.  ( , )if t q
The transformation of independent variable under which the form of the equations of 

motion (2.5.5) remains invariant is a symmetry transformation. 
A general form of a transformation of independent variable is 

( )t t ,                                             (2.5.6) 

and the  changes of generalized coordinates are 

( ) ( , )i iq t Q t qi .                                        (2.5.7) 

The functional  (2.5.1) is invariant with respect to (2.5.6) if

( , , )d ( , , )di i i iL q q t t L q q t t .                            (2.5.8)

The Lagrange equations are invariant if 

d( , , ) ( , , )
di i i i

fL q q t L q q t
t

.                             (2.5.9) 

We can say that (2.5.6) is a symmetry transformation for a mechanical system if and 
only if the conditions (2.5.8) and (2.5.9) are satisfied. For the infinitesimal 
transformation (2.5.2) the conditions (2.5.6) and (2.5.7) yield to 

d ( , )
di i

i i

t q q L f t
t q t t

.                    (2.5.10) iq

The transformation (2.5.2) is a symmetry transformation if, for a given , there 
exists a function , so that the equation  (2.5.10) is satisfied. For a given , the 
symmetry transformation forms a group, which represents the symmetry group of the 
system.  

L
( , )if t q L

Consequently, when the equations of motion  (2.5.5) are satisfied, it results an 
equation of conservation of the form 

d 0
d i i

i i

L LL t q t q f
t q q

.                     (2.5.11) 

On this basis, a symmetry transformation of a mechanical system is associated with 
an equation of conservation.

This result is proved by the Noether theorem. 

THEOREM 2.5.1. (Noether) If the Lagrangian of a mechanical system is invariant 
with respect to a continuous group of transformation with  parameters, then exist 
quantities which are conserved during the evolution of the system. 

p p

In the case when the Lagrangian  does not depend explicitly on time, it 
relates to the Hamiltonian 

( , )L q q
( , )H q p  by 
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i
i

Hq
p

, 1, 2,...,i n ,                                  (2.5.12) 

where ,ip 1, 2,...,i n ,  are the generalized momenta in the Hamilton formulation. 
Let  be an integral of motion in the Hamilton formulation. In the Lagrange 

formulation, this integral becomes 
( , )C q p

( , ) ( , )F q q C q p . The integral of motion along 
trajectories of the system satisfies the condition 

d ( , ) 0
d

F q q
t

.                                         (2.5.13) 

Along the trajectories system, the variation of the Lagrangian due to the 
transformations q q , ii i qi 1, 2,..., n , is given by

d (
d i

i

LL
t q

)q .                                     (2.5.14) 

 From  (2.5.14) it follows certain conserved quantities (Teodorescu and Nicorovici-
Porumbaru). 

Case 1. If , the integral of motion is given by 0L

i i
i

L p q
q

.                                           (2.5.15) 

Case 2.  If there exists a function  such that ( )if q d ( )
d iL f

t
q , then the integral 

of motion is 

( ) (i i
i i i

L f fq p
q q q

) iq .                        (2.5.16) 

Case 3.  If  there exists a function ( , )i ig q q  such that

d ( , )
d i iL g q q
t

,                                     (2.5.17) 

the integral of motion becomes 

( , ) ( , )i i i i i i
i

L q g q q p q g q q
q i .                   (2.5.18) 

We see that (2.5.15) and (2.5.16) are particular cases of the third case.

THEOREM 2.5.2 (Noether) To every infinitesimal transformation of the form
(2.5.10), due to a variation of the Lagrangian of the form  (2.5.17), it corresponds to a 
conserved quantity defined by (2.5.18).



SOME PROPERTIES OF NONLINEAR EQUATIONS 69

2.6  Inverse Lagrange problem 
The study of the inverse problem for a given evolution equation consists of the 

calculus of variations to determine if this equation is identical to a Lagrange equation 
(Santilli 1978, 1983).

Zamarreno deduced in 1992 the known Helmholtz conditions (1887) for the 
existence of a matrix of multipliers allowing an indirect Lagrangian representation of 
the Newtonian system .  He considers the case when ( , , )i iq F q q t iF  is time 
independent, and gives the functional relation between the Lagrangian and a first 
integral of motion equations.  This section presents the principal results obtained by 
Zamarreno.  

The inverse Lagrange problem consists in determining the Lagrangian from a given 
evolution equation.

DEFINITION 2.6.1. Given a system of second order differential equations

1 2 1 2( , ,..., , , ,..., , )i i n nq F q q q q q q t , i 1, 2,..., n ,                (2.6.1) 

which describes the motion of a mechanical system with  degrees of freedom, the 
inverse problem consists of determining a Lagrangian such that 

n
,q( , )L q t

d( , , ) 0
di i i i

i i

L Lq F q q t
t q q

{1, 2,..., }i, n .      (2.6.2) 

We assume that the dynamic functions 2
iF C

d/

are defined for a time interval 
 for which the generalized coordinates and velocities vary in [ ,  and 

 intervals of the phase space. The operator  is applied over the integral 
trajectories of  (2.6.1) and is defined as 

1(t t t
[ , ]iq q

2 ) ]iq q
dt

d
d i i

i i

F q
t q q t

.                                  (2.6.3) 

 Lagrange equations (2.6.2) can be written under the form  
2 2 2

0k k
i k i k i i

L L L LF q
q q q q q t q

, i 1, 2,..., n ,      (2.6.4) 

and represent an over determined system of  second order partial differential 
equations in . The results are presented in the following propositions 
(Zamarreno). 

n
( , , )L q q t

PROPOSITION 2.6.1 If the system (2.6.1) is equivalent to the Euler–Lagrange 
equations corresponding to a variational principle whose Lagrangian is , then 
the partial derivatives of generalized momenta with respect to the generalized velocities 

( , , )L q q t

2
ji

ij ji
j i j i

pp L
q q q q

,                           (2.6.5) 
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satisfy identically the system of equations

d 1 1 0
d 2 2

ij k k
ik jk

j i

F F
t q q

.                         (2.6.6) 

PROPOSITION  2.6.2 In the same conditions as before, the equations

( )( ) 1 0
2

jk kik k h h
k ih jh

j i k j i

FF Fq
q q t q q q

F ,      (2.6.7) 

are identically verified.
Let us denote by ij  the multipliers that allow an indirect Lagrangian representation 

of (2.6.1) 

d( , , )( )
dij j j

i i

L Lq q t q F
t q q

, i j, 1, 2,..., n .            (2.6.8) 

Expanding the time derivatives on the right-hand side, we obtain 

ij ij .                                             (2.6.9) 

In this way the equations (2.6.6) and (2.6.7) coincide according to well-known 
Helmholtz conditions. We also have 

ij ik

k jq q
,                                         (2.6.10) 

because
3 3

ij ik

k k i j j i k

L L
q q q q q q q q j

.                     (2.6.11) 

Consider only regular systems for which  

det( ) 0ij .                                               (2.6.12) 

PROPOSITION  2.6.3 If is a symmetric solution of (2.6.6), then its determinant 
satisfies the equation 

ij

1

d 0
d

n
i

i i

F
t q

.                                    (2.6.13) 

COROLLARY 2.6.1 If  and ij ij  are two nonsingular symmetrical matrix solutions 

of  (2.6.5), the determinant  is a constant of evolution of the system. * | ( )ij
1( ) |ij
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PROPOSITION 2.6.4 If  is a symmetric nonsingular matrix, solution of  (2.6.6),
then   is a Jacobi multiplier for the dynamical system written in the equivalent form

ij

1 2 1 2

1 2 1 2

d dd d d dd ... ...n n

n n

q qq q q qt
q q q F F F

.             (2.6.14) 

PROPOSITION 2.6.5 If is a symmetric matrix, solution of (2.6.5) and the matrix ij

F  of elements i

j

F
q

 is skew symmetric, the trace of any integer power of  are 

constants of motion for the dynamical system. 

ij

We apply the variation of constants method to integrate  (2.6.6), for the uncoupled 
case

d 1 1 0
d 2 2

ij ji
ij ji

j i

FF
t q q

.                         (2.6.15) 

The solution of (2.6.15) is expressed as 

* 1exp d .
2

j i
ij

j i

F F t
q q

                             (2.6.16) 

 Here, the repeated indices do not imply summation.  Writing *
ij ij ij , we obtain 

*
* * *d d 1 1 0

d d 2 2
ij ij k k

ij ij ik ik jk jk
j i

F F
t t q q

.         (2.6.17) 

 From , and taking into account that ij ji
*
ij  are solutions of  (2.6.15), it follows 

*
* *d 1 1 0

d 2 2
ij k h

ij ik ik jh jh
j i

F F
t q q

, k j , h i .       (2.6.18) 

Replacing  from (2.6.16) and multiplication by *
ij

* 1
ij , yield 

*

d 1 1exp d
d 2 2

1 1exp d 0, , .
2 2

ij jk k
ik

j j k

h i h
jh

i i h

FF F t
t q q q

F F F t j k i
q q q

h

         (2.6.19) 

Denoting by  the expressions ija

1exp d ,
2

ji i
ij

j j i

FF Fa t
q q q

the system (2.6.19) becomes 
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d 1 ( ) 0, ,
d 2

ij
ik kj jh hia a k j h

t
.i                     (2.6.20) 

PROPOSITION 2.6.6. The determinant  of elements ij , is a constant of evolution 
for the dynamical system.

PROPOSITION 2.6.7. Sufficient conditions for the matrix ( ij ) to be diagonal are 

.1 constij ji ija a k
If iF  does not depend explicitly on time, the following results hold:

PROPOSITION 2.6.8 If the multipliers ij  satisfy the Helmholtz conditions and the 
dynamical system is autonomous, there exists a first integral ( , )I q q  for the dynamical 
system given by 

ik k
i

Iq
q

,

2 2

ik k k
i k i k i

L LF
q q q q q

Iq ,                     (2.6.21) 

for which d 0I ,  along the system trajectories.
We can define ( , )I q q  as 

ik k
i

Iq
q

,

2
k k h

ik k ih kh
k i

q F F

i

IF
q q q

.                      (2.6.22) 

PROPOSITION 2.6.9 The Lagrangian that allows an indirect representation for the 
autonomous system 

( , ),i i i iq F q q                                             (2.6.23) 

by using , must verify ij

i
i

LI q L
q

 ,                                           (2.6.24) 

where ( , )I q q is an integral for (2.6.22).
As an example, consider the simple pendulum equation 

sin 0g
l

.
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The Helmholtz conditions (2.6.6) and (2.6.7) are satisfied for  A prime 
integral  is obtained by integrating  (2.6.22) 

2.ml
I

2 21 (1 cos )
2

I ml mgl ,

and the Lagrange function is obtained from (2.6.24)  

2 21 (1 cos )
2

L ml mgl .

Another example is given by (Santilli 1978) 

2
1 1 1 3

1 ( 2 )
2

q q q q 0 ,

2
2 2 2 3

1 ( 2 )
2

q q q q 0 ,

2 2 2
3 3 1 1 2 2

1 ( exp( ) exp( )) 0
2

q q q q q q .

This system of equations satisfies the conditions of Proposition 2.6.7, and therefore 
(2.6.6) admits a diagonal symmetric matrix as a solution  

11 1 3exp{ ( )}q q ,

22 2 3exp{ ( )},q q

33 3exp( )q ,

which satisfy  (2.6.7) The first integral is obtained from  (2.6.22) 

2 2 2
3 3 1 1 3 2 2exp( ) exp{ ( )} exp{ ( )}

2 2 2
c c c

3I q q q q q q q q .

The Lagrange function is determined then from (2.6.24) 

2 2 2
3 3 1 1 3 2 2exp( ) exp{ ( )} exp{ ( )}

2 2 2
c c cL q q q q q q q q3 .

Among other works dedicated to inverse problems in mechanics we mention Chiroiu 
and Chiroiu (2003a), Frederiksen, Tanaka and Nakamura.  

2.7    Recursion operators 
The existence of infinitely conserved densities for evolution equations is explained 

by generalized symmetries that are groups, whose infinitesimal generators depend not  
only on the independent and dependent variables of the system, but also the derivatives 
of the dependent variables. 

The existence of infinitely many symmetries for evolution equations of the form 
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1( , ,..., )t k ku u f u u u 1 ,                                (2.7.1) 

where 1 xu u , 2 xxu u , and so on, and the right-hand sides are homogeneous with 
respect to the scaling symmetry xT xu u , with 0 , it was studied by Wang.  

 The equations of the type (2.7.1) are called -homogeneous equations. If an 
equation (2.7.1) has a nonlinear symmetry, it has infinitely many and these can be found 
using recursion operators. 

 Integrable evolution equations in one space variable, like the KdV equation, admit a 
recursion operator, which is an operator invariant under the flow of the equation, 
carrying symmetries of the equation into new symmetries. 

 In 1977, Olver provided a method for the construction of infinitely many 
symmetries of evolution equations, originally due to Lenard. This recursion operator 
maps a symmetry to a new symmetry. For the KdV equation, for example, a recursion 
operator defined by Im( )xD is given by 

2 2 1
3 3

1
x x xD u u D ,                                          (2.7.2) 

where 1
xD  is the left inverse of xD .  Magri studied in 1978 the connections between 

conservation laws and symmetries from the geometric point of view. He observed that 
the gradients of the conserved densities are related to the theory of symmetries.  

This problem required the introduction to Hamiltonian operators. Magri found that 
some systems admit a pair of Hamiltonians. For example, the KdV equation can be 
written in two forms corresponding to a pair of Hamiltonians 

2 31 2 1( ) (
2 3 3t x xx x x xu D u u D uD u )u .

The Nijenhuis operator (hereditary operator) is a special kind of recursion operator 
found as an integrability condition.  For any vector field 0A  leaving the Nijenhuis 
operator invariant, the A 0( )j

jA AA , 0,1,...j , leave  invariant  and commute in 
pairs. Gelfand and Dorfman gave the relation between Hamiltonian pairs and Nijenhuis 
operators. For the KdV equation the operator

A

2 12 1
3 3x x xD u u DA ,

is a Nijenhuis recursion operator and it produces the higher KdV equations, the KdV 
hierarchy, which shares infinitely many commuting symmetries produced by the same 
recursion operator 

( )j
t xu uA , 0,1,...j .

The recursion method can be applied also to 0 , and 0 .  In the particular 
case , we have 1

–     Potential Korteweg–de Vries equation 2
xxx xf u u ,

– Modified Korteweg–de Vries equation 2
xxx xf u u u ,

–     Burgers equation xx xf u uu .
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When , we have 2
–     Korteweg–de Vries equation xxx xf u uu .
A selected list of integrable evolution equations, scaling symmetry transformation 

,  and the recursion operators are given below (Wang) T
–       Korteweg–de Vries equation

t xxx xu u uu ,

2xT xu u ,

2 12 1
3 3x x xD u u DA .

– Burgers equation   

t xxu u uux ,

2 ( )t xT t xu u u ,

1 x xD uA , 2
1
2x xtD tu xA .

– Potential Burgers equation 
2

t xxu u ux ,

xT xu ,

1 x xD uA , 2
1
2x xtD tu xA .

– Diffusion equation 

  ,  2
t xu u u x

xT axu bu , ,a b C ,

1
x xx xuD u DA .

– Nonlinear diffusion equation 

u ,2D ( / )t x xu u

xT axu bu , ,a b C ,

1
2

21 x
x t x

u
D u

u u
DA .

– Potential  KdV equation 
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u u ,23t xxx xu

xT xu u ,

2 14 2x x xD u D uA xx .

–      Modified KdV equation 

u u ,2
t xxx xu u

xT xu u ,

2 22 2
3 3x xD u u DA 1

x u .

– Sine-Gordon equation 

sinxtu u ,

xT axu bu , ,a b C ,

2 2 1
x x x x xD u u D uA x .

– Liouville–Tzitzeica equation 

expxtu u ,

xT axu bu , ,a b C ,

2 2 1
x x x x xD u u D uA x

u

.

– Tzitzeica equation 

exp( 2 ) exp( )xtu u ,

xT xu ,

6 2 4 3

2 2 4 2

2 2 3

3 2 2 6

1

6( ) 9( 2 )

(5 22 13 6 9 )

( 8 15 3 6 18 )

4 20 20 20 4

2 (

x xx x x xxx x xx x

xxxx x xxx xx x xx x x

xxxxx x xxxx xx xxx x xxx x x x xx x

x xxxxx x xxx x xx xxx x xx x

x x xxxxxx

D u u D u u u D

u u u u u u u D
u u u u u u u u u u u D
u u u u u u u u u u

u D u

A

2 2

3 4 2

2 5 1

5 5 5 20

5 5 2( 5 5

5 ) .

xx xxxx xxx x xxxx x xx xxx

xx x xx xxxxx xx xxx x xxx

x xx x x xx

u u u u u u u u
u u u u u u u u

u u u D u

– Dispersiveless long wave system 
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u ut xv uvx , v ut x vvx ,

2x

x

xu u
T a

xv v
, a C ,

1

1

2
2

x x

x x

v u u D
v v D

A .

– Diffusion system 
2

t xxu u v , t xv v x ,

2 2
2

x

x

xu u u
T

xv v v
a a C, ,

1

0
x x

x

D vD
D

A .

– Nonlinear Schrödinger equation 

, ,2 2( )t xxv u u u v 2 2( )t xxu v v u v

x

x

xu u
T

xv v
,

.
1 1

1 1

2 2
2 2

x x x

x x x

vD u D vD v
D uD u uD v

A

– Boussinesq system 

t xu v , 1 8
3 3t xxxv u u xu ,

2
3

x

x

xu u
T

xv v
,

1 2 1

1
21

3 2 2
3

x x x x x

x x

v v D D u u D
v v D

A
A

,

4 2 2
21

1 10 165 3 2
3 3 3

1
x x x x xx tD uD u D u u v DxA .



 Chapter 3 

SOLITONS AND NONLINEAR EQUATIONS 

3.1    Scope of the chapter 
Solitons or solitary waves are localized waves that travel without change in shape. In 

the mathematics literature the word soliton refers to solitary traveling waves which 
preserve their identities after a pair-wise collision. Solitons were first discovered in 
shallow water by the Scottish engineer John Scott Russell in 1844, but they exist 
everywhere, in many kind of systems. The study of solitons is an exciting branch in the 
science of nonlinear physics and their importance as nonlinear waves is well-recognized 
in the past two decades. The basic theory of solitons is simple and relies on 
mathematical methods well-known to any applied mathematician.   

 In the last years of the nineteenth century, mathematicians as Korteweg, De Vries, 
Bianchi, Boussinesq, Darboux and Bäcklund have analyzed some remarkable nonlinear 
partial differential equations which possess the cnoidal or solitonic solutions.  

Engelbrecht is right when he affirms that the story of solitons is the story of three 
equations, namely Korteweg and de Vries, sine-Gordon and nonlinear Schr dinger
equations. In this chapter the first five evolution equations are briefly discussed and the 
solitonic solutions outlined. The stability and particle-like behavior of the solitons can 
be explained by the existence of an infinite number of conservation laws. So, these 
equations can be interpreted as completely integrable Hamiltonian systems in the same 
sense as finite dimensional integrable Hamiltonian systems, where we find for every 
degree of freedom a conserved quantity.  

The reader is referred to the remarkable monographs of Ablowitz and Segur (1981), 
Dodd et al. (1982), Lamb (1980), Drazin (1983), Drazin and Johnson (1989) and 
Engelbrecht (1991). We mention also the monographs of Carroll (1991), Nettel (1992) 
and Newell (1985) for enlarged topics in soliton theory.

3.2    Korteweg and de Vries equation (KdV) 
To explain the nature of solitons, we will consider the behavior of water waves on 

shallow water. The scenario could be set in one of the canals, which was the 19th 
century's analogue to highways nowadays. Indeed, it was in such a location that the 
Scottish engineer John Scott Russell first noticed a soliton in 1844.
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The solitary wave, or great wave of translation, was first observed on the Edinburgh 
to Glasgow canal in 1834 by Russell. Russell reported his discovery to the British 
Association in 1844 as follows (Drazin): 

“I believe I shall best introduce this phenomenon by describing the circumstances of 
my own first acquaintance with it. I was observing the motion of a boat which was 
rapidly grown along a narrow channel by a pair of horses, when the boat suddenly 
stopped – not so the mass of water in the channel which it had put in motion; it 
accumulated round the prow of the vessel in a state of violent agitation, then suddenly 
leaving it behind, rolled forward with great velocity, assuming the form of a large 
solitary elevation, a rounded, smooth and well-defined heap of water, which continued 
its course along the channel apparently without change of form or diminution of speed. 
I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine 
miles an hour, preserving its original figure some thirty feet long and a foot to a foot 
and a half in height. Its height gradually diminished and after a chase of one or two
miles I lost it in the windings of the channel. Such in the month of August 1834 was my 
first chance interview with that singular and beautiful phenomenon which I have called 
the Wave of Translation…”.

Russell performed some experiments in the laboratory in a small-scale wave tank in 
order to study the phenomenon more carefully. This is shown in Figure 3.2.1, which is 
one of  Russell's original diagrams (Dodd et al.). Figure 3.2.1 is represented as a raised 
area of fluid behind an obstacle. When this obstacle is removed, a long heap-shaped 
wave propagates down the channel. Figure 3.2.1b is identical except that the initial 
volume of trapped fluid is larger. 

In this case two solitary waves are found. If a wave is somehow initiated in such a 
canal, we expect that the wave rolls along the canal while it spreads out and soon ends 
its life as small wiggles on the surface. But, in certain conditions a soliton can be 
excited, and the wave will continue to roll along the canal without changing shape. It 
turns out that a soliton is very robust against perturbations.

The bottom of the canal may be uneven and bumpy, but the soliton will gently pass 
all obstacles.

Let us suppose the canal has depth h and note by h  (  small) the elevation of 
the surface above the bottom. Korteweg and de Vries derived in 1895 the partial 
differential equation, which governs the wave motion (Dodd et al.)    

2
2

2

3 2 1 1
2 3 2 3

g
t h x x

,                          (3.2.1) 

where
3

3
h Th

g
 ,  an arbitrary constant, T  the surface tensions,  the density of 

the fluid and g  gravity acceleration.
This equation bears the Korteweg and de Vries names, usually shortened to KdV, 

and becomes one of the most celebrated equations, which is related to solitons.  
Introducing

32 28 , , gu x
l

t ,
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the equation (3.2.1) becomes 

u u 12 0uu u ,                                 (3.2.2)

where the subscripts denote partial differentiation /u u , /u u ,

, etc. The factor of 12 in (3.2.2) is a matter of choice and can be rescaled 
by the transformation u

3 /u u 3

u

Figure 3.2.1  From Scott Russell's Report on Waves 1844 (Dodd et al.).    

For 1
2

 and 1
12

 the equation (3.1.2) becomes 

u u6 u u 0 .                                         (3.2.3) 

The equation (3.2.3) is known as the standard KdV equation. By applying a Lie 
transformation 

u k                        (3.2.4) 1 0 3 2 4, ,k k x k k k5 ,

we may write the KdV equation in the forms 

6 0u uu u , (1 ) 0u u u u ,                   (3.2.5) 

by choosing in an adequate way the constants , 0,1,2,3,4,5ik i .
Returning to the equation (3.2.3) we look for a solution with the permanent    

( ),u u c ,                                        (3.2.6) 

where c is the velocity of wave. 
Substitution of (3.2.6) into (3.2.5) gives 

6 0cu uu u ,
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where prime means the differentiation with respect to the new variable .
The above equation becomes 

23( ) 0cu u u .

Integration with respect to  yields 
23u u cu A ,

where A is an integration constant. Multiplying this equation with u  and integrating 
with respect to  we have 

2 3 21 1
2 2

u u cu Au B ,                                  (3.2.7) 

with  an integration constant. The equation (3.2.7) can be reduced, in certain 
conditions, to the Weierstrass equation  (1.4.8).  For 

B
3 2
2 327 0g g , the solution is 

expressed in terms of the elliptic Jacobi function.  
At the limit , the solution of the KdV equation is described in terms of 

hyperbolic function
1m

( )z  = .2
3 1 3( ) sech ( *,e e e u m)

The boundary conditions , , 0u u u  as , give 0A B , and 

2 21 (
2 2

u u u c1 )

d

.                                           (3.2.8) 

From   d  we have u u

d d
2

u u
u u u c

,

or

0
2 1tanh( 2 )a u c
c c

,

with   an integration constant.  0

Substituting 21 sech
2

u c  into the above equation we have 

2
0

2 1tanh( (1 sech ) )a c
c c

,

or

2
0

2 1tanh( tanh )a c
c c

,

 with 0
1 (
2

c ) . Therefore, we obtain the solution 
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2
0

1 1( ) sech { ( )}
2 2

u c c ,                              (3.2.9) 

for any c  and . These constants are determined from the initial conditions 0
, (

0

0 0c(0) 0)u u u .
We see from (3.2.9) that the amplitude of the wave depends on the velocity. Thus, 

the wave having higher amplitude travels faster than the wave having lower amplitude. 
Similarly the solution of (3.2.2) was found looking at solutions of the form 

, with  and ( )u u a t  the phase constant. Requiring that u and its 
derivatives to be zero as | |  the equation (3.2.2) may be integrated to give the 
solution

2 2 31 1sech
4 2

u a a a a .                        (3.2.10) 

The constants  and  are arbitrary, a playing the role of a phase.
The solution (3.2.10) represents a solitary wave, which has the shape as Russell 

observed. This wave propagates at a constant velocity without change of shape.  Its 
velocity is / a 21 a

a

, and depends on amplitude and vice versa the amplitude 
depends on the velocity. Figure 3.2.2 represents the solution (3.2.10) for three values of 
a. For smaller values of , the wave is low and broad, and becomes narrow and sharper 
as  increases.a

a  = 1                    = 0.37                        = 0.15    (a a = 0.5) 

Figure 3.2.2  Three solitary waves (3.2.10) for different values of a.

Up until this point we have talked about solitary wave solutions, which propagate 
without change of form and have some localized shape. But there are many equations, 
which have solitary wave solutions. The word soliton first appears in the paper of 
Zabusky and Kruskal. They have studied the problem of Fermi, Pasta and Ulam (1955) 
of motion of a line of identical particles of unit mass, with fixed end points, and put into 
evidence a remarkable property of the solitary solutions (Kawahara and Takaoka). Their 
interaction with one another as they passed through the cycles of evolution forced by the 
periodic boundary conditions shows no change in the form, but only a small change in 
the phase. Zabusky and Kruskal called these solitary waves solitons where the ending 
‘on’ is Greek for particle.  This particle-like behavior does not depend on periodic 
boundary conditions. Zabusky and Kruskal numerically integrated the KdV equation on 
boundary conditions  as 0u  and considered two well-separated solitary wave 
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solutions of the KdV equation as initial data with different velocities . The taller 
and therefore faster wave  is situated on the left. As time increases throughout the 
numerical integration, the tall, fast soliton overtakes the broad, slow one, as shown in 
Figure 3.2.3.  A larger soliton travels with a high velocity so that it overtakes the 
smaller one and after the collision they reappear without changing their form identity.  

1v v2

1v

Figure 3.2.3  The interaction of two solitons running in the same direction. 

The collision does not result in any small waves or wiggles after the interaction. The 
two solitons look exactly as they did before the collision. This particle-like behavior is 
generic for the soliton (Munteanu 2003).

Therefore a phenomenological definition of the soliton could be a localized wave 
that does not radiate (generate small waves) during collisions.  

The water wave soliton is a result of a dynamic balance between dispersion, namely 
the wave's tendency to spread out, and nonlinear effects. In order to substantiate this 
statement, we have to pass to some mathematics.  
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The dynamics of water waves in shallow water is described mathematically by the 
Korteveg–de Vries (KdV) equation (3.2.3). The second and the third term in the 
equation are the nonlinear and the dispersive term, respectively. 

Let us first investigate the effect of the dispersive term. Thus, we neglect the 
nonlinear term in the KdV equation. This leaves us with the following:

0u u .

We know that waves with different wavelengths travel with different velocities. 
Since the initial wave is composed of many small waves with different wavelengths, it 
will soon spread out in the many components and can no longer be described as an 
entity or object. 

Now let us see the effect of the nonlinear term. We neglect the dispersive term in the 
KdV equation, which leaves us with the following

6 0u uu .

The top of the wave moves faster than the low sides and this causes the wave to 
shock in the same way as the waves we see on the beach. This behavior is known as 
breaking the waves.

When both the dispersive and the nonlinear term are present in the equation the two 
effects can neutralize each other. If the water wave has a special shape the effects are 
exactly counterbalanced and the wave rolls along undistorted.

For the KdV equation, there are four such linear independent symmetries, namely 
arbitrary translations in x  and t , Galilean gauge and scaling. 

A conservation law for the KdV equation (3.2.3) is (Kruskal, Zabusky and Kruskal) 

0D U D F ,                                               (3.2.11) 

where is called the conserved density and U F  is called the conserved flux. The 
expressions for the conservation of momentum and energy are known as 

2

( )
2x

uD u D u 0 ,

22 3

( ) ( )
2 2x

uuD D uu
3
u .                                  (3.2.12) 

Zabusky and Kruskal continued searching and found two more densities or order 2 
and 3 expressed in terms of highest derivative.  

They missed a conserved density of order 4. Miura, Gardner and Kruskal found a 
conserved density of order 5, and filled in the missing order 4. After the order 6 and 7 
were found, Miura was fairly certain that there was an infinite number. Later it was 
proved that the conjecture if an equation has one nontrivial symmetry, it has infinitely 
many, is true under certain technical conditions (Wang). 

Miura found that the modified Korteweg–de Vries equation (MKdV) 
2v v v v ,                                                (3.2.13) 

has an infinite number of conserved densities. He introduced the transformation 
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2 6u v v ,                                           (3.2.14) 

which now bears his name. Applying the Miura transformation to (3.2.14) we have 
(Wang) 

2( ) (2 6D ( (u u uu v v v v v )) ,                     (3.2.15) 

from which we see that, if ( , )v  is a solution of (3.2.13), then ( , )u is a solution of  
(3.2.3). From this observation, the famous inverse scattering method was developed and 
the Lax pair was found (Lax, Lax and Phillips). 

Gardner also observed that the KdV equation might be written in a Hamiltonian 

way. Notice that the Hamiltonian of KdV is 
2

2
uH .

The integrability of the KdV equation can be understood in the same sense as finite 
dimensional integrable Hamiltonian systems, where we can find for every degree of 
freedom a conserved quantity named the action.  

Let us return to the linearised KdV equation 

0t x xxxu u u ,                                       (3.2.16) 

where . The term 3k k xxxu contains the dispersion of waves. Let us ignore the 
dispersive term in the KdV equation (3.2.5) 

( 1) 0t xu u u ,                                       (3.2.17) 

and introduce the initial conditions 

( ,0) ( )u x f x .                                         (3.2.18) 

To solve this problem, consider the equation 0 0t xu u u
( ,0)u x

, with the solution 
, which propagates with the velocity . For 0(u u x u t) 0u ( )f x , the complete 

solution is . This solution leads to the idea to consider a functional 
equation of the form (Dodd et al.)

0( , ) ( )t f x u tu x

[ ( 1)u f x u t] .                                      (3.2.19) 

From 

(1 )x xu u t f ,                                         (3.2.20) 

[ 1t tu tu u ] f ,                                    (3.2.21) 

we obtain the equation to be verified by the solution of (3.2.17) 

[ ( 1) ](1 )t xu u u tf 0 .                               (3.2.22) 

The equation (3.2.19) is an alternative form of (3.2.17), and can be solved by the 
characteristics method. Dodd and his workers, Eilbeck, Gibbon and Morris, have shown 
that (3.2.19) is solvable for triangle initial conditions of the form  
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0

0

, 0 1
( ) (2 ), 1 2,

0, 0; 2.

u x x
f x u x x

x x

,
                            (3.2.23) 

From (3.2.19) we have 

0

0

( ), 0
( , ) (2 ), 1 2,

0, in rest,

u ut ut
u t u ut ut

1,
                      (3.2.24) 

where x t .  The solutions are 

0

0

0

0

,
1
(2 ) ,

1
0,

u
u t

uu
u t

0

0

0

0

, 0 1,
1

, 1 2,
1

0, in rest.

u ut
u t
uu
u t

ut                 (3.2.25) 

The behavior of the solution (3.2.25) may be understood intuitively from  (3.2.19). 
Consider a wave traveling with the velocity (u +1). The apex of the triangle overtakes 
the lower points if u increases. The wave becomes multi-valued after the breaking time 

0

1t
u

, when the wave breaks.  The conclusion is that the absence of the dispersive 

term yields to a discontinuous (shock) behavior of waves.      
By inclusion into the equation of the term 2

xxxu , even for small values of , the 
third derivative is very large and the shocks never form (Zabusky and Kruskal).  
Inclusion into the equation of a dissipative term xxu instead of the term xxxu , leads to 
the Burgers equation which is a nonlinear diffusion equation

t xu uu uxx .                                         (3.2.26) 

3.3    Derivation of the KdV equation 
 Consider the irrotational bidimensional motion of waves on the surface of an ideal 

and incompressible fluid, generated by a disturbance.  The fluid occupies a volume V
at time t , and a hard horizontal bed bounds it below. The upper boundary is a free 
surface (Lamb, Miura). 

Consider an orthogonal system of coordinates xOz , with the vertical axis , and 
the axis Ox  oriented along the fixed bed.

Oz

The components of velocity are  

( , , ) ( ( , , ), ( , , ))x zv x z t v x z t v x z t .

The equations of the hard bed and of the free surface are 
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1 : 0S z ,

2 : ( , , ) ( , ) 0S f x z t z h x t ,

where  is the depth of the fluid, and h  is an unknown function that has to be 
determined. The volume occupied by the fluid is 

{( , ) R [0, ( , )]}V x z h x t .

The velocity of each particle is derived from a potential ,
so that  The continuity equation is 

2: [0, ) R, CV
( , , ) grad ( , , ).v x z t x z t

0xx zz , ( , , ) [0, )x z t V .                            (3.3.1) 

The Lagrange equation on a characteristic curve is written as 

2 21 ( ) ( ) co
2t x z

pg z h nst.

An atmospheric pressure 0 0p  is acting on the free surface. So, the boundary 
condition on  is written as 2S

2 21 ( ) ( )
2t x z g z h 0 ,                                (3.3.2) 

for . Another boundary condition on  is derived from the Euler– 

Lagrange condition, according with, for a material surface, we have 

( , )z h x t 2S

0f

0t x x z .                                            (3.3.3) 

We add the condition of a fixed surface , v x1S ( ,0, ) 0z t , that is 

0z ,                                                         (3.3.4) 

for . Relations (3.3.1)–(3.3.4) are enough to determine the partial differential 
equation that must be verified by 

0z
: R [0, ) R . So, we introduce the 

dimensionless quantities 

0 0 0

0

0 0

, , ,

( , , ) ( , , ),

( , ) ( , ), ,

0 ,x x z zx lx z hz v ghv v ghv
lax z t gh x z t
h

lx t a x t t t
gh

where  is the length of the disturbance, h  the depth of the fluid,  the amplitude of 
the disturbance, 

l a
g  the gravitational force constant, and gh  the velocity. 

 Noting with a superposed bar the quantities that depend on 0 0,x z  and t  the 
equations (3.3.1)–(3.3.4) become 

0 ,
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0 0 0 0

2
0, 0, 0x x z z ,

0 0 0

0 0 0 0

2 22
0 0, 0, 0,

2
0, 0, 0, 0,

1 ( )
2

( )

t z x

z t x x

0,

,

for 0 0 01 ( ,z x 0 )t , and 

00, 0,z

for , with 0 0z ,a h
h l

.

Dropping the bars, the motion equations and the boundary conditions are 
2

2 22

2

0,

1 ( ) 0,
for 1 ,2

( ),
0, for 0.

x x zz

t z x

z t x x

z

z

z

             (3.3.5) 

For small amplitudes ( ), and for large wavelengths (0 0 ) we suppose that 
. For arbitrary , the new variables are introduced 2 ( )O ,

( ),x t t ,                                   (3.3.6) 

that yield a reference system that moves with a unit velocity at 0z .
For (O ) , we have (1)O  for large moments of time. By changing the 

function

( , , ) ( , , ), ( , ) ( , ),z x z t x t                     (3.3.7) 

the equations (3.3.5) become  

2 2

0,
1 ( ) 0, for 1
2

( ), for
0, for 0.

zz

z

z

z

z

z
z

,

1 ,

z

             (3.3.8) 

Looking for the solutions of the form 

0
( , , ) ( , , )n

n
n

z ,                                     (3.3.9) 

it follows that, for fixed , and , [0,1 ]z
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2

0 1 ,

2 4
2 3

2 1, 0,

( , , ) ( , ) [ ( , ) ( , )]
2

[ ( , ) ( , ) ] ( ),
2 24

o
zz

z zz O
                  (3.3.10) 

where  are arbitrary functions that depend on . The conditions (3.3.9), 
(3.3.10) on the surface 

1 2 0, , z
(2

11z 3 )O

0 1, ...
 lead, further, to the partial 

differential equations verified by .
 Note that the equation verified by 0  is the KdV equation written under the form 

0, 0 0, 0,
1 3 2
3

0 .                              (3.3.11) 

We observe that (3.3.11) may be written under the form 

3 0pq q
r r

,                                (3.3.12) 

where 19, , 1
6

p q r .

Equation (3.3.12) is equivalent to the equation 

3 0t x xxx
pq q
r r

,                               (3.3.13) 

for a change of variable 

, , ( , ) (q r pt x x t
q r p

, )

0

.

Thus, equation (3.3.11) can be reduced to the standard form of the KdV equation 

6t x xxxu uu u ,                                       (3.3.14) 

by the change of variables 

0
2, 6 , ( , ) ( ,
3

)x t u x t .

Generally, by applying a Lie transformation 

0 1

2 3 4

( , ) ( , ) ,
, ,

u k u x t k
k x k k t k5

and choosing the constants k , in a convenient way, the equation (3.3.14) 
becomes 

0 ,..., 5k

6 0u uu u ,

or
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(1 ) 0u u u u .

3.4    Scattering problem for the KdV equation
Consider the KdV equation

6 0t x xxxu uu u .

A solution of the KdV equation for imposed conditions u u, , 0u , as x , is 
2

0( ,0) ( ) sechu x f x U x ,                               (3.4.1) 

at the initial moment of time t 0 . This is the reason for choosing (3.4.1) as the 
potential function in the Schrödinger equation (1.2.13). Thus, we have 

2 2
0'' [ sech ( )] 0k U x .                                  (3.4.2) 

To solve a direct scattering problem means to find the fundamental solutions 
(1.2.14), the coefficients  (1.2.16), and the transmission and reflection coefficients 
(1.2.19) and (1.2.20). 

ijc

Using the change of function 
i( ) sech ( ) ( )k

kx C x y x ,                                     (3.4.3) 

the equation (3.4.2) becomes 

.                  (3.4.4) 2 2
0'' 2i tanh( ) ' [ i sec h ( )] 0y k x y k k U x y

The change of variable

1 tanh( ) ( 1,1), R,
2

xz x                               (3.4.5) 

transforms (3.4.4) into 
2

0( 1) '' [ (1 i ) 2(1 i ) ] ' ( i )z z y k k z y k k U y 0 ,

where ( ) ( )y z y x .  This equation is written as 

( 1) '' [ (1 ) ] ' 0z z y z y y ,                      (3.4.6) 

where

0

0

1 i ,

1 i
2 4
1 1i ,
2 4

k

k U

k U

1 ,                                      (3.4.7) 

and admits as solution the hypergeometric series 
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( ) ( , , ; ) 1 ...y z F z z

( 1)...( 1) ( 1)...( 1)... ... .
( 1)...( 1)

nn n z
n

                  (3.4.8)

This series is convergent for 1z . We have also 0
1
4

U .   From mentioned 

changes (3.4.3) and (3.4.5), the solution of (3.4.2) becomes 

iexp( ) exp( ) 1 tanh( )( ; ) ( ) ( , , ; )
2 2

k
k

x x xx k C F ,            (3.4.9) 

where the complex constants are given by (3.4.7), and C  is an arbitrary constant. k

The hypergeometric series has the following property (Abramowitz and Stegun) 

( ) ( )( , , ; ) ( , , 1;1 )
( ) ( )

( ) ( )(1 ) ( , , 1;1 ),
( ) ( )

F z F z

z F z
     (3.4.10) 

for any z  with arg 1 z , and  is the Euler function.
Thus, the solution (3.4.9) becomes 

i
1

i
2

exp( ) exp( ) ( ) ( )( ; ) ( )
2 ( ) (

exp( ) ( ) ( )( ) ,
2 ( ) ( )

k
k

k
k

x x
)

x k C F

xC F
             (3.4.11) 

where

1
1 tanh( )( , , 1; )

2
xF F ,

2
1 tanh( )( , , 1;

2
)xF F .

Taking x  into (3.4.9), and x  into (3.4.11), we write 

exp(i )( ; ) , ,
2

exp( i ) ( ) ( )( ; )
( ) ( )2

exp(i ) ( ) ( ) , .
( ) ( )2

k ik

k ik

k ik

kxx k C x

kxx k C

kxC x

                 (3.4.12) 
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To determine the fundamental functions ( , ), 1,2,if x k i we observe that ( ; )x k may 
be written as a linear superposition of them. It follows that there exist the functions 

( ), ( )A k B k so that 

1 2( ; ) ( ) ( ; ) ( ) ( ; )x k A k f x k B k f x k .

According to (1.2.14), the properties of  at infinity are given by 

11 12

21 22

( ; ) ( ) exp(i ) ( )[ ( ) exp(i ) ( ) exp( i )],
for ,

( ; ) ( )[ ( ) exp(i ) ( ) exp( i )] ( ) exp( i ),
for .

x k A k kx B k c k kx c k kx
x

x k A k c k kx c k kx B k kx
x

    (3.4.13) 

 Comparing (3.4.12)  to (3.4.13) 1  it results1

12
i

11

( ) ( ) 0,

( ) ( ) ( ) 2 ,k
k

B k c k
A k B k c k C

and

12 21

0 0

(1 i ) ( i )( ) ( )
1 1 1( i ) ( i
2 4 2

k kc k c k
k U k U 1 )

4

,            (3.4.14) 

i( ) 0, ( ) 2 .k
kB k A k C

Consequently, we have

i
1

( ; ) 1 tanh( )( , ) [exp( ) exp( )] ( , , ; )
( ) 2

kx k xf x k x x F
A k

.      (3.4.15) 

Comparing (3.4.12)  to (3.4.13) , and using (3.4.14) we have  2 2

22

21

( ) ( )( ) ( ) ( ) ,
2 ( ) ( )

( ) ( )( ) ( ) .
2 ( ) ( )

k

k

CA k c k B k

CA k c k

 Therefore,
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12 21

0 0

22

0 0

11

0 0

(1 i ) ( i )( ) ( ) ,
1 1 1( i ) ( i )
2 4 2

(1 i ) (i )( ) ,
1 1 1 1( ) ( )
2 4 2 4

(1 i ) ( i )( ) .
1 1 1 1( ) ( )
2 4 2 4

k kc k c k
k U k U

k kc k
U U

k kc k
U U

1
4

             (3.4.16) 

Using (1.2.17) and (1.2.18) and the property of  Euler function, the transmission and 
reflection coefficients are given by 

0 0
1 1 1( i ) ( i
2 4 2( )

(1 i ) ( i )

k U k U
T k

k k

1 )
4 ,

0 0
(1 i ) 1 1 1 1 1( ) ( i ) ( i ) cos( )
(1 i ) 2 4 2 4 4R

kR k k U k U U
k 0 ,

0 0
(i ) 1 1 1 1 1( ) ( i ) ( i ) cos( )
( i ) 2 4 2 4 4L

kR k k U k U U
k 0 .         (3.4.17) 

The fundamental solution  comes from (1.2.16a), where  is given by (3.4.15), 
and , by (3.4.16). Looking at the expression (3.4.17) we see that certain values of 

 yield to vanished reflection coefficients 

2f 1f

11 12,c c

0U

U N0 ( 1),N N .                                     (3.4.18) 

In this case, the transmission coefficient is 

( i 1) ( i ) ( i )( i 1)...( i )( ) ,
(1 i ) ( i ) ( i )( i 1)...( i )

k N k N k N k N kT k
k k k k k N

    (3.4.19) 

and the equation (3.4.2) is written as 

.                                 (3.4.20) 2 2'' [ ( 1)sech ] 0k N N x

The bounded solutions of this equation are the associated Legendre functions, 
i , 1,..., ,k n n N

2 2 d( , i ) ( ) (1 ) ( ), 1,...,
d

n n
n

N Nnx n P T T P T n N
T

,               (3.4.21) 

where

21 d( ) ( 1)
!2 d

N
N

N N NP T T
N T

,
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are the Legendre polynomial of degree , and TN tanh x . Consider now the poles of 
transmission coefficient (3.4.17). Since the Euler function admits negative integers as 
poles, we can say that, if k  is pole for  then there exists m(T k) N  such that

0
1 1i
2 4

k U m .

Let us choose  so that k Rk , or i , 0k . In this way we find a finite 
number of poles 

0
1 1i , ( ), 0,..., 1,
4 2m m mk U m m M            (3.4.22) 

0 0

0 0

1 1 1 1, for
4 2 4 2

1 1 1 11, for N.
4 2 4 2

U U
M

U U

N,

N
In particular, for (3.4.18) the poles of the transmission coefficient are 

, and solutions in these points are given by (3.4.21). i , 1,...,nk n n
In the case , the equation (3.4.2) becomes 1N 2 2'' [ 2sech ] 0k x . The 

coefficients of reflection vanish, and the transmission coefficient is i
i

k
k

( )T k ,

accordingly to (3.4.19), and has a single pole 1 ik .
The solution is 

1 2
1 1

d( ) ( ) 1 ( ),
d

x P T T P T
T

2
1

1 d( ) ( 1),
2 d

P T T
T

T xtanh ,

or

( ) sech ( )x x .

In the case , the equation (3.4.2) becomes 2N 2 2'' [ 6sec h ] 0k x . The 
coefficients of reflection vanish, and the transmission coefficient is  

(2 i )(1 i )( )
(2 i )(i 1)

k kT k
k k

,

with poles 1 ik , . In this case the solutions are 2 2ik
1

1 2( ) (tanh ) 3 tanh sech .x P x x x
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3.5    Inverse scattering problem for the KdV equation 
Let us return to the relationship between the solution of the KdV equation 

6t x xxxu uu u 0 ,                                          (3.5.1) 

with imposed conditions u u  at , 0x x , and the initial condition as an -

soliton profile, 

N
*NN

2( ,0) ( ) ( 1)sech ( )u x f x N N x ,                        (3.5.2) 

and the solution of the Schrödinger equation 
2( , ) [ ( , )] ( , ) 0xx x t k u x t x t .                            (3.5.3)

This relationship is expressed by (1.2.10)

4 6 3t xxx xu ux  .                                   (3.5.4) 

The fundamental solutions , 1,if i 2 , satisfy the conditions 

1( , ; ) exp(i ), atf x k t kx x ,

2 ( , ; ) exp( i ), atf x k t kx x ,                             (3.5.5)

and yield

2 11 1 12 1( , ; ) ( ; ) ( , ; ) ( ; ) ( , ; )f x k t c k t f x k t c k t f x k t ,

1 21 2 22 2( , ; ) ( ; ) ( , ; ) ( ; ) ( , ; )f x k t c k t f x k t c k t f x k t ,                   (3.5.6) 

 where c are related to the reflection and the transmission coefficients by ij

11

12

( ; )( ; )
( ; )R

c k tR k t
c k t

,

22

21

( ; )( ; )
( ; )L

c k tR k t
c k t

,                                            (3.5.7) 

12

1( ; )
( ; )

t
c k t

T k .                                              (3.5.8) 

The fundamental solutions are typically defined by

1( , ; ) exp(i ) ( , '; ) exp(i ')d 'R
x

f x k t kx A x x t kx x ,

                 (3.5.9)2 ( , ; ) exp( i ) ( , '; ) exp( i ')d ',
x

Lf x k t kx A x x t kx x

where the kernels ,R LA A verify the equations  (1.3.16a) and (1.3.16b) 
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( ; ) ( '' ; ) ( , ''; )d '' ( , ; ) 0,R R R R
x

r x y t r x y t A x x t x A x y t x y ,

( ; ) ( '' ; ) ( , ''; )d '' ( , ; ) 0,
x

L L L Lr x y t r x y t A x x t x A x y t x y ,     (3.5.10)

where

1( ; ) ( ; ) exp(i )d
2R Rr z t R k t kz k ,

1( ; ) ( ; ) exp( i )d
2L Lr z t R k t kz k ,

 when T k  admits poles in the upper half-plane.  ( )
Analogously, it results 

( ; ) ( '' ; ) ( , ''; )d '' ( , ; )R R R R
x

x y t x y t A x x t x A x y t 0 , x y ,      (3.5.11a) 

( ; ) ( '' ; ) ( , ''; )d '' ( , ; ) 0
x

L L L Lx y t x y t A x x t x A x y t , x y .      (3.5.11b) 

In the above relations we have 

1

1( ; ) ( , ) exp(i )d i (i ; ) exp( )
2

n

R R Rl l
l

z t R k t kz k m t zl ,

1

1( ; ) ( , ) exp( i )d i (i ; ) exp( )
2

n

L L Ll l
l

z t R k t kz k m t zl ,         (3.5.12) 

2 111
1

12

( ; )( ; ) i { [ ( ; ; )] d }
( ; )

l
Rl l l

l

c k tm k t f x k t x
c k t

,

222
2

12

( ; )( ; ) i { [ ( ; ; )] d }
( ; )

l
Ll l l

l

c k tm k t f x k t x
c k t

1 ,                    (3.5.13) 

when  admit poles .( )T k i , 1,...,l lk l n
Consider now the relation between the potential function u x and the kernels ( , )t

RA and LA

d d( , ) 2 ( , ) 2 ( , )
d d

R LA Au x t x t x t
x x

,                     (3.5.14) 

and
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1

21 2 22 2

( , , ) ( , ) ( , , )
( , )[ ( ; ) ( , ; ) ( ; ) ( , ; )].

x k t h k t f x k t
h k t c k t f x k t c k t f x k t

              (3.5.15) 

Due to the fact that  is a solution of (3.5.3), namely an eigenfunction of L given by 
(1.2.7), associated to the eigenvalue  which does not depend on time t, we may say 
that

1f
2k

 is also an eigenfunction for the same eigenvalue, and then  is a solution for  
(3.5.4)

4 6 3t xxx xu ux .

From the conditions u u  at , 0x x , we have 

lim ( 4 ) 0t xxxx
.                                        (3.5.16) 

Substitution (3.5.15) into (3.5.16) leads to 
3lim[( 4 i )exp(i )] 0tx

h h k kx ,

and thus,  , or34 ith h k
3( , ) ( ,0)exp(4i )h k t h k k t .                                  (3.5.17) 

We can write on the basis of (3.5.17)   
3

21, 22lim [ exp(i ) 8i )exp( i )] 0tx
h c kx k c kx ,

and obtain
3

21, 22, 220, 8i .t tc c k c

Therefore

21 21( , ) ( ,0)c k t c k ,

3
22 22( , ) ( ,0)exp( 8i )c k t c k k t ,                                (3.5.18) 

3
11 11( , ) ( ,0)exp(8i )c k t c k k t .

According to (3.5.13) we have 
3( , ) ( ,0) exp(8i )Rl l Rlm k t m k k t ,

3( , ) ( ,0)exp( 8i )Ll l Llm k t m k k t .

In a similar way, it results 
3( , ) ( ,0)exp(8i )R l RR k t R k k t ,

3( , ) ( ,0) exp( 8i )l l LR k t R k k t ,

and
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33

1

1( ; ) ( ;0) exp[i( 8 )]d (i ;0) exp(8 )
2

n

R R Rl l l
l

z t R k kz k t k m t zl ,

33

1

1( ; ) ( ,0)exp[ i( 8 )]d (i ;0) exp( 8 )
2

n

L L Ll l l
l

z t R k kz k t k m t zl . (3.5.19) 

In regards to the form of (3.5.19) for the initial conditions (3.5.2), the equation 
(3.5.3) at  is written as 0t

2( ,0) ( ( ,0)) ( ,0) 0xx x k u x x .                        (3.5.20) 

In the section 2.2 we found the values 

( ,0) ( ,0) 0R LR k R k ,                               (3.5.21) 

with poles i , 1,...,lk l l N . The corresponding solution is the generalized Legendre 
function (3.4.21) 

( , i ) (tanh )l
Nx l P x .                                    (3.5.22) 

The functions (3.5.19) become 

3

1
( ; ) (i ;0)exp(8 )

N

R Rl
l

z t m l l t lz ,

3

1
( ; ) (i ;0)exp( 8 )

N

L Ll
l

z t m l l t lz ,                           (3.5.23) 

and (3.5.11) take the form of Marchenko equations 

1 1
( , ) ( ) ( , ) ( ) ( , ; )d ( , ; ) 0,

N N
R N R N
n n n n R R

n nx

X x t Z y X x t Z y A x x t x A x y t x y ,

1 1
( , ) ( ) ( , ) ( ) ( , ; )d ( , ; ) 0,

xN N
L L L L
n n n n L L

n n
X x t Z y X x t Z y A x x t x A x y t x y . (3.5.24) 

Here we have 
3( , ) (i ,0) exp(8 )R

n RnX x t m n n t nx ,

( ) exp( )R
nZ y ny ,

3( , ) (i ,0) exp( 8 )L
n LnX x t m n n t nx ,

( ) exp( )L
nZ y ny ,                                            (3.5.25) 

where the summation index is  n.
If we write the solution of (3.5.24) as 
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1
( , , ) ( , ) ( )

N
R R

R n
n

nA x y t L x t Z y ,                             (3.5.26) 

the equation (3.5.24) 1  reduces to an algebraic system in unknowns  

( , ), 1,...,R
nL x t n N ,

of the form 

1
( , ) ( , ) ( , ) ( ) ( , )d 0, 1,...,

N
R R R R
n n m n

m x

X x t L x t x t Z x X x t x n N .

With (3.5.25), it is easy to discover that this system can be written under the form 

( , ) ( , ) ( , ) 0RA x t L x t B x t ,                              (3.5.27) 

where

( , ) NA x t M , ,1( , ) NB x t M , ,,1( , )R
NL x t M

31( , ) (i ,0) exp[8 ( ) ], , 1,...,mn mn RnA x t m n m t m n x m n N
m n

,

.                  (3.5.28) 3( , ) (i ,0)exp(8 ), 1,...,n RnB x t m n n t nx n N

R

The solution of (3.5.28) is 

1

1
( , ) ( , ) ( , ), 1,...,

N
R
m mn n

n
L x t A x t B x t m N .

Return to (3.5.26) and have 

1
( , , ) ( , ) exp( ) ( ) ( , )

N
R T

R n
n

A x y t L x t ny E y L x t ,

where

,1( ) NE y M ( ) exp( ),nE y ny 1,...,n N .

Thus

1

1 , 1

( , , ) ( ) ( , )

( ) ( , ) ( )[ ( , )] ( , ),

T R
R

N N
T T
m m m mn n

m m n

A x x t E x L x t

E x L x t E x A x t B x t

if we take into account that

3d ( , ) (i ,0) exp[8 ( )] ( , ) ( ),
d

T
mn Rn m nA x t m n m t m n B x t E x

x
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1 1

, 1

d d( , ) ( , ) ( , ) tr[ ( , ) ( , )]
d d

1 d d[det ( , )] [ln det ( , ) ].
det ( , ) d d

N

R mn nm
m n

A x t A x t A x t A x t A x t
x

A x t A x t
A x t x x

x
          (3.5.29) 

The solution of (3.5.24) 2 is found in a similar way. The potential function u  is 
according to (3.5.14) 

2d( , ) 2 ln det ( , )
d

u x t A x t
x

,                               (3.5.30) 

with the matrix A  defined by (3.5.28) .1

Return now to the equation (3.5.1) and consider 1N , and  as , 0xu u , x

and the initial condition .  The Schrödinger equation (3.5.20) is 
given by 

2( ,0) 2sech ( )u x x

2( ,0) ( 2sech ) ( ,0) 0xx x k x x .

From (3.5.21) we have 

( ,0) ( ,0) 0R LR k R k , (1 i )( ,0)
( i 1)

k
k

T k ,

and

( ) sech( )x x .                                          (3.5.31) 

Also, the functions (3.5.23) become 

( ; ) (i ;0) exp(8 )R Rlz t m t z , ( ; ) (i ;0)exp( 8 )L Llz t m t z .

To calculate the normalized constants at t 0 , we need the fundamental solutions 
( , i;0), 1,2,jf x j of  (3.5.1) that have the properties 

1( , i,0) exp( ) asf x x x ,

2 ( , i,0) exp( ) asf x x x .                             (3.5.32) 

Because (3.5.32) are solutions for (3.5.1) it results ( , i ;0) sech( ), 1, 2j jf x c x j .

From (3.5.3) we obtain 1 2
1
2

c c . So, we can write 

1 2
1( , i;0) ( , i ;0) sech( )
2

f x f x x ,                           (3.5.33) 

and, accordingly to (3.5.13)

2 1
1 1

1(i,0) (i,0) { [ sech ( )]d } 2
4R Lm m x x .

Equations (3.5.24) become 
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2exp(8 ) 2exp(8 ) ( , ; )d ( , ; ) 0, ,R R
x

t x y t x y A x x t x A x y t x y

exp( 8 ) 2exp(8 ) ( , ; )d ( , ; ) 0, .
x

L Lt x y t x y A x x t x A x y t x y2

To determine the solution u we solve one of the above equations and obtain

exp(8 )( , , ) 2
1 exp(8 2 )R

t x yA x y t
t x

,

and them from (3.5.30)  

u x( , ) 2sech( 4 )t x t .                                   (3.5.34) 

3.6    Multi-soliton solutions of the KdV equation 
Two-soliton solutions for (3.5.1) are derived for 2N , and u u  at , 0x x ,

and the initial condition u x , (Data and Tanaka). The Schrödinger 
equation is given by (3.5.20).  From (3.5.21) we have 

2( ,0) 6sech ( )x

( ,0) ( ,0) 0R LR k R k ,

(1 i )(2 i )( ,0)
( i 1)( i 2)

k kT k
k k

 .

The fundamental solutions ( , i ;0), ( , 2i ;0), 1,2j jf x f x j , of (3.5.1) have the 
properties

( , i,0) exp( ) forjf x x x , 1, 2j ,              (3.6.1a) 

( , 2i,0) exp( 2 ) forjf x x x , 1, 2j ,              (3.6.1b) 

and then we have

( , i ;0) ( , i ;0), 1,2,i
j jf x c x j

2( , 2i ;0) ( , 2i ;0), 1, 2i
j jf x c x j .

From (3.6.1) it results jc

1 2
1
6

i ic c , 2 2
1 2

1
12

i ic c .

Therefore,
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2

1( , i ;0) tanh( )sech( ),
2
1( ,2i ;0) sech ( ).
4

j

j

f x x x

f x x
                                   (3.6.2) 

From (3.5.13) it results 

2 2 1
1 1

1(i,0) (i,0) { [ tanh ( )sech ( )]d } 6
4R Lm m x x x ,

4 1
2 2

1(2i,0) (2i,0) { [ sech ( )]d } 12,
16R Lm m x x

and (3.5.23) become 

( ; ) 6exp(8 ) 12exp(64 2 ),R z t t z t z

( ; ) 6exp( 8 ) 12exp( 64 2 )L z t t z t z .

Next we solve the first Marchenko equation (3.5.24)

6exp(8 ) 12exp(64 2 2 ) ( , ; )

[2exp(8 '' ) 12exp(64 2 '' )] ( , ''; )d '' 0,

R

R
x

t x y t x z A x y t

t x y t x y A x x t x
        (3.6.3) 

for x y .  Assuming the solutions of the form (3.5.26)                   

1 2( , , ) ( , ) exp( ) ( , ) exp( 2 )R R
RA x y t L x t y L x t y ,

the equation (3.6.3) is reduced to (3.5.26), where 

1 3exp(8 2 ) 2exp(8 3 )
( , )

4exp(64 3 ) 1 3exp(64 4 )
t x t x

A x t
t x t x

,

1

2

( , )
( , )

( , )

R
R

R

L x t
L x t

L x t
,

6exp(8 )
( , )

12exp(64 2 )
t x

B x t
t x

.

The solution of (3.5.26) is given by 

exp(72 5 ) exp(8 )6( , )
2[exp(64 2 ) exp(72 4 )]det ( , )

R t x t x
L x t

t x t xA x t
,

  where

det ( , ) 1 3exp(8 2 ) 3exp(64 4 ) exp(72 6 )A x t t x t x t x .

So, we can write

exp(8 2 ) 2exp(64 4 ) exp(72 6 )( , ) 6
1 3exp(8 2 ) 3exp(64 4 ) exp(72 6 )

t x t x t xA x t
t x t x t x

.
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Let us remark that this solution may be obtained also from (3.5.29). 
Finally, the solution is given by 

2

d 3 4cosh(2 8 ) cosh(4 64 )( , ) 2 ( , ; ) 12 .
d [3cosh( 28 ) 4cosh(3 36 )]

x t xu x t A x x t
x

t
x t x t

       (3.6.4) 

This solution was derived for , but it makes sense also for 0t 0t . The solution 
consists of two waves. The taller wave catches the shorter one, coalesces to form a 
single wave at t , and then reappears to the right and moves away from the shorter 
wave as t  increasing. The interaction of waves is not linear.  The taller wave has moved 
forward, and the shorter one backward relative to the positions they would have reached 
if the interaction were linear (Drazin and Johnson).  The nonlinear interaction of waves 
is characterized by the phase shifts. The solitons occur as t , and interact in this 
special way. 

0

 The asymptotic behavior of the solution for t , is examined by introducing 
16x t . The solution is written as 

2

3 4cosh(2 24 ) cosh(4 )( , ) 12
[3cosh( 12 ) cosh(3 12 )]

tu x t
t t

 . 

As , we obtain the solution  t

2 1( , ) 8sech (2 ln 3)
2

u x t .

This wave is moving with a velocity of 16 units, the amplitude of 8 units, and a 

phase shift of ln 3
2

. As , we have the wave  t

2 1( , ) 8sech (2 ln 3)
2

u x t ,

having a phase shift of  ( ln 3
2

).   For 4x t , the solution becomes 

2

3 4cosh(2 ) cosh(4 48 )( , ) 12
[3cosh( 24 ) cosh(3 24 )]

tt
t t

u x ,

which yields

2 1( , ) 2sech ( ln 3)
2

u x t , , t

and

2 1( , ) 2sech ( ln 3)
2

u x t , t .

By approximating we can consider that  

2 21 1( , ) 8sech (2 ln 3) 2sech ( ln 3),
2 2

u x t t ,
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2 21 1( , ) 8sech (2 ln 3) 2sech ( ln 3),
2 2

u x t t .

The terms exponentially decreasing at  were neglected.t
Note that the solution at  consists of two solitons having the velocities 16 and 14 

units, respectively, with the tallest and then fastest soliton moving forward by an 

amount 0
ln 3
2

, and the shorter wave moving back by 0
ln 3
2

. The three-soliton 

solutions are derived from (3.6.1), with 3N , and u u ,, 0x x ,

. As the previous example, from (3.5.21) we have 2( ,0) 12sech ( )u x x

( ,0) ( ,0) 0R LR k R k ,

(1 i )(2 i )(3 i )( ,0)
( i 1)( i 2) i 3)

k k kT k
k k k

,

and

1 2
3

3( , i;0) (tanh ) [5 tanh ( ) 1]sech( )
2

x P x x x ,

2 2
3( , 2i;0) (tanh ) 15 tanh( )sech ( )x P x x x ,

3 3
3( ,3i;0) (tanh ) 15sech ( )x P x x .

The fundamental solutions are 

2

2 3

1( , i;0) [5 tanh ( ) 1]sech( ),
8

1 1( , 2i;0) tanh( )sech ( ), ( ,3i;0) sech ( ).
2 8

j

j j

f x x x

f x x x f x x

According to (3.5.13) we have 

( ; ) 12exp(8 ) 60exp(64 2 ) 60exp(216 3 )R z t t z t z t z ,

( ; ) 12exp( 8 ) 60exp( 64 2 ) 60exp( 216 3 )L z t t z t z t z ,

, 1 (i,0) 12R Lm  , m , 2 (2i,0) 60R L , m , 3 (3i,0) 60.R L

Further, it is sufficient to study the Marchenko equation (3.5.24) 1

12exp(8 ) 60exp(64 2 2 ) 60exp(216 3 3 ) ( , ; )

[2exp(8 '' ) 12exp(64 2 '' ) 60exp(216 3 '' 3 )] ( , ''; )d 0,

R

R
x

t x y t x z t x z A x y t

t x y t x y t x z A x x t x

for x y . Assuming the solutions of the form                    

1 2 3( , , ) ( , ) exp( ) ( , ) exp( 2 ) ( , ) exp( 3 )R R R
RA x y t L x t y L x t y L x t y ,
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the above equation is reduced to (3.5.27), where 

1 6exp(8 2 ) 20exp(8 3 ) 15exp(8 4 )
( , ) 4exp(64 3 ) 1 15exp(64 4 ) 12exp(64 5 ) ,

3exp(216 4 ) 15exp(216 5 ) 1 10exp(216 6 )

t x t x t x
A x t t x t x t x

t x t x t x

1

2

3

( , )
( , ) ( , )

( , )

R

R R

R

L x t
L x t L x t

L x t

12exp(8 )
( , ) 60exp(64 2 )

60exp(216 3 )

t x
B x t t x

t x
, ,

det ( , ) 2exp(144 6 )[cosh(144 6 ) 6cosh(136 4 )
15cosh(80 2 ) 10cosh(72 ).

A x t t x t x t x
t x t

 On the basis of (3.4.30) we have 

( , )( , ) 12
( , )

M x tu x t
N x t

,

where

( , ) 252 12cosh(280 10 ) 100cosh(8 2 ) 20cosh(224 8 )
160cosh(64 4 ) 60cosh(216 6 ) 270cosh(56 2 )
30cosh(72 6 ) 80cosh(208 4 ) 50cosh(152 2 ),

M x t t x t x t x
t x t x t x

t x t x t x

2( , ) [cosh(144 6 ) 6cosh(136 4 ) 15cosh(80 2 ) 10cosh(72 )] .N x t t x t x t x t

Finally, we present the periodic solutions of the KdV equation

6 0t x xxxu uu u ,

written as a sum of solitons (Whitham 1984). The steadily progressing waves (trains of 
solitons) are given by 

22 (u k f ) , kx t ,                                      (3.6.5) 

where  satisfies ( )f

36 (4 6 ) 6f B A f f , 3

4 (1 )
6

A
k

,                    (3.6.6) 

with  a constant of integration. ForB 0A B , we obtain a single soliton, 
,  a constant. A row of these solitons spaced 22

0s ( )f ech 0  apart

2( ) sech ( 2 )f m

m

,                                   (3.6.7) 

leads to an exact solution. Substitution of (3.6.7) into (3.6.6) yield 
2

2 4 2sech ( 2 ) sech ( 2 ) sech ( 2 )m m B A .
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 This identity is true, and we have

2
1

1( ) 4
sinh (2 )

A
j

, 1 d ( )( )
2 d

AB .

 As referring to the inverse scattering method, we mention that the representation 
(3.6.7) may be viewed as another instance of the clean interaction of solitons.  They are 
superimposed but keep their identity and do not destroy each other under the nonlinear 
coupling.  Konno and Ito have studied the mechanism of interaction between solitons in 
1987, by extending one of independent variables of the equations to complex and by 
observing how singularities of solutions behave in the complex plane. Following Konno 
and Ito, we choose  as the complex variable. In the complex plane one soliton 
solution is expressed as sum of poles, which are located equidistantly along the 
imaginary axis. In asymptotic regions two-soliton solution is expressed as a 
superposition of two separated solitons.  Konno and Ito have studied the behavior of 
singularities during the collision.  They introduced an auxiliary function and analyze its 
zeros which correspond to the poles of the solution at the same places in the complex 
plane.

t -t

-t

To illustrate the Konno and Ito method, consider the KdV equation 

12 0t x xxxu uu u ,                                             (3.6.8)

which admits the following one soliton solution 
2

2 1( , ) sech ( )
4 2
ku x t kx t ,                                   (3.6.9) 

where . The auxiliary function is  3k

2

2( , ) log ( , )u x t x t
x

.                               (3.6.10) 

The double poles of the solution correspond with simple zeros of this function.  For 
, we have , the zeros being symmetrically distributed with respect 

to the real t axis. Consider only the upper half plane. For one soliton we have 
( , ) 0x t *( , ) 0x t

-

( , ) 1 exp( )x t A kx t ,                              (3.6.11) 

where  is a positive constant. We can obtain zeros of expA  at

( ) ( ) i ( )n Rn Int k t k t k , 0, 1, 2,...n ,                   (3.6.12)

Rn
kxt , (2 1)

Rn
nt .                           (3.6.13)

By using the zeros, the soliton solution (3.6.9) is given by 
2

2

1
( ( )n n

ku
t t k 2 .                              (3.6.14) 

Therefore, we find that 
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1. Double poles are equidistantly located in parallel with the imaginary t axis.-
2. Real part t depends linearly on ( )Rn k x  and admits a trajectory of the soliton. 
3. Poles located at smaller imaginary parts t  affect more effectively the 

soliton amplitude. 
( )In k

For two-soliton solution the auxiliary function is 

1 1 1 2 2 2

3 1 2 1 2

( , ) 1 exp( ) exp( )

exp[( ) ( ) ],

x t A k x t A k x t
A k k x t

                (3.6.15) 

with 3
j jk ,  and1, 2,j

2
1 2

3 2
1 2

( )
( )
k k

1 2A A A
k k

.                                       (3.6.16) 

As  two solitons are separated in each other and locations of the zeros are 
given by the sum of contributions from two solitons.  To increasing 

x
x  the zeros are 

classified into two categories: 
– A zero belonging to one soliton with  changes asymptotically into one for 

another soliton with  and vice versa, namely 
1k

2k

1( ) ( )In Int k t k2 .                                              (3.6.17) 

–  The zeros preserve their identity even though they receive effect of nonlinear 
interaction in such a way as phase shift during interaction. 

3.7    Boussinesq,  modified KdV and Burgers equations
Fermi, Pasta and Ulam  studied in 1955 the problem of a dynamical system of 

identical particles of unit mass on a fixed end line with forces acting between particles 
(Dodd et al.).  The motion equation of the particle n  is 

n

1n n n n nQ f Q Q f Q Q 1 ,                             (3.7.1)

where  is the displacement of the particle with respect to the equilibrium position, 
and f(Q)  is the interaction force, which may be of the forms 

nQ

2f Q Q Q ,                                           (3.7.2) 

or
3f Q Q Q ,                                           (3.7.3) 

with   a constant, and  ,  chosen in such a way that the maximum displacement of 
 caused by the nonlinear term is small. Using initial sine-wave data, integrating the 

equation (3.7.1) with (3.7.2) or (3.7.3) yields to the conclusion that the equipartition of 
energy criterion failed. The energy is kept in the initial vibration mode and a few nearby 
modes, without spreading in all the normal modes of vibrations. 

Q

Using the McLaurin expansion
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( ) exp( ) (f n a a f n
n

) ,

where  is now a continuous variable, the equation (3.7.1) becomes (Dodd et al.)n

[(exp( ) 1) ] [(1 exp( )) ]Q f Q f Q
n n

,

with ( , ) ( )nQ t n Q t . Expanding the function as a McLaurin series we obtain f

2 4 2

2 4 2

2 2

2

1 1(0) ... (0) 2 ...
12 2!

1 (0) 3 ... .
3!

Q Q Q QQ f f
nn n n

Q Qf
n n

This equation can be written as

2 4 4 2
2 3

2 4 2

2 2

2

1(0) ... (0) 2 ...
12 2!

1 (0) 3 ... ,
3!

rP l P P PP f l f l
xx x x

P Pf
x x

if we note x nl  and rP Ql

(0)f

, where  is to be determined from the balance of the 
fourth derivative term with the nonlinear term.  For the quadratic nonlinearity given by  
(3.7.2), it results ,

r

(02 f )  and (0) 0f . Therefore, we choose ,

and taking 

1r

, t Pu x
x

 up to 4O l , we obtain the Boussinesq equation 

2 4 2 2
4 2 2

2 212
l u l u l u 2

u
x x t

,                        (3.7.4) 

which describes the motion of waves in both directions. In the approximation ,
(3.7.4) reduces to the linear wave equation.

2O l

One solution of (3.7.4) is

2 21 1sech
8 2

u a ax t ,                                (3.7.5) 

with
2 2 2 4 4 /12a l a l .                                       (3.7.6) 

The Boussinesq equation is known either in the form of the system of equations 

t xu v , 1 8 ,
3 3t xxxv u uux



SOLITONS AND NONLINEAR EQUATIONS 109

and admits the Hamiltonian 1
2

v . The system has an infinite number of symmetries and 

conservation laws, also an infinite number of exact solutions.  
The Boussinesq equation (3.7.6) can be reduced to a KdV equation if the waves are 

propagating in only one direction
3 3 (1) (1) (1)

3 (1)
3 2 2

12
l u u ul u 0 .                       (3.7.7) 

Indeed, (3.7.7) is obtained by a scaling transformation on x and t

,p qx ct t ,                                       (3.7.8) 

where   is a small parameter, and by expanding  u  in powers of
(1) 2 (2) ...u u u ,                                         (3.7.9) 

with , 1/c l p 2  and q 3/ 2 .
 For a cubic nonlinearity given by (3.7.3), it is obtained the motion equation up to 

the approximation O l 4

2 4 2 2
4 3 2

2 212
l u l u l u 2

u
x x t

.                       (3.7.10) 

This equation may be written under the form of a modified KdV 
3 3 (1) (1) (1)23 (1)

3 3 2
12
l u u ul u 0 ,                  (3.7.11) 

for p =1, q =3  and c l with wave solutions  traveling only in the direction 

2 21 1sech
26

u a a ,                           (3.7.12)

3 3
2

24
a l .                                           (3.7.13) 

With an appropriate changing of variable, the modified KdV equation (3.7.11) may 
be written under the normalized form  

23xxx x tu u u u 0 .                                  (3.7.14) 

Miura (1976) has shown that the explicit nonlinear transformation 2 i xv u u ,
maps solutions of the modified KdV equation into solutions of the KdV equation. 

Writing fu
g

, the equation (3.7.14) reduces to 

2 2
xx xg ff f , 3 3xxx x xx xx x xxx t tfg f g f g f g g f gf 0 ,      (3.7.15) 



INTRODUCTION TO SOLITON THEORY: APPLICATIONS TO MECHANICS110

which admits two-soliton solutions 

1 1 2 2 2 1 2 2 1 22 exp 2 exp 2 exp(2 ) 2 exp( 2 ),g a a a A a A

1 2 1 2 11 exp 2 exp 2 2(1 )exp( ) exp(2 2 ),f A A 2      (3.7.16) 

with
3

i i ia x a t i
3

i i ia x a t, i .

Whitham obtained in 1984 the periodic solutions for (3.7.14) expressed as sums of 
solitons. Any steady progressive wave is given by 

2 ( )u kf , kx t ,                                   (3.7.17) 

where  satisfies ( )f

32 (2 1) 2f B A f f , 3

1 ( 1
2

A
k

) ,                    (3.7.18) 

with  a constant of integration. For B 0A B
2

 we obtain a single soliton, 
. A row of these solitons spaced 0s ( )f ech  apart

( ) sech ( 2 )f m

m

,                                    (3.7.19) 

leads to exact solution. Substitution of (3.7.19) into (3.7.18) yield 
3

3sech ( 2 ) sech ( 2 ) sech ( 2 )m m B A .

 This identity is true, and 2
1

cosh(2 )6
sinh (2 )

jA
j

, 0B .  Integrating  (3.7.18) we 

obtain a Weierstrass equation with polynomial of four degrees 
2 (2 1) 2 4f C A f f ,                                  (3.7.20) 

writen as
2 2 2 2

0 1( )( )2f f f f f , . 0f f f

The periodic solutions are expressed as 

0 0dn ( )f f f .                                           (3.7.21) 

Therefore, (3.7.19) gives the Jacobi elliptic function dn  in terms of a sum of sech 
functions. The modified KdV equation has also an infinite number of conserved 

quantities. Its Hamiltonian is 21
2

u .

Another remarkable equation is the nonlinear diffusion equation 

t xu uu uxx ,                                           (3.7.22) 
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known as the Burgers equation. The diffusion coefficient is a positive and real 
constant. The Burgers equation (3.7.22) includes nonlinearity and dissipation, leading to 
a nonlinear version of the heat equation.

The simplest solution of (3.7.22) is the Taylor shock wave

21(1 tanh ( ))
2

u a ax a t .                               (3.7.23) 

As x , we have , and as 0u x , .  The shock solution is 
continuous because the term 

2u a
xxu  prevents the tendency of nonlinearity to form 

discontinuities. For u x  and ( ,0) (f x) 0 , the solutions of (3.7.22) may be written 
as a functional 

(u f x ut) ,                                           (3.7.24) 

that can be determined by the characteristics method.  
 In 1931 Fay (see Whitham 1984) derived the following solution for Burgers 

equation ( )1

1

sin( , ) 2
sinh

nxu x t
nt

.                                          (3.7.25) 

Another two solutions are derived from the Cole–Hopf transformation 

2 xu ,                                                   (3.7.26) 

by taking  to be initially a row of equally spaced functions. We have 

2

1
1 2 ( 1) exp( ) cosn n t nx ,

21 1exp{ [ ( ( 1) ] }
44

x j
tt

.                        (3.7.27) 

The last form leads to the saw-tooth profile for small . Parker found in 1980 (see 
Whitham 1984) another equivalent form, obtained as a certain superposition of equally 
spaced shocks of the form (3.7.23) moving with zero speed relative to a basic frame.  

t

 In the saw-tooth wave the shocks decay, and in order to remain periodic and 
bounded as , we must add a term proportional to x x . The latter adjustment is 
made from the elementary solution of the Burgers equation, u x / t .  Therefore, the 
Parker exact solution is given by

( 2tanh
2k

)x x ku
t t t

,                              (3.7.28) 

where the summation is interpreted as lim
N

N k N
.
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3.8    The sine-Gordon and Schrödinger equations 
 We have seen that the sine-Gordon equation is related to the construction of 

pseudospherical surfaces. In 1967 Lamb obtained the sine-Gordon equation in the 
analysis of the propagation of ultrashort light pulses (see Coley et al.). He exploited the 
permutability theorem associated with the Bäcklund transformation to generate an 
analytic expression for pulse decomposition corresponding to the two-soliton solution.   

Let us begin with a mechanical pendulum problem, consisted from identically 
pendulum of mass 

N
M  linked by torque springs (Dodd et al.). The total restoring torque 

exerted by the springs is composed of the torque due to the gravity and the torque due to 
the torque springs given by 

1sin ( 2 )i i i iMdg k 1i ,                           (3.8.1) 

where is the distance of the center of mass from the central axis, d g  the gravity 
acceleration constant,  is the angle made by the i th pendulum with the downward 
vertical, and  is the torque constant.  

i -
k

For an array of pendula having the same moment of inertia J , the Newtonian 
motion equations for the i  pendulum is 

iJ i ,                                                  (3.8.2) 

where  is the angular velocity of the i th pendulum. Inserting (3.8.1) into (3.8.2) we 
obtain the equation 

i -

1sin ( 2 )i i i iJ Mdg k 1i .                  (3.8.3) 

 To obtain a continuous model for the system of pendula, a limiting process is 
considered, by introducing new space and time variable  

Mdg xX
k h

, MdgT t
J

,

where  is the distance between pendula.  The equation (3.8.3) is reduced to the sine-
Gordon equation 

h

sin 0TT XX .                                        (3.8.4) 

Another form of sine-Gordon equation is the nonlinear version of the known Klein–
Gordon linear equation from the field theory, derived by Skyrme in 1958 (Perring and 
Skyrme) 

2
xx tt m ,                                              (3.8.5) 

where  is a constant, namely m
2 sinxx tt m .                                            (3.8.6) 

For new variables  and ( )m x vt 2 (1 )2 1 , the equation (3.8.6) 
becomes 

sin .                                                   (3.8.7) 
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Multiplying the equation (3.8.7) by  and integrating, we have 

2 cos C .

Assuming the boundary conditions of the form 0(mod 2 ) , the integration 

constant  is zero.  Using C 2cos 1 2sin
2

, it results from d d

2

d

2sin 1
2

= ln tan
4

,

or

tan exp
4

.                                              (3.8.8) 

It is easy to show from 2sech tanh , sin 2sech tanh , that the 
solution of  (3.8.8) is given by 

4arctan exp[ ( ) ]m x vt

1

,                               (3.8.9) 

with
2 2(1 ) .                                         (3.8.10) 

The solution (3.8.9) is named kink because it represents a twist in the variable 
( , )x t , which takes the system from one solution 0  to an adjacent solution with 

. Using the Bäcklund transform we can derive for the equation sine-Gordon 
multi-soliton solutions. In section 1.7 we have obtained the two-soliton solution 
(1.7.23)

2

12

12 2 1 2 1

2 1

tan tan ,
4 4

where  and  are two solutions for the sine-Gordon equation (3.8.9)1 2

1 14arctan exp[ ( ) ]m x v t 1

2

,

2 24arctan exp[ ( ) ]m x v t ,

generated from  given by (3.8.9), by the Bäcklund transform (1.7.23) of parameters 
 and . If  is a solution of the type (3.8.9) and 1 2 1 12 , 22  two-soliton solution   

generated from , then a three-soliton solution 1 3  is given by

3 1 2 1 12 22

2 1

tan tan .
4 4

Another equation, exhaustively investigated by both physicists and mathematicians, 
is the nonlinear Schr dinger equation (NLS)
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2
2

2i |
t x

| 0 ,                                     (3.8.11) 

where  is a complex function.  Applying to (3.8.11) the Painlevé analysis with 
associated conditions  as | | , we obtain a traveling soliton solution0 x

2 22 1 1exp{i [ ( )]}sech[ ( )]
2 4

a bx b a a x bt ,            (3.8.12)

where  and  are arbitrary constants.a b
The propagation of waves in dielectric wires is described by the NLS equation with 

an additional dissipative term 
2

2
2

1i | | i
2t x

0 ,                             (3.8.13) 

where  is a positive constant. When 0  the solutions have the form 

expi( )r nt ,                                       (3.8.14) 

with and( )r x ct ( )x ct real functions, and  real constants. Substitution of 
(3.8.14) into (3.8.9) yields 

,c n

1 ( )
2

Ac
S

, ,                               (3.8.15) 2 2 ( )S F S

with

2S r , 3 2 21( ) 2( )
4

F S S n c S BS C .                   (3.8.16) 

In (3.8.16),  are arbitrary integration constants. Analyzing the nature of the 
roots of the cubic equation in the right-hand side of (3.8.16) 2 , we obtain the soliton 
solution

,B C

sech expi ,A ( ),A x ct

2 21 ( )
2

cx n A t , 2 212( ) 0
4

A n c ,                           (3.8.17) 

and ,  constants.,c
If we attach to (3.8.13) an initial condition of the type (3.8.17) for 0 , we obtain 

d d2 , 0,
d d
A VA
t t

2d d0, 2 .
d d

A t
t t

                     (3.8.18) 

The amplitude of wave is decreasing with time as 0 exp( 2 )A A t , where 0A  is 
the initial amplitude.  As the amplitude decreases in time, the width of the wave 1/ A
becomes smaller, in contrast with linear waves for which 0 exp( )A A t .
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In the case (3.8.13) when the dissipative term i  has a bigger weight then the 
nonlinear and dispersive terms, namely for 2A , the waves are damped. In this case 
the width of the waves remain unchangeable.  

For another NLS equation
2

2
2i |

t x
| 0 ,                                      (3.8.19) 

by repeating the calculations, we obtain the soliton solutions 

expi( )r nt ,

2 2( ) 2 sechr m k 2k ,                                      (3.8.20) 

tan ( ) 2 tanhc k k ,

for any , andc

x ct , n m , 2 1/ 21 (2 )
2

ck m , 21
2

m c .

3.9   Tricomi system and the simple pendulum 
Consider the following differential system of equations (Halanay, Arnold) 

1 2( , , ,... )i i ny f x y y y , i n1, 2,..., ,

where the functions , i , are continuous and verify the Lipschitz conditions 
with respect to ,

if
1,

1, 2,...,
2,..., n

n

k

,iy i

1 2 1 2| ( , ,.., ,., ) ( , ,.., ,., ) | ( )i k n i k n ik kf y y y y f y y y y A y y ,

for .1,2,...,k n
By imposing the initial conditions 

0
0( )i iy x y ,

the solutions , verify the Volterra equations , 1, 2,...,iy i n

0

0
1 2( ) [ , ( ), ( ),... ( )]d

x

i i i n
x

y x y f t y t y t y t t , 1, 2,...,i n ,

and can be recursively calculated by 

0

( 1) 0 ( ) ( ) ( )
1 2( ) [ , ( ), ( ),... ( )]d

x
m m m

i i i n
x

y x y f t y t y t y tm t 0,1, 2,...m, .

Consider now the Tricomi problem (Tricomi) 

1 2y y y3 , 2 1y y 3y , 3y m y1 2y ,                        (3.9.1) 
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and the initial conditions 

1(0) 0y  , 2 (0) 1y , 3 (0) 1y ,                            (3.9.2) 

with  ,0 1m d
d
yy
x

. The recursive relations become 

 , ,( 1) ( ) ( )
1 2 3

0

( ) ( ) ( )d
x

m m my x y t y t t m t

2
m t

( 1) ( ) ( )
2 1 3

0

( ) 1 ( ) ( )d
x

m my x y t y t

( 1) 2 ( ) ( )
3 1

0

( ) 1 ( ) ( )d
x

m my x k y t y t ,                             (3.9.3) 

or
(1)
1y x  , (1)

2 1y , (1)
3 1y ,

(2)
1y x  , 

2
(2)
2 1

2!
xy ,

2
(2)
3 1

2!
xy m ,

3 5
(3)
1 (1 ) 6

3! 5!
x xy x m m ,

2 4
(3)
2 1 3

2! 4!
x xy m ,

2 4
(3)
3 1 3

2! 4!
x xy m m ,

3 5
(4)
1 (1 ) 12 ...

3! 5!
x xy x m m ,

2 4
(4)
2 1 (1 4 ) ...

2! 4!
x xy m ,

2 4
(4)
3 1 (1 ) ...

2! 4!
x xy m m m ,

3 5
(5) 2
1 (1 ) (1 14 ) ...

3! 5!
x xy x m m m ,
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2 4
(5)
2 1 (1 4 ) (42 15 ) ...

2! 4! 6!
x x xy m m m

6

,

2 4
(5)
3 1 (1 ) (15 42 )

2! 4! 6!
x xy m m m m m

6

...x .

In this way we can calculate the approximations , . For 
, the solutions of (3.9.1) turn in 

( ) ( ) ( )
1 2 3, ,m m my y y 0,1, 2,...m

m
3 5

2
1 (1 ) (1 14 ) ... sn

3! 5!
x xy x m m m x ,

2 4 6
2

2 1 (1 4 ) (1 44 16 ) ... cn
2! 4! 6!
x x xy m m m x ,           (3.9.4) 

2 4 6
2

3 1 (1 ) (16 44 ) ... dn
2! 4! 6!
x x xy m m m m m m x  .

From (3.9.1), after a little manipulation, we have 

2 2
1 1 2 2 1 2

d2 2 ( )
d

y y y y y y
x

0 ,

2 2
1 1 3 3 1 3

d2 2 ( )
d

my y y y my y
x

0 ,                         (3.9.5) 

and by integrating, we obtain 
2 2
1 2 const.y y , my                          (3.9.6) 2 2

1 3 const.y

On the basis of (3.9.2), relations (3.9.6) become 
2 2
1 2 1y y , m y2 2

1 3 1y ,

or
2 2sn cn 1x x , m x2 2sn dn 1x .                          (3.9.7) 

For arbitrary initial conditions 
0

1 1(0)y y , 0
2 2(0)y y , 0

3 (0)y 3y ,                         (3.9.8) 

the solution of (3.9.1) may be written in a general form 

2

1
cn ( )

n

i ik i
k

y A x i .                                  (3.9.9)

Consider now the motion of the simple pendulum of mass  and the length l
(Figure 3.9.1) described by (Teodorescu) 

m

2 sin 0 , 2 g
l

.                                (3.9.10) 
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For small  we have sin , and the equation (3.9.10) admits harmonic solutions 

of period 2T

cos( )A t .                                      (3.9.11) 

The constants are determined from the initial conditions  

(0) , (0) .                                     (3.9.12) 

   

Figure 3.9.1  The simple pendulum. 

It is preferable to consider two cases: 

   Case 1. (0) 0 , (0) Av
l

,                            (3.9.13)

with  , the speed of mass forAv y l , and

    Case 2. (0) , (0) 0 ,                                 (3.9.14) 

with  the speed of a mass in free downfall from the distance , without initial speed.Av a
The energy theorem gives (V lcovici et al.)

2 2 2 ( )Av v g y l , v l ,

or

2 2 ( )v g y a ,
2

2
Ava l
g

,                                  (3.9.15) 

y a  , cosy l , a l .                                  (3.9.16) 

When , we have the harmonic oscillations problem. It results a l 2 gAv l .
Since , we writel a l

cosa l  , 0 ,                                     (3.9.17) 

where the angle  is the amplitude of the motion.  The equation (3.9.15) becomes 
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,2 22 (cos cos ) cos cos ,                     (3.9.18) 

or

2 2 2 24 (sin sin )
2 2

.                                 (3.9.19) 

The solution of (3.9.19) and (3.9.13) is 

2arcsin[ sn( )]m t ,                                   (3.9.20) 

with

2sin ( )
2 2

m 2 .                                     (3.9.21) 

The solution (3.9.20) may be obtained directly from (3.9.10), noting 

sin sn
2

m t , cos cn
2

m t , that yields to 2 cnm t , and 

.  The period of (3.9.20) is given by 2 24 cnm t

KT 4 ,                                               (3.9.22) 

where K  is the complete elliptic integral.  For small values of  we havem

2

1

1 3 5 (2 1)2 [1 ( )
4 2 6 2

n

n

n
n

]T m .                        (3.9.23) 

Another way to derive the solution (3.9.10) and (3.9.14) is to define 

4arctan ( )U t .                                    (3.9.24) 

The identity 
2

2 2

4 tan (1 tan )4
(1 tan )

sin , with 
4

, leads to another form of the 

equation  (3.9.10)
2 2 2 22 (1U UU UU U U ) 0 ,

which has the solution 

U Aexpi t .                                          (3.9.25) 

Thus, the solution of (3.9.10) and (3.9.14) is represented by the real part of 
expression

4arctan( expi )A t , tan
4

A .                       (3.9.26) 

This solution is known as the breather solution. The importance of this solution may 
lie in the fact that its rest energy varies from 16, the rest mass of two solitons, down to 
zero as  tends to one.

For  it results in an asymptotical motion. We have a l 2 gAv l , and the 
equation (3.9.15) may be written under the form 
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2 2 24 cos
2

.                                       (3.9.27) 

For (3.9.13) we have 

4arctan(exp )t .                                 (3.9.28) 

This solution can be derived from (3.9.10) and (3.9.13) by the Bäcklund  
transformation. So, consider  and  so that u v

1 ( ) sin
2 2t

u vu v , 1 ( ) sin
2 2t

u vu v .            (3.9.29) 

For it results 0v 1 sin
2 2t

uu , and 

0

1 d 2log | tan |
2 sin / 2 4

u ut C
u

u .                         (3.9.30) 

The solution (3.9.28) monotonically increases to  as , with .t 4

When a l we have a rotational motion, with 2 gAv l . The equation (3.9.15) 
becomes 

2 2 * 24 (1 sin )
2

m ,                                     (3.9.31) 

with

2
02

( ) 1 ( )
22

g l a
l

2 2 , 2
0 2

ga
l

, * 2lm
l a

1 0 .    (3.9.32) 

Solution of (3.9.31) and (3.9.13) is written as 

, 22arcsin (sn )t ,
2

*2
2

4m .                    (3.9.33) 

The solution (3.9.33) may be directly obtained from (3.9.10), by defining 
, , that yields sin( / 2) sn t cos( / 2) cn t 2 dn t  and 2 *2 cn snm t t .

The rotation period is given by

2 * 2 *21 1 3[1 ( ) ( ) ...]
2 2 4

T m m .



PART 2 

APPLICATIONS TO MECHANICS 

Chapter 4 

STATICS AND DYNAMICS OF THE THIN ELASTIC 

ROD

4.1    Scope of the chapter 
The theory of the thin elastic rod occupies an important position in the history of 

vibration theory. Wallis (1616–1703) and Joseph Sauveur (1653–1716) have observed 
that a stretched string can vibrate in parts with certain nodes at which no motion takes 
place, whereas a strong motion takes place at intermediate points, called ‘loops’. The 
dynamical explanation of this vibration was provided by Daniel Bernoulli (1700–1782) 
in 1755. He stated the famous superposition principle of the coexistence in the vibrating 
string of a multitude of small oscillations at the same time.   

 The elastic line in which the resistance of a bent rod is assumed to arise from the 
extension and contraction of its longitudinal filaments was investigated by James 
Bernoulli (1667–1748). Daniel Bernoulli suggested to Leonhard Euler (1707–1783) that 
the differential equation of the elastica could be found by making the integral of the 
square of the curvature taken along the rod a minimum. Euler obtained on this 
suggestion the differential equation of the curve. J. L. Lagrange (1736–1813) and Lord 
Rayleigh (1842–1919) anticipated in their works the fundamental ideas of the modern 
topological and perturbation method foundered later by Poincaré and Lyapunov.  

We must mention that the problem of the bending and twisting of thin rods was 
solved in an elegant analytical fashion by Love in 1926. He made a classification of the 
form of the rod, which is inflexional elastica and non-inflexional elastica. Since the thin 
elastic rod is an example of a solitonic medium, it is interesting to see that the 
inflectional elastica can be reobtained by using the soliton theory. Due to the large 
displacements in the fundamental equations, even if the strains are small, the nonlinear 
effects yield to the soliton solutions. 

 The study of solitons in the thin elastic rod is an exciting branch in mechanics. 
Besides the strings and rods there are many physical problems that can be treated as 
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long thin elastic rods. In biology there are many 1D media such as DNA, RNA and -
helix of protein. In this chapter the basic laws of equilibrium and motion for a thin 
elastic rod are studied and solved, following the Tsuru and Munteanu works. The 
localized solutions are expressed by elliptic and hyperbolic functions. The solutions 
expressed by the hyperbolic functions are solitons. The rod deviates from a plane and 
has a 3-dimensional structure, changing its form as the torsion angle increases.  

This chapter is referred to the publications of Love (1926), Tsuru (1986, 1987), 
Munteanu and Donescu (2002), Antman (1974) and Antman and Liu (1979). 

 4.2   Fundamental equations
Let us consider a thin elastic, homogeneous and isotropic rod of length l, straight 

and having a circular cross section of radius a l in its natural state. External forces 
and couples fix the ends of the bar. We suppose the rod deforms in space by bending 
and torsion. The rod occupies at time t 0  the region . After motion takes 
place at time t , the rod occupies the region 

3
9 R

( )t .
We know the motion of the rod between t 0  and t 1t  if and only if we know the 

mapping  

1(0, ), [0, ]S t t t ,                                           (4.2.1) 

which takes a material point in 0  at t  = 0  to a spatial position in ( )t at t  = t .1

The mapping (4.2.1) is single valued and possess continuous partial derivatives with 
respect to their arguments.  The position of a material point in 0  may be denoted by a 
rectangular fixed coordinate system ( , , )X X Y Z  and the spatial position of the same 
point in , by the moving coordinate system ( )t ( , , )x x y z .   

Following the current terminology, we shall call X the material or Lagrange 
coordinates and x the spatial or Euler coordinates. The origin of these coordinate 
systems is lying on the central axis of the rod. The motion of the rod carries various 
material points through various spatial positions. This is expressed by (Truesdell and 
Toupin, oós and Teodosiu, oós)

( , ), 1,2,3ix f X t i .                                         (4.2.2) 

We take s to be the coordinate along the central line of the natural state. The 
orthonormal basis of the Lagrange coordinate system is denoted by , and the 
orthonormal basis of the Euler coordinate system by .  

1 2 3( , , )e e e

1 2 3( , , )d d d
The basis  is related to , 1,2,kd k 3 , 1, 2,ke k 3  by the Euler angles 

and . These angles determine the orientation of the Euler axes relative to the 
Lagrange axes (Tsuru) 

,

1 1

2 3

( sin sin cos cos cos )
(cos sin sin cos cos ) sin cos ,

d e
e e



STATICS AND DYNAMICS OF THE THIN ELASTIC ROD 123

    (4.2.3)2 1

2 3

( sin cos cos sin cos )
(cos cos sin sin cos ) sin sin ,

d e
e e

3 1 2sin cos sin sin cos .d e e 3e

The Z-axis coincides with the central axis. The plane ( )xy intersects the plane (XY)
in the nodal line ON  (Figure 4.2.1).

The motion of the rod is described by three vector functions 
3

1 2( , ) ( , ), ( , ), ( , )R R s t r s t d s t d s t E .                       (4.2.4) 

The material sections of the rod are identified by the coordinate s. The position vector 
can be interpreted as the image of the central axis in the Euler configuration. The 

functions d s can be interpreted as defining the orientation of the material 
section s in the Euler configuration. The function 

( , )r s t

1 2( , ), ( , )t d s t

3 1 2( , ) ( , ) ( , )d s t d s t d s t ,                                       (4.2.5) 

represents the unit tangential vector along the rod and can be expressed as

3 (sin cos ,sin sin ,cos )d .

We introduce the strains  by 1 2, ,y y y3

k kr y d ,                                                      (4.2.6) 

where  means the partial differentiation with respect to  s.'

Since ,  is orthonormal, there is a vector u  such as , 1,2,kd k 3

kkd u d .                                                     (4.2.7)

Figure 4.2.1  The Euler angles ,  and .

The components of with respect to the basis u kd are

1
2k klm ld dmu e ,                                         (4.2.8) 

where e  the components of the alternating tensor. The relations  (4.2.8) become klm
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1 31 21 32 22 33 2u d d d d d d 3 ,

2 11 31 12 32 13 3u d d d d d d 3 ,

3 21 11 22 12 23u d d d d d d13 ,

where , 1,ijd i j 2,3 , are the components of vectors , i  =1,2,3,  given by (4.2.3).id
Substitution of (4.2.3) into the above relations gives 

1 sin sin cosu ,

2 cos sin sinu  ,                                     (4.2.9) 

3 cosu .

These functions measure the bending and torsion of the bar. The functions 
, can be interpreted as the components of the angular velocity vector  (the 

variation with respect to s) of the rotational motion of the moving system of coordinates 
relative to the fixed system of coordinates. If we substitute the differentiation with 
respect to 

, 1, 2,ku k 3

s  with the differentiation with respect to time we will obtain the components 
of the angular velocity vector defined by (4.2.9). The functions  and  represent the 
components of the curvature of the central line denoted by 

1u 2u
 corresponding to the 

planes and( )yz ( )xz
2 2 2 2 2 2

1 2 sinu u ,                              (4.2.10) 

and  is the torsion of the bar denoted by 3u

u3 cos .                                   (4.2.11) 

In this way we consider the rod is rigid along the tangential direction and the total 
length of the rod is invariant, the ends being fixed by external forces. l

The full set of strains of the rod is ,k ky u . In the natural state  coincides with 
, and are constant functions of s. The values of the strains in the natural state are

3d
r kd

1 2 30, 1, 0ky y y u .                             (4.2.12) 

In the following we assume that extensional and compression strains have the values 
and focus only on the bending and torsion of the rod.    1 2 30, 1y y y

The link between the position vector r x( , , )y z  and unit tangential vector  is 
obtained from the first two relations of (4.2.12) and (4.2.6)  

3d

r 3d  .                                                (4.2.13) 

From (4.2.13) we obtain  

3
0

d
s

r d s ,                                             (4.2.14) 
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or

0

( ) cos sin d
s

x s s ,
0

( ) sin sin d
s

y s s ,

0

( ) cos d
s

z s s .                                        (4.2.15) 

To characterize the position of ends of the rod we introduce the vector of the 
components

D
( ), ( ), ( )x L y L z L

3
0

d
l

D d s .                                          (4.2.16) 

The elastic energy of the deformed rod U is composed of the bending energy and 
the torsional energy (Landau and Lifshitz, Solomon) 

U 2

0 0

d
2 2

l lA C 2ds s ,                              (4.2.17) 

where  and   are given by (4.2.10) and (4.2.11). 
The quantities A and C are the bending stiffness and respectively the torsional 

stiffness related to the Lam  constants ,  by 

41 1,
4 2

A a E C a4 ,                          (4.2.18) 

where (3 2 )E  is the Young's elastic modulus, and a is the radius of the cross 

section of the rod.
The elastic energy can be written in the form by using (4.2.10) and (4.2.11) 

U 2 2 2 2

0 0

( sin )d ( cos )
2 2

l lA C ds s .                (4.2.19) 

To write the equilibrium equations, the variation of the elastic energy U with
respect to  and  is considered. ,

THEOREM 4.2.1 The exact static equilibrium equations of the thin elastic rod with 
the ends fixed by the external force F  with 1 2 3( , , )  are given by

2

1 2 3

( sin cos ) ( cos ) sin
cos cos cos sin sin 0,

A C
               (4.2.20) 

2

1 2

[ sin ( cos )cos ]

sin sin sin cos 0,

A C
s                           (4.2.21) 
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[ ( cos )] 0C
s

.                                    (4.2.22)

The end couples at  and 0s 1s  are (0), 1, 2,3iM i , and respectively
, where( ), 1, 2,3iM l i

1( )M s A , the couples with respect to the nodal line ON,                 (4.2.23) 

2
2 ( ) sin ( cos )cosM s A C , the couple with respect to Z-axis,   (4.2.24)

3 ( ) ( cos )M s C , the couple with respect to z-axis.          (4.2.25)

Proof  The unknowns of the problem are Euler angles. The vector is assumed to be 
known.  The position vector  is related to  by (4.2.13). To take this 
constraint into account we introduce the functional 

( , , )r x y z 3d

U D ,                                                (4.2.26) 

where  is the Lagrange multiplicator, and  is defined by (4.2.16).  1 2 3( , , ) D
Applying the variational Hamilton principle, the variation of  is given by 

U 0D ,                                      (4.2.27) 

where  is the variation of the end positions.  D
We write (4.2.27) under the form  

0

( , , , , , )d 0
l

L s ,

where the Lagrange function L  is

2 2 2 2( sin ) ( cos
2 2
A CL )

3

                         (4.2.28) 

1 2sin cos sin sin cos .

The variation of the functional with respect to ,  and  is

0

( )
l L L L L L L sd 0 .

Observing that , ,
s s s

, and integrating by parts the 

terms , ,L L L , we obtain 
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0 0 0

0 0

0

d d

d 0.

l ll

l l

l

L L L

L L L Ls s
s s

L L s
s

         (4.2.29) 

Taking into account that 

(0) ( ) 0l , (0) ( ) 0l , (0) ( ) 0l ,               (4.2.30) 

the first three terms in (4.2.29) are vanishing and we obtain the Lagrange equations 

0,L L
s

0,L L
s

0.L L
s

       (4.2.31)

The conditions (4.2.30) express that the functions , ,  have the 
same values at s = 0 and s = l.  The nonvanishing integrals must be zero for any 
variations  and this is possible only if the integrands are identically zero., ,

Substituting (4.2.28) into (4.2.31) we obtain the differential equations  (4.2.20)–
(4.2.22).

If 1 2 3( , , )F F F F  is the force applied to the rod's ends, with , the 
components of the force with respect to the fixed coordinate system 

, 1, 2,iF i
( , , )

3
X Y Z , then this 

force is related to  by

UF
D

.                                              (4.2.32) 

Therefore,  represents the external force that fixes the ends of the rod. This force 
is supposed to be known. The couples 1 2 3( , )M M M M can be determined from  

0

{(  (4.2.20)) ( (4.2.21)) ( (4.2.22)) }d
l

TS TS TS s

2
0[ [ sin ( cos )cos ] ( cos ) ] ,lA A C C    (4.2.33) 

where TS are left-side parts of equations (4.2.20)–(4.2.22). Into equilibrium the 
integrand in (4.2.33) is zero 

2

0

[ [ sin ( cos )cos ]
( cos ) ] .l

A A C
C

           (4.2.34) 

From here we derive the couples at the ends of the rod with respect to ON and Z and 
z axes

1 0 0| | | | 0s or l s or l s or l
UM A ,
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2
2 0 0 0| | | sin ( cos )cos | ,s or l s or l s or l

UM A C

3 0 0| | | ( cos ) | 0s or l s or l s or l
UM C .

The equilibrium equations (4.2.20)–(4.2.22) are coupled nonlinear ordinary 
differential equations in unknown Euler angles.

Next, we see that the equation (4.2.22) can be solved

( ) ( )cos ( )s s s ,

with  an integration constant.  
From the torsion definition (4.2.11) we conclude that . So, the above relation 

becomes                     

( ) ( ) cos ( )s s s .                                    (4.2.35) 

With (4.2.35), equations  (4.2.20) and (4.2.21) can be written as 
2

1

2 3

( sin cos ) sin cos cos
cos sin sin 0,

A C
             (4.2.36) 

1 2( sin 2 cos ) sin cos 0A C .       (4.2.37) 

We introduce 

2 2
1 2  , 1

1
2

arctan ,                  (4.2.38)

and  write 

1 2

1 2

cos sin sin ,
sin cos cos .

1

1

                               (4.2.39)

Adding (4.2.36) multiplied by 2  and (4.2.37) multiplied by ( 2 1 sin ) we obtain 
2 2 2 2 2

1 1 3

1 1

(sin ) ( ) sin ( ) (cos )
2 sin (sin ) 2 sin (sin ) 0.

A A A

Dividing by 1/2 we have 

2 2 2
1 1 3sin ) sin sin cos ] 0

2
A[ ( .           (4.2.40) 

Integrating (4.2.40) with respect to s we find the bending energy density of the thin 
elastic rod 

2
1 3sin sin cos

2
A C0 ,                      (4.2.41) 
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with  an integration constant. In the case 0C 3(0,0, ) the equilibrium equations 
(4.2.35)–(4.2.37) become 

( ) ( ) cos ( )s s s ,                               (4.2.42)

2
3( sin cos ) sin sin 0A C ,              (4.2.43) 

( sin 2 cos ) 0A C .                         (4.2.44) 

To write the motion equations, let us introduce the inertia of the rod characterized by 
the functions 

0 0 0 0 2( )( ), ( )( ), ( ( ) (0, )R s A s I s I s1 ,                      (4.2.45) 

where ( 0A0) is the natural mass density per unit length, A0 the area of the cross section, 
( 0 I1) the principal mass moment of inertia around the axis which is perpendicular to 
the central axis and ( 0 I2 ) the principal mass moment of inertia around the central axis. 
We suppose to have 

4 4
2

0 0 0 1 1 0 0 2 2 0 0, ,
4 2
aA a k I k I ,a              (4.2.46)

where 0  is the mass density per unit volume, and 1 2,I I  geometrical moments of inertia 
around the axis, which is perpendicular to the central axis and respectively around the 
central axis. The kinetic energy K  of the rod is a sum between the energy of the 
translational motion 1K , the energy of the rotational motion of the tangential vector 2K
and the energy of the rotational motion around the central axis 3K  (Tsuru) 

1 2 3K K K K ,                                         (4.2.47) 

with

2
1

0

d
2

l

K r s ,                                               (4.2.48) 

1
2 d

2

l
2

3
0

kK d s 2 21
1 2

0

(
2

lk )ds ,                          (4.2.49) 

22
3

0

d
2

lk
3K s ,                                           (4.2.50) 

where the dot represents the differentiation with respect to time, and 1 2 3( , , ) is
the vector of angular velocity of rotation

1

2

1

sin cos sin ,

sin sin cos ,
cos .

                           (4.2.51) 
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These relations are analogous to (4.2.9). Using (4.2.7) we get for 2K and 3K

2 2 21
2

0

( sin )d
2

lkK s ,                         (4.2.52) 

22
3

0

( cos ) d
2

lkK s .                          (4.2.53) 

We prove now the following theorem: 

THEOREM 4.2.2 The exact set of motion equations of the thin elastic rod with the 
ends fixed by the force F = -  with 1 2 3( , , ) are

0r ,                                          (4.2.54) 

2
1 2

2

1 2 3

( sin cos ) ( cos ) sin

( sin cos ) ( cos ) sin
cos cos cos sin sin 0,

k k
A C             (4.2.55) 

2
1 2

2 2

1 2

{ sin ( cos )cos }

{ sin ( cos )cos }

sin sin sin cos 0,

k k
t

A C
s

                     (4.2.56) 

2 ( cos ) ( cos )k C
t s

0 .                 (4.2.57) 

Proof  The unknowns are the force vector  and Euler angles. The position vector 
is related to Euler angles through the constraint (4.2.13).

The kinetic energy K  is given by

22

0

d d ( cos
2 2

L L L
22 1

3
0 0

k k ) dK r s+ d s s
2

.             (4.2.58) 

We introduce the Lagrangian 
L K U ,                                      (4.2.59) 

and the action

0

d
T

I tL .                                       (4.2.60) 

To take account of the constraint  (4.2.13) we introduce a new functional 

0 0

d d ( )
T l

cI I L I t s r - d3 .                      (4.2.61) 
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We write this functional under the form 

0

d d [ ( cos ) ( )
T l

2 2 2 2 21 2
c 3

0

k k A CI t s r + d + + + r d
2 2 2 2 2

]3 ,

or

0 0

d d ( )
T l

cI t s L r, r, r , , , ,

where  is the vector of Euler angles ( , , )  and L  the Lagrangian

2 2 2( cos ) ( sin )

( cos ) ( ) .

2 2 21 2
3

2
3

k k AL r + d + +
2 2 2 2

C + r d
2

         (4.2.62) 

The variation with respect to  and  givesr

0 0

d d ( ) 0
T l

c
L L L L L LI t s r r r
r r r

.

We see that , , ,r r r r
s t s t

, and by integrating 

through parts the terms ,L Lr r
r r

 etc., we obtain 

0 0 0 00 0 0 0

T TT T l ll l

c
L L L LI r r
r r

0 0

0 0

d d

d d 0.

T l

T l

L L Lt s r
r s r t r

L L Lt s
s t

                    (4.2.63) 

According to 

(0,0) (0, ) 0r r T , ( ,0) ( , ) 0r l r l T ,

(0,0) (0, ) 0T , ( ,0) ( , ) 0l l T ,                     (4.2.64) 

the first four terms in (4.2.63) are vanishing. The condition for integrands to be 
identically zero lead to the Lagrange equations 

0, 0L L L L L L
r s r t r s t

.             (4.2.65) 



INTRODUCTION TO SOLITON THEORY: APPLICATIONS TO MECHANICS132

By substituting (4.2.62) into (4.2.65) we obtain the motion equations  (4.2.54)–
(4.2.57).

Differentiating both sides of (4.2.54) with respect to s, and using (4.2.13) the 
equation (4.2.54) becomes 

3 0d .                                        (4.2.66) 

The motion equations (4.2.54)–(4.2.57) are coupled nonlinear partial differential 
equations in unknown Euler angles and the vector function  which characterizes the 
external force applied to the ends of the rod to maintain it fixed.  

We have to supplement the motion equations with initial conditions 
2

0 3( ,0) ( ) ( ,0) (0,0, )s s v d s 3 ,

0( ,0) ( )s s , 0( ,0) ( )s s ,                             (4.2.67) 

0( ,0) ( )s s .

4.3   The equivalence theorem 
This section focuses on the relation between the equilibrium equations and the 

motion equations of the thin elastic rod (Tsuru). The purpose is to determine the 
conditions when the motion equations can be reduced to the equilibrium equations. In 
connection to this, the following theorem holds: 

THEOREM 4.3.1 Given  and , ,  as functions only of the variable s vt
and suppose that

3 (0,0, )d 3 ,                                    (4.3.1) 

with 2v  and . In these conditions the motion 
equations (4.2.54)–(4.2.57) are equivalent to the equilibrium equations (4.2.20)–
(4.2.22) for

3 (sin cos ,sin sin ,cos )d

2 2
1 2, ,A k v A C k v C s .                  (4.3.2) 

Proof  We note by prime the differentiation with respect to the new variable 
s vt . The system of equations (4.2.54)–(4.2.57) become 

2v r ,                                                (4.3.3) 

2 2 2
1 2

2

1 2 3

( sin cos ) ( cos ) sin

( sin cos ) ( cos ) sin
cos cos cos sin sin 0,

k v k v
A C             (4.3.4) 
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2
1 2

2 2
1

2

{ sin ( cos )cos

sin ( cos )cos } sin sin
sin cos 0,

vk vk

A C             (4.3.5) 

2 [ cos ( cos )]k v v C 0 .                       (4.3.6) 

Rearranging the terms in  (4.3.3)–(4.3.6) we have 
2 ˆv r c ,                                                   (4.3.7) 

             (4.3.8) 

2 2
1

2
2

1 2 3

( )( sin cos )

( )( cos ) sin
cos cos cos sin sin 0,

A k v
C k v

2
1

2
2

1 2

( )( sin 2 cos

( ) ( cos )
sin cos 0,

A k v
C k v

)

                            (4.3.9) 

( ) ( ) cos ( )s s s ,                                     (4.3.10) 

with  an integration constant. ĉ
Taking into account (4.2.13) the equation (4.3.8) becomes 

2
3 ˆv d c ,

or
2 2 2

1 2ˆ ˆ( sin cos , sin sin , cos )v c v c v 3ĉ .        (4.3.11) 

From (4.3.1) we have 

3( sin cos , sin sin , cos ) .             (4.3.12) 

It can be seen that equations (4.3.12) and (4.3.13) are equivalent if 
2v , 3ˆ (0,0, )c .                                (4.3.13) 

With these conditions, the motion equations (4.2.54)–(4.2.57) become 

            (4.3.14) 
2 2

1
2

2 3

( )( sin cos )
( )( cos ) sin sin
A k v
C k v 0,

)
,

2
1

2
2

( )( sin 2 cos
( ) ( cos ) 0
A k v
C k v

                               (4.3.15) 

( ) ( ) cos ( )s s s .                                        (4.3.16) 
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Hence, the equations (4.2.54)–(4.2.57) coincide with equilibrium equations 
(4.2.35)–(4.2.37). We note that the quantity 3  is known. The constant v, which defines 
the variable  can be determined from (4.2.67) 1 .

4.4    Exact solutions of the equilibrium equations 
Consider the case when the force 3(0,0, )  with 1 2 0  is parallel to the Z-

axis of the Lagrangian system of equations. Let us consider the equilibrium equations 
(4.2.42)–(4.2.44) and introduce 1 2 0

2
3( sin cos ) sin sin 0A C ,                (4.4.1) 

( sin 2 cos ) 0A C ,                             (4.4.2) 

( ) ( ) cos ( )s s s .                                     (4.4.3) 

Multiplying both sides of (4.4.2) with sin  we get 
2 2sin (sin ) (cos ) 0A A C ,

or
2(sin ) (cos ) 0A C ,

integrating we have 
2sin cos 0A C ,                                    (4.4.4) 

with  an integration constant. In the virtue of (4.4.4) we obtain 

2

cos
sin

C
A

.                                          (4.4.5)

Substituting (4.4.5) into  (4.4.1) and multiplying the resulting equation with  we 
obtain by integration 

2

2
2

32 2

( cos ) cos2 cos 2 cos 0
sin sin

C CA C
A A

,

with  an integration constant.  The above equation can be written as 

2 2 2 2
2

32

cos 2 cos 0
sin

CA
A

.                     (4.4.6) 

Substituting u  into (4.4.6) we obtain the differential equation cos
2 2 2 2 2

2
32

1 2
(1 )

u C uu u
A A u

,                         (4.4.7) 

or
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21 ( ),
2

u f u                                          (4.4.8) 

2 2 2
3 2

3 3
1 1 1( ) [ ( ) ( )]

2 2
Cf u u u u

A A A
.

We have obtained a Weierstrass equation (1.4.14) with a polynomial of third order. 
The torsion  and the integration constants and  are determined from the boundary 
conditions

0(0) ( )l ,

0(0) ( )l ,

0(0) ( )l .                                                (4.4.9) 

The qualitative nature of the solutions of (4.4.8) for arbitrary values of the constants 
can be studied by elementary analysis. We write the equation (4.4.8) in the form 

2 3 21 ( )
2

u au bu au c f u ,                            (4.4.10) 

with
2 2 2

3 1 10, ( ), ( )
2 2

Ca b c
A A A A A

.          (4.4.11) 

We are looking for general bounded waves of permanent form. We have .
So, u varies monotonically until u

2 0u
vanishes. The graph of f for different values of the 

constants a, b and c has six possible forms (Figure 4.4.1). Since ,
solutions will occur only in the intervals shaded in the figure.

2u f ( ) 0u

If u  is a simple zero for f, from Taylor's formula we have 1

,2
1 1 1( ) ( ) ( ) ( ) {( ) }f u f u u u f u O u u1

or, because 1( ) 0f u
2

1 1 12 ( )( ) {( ) }u f u u u O u u 2
1u u,  for .                 (4.4.12) 

Therefore,

2
1 1 1 1 1 1

1( ) ( ) ( ) ( ) ( ) ( ) {( )
2

u s u s s s u s s s u s O s s 3}

1

,           (4.4.13) 

where u s1( ) u . From  we have 2 2 ( )u f u 2
1 1( ) 2 ( ( )) 0u s f u s , and .1( ) 0u s

Differentiating both sides of , it results u s2 2 ( )u f u ( ) ( ( ))f u s  and 
.  From  (4.4.13) we get 1( ) ( )u s f u1

2 3
1 1 1 1

1 ( )( ) {( ) }
2

u u f u s s O s s ,   for 1s s .               (4.4.14) 
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It follows that u has a local minimum or maximum  at 1u 1s , as 1( )f u  is positive or 
negative, respectively. Similarly, if is a double zero of  f we have1u

2 3
1 1 1 1 1 1

1( ) ( ) ( ) ( ) ( ) ( ) {( ) }
2

f u f u u u f u u u f u O u u ,

or

u f   for .                   (4.4.15) 2 2
1 1 1( )( ) {( ) }u u u O u u ,3

1u u

The quantity u is real only if 1( ) 0f u  (Figure 4.4.1b) and in this case we have 

1( )( )u u u1u f .                                       (4.4.16) 

Relation  (4.4.16) yields 

1
1

( )u f u
u u

,

and integrating with respect to s   we have 

1 1ln( ) ( ) lnu u f u s C  , 

 where 

u u1 C 1exp( ( )f u s .                                   (4.4.17) 

Figure 4.4.1  Schematical graphs of the function  f(u).

Thus,  as . There is only one possibility for a triple zero 1u u s 1 3
b
a

u

(Figure 4.4.1f). The exact solution is 

2
0

2( )
3 ( )
bu s
a s s

,                                    (4.4.18) 



STATICS AND DYNAMICS OF THE THIN ELASTIC ROD 137

where 0s  is an arbitrary constant. This solution is unbounded at 0s s .
Consider now the cases a, d, e, and the right-hand part of the case c shown in Figure 

4.4.1. If u , then f 0 for all s 0 and u , as 0 s .  If u (0) 0 , then u
will decrease until it reaches u u . In this case  is a simple zero and so u  changes 
sign and once again u  as 

1 1u
s . So, for these four cases we have unbounded 

solutions.
Let us see the case from Figure 4.4.1b.  The solution u has a simple zero at  and a 

double zero at .  The solution has a minimum at u
3u

1u 3u  and attains  as 
. Here we have a solitary wave solution with a amplitude 

1uu
s 3 1u u 0  (Figure 
4.4.2a)

2 2
3 2 3 3 2 3

2 2
3 2 3 3 2 3

2
2 2 3 1 3 3

( )sin ( )(1 cn

( )(1 cn ) ( )sn

| |( )cn ( ( )( ), )
2

u u u u u u u

u u u u u u

au u u u u s s m

)

.

Finally we consider the cases in Figure 4.4.1c. The solution u has simple zeros, that 
is a local maximum at u  and a local minimum at u . Thus 2 3 u  changes sign at these 
points and since the behavior near them is algebraic, consecutive points , , 
will be a finite distance apart. The solution will oscillate between u and u with a finite 
period (Figure 4.4.2b).

u

3

2u u 3u

2

The period can be determined from 2 ( )fu  asu

2 2

3 3

d d2 2
2 ( )

u u

u u

u
u f u

u .                                    (4.4.19) 

We have 
2 2 2 2 2 2

3 3 3 3 3 3

( ) ( )

( ) ( )

d d dd
2 ( )

u s u s s u

u s u s s u

u u s us
u u f u

.

From the above formula we have implicitly the solution 

3

3
d
2 ( )

u

u

us s
f u

,                                    (4.4.20) 

where 3( )u s u3 . The sign  + corresponds to the case u  0 and the sign  – to the case 
 0. u

Solutions (4.4.20) are known as the cnoidal solutions because they are described by 
the cosine and sine Jacobean elliptic functions (Freeman).  

These solutions were found by Korteweg & de Vries in 1895. Finally, the single 
bounded solutions of the equation (4.4.8) are the cnoidal solutions (the solitary solution 
is a particular case of the cnoidal solution).

We can write the solution (4.4.20) as (Abramowitz and Stegun) 
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3

3
1 2

d
2 ( )( )( )

u

u

us s
a u u u u u u3

1

 ,                        (4.4.21) 

with  three distinct and real roots of the equation f(u) =0. 3 2u u u

Figure 4.4.2   a)  Soliton solution,  b) Cnoidal solution. 

The integral (4.4.21) may be reduced to an elliptic integral of the first kind

1 3 3
| | ( )(
2
av u u s )s ,                             (4.4.22) 

with 2 3

1 3

u um
u u

, ,  the modulus of the elliptic functions.  The solution is 0 m 1

2 2
3 2 3 3 2 3

2
3 2 3 3 2 3

2
2 2 3 1 3 3

( )sin ( )(1 cn )

( )(1 cn ) ( )sn

| |( )cn ( ( )( ), )
2

u u u u u u u
u u u u u u

au u u u u s s m

2

.

             (4.4.23) 

We have 

2
0

d

1 sin
v

m
.                                      (4.4.24)

The period of cos  is , so the period of the function cn is 2
/ 2

2
0

d

1 sin
4 4 ( )K m

m
.                          (4.4.25) 

In fact , then the period of the function sech v is infinite. Parameters 
and determine the amplitude of the cnoidal functions. The parameter 

(1)K

2u 3u 3s
determines the phase.  The period of the solution  u  is
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1 3

22 ( )K m
u u

.                                        (4.4.26) 

The case of three distinct and real roots.
We will prove the following theorem in the case when the equation  has 

three distinct and real roots. 
( ) 0f u

THEOREM 4.4.1 Given u u3 2 u1  the distinct and real roots of the cubic equation 
, the equilibrium equations (4.4.1)–(4.4.3) have a unique solution for the Euler 

angles
( ) 0f u

2 3
2 2 3 1 3 3

2
2 2 3 3

| |( )cn ( ( )( ), )
2

( )cn [ ( ), ],

u u u u u u s s m
A

u u u w s s m
              (4.4.27) 

with 2

1 3

u um
u u

3  and 3
1 3

| |
( )

2
w u

A
u ,

2 3
32 2

3

2 3
3

3 3

1 { [ ( ), ,
1 14

[ ( ), , ]},
1 1

u uC w s s m
u uA w

u uC w s s m
u u

3

]
                      (4.4.28) 

2 3
32 2

3

2 3
3

3 3

( ) 1 { [ ( ), ,
1 14

( ( ), , )},
1 1

u uC A C

3

]s w s s m
A uA w

u uC w s s m
u u

u
           (4.4.29) 

where ( , , )x z m is the normal elliptic integral of the third kind

2
0

d( , , )
1 sn ( , )

x yx z m
z y m

.                                (4.4.30) 

Proof The solution of  (4.4.7) is given by (4.4.23) that implies (4.4.27). In the virtue 
of (4.4.3) we have 

2(1 )
C u
A u

.                                        (4.4.31) 

Decomposing in simple fractions, we rewrite (4.4.31) as 

2 (1 ) 2 (1 )
C C

A u A u
.                               (4.4.32) 

From (4.4.27) we have 
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1 1 ,2
3 2 3 3( )sn [ ( ),u u u u w s s ]m

]m1 1 ,                         (4.4.33) 2
3 2 3 3( )sn [ ( ),u u u u w s s

or

22 3
3

3 3

1 1 sn [ ( )
1 1

u uu w s s m
u u

, ] ,

22 3
3

3 3

1 1 sn [ ( )
1 1

u uu w s s m
u u

, ] .                            (4.4.34) 

We introduce (4.4.34) into (4.4.32) and integrate with respect to s. The solution 
(4.4.28) is straightly obtained. Substituting (4.4.31) into  (4.4.3) we get

2

2

( )cos
(1 )

C A u u A
A u

.                      (4.4.35) 

Decomposing in simple fractions, we have for (4.4.35)  

( )
2 (1 ) 2 (1 )

C A C C
A A u A u

.                        (4.4.36)

Similarly, the solution (4.4.29) is obtained. We now prove another theorem. 

THEOREM 4.4.2 In conditions given by the theorem 4.4.1, the components of the 
position vector are 

sin( ) sinx R R ,                                     (4.4.37) 

cos( ) cosy R R ,                                       (4.4.38) 

1 3
1

( )
s E[am( ( )), ]

u u
z u w s s m

w 3 ,                            (4.4.39) 

with

2 2 2
3

3

1 2 | |R Au C A ,                               (4.4.40) 

arctan 2 ( )A f u
u C

,                                (4.4.41)

0 1( , , )
2

s C ws C m
A

,                                       (4.4.42) 

where  f(u) is given by (4.4.8) and C  ,  are constants, and  0 1C
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2 2

0 0

( ( ), ) ( , ) 1 sin d dn ( , )d
v

E am v m E v m m y m y ,       (4.4.43) 

is the elliptic integral of the first kind. 
Proof  The components x and of the position vector are obtained from (4.2.15)y 1,2.

Multiplying (4.4.1) by  and (4.4.2) by sin cos cos  and subtracting we have 

3 3 32

d [ sin sin cos cos sin cos ]
d

sin sin ,

A A C
s

d
          (4.4.44) 

where  is the  y  component of the unit tangential vector. 32d
Multiplying (4.4.1) by cos  and (4.4.2) by cos sin  and summing we have  

3 3 31

d [ cos sin cos sin sin sin ]
d

sin cos ,

A A C
s

d
            (4.4.45) 

where  is the  x component of the unit tangential vector. 31d
Integrating with respect to s  (4.4.44) and (4.4.45) we have 

31 0
30

1d [ cos sin cos sin sin sin ]
s

x d s A A C x ,         (4.4.46) 

32 0
30

1d [ sin sin cos cos sin cos ]
s

y d s A A C y ,        (4.4.47) 

with 0 0,x y  integration constants.
Choosing  and substituting  (4.4.5) and (4.2.6) into  (4.4.46) and (4.4.47) 

we have
0 0 0x y

2 2 2
3 2 2

2 2

1 (2 | | [
( ) 2 ( )

2 ( ) cos
],

( ) 2 ( )

u Cx Au C A
u C f u A

A f u

u C f u A

)sin

2 2 2
3 2 2

2 2

1 (2 | | [
( ) 2 ( )

2 ( ) sin
].

( ) 2 ( )

u Cy Au C A
u C f u A

A f u

u C f u A

) cos

Denoting
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2 2 2
3

3

1 2 | |R Au C A ,

the above relations become 

2

2 2

2 ( )
cos

sin[ ]
2 ( ) 2 ( )1 1

( ) ( )

f u
A

u Cx R
f u A f u A
u C u C

2
,                         (4.4.48) 

2

2 2

2 ( )
sin

cos[ ]
2 ( ) 2 ( )1 1

( ) ( )

f u
A

u Cy R
f u A f u A
u C u C

2
 .                      (4.4.49) 

We mention that R is always real. The quantity under the radical is always positive 

due to the condition u . Using the formulae 2 0
2

1cos( arctan )
1

x
x

 and 

2
sin( arctan )

1

xx
x

, we denote

arctan 2 ( )A f u
u C

,

and obtain 

(sin cos cos sin )x R , (cos cos sin sin )y R ,

that yield (4.4.37) and (4.4.38). 
From (4.4.5), (4.4.7), (4.4.9) and (4.4.41) we have 

2 2 2
3

2
3

( ) 2
2 2 (2 2 2 )

A C
A A Au A C

AC  ,

that yields  (4.4.42)  by integration with respect to s , where 
2 2 2

3
0 2 2 2

3 2

( ) 2
2 (2 )

A C AC CC
A Au A C

3 3

,

3 2 3
1 2

3 2

2 ( )
2

A u uC
Au A C 2 2 .                                  (4.4.50) 

The component  z  of the position vector r  is computed from ( 4.2.15 )3

2
2 2 3 3

0 0

ds [ ( )cn ( ( ), )]d
s s

z u u u u w s s m s
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1 3
1

( )
E(am( ( ), ),

u uu s w s s m
w 3

)

                            (4.4.51) 

where  is the elliptic integral of the second kind (4.4.43).( ( ),E am v m
We used here the formula  

,                        (4.4.52) 2
1

0

( ( ), ) cn ( , )d
v

E am v m m v m w m w

where  and 1 1m m 2 3

1 3

u um
u u

.

We see in the virtue of (4.4.37)–(4.4.39) that the rod is confined on a plane when 
 and 0C 0 . In this case the shape of the rod is called the ‘elastica’ by Love. In 

the general case when  and 0C 0  the shapes of the rod are very complicated and 
the rod is not confined in a plane, the deformation being spatial. Tsuru has obtained 
various shapes of the rod analytically and numerically.  

The case of a simple root and a double root. Let us consider the case
2 2

3, CC 2
A

.                                 (4.4.53) 

This implies that ,a b c a  and f(u) from (4.4.12)  becomes  f(u) = 
. Therefore, f(u) has a simple root and a double root.  We prove the 

theorem: 

2( 1) ( 1a u u )

THEOREM 4.4.3 Given 1 2 31, 1u u u  the roots of the cubic equation 
, the Euler angles are uniquely determined from the equilibrium equations

(4.4.1)–(4.4.3)
( ) 0f u

23| | | |
( ) 1 2 sechu s s3

A A
,                              (4.4.54) 

3| |4arctan( tanh( ))
2
C s A s

A C A
,                            (4.4.55) 

3| |(2 ) 4arctan( tanh )
2
A C s A s

A C A

1

.                        (4.4.56) 

Proof The solution of (4.4.8) is expressed in terms of hyperbolic functions. Indeed, 
consider the solution in the form 

2
1 1( ) sechu s A B s C .

Substituting this solution into (4.4.8) and taking account that 
, we obtain by balancing the powers of the function 2

1 1 12 sech sinhu A B B s s sech z
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C  = -1, 1
3

1
| |2A

A
,  =1B 3| |

0
A

.

So, the solution of (4.2.8) is 

23 3| | | |
( ) 1 2 sechu s s

A A
.

The minimum of u is –1 at s . The maximum of u is ( 3|1 2 |
A

) as .

The curve is asymptotically straight along Z-axis.  The deformation is localized around 
. Using (4.4.31) we have 

0s

0s

(1 )
C

A u
 .                                    (4.4.57) 

Substituting (4.4.54) into (4.4.57) we get 

2 3| |2 tanh

C

A s
A

 .                          (4.4.58) 

Integrating with respect to s we have  (4.4.55). Substituting (4.4.53) into (4.4.32) we 
obtain

( )
(1 )

u C A A
A u

 ,                                      (4.4.59) 

or

(
(1 )
C A

A u A
)C .                                   (4.4.60) 

Finally, integrating (4.4.60) with respect to s gives (4.4.56).
We prove the following theorem

THEOREM  4.4.4 Given the conditions of the theorem 4.4.3 the components of the 
position vector are 

3

3

2 | | ( 1)
sin

2
A u C sx

A
 ,                             (4.4.61) 

3

3

2 | | ( 1)
cos

2
A u C sy

A
,                             (4.4.62) 

3

4 tanh(2 )Az s s .                                        (4.4.63) 

Proof  Substituting (4.4.53) into  (4.4.50) 1  we obtain 
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C0 0 .                                                   (4.4.64) 

From (4.4.42) we have 

2
C s

A
 .                                               (4.4.65) 

The relations (4.4.61) and (4.4.63) are derived from (4.4.37) and (4.4.38). From 
(4.4.39) it results (4.4.63).

For graphical illustration we consider the values E =194200 610 Pa, =0.28, =
7876 kg / , l = 10 m, and a = 2 

1
3m 310 m.

The shape of the rod of infinite length into which the central line is deformed is 
called elastica.

Figure 4.4.3 displays four shapes of elastica for 0  and different set of values 
( =0.3, = 0.4, =0.2), (3 =0.7, 3 = 0.2, =0.1), ( =0.3, 3 = 0.1, =0.1) and 
( =0.9, = 0.4, =0.3) from left to right. These shapes are similar to the shapes of 
elastica found by Love in 1926.

3

The case 0 is illustrated in Figure 4.4.4. We see that for 0  the rod deviates 
from a plane and has a three-dimensional structure. This structure is simpler for small 
values of  and more complicated when  increases.

Figure 4.4.3  Shapes of elastica of Love for 0 (k = 0). 

In Figure 4.4.4, the following sets of parameters were considered from left to right 
( , =0.3, = 0.4, =0.2), (0.2 3 0.3 , =0.7, 3 = 0.2, =0.1), ( 0.4 , =0.3,

= 0.1, =0.1) and ( ,3 0.5 =0.9, 3 = 0.4, =0.3).
In this case, the shape of the rod consists of a single loop or a series of loops lying 

altogether in space. 
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Figure 4.4.4  Four shapes of elastica for 0 .

4.5   Exact solutions of the motion equations
 We determine the exact solutions of the motion equations using the equivalence 

theorem 4.3.1. The motion equations (4.2.54)–(4.2.57) are equivalents to equilibrium 
equations (4.2.35)–(4.2.37) if 

2 2
1 2, ,A k v A C k v C s .

According to this theorem, we have  
2

3(sin cos ,sin sin ,cos ) (0,0, )v ,

where is supposed to be known. The period of the function  u  is given by (4.4.26) 3

1 3

2 22 ( )K m
u u k

,                                          (4.5.1) 

1 3

2 ( )
u u

k
K m

 .                                             (4.5.2) 

The frequency of a cnoidal wave is given by

1 2 32 ( )bk k u u
a

u .                               (4.5.3) 

The theorems demonstrated in the static case are valid also in the dynamic case. We 
suppose and  are functions of variables , , s vt . We have 

3 3(0,0, )d , 2v , 3 (sin cos ,sin sin ,cosd ) 3 and a constant.  
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The case of three distinct and real roots. 

THEOREM 4.5.1 Given 3 2u u u1  the distinct and real roots of the cubic 
equation , the motion equations (4.2.54)–(4.2.57) have a unique solution for 
the Euler angles

( ) 0f u

2 3
2 2 3 1 3 3

2
2 2 3 3

| |( )cn ( ( )( ), )
2

( )cn [ ( ), ],

u u u u u u m
A

u u u w m
                (4.5.4) 

with 2

1 3

u um
u u

3  and 3
1 3

| |
( )

2
w u

A
,u

2
2 32

32 2 2
31

2
2 32

3
3 3

( )1 { [ ( ),
1 14( )

( ) [ ( ), , ]},
1 1

u uC k v w m
u uA k v w

u uC k v w m
u u

3

, ]
              (4.5.5) 

2 2
2 1 2

2 2 2 2
31 1

2
2 3 2 32

3 3
3 3

[ ( ) ] (1 {
14( )

( )[ ( ), , ] ( ( ), ,
1 1 1

C A k k v C k v
uA k v A k v w

u u u uC k vw m w
u u 3

)

)},
u

m
        (4.5.6)

where ( , , )x z m  is the normal elliptic integral of the third kind. 

THEOREM 4.5.2 In conditions given by the theorem 4.5.1, the components of the 
position vector are 

sin( ) sinx R R ,                                       (4.5.7) 

,                                          (4.5.8) cos( ) cosy R R

1 3
1

( )
E[am( ( )), ]

u u
z u w m

w 3 ,                         (4.5.9) 

with

2 2 2 2 2
3 1 2 1

3

1 2 | | ( ) ( ) ( )R A k v u C k v A k v 2 ,        (4.5.10) 

arctan 2 ( )A f u
u C

,                               (4.5.11)

0 1( , , )
2

C w C m
A

,                                     (4.5.12) 
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where f(u) is given by (4.4.8), and C  , C  are constants, and   is the 
elliptic integral of the first kind. 

0 1 ( ( ),E am v m)

Unknowns ,3 , , ,v m 3 ,  and  are determined from initial conditions 
(4.2.67) and boundary conditions (4.4.9). 

The case of a simple root and a double root. 

THEOREM 4.5.3 Given 1 2 31, 1u u u  the roots of the cubic equation 
, the Euler angles are uniquely determined from the motion equations

(4.2.54)–(4.2.57)
( ) 0f u

23
2

1 1

| | | |
( ) 1 2 sec hu 3

2A k v A k v
,                       (4.5.13) 

2 2
32 1

2 2
1 2

| |( ) 4( )arctan[ tanh( )]
2( ) ( )
C k v A k v

A k v C k v A k v2
1

,        (4.5.14) 

2 2
32 1 1

2 2
1 2

| |[2 ( 2 )] 4( )arctan[ tanh ]
2( ) ( )

A C v k k A k v
2

1A k v C k v A k v
.    (4.5.15) 

THEOREM  4.5.4 Given the conditions of the theorem 4.5.3 the components of the 
position vector are

2 2
3 1 2

2
3 1

2 | | ( )( 1) ( )sin
2( )

A k v u C k vx
A k v

,               (4.5.16) 

2 2
3 1 2

2
3 1

2 | | ( )( 1) ( )cos
2( )

A k v u C k vy
A k v

,             (4.5.17) 

2
1

3

4( ) tanh(2 )A k vz .                             (4.5.18) 

Finally, let us remember that the equation (4.4.8) has the form 

21 ( )
2

u f u ,                                          (4.5.19)

with
2 2 2 2

3 22
3 32 2 2

1 1 1

( )1 1 1( ) [ ( ) ( )]
2 2

C k vf u u u u
A k v A k v A k v

.  (4.5.20) 



Chapter 5 

VIBRATIONS  OF THIN ELASTIC RODS 

5.1   Scope of the chapter 
The first treatment of the partial differential equations of wave motion was made by 

D’Alembert in 1750 in connection with the vibrations of thin rods. Daniel Bernoulli, 
Euler, Riccati, Poisson, Cauchy, Lord Rayleigh (1877) and also Strehlke (1833), 
Lissajous (1833) and Seebeck (1852) are foremost among those who have advanced 
knowledge in this problem. The vibrating rod has been a point of research in physics 
and mathematics, at last centuries up to the present day.  Its current importance is 
associated with the theory of vibrating solitons. 

In this chapter the vibrations of thin elastic rods are studied.  In section 5.2 the small 
transverse and torsional vibrations of the initial deformed rod are considered.  The large 
relative displacements can occur even when the strains are small.  The nonlinear effect 
caused by the geometrical constraint yields to soliton solutions. The transverse 
vibrations of a helical rod are presented in section 5.3. The rod vibrates in space by 
bending and twisting. The vibrations are studied around the strained position of the rod 
which satisfies the static equilibrium equations given by the theorem 4.2.1.  

In section 5.4 it is shown that for a special class of media that do not remember the 
interaction process (DRIP media), the waves admit the solitonic features, but in contrast 
to solitons, the waves distort as they propagate by an amount that is not altered by the 
interaction.  The only effect of the interaction is to alter the arrival time of their fronts at 
any point. The vibrations of a heterogeneous string are considered in the last section. 

Before proceeding, we mention the material we referred in this chapter: Love 
(1926), Landau and Lifshitz (1968), Lewis (1980), Synge (1981), Seymour and Varley 
(1982), Tsuru (1986, 1987), Munteanu and Donescu (2002).

5.2    Linear and nonlinear vibrations 
Consider the transverse vibrations of a rod confined on a plane with no torsional 

displacements. In this case the Eulerian angles  and  are zero in the motion 
equations (4.2.54)–(4.2.57). So, we have 

0r ,                                               (5.2.1) 

,                               (5.2.2) 1 1 3cos sin 0k A
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2 sin 0 .                                             (5.2.3) 

The unit tangential vector along the rod is given by 

3 (sin , 0, cos )d .                                  (5.2.4) 

Substitution of (5.2.4) into  (4.2.66) gives 
2

1sin cos 0 ,                               (5.2.5) 

2
3cos sin 0 .                              (5.2.6) 

Equation (5.2.2) becomes 

1 1 3cos sin 0k A .                         (5.2.7) 

For , and neglecting terms of the order 1 2 , equations (5.2.5)–(5.2.7) can 
be written as (Tsuru) 

1 0 ,                                          (5.2.8) 

3 0 ,                                                  (5.2.9) 

1 1k A .                                  (5.2.10) 

Substitution (5.2.10) into (5.2.8) leads to the transverse vibrational motion  

1 0k A .                                   (5.2.11) 

A wave solution of this equation is given by 

0 exp[i( )]ks t ,                                 (5.2.12) 

with  a constant. Substituting (5.2.12) into (5.2.11) we have 0

4
2

2
1

Ak
k k

.                                          (5.2.13) 

The group velocity gv of this wave is 

2

2 3 / 2

d (2
d (1 )g

)A k k
k k

v , 1k .                        (5.2.14) 

Let us consider now the torsional motion characterized by 0  (Zachmann). 
The motion equations (4.2.54)–(4.2.57) yields the known wave equation of motion for 
small linear vibrations  

2 0k C ,                                        (5.2.15) 

that admits solutions of the form  

0 exp[i( )]ks t ,                                 (5.2.16) 

and the dispersion relation
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2 0

C k
k

k .                                      (5.2.17) 

For large displacements, even when the strains are small, the nonlinear terms in the 
motion equations (4.2.54)–(4.2.57) cannot be neglected. In this case we must consider 
the geometric constraints expressed by 3 3, | | 1r d d .

Consider firstly the plane motion of the rod, in the absence of torsion ( ).0
The motion equations are given by (5.2.5)–(5.2.7). We may assume that the 

functions ( , )s t  and ( , )s t  are functions of the variable s vt .
Denoting with prime the differentiation with respect to , the motion equations 

(5.2.5) –(5.2.7) become 
2 2 2

1sin cos 0v v ,                          (5.2.18) 

2 2 2
3cos sin 0v v ,                          (5.2.19) 

( )2
1 1 3cos sink v A 0 .                      (5.2.20) 

Note that the equations  (5.2.18) and (5.2.19) can be written under the form      
2

1( cos ) 0v ,

2
3( sin ) 0v .

Integrating twice with respect to , the above equations are 
2

1 sinv 1 1 ,                                   (5.2.21)

2
3 cosv 3 3 ,                                   (5.2.22) 

where 1 3 1, ,  and  are constants.3

By imposing the boundary conditions 

0, 0r  as , t ,                      (5.2.23) s

it results .1 3 0
Inserting (5.2.21) and (5.2.22) into  (5.2.20) we have 

( )2
1 1 3cos sinA k v 0 .                      (5.2.24) 

Defining
2 2

1 1 3 sin , 2 2
3 1 3 cos ,

the equation (5.2.24) becomes the known simple pendulum equation 
2

2
02

d sin 0
d

,                                         (5.2.25) 

where we denoted , and 
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2 2
1 32

0 2
1A k v

.                                         (5.2.26) 

The exact solution of (5.2.25) is expressed in terms of elliptic or hyperbolic 
functions, depending on the initial conditions.  For the conditions (5.2.23), the solution 
of (5.2.25) is 

0sin tanh( )
2

.                                      (5.2.27) 

From (5.2.27) it results 

2
0cos 1 tanh ( ) sech( )

2 0 .                     (5.2.28) 

Thus, with the aid of the formulae 

0 0sin 2 tanh( )sech( ) 2 2
0cos sech ( ) tanh ( ), 0

0 1

0 3

,            (5.2.29) 

the equations (5.2.21) and (5.2.22)  become 

,2
1 02 tanh( )sech( )v

.                    (5.2.30) 2 2 2
3 02 [sech ( ) tanh ( )]v

When the ends of the bar are fixed, the equation (5.2.1) yields 

1

3

0,
0.

x
z

                                            (5.2.31) 

From (5.2.31) and (5.2.30) we obtain the following solutions 

0
0

2 sech[ ( )]x s vt ,                                 (5.2.32) 

0
0

2 tanh[ ( )]z s s vt .                             (5.2.33) 

Figure  5.2.1  Shape of the elastica. 

The solution (5.2.32) represents a soliton. The solution (5.2.33) is a kink and 
represents a twist in the variable . The shape of elastica, into which the central line is z
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deformed, is a single loop and it is represented in Figure 5.2.1 ( 0 8 ). The shape of 
the kink (5.2.33) is represented in Figure 5.2.2.

1

2

0.5

Since the waves can move in the rod in both directions, a head-on collision is 
possible. Konno and Ito have studied nonlinear interactions between solitons for KdV 
and Boussinesq equations. In 1962, Perring and Skyrme investigate the head-on 
collision of two kinks with equal but opposite velocity. The kink traveling to the left is 
called an anti-kink. Using the same definition, an anti-soliton is a soliton traveling to the 
left. It is interesting to investigate the behavior of waves during their mutual interaction.  

To understand the effect of the collision between waves into the motion of the rod, 
let us consider next two initial conditions for the equations (5.2.31) 

1 0
0

2 sech[ ( )]1x s v t ,

1 0
0

2 tanh[ ( )]z s s v t ,                                (5.2.34) 

2 0 2
0

2 sech[ ( )]x s v t ,

2 0
0

2 tanh[ ( )]z s s v t ,

that represent two waves traveling with the velocities , in opposite directions. 1v v2

Figure 5.2.2  Shape of the kink solution. 

The result of integrating the equation (5.2.34) 1  is shown in Figure 5.2.3, and the 
result of integrating the equation (5.2.34) in Figure 5.2.4, for 2 1v , , 
0.75, 1.75 and 2.44 .  

2 0.35v

0

The two solitons are separated before the collision, then coalesce in the interaction 
zone and separate again afterwards, without change of velocity and shape, but with a 
small phase shift. In the collision zone there is no linear superposition. In contrast to the 
elastic soliton collision, the collision of kinks is inelastic because after collision, a small 
amount of energy is left in the form of oscillations.  
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The two kinks keep in some way their structure, but the oscillations indicate a 
dissipation of energy. After collision the velocities of kinks are 1 0.46v and .
The coalescing of two kinks in the interaction zone 

2 0.33v
( , )s t is represented in Figure 5.2.5 

for two cases: v , , and 1 0.5 2 0.35v 1 2 1v v . In the second case, after collision 
the kinks velocities are v v .1 2 0.87

Figure 5.2.3  Collision of a soliton and an anti-soliton traveling in opposite directions with different 
velocities.

 The solitons and kinks behave stably in the collision process even if the interaction 
between them takes place in a nonlinear way, where we cannot apply the principle of 
the linear superposition to the process. In the interaction region the kinks behave in a 
complicated way. A projection of the collision zone on the plane ( , )s t  can be seen in 
Figure 5.2.5.
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Figure 5.2.4  Collision of a kink and anti-kink traveling in opposite directions with different velocities. 

Figure 5.2.5  Projection of the interaction zone on the plane ( , )s t
1

of two kinks of velocities ,
(left) and 

1 0.5v

2 0.35v 1 2v v (right).

5.3   Transverse vibrations of the helical rod 
Let us consider a rod that vibrates around the strained position, which satisfies the 

static equilibrium equations given by the theorem 4.2.1 for (0,0, ) .
We begin with differentiating the equation (4.2.54) with respect to s (Tsuru)

03d .                                               (5.3.1) 

Suppose that the strained rod has a helical form. The Euler angles are written as 

0 ( ) cos( )s kx t ,



INTRODUCTION TO SOLITON THEORY: APPLICATIONS TO MECHANICS156

0 ( ) sin( )s ks t ,                                      (5.3.2) 

0 ( ) sin( )s kx t ,

where 0 0 0( ), ( ), ( )s s s  are solutions of the equations (4.2.54)–(4.2.57), and  a 
small parameter. Substituting (5.3.2) into  (5.3.1) we obtain an equation in 

3d  ,                                                 (5.3.3) 

with
2

3

2

2 2

( cos cos 2 cos sin sin cos

sin sin sin cos , cos sin 2 cos cos
sin sin sin cos sin sin , sin cos ).

d

2

      (5.3.4) 

Then, differentiate with respect to s the equations (4.2.55)–(4.2.57) and insert 
given by (5.3.3).  After little manipulation with neglecting terms of third order in , we 
obtain the vibrations equation written in a matrix form  

0M ,                                               (5.3.5) 

where M is a 3  symmetric matrix of elements 3
4 2 2 22

2 0 0 0
11 12 2 2 2

0
2 2

0 0 0 0

( 3 ) cos{ }
( )

{( 2 )cos ( )} cos ,

kM k k
k k

C A A C C Ak 2

           (5.3.6) 

2

12 21 0 0 02 2 2
0

0 0 0

2 cos sin
( )

sin {( 2 )cos ,

kM M
k

k C A C
                            (5.3.7) 

,                                       (5.3.8) 2 2
13 31 1 0(2 ) cosM M k Ck

2 2 2 2 2
22 0 0 1 02 2 2

0
2 2 2

0 0

{ ( )sin (cos
( )

( cos sin ),

M k k
k
k C A

1)}

2

                (5.3.9) 

2 2
23 32 1 0(2 ) cosM M k Ck  ,                                    (5.3.10) 

2
33 12M k Ck ,                                                (5.3.11) 

and  a column vector 

( , , )t  .                                                (5.3.12) 

In (5.3.6)–(5.3.11) we have used the relations 

2 12k k , 0 0 cos 0 .                                      (5.3.13) 
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The dispersion relations are calculated from   

det 0M ,                                                  (5.3.14) 

where the determinant of M  is a cubic polynomial of 2 .
Consider the case of transverse vibrations. The characteristic equation is given by 

(Tsuru)
2 2 2 2 4 2 2 2 2 2 2

0 0 1 0 0 0 1 0[(1 ) (1 )] [ ( 13 ( 1))u k k k Au k k u

0,

2 2 4 2 2 2 2
0 0 0 0 1 1 0( 5 ) 2 ( 2 ]C u k A k k k k k u

4 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 1 0( )[ 3 ( 2 ) ]k k A u AC u A k k u C  (5.3.15) 

where u .0 0cos 1
The equation (5.3.15) is a cubic polynomial in 2 . We note with (  and 

the roots of (5.3.15) which are functions of k. Numerical investigations show that for 
, the roots  and  are positive, and for  the root (  is 

positive and  is negative.   

2) 2)(

2)22
0 k 2)( 2)( 22

0 k
2)(

The waves are stable for real values of the angular frequency . Next, we consider 
only the case .   22

0 k
The initial strain is determined by the parameters ,0u 0  and .  We represent 

graphically the variation of  and (  with respect to k, for different values of 
,  and . These are the dispersion curves, calculated for A =2.4404 Nm

2)( 2)
0u 0

2, C
=1.9066 Nm2 and =7876 kg/ m3.

Let us choose u =0.3 and 0 0 [0,1, 2,3] . Figure 5.3.1 corresponds to , and 
Figure 5.3.2, to . Then we take 

0
0.5 [0,1,2,3]  and 0 1 . Figure 5.3.3 

corresponds to =0.3, and Figure 5.3.4 to 0u 0 0.7u . From these figures we observe 
that the dispersion relations depend strongly on all parameters. 

Figure 5.3.1  Dispersion relations of the transverse vibrations of a helical rod for different values of .0
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Figure 5.3.2  Dispersion relations of the transverse vibrations of a helical rod for different values of .0

Figure 5.3.3   Dispersion relations of the transverse vibrations of a helical rod for different values of 

Figure 5.3.4   Dispersion relations of the transverse vibrations of a helical rod for different values of 
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Finally, we represent in Figs 5.3.5 and 5.3.6 the shape of the vibrating rod at 
and35t 124t , for =2,0 =0.5, =0.2, 0u 3 =0.4. The initial value of  is 

calculated from (5.3.13). 
0

Figure 5.3.5  Shape of the vibrating rod at 35t .

Figure 5.3.6  Shape of the vibrating rod at t 124 .

5.4    A special class of DRIP media 
Fermi, Pasta and Ulam studied in 1955 the oscillations of a heterogeneous string 

which is governed by nonlinear wave equations of the form 
2 ( , )tt x t xxy A y y y ,                                                (5.4.1) 

3/ 2d (
d x

A )A A
y

,                                               (5.4.2) 

where  is  the physical displacement, ( , )y x t ( , )x tA y y  a positive function representing 
the local speed of propagation, and ,  the material constants, and x  ranges from 
to .  In particular, when ( )A A x , the equation (5.4.1) is applied to all physical 
systems essentially involving only one space-dimension and onetime-dimension. For 
the transverse vibrations of a string, we have 2 /A T m  where T  is the constant 
tension and  the mass per unit length function of m x , for the compressional vibrations 
of an isotropic laminated elastic solid in which the density and elastic constants are 
functions of x  only, , and for the transverse vibrations of a laminated 
solid, .

2A ( 2 ) /
2 /A

In  1982 Seymour and Varley studied the equation (5.4.1) and have shown that, for 
certain functions ( )xA y  that satisfies (5.4.2), the solutions of  (5.4.1) are simple waves 
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whose profiles can be specified arbitrarily, that have the properties: they interact 
between themselves like solitons, being unaffected by the interaction, but in contrast to 
solitons, distort as they propagate by an amount that is not affected by the interaction.

Since the interaction phenomenon for waves of arbitrary shape and amplitude is a 
property of the transmitting medium rather than of the particular wave profiles, 
Seymour and Varley named these media DRIP media (media that do not remember the 
interaction process).  In such media the profile of the interacting waves is not affected 
by such interactions. 

The equation (5.4.1) can be written as a system of first order equations 
2 ( , )tu A e u ex , x tu e ,                                      (5.4.3) 

or under the form 

( )t x tu Au A e Aex )x, (t x tu Au A e Ae ,             (5.4.4) 

where andtu y xe y .
The problem of integrating (5.4.3) may be reduced to the determining of the 

functions ( , )x x  and t t  that satisfy the equations ( , )

x At , x At ,                                  (5.4.5) 

where  are characteristic parameters ( ,( , ) ) .
When A  depends only on e , integration of (5.4.6) yields 

( ) ( )u G F , c e( ) ( ) ( )G F , c e .                  (5.4.6)
0

( ) ( )d
e

A s s

Consequently,  (5.4.5) must be regarded as 

( )x A c t , ( )x A c t ,                                     (5.4.7)

where A is a function of . The equation (5.4.4) becomes ( ) ( )c G F

u Ae , u Ae .                                      (5.4.8) 

The equations are very difficult to be integrated, but there are some exceptions when 
either  or . For 0G 0F 0G , relations (5.4.6) and (5.4.7) yields 

( )c u F , ( )x A F t ,                              (5.4.9) 

that describe a right-traveling simple wave. For 0F , relations (5.4.6) and  (5.4.7) 
imply that 

( )c u G , ( )x A G t ,                          (5.4.10) 

that describe a left-traveling simple wave. Both solutions represent waves moving with 
the velocity ( )A c  into a uniform region where  and  are constant.u c

Let us consider now the class of DRIP media, that include a large variety of elastic–
plastic materials, composite materials, gases, foams, and so on.  
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DEFINITION 5.4.1 (Seymour and Varley) A DRIP medium is a nondispersive medium 
that transmits waves that do not remember the interaction process. The waves are of 
arbitrary shape and amplitude and distort in time but by an amount that is not affected 
by the interactions.  A DRIP medium is defined by the condition that ( )A c  satisfies an 
equation of state of the form 

1/ 2 3 / 2dA A A
dc

,                                            (5.4.11)

where ,  are material constants.
The equation of state (5.4.11) contains two arbitrary parameters that is an advantage 

to be used for a model of a wide class of different media.  
The interaction of this type occurs when two solitons collide. The difference is that 

solitons are represented by waves of permanent form whose profiles are specific.  
We will show that for a DRIP medium the equations (5.4.7) can be integrated to 

obtain a simple representation for ( , )x and ( , )t .

THEOREM  5.4.1 (Seymour and Varley)  The general solutions of (5.4.7) are given 
by

1/ 2( , ) [ ( ) ( )] ( ( ) ( ))x l r A R L ,

t l ,                    (5.4.12) 1/ 2( , ) [ ( ) ( )] ( ( ) ( ))r A R L

where

( ) ( )L lG , ( ) ( )R rF ,                                (5.4.13) 

and is determined from ( , )A ( ) ( )c G F and (5.4.11), and the functions 
, , , , ,F G R L r l  are determined from initial and boundary conditions. 

Proof.   The proof of this theorem belongs to Seymour and Varley. Return to (5.4.7) 
and eliminate x . Thus,  will satisfy the equation ( , )t

( ) ( ) 0At At ,                                      (5.4.14) 

or, if we take into consideration that ( ) ( )c G F

1/ 2 1/ 2(2 ) ( ( ) ) ( ) 0A t A c A t G .                  (5.4.15) 

This equation can be easily integrated with respect to . Using  (5.4.11), integration 
of (5.4.15) yields 

1/ 22 ( ) ( )A t t x G g ( ) ,                          (5.4.16) 

where g  is an unspecified function. From (5.4.16) and (5.4.7) 1 we obtain 

1/ 2 1( ) ( )
2

A t x g
A A

0A .                    (5.4.17) 
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 In a similar way  
1/ 2 1( ) ( )

2
A At x f

A A
0 ,                   (5.4.18) 

where  is an unspecified function.  Relations (5.4.17) and (5.4.18) leads to f

1/ 2

1
( )

At x
f A

, 1/ 2

1
( )

At x
g A

,            (5.4.19) 

 where 
2 1 ( ) ( ) ( )

2
c f g , ( )( )

( )
A cc
A c

.                 (5.4.20) 

On the basis of (5.4.11) it results that the function ( )c defined above verifies the 
equation

( ) ( ) 0c c .                                      (5.4.21) 

Denoting 1
( )

q
f

 and 1
( )

p
g

, we obtain from (5.4.20) 

1 ( ) ( )
2

q c g G
G

, 1 ( ) ( )
2

p c f F
F

,                     (5.4.22) 

where it is convenient to regard  as functions of ( ,( , )q p )F G .
Integrating (5.4.22) we obtain the solutions 

( ) ( ) ( ) ( ) ( )q L G c L G c r F ,

( ) ( ) ( ) ( ) ( )p R F c R F c l G ,                             (5.4.23) 

where

1
2

L L g , 1
2

R R f .                            (5.4.24) 

In order that ( , )x t  given by  (5.4.19) and (5.4.23) to satisfy the equations  (5.4.7) it 
results that the functions l  and r  must be given by 

( ) ( )l G L G , ( ) ( )r F R F .                                  (5.4.25) 

From (5.4.19),  (5.4.20) and (5.4.23) it follows the solutions (5.4.12). The relation 
(5.4.13) is obtained from (5.4.25).                                                                                    

When A is independent of c , LA A , we see that (5.4.7) can be integrated

Lx A t , Lx A t ,                                   (5.4.26) 

and, therefore,  and c  are given by u
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( ) (Lu G x A t F x A t)L ,

( ) (Lc G x A t F x A t)L .                                   (5.4.27) 

These representations of the linear theory are interpreted as the superposition of two 
nondistorting and noninteracting waves that move in opposite directions with speed LA .

These formulae can be obtained from (5.4.12) and (5.4.13) by taking ( ) LA c A .

Now, we attach to (5.4.7) the initial conditions 

0( ,0) ( )u x u x , c x 0( ,0) ( )c x , x .                  (5.4.28) 

Normalizing  so that at t( , ) 0  to have x  and x , it follows from  
(5.4.4)

0 0
1( ) [ ( ) ( )]
2

F x c x u x , 0 0
1( ) [ ( ) ( )]
2

G x c x u x .               (5.4.29) 

From  (5.4.12) we obtain the solutions 
1/ 2
0[ ( ) ( )] ( ) ( ( ) ( ))x l x r x A x R x L x ,

1/ 2
00 [ ( ) ( )] ( ) ( ( ) ( ))l x r x A x R x L x ,                       (5.4.30) 

where 0 ( )A x  is determined from  by (5.4.11). The equations (5.4.30) and  (5.4.13) 
and (5.4.29) determine the functions .

0 ( )c x
, , ,R L r l

5.5   Interaction of waves 
We present the Seymour–Varley method for analysis of the interaction of any two 

waves that are traveling in opposite directions in DRIP media. The waves meet and 
interact and then emerge from the interaction region unchanged by the interaction. 
Following this method, we consider an interaction region in the plane ( , )x t composed 
of five regions in which  and c0u 0 , as shown in Figure 5.5.1. At  the right- 
traveling wave (RW) occupies the region 

0t
l fx x x

r

, , and the left- 
traveling wave (LW) the region 0

,l fx x 0

fx x x

0c
. The waves move into a region where 

. Suppose and  are continuous. Suppose that at  we have 0u c
( )

0u ( )x ( )x 0t
( )F x f x  for l fx x x , and zero otherwise, and ( ) ( )g xG x  for f rx x x ,

and zero otherwise. In region we have GRI 0 , 0F , 0L ; in , , , 
; in region II , , 

LI 0F 0G
0R 0F 0G ; in region , GRIII 0 , 0F , RL L  and in 

region , , G ,LIII 0F 0 LR R .
 We have also . The function ( ) ( ) ( ) ( )l f f rf x f x g x g x 0 ( )A c  is 

supposed to be defined as 
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0

( ( )), for ,
( ) ( ) ( ( )), for ,

(0) , otherwise.

l f

f r

A f x x x x
A c A x A g x x x x

A A
                        (5.5.1) 

We also see that for | | fx x we have 

0R L , 1/ 2
02
xl r

A
,                                      (5.5.2) 

and for l fx x x

0L , 1/ 2 ( ) ( )
( )

( )
fI x I x

R A x
A x

,

1/ 2

1 [ ( ) ( ) ]
2 ( )f

xl I x I x
A x

,

1/ 2

( ( )) ( )
2 ( )
A x R x xr
A x

,                                    (5.5.3) 

where

1/ 2 1/ 2
0

d( )
( ) ( )

xx sI x
A x A s

.                                 (5.5.4)

Also, we have for f rx x x

0R , 1/ 2 ( ) ( )
( )

( )
fI x I x

L A x
A x

,

1/ 2

1 [ ( ) ( ) ]
2 ( )f

xr I x I x
A x

,

1/ 2

( ( )) ( )
2 ( )
A x L x xl
A x

,                                    (5.5.5) 

and for rx x

0R , 1/ 2
0

0

( ) ( )f
r

rI x I x
L L A

A
,                            (5.5.6) 

0 0
1/ 2 1/ 2 1/ 2
0 0

( ) ( )
2 2

r rA L A L

02
xl r

A A A
.                     (5.5.7) 
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Figure 5.5.1  The plane ( , )x t of the wave interaction 

In the region , the RW is a simple wave, in the region II it interacts with the LW, 
and in the region it is again a simple wave. In a similar way, in the region I , the 
LW is a simple wave, in the region II it interacts with the RW, and in the region it
is again a simple wave. The important role of this analysis consists in that a simple 
wave in III  is the same as the wave that is in m and that the simple wave in  is 
the same as that in I . To show this, let us analyze the RW.   

RI
IIIR

L

L

III

III

L

LR RI

Since 0G  in and , the relation  (5.5.1) givesRI RIII

( )A A , l fx x .                                      (5.5.8) 

In the region , the solutions (5.4.12) become RI
1/ 2[ ( ) ( )] ( )x l r A R ,

1/ 2[ ( ) ( )] ( )t l r A R .                                   (5.5.9) 

Eliminating  in the relations (5.5.9) we have ( )l

( )x A t .                                           (5.5.10)

Mention that in the relation (5.5.10), A is given by (5.5.8), ( )l  by  (5.5.2) and 
 by  (5.5.3). In the region ,( ), ( )R r RIII ( ), ( )R r are given by  (5.5.3), and and

 are given by  (5.5.7). Thus, here the solutions (5.4.12) are identical with  
(5.5.9) if 

( )l
( ) rL L

x  and t  are replaced by 

rx x L , t x rL .                                   (5.5.11) 

Therefore, in the region we have a RW given by RIII

( )x A t .                                         (5.5.12) 

So, by comparing (5.5.1) and (5.5.12) we see that the emerging wave is not affected 
by interaction, it being identical with waves produced by the initial conditions ,rt L
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( ) ( )rF x f x L  for l r f rx L x x L , and zero otherwise, and  for 
all

( ) 0G x
x . The effect of interaction is only to change the effective origin of x  and t  in the 

original wave. If the RW is before the interaction, a centered wave with fx x
A

t
,

then after interaction, the emerging wave has r f

r

x L x
t L

( )

A .

A x

2 ( )tty A x

( )A x

To illustrate this, we consider a simple wave profile sechx . This is the case 
of interaction of two pulses having a soliton profile, traveling in a DRIP medium. The 
calculations are performed numerically and presented in Figure 5.5.2. In Figure 5.5.2 
we see that, in contrast to known theory of solitons interaction, these pulses travel in 
opposite directions, interact and emerge unaffected by the interaction. In the interaction 
region no coupling between waves is visible. This suggests that the waves may be 
regarded individually. Speaking from a physical viewpoint, this interaction requires that 
the energy of each field is carried individually without any transfer of energy between 
fields.  This property may be of the transmitting medium rather than of the particular 
wave profiles. 

Figure 5.5.2  Profiles of waves against x  for several t

5.6    Vibrations of a heterogeneous string 
Synge studied in 1981 the vibrations of a heterogeneous string and has shown that 

the solutions can be obtained by applying a linear integral operator to a Cauchy function 
of position and time furnished by initial conditions. In the following we present the 
Synge method applied to the partial differential equation 

,                                              (5.6.1)xxy

where is a positive function.  
Synge method straighten the characteristics of (5.6.1) by using the transformation 
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0

( )
( )

x dzx u x
A z

 ,                                           (5.6.2) 

that yields

0u
tt uu u

cy y y
c

,                                        (5.6.3) 

where  is transformed local speed.  In the Cartesian coordinates ,
the characteristics are straight lines inclined to the axis at . By a change of variable 

( ( )) ( )c u x A x ( , )u t
o45

( , ) ( , ) ( )y u t v u t u ,                                         (5.6.4) 

the equation (5.6.3) becomes, on division by 

2 2tt uu uv v kv hv ,                                       (5.6.5) 

with

2 2 u uck
c

, 2 2 uu u uch
c

.                            (5.6.6) 

For c , we have k , and equation (5.6.5) reduces to 0

2tt uuv v hv .                                                 (5.6.7) 

Integrating (5.6.7) over the triangle  (Figure 5.6.1) where  is a generic 
point, we have 

PAB ( , )P u t

( 2 )d d ( d d ) 2 d duu tt u tv v hv u t v t v u hv u t 0 ,

or

1( ) [ ( ) ( ) d d ] d d
2 t

AB

v P v A v B v u t hv u t .                         (5.6.8) 

Figure 5.6.1  The triangle PAB in the plane .( , )u t
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Introduce now the Cauchy function determined by the initial conditions for v  and 
fortv 0t

1

1

1( , ) [ ( ,0) ( ,0) ( )dz]
2

u

t
u

C u t v u t v u t v z ,                     (5.6.9) 

which satisfies the equation 

0tt uuC C .                                           (5.6.10) 

Then introduce a linear integral operator H  to be applied to function v u( , )t

1 1 1 1( , ) ( ) ( , )d d 1Hv u t h u v u t u t .                            (5.6.11) 

With (5.6.9) and (5.6.11), we obtain from (5.6.8) the integral equation for the solution 
( , )v u t

( , ) ( , ) ( , )v u t C u t Hv u t .                                (5.6.12) 

To solve (5.6.12) we write it as ( , ) (1 ) ( , )C u t H v u t , and then multiply it by 
, and obtain an infinite sequence of operations applied to a specified Cauchy 

function, that is 

1(1 )H

1 2( , ) (1 ) (1 ...)v u t H C H H C .                      (5.6.13) 

The series converges if C  and  are bounded in absolute values. This solves 
completely the problem of vibrations of a heterogeneous string.

h

Next, we present the Lewis method to solve the equation (5.6.1) for the initial data 

( ,0) ( )y x f x , ( .0) ( )ty x g x .                                (5.6.14) 

The energy  of the string is given by E
2 21 d

2 ( )
u ty yE
c u

u

)

.                                        (5.6.15) 

Since the energy is conserved, the flow on phase-space, induced by the propagation 
of a wave according to (5.6.3) conserves the inner product

1 1
1 2 1 2, ( ,v v c v c v ,

( ) 0

0 (

c x
c

c x)
,                                          (5.6.16) 

where

1 2 1 2 1 2
1( , ) [ ( ) ( ) ( ) ( )]d
2

v v q u q u p u p u u .

Here,  is a point in the phase-space ( ,v )u ty y
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q
v

p
, q u( ) ( ,0)uy u , ( ) ( ,0)tp u y u .                      (5.6.17) 

Therefore, from  (6.4.3) we have the equation governing the flow 

d ( ) ( )
d

v t Lv t
t

,                                       (5.6.18) 

where

u

t

y
v

y
,

0
2 0

u

u

L , 2 ( ) ucu
c

.              (5.6.19) 

We calculate  by a sequence of linear transformations that reduce  to a 
perturbation of the pulse. The operator  is screw-symmetric with respect to the inner 
product (5.6.16) and so there exists a one-parameter group V t  of orthogonal 
transformation determined by 

( )v t ( )v t
L

( )

d ( ) ( )
d

V t LV t
t

, V (0) 1 ,                                 (5.6.20) 

so that v t( ) ( )V t v   is a solution of (5.6.18).

We based  the following on the fact that d exp( ) exp( )
d

tL L tL
t

, where

2 3

exp ... lim ( )
2! 3!

m
m

L L LL E L E
m

,

with  the unit matrix, and  E det(exp ) exp(tr )L L . Since tr 0L , we have 
. Also we have det(e ) 1xp L exp( ) ( )t x T t ( ), with T t  the right translation by t

[ ( ) ]( ) ( )T t f x f x t ,

and exp , with( ) ( )t x T t

( ) ( ) ( )T t T t f x t ,

the left translation by .t
The method is based on the decomposition of the phase-space ( , into a pair of 

complementary subspaces. This induces a decomposition of each initial datum into a 
forward-propagating part and a backward-propagating part.

)u ty y

In the homogeneous case ( 0)
2

uc
c

, the equation (5.6.3) is reduced to 

 and the solution is expressed as a sum of two waves 0tt uuy y (f x t)  and 
that propagate independently. In the heterogeneous case both pulses are coupled by 

 considered as a perturbation.

( )f x t

0
So, we take

1 1( ) ( )V t cR V t Rc , V t ,                           (5.6.21) ( ) exp( )tL
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1 1L cR LRc ,

u
L

u
,

1 2
2

1 2
2

R .                                            (5.6.22) 

  It results

V t 1 1( ) ( )Rc V t cR , 1L Rc LcR 1 .                        (5.6.23) 

We see that  can be written as a sum of two operators to separate the contribution 
of the coupling term 

L
0

0L L , 0

0
0
u

L
u

,
0

0
.                   (5.6.24) 

In the homogeneous case we have 0  and

V
( ) 0

( ) ( ), ( )
0 (

T t
t U t U t

T t)
,                            (5.6.25) 

where T t  is right translation by t( )

[ ( ) ]( ) ( )T t f s f s t ,                                          (5.6.26) 

and T t is left translation by t .( ) ( )T t
The initial conditions (5.6.14) can be written under the form 

( ,0) ( )y u u , ( ,0) ( )ty u u .                                    (5.6.27) 

For  the solution of 0 0tt uuy y  is written as D’Alembert formula 

1 1( , ) [ ( ) ( )] ( )d
2 2

u t

u t

y u t u t u t z z .                      (5.6.28) 

Our aim is to obtain a similar formula for the inhomogeneous case . For this 
we use the well-known perturbation formula (Kato) 

0

0

( ) ( ) ( ) ( )d
t

V t U t U t s V s s .                                (5.6.29) 

From this we can obtain an infinite series for V t  by an iteration scheme ( )

( 1) ( )

0

( ) ( ) ( ) ( )d
t

n nV t U t U t s V s s ,
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(0) ( ) ( )V t U t .                                                (5.6.30) 

We take into account that V t  maps forward-going data into forward-
going data and backward-going data.

( ) exp( )tL

So, we write 

( ) ( )
( )

( ) ( )
FF FB

BF BB

V t V t
V t

V t V t
.                                        (5.6.31) 

Here, FFV maps forward-going data into forward-going data, FBV  maps forward-
going data into backward-going data, BFV  maps backward-going data into forward-
going data and BBV maps backward-going data into backward-going data.  

From (5.6.25) and  (5.6.30) we obtain for FFV

1

1 1 2 2 1 2
0 0

( ) ( ) ( ) ( ) ( )d d ...
tt

FFV t T t T t t T t t T t t t  .            (5.6.32) 

The first term in (5.6.32) is simply translating a forward-going datum into a forward 
direction. The integrant T t 1 1 2( ) ( ) (t T t t T t2 )

2t
 translates a forward-going datum in 

the forward direction from time zero to time  when it is reflected. On reflection it is 
multiplied by the local reflection coefficient , then translated backwards from time 
to time t , when it is reflected again, multiplied by 

2t

1  and translated forwards from time 
 to time . So, the second term represents the contribution to the forward-going 

disturbance from all possible double reflections.  The following terms consider third 
reflections and so on. 

1t t

Knowing this, it is easy to write

1 2

1 1 1
0

1 1 2 2 3 3 1 2 3
0 0 0

( ) ( ) ( )d

( ) ( ) ( ) ( )d d d ...

t

FB

t tt

V t T t t T t t

T t t T t t T t t T t t t t ,

,

        (5.6.33) 

1 2

1 1 1
0

1 1 2 2 3 3 1 2 3
0 0 0

( ) ( ) ( )d

( ) ( ) ( ) ( )d d d ...

t

BF

t tt

V t T t t T t t

T t t T t t T t t T t t t t
       (5.6.34) 

1

1 1 2 2 1 2
0 0

( ) ( ) ( ) ( ) ( )d d ...
tt

BBV t T t T t t T t t T t t t  .            (5.6.35) 

Now, from (5.6.31) and  (5.6.32)–(5.6.35) we have 
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11 12

21 22

( ) ( )
( )

( ) ( )
V t V t

V t
V t V t

,                                        (5.6.36) 

with

11
1 1( ) [ ( ) ( ) ( ) ( )]
2 FF BB FB BFV t c V t V t V t V t

c
,

12
1 1( ) [ ( ) ( ) ( ) ( )]
2 BB FF FB BFV t c V t V t V t V t

c
,

21
1 1( ) [ ( ) ( ) ( ) ( )]
2 BB FF BF FBV t c V t V t V t V t

c
,                  (5.6.37) 

22
1 1( ) [ ( ) ( ) ( ) ( )]
2 FF BB FB BFV t c V t V t V t V t

c
.

Taking account of the initial data (5.6.27) we have 

1 1( , ) ( )[ ( ) ( ) ( ) ( )] ( )
2 ( )

1 1( )[ ( ) ( ) ( ) ( )] ( ),
2 ( )

t BB FF BF FB

BB FF BF FB

y u t c u V t V t V t V t u
c u

c u V t V t V t V t u
c u

          (5.6.38) 

and

1
0

1
0

1 1( , ) ( ) ( ) [ ( ) ( ) ( ) ( )] ( )d
2 ( )

1 1( ) [ ( ) ( ) ( ) ( )] ( )d .
2 ( )

t

BB FF BF FB

t

BB FF BF FB

y u t u c u V t V t V t V t u t
c u

c u V t V t V t V t u t
c u

     (5.6.39) 

When ( ) 0c u , (5.6.39) becomes 

1 1 1 1 1
0 0

1 1( , ) ( ) [ ( ) ( )] ( )d [ ( ) ( )] ( )d
2 2

t t

y u t u T t T t u t T t T t u t1 .          (5.6.40) 

After integration by parts we obtain D’Alembert formula. 



Chapter 6 

THE COUPLED PENDULUM 

6.1    Scope of the chapter 
 In the first four sections, the inverse scattering transform is applied to solve the 

nonlinear equations that govern the motion of two pendulums coupled by an elastic 
spring. The theta-function representation of the solutions is describable as a linear 
superposition of Jacobi elliptic functions (cnoidal vibrations) and additional terms, 
which include nonlinear interactions among the vibrations. Comparisons between the 
cnoidal and LEM solutions are performed. Finally, an interesting phenomenon is put 
into evidence with consequences for dynamics of the coupled pendula.  

The reason why a pendulum is chosen is that its dynamics is rich and complex and 
its equations are strongly related to the Weierstrass equation with a polynomial of 
higher order, that admits an analytical solution represented by a sum of a linear and a 
nonlinear superposition of cnoidal vibrations.

The modal interactions and the modal trading of energy were studied in the early 
1950s by Fermi, Pasta and Ulam. In the section 6.5 we present the results of Davies and 
Moon concerning the modal interaction, characterized by highly localized waves, in an 
experimental structure. These waves are similar to Toda solitons. The extension of the 
Toda interacting equation is given by Toda–Yoneyama equation, which is presented in 
the last section. 

This chapter is refers to the works by Donescu (2000, 2003), Munteanu and 
Donescu (2002), Davies and Moon (2001) and Yoneyama (1986). 

6.2   Motion equations. Problem E1 
Figure 6.2.1 shows a coupled pendulum consisting of two straight rods ,

of masses 
1 1O Q 2 2O Q

1M , 2M , lengths 1 1 2 2O Q O Q a

|

, and mass centers C ,  with ,
 and O O . The rods are linked together by an elastic spring ,

,  characterized by an elastic constant . The elastic force in the spring 
is given by . The kinetic energy T of the system is 

1 2C 1 1 1l

1Q
O C

1Q Q2 2 2O C l

1 1O C 2Q
1 2

2 2

1 2O

l

1|k O Q

2

O C k

2Q

2 2
1 1 2 2

1 (
2

T I I ) ,                         (6.2.1) 



INTRODUCTION TO SOLITON THEORY: APPLICATIONS TO MECHANICS174

where  and  are the displacement angles in rapport to the verticals, 1 2 1I  is the mass 
moment of inertia of with respect to C  and 1 2O O 1 2I  is the mass moment of inertia of 

with respect to C .  The elastic potential is written as (Teodorescu)3 4O O 2

2
1 1 1 2 2 2 1 2 1 2( cos cos ) ( )

2
kg M l M l O O Q QU ,                 (6.2.2) 

where

          (6.2.3) 
2 2 2

1 2 1 2 2 1 2 1
2 2

1 2 1 2 2 1 2 1

[ (sin sin )] (cos cos )
2 (sin sin ) 2 [1 cos( )].

Q Q O O a a
O O aO O a

2

The generalized force is

1 1
1 1 1 1 1 1 1

1 1

cos ( sin cos )( sin cos )O C AQ F t i j l i l j
l

,

where  are unit normal vectors and  ,i j

1 cosQ A t .                                              (6.2.4) 

From Lagrange equations, where L T U

1
11

22

d ,
d

d 0,
d

L L Q
t

L L
t

                                     (6.2.5) 

we derive the motion equations of the pendulum   

2
1 1 1 1 1 1 2 1 2

1

2
2 2 2 2 2 1 2 1 2

2

sin ( ) cos ,
2

sin ( ) 0,
2

kI M gl O O Q Q A t

kI M gl O O Q Q
(6.2.6)

with g  the gravitational acceleration. Equations (6.2.6) are coupled and nonlinear. 
Substitution (6.2.3) into (6.2.6) gives

2
1 1 1 1 1 1 2 1

2
2 2 2 2 2 2 2 1

sin [ cos sin( )] cos ,

sin [ cos sin( )] 0,

I M gl kH al a A t

I M gl kH al a
        (6.2.7) 

where

1 2
1 2

1 2

( , )( , )
( , )

l ,                                        (6.2.8) 

2 2
1 2 1 2 2 1 2 1( , ) [ 2 (sin sin ) 2 (1 cos ( )] .Q Q l al a 1/ 2      (6.2.9) 
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Figure 6.2.1  The coupled pendulum. 

Defining the dimensionless variable  

1
1

kt t
M

,                                    (6.2.10) 

and notations
2

1 1 1 2 2

1 2

1 1 1

1 1 2

, ,

, , ,

M gl M M glw w
I k I k l

AM alM alMa
l kI I I

,

,
             (6.2.11) 

equations (6.2.7) are reduced to the dimensionless equations   

1 1 1 2 1 2 1

2 2 1 2 2 2 1

sin ( , ) [cos sin( )] cos ,

sin ( , ) [cos sin( )] 0,

w

w
        (6.2.12) 

where 1M
k

,  and the dot means the differentiation with respect to , and 

1/ 2
1 2( , ) 1 ,

2
1 2 2 1 2 1( , ) 1 2 (sin sin ) 2 (1 cos ( )) .        (6.2.13)

The parameters 2M  and  are supposed to be specified, whereas , ,  and 
are considered the control variable parameters, where 

l m k

1

2

M m
M

.                                               (6.2.14)

The imposed initial conditions are 
0 0 0

1 1 2 2 1 1 2(0) , (0) , (0) , (0) 0
2p p .        (6.2.15) 

Noting
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               (6.2.16) 1 1 2 2 1 3 2 4

5 6

 , , ,
cos , sin ,
z z z

z z
,z

5

the equations (6.2.12) become 

1 3

2 4

3 1 1 2 1 2 1

,
,

sin ( , ) [cos sin( )] ,

z z
z z

z w z z z z z z z
       (6.2.17) 

4 2 1 2 2 2

5 6
2

6 5

sin ( , ) [cos sin( )],
,

,

z w z z z z z z
z z

z z

1

0
4z

with initial conditions (6.2.15) 

                   (6.2.18) 
0 0 0

1 1 2 2 3 3 4

5 6

(0) , (0) , (0) , (0) ,
(0) 1, (0) 0.

z z z z z z z
z z

Consider now the case | |
2pz , and let us approximate the trigonometric functions 

by series expansions (Abramowitz and Stegun)  

     

3 5
4

2 4
4

sin ( ), | ( ) | 2 10 ,
3! 5!

cos 1 ( ), | ( ) | 9 10 .
2! 4!

z zz z z z

z zz z z
     (6.2.19) 

Substitution of (6.2.19) into (6.2.17) yields to a system of equations we refer to as 
the problem E1 

1 3

2 4

3 1 1 1 2 1 2

4 2 2 1 2 1 2

5 6
2

6 5

,
,

( ) ( , ) ( , ) ,
( ) ( , ) ( , ),

,

,

z z
z z
z wP z Q z z z z z
z wP z Q z z z z
z z

z z

5                        (6.2.20) 

with
3 5( )P z z az bz , Q z1 1 2 1 1 2 1 2( , ) ( ) ( , )z R z R z z ,

Q z2 1 2 1 2 2 1 2( , ) ( ) ( , )z R z R z z , ,2
1( ) 1R z cz dz4

1/ 2
1 2 1 2( , ) 1 ( , )z z f z z ,
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3 2
2 1 2 1 2 2 2 1

2 3 5 4
2 1 1 2 2 1

3 2 2 3 4 5
2 1 2 1 2 1 1

( , ) 3

3 5

10 10 5 ,

R z z z z a z a z z

a z z a z b z b z z

b z z b z z b z z b z

2 2 2
1 2 1 2 1 2 1

2 2 3 3 2 4 2 4 2 3
2 1 2 2 1 2

2 2 2 2 3 5 5
2 1 2 1 2 1

( , ) 1 2 2 4 2

2 2 2 2 2 8

12 8 2 2 ,

f z z z z c z z c z

c z a z a z d z d z d z z

d z z d z z b z b z
1  (6.2.21) 

with 1
3!

a , 1
5!

b , 1
2!

c , 1
4!

d .

6.3    Problem E2 
A way for analyzing a system of equations by following LEM procedure given in 

section 1.6 is to simplify the exact system of equations (6.2.20) by assuming 

,                   (6.3.1) 2
1 2 2 1 2 1( , ) (sin sin ) (1 cos( )

under conditions 

| 2 .                    (6.3.2)2
2 1 2 1(sin sin ) 2 (1 cos( ) | 1

Substitution of the function 1 2( , ) given by (6.3.1) into (6.2.17) yields 

1 3

2 4
2 3

3 1 1 2 1 1
2

1 1 2 2 1
2 2

1 2 1 1 2 1
3

2 1 2 1 5

,
,

sin cos sin( ) cos sin

cos sin sin sin( )
sin sin( ) cos cos( )
sin( )cos( ) ,

z z
z z

z w z z z z z z
z z z z z
z z z z z z
z z z z z

2

2

       (6.3.3)

2 3
4 2 2 2 1 2

2
1 2 2 2 1

2 2
1 2 1 2 2 1

3
2 1 2 1

5 6
2

6 5

sin cos sin( ) cos sin

sin cos sin sin( )
sin sin( ) cos cos( )
sin( )cos( ),

,

.

z w z z z z z z
z z z z z
z z z z z z
z z z z

z z
z z

It is important to write the system of equations (6.3.3) under the form   

        ( )n np p nz A z g z , , 1,...,6n p ,                                 (6.3.4) 

with



INTRODUCTION TO SOLITON THEORY: APPLICATIONS TO MECHANICS178

( ) sin cos
sin( ) cos sin

sin sin( ) cos cos( )
sin( )cos( ).

n np p np p

npq p q npq p q

npqr p q r npqr p q r

npq p q p q

g z B z C z
D z z E z z

F z z z G z z z
H z z z z

               (6.3.5) 

 In the above expressions ( , , , 1,2,3,4)n p q r , and the summation convection is 
used over these indices. The nonzero constants of (6.2.5) are given by 

13 24
2

35 56 65 2
1

31 42
2 2

31 42
3 3

321 421

1, 1,

, 1,

, ,

, ,

, ,

A A

A A A

B w B w
C C

D D

,

                      (6.3.6) 

              

312 311

422 421
2 2

3221 3121
2 2

4221 4121
2 2

3121 4221
3 3

321 421

, ,
, ,
, ,

, ,

, ,

, .

E E
E E
F F
F F
G G
H H

Inserting (6.2.19) into (6.3.5) and neglecting the terms up to the sixth order, we have 

1

2

( ) 0,
( ) 0,

g z
g z

2 2 2
3 1 2 1 1 2

2 2 3 3 2 2
2 1

3 2 2 3 2 2 4
1 2 2 1

( ) ( ) ( 1) 2 (1 )

( 1) ( ) (3 1)

3 ( ) ( 2 )

g z w z z c z c z z
c z a c wa c z c z z

cz z c a z d c a z
1 2

2

5

2 2 3 2 2 2
1 2 1 2( 4 2 ) (6 6 )a d c z z d c a z z

2 3 2 4 3 3
1 2 2 1(5 4 ) ( 2 ) ( )a d z z d a z bw ac d z

2 3 4 3 2 3
1 2 2 1

2 3 2 3 3
1 2 1 2

2 2 5
2

(5 5 ) 10 ( )

(10 10 ) 5 ( )

( ) ,

ac d d z z d ac z z

d ac ac z z d ac z z

d ac b z

4              (6.3.7) 
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2 2 2
4 1 2 1 1 2

2 2 2 3 3 2
2 1 1 2

2 2 3 3 2
1 2 2 1

( ) ( ) (1 ) 2 ( 1)

(1 ) ( ) 3

(3 1) ( ) (2 )

g z z w z c z c z z
c z c a z c z z

c z z a c c wa z a d z
2 3 2 2 2 2

1 2 1 2(4 5 ) (6 6 )d a z z a d c z z

4

2 2 3 2 2 4 2 2 5
1 2 2 1( 5 4 2 ) ( ) ( )a d c z z d c z b d ac z

3 4 2 2 2 3
1 2 2 1

3 2 3 3 4 5
1 2 1 2 2

5 ( ) (10 10 )

10 ( ) 5 ( ) ,

b ac z z d ac ac z z

d ac z z d ac z z wbz

5 6( ) 0, ( ) 0.g z g z

Using (6.2.7), the system of equations (6.2.4) yields to a simplified system of 
Bolotin type (Bolotin), we refer to as the problem E2

,                                             (6.3.8) 
4

1
( )i

i
z Az F z

where
6

1

6

1
, 1

,

( ) ,

np p
p

npq p q
p q

Az a z

F z b z z

6

2
, , 1

( ) ,npqr p q r
p q r

F z c z z z                                    (6.3.9) 

6

3
, , , 1

6

4
, , , , 1

( ) ,

( ) ,

npqr p q r l
p q r l

npqrlm p q r l m
p q r l m

F z d z z z z

F z e z z z z z

with . The matrix 1, 2,3,...,6n npA a is

2

0 0 1 0 0
0 0 0 1 0

0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0

w
A

w

0
0

1
0

.               (6.3.10) 

The constants of (6.3.9) are defined as follows 
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0.16605, 0.00761,a b 0.49670, 0.03705,c d

3
3111c a c c wa

a

,

2 3
4122 4112(3 1), 3c c c c 2

3222 ( ), c c

2 2
31111 ( 2d d c )a 2 2

31112 ( 4 2d a d, ,)c

d

d

2 2
31122 (6 6 )d d c a 2

31222 (5 4 ), d a ,

2
32222 ( 2d d )a 2

41111 (2 ), d a ,

2
41112 (4 5 )d d a 2 2

41122 (6 6 )d, d a ,c

,c

d

2 2
41222 ( 5 4 2 )d a d c 2 2

42222 ( ), d d

3 3
311111e bw ac ,

3
311122 10 ( )e ac d 3

411222 10 ( ), e ac d ,

2 2
411122 (10 10 )e ac d ac 3

312222 5 (e a, )c d ,

2 2
322222 ( )e ac d b ,

2 2
411111 ( )e ac d b 422222e w, b .

6.4     LEM solutions of the system E2
In this section we derive the LEM solutions of the system E2 (Toma, Munteanu et

al. 2002b). For this, we apply to equations of the system E2 an exponential transform 
depending on four parameters of the form (1.6.2) 

1 2 3 4 1 1 2 2 2 2 4 4, , , , exp( )v t z z z z , i R ,       (6.4.1) 

that yields a linear first order partial differential equation
2 34 4 4 4

1 1 , 1 , , 1

4 54 4

, , , 1 , , , , 1

(

),

n np n npq n npqr
n p p q p q rp p q p q r

n npqrl n npqrlm
p q r l p q r l mp q r l p q r l m

v v va b c
t

v vd e

v

0z z

   (6.4.2) 

with  initial conditions 

,           (6.4.3a) 0 0 0
1 2 3 4 1 1 2 2 3 3 4 40, , , , exp( )v z z
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and bounding condition at infinity

1 2 3 4 0| , , , , |v t v    as t ,                (6.4.3b) 

where .0 sup{ | ( , ) | : 0, }v v t t R

n

An important step in solving the equation (6.4.2) is  the observation that a series of 

the form  verifies the equation. By looking on the explicit form of this 

particular solution we can derive, without any information and in a purely deductive 

way, other series of the form

0
( )m m

m
t

, 0
( ) ( )m n m

m n
t t , which verify the equation.  So, there 

must be a family of series that can be taken into consideration. In fact, this observation 
yields to a solution of (6.4.2) and (6.4.3) under the form

4 4
` `

1 1 , 1 , 1

4
` ` `

, , 1 , , 1

4
` ` ` `

, , , 1 , , , 1

1
! !

! ! !

,
! ! ! !

i i
i i jk k

k k l
k i k l i j

k l

i j r
i j r k l m

k l m
k l m i j r
k l m

i j r s
i j r s k l m n

k l m n
k l m n i j r s
k l m n

v A A A
i i

A A A
i j r

A A A A
i j r s

`

!

j
l

j

                  (6.4.4) 

 where ( )nA t , , are defined as 1, 2,3, 4n

1

, 0
( ) {( ) ( ) ( , ) ( ) ( ) ( , )}.k k

n nk k nk k
k

A t t A t t B t               (6.4.5)

Indices take integers values 0,1, 2...k , 0,1, 2,... . In (6.4.5) the functions 
( , )k t  and ( , )k t  and ( )  are defined as 

1 ( )

1
( , ) ( ) ( )m k k

k m
m k

t t A , 1 ( )

1
( , ) ( ) ( )m k k

k m
m k

t t B ,      (6.4.6) 

4

1
j j

j
,                                            (6.4.7)

with ,  , 
4

1
1j

l
0j 1, 2,3, 4j .  In  (6.4.7) jp , 1, 2,3, 4j , are the roots

,                    (6.4.8) 1 1 2 1 3 2 4, , ,p p p 2p

) 0

of the characteristic equation
4 2( p ,                                   (6.4.9) 

with
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,p w w 2w w w .        (6.4.10)

The unknowns nkA  and  depend on nkB  in the following way 

                (6.4.11) ( ) ( ) ( ), ( ) ( ) ( ).nk k nk nk k nkA C B B C C

The constants  verify the recurrence relation ( )kC

2 2

1( ) ( )
(2 1)k
k

C
k k kC ,                              (6.4.12) 

with

0
| (1 i ) |( )

2!
pC ,                                 (6.4.13)

where  is the Gamma function, and  
2

2
2

0

(1 i )| | [1
(2) (2 )n n

1]  .                       (6.4.14) 

Constants ( )k
mA ,  are related between themselves by ( )k

mB
( ) ( )( ) ( )k
m mB m A k ,                                    (6.4.15) 

where ( ) ( )k
mA  is defined by 

( ) ( )
1 2

( ) ( ) ( )
1 2

1, ,
1

( )( 1) 2 ,

k k
k k

k k k
m m m

A A
k

m k m k A A A m k 2.
       (6.4.16)

We mention that  and C( )nkB ( )nk  depend on the initial constants and on the 
constants  of (3.1.1). Substituting , , , ,a b c d e ( ) ( )k

mB  given by (6.4.15) into (6.3.6) , we 
obtain

2

1 ( )

1
( , ) ( ) ( )m k k

k
m k

t t Bm .                          (6.4.17) 

We point out that  can be calculated from ( , )t ( , )t by formulae 

d( , ) ( , ) ( , )
d

t t
t

t .                      (6.4.18)

Denoting
1( , ) ( ) ( ) ( , )k

k k kF t C t t ,                         (6.4.19) 

we obtain for (6.4.5)

.                (6.4.20) 
, 0

( ) { ( ) ( , ) ( ) ( , )}n nk k nk k
k

A t B F t C F t
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It is easy to observe that

0 0( ,0) sin , ( ,0) cos .F t t F t t                       (6.4.21) 

Now, return to (6.4.4), and after a little manipulation, we have  

31 2
1 2 3(1 )(1 )(1 )(1 )

! ! !

ki j
i j k

i j k l
v A A A A

i j k
4

4 !

l
l

l
,         (6.4.22) 

and

.               (6.4.23) 1 2 3 4 1 1 2 2 3 3 4 4, , , , exp( )v x A A A A

Finally, the solution of  (6.3.8) results from (6.4.27) 

.                 (6.4.24) 
, 0

( ) ( ) { ( ) ( , ) ( ) ( , )}n n nk k nk k
k

z t A t B F t C F t

We refer to (6.4.24) as the LEM representations of the solutions of problem E2.
These solutions are bounded at . We name the functions t ( , )kF t  the 
incomplete Coulomb functions of vibration, or Coulomb functions of vibrations, since 
they are similar to Coulomb wave functions (Abramowitz and Stegun).  So, the LEM 
solutions are describable as a linear superposition of Coulomb vibrations (Donescu 
2003). The first terms in (6.4.24) represent the linear part of the solutions of the 
problem E2 ( )1, 2,n 0,1k

1 10 1 10 1 11 2 11 2cos sin cos sin ,z C p t B p t C p t B p t

,               (6.4.25) 2 20 1 20 1 21 2 21 2cos sin cos sinz C p t B p t C p t B p t

where the constants are defined as 0  ( 1, 2n , 0,1,...,9k ),
0
2 2 1

10
1

oz v zC
D

,
0
2 1 1

11
1

oz v z
D

C ,

0 2 2
3 2 4

13 13
10

2

op pz N z
a aB

D
,

0 1 1
3 1 4

13 13
11

2

op pz N z
a aB

D
,

20 10 1C C v  , 21 11 2C C v , 20 10 1B B v  , 21 11 2B B v ,

2 2
2 1

1
32 13

p pD
a a

, 1 2 2 1
2 2

13

( )p p N ND
a

,

2
1

1 3
32 13

1 ( )pv a
a a 1 ,

2
2

2 3
32 13

1 ( )pv a
a a 1 ,

2
42 1 41

1 3
1 32 13 1

( )a p aN a
p a a p1
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2
42 2 41

2 3
2 32 13 2

( )a p aN a
p a a p1   ,

0 0 0 0 02 2 2 1 2
1 2 1 2 1

412 312 322
12

3

( )p w p p pz z z z z
b b b

D
C ,
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( )op p pz z w z z z
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D

1 2p
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( )op w p p pz z z z z
b b bB

D
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( )op p pz z w z z z
b b bB

D

1 2p

,

22 12 1C C w , , , , 23 13 2C C w 22 12 1B B w 23 13 2B B w

2 2
312 2 1 422 1 2

3
322 412

b p p b p pD
b b

, 1 2 312 2 1 422 1 2
4

312 422

( )p p b p w b p wD
b b
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2
1

1 4
312 322

3 ( )pw b
b b 12 ,

2
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2 412
312 322

3 ( )pw b
b b
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D
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D
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,
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D
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2 2
3112 4122 2 1 3122 4112 1 2

5
3111 412 4222 322

1
16

c c p p c c p pD
c b c b

.

 The following theorem holds:   

THEOREM 6.4.1  The system of equations E2

1 , 1 , , 1

, , , 1 , , , , 1
, 1, 2,3,..., ,

N N N
n

np p npq p q npqr p q r
p p q p q r

N N

npqrl p q r l npqrlm p q r l m
p q r l p q r l m

dz a z b z z c z z z
dt

d z z z z e z z z z z n N

with initial conditions
0(0)n nz z , 0

nz R ,

admit  for ,  bound-stated solutions at  , of the form 0.3 t

, 0
( ) { ( ) ( , ) ( ) ( , )}n nk k nk k

k
z t B F t C F t ,

where
1( , ) ( )( ) ( , )k

k k kF t C t t ,

are Coulomb functions of vibration, and
1 ( )

1
( , ) ( ) ( )m k k

k m
m k

t t A ,

2 2

1( ) ( )
(2 1)k k
k

C C
k k

, 0
| (1 i ) |( )

2!
pC ,

( ) ( )
1 2

( ) ( ) ( )
1 2

1, ,
1

( )( 1) 2 ,

k k
k k

k k k
m m m

A A
k

m k m k A A A m k 2.

6.5  Cnoidal solutions 
The aim of this section is to apply the cnoidal method to both problems E1 and E2. 

First we analyze a particular case which can reduce the equation of motion to a 
Weierstrass equation of the type (1.4.14) that admits an analytical solution represented 
by a sum of a linear superposition and a nonlinear superposition of cnoidal vibrations. 
We consider the uncoupled case  ( 1 2I I I )

1 1 1

2 2 2

sin cos 0,

sin cos 0,

w

w
                                 (6.5.1) 
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where
2

1 1 1 2 2

1 1

2

, ,

, ,

M gl M M glw w
Ik Ik

alM Ma m
l I M

,

0
2

and initial conditions 
0 0 0

1 1 2 2 1 1 2(0) , (0) , (0) , (0) .p p                (6.5.2) 

Multiplying the first equation by 12 , and the second one by 22  , and integrating 
we obtain

2
1 1 12 cos 2 sinw C1 , 2

2 2 22 cos 2 sinw C2 ,       (6.5.3) 

where ,iC 1,2i , are integration constants. Approximating the trigonometric functions 
by series of five-order, (6.5.3) yields 

2 ( )i i iP , 1, 2i ,                                    (6.5.4) 

where are polynomials of fifth-order in  ( )i iP i

, i2 3 4
0 1 2 3 4 5( )i i i i i i i i i i i iP a a a a a a 5

i 1,2 ,        (6.5.5) 

with

01 1 02 2 112 , 2 , 2a w C a w C a ,

b

                           (6.5.6) 12 21 22

31 32

2 , 2 , 2 ,
2 , 2 ,

aA a wc a wc
a a a a

41 42

51 52

2 , 2 ,

2 , 2 ,

a wd a wd

a b a

where, for sake of simplicity, we take  

1 22 , 2w C w C , a a11 12 2 0 .

We recognize in (6.5.4) the Weierstrass equations of the form (1.4.14), for 5n
2 2 3 4

1 2 3 4 5
5A A A A A ,                        (6.5.7) 

where, by dropping the second index for constants a

1 1 2 2 3 3 4 4 5 5
1 3, , , 2 ,
2 2

5 .
2

A a A a A a A a A a

The assumed initial conditions for (6.5.7) are 

0(0) , (0) 0p .                                    (6.5.8) 
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We know that the equation (6.5.7) admits a particular solution expressed as an 
elliptic Weierstrass function that is reduced, in this case, to the cnoidal function   cn

2
2 3 2 2 3 1 3( ; , ) ( )cn (t g g e e e e e t )

3 3

,

where  is an arbitrary constant, , are the real roots of the equation 
  with , and 2

1 2 3, ,e e e

2 ,3
34 0y g y g 1 2e e e g g  are expressed in terms of the constants 

iA , ,  and satisfy the condition 1, 2,...,5i 3
2

2
327 0gg .

The general solution of (6.5.7) is expressed as a linear superposition of cnoidal 
vibrations as given by (1.4.13) 

2

1
cn [ ; ]

n

lin l l l
l

t m ,

where , and  the angular frequencies 0 lm 1 k , amplitudes  k depend on the initial 
conditions. The Weierstrass equations admit also solutions expressed as a nonlinear 
superposition of cnoidal vibrations. To derive these solutions, we adopt the Krishnan 
solution (Krishnan) 

int
( )( )

1 (
tt

t
,                                           (6.5.9)

)

where is the Weierstrass elliptic function given by (6.5.8), and ( )t , , are arbitrary 
constants. Substituting (6.5.9) into  (6.5.7) we obtain four equations in , , 2g  and 

3g
2 4 3 2 2 3

1 2 3 4 52 4A A A A A ,            (6.5.10a) 

3 2 2
1 2 3 44 4 3 2 3A A A A ,                 (6.5.10b) 

2 2
2 1 2 3

3 3
2

26 6g A A A ,                   (6.5.10c) 

2
2 3 12 2g g A A .                        (6.5.10d) 

From (6.5.10a), (6.5.10b) we get 
4 3 2 2 3 4

1 2 3 4 56 5 4 3 2A A A A A 0

0

. (6.5.11)

Let us consider the special case where (6.5.11) is reducible to
4( )R S , (6.5.12)

1/ 4

5

13
A
A

,                                    (6.5.13) 

with
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  , ,1/ 4
5(2 )R A 1/ 4

1(6 )S A 3
2

4
5

A RS , 2 2
3

3
2

A R S , 3
4

4
3

A R S . (6.5.14)

We observe that both quantities  and  in (6.5.12) are both  real or imaginary. In 
the last case this equation leads to i(

R S
)4 0R S  with R  and S  real quantities. 

We calculate 1 1
1 0
2

A a  for the first equation (6.5.5), and 1 1
1 0
2

A a ,

for the second equation (6.5.5), with 0 . In both cases we have 5

1

5 0
3 3
A b
A

.

Then
1/ 4

5
3
b .                                              (6.5.15) 

Using (6.5.13) we have a unique constant  from (6.5.10a) and (6.5.10b)  

.                                        (6.5.16) 3/ 2
1 530(3 )A A

The definition of the constant 5A  yields 

5 5
5 5
2

A a b ,   or 5 5
5 5
2

A a b .

From (6.5.16) we have for both situations   

,2 3/30(15 )b 2 2 0b .                            (6.5.17) 

From (6.5.15) and (6.5.16) we obtain 
1/ 4

2 3/530 (15 )
3
b b 2 .                             (6.5.18) 

The unknowns 2g  and 3g  are computable from (6.5.10c) and (6.5.10d).  It results that 
, , 2g  and 3g  are always real. The expression  (6.5.9) becomes 

2
2 2 3 1 3

2
2 2 3 1 3

[ ( )cn ( )]
( ) ,

1 [ ( )cn ( )]nonlin

e e e e e t
t

e e e e e t
                 (6.5.19) 

where  and   are given by (6.5.17) and (6.5.18).  
A general form for nonlinear part of the solution of (6.5.7) can be written as

2

0
int

2

0

cn [ ; ]
( , )

1 cn [ ;

n

k k k
k

n

k k
k

t m
x t

t m ]k

 .                               (6.5.20) 

So, we can conclude that the solution of the equation (6.4.7) and the arbitrary initial 
conditions (6.4.8) consist of a linear superposition of cnoidal vibrations and a nonlinear 
interaction between them. 
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Figure 6.5.1  Solutions  and  calculated by cnoidal  and LEM methods. 1z 2z

 Next, we show that the cnoidal method is suitable for solving the system of 
equations E1. Suppose the representations of solutions , k( )kz t 1,2,3,4 , of the form  

2
( )

1 22( ) 2 log ( , ,..., )k
k nz t

t n ,                         (6.5.21) 

where the  function is defined by 

( )

( ) ( ) ( ) ( ) ( )
1 2

1 , 1
1

1( , ,..., ) exp( i )
2k

i

n n
k k

n n j j i ij
j i jM

i n

M M Bk k k
jM ,  (6.5.22) 

with

j j jt , 1 j n .                                (6.5.23) 

Here, jk  are the wave numbers, j are the frequencies, j  are the phases, and n
the number of degrees of freedom for a particular solution.  

The following result holds: 

THEOREM 6.5.1 The bound-state solutions ,( )kz t 1,2,3,4k , of the system E1 
given by (6.2.20), (6.2.21) can be written as

( ) ( )
int( ) ( ) ( )k k

k linz t z z , 1 2[ ... n ] ,                (6.5.24) 

where represents a linear superposition of cnoidal vibrations ( )k
linz

 ,                               (6.5.25) ( ) 2
( ) ( ) ( )

0
2 cn [ ;

n
k

lin l k l k l k
l

z ]t m
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and  represents a nonlinear interaction among the cnoidal vibrations  ( )
int

kz

2
( ) ( ) ( )

( ) 0
int

2
( ) ( ) ( )

0

cn [ ; ]
( , )

1 cn [ ;

n

l k l k l k
k l

n

l k l k l k
l

t m
z x t

t m ]
,                            (6.5.26) 

where , and ,0 m 1 k k k , k  are determined from initial conditions (6.2.18).
In the small oscillations case 1 2 1 2 1 2, ,M M l l I I I 1 ( , ) the 

solutions for  are given by 0m

1 10 1 10 1 11 2 11 2cn sn cn sn ,z C p t B p t C p t B p t

2 20 1 20 1 21 2 21 2cn sn cn sn .z C p t B p t C p t B p t

The equivalence between LEM and cnoidal solutions for the problem E2 ( )
is shown by numerical treatment of differential equations (Collatz, Halanay, Scalerandi 
et al.).

0.3

Figure 6.5.2  The transient solutions  and  of the pendulum. 1z 2z
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Figure 6.5.3  Stabilized solutions  and  of the pendulum. 1z 2z

Consider an example ,210m/sg 1 2 2
al l , 2 10kgM , for which ,

,

0.25

1.5m 70k . In Figure 6.5.1 are represented these solutions. As a result the 
solutions calculated by LEM and cnoidal methods coincide in a proportion of 97.7%. 
No visible differences are observed.

Figure 6.5.2 displays the transient evolution of solutions and for ,
, , and the initial conditions 

1( )z t

1 2z z
2 ( )z t

3z
1m

4 0.020.9 41.6 10k 0.8, z
( )z t

,
calculated by the cnoidal method. Figure 6.5.3 shows the stabilized solutions and

for .
1

2 ( )z t 100t

6.6    Modal interaction in periodic structures 
Davies and Moon have studied in 2001 an experimental structure consisting of nine 

harmonic oscillators coupled through buckling sensitive elastica. The structure was 
modeled by a modified Toda lattice, and analytical results confirm the soliton-like 
nature of waves observed in the structural motions. These systems exhibit complex 
nonlinear wave propagation including solitons. The modal interactions and the modal 
trading of energy were studied in the early 1950s by Fermi, Pasta and Ulam. Elastic  
models of crystal lattices are developed by Born and Huang, Teodosiu. The Toda 
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analytic solutions for a lattice with exponential interactions take the form of both 
periodic traveling and solitons (Toda). 

Consider the lattice model shown in Figure 6.6.1. This model is used by Davies and 
Moon for modeling the experimental structure, for 9N . In the figure the masses are 

, all the spring constants are , and all the damping coefficients are c .m k

Figure 6.6.1  Nonlinear lattice model. 

The equations of motion of the lattice model shown in Figure 6.6.1 are 

1 1 1 1
1(3 ) [ ( ) ( )]j j j j j j j j

c kx x x x x F x x F x x
m m m j

N

,         (6.6.1) 

with ,  and boundary conditions of zero displacement of the fixed end and 
zero force on the free end 

1, 2,...,j

0 0x , 1N Nx x ,                                              (6.6.2) 

where  is the block mass,  is the cantilevered beam stiffness,  the damping 
coefficient,

m k c
F  represents the nonlinear force-displacement relationship for the buckling 

elements, and  the number of masses.  The damping term N 3 jx  in the motion equation 
comes about because the dampers between masses and the ones attached between the 
masses and ground are taken to have identical coefficients. The expression for the force-
displacement behavior of the buckling elements is the same as that used by Toda to 
model the interaction forces in an atomic lattice (Toda and Wadati, Toda) 

1 1( ) [exp( ( )) 1]j j j jF x x b x x
b

,                         (6.6.3) 

where  is the element’s linearised stiffness, and  determines the strength of the 
nonlinearity.  For the atoms interaction in a lattice of a solid the Morse interaction force 
is valid in quantum mechanics of an electron motion, 

b

 being a constant 

1 0 1 1( ) [exp( 2 ( )) 2exp( ( ))]j j j j j jF x x F x x x x .

Morse force of interaction governs precisely the nearest-neighbor interaction in an 
anharmonic lattice of the atoms in a diatomic molecule of solids in a continuum limit. 
But, no exact solutions are found for elasticity problems governed by Morse force. For 
Toda interaction force there are some exact explicit solutions for the model. With  and 

 set to zero, equations (6.6.1) and (6.6.3) reduce to a Toda lattice, and the functional 
form of the nonlinear soliton solution is given by 

k
c
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2
2

1
1 ln[ sech ( ) 1]j j

mx x kj t
b

.                          (6.6.4) 

Substitution of (6.6.4) into (6.6.1) and (6.6.3) with k  and c  set to zero, shows that it 
solves these equations if we have 

sinh k
m

.                                            (6.6.5) 

If  and ,0 0b 1( ) ( ) 0j jx t x t  for all values of  and . This corresponds 
to the compressive atomic lattice waves studied by Toda.  If 

j t
0  and b , then 

, we have the tensile waves, which propagate to the speed 

0

1 ( )j t( )jx t x 0 a
k

c ,

where  is the distance between masses.  The speed of this soliton is dependent upon 
the amplitude.  

a

For the case of small displacement and zero damping, (6.6.1) and (6.6.3) reduce to 
the linear conservative system defined by 

1 1( 2 )j j j j j
kx x x x x
m m

0 1, 2,...,j, N .            (6.6.6) 

Substituting a periodic traveling wave solution of the form 
( ) exp[i( )]jx t A kaj t , into (6.6.6) we obtain the dispersion relation 

24 sin ( )
2
ka k

m m
,                                             (6.6.7) 

where  is the wave frequency,  is the wave number and  is the spacing between 
adjacent masses. From  (6.6.7) we see that the system allows only in the Brillouin zone 
of frequencies to propagate without attenuation. The equation (6.6.6) has the solution 

k a

1

(2 1)( ) ( )sin
2 1

N

j k
k

k jx t A t
N

, 1, 2,...,j N ,                      (6.6.8) 

where kA  are time-dependent coefficients. The energy of the mode of vibration is   
(Davies and Moon) 

-k

2 2 22 1 (2 1)( 2 sin )
4 2 2 2(2 1)k k k

N m k kE A A
N

.                    (6.6.9) 

 If initial conditions are small the nonlinear model (6.6.1) will have approximately 
linear behavior, and the modal energies given by (6.6.9) will be nearly constant in time. 
For large initial conditions, the nonlinearities may lead to complex modal interactions 
(Duncan et al.).

The experimental results of Davies and Moon in studying a periodically reinforced 
structure with strong buckling nonlinearity, have shown that the modal interaction is 
characterized by highly localized waves. These waves were shown to be similar to Toda 
solitons.
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Let us analyze the modal interaction by using the Toda interacting equations.  We 
know that the soliton solution of a nonlinear equation can be regarded as a system of 

interacting solitons, each of which becomes a single soliton as .  When we 
have  single solitons initially apart in space they interact with each other and become 
apart without exchanging their identities.

-N
-N t

N

To study the interaction modal solitons, we consider (6.6.1) and (6.6.3) under the 
form of the original Toda equation  

d ( )d ( 1) ( 1) 2
1 ( )

V n V n V n V n
V n

( )

2

,                           (6.6.10) 

or
2d ln[1 ( )] 0V n V ,                                  (6.6.11) 

2 ( ) ( 1) ( 1) 2 ( )V n V n V n V n .                         (6.6.12) 

Here, the operator is d andd / t ,..., 2, 1,0,1,2,...,n .
Yoneyama proposes the following form of interacting Toda equations, which 

represent a natural extension of the Toda equation (6.6.10) 

d ( )d ( 1) ( 1) 2
1 ( )

i
i i

V n V n V n V n
V n

( )i 1, 2,...,i, N ,             (6.6.13) 

with the total wave V n  is ( )

1
( ) ( )

N

i
i

V n V n .                                              (6.6.14) 

The equation (6.6.13) is the Toda–Yoneyama equation. In the following we present 
the explicit form of the solution V n  given by Yoneyama. We see that summing up 
(6.6.13) and using  (6.6.14) we obtain  (6.6.10). The solution V n  has the form 

( )i

( )

V n .                                              (6.6.15) 2( ) d ln f

The function  is given by f

1 2( , ,..., ) det[ ( 1)]Nf I B n ,                            (6.6.16) 

where I and  are  matrices B N N

kl klI , 1( ) ( ) ( )
1kl k l

k l

B n n n
z z

, ( ) exp ( )i i in C n , ( )i in t in ,  (6.6.17) 

with arbitrary real constants  and , 1C k , l N , 1, 2,...,i N , and

exp( )i iz ,
1

2
i i

i
z z .

Let us introduce -independent time variables t , iN i 1, 2,..., N , and define as 
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( ) exp ( )i i in C n , ( )i i in t in ,                      (6.6.18) 

1 2( , ,..., ) ( )det[ ( 1)]N iF A I B n ,                      (6.6.19) 

where  is a  matrix with elements  B N N

1( ) ( ) ( )
1kl k l

k l

B n n n
z z

, 1 k , l N ,                 (6.6.20) 

1
( ) exp[ ( ) ( )]

n

i i i
i

A n n ,                            (6.6.21) 

with arbitrary functions  and ( )i n ( )n .  Introduce the operators

1 21 2 1 2 ...d̂ ( , ,..., ) ( / ) ( , ,..., ) |
Ni N i N t tF t F t t .            (6.6.22) 

 The solution of (6.6.13) is given by  (6.6.15), where V n  is( )

k
ˆ( ) d d ln d d ln

k k k
V n F Fk

ˆ .                        (6.6.23) 

Here and
1

ˆd d
N

k
k

f F i i
1

ˆ ˆdd d dk
k

. Substituting  (6.6.23) into  (6.6.12) we have 

id̂ 0
i

G , G 2 2
k l m

ˆd ln[1 ( d ) ] d ln
k l m

F F .            (6.6.24) 

This equation is satisfied if  is a constant and if G id̂ G 0  for each .  So, we must 
have

i

2 2
i k l i m

ˆ ˆ ˆd d ln[1 ( d ) ] d d ln
k l m

F F ,                  (6.6.25) 

or

2i
i

ˆd(dd ln ) ˆd (d
1 ( )

F d ln )F
V n

.                          (6.6.26) 

Therefore, the solution of  (6.6.13) is

i
1 1

ˆ( ) d d ln ( )
N N

i
i i

V n F V n .                             (6.6.27) 

The explicit form of V n is obtained by defining a symmetric  matrix 
 and three diagonal 

( )i

N
N N

( , )n m N  matrices ,  and Z  of elements 

1( , ) ( , ) [ ( ) ( ) ( ) ( )]
2ij ji i j i jn m n m n m m n ,                 (6.6.28) 

ij ij j , ij ij j , ij ij jZ z ,
1

2
i

i
z zi .                 (6.6.29) 
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Also define the component column vector -N ( )n of elements ( ) exp ( )i i in C n .
In these conditions, the identities hold

d ( 1) ( 1) ( 1)B n B n B n , d ( 1) ( , 1)B n n n .              (6.6.30) 

Also, we have 

( , 1) ( ) ( 1)Tn n n n ,                                        (6.6.31) 

where the transpose of  is , and ( )n 1 2( ) ( ( ), ( ),..., ( ))T
Nn n n n

tr[ ( 1) ( , 1) ( 1)] tr[ ( 1) ( ) ( 1) ( 1)]TP n n n P n P n n n P n ,          (6.6.32) 

( )
( )

IP n
I B n

.                                               (6.6.33) 

THEOREM 6.6.1 (Yoneyama)  The explicit form of V n is given by( )i

ˆ( ) dd ln 2 [ ( 1)d ( 1) ( 1)]

2 [ ( 1)) ( ) ( 1) ( 1)]

2[ ( 1) ( ) ( 1) ( 1)] 2 ( 1) ( ) ( 1) ( 1)

i i i ii
T

i ii
T T

ii i i i i i

V n F P n B n P n
P n n n P n

P n n n P n P n n P n n .

  (6.6.34) 

Proof.  From  (6.6.33) and taking account that for any matrix A ,
1 1d (d 1)A A A A ,                                    (6.6.35) 

it results 

d ln det ( 1) tr{d ln[ ( 1)]} tr[ d ( 1)
( 1)
IP n I B n B n

I B n
] .    (6.6.36) 

From (6.6.30) and (6.6.33) it results 

( 1)tr[ d ( 1)] 2 [ ] 2 [ ( 1)]
( 1) ( 1)m mm m

m m

I B nB n I P n
I B n I B n mm .   (6.6.37) 

The equations (6.6.15), (6.6.16), (6.6.33), (6.6.36) and (6.6.30) give 

( ) d 2 [ ( 1)] 2 ( 1) ( ) ( 1) ( 1)m mm m mk k l lm
m m

V n I P n P n n n P n .   (6.6.38) 

From (6.6.38) we obtain 

( ) 2 r[ ( 1) ( ) ( 1) ( 1)]

2 ( 1) ( ) ( 1) ( 1).

T T

i i i i i
i

V n t P n n n P n

P n n P n n
                (6.6.39) 

Finally, (6.6.40), (6.6. 20) and (6.6.22) yield 

d ( 1) ( ) ( 1i kl i ik il klB n B n ) , .    (6.6.40) d̂ ln det ( 1) 2 [ ( 1)]i iP n I P n ii



Chapter 7 

DYNAMICS OF THE LEFT VENTRICLE 

7.1 Scope of the chapter 
The heart consists of two pumps (the right and the left) connected in a series that 

pump blood through the circulatory system. The left ventricle generates the highest 
pressures in the heart, about 16 kPa, which is four times the pressure developed by the 
right ventricle (Taber). The left ventricle receives the most attention in the literature 
because most infarcts occur in this chamber. The left ventricle is a thick-walled body 
composed of myocardium between a thin outer membrane (epicardium) and an inner 
membrane (endocardium). The dynamics of the left ventricle is the result of the 
contractile motion of the muscle cells in the left ventricular wall. Heart muscle is a 
mixture of muscle and collagen fibers, coronary vessels, coronary blood and the 
interstitial fluid. The fibers wind around the ventricle, and their orientation, relative to 
the circumferential direction, changes continuously from about  at the endocardium 
to –  at the epicardium. 

60
60

 This anisotropy influences the transmural distribution of wall stress. Huyghe and 
his coworkers, Van Campen, Arts and Heethaar, developed a theory of myocardial 
deformation and intramyocardial coronary flow. In this theory the tissue is considered 
as a two-phase mixture (a solid phase and a fluid phase representing the different 
coronary microcirculatory components).  

A central problem in modeling the dynamics of the heart is in identifying functional 
forms and parameters of the constitutive equations, which describe the material 
properties of the resting and active, normal and diseased myocardium. Recent models 
capture some important properties including: the nonlinear interactions between the 
responses to different loading patterns; the influence of the laminar myofiber sheet 
architecture; the effects of transverse stresses developed by the myocytes; and the 
relationship between collagen fiber architecture and mechanical properties in healing 
scar tissue after myocardial infarction.    

We consider in this chapter the cardiac tissue as a mixture of an incompressible solid 
and an incompressible fluid. Following studies by Van Campen and his coworkers, 
Huyghe, Bovendeerd and Arts, we construct a model in which the constitutive laws are 
specified within the broad framework of the intrinsic assumptions of the theory. The 
cnoidal method is applied to solve the set of nonlinear dynamic equations of the left 
ventricle. By using the theta-function representation of the solutions and a genetic 
algorithm, the ventricular motion is describable as a linear superposition of cnoidal 
pulses and additional terms, which include nonlinear interactions among them. 
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In the last section, the evolution equations governing the human cardiovascular 
system and distortions of waves along this system for perturbed initial conditions, which 
are responsible to the energy influx conditions, are analyzed. The formation of 
asymmetric solitons from initial data under and above threshold is the principal topic of 
this analysis.

We refer the readers to the works by Van Campen et al. (1994), Munteanu and 
Donescu (2002), Munteanu et al. (2002a, c), and Chiroiu V. et al. (2000). 

7.2   The mathematical model 
The underformed heart, in a stress-free reference state, is modeled as a super 

ellipsoid surface defined by the implicit equations (Bardinet et al. 1994) S
2

1
12 2

22 2

1 2 3

1

c
c

cc cx y z
a a a

3 2

,                                (7.2.1) 

where the constants  and , 1, 2,ia i , 1,ic i ,  are given by 

1 2 0.773c c , a a1 2 30.892 ,R a R ,                          (7.2.2)

with  for a particular heart considered in this paper. For a sphere we have 
 and .

0.0619mR

1 2 1c c 1 2 3a a a R
Representation of the cylindrical coordinates is given in Figure 7.2.1. The -axis

corresponds to the axis of inertia of the super ellipsoid model. The muscle fibers in 
the ventricular wall are assumed to be parallel to the endocardial and epicardial 
surfaces.

z
-z

The governing equations of the dynamics of the left ventricle are presented by 
following the above-mentioned papers. Cardiac muscle is considered to be a mixture of 
two phases, a solid phase and a fluid phase.

The equations are derived from the general equations of the continuum theory of 
mixtures (Truesdell). 

Nomenclature :
V ,   actual volume of the heart,  

( , , )x r z ,   spatial cylindrical (Eulerian) coordinates, centred in O ,

x r
y
z z

,

iX , i ,  material cylindrical coordinates (Lagrangian coordinates), 1, 2,3
    corresponding to a reference state which may be subject to  

an initial finite deformation,  
t ,    time coordinate, 
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s ,   effective Cauchy stress in the solid representing the stress 
induced by the deformation in the absence of fluid and 
measured per unit bulk surface, 

p ,   intramyocardial pressure representing the stress in the liquid 
component of  the bi-phases mixture, 

s pI ,   total Cauchy stress tensor in the mixture, T ,
u ,         displacement vector 

1

2

3

r

z

u u
u u
u u

,

q  ,      Eulerian spatial fluid flow vector, 
0K ,   permeability tensor of the underformed tissue, 
bN
c

,    averaged porosity of the underformed tissue, 
,     volumetric modulus of the empty solid matrix, c

H u ,  displacement gradient, 
F ,     deformation gradient tensor  

1F H ,

det 0J F , Jacobean of the deformation, 
C ,   isotropic energy function defined as 

2( 1)
2

ccC J ,

which is zero in the underformed state and positive 
elsewhere,

W ,             strain energy function, zero in the underformed state and 
positive elsewhere, 

K ,     permeability tensor given by 

2 01( 1)b

JK K
N

,

E ,    Green–Lagrange strain tensor defined as 

1 ( )
2

TE F F I ,

( , )S E t ,   effective second Piola–Kirchhoff stress tensor  
1 1( )s TS JF F , TS S ,

split into two components  a pS S S ,
( , )aS E t ,    active stress tensor, , the passive stress tensor, split 

into two components 
( , )pS E t
p c sSS S ,

( )cS E ,   component of the passive stress tensor resulting from elastic  
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volume change of the myocardial tissue, zero in the 
underformed state,  

( , )sS E t ,  component of the passive stress tensor resulting from 
viscoelastic shape change of the myocardial tissue, 

( )eS E ,             anisotropic (orthotropic) elastic response of the tissue.  is 
zero in the underformed state, 

eS

( )G t ,    a scalar relaxation function, 
aT ,                   first Piola–Kirchhoff active stress (not symmetric) related to  

                         the second Piola–Kirchhoff active stress by ,1a aS F T
l  ,                     current sarcomere length, 

v  ,                    velocity of shortening of the sarcomeres d
d

lv
t

,

helix ,          angle between the muscle fiber direction and the local 
circumferential direction, varying from 60  at the 
endocardium through  in the midwall layers to – 60  at the 
epicardium, while 

0
anstr  is kept zero (Figure 7.2.1), 

trans ,              angle between the local circumferential direction and the 
projection of the fiber on the plane perpendicular to the local 
longitudinal direction, varying from  13.5  at the base 
through at the equator to –13.5 at the apex, 0

1( , ,
r r z

)   gradient operator with respect to the current configuration. 

Figure 7.2.1 Cylindrical coordinates and definition of the angle helix , trans (Van Campen et al.)

The equations of the beating left ventricle are composed from: 
1. The equilibrium equation of the deformed myocardium (by neglecting the inertia 

forces)

0s p .                                                  (7.2.3) 
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2. Darcy’s law in Eulerian form (by neglecting the transmural pressure differences 
across blood vessel walls) 

q K p ,                                                    (7.2.4) 

with 2 01( 1)b

JK K
N

, the parameters 0K and being specified. bN

3. Continuity equation (conservation of mass) 
0u q .                                               (7.2.5) 

4. Passive constitutive laws 

c CS
E

,                                                (7.2.6) 

where
a pS S S , p cS S S s ,                                  (7.2.7) 

2( 1)
2

ccC J , det 0J F ,                               (7.2.8)

( , )S E t 1 1( )s TJF F , TS S ,                               (7.2.9) 

1 ( )
2

TE F F I , 1F H , H u .                     (7.2.10)

C
( ,S E t
( ,S E

 is the isotropic energy function,  is the Green–Lagrange strain tensor, and 
 the effective second Piola–Kirchhoff stress tensor, split  into an active stress 
 and a passive stress . The passive stress tensor is split into a 

component resulting from elastic volume change of the myocardial tissue , and a 
component resulting from viscoelastic shape  described in the form of quasi-
linear viscoelasticity (Fung) as 

E

)t
)

a t) ( ,pS E
( )cS E

( , )sS E t

d( ) d
d

t
sS G t S e ,                                       (7.2.11) 

e WS
E

,                                                 (7.2.12) 

where is the anisotropic elastic response of the material, G t is a scalar function 
(reduced relaxation function) derived from a continuous relaxation spectrum, W  is the 
potential energy of deformation per unit volume (or elastic potential).   

eS ( )

The form of the strain energy  (equation 7.2.4) and W are chosen so that  and 
 are zero in the unstrained state and positive elsewhere, and and  are zero 

in the underformed state. The expression (7.2.4) satisfies those conditions.

C C
W ( )cS E eS
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Some expressions for W satisfying the above conditions were proposed in literature: 
the full orthotropic behavior, the transversely isotropic behavior with respect to the fiber 
orientation (Bovendeerd et al.), W  is an exponential function of (Huyghe, Fung). ijE

Because passive ventricular myocardium is nearly incompressible, biaxial tissue 
testing is a valuable method for characterizing its material properties.  

Demer and Yin were the first to report the results of such measurements on passive 
myocardium. They demonstrated that biaxial loaded passive myocardium behaves like a 
nonlinear, anisotropic, viscoelastic material that can be approximated as pseudoelastic.  

Huyghe and coworkers concluded that quasi-linear viscoelasticity does not 
adequately describe the material properties of passive ventricular myocardium. 
Therefore, resting myocardium is frequently modeled as a finite elastic material using a 
hyperelastic pseudo-strain function.

In this work we have investigated four approaches for the functional form of W :
1. The polynomial function for a subclass of transverse isotropy (Humphrey et al.,

Huyghe et al. 1991, Bovendeerd et al.)
2 3

1 2 3 1 4 1 5 1( 1) ( 1) ( 3) ( 3)( 1) ( 3)W c c c l c l c l 2 ,    (7.2.13) 

where  is the first principal strain invariant and the transversely isotropic invariant 
is the extension ratio in the fiber direction 

1l

1 2tr 3l E , 2 jjE 1 ,                         (7.2.14)

where  is the Lagrangian  Green's strain.  ijE
2.  The transversely isotropic 3D strain energy function (Guccione et al., Guccione 

and  McCulloch,  Fung, Huyghe)

(exp 1)
2
CW Q ,                                         (7.2.15)

 where 
2 2 2

1 2 3( 2 ) 2 (ff cc rr cr rc fc cf fr rfQ b E b E E E E b E E E E ) ,       (7.2.16)

with  representing strain components referred to a system of local fiber (f), cross-
fiber in-plane (c) and radial (r) coordinates. 

ijE

    3.  The form developed by Costa et al., Holmes et al.,

(exp 1)
2
CW Q ,                                    (7.2.17)

where
2 2 2

1 2 3 4 5 62 2 2ff ss nn fs sf fn nf sn nsQ c E c E c E c E E c E E c E E .       (7.2.18)

The material parameters  and  represent the stiffness along the fiber axis, the 

sheet axis and the sheet normal axis, respectively. The ratio of 

1 2,c c 3c

2

3

c
c

 governs anisotropy 

in the plane normal to the local fiber axis, with unity indicating transverse isotropy. The 
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parameter  represents the shear modulus in the sheet plane, and  and c  represent 
shear stiffness between adjacent sheets. 

4c 5c 6

V

( (x

0 0 ,y z

x

))x

 4. The expression of the ion-core (Born–Mayer) repulsive energy (Delsanto et al.,
Jankowski and Tsakalakos) 

0.5 ( )exp[ ( ) ]d
VV

W ,                                 (7.2.19) R

where ))  is the repulsive energy function, ( ( ))x  the repulsive range function 
and V  is the heart volume, and  

2 2
0 0( ) ( ) (R x x y y z z 2

0 ) ,

with 0( , )x an arbitrary point. We suppose that ( ) and ( ) depend on the angles 
angle helix trans  in the form 

1 2( ) ( ) ( )helix trans ,

1 2( ) ( ) ( )helix trans .                                     (7.2.20) 

We mention that the values of the angles depend on the position .
A common problem with estimating parameters of the strain energy function, 

whether directly from isolated tissue testing or indirectly from strains measured in the 
intact heart, is that the functions are nonlinear.

The kinematic response terms, whether principal invariants (7.2.13) or strain 
components (7.2.15), (7.2.16), usually co-vary under any real loading condition. This is 
probably the main factor responsible for the very wide variation in parameter estimates 
between individual mechanical tests that is typically reported. Although the first three 
equations are well motivated, a difficulty with any constitutive model based on biaxial 
tissue tests is uncertainty as to how the biaxial properties of isolated tissue slices are 
related to the properties of the intact ventricular wall.

Though the energy function (7.2.19) is referring to metallic bilayers and noble 
metals, this form might be more recommendable from a practical point of view. We 
refer to the fact that the parameter estimation could be greatly improved. By separating 
the volume change from fiber extension modeled by the repulsive energy function, and 
shearing distortions modeled by the repulsive range function ( ( , the resulting set 
of response terms should provide an improved foundation for myocardial constitutive 
modeling. Also, it is an easier identification of only two functions by using a genetic 
algorithm based on the inversion of the experimental data. 

 In this chapter we adopt the pseudopotential energy approach and consider for W
the expression of the ion-core (Born–Mayer) repulsive energy.

5. Active constitutive laws (Van Campen et al., Arts et al.)
0 ( , , )a aT T A t l v ,                                           (7.2.21) 

where is the first order Piola–Kirchhoff non-symmetric active stress tensor, related 
to the second Piola–Kirchhoff active stress by , and T  is a constant 
associated with the load of maximum isometric stress.  

aT
1a aS F T 0a
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The stress tensor T  is convenient for some purposes; it is measured relative to the 
initial underformed configuration and can be determined experimentally. The cardiac 
muscle is striated across the fiber direction.  

a

The sarcomere length  (the distance between the striations) is used as a measure of 
fiber length.  The experiments show that the active stress generated by cardiac muscle 
depends on time t , sarcomere length l and velocity of shortening of the sarcomeres 

l

d
d

lv
t

. The active stress generated by the sarcomeres is directed parallel to the fiber 

orientation. The function ( , , )A t l v  represent the dependency on and .,t l v

Figure 7.2.2   Representations of surfaces 1 - endocardium, 2 - epicardium and 3 2  - the portion 
where only radial displacement is allowed (adapted from Van Campen et al.)

We suppose that ( , , )A t l v has the form 

( , , ) ( ) ( ) ( )A t l v f t g l h v .                                      (7.2.22) 

Functions ( , , )A t l v ,  and( ) ( )  are determined from experimental data 
(Bardinet et al. 1994, 1995) by using an optimization approach (Popescu and Chiroiu). 
A genetic algorithm is considered in section 7.4. 

The equations (7.2.3)–(7.2.22) represent a coupled set of four nonlinear equations 
for the displacements ,( , )ku x t 1,2,3k , and the intramyocardial pressure  that 
can be written in the form  

( , )p x t

( )u K p 0 ,

1 s( [ S ] )a c TJ F S S F p 0 ,                         (7.2.23) 

with

2 01( 1)b

JK K
N

,

1 0 ( , , )a a sS F T A t l vs ,
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c CS
E

,

d( ) d
d

t
s WS G t

E
,                                 (7.2.24) 

2( 1)
2

ccC J  , 1 (
2

TE F F )I ,

0.5 ( )exp[ ( ) ]d
V

W
V

R V .

The boundary conditions are 

0( ,0) ( )p x p x , 1x , 1, 2,3k , [0, ]t T ,

0( ,0)k ku x u  , 1x , 1, 2,3k , t [0, ]T ,                        (7.2.25) 

( ,0) 0ku x  , 3 1x , 2,3k , t [0, ]T ,

where  is the epicardial surface, and [0  the time interval during a cardiac cycle.  1 , ]T
The cardiac cycle is composed from a systole (contraction of the ventricle) and a 

diastole (relaxation of the ventricle) phases.
We have supposed that at the endocardial surface 1  a uniform intraventricular 

pressure  is applied as an external load (Figure 7.2.2). The loads exerted by the 
papillary muscles and by the pericardium are neglected.  

0p

The surface  represents the upper end of the annulus fibrosis and is a non-
contracting surface with a circumferential fiber orientation. At 

3

3 1  only radial 
displacement  is allowed.  1u

To compute W
E

 we use the formula 

1 (
2 i j

ij j i

X X
E x

)
x

,                                     (7.2.26) 

where iX ( 1 2 3, ,X X X Y X Z ) are the Lagrange coordinates corresponding to a 
reference state which may be subject to an initial finite deformation, and ix , the final 
Eulerian coordinates ( 1 2, , 3x x x y x z ) differing from iX  by an infinitesimal 
deformation. It is important to note that, in applying (7.2.26) the Lagrangian coordinates 
must be considered as constants since they refer to a predefined reference state. 

For specified form for ( , , )A t l v , ( ) and ( )  the analytical solutions of  (7.2.23) –
(7.2.26) are determined in the next section.            
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7.3   Cnoidal solutions 
Let us consider the solutions

( , ) { ( , ), 1,2,3, ( , )}i kz x t u x t k p x t , i 1, 2,3, 4,

of the system of nonlinear equations (7.2.23)–(7.2.26) under the form            

int( , ) ( , ) ( , )cnz x t z x t z x t .                                      (7.3.1) 

The first term  represents a linear superposition of cnoidal waves and the second 

term , a nonlinear superposition of the cnoidal waves  
cnz

intz

,2

1
( , ) 2 cn ( )

n

cn m mj j m
m

z x t k x C t 1, 2,3j ,                         (7.3.2) 

2

1
int

2

1

cn ( )
( , )

1 cn (

n

m mj j m
m

n

m mj j m
m

k x C t
z x t

k x C t)
1, 2,3j , .                     (7.3.3) 

We employ the usual summation convention over the repeated indices. We take the 
boundary conditions (7.2.25) 1  under the form 

2
0 0 0( , ) cn ( )j jp x t a k x C t0 ,                                       (7.3.4) 

with , , ,  specified. 0 0,jk C 0a 1, 2,3j
Consider that . Experimental calculations have shown us that solutions do not 

earn any improvements for n . For specified form for 
2n

2 ( , , )A t l v , ( ) and  the 
analytical solutions ,

( )
( ,iz x )t 1, 2i ,3, 4 , are given by (7.3.2) and (7.3.3)

2
2

2
2 1

2
21

1

cn ( )
( , ) 2 cn ( )

1 cn (

mi mj j m
m

i mi mj j m
m

mi mj j m
m

k x C t
z x t k x C t

k x C t)
,           (7.3.5) 

where , , , and , i mmi mjk mi mi mC 1,2,3,4, 1, 2, 1,2,3,j  are unknown.
By introducing (7.3.2) into (7.2.23)–(7.2.25) the unknowns mi , , , and

, are easily determined by an identification procedure in terms of the controlling 
functions

mjk mi mi

mC

1 2 1 2{ ( ), ( ), ( ), ( ), ( ), ( ), ( )}helix trans helix trans f t g l h vM ,         (7.3.6) 

that determine the constitutive laws, the initial data and the constants that appear in 
governing equations. 

The analytic expressions (7.3.2)–(7.3.3) of the solutions are available once the 
controlling functions , , are specified. The problem to be addressed here iM 1, 2,...,7i
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is the inverse of the forward problem. The aim is to use the difference between 
experimental and predicted by theory parameters to provide a procedure, which 
iteratively corrects the controlling parameters towards values leading to the least discord 
between predictions and experimental observations. In the following we consider that 
the functions , , are approximated by polynomials of five degree 

, , characterized by coefficients 
iM

)i i
1, 2,...,7i

1,2,...76 5 6( ,....i ib bM jb , 1, 2,..., 42j .
(M

-1( )  42 exp (im

)j

2)]jb z b

1, 2,3, 4,( )im jz b j

exp
imz

iz

1, 2,...,7i

jb 1, 2,...,j 42

j [ , ]j ja a

21 30000002

(1) (1)
21 20 ...b b (42

0b )

( )
21 20

j

( ) ( )
21 20( j jb b 42

To extract the functions , i6 5 6,.... )i i ib b 1,2,...7 , from the experimental data, an 
objective function must be chosen that measures the agreement between theoretical 
and experimental data

42 4 M
1

1 i 1 m 1
4 [z ( )im j

j
P ,                      (7.3.7) 

where are the predicted values of the solutions , i(iz b 1, 2,..., 42 ,
given by the forward problem, calculated at M points belonging to the volume between 
the inner and outer wall of the left ventricle. The functions  are the experimental 
values of solutions  measured at the same points. We have extracted these values 
from the analysis of the volumetric deformation of the left ventricle of the heart, 
developed by Bardinet et al.

The model gives a compact representation of a set of points in a 3D image. 
Experimental results are shown in time sequences of two kinds of medical images, 
Nuclear Medicine and X-Ray Computed Tomography. Controlling functions ,

, are determined by using a genetic algorithm (GA). GA assures an iteration 
scheme that guarantees a closer correspondence of predicted and experimental values of 
controlling parameters at each iteration.  

iM

We use a binary vector with 42 genes representing the real values of the parameters 
,  (Chiroiu et al. 2000). The length of the vector depends on the 

required precision, which in this case is six places after the decimal point. The domain 
of parameters b , with length 2 ja  is divided into at least 15000 equal size 
ranges. That means that each parameter jb , 1, 2,..., 42j , is represented by a gene 

(string) of 22 bits  ( ).  One individual consists of a row of 42 genes, 
that is, a binary vector with 22 

222
 42 components. 

 ( ).(1) (2) (2) (2) (42) (42)
0 21 20 0 21 20... ... ...b b b b b b

The mapping from this binary string into 42 real numbers from the range [ , ]j ja a
is completed in two steps: 

–   convert each string ( ( ) ( )
0...j b jb b ) from the base 2 to base 10 

( )
0 2... )j

jb b  , 1, 2,...,j ,

      –   find a corresponding real number jb , 1, 2,..., 42j .
GA is linked to the problem that is to be solved through the fitness function, which 

measures how well an individual satisfies the real data. From one generation to the next 
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GA usually decreases the objective function of the best model and the average fitness of 
the population. The starting population (with K  individuals) is usually randomly 
generated. Then, new descendant populations are iteratively created, with the goal of an 
overall objective function decrease from generation to generation. Each new generation 
is created from the current one by the main operations:  selection, crossover and 
reproduction, mutation and fluctuation. By selection two individuals of the current 
population are randomly selected (parent 1 and parent 2) with a probability that is 
proportional to their fitness.

This ensures that individuals with  good fitness have a better chance to advance to 
the next generation. In the crossover and reproduction operation some crossover sites 
are chosen randomly and exchanging some genes between parents reproduces two 
individuals.

In the newly produced individuals, a randomly selected gene is changed with a 
random generated integer number by the mutation operation. In the fluctuation 
operation we exchange a discretized value of an unknown parameter in a random 
direction, by extending the search in the neighborhood of a current solution.

The fitness function is evaluated for each individual that corresponds to the gene 
representation. The alternation of generations stops when the convergence is detected. 
Otherwise, the process stops when a maximum number of generations are reached. 

The procedure consists of the following steps: 
–   The initial population is generated by random selection. 
–   The crossover operator reproduces two new individuals. 
–   New individuals are obtained by the mutation operator. 
The fluctuation operator extends the search in the neighborhood of a current 

solution.

Figure 7.3.1  Active material behavior as obtained by the genetic algorithm (time dependence of active stress 
for sarcomere lengths of 1.7, 1.9, 2.1 and 2.3 m , length dependence of active stress, and velocity 

dependence of active stress). 

The fitness value is evaluated for each individual and in the total population only 
individuals with a higher fitness remain at the next generation. 

The alternation of generations is stopped when convergence is detected. If there is 
no convergence the iteration process continues until the specified maximum number of 
generations is reached. 

Next, we report the results of the genetic algorithm. Figure 7.3.1 shows the active 
material behavior as obtained by GA after 312 iterations. There are shown the time 
dependence of active stress for sarcomere lengths of 1.7, 1.9, 2.1 and 2.3 , the m
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length dependence of active stress, and the velocity dependence of active stress. The 
diagrams are very similar to the active material behavior assumed by Van Campen et al.

We consider that the curves are correctly predicted by the genetic algorithm, the 
results being qualitatively and quantitatively consistent with experimental data given by 
Bovendeerd et al., Arts et al.

Figure 7.3.2 shows the dependence of ( )  and ( )  on angles helix ,  given 
by GA after 247 iterations. The distribution of 

trans

helix and trans  from the endocardium to 
the epicardium  is also shown. 

Figure 7.3.2  Angle dependence of  and  as given by the 
genetic algorithm. 
1 2( ) ( ) ( )helix trans 1 2( ) ( ) ( )helix trans

7.4    Numerical results 
The solutions of the equations (7.2.23)–(7.2.26) are represented analytically by 

using the cnoidal method. The unknown parameters from these representations are 
determined from a genetic algorithm. The analytical solutions u x , , and 

 are given by (7.3.5) being describable as a linear superposition of two cnoidal 
pulses and additional terms, which include nonlinear interactions among them.  

( , )i t 1, 2,3i
( , )p x t
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Figure 7.4.1  Initial intraventricular pressure 0p  applied at the endocardial surface .1

Figure 7.4.2  Visualization of displacement field by different values according to the range 0–10 mm. 

Figure 7.4.3  Location of six representative points belonging to region A
Figure 7.4.1 shows the initial pressure  given by (7.3.4) applied at the endocardial 

surface  ( ). In this way the initial pressure is very similar to the diagram of 
the pressure in the left ventricle of the human heart by Caro et al.  The visualization of 

0p

1 0 0.34a
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the displacement field by different values according to the range 0–10 mm is shown in 
Figure 7.4.2.

We can see clearly areas on the ventricle where the displacements are high (for 
example the area A). In Figure 7.4.3 the location of some representative points 
belonging to the region A are displayed. 

Figures 7.4.4–7.4.6 represent the time variation of displacements , ,
during a cardiac cycle calculated in six points, displayed in Figure 7.4.3. Figure 7.4.7 
shows the variation of the intramyocardial pressure during a cardiac cycle in the same 
points.

( , )ku x t 1,2,3k

Figure 7.4.4  Variation of displacement  during a cardiac cycle in the points displayed in Figure 7.4.3 
(points 1,2,3 in the first column and 4,5,6 in the second column) 

1u

Comparison of these analytical results to the results obtained by Van Campen et al.
through the finite element method, shows a good consistency. 

The analytical solutions allow the possibility of investigating in detail the field of 
displacements and the field of pressure in each point of the left ventricle. This helps to 
predict the important features of the left ventricle motion. 

In the hyperactive region A there are points that move out of phase with the other 
points (for example point 5). The physician, to help localize pathologies, such as 
infarcted regions, could use the visualization of these fields. In conclusion, the 
equations that govern the motion of the left ventricle have the remarkable property 
whereby the solutions can be represented by a sum of a linear and a nonlinear 
superposition of cnoidal vibrations.

So, we can say that the real virtue of the cnoidal method is to give the elegant and 
compact expressions for the solutions in the spirit of this property. 
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Figure 7.4.5  Variation of displacement u during a cardiac cycle in points displayed in Figure 7.4.3 (points 
1,2,3 in the first column and 4,5,6 in the second column) 

2

Figure 7.4.6  Variation of displacement during a cardiac cycle in points displayed in Figure 7.4.3 (points 
1,2,3 in the first column and 4,5,6 in the second column). 

3u
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Figure 7.4.7  Variation of intramyocardial pressure p during a cardiac cycle in points displayed in Figure 
7.4.3 (points 1,2,3 in the first column and 4,5,6 in the second column). 

7.5    A nonlinear system with essential energy influx 
In  nature, energy is usually unbalanced and there exists either outflux or influx of 

energy. The energy influx is not so well understood or modeled (Engelbrecht).  
The weak energy influx systems that may be called perturbed systems are based on 

the dilaton concept, which means negative density fluctuations with loosened bonds 
between the structural elements. The dilatons are able either to absorb energy from the 
surrounding medium or to give it away (Zhurkov).  

The mechanism of energy influx yields to the amplification and/or attenuation 
phenomena due to the energy pumping from one subprocess to wave motion. In 
mathematical terms the energy influx gives rise to source-like terms in governing 
equations. For example, a burning candle is a classic case where the velocity of the 
flame is a nonlinear wave, which depends on the rate of heat release (Engelbrecht).  
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The electromagnetic nerve pulse transmission, modeled by Engelbrecht, takes its 
energy from ion currents.  

In this section we show that the cardiovascular system can exhibit, in certain 
conditions, an essential energy influx. A simplified numerical model for the 
hemodynamic behavior of the cardiovascular system has been developed by 
P evorovsk et al.

These authors have studied the pressure generation by chemical reaction in the 
human  cardiovascular system.  In this work we improve this model by using a more 
general description of a transmission line of the pressure pulsations generated and 
controlled by the chemical reactions.  

We show that the influx of energy created by small anomalies in energetical 
equilibrium of the cardiovascular system may change dramatically the picture of the 
hemodynamic wave behavior.  

The behavior of the cardiovascular system is characterized by the heart qualities 
generating the pressure pulsations. The heart performs as four pressure–volume pumps 
in series propelling the blood flow through the circulatory network. This ability is given 
by contractivity of the muscular cells creating the heart tissue, which is activated by the 
chemical energy released as a consequence of the blood and heart muscle metabolism.  

The released energy during the heart contraction is converted into the mechanical 
and heat energy. The energy-rich phosphate compounds stored in the heart muscle 
filaments dominate the cardiac metabolism.  

Figure 7.5.1  The cardiovascular system model. 

The key source of the chemical energy is ATP (adenosine triphosphate) reacting 
both aerobic and anaerobic pathways.

The cardiovascular system is modeled by eight elastic segments connected by elastic 
tubes in a serial circuit depicting both pulmonary (low-pressure) and systemic (high-
pressure) blood circulation (Figure 7.5.1).

Deoxygenated blood returns from the body through the vens cavae and fills the right 
atrium (1), which contracts, sending the blood into the right ventricle (2). The right 
ventricle then contracts, forcing the blood into the pulmonary artery, which carries it to 
the lungs to pick up oxygen.
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Next, the oxygenated blood flows through the pulmonary vein into the left atrium 
(5), which delivers it to the left ventricle (6). Finally, the left ventricle contracts, 
ejecting the blood into the aorta and out to the systemic circulation.  

During the cardiac cycle, each chamber fills during a period of relaxation, or 
diastole, and ejects the blood during a period of active contraction, or systole. 

The heart segments passing through the passive and active states during the cardiac 
cycle have been considered as anisotropic and viscoelastic incompressible material. 
They act as chemomechanical pumps converting the chemical energy released by the 
anaerobic hydrolysis of ATP into the mechanical energy and heat.  

The behavior of the cardiovascular system has been described by the mechanical 
variables (pressure, volume, flow) characterized by the cardiovascular parameters 
(compliance, resistance and inductance) and by the physicochemical variables (ATP 
consumption, chemical work, molar enthalpy). 

The governing equations of the cardiovascular system are: 
1.   The pressure–volume relation 

, i1 1(i i i i i i i ip F p V ) 1, 2,5,6iV ,                    (7.5.1) 

2 2i i ip V i , 3, 4,7,8i ,                                  (7.5.2) 

where is the pressure, V t the volume, the dot means the differentiation with 
respect to time. The function 

( )p t ( )
( )F t and the constants ,i i , ,i i  are defined as 
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where  is the Young’s elastic modulus,  thickness of the myocardial wall, 
parameter of the chemical energy release,  radius of the atrium, V  initial atrial or 
ventricle volume,  chemical reaction rate, V  the residual volume,  the compliance 
and  relaxation time characterizing the muscle plasticity.  

E h

r

k
r 0

cw

The index  denotes the corresponding heart segments. The function  has an 
exponential form and describes all four phases of the cardiac cycle 

i ( )w t

0 3 2( ) (1 exp( / )) exp( / ) exp( / )w t w t t t 1  , 

with an initial given constant.  0w
The four phases of the cardiac cycle are given by: 
A. stretching systole-isometric contraction 

t t1 2( , )t , , 0,t t t t 0 ,

B. emptying systole-auxotonic contraction 

2 3( , )t t t , t t2 , ,t t t 0 ,

C. relaxing diastole-isometric contraction 
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3 4( , )t t t , 2 3, ,t t t t t t ,

D. filling diastole-noncontractive state 

4 1( , )t t t , t t0, 0, 0t .

We have noted by and1 2, , 3 4  the relaxation time of the C phase, of the B
phase, of the A phase, and respectively the relaxation time of the D phase. 

2.   The influence of the pressure pulsations 

21 (ij i j ij ij i ij
i

G p p r G H G
l

) ,                                (7.5.4) 

where  is the blood flux entering from the i-th to j-th segment, respectively, the 
blood flux getting out j-th segment to k-th segment,  the hydrodynamic resistance, l

the blood inertia, 

( )ijG t

ijr i

2

2( )
2 ( )i

i

H t
A t

with 0.001 the loss coefficient, 

 the blood density and 31. kg/m3062 10 (i )A t  the flow area. The flow index rule is

( , ) {(1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8), (8,1)}i j .

The flow area is given by 

( )
2 ( )

ij
i

i j

aG
A t

g p p
,                                         (7.5.5) 

with 60a
cTf

, c  an empirical  constant,  the heart frequency (beats/min), T  the time 

duration of the cardiac cycle, and  the gravitational acceleration. 

f

m 29.81 /sg
3.   The continuity equation 

V G .                                         (7.5.6) i ij Gjk

3

We consider a set of small-perturbed initial conditions (pressure–time, pressure–
volume and chemical reaction rate–time) during one cardiac cycle in the left ventricle, 
represented in Figures 7.5.2–7.5.4. The values of the used parameters are given in Table 
7.5.1 and Table 7.5.2.

 We have considered that V for all i. This set of perturbed data has 
been obtained numerically starting from the clinical published stable data (Taber, 
P evorovsk et al., Chiroiu V. et al. 2000).

55 10 mri

We analyze only the evolution of the pressure wave profile with respect to time, due 
to the perturbed initial conditions in the left ventricle (Figures 7.5.2–7.5.4), during one 
cardiac cycle. The perturbed data are accepted from the physical and clinical point of 
view. We present the results of both analytical and numerical integration in order to get 
information about the pressure wave profiles. The standard Runge–Kutta method of the 
fourth order is used in the numerical calculation.  

The transient pressure wave has the form of an asymmetric soliton represented in 
Figure 7.5.5 (the curve a represents an asymmetric soliton for unperturbed initial data).  
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We observe that, for perturbed initial conditions, this wave is amplified from its initial 
form to the certain profile, the amplitude of which reaches the asymptotic value.  

An intriguing question is the amplification, which is characterized by a fast change 
in amplitude for small-perturbed initial data.  

We have analyzed the transient waves taking for the related perturbed initial 
conditions (Figure 7.5.5, curve b – for Figure 7.5.2, curve c – for Figure 7.5.3 and curve 
d – for Figure 7.5.4).

Figure 7.5.2  The perturbed profile of the  pressure–time diagram during one cardiac cycle. 

The result is that the maximum amplification happens for initial excitations given by 
the chemical reaction rate during the one cardiac cycle.  The changes are both in the 
amplitude and in the width of the pulse.  

The broken line denotes the asymptotic value of the pressure amplitude after a large 
interval of time. The aperiodic time-dependent phenomenon which appears here is in 
correspondence with the causality principle which states that the transport or 
propagation processes in the cardiovascular system are due to (causal) chains of 
interactions (cause–effect) between a source of perturbation (emission of signal) and the 
response (reception) and this can be realized (due to the inertia of the interacting human 
body) only after a certain time delay (relaxation), so that the transport occurs at a finite  
velocity (Kranys). 

Figure 7.5.3  The perturbed profile of the pressure–volume diagram during one cardiac cycle.                      
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Figure 7.5.4  The perturbed profile of the chemical reaction rate–time during one cardiac cycle.                       

Figure 7.5.5  The transient profiles of pressure for the perturbed initial data (Figures  7.5.2–7.5.4) 
 in the left ventricle. 

As a principal conclusion  attention has to be paid to the energetic aspects of the 
cardiac activity. The influx of energy created by small anomalies in energetical 
equilibrium of the cardiovascular system changes dramatically the picture of the 
hemodynamic waves behavior. The perturbation of the initial chemical reaction data 
acts as a stimulus.  

If the stimulus is below  a certain threshold value expressed as ratio between the 
chemical work and the mechanical work in the left ventricle 
( ), the pressure motion is normal and the stable state returns 
quickly without any instability in the pulse propagation.

/ 2.11557chem mecW W

If the stimulus is above this threshold, the process turns out to be much more 
dramatic. In our case we have 2.3451 .

The amplitude of the wave is quickly amplified and the wave exhibits a clear 
tendency to chaos. A Poincar  map is used to gain further insight into the structure of 
the chaotic motion of the pressure wave (the case d).

Here a Poincar  map is a set of points in the phase plane  plotted at 
discrete intervals of time, one each cardiac cycle, after 1000 cardiac cycles (Figure 
7.5.6). The map reveals the properties of a strange attractor, namely stretching and 
folding of the sheet of pressure trajectories (Guckenheimer and Holmes).  

( ), ( )p t p t
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Table 7.5.1  The quantities used in the governing equations (P evorovsk et al.).

k [Js/kmol] 0V [m3] [s] 
0w [kmol/m3s] 1 [s] 2 [s] 3 [s] 

1-A 14 3 10-5 0.06 6.44 10-5 0.06 0.1 0.006 
1-B 400 6 10-5 0.01 6.44 10-5 0.01 0.03 0.01 
1-C 3 105 7 10-5 0.01 5.085 10-5 0.06 0.01 0.06 
1-D 1 10-9 7 10-5 0.1 0 0.06 0.3 0.06 
2-A 5.4 105 1.2 10-4 0.4 1.65 10--4 0.06 0.3 0.006 
2-B 5.57 104 1 10-5 0.14 2.75 10--4 0.06 0.3 0.6 
2-C 1.6  103 8 10-5 0.03 2.89 10--4 0.06 0.01 0.06 
2-D 1 10-9 1.8 10-4 0.3 0 0.06 0.1 0.06 
5-A 1.4 104 2 10-5 0.1 7.02 10-5 0.06 0.003 0.006 
5-B 1 104 3 10-5 0.1 1.026 10-4 0.06 0.1 0.06 
5-C 50 7 10-5 0.1 8.1 10-5 0.06 0.03 1.6 
5-D 1 10-9 7 10-5 0.01 0 0.01 0.03 0.01 
6-A 4.4 105 5 10-5 1.25 8.855 10-4 0.06 0.29 0.006 
6-B 2.55 106 3 10-4 0.2 2.818 10-3 0.06 0.1 0.6 
6-C 1 105 1.2 10-4 0.063 1.449 10-3 0.06 0.02 1.1 
6-D 1 10-9 1.2 10-4 0.1 0 0.01 0.3 0.01 

Table 7.5.2 The constants characterizing the mechanical properties of the CVS (P evorovsk et al.).

i j
ijr [Pas/m3] jl [Pas2/m3] jc [m3/Pa] jE [Pa] ip [Pa] ijG [m3/s]

1 2 9.5 104 1 102 - 2.2 10-3 7.53 104 2 10-7

2 3 1.2 105 1 102 - 3.75 10-5 1.33 104 1 10-7

3 4  4 106 5.5 103 5.2 10-8 - - 2 10-7

4 5 5.9 105 1 104 5.9 10-8 - - 1 10-7

5 6 1,5 105 1.1 102 - 1.5 10-3 - 3 10-7

6 7  5 105 3 102 - 1.2 10-5 - 1 10-7

7 8 4.5 107 5 105 6.8 10-9 - 9.33 104 2 10-7

8 1 1.3 107 9 104 6.9 10-9 - 3.99 104 1 10-7

Figure 7.5.6  Poincar  map ( ), ( )p t p t after 1000 cardiac cycles.



Chapter 8 

THE FLOW OF BLOOD IN ARTERIES

8.1    Scope of the chapter 
Arteries conduct blood from the heart to the tissues and peripheral organs.  The left 

ventricle pumps blood into the aorta, and the right ventricle pumps blood into the 
pulmonary artery. These main conduits branch into smaller vessels, and narrow 
arterioles vary their dimensions to regulate blood flow.  Pulsatile flow of blood in large 
arteries has attracted much attention in blood dynamics. Computational fluid dynamics 
has emerged as a powerful alternative tool to study the hemodynamics at arterial tubes. 
Compared with experimental methods, fluid dynamics can easily accommodate changes 
in blood flow theory. Experimental studies of blood pulses revealed that they propagate 
with a solitonic characteristic pattern as they propagate away from the heart (McDonald, 
1974).

Euler in 1775 obtained the one-dimensional nonlinear equations of blood motion 
through arteries, for the first time.  Rudinger (1966), Skalak (1966), Ariman et al.
(1974), Yomosa (1987), Moodie and Swaters (1989) have developed further this 
nonlinear theory. In 1958 Lambert used the method of characteristics to analyze the 
motion equations of blood. The finite difference method and the finite elements method 
are used also for the computations of nonlinear blood flow. In this chapter the soliton 
theory is employed to describe the dynamical features of the pulsatile blood flow in 
large arteries. The theory is performed for an infinitely long, straight, circular, 
homogeneous thin-walled elastic tube filled with an ideal fluid, in the spirit of the 
Yomosa theory (1987).  

The theory of microcontinuum model of blood developed by Eringen in 1966 and 
Ariman and his coworkers, Turk and Sylvester, in 1974, is applied next to describe the 
transient flow of blood in large arteries subject to an arbitrary two-soliton blood 
pressure. The blood is assumed to be an incompressible micropolar fluid. The flow 
velocity, the micro-gyration and the cross-sectional area are calculated as functions of 
the two-soliton blood pressure pulse. The effects of increasing hematocrit on the 
amplitudes of the flow velocity and of the microgyration are analyzed. 

The main bibliographies of this chapter are the works of Ariman et al. (1974), 
Yomosa (1987), Eringen (1966, 1970), Munteanu et al. (1998). 
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8.2   A nonlinear model of blood flow in arteries 
McDonald in 1974 analyzed the form of the flow and pressure waves at certain 

locations from the ascending aorta to the saphenous artery in the dog (Figure 8.2.1). The 
propagation of the pressure pulse is accompanied by an increase in amplitude and a 
decrease in pulse-width which have been noted as peaking and steepening.  The increase 
in amplitude is in accordance with an increase of the pulse–wave velocity and is 
combined with the generation of a dicrotic wave (Hashizume).  

Sections 8.2 and 8.3 present the Yomosa theory, performed for an infinitely long, 
straight, circular, homogeneous thin-walled elastic tube embedded in the tissue.  The 
blood is assumed an incompressible and nonviscous fluid.

Figure 8.2.1  The behavior of the flow velocity and pressure pulses from the ascending aorta to the femoral  
artery (McDonald). 

Consider the one-dimensional fields of longitudinal flow velocity  the blood 
pressure , and radial displacement of the arterial wall , expressed in 
cylindrical coordinates ( , where  is the radial coordinate and , axial 
coordinate.  Assume rotational symmetry and the hypothesis of uniform distributions of 
flow velocity v z  and the fluid pressure over the cross-section of the vessel.

( , ),zv z t
( , )t( , )p z t

z

ru z
, , )r z r z

( , )t ( , )p z t
–   Navier–Stokes equation of motion for longitudinal flow 

1 0z z
z

v v pv
t z z

,                                        (8.2.1) 

where  is the density of blood. 
–   Continuity  equation which expresses the incompressibility of blood

( ) 0zv AA
t z

,                                            (8.2.2)
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where ( , )A z t  is the cross-sectional area of the tube. 
The third equation describes the radial motion of the arterial wall. This equation was 

derived by Yomosa. We present his derivation of the equation. Consider the small 
segment of the tube wall surrounded by inner and outer surfaces of the wall and parallel 
two cross-sectional surfaces perpendicular to -axis defined by constant coordinates of 

and , and two surfaces defined by constant angles of 
z

z dz z  and d   (Figure 
8.2.2).

Figure 8.2.2  A small segment of the tube wall and forces acting on it (Yomosa). 

The radial displacement of the wall is defined as (Teodosiu, Solomon) ru

0 rr r u ,                                              (8.2.3) 

where  is the radius of the tube, r  is the equilibrium radius of the tube when the 
wall is static and , where  is  the pressure outside the tube which can be equal 
to the atmospheric pressure. The constitutive law of the elastic arterial wall can be 
written as

( , )r z t 0

ep p ep

(1 )t rE a r ,                                         (8.2.4) 

where 0

0
r

r r
r

 is the radial strain,  the Young’s elasticity modulus, and , a 

nonlinear coefficient of elasticity. The equation of radial motion of the segment 
considered in Figure 8.2.2 is   

E a

2

0 2( d d ) ( )cos ( d d ) 2 sin(d / 2) d

( sin )d d ),

e t

l

rr h z p p r l h z
t

z h r
z

  (8.2.5) 

where is the density of the wall material,  the thickness of the wall in radial 
direction,  the longitudinal extending stress in the direction of the meridian line on 
the wall surface,  the extending stress in the tangential direction, and   the 

0 h

l

t ( , )z t
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angle between a tangent to a meridian line on the wall surface and the -axis, and d
the elementary length of the meridian line in the segment, defined as d c .

z
o

l
s dl z

/r z
2( / )zr

1

3

)]z

0 dh z0

For a small angle , we have the approximations 
2 1/ 2cos [1 ( / ) ] 1r z  , sin tan .              (8.2.6) 

These approximations are related to the fact that the term contributes 
higher order small quantity in the later perturbation expansions, proportional to ,
whereas the present theory is carried out by taking into account up to the terms 
proportional to , where  denotes a small parameter 2 0 .  Thus, the term 

 can be approximated as  ( sin ) /l z

1
2 2 2

1

( sin ) / ( / )[((d d ) / d )( /

(3 / 2)( / ) ( / ),
l z E z l z z r

E r z r z
           (8.2.7) 

where  is  Young’s longitudinal elasticity modulus of the wall. This term is 
proportional to , and therefore can be neglected.

1E
5

Taking , for small angles sin (d / 2) d / 2 d , we obtain the radial motion 
equation

2

0 2 ( ) t
e

hrh p p
rt

.                               (8.2.8) 

We must mention that the real thickness of the wall h  in the direction perpendicular 
to the wall surface is given by cosh h h . Also, the inertial effects on the radial 
motion of the wall caused by the tissue must be considered.  So, the effective inertial 
thickness is H h h , where  is the thickness of the wall in which the material 
participates in the elastic deformation and 

h
h  is the additional effective inertial 

thickness of the tissue in which the material does not participate in the elastic 
deformation. With these assumptions and by considering that the densities of the 
materials of the wall and the tissue are the same, the equation of radial motion becomes      

2

0 2 ( ) t
e

hrH p p
rt

.                                 (8.2.9) 

For , the relation (8.2.9) yields ep p 0t , and then from (8.2.4) we have 
, and . Denoting by ,0ru 0rr 0h 0H  the equilibrium values of the thickness of the 

wall and of the effective inertial thickness, the conditions for the conservation of mass 
of the wall and the tissue are given by 

,0 0 0d d d dr H z r H z0 0 0d d dr h z r ,             (8.2.10) 

or

0 0rH r H , 0 0rh r h .                                 (8.2.11) 

Taking into account that
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2
0( r )A r u ,                                           (8.2.12) 

the equation (8.2.2)  becomes 

0

0

(1 ) 0
2

r r rru u uv v
t r z z

.                           (8.2.13) 

Substituting (8.2.4) and (8.2.11) into (8.2.9) the equation of motion of the wall 
becomes 
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Let us introduce the dimensionless independent variables  

0z L z  , t T0t ,                                     (8.2.15) 

with
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and dimensionless dependent variables and,v p

v 0z c v  , 0ep p p p , 0zu r ,                   (8.2.17) 

where  and  are given by 0c 0p
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.                           (8.2.18) 

Therefore, the basic equations (8.2.1), (8.2.13) and (8.2.14) become  

0v v pv
t z z

,                                         (8.2.19) 
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,                             (8.2.20) 
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At the end of the diastole period, the flow velocity zv  and the acceleration of tube 
wall vanish.  The diastolic pressure equals the lowest blood pressure. The quantities 

 can be related by (8.2.21), if we write 0 , p0 00 0ep p p p  and , that is0 0( )ru r 0

0
0 2

0

2 (1 )
(1 )

ap 0 .                                        (8.2.22) 
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Now, let us study the asymptotic behavior of the governing equations (8.2.19)–
(8.2.21).

To describe the nonlinear asymptotic behavior, Gardner and Morikawa introduced a 
scale transformation to combine it with a perturbation expansion of the dependent 
variable.   Employing this method, we firstly linearise the equations in the form 

0v p
t z

,                                               (8.2.23) 

0
1 (1 ) 0
2

v
t z

,                                (8.2.24) 
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,                  (8.2.25) 

where  and  are defined as p

0p p p , 0 .                                 (8.2.26) 

 Suppose we have harmonic solutions , ,v p , with exponential factor of the form 

exp[i( )]kz t  .                                       (8.2.27) 

In this case, we obtain a system of homogeneous equations in amplitudes .
The dispersion relations are obtained by requiring that the determinant of the system 
vanishes

, ,v p

21
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, 0
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a
g .                       (8.2.28) 

We expand  into a Taylor series about the origin for small , and retain terms 
up to the third power of . So, we have 

( )k k
k

2

( ) (1 )
2
kt gk ,                                     (8.2.29) 

and the exponential (8.2.27) becomes 
3

exp[i{ ( ) }]
2

k gtk z gt .                            (8.2.30) 

The similarity of asymptotic behavior holds for a coordinate transformation which 
satisfies

1/ 3 const
( )
z gt
gt

.                                      (8.2.31) 

So, the scale transformation, for which the invariance of (8.2.31) hold, can be 
defined as 
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( )z gt , gt ,                      (8.2.32) 

with  a small parameter.  The perturbation expansions of , ,v p with respect to ,
are given by 

1
( , )n

n
n

v v ,
1

( , )n
n

n
p p ,

1
( , )n

n
n

.           (8.2.33) 

The dependent variables v p, , depend on  and , and the nonlinear 
equations (8.2.19)–(8.2.21), written with respect to  and , are 

( ) v pg v v 0 ,                                 (8.2.34) 

0
1( ) (1 )
2

vg v 0 ,                  (8.2.35) 

2 2 2
2 2 3

0 02 2

0 0

0

1( 2 ) ( )(1
2

( )[1 ( )]
0.

(1 )

g p

a

)p
   (8.2.36) 

 Substitute (8.2.33) into (8.2.34)–(8.2.36) and equate the coefficients of like powers 
of . The terms that are proportional to 0 , give equation (8.2.22), and the terms 
proportional to  give

1 1 0v pg ,

1
0

1 (1 ) 0
2

vg 1 ,                                   (8.2.37) 

2
0 0 1

0 1 0 1 2
0

(1 2 )1 1 (1 ) 0
2 2 (1 )

a ap p .

Also, the terms proportional to 2  give 

2 1 1 2
1 0v v v pg g v ,

2 1 2 1 1
0 1 1

1 1(1 ) 0
2 2

v vg g v ,              (8.2.38) 
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2
2 1

0 2 0 2 1 12

2 2
0 0 2 1

2 3
0 0

1 1 1(1 )
2 2 2

(1 2 ) ( 1) 0.
(1 ) (1 )

g p p p

a a a

From (8.2.37) we obtain by integrating 

1 1
1 ( )v p f
g

,                                    (8.2.39) 

1 1
0

2 ( )
1

gv ,                                 (8.2.40) 

2

1
0

2
1

gp 1 ,                                       (8.2.41) 

where the functions  and ( )f ( ) can be determined from initial conditions. We can 
have in particular 

( ) ( ) 0f ,                                     (8.2.42) 

for

0p p , 0 , for v 0z ,                          (8.2.43) 

or

1 0p , 1 0 , for 1 0v .                           (8.2.44) 

In these conditions, (8.2.39) and (8.2.40) give again (8.2.41). The quantities v
and are related between themselves by 

1 1, p

1

1
1

0

2
1

p gv
g 1

2

.                                   (8.2.45) 

Eliminating  and  from (8.2.38) and (8.2.45), we obtain the KdV equations 2 ,v p 2

3
1 1 1

1 3

1 0
2

v v vKv ,                              (8.2.46)

3
1 1 1

1 3

1 0
2

p p pLp ,                              (8.2.47) 

3
1 1 1

1 3

1 0
2

M ,                           (8.2.48) 
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where the constants K ,  and L M  are given by 

0
3/ 2

0

(1 )[(1 2 ) 3(2 1) ]
4[1 (2 1) ]

a aK
a

0 ,                      (8.2.49) 

KL
g

,
0

2
1

gM K .                               (8.2.50) 

8.3   Two-soliton solutions 
The flow velocity equation (8.2.46) may be written as  

6 x xxxU UU U 0 ,                             (8.3.1) 

by the transformations 

1
3v U
K

, X , 2T .                       (8.3.2) 

The equation (8.3.1) admits a soliton solution given by  
2 2 22 sech [ ( 4 ) ]U k k X k T ,                      (8.3.3) 

with   The solution for flow velocity is obtained from (8.2.17) and (8.2.33) const.

2 2
0

0

6( , ) sech [ ( ) ]z
kv z t c k z Vt

K L
,                     (8.3.4) 

where
2 2k k , V g .                              (8.3.5) 2

0 (1 2 )c k

The equations (8.2.47), (8.2.48) can be solved in a similar way, and the solutions for 
fluid pressure and radial displacement are given by 

2 2
0 0

0

6( , ) sech [ ( ) ]kp z t p p k z Vt
L L

,                    (8.3.6) 

2 2
0 0 0

0

6( , ) sech [ ( ) ]r
ku z t r r k z Vt

M L
.                 (8.3.7) 

The soliton solutions describe the pulsatile pulses in which the amplitude and 
velocity are related.  The pulses with large amplitude are narrow in width and move 
rapidly. This feature can explain that the steepening in the arterial pulse occurs in 
accordance with the increase in the velocity pulse. 

For arbitrary initial conditions the solutions U X  of (8.3.1) are obtained exactly 
by applying the inverse scattering transform.  As T , the solution approaches 
asymptotically to  soliton solutions.  The amplitudes and the velocities of these 

( , )T

N
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solutions are determined by the eigenvalues 2
nk  of  bound states of the Schrödinger 

equation for which the potential is the initial condition U X .
N

( ,0)

0c
(

3 3 z
K K v 0)

0

1 z

0

L

( ,0)

2
1

2

) ]
].
T1 1[ (

4
k

X
4k

T

2 2 1

0

2

0

[

(

k
K L

k z

2
1 1

2

) ]

].

k t

2
2

4

)

z

k t

2 2
1

2

0

sech

(k z

2
1

2
2

4 )

],

k t

2

(

)

z

k t

1

0

[

4

k
M L0 1

2 2 2

0

s

[

r k

k
M L

1

2
2

( 4

)

z k

k t

Consider now the arbitrary initial conditions for the KdV equation (8.3.1) which can 
support two bound states at  and 2

1k 2
2k

1( ,0) ( ,0) , ( ,0)
3

KU X v z v z ,

X z  .                                   (8.3.8) 

The solution is obtained with no reflection, R k , and yields as T  to a 
two-soliton solution given by

2 2
1

2 2 2
2 2 2

( , ) 2 sech
2 sech [ ( )

U X T k X
k k k

                         (8.3.9) 

The constants ,  are arbitrary.  The flow velocity is described as a two-soliton 
solution and can be regarded as being composed from a main pulse and an associated 
dicrotic wave. From (8.3.9) it results the solution for the flow velocity of blood   

1 2

0 1

2 2
0 2

6( , ) sech (

6 sech [ 4

zv z t c k

c k
K L

                      (8.3.10) 

In a similar way we obtain two-soliton solutions for blood pressure and for radial 
displacement    

1
0 0 1

0

2 2
0 2

6( , ) [ ]

6 sech [ 4

kp z t p p k
L L

p k
L L

                 (8.3.11) 

2 2 2
0 0 1

0 2 2

6( , ) ech ) ]

6 sech ( ].

ru z t u t

r k z
           (8.3.12) 

The time t  required for a pulse starting from the heart to cause the steepening in the 
aorta may be estimated by considering the equation (8.2.46) in which the third term is 
discarded

0



INTRODUCTION TO SOLITON THEORY: APPLICATIONS TO MECHANICS230

1 1
1 0v vKv .                                     (8.3.13) 

The solution of (8.3.13) can be regarded as a functional relation 

v f1 ( Kv1 ) .                                     (8.3.14) 

Therefore, the scaled time t , which causes the steepening, may be connected with a 
scaled initial pulse of width , on the 

0

0 -axis, by an approximate relation 

0 1
1( )
2mK v 0 ,                                       (8.3.15) 

where is the  maximum value of  . Inserting the transform relations obtained 
from (8.2.15), (8.2.17), (8.2.32) and (8.2.33)  

1( )mv 1v

1
0 0z L 0d ,

1
0 0 0t T 0t

z m

,                                   (8.3.16)

1 1 1
1 0( ) ( )m mv v c v ,

into  (8.3.15)  we have 

0
0 2 ( )z m

dt
Kg v

,                                    (8.3.17) 

where  is the width of the initial pulse on the -axis.0d z
Taking K =1, g=1 and ( ) 0.5z mv m/s, 0 0.3d m, from the experimental data, the 

time  is estimated to be about 0.3 s. For V0t 5 m/s, the distance that the wave needs to 
travel until the soliton is formed is estimated to be about 1.5 m.  But the distance from 
the heart to the abdominal aorta is about 0.5 m. Therefore, in the abdominal aorta the 
soliton is not yet formed. The steepening phenomenon can be interpreted as the 
generating and growing of solitons in large arteries.

The condition for an equilibrium state of the system is given by 

0p p , 0zv , for all ,                                 (8.3.18) z

and the boundary conditions of the system are  

0p p , 0zv , as z .                                 (8.3.19)

From (8.2.22), (8.2.28) and (8.3.6) we have 

0
0 2

0

3{1 ( ) }
2 4 1

ep pac c
p k

1  ,                            (8.3.20) 

0
0

0 0

3{1 ( ) }{1 }
2 4 3

e mp p p pa L
p p

0V c .                   (8.3.21) 
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The velocity of sound wave with small amplitude near the equilibrium state is given 
by (8.2.28), that is , and the phase velocity of a soliton with large 

amplitude, which satisfy the boundary condition (8.3.19), is given as 

2 1/ 2
0 (1 )gc k

2
0 (1 2 )gc k .

These velocities depend on g  and 0 . But 0  and  are related by (8.2.22), and thus 
theses velocities change with the lowest pressure . The phase velocity includes a 

term of  which is proportional to the amplitude of the pulse. Then the efficiency of 
blood circulation depends on the lowest blood pressure  and on the difference 
between the highest and the lowest pressure of blood 

0p

0p
2k

0p

0pmp .
In this section, the results obtained from this theory are compared with the 

experimental measurements given by McDonald for the dog. These experimental results 
are summarized as follow (Yomosa): 

–  for the thoracic aorta
3

0 5 10r m,  0

0

0.12h
r

, 91.05 10 kg/m ,3

9
0 1.06 10 kg/m , Pa,                                                        (8.3.22) 3 55.49 10E

0.55mv m/s, mmHg=102102m ep p 133.3 Pa,

0 81ep p mmHg = 81 Pa,133.3
21mp mmHg = Pa, u r21 133.3 00.05rm ,

m/s,  cycles/s,5.5v 3.65f
where  is frequency. f

– for the femoral artery  
3

0 1.5 10r m,  0

0

0.12h
r

 , 91.05 10 kg/m 3  , 

9
0 1.06 10 kg/m , Pa,                                                         (8.3.23) 3 514.1 10E

0.4mv m/s, mmHg = 110110m ep p 133.3 Pa,

0 78ep p mmHg = 78 Pa,133.3
32mp mmHg = 32 Pa , 133.3 00.03rmu r ,

1v m/s,   cycles/s. 3.65f
In the static case we have

0
2

0

(1 )
(1 )e

h ap p E
r

.                                      (8.3.24) 

Figure 8.3.1 represents an experimental diagram (
0

, 1e
rp p
r

5.37E

) obtained by 

McDonald for the dog. From this graph and (8.3.24) we estimate Pa and 

 for the thoracic aorta, by using 

510

1.95a 0

0

0.12h
r

. The Young’s modulus thus 

estimated is in good agreement with (8.3.22).                    
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Figure 8.3.1  Experimental diagram (
0

, 1e
rp p
r

 ) for dog (McDonald). 

For the femoral artery the same value for the nonlinear elastic coefficient  is 

considered. The parameters  and  are estimated by substituting the values of 

a

0c 0p 0

0

h
r

,

and  given by (8.3.22) and (8.3.23) into (8.2.18) E

0 5.6m/sc , mmHg =0 247p 247 133.3 Pa,    (thoracic aorta) ,     (8.3.25) 

c0 8.98m/s , mmHg = 0 635p 635 133.3 Pa,   (femoral artery).    (8.3.26) 

The values of  which correspond to the lowest pressures 0p 0 81ep p mmHg in 
the thoracic aorta, and mmHg in the femoral artery are determined from   
(8.2.17) and (8.3.25), (8.3.26).

0 78ep p

0 0.328p ,   (thoracic aorta),                                      (8.3.27) 

0 0.123p .   (femoral artery).                                     (8.3.28) 

The value of  is calculated from   (8.2.22) and  (8.3.27), (8.3.28)  0

0  = 0.169,    (thoracic aorta),                                       (8.3.29) 

0  = 0.062,   (femoral artery).                                       (8.3.30) 

The values of , ,g K L  and M   are estimated from (8.2.28), (8.2.49) and (8.2.50) 

    , , 1.044g 1.024K 0.980L , 1.829M ,   (thoracic aorta),  (8.3.31) 

   , , 1.023g 1.127K 1.102L , 2.171M ,  (femoral artery).  (8.3.32) 

From the soliton solutions (8.3.4), (8.3.6) and (8.3.7) we derive 

2
0

6
mv c k

K
 , 2

0
6

mp p
L

k , 2
0

6
r mu( ) r k

M
,                  (8.3.33) 

Substituting into (8.3.33) the experimental values of v  and (  given by 

(8.3.22) and (8.3.23), we estimate three values of  for the soliton in the thoracic aorta

,m pm )r mu

k
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k 0.129, k 0.118, k 0.123.                            (8.3.34) 

In a similar way, three values of   are obtained for the femoral artery k

k 0.091, k 0.096, k 0.104.                            (8.3.35) 

Therefore, we can take k 0.12 for the thoracic aorta, and k 0.09 for the femoral 
artery. From Figure 8.2.1 we can estimate the amplitudes of the dicrotic flow and 
pressure waves in the femoral artery, denoted by v  and d

m
d
mp

= 0.05 m/s, = 5 mmHg .                              (8.3.36) d
mv d

mp

Then we estimate the value of  for the dicrotic wave in the femoral artery for the 
first two equations (8.3.33) 

k

dk =0.032, =0.038.                                  (8.3.37) dk

Therefore we can regard the wave in the femoral artery as a two-soliton wave which 
is characterized by 0.09 and 1k 2k 0.035.

Substituting the values of 0,g c  and  estimated above, into (8.3.5) 2  we have the 
wave velocities 

k

6.02V m/s, (thoracic aorta), 

9.34V m/s, (femoral artery).                                (8.3.38) 

 These values are reasonable compared with the experimental data (8.3.22) and 
(8.3.23). Since all values of  estimated until now satisfy k 2 1k , we can see from   
(8.3.5) and  (8.2.28) that the solitons velocities in arteries nearly equal the sound wave 
velocities in them.  From the profiles of the flow and pressure waves in Figure 8.2.1, we 
can estimate the widths of theses pulses. We have 

02 1 0.11m
15

L V
fk

,  (thoracic aorta), 

02 1 0.0856m
30

L V
fk

,  (femoral artery),                      (8.3.39) 

and

02
0.02s

L
kV

,   (thoracic aorta), 

02
0.01s

L
kV

,    (femoral artery).                               (8.3.40) 
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 The characteristic lengths  and time 0L 0
0

0

LT
c

 are estimated by inserting the 

values into (8.3.39) and by using  (8.3.25) and (8.3.26) 

k

2
0 0.66 10 mL , T , (thoracic aorta), 3

0 1.2 10 s

2
0 0.38 10 mL , T .  (femoral artery).              (8.3.41) 3

0 0.4 10 s

We can estimate the values of effective inertial thickness of the wall by using 
(8.2.16) and (8.3.22) and (8.3.41) 

2
0 1.73 10 mH ,  (thoracic aorta), 

2
0 1.93 10 mH ,  (femoral artery).                             (8.3.42) 

The additional inertial thickness due to the mass of the tissue  is 
estimated as 

0 0h H h0

2
0 1.7 10 mh ,  (thoracic aorta), 

2
0 1.9 10 mh ,  (femoral artery).                               (8.3.43) 

Figure 8.3.2  Two-soliton solution U in the femoral artery of the dog. (0, )t

Figure 8.3.2 represents the two-soliton solution U  given by (8.3.9) for the 
femoral artery of the dog, with 

(0, )t

2
0 0.38 10 mL , , , V1 0.09k 2 0.035k 9.34m/s , 1 0 , 2 2.9 .

The frequency of generating the solitons is 3.65 cycles/s, the period is 
, and the wavelength is 1/ 0.27sT f 2.56mTV . For the thoracic aorta we have 
, V , TV1/ 0.27sT f 6.02 m/s 1.64 m .
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Figure 8.3.3  Two-soliton solution of flow velocity in femoral artery of the dog. 

Figure 8.3.3 represents the time variation of the two-soliton solution of the flow 
velocity in the femoral artery of the dog, in an arbitrary location, for ,

, ,
1 0.09k

2 0.035k 9.34m/sV 1.127K , 0 8.98m/sc , 1 1.7 , . The 
frequency is  cycles/s.

2 1.3
3.65

Figure 8.3.4 represents the time variation of the two-soliton solution of the blood 
pressure in the femoral artery of the dog, in an arbitrary location, for ,

, k , ,

2
0 0.38 10 mL

1 0.096k 2 0.041 9.34m/sV 1.102L , 0 635mmHp g 635 133.3Pa ,
.     1 0

Figure 8.3.4  Two-soliton solution of blood pressure in the femoral artery of the dog. 

By comparing these results with the experimental results given by McDonald we 
observe that waves are narrower than in experimental data, which can be explained by 
the fact that the viscosity is completely neglected. It is interesting to note that the 
features of the graphs (8.3.3) and (8.3.4) are very similar to the  Hamiltonian of the sine-
Gordon equation behavior (Hoenselaers and Micciché). 

8.4    A micropolar model of blood flow in arteries 
The blood is a rheologically complex fluid being a suspension of particles (red and 

white cells, platelets) undergoing unsteady flow through vessels. Eringen introduced a 
mathematical model for such fluids, called micropolar fluids, in 1966. This theory 
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exhibits microrotational effects such as those experienced by blood in the larger vessels 
of the circulation for the dog (McDonald).  Ariman and his coworkers, Turk and 
Sylvester, Easwaran and Majumdar, have applied the Eringen theory for describing the 
time-dependent blood flow. Their model formulates a new kinematic variable called 
microrotation describing the individual rotation of particles within the continuum, 
independent of the velocity field.  In this theory an arbitrary pressure gradient as a sum 
of sine functions was considered. But the pulsatile character of the blood flow suggests 
the using the soliton theory.

Let us consider the thin-walled elastic tube is infinitely long, straight, circular and 
homogeneous, embedded in the tissue and filled with the blood  

Consider the one-dimensional fields of longitudinal flow velocity v x , the micro-
gyration , the blood pressure  and the cross-sectional area 

( , )t
( , )w x t ( , )p x t ( , )A x t  under 

the assumption of uniform distributions of  and  over the cross-section of the tube. 
Here

v p
x  is the axial distance along the vessel and t , the time.  The radial component of 

the flow velocity is neglected in comparison with the axial component. The dimensional 
governing equations of the micropolar fluid dynamics are given by  

2

2

1 1 ( )v v p v wv
t x x xx

0 ,                        (8.4.1) 

2

2 2w v wj
t x x

0w ,                             (8.4.2) 

( ) 0A vA
t x

,                                              (8.4.3) 

where  is the fluid density, , ,  the blood  coefficients and  the microinertia 

coefficient

j
2(

2
j ) . The coefficient  depends on the cellular concentration 

(hematocrit) and is determined from the equation 
2 2 2(2 ) 0q q ,                               (8.4.4) 

where  has been found experimentally by Bugliarello and Sevilla (see Ariman et al.)
given as ,  represents the viscosity of blood plasma (  at 30 ).

The ratio 

q
q 5 -110 m 0.02 poise 0 C
1
q

 is defining the red cell diameter for blood.  

 The equation of radial motion of the arterial wall is given by (8.2.14)

02
0

0 2
20 0

0 0
0

(1 )
(1 )

(1 )

e

uh a
p p ru u Eu

uH rt H r
r

,                      (8.4.5) 
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with the density of the material of the wall,  the radius of the tube,  the 
thickness of the wall in radial direction,  the pressure outside the tube which can be  
regarded as about the same as the atmospheric pressure, 

0 ( , )r x t h

ep
  the  extending stress in the 

tangential direction. The density of the materials of the wall and the tissue are assumed 
to be equal.  In (8.4.5)  is the radial displacement of the wall,  the Young's modulus 
of the elasticity,  a  nonlinear coefficient of elasticity. 

u E
a

 Taking account of 2
0( )A r u , we obtain from (8.4.5) the motion equation of the 

cross-sectional area 
2

2
2

0

1 1( ) ( , )
2

A A f A p
A tt

,                             (8.4.6) 

where

0 0 0
02

0 0 0 0

2 [ ( / )]
( , ) 2 ( / )ep p Eh r a A r

f A p A A r
H r H r

.    (8.4.7) 

We introduce dimensionless, noted by prime, variables 

1/ 2 1/ 20 0 0 0 0 0
0 0 0

0 0

2
0 0 0

2 2
0 0 0

0 0

( ) , ( ) , , ,
2

( , )( , ), ( , ) , ( , ) ,

( , ), ( , ) , , ,

e

r h r l xl t c x
E t l

p x t pt v x tt v x t p x t
t c c

.A x t rw t w A x t A r A r r
A r

             (8.4.8) 

The dimensionless equations can be written by dropping the prime as 
2

2 0v v p v wv m n
t x x xx

,                             (8.4.9) 

2

2 0w v wb q g dw
t x x

,                           (8.4.10) 

( ) 0A vA
t x

,                                       (8.4.11) 

2
2

2

1 ( ) ( ,
2

A A f A p
A tt

) ,                               (8.4.12) 

where
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2 2
0 0 0 0 0

0 0
2 4 2
0 0 0 0

0 0 0
04

0 0 0 0
2
0

1 2 3 4
0 0 0

, , ,

, , ,

2 [ ( / )]( , ) 2 ( / ),

2 2(2 1) 2 2(1 ), , , .

e

jm n b
c t c l l

t tq g d
c t l l

p p Eh r a A rf A p A A r
H r H r

c a a ab b b b
hE r r r

     (8.4.13) 

Let us assume an unsteady arbitrary pressure gradient of the form (Freeman) 
2

2

1

ˆ( , ) sech ( )i ip x t A b kx t ,                          (8.4.14) 

with ˆ, ,i iA b k  unknown constants and  the circular frequency. 
The governing flow equations (8.4.12)–(8.4.15) are solved in the condition of 

satisfying (8.4.16) and the initial conditions 

0 1

1 0

(0,0) , (0,0) , (0,0) ,

(0,0) , (0,0) , (0,0) .

vv v v w w
t

w Aw A a a
t t

0

1

                   (8.4.15) 

The scenario for variation of coefficient  gives the effect of the volume 
concentration of the red cell upon the flow behavior of blood.

Equations  (8.4.13)–(8.4.16) can be simplified into a form suitable for obtaining the 
periodic wave solutions. It will be of interest to obtain the wave of permanent form 
solutions of this system using the change of the variable  

( ) ,y k x ct c
k

,                                          (8.4.16) 

where  is the unknown wave velocity. In order to simplify equations we consider 
. The system of equations are written as 

c
1a

2

2 2 2

0, 0,
1( ) 0, ( ) ( , ).

2

cv vv p mkv nw bckw qkv gk w dw

cA vA k c A A f A p
A

   (8.4.17) 

The profiles of the flow velocity, the blood pressure and the cross-sectional area are 
numerically calculated using the data given by (8.3.22) for the thoracic aorta of the dog. 
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Figure 8.4.1 Variation of the blood pressure in one period. 

Figure 8.4.2 Variation of the flow velocity in one period. 

For the blood coefficients we choose 0.02poise , 0.6 mkg/s

210 m

 and .
From (8.4.4) we obtain . By equating the width of the blood pressure 
two-soliton wave to the width (the wavelength is 162 ) of the pulse wave 
observed experimentally for the thoracic aorta of the dog, we obtain T  and 

. The dimensionless initial conditions are given by 

220mj

0.27s

0.02poise

6 m/sc

(0) 0.5, (0) 0,
(0) 0.2, (0) 0,
(0) 1, (0) 0.

v v
w w
A A

Constants from (8.4.18) are found as .1 2 1 2
ˆ ˆ1 , 0.6 , 2.3 , 4.5A A b b

Figures 8.5.1–8.5.3 are plots of the blood pressure, the longitudinal flow velocity 
and the microgyration for one period. It is seen that the systolic and diastolic peaks exist 
in all graphs. The systolic and diastolic pressure peaks are related to the flow velocity 
peaks. The phase portraits for flow velocity and the microgyration are plotted in Figures 
8.4.4–8.4.5 after four periods. For an increasing number of periods the graphs remain 
unchangeable. The motion becomes stable, the role of the initial conditions being very 
small. In Figure 8.4.6 the cross-sectional area is plotted for one period.  
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Figure 8.4.3  Variation of the microgyration in one period. 

Figure 8.4.4  Phase portrait for the flow velocity in one period. 

To illustrate the effect of the hematocrit on the flow velocity and on the micro-
gyration we consider four values for the coefficient .  Figures 8.4.7–8.4.8 show a 
decreasing of the amplitude of the flow velocity and of the microgyration for increasing 
hematocrit. The results are reasonable due to the fact that the increase of viscosity 
overshadows the inertial effects leading to a reduction of the amplitudes and are in 
agreement with the experiments. 

Figure 8.4.5  Phase portrait for microgyration in one period. 
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Figure 8.4.6  Variation of the area in one period. 

Figure 8.4.7  Effect of hematocrit on  flow velocity. 

Figure 8.4.8  Effect of hematocrit on  microgyration. 

The two-soliton representation for the blood pressure may be viewed as an 
interaction of two pulses. They are superimposed but retain their identity and do not 
destroy each other into the flow. This assures the stability of the blood circulation. The 
flow velocity, the microgyration and the cross-sectional are calculated as functions of 
the two-soliton blood pressure pulse. The phase portraits demonstrate the stability of the 
blood motion (Tabor).  



Chapter 9 

INTERMODAL INTERACTION OF WAVES 

9.1 Scope of the chapter
The modal interaction in a Toda lattice was discussed in section 6.5. In this chapter 

we discuss other phenomena by means of intermodal interaction of waves. In the first 
four sections we explain the subharmonic generation of waves in piezoelectric plates 
with Cantor-like structure. We show that subharmonic generation of waves is due to a 
nonlinear superposition of cnoidal waves in both phonon and fracton vibration regimes. 
Alippi (1982) and Alippi et al. (1988) and Cr ciun et al. (1992) have proved 
experimentally the evidence of extremely low thresholds for subharmonic generation of 
ultrasonic waves in one-dimensional artificial piezoelectric plates with Cantor-like 
structure, as compared to the corresponding homogeneous and periodical plates. An 
anharmonic coupling between the extended-vibration (phonon) and the localized-mode 
(fracton) regimes explained this phenomenon. They demonstrate that the large 
enhancement of nonlinear interaction results from the more favorable frequency and 
spatial matching of coupled modes (fractons and phonons) in Cantor-like structure.

Section 9.5 presents the Yih analysis of the interaction of internal solitary waves of 
different modes in an incompressible fluid with an exponential stratification in 
densities.

The turbulent flow of a micropolar fluid downwards on an inclined open channel is 
studied in sections 9.6 and 9.7. The wave profile moves downstream as a linear 
superposition of soliton waves at a constant speed and without distortion.

In a micropolar fluid the motion is described not only by a deformation but also by a 
microrotation giving six degrees of freedom (Eringen 1966, Brulin 1982). The 
interaction between parts of the fluid is transmitted not only by a force but also by a 
torque, resulting in asymmetric stresses and couple stresses. The micropolar theory is 
employed here to obtain solutions, which are periodic with respect to distance, 
describing the phenomenon called roll-waves for water flow along a wide inclined 
channel.  The soliton representation is not so surprising in this case because Dressler in 
1949 studying the roll-waves motion of the shallow water in inclined open channels  
found an equivalent form expressed as a cnoidal wave for a flow subject to the Chezy 
turbulent resisting force. The last section presents the results of Shinbrot concerning the 
effect of surface tension on the solitary waves. 

The chapter  refers to the works by Munteanu and Donescu (2002), Chiroiu et al.
(2001b), Yih (1994) and Shinbrot  (1981).  
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9.2   A plate with Cantor-like structure 
We consider a composite plate formed by alternating elements of nonlinear isotropic 

piezoelectric ceramics (PZ) and a nonlinear isotropic epoxy resin (ER), following a 
triadic Cantor sequence (Figure 9.2.1). Cr ciun, Alippi and coworkers constructed an 
artificial one-dimensional Cantor structure.  The Cantor set is an elementary example of 
a fractal. The Cantor set is generated by iteration of a single operation on a line of unit 
length. The operation consists of removing the middle third from each line segment of 
the previous set. As the number of iterations increases, the number of separate pieces 
tends to infinity, but the length of each one approaches zero. The property of invariance 
under a change of scale is called self-similarity and is common to many fractals. In 
contrast to a line with its infinite number of points and finite length, the Cantor set has 
an infinite number of points but zero length.  The dimension of the Cantor set is less 
than 1. Denoting by  the number of segments of length N , the dimension of the 
Cantor set is given by Baker and Gollub 

0
log log 2 log 2lim lim 1

log(1/ ) log 3log3

n

n n

Nd .

We consider the same sample using a triadic Cantor sequence up to the fourth 
generation (31 elements). A rectangular coordinate system  is employed. The 
origin of the coordinate system is located at the left end, in the middle plane of the 
sample, with the axis  in-plane and normal to the layers and Ox out-plane, normal 
to the plate. The length of the plate is , the width of the smallest layer is  and the 
thickness of the plate is . The width of the plate is d . Let the regions occupied by the 
plate be V  where V and V are the regions occupied by PZ and ER layers. 
The boundary surface of V  be  partitioned in the following way 

1 2 3Ox x x

31Ox

h
l

e

/ 81l

ep VV p

S

,1 1
p eS S S S2 1 1 2 0p eS S S ,

where

,  is the boundary surface of 1 3 1{ / 2, 0pS x h x }l pV ,

,  is the boundary surface of V ,1 3 1{ / 2, 0eS x h x }l

}

e

.2 1 1 3{ 0, , / 2 / 2S x x l h x h

Let the unit outward normal of  be the interfaces between constituents be S in peI .
An index followed by a comma represents partial differentiation with respect to space 
variables and a superposed dot indicates differentiation with respect to time. Throughout 
the present paper repeated indices denote summation over the range (1,2,3).  

In order to investigate theoretically the existence of multiple fracton and multiple 
phonon mode regimes in the displacement field for a piezoelectric plate with Cantor-
like structure it is customary to consider: first, the nonlinear geometrical relations 
between the components of deformation and those of the displacement vector; second, 
to retain in the constitutive equations besides the linear terms also the nonlinear terms of 
lowest order. So, we have considered the piezoelectric material to be nonlinear and 
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isotropic, characterized by two second-order elastic constants, three third-order elastic 
constants, two (linear and nonlinear) dielectric constants and two (linear and nonlinear) 
coefficients of piezoelectricity. In our first attempt to investigate the existence of 
multiple fracton and multiple phonon mode regimes, we considered the case of 
anisotropic piezoelectric material with monoclinic symmetry and we neglected the 
third-order constants. In spite of the bigger number of elastic, dielectric and 
piezoelectric constants, the results did not show clearly the existence of localized and 
extended modes regimes. In conclusion, a quantitative knowledge of the second-order 
material constants is essential for the analysis of the fracton and phonon mode regimes 
for a piezoelectric plate ( oós).  The dashed regions are occupied by piezoelectric 
ceramic of total volume pV and boundary external surface 1

pS . The white regions are 
occupied by epoxy resin of total volume V and boundary external surface .e

1
eS

Figure 9.2.1  The plate with Cantor-like structure.

The lateral surfaces are  and the interfaces between constituents 2S peI . In the 
following, the basic equations are written for piezoelectric and non-piezoelectric 
materials: 

a) Piezoelectric material (PZ). 
1. The quasistatic motion equations 

, ,( )p
i ij k i kju t u t j ,  in pV ,                                    (9.2.1) 

, 0i iD , , 0i iE ,  in pV ,                                   (9.2.2)

where p is the density, is the displacement vector, t is the stress tensor, is the 
electric induction vector, is the electric field and 

iu

iE
ij iD

is the electric potential. 
2.  The constitutive equations

22 3

,

p p p p p
ij kk ij ij il jl kk ij kk ij

p p p p
k k ij k k ll ij k k ll ij k k ij

t A B

e E e E e E e E

C
   in pV ,   (9.2.3) 
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2 21 1
2 2

p p p p p
i i i i kk i kk iD E E e e e 21

2 kl ,  in pV ,                      (9.2.4) 

, , , ,
1 (
2ij i j j i l i l ju u u u ) ,  in V ,                              (9.2.5) 

where is the strain tensor, ij ,p p are the Lam  constants, , ,p p pA B C are the Landau 

constants, ,p p
i ( 3 2 1

p p p ) are the linear and nonlinear dielectric constants, 
p
ie 1 2 3( )p p pee e , p

ie 1 2 3( )p pe pe e  and p
ie 1 2( 3 )p p pe

2
3E

e e
2 2 2

1 2E E E
 are the linear and 

nonlinear coefficients of piezoelectricity and .
3. The boundary conditions

ij j ij j it n T n T ,  on 1
pS ,                              (9.2.6) 

,i iD n d ,  on 1
pS ,                              (9.2.7) 

where iT , d , are quantities prescribed on the boundary and ijT is the Maxwell stress 

tensor. We consider that a periodical electric field 0 exp(i )i iE E t is applied to both 
surfaces of the plate to excite the Lamb waves, over a wide frequency range 
(10 ).MHz / 2 5MHz

The action of this field is described by Maxwell stress tensor ijT  (Kapelewski and 
Michalec)

21 1(
4 2i j ijij E E )T E ,  on 1

pS .                       (9.2.8) 

The boundary conditions (9.2.6)–(9.2.7) on 1
pS are rewritten as

2 2
13 1 3 33 3 1

1 1, (
4 8

t E E t E E ) ,  on 1
pS ,                     (9.2.9) 

3 3 1 1, ,D E E E  on 1
pS .                            (9.2.10) 

b) Non-piezoelectric material (ER). 
4.  The motion equations  

,   in V .                                (9.2.11) ,
e

i iju t j

C

e

5.  The constitutive equations
22 3e e e e e

ij kk ij ij il jl kk ij kk ijt A B ,  in V .   (9.2.12) e

6.  The boundary conditions

0ij jt n ,  on ,                              (9.2.13) 1
eS
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or

t t13 31 0 ,    on .                          (9.2.14) 1
eS

7. The boundary conditions on 2S

1 3 0u u ,  on .                                   (9.2.15) 2S

8. The conditions on interfaces between constituents peI .
At the interfaces between constituents the displacement and the traction vectors are 

continuous.

[ ] , [ ]1 3[ ] 0u u 11 13[ ] 0t t , on peI ,                         (9.2.16) 

where the bracket indicates a jump across the interface and  k 1,3 .
The 3D problem can be reduced to a 2D problem, if we consider all quantities 

independent with respect to 2x , and 2 0u , 2 0E .
We have 

u , u1 1 1 3( , , )u x x t 3 3 1 3( , , )u x x t ,  in V ,                   (9.2.17) 

                              , 1 ,E 1 3 ,E 3 , 1 3( , , )x x t ,  in pV .             (9.2.18)

We express the elastic potentials and

1 ,1 ,u 3 , u3 ,3 ,1 ,  in V ,                        (9.2.19) 

in the form     

3 3[ cos( ) sin( )] ( , )1A x B x x t ,

,    in 3 3[ cos( ) sin( )] ( , )C x D x x1 t pV ,            (9.2.20)

3 3[ cos( ) sin( )] ( , )E x F x x1 t

1

,

and

3 3
ˆ ˆˆ ˆ[ cos( ) sin( )] ( , )A x B x x t ,

3 3
ˆ ˆ ˆˆ[ cos( ) sin( )] ( , )C x D x x1 t ,  in V ,               (9.2.21)e

where and are unknown functions.,
Kapelewski and Michalec obtained the analytical proof of the existence of solitary 

surface waves for a free nonlinear semi-infinite isotropic piezoelectric medium. 
Following this work we have observed that the governing equations (9.2.1)–(9.2.2) and 
(9.2.11) can support for ,, , ˆ ˆ, and ˆ certain particular functions and
having the form 

,
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0sech( ) , 20
2
0

, 0
0

sh( )( 1)sech( ) exp( ) 1 ,    (9.2.22)

where 1x vt , the velocity of wave. v

This result plays an essential role in our strategy to determine the functions  and 
 by using the cnoidal method.  Using the cnoidal representations, the displacement 

field in 

,

pV and V is given by e

1 3 3 0

3 3 0

[ cos( ) sin( )] [log ]
[ sin( ) cos( )] [log ] ,

n

n

u A x B x
C x D x

                   (9.2.23) 

3 3 3 0

3 3 0

[ sin( ) cos( )] [log ]
[ cos( ) sin( )] [log ] ,

n

n

u A x B x
C x D x

             (9.2.24) 

in pV , and

1 3 3 0

3 3 0

ˆ ˆˆ ˆ[ cos( ) sin( )] [log ]
ˆ ˆ ˆ ˆ ˆˆ[ sin( ) cos( )] [log ] ,

n

n

u A x B x

C x D x
                  (9.2.25) 

3 3 3 0

3 3 0

ˆ ˆˆ ˆ ˆ ˆ[ sin( ) cos( )] [log ]
ˆ ˆ ˆˆ[ cos( ) sin( )] [log ] ,

n

n

u A x B x

C x D x
            (9.2.26) 

 in V .  The electric field in e pV  is given by 

1 3 3 0[ cos( ) sin( ) [log ]nE E x F x ,                   (9.2.27) 

3 3 3 0[ sin( ) cos( ) [log ]nE E x F x .                  (9.2.28) 

In these expressions, the prime means the differentiation with respect to 1x x . We 

have used here the following representations for the functions ,  and 

2

0 1 22( , ) log ( , ,..., )n nx t
x

,

2

0 1 22( , ) log ( , ,..., )nx t
x n ,                             (9.2.29) 

2

0 1 22( , ) log ( , ,..., )nx t
x n ,

where 1x x  and  and 0 0, 0  constants. In (9.2.29), 1 2( , ,..., )n n is theta-
function (1.4.14) 



INTRODUCTION TO SOLITON THEORY: APPLICATIONS TO MECHANICS248

1 2
1 , 1

1

1( , ,..., ) exp( i )
2

i

n N

n n j j i i
J i jM

i n

j jM M B M ,

and j j jk x t j j n, 1 , where jk  are the wave numbers, j  the frequencies 
and j  the phases. The relations (9.2.29) allow the representations 

int( , ) ( ) ( )cnx t , ,int( , ) ( ) ( )cnx t int( , ) ( ) ( )cnx t , (9.2.30) 

where the first terms result from 
2

2 log ( )G
x

, and the second terms from 

2

2

( , )log(1 )
( )

F C
x G

, in accordance to the theorem 1.4.1.                        

The solutions (9.2.23)–(9.2.28) must satisfy the set of equations (9.2.1)–(9.2.10) in 
pV , and the set of equations (9.2.11)–(9.2.16) in V .e

9.3    The eigenvalue problem 
In classical elasticity, there are two types of variational principles for the free 

vibration of an elastic body. One is associated with the potential energy, the other with 
the complementary energy. A variational formulation for the free vibration of a 
piezoelectric body is given by Yang, which is related to the internal energy.

The eigenvalue problem for the resonance of the plate is 

, ,( )p
i ij k i kju t u t j ,  in pV ,

, 0i iD , , 0i iE ,   in pV ,

22 3

,

p p p p p
ij kk ij ij il jl kk ij kk ij

p p p p
k k ij k k ll ij k k ll ij k k ij

t A B

e E e E e E e E

C
  in pV ,

2 21 1
2 2

p p p p
i i i i kk i kk iD E E e e e 21

2
p

kl ,     in pV ,

t A ,  in V ,22 3e e e e e
ij kk ij ij il jl kk ij kk ijB C

0

e

,( )ij k i kj jt u t n ,   on ,S 0, 0i iD n ,    on 1
pS ,

,  in V ,, ,( )e
i ij k i kju t u t j

e
1 3 0u u ,    on ,            (9.3.1) 2S

1 3[ ] [ ] 0u u , 11 ,1 1 13 ,3 3[ ] [ ]k k k kt u t t u t 0 ,   on peI ,
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, , , ,
1 ( )
2ij i j j i l i l ju u u u ,  in V , , 1,i j 3 .

For the eigenvalue problem (9.3.1) for the resonance of the plate we give a 
formulation of a variational principle by introducing the Yang functional 

( , , , , )
( , , , , )

( )
i ij ij i

i ij ij i
i

u t D
u t D

u
,                                (9.3.2) 

where

2 1

, ,( , , , , ) [ ( , ) ]d

d d ,
p

i ij ij i ij i j i i ij i ij ij
V

ji j i i i
S S

u t D t u D U D t V

t n u S D n S
        (9.3.3) 

1( ) d
2i i i

V

u u u V ,                                    (9.3.4) 

and U the internal energy 

1( , ) [ ]
2ij i ij ij i iD t E DU U  .                        (9.3.5)

For free vibrations, the three displacement functions are expressed as (9.2.23)–
(9.2.26) and the components of the electric field by (9.2.27)–(9.2.28).

The stationary condition on  gives the eigenvalue problem (9.3.1) with the 
stationary value of .  The values of 2 2  are sought corresponding to which nontrivial 
solutions of (9.3.1) exist. The angular frequency  is related to he circular frequency 

 by .f 2 f

9.4    Subharmonic waves generation 
Given a set of measured frequencies / 2n nf , 1, 2,...,n N , of the plate we aim 

at determining the unknown system parameters 

P { jk , j , j , ,ijB , ,A B C , ,, ,D E F ˆ ˆˆ ˆ, , ,A B C D , , , , ˆˆ , , ,i j

necessary to analytically construct the solutions of the set of governing equations.
The inverse problem we want to consider is, given the solutions representations 

(9.2.23)–(9.2.28), to find the 55 parameters  given by (9.4.1) by inversion of the 
measured natural frequencies of the plate. Because we do not have an experimental set 
of eigenfrequencies we will use for the inverse problem the set of eigenfrequencies 
computed from the direct problem (9.3.2)–(9.3.5). 

P

To determine the parameters  from the measured natural frequencies data by the 
nonlinear least-squares optimization technique, an objective function 

P
 must be chosen 

that  measures the agreement between theoretical and experimental data 

1,2,3,4,5 }, (9.4.1) 
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,                          (9.4.2) 2

1
( ) {[ ( )] }

N
e

i i
i

P f f P min

where are the measured i -th eigenfrequency, the corresponding model prediction, 
and  the number of measurements of frequencies , with 

e
if if

N N K K  the number of 
unknown parameters which are given by  (for our case this number is 55).  P

The primary goal of the optimization procedure is the minimization of the objective 
function , where are the design variables which make up the solutions of the 
problem.  The signs “ ”, “ ” mean the minimization or maximization of 
the objective function with some required precision: suppose six decimal places for the 
variable values are desirable. To measure the accuracy of the identification of  we 
introduce an error indicator  to estimate the verification of the governing equations, 
that is

( )P P
min max

P

6

1
( )opt k

k
P ,                                             (9.4.3) 

2 2 2
1 , , ,{( ) ( ) }d

p

p p
i ij j i i i i

V

u t D E V ,                       (9.4.4) 

,                                   (9.4.5) 2
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e
i ij j
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u t Vd e
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3 13 1 3 33 3 1 3 3 1 1
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S
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 ,                                          (9.4.7) 
1

2 2
4 13 33[ ]d

e

e

S

t t S1

2

]d

 ,                                          (9.4.8) 
1

2 2
5 1 3[ ]d

eS

u u S

2 2 2 2
6 1 3 11 13[

pe

pe

I

u u t t I ,                           (9.4.9) 

where  is the solution of the inverse algorithm (9.4.2),  are given by (9.2.3) in optP ijt
pV and (9.2.12) in V ,  are given by (9.2.4) and e

iD ij  by (9.2.5).
We define fitness as follows 

,

0F  , .                                     (9.4.10) 2
0

1
( )

m
e

i
i

f

As the convergence criterion of iterative computations we use the expression Z to
be maximum  
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0
10

1 log
2

Z  max .                               (9.4.11) 

The quality of the model depends on the maximum value of the function Z and the 
associated value of .  The integrals (9.4.4)–(9.4.8) can be analytically computed. ( optP )

We use the genetic algorithm described in Chapter 7, in this case the binary vector 
having 55 genes to represent the real values of parameters given by (9.4.1).  P

The numerical computation of theta-function is drastic by noting that the number of 
complex exponentials is (2 1) 1nM  (Osborne). For 5M , 5n  this number is 

 and for ,  this number is . We consider here the case of 
five degrees of freedom solutions 
161050 10M 100n

5n

1310 2

 and 5M ( 5 nM 5)

h

. The calculus was 
carried out for l = 67.5mm and = 0.3mm. The material constants are shown in Table 
9.4.1. The calculus was carried out for l = 67.5mm and = 0.3mm. The material 
constants are shown in Table 9.4.1 (

h

0 0 0 1 ).

Table 9.4.1  The material constants for piezoelectric ceramics and epoxy resin (Rogacheva) 

piezoelectric ceramics epoxy resin 
71.6 GPa 42.31 GPa 
35.8 GPa 3.76 GPa 

A -2000 GPa 2.8  GPa 

B -1134 GPa 9.7  GPa 

C -900 GPa -5.7 GPa 
4.065 nF/m - 

1
2.079 nF/m - 

1e -0.218 nm/V -
1e e -0.435 nm/V - 

7650 Kg/m 3 1170Kg/m 3

Table 9.4.2  Estimation results: computed eigenfrequencies 

/ 2n 100.2 
0.05 

167
0.01 

217.1 
0.03 

250.5 
0.1 

334
0.01 

367.4 
0.01 

417.5 
0.1 

501
0.02 

584.5 
0.03 

617.9 
0.01 

668
0.03 

835
0.06 

935.2 
0.06 

1085.5 
0.1 

1169
0.07 

1269.2 
0.02 

1503
0.05 

1670
0.4 

1770.2 
0.2 

1987.3 
0.12 

2120.9 
0.02 

2250
0.1 

2471.6 
0.3 

2655.3 
0.01 

2672
0.01 

2972.6 
0.2 

3340
0.4 

3540.4 
0.04 

3577.4 
0.02 

3690.7 
0.01 

3774.2 
0.15 

3974.6 
0.07 

3991.3 
0.24 

4241.8 
0.07 

4250
0.03 

4291.9 
0.06 

4322
0.04 

4525.7 
0.2 

4655
0.1 

4698.6 
0.02 

4766
0.2 

4798.4 
0.03 

4826.3
0.01 

4856
0.04 

4881.7 
0.04 

4899.4 
0.01 

4901
0.04 

4943.2 
0.1 

5003.5 
0.1 

5019.4 
0.15 

5122.3 
0.07 

5146.6 
0.16 

5233
0.1 

5256.9 
0.3 

5298.6 
0.1 

5308
0.06 

5310.6 
0.02 

5319.5 
0.5 

5344
0.15 

5367.7 
0.51 

5401.9 
0.55 

5423
0.01 

5436.7 
0.01 
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The eigenfrequencies  are determined from the stationary condition on 
(9.3.2). Table 9.4.2 shows the computed frequencies and the errors obtained by the 
eigenvalue problem.  

/ 2n

Resonant vibration modes are excited by applying an external electric field 
0

1 3 0exp(i )E E E t on both sides of the plate with n

63

. The undetermined 
system parameters  are computed by using a genetic algorithm (Chiroiu C. et al.
2000). The number of the measured eigenfrequencies is 

P
N  Table 9.4.2). 

The genetic parameters are: number of populations = 45, ratio of reproduction = 1, 
number of multi-point crossovers = 1, probability of mutation = 0.25 and maximum 
number of generations = 550.  The genetic algorithm exhibits very good convergence 
and accuracy. For example, for 0  the maximum values of Z after 344 iteration is 

 and 4
max 0.51 10Z 6100.52  in the case of normal modes / 2 =334 kHz, and 

 and 4
max 0.33 10Z 6100.34  after 275 iteration in the case of / 2 =501 kHz. 

The minimum value for maxZ was found to be / 4 and the maximum value for 
for . Number of iterations varies from 155 to 500.  5max 0.11 10 0

In all computations, the measured eigenfrequencies are computable from the direct 
problem.  A measurement noise has been artificially introduced by multiplication of the 
data values by 1 ,  being random numbers uniformly distributed in [ , , with 

. Results for the case of normal modes 
r

30
r ]

1 210 , 10 , 1 / 2 =334 kHz are 
displayed in Table 9.4.3. 

Table 9.4.3  Maximum value of Z  and number of iterations for the normal case / 2 =334 kHz. 

0 110 210 310

maxZ 40.33 10 20.256 10 30.193 10 40.673 10
60.52 10 20.119 10 40.452 10 60.92 10

number of 
iterations

344 386 277 289

Table 9.4.3 shows that maxZ varies linearly with  and  quadratically with .
Other cases have shown also a linear variation of maxZ and a quadratic variation of 
with respect to measurement noise. 

In Figure 9.4.1 the admittance curve ( /k  vs. / 2 ) in the linear regime 
( 0 0.1VE ) marks by peaks the frequencies n of the modes. The agreement 
between the eigenfrequencies given by this curve and by the eigenvalue problem results 
(Table 9.4.2) is noted to be excellent. On comparison of the results given by the 
admittance curve (Figure 9.4.1) with the results obtained from the similar experimental 
curve derived by Alippi and Cr ciun, the deviation between them is found to be 5–15% 
for low natural frequencies, and less than 4% for high natural frequencies.  If 0E  is 
increased above a threshold value 0

thE = 5.27 V the / 2  subharmonic generation is 
observed. Note that Alippi and Cr ciun obtain in the Cantor-like sample typical values 
of the lowest threshold voltages of 3–5 V. The amplitude of waves is calculated at the 
surface of the plate as a function of 0E .



INTERMODAL INTERACTION OF WAVES 253

Figures 9.4.2–9.4.4 show the displacements of the normal modes / 2 =334 kHz, 
501 kHz, 835 kHz and respectively of the subharmonic modes / 4 =167 kHz, 250.5 
kHz, 417.5 kHz. Two kinds of vibration regimes are found: a localized mode (fracton) 
regime represented in Figure 9.4.5 for / 2 =1169 kHz, 2672 kHz and 3340 kHz and 
an extended vibration (phonon) regime represented in Figure 9.4.6 for = 4175 
kHz and 4250 kHz.  A sketch of the plate geometry is given on the abscissa (dashed, 
piezoelectric ceramic and white, epoxy resin).

/ 2

The fracton vibrations are mostly localized on a few elements, while the phonon 
vibrations essentially extend to the whole plate. In the case of a periodical plate the 
dispersion prevents good frequency matching between the fundamental and appropriate 
subharmonic modes. For the homogeneous plate the mismatch / 2n  is due to the 
symmetry of fundamental modes with respect to x . Only symmetric odd  can induce 
a subharmonic, but never  coincides with a plate vibration mode.   

n
/ 2

For a Cantor plate, we have obtained qualitatively the same result as Cr ciun et al.:
given a normal mode , for excitation at n n , the value of the expected threshold 

, i. e. the ability of generating the thE / 2  subharmonic, is determined by the existence 
of a normal mode with: (i) small frequency mismatch / 2n , and, (ii) large spatial 
overlap between the fundamental and subharmonic displacement field.  

 Concerning the values of amplitudes, the results obtained by us verify experimental 
predictions of resonant amplitudes with accuracy better than six percent for similar 
fundamental modes.  

Figure 9.4.1  The admittance–frequency curve for the Cantor plate. 

Figure 9.4.2  The amplitudes of the surface displacement of the normal mode / 2 = 334 kHz and of the 
subharmonic mode / 4 = 167 kHz.
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Figure 9.4.3  The amplitudes of the surface displacement of the normal mode / 2 = 501 kHz and of the 
subharmonic mode / 4 = 250.5 kHz.

Figure 9.4.4  The amplitudes of the surface displacement of the normal mode / 2 = 835 kHz and of the 
subharmonic mode / 4 = 417.5 kHz.
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Figure 9.4.5  The normal amplitudes for three localized vibration modes ( / 2 =1169 kHz, =2672
kHz and 

/ 2
/ 2 =3340 kHz). 

Figure 9.4.6  The normal amplitudes for two extended vibration modes ( / 2 =4175 kHz and =4250
kHz.

/ 2

9.5    Internal solitary waves in a stratified fluid 
Consider an incompressible fluid stratified in density between two horizontal 

boundaries spaced at distance  apart.  The wave motion takes place in the h ( , )x y  plane 
of a Cartesian system of coordinates with the origin in the lower boundary and 
vertically upward. We review the Yih results in the case of an exponential stratification. 
The Euler motion equations are given by 

y

D( )
D x

u p
t

,                                               (9.5.1) 
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Dv( ) (
D yp g

t
) ,                                      (9.5.2) 

where  and v  are velocity components in the direction of positive u x and ,  is the 
pressure,

y p
(y)  is the density in the undisturbed fluid,  the density perturbation and g

the gravitational acceleration, and 

D
D

u v
t t x y

.                                         (9.5.3) 

The incompressibility equation 

D ( )
Dt

0 ,                                             (9.5.4) 

 allows the continuity equation to be written as 

0x yu v .                                                  (9.5.5) 

Therefore, the components of velocity are expressed with respect to the stream function  

yu , xv .                                           (9.5.6) 

From (9.5.1) and (9.5.2) we have 

xx yyD( + ) Du Dv( ) ( )
D D Dy xp g

t t xp
t

.            (9.5.7) 

The equation (9.5.4) becomes 

D
D y xt

.                                                (9.5.8) 

Let us introduce now the dimensionless quantities  

xx
h

, yy
h

,
t g

t
h

,

h gh
,

0

,
0

,                               (9.5.9) 

and suppose that the density stratification is defined by 

0 exp( )y .                                         (9.5.10) 

Dropping the prime, the dimensionless  can be taken as 

exp( )y .                                         (9.5.11) 

The equations (9.5.7) and (9.5.8) are written in terms of dimensionless terms  

xx yyD( + ) Du Dv(1 ) ( )
D Dy y x xt t Dt

,            (9.5.12) 
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t x yu v x .                                       (9.5.13) 

  The solutions for the -th and -th modes of the equations (9.5.12) and (9.5.13) are, 
to the lowest order

m n

2 1( 1) sech [ ( )]{sin sin }
2

m
m m ma x t m y y

m
m my m m, ,  (9.5.14) 

2 1( 1) sech [ ( )]{sin sin }
2

n
n n na x t n y y n

n
y n n, n ,   (9.5.15) 

2

9
m

m
m a

,  for odd ,m
2

2

36
m

m
m a ,  for even ,                 (9.5.16) m

and similarly for .2
n

Consider the simple case when 0 . In this case, let us assume  

,m n
ˆ

m n .                           (9.5.17) 

Neglecting the higher order terms, the linearised forms of (9.5.12) and (9.5.13) are    
2 2 2ˆ ( )yyt x n m W ,

ˆ ( )x t n m W ,                                        (9.5.18) 

sin( ) sin( )ny mx my nxW P n m y Q n m y ,

2 2

2 2

1 1( 1) { sech [ ( )] sech [ ( )]

1 1tanh[ ( )] sech [ ( )]sech [ ( )]

1tanh[ ( )] },

m n
m n m n m

m n m n

n

P a a n x t x t
n m

1x t m x t x t
m m

x t
n

n
     (9.5.19) 

2 2

2 2

1 1( 1) { sech [ ( )] sech [ ( )]

1 1tanh[ ( )] sech [ ( )] sech [ ( )]

1tanh[ ( )]}.

m n
m n m n m

m n m n

n

Q a a n x t x
n m

1

t

x t m x t x t
m m

x t
n

n

From (9.5.18) and (9.5.19) we see that we can take 

sin( ) sin( )n m n mf n m y f n m y ,

ˆ sin( ) sin( )n m n mg n m y g n m y .                        (9.5.20) 
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We treat only the mode, since the (n m) )(n m mode is similar.  The terms 
containing  in (9.5.18) are sin( )n m y

2 2 2 2 2
( ) ( )( ) ( )n m t n m xn m f g n m P ,

( ) ( ) ( )n m x n m tf g n m P .                                  (9.5.21) 

By eliminating n mg  from (9.5.21), we have 
2 2 2 2 2

( ) ( )( ) ( ) ( )n m tt n m xx t xn m f f n m P n m P ,               (9.5.22a) 

and similarly,  by eliminating n mf  from these equations 
2 2 3 3 2 2 2

( ) ( )( ) ( ) ( )n m tt n m xx t xn m g g n m P n m P .          (9.5.22b)

The hyperbolic equations (9.5.22) can be solved by integration along the 
characteristics. We solve only (9.5.22a), the other equation being solved in a similar 
way. With new variables 

1
( )

x t
n m

, 1
( )

x t
n m

,                         (9.5.23) 

the equation (9.5.22a) yields 

( )4 [2 2n mf mP ]nP .                                   (9.5.24)

By integrating from , we obtain t

2 dn mf mP n dP ,                                    (9.5.25)

or
2

2
1 2

( ) ( )4 ( 1) ( )
2 2

m n
n m m n m m

n n m n n mf a a n n m I I m
n m n m

H ,      (9.5.26) 

where

2 2
1

1 1sech [ ( )] sech [ ( )] tanh[ ( )]dn m mI x t x t x
n m

1 t
m

,

2 2
2

1 1sech [ ( )] sech [ ( )] tanh[ ( )]dn m mI x t x t x
n m

1 t
m

,     (9.5.27) 

2 21sech [ ( )] sech [ ( )]m n
1H x t x

m n
t .

The computations have shown that integrals 1I  and 2I  are convergent. In particular, 
for , we obtain 2n m
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2 2
1

1 18 sech { ( )] tanh[ ( )] tanh[ ( )]}m m n
1I m x t x t x

m m
t

n
.     (9.5.28) 

The interaction of waves can be discussed looking at (9.5.26).  The first part in 
(9.5.26) may be eventually independent of  and represents a wave propagating in the 
positive direction of x . The second term may be independent of  and represents a 
wave propagating in the opposite direction. The last term in (9.5.26) is zero as t
increases, since it is the product of two squares of the sech function with different 

arguments. These waves propagate with velocities 1
( )n m

.

It is convenient to discuss the interaction of waves for the particular case of .   
These waves may propagate in the same direction or in opposite directions. The result 
of interactions of waves are two pairs of solitary waves, each pair consisting of two 
opposite directions propagating solitary waves of the same mode.  The modes of the two 
pairs are different from each other, and are different from the m-th and n-th modes of 
the waves.  The original waves propagate after interaction without changing their 
identities, but only the -wave suffers a shift of phase.

2n m

m
In the same manner, the analysis may be applied for the general case of .  The 

interaction of more than two waves can be dealt with pair by pair (Hirota and Satsuma).   
0

9.6  The motion of a micropolar fluid in inclined open channels
Consider a two-dimensional flow of a micropolar, isotropic, incompressible, viscous 

fluid in a wide channel over a rigid bottom (Chiroiu et al. 2003b). We have chosen a 
wide channel to be sure that the motion will be two-dimensional only. The x-axis is 
horizontal and the bottom is given by h(x). The channel bed is linear and is inclined at 
an angle  below the horizontal, that is 0 y mx , with tan 0m

0

 (Figure 
9.6.1). The vertical distance of the surface above the x-axis is denoted by (x). The 
fluid domain  is a two-dimensional strip : , ( )x y x

:S ( )h x mx
, bounded 

by a free surface , and a lower rigid bottom : y .
In the shallow flow the vertical dimensions are small compared to the horizontal 

dimensions. The motion equations of a micropolar, viscous fluid are given by Eringen 
(1966, 1970): 

grad grad ( )curl curl 
(2 )grad div 2 curl ,

v v v X v
v w

                 (9.6.1) 

grad ( ) curl curl 
(2 )grad div 4 2 curl ,

Jw Jv w Y w
w w v

                      (9.6.2) 

where 1 2( , )X X X  is the exterior body force, 1 2( , )Y Y Y  is the exterior body couple, 
 is the thermodynamic pressure, J  is the inertia tensor density, v 1 2( , )v v  is the 

velocity vector v u
t

, 1 2( ,u )u u  the displacement vector, 1( , 2 )  the 
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microrotation vector,  the microrotation velocity 1 2( , )w w w w
t

,  the fluid 

density. The superposed dot indicates the partial differentiation with respect to time 

a
t

a . In (9.6.1) and (9.6.2)  and  are the classical viscosities coefficients of the 

Navier–Stokes theory. The constants , ,  and  are the micropolar coefficients of 
viscosity.

0,
0,

2
2

v

w

 0

( k kp v

ij

)

, ij j i

ij ij

kl ln tk kn

lt l

kn 1,k

2v

( ,v x )t w
0 0
k kw

0

v v w

The elastic coefficients must fulfil the condition (Eringen 1970) 
3 0, 0,
3 0, 0.

                          (9.6.3) 

Equations (9.6.2) and (9.6.3) are six equations with unknown vector fields the 
velocity  and microrotation . These equations must be supplemented by the 
equation of continuity

v

div( ) 0 .                                    (9.6.4) 

Here we consider an incompressible fluid with  constant. From (2.5) we obtain 

div v .                                           (9.6.5) 

In this case, the thermodynamic pressure  must be replaced by an unknown 
pressure  to be determined through the solution of each problem.  p

The constitutive relations are 

, , ,( ) ( ) 2ij ij j i i j kij kv v w ,           (9.6.6) 

,( ) ( )k k i jw w ,                         (9.6.7) ,w

where is the stress tensor and  is the couple stress tensor. 
The field of equations (9.6.1), (9.6.2) and (9.6.5) are subject to certain boundary and 

initial conditions: 
–    Traction conditions on 

 , kl l ,                                     (9.6.8) 

where  are the surface traction and   the surface couple acting on . Here 
,  are the unit vectors of the coordinate system 2 ( , )x y .

     –    The condition for a particle at the surface  to remain at the surface 

1 ,xv .                                             (9.6.9) 

–   Velocity conditions of adherence of the fluid to S
0 , ( , ) ,k k kv x t w                         (9.6.10) 0

k

where x S  and v   the given values for velocity and microrotation velocity.  ,
    –    The initial conditions at t

0 0, ,w  .                                (9.6.11) 0
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We consider that 
2 2

1 1 1 1
1 2

| | | | , ,r v v r v vX X
R 1 2 0g Y Y  in  

(9.6.1) and (9.6.2). Therefore, equations (9.6.1), (9.6.2) and (9.6.5) are then 
2

1 1
1 1 1, 2 1, , 1

| |( )x y x
r v vv v v v v p v ,               (9.6.12) 

,                      (9.6.13) 2 1 2, 2 2, , 2( )x y yv v v v v p v g

xx1 1 1, 2 1, 1,

2, 1, 1

(2 )
( ) ( ) 4 ,

x y

xy yy

Jw Jv w Jv w w
w w w

                       (9.6.14) 

2 1 2, 2 2, 2,

1, 2, 2

(2 )
( ) ( ) 4 ,

x y

xy xx

Jw Jv w Jv w w
w w w

yy                        (9.6.15) 

2, 1, 0x yv v ,                                                  (9.6.16)

2, 1, 0x yw w ,                                                 (9.6.17)

1, 2, 0x yv v .                                                 (9.6.18) 

The comma represents the differentiation with respect to the shown variable. In 
(9.6.13), g  is the constant gravitational acceleration. In the right side of (9.6.12) the 

term 
2

1r v
R

1| |v

2r

 represents the resisting body force always acting opposite to that of the 

flow, where is a constant depending upon the roughness of the channel walls and R is 
the hydraulic radius.

Figure 9.6.1  Geometry of the flow (Dressler). 

According to this formula, the turbulent fluctuations exert on the main flow a 

resistive body force at every point of magnitude 
2 2

1r v
R

. Since the most flows in practice 

are highly turbulent we take account of the resistive force due to the momentum 
transport of the secondary flow exerted on the average flow at each point. The 
resistance effects due to the dynamic viscosity of the water are neglected. The above 
expression of the resisting force was given by Chezy (Dressler). The hydraulic radius is 
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defined as the ratio of the area of a cross-section of the water normal to the channel to 
its wetted perimeter, that is that part of the perimeter excluding the free surface of the 
water. The Chezy formula expresses the fact that the resistance will be greater in 
shallow regions where all of the water is closer to the rough boundary. The Chezy 
formula is valid only for uniform flows, and although it is used for non-uniform flows 
when the flow varies slowly with respect to x, y and t. In our case R = . In  (9.6.12)–
(9.6.18) the unknown functions are , , 1,i iv w i 2 , andp .

1n t 12 1 22 2n n t

12 1 22 2n n 2

1 , 2xv v

0 0 0
2 1 1, ,v w w

1 10 2 2,w w w

2, w

0

2

2

2

H
L

, , ,
gx y

L H L

1vV1, ,pP
H gH gH

d

2 1 2
2 1 2, ,

/ /
H v w HV W W
L gH g H g

w
HL

2

LJ

We attach to (9.6.12)–(9.6.18) the conditions (9.6.8)–(9.6.11) 

,11 1 21 2n 2 ,   on ,                      (9.6.19) 

,11 1 21 2 1n n ,    on ,                      (9.6.20) 

,   on ,                                  (9.6.21) 

0
1 1 2v v v w  on ,                  (9.6.22) S

 at t1 10 2 20 0, , ,v v v v w 0  .           (9.6.23) 

In (9.6.19)–(9.6.20) the stress and couple stress components are given by (9.6.6)–
(9.6.7).

Let the constant H  be a typical vertical dimension of the resulting flow, and  a 

typical horizontal dimension. Let 

L

 be a small positive parameter, which we will 

use for a perturbation procedure. New dimensionless variables are defined by 

H
t

, h
H

,

,                           (9.6.24) 

,
L gH L gH

, 2 r H
L

r ,

, ,
LJ gH LJ gH gH

.

In terms of the dimensionless variables (9.6.12)–(9.6.23) become 
2 2

1, 1 1, 1, , 2 1, 1, 1[ ( ) ] ( )Y V VV V P V V Y V Y r V 0 ,     (9.6.25) 

2, 1 2, 2, , 2 2, 2,[ ( ) 1] ( )V VV V P V V V 0 ,                (9.6.26) 



INTERMODAL INTERACTION OF WAVES 263

1, 1 1, 1, 1 2 1,

1, 2,

[ (2 ) 4 ]

( ) ( ) 0,

W V W W W V W

W W
                      (9.6.27) 

2, 1 2, 2, 2 2 2,

2, 1,

[ ( ) 4 ]

(2 ) ( ) 0,

W V W W W V W

W W
                      (9.6.28) 

2, 1, 0V V ,                                                     (9.6.29) 

2, 1, 0W W ,                                                    (9.6.30) 

1, 2, 0V V ,                                                  (9.6.31)

11 1 21 2 1n n t 12 1 22 2 2n n, t ,  at Y ,                          (9.6.32) 

11 1 21 2 1n n , 12 1 22 2 2n n ,   at Y ,                   (9.6.33) 

, 1 ,( )Y V Y V2 ,  at Y ,                                   (9.6.34)

0 0 0
1 1 2 2 1 1 2 2, , ,v v v v w w w w0 ,  at d ,                (9.6.35)

1 2/V m H V ,  at d ,                                        (9.6.36)

 at t1 10 2 20 1 10 2 20 0, , , ,v v v v w w w w , 0 .      (9.6.37) 

We assume that the unknowns can be expressed as power series in terms of 

( )

0
( , , )k k

i i
k

V V 1,2i, , W W ( )

0
( , , )k k

i i
k

, 1, 2i ,

( )

0
( , , )k k

k
P P k, Y Y ( )

0
( , )k

k
.                     (9.6.38) 

We introduce (9.6.38) into (9.6.25)–(9.6.37) and the resulting coefficients of like 
powers of  are equated (Nayfeh, Kamel). We obtain 

1.  From the coefficients for 0

(0) (0) (0) (0) (0) (0) 2 (0)2
1 2 1, 1, 1( )L Y V V Y V r V 0 ,

(0) (0) (0) (0) (0)
2 2 2, 2,( )L V V Y V 0 ,

(0) (0) (0) (0) (0)
3 2 1, 1, 2,( ) ( )L V W W W 0 ,

(0) (0) (0) (0) (0)
4 2 2, 2, 1,(2 ) ( ) 0L V W W W ,
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(0) (0) (0)
5 2, 1, 0L V V , (0) (0) (0)

6 2, 1, 0L W W ,                   (9.6.39) 

(0) (0)
7 2, 0L V , (0) (0) (0)

8 2 0L V Y ,

(0) (0) (0)
9 0L P Y , (0) (0)

10 2 0L V d , (0) (0)
11 1 0L W d .

2.  From the coefficients for 1

(1) (0) (0) (0) (0) (0) (0) (0) (0) (0)
1 1, 1 1, 1, ,

(1) (0) (0) (0) (1) (0) (0) (1)
2 1, 2 1, 1,

(0) (0) (1) (1) (0) 2 (0) (1)
2 1, 1, 1 1

( )

( )

( ) 2 0,

L Y V V V Y Y V P Y

V V Y V V Y Y V

V V Y Y V r V V

(1) (0) (0) (0) (0) (0)
2 2, 1 2, 2, ,

(1) (0) (0) (1) (1)
2 2, 2 2, 2,

( ) 1

( ) 0,

L V V V V P

V V V V V

(1) (0) (0) (0) (0) (0) (1) (0)
3 1, 1 1, 1, 1 2 1,

(0) (1) (1) (1)
2 1, 1, 2,

(2 ) 4

( ) ( ) 0,

L W V W W W V W

V W W W

(1) (0) (0) (0) (0) (0) (0) (1)
4 2, 1 2, 2, 2 2 2,

(1) (0) (1) (1)
2 2, 2, 1,

( ) 4

(2 ) ( ) 0,

L W V W W W V W

V W W W

(1) (1) (1)
5 2, 1, 0L V V , (1) (1) (1)

6 2, 1, 0L W W , (1) (0) (1)
7 1, 2,L V

(1) (0) (0) (0) (1) (1)
8 , 1 , 2 0L Y V Y V Y , (1) (1) (1)

9 0L P Y ,

(1) (0) (1)
10 1 2/ 0L V m H V , (1) (1)

11 1 0L W d , (1) (1)
12 2 0L W d .

3.  From the coefficients for 2

(2) (0) (1) (0) (1) (0) (0) (1) (1) (0) (0)
1 1, 1, 1 1, 1 1,

(0) (1) (0) (1) (0) (1) (0) (1) (1) (0) (0) (2)
1 1, 2 1, 2 1, 2 1,

L Y V V Y V V Y V V Y

V V Y V V Y V V Y V V Y

(1) (0) (0) (1)
1, 1,

(1) (0) (0) (1) (0) (2) (0) (2) (0)
, , 2 1, 1,

(1) (1) (0) (2) 2 (1)2 (0) (2)
1, 1, 1 1 1

( ) ( )

( )

( ) ( ) ( 2 )

Y V Y V

P Y P Y V V Y Y V

Y V Y V r V V V 0,

(2) (1) (0) (1) (1) (0) (0) (2)
2 2, 1 2, 1 2, 2 2,

(2) (0) (1) (1) (1) (0) (2)
2 2, 2 2, 2, 1,( ) ( )

L V V V V V V V

V V V V V Y V 0,

V 0 ,  (9.6.40) 
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(2) (1) (0) (0) (0) (1) (2) (0)
3 1, 1 1, 1 1, 2 1,

(1) (1) (0) (2) (1) (1) (2)
2 1, 2 1, 1, 1 1,

(2)
2,

(2 ) 4 ( )

( ) 0,

L W V W V W V W

V W V W W W W

W

(2) (1) (1) (0) (0) (1) (0) (2)
4 2, 1 2, 1 2, 2 2,

(2) (0) (1) (1) (2) (1) (1)
2 2, 2 2, 2, 2 2,

(2)
1,

(2 ) 4 ( )

( ) 0,

L W V W V W V W

V W V W W W W

W

(2) (2) (2)
5 2, 1, 0L V V ,                                          (9.6.41) 

(2) (2) (2)
6 2, 1, 0L W W ,

(2) (1) (2)
7 1, 2, 0L V V ,

(2) (1) (0) (1) (1) (0) (2) (2)
8 , 1 , 1 , 2 0L Y V Y V Y V Y ,

(2) (2) (2)
9 0L P Y , (2) (1) (2)

10 1 2/ 0L V m H V ,

(2) (2)
11 1 0L W d , (2) (2)

12 2 0L W d .

9.7    Cnoidal solutions 
Consider that

( ) ( )log ( , , )
k

k k
i ikM f 1,2,...,k N, , i 1, 2,...,6 ,              (9.7.1) 

where 1 2 1 2( , , , , , )M V V W W P Y and
(1)

1( , , ) 1 expi if ,

(2)
1 2 1( , , ) 1 exp exp exp( )i i if 2i i ,                         (9.7.2) 

                                                            ………. 

( )

1 1 1
( , , ) 1 exp exp( ) exp( ) ....

N N N
N

i ji ji li ji li ri
j j l j l r

f  , 

with

ki ki ki ki kia b , 1, 2,...,k N , i 1, 2,...,6 ,            (9.7.3) 

and the dimensionless wave numbers, ,ki kia b ki  the dimensionless frequencies and  
 the dimensionless phases. We find that asymptotically the solutions become ki
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( ) 2sech ( 2 )k
i ik ki ki ki kM A a b t i ,                          (9.7.4) 

with , ,  as t  . 1, 2,...,k N 1, 2,...,6i
The functions  are periodic with the period ( )k

iM 2 ki . These solutions represent a 
linear superposition of soliton waves, which is a row of solitons, spaced  apart.2 ki

The 23 N parameters in this formulation ,,ki kia b ki and ki , ,
are computable by substituting (9.7.1) in (9.6.39)–(9.6.41).  

1,2,...,k N
1, 2,...,i 6
The parameters are defined by  

, k N{ , , , }ki ki ki kip a b 1,2,... , i 1, 2,...,6 .                        (9.7.5)

The wave numbers, frequencies and constant phases are also vectors 

11 12 13 6

11 12 13 5

11 12 13 6

11 12 13 6

( , , ,..... ),
( , , ,.... ),
( , , ,.... ),
( , , ,.... ).

ki N

ki N

ki N

ki N

a a a a a
b b b b b

                                           (9.7.6) 

The resulting system is a system of 36 equations to determine a number of 23 N
unknowns. Details of the genetic algorithm can be found in Goldberg. It is assumed the 
parameters  are discretized into discrete values with the step width 

. The set of parameters for arbitrary values 
can be expressed as 6N numbers  

p

ki

nb
{ , , ,ki ki kip a b

, , , ,{ , , , }ki m ki ki q ki sp a
}

s( 1) ( 1) ( 1)ikmnqs ik ik ik ik ik ikN m N Q S n Q S q S ,

where kiM ,  and  denote the total number of discretized values for each 
parameter . These numbers represent an individual in a population and for the 
discretized parameters indicate a specific solution. An individual is expressed as a row 
of the integer number with 

,ki kiN Q kiS
p

genN = 6N genes. 
 A fitness value is evaluated for each individual and in the total population only 

individuals with a higher fitness remain at the next generation. 
The alternation of generations is stopped when convergence is detected. If no 

convergence the iteration process continues until the specified maximum number of 
generations is reached. 

To compute the fitness F we write (9.6.39)–(9.6.41) in the form  
( ) ( )m m
k kL , 0,1, 2m , 1, 2,...,12k .                             (9.7.7) 

and note the square sum of differences  ( ) ( )m
k kL m  by 

2 12
( ) ( ) 2

0 1
( j j

k k
j k

L ) .                                         (9.7.8) 

We define fitness as follows 
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0F ,                                                         (9.7.9) 

with
2 12

( ) 2
0

0 1
( )j

k
j k

.                                           (9.7.10) 

As the convergence criterion of iterative computations we use (9.4.14)  

0
10

1 log
2

Z  max .                                       

 Numerical simulation is carried out for =1.055 10 3 kg/ms, and 
=1.205 10 kg/ms. The micropolar coefficients of viscosity have values 
=

3

= =1.035 10 mkg/s (Gauthier). We consider 3 tanm , with [0.2, 0.8]. 
The value = 0.8 represents an upper limit on the slopes for which the shallow fluid 
theory furnish a good approximation.  

m
m

The number r must satisfy the condition (Dressler) 2

24 0.7r m ,                                            (9.7.11) 

which is important for existence of waves. If the resistance is too large, the waves 
cannot form. This condition is obtained numerically. We take r2 [0.035, 0.14]. The 
value = 0.14 was chosen as the greatest value for the resistance since it satisfies the 
condition (9.7.11) for m = 0.8. The intervals for the model parameters are evaluated 
from the condition that the total mass of fluid per wavelength is constant and the same 
in all approximations. 

2r

In order to illustrate the results three cases are considered ( 4N ):

– Case 1.    (  = 1), = 0.17,45 m 2r
– Case 2.    (  = 0.6), = 0.1,                                                          (9.7.12) 31 m 2r
– Case 3.    (  = 0.4), r = 0.06.22 m 2

In all cases we have assumed that the number of populations is 25, ratio of 
reproduction is 1, number of multi-point crossovers is 1, probability of mutation is 0.2 
and maximum number of generations is 250.  

The linear summation of the solution Y ( , )  for  is given in Figures 9.7.1–
9.7.3 (  means in the numerical simulation the time interval after which the 
solutions have a permanent profile in time). In all cases the fluid velocity is greater in 
the region of the crests than in the shallower regions, but nowhere will the fluid velocity 
be as great as the wave speed.  For example, in Case 1 the average fluid velocity is 
about 3.05 m/s while the wave velocity is about 4.1 m/s.  
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Figure 9.7.1  Profile of the wave Y ( , ) in Case 1. 

Figure 9.7.2  Profile of the wave Y ( , ) in Case 2
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Figure 9.7.3  Profile of the wave Y ( , ) in Case 3 

From numerical simulations we conclude that the remaining solutions have a similar 
evolution with respect to : they increase and decrease in the same manner as Y .

The microrotation components and the vertical component of the fluid velocity are 
greater in the crest regions than in the shallower regions. The model parameters were 
obtained after 149 iterations in Case 1, 167 iterations in Case 2 and 187, in the last case.

 In conclusion, the solutions describe the phenomenon called roll-waves for fluid 
flow along a wide inclined channel. This phenomenon appears in hydraulic applications, 
such as run-off channels and open aquaducts. 

When a liquid flows turbulently downwards on an inclined open channel, the wave 
profile represented as sums of solitons moves downstream as a progressing wave at a 
constant speed and without distortion, and such that the velocities of the fluid particles 
are everywhere less than the wave velocity.

9.8   The effect of surface tension on the solitary waves 
In this section we discuss the effect of surface tension on the solitary waves. This 

effect may be important when the depth is small enough and the surface tension is 
present. This effect was analyzed by Shinbrot in 1981, and the present discussion is 
principally based on his results. Let h  be the depth of the fluid at infinity, g  the 
weight density of the fluid, and T the surface tension. The fluid moves over a flat 
bottom being acted by the gravity force. The system of coordinates is moving 
horizontally with the phase speed of the flow, the -x axis is lying at the bottom and the 

axis is vertical. The free surface is described by the function -y ( )y H x . The velocity 
of the fluid is denoted by ( , ( )S x y V) ,U . The uniform flow of the fluid is described 
by the equation of irrotationality and incompressibility of the fluid (Camenschi) 

y xU V , U V 0x y ,  for 0 y H x( ) ,                           (9.8.1)

by the  streamlines at the top and bottom 
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0V ,  for 0y ,                                                  (9.8.2)

xV UH ,   for ( )y H x ,                                            (9.8.3)

the condition that the pressure at the free surface is proportional to the curvature 

2 2
2 3/ 2

1 ( ) con
2(1 )

xx

x

HTgH U V
H

st. ,  for ( )y H x ,                     (9.8.4)

and the condition of solitary waves (Nettel) 

( ) constH x . , .U x , V x ,  as | | .                (9.8.5)( , ) consty ( , ) 0y x

Shinbrot maps the domain of the fluid into the strip

{( , ) : , }X Y X Y ,

xX
h

,
( )
yY

H x
,                                               (9.8.6)

where , and | |lim ( )xh H x  is a small parameter, measuring the ratio of the 
amplitude of the wave to the depth at infinity.  Suppose ( )H x ,  and V x
have the form 

( , )U x y ( , )y

2( ) [1 ( )]H x h X ,                                               (9.8.7)

2
0( , ) [1 ( , )]U x y U u X Y ,                                         (9.8.8)

3
0( , ) ( , )V x y U v X Y .                                              (9.8.9)

Here, the function  is continuous as  tends to zero, and suppose we have the 
normalized condition 

sup | ( ) | 1X X ,                                                (9.8.10)

0 | |lim ( , )xU U x y .                                           (9.8.11)

The equations (9.8.1)–(9.8.5) become
2 4 ( )Y X X Xu v v Y vY 1,   for 0 Y ,                               (9.8.12)

2 ( )X Y X Yu v Y u uX 1,  for 0 Y ,                                (9.8.13)

0v ,   for Y 0 ,                                                        (9.8.14)

2
X Xv u ,  for Y 1 ,                                             (9.8.15)

2 2 4
2 2

6 2 3/ 2 ( )
2 2(1 )

XX

X

F u u v 0 1,  for Y ,                        (9.8.16)
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( )X , , ,  as .                            (9.8.17)( , )u X Y ( , )v X Y 0 | |X

In (9.8.16), is the inverse Bond number given by

2

T
gh

,                                                        (9.8.18)

and F  is the Froude number which is not known since U  is not known. 0

2
0UF

gh
.                                                        (9.8.19)

Next, we insert the following expansions in series of powers of (Nayfeh, 
Camenschi and andru)

2

(0) 2 (1) ...u u u , v v(0) 2 (1) ...v ,

(0) 2 (1) ...F F F , (0) 2 (1) ... ,

into (9.8.12)–(9.8.17) and equate coefficients of like powers of .  The equations for 
zero order approximations are 

(0) 0Yu , u v(0) (0) 0X Y ,  for 0 Y 1 ,                             (9.8.20)

(0) 0v ,  for Y 0 ,                                               (9.8.21)

(0) (0)
Xv ,  for Y 1 ,                                              (9.8.22)

(0) (0) (0) 0F u ,  for Y 1 ,                                   (9.8.23)

(0) , u , ,  as .                                  (9.8.24)(0) (0)v 0 | |X

In these equations is free, being subjected to (9.8.24). The solutions of the
equations (9.8.20) (9.8.23) are given by

(0)

(0) 1F , , .           (9.8.25)(0) (0)( , ) ( )u X Y X (0) (0)( , ) ( )Xv X Y Y X

From (9.8.25), the equations for the next approximation are 

  ,  (1) (0)
Y Xu Yu X

(1) (1) (0) (0)
X Y Xu v ,  for 0 Y 1 ,                       (9.8.26)

(1) 0v ,  for Y 0 ,                                                (9.8.27)

(1) (1) (0) (0)
X Xv ,  for Y 1 ,                                          (9.8.28)

2(1) (1) (1) (0) (1) (0)1 0
2XX F u ,  for Y 1 ,                         (9.8.29)

(1) , , ,  as | | .                                   (9.8.30)(1)u (1)v 0 X
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We obtain from (9.8.26)–(9.8.28)
2

(1) (0)( , ) ( ) ( )
2 XX

Yu X Y f X X ,                                  (9.8.31)

3
(1) (0) (0) (0)( , ) [ ( ) ( ) ( )] ( )

6X X
YV X Y y f X X X XXXX .               (9.8.32)

In (9.8.31), the function is free.  Substituting  (9.8.31) and (9.8.32) into (9.8.29)
and then into  (9.8.28) it results that

f
(0)  satisfies the equation 

(0) (1) (0) (0) (0)1( ) ( ) 3
3 XXX X XF X .                              (9.8.33)

If , the equation (9.8.33) yields to From (9.8.7) we obtain
, but this result violates the original hypothesis. For 

1/ 3
const .

(0) const.
H 1/ 3 , by integrating 
twice the equation (9.8.33) we have 

2(0) (1) (0) (0)1( ) ( )
3 X F 2 .                                     (9.8.34)

In this case, the solution of (9.8.34) is not finite for all x . The conclusion is that the
solitary waves do not exist for 1/ 3 .  For 1/ 3 the solution of (9.8.34) is obtained
by using  (9.8.24)

2
(0) 24 (1 3 )sech ( )

3
a aX .                                   (9.8.35)

By neglecting the terms of the order 4 4a , we obtain 

2 241 (1
3

F a 3 ) ,                                           (9.8.36)

2 2 24[1 (1 3 )sech ]
3

aXH h a
h

.                             (9.8.37)

For , the solutions (9.8.35) and (9.8.36) reduce to the solutions with no surface 
tension. The effect of surface tension is to reduce the quantity 

0
( 1F )  by a factor 

. Also, the amplitude of the soliton is reduced with the same factor. By 
imposing the condition (9.8.10) to the solution (9.8.35) we obtain .
Introducing this value of into (9.8.36) and (9.8.37) we obtain

(1 3 )
2a4 (1 3 ) 3

a

21F , 2 2 3[1 sech ]
2 1 3

XH h
h

 .                        (9.8.38)

From (9.8.38) we see that for fixed amplitude, the effect of surface tension is to 
sharpen the crest of the wave by shortening its length by the factor 1 3 .



Chapter 10 

ON THE TZITZEICA SURFACES AND SOME 

RELATED PROBLEMS

10.1 Scope of the chapter 
The study of affine differential geometry was initiated by Gheorghe Tzitzeica 

(1873–1939) in 1907 by studying a particular class of hyperbolic surfaces. Tzitzeica 
proved that the surfaces for which the ratio 4/K d ( K is the Gaussian curvature and ,
the distance from the origin to the tangent plane at an arbitrary point) is constant, are 
invariants under the group of centroaffine transformations. The Tzitzeica property 
proves to be invariant under affine transformations, and his surfaces are called Tzitzeica 
surfaces by Gheorghiu, or affine spheres by Blaschke because they are analogues of 
spheres in affine differential geometry, or projective spheres by Wilczynski (see Bâl ).
Bâl  (1999) applied the symmetry groups theory to study the partial differential 
equations which arise in Tzitzeica surfaces theory.

d

In this chapter, a survey of the Tzitzeica surfaces and the application of the 
symmetry group theory to the Tzitzeica equations, are presented (Bâl ). The chapter 
explains the Shen–Ling method to construct a Weierstrass elliptic function from the 
solutions of the Van der Pol’s equation. Next, an application in the field of mechanics, 
closely related to the Tzitzeica equation, is included.  In the last section, the results of 
Rogers and Schief concerning the capability of the Bäcklund transformation to provide 
an integrable discretization of the characteristic equations associated to the problem of 
an anisentropic gas, are considered.

We refer the readers to the articles by Bâl  (1999), Cr m reanu (2002), Musette et
al. (2001), Rogers and Schief (1997, 2002), Shen (1967) and Ling (1981). 

10.2   Tzitzeica surfaces 
Let  be an open set and consider a surface 2RD  in  defined by the position 

vector

3R
( , )r u v

( , ) ( , ) ( , ) ( , )r u v x u v i y u v j z u v k , ( , )u v D .

The vector , which satisfies the condition  ( , )r u v
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( , , ) 0u vr r r ,                                           (10.2.1) 

can be considered the solution of the second-order partial differential equations system 
that defines a surface leaving a centroaffinity aside 

uu u vr ar br cr ,

uv u vr a r b r c r ,                                        (10.2.2) 

vv u vr a r b r c r ,

which is completely integrable, that is 

( ) ( )uu v uv ur r , ( ) ( )uv v vv ur r ,                              (10.2.3) 

where are the centroaffine invariant functions  of and . For ,
the surface 

, , ...a a a u v 0c c
 is related to the asymptotic lines.  

 THEOREM 10.2.1 (Tzitzeica) Let  be a surface related to the asymptotic lines.  

The ration 4

KI
d

 is a constant if and only if 0a b .

Therefore, the Tzitzeica surfaces are defined by the system of equations 

uu u vr ar br ,

uvr hr ,                                                        (10.2.4) 

vv u vr a r b r ,

where .  The integrability conditions (10.2.3) become  c h

uah h ,

va ba h ,

b b 0v b ,                                               (10.2.5) 

vb h h ,

0a aa ,

ub a b h .

We have met these equations in Section 2.4, in the study of the symmetry group of 
the Tzitzeica equations of the surface. If  satisfies the Liouville–Tzitzeica equation h

(ln )uvh h ,                                             (10.2.6) 

the Tzitzeica surfaces which are not ruled surfaces are defined by 
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( )u
uu u v

h ur r
h h

r uvr h, r , v
vv v

h
h

r .                          (10.2.7) r

If h satisfies the Tzitzeica equation

2

1(ln )uvh h
h

,                                           (10.2.8) 

the Tzitzeica surfaces which are not ruled surfaces are defined by 

1u
uu u v

hr r
h h

r

r

,

uvr h ,

1 v
vv u v

hr r
h h

r .                                            (10.2.9) 

The system (10.2.4) can be written in the form  

uu u va b ,

uv h ,                                                     (10.2.10)

vv u va b ,

 with the condition that the three independent solutions ( , )x x u v , ,
 of  (10.2.10) and  (10.2.5) define a Tzitzeica surface.

( , )y y u v
( , )z z u v

It is known that every linear combination of , ,x y z is a solution of  (10.2.10). 
An equivalent form of  (10.2.4) is given by 

uu u vx ax bx ,

uvx hx ,

vv u vx a x b x ,

uu u vy ay by ,

uvy hy ,                                                   (10.2.11) 

vv u vy a y b y ,

uu u vz az bz ,

uvz hz ,

vv u vz a z b z ,
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with the conditions (10.2.1) and (10.2.5). This form is useful for studying the 
symmetries of the system  (10.2.4).  

10.3   Symmetry group theory applied to Tzitzeica equations 
The condition (10.2.1) is written as 

( ) ( ) ( )u v u v u v v u u v u vy z z y x x z x z y x y y x z f , ( , ) 0f u v .     (10.3.1) 

Let  be the second-order jet space associated to (10.2.11) and  (10.3.1). The 
independent variables u ,

(2)D U
1x 2v x , and the dependent variables 1x u , , 

 are considered. Let 

2y u
3z u M D U  be an open set and , , ,  and  the 

functions of , , u v x ,  and . The infinitesimal generator of the symmetry group 
of (10.2.11) and  (10.3.1) is

y z G

X
u v x y z

,

denoted by  a subgroup of  on the variables 1G G x ,  and .  For y z 0 , 0  and 

11 12 13( , , )x y z a x a y a z ,

21 22 23( , , )x y z a x a y a z ,

31 32 11 22( , , ) ( )x y z a x a y a a z ,

the infinitesimal generator  of G  is Y 1

11 1 22 2 12 3 13 4 21 5 23 6 31 7 32 8Y a Y a Y a Y a Y a Y a Y a Y a Y ,           (10.3.2) 

with

1Y x z
x z

,

2Y y z
y z

,

3Y y
x

, 4Y z
x

,

5Y x
y

, 6 y
Y z ,

7Y x
z

, 8 z
Y y .                                        (10.3.3) 
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The Lie algebra associated to  of the full symmetry group G  of (10.2.11) and  
(10.3.1) is generated by Y ,

1G
1,i 2,...,8i , and thus the Lie subgroup G  is the 

unimodular subgroup of the group of centroaffine transformations. 
1

If we consider the subalgebra described by Y  and Y , then the function 1 2 F  is 
invariant and satisfies 1( ) 0Y F  and Y F2 ( ) 0 . Therefore, ( , , )F u v xyz , and the 
group invariant solutions are 1Cu , 2v C  and 3xyz C . We obtain from here the 
known surface of Tzitzeica 

Cz
xy

, C R .                                           (10.3.4) 

THEOREM 10.3.1 (Bâl ) The general vector field of the algebra of the infinitesimal 
symmetries associated to the subgroup , where  is the subgroup of the full
symmetry group G of  (10.2.11), which acts on the space of the independent variables, 
is

2G 2G

( ) ( )Z u v
u v

,

where the functions  and  satisfy the equations

0u v u uua a a , 2 0u v u ub b b b ,

( )u v u vh h h 0 , 2u v u va a a a 0 ,             (10.3.5) 

0u v v vvb b b ,

and the functions satisfy  (10.2.5)., , , ,a b h a b
Consider the cases: 
Case 1.  is a ruled Tzitzeica surface given by (10.2.7). The completely integrable 

conditions  (10.2.5) turn in 

uha
h

, ( )ub
h

, 0a , vhb
h

,                     (10.3.6) 

with  a solution of the Liouville–Tzitzeica equation (10.2.6).  h
The relations (10.3.5) become  

( )u v u vh h h 0 ,

3 k , .                                     (10.3.7) 3
uv u vhh h h h

Writing 1
U

, 1
V

, where U U ( )u  and V V ( )v , then the first equation 

of (10.3.7) is 
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(h U V U V ) .                                       (10.3.8) 

Substituting (10.3.8) in the last equation (10.3.7) we have the equation 
2 3 .                                       (10.3.9) 

The general solution of (10.3.9) is 

2

2
2

2

2
2

2

2 , 0,
( )

( ) , ,
2cos [0.5 ( ) ]

, ,
2sinh [0.5 ( ) ]

k
U V C

lU V k l
l U V C

l k l l
l U V C

0.

      (10.3.10) 

From (10.3.8) and the change of the functions U F , V G , we have ( )U ( )V

U U C , V V , for 0k ,

tanh ( )
2
lU U C , tanh

2
lV V , for 2k l ,                   (10.3.11) 

cotan ( )
2
lU U C , tan

2
lV V , for 2k l .

Therefore, the general solution of the Liouville–Tzitzeica equation is 

2

2( , )
( )

U Vh u v
U V

.                                    (10.3.12) 

This solution is expressed in terms of solitons for 2k l , and 

2sech ( )
2 2
l lU U C ,

2sech
2 2
l lV V .

Case 2.  is a Tzitzeica surface which is not a ruled surface, that is (10.2.9). Then  
(10.2.5) become 

uha
h

, 1
h

b a , vh
h

b ,                             (10.3.13) 

where is a solution of the Tzitzeica equation (10.2.8). Substitution of (10.3.13) into 
(10.3.5) yield 

h

0u , 0v ,

( )u v u vh h h 0 .                                (10.3.14) 
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It results 1C ,  and2C

1 2(h C v C u) ,

1 2Z C C
u v

.                                         (10.3.15) 

Substitution of the first equation of (10.3.15) into the Tzitzeica equation (10.2.8), 
gives the equation 

2 3
1 2 ( )C C 1.                              (10.3.16) 

For 1 2 0C C , we have ,1 1h . This is a case of Tzitzeica solution (Tzitzeica 

1924). For , and denoting 1 2C C 0
1 2

1
C C

k , the equation (10.3.16) becomes  

2 3( 1k ) .                                  (10.3.17) 

For , the equation (10.3.17) is a Weierstrass equation 1k
2 3 22 1,C C R .                             (10.3.18) 

Using the change of function 
2
l g , (10.3.18) turns in 

2 3 2 4g g Cg .                                     (10.3.19) 

If  is a real  solution of the right side polynomials of (10.3.19), then  is not a 
triple solution. Therefore, (10.3.19) yields 

0

2 2
2

4 4( )(g g g g ) .                           (10.3.20) 

For , then C , and  (10.3.19) becomes 1 3

.                                (10.3.21) 2 ( 1)( 2)g g g 2

Writing 2

1 2g
w

, we have

2 21 (3 1)
4

w w ,                                  (10.3.22) 

with the solution 

1 1
1 ( ) 3( ) sinh[ ],

23
u vw u v C C R .            (10.3.23) 

From here the other solution of the Tzitzeica equation is obtained, by writing 

2

1 1
2

h
w

, and 1 0C
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2

3( )
2si nh [( ) 3 / 2]

h u v
u v

1.                           (10.3.24) 

For , the polynomial of (10.3.19) admits three distinct real solutions for 
 ( C

1
31 ), and one real and two complex for 1 ( ).  In this case the 

integral
3C

2
2

d
4 4( )(

gJ
g g g )

,

is reduced to an elliptical integral of first-order 

2

d

1 sin
J

k
.

Thus, for C , the solutions of the Tzitzeica equations with the form 
 are given in terms of elliptical functions.  

3
(h u v)

v

PROPOSITION 10.3.1 (Bâl ) The solution (10.3.24) is a revolution Tzitzeica surface. 
Moreover it is an associated ruled Tzitzeica surface. 

The proof is given by Bâl . Tzitzeica studied the revolution surfaces defined by 
(10.2.10). From the condition that  must verify h uh h , he obtains (h u v) , and 
the equation (10.3.17) for 1k

2 3 1 .

Tzitzeica found the solution of (10.2.10) by using
2 3

2
2

2 1
4

k .

The solution is

1

2

2 3

1( , ) exp( d )cos
2

1exp( d )sin exp( d ),
2 1

hu v k k
h

h hk k k
h h

            (10.3.25) 

for , and 0k

2
1

1 4( , ) exp( d )[ ( d ) ],
2 1

hu v k k k
h 2 3       (10.3.26) 

for . Here  and k i0k ,u v u v , 1, 2,i 3 , are real constants. 

On the other hand, it results 2

4
Ck , and then the function (10.3.24) defines the 

revolution surface (10.3.25). If we consider



ON THE TZITZEICA SURFACES AND SOME RELATED PROBLEMS 281

1
3tanh ( )

2
U U C , 3tanh

2
V ,                  (10.3.27) V

the function  is written as h

2

2( , ) 1 ( , ) 1
( )

U Vh u v H u v
U V

.                    (10.3.28) 

Therefore, the function H  is a solution of the Liouville–Tzitzeica equation (10.2.6), 
which defines a ruled Tzitzeica surface. 

PROPOSITION 10.3.2.  (Bâl ). The solution of Tzitzeica  (10.3.25) is invariant under 
the transformation subgroup of , for which the Lie algebra is generated, in the case 

of not ruled Tzitzeica surfaces, by

2G

1 2Z C C
u v

.

In the following we present the Shen method to construct a Weierstrass elliptic 
function , by using the purely imaginary solution, 1 3( ; 2 ,2 )t 1 and , of the Van 
der Pol’s differential equation 

2

2 2( 1)tt tx x x k x 0 , Rk, ,                           (10.3.29) 

 with the initial condition 

0( ) 0x t x .                                            (10.3.30) 

Shen considers 

2
3

1
4

2
2g g ,                                         (10.3.31) 

where 2g  and 3g are the invariants of the Weierstrass equation (10.3.18) written under 
the standard form 

2 3
24 3g g .                                    (10.3.32) 

The solution requires that 2g  and 3g  must be real, and 3g  must be negative. Shen 
showed that 2g  is real if  and  are comparatively smaller than k 0x . Introducing the 

quantity 3

1

iq exp , Shen showed also that 3g  is negative for 

1
505

q .                                          (10.3.33) 

The quantities  and  may be computed by using the complete elliptic integrals 
in condition

1 3

4
2

160
27

g .                                    (10.3.34) 
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Shen proved that there exists always one and only one cycle on the phase plane for 
the solution.

The equation (10.3.34) is quadratic and gives two real roots under the restriction 
imposed on 0x . One root is positive and the other is negative. The positive root leads to 
Shen’s solution.

Ling has shown that there exists a second solution in which 3  is no longer purely 
imaginary, whereas  remains real, if the condition (10.3.34) is not satisfied.  In this 
case we have 

1

2 0g ,  or 4
2

16
27

g .                             (10.3.35) 

 So, one of the three roots of the cubic equation remains real but the other two roots 
are complex conjugate.  The negative root, which satisfies the first condition in 
(10.3.35) leads to a second solution. 

Ling introduces two invariants 4  and 6  in place of 2g  and 3g

4 2 4
, 1 3

1 1
60 (2 2 )m n

g
m n

,

6 3 6
, 1 3

1
140 (2 2 )m n

g
m n

1 ,                          (10.3.36) 

where the summation omits the simultaneous zeros of  and .  From the variation of 
 and  it results that we are in the case when 

m n
4 6 2g  and 3g are both negative, and the 

value of  is given by q

i exp( )q c , 1
2

c0 .                                   (10.3.37) 

 In this solution, the values of 1  and q  are found from 

4
8 4 4 8

2 3 3
1

1 ( )
12

g 4 4 ,

6
4 4 4 4

3 3 4
1

1 (2 )(2 )
432

g 4 3 ,                        (10.3.38) 

where

2

3
1

1 2 n

n
q ,

2

4
1

1 2 ( 1)n n

n
q .                                    (10.3.39) 
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Elimination of  leads to an equation with real coefficients which can be solved 
numerically for a real root 

1
2 exp( 2 )p q c , less than unity but greater than 

, for the specified exp( ) 2g  and 3g .  Finally, Ling found 

1
3 1

i 12 lo
p

g .                            (10.3.40) 

If e  is a real root of the cubic equation, the others two roots  and e  are complex 
conjugate.

1 2e 3

Consider now the Liouville–Tzitzeica equation (10.2.6) and the Tzitzeica equation 
(10.2.8). If we denote , these equations become  ln h

expuv ,                                                 (10.3.41) 

and respectively 

exp exp( 2 )uv .                                   (10.3.42) 

THEOREM 10.3.2  (Bâl ) The generator vector field which describes the algebra of 
infinitesimal symmetries associated to the Liouville–Tzitzeica equation (10.3.41) are

( ) ( ) [ ( ) ( )]W f u g v f u g v
u v

.                          (10.3.43) 

THEOREM 10.3.3 (Bâl ) The vector fields which generate the Lie algebra of 
infinitesimal symmetries associated to the Tzitzeica equation (10.3.42) are

1U u v
u v

, 2 u
U , 3 v

U .                          (10.3.44) 

 If  is a solution of the Tzitzeica equation  (10.3.42), then the functions ( , )f u v

1 [exp( ) , exp( ) ]f u v , 2 [ ,f u v] , 3 [ , ]f u v ,

where , are also solutions of the equation. R

10.4    The relation between the forced oscillator and a Tzitzeica 
curve

Cr m reanu considers this example.  Let consider the equation  

( ) ( ) ( )f t f t g t ,                                            (10.4.1) 

For , (10.4.1) represents the forced oscillator equation. The driven function 1
( )g t  is defined as 

1( )g t
a t b

, , Ra b , 0a , 1 .                  (10.4.2) 
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We can write (10.4.1) under the form 

1 (
( ) ( )

a t b
f t f t

) .                                     (10.4.3) 

Differentiating (10.4.3) with respect to time, we obtain 

2

( ) ( )
[ ( ) ( )]

f t f t a
f t f t

.                                            (10.4.4) 

Consider now in R  a curve  in the form 3 C ( )r r t . This curve is called elliptic 
cylindrical if it has the expression

( ) (cos ,sin , ( ))r t t t f t , .                       (10.4.5) (R)f C

The curve  is called hyperbolic cylindrical if it has the expression  C

( ) (cosh ,sinh , ( ))r t t t f t , .                       (10.4.6) (R)f C

For an elliptic cylindrical curve, the torsion function ( )t , and the distance from 
origin to the osculating plane  are defined by ( )d t

2( )
1

f ft
f f 2 ,                                      (10.4.7) 

2

( )( )
1

f fd t
f f 2

.                                   (10.4.8) 

For a hyperbolic cylindrical curve, the functions ( )t  and are( )d t

2 2 2 2( )
1 ( )(cosh sinh ) 4 cosh sinh

f ft
f f t t f f t t

,             (10.4.9) 

2 2 2 2

( )( )
1 ( )(cosh sinh ) 4 cosh sinh

f fd t
f f t t f f t t

.         (10.4.10) 

Consider now that the curve C  is Tzitzeica with the constant . For a 
cylindrical elliptic curve we have 

0a

2

( ) ( ) ( )
( ) ( ( ) ( ))
t f t fa

d t f t f t 2

t ,                            (10.4.11) 

and similarly or a hyperbolic cylindrical curve  

2

( ) ( ) ( )
( ) ( ( ) ( ))
t f t fa

d t f t f t 2

t .                            (10.4.12) 

The equation (10.4.11) is the same with (10.4.4) for 1 , and the equation 
(10.4.12) is respectively the same with (10.4.4) for 1.

The solution of (10.4.4) for 1  is given by 
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0

sin( )( ) (0) cos (0)sin d
t u tf t f t f t u

au b
,                         (10.4.13) 

and the solution of (10.4.4) for 1 by 

0

sinh( )( ) (0)cosh (0)sinh d
t u tf t f t f t u

au b
.                     (10.4.14) 

PROPOSITION 10.4.1 An elliptic cylindrical curve ( ) (cos ,sin , ( ))r t t t f t  is a 
Tzitzeica curve, if and only if is the solution of the forced harmonic oscillator

(10.4.13), with the driven force 

( )f t
1

a t b
( )g t , where the constant is defined as a

2

( )
( )
ta

d t
, and b  is an arbitrary constant.

PROPOSITION 10.4.2 A hyperbolic cylindrical curve ( ) (cosh ,sinh , ( ))r t t t f t  is a 
Tzitzeica curve, if and only if  (10.4.14) is verified. 

10.5     Sound propagation in a nonlinear medium
A chiral Cosserat material is isotropic with respect to coordinate rotations but not 

with respect to inversions. A chiral material has nine elastic constants in comparison to 
the six considered in the isotropic micropolar solids. Materials may exhibit chirality on 
the atomic scale, as in quartz and in biological molecules. Materials may also exhibit 
chirality on a larger scale, as in composites with helical or screw-shaped inclusions, 
solids containing twisted or spiraling fibers, in which one direction of twist or spiral 
predominate. Such materials can exhibit odd rank tensor properties such as piezoelectric 
response. Chiral materials include crystalline materials such as sugar which are chiral 
on an atomic scale, as well as naturally occurring porous material, bones, foams, 
cellular solids, honeycomb cell structures (Lakes).  

Consider the basic equations for an anisotropic Cosserat solid which is isotropic 
with respect to coordinate rotations but not with respect to inversions (Cosserat, 
Eringen).

 Balance of momentum 

, , 0kl k l ttu .                                         (10.5.1) 

Balance of moment of momentum 

, 0rk r klr lr k ttm j , .                                 (10.5.2) 

Balance of energy 

, , ,( )t kl l kt klr r t kl l ktu ,m .                          (10.5.3) 
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The generalized Christensen’s constitutive law which describes the multi-relaxation 
processes in a chiral material is given by  

1 0

1 , 2 , 3 ,

d d
d d

(2 ) ( ) ,

i iN
mn mn

kl iklmn iklmn rr kli i
i i

kl klm m m r r kl k l l k

a b
t t

r C C C
        (10.5.4) 

, ,
1 0

1 2 3 3 2

d d
d d

( ) ( ) ( ),

i iN
mn mn

kl iklmn iklmn r r kl k l l ki i
i i

rr kl kl klm m m

mm c d
t t

C C C C C r

,     (10.5.5) 

where  is the number of different relaxation processes which are activated during the 
loading process,  is the stress tensor which is asymmetric tensor,  is the couple 
stress tensor (or moment per unit area), 

N
kl klm

 is the internal energy density,  

. , (kl l l k klm m mu u r

kl

1
2 k( )

m

)  is the strain tensor, u  is the displacement vector,  is 

microinertia,  is the permutation symbol, and 

j

 the density of the material.   
The microrotation vector k  refers to the rotation of points themselves, while the 

macrorotation vector ,
1
2k klmr

iklma

m lu  refers to the rotation associated with movement of 

nearby points.  The coefficients , , ...n iklmnb are related to the material properties and 
to the deformation of the medium.  The usual Einstein summation convention for 
repeated indices is used and the comma denotes differentiation with respect to spatial 
coordinates and a superposed dot indicates the time rate.  We use rectangular 
coordinates kx  ( ) or (1,2,3k 1 2, 3,x x x y x z ).

In three dimensions there are nine independent elastic constants required to describe 
an anisotropic Cosserat elastic solid, that is Lamé elastic constants , and ,  the 
Cosserat rotation modulus , the Cosserat rotation gradient moduli , and 

, the chiral elastic moduli associated with noncentrosymmetry. For ,
the equations of isotropic micropolar elasticity are recovered. For 

, ,

iC, 1, 2,iC i 3 0
0

0 3 2

,
equations (10.5.2) and (10.5.3) reduce to the constitutive equations of classical isotropic 
linear elasticity theory. From the requirement that the internal energy must be non-
negative, we obtain restrictions on the micropolar elastic moduli ,

, , ,0 2 0 0 3 , 0 , and any positive or negative 
.  Boundary conditions do not depend on assumed material symmetry. One 

may prescribe the displacements or the surface traction and the microrotations, or the 
surface couples on the surface. 

1 2 3, ,C C C

   Consider, now, a slab of chiral material compressed in the z direction, and 
bounded by surfaces (Lakes). Assume a monorelaxation process, and one 
component of displacement u , and one component of microrotation,  to be 
nonzero.  The motion equations (10.5.1) and (10.5.2) for stress  and the couple stress 

 are given by 

z H
z ( )z ( )z z

p
m
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, , 1 2 3 , , ,( 2 )( ) ( )( ) ( ),z zz z zzt z zz z zzt z tt z tttu u C C C u u ,      (10.5.6) 

2
0 , , , , ,

2)( ) ( ) ( )(1 z zz z zzt z z t z TT z tttK u u j ,                (10.5.7) 

where ,  are the relaxation times under constant strains, and respectively constant 
stresses,  and 0K with a coupling coefficient defined as 

2
2 1 2 3
0

( )
( 2 )( )

C C CK .                                  (10.5.8) 

For the case the relaxation times are zero, the motion equations (10.5.6) and (10.5.7) 
for stress  and the couple stress m  are given by p

, 1 2 3 ,( 2 ) ( ) ,z zz z zz z ttu C C C u ,                          (10.5.9) 

2
0 , ,

2(1 ) z zz z z ttK u j

0z

,                                (10.5.10) 

with a coupling coefficient defined by (10.5.8). 
The traveling wave solutions of (10.5.9) and (10.5.10) can be found assuming 

, where  is the wave velocity. Thus, the above equations become z ct c
2

1 2 3( 2 ) ( )zc u C C C ,                      (10.5.11) 

2
0

2(1 ) 0z zK u jc2
z ,                              (10.5.12) 

where prime means the differentiation with respect to . The solutions for these 
equations are

0 sinhz p ,                                           (10.5.13) 

2

2 2
0 1 2 3

2 ( 2 )
( )(1 )( ) ( 2

cp 2 )K C C C jc c
,         (10.5.14) 

and

1 2 3
02 sinh

2z
C C Cu e p

c
,                            (10.5.15) 

with ,  and  to be determined from the boundary and initial conditions. e c 0

For the case the relaxation times are not zero, the dimensionless generalized 
equation of sound propagation in a chiral medium, written for the longitudinal 
displacement wave , isu

2 2 2[tt t t xx x xu u u c u u u f ] ,              (10.5.16) 
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involving the functions of nonlinearity , , , ,c  and , whose specific expressions 
depend on . With a proper change of function, the equation (10.5.6) may be reduced 
to

f
u

( , , )tt xx x tF ,

which plays an important role in the soliton theory. In particular, for , we 
have the sine-Gordon equation, for 

( ) sinF
3( )F , we obtain an equation, which 

appears in solid state physics and high energy particle physics (Dodd et al.), and for 
1( ) (sin sin )
2 2

F , the double sine-Gordon equation is obtained. 

For , , 0 1c 1
u

 and 24f au ,  a constant, the equation 

(10.5.16) becomes   

0a

2 2
24t x

tt xx
u uu u
u u

au .                                  (10.5.17) 

By changing the function u exp , we have 

4 exptt xx a ,

and by changing the variables x t , x t , the above equation yields to the 
Liouville–Tzitzeica equation (10.3.41) 

exp 0a .                                        (10.5.18) 

For 2 44f au b
u

,  constants, the equation (10.5.16) yields the Tzitzeica 

equation

,a b 0

( ) exp exp( 2 ) 0E a b .                       (10.5.19) 

Tzitzeica considers the linear system of equations (Tzitzeica)

exp( ) 0U b U ,

1 exp( ) 0U b U ,                              (10.5.20) 

exp 0a U ,

with ,C 0 , that are verified if U  is a solution of  (10.5.19), and  a function 
related to the ratio of two entire functions.  The system (10.5.20) is invariant under the 
involution (Tzitzeica) 

2

1 2( , exp , ) ( , exp( ) , )U U
a

.                       (10.5.21) 

From (10.5.21) it results the Darboux transformation that leaves invariant the 
equations (10.5.20) 
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2

2exp( ) exp( )U
a

,

or

2exp( ) log exp( )U
a

,

where and U are two different solutions of  (10.5.19).
By following the results of Musette and his coworkers, Conte and Verhoeven, we 

start with the Painlevé analysis of the Tzitzeica equation (10.5.19) with one family of 
movable singularities, in order to obtain the Bäcklund transformation of this equation.  
We check if the equation verifies the Painlevé condition. That means assume the 
existence of the transformation 

logU D , ( ) 0E ,                              (10.5.22) 

with  a solution of (10.5.19),  a singular part operator, and D U  an a priori 
unconstrained function. Then we choose the two, three, etc., order for the unknown Lax 
pair and represent this Lax pair by an equivalent Riccati pseudopotential Y Y .1 2, ,...

The equation (10.5.19) is invariant under the permutation (Lorentz transformation) 

( , ) ( , ) .                                         (10.5.23) 

This invariance is conserved by the Lax pair. Since  is invariant under the 
permutation (10.5.23), we can define the unknown Lax pair on the basis  as  ( , ,x t )

g
1 2 3

1 2 3( ) 0,
1 0 0

f f f
L L g g ,                          (10.5.24) 

1 2 3

1 2 3( ) 0,
0 1 0

g g g
M M h h h ,                        (10.5.25)

with the link . The nine coefficients , , , 1, 2,3j j jf g h j , are functions to be 
determined. The Riccati components Y  and Y  are defined as 1 2

1Y , 2Y .

The properties of the cross-derivative conditions are written as 

1, 2, ,Y Y

1, 1, 0 1 1 2 2( ) ( ) 0Y Y X X Y X Y ,                         (10.5.26)

2, 2, 3 4 1 5 2( ) ( )Y Y X X Y X Y 0 ,
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where
2

1, 1 1 1 2 2 3Y Y f Y f Y f ,

Y Y2, 1 2 1 1 2 2 3Y g Y g Y g ,

2
2, 2 1 1 2 2 3Y Y h Y h Y h .

The first relation (10.5.26) is identically verified, and the rest of relations (10.5.26) 
yield , , or 0jX 0,1,...,5j

0 3, 3, 1 3 3 1 3 3 2 3 0tX f g f g f g f h g g ,

2
1 2, 2, 1 2 2 1 3 2 2 2 0X f g f g f g f g f h ,

2 1, 1, 2 1 2 1 3 0X f g f h g g g ,

,3 3, 3, 3 2 2 3 3 1 1 3 0X h g g h g h f h g g

4 2, 2, 2 1 2 1 3 0X h g f h g g g ,

2
5 1, 1, 1 2 2 1 3 1 1 1 0X g h g h g h h g f h .

The next step is to choose the link log ( )D f

)E U

 between the function  and the 
solution  of a scalar Lax pair (10.5.24) and (10.5.25).  For the link , the 
truncation of the difference ( ) (E  is written as 

exp( ) log exp( )D U ,                                  (10.5.27) 

3 3

1 2
0 0

( ) ( , , , ) 0
k

k l
kl j j j

k l
E E f g h U Y Y .                  (10.5.28) 

The relations (10.5.27) and (10.5.28) yield to ten equations 

( , , , ) 0kl j j jE f g h U , ,k l ,                        (10.5.29) 

for determining the unknowns U  and the nine coefficients , , , 1, 2,j j jf g h j 3 .
This process is repeated until a success occurs, namely | , |L M is

equivalent to .  Then, eliminating ( ) 0E U  from the Darboux transformation  

2exp( ) log exp( )U
a

,                          (10.5.30) 

and the scalar Lax pair, two equations for the Bäcklund  transformation are obtained.  
Musette et al. have shown that the truncation of exp( )  has no solution. The 

truncation of exp( )
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exp( ) log exp( )D U ,

( ) 0E U , 2D
a

,                                  (10.5.31) 

generates four equations which admit some particular solutions of the form (10.3.23) 
and (10.3.24). According to the PROPOSITION 10.3.1, the solution (10.3.24) is a 
revolution ruled Tzitzeica surface.

PROPOSITION 10.5.1 The solution in displacement of the sound propagation in a 
slab of a chiral material problem is represented by the revolution ruled Tzitzeica 
surface.

10.6    The pseudospherical reduction of a nonlinear problem 
Consider the one-dimensional problem of an anisentropic gas with its 

pseudospherical reduction given by Rogers and Schief in 1997. We present in this 
section the results of Rogers and Schief. The governing equations in a Lagrangian 
system of coordinates ( , )X t are written as 

t vX ,                                               (10.6.1) 

0 tv X .                                           (10.6.2) 

The constitutive law is given by

( , )p p X .                                         (10.6.3) 

Here,  and  are the pressure and respectively, the density of the medium, p

0 1

( , )v X t

 is the stretch,  is the density of the medium in the underformed state, and 

 is the material velocity. The Lagrangian equations (10.6.1) and (10.6.2) and a 
constitutive law of the type 

0

( . )X  may describe also the uniaxial deformation of 
nonlinear elastic materials with inhomogeneities. 

In terms of the Eulerian coordinates ( , )x x X t , we have 

d ( 1)d dx X v t ,                                  (10.6.4) 

so that 

0d d dX x v t .                                     (10.6.5) 

In (10.6.5), X  corresponds to the particle function  of the Martin formulation. 
The independent variables are chosen to be  and p , and we suppose . In this 
case we obtain the Martin formulation (Rogers and Schief 1997) of the Monge–Ampère 
equation as 

0 1

2
pp p p ,                                       (10.6.6) 
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where

pt , v ,

d (pp px )d ,                             (10.6.7) 

0 | |pp .

If a solution  of this equation is specified, then the particle trajectories are 
calculated from 

( , )p

[ ( )pp p ]x d , pt ,                     (10.6.8) 

in terms of , for p const.   The isobars are parametrically expressed in terms of ,
for  By solving (10.6.8), the solution conp st. ( , )p t  is obtained, and the original 
solution of (10.6.1)–(10.6.3) is determined in terms of the Lagrangian variables 

( , )x x t , ( , )v v t , ( , )p p t .                          (10.6.9) 

Rogers and Schief made the geometric connection of this problem. To show this, 
consider a surface  in the Monge parametrisation (1.7.7), whose Gaussian curvature is 
given by (1.7.9b).  

Let us introduce new independent variables  and p

xp z , yz ,                                         (10.6.10) 

and the dependent variable 

p x , y .                                     (10.6.11) 

Therefore, we have 

2
yy

pp
xx yy xy

z
z z z

, 2
xx

xx yy xy

z
z z z

, 2
xy

p
xx yy xy

z
z z z

.       (10.6.12) 

The Gaussian curvature (1.7.9b) yields 

2 2 2 2

1
(1 ) ( )pp p

K
p

.                     (10.6.13) 

The Gaussian curvature may be set into correspondence with the Martin’s Monge–
Ampère equation (10.6.6) by 

2 2

1
(1 )p p 2 ,                                  (10.6.14) 

and
2 2

2 2(1 )p 2 ,                                      (10.6.15) 
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where 2

|
p , with  the local speed of sound in gas.  For the analog nonlinear 

elastic problem, we have 
2

2 2(1 )
A

X 2 .                                     (10.6.16) 

where 2

|X
A , with A  the Lagrangian wave velocity. The surface  is restricted to 

be pseudospherical, that is

2

1K
a

, const.a                                     (10.6.17) 

In this case the relation (10.6.16) gives 
2

2 2
2 2

2 (1 ) | 0
| X
X

X
a

, 0 .                (10.6.18) 

Integrating  (10.6.18) with  and p X , we get 

2 2

2 3/ 2 2 2 2

1[arctan( ) ] ( )
2(1 ) 1 1

a X X
X X X

,           (10.6.19) 

with ( )X arbitrary.  For , it results 0| 0 ( )X =0.
Now, we introduce 

2
2

0
11 tan[ (X )]X c c

a
,                        (10.6.20) 

into (10.6.19) and obtain 
2 2

0
02 2

1 2 1[ ]sin( (
2(1 ) 1

c ca X c c
a aX X

)) .         (10.6.21)

Relations (10.6.20) and (10.6.21) represent a parametric representation for the 
constitutive laws of the type ( , )X , for which the equations (10.6.1) and (10.6.2) 
are associated to a pseudospherical surface . These equations lead to 

XX tt .                                                 (10.6.22) 

Using (10.6.14), we have 
2

2 2 2[
(1 )

]XX
a

X t t .                                 (10.6.23) 

This equation has a solitonic behavior, if we take into account that for a 
pseudosperical surface , the expression (1.7.12) of the Gauss curvature reduces to the 
sine-Gordon equation. 
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The mean curvature  of  given by  (1.7.9a) is an invariant, and then we can 
write

2 2

2 2 3/ 2

(1 ) 2 (1 )cot
2(1 )

v vX X Xa
X

t .              (10.6.24) 

The map 

( , ) ( , ), 0 | |XX t X v t t v ,                       (10.6.25) 

yields

| |t X tv |tX v
 ,

| | | |X t X t vv
t v t

,                                   (10.6.26) 

or

1| |
|t t

X tv v X
 ,

|| |
|

t X
v t

X t

v
t v X t

|X .                               (10.6.27) 

From (10.6.24) it results 
2 2

2 2 3/ 2

1 2 (1 )(cot
2 (1 )

X t X

X

X X v va a
v X

)t X .          (10.6.28) 

The Gauss equations of the surface ( , )r r t v  becomes 

3 3 3,tt tt tv tv v tr z e r z e e X e3

3

,

3vv vv vr z e X e ,                                  (10.6.29) 

with the compatibility condition 

v tX .                                               (10.6.30) 

This is a restatement of (10.6.2) with 0 1 , by using 

| | | ,X t X t v tv

||
|

t X
t v

X t

vX
v

,                                            (10.6.31) 

in the condition . The equation (10.6.1) is equivalent to the area preserving 
map expressed in terms of  and  independent variables 

0 | |Xv
v t
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( , ) 1
( , )
X
v t

.                                        (10.6.32) 

The expression of the Gaussian curvature (1.7.9b) becomes 
2 2(1 )t v v tX X X 2 ,                               (10.6.33) 

and then

2 2 2( , ) (1 ) |
( , )

1
X

X X
v t

.                         (10.6.34) 

If  is the position of a surface r  with Gaussian curvature 2

1
a

, then (1.7.14) 

or (1.7.15) hold.  So, the construction of such pseudospherical surfaces yield Bäcklund 
transformation (1.7.16) for the sine-Gordon equation. 

In terms of the physical variables, the Bäcklund transformation becomes 

cos ( )
1

a X Xt t
XX

, cos ( )
1
av v

XX
,

cos ( ) ( ) (
1

a X Xz z t t X v v
XX

) ,

2 2 2 2

1 cos
1 1

XX
X X

,                      (10.6.35) 

where

d d d , d d dz t X v z t X v .                   (10.6.36) 

The Monge–Ampère  equation

2 2
2

1 (1 )tt vv tv t vz z z z z
a

2 2 ,                           (10.6.37) 

determines the pseudosperical surface , being invariant to the Bäcklund 
transformation (10.6.35). An important point of view is to interpret (10.6.35) in terms of 
the characteristic equations of (10.6.37) (Courant and Hilbert) 

2 2 ,
1

aXt
X 2 2 ,

1
aX

t
X 2 2 ,

1
av

X

2 21
a

v
X

, 0z t Xv .                    (10.6.38) 

If ( t v ) is a solution of (10.6.38), then a solution of the Monge–Ampère 
equation (10.6.37) is

, , , ,z X

( ( , ), ( , ))z z t v t v ,                                  (10.6.39) 
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obtained from the condition of a nonzero Jacobian ( , )
( , )

t v . Therefore, the Bäcklund 

transformation (10.6.35) represents an integrable discretization of the nonlinear 
characteristic equations (10.6.38) of the Monge–Ampère equation.  

If we introduce the continuous variables ˆ and ˆ

1 1ˆ n , 2 2
ˆ n ,                                        (10.6.40) 

for small , we have the Taylor series , 1,i i 2

2
2

ˆ1 1 ( )O 1
2

ˆ2 2 ( )O, ,                      (10.6.41) 

2 2
ˆ ˆ ˆ12 1 2 1 2 1 2ˆ ( , )O .

For

2 21 1 2
1 22

2

( , )
ˆ4

O
a

,                              (10.6.42) 

the permutability theorem (1.7.23) reduces in the limit 0i , to the sine-Gordon 
equation   

ˆ 2ˆ

1 sin
â

.

In terms of the physical variables, the Bäcklund transformation yields the discrete 
equations

1 1
1

1 1

cos ( )
1

a Xt t X
XX

,

2 2
2

2 2

cos ( )
1

a Xt t X
XX

,

1 1
1

1 1

cos ( )
1
av v

XX
,

2 2
2

2 2

cos ( )
1
av v

XX
,

1 1( ) (z z t t X v v1 ) ,

2 2( ) (z z t t X v v2 ) ,                              (10.6.43) 

and
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1 1
12 2 2 2

1 1

1 cos
1 1

XX

X X
,                          (10.6.44) 

2 2
22 2 2 2

2 2

1 cos
1 1

XX

X X
.                        (10.6.45) 

Using (10.6.42) we write 
2

1 1 1 1( )O , 2
2 2 2 ( )O 2 ,               (10.6.46) 

with

1tan( )
2i i .                                      (10.6.47) 

The discrete equations (10.6.43) become  

ˆˆ
ˆ ˆ2 2 2 2,

1 1

aXaXt t
X X

,

ˆˆ
ˆ ˆ2 2 2,

1 1

aav v 2X X
,                         (10.6.48) 

and

ˆ ˆ ˆ 0z t Xv , ˆ ˆ ˆ 0z t Xv .                   (10.6.49) 

The equations (10.6.44) and (10.6.45) become 
2 2 2

2ˆ ˆ ˆ ˆ
12 2 2

( ) ˆ( )
(1 )
X X X

X
,

2 2 2
ˆ ˆ ˆ ˆ 2

22 2 2

( ) ˆ( )
(1 )

X X X

X
.                             (10.6.50) 

Therefore, the equations (10.6.43)–(10.6.45) can be interpreted as the integrable 
discretization equations of the characteristic equations  (10.6.38).
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