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PREFACE

Many areas of science and technology have benefited from the tremendous advance
in computational techniques over the last two decades. In a number of cases theo-
retical predictions have directly impacted the design of new and improved materials
with unique characteristics. An understanding of the details of molecular structures
and their relationship with the desired properties of such materials has always been
a key factor for successful interplay between theory and experiment. Among such
important characteristics are the non-linear optical (NLO) properties of matter.

There is currently an immense interest in NLO properties of materials, since they
provide valuable information about important aspects of matter. For example, they
are related to electronic and vibrational structures as well as to intra- and inter-
molecular interactions. On the other hand, NLO properties are of great practical
importance for the design of materials and devices, which have numerous and
important applications (e.g. optical devices for the transfer and storage of data).
Taking into account the widespread interest in the NLO properties/materials and
the rapid progress of both the scientific and technological aspects of this field, we
believe that it is timely and useful to select some topics of particular interest (this
is subjective, of course) and invite leading experts to review current progress. This
idea underlies the composition of the present volume. Obviously, the selection of
topics was strongly influenced by our research interests. They may not cover all
important areas of chemistry and physics of the NLO systems. However, in spite
of the possible deficiencies, we believe that the reviews presented here cover a
relatively wide class of problems and will be of interest for researchers and students
in this area. Particular care was taken to impartially address both theoreticians and
experimentalists to increase the extent of the mutual interaction between them.

This book starts with an introduction written by M. A. Ratner and then there is an
opening chapter that introduces readers to the theory of linear and NLO properties.
Norman and Ruud review the basic physical processes and their connection with
the formulas derived from time-dependent perturbation theory. They briefly discuss
the vibrational properties as well as the connection between the microscopic and
macroscopic NLO properties.

Christiansen et al. review the coupled cluster (CC) response methods for the
calculation of the electronic contributions to first and second hyperpolarizabilities
and some magneto-optic NLO properties. The latter include the magneto-optical
activity (Faraday effect, magneto-circular dichroism), Buckingham and Cotton–
Mouton effects as well as Jones and magneto-electric birefringence. They discussed
the basis set convergence for the properties of interest as well as the convergence of
the properties with the wavefunction model. Christiansen et al. compare theoretical

ix



x Preface

with experimental results and show that the CC approaches, connected with the
hierarchy of correlation-consistent basis sets, can lead to very accurate results for
small molecules. They also point out some of the present challenges for the accurate
calculation of the properties of interest (e.g. computation of NLO properties of open
shell molecules).

Kirtman and Luis review some of the theoretical/computational methods which
have been proposed over the past fifteen years for the calculation of vibrational
contributions to the linear and NLO properties. They discuss: (i) the time-dependent
sum-over-states perturbation theory and the alternative nuclear relaxation/curvature
approach, (ii) the static field-induced vibrational coordinates which reduce the
number of nth-order derivatives to be evaluated, (iii) the convergence behavior of
the perturbation series, (iv) an approach to treat large amplitude (low frequency)
vibrations, (v) the effect of the basis set and electron correlation on the vibrational
properties, and (vi) techniques to compute the linear and NLO properties of infinite
polymers.

Bartkowiak and Zaleśny discuss the sum-over-states (SOS) method which is used
for the calculation of NLO properties (electronic contribution) and multi-photon
absorption. They comment on the various approximations, including the widely
used few-states models, and the exact sum-over-states formulas. They show that one
of the main advantages of the many variants of this approach is the interpretation
of the NLO properties in terms of contributions from excited states. They comment
on the limited utility of the SOS technique for small molecules, aggregates and
clusters, but they point out, that it is still a very attractive tool for large molecules.

Jonsson et al. review the Kohn-Sham density functional theory (DFT) for time-
dependent (TD) response functions. They describe the derivation of the working
expressions. They also review recent progress in the application of TD-DFT to open
shell systems. They reported results on several properties: (i) hyperpolarizabilities
(e.g. para-nitroaniline, benzene, C60 fullerene), (ii) excited state polarizabilities
(e.g. pyrimidine), (iii) three-photon absorption and (iv) EPR spin Hamiltonian
parameters.

Baev et al. review a theoretical framework which can be useful for simulations,
design and characterization of multi-photon absorption-based materials which are
useful for optical applications. This methodology involves quantum chemistry tech-
niques, for the computation of electronic properties and cross-sections, as well
as classical Maxwell’s theory in order to study the interaction of electromagnetic
fields with matter and the related properties. The authors note that their dynamical
method, which is based on the density matrix formalism, can be useful for both
fundamental and applied problems of non-linear optics (e.g. self-focusing, white
light generation etc).

Painelli and Terenziani discuss the cooperative and collective behavior resulting
from classical electrostatic intermolecular interactions in molecular materials with
negligible intermolecular overlap. The simple model they employ for clusters of
push-pull chromophores neglects intermolecular overlap and describes them using a
two-state model. They comment on the excitonic approximation which is expected
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to work well for clusters of molecules with low polarizability. These authors
reviewed the mean-field approximation, which has been introduced for the calcu-
lation of the polarizability of molecular crystals and films. Painelli and Terenziani
describe: (i) the optical susceptibilities of some representative clusters and (ii) the
excited states in a cluster of polar and polarizable molecules.

Mikkelsen reviews recent advances of the MCSCF/MM method. This approach
has been developed in order to obtain frequency-dependent molecular properties for
a solute perturbed by solvent interactions. He defines the Hamiltonian for the total
system. It involves three components: the first describes the quantum mechanical
(QM) system, the second, the classical (MM) system and the third their interaction.
He describes the energy functional, the MCSCF wave function and the linear and
quadratic response functions.

Bartkowiak reviewed the connection between the NLO response and solva-
tochromic behavior of donor-acceptor �-conjugated molecules. The marked NLO
properties of these molecules are associated with an intra-molecular charge-transfer
excited state. This author points out that the environmental interactions may have
a very significant effect on the hyperpolarizabilities (they may even lead to a
change of sign). Bartkowiak shows that a simple two-state model combined with
the solvatochromic methods may allow the prediction of changes of in molecular
hyperpolarizabilities as a function of the solvent polarity.

Dominicis and Fantoni present a method for the computation of the electronic
first hyperpolarizability of chiral carbon nano-tubes (CNTs). The CNT eigenstates
are computed by an algorithm reported by Damnjanovic et al. They discuss the
symmetry properties of CNTs and selection rules for electronic transitions and
demonstrate that the use of symmetry reveals the state-to-state transitions, which
contribute to the first hyperpolarizability of CNTs. The latter is related to particular
state-to-state transitions. The principles for predicting the magnitude of the first
hyperpolarizability and its relation to the topology of CNTs are also discussed.

Leahy-Hoppa et al. review the results for an electric field-poled guest-host NLO
polymer system, computed by using Monte Carlo and atomistic molecular dynamics
simulations. They discuss the work of the groups investigating this topic. The Monte
Carlo studies provide results in good agreement with experimental data and valuable
information concerning the optimal loading concentration for a chromophore of
a given shape and dipole moment. The findings of the teams, which have used
molecular dynamics are also described. The alignment of dopants is studied by
employing <cos �> and <cos3 �>. Leahy-Hoppa et al. noted that the orientational
order in the system is strongly dependent on the strength of the poling field.

Fischer and Champagne present an overview of linear and nonlinear optical
properties of chiral molecules in isotropic media. The authors state the general
symmetry requirements of chiroptical processes, and show that nonlinear
chiral spectroscopies can arise within the electric dipole approximation. The authors
describe sum-frequency–generation experiments at second order and demonstrate
how nonlinear optics can be used to determine the absolute conformation of a
chiral molecule in solution. This is discussed with recourse to electric-field induced



xii Preface

sum-frequency generation, a third-order phenomenon. Aspects of BioCARS at
fourth order are also discussed. The chapter includes a survey of computations that
address the nonlinear optical properties of chiral molecules. Studies using semi-
empirical as well as ab initio methods, such as time-dependent Hartree Fock theory
and sum-over-states schemes, are shown to be helpful in linking chiral molec-
ular structure to the extraordinary optical properties of chiral molecules. Examples
include computations of the first hyperpolarizability for some helical molecules,
such as helicenes and heliphenes.

Ray reviews some recent developments concerning the design of novel mate-
rials with large NLO effects. He considers a series of organic salts and various
organometallic derivatives where it was found that metal-to-ligand charge-transfer
has a dominant contribution to the second-order NLO response. He also discusses the
first hyperpolarizability of several retinal derivatives, ionic octupolar molecules and
zwitterionic derivativatives. Solvent effects on NLO properties are also reviewed.

Asselberghs et al. review the experimental techniques which are used to
characterize the NLO response. These involve for the second order properties:
second-harmonic generation (SHG), electric field-induced second harmonic gener-
ation (EFISH) and hyper-Rayleigh scattering (HRS). Experimental methods which
are also used for the third-order nonlinear responses: the Maker fringe technique
and the wedge-shaped technique. They review techniques which are frequently
used to characterize third-order response: third harmonic generation (THG), degen-
erate four-wave mixing (DFWM), optical phase conjugation, optical Kerr-gate,
self-focusing methods, nonlinear Fabry-Perot methods etc. The authors discuss the
four most frequently used conventions in defining the non-linear polarization and
the interacting fields in the frequency domain.

Palpant reviews the literature concerning the third-order NLO response of
nanocomposite media consisting of noble metal (Cu, Ag, Au) nanoparticles
surrounded by a dielectric host. He first considers the theoretical background used to
describe the linear and NLO properties of noble metal nanoparticles and nanocom-
posite media. In these sections the influence of the surface plasmon resonance in
nanoparticles as well as the effects of the interactions between neighboring particles
is especially investigated. Subsequently, the main experimental results regarding
the optical Kerr effect in nanocomposite media are presented. Palpant reviews
the different NLO phenomena observed in such materials, as well as the intrinsic
third-order non-linear susceptibility of noble metal nanoparticles in different host
media. He also considers the dependence of the nonlinear properties on morpho-
logical parameters (particle size and shape, matrix kind, metal concentration) and
laser excitation characteristics (intensity, wavelength, pulsewidth). Finally, the role
of thermal effects in the NLO response of such materials is discussed.

Claessens et al. reviewed the recent progress in studies of NLO properties of
boron-subphthalocyanines (SubPcs). These phthalocyanine derivatives consist of
three isoindole units N-fused around a central boron atom, which bear an axial
ligand. These authors noted that the optical response of these nearly octupolar
derivatives is associated to the charge transfer inside the macrocycle � surface. They
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considered NLO properties of phthalocyanines and related macrocycles and noted
the role of dimensionality on these properties. They reviewed the NLO properties of
subphthalocyanines: (i) in solution; they discussed the effect of various substituents
on the properties, which have been measured by employing HRS, EFISH and THG,
and (ii) in condensed phases.

Morrall et al. review NLO properties of iron, ruthenium, osmium, nickel, and gold
alkynyl complexes, which the authors have prepared. HRS (at 1�064 �m) and Z-scan
(at 0�8 �m) measurements have been employed. Structure-property relations have
been established. Static first hyperpolarizability values have also been computed
employing the two-state model. They relate the NLO coefficients to several factors
and properties (e.g. ease of oxidation, �-system length, “dimensionality”).

Coe describes a large number of ruthenium complexes commenting on their
quadratic and cubic optical nonlinearities. He notes that the mechanisms which
lead to large NLO effects are generally similar to those observed in metal-free
organic molecules. However, some unusual effects have also been found, for
example the decreasing first hyperpolarizability value with �-conjugation extension
in pyridyl polyene complexes. Also of note, it has been found that the metal-
to-ligand charge-transfer absorption and first hyperpolarizability response of the
pentaammine complexes can be decreased by RuII → RuIII oxidation. This facile
redox-induced switching of the NLO response is fully reversible. Various exper-
imental methods (e.g. HRS, Z-scan, DFWM) and computational techniques (e.g.
TD-DFT, ZINDO) have been used to determine the NLO properties of the reviewed
complexes. Several of these metallochromophores are found to have very large
NLO responses.

Niziol et al. review the linear and NLO properties of some catenanes and
rotaxanes studied in solutions or thin films. Techniques like UV-Vis spectrometry,
second and third harmonic generation in thin films and electro-optic Kerr effects in
solution have been employed. They review the synthesis and material processing
of these derivatives. Niziol et al. describe how the rotation rate of the macrocycle
in catenane solutions is more than an order of magnitude larger than in rotaxanes.
They comment on the factors on which the rate of rotation depends. This new
class of molecules, with mobile subparts, is very likely to have useful applications
including the construction of synthetic molecular machines and all-optical switching
elements.

Nappa et al present a review of studies on the second harmonic (SH) light
scattered from aqueous suspensions of small gold and silver particles. Initially this
work concerns the SH response from arbitrary particles, with minimum restrictions
on their size or shape. They show that, in the case of metallic particles, the excitation
fields should be considered as superpositions of the incident and polarization fields,
because of the large (hyper)polarizabilities of the metallic particles and the possi-
bility of resonance enhancements through surface plasmon excitations. Nappa et al.
employing the hyper-Rayleigh intensities from small metallic particle suspensions,
demonstrate that the NLO response originates from the breaking of centrosymmetry
at the surface of the particles.
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INTRODUCTION
Molecular Nonlinear Optics in 2005

MARK A. RATNER
Department of Chemistry, Northwestern University, Evanston, IL

Because science is by its nature an experimental discipline, only experimental data
can make conceptual notions real. Simple ideas of nonlinear responses go back to
the ancients, in their observations of magnetism. Systemic study of nonlinear prop-
erties really began in the nineteenth century, with the investigations of workers like
Faraday and Seebeck on responses of materials to several applied fields. Maxwell’s
development of the theory of the electromagnetic field permits the correct mathe-
matical description of optical and electromagnetic response, and therefore underlies
formal approaches to responses both linear and nonlinear. The expansion of the
molecular polarization in a Taylor series in the applied electromagnetic field is
an obvious step to take. Considerations of the fine structure constant and the
requirements for sum rules suggest that higher-order responses for strictly-limited
magnitudes. The actual detailed investigation of materials’ nonlinearities, in partic-
ular ��n�, only began when the intense field permitted by use of laser light made
it possible to observe such responses systematically. The first nonlinear process to
be advantaged by laser measurements was Raman spectroscopy. In the last four
decades, major progress has been made on all nonlinear optical response properties.

Interpretation of nonlinear molecular measurements on molecules, and indeed our
intuitive understandings of any polarization, is almost always based on a state model
of the molecule: the applied fields mix the levels of the molecular Hamiltonian so
that spectral analysis (in the sense of sums over states, or SoS) becomes a very
useful description. While more recent and more sophisticated electronic structure
calculations have important direct-response methods, the SoS techniques, like the
very simple two-level formula of Oudar and Chemla, have tremendous advantages
in terms of generality and understanding.

Experimentally, there have been substantial advances in measurement, going
beyond the earlier electric-field induced second harmonic generation (EFISH) tech-
niques to include hyper-Rayleigh scattering, z-scan and other schemes. Modeling
methods have become more nuances. Synthetic study of molecular and nonlinear
optics has gone beyond early work on donor/acceptor �-systems. Applications and
technological advances are appearing, and molecules are being used as modulators
as well as materials for light manipulation.

Nevertheless, some goals remain unattained. Molecular materials were not
yet routinely used for nonlinear technologies, essentially because of inadequate

xv



xvi Introduction

materials properties. The field still needs more systematic measurement and
modeling approaches. Of equal importance, the extensions both of the knowledge
base of experiments and of concepts for guiding our intuition about nonlinear
response need to be strengthened. Clearly, the goal must be to utilize the great
capabilities of synthetic chemistry to prepare molecular nonlinear materials by
design, just as we can now prepare dyes, pharmaceuticals and polymers (although to
different degrees of exactness and simplicity!) to have particular designed properties.

Some examples of intuition-based or modeling-based advances in nonlinear prop-
erties, specifically the first hyperpolarizability response 	, have been developed in
the past three decades. These include the bond-length alternation motif, the idea of
octopolar molecular structures, the stronger responses of excited states and the use
of purposely twisted �-electron molecules to modify the admixture of quinoid and
aromatic structures.

Despite extensive research, major problems still remain unsolved in both of
the crucial areas required for employing effectively nonlinear materials based on
molecules: the molecular hyperpolarizability properties (	, 
 and to a very limited
extent higher-order responses) are still not either predictable or preparable using
any meaningful structure/function understandings. Moreover, utilizing molecules
to prepare actual materials with designed nonlinearities ��2�,��3� … remains a very
difficult problem.

In my view, this book contains the most in-depth and broad-based discussion of
molecular nonlinear materials yet available. While it does not in itself discuss all
the issues (there is relatively little on molecular crystals or on local-field effects),
the combination of theoretical and experimental presentations makes the book of
unique value to any investigators in the general of molecular nonlinear optics.

The sketch below indicates some of the major themes in nonlinear response that
are addressed in this book. In the modeling area, many of the major themes are
addressed, including fundamentals, environmental effects, processing and particular
special topics. There is a good deal of attention to electronic-structure methods,
including such issues as scaling properties, collective excitations, resonant exci-
tations and vibrational nonlinear effects. One major underlying theme here is the
development of electronic-structure themes for calculating molecular (as opposed
to materials) response. Methods include density-functional theory approaches, time-
dependant analyses, ab initio based (systematically improvable) approaches, and
semi-empirical analyses. Each of these has both strengths and weaknesses, and
those are brought out clearly.

There is also analysis of environmental effects from solvents and of solvate-
chromic phenomena, and discussion of poling as a processing technique for
nonlinear structures.

The second half of the book concerns measurements and particular molecular
structures. After a general overview, this section concentrates on specifics, ranging
from complex molecules like catanenes and rotaxanes through ruthenium complexes
and organometallics. More materials-oriented contributions on carbon nanotubes,
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metal-dot conjugates, and ionic materials are also given. One chapter is devoted to
the ��3� response, which remains much less investigated for molecular materials.

The book in general presents a balanced and informative description of progress
in molecular non-linear optics in 2005. While it is clear that the field has progressed
substantially, and that there is deep understanding in some promising areas for exper-
imental and technological application, it is still true that some major themes remain
challenging. These include the preparation of stable molecular systems exhibiting
very large (but more particularly, predictable) 	 and � properties, building of a
knowledge base and an intuitive understanding of structure/function relationships
in simple molecular entitites. Perhaps even more challenging (and less extensively
addressed) is the design of actual nonlinear materials. Here it is necessary to go
beyond design at the molecular level, to deal with an actual materials system. This
problem is both less-well addressed in this book, and less-well addressed by the
community. Poling methods are discussed here (and are indeed one of the standard
ways in which molecular nonlinear materials are prepared and measured). Poled
materials have substantial inherent disadvantages, arising both from fundamental
statistical mechanics (the Boltzmann penalty is required to pole the material) and
from kinetic long-term instabilities. Other approaches, particularly self-assembly
and covalent cross-linking structures, will certainly play a major role in this area.

The editors are to be congratulated on the remarkable quality and completeness
of this book, that shows both the advances and some of the remaining challenges
in the general area of nonlinear materials based on molecular response.



CHAPTER 1

MICROSCOPIC THEORY OF NONLINEAR OPTICS

PATRICK NORMAN1 AND KENNETH RUUD2

1 Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
2 Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway

Abstract: In this chapter we give an introduction to the theory of linear and nonlinear optics.
We show how the response of a molecule to an external oscillating electric field
can be described in terms of intrinsic properties of the molecules, namely the
(hyper)polarizabilities. We outline how these properties are described in the case of
exact states by considering the time-development of the exact state in the presence
of a time-dependent electric field. Approximations introduced in theoretical studies
of nonlinear optical properties are introduced, in particular the separation of elec-
tronic and nuclear degrees of freedom which gives rise to the partitioning of the
(hyper)polarizabilities into electronic and vibrational contributions. Different approaches
for calculating (hyper)polarizabilities are discussed, with a special focus on the electronic
contributions in most cases. We end with a brief discussion of the connection between the
microscopic responses of an individual molecule to the experimentally observed responses
from a molecular ensemble

Keywords: two-photon absorption; three-photon absorption; multi-photon absorption; nonlinear
optics; polarizability; hyperpolarizability

1. INTRODUCTION

The field of molecular nonlinear optics has been growing since the first prediction
of the nonlinear optical process, and a strong boost was given to the field with
the experimental observation of nonlinear optical effects made by Franken et al.
in 1961 [29]. The development of the modern laser had provided scientists with
a source of the high-intensity fields needed for nonlinear optical processes to
become effective. However, one could not observe a synchronous development in
the quantum mechanical modeling of these processes, and there are several reasons
for this delay. The molecules of experimental interest are in most cases large, and,

1

M.G. Papadopoulos et al. (eds.), Non-Linear Optical Properties of Matter, 1–49.
© 2006 Springer.
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in general, it is not until recently that standard first principle quantum chemical
methods have been able to address the compounds of interest. Furthermore, the
calculation of the higher-order molecular properties that determine the nonlinear
optical responses require a development of highly sophisticated theoretical models,
and it is a challenge to design efficient computational schemes for these models.

The majority of the early nonlinear optical materials were based on inorganic
crystals. More recently, however, focus has shifted toward organic molecules due
to the much greater design flexibility in molecular compounds, which allows for a
fine tuning of the microscopic properties and thus the linear and nonlinear optical
behavior of the materials. Molecular compounds can also have a narrow band
absorption, one can re-orient their optical axis, they can display bistable electronic
states of different spin symmetries, etc. This diversity makes molecular compounds
suitable for specific target areas in light-control applications. In addition, organic
molecules have favorable mechanical and thermal properties, which allow them to
be used for a wider range of applications.

During the last 10–20 years, a large number of efficient theoretical methods for
the calculation of linear and nonlinear optical properties have been developed—
this development includes semi-empirical, highly correlated ab initio, and density
functional theory methods. Many of these approaches will be reviewed in later
chapters of this book, and applications will be given that illustrate the merits
and limitations of theoretical studies of linear and nonlinear optical processes. It
will become clear that theoretical studies today can provide valuable information
in the search for materials with specific nonlinear optical properties. First, there
is the possibility to screen classes of materials based on cost and time effective
calculations rather then labor intensive synthesis and characterization work. Second,
there is the possibility to obtain a microscopic understanding for the performance of
the material—one can investigate the role of individual transition channels, dipole
moments, etc., and perform systematic model improvements by inclusion of the
environment, relativistic effects, etc.

The purpose of this chapter is to introduce the fundamentals of the theory of
linear and nonlinear optical processes, and our focus will be on the general features
of the theory. We will primarily restrict our discussion to the framework of exact-
state theories, and focus on the occurrence of linear and nonlinear optical processes
from a physical point of view. However, in order to set a frame of reference we
provide a brief outline of the most common classes of methods in approximate-state
theories. We will discuss the partitioning of molecular properties into electronic
and vibrational contributions, and close the chapter with a brief discussion of the
comparison of the microscopic properties with those of the bulk. We wish to stress
that other chapters of this book will cover these latter aspects in greater detail.

The reader is also advised to consult previous reviews and books. Previous
reviews in this field have been written by Ward [58], Buckingham [19], Buckingham
and Orr [20], Bogaard and Orr [14], Dykstra et al. [26], Bishop [3, 4, 6], Hasanein
[30], Shelton and Rice [55], Brédas et al. [18], Luo et al. [39], Bartlett and
Sekino [2], Kirtman and Champagne [34], Nakano and Yamaguchi [43], Wolff
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and Wortmann [59], Bishop and Norman [11], and Champagne and Kirtman [22].
A selection of books concerning nonlinear optics are: The elements of nonlinear
optics by Butcher and Cotter [21], Introduction to nonlinear optical effects in
molecules and polymers by Prasad and Williams [49], Nonlinear optics by Boyd
[17], and Linear and nonlinear optical properties of molecules by Wagniére [57].

2. MOLECULAR NONLINEAR OPTICAL PROPERTIES

Molecular nonlinear optics is the description of the change of the molecular optical
properties by the presence of an intense light field. Since light either can be
considered a classical electromagnetic wave or as a stream of photons, we may
describe the interaction between light and matter in two apparently different ways,
and we will start by considering how linear and nonlinear optical phenomena can
be described in these two frameworks.

The discussion in this chapter, as well as in the rest of this book, will be
concerned with electromagnetic radiation in the visible and infrared spectral regions.
In the energy scale of molecules, this frequency range corresponds to the energies
required for vibrational and electronic excitations. For these energies, the light-
matter interaction can be regarded as scattering of photons by the electrons of
the molecule. Each photon carries a linear momentum p = E/c which is partially
transferred to the molecule since the electron remains bound, but the great mass of
the molecule effectively prohibits energy transfer so that the scattered photons will
have, for all practical purposes, identical frequency as the incoming ones, a process
known as elastic scattering. At the instant of interaction, the photon can be regarded
as absorbed and the molecule as being in a virtual excited state, intermediate in
energy to the stationary states of the system. However, the time-scale � for this
interaction, or the lifetime of the virtual state, is short enough not to violate the
time-energy uncertainty relation

(1) ��E ∼ �

2

where �E denotes the energy difference between the nearest electronically excited
state �1� and the virtual state. The de-excitation of the system from the virtual state
back to the ground state �0� is associated with the emission of the scattered photon,
a process referred to as linear optics, see Fig. 1.

A high intensity of the incident radiation enhances the probability for simulta-
neous multi-photon interactions with a single molecule, i.e. two or more photons are
annihilated and absorbed by the molecule in a single quantum mechanical process.
The frequency of the scattered photon does in such cases not have to be equal that of
the absorbed photons, e.g. two quanta with frequency �may be annihilated, creating
a third photon with frequency 2�. As indicated in Fig. 2, the system returns to its
ground state �0� after the interaction has taken place, and the intermediate virtual
state is separated from the first excited state by an energy �E. This is an example
of a nonlinear optical process known as second-harmonic generation, which can
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Figure 1. Elastic scattering of incident photons of frequency �
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Figure 2. Second-harmonic generation involving two incident photons of frequency � and a sum-
frequency generated photon of frequency 2�

be used to accomplish frequency conversion of light. From these basic principles,
a large number of multi-photon interactions can be envisaged when considering
incident photons of different frequencies. We also note that when the laser detuning
decreases, i.e. when �E becomes smaller, the process can no longer be consid-
ered as an instantaneous scattering since the molecular state �1� will become
absorbing.

In the complementary view of light–matter interaction in optics, the laser field is
described as a electro-magnetic plane wave in which the molecular system resides,
and the coupling between the two is, to a first approximation, the classical electric-
dipole coupling. In the presence of the external electric field all charged particles in
the molecule, electrons as well as atomic nuclei, will experience a force that perturbs
their motions. In a classical sense, one would expect the charges to follow the
time-oscillations of the electric field and thereby act as small antennas from which
electro-magnetic radiation would be transmitted; the frequency of the transmitted
wave would of course be the same as that of the external field. We can compare this
classical picture to the elastic scattering process described in Fig. 1: The oscillating
charges in the molecule give rise to an induced dipole moment, and the degree to
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which the external field E�t� manages to set the charges in motion is, to first order,
expressed in terms of the linear electric polarizability �. In general, the response of
the charges depends on the frequency of the electric field, and the polarizability is
therefore frequency dependent as we shall see later. The time-dependent polarization
becomes

(2) ��t�= �0 +�E�t�
where �0 is the permanent electric dipole moment of the molecule. We are
concerned with optical fields, so the wavelength of E�t� is at least in the order of a
few hundred nanometers whereas the size of the molecule is no greater than a few
nanometers. In most cases, the electric field is therefore taken to be uniform over
the molecule.

Now there seems to be one immediate and important question to be addressed:
if the particle and wave pictures of light are two versions of the same thing, how
can we understand nonlinear light–matter interactions when the electric field is
represented by a plane wave? The answer lies in a generalization of Eq. (2) which
lets the polarization be expressed as a Taylor series in the electric field strength

(3) ��t�= �0 +�E�t�+ 1
2
	E2�t�+ 1

6

E3�t�+· · ·

This equation introduces the first-order (nonlinear) hyperpolarizability 	, the
second-order hyperpolarizability 
, and so forth. Just as the linear polarizability, the
nonlinear coupling constants depend on the frequency of the applied field. It is clear
that the time-dependent polarization can have frequency components separate from
those of the external field due to its power dependence on the electric field strength,
and the molecule can thus emit sum-frequency-generated radiation in correspon-
dence with for example Fig. 2. In optics, Eq. (3) provides the fundamental origin
of nonlinearities, and, at the microscopic level, it is the expansion coefficients in
this equation, or the hyperpolarizabilities, that govern the nonlinear optical perfor-
mance of the material. Hence, theoretical modeling of nonlinear optical properties
is concerned with the determination of these quantities given the structure of the
system.

Let us now examine Eq. (3) in some detail. The electric field is vectorial and
generally considered to be composed of a static component and one or more time-
oscillating components according to

(4) E��t�=∑

�

E��e
−i�t

where E�� are the Fourier amplitudes of the electric field along the molecular axis
�. We note that the use of Greek subscripts for tensors in nonlinear optics follows
the original notation of Buckingham [19]. The summation includes both positive
and negative frequencies, and, since the external field is real, we have E� = �E−��∗.
Furthermore, a vectorial electric field implies that the linear polarizability is a
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second-rank tensor, the first-order hyperpolarizability is a third-rank tensor, and so
forth. We insert the expression for the time-dependent electric field in Eq. (4) into
Eq. (3) to obtain

���t�= �0
�+∑

�

��	�−���E�	e−i�t(5)

+ 1
2

∑

�1��2

	�	
�−���1��2�E
�1
	 E

�2

 e

−i�� t

+ 1
6

∑

�1��2��3


�	
��−���1��2��3�E
�1
	 E

�2

 E

�3
� e

−i�� t +· · ·

where �� denotes the sum of optical frequencies: for terms involving 	 then
�� = ��1 +�2� and for terms involving 
 then �� = ��1 +�2 +�3�. The Einstein
summation convention for repeated subscripts is assumed here and elsewhere. We
note that any pairwise interchange of the indices and frequencies �	��1�, �
��2�,
and ����3� can be made without altering the physically observable polarization
��t�. It is therefore customary, but not necessary, to demand that the individual
tensor elements are intrinsically symmetric

	�	
�−���1��2�= 	�
	�−���2��1�(6)


�	
��−���1��2��3�= 
�	�
�−���1��3��2�(7)

= 
�
	��−���2��1��3�= 
�
�	�−���2��3��1�

= 
��
	�−���3��2��1�= 
��	
�−���3��1��2�

Furthermore, since the molecular polarization ��t� as well as the electric field E�t�
are real, we have

���−��= ���−����∗(8)

	���−�1�−�2�= �	�−���1��2��
∗(9)


���−�1�−�2�−�3�= �
�−���1��2��3��
∗(10)

The frequency �� is that of the generated molecular polarization, and, since the
summations in Eq. (5) run over both positive and negative frequency compo-
nents, the nonlinear hyperpolarizabilities will create both sum-frequency as well as
difference-frequency generated polarization.

It is illustrative to consider a few specific examples. For instance, let two
lasers A and B, which operate at frequencies �A and �B, respectively, interact.
The external electric field experienced by the molecular system will in this case
become

(11) E��t�= E�A� cos��At�+E�B� cos��Bt�
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Figure 3. Frequency decomposition of two interfering laser fields

with a frequency decomposition that appears as in Fig. 3. According to Eq. (5) and
including terms up to second-order in the field, the time-dependent polarization
will be

���t�= �0
�+��	�E�A	 cos��At�+E�B	 cos��Bt��(12)

+ 1
2
	�	
�E

�A
	 cos��At�+E�B	 cos��Bt���E

�A

 cos��At�+E�B
 cos��Bt��

With the use of the trigonometric identity

(13) cosu cosv= 1
2
�cos�u+v�+ cos�u−v��

we can rewrite the polarization as

���t�= �0
�+ ∑

�=��A��B�

[

��	�−���E�	 cos��t�(14)

+ 1
2
	�	
�0��−��E�	E�
 + 1

2
	�	
�−2�����E�	E

�

 cos�2�t�

]

+	�	
�−��A+�B��A��B�E�A	 E�B
 cos���A+�B�t�
+	�	
�−��A−�B��A�−�B�E�A	 E�B
 cos���A−�B�t�

The frequency decomposition of the polarization is illustrated in Fig. 4, and, in this
figure, we recognize the linear polarization at the frequencies of the external field
and the second-harmonic generation frequencies as a result from two-photon absorp-
tion (see also Fig. 2). In addition to these frequencies, we see that the induced molec-
ular polarization will contain the frequencies ��A+�B� (sum-frequency generation)
and ��A −�B� (difference-frequency generation) as well as a static component
�= 0. Sum-frequency generation is similar to second-harmonic generation in that

ωB 2ωB 2ωAωA–2ωA

–(ωA + ωB) (ωA + ωB)–(ωA – ωB) (ωA – ωB)

–2ωB –ωA –ωB 0

Figure 4. Frequency decomposition of the molecular polarization
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ωB

ωA

(ωA – ωB)

Figure 5. Difference-frequency generation involving photons of frequencies �A and �B

it involves the simultaneous absorption of two photons, although in this case one
photon from each light source. Difference-frequency generation, on the other hand,
has a fundamentally different microscopic origin. The corpuscular light–matter
interaction in this nonlinear optical process is described in Fig. 5. Since the energy
is conserved in this process as well as in all others, the light quanta of frequency
�A is annihilated and those of frequencies �B and ��A−�B� are both created at
this instant (two-photon emission). The creation of the photon with frequency �B is
a result of stimulated emission induced by laser B, and the electric field amplitude
E�B is thereby enhanced by this process. It is thus in principle possible to amplify
a weak light signal B with a pump laser A.

Let us analyze another example, namely when the external electric field is
composed of a single laser field with frequency � and amplitude E� in addition to
a static field with amplitude E0:

(15) E��t�= E0
�+E�� cos��t�

Including terms up to third order in the electric field, the polarization in this case
become

���t�= �0
�+��	�E0

	+E�	 cos��t��(16)

+ 1
2
	�	
�E

0
	+E�	 cos��t���E0


 +E�
 cos��t��

+ 1
6

�	
��E

0
	+E�	 cos��t���E0


 +E�
 cos��t���E0
�+E�� cos��t��

We make repeated use of the trigonometric identity in Eq. (13) and rewrite the
polarization as

(17) ���t�= �̃0
�+ �̃�� cos��t�+ �̃2�

� cos�2�t�+ �̃3�
� cos�3�t�
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where the Fourier amplitudes of the polarization become

�̃0
� = �0

�+��	�00�E0
	+ 1

2
	�	
�00�0�E0

	E
0

(18)

+ 1
6

�	
��00�0�0�E0

	E
0

E

0
�

+ 1
4
	�	
�0−����E�	E�
 + 1

4

�	
��0−����0�E0

	E
�

 E

�
�

�̃�� = ��	�−���E�	 +	�	
�−���0�E�	E0

(19)

+ 1
2

�	
��−���0�0�E�	E0


E
0
�

+ 1
8

�	
��−���−���� �E�	E�
 E��

�̃2�
� = 1

4
	�	
�−2�����E�	E

�

(20)

+ 1
4

�	
��−2�����0�E�	E

�

 E

0
�

�̃3�
� = 1

24

�	
��−3�������E�	E

�

 E

�
�(21)

An alternative summary of this result is sometimes expressed as an expansion of
the polarization amplitudes in terms of the electric field amplitudes

�̃��� = ��−���1�E
�1 + 1

2
K�2�	�−���1��2�E

�1E�2(22)

+ 1
6
K�3�
�−���1��2��3�E

�1E�2E�3 +· · ·

where the factors K�n� are required for the polarization related to the molecular
response of order n to have the same static limit. By a direct comparison with
Eqs. (17)–(21), we are able to identify these factors for some common nonlinear
optical processes, see Table 1.

We have seen how the molecular properties in nonlinear optics are defined by
the expansion of the molecular polarization in orders of the external electric field,
see Eq. (5); beyond the linear polarization this definition introduces the so-called
nonlinear hyperpolarizabilities as coupling coefficients between the two quantities.
The same equation also expresses an expansion in terms of the number of photons
involved in simultaneous quantum-mechanical processes: �, 	, 
, and so on involve
emission or absorption of two, three, four, etc. photons. The cross section for multi-
photon absorption or emission, which takes place in nonlinear optical processes, is
in typical cases relatively small and a high density of photons is required for these
to occur.
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Table 1. Common nonlinear optical processes

Process Frequencies Factor

Second-order processes K�2�

Static 0; 0, 0 1
EOPEa −���0 2
SHGb −2���� 1/2

Third-order processes K�3�

Static 0; 0, 0, 0 1
EOKEc −���0�0 3
IDRId −���−��� 3/4
ESHGe −2�����0 3/2
THGf −3������ 1/4

a Electro-optical Pockels effect.
b Second-harmonic generation.
c Electro-optical Kerr effect.
d Intensity-dependent refractive index.
e Electric field-induced second harmonic generation.
f Third-harmonic generation.

3. TIME-DEPENDENT PERTURBATION THEORY

In this section we shall derive explicit expressions for the response functions that
describe the interaction of a quantum mechanical system and an external electric
field. The first order response function was in the previous section referred to as
the molecular polarizability and higher-order response functions as the molecular
hyperpolarizabilities. We will use both these terminologies as if they were synony-
mous although the notion of response functions is more general and can be used
in other applications than nonlinear optics. As tool we will use time-dependent
perturbation theory and assume that the solutions to the eigenvalue problem of the
unperturbed system are known. In practice we are of course not able to obtain
exact solutions even to the unperturbed system, but our analysis will nevertheless
highlight the dependence of the polarizabilities on other molecular parameters such
as excitation energies and transition moments. A thorough introduction to various
electronic structure methods for determining unperturbed reference states have been
given in [31].

The time-evolution of the state vector is given by the time-dependent Schrödinger
equation

(23) i�
�

�t
���t�� = Ĥ���t��

where Ĥ is the Hamiltonian which may be time-independent or time-dependent. In
the former case, the problem of solving Eq. (23) reduces to solving the eigenvalue
equation for the Hamiltonian, but in the latter case such simplifications are not
possible. However, when the time-dependent part of Ĥ is a small perturbation, we
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can still express the solution in terms of the eigenstates of the unperturbed system.
Let us separate the Hamiltonian according to

(24) Ĥ = Ĥ0 + V̂ �t�
where Ĥ0 is the molecular Hamiltonian of the unperturbed system and V̂ �t� is a
small perturbation. We assume that the solutions to the eigenvalue problem of Ĥ0

are known

(25) Ĥ0�n� = En�n�
where �n� are the exact rovibronic eigenstates and En the respective energies. Before
being exposed to the perturbation, we assume the molecule to be in a reference
state �0�—in most cases the molecular ground state—and we wish to determine the
amplitudes for the molecule to be in another state at a later time. Since the set ��n��
is complete, we can at any point in time express the general molecular state ���t��
as an expansion according to

(26) ���t�� =∑

n

cn�t��n�

where cn�−�� = �0n (Kronecker delta function) as a result of the system being
initially in the ground state, and our task is to find the time-dependent expansion
coefficients cn�t�. We note that if the perturbation had not been present then cn�t�=
cn�0� exp�−iEnt/��, and it is therefore appropriate to rewrite Eq. (26) as

(27) ���t�� =∑

n

dn�t�e
−iEnt/��n�

because changes of dn in time are due only to the small perturbation. The coefficients
dn can be written in a power series of V̂ :

(28) dn�t�= d�0�n +d�1�n �t�+d�2�n �t�+· · ·
Operating on both sides of Eq. (27) with i��/�t− Ĥ from the left and multiplying
from the left with the bra vector �m� exp�iEmt/�� gives us an equation from which
we can determine dm�t�

(29) i�
�

�t
d�N�m =∑

n

�m�V̂ �t��n�ei�mntd�N−1�
n

where �mn is the transition frequency �Em −En�/�, and d�0�n is �0n. We see that
Eq. (29) is recursive in that by feeding it with d�0�n we can determine the next
order response, d�1�n , etc. by straightforward time-integration. In accordance with
the expansion of the coefficients dn in orders of the perturbation V̂ , it is customary
to write the wave function as

(30) ���t�� = ���0��t��+ ���1��t��+ ���2��t��+ · · ·
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where

(31) ���N��t�� =∑

n

d�N�n e
−iEnt/��n�

In general, expectation values will be time-dependent due to the time-dependence
of the Hamiltonian. However, the expectation value of the molecular electric dipole
operator �̂ is of special interest to us, since it corresponds to the molecular polar-
ization and therefore also to the polarizabilities and hyperpolarizabilities. With help
of Eq. (30), the expectation value of �̂ becomes

(32) ���t���̂���t�� = ��̂��0�+��̂��1�+��̂��2�+��̂��3�+· · ·
where the various orders of the time-dependent polarizations are

��̂��0� = �0��̂�0�(33)

��̂��1� = ���0���̂���1��+���1���̂���0��(34)

��̂��2� = ���0���̂���2��+���1���̂���1��+���2���̂���0��(35)

��̂��3� = ���0���̂���3��+���1���̂���2��+���2���̂���1��+���3���̂���0��(36)

We recognize the first term as the permanent electric dipole moment of the molecule,
and from the latter terms we will shortly be able to identify expressions for the
polarizabilities and hyperpolarizabilities.

In the electric dipole approximation the interaction between the molecule and the
electric field is described by the operator

(37) V̂ �t�= −�̂�E��t�e�t

where �̂� is the electric dipole operator along the molecular axis �, and E�t� is the
classical electric field which can be decomposed in the frequency domain according
to Eq. (4). The promotion of the dipole moment to become an operator while leaving
the electric field as an amplitude corresponds to the quantum mechanical treatment
of the molecule and the classical treatment of the external field. The exponential
factor with the small positive infinitesimal � ensures that the perturbation is switched
on adiabatically and that it vanishes for t= −�. Inserting V̂ �t� and d�0�n into Eq. (29)
and performing the time integration, the first order response becomes

d�1�m �t�= − 1
i�

∫ t

−�

∑

n

�m��̂�
∑

�1

E�1
� e

−i�1t
′
e�t

′ �n�ei�mnt′�0ndt
′(38)

= 1
�

∑

�1

�m��̂��0�E�1
�

�m0 −�1 − i� e
i��m0−�1�te�t

where it is recognized that the contribution from the lower integration limit vanishes
due to �. Since the coefficients d�1�m �−�� are zero due to the positive infinitesimal,
the result is consistent with the molecule being in its ground state at t = −�.
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The second order response is obtained from Eq. (29) by insertion of the result
for the first order response:

d�2�m �t�= − 1
i�

∫ t

−�

∑

n

�m��̂�
∑

�1

E�1
� e

−i�1t
′
e�t

′ �n�ei�mnt′(39)

× 1
�

∑

�2

�n��̂	�0�E�2
	

�n0 −�2 − i� e
i��n0−�2�t

′
e�t

′
dt′

= 1
�2

∑

�1�2

∑

n

�m��̂��n��n��̂	�0�E�1
� E

�2
	

��m0 −�1 −�2 − i2����n0 −�2 − i��e
i��m0−�1−�2�te2�t

Repeating the procedure once more, we obtain the third order response as

d�3�m �t�= − 1
i�

∫ t

−�

∑

n

�m��̂�
∑

�1

E�1
� e

−i�1t
′
e�t

′ �n�ei�mnt′(40)

× 1
�2

∑

�2�3

∑

p

�n��̂	�p��p��̂
 �0�E�2
	 E

�3



��n0 −�2 −�3 − i2����p0 −�3 − i�� e
i��n0−�2−�3�t

′
e2�t′dt′

= 1
�3

∑

�1�2�3

∑

np

�m��̂��n��n��̂	�p��p��̂
 �0�E�1
� E

�2
	 E

�3



��m0 −�1 −�2 −�3 − i3����n0 −�2 −�3 − i2����p0 −�3 − i��
× ei��m0−�1−�2−�3�te3�t

We are now in a position to determine the molecular polarization including terms
of at the most third order in the perturbation through Eqs. (33)–(36).

3.1 Linear Polarizability

The first-order polarization is obtained from Eq. (34) by insertion of the zeroth-
order as well as the first-order correction to the wave function, where ���0�� =
exp�−iE0t/���0� and ���1�� is given by a combination of Eqs. (38) and (31):

��̂���1� = ���0���̂����1��+���1���̂����0��(41)

= �0�eiE0t/��̂�
∑

n

1
�

∑

�1

�n��̂	�0�E�1
	

�n0 −�1 − i� e
i��n0−�1�te�te−iEnt/��n�

+∑
n

1
�

∑

�1

�0��̂	�n��E�1
	 �

∗

�n0 −�1 + i� e
−i��n0−�1�te�teiEnt/��n��̂�e−iE0t/��0�

=∑

�1

1
�

∑

n

�0��̂��n��n��̂	�0�
�n0 −�1 − i� E

�1
	 e

−i�1te�t

+∑
�1

1
�

∑

n

�0��̂	�n��n��̂��0�
�n0 −�1 + i� �E

�1
	 �

∗ei�1te�t

=∑

�1

1
�

∑

n

[�0��̂��n��n��̂	�0�
�n0 −�1 − i� + �0��̂	�n��n��̂��0�

�n0 +�1 + i�
]

E
�1
	 e

−i�1te�t
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In the last step we have used that �E�1 �∗ = E−�1 and the fact that �1 runs over both
positive and negative frequencies. By a direct comparison to Eq. (5), we are able to
identify the resulting quantum mechanical formula for the linear polarizability as

(42) ��	�−���= 1
�

∑

n

[�0��̂��n��n��̂	�0�
�n0 −�− i� + �0��̂	�n��n��̂��0�

�n0 +�+ i�
]

It is clear that this formula can be used directly as it stands for practical computations
of the optical polarization once the excitation energies and transition moments of
the system are known. More importantly, however, it elucidates the dependence of
the linear polarizability on the quantum mechanical properties of the molecule.

For the two terms in the sum-over-states expression in Eq. (42) that involve
the ground state n= 0, the transition frequency �n0 is zero. The two terms are of
opposite sign and will therefore cancel, and it is common practice to exclude the
ground state from the summation and to use a primed summation symbol

∑′
n for

the sum over excited states.
We have made a point of carrying along the positive infinitesimal � in the

perturbation not only to avoid singularities or divergencies in the time-integration
step of the expansion coefficients dn above but also to avoid divergences in the linear
response function itself. With a reasonable laser detuning, however, the imaginary
term in the denominator of Eq. (42) can safely be neglected in the calculation of
��−���, and, since the set of eigenstates ��n�� can be chosen as real, without
loss of generality, the linear response function is real in the nonresonant region.
The working formula will in this case take the form

(43) ��	�−���= 1
�

∑

n

′
[�0��̂��n��n��̂	�0�

�n0 −� + �0��̂	�n��n��̂��0�
�n0 +�

]

We note that after having excluded the ground state from the summation, the
polarizability is convergent in the limit of nonoscillating fields also without the
imaginary term in the denominator. The singularities that occur for static fields
with � = 0 and inclusion of the ground state in the summation are called secular
divergences, since they can be removed by mathematical manipulations of the
sum-over-states expression. We will later see that secular divergences appear for
the hyperpolarizabilities as well. However, with � = 0, the linear polarizability, or
the linear polarization propagator as it is sometimes denoted, will also be divergent
for perturbation frequencies equal to the transition frequencies of the system. These
singularities are true divergences and are known as resonances of the system. This
fact is frequently utilized in approximative calculations in order to find estimates
of the molecular excitation energies as poles of the polarization propagator. The
residues of the propagator can be used to identify the absolute value of the transition
moments between the ground and excited states and thereby describe the intensities
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in the linear absorption spectrum. The residue of the linear polarizability is seen
from Eq. (43) to equal

(44) lim
�→�f0

��f0 −�� ��	�−���= �0��̂��f��f ��̂	�0�

where �f� denotes the final state in the one-photon absorption process.
We have treated the perturbing electric field as classical, which means that the

lifetimes of the eigenstates �n� of the unperturbed Hamiltonian are infinite. The
linear absorption from the ground state to the excited states is in this case described
by Dirac delta functions peaked at the excitation energies, and monochromatic light
sources need to be exactly tuned for transitions to occur. In reality, and when treating
also the electric field quantum mechanically, there is no such thing as an exact zero
external field, as well as there are no infinite lifetimes of excited states even of
perfectly isolated systems. A phenomenological way to incorporate the situation of
finite excited state lifetimes into our description is to introduce population decay
rates �n0 that equal the inverse lifetime, or the lifetime broadening, of the excited
state �n�. The expression for the linear polarizability is then written as

(45) ��	�−���= 1
�

∑

n

′
[�0����n��n��	�0�
�n0 −�− i�n0/2

+ �0��	�n��n����0�
�n0 +�+ i�n0/2

]

In general, and for the nonlinear hyperpolarizabilities to be derived below, one
introduces �mn for the transition between states �m� and �n�. In effect the imagi-
nary term i�n0/2 takes the place of i� in Eq. (42). The linear absorption spectrum,
which corresponds to the imaginary part of Eq. (45), will be built from “smeared
out” Dirac delta functions of Lorentzian shape, i.e. the frequency-integrated absorp-
tion will remain constant regardless of the value of the lifetime broadening.
The real part of the polarizability is related to the refractive index n of the
sample

(46) n2 = 1+2�NA/3�0

1−�NA/3�0

≈ 1+ NA
2�0

�

where �0 is the permittivity in vacuum, and NA is Avogadro’s number.

3.2 First-order Hyperpolarizability

Just as an explicit formula for the linear polarizability is identified from the linear
polarization, we are able to retrieve the corresponding formula for the first-order
hyperpolarizability from the second-order polarization. We obtain the second-
order polarization from Eq. (35) by insertion of the first-order and second-order
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corrections to the wave function, where ��1� and ��2� are given by Eqs. (38) and
(39), respectively, in combination with Eq. (31). Let us first consider the three terms
in Eq. (35) one at a time:

���0���̂����2�� = �0�eiE0t/��̂�(47)

×∑
n

1
�2

∑

�1�2

∑

p

�n��̂	�p��p��̂
�0�E�1
	 E

�2



��n0 −�1 −�2 − i2����p0 −�2 − i��
× ei��n0−�1−�2�te2�te−iEnt/��n�

= ∑

�1�2

1
�2

∑

np

�0��̂��n��n��̂	�p��p��̂
�0�E�1
	 E

�2



��n0 −�1 −�2 − i2����p0 −�2 − i��e
−i��1+�2�te2�t

���1���̂����1�� =(48)

×∑
n

1
�

∑

�1

�0��̂	�n�
[
E
�1
	

]∗

�n0 −�1 + i� e
−i��n0−�1�te�teiEnt/��n��̂�

×∑
p

1
�

∑

�1

�p��̂
�0�E�2



�p0 −�2 − i� e
i��p0−�2�te�te−iEpt/��p�(49)

= ∑

�1�2

1
�2

∑

np

�0��̂	�n��n��̂��p��p��̂
�0�E�1
	 E

�2



��n0 +�1 + i����p0 −�2 − i�� e−i��1+�2�te2�t

���2���̂����0�� =∑

n

1
�2

∑

�1�2

∑

p

�p��̂	�n��0��̂
�p�
[
E
�1
	

]∗ [
E
�2



]∗

��n0 −�1 −�2 + i2����p0 −�2 + i��(50)

× e−i��n0−�1−�2�te2�teiEnt/��n��̂�e−iE0t/��0�

= ∑

�1�2

1
�2

∑

np

�0��̂
�p��p��̂	�n��n��̂��0�E�1
	 E

�2



��n0 +�1 +�2 + i2����p0 +�2 + i��e
−i��1+�2�te2�t

where we again have used that �E��∗ = E−� and the fact that �1 and �2 are
dummy summation indices that run over all positive and negative frequencies. We
note that neither of the three equations above are symmetric in the indices 	 and

, but we have already discussed in connection with Eq. (6) that we desire the
hyperpolarizability tensors to be intrinsically symmetric. Remembering, however,
that also 	 and 
 are merely summation indices by the use of the Einstein summation
convention, it is clear that we can force Eqs. (47)–(50) to be intrinsically symmetric
without altering the physical polarization; we do so by operating with the operator
1/2

∑
�1�2 which performs the summation of terms obtained by permuting the pairs

�	��1� and �
��2�. The factor of one half obviously causes the polarization to
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maintain its original value. The final expression for the second-order polarization
thereby becomes

��̂��2� = ���0���̂���2��+���1���̂���1��+���2���̂���0��(51)

= 1
2

∑

�1�2

1
�2

∑
�1�2

∑

np

[ �0��̂��n��n��̂	�p��p��̂
�0�
��n0 −�1 −�2 − i2����p0 −�2 − i��

+ �0��̂	�n��n��̂��p��p��̂
�0�
��n0 +�1 + i����p0 −�2 − i��

+ �0��̂
�p��p��̂	�n��n��̂��0�
��n0 +�1 +�2 + i2����p0 +�2 + i��

]

E
�1
	 E

�2

 e

−i��1+�2�te2�t

and, by a direct comparison to Eq. (5), we identify the expression for the first-order
hyperpolarizability to be

	�	
�−���1��2�= 1
�2

∑
�1�2

∑

np

[ �0��̂��n��n��̂	�p��p��̂
�0�
��n0 −�� − i2����p0 −�2 − i��(52)

+ �0��̂	�n��n��̂��p��p��̂
�0�
��n0 +�1 + i����p0 −�2 − i��

+ �0��̂
�p��p��̂	�n��n��̂��0�
��n0 +�� + i2����p0 +�2 + i��

]

In connection with the linear response function, we discussed briefly the possi-
bility of incorporating absorption of light through imaginary damping terms that
parallels the positive infinitesimals in the expressions for polarizabilities and hyper-
polarizabilities. With a reasonable detuning, we argued that the linear absorption
is negligible and the linear response function is real. Analogously, if all one- and
two-photon frequencies are nonresonant then the first-order hyperpolarizability will
be real, which is equivalent to letting � equal zero in Eq. (52). In the nonreso-
nant region, therefore, the expression for the first-order hyperpolarizability can be
written in a more compact form:

	�	
�−���1��2�(53)

= 1
�2

∑
�−��1�2

∑

np

�0��̂��n��n��̂	�p��p��̂
�0�
��n0 −�����p0 −�2�

where
∑

�−��1�2 denote the sum of the six terms one gets by permuting pairs of
���−���, �	��1� and �
��2�. The verification of Eq. (53) is done in a straight-
forward manner by a direct comparison of the six terms in Eq. (52) with �= 0. The
first-order hyperpolarizability tensor is said to possess full permutation symmetry
in the nonresonant region.

Before closing the derivation of the first-order hyperpolarizability, we wish to
remove the apparent divergences of Eq. (53) in the limit of non-oscillating perturbing
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fields. Just as we did for ��−���, it is our intention to derive an equivalent
expression for 	�−���1��2� that excludes terms involving the ground state in
the summation. Let us begin by splitting Eq. (53) according to

	�	
�−���1��2�= 1
�2

∑
�−��1�2

[
∑

np

′ �0��̂��n��n��̂	�p��p��̂
�0�
��n0 −�����p0 −�2�

(54)

+∑
p

′ �0��̂��0��0��̂	�p��p��̂
�0�
−����p0 −�2�

+∑
n

′ �0��̂��n��n��̂	�0��0��̂
�0�
−��n0 −����2

+ �0��̂��0��0��̂	�0��0��̂
�0�
���2

]

Since

(55)
1

���2

= 1
�1�2

− 1
���1

the six permutations generated from the last term in Eq. (54) will cancel each
other. Furthermore, with the full permutation operator on the outside, we are free to
interchange any two pairs of indices in the respective terms in Eq. (54): in the second
term we interchange ���−��� and �	��1�, and in the third term we interchange
�
��2� and �	��1�. The expression for the first-order hyperpolarizability thereby
appears as

	�	
�−���1��2�= 1
�2

∑
�−��1�2

[
∑

np

′ �0��̂��n��n��̂	�p��p��̂
�0�
��n0 −�����p0 −�2�

(56)

+∑
n

′�0��̂��n��n��̂
�0��0��̂	�0�

×
(

1
�1��n0 −�2�

− 1
��n0 −����1

)]

= 1
�2

∑
�−��1�2

[
∑

np

′ �0��̂��n��n��̂	�p��p��̂
�0�
��n0 −�����p0 −�2�

− ∑

n

′ �0��̂��n��0��̂	�0��n��̂
�0�
��n0 −�����n0 −�2�

]

= 1
�2

∑
�−��1�2

∑

np

′ �0��̂��n��n��̂	�p��p��̂
�0�
��n0 −�����p0 −�2�

where �̂ is the fluctuation dipole moment operator �̂−�0��̂�0�. This equation repre-
sents an appropriate form of the quantum mechanical formula for the first-order
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hyperpolarizability in the nonresonant region and including non-oscillating external
fields. The molecular parameters that enter this expression are the excitation ener-
gies, the ground to excited state transition moments, the excited to excited state
transition moments, and the permanent dipole moment of the ground as well as the
excited states. All this information is in principle contained in 	�−���1��2�, and
it can be extracted from the second-order response function by a residue analysis.

The first-order hyperpolarizability has both single and double residues. From
Eq. (53), we see that one of the first-order residues becomes

lim
�2→�f0

��f0 −�2�	�−���1��2�=(57)

= 1
�2

∑

n

[�0��̂��n��n��̂	�f��f ��̂
�0�
��n0 −�1 −�f0�

+ �0��̂	�n��n��̂��f��f ��̂
�0�
��n0 +�1�

]

= 1
�2

∑

n

[�0��̂��n��n��̂	�f�
��nf −�1�

+ �0��̂	�n��n��̂��f�
��n0 +�1�

]

�f ��̂
�0�

where it includes two terms due to the permutation of pairs of indices ���−���
and �	��1�. This residue, when evaluated for �1 = −�f0/2, is closely connected to
the two-photon matrix element describing absorption of two monochromatic light
quanta in the transition from the ground �0� to the excited state �f�, in analogy
with the correspondence between the one-photon matrix element and the residue
of the linear polarizability. Turning to the double residues, we focus on the case
when �1 = −�f0 and �2 = �g0. Since we are also interested in the situation when
�f� = �g�, we choose the expression in Eq. (56) for the hyperpolarizability and
where the secular divergences have been removed. This particular double residue
will then become

lim
�1→−�f0

��f0 +�1�

[

lim
�2→�g0

��g0 −�2�	�−���1��2�

]

=(58)

= �0��̂	�f��f ��̂��g��g��̂
�0�

When �f� �= �g�, the matrix element in the middle will equal the one-photon transi-
tion moment between the two excited states �f� and �g�. On the other hand, when
�f� = �g� the same matrix element will equal the difference between the dipole
moment of the excited state �f� and the ground state �0�. This provides a first
example of the possibility of extracting lower-order properties of molecular excited
states from higher-order ground state properties.

3.3 Second-order Hyperpolarizability

We must now once more return to the perturbation expansion of the molecular
polarization and consider the third-order polarization in Eq. (36) from which we
will identify a formula for the second-order hyperpolarizability in analogy with
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what we have achieved for the polarizability and the first-order hyperpolarizability.
The first-, second-, and third-order corrections to the wave function are given by
Eqs. (38), (39), and (40), respectively, in combination with Eq. (31). The four terms
that contribute to the third-order polarization are:

���0���̂����3�� = �0�eiE0t/��̂�
∑

n

1
�3

∑

�1�2�3

∑

mp

(59)

× �n��̂	�m��m��̂
�p��p��̂��0�E�1
	 E

�2

 E

�3
�

��n0 −�1 −�2 −�3 − i3����m0 −�2 −�3 − i2����p0 −�3 − i��
× ei��n0−�1−�2−�3�te3�te−iEnt/��n�

= ∑

�1�2�3

1
�3

∑

nmp

× �0��̂��n��n��̂	�m��m��̂
�p��p��̂��0�E�1
	 E

�2

 E

�3
�

��n0 −�1 −�2 −�3 − i3����m0 −�2 −�3 − i2����p0 −�3 − i��
× e−i��1+�2+�3�te3�t

���1���̂����2�� =∑

n

1
�

∑

�1

�0��̂	�n�
[
E
�1
	

]∗

�n0 −�1 + i� e
−i��n0−�1�te�teiEnt/��n��̂�(60)

×∑
m

1
�2

∑

�2�3

∑

p

�m��̂
�p��p��̂��0�E�2

 E

�3
�

��m0 −�2 −�3 − i2����p0 −�3 − i��
× ei��m0−�2−�3�te2�te−iEmt/��m�

= ∑

�1�2�3

1
�3

∑

nmp

�0��̂	�n��n��̂��m��m��̂
�p��p��̂��0�E�1
	 E

�2

 E

�3
�

��n0 +�1 + i����m0 −�2 −�3 − i2����p0 −�3 − i��
× e−i��1+�2+�3�te3�t

���2���̂����1�� =∑

n

1
�2

∑

�1�2

∑

m

�m��̂	�n��0��̂
�m� [E�1
	

]∗ [
E
�2



]∗

��n0 −�1 −�2 + i2����m0 −�2 + i��(61)

× e−i��n0−�1−�2�te2�teiEnt/��n��̂�
×∑

p

1
�

∑

�3

�p��̂��0�E�3
�

�p0 −�3 − i� e
i��p0−�3�te�te−iEpt/��p�

= ∑

�1�2�3

1
�3

∑

nmp

�0��̂
�m��m��̂	�n��n��̂��p��p��̂��0�E�1
	 E

�2

 E

�3
�

��n0 +�1 +�2 + i2����m0 +�2 + i����p0 −�3 − i��
× e−i��1+�2+�3�te3�t
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���3���̂����0�� =∑

n

1
�3

∑

�1�2�3

∑

mp

(62)

× �m��̂	�n��p��̂
�m��0��̂��p�
[
E
�1
	

]∗ [
E
�2



]∗ [
E
�3
�

]∗

��n0 −�1 −�2 −�3 + i3����m0 −�2 −�3 + i2����p0 −�3 + i��
× e−i��n0−�1−�2−�3�te3�teiEnt/��n��̂�e−iE0t/��0�

= ∑

�1�2�3

1
�3

∑

nmp

× �0��̂��p��p��̂
�m��m��̂	�n��n��̂��0�E�1
	 E

�2

 E

�3
�

��n0 +�1 +�2 +�3 + i3����m0 +�2 +�3 + i2����p0 +�3 + i��
× e−i��1+�2+�3�te3�t

We have used that �E��∗ = E−� and the fact that �1, �2, and �3 are dummy
summation indices that run over both positive and negative frequencies. None of
Eqs. (59)–(62) is symmetric in the tensor indices 	, 
, and �. As pointed out in
connection with Eq. (7), we normally choose our hyperpolarizability tensors to
possess intrinsic symmetry, and it is clear that we can accomplish this without
changing the polarization of the molecule by taking the average of the six terms
generated by permuting pairs of the dummy indices (	��1), (
��2), and (���3);
we denote this operation with the symbol 1/6

∑
�1�2�3, where the factor of one

sixth is required to maintain the same value of the polarization. The third-order
polarization in Eq. (36) can then be written as

��̂��3� = ���0���̂���3��+���1���̂���2��+���2���̂���1��+���3���̂���0��(63)

= 1
6

∑

�1�2�3

1
�3

∑
�1�2�3

∑

nmp

×
[ �0��̂��n��n��̂	�m��m��̂
�p��p��̂��0�
��n0 −�1 −�2 −�3 − i3����m0 −�2 −�3 − i2����p0 −�3 − i��

+ �0��̂	�n��n��̂��m��m��̂
�p��p��̂��0�
��n0 +�1 + i����m0 −�2 −�3 − i2����p0 −�3 − i��

+ �0��̂
�m��m��̂	�n��n��̂��p��p��̂��0�
��n0 +�1 +�2 + i2����m0 +�2 + i����p0 −�3 − i��

+ �0��̂��p��p��̂
�m��m��̂	�n��n��̂��0�
��n0 +�1 +�2 +�3 + i3����m0 +�2 +�3 + i2����p0 +�3 + i��

]

×E�1
	 E

�2

 E

�3
� e

−i��1+�2+�3�te3�t
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and, by a direct comparison to Eq. (5), we identify the expression for the second-
order hyperpolarizability as


�	
��−���1��2��3�= 1
�3

∑
�1�2�3(64)

×∑

nmp

[ �0��̂��n��n��̂	�m��m��̂
�p��p��̂��0�
��n0 −�� − i3����m0 −�2 −�3 − i2����p0 −�3 − i��

+ �0��̂	�n��n��̂��m��m��̂
�p��p��̂��0�
��n0 +�1 + i����m0 −�2 −�3 − i2����p0 −�3 − i��

+ �0��̂
�m��m��̂	�n��n��̂��p��p��̂��0�
��n0 +�1 +�2 + i2����m0 +�2 + i����p0 −�3 − i��

+ �0��̂��p��p��̂
�m��m��̂	�n��n��̂��0�
��n0 +�� + i3����m0 +�2 +�3 + i2����p0 +�3 + i��

]

Just as for the lower-order responses, we have kept the imaginary terms in the
denominators in order to maintain convergence of the second-order hyperpolariz-
ability at all frequencies, as well as to indicate the possibility of including damping
in the near-resonant and resonant regions of the frequency spectrum. In the nonres-
onant region, however, the imaginary terms may be left out, and the expression for

�−���1��2��3� can be written more compactly as


�	
��−���1��2��3�= 1
�3

∑
�−��1�2�3(65)

×∑

nmp

�0��̂��n��n��̂	�m��m��̂
�p��p��̂��0�
��n0 −�����m0 −�2 −�3���p0 −�3�

where
∑

�−��1�2�3 denotes the sum of the 24 terms one gets by permuting pairs
of ���−���, �	��1�, �
��2�, and ����3�. A direct comparison of Eq. (64) with
� = 0 and Eq. (65) verifies this result. The second-order hyperpolarizability tensor
is said to possess full permutation symmetry in the nonresonant region.

The secular divergences in Eq. (65), i.e. the singularities due to terms in which
one or more of the states equal �0�, can be removed in a similar manner as we
did for the lower-order properties. In fact, explicit nondivergent formulas have
been derived for molecular hyperpolarizabilities up to fourth order [5], and for the
second-order hyperpolarizability, the resulting formula can be written as


�	
��−���1��2��3�= 1
�3

∑
�−��1�2�3(66)

×
[
∑

nmp

′ �0��̂��n��n��̂	�m��m��̂
�p��p��̂��0�
��n0 −�����m0 −�2 −�3���p0 −�3�

− ∑

nm

′ �0��̂��n��n��̂	�0��0��̂
�m��m��̂��0�
��n0 −�����m0 −�3���m0 +�2�

]
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This quantum mechanical expression is applicable when all one-, two-, and three-
photon combinations of the fields are nonresonant, and it also applies to the case
of static fields.

The second-order hyperpolarizability has single, double and triple residues. We
will consider a few of these that correspond to certain ground- and excited-state
properties. From Eq. (65), we see that one of the first-order residues becomes

lim
�3→�f0

��f0 −�3�
�−���1��2��3�(67)

= 1
�3

∑
�−��1�2

∑

nm

�0��̂��n��n��̂	�m��m��̂
�f��f ��̂��0�
��n0 −�����m0 −�2 −�f0�

= 1
�3

∑
�−��1�2

∑

nm

�0��̂��n��n��̂	�m��m��̂
�f�
��nf −�1 −�2���mf −�2�

�f ��̂��0�

This expression is closely related to the three-photon matrix element describing
an excitation from the molecular ground state to the excited state �f� by simul-
taneous absorption of three photons. When the residue above is evaluated at
�1 = �2 = −�f0/3 it will provide the matrix element corresponding to absorp-
tion of three monochromatic photons. From the first residue of the first-order
hyperpolarizability in Eq. (57) we could identify the matrix element describing
two-photon absorption. If we now consider one higher order of response as well
as one higher order residue, we can identify the expression for the matrix element
describing two-photon absorption between two excited states, say �g� and �f�.
The following double residue of the second-order hyperpolarizability needs to be
considered:

lim
�2→−�g0

��g0 +�2�

[

lim
�3→�f0

��f0 −�3�
�−���1��2��3�

]

(68)

= 1
�3

∑
�−��1

∑

m

�0��̂
�g��g��̂	�m��m��̂��f��f ��̂��0�
��m0 +�� −�f0�

= 1
�3

∑
�−��1

∑

m

�g��̂	�m��m��̂��f�
��mg +�1�

�0��̂
�g��f ��̂��0�

= 1
�3

∑

m

[�g��̂��m��m��̂	�f�
��mf −�1�

+ �g��̂	�m��m��̂��f�
��mg +�1�

]

�0��̂
�g��f ��̂��0�

Out of the 24 permutations in Eq. (65) for 
�−���1��2��3� only those obtained
by permuting the pairs ���−��� and �
��2� contribute to this double residue. The
residue is to be evaluated at �1 = −�fg/2 in order to relate to monochromatic
two-photon absorption in the excited state �g�.
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It is also possible to have �g� = �f� in the double residue. However, this situation
corresponds to a secular singularity in the second-order hyperpolarizability and it
is therefore appropriate to use Eq. (66) as a starting point:

lim
�2→−�f0

��f0 +�2�

[

lim
�3→�f0

��f0 −�3�
�−���1��2��3�

]

(69)

= 1
�3

∑
�−��1

[
∑

m

′ �0��̂
�f��f ��̂	�m��m��̂��f��f ��̂��0�
��m0 +�� −�f0�

− ∑

n

′ �0��̂��n��n��̂	�0��0��̂
�f��f ��̂��0�
��n0 −���

− �0��̂
�f��f ��̂	�0��0��̂��f��f ��̂��0�
��f0 −���

]

The relevance of this double residue to molecular properties is not yet obvious,
but let us nevertheless first mention how the surviving terms in the residue came
about. By considering the permutation of the pairs ���−��� and �
��2� in the first
summation in Eq. (66) we see that it gives rise to the first term of the double residue.
The second and third terms in the residue both come from the second summation
in Eq. (66). We recall that the primed summations exclude the ground state �0�.
However, the third term in the residue equals the contribution from the omitted
ground state in the first summation, and we can therefore write the double residue as

lim
�2→−�f0

��f0 +�2�

[

lim
�3→�f0

��f0 −�3�
�−���1��2��3�

]

(70)

= 1
�3

∑
�−��1

[
∑

m

�0��̂
�f��f ��̂	�m��m��̂��f��f ��̂��0�
��mf +�1�

−
′∑

n

�0��̂��n��n��̂	�0��0��̂
�f��f ��̂��0�
��n0 −�1�

]

where we have used that �1 = �� and �0��̂�f� = �0��̂�f�. The first summation in
Eq. (70) has a secular singularity at �1 = 0 due to the term for which �m� = �f�.
However, this term will cancel that generated by the permutation of the pairs
���−��� and �	��1�, and a nondivergent formula would therefore exclude the
excited state �f� in the summation. We thus finally obtain

lim
�2→−�f0

��f0 +�2�

[

lim
�3→�f0

��f0 −�3�
�−���1��2��3�

]

(71)

= 1
�3

∑
�−��1

[
∑

m�=f

�f ��̂��m��m��̂	�f�
��mf −�1�

−∑

n�=0

�0��̂��n��n��̂	�0�
��n0 −�1�

]

×�0��̂
�f��f ��̂��0�
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where we permuted the pairs ���−��� and �	��1� in the first term. If we compare
Eq. (71) with Eq. (43), we see that, apart from some factors, the double residue of
the second-order hyperpolarizability equals the excited-to-ground state difference
in the linear polarizability.

3.4 Higher-order Hyperpolarizabilities

It is clear that the route followed hitherto can be extended to an arbitrary order
in the perturbation, and thus provide the description of general multi-photon
interactions. However, since very high light intensities are needed in order to
observe the nonlinear responses, the predominant interest in optics are focused
at processes incorporated in the linear polarizability and the first- and second-
order hyperpolarizability. The expression for the general-order nonresonant response
Xn�	����−���1��2� � � � ��n� can be written as

Xn�	����−���1��2� � � � ��n�(72)

= �−n∑���	����
∑

a1

∑

a2

· · ·∑
an

�0��̂��a1��a1��̂	�a2� · · ·

× [��a1
−�����a2

−�� +�1� · · · ��an −�n�
]−1

In this very general formula we are using the notation of Bishop [5], where conven-
tionally X1

�	 = ��	 (linear polarizability), X2
�	
 = 	�	
 (first-order hyperpolariz-

ability), and X3
�	
� = 
�	
� (second-order hyperpolarizability).

3.5 Absorption

We have so far used time-dependent perturbation theory to compute the time-
dependent corrections to the wave function of the unperturbed system �0� due to
an external electric field, see Eq. (27). From the same equation, it is clear that the
probability to find the system in state �f� at time t is

(73) P0→f = �df �t��2

The transition from the ground �0� to the excited state �f� can occur by the
absorption of either a single photon or many photons. One-photon absorption is
governed by the first-order amplitudes d�1� in Eq. (38), two-photon absorption by
the second-order amplitudes d�2� in Eq. (39), and so forth.

From Eq. (38) we see that the first-order amplitude can be written as

(74) d
�1�
f �t�= 1

�

∑

�1

�f ��̂	�0�E�1
	 F�t��f0 −�1�

where F�t��f0 −�1� is a dimensionless function that depends on the time t and
the separation of the frequency of the perturbing field from the transition frequency
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of the system �f0. For t large compared to �2�/�f0�, the function F is sharply
peaked at �f0 =�1, which is the same as saying that one-photon absorption occurs
only when the photon energy matches the excitation energy. The probability for one-
photon transitions per unit time will be proportional to the square of the one-photon
matrix element

(75) M
�1�
0f = �0��̂	�f�

We note that the probability for one-photon absorption, since it depends on the
square of the amplitude and therefore also the square of the amplitude of the electric
field, is linearly dependent on the intensity of the light. One-photon absorption is
for that reason synonymous with linear absorption.

The second-order amplitude, taken from Eq. (39), is

(76) d
�2�
f �t�= 1

�2

∑

�1�2

∑

n

�f ��̂	�n��n��̂
�0�
�n0 −�2

E
�1
	 E

�2

 F�t��f0 −�1 −�2�

where the function F�t��f0 −�1 −�2� this time depends on the time t and the
separation of the sum of the perturbing frequencies and the transition frequency of
the system �f0. In analogy with the case of linear absorption: for t large compared
to �2�/�f0�, the function F is sharply peaked at �f0 = �1 +�2, which means
that two-photon absorption occurs only when the total energy of the two photons
matches the excitation energy. We deduce that the two-photon transition matrix
element is written as

(77) M
�2�
0f = 1

�

∑

n

[�0��̂	�n��n��̂
�f�
�n0 −�1

+ �0��̂
�n��n��̂	�f�
�n0 −�2

]

where we have symmetrized the summations over dummy indices. This symmetriza-
tion obviously does not effect the value of the amplitude d�2� as long as we
compensate with a factor of one-half in front. The complex conjugation associated
with reversing the order of the states in the numerator is irrelevant since transition
probabilities depend on the absolute square of the matrix elements. The reader
should compare the expression for the two-photon matrix element to the first-order
residue of the first-order hyperpolarizability in Eq. (57). One of the interesting
characteristics of two-photon absorption is that since the square of the second-order
amplitude, i.e. the probability of two-photon absorption, depends on the perturbing
electric field to the fourth power, it will exhibit a square dependence on the light
intensity. Two-photon absorption is therefore nonlinear to first order with respect
to the intensity of the incident laser beam.

Carried out to yet a higher order in the perturbation, we will be able to obtain an
expression for the three-photon absorption matrix element. The third-order ampli-
tude, taken from Eq. (40), is

d
�3�
f �t�= 1

�3

∑

�1�2�3

∑

mn

�f ��̂	�n��n��̂
�m��m��̂��0�
��n0 −�2 −�3���m0 −�3�

E
�1
	 E

�2

 E

�3
�(78)

×F�t��f0 −�1 −�2 −�3�
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Table 2. Molecular properties described by the first-, second-, and third-order response functions

Response Residue Molecular property

��−��� — Linear electric dipole polarizability.

�= �f0 One-photon transition matrix elements between the ground
state �0� and the excited state �f�.

	�−���1��2� — First-order nonlinear electric dipole hyperpolarizability.

�2 = �f0 Two-photon transition matrix element between the ground
state �0� and the excited state �f�.

�1 = −�f0 One-photon transition matrix element between the excited
states �f� and �g�.�2 = �g0

�1 = −�f0 Permanent electric dipole moment of the excited state �f�.
�2 = �f0


�−���1��2��3� — Second-order nonlinear electric dipole hyperpolarizability.

�3 = �f0 Three-photon transition matrix element between the ground
state �0� and the excited state �f�.

�2 = −�f0 Two-photon transition matrix element between the excited
states �f� and �g�.�3 = �g0

�2 = −�f0 Linear electric dipole polarizability of the excited state �f�.
�3 = �f0

The three-photon absorption matrix element, symmetrized in the dummy indices,
can thus be written as

(79) M
�3�
0f = 1

�2

∑
�1�2�3

∑

mn

�0��̂	�m��m��̂
�n��n��̂��f�
��n0 −�1 −�2���m0 −�1�

where the operator
∑

�1�2�3 denote that the summation of terms obtained by
permuting the pairs �	��1�, �
��2�, and ����3� is performed. The connection to
the first-order residue of the second-order hyperpolarizability in Eq. (67) is verified
by explicit comparison of the six terms in each case. We see that the probability of
three-photon absorption depend on the light intensity to the third power. In Table 2
we have summarized some of the molecular properties that can be retrieved from
the linear and nonlinear response functions.

4. THE SEPARATION OF ELECTRONIC AND NUCLEAR
DEGREES OF FREEDOM

The expressions presented in the previous section apply to exact states. In practice,
it is not possible to obtain the complete set of exact states and we therefore need
ways to obtain approximate solutions. The most important step when developing
strategies for evaluating linear and nonlinear optical properties is the introduction of
the Born–Oppenheimer approximation [15, 16]. As we will briefly outline, and as
described in much more detail in Chapter 3, the Born–Oppenheimer approximation
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leads to a partitioning of the (hyper)polarizabilities into three distinct contributions:
One purely electronic contribution, one so-called pure vibrational contribution,
and finally the zero-point vibrational contribution. There are also contributions to
the (hyper)polarizabilities from the overall rotation of the molecule. However, for
isotropic samples, the rotational contribution is to a large extent accounted for by
doing a classical isotropic averaging [3]. The contributions that could be classified
as pure rotational contributions to the (hyper)polarizabilities have been shown to
be rather small [7].

In the next section we will discuss the general strategies for approximate
calculations of nonlinear optical properties and describe in general terms in
which way the different approaches can recover the different contributions to the
(hyper)polarizabilities. The details of these different methods are, however, left for
other chapters of this book.

The Born–Oppenheimer approximation states that the electrons are able to adjust
themselves instantaneously to the motions of the nuclei. The motions of the nuclei
are in this approximation therefore not able to induce electronic transitions, an
assumption that is also known as the adiabatic approximation. The electrons thus
create an effective electronic potential in which the nuclei move, and for a given
electronic state the variation in the electronic energy with respect to the nuclear
configuration defines a potential energy surface for the electronic state. The elec-
tronic Schrödinger equation can be written as

(80) Ĥel �R� r��el
K �R� r�= V el

K �R��
el
K �R� r�

where V el
K �R� is the electronic energy for electronic state K and �el

K �R� r� the
corresponding electronic wave function. We have explicitly indicated the depen-
dence of these quantities on the nuclear configuration. The electronic Hamiltonian
is given as

(81) Ĥel �R� r�= − �
2

2me

∑

i

�2
i − e2

4��0

∑

i�

Z�

ri�
+ e2

4��0

∑

i>j

1
rij

We note that, in contrast to above, the nuclear repulsion is often included as an
additional repulsive potential in the electronic Hamiltonian and thus in the electronic
energy. From the solutions of the electronic Schrödinger equation, we obtain the
potential that governs the nuclear motions, and the Scrödinger equation for the
nuclei can then be solved for the potential provided by the electrons

(82) Ĥnuc
K �R�� nuc

K�k �R�= �K�k�
nuc
K�k �R�

where �K�k is the total vibronic energy and � nuc
K�k �R� is the kth vibrational wave

function for the Kth electronic state. In this equation, the nuclear Hamiltonian is
given as

(83) Ĥnuc
K �R�= −

N∑

�=1

�
2

2M�

�2
�+ e2

4��0

∑

�>�

Z�Z�

R��
+V el

K �R�
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where the summations run over all nuclei in the molecule, and M� is the mass of
nucleus �. There are 3N degrees of freedom in this equation, of which three degrees
of freedom correspond to the translation of the center of mass of the molecule
and three (or two in the case of linear molecules) degrees of freedom correspond
to the overall rotation of the molecule about the center of mass. The remaining
3N −6�5� coordinates describe the relative motions of the nuclei of the molecule,
and constitute the vibrations of the molecule. The translation of the molecular center
of mass is not quantized and therefore not of any interest to our discussion. To a
good first approximation, the rotational motion of the molecule is decoupled from
the vibrational motion, and we may thus treat this separately.

Considering the product form of the total molecular wave function, let us briefly
return to the linear polarizability given in Eq. (43), and let us assume that the
complete set of vibronic product states can be considered as the exact states of the
molecular system. The linear polarizability can then be written as [9, 10, 28]

��	�−���= 1
�

∑

K�k

′
[

�0�0 ��̂��K�k�
〈
k�K

∣
∣�̂	

∣
∣0�0

〉

�K�k−�
(84)

+
〈
0�0

∣
∣�̂	

∣
∣K�k

〉 �k�K ��̂��0�0�
�K�k+�

]

where the prime indicates that the summation runs over all electronic K and vibra-
tional states k apart from the vibronic ground state and ��K�k denotes the energy
difference between the intermediate and ground vibronic states.

To reduce the complexity of Eq. (84), we make the observation that energies
involved in electronic transitions are in general much larger than the vibrational
excitations that contribute significantly to the summation. We may therefore assume
that �K�k ≈ �K0, which allows us to partition the coupled summations in Eq. (84)
into two contributions, one over electronic excited states involving only the ground
vibrational state, and one over the vibrationally excited states involving only the
electronic ground state

��	�−���=(85)

= 1
�

∑

K �=0

�0�
[�0 ��̂��K��K ∣∣�̂	

∣
∣0�

�K0 −� + �0
∣
∣�̂	

∣
∣K��K ��̂��0�
�K0 +�

]

�0�

+ 1
�

∑

k �=0

[�0��00
� �k��k��00

	 �0�
�k0 −� + �0��00

	 �k��k��00
� �0�

�k0 +�

]

where, in the former term, the closure over (k) has been carried out and, in the latter
term, we have introduced the notation�00 = �0��̂�0�. The latter of the two terms only
involves excitations within the vibrational manifold and is for this reason referred
to as the pure vibrational contribution [3, 6]. In recent years, various efficient
approaches have been developed for the calculation of pure vibrational contributions



30 Norman and Ruud

to linear and nonlinear polarizabilities—as discussed in Chapter 3—and it has been
demonstrated that vibrational contributions to nonlinear optical properties can be
large, and in many cases as large as the electronic contributions. The reason for
their importance can to some extent be related to the fact that the excitations within
the vibrational manifold requires smaller energies, leading an enhancement of the
denominator of the second contribution in Eq. (85). However, since the commonly
used laser wavelengths are much shorter than the wavelengths associated with
the vibrational excitations, their importance is in general much reduced at optical
frequencies since � in this case will be much larger than �k0, thus leading to an
increase in the energy denominators in Eq. (85).

The first term in Eq. (84) is the corresponding electronic contribution to the
linear polarizability averaged over the ground vibrational state. It is customary to
partition this contribution into two terms, one term corresponding to the purely
electronic contribution as obtained at the equilibrium geometry, and one contribution
which arises from the averaging of the polarizability over the vibrational ground
state, a term referred to as the zero-point vibrational averaging correction to the
polarizability.

To briefly summarize, it is customary, and also highly advantageous in
order to develop efficient schemes for the calculation of the total molecular
(hyper)polarizabilities, to partition the molecular property into three different
contributions:

(86) P = Pe+PZPVA +Pv

where Pe is the electronic contribution to the property calculated at the equilibrium
geometry of the molecule, PZPVA the zero-point vibrational averaging contribution,
and Pv the pure vibrational contribution.

The techniques and approximations involved in obtaining computationally
tractable schemes for the calculation of the linear and nonlinear optical properties
differ for the three contributions given in Eq. (86), and the different strategies
will be presented and reviewed in the different chapters of this book. In the next
section, we will briefly describe a few of the approximate methods used to calculate
hyperpolarizabilities. Most of these methods will be directed toward the electronic
contributions, but some of the approaches will also be able to extract information
about the pure vibrational contributions.

5. COMPUTATIONAL STRATEGIES

We will focus attention on computational methods based on a quantum mechanical
wave function treatment of the system, supplemented with a classical interaction
with the external electric fields. The quantum mechanical system should be possible
to describe with a time-independent Hamiltonian, whereas the external perturbation
can be time-independent or time-dependent.

In cases when our system represents a subsystem embedded in a medium, we will
not consider thermal interactions such as collisions or chemical interactions such as
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hydrogen bonding. However, the quantum mechanical approaches presented in this
chapter can be used in conjunction with classical methods for a statistical sampling
the phase space of a system that partially include the environment. There are also
physical interactions between the quantum mechanical system and the environment
that may be described by a dielectric continuum model and which can be included
in a self-consistent field approach (see Chapter 4).

Let us return to the problem of solving the response of the quantum mechanical
system to an external electric field. The zeroth-order wave function of the quantum
mechanical system is obtained by use of any of the standard approximate methods
in quantum chemistry and the coupling to the field is described by the electric dipole
operator. There exist a number of ways to determine the response functions, some
of which differ in formulation only, whereas others will be inherently different. We
will give a short review of the characteristics of the most common formulations used
for the calculation of molecular polarizabilities and hyperpolarizabilities. The survey
begins with the assumption that the external perturbing fields are non-oscillatory,
in which case we may determine molecular properties at zero frequencies, and
then continues with the general situation of time-dependent fields and dynamic
properties.

When a time-independent external perturbation is applied on a molecule the
molecular charges re-orient; the nuclei relax into a new configuration and the
electronic motion is altered, thereby representing the equilibrated ground state of
the molecule in the presence of the field. The corresponding equilibrated wave
function is stationary, as opposed to the case when a time-dependent perturbation is
applied, and we can thus determine the molecular energy as the time-independent
expectation value of the Hamiltonian

(87) Ĥ = Ĥ0 − �̂�E�
where H0 denotes the unperturbed Hamiltonian and the perturbation is given by
the coupling between the electric dipole moment operator �̂ and the electric field
strength E. It is clear that the equilibrated wave function ���E�� as well as the
molecular energy ��E� depend on the applied field, and that we, for a given
field, have

(88) Ĥ���E�� = ��E����E��
Let us next consider the derivative of the energy with respect to a component of
the electric field

���E�

�E�
= �
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���E��Ĥ���E��(89)
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The first two terms correspond to the variation of the wave function with respect to
the external field, but, since ��E� is optimal for any variation of the wave function,
we have

(90) ����Ĥ��� = 0

where � is used to symbolize general variations of the wave function (but not the
Hamiltonian). Eq. (89) thus simplifies to

(91)
���E�

�E�
=
〈

��E�

∣
∣
∣
∣
∣
�Ĥ

�E�

∣
∣
∣
∣
∣
��E�

〉

which is a result known as the Hellmann–Feynman theorem [27, 32]. In our case one
obtains for the first-order derivative of the energy with respect to the electric field

(92)
���E�

�E�
= −���E���̂����E�� = −���E�

i.e. minus the field-dependent molecular dipole moment. If this derivative is eval-
uated at zero field strength we obviously retrieve the permanent electric dipole
moment of the molecule:

(93) �0
� = − ���E�

�E�

∣
∣
∣
∣
E=0

Moreover, if we recall Eq. (3), which we used as a starting point for defining
linear and nonlinear optical properties, then it is seen that for time-independent
perturbations, we may equally well choose an expansion of the molecular energy
for this purpose

��E�= �0 −�0
�E�− 1

2
��	E�E	− 1

6
	�	
E�E	E
(94)

− 1
24

�	
�E�E	E
E�+· · ·

where �0 denotes the molecular energy of the unperturbed system. Another way to
see this fact is to note that the expressions obtained by evaluation of the response
functions at zero frequencies equal the energy corrections which are well known
from time-independent perturbation theory. For the higher-order derivatives of the
energy with respect to the perturbation we thus have

��	 = − �2��E�

�E��E	

∣
∣
∣
∣
E=0

(95)

	�	
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∣
E=0

(97)
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When addressing properties in the static limit, we are thus left with two alternatives:
(i) the polarization propagator approach or (ii) the energy-derivative approach.
However, a word of caution is needed at this point regarding calculations involving
approximate states due to the fact that Eq. (90), and thereby also the Hellmann–
Feynman theorem, is only fulfilled for variationally optimized wave functions. In
other cases, such as for instance computational methods based on Møller–Plesset
perturbation theory (MP2, MP3, etc.) or truncated configuration interaction (CIS,
CISD, etc.), the energy-derivative and polarization propagator techniques will not
provide identical results even in the limit of static frequencies.

5.1 Finite-field Approaches

We have have now paved the way for computational strategies to take form.
Immediately Eq. (94) invites to the basic and straightforward idea of numerical
differentiation, which is known in the literature as the finite-field technique. For
atomic calculations, this idea is easily implemented in an existing code for any
electronic structure method, as it only involves the response of the electronic
density to the external static field in accordance with Fig. 6. In the absence of the
perturbation, the dipole moment is zero due to the spherical symmetry of the atom,
but in the presence of the external field the Coulomb force acts on the electrons
as well as the atomic nucleus thereby displacing them in opposite directions: the
nucleus tends to move along with and the electrons opposed to the electric field E
with an induced dipole moment � as a result.

In the program it is only necessary to modify the matrix elements of the one-
electron part of the Hamiltonian hij by adding the dipole moment integrals:

(98) ��i�ĥ��j� −→ ��i�ĥ��j�+ e��i�r̂���j�E�
where ĥ is the one-electron part of the Hamiltonian for the atomic system containing
the kinetic energy of the electrons and the attractive nuclear potential.

This small modification makes the code able to determine the atomic energy in
the presence of the electric field in accordance with Eq. (94), and simple polynomial
fits allow for the determination of the energy expansion coefficients. In Fig. 7

E

μ = 0 μ > 0

Figure 6. The induced dipole moment of an atom in an electric field
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Figure 7. The total energy of helium in an external and uniform electric field is shown. The zero level
of the energy is set to �0

we illustrate the dependence of the full configuration interaction (FCI) energy
on an externally applied finite field with use of the triply augmented, correlation
consistent, valence triple-� basis set of Dunning and co-workers [61].

In order to achieve numerical accuracy in the calculation of energy derivatives by
means of finite field differentiation, the applied fields need to be small—we have
chosen a grid size of 0.01 a.u. in this case—and, in principle, the smaller the grid size
the better the accuracy. However, since the quartic power of the field multiplies 
,
we need to converge the energy to at least 10−8 a.u. in order to compute this
property. The first nonzero correction to the energy is of second order in the field
and thereby in the order of 10−4 a.u., and it is noteworthy that the perturbation
energy is about a hundred times smaller than the correlation energy (which, for
E = 0 and in the present basis set, amounts to 3�9×10−2 a.u.). Despite this fact, the
perturbation energy can be quite accurately determined at the Hartree–Fock level
of theory.

The data points are fitted in a least-square sense to a fourth degree polynomial, and
the properties thereby obtained are presented in Table 3. Since the atom possesses
spherical symmetry there is only a single independent component of the �-tensor as
well as the 
-tensor. The curvature of the energy, or the polarizability, at the SCF
level differs by less than 5% compared to the FCI result, and the MP2 value captures
slightly more than half of the correlation effect. Electron correlation plays a more
important role in the determination of the fourth-order property 
. Again the MP2
method captures slightly more than half of the total contribution, which amounts
to 21% at the FCI level of theory. The trends we have seen here in the example
of the helium atom are more or less representative for closed-shell molecules in
general.
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Table 3. Electric properties of helium

Finite fielda Analytical derivative

SCF MP2 FCI SCF FCI

�zz�00� 1.3238 1.3643 1.3885 1.3238 1.3885
3.1% 4.9% 4.9%


zzzz�00�0�0� 35.181 39.967 42.563 34.692 41.925
13.6% 21.0% 20.9%

a The finite field results are obtained by a polynomial fit to energy points at field strengths
of 0.0, ±0�01�±0�02, and ±0�03 a.u.

Before taking this example to its end, we point out some of the drawbacks with
the finite-field method. In Table 3 we also present the analytical derivative results
for � and 
, or, equivalently, the results obtained in the limit of a zero grid size.
For the second-order derivative of the energy our numerical grid is able to provide
us with five accurate digits, but for the fourth-order derivative, on the other hand,
the accuracy is barely two digits. This may prove troublesome in the case of more
extended molecules for which the energy is not always so easy to converge to a
high degree of accuracy, especially with the demands for diffuse and polarizing
basis sets that we have for these properties. In addition there is a practical concern
in the calculation involved with the application of an external field. From Fig. 6 it
is clear that one can no longer maintain the symmetry elements found in the plane
orthogonal to the external field. Apart from producing a larger number of nonzero
integrals in the calculation, this factor may also affect the convergence of the wave
function negatively.

If we now turn to a situation where the system is comprised of a molecule rather
than an atom, then the program modification needed is a bit more involved than
what is shown in Eq. (98). The reason is of course that we must now not only
consider the changes on the electronic motion but also the changes in the nuclear
motion and equilibrium structure that are induced by the external electric field. In
order to determine the field-dependent equilibrium structure QE , we need at least
to be able to determine the molecular gradient, and care must also be taken in order
not to let the molecule rotate and align its dipole moment with the external field [8].
It is advantageous to divide the field-dependent energy into three parts:

��QE�E�= �e�Q0�E�+ ��e�QE�E�−�e�Q0�E��(99)

+�ZPV�QE�E�

Here the first term corresponds to the electronic energy at the equilibrium geometry
of the unperturbed molecule Q0, the second contribution represents the difference
in electronic energy between QE and Q0, and, finally, the third term is the zero-
point vibrational energy of the nuclei. From Eq. (99) we understand that the energy
differentiation we perform to obtain the molecular properties will lead to three
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quite separate contributions. The first contribution represents the response of the
electrons to the perturbation and thus corresponds to the electronic contribution to
the properties. For the calculation of this electronic part of the property one only
need to repeat what we have just done in the atomic case. The second and third
terms in Eq. (99) will give rise to what is collectively known as the vibrational
contributions to the properties (as already introduced in Section 4), or individually
known as the nuclear relaxation and curvature contributions.

5.2 Analytic Derivative Approaches

The discussion of the pros and cons of the finite-field approach made it clear that
we need an analytical formulation of the derivatives of the molecular energy with
respect to the external fields in order to maintain computational efficiency and
numerical stability. The phrase “analytical derivative approaches” is often used to
denote methods where closed-form expressions have been derived for the part of the
molecular properties that regards the motions of the electrons, i.e. the part related
to the first term in Eq. (99).

In deriving such expressions we should recognize that, for approximate wave
functions, the energy depends both explicitly and implicitly on the perturbing fields.
We may formally write the energy as

(100) ����E�= ������Ĥ0 − �̂�E�������
where we identify the molecular Hamiltonian in the presence of the electric field
(the explicit dependence) and � collectively denote the wave function parameters
for a given electronic structure method (e.g. the molecular orbital coefficients in the
case of a Hartree–Fock calculation). For simplicity we have here assumed that all
field dependence is contained in the Hamiltonian. In other applications, for instance
those concerned with external magnetic field perturbations, it is advantageous to
also have an explicit field dependence in the wave function parameters [38, 53, 60],
but for electric properties the situation is, in almost all cases, characterized by
Eq. (100). Attempts at including an explicit electric field dependence in the basis
set have been taken by several authors [1, 24, 54], but the approach has not received
much attention in studies of electric properties. We note, however, that if we are
concerned with the analytical evaluation of the vibrational contributions to linear
and nonlinear optical properties, an explicit dependence on the change in the nuclear
positions exists in the basis set since the basis sets in general are attached to the
nuclear centers [50, 51].

The implicit field dependence is yet not apparent, since the parameters � in
Eq. (100) are chosen freely. Let us therefore denote the set of parameters which are
optimized in the presence of the field by �E . The implicit dependence then becomes
obvious, as we will then have a corresponding equation to that of Eq. (88) for
approximate wave functions. In the following derivations, we will use the notation

(101)
�����E�

��

∣
∣
∣
∣
�=�E

= ����E�E�

��
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The first-order derivative of the energy is

(102)
d���E�E�

dE�
= ����E�E�

��

��E
�E�

+ ����E�E�

�E�

which is the analogue of Eq. (89) for approximate wave functions. We have already
concluded that the first term vanishes for variational wave functions fulfilling the
Hellmann–Feynman theorem [25, 44] and we will in the following only consider
this case. The explicit formula for the dipole moment then becomes

(103) �� = − d���E�E�

dE�

∣
∣
∣
∣
E=0

= ����0���̂�����0��

The second-order derivative of the energy is

d2���E�E�

dE�dE	
=
[
�

�E�
+ ��E
�E�

�

��

]
����E�E�

�E	
(104)

= ��E
�E�

�2���E�E�

���E	

where we have used the fact that the first term in the intermediate step vanishes
since the Hamiltonian depends only linearly on the electric field. We see that in
order to determine the second-order properties we need to determine the first-order
response of the wave function parameters with respect to the perturbation. We can
readily obtain a working formula for this response from the variational condition
����E�E�/��= 0 [Eq. (90)] as

(105) 0 = d

dE�

[
����E�E�

��

]

= �2���E�E�

�E���
+ �2���E�E�

��2

��E
�E�

It is convenient to introduce a short-hand notation for the various derivatives
evaluated at zero field strength. We recognize the first-, second-, and higher-order
derivatives of the energy with respect to � as the electronic gradient, Hessian and
so on, and we denote the n’th order derivative by E�n�. In analogy, for minus the
second derivative of the energy with respect to the field E and the parameters �
we speak about a property gradient. Minus the energy derivative once with respect
to the field and n times with respect to the wave function parameters is denoted
A�n�, B�n�, C�n�, etc. for the various components of the dipole moment operator. The
first-order response of the wave function parameters can therefore be written

(106)
��0

�E�
= − (E�2�)−1

A�1�
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and the explicit formula for the linear polarizability is

(107) ��	 = − d2���E�E�

dE�dE	

∣
∣
∣
∣
E=0

= −A�1� (E�2�)−1
B�1� = −A�1�NB

where the so-called response vector NB has been introduced to further shorten the
notation. Computationally it is the inverse of the Hessian which is the expensive part
in this expression due to the possibly large number of wave function parameters.

The third-order derivative of the energy is

d3���E�E�

dE�dE	dE

=
[
�

�E�
+ ��E
�E�

�

��

][
�

�E	
+ ��E
�E	

�

��

]
����E�E�

�E

(108)

=
[
�2�E
�E��E	

�

��
+ ��E
�E�

��E
�E	

�2

��2

]
����E�E�

�E


= �2�E
�E��E	

�2���E�E�

���E

+ ��E
�E�

��E
�E	

�3���E�E�

��2�E


and it is seen that the third-order property depends on the first- and second-order
response of the wave function parameters with respect to the perturbation. A working
formula for the second-order response of the wave function is obtained, like the
first-order response, from the variational condition:

0 = d2

dE�dE	

[
����E�E�

��

]

(109)

=
[
�

�E�
+ ��E
�E�

�

��

][
�

�E	
+ ��E
�E	

�

��

]
����E�E�

��

= �2�E
�E��E	

�2���E�E�

��2
+ ��E
�E	

�3���E�E�

��2�E�

+ ��E
�E�

�3���E�E�

��2�E	
+ ��E
�E�

��E
�E	

�3���E�E�

��3

and the second-order response of the wave function thus becomes

(110)
�2�0

�E��E	
= − (E�2�)−1 [

NBA�2�+NAB�2�+NANBE�3�
]

The explicit formula for the first-order hyperpolarizability thus becomes

	�	
 = − d3���E�E�

dE�dE	dE


∣
∣
∣
∣
E=0

(111)

= − [NBA�2�NC +NAB�2�NC +NANBE�3�NC +NANBC�2�
]
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and we see that it is necessary to solve three linear response equations in order to
obtain the three response vectors corresponding to the respective components of
the hyperpolarizability tensor. In addition the calculation involves the contraction
of the third-rank generalized Hessian matrix E�3�. We note that we only need the
first-order response of the wave function to determine the third derivative of the
energy. This is an example of the 2n+ 1 rule of energy derivative theory and
perturbation theory, which states that the perturbed energy of order 2n+ 1 can be
determined from a knowledge of the perturbed wave function to order n.

The fourth derivative of the energy with respect to the electric fields is given by

d4���E�E�

dE�dE	dE
dE�
=
[
�

�E�
+ ��E
�E�

�

��

][
�

�E	
+ ��E
�E	

�

��

]

(112)

×
[
�

�E

+ ��E
�E


�

��

]
����E�E�

�E�

which, when evaluated, will bottle down to a rather lengthy expression that involves
first-, second-, and third-order responses of the wave function to the perturbation.
Only the last one is unknown at this point and we can find it by returning to the
variational condition:

0 = d3

dE�dE	dE


[
����E�E�

��

]

(113)

=
[
�

�E�
+ ��E
�E�

�

��

][
�

�E	
+ ��E
�E	

�

��

][
�

�E

+ ��E
�E


�

��

]
����E�E�

��

and we can thereafter evaluate the second-order hyperpolarizability as

(114) 
�	
� = − d4���E�E�

dE�dE	dE
dE�

∣
∣
∣
∣
E=0

The explicit formula has been derived and implemented [45].
The main advantages of the energy derivative approach compared to the finite-

field technique are numerical accuracy and computational speed. However, the
approach is not readily extended to incorporate the contributions to the molecular
properties from the motions of the nuclei. Furthermore, the analytical derivative
approach is also restricted to time-independent perturbations, whereas the calcula-
tion of optical properties where significant dispersion is to be expected often is of
greater interest.

5.3 Sum-over-states Approaches

An approach that in principle accounts for all contributions to linear and nonlinear
optical properties is known as the sum-over-states (SOS) technique. Without having
emphasized its use in practical calculations we have already met this formalism
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in the section on time-dependent perturbation theory. In the SOS method the
working formulas for ��−���, 	�−���1��2�, 
�−���1��2��3� are given
by Eqs. (43), (56), and (66), respectively. In the derivation it was assumed that the
states in the summations were the true eigenstates of the molecular Hamiltonian
Ĥ . We understood Ĥ to be complete and including electronic as well as nuclear
degrees of freedom, and in which case the states are the true nonadiabatic vibronic
eigenstates of the system and hence the properties are the exact ones. Nothing
prevents us, however, to introduce the adiabatic approximation and to assume the
wave functions to be products of electronic and nuclear (vibrational) parts. In this
case, the Born–Oppenheimer electronic plus vibrational properties will appear. We
can even reduce the accuracy to the extent that we adopt the electronic Hamiltonian,
work with the spectrum of electronic states, and thus extract the electronic part of
the properties. In all these cases, the SOS property expressions remain unchanged.

The use of the SOS expressions in conjunction with approximate states (vibra-
tional or electronic) provide us with methods to use in practical calculations. The
electronic wave functions and transition moments can be determined with our stan-
dard electronic structure methods (SCF, CI, MCSCF, etc.) and the vibrational wave
functions and transition moments (if considered) are determined using the potential
energy surfaces. The SOS formulas may be formally separated into electronic and
vibrational contributions to the properties (see Section 4), and this fact makes the
SOS expressions pertinent in all calculations regardless of the choice of electronic
structure method. Criticism of the SOS approach mainly concerns calculations of
the electronic contributions to the properties as the SOS technique is often hampered
by slow convergence with respect to the number of states that need to be included
in the summations. It has been used with success only for very small systems, most
notably by Bishop and co-workers in �- and 
-calculations of calibrational quality
on helium [12] and H2 [13].

Despite the discouraging performance of the SOS approach for the electronic
contributions to properties of more extended systems, the SOS formulas are
frequently used for reasons of interpretation. Strongly absorbing states in the linear
absorption spectrum may be identified as main contributors to the linear and
nonlinear response properties, and truncated SOS expressions can be formed with
this consideration in mind. In certain cases, molecules may have a single strongly
dominant one-photon transition, and so-called two-states-models (TSM) can then
be applied. The two states in question are obviously the ground state �0� and the
intense excited state �f�.

A class of systems for which the TSM gives a reasonable description of the
nonlinear responses is that of charge-transfer molecules, or push-pull systems, as
demonstrated by Luo et al. [40] for para-nitroaniline (pNA). The reason for this
success is the existence of an intense transition that involves the transfer of charge
from the highest-occupied molecular orbital (HOMO), which is a molecular orbital
localized on the donor group (the amino-group for pNA), to the lowest unoccupied
molecular orbital (LUMO), which is a molecular orbital localized on the acceptor
group (the nitro-group for pNA).
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Applied to the diagonal components of the linear polarizability the two-states
approximation of Eq. (43) is

��−���= ��00�D�1����(115)

��00�= 2��0f �2
��f0

(116)

D�1����= 1

1−�2/�2
f0

(117)

where �0f = �0��̂�f� denotes the transition dipole moment between the ground and
the excited states. Furthermore, the dispersion D�1���� has been separated from the
static value ��00�, and the TSM could therefore be applied to the dispersion part
only and in conjunction with a more accurate static value. The corresponding set
of formulas for the first-order hyperpolarizabilities were first presented by Oudar
and Chemla [48] and applied to charge-transfer state contributions in nitroani-
lines. The two-states approximation of Eq. (56) for the diagonal components of
	�−���1��2� is

	�−���1��2�= 	�00�0�D�2���1��2�(118)

	�00�0�= 3��0f �2��f −�0�

���f0�
2

(119)

D�2���1��2�= 1−�1�2/�
2
f0

�1−�2
1/�

2
f0��1−�2

2/�
2
f0��1− ��1 +�2�

2/�2
f0�

(120)

where the dispersion D�2���1��2� again has been separated out from the static value
	�00�0�, and �0 and �f denote the permanent dipole moment of the ground and
the excited state, respectively. It is immediately seen from Eq. (119) that in the
TSM the sign of 	 is dictated by the change in dipole moment between the ground
and the excited states.

For the electro-optical Pockels effect (EOPE), the dispersion simplifies to

(121) D�2����0�= 1

�1−�2/�2
f0�

2

and for the second-harmonic generation process (SHG) it becomes

(122) D�2������= 1

�1−�2/�2
f0��1−4�2/�2

f0�

In Fig. 8 the EOPE and SHG dispersions are compared in the two-states model, and
significant differences are observed for laser field frequencies exceeding 10% of
the transition frequency �f0. The stronger dispersion for the SHG optical process
is due to the two-photon resonance at 2�= �f0.
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Figure 8. Dispersion of the first-order hyperpolarizability 	�−���1��2� in the two-states model

To date, the TSM is much less used for the second-order hyperpolarizability, but
the corresponding TSM expressions for 
�−���1��2��3� can easily be derived
from Eq. (66).

5.4 Response Theory

When the external electric field is time-dependent, there is no well-defined energy of
the molecular system in accordance with Eq. (100), and the wave function response
can thus not be retrieved from a variational condition on the energy as in the
analytic derivative approach described above. Instead the response parameters have
to be determined from the time-dependent Schrödinger equation, a procedure which
was illustrated in Section 3 for the exact state case. In approximate state theories,
however, our wave function space only partially spans the N -electron Hilbert space,
and the response functions that correspond to an approximate state wave function
will clearly be separate from those of the exact state wave function. This fact is
disregarded in the sum-over-states approach, and, apart from the computational
aspect of slowly converging SOS expressions, it is of little concern when highly
accurate wave function models are used. But for less flexible wave function models,
the correct response functions should be used in the calculation of nonlinear optical
properties.

The time-dependent Schrödinger equation may be disguised in different forms,
and in exact state theory all formulations will result in identical results for the
molecular properties. In the case of approximate state theories, this is no longer
true, but one has to choose an appropriate formulation of wave mechanics in order
to get results consistent with the theory. Over the years, response theory has come
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to denote formulations of time-dependent perturbation theory that are suitable for
extension to approximate state theories.

The steps involved in response theory are:
1. Find a nonredundant parameterization of the wave function space at hand. It is

a common procedure to use the exponential operator ansatz.
2. Choose an equation-of-motion, based on the time-dependent Schrödinger equa-

tion, from which the set of parameters can be determined by use of perturba-
tion theory. Since the parameterizations are electronic structure dependent, the
detailed working expressions that arise, and thus also the implementations, will
have to differ with different wave function methods.

3. Owing to the fact that the state vectors are not eigenstates of the unperturbed
molecular Hamiltonian, the linear differential equations for the parameters will
be coupled. A Fourier transformation leads to matrix equations in the frequency
domain to be solved for the Fourier amplitudes. These matrix equations are often
solved with iterative techniques due to their large sizes.
In this chapter, we will not be concerned with the detailed expressions of the

response functions that we find for the standard electronic structure methods in
theoretical chemistry. However, we will briefly outline the basic elements in two
alternative formulations of response theory, namely the polarization propagator
and the quasi-energy derivative approaches.

5.4.1 Polarization propagator approaches

An introduction to the polarization propagator is made through Eq. (5). As the
name suggests, the polarization propagator describes the propagation in time of the
molecular polarization, and the framework is general and can in principle be applied
to any kind of perturbations to a reference state. A pioneering work that has been
the foundation for the development of propagator methods in quantum chemistry is
the book by Linderberg and Öhrn [36] (the book has recently been re-written [37]).

From the point of view of a computational chemist, one of the most appreciated
strengths of the polarization propagator approach is that, although being generally
applicable to many fields in physics, it also delivers efficient, computationally
tractable formulas for specific applications. Today we see implementations of the
theory for virtually all standard electronic structure methods in quantum chemistry,
and the implementations include both linear and nonlinear response functions. The
double-bracket notation is the most commonly used one in the literature, and, in
analogy with Eq. (5), the response functions are defined by the expansion

���t���̂����t�� = �0��̂��0�−∑
�

���̂� �̂	���E�	e−i�t(123)

+ 1
2

∑

�1��2

���̂� �̂	� �̂
���1��2
E
�1
	 E

�2

 e

−i�� t

− 1
6

∑

�1��2��3

���̂� �̂	� �̂
� �̂����1��2��3
E
�1
	 E

�2

 E

�3
� e

−i�� t +· · ·
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A straight-forward comparison between Eqs. (123) and (5) makes it clear that the
connecting formulas between the molecular properties of interest in this work and
the response functions are

��	�−���= −���̂� �̂	���(124)

	�	
�−���1��2�= ���̂� �̂	� �̂
���1��2
(125)


�	
��−���1��2��3�= −���̂� �̂	� �̂
� �̂����1��2��3
(126)

The alternation of the sign in the equations above are explained by the perturbation
operator in the electric dipole approximation being equal to

(127) V̂ �t�= −�̂�E��t�

When atomic units are adopted, the electric dipole operators are to be replaced by
the negative of the position operators, i.e., �̂� = −r̂�. So, if we refer to response
functions with position operators, there is a sign difference compared to properties
of all orders.

As mentioned above, the detailed computationally tractable formulas for the
response functions for any given electronic structure methods are quite involved. If
�0� denotes a wave function in the absence of the external field, the time-dependent
reference state is expressed using an exponential operator

(128) ���t�� = exp

[
∑

n

�n�t� ̂n

]

�0�

For variational methods, such as Hartree–Fock (HF), multi-configurational self-
consistent field (MCSCF), and Kohn–Sham density functional theory (KS-DFT),
the initial values of the parameters are equal to zero and �0� thus corresponds
to the reference state in the absence of the perturbation. The  ̂ operators are
the non-redundant state-transfer or orbital-transfer operators, and carries no time-
dependence (the sole time-dependence lies in the complex � parameters). Further-
more, the operator

∑
n �n�t� ̂n is anti-Hermitian, and the exponential operator is

thus explicitly unitary so that the norm of the reference state is preserved. Perturba-
tion theory is invoked in order to solve for the time-dependence of the parameters,
and we expand the parameters in orders of the perturbation

(129) ��t�= ��1�+��2�+· · ·

We have used the fact that ��0� = 0, in accordance with the zeroth-order wave
function being equal to �0�. It was demonstrated by Olsen and Jørgensen that
the time-dependence of the � parameters could be determined by applying the
Ehrenfest theorem to the operators  ̂n, and require the equation to hold for each
order of the perturbation and for each Fourier frequency [46].
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For the coupled cluster methods, which are non-variational, the initial values
of the �’s are nonzero, and �0� does not correspond to the unperturbed reference
state but, in most applications, to the Hartree–Fock state. The initial values of the
parameters are found in an iterative optimization of the coupled cluster state, and the
time-dependent values of the parameters were determined from the coupled-cluster
time-dependent Schrödinger equation by Koch and Jørgensen [35]. The coupled
cluster state is not norm conserving, but the inner product of the coupled cluster state
vector �CC�t�� and a constructed dual vector �CC�t�� remains a constant of time

(130) �CC�t��CC�t�� = 1

In a truncated coupled cluster approach, the two vectors are not connected by
the adjoint operation; but without truncations a representation of the exact state
situation is retrieved and one state is the adjoint of the other. The generalized
Hellmann–Feynman theorem is proven to hold

(131)
�

�E�
�CC�t��Ĥ0 − �̂�E��CC�t�� = �CC�t���̂��CC�t��

and the coupled cluster response functions can be identified from the time-
development of the transition expectation value �CC�t���̂��CC�t�� rather than from
the time-development of the true expectation value in Eq. (123).

5.4.2 Quasi-energy derivative approaches

One somewhat displeasing detail in the approximate polarization propagator
methods discussed in the previous section is the fact that concern needs to be
made as to which formulation of wave mechanics that is used. This point has
been elegantly resolved by Christiansen et al. in their quasi-energy formulation of
response theory [23], in which a general and unified theory is presented for the
evaluation of response functions for variational as well as nonvariational electronic
structure methods.

We have seen that the analytic energy derivative technique provides an alter-
native for determining molecular properties in the static limit. When the system
is subjected to a time-dependent perturbation, on the other hand, there is no well-
defined molecular energy. However, for time-periodic perturbations, one may intro-
duce the quasi-energy Q�t� as the time-averaged expectation value of the operator
Ĥ0 − i��/�t. The quasi-energy plays the same role as the molecular energy in
the time-independent situation, and response functions can be obtained with the
derivative technique discussed earlier in the time-independent case with Eq. (100)
as starting point.

The time evolution of the wave function parameters ��t� is determined from the
time-averaged variational condition

(132) �Q�t�= 0
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and the response functions are identified from the time-averaged Hellmann–
Feynman theorem. To the extent possible, the final expressions for the approximate
state response functions maintain the symmetry relations valid in the exact theory.
For variational state theory, the computational results are identical to those obtained
from the propagator formalism, but for nonvariational state theories this is not
necessarily true. If different in performance, the authors argue that the Fourier
component variational perturbation theory is the best alternative [23].

6. BULK PROPERTIES

Our discussion has so far been concerned with the microscopic response of a
molecule to an external electric field, and thus with an expansion of the molecular
energy in orders of the response with respect to the external field, giving rise to the
molecular (hyper)polarizabilities. Although experimental data for nonlinear optical
properties of molecules in the gas phase do exist [55], the majority of experimental
measurements are done in the liquid or solid states, as these states also are the ones
that are of greatest interest with respect to developing materials with specifically
tailored (non)linear optical properties.

In the macroscopic case, we will instead consider the polarization P �t� of the
medium by a time-dependent electric field, and we may expand the polarization in
orders of the applied external field as

(133) P� �t�= P�0�� �t�+P�1� �t�+P�2� �t�+· · ·
where P�1�� �t� is linear in the electric field, P�2�� �t� is quadratic in the electric
field and so on. We note the very close correspondence to the expansion of the
molecular dipole moment in Eq. (3). Using now the Fourier transformation of the
time-dependent electric field to express the field in terms of a finite number of
frequency components Eq. (4) and using !�n� to denote a macroscopic susceptibility
tensor of rank n+1, we can rewrite Eq. (133) as

P �t�= P�0� �t�+�0

∑

�

!
�1�
�	 �−���E�	(134)

+�0

∑

�1��2

!
�2�
�	
 �−���1��2�E

�1
	 E

�2

 +· · ·

A comparison of Eq. (5) and Eq. (134) shows that the macroscopic susceptibility is,
assuming the electric fields to be the same, directly proportional to the microscopic
(hyper)polarizabilities, and we could thus define from the experimental data a
microscopic hyperpolarizability by

!
�1�
mic = �/�0(135)

!
�2�
mic = 1

2
	/�0(136)

!
�3�
mic = 1

6

/�0(137)
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and so on for higher-order responses, assuming that we have calculated the micro-
scopic susceptibility from the observed data by dividing by the number of molecules
in the sample.

The microscopic susceptibility will however still not be directly related to the
(hyper)polarizabilities as given by Eqs. (135)–(137) due to the fact that the electric
field experienced by the individual molecule in a macroscopic sample is not the
same as the applied external electric field (which would be experienced by an
isolated molecule in the gas phase). Instead, the molecule in a macroscopic sample
experiences a local field E�loc. This field is different from the macroscopically applied
field because of the polarization of the surrounding molecules.

A direct comparison between experimentally observed susceptibilities and calcu-
lated microscopic (hyper)polarizabilities is thus hampered by the fact that whereas
the macroscopic electric field used in experiment is well known, the local field
experienced by the molecule is in most cases unknown, and only when corrections
for the local field effects can be made will a direct comparison between theory and
experiment be made.

It is also important to realize that the nonlinear optical properties of a molecule
in solution or in the solid state will differ from that of the isolated molecule due to
polarization effects caused by the surrounding molecules. In theoretical calculations
of molecules in the liquid phase, these effects may be modeled using for instance
dielectric continuum models [33, 41, 42, 52, 56]. The use of such schemes for
estimating the polarization of the solute by the solvent does not resolve the issue
of local field factors.

The determination of local field factors is a difficult topic, even for such simplified
models as the dielectric continuum models, and for this reason we will not go
into further detail about the determination of local field factors in this chapter,
referring instead to Chapter 4. We note, however, that for the case of a spherical
cavity, Onsager demonstrated that the local field is related to the macroscopic field
through [47].

(138) E�loc = ��� +2� ��
�� +2��

E�

where �� and �� is the dielectric constant of the medium for a static and an optical
field, respectively.

7. CONCLUDING REMARKS

In this chapter we have introduced the basic elements of the theory of nonlinear
optical properties. Emphasis has been laid on the basic physical processes involved
and how these processes are reflected in the basic formulas derived from time-
dependent perturbation theory. We have also briefly outlined the strategies for devel-
oping efficient computational methods for the calculation of linear and nonlinear
optical properties. A brief discussion of the contributions to the nonlinear optical
properties arising from the nuclear motions, as well as the connection between the
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molecular microscopic properties and the bulk properties most often observed in
experiment. As such, this chapter should provide the reader with the background
needed to understand in more detail these various aspects of the theoretical modeling
of nonlinear optical properties as will be discussed in the remainder of this book.
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Abstract: During the last decade it became possible to calculate by quantum chemical ab initio
methods not only static but also frequency-dependent properties with high accuracy.
Today, the most important tools for such calculations are coupled cluster response methods
in combination with systematic hierarchies of correlation consistent basis sets. Coupled
cluster response methods combine a computationally efficient treatment of electron corre-
lation with a qualitatively correct pole structure and frequency dispersion of the response
functions. Both are improved systematically within a hierarchy of coupled cluster models.

The present contribution reviews recent advances in the highly accurate calcula-
tion of frequency-dependent properties of atoms and small molecules, electronic struc-
ture methods, basis set convergence and extrapolation techniques. Reported applications
include first and second hyperpolarizabilities, Faraday, Buckingham and Cotton–Mouton
effects as well as Jones and magneto-electric birefringence

Keywords: coupled cluster, CCSD, CC3, response theory, quasi-energy Lagrangian, time-dependent
perturbation theory, frequency-dependent properties, hyperpolarizabilities, basis set
convergence, magnetic optical rotation, magnetic circular dichroism, Verdet constant,
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1. INTRODUCTION

The developments of laser technology have in the last decades made the field of
nonlinear optics (NLO) increasingly important. Today lasers that produce light with
well-defined properties and high intensities are in widespread use. In recent years
it has become possible to generate in addition very strong magnetic fields. Thus a
wealth of NLO processes that arise in the presence of strong static and dynamic
electric and magnetic fields became accessible. Accordingly many modern exper-
iments are related in one or the other way to NLO processes. Another motivation
for studying NLO properties is the quest for new materials with specific NLO
properties for creating new generations of optical devices. This quest has initiated a
significant activity in the development of theoretical methods for describing NLO
processes.

The theoretical prediction of NLO properties using high accuracy ab initio
methods has been primarily focused on small molecules, where there has been a
significant interplay between theory and experiment [1–39]. Among NLO proper-
ties, the interest in birefringences and their absorptive counterparts (dichroisms) has
increased during the last decade with the progress in optics and detection techniques
on the experimental side, and with the fast advance of methods and computational
power from the theoretical side [40]. The interplay between theory and experiment
has also been essential for illuminating the role of various physical effects in rela-
tion to NLO processes and for the design of molecules, chromophores, functional
groups, etc., with specific NLO properties.

The calculation of NLO properties with high accuracy is challenging and requires
consideration of many different issues. While electron correlation is known to be
important for accurate predictions of essentially all molecular properties, it is often
of extreme importance for NLO properties. Rather extensive one-electron basis
sets must be used to obtain reasonably well-converged results. NLO properties
are related to optical experiments with external frequencies different from zero.
The calculation of frequency-dependent properties can nowadays be achieved in
theoretical methods for example with the response theoretical approach [41–44]
discussed in this review. However, it cannot easily be obtained via the finite field
techniques that are often used in the calculation of static properties. Molecular
vibrations have also a significant effect on NLO properties. They cause an averaging
of the electronic contribution over the vibrational motion leading to a so-called
zero-point vibrational (ZPV) correction to the electronic contribution calculated
at the equilibrium geometry. For many NLO properties there are also significant
pure vibrational contributions. We refer to later chapters of this book for a detailed
discussion of these contributions.

Relativistic effects have also been considered. Though they may be important
for heavier elements, we shall not discuss this issue in detail here, since most
of the applications presented are for molecules containing only light atoms. Our
review will focus on the prediction of electronic contributions to NLO properties
of molecules in the gas phase discussing the above issues in relation to theory and
to actual calculations on small molecules. It will be shown that with benchmark
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calculations it is nowadays possible to predict NLO effects with unprecedented
accuracy in a variety of systems and in this way to assess the quality of experiments.

The ab initio calculation of NLO properties has been a topic of research for
about three decades. In particular, response theory has been used in combina-
tion with a number of electronic structure methods to derive so-called response
functions [41–48]. The latter describe the response of a molecular system for the
specific perturbation operators and associated frequencies that characterize a partic-
ular experiment. For example, molecular hyperpolarizabilities can be calculated
from the quadratic and cubic response functions using electric dipole operators.
From the frequency-dependent response functions one can also determine expres-
sions for various transition properties (e.g. for multi-photon absorption processes)
and properties of excited states [42].

One of the advantages of response theory is that it can be applied for most
quantum chemical methods, including Hartree-Fock self-consistent-field (HF-SCF)
[42, 45], multi-configurational SCF (MCSCF) [42, 49, 50], and coupled cluster
(CC) [44, 46, 51]. In recent years density functional theory (DFT) based response
theory [52, 53] has also received considerable interest. Response theory based upon
HF-SCF and DFT has the advantage of being applicable to rather large systems, but
on the other hand is not always appropriate for detailed and quantitatively accurate
comparisons with experiment. Since dynamic electron correlation is typically very
important for the predictions of NLO properties, efficient and accurate treatments
of dynamic correlation are required for obtaining quantitative results. Due to the
exponential parameterization and the accompanying correct scaling with the size of
the system, CC methods have the possibility to give accurate results for systems
with both few and many electrons as long as the calculations are feasible.

The high accuracy of CC methods is well established for a number of molecular
properties including structures, vibrations, NMR shielding etc. In particular CC
models with an approximate treatment of triple excitations as e.g. the CCSD(T)
method [54] provide a high accuracy. Despite all its qualities there is an inherent
problem in the use of CCSD(T) in relation to NLO properties: while static prop-
erties can be obtained with high accuracy using CCSD(T) the description of the
frequency dependence is dubious within this approach. A similar problem holds
for second-order Møller-Plesset Perturbation theory (MP2). These methods have a
frequency dependence that is corrupted by the presence of poles due to the HF-SCF
reference state. However, a hierarchy of CC methods has been developed [55–
71] for the calculation of response properties including CC2 [57], coupled cluster
singles and doubles (CCSD) [72], and CC3 [56, 58], etc. The advantage of CC2
and CC3, as compared to MP2 and CCSD(T), is that they have a frequency depen-
dence that matches the quality of the static properties. Thus in the CC2, CCSD and
CC3 sequence both static and frequency-dependent molecular properties as well as
electronic excitation energies are obtained with increasing accuracy at the cost of
increasing computational effort. For these methods linear [60–64], quadratic [65–67]
and cubic response functions [67, 68] have been implemented and allow today accu-
rate and systematic calculations of NLO properties including hyperpolarizabilities
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[30, 32, 36, 37, 73], magneto-optical effects [38, 39, 70, 71, 74], two-photon absorp-
tion [75, 76], and so on. In principle, the hierarchy of CC methods also extends
further to the full coupled cluster singles, doubles and triples (CCSDT) method and
beyond, but at this level the calculation begins to be too demanding using present
day standards for computer equipment and such methods have been little used for
the calculation of NLO properties besides benchmark studies [34, 39, 64, 77, 78].
On the other hand CC2 and in some cases even CCSD are not accurate enough
for detailed studies of NLO properties of small molecules. The experience with
CC3 has been that this is a very accurate method also for NLO properties. Indeed,
CC3 is probably the most accurate methodology for frequency-dependent properties
applicable nowadays to systems with more than a few electrons. In this paper the
focus is on high accuracy NLO calculations and the role of CC3 is in this context
extremely important since it often gives the final increase in accuracy that allows
us to support, interpret, predict, or reject experimental results with confidence.

In the next section we summarize the theoretical background for coupled cluster
response theory and discuss certain issues related to their actual implementation.
In Sections 3 and 4 we describe the application of quadratic and cubic response in
calculations of first and second hyperpolarizabilities. The use of response theory
to calculate magneto-optical properties as e.g. the Faraday effect, magnetic circular
dichroism, Buckingham effect, Cotton–Mouton effect or Jones birefringence is
discussed in Section 5. Finally we give some conclusions and an outlook in
Section 6.

2. COUPLED CLUSTER RESPONSE THEORY

In standard time-independent coupled cluster theory the wavefunction is parame-
terized as

(1) �CC� = exp�T̂ ��Ref�

where T̂ =∑
� t��̂� is the cluster operator, �Ref� a reference state – usually taken

as the Hartree-Fock wavefunction �HF� – and �̂� excitation operators [79] which
applied to the reference state generate excited determinants or configurations ���� =
�̂��Ref�. The amplitudes t� of the cluster operator are determined by projecting the
Schrödinger equation onto the bra states �Ref��̂†� exp�−T̂ �:

(2) 0 =
〈
Ref

∣
∣
∣�̂†� exp�−T̂ �Ĥ exp�T̂ �

∣
∣
∣Ref

〉

and the energy is obtained as

(3) ECC = �Ref�Ĥ�CC��
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By truncating the cluster operator T̂ after single, double, triple, � � � replacements
the hierarchy of coupled cluster models CCS, CCSD, CCSDT, etc. is obtained.
In this series the accuracy of the results – but also the computational costs –
converge rapidly to those of Full Configuration Interaction (FCI). This motivated
the development of several intermediate methods which are derived from the above
standard models by either
• augmenting the CC energy of Eq. (3) with perturbative corrections (e.g. CCSD[T]

[80, 81], CCSD(T) [54], CCSDT�Qf � [82], � � �)
• or introducing approximations into the cluster equations (2) – (e.g. CC2 [57],

CC3 [56], CCSDT-1a [83, 84], � � �)
For a detailed review of coupled cluster methods for ground state energies and
static properties the reader is referred to [79, 85–87].

2.1 Including a Time-Dependent Perturbation

In response theory one considers a quantum mechanical system described by the
time-independent Hamiltonian Ĥ�0� which is perturbed by a time-dependent pertur-
bation V̂ �t� 	�

(4) Ĥ�t� 	�= Ĥ�0�+ V̂ �t� 	��

We assume that the perturbation V̂ can be expanded in a sum over monochromatic
Fourier components as

(5) V̂ �t� 	�=∑

j

	j�
j� exp�−i
jt�X̂j�

where X̂j are hermitian time-independent one-electron operators and 	j are the real
amplitudes of the associated field-strengths. (The letter 	 without index is above
and in the following used as abbreviation for all field strengths �	j� included in V̂ .)
We shall furthermore assume for simplicity that the perturbations in Eq. (5) have a
common time period and that V̂ is hermitian, which implies that for each frequency

j also its negative is included in the summation.

The time-dependent ground-state coupled cluster wavefunction for such a system
is conveniently parameterized in a form, where the oscillating phase factor caused
by the so-called level-shift [43–45, 88, 89] or time-dependent quasi-energy ��t� 	�
(vide infra) is explicitly isolated [42–46, 90, 91]:

(6)
∣
∣
∣CC�t� 	�

〉
= exp

(

−i
∫ t

t0

��t′� 	�dt′
)∣
∣
∣CC�t� 	�

〉
�

with

(7) �CC�t� 	�� = exp�T̂ �t� 	���Ref��
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Note that in the time-independent limit �CC�t� 	�� becomes the usual time-
independent CC wavefunction, Eq. (1), while the full time-dependent wavefunction
�CC�t� 	�� goes to exp�iECC�t0 − t���CC�. The reference state should be chosen
such that it is time-independent – for the following it will be assumed that �Ref� is
the Hartree-Fock wavefunction of the unperturbed molecule �HF0�. By keeping the
uncorrelated reference state fixed in the presence of the perturbation, a two–step
approach, which would introduce artificial poles into the correlated CC wavefunc-
tion due to the response of the orbitals, is avoided. Inserting the above ansatz
into the time-dependent Schrödinger equation and projecting on the bra states
�HF0��̂†� exp�−T̂ �, the time-dependent cluster equations become

(8) 0 =
〈
HF0

∣
∣
∣�̂†� exp�−T̂ �Ĥ�t� 	� exp�T̂ �

∣
∣
∣HF0

〉
− i d
dt
t� = e��t� 	�− i

d

dt
t��

The energy, which in the time-dependent case is no longer a constant of motion,
has to be generalized to the time-dependent quasi-energy:

(9) ��t� 	�=
〈
HF0

∣
∣
∣ exp�−T̂ �Ĥ�t� 	� exp�T̂ �

∣
∣
∣HF0

〉
�

Frequency-dependent higher-order properties can now be obtained as derivatives
of the real part1 of the time-average of the quasi-energy ���T with respect to
the field strengths of the external perturbations. To derive computational efficient
expressions for the derivatives of the coupled cluster quasi-energy, which obey the
2n+1- and 2n+2-rules of variational perturbation theory [44, 45, 93], the (quasi-)
energy is combined with the cluster equations to a Lagrangian:

(10) L�t� 	�= ��t� 	�+∑
�

t̄�

(

e��t� 	�− i
d

dt
t�

)

�

The time-average of the quasi-energy Lagrangian

(11) �L�t� 	��T = lim
t0→�

1
2t0

∫ +t0

−t0
L�t� 	�dt

is required to be stationary with respect to the cluster amplitudes t� and the Lagrange
multipliers t̄� [43–45, 48, 88, 94]:

(12) �L�t� 	��T = 0�

1 The imaginary part of ��t� 	� is connected to the time derivative of the wavefunction norm and does
not contain information about physical observables. For normalized wavefunctions and bra and ket state
conjugated to each other the quasi-energy is real [44, 45]. However, the CC energy is calculated from a
projection expression and in is general not real. Thus with CC wavefunctions it is important to consider
only the real part of the quasi-energy [44, 65, 92].
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The last equation is a variation principle for the coupled cluster quasi-energy and
wavefunction within oscillating harmonic external fields. If one inserts a perturba-
tion and Fourier expansion as ansatz for the cluster amplitudes

t��t� 	�= t�0�� +
�∑

n=1

1
n!
∑

j1

· · ·∑
jn

t
Xj1 ���Xjn
� �
j1� � � � �
jn�(13)

×
n∏

m=1

	jm�
jm� exp�−i
jmt�

and an analogous ansatz for the Lagrange multipliers Eq. (12) becomes a set of
linear equations for the individual expansion coefficients of t� and t̄�, apart from
the unperturbed cluster amplitudes, t�0�� , for which the nonlinear cluster equations,
Eq. (2), are recovered. The response functions, i.e. the frequency-dependent higher-
order properties, are obtained as derivatives of the real part of the time-dependent
quasi-energy Lagrangian [44, 65, 92, 95] with respect to the field strengths:

��X1�X2� � � � �Xn��
2�����
n
=
(
dn
{

1
2L�t� 	�+ 1

2L�t� 	�
∗}
T

d	1�
1� � � � d	n�
n�

)

0

(14)

= 1
2
Ĉ±

(
dn �L�t� 	��T

d	1�
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where Ĉ± symmetrizes with respect to an inversion of the signs of all frequencies
and simultaneous complex conjugation.2 Note that as a consequence of the time-
averaging of the quasi-energy Lagrangian, the derivative in the last equation gives
only a non-vanishing result if the frequencies of the external fields fulfill the
matching condition

∑
i 
i = 0.

2.2 The Issue of Orbital Relaxation

As pointed out above, in the time-dependent case the correlation treatment cannot be
based on time-dependent Hartree-Fock orbitals – at least not on the real frequency
axis in the vicinity of poles of the response functions. Thus, the polarization of the
wavefunction must be described through the variables of the correlation method,
i.e. for the CC approach by means of the cluster amplitudes. This has important
implications on the choice or suitability of correlation methods. As it is apparent
from the sum-over-states expression for the n-th response function [96]
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(where P̂Xn+1Xn���X1 is a symmetrization operator generating all possible permutations
of the operators together with the accompanied frequencies and the summations are
over all states �lm

) a qualitatively correct description requires up to �n+1�/2-tuple
excitations, i.e. single excitations for linear and quadratic response functions, double
excitations for cubic and quartic response functions and so on. To account simulta-
neously for dynamic correlation also at least the next two higher excitation levels
need to be included, i.e. at least triple excitations for the linear and quadruple
excitations for the cubic response function. These excitations are not necessarily
connected and are therefore most efficiently parameterized via the exponential
coupled cluster ansatz, Eq. (1). In a configuration interaction (CI) picture, however,
these high excitations need to be explicitly included. For this reason, truncated CI
methods have never been applied very successfully for the calculation of frequency-
dependent properties of many-electron systems, even though implementations have
been reported in the literature [97–100].

Also for coupled cluster methods the use of unrelaxed orbitals has some implica-
tions. A perturbation theoretical analysis based on a Møller-Plesset like partitioning
of the Hamiltonian as Ĥ�t� 	�= F̂+ Û+ V̂ �t� 	�, where Û is the electron fluctuation
potential and F̂+V̂ �t� 	� is used as zeroth-order Hamiltonian, leads to the conclusion
that in the presence of “unrelaxed” fields the results of coupled cluster methods are
in general not correct through the same order in the fluctuation potential as they are
in the absence of such fields [59]. Thus, CCSD, for example, gives response func-
tions which are only correct through second order in Û , while CCSD ground state
energies are correct through third order (compare Table 1). However, it is unclear

Table 1. Hierarchy of coupled cluster methods for response calculations. The table summarizes to which
order in the electron fluctuation potential ground state and single excitation energies and response
functions are obtained correctly at a given level of the correlation treatment. The analysis is based on a
Møller-Plesset like partitioning of the Hamiltonian as Ĥ�t� 	�= F̂+ Û + V̂ �t� 	�, where Û is the electron
fluctuation potential [58, 59]

Method Scaling of Ground state Single excitation Response
comp. efforta energyb poles functions

HF-SCF < N 4 (iter.) 1 1 1
CCS < N 4 (iter.) 1 1 0
MP2 nN 4 2 — —
CC2 nN 4 (iter.) 2 2 1
CCSD n2N 4 (iter.) 3 2 2
CCSD(T) n3N 4 4 — —
CC3 n3N 4 (iter.) 4 3 3
CCSDT-1a/b n3N 4 (iter.) 4 2 2
CCSDT n4N 4 (iter.) 4 4 4

a n and N are, respectively, the number of electrons and basis functions, an addition (iter.) indicates that
the highest cost appear in iterative steps. Given are the formal scaling without exploiting screening;
the exact costs depend heavily on the implementation.

b for the unperturbed system, i.e. no fields added after the HF calculation.
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how the loss of one order in perturbation theory affects the accuracy of the results.
It is well established for static properties like dipole moments and polarizabili-
ties that the orbital–relaxed and orbital–unrelaxed results differ substantially at the
CCSD level. But the results are sometimes on different sides of the FCI values,
with deviations of similar magnitudes depending on the molecule and the CC model
[34, 39, 77, 101–103]. We shall return to this issue in the numerical studies in
Sections 4.2 and 5.3.

2.3 Implementation in Quantum Chemistry Programs

The approach outlined above combines the calculation of response functions (i.e. of
frequency-dependent properties) with the theory of analytic derivatives developed
for static higher-order properties. In the limit of a static perturbation all equa-
tions above reduce to the usual equations for (unrelaxed) coupled cluster energy
derivatives. This is an invaluable advantage for the implementation of frequency-
dependent properties in quantum chemistry programs.

The CC response functions are conveniently expressed in terms of partial deriva-
tives of L�t� 	� with respect to cluster amplitudes, Lagrange multipliers and field
strengths, which are given for the lowest orders in Table 2. Assuming that all
perturbations included in V̂ �t� 	� are described by one-electron operators and that
the basis set does not depend on the external fields (as it would e.g. with so-called
gauge including atomic orbitals (GIAOs) in the case of magnetic perturbations [71,
104–108]) the quadratic response function for example is obtained as:
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In the above equation the operator P̂ABC symmetrizes with respect to permutations
of the perturbations A, B, and C together with the accompanied frequencies and

Table 2. Partial derivatives of the Lagrange functional for the coupled
cluster quasi-energy
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Ĉ±
 is the symmetrization defined in Section 2.1. The first-order responses of the
cluster amplitudes and Lagrange multipliers are denoted as, respectively, tX and t̄X .
In addition to these and the unperturbed cluster amplitudes t�0� also the zeroth-order
Lagrange multipliers t̄�0� are needed. All these parameters are obtained from linear
so-called response equations in which the Jacobian A as stability matrix enters as
a central object:

t̄�0�A = −��0�(18)

�A−
X1� tX �
X�= −�X(19)

t̄X �
X� �A+
X1�= − (�X +FtX �
X�
)
�(20)

The above equations are relatively straightforward to implement in a “direct” way
without explicitly setting up and storing the matrices (and higher-order tensors)
A, F, G, AX , etc. Only intermediates of at most the size of the cluster amplitudes –
i.e. �nN�m, where n is the number of electrons, N the number of basis functions and
m the highest excitation level – need to be stored in memory or on disk. Actually,
for some approximate CC models one can reduce this further, as we shall see in
the following for the CC3 model.

2.4 The Approximate Triples Model CC3

For nonlinear (magneto-) optical properties, calculations of an accuracy close to
that of modern gas phase experiments require – similar to what has also been found
for other properties like structures [79, 109], reaction enthalpies [79, 110, 111],
vibrational frequencies [112, 113], NMR chemical shifts [114], etc. – at least an
approximate inclusion of connected triple excitations in the wavefunction. This has
been known for years now from calculations of static hyperpolarizabilities with the
CCSD(T) approximation [9–13]. CCSD(T) accounts rather efficiently for connected
triples through a perturbative correction on top of CCSD. For the reasons pointed out
in Section 2.1 CCSD(T) is, as a two–step approach, not suitable for the calculation
of frequency-dependent properties. Therefore, the CC3 model has been proposed
[56, 58] as an alternative to CCSD(T) especially designed for use in connection
with response theory. CC3 is an approximation to CCSDT – alike CCSDT-1a and
related methods – where the triples equations are truncated such that the scaling of
the computational efforts with system size is reduced to ��n3N 4� as for CCSD(T),
but the iterative character of the method is kept. The CC3 response functions are
correct through third order in the fluctuation potential.

An important aspect of CC3 and other approximate triples methods is that due
to the approximations made in the triples equations, it is possible to avoid the
storage of the triples parts of the cluster amplitudes and Lagrange multipliers. This
is essential since otherwise the storage and not the CPU requirements would limit
the applicability of these methods.

To reduce the storage requirements, however, a more complicated partitioned
formulation must be used which exploits the particular simple structure of the
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triples equations and the diagonality of the triples–triples block of the Jacobian. It
allows to express the triples parts of the cluster amplitudes and Lagrange multipliers
in terms of the singles and doubles parts and to reformulate the ground state
cluster equations and the response equations that have to be solved to calculate
properties, into effective equations in the space spanned by just the single and
double excitation manifolds. Thereby the storage of full sets of triples amplitudes
on disk or in core memory can be avoided. Instead the triples parts are calculated
whenever needed “on-the-fly” from the singles and doubles parts and some integral
intermediates. However, in the orbital-unrelaxed response approach needed for
frequency-dependent properties some partial derivatives of L�t� 	� that appear in
the right-hand-side vectors (e.g. �X , �X , and AX) induce an off-diagonal coupling
between the triples amplitudes or multipliers of different order in response. This
leads in higher order to quite involved expressions and algorithms, in particular
if the optimal formal scaling of the computational costs with ��n4N 3� should
be conserved, and eventually this coupling will limit the applicability of a fully
partitioned formulation.

What gives CC3 special prominence in response calculations is that this method is
the simplest CC wavefunction model that yields response functions correct through
third order in the fluctuation potential [56, 58]. The first implementations of the
linear and quadratic response functions at the CC3 level that exploit the partitioning
to eliminate the storage requirements for triples amplitudes were reported by Chris-
tiansen, Gauss and Stanton [62, 66] based on the triples code of the ACES II
program package [115]. While the iterative solution of the response equations with
given right hand sides proceeded with ��� 7� scaling, these authors allowed in
some non-iterative terms for higher-order scalings of the computational costs to
obtain a close to optimal performance for small molecules. Hald et al. [63, 69]
and Pawłowski et al. [67, 73] reported an alternative implementation of the linear
and quadratic response functions of CC3 and a first implementation of the cubic
response function which conserves strictly the ��� 7� scaling of the CC3 model at
the expense of somewhat larger costs for small molecules. The latter implementa-
tion is based on the integral-direct coupled cluster code [116, 117] included in the
Dalton program [118].

3. FREQUENCY-DEPENDENT FIRST HYPERPOLARIZABILITIES

The conceptually simplest NLO property is the electric first dipole hyperpolariz-
ability �. Nevertheless, it is a challenging property from both the theoretical and
experimental side, which is related to the fact that, as third-rank tensor, it is a
purely anisotropic property. Experimentally this means that � in isotropic media
(gas or liquid phase) cannot be measured directly as such, but only extracted from
the temperature dependence of the third-order susceptibilities ��3�. In calculations
anisotropic properties are often subject to subtle cancellations between different
contributions and accurate final results are only obtained with a carefully balanced
treatment of all important contributions.
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Table 3. Basis set convergence of first hyperpolarizabilities �	 (in a.u.) at the (unrelaxed) CCSD level.
For FH, CO, and H2O results are given for the static limit �	�0�, while for HCl the results are for
�	�−
�
�0� with 
= 0�072003 a.u. (632.8 nm). In all calculations a frozen core approximation with
the electrons in the 1s shells of non-hydrogen atoms kept inactive in the correlation and response
calculations is employed

Basis FHa HClb COc H2Od

aug-cc-pVDZ −9�32 19�53 27�95 −16�27
aug-cc-pVTZ −9�80 12�42 26�34 −18�40
aug-cc-pVQZ −8�63 8�77 25�37 −18�02
aug-cc-pV5Z −8�29 9�49 25�12 −18�24

d-aug-cc-pVDZ −6�01 10�96 26�78 −14�09
d-aug-cc-pVTZ −7�68 9�71 25�43 −17�73
d-aug-cc-pVQZ −7�73 8�95 25�06 −18�07
d-aug-cc-pV5Z −7�77 8�94 24�99 −18�11

t-aug-cc-pVDZ −6�29 26�77 −16�02
t-aug-cc-pVTZ −7�93 9�48 25�26 −18�48
t-aug-cc-pVQZ −7�87 25�04 −18�28

q-aug-cc-pVDZ −6�40 27�00 −15�94
q-aug-cc-pVTZ −7�93 9�34 25�34 −18�50
q-aug-cc-pVQZ −7�84

a RFH = 1�7328 bohr; Z axis points from F to H; [65, 119].
b RHCl = 1�27455 Å; Z axis points is from H to Cl; [37] (including some previously unpublished numbers).
c RCO = 2�132 bohr; Z axis points from O to C; present work and [36].
d ROH = 0�957 Å�∠�HOH�= 104�5
; Z axis points from O to the center of mass; present work and [36].

3.1 Basis Set Convergence

According to the 2n+1-rule first hyperpolarizabilities require similar to the linear
polarizabilities only the calculation of the first-order response of the wavefunction.
Thus, the minimal basis set requirements for a qualitative correct description of �ijk
are similar to those for the components of the linear polarizability �ij , i.e. for calcula-
tions at a correlated level the basis set should be at least of triple-� quality augmented
with diffuse functions for a better description of the long range part of the electron
density and its response. However, for the first hyperpolarizability the experimen-
tally observed properties (in most cases �	 or �⊥) are anisotropic tensors and
therefore usually more sensitive to the quality of the wavefunction than the isotropic
polarizability �̄. Within the hierarchy of correlation-consistent basis sets [120–123]
augmentation with a single set of diffuse functions (aug-cc-pVXZ) is often suffi-
cient for the calculation of polarizabilities of polyatomic molecules [101, 123]. For
hyperpolarizabilities, in particular for small molecules, the doubly-augmented basis
sets (d-aug-cc-pVXZ) give much better convergence with the cardinal number X,
while the addition of even more diffuse functions as in the t-aug-cc-pVXZ sets does
not give any further systematic improvements (see Table 3).
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3.2 Convergence with Correlation Treatment

The situation is somewhat different for the convergence with the wavefunction
model, i.e. the treatment of electron correlation. As an anisotropic and nonlinear
property the first dipole hyperpolarizability is considerably more sensitive to the
correlation treatment than linear dipole polarizabilities. Uncorrelated methods like
HF-SCF or CCS yield for �	 results which are for small molecules at most qualita-
tively correct. Also CC2 is for higher-order properties not accurate enough to allow
for detailed quantitative studies. Thus the CCSD model is the lowest level which
provides a consistent and accurate treatment of dynamic electron correlation effects
for frequency-dependent properties. With the CC3 model which also includes the
effects of connected triples the electronic structure problem for �	 seems to be
solved with an accuracy that surpasses that of the latest experiments (vide infra).

3.3 Comparison with Experiment: CO, H2O, FH, and HCl

3.3.1 Carbon monoxide

Table 4 shows results from [36] for the static and the second harmonic generation
hyperpolarizabilities �SHG

	 of CO at 694.3 nm. The electronic contributions were
obtained from CC3/d-aug-cc-pVTZ calculations carried out at RCO = 2�132 bohr.
These were approximately corrected for remaining basis set errors by adding the
difference between CCSD/d-aug-cc-pVQZ and CCSD/d-aug-cc-pVTZ results for
the same frequency and internuclear distance. For CO the triples correction for
�	�0� is 1.72 a.u. or ≈6%. At a wavelength of 694.3 nm the triples correction is
already 2.35 a.u. or ≈7%. Thus, there is in this case a notable triples effect on
the frequency dispersion. Since there is no information available about correlation
contributions beyond CC3, it is difficult to assess the accuracy of these results.

The experimental result for �SHG
	 at 694.3 nm is 30�2 ± 3�2 a.u. [1, 16]. This is

in good agreement with the best theoretical estimate for the electronic contribution

Table 4. The first hyperpolarizability of CO (from [36], results in a.u.)

Method �static
	 �SHG

	 (694.3 nm)

CCSD/d-aug-cc-pVQZa 25.06 29.09
CC3/d-aug-cc-pVTZa 27.15 31.91
CC3/d-aug-cc-pVQZa�b 26.78 31.44
CCSD(T)c 23.5 27.00

experimental valued 30�2±3�2

a [36]; RCO = 2�132 bohr.
b estimated from CC3/d-aug-cc-pVTZ and CCSD results.
c [8] static CCSD(T) result with Sadlej POL basis; for �SHG

	 scaled with
HF-SCF dispersion.

d [1] rescaled in [16].
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(31.44 a.u.). However, a direct comparison of the two values is hampered by the
fact that presently no results are available for the zero-point vibrational correction
as well as for the pure vibrational contribution.

3.3.2 Water

The same approach leads for water, H2O, at the equilibrium geometry of ROH =
0�957 Å and ∠�HOH�= 104�5
 to a best estimate of −21�28 a.u. for the electronic
second harmonic generation hyperpolarizability �SHG

	 at 694.3 nm [36]. Also in this
case connected triples are essential to obtain quantitative accuracy (they amount to
≈4%), but they have only a minor effect on the dispersion (0.01 a.u. at 694.3 nm).
For both the zero-point vibrational (ZPV) correction and the pure vibrational contri-
bution, there are results available from previous theoretical investigations at the HF-
SCF [15], MCSCF [14] and MP2 [15] levels. It is difficult to judge which of these
results, which differ considerably, are most accurate. Probably the MP2 results of
[15] are most consistent with the coupled cluster calculations. At this level the ZPV
correction has been estimated to be of the order of −0�95 a.u. The pure vibrational
contribution has been calculated to about −0�21 a.u. at a frequency of 0.07 a.u. This
frequency corresponds roughly to the experimental wavelength of 694.3 nm. Adding
the MP2 vibrational corrections to the coupled cluster result for the electronic
hyperpolarizability one obtains as a best estimate for the final result at 694.3 nm a
value of −22�4 a.u. as summarized in Table 5. This is in excellent agreement with
the experimental result for �SHG

	 of −22�0 ± 0�9 a.u. reported in [1, 16] for this
wavelength.

A comparison with an experimental result for a wavelength of 1064 nm of
−19�2 ± 0�9 a.u. [17] is limited by missing data for the pure vibrational contribu-
tion at this wavelength. However, the best estimate for the electronic contribution
including the aforementioned MP2 value for the ZPV correction obtained in [36]
is with −19�81 a.u. in agreement with the experimental value.

Table 5. The first hyperpolarizability of H2O (from [36], results in a.u.)

Method �static
	 �SHG

	 (694.3 nm)

CCSD/d-aug-cc-pVQZa −18�07 −21�98
CC3/d-aug-cc-pVTZa −17�04 −21�02
CC3/d-aug-cc-pVQZa�b −17�38 −21�28
zero point vibr. correct.c −0�95
pure vibr. contrib.c −0�21

best theoretical estimate −22�4

experimental valued −22�0±0�9

a [36]; ROH =0.957 Å, ∠�HOH�= 104�5
�
b Estimated from CC3/d-aug-cc-pVTZ and CCSD results.
c [15] MP2 results. ZPV correction was calculated for static limit.
d [1] rescaled in [16].
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3.3.3 Hydrogen fluoride

A somewhat special case is �SHG
	 of hydrogen fluoride (FH). Since its experi-

mental determination by Dudley and Ward [7] about twenty years ago and its first
ab initio investigation by Sekino and Bartlett [13], there has been a discussion in
the literature whether the experimental result is in agreement with theory or not
[8, 13, 16, 18, 26–28, 31, 33, 65, 66, 124]. However, both the experimental and
the calculated results have relatively large uncertainties of 5–10%. For the theo-
retical value the main source of uncertainty are the vibrational contributions. The
electronic contribution is today known with good accuracy from CC3 calculations
[66] in a t-aug-cc-pVTZ basis and estimates for the remaining basis set error from
CCSD calculations in large basis sets [65, 119] and for higher-order correlation
effects from FCI calculations [34] in the aug-cc-pVDZ basis. The zero-point vibra-
tional correction and the pure vibrational contributions have been calculated from
(unrelaxed) CCSD/t-aug-cc-pVTZ results for the property curves and a potential
energy curve evaluated at the CCSD(T)/t-aug-cc-pVTZ level [119]. Combining
these results, one arrives for �SHG

	 �694�3 nm� at a best estimate of −9�45 ± 0�5
a.u., as shown in Table 6. This estimate includes for the remaining correlation and
basis set errors an uncertainty of 0.2 a.u. and for the ZPV correction and the pure
vibrational contributions uncertainties of, respectively, 0.1 and 0.2 a.u.

The experimental value is with −10�9 ± 1�0 a.u. somewhat larger, but has
also a relatively large uncertainty of ≈10%. It is thus difficult to conclude from
these numbers that there exists a significant disagreement between the experi-
mental and theoretical results. However, as suggested previously, an experimental

Table 6. Second harmonic generation hyperpolarizability �SHG
	

of FH at 694.3 nm (in a.u.)

�SHG
	 �694�3 nm�

CC3/t-aug-cc-pVTZa at Re −8�32
est. remaining basis effectsb +0�16±0�1
est. remaining correl. effectsc +0�07±0�1
zero point vibr. correct.d�e −0�72±0�1
pure vibr. contrib.e −0�64±0�2

best theoretical estimate −9�45±0�5

experimental valuef −10�9±1�0

a [66], Re = 1�7328 bohr.
b diff. between CCSD/d-aug-cc-pV5Z and CCSD/d-aug-cc-

pVTZ, [65, 119].
c diff. between CC3/aug-cc-pVDZ and FCI/aug-cc-pVDZ, [34].
d diff. between vibrational averaged and single point (at RFH =

1�7328 bohr) results, [119].
e calculated with CCSD/t-aug-cc-pVTZ frequency-dependent

properties and a CCSD(T)/t-aug-cc-pVTZ potential, [119].
f [7] based on CF4 as reference.
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Table 7. Second harmonic generation hyperpolarizability �SHG
	 of HCl at

694.3 nm (in a.u.)

�SHG
	 �694�3 nm�

CC3/d-aug-cc-pVTZa at Re 9.84
est. remaining basis effectsb −0�94
zero point vibr. correct.c −0�16
pure vibr. contrib.d +0�4

best theoretical estimate 9.14

experimental valuee 9�76±0�96

a [37], RHCl = 1�27455 Å.
b diff. between CCSD/d-aug-cc-pV5Z and CCSD/d-aug-cc-pVTZ, [37].
c static result from CC3/d-aug-cc-pVTZ property and CCSD(T)/aug-cc-

pVQZ potential, [37].
d from CC3/d-aug-cc-pVTZ frequency-dependent properties and CCSD(T)/

aug-cc-pVQZ potential, [37].
e [7] based on CF4 as reference gas.

reinvestigation of �SHG
	 for FH, would be needed to resolve the remaining discrep-

ancy, in particular since the measurement of [7] was carried out with CF4 as
reference gas, for which the second hyperpolarizability is not known very accurately.

3.3.4 Hydrogen chloride

For hydrogen chloride (see Table 7.) a very similar approach results in consid-
erably better agreement between the experimental and the ab initio calculated
result. The electronic contribution has been obtained from calculations at the
CC3/d-aug-cc-pVTZ level supplemented by CCSD/d-aug-cc-pV5Z for remaining
basis set effects. The ZPV correction and the pure vibrational contributions
were calculated from CC3/d-aug-cc-pVTZ results for the properties and a
CCSD(T)/aug-cc-pVQZ potential energy curve. The final best estimate obtained in
[37] for �SHG

	 �694�3 nm� by combining these results is with 9.14 a.u. in very good
agreement with the experimental value of 9�76±0�96 a.u. from [7].

4. FREQUENCY-DEPENDENT SECOND
HYPERPOLARIZABILITIES

Naively, one would expect that second hyperpolarizabilities � are theoretically and
experimentally more difficult to obtain than first hyperpolarizabilities �. From a
computational point of view the calculation of fourth-order properties requires,
according to the 2n+1-rule, second-order responses of the wavefunction and thus
the solution of considerably more equations than needed for � (cf. Section 2.3).
However, unlike � the second dipole hyperpolarizability � has two isotropic tensor
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components (�	 and �⊥) which are amenable to very accurate gas phase measure-
ments [2–6, 16, 29] on atoms and small and highly symmetric molecules for which
also very accurate calculations can be carried out.

4.1 Basis Set Convergence

Since second hyperpolarizabilities depend in addition to the first-order also on
the second-order response of the wavefunction, the minimal requirements with
respect to the choice of basis sets are for � somewhat higher than for the linear
polarizabilities � and the first hyperpolarizabilities �, in particular for atoms and
small molecules. For the latter at least doubly-polarized basis sets augmented with
a sufficient number of diffuse functions (e.g. d-aug-cc-pVTZ or t-aug-cc-pVTZ) are
needed to obtain qualitatively correct results. Highly accurate results at a correlated
level will in general only be obtained in quadruple-� or better basis sets.

Table 8 shows the results of basis set studies for the static isotropic second hyper-
polarizabilities of Ne, N2, and CH4. These numbers illustrate the typical basis set

Table 8. Basis set convergence of �	�0� (in a.u.) in HF-SCF and (unrelaxed) CCSD

Basis set HF-SCF CCSD

Nea N2
b CH4

c Nea N2
b CH4

c

aug-cc-pVDZ 20.3 456 1497 29�6 684 1931
aug-cc-pVTZ 28.3 560 1745 42�2 745 2199
aug-cc-pVQZ 38.6 654 1830 58�5 822 2285
aug-cc-pV5Z 50.1 685 76�8 844

d-aug-cc-pVDZ 49.3 672 1774 83�9 938 2328
d-aug-cc-pVTZ 57.3 697 1868 94�2 895 2364
d-aug-cc-pVQZ 62.0 710 1864 100�2 881 2330
d-aug-cc-pV5Z 67.5 714 108�0 873
d-aug-cc-pV6Z 68.6 714 869

t-aug-cc-pVDZ 53.2 669 1815 94�4 935 2378
t-aug-cc-pVTZ 66.5 710 1869 110�3 903 2365
t-aug-cc-pVQZ 67.8 713 1868 110�0 883
t-aug-cc-pV5Z 68.6 714 110�2 873
t-aug-cc-pV6Z 68.9 715 110�0

q-aug-cc-pVDZ 53.3 680 1816 94�5 943 2380
q-aug-cc-pVTZ 68.9 717 1871 114�5 909
q-aug-cc-pVQZ 68.5 715 111�2 884
q-aug-cc-pV5Z 68.7 110�2
q-aug-cc-pV6Z 68.9 110�0

limit 68.8 715

a [32, 119], CCSD calculations with frozen core approximation for 1s shell.
b RNN = 2�074 bohr; [32, 35].
c RCH = 2�052 bohr; [32], CCSD calculations with frozen core approximation for 1s shell at C.
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convergence of this property, which apart from the higher minimal needs, resembles
that of the isotropic polarizability �̄. As observed before by other authors [123], the
results converge slowly with the cardinal number (or �-level) if the augmentation
level is low. This reflects the important role of diffuse functions for these proper-
ties. For atoms (as Ne) one obtains both at the HF-SCF and at the correlated level
an acceptable convergence first in the triply-augmented series t-aug-cc-pVXZ. The
fourth set of diffuse functions improves slightly the convergence, but for correlated
calculations an increase in the cardinal number X is more important. For molecules
the basis set convergence is somewhat faster, in particular with respect to diffuse
functions. For N2 and CH4 already in the doubly-augmented series an increase of
the cardinal number X is of the same importance as triple augmentation.

At the Hartree-Fock level the hyperpolarizabilities usually increase if the
augmentation level and also if the cardinal number X are increased. For the
correlated contribution to ����0� the convergence pattern is dominated by different
effects: At the CCSD level an increase of ����0� with the cardinal number beyond
T is only found for the lower augmentation levels. In particular for molecules we
observe, as illustrated in Table 8 for N2 and CH4, a monotonic decrease of the
second hyperpolarizability when the correlation treatment is improved in the series
X = T, Q, 5, etc. The results for X = T typically overestimate the correlation
contribution to ����0� by a few percent. Many correlated hyperpolarizability calcu-
lations in the literature were performed with basis sets of triple-� or similar quality
and basis set convergence was often only explored with respect to augmentation
with diffuse functions. From the above observations one may conclude that many
of these studies obtained too large results for ����0�.

4.2 Convergence with Correlation Treatment

Coupled cluster response calculations are usually based on the HF-SCF wave-
function of the unperturbed system as reference state, i.e. they correspond to
so-called orbital-unrelaxed derivatives. In the static limit this becomes equivalent
to finite field calculations where the perturbation is added to the Hamiltonian
after the HF-SCF step, while in the orbital-relaxed approach the perturbation is
included already in the HF-SCF calculation. For frequency-dependent properties the
orbital-relaxed approach leads to artificial poles in the correlated results whenever
one of the involved frequencies becomes equal to an HF-SCF excitation energy.
However, in the static limit both unrelaxed and relaxed coupled cluster calcula-
tions can be used and for both approaches the hierarchy CCS (HF-SCF), CC2,
CCSD, CC3, � � � converges in the limit of a complete cluster expansion to the Full
CI result.3 Thus, the question arises, whether for second hyperpolarizabilities one

3 Note that if a frozen core approximation is used a small difference will persist in the Full CI limit since
the unrelaxed series converges to a limit with the core orbitals constrained to be those of the unperturbed
system whereas in the relaxed series the relaxation contribution of the core orbitals is included. For
electric (hyper)polarizabilities this effect is usually negligible.
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Table 9. Convergence of ����0� with the wavefunction model. The basis sets are for Ne and Ar t-aug-cc-
pV5Z and for N2 and CH4 t-aug-cc-pVTZ for HF-SCF, CCS and CC2 and d-aug-cc-pVTZ for CCSD
and CCSD(T). Coupled cluster results with frozen–core approximationa with the exception of Ne and
Ar, where all–electron CCSD(T) and CC3 results are given. Where not stated otherwise, the results are
taken from [32]

Orbital–relaxed Orbital–unrelaxed

HF-SCF CCSD CCSD(T) CCS CC2 CCSD CC3

Ne 68.6 99.1 107.1 78.2 135.8 110.2 108.0b

Ar 961 1106 1159 1154 1247 1178 1172c

N2 710 854 911 825 992 895
CH4 1869 2176 2294 2228 2557 2364

a frozen core corresponding to 1s on C, N, Ne and 1sZsZ1 on Ar.
b [73].
c [125].

of the two approaches is superior, i.e., converges faster to the FCI limit. A theo-
retical analysis of the response functions [59] based on a Møller-Plesset like parti-
tioning of the Hamiltonian indicates that the unrelaxed hierarchy converges at least
initially slower. It is therefore sometimes assumed in the literature that the orbital-
relaxed hierarchy is more reliable [31, 126, 127], although numerical investigations
[34, 77, 102, 103] on small molecules do not support this supposition.

In order to compare the performance of the relaxed and unrelaxed hierarchies
for second hyperpolarizabilities, the static limit ����0� has been calculated for Ne,
Ar, N2, and CH4 using relaxed HF-SCF, CCSD and CCSD(T) and unrelaxed CCS,
CC2, CCSD and CC3 (see Table 9). The lowest levels, HF-SCF and CCS, give
results of similar accuracy, although the CCS values are somewhat higher and for
all these cases between the HF-SCF and the correlated results. This indicates that
the singles excitation manifold in the cluster expansion accounts implicitly for most
of the orbital relaxation effects. CC2 overestimates the correlation contributions to
response properties and does not improve systematically upon HF-SCF and CCS –
most likely a consequence of the fact that CC2 response functions are, as the HF-
SCF ones, only correct through first order in the electron-electron interaction. This
effect is less severe for (orbital-relaxed) MP2, which usually gives quite good results
for second hyperpolarizabilities [8, 11, 16, 123], but this method cannot be used
in the unrelaxed response approach needed for frequency-dependent properties. At
the CCSD level the unrelaxed results have errors which are by a factor 2 to 4
smaller than those obtained with orbital-relaxed CCSD, which, similar as HF-SCF,
systematically underestimates isotropic hyperpolarizabilities. This has also been
observed for other molecules and (isotropic) properties [34, 55, 59, 128–130] and
it seems to be a common trend. After including the effects of connected triple
excitations at the CCSD(T) or CC3 level, the differences between the relaxed and
unrelaxed approaches are small and, in the basis set limit, both provide results close
to experimental accuracies. Thus, there is no indication that the implicit treatment of
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orbital relaxation via the singles and higher cluster excitations impairs the accuracy
of coupled cluster response methods compared to the calculation of orbital-relaxed
derivatives.

4.3 Comparison with Experiment: Ne and N2

4.3.1 Neon

The ESHG hyperpolarizability of Ne has been the subject of several experimental
investigations and numerous ab initio calculations. The ‘ups’ and ‘downs’ of the
theoretical and experimental estimates for �Ne

0 have been described in detail in
reviews by Bishop [24], Shelton and Rice [16] as well as in recent work by Hättig
and Jørgensen [32] and Pawłowski, Jørgensen and Hättig [73]. After the latest ESHG
experiments by Shelton and Donley [23], measurements at four frequencies were
presumed to be accurate within ±0�4−0�8 a.u. A fit of the expression �ESHG

	 �
�=
�0�1+6A
2 +36B
4� to these four points with B constrained to 5.50 a.u. (a value
arbitrarily chosen between the results of a MP2 [12, 25] and a CASSCF [19]
calculation) led for �Ne

0 to an estimate of 108 ± 2�2 a.u. However, the dispersion
curve obtained by this fit does not overlap with the error bars of the two ESHG
measurements at 1319 and 1064 nm (see Fig. 1). As already pointed out by Shelton
and Donley [23], this indicated that one of these two points has a larger error than
conveyed by its statistical uncertainty. From the available data it was not possible
to determine which of the two points is inaccurate.

CC3/t-aug-cc-pV6Z

shifted CCSD

CCSD/t-aug-cc-pV5Z

Fit to Exp.

0.10.0090.0080.0070.0060.0050.0040.0030.0020.0010
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Figure 1. Electric field induced second harmonic generation in neon. Comparison of the CCSD and
CC3 results from [73] with the experimental data from [6, 23]. For “shifted CCSD” the dispersion
curve obtained with CCSD has been shifted to match best the experimental points for the two highest
frequencies
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A CCSD response calculation in a large basis set for the ESHG dispersion
curve [30] showed that the inaccurate point is the one at 1319 nm. A revised
extrapolation based on the CCSD dispersion curve led to a new static limit of
�Ne

0 = 106�4±2�2 a.u.
In [73] the non-relativistic CC3 basis set limit of �Ne

0 was determined to 107�0±
0�4 a.u. The corresponding CCSD(T) value is about 0.8 a.u. smaller. For the first-
order relativistic correction to �Ne

0 Klopper et al. [131] obtained at the CCSD(T)/q-
aug-cc-pCV6Z level a value of 0.59 a.u. The largest uncertainty in the calculations
is presently due to correlation effects beyond CC3, since FCI calculations are only
possible in small basis sets. The best available FCI result [125] for �Ne

0 , calculated
in a d-aug-cc-pVDZ basis, is −0�17 a.u. below the corresponding CC3 value. It
is not known how well this result reproduces the basis set limit of the higher-
order correlation contributions and we include therefore in our best estimate an
uncertainty of 0.6 a.u. Adding the relativistic and the FCI–CC3 correction to the
CC3 results leads to a best estimate for �Ne

0 of 107�4±1�0 a.u. in good agreement
with the value extrapolated from the experimental results (106�4 ±2�2 a.u.). For a
comparison with the frequency-dependent experimental results see Fig. 1.

4.3.2 Nitrogen

For this molecule, ESHG measurements are available for a much larger number
of frequencies. Thus, there is little doubt about the accuracy of the experimental
values and a dispersion curve could be fitted to the measured data (corrected
for rovibrational contributions) without referring to calculated dispersion coeffi-
cients [2, 3, 6].

For N2, there is a sizeable triples contribution to the lowest dipole allowed excita-
tion energy of about 0.07 eV or 0.7%. As a consequence of this (unrelaxed) CCSD
underestimates the absolute value of the isotropic hyperpolarizability and its disper-
sion. The electronic contribution to the static limit �N2

0 has been calculated at the
CCSD/t-aug-cc-pVTZ level [32] to be 903.0 a.u. However, as indicated above, the
triple-� level is often too low for the calculation of second hyperpolarizabilities
and the �N2

0 obtained at the CCSD/t-aug-cc-pVTZ level turned out to be about
40 a.u. above the CCSD basis-set limit result. The latter has been calculated to
be 863�3 ± 3�3 a.u. [35]. Before comparing this result to the value extrapolated
from experimental results, it has to be corrected for the ZPV contribution, which
has been obtained in [32] to 12.0 a.u., thereby yielding 875�3 ± 3�3 a.u. as the
best estimate for the electronic contribution to �N2

0 at the CCSD level. Shelton [6]
obtained an experimental value of �N2

0 , 917 ± 9 a.u., from the extrapolation of the
results in [2] corrected for the pure rotational and vibrational contributions. The
discrepancy between this experimental value and the CCSD best estimate is as large
as 42 a.u. and makes very clear the importance of the triples contribution.

After inclusion of connected triples at the CC3 level and accounting for the
zero-point vibrational contribution at this level and for remaining basis set effects,
a theoretical value of 912�9±4�3 a.u. is obtained as best estimate for the electronic
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Figure 2. Electric field induced second harmonic generation in nitrogen N2 (in a.u.). Comparison of the
CCSD [32] and CC3 [35] results with a previous MCSCF calculation [20] and the experimental data
from [2, 3, 6]

�
N2
0 [35]. The latter value is in excellent agreement with the value of 917 ± 9 a.u.

extrapolated from the ESHG experiments [6].
A comparison of the CCSD and CC3 results obtained in the d-aug-cc-pV6Z

basis with the experimental results is shown in Fig. 2. While the CCSD results
for �ESHG

	 �
� differ from the experimental results typically by 6–8%, the CC3
results are generally in perfect agreement with experiment. Only for the highest
frequencies the deviations become larger than the error bars of the measurements.
These deviations are attributed mainly to remaining correlation effects, which are
enhanced for the highest frequencies. The relativistic contribution to �ESHG

	 �
� of
N2 is small (about 1.0 a.u.) [35].

5. MIXED ELECTRIC AND MAGNETIC PROPERTIES:
BIREFRINGENCES AND DICHROISMS

In the previous section we discussed pure electric–dipole hyperpolarizabilities, in
particular second harmonic generation. Another important class of NLO processes
includes birefringences and dichroisms which can be rationalized (at least to lowest
orders in perturbation theory) in terms of response functions involving, besides the
electric–dipole, also magnetic–dipole and electric–quadrupole operators. Prominent
examples related to quadratic response functions are:
• magneto-optical activity (MOA). It comprises two effects, both originating from

a differential interaction of the right and left circularly polarized components
of linearly polarized light with matter due to the presence of a magnetic field
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parallel to the direction of propagation. The first is the magnetic optical rotation
(MOR, also known as Faraday effect) [21], i.e. an induced rotation of the plane of
polarization (or circular birefringence). The other is an induced circular dichroism
referred to as magnetic-circular dichroism (MCD) [21, 22, 132, 133].

• electric-field gradient (EFG) induced birefringence, also known as Buckingham
effect (BE). This birefringence is observed when linearly polarized light inter-
acts with matter in the presence of an electric-field gradient [134, 135]. The
relationship with MOA and in particular MOR will be discussed later.

Examples of NLO processes that involve also cubic response functions are:
• Cotton-Mouton effect (CME) [136, 137], the linear birefringence which arises in

a sample with a magnetic induction field perpendicular to the linearly polarized
light beam. The CME is the magnetic analogue of the Kerr effect (KE) [138, 139]
which describes the birefringence induced by an electric field. The optical axes in
CME are the same as in the magneto-electric birefringence (MEB), the latter being
observed in the presence of both an electric and a magnetic field perpendicular
to each other and to the direction of propagation. In experimental investigations,
the three birefringences usually superimpose, but their effects can be separated
via their different dependences on the field strengths, i.e., KE ∝ E2, CME ∝ B2,
and MEB ∝ EB.

• Jones birefringence (JB) [140–143]: this birefringence is observed when linearly
polarized light traverses a sample in the presence of both an electric and a
magnetic field perpendicular to the direction of propagation but (unlike in the
case of MEB) parallel to each other. The theoretical expression for JB is identical
to that for MEB, but it should be noted that the two effects correspond to different
experiments with the optical axes in the JB directed at ±45
 with respect to those
of the other three birefringences (KE, CME and MEB).

In the following, we will discuss how these effects can be investigated using
quantum chemical methods and present results from high-level ab initio calculations
that have been reported in the last few years.

An important issue for optical processes that involve a magnetic field as pertur-
bation is the possible gauge-dependence of the results when obtained by means
of approximate quantum chemical calculations. The dependence on the chosen
origin for the vector potential (usually termed in the quantum chemical community
the gauge-origin dependence) is unphysical and entirely due to the approxima-
tions imposed on the calculations (in particular, but not only, the use of finite
one-electron basis sets). In many cases, the gauge-origin dependence can success-
fully be dealt with by using explicitly magnetic-field dependent basis functions
such as the gauge-including atomic orbitals (GIAOs, also known as London
atomic orbitals (LAOs)) [104, 105, 144]. However, some complications arise in
the coupled-cluster treatment for frequency-dependent properties. Straightforward
solutions to the gauge-origin problem are here only possible if the corre-
sponding response functions can be written as derivatives of lower-order response
functions with respect to the applied magnetic field components (for a detailed
discussion, see [71]).
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5.1 Magneto-optical Activity

The key quantity for the Faraday effect [21, 145, 146] is the Verdet constant [147]
V�
� which for molecules in the gas phase is given by

(21) V�
�∝ i�������̂�� m̂�� �̂���0�


i.e., as the isotropic average over mixed electric- and magnetic-dipole quadratic
response function components. In Eq. (21), ���� denotes the Levi-Civita tensor and
�̂ and m̂ indicate the electric dipole and magnetic dipole operators, respectively.

MCD is quantitatively analyzed in terms of three magnetic rotatory strengths, the
so-called Faraday A, B, and C terms [21]. The B terms are particularly important for
detecting hidden transitions, even though they are in general small and difficult to
measure [148]. Therefore, theoretical determinations of MCD may play an important
role for a correct interpretation of experimental data. For a transition between the
states a and j, the B term is given as the residue of the quadratic response function
entering V�
� in Eq. (21), i.e.

(22) B�a→ j�∝ i����

[

lim

→
aj

�
−
aj����̂�� m̂�� �̂���0�


]

with �
aj as the corresponding transition energy.

5.1.1 Basis set convergence: MOA

Verdet constants have been investigated in [74] and [38] for a few centro-symmetric
molecules using coupled-cluster response-theory techniques. For atoms, corre-
sponding results can be found in [149].

The basis set convergence in the calculations of V�
� is illustrated by discussing
H2 for which the CCSD calculations yield FCI results [74]. As seen from Table 10
augmentation with diffuse functions is essential to obtain reliable results. With the
first augmentation level (aug-cc-pVXZ), convergence within 3 decimals is obtained
at the quadruple- and quintuple-� level. Double and triple augmentation on the other
hand barely affect the results with remaining changes in the order of less than 0.1%.
Comparison with the explicitly-correlated results from Bishop and Cybulski [150]
proves the ‘benchmark’ quality of the corresponding CCSD results. It is also worth
noting that the basis set convergence is more or less independent of the frequency.

For other molecules (nitrogen (N2), acetylene �C2H2�, and methane �CH4�), the
basis set studies from [74] indicate again the importance of diffuse functions.
However, compared to H2, it is found that the second augmentation is slightly more
important, while for a sufficiently large valence basis set the effects due to triple
augmentation are almost negligible.

5.1.2 Convergence with electron correlation treatment: MOA

The convergence with respect to the electron correlation treatment has been analyzed
in [74] for N2, C2H2, and CH4 using the CCS, CC2, CCSD hierarchy. Additional
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CC3 results have been reported in [38]; those calculations were motivated by the
rather large discrepancies to experiment seen at the CCSD level.

The most significant observation with respect to electron correlation is the surpris-
ingly large triples contribution for N2 and C2H2. While the CCS, CC2, and CCSD
calculations indicate smooth convergence with the usual reduction in the correla-
tion contributions at each consecutive level and, thus, predict that triple excitation
contributions should be rather small, the opposite is seen in the actual calculations
[38]. The effect due to triple excitations as obtained at the CC3 level was found
to increase the CCSD results by 4% and 16%. Apparently there seems to be no
guarantee that triple excitation effects are small when the CC2 model is a good
approximation to CCSD. On the other hand, triple excitation effects are found to
be rather small for CH4 (only 1.5% of the CCSD results) [38] consistent with the
prediction based on the corresponding CCSD-CC2 difference [74].

5.1.3 Comparison with experiment: MOA

Verdet constants for H2, N2, C2H2, and CH4 have been measured at various frequen-
cies (at 1 atm and 298 K) by Ingersoll and Liebenberg [151] in 1956 and are
considered to be accurate within 1%. The claimed accuracy has been confirmed in
the case of H2 – by the explicitly correlated results of Bishop and Cybulski [150]
and again by the FCI/d-aug-cc-pV5Z results of [74] (see Table 10).

For N2�C2H2, and CH4, Fig. 3 shows the deviation (in percent) from experiment
for the calculated Verdet constants. As already discussed, for both N2 and C2H2

triples corrections are substantial, as their inclusion brings the computational results
within 1% of the experimental values. However, in the case of N2 consideration of
vibrational effects (about 1.3%, obtained at the CCSD/t-aug-cc-pVTZ level using

Table 10. FCI Verdet constants (a.u. ×107) for H2 at four different frequenciesa

Basis Set 
 (au)

0.11391 0.08284 0.06509 0.05360

cc-pVQZ 0.22640 0.11607 0.07070 0.04761
aug-cc-pVQZ 0.45643 0.22998 0.13912 0.09335
d-aug-cc-pVQZ 0.45679 0.23002 0.13911 0.09334
t-aug-cc-pVQZ 0.45665 0.22995 0.13907 0.09331
cc-pV5Z 0.28236 0.14421 0.08773 0.05903
aug-cc-pV5Z 0.45597 0.22965 0.13887 0.09319
d-aug-cc-pV5Z 0.45562 0.22944 0.13876 0.09310

[150]b 0.45556 0.22946 0.13877 0.09312
[150]c 0.50527 0.25361 0.15316 0.10270
Exp. [151] 0.501 0.251 0.150 0.103

a From [74].
b Explicitly correlated results at equilibrium geometry.
c Rovibrationally and thermally averaged values.
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Figure 3. Deviation (in percent) from experiment [151] for the calculated Verdet constant V�
� of
N2�C2H2, and CH4. The calculations have been carried out in the aug-cc-pVQZ �N2� and d-aug-cc-
pVTZ (C2H2 and CH4) basis sets and at frequency 
= 0�11391 a.u. ZPV corrections for N2 amount to
about 1.3% and have been determined at the CCSD level (for details see text and [38])

a CCSD(T)/aug-cc-pVQZ potential curve [38]) slightly worsens the agreement
with experiment, although the result remains within three times the experimental
uncertainty (i.e., the 99.9% confidence interval of the experiment). Whereas the
agreement between experimental and calculated Verdet constants can be considered
satisfactorily for N2 and C2H2, the situation is quite different for CH4. The CC3
results for V�
� are still about 8–9% lower than the corresponding experimental
values (see Fig. 3) and, thus, are clearly outside three times the experimental
uncertainty. A possible reason for this discrepancy might be the large magnitude of
the ZPV effects, whose consideration has been proven important earlier for other
properties of methane [114, 152–154]. ZPV correction have been estimated for
CH4 by performing calculations (at the HF-SCF level) for both the equilibrium
bond distance �Re = 1�0858 Å� [155] and the vibrationally averaged bond distance
R0 = 1�09397 Å [156]. The values obtained for the latter geometry are, for all
considered frequencies, by about 2.8% larger than the corresponding equilibrium
results, thus indicating the importance of ZPV averaging in the case of CH4.

5.1.4 Gauge issues: MOA and MCD

Both the Verdet constant V�
� of MOR and the B term of MCD suffer from
gauge-origin dependence when computed for non-centrosymmetric molecules using
approximate quantum chemical models. The gauge-origin dependence can be dealt
with for these properties by using GIAOs/LAOs and recasting both quantities in the
form of derivatives of a property with respect to an external magnetic field [70, 71].
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The Verdet constant can be written as a total derivative of the frequency-dependent
dipole polarizability with respect to the strength of an external magnetic field:

(23) V�
�∝ 
�����
(
d����−
�
�

dB�

)

0

and the B term can be reformulated as the corresponding derivative of the one-
photon dipole transition strength Saj��:

(24) B�a→ j�∝ ����

(
d���a����j��j����a��

dB�

)

0

= �����
(
dS

aj
��

dB�

)

0

However, the equivalence of the response functions to the property derivatives is
in approximate methods not always strict, as, for example, CC response functions
as defined in Section 2 do not involve contributions due to orbital relaxation while
property derivatives usually do. The incorporation of orbital relaxation effects in the
property derivatives is mandatory when perturbation-dependent basis functions such
as GIAOs/LAOs are used. Applying the above reformulation to the expressions for
��−
�
� and Saj obtained from the CC response functions takes only relaxation
with respect to the (static) external magnetic field into account [70, 71]. The
frequency-dependent electric fields are treated in an unrelaxed manner, which avoids
spurious poles due to orbital relaxation (see Section 2.2).

Table 11. CCSD results for the total Verdet constant at 
= 0�11391 a.u. in the case of hydrogen
fluoride. Results labeled as “Unrelaxed” refer to the use of the unrelaxed (one-electron) magnetic
dipole moment operator together with the usual magnetic-field independent basis sets. Results
labeled “Relaxed” include additional contributions due to orbital relaxation in the presence of
the magnetic field. Results labeled “LAO” are those obtained when using GIAOs/LAOsa

Basis Gaugeb

origin
V�
�×108 a.u.

Unrelaxed Relaxed LAO

cc-pVDZ CM 1.3365 1.3313 1.2259
H 0.8713 0.8822 1.2259

aug-cc-pVDZ CM 2.6116 2.6070 3.0381
H 2.4365 2.4561 3.0381

aug-cc-pVTZ CM 2.7843 2.7805 3.0883
H 2.6473 2.6699 3.0883

d-aug-cc-pVDZ CM 3.2737 3.2697 3.3473
H 3.3233 3.2504 3.3473

d-aug-cc-pVTZ CM 3.2190 3.2153 3.2126
H 3.1936 3.2186 3.2126

a All results taken from [71].
b CM indicates the center of mass.
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Table 12. Effect of a gauge-origin shift on the B term for the five lowest dipole-allowed (singlet)
transitions from the ground state XA1 of formaldehyde �CH2O� obtained at the CCSD/aug-cc-pVTZ
level. The molecule is placed on the xz-plane with the C2 axis along z and the center of mass (CM) as
origin of the coordinate system. Direction of transition in parentheses and excitation energies in atomic
units (from [70])

Sym. exc.
energy

trans.
strength

Gauge origin at CM Gauge origin at z= 25 bohr

Unrelaxed LAO Unrelaxed LAO

B1 0.2659 0.0189 (x) −1�6844 −1�6819 −1�6325 −1�6819
B1 0.2987 0.0394 (x) −31�796 −34�190 −29�899 −34�190
A1 0.3019 0.0543 (z) 30�776 33�939 32�865 33�939
B2 0.3433 0.0006 (y) −0�4109 −0�3640 −0�6172 −0�3640
A1 0.3578 0.1360 (z) −10�730 −12�323 −3�3815 −12�323

The advantage of using GIAOs/LAOs is nicely demonstrated in the case of
hydrogen fluoride and formaldehyde �CH2O�. In Table 11, results for the Verdet
constants V�
� of HF are summarized. While those obtained without using
GIAOs/LAOs exhibit a distinct gauge-origin dependence (which however becomes
smaller for the larger basis sets) gauge-origin independence is preserved in the
GIAO/LAO calculations. In addition, it would appear that the use of GIAOs/LAOs
leads to a faster basis set convergence as well-known for the calculation of other
magnetic properties [157].

Table 12 collects first CCSD results for the various contributions to the B term due
to the five lowest dipole-allowed electronic transitions in formaldehyde. The lacking
gauge-origin independence is here illustrated via calculations for two different gauge
origins. Again, the use of GIAOs/LAOs resolves this problem and is thus generally
recommended.

5.2 Buckingham Effect

For closed-shell systems, the temperature dependence of the BE is given by [40,
134, 135, 158, 159]

(25) �n= A0 + A1

T

with �n= n	 −n⊥ as the corresponding anisotropy of the refractive index,

A0 ∝ b�
�= 1
15
�B�����−��������−

5


����J

′
�����(26)

A1 ∝ −������−��
(

A����+ 5


����G

′
���

)

(27)
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and

B�����−
�
�0�∝ ����̂�� �̂�� �̂���
�0(28)

�������−
�
�0�∝ ����̂�� �̂� �̂����0�
(29)

J ′
������−
�
�0�∝ ����̂�� m̂�� �̂���
�0(30)

����−
�
�∝ ����̂�� �̂���
(31)

A�����−
�
�∝ ����̂�� �̂����
(32)

G′
����−
�
�∝ ����̂�� m̂���
�(33)

In the equations above, � and � indicate the permanent dipole and (traceless)
quadrupole moments, respectively. In the case of non-dipolar molecules the bire-
fringence becomes

(34) �n∝ b�
�+ 2������

15kT
= b�
�+ F

T

and for spherical systems it reduces to [159, 160]

(35) �n∝ b�
��

The connection between BE and MOA are evident, as the response func-
tion in Eq. (30) also appears in the corresponding expression for the Verdet
constant V�
�, Eq. (21), though with a different frequency argument. The response
function in Eq. (30) plays also a central role in the BE, as for low frequencies
it constitutes the most important contribution to the temperature-independent term
b�
� and as it is solely responsible for the BE in the case of spherical systems.
A more detailed discussion concerning the relationship between V�
� and b�
� can
be found in [160] and [149].

5.2.1 Basis set convergence

The basis set convergence in the quantum chemical calculation of the temperature-
independent contribution to the BE has been investigated for several different
small molecules in [149, 161–164]. Due to the different operators involved in
the response functions required for the calculation of b�
�, it is difficult to put
forward theoretical arguments or simple rules concerning the basis set convergence.
Nevertheless, smooth convergence with extension of the basis set is observed in
all cases investigated so far. To some extent this is probably due to some error
cancellation as the involved quadrupole hyperpolarizabilities are usually known to
be quite demanding with respect to the size of basis sets.

Overall, it seems that – similar to the calculation of hyperpolarizabilities –
(doubly) augmented basis sets of at least triple-� or better quadruple-� quality
are required to obtain reasonable results, as the use of non-augmented basis sets
might even lead to qualitatively wrong results, i.e., a wrong sign of b�
�. For N2
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monotonic convergence is observed for both the singly augmented and the doubly
augmented series and the two series approach the basis set limit from different
sides [161]. The good convergence achieved in such calculations is, for example,
seen by the fact that for X = Q the remaining differences are with 0.2% rather
small. Similar trends are also seen for the other molecules [161, 162], although the
convergence pattern is for Cl2 somewhat less regular [163].

5.2.2 Convergence with correlation treatment

The temperature-independent contribution b�
� as well as the other BE related
terms have so far mostly been computed either at HF-SCF and/or CCSD levels.
For Ne and Ar CCS and CC2 results have also been reported [149]. CO is the only
case for which CC3 results are available [165]. Overall, it is seen that correlation
effects are not negligible and in some cases even larger than the remaining basis
set effects. For example, they amount (based on CCSD results) to about 0.5% for
N2, 15% for acetylene, and 11% for methane [161]. In the case of CO inclusion of
triple excitation effects (at the CC3 level) lead to a substantial decrease (about 8 to
10%) in b�
� in comparison to the CCSD results. Their inclusion thus seems to be
essential when aiming at a rigorous comparison with experiment.

5.2.3 Comparison with experiment: Quadrupolar molecules

The experimental importance of the BE is due to the fact that it allows the experi-
mental determination of molecular electric quadrupole moments �. The procedure
is based on Eq. (34) and was first proposed by Buckingham [134] in the late fifties.
With the assumption that the molecular polarizability is known, � can be extracted
from measurements of �n. In order to separate the A0 from the A1 contribution, it
is necessary to perform BE measurements over an appropriately large temperature
range.

Nevertheless, in several cases measurements were carried out only at a single
temperature and the contribution due to A0 was assumed to be much smaller than
F/T and consequently neglected. Quadrupole moments obtained in this way are
referred to as “apparent” quadrupole moments and are not necessarily identical to
the actual quadrupole moment of the molecule.

In other cases [166, 167] literature values for (supposedly) b�
� taken from
quantum chemical calculations were used to separate the A0 and A1 contributions.
While this is in principle preferred over the first approach, the use of computa-
tional data leads to questions concerning their reliability, as low-level data might
easily deteriorate the accuracy of the quadrupole moments obtained in this way.
In addition, there has been some confusion in the earlier literature concerning the
hyperpolarizability correction term b�
�. In the original papers by Buckingham and
coworkers [134, 168] this term was called B and was referred to as a quadrupole
hyperpolarizability. This was apparently misunderstood and led to the incorrect
use of the averaged static dipole-dipole-quadrupole hyperpolarizability 2

15B���� as
correction term instead of b�
� in the determination of the quadrupole moment
[166, 167].
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The most striking example of the consequences of these different assumptions
and choices is the N2 case. In 1998 Graham and co-workers [167] published an
experimental result for the quadrupole moment of N2 based on a single temperature
measurement of the birefringence. The measured apparent quadrupole moment
(obtained by neglecting the A0 term) was found to be �−5�25±0�08�×10−40 Cm2.
After revision with an incorrect A0 value taken from the literature, the quadrupole
moment of N2 was determined to �−4�65±0�08�×10−40 Cm2, i.e., noticeably lower
than previous experimental and theoretical estimates.

Using our CCSD results [161] for b�
�, we redetermined the experimental
moment from the birefringence measurement of Graham and coworkers to �−5�01±
0�08�× 10−40 Cm2 – now in excellent agreement with the best currently available
theoretical results (�−4�93±0�03�×10−40 Cm2 [169], see Table 13).

Table 13. Theoretical estimates and experimental values for the quadrupole moment �, the orientational
term F/T , and temperature independent correction b�
� (all quantities in atomic units and for T =
273�15 K) for N2, C2H2, Cl2, CO2, and CS2

� F/T b�
�

Theory Exp. Theory Theory Exp.

N2 −1�098±0�007a −1�11±0�04b −785�1c −36�13c −76�62±23�57b

−1�12±0�02d

C2H2 4�79±0�03e 4�66±0�19f 9257c −193�3c

Cl2 2�327±0�010g 2�31/2�36±0�04h −6479�9i −213�6i

CO2 −3�185±0�020j −3�187±0�13k −7536�7l −54�46l −159±77k

−3�18±0�14m −118±178n

CS2 2�338o 2�56±0�11k 25500p −410p −1179±766k

a [169]. CCSD(T) basis set limit including ZPV corrections, estimates of correlation beyond CCSD(T),
and relativistic effects.

b [170].
c [161]. CCSD/d-aug-cc-pVQZ/frozen-core equilibrium results.
d the apparent moment �eff = −1�170 in [167] after revision with b from [161].
e [171]. ZPV corrected CCSD(T) basis set limit including estimates for correlation beyond CCSD(T)

and relativistic effects.
f the apparent moment �eff = −4�55±0�22 in [173] after revision with b from [161].
g [163]. ZPV corrected CCSD(T) basis set limit including estimates for correlation beyond CCSD(T)

and relativistic contributions.
h [163]. Revision of the apparent quadrupole moment (2�23±0�04) in [167] with the calculated b�
�.
i [163]. ZPV corrected CCSD/d-aug-cc-pVQZ result including relativistic and pure vibrational
corrections.

j [162]. ZPV corrected CCSD(T) basis set limit including estimates for correlation beyond CCSD(T)
and relativistic effects.

k [172].
l [162]. CCSD/d-aug-cc-pVQZ/frozen-core equilibrium results.

m [167].
n [174].
o [162]. CCSD(T)/d-aug-cc-pVQZ/frozen-core equilibrium value.
p [162]. CCSD/aug-cc-pVQZ/frozen-core equilibrium value.
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More recently, Ritchie, Watson and Keir [170] carried out new experiments
on the BE of N2 for a variety of different temperatures, thus enabling a proper
separation of the temperature-independent contribution from the orientational term.
These authors also performed new measurements for the polarizability anisotropy.
Combining all their experimental data, they were able to extract a new experimental
value of �−4�97±0�16�×10−40 Cm2 for the quadrupole moment of N2. The good
agreement with the previous (with the CCSD result) revised experimental value as
well as the corresponding theoretical results (see Table 13) clearly eliminates any
remaining doubts concerning the experimental quadrupole moment of N2.

Revisions of the apparent quadrupole moments of quadrupolar systems based on
ab initio results for b�
� were undertaken in the last few years for Cl2 [163] and
C2H2 [161, 171] (see Table 13). Direct comparison of the hyperpolarizability terms
b�
� calculated ab initio and derived from measurements at various temperatures,
such as in the case of CO2, CS2 [172] and the most recent results for N2 [170] turns
out to be difficult in all cases due to the very large error bars associated with the
experimentally derived results (see Table 13).

5.2.4 Comparison with experiment: Atoms and spherical systems

From a theoretical point of view, rare gas atoms are ideal test systems. This
is also the case for the BE, as for these systems the BE is entirely due to the
hyperpolarizability term b�
�. Table 14 collects our “best theoretical results” for
the hyperpolarizability term b�
� of all atomic and spherical systems investigated
so far together with the available experimental data in the literature.

From the data in Table 14, it is possible to derive estimates for the anisotropy �n
under some hypothetical standard experimental conditions for pressure, temperature,
path length and electric field gradient, see [40, 70, 159]. For both helium and
neon, it appears that the BE is too small to be detected with current experimental
devices (for a discussion, see [175]). For krypton, CH4, and SF6 theory predicts
birefringences of approximatively the same size and about twice as large as for
argon. Experimentally, it has so far not been possible to detect the BE for argon
and SF6 [176]. For CH4 theory and experiment agree on the sign of the effect, but
the theoretical value is much smaller, although still within three standard deviations
of the experiment. Clearly the computational results need to be improved and (as
already discussed for the Verdet constant of methane) ZPV effects need to be
considered before a final judgment of the experimental value seems appropriate.
To our knowledge, no experimental data is available for krypton.

5.2.5 Comparison with experiment: Dipolar species

Experimental measurements of the BE can also be used to determine quadrupole
moments for dipolar systems. The values obtained in this way refer to an origin
which is denoted as the effective quadrupole center (EQC) [135]. The EQC is
defined as the point at which the combination of dipole-quadrupole and dipole-
magnetic dipole polarizabilities multiplied with the dipole moment given in Eq. (27)
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Table 14. Best theoretical estimates and experimental values of the
hyperpolarizability contribution b�
� at 632.8 nm (in atomic units)

System Theory Experiment

Helium −3�15a

Neon −5�89b

Argon −58�0c 0±109d

Krypton −117�90e

CH4 −97�3f −262±66d

SF6 −95g 0±109d

a [149]. FCI/d-aug-cc-pV6Z results.
b [149].
c [149]. CCSD/d-aug-cc-pV5Z results.
d [176].
e [40]. CCSD/d-aug-cc-pV5Z results.
f [161]. CCSD/d-aug-cc-pVQZ results.
g [149]. CCSD/d-aug-cc-pVDZ results.

vanishes so that an expression for the BE similar to the one for quadrupolar
molecules, Eq. (34), is recovered.

The position of the effective quadrupole center, Rz, cannot be determined from
the BE experiment and has to be identified by means of calculations. This is
usually done by determining the origin shift which is necessary to make the dipolar
contribution in the A1 term to zero.

Two semiclassical theories existed in the literature for the BE of dipolar species,
one due to Buckingham and coworkers (BLH) [134, 135, 160], and one due to
Imrie and Raab (IR) [158]. In [159, 162–165], it was shown by means of quantum
chemical calculations that these two theories led to different numerical results for
the induced anisotropy in a variety of cases. The differences could not be ascribed to
deficiencies in the computational approach, as they persisted even for two-electron
systems (such as helium and H2 [159]), for which practically “exact” results are
available.

The most striking disagreement was observed for the EQC and the resulting
quadrupole moment of CO [164, 165]. In our first study [164] CCSD(T) calculations
for the quadrupole moment at the center of mass and CCSD calculations for the
EQC were used to determine the quadrupole moment with respect to the EQC within
both theories. Our results slightly favored the BLH theory, but the computations
were not of sufficient accuracy to decide unambiguously which of the two theories
could be correct.

In [165], a second analysis was carried out focusing on the remaining deficiencies
in the used computational approach. The main aspect was that the EQCs were now
determined using the CC3 approach with an inclusion of triple excitations. The
obtained results for the EQC are summarized in Table 15.

The CC3 data clearly favored the BLH theory, but did not supply any explanation
for the discrepancy between the two theories. Triggered by these results, a revision
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Table 15. Computed and experimentally derived effective quadrupole centers
(EQC, Rz, in bohr) with respect to the center of mass for CO at 632.8 nm. The
molecule is oriented along the z axis with positive direction pointing from C
to O, so that the dipole moment is positive. CCSD/d-aug-cc-pVQZ results are
from [164]. CC3/d-aug-cc-pVQZ results are from [165]. The computed shifts are
ro-vibrationally corrected

Property BLH IR

RCCSD
z 4�52±0�5 2�50±0�5
RCC3
z 5�96±0�5 3�06±0�5

R
exp,appa

z 7�7±0�5

R
exp,CCSDb

z 6�25±0�51 5�78±0�51

R
exp,CC3c

z 6�16±0�51 5�69±0�51

a “Apparent” experimentally derived shift obtained from ��Rz� = ��CM� − 2Rz�
combining the experimental values for the dipole moment �, the apparent
quadrupole moment �eff from Buckingham birefringence and the quadrupole
moment at the center of mass �CM from molecular beam electric resonance.

b The experimentally derived value where �eff from Buckingham birefringence
has been corrected for b�
� computed at the CCSD level. See [164, 165] for
details.

c The experimentally derived value where �eff from Buckingham birefringence
has been corrected for b�
� computed at the CC3 level. See [164, 165] for
details.

of both theories has been recently undertaken and an error in the IR approach was
identified and corrected (for details, see [177, 178]).

5.3 Cotton–Mouton Effect

The general expression of CME [136, 137] has for diamagnetic fluids the form of
Eq. (25), where now A0 and A1 involve the following properties [179, 180]

A0 ∝ ���
�= 1
5

(

������− 1
3
������

)

(36)

A1 ∝
(

������− 1
3
������

)

(37)

��� is the magnetizability and ����� the hypermagnetizability tensor

����� = �dia�����−
�
�0�+�para�����−
�
�0�0�(38)

�
para
�����−
�
�0�0�∝ ����̂�� �̂�� m̂�� m̂��
�0�0(39)

�dia�����−
�
�0�∝ ����̂�� �̂�� �̂dia� ��
�0(40)
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where �̂dia is the diamagnetic susceptibility operator, and the other quantities were
already defined above. As for BE above, the inverse-temperature contribution dies
out for spherical systems, where thus the anisotropy is entirely given by the higher
order contribution A0

(41) �n∝ ���
�

5.3.1 Convergence with the basis set

Table 16 shows the results of a basis set study from [39] for the anisotropy of
the hypermagnetizability �� and the all–parallel component �zz�zz at the CC3
level for Ne and Ar. As it can be inferred from the table, the convergence of
� with the increase in the cardinal number X and the augmentation level n of
the n-aug-cc-pVXZ series is mostly monotonic and smooth, especially for neon.
Similar to the purely electric second hyperpolarizability �	, the results converge
very slowly with the singly-augmented basis sets and triply augmentation is needed
for atoms to obtain good convergence with the cardinal number. As for �	, at least
triple-� basis sets are required to obtain a qualitatively correct description. With
the t-aug-cc-pVQZ and t-aug-cc-pV5Z basis sets the results are expected to be
converged is within a few percent, both for the individual components and for the
anisotropy. When core–valence basis sets are employed in all–electron calculations
the differences are for Ne in the order of 0.03 a.u. or ≈1 % for X = T, dropping
to ≈0�01 a.u. or ≈0�3 % for X = Q. For argon the effect of the core functions is
somewhat larger, in particular for the anisotropy ��.

Table 16. Cotton–Mouton effect in neon and argon. CC3 response results
for the static limit (from [39], all–electron calculations, results in a.u.)

Basis Set Neon Argon

�zz�zz �� �zz�zz ��

aug-cc-pVDZ −1�61 0.50 −16�8 5.2
aug-cc-pVTZ −2�13 0.96 −20�8 11.7
aug-cc-pVQZ −2�60 1.47 −24�0 17.3
aug-cc-pV5Z −2�87 2.04 −21�7 19.9

d-aug-cc-pVDZ −3�67 1.60 −32�3 13.6
d-aug-cc-pVTZ −3�38 2.21 −24�1 22.6
d-aug-cc-pVQZ −3�15 2.54 −22�7 23.5
d-aug-cc-pV5Z −2�96 2.86 −21�7 24.6

t-aug-cc-pVDZ −3�92 1.72 −32�1 13.5
t-aug-cc-pVTZ −3�07 2.83 −22�3 25.5
t-aug-cc-pVQZ −2�94 2.87 −21�6 25.1
t-aug-cc-pV5Z −2�93 2.91

t-aug-cc-pCVTZ −3�05 2.82 −22�1 25.1
t-aug-cc-pCVQZ −2�94 2.87 −21�5 24.8
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5.3.2 Convergence with electron correlation treatment

The need for an accurate account of electron correlation for the high-order properties
involved in CME, JB and MEB is particularly evident in systems of spherical
symmetry, where these properties provide the whole contribution to the observable.

Table 17 summarizes the results of a benchmark study for the convergence of
�� for neon with the correlation treatment in a series of CC methods from [39].
Whereas CCSD yields results still ca. 3% too low (orbital-relaxed) or 1.4% too high
(orbital-unrelaxed), the CCSDT results differs from the FCI limit by only 0.002
a.u. or ≈0�1%. Thus CCSDT provides for the Cotton–Mouton effect of Ne results
which are converged within approximately 0.1%.

Figure 4 shows the convergence behavior of the (static) hypermagnetizability
anisotropy���0� of neon and argon up to CCSDT in the fairly large basis sets d-aug-
cc-pV5Z (Ne) and d-aug-cc-pVQZ (Ar). The orbital-relaxed results were obtained
for HF-SCF, MP2, CCSD, CCSD(T), CC3 and CCSDT by numerical differentiation

Table 17. Convergence of the anisotropy of the static hypermagnetizability ���0� of neon
with the correlation treatment (from [39]; finite field orbital–relaxed results (unless specified)
for d-aug-cc-pVDZ, frozen core approximation for 1s shell, numbers in atomic units.)

CCSD CCSD (unrel.) CCSDT CCSDTQ CCSDTQP FCI

1.546 1.614 1.594 1.593 1.593 1.592
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Figure 4. Static hypermagnetizability anisotropy, ���0�, computed with the d-aug-cc-pV5Z basis set
(Neon) and d-aug-cc-pVQZ basis set (Argon). Orbital-relaxed results obtained with a finite field approach
from analytically evaluated magnetizabilities are compared to those obtained from orbital-unrelaxed
quadratic and cubic response functions
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of analytically computed magnetizabilities. A second series of orbital-unrelaxed
results was obtained via analytic quadratic and cubic response functions for the
CCS, CC2, CCSD and CC3 wavefunction models. Figure 4 illustrates how the two
series converge to a common limit as the level of electron correlation is increased.
For instance for neon, the CCSD results obtained in the two approaches differ by
almost 10%, while at the CC3 level the difference is five times smaller. These
percentages are sensibly smaller for argon. It is expected that at the CCSDT level
the orbital-relaxed and unrelaxed approaches give essentially the same results. In the
orbital-relaxed hierarchy the contribution of connected triples (CCSDT vs. CCSD)
increases the anisotropy by ≈3–5%. In the unrelaxed hierarchy the triples effect
seems to be somewhat smaller. The latter hierarchy was used to calculate the CME
at the experimental wavelength.

5.3.3 Comparison with experiment

Table 18, taken from [39] (see also [40]), shows a comparison between theory
and experiment for the CME of neon and argon gas. For the best non-relativistic
theoretical results the absolute uncertainties can be placed around 0.1 a.u. for Ne
and (probably) around 1 a.u. for Ar, i.e. in the order of 2–3%. They substantiate
the claim that, at least in this case, the computational results should be considered
the reference nowadays. For instance the hypermagnetizability of argon is of a
magnitude that allows a relatively easy measurement and can be computed with
an accuracy more than one order of magnitude better than presently afforded by
experiment. Thus, currently it appears advantageous to use the computed value
for argon as a standard for calibration of the optical apparata employed for CME
measurements.

Table 18. Comparison of experimental and computational results for the
hypermagnetizability anisotropy ���
� of neon and argon. Results in a.u.

� Theory Experiment

Neon � 2.89(10)a�b

790 nm 3�2±1�2c

514.5 nm 1�4±0�1d

Argon � 24.7(10)a�b

790 nm 27±5c

514.5 nm 30�0±4�5e

a The number in parenthesis indicates the estimated absolute error on the
last digit.

b [39]. Static value estimated at CCSDT level; frequency dependence esti-
mated using CC3 analytic response (and found to be negligible).

c [181], pressure of 1�52 × 105 Pa, temperatures in the range 285–293 K.
The value is estimated for an average of 289 K.

d [182], temperature of 298.15 K and extrapolated at a pressure of 1 atm.
e [183].
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5.4 Jones and Magnetoelectric Birefringence

As for BE and CME, also for JB and MEB the birefringence can be expressed with
a general relationship such as Eq. (25). In this case it is [141, 143, 184]:

A0 ∝ 3G�����+3G������−2G������(42)

− 


2
����

(
a′
������ +a′

������

)

A1 ∝ ��
(
3G����+3G����−2G����

)
(43)

− 


2
����

(
��a

′
����+�a′

�����

)

and now

a′
������	�−
�
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�0�0(44)

G������
�=G
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������
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������
�(45)

G
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������−
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�
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������−
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�����−
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�����−
�
�∝ ����̂�� �̂dia�� ��
(51)

where q̂ is the traced quadrupole moment operator.

5.4.1 Convergence with the basis set

The basis set convergence of the response functions that enter the expressions for
JB and MEB are illustrated in Figs. 5 and 6 with CC3 results for Ne and Ar
from [185]. As demonstrated before in [184], the non- and singly-augmented basis
sets (cc-pVXZ and aug-cc-pVXZ) are inadequate for mixed electric and magnetic
field birefringences. An acceptable rate of convergence requires at least doubly-
augmented basis sets, but for the atoms Ne and Ar the third set of diffuse functions
in the t-aug-cc-pVXZ series still improves the convergence. As for other third- and
fourth-order magneto-electric properties double-� basis sets give rise to rather large
errors, while beyond the DZ level the changes with the cardinal number are smooth.
With respect to convergence with the one-electron basis set the most demanding
contributions to �
 =Gjjii+ 


2 a
′
jkiii – and thus to the observable �n – are Gdia and

a′, i.e. the quadratic response functions which involve both the electric dipole and
quadrupole operators. Similar as for �	 and �, at least t-aug-cc-pVTZ basis sets
appear to be needed for atoms to guarantee a good level of confidence that basis
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Figure 5. Contributions to the Jones and magneto-electric birefringences of neon. CC3 all–electron
response results in atomic units
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set convergence is approached for these contributions. With these basis sets the
results seem to be converged within a few percent. (For further information on the
basis set convergence for JB and MEB for other atoms and molecules the reader is
refereed to [184].)

5.4.2 Convergence with electron correlation treatment

Figure 7 illustrates the convergence of the response properties involved in JB and
MEB with the improvement of the electron correlation treatment in the hierarchy
HF-SCF, CCS, CC2, CCSD, CC3. The results are those obtained for neon and
argon, using the d-aug-cc-pV5Z and d-aug-cc-pVQZ basis sets, respectively, in all
electron calculations within an orbital-unrelaxed approach. Again, the convergence
is somewhat slower for neon than for argon, with HF-SCF and CCS on one side
and CC2 on the other side of CCSD and CC3. After some initial oscillations, all
properties seem to be quite well converged at the CCSD level, with CC3 yielding
only small corrections. The triples effect on the observable, measured by comparing
CCSD and CC3 results, are for Ne and Ar in the order of 1%. In [185] it is shown
that these percentages increase to ≈2–3% for nitrogen and even higher (ca. 6%) for
CO and can in some cases be notably higher for the individual response properties
than for the total observable.

5.4.3 Comparison with experiment

Measurements of JB and MEB are a very recent occurrence, and they have
been limited so far to systems in the condensed phase [186–188], where measur-
able birefringences can be observed in optical paths of the order of centimeters.
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Figure 7. JB and MEB of neon and argon. Analytical response result, all electron, unrelaxed orbitals
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Table 19. Comparison of estimated JB and MEB with the values computed for CME.  is the retardance
� = 2!l�n/��, i.e. the property which is actually measured. �= 632�8 nm, path length l= 1 m, pressure
P = 1 bar, temperature T = 273�15 K, electric field strength E = 2�6 × 106 V m−1, magnetic induction
field B = 3 T. The acronym nXZ is a shorthand notation for the correlation consistent n-aug-cc-pVXZ
basis set. “Wf” is the wave function model employed. From [40]

Jones CME

�n/10−15 Basis/Wf  /nrad �n/10−12 Basis/Wf  /nrad

Ne −0�035 t5Z/CC3 −0�35 0.00581 t5Z/CCSDT 5�8×101

Ar −0�30 t5Z/CC3 −3�0 0.0497 d5Z/CC3 4�9×102

N2 −0�75 dQZ/CCSD −7�4 −2�84 tTZ/B3LYP −2�8×104

C2H2 −3�0 aQZ/CCSD −30 −1�50 aTZ/MCSCF −1�5×104

CO −1�2 dQZ/CCSD −12 −1�80 tTZ/B3LYP −1�8×104

Computational analysis has been limited, on the other hand to the gas phase
[40, 184, 185, 189, 190]. However, optical apparata designed for measurements
in the gas phase of other birefringences, as the Kerr and Cotton-Mouton effects,
may in principle be adapted to measure JB and MEB. It is thus probably useful
to provide reliable predictions of the magnitude of the effect. Table 19 shows a
comparison from [40] of predicted birefringences and corresponding retardances
for the two birefringences discussed in this section, i.e. CME and JB (or MEB).

For these systems Jones and magneto-electric birefringences yield retardances
which are under the usual experimental conditions about two orders of magnitude
weaker than those observed for CME. For the rare gases the predicted retar-
dances for the JB and MEB are comparable to those of BE. The current detection
limit for retardances of ≈2 nrad [175] makes their observation in these systems
rather challenging, but they should be measurable for N2, CO and even better
for C2H2.

6. CONCLUSIONS AND OUTLOOK

The calculation of NLO properties with high accuracy is a very challenging task
requiring consideration of many different issues, including the electronic, vibra-
tional, and condensed phase contributions. In this review we have described the
application of CC response methods for the calculation of the electronic contri-
butions to first and second hyperpolarizabilities as well as some magneto-optical
NLO properties. As a result of many years work on implementing CC response
theory [46, 47, 58–63, 65–71, 191–203] we can nowadays employ CC methods for
detailed and accurate studies of many different molecular properties. A cornerstone
has been the CC3 wavefunction model. The development of efficient implementa-
tions for these methods has required a significant effort. Yet, actual applications are
today still limited to small systems. The pay-back is, however, that high accuracy
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can indeed be obtained with CC3. Since electron correlation is typically of extreme
importance for NLO properties the CC3 model stands central for such calculations.
With the accuracy obtained at this level the interpretation of experiments can be
discussed with confidence.

Looking into the future for the calculation of NLO properties for small molecules
some challenges remain. A basic problem is that the standard CC wavefunction
models including CCSD and CC3 are single-reference methods. While for multi-
reference cases MCSCF response theory can be applied, for more than a few
electrons it will still be very difficult to achieve an accuracy comparable to that
obtained in CC calculations on closed–shell single-reference molecules. A more
practical restriction in the present implementations of CC3 response theory is that it
does not include open–shell molecules even when they can be described by single
reference theory. However, very recently an open–shell CC3 implementation (using
one additional approximation) was presented for response calculations of excitation
energy [204].

The example of neon, where relativistic contributions account for as much as
≈0�5% of �	, shows that relativistic effects can turn out to be larger for high-order
NLO properties and need to be included if aiming at high accuracy. Some efforts
to implement linear and nonlinear response functions for two- and four-component
methods and to account for relativity in response calculations using relativistic direct
perturbation theory or the Douglas-Kroll-Hess Hamiltonian have started recently
[131, 205, 206]. But presently, only few numerical investigations are available and
it is unclear when it will become important to include relativistic effects for the
frequency dispersion.

An important issue for magneto-optical properties is gauge origin independence.
GIAOs/LAOs are a widely applied approach to ensure gauge origin independence in
ab initio calculation of properties that involve static magnetic fields. For frequency-
dependent magnetic fields it is a still unsolved problem how gauge origin inde-
pendence can be ensured in approximate calculations. GIAOs include the magnetic
field already at the level of basis functions and thus necessarily in the uncorrelated
reference function. This is incompatible with the requirement that the frequency-
dependence of the wavefunction should solely be determined through a single–step
method to ensure a correct pole structure.

Another important question in electronic structure calculations for NLO properties
is what method to use for larger molecules. While DFT can be used for rather
large systems it fails to have the accuracy and systematic behavior of CC theory.
In particular problems have been reported for calculations of NLO properties [52,
53, 207, 208]. On the other hand it is unlikely that accurate CC methods including
triple excitations like CC3 will become applicable to large systems within the next
few years. In recent years the so-called local coupled cluster approach extended
successfully the applicability of CC methods for ground state energies to larger
molecules. However, the local coupled cluster ansatz faces in its present formulation
severe problems when applied in the framework of response theory to excitation
energies and to frequency-dependent properties if orbital relaxation has to be treated
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implicitly through the cluster operator [209, 210]. A complementary approach
to reduce the computational costs involves inner projection methods for electron
repulsion integrals, as Cholesky decomposition and the resolution-of-the-identity
approximation. These have recently been successfully applied for excitation energies
and linear response properties at the CC2 level [202, 211]. The operation count for
some computational steps can be reduced with inner projection methods by orders
of magnitude, but only in special cases the scaling of the costs with system size �
is reduced.

Going beyond the narrow framework of electronic structure theory other major
challenges become apparent. The rovibrational contributions to NLO properties
are known to be significant. This includes both the vibrational averaging as well
as pure (ro)vibrational contributions. The development of general, accurate and
efficient methods for the calculation of vibrational contributions is an important
area for future research. It requires input from electronic structure calculations and
the theoretical interface between electronic and vibrational structure theory is an
important issue in this research. For a more detailed discussion we refer to a later
Chapter of this book.

Proceeding from the gas to the condensed phase many new issues appear. For
NLO properties several additional complications arise when an environment inter-
acts with the system under investigation and external fields need to be considered.
Already for the gas phase the proper definition of local field factors and the pres-
sure dependence of (magneto-) optical properties is a difficult issue. In condensed
phase, an important question is the proper definition of solute properties and the
solvent effect for the electronic property itself. We refer the reader to a comprehen-
sive discussion of solvent effects on NLO properties in a later Chapter. Some of
the schemes for modeling solvent effects have been employed in connection with
calculation of electronic NLO properties, also recently at the CC level [212, 213].
This is still an area where much progress is expected in the coming years.
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[26] Jaszuński, M., Jørgensen, P., Rizzo, A.: Theor. Chim. Acta. 90, 291 (1995)
[27] Bartlett, R.J., Sekino, H.: In: Karna, S.P., Yeates, A.T. (eds.) Non Linear Optical Materials: Theory

and Modeling, American Chemical Society Symposium Series. Vol. 628 American Chemical
Society, Washington (1996)

[28] Papadopoulos, M.G., Waite, J., Buckingham, A.D.: J. Chem. Phys. 102, 371 (1995)
[29] Shelton, D.P., Palubinskas, J.J.: J. Chem. Phys. 104, 2482 (1996)
[30] Hättig, C., Jørgensen, P.: Chem. Phys. Lett. 283, 109 (1998)
[31] Rozyczko, P., Bartlett, R.J.: J. Chem. Phys. 107, 10823 (1997)
[32] Hättig, C., Jørgensen, P.: J. Chem. Phys. 109, 2762 (1998)
[33] Franke, R., Müller, H., Noga, J.: J. Chem. Phys. 114, 7746 (2001)
[34] Larsen, H., Olsen, J., Hättig, C., Jørgensen, P., Christiansen, O., Gauss, J.: J. Chem. Phys. 111,

1917 (1999)
[35] Pawłowski, F., Jørgensen, P., Hättig, C.: Chem. Phys. Lett. 413, 272 (2005)
[36] Christiansen, O., Gauss, J., Stanton, J.F.: Chem. Phys. Lett. 305, 147 (1999)
[37] Rizzo, A., Coriani, S., Fernández, B., Christiansen, O.: Phys. Chem. Chem. Phys. 4, 2884 (2002)
[38] Coriani, S., Jørgensen, P., Christiansen, O., Gauss, J.: Chem. Phys. Lett. 330, 463 (2000)
[39] Rizzo, A., Kállay, M., Gauss, J., Pawłowski, F., Jørgensen, P., Hättig, C.: J. Chem. Phys. 121,

9461 (2004)
[40] Rizzo, A., Coriani, S.: Birefringences: a challenge for both theory and experiment. Adv. Quantum

Chem 50, 143 (2005)
[41] Oddershede, J.: Propagators Methods, in Ab initio Methods in Quantum Chemistry, Part II,

K.P. Lawley (ed.), Adv. Chem. Phys., vol. 69 pp. 201–239. Wiley, New York (1987)
[42] Olsen, J., Jørgensen, P.: Time-Dependent Response Theory with Applications to Self-Consistent

Field and Multiconfigurational Self-Consistent Field Wave Functions, in Modern Electronic Structure
Theory, Yarkony, D.R., (ed.) vol. 2, chapter 13, pp. 857–990. World Scientific, Singapore (1995)

[43] Sasagane, K., Aiga, F., Itoh, R.: J. Chem. Phys. 99, 3738 (1993)
[44] Christiansen, O., Jørgensen, P., Hättig, C.: Int. J. Quantum Chem. 68, 1 (1998)
[45] Langhoff, P.W., Epstein, S.T., Karplus, M.: Rev. Mod. Phys. 44, 602 (1972)
[46] Koch, H., Jørgensen, P.: J. Chem. Phys. 93, 3333 (1990)



Accurate NLO Properties for Small Molecules 95

[47] Stanton, J.F., Bartlett, R.J.: J. Chem. Phys. 98, 7029 (1993)
[48] Hättig, C., Heß, B.A.: Chem. Phys. Lett. 233, 359 (1995)
[49] Yeager, D.L., Jørgensen, P.: Chem. Phys. Lett. 65, 77 (1979)
[50] Jørgensen, P., Jensen, H.J.A., Olsen, J.: J. Chem. Phys. 89, 3654 (1988)
[51] Dalgaard, E., Monkhorst, H.J.: Phys. Rev. A. 28, 1217 (1983)
[52] van Gisbergen, S.J.A., Snijders, J.G., Baerends, E.J.: J. Chem. Phys. 109, 10644 (1998)
[53] Sałek, P., Vahtras, O., Helgaker, T., Ågren, H.: J. Chem. Phys. 117, 9630 (2002)
[54] Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: Chem. Phys. Lett. 157, 479

(1989)
[55] Koch, H., Christiansen, O., Jørgensen, P., Olsen, J.: Chem. Phys. Lett. 244, 75 (1995)
[56] Koch, H., Christiansen, O., Jørgensen, P., Sánchez de Merás, A., Helgaker, T.: J. Chem. Phys.

106, 1808 (1997)
[57] Christiansen, O., Koch, H., Jørgensen, P.: Chem. Phys. Lett. 243, 409 (1995)
[58] Christiansen, O., Koch, H., Jørgensen, P.: J. Chem. Phys. 103, 7429 (1995)
[59] Christiansen, O.: A hierarchy of coupled cluster models for accurate calculations of molecular

properties. Ph.D. Thesis, University of Aarhus (1997)
[60] Kobayashi, R., Koch, H., Jørgensen, P.: Chem. Phys. Lett. 219, 30 (1994)
[61] Christiansen, O., Halkier, A., Koch, H., Jørgensen, P., Helgaker, T.: J. Chem. Phys. 108, 2801

(1998)
[62] Christiansen, O., Gauss, J., Stanton, J.F.: Chem. Phys. Lett. 292, 437 (1998)
[63] Hald, K., Pawłowski, F., Jørgensen, P., Hättig, C.: J. Chem. Phys. 118, 1292 (2003)
[64] Kállay, M., Gauss, J. Mol Struct. (THEOCH EM), in press (2006)
[65] Hättig, C., Christiansen, O., Koch, H., Jørgensen, P.: Chem. Phys. Lett. 269, 428 (1997)
[66] Gauss, J., Christiansen, O., Stanton, J.F.: Chem. Phys. Lett. 296, 117 (1998)
[67] Pawłowski, F.: Development and implementation of CC3 response theory for calculation of

frequency-dependent molecular properties. Benchmarking of static molecular properties. Ph.D.
Thesis, University of Aarhus (2004)

[68] Hättig, C., Christiansen, O., Jørgensen, P.: Chem. Phys. Lett. 282, 139 (1998)
[69] Hald, K.: Molecular properties in Coupled-Cluster theory. Ph.D. Thesis, University of Aarhus

(2002)
[70] Coriani, S.: Ab initio determination of molecular properties. Ph.D. Thesis, University of Aarhus (2000)
[71] Coriani, S., Hättig, C., Jørgensen, P., Helgaker, T.: J. Chem. Phys. 113, 3561 (2000)
[72] Purvis III, G.D., Bartlett, R.J.: J. Chem. Phys. 76, 1910 (1982)
[73] Pawłowski, F., Jørgensen, P., Hättig, C.: Chem. Phys. Lett. 391, 27 (2004)
[74] Coriani, S., Hättig, C., Jørgensen, P., Halkier, A., Rizzo, A.: Chem. Phys. Lett. 281, 445 (1997).

Erratum, ibid. 293 324 (1998)
[75] Hättig, C., Christiansen, O., Jørgensen, P.: J. Chem. Phys. 108, 8355 (1998)
[76] Thomsen, C.L., Madsen, D., Keiding, S.R., Thogersen, J., Christiansen, O.: J. Chem. Phys. 110,

3453 (1999)
[77] Koch, H., Harrison, R.J.: J. Chem. Phys. 95, 7479 (1991)
[78] Larsen, H., Hättig, C., Olsen, J., Jørgensen, P.: Chem. Phys. Lett. 291, 536 (1998)
[79] Helgaker, T., Jørgensen, P., Olsen, J.: Molecular Electronic-Structure Theory. Wiley, New York

(2000)
[80] Urban, M., Noga, J., Cole, S.J., Bartlett, R.J.: J. Chem. Phys. 83, 4041 (1985)
[81] Noga, J., Bartlett, R.J., Urban, M.: Chem. Phys. Lett. 134, 126 (1987)
[82] Kucharski, S.A., Bartlett, R.J.: J. Chem. Phys. 108, 9221 (1998)
[83] Lee, Y.S., Bartlett, R.J.: J. Chem. Phys. 80, 4371 (1984)
[84] Lee, Y.S., Kucharski, S.A., Bartlett, R.J.: J. Chem. Phys. 81, 5906 (1984)
[85] Gauss, J.: In von Ragué Schleyer, P., The Encyclopedia of Computational Chemistry. Wiley,

New York (1998)
[86] Bartlett, R.J. (ed.): Recent Advances in Coupled-Cluster Methods. World Scientific, Singapore

(1997)



96 Christiansen et al.

[87] Bartlett, R.J.: Coupled-Cluster Theory: An Overview of Recent Developments. In: Yarkony, D.R.,
(ed.) Modern Electronic Structure Theory, vol. 2, chapter 16, pp. 1047–1131. World Scientific,
Singapore (1995)

[88] Kutzelnigg, W.: Theor. Chim. Acta. 83, 263 (1992)
[89] Rice, J.E., Handy, N.C.: J. Chem. Phys. 94, 4959 (1991)
[90] Sambe, H.: Phys. Rev. A. 7, 2203 (1973)
[91] Olsen, J., Jørgensen, P.: J. Chem. Phys. 82, 3235 (1985)
[92] Pedersen, T.B., Koch, H.: J. Chem. Phys. 106, 8059 (1997)
[93] Helgaker, T., Jørgensen, P.: Calculation of geometrical derivatives in molecular electronic

structure theory. In: Wilson, S., Diercksen, G.H.F., (eds) Methods in Computational Physics,
pp. 513–421. Plenum Press, New York (1992)

[94] Kramer, P., Saraceno, M.: Geometry of the Time-Dependent Variatonal Principle in Quantum
Mechanics. Number 140 in Lecture Notes in Physics. Springer-Verlag, Berlin (1981)

[95] Hättig, C., Christiansen, O., Jørgensen, P.: J. Chem. Phys. 108, 8331 (1998)
[96] Butcher, P.N., Cotter, D.: The Elements of Nonlinear Optics. Cambridge University, Cambridge

(1990)
[97] Nesbet, R.K.: Phys. Rev. A. 16, 1 (1977)
[98] Visser, F., Wormer, P.E.S., Jacobs, W.P.J.H.: J. Chem. Phys. 82, 3753 (1985)
[99] Wormer, P.E.S., Rijks, W.: Phys. Rev. A. 33, 2928 (1986)

[100] Spelsberg, D., Lorenz, T., Meyer, W.: J. Chem. Phys. 99, 7845 (1993)
[101] Christiansen, O., Hättig, C., Gauss, J.: J. Chem. Phys. 109, 4745 (1998)
[102] Salter, E.A., Sekino, H., Bartlett, R.J.: J. Chem. Phys. 87, 502 (1987)
[103] Kobayashi, R., Koch, H., Jørgensen, P., Lee, T.J.: Chem. Phys. Lett. 211, 94 (1993)
[104] London, F.: J. Phys. Radium. 8, 397 (1937)
[105] Hameka, H.F.: Mol. Phys. 1, 203 (1958)
[106] Ditchfield, R.: J. Chem. Phys. 56, 5688 (1972)
[107] Ditchfield, R.: Mol. Phys. 27, 789 (1974)
[108] Helgaker, T., Jørgensen, P.: J. Chem. Phys. 95, 2595 (1991)
[109] Bak, K.L., Gauss, J., Jørgensen, P., Olsen, J., Helgaker, T., Stanton, J.F.: J. Chem. Phys. 114,

6548 (2001)
[110] Bak, K.L., Jørgensen, P., Olsen, J., Helgaker, T., Klopper, W.: J. Chem. Phys. 112, 9229 (2000)
[111] Bak, K.L., Halkier, A., Jørgensen, P., Olsen, J., Helgaker, T., Klopper, W.: J. Mol. Struct. 567,

375 (2001)
[112] Martin, J.M.L.: J. Chem. Phys. 100, 8186 (1994)
[113] Ruden, T.A., Helgaker, T., Jørgensen, P., Olsen, J.: J. Chem. Phys. 121, 5874 (2004)
[114] Auer, A.A., Gauss, J., Stanton, J.F.: J. Chem. Phys. 118, 10407 (2003)
[115] ACES2 (Mainz-Austin-Budapest version), a quantum- chemical program package for high-level

calculations of energies and properties by J.F.Stanton et al., see http://www.aces2.de.
[116] Koch, H., Sánchez de Merás, A., Helgaker, T., Christiansen, O.: J. Chem. Phys. 104, 4157 (1996)
[117] Koch, H., Christiansen, O., Kobayashi, R., Jørgensen, P., Helgaker, T.: Chem. Phys. Lett. 228,

233 (1994)
[118] Helgaker, T., Jensen, H.J. Å., Jørgensen, P., Olsen, J., Ruud, K., Ågren, H., Auer, A.A.,

Bak, K.L., Bakken, V., Christiansen, O., Coriani, S., Dahle, P., Dalskov, E.K., Enevoldsen, T.,
Fernandez, B., Hättig, C., Hald, K., Halkier, A., Heiberg, H., Hettema, H., Jonsson, D.,
Kirpekar, S., Kobayashi, R., Koch, H., Mikkelsen, K.V., Norman, P., Packer, M.J., Pedersen, T.B.,
Ruden, T.A., Sanchez, A., Saue, T., Sauer, S.P.A., Schimmelpfennig, B., Sylvester-Hvid, K.O.,
Taylor, P.R., Vahtras, O.: dalton – an electronic structure program, release 1.2 (2001)

[119] Hättig, C.: Coupled-Cluster-Methoden zur Berechnung nichtlinearer optischer Eigenschaften und
angeregter Zustände von Molekülen. Habil. Thesis, University of Karlsruhe (2003)

[120] Dunning, T.H.: J. Chem. Phys. 90, 1007 (1989)
[121] Kendall, R.A., Dunning, T.H., Harrison, R.J.: J. Chem. Phys. 96, 6796 (1992)
[122] Woon, D.E., Dunning, T.H.: J. Chem. Phys. 98, 1358 (1993)



Accurate NLO Properties for Small Molecules 97

[123] Woon, D.E., Dunning, T.H.: J. Chem. Phys. 100, 2975 (1994)
[124] Hättig, C., Koch, H., Jørgensen, P.: J. Chem. Phys. 109, 3293 (1998)
[125] Høst, S., Jørgensen, P., Köhn, A., Pawłowski, F., Klopper, W., Hättig, C.: J. Chem. Phys. 123,

094303 (2005)
[126] Koch, H., Kobayashi, R., Jørgensen, P.: Int. J. Quantum Chem. 49, 835 (1994)
[127] Aiga, F., Sasagane, K., Itoh, R.: Int. J. Quantum Chem. 51, 87 (1994)
[128] Christiansen, O., Koch, H., Jørgensen, P., Olsen, J.: Chem. Phys. Lett. 256, 185 (1996)
[129] Larsen, H., Hald, K., Olsen, J., Jørgensen, P.: J. Chem. Phys. 115, 3015 (2001)
[130] Larsen, H., Olsen, J., Jørgensen, P., Christiansen, O.: J. Chem. Phys. 113, 6677 (2000). Erratum

ibid. 114 (2001) 10985
[131] Klopper, W., Coriani, S., Helgaker, T., Jørgensen, P.: J. Phys. B. 37, 3753 (2004)
[132] Stephens, P.J.: Ann. Rev. Phys. Chem. 25, 201 (1974)
[133] Stephens, P.J.: Adv. Chem. Phys. 35, 197 (1976)
[134] Buckingham, A.D.: J. Chem. Phys. 30, 1580 (1959)
[135] Buckingham, A.D., Longuet-Higgins, H.C.: Mol. Phys. 14, 63 (1968)
[136] Cotton, A., Mouton, M.: Compt. Rend. 141, 317 (1905)
[137] Buckingham, A.D., Pople, J.A.: Proc. Phys. Soc. B. 69, 1133 (1956)
[138] Kerr, J.: Phil. Mag. 4 (50), 337 (1875)
[139] Kerr, J.: Phil. Mag. 4 (50), 416 (1875)
[140] Jones, R.C.: J. Opt. Soc. Am. 38, 671 (1948)
[141] Graham, E.B., Raab, R.E.: Proc. R. Soc. Lond. A. 390, 73 (1983)
[142] Pockels, F.: Radium. 10, 152 (1913)
[143] Graham, E.B., Raab, R.E.: Mol. Phys. 52, 1241 (1984)
[144] Wolinski, K., Hinton, J., Pulay, P.: J. Am. Chem. Soc. 112, 8251 (1990)
[145] Faraday, M.: Philos. Mag. 28, 294 (1846)
[146] Faraday, M.: Philos. Trans. R. Soc. London. 136, 1 (1846)
[147] Verdet, E.M.: Ann. Chimie (3rd Ser.). 41, 370 (1854)
[148] Snyder, P.A., Hansen, R.W.C., Rowe, E.M.: J. Phys. Chem. 100, 17756 (1996)
[149] Coriani, S., Hättig, C., Rizzo, A.: J. Chem. Phys. 111, 7828 (1999)
[150] Bishop, D.M., Cybulski, S.M.: J. Chem. Phys. 93, 590 (1990)
[151] Ingersoll, L.R., Liebenberg, D.H.: J. Opt. Soc. Am. 46, 538 (1956)
[152] Bishop, D.M., Sauer, S.P.A.: J. Chem. Phys. 107, 8502 (1997)
[153] Ruud, K., Åstrand, P.-O., Taylor, P.R.: J. Chem. Phys. 112, 2668 (2000)
[154] Stanton, J.: Mol. Phys. 97, 841 (1999)
[155] Gray, D.L., Robiette, A.G.: Mol. Phys. 37, 1901 (1979)
[156] Herranz, J., Stoicheff, B.P.: J. Mol. Spectr. 10, 448 (1963)
[157] Gauss, J., Stanton, J.: Adv. Chem. Phys. 123, 355 (2003)
[158] Imrie, D.A., Raab, R.E.: Mol. Phys. 74, 833 (1991)
[159] Coriani, S., Halkier, A., Rizzo, A.: The electric-field-gradient-induced birefringence and the deter-

mination of molecular quadrupole moments. In: Pandalai, G. (ed.) Recent Research Developments
in Chemical Physics, Vol. 2, pg. 1, Transworld Scientific, Kerala, India (2001)

[160] Buckingham, A.D., Jamieson, M.J.: Mol. Phys. 22, 117 (1971)
[161] Coriani, S., Hättig, C., Jørgensen, P., Rizzo, A., Ruud, K.: J. Chem. Phys. 109, 7176 (1998)
[162] Coriani, S., Halkier, A., Rizzo, A., Ruud, K.: Chem. Phys. Lett. 326, 269 (2000)
[163] Cappelli, C., Ekström, U., Rizzo, A., Coriani, S.: J. Comp. Meth. Sci. Eng. (JCMSE). 4, 365

(2004)
[164] Rizzo, A., Coriani, S., Halkier, A., Hättig, C.: J. Chem. Phys. 113, 3077 (2000)
[165] Coriani, S., Halkier, A., Jonsson, D., Gauss, J., Rizzo, A., Christiansen, O.: J. Chem. Phys. 118,

7329 (2003)
[166] Russell, A.J., Spackman, M.A.: Mol. Phys. 88, 1109 (1996)
[167] Graham, C., Imrie, D.A., Raab, R.E.: Mol. Phys. 93, 49 (1998)
[168] Buckingham, A.D., Disch, R.L.: Proc. Roy. Soc. A. 273, 275 (1963)



98 Christiansen et al.

[169] Halkier, A., Coriani, S., Jørgensen, P.: Chem. Phys. Lett. 294, 292 (1998)
[170] Ritchie, G.L.D., Watson, J.N., Keir, R.I.: Chem. Phys. Lett. 370, 376 (2003)
[171] Halkier, A., Coriani, S.: Chem. Phys. Lett. 303, 408 (1999)
[172] Watson, J.N., Craven, I.E., Ritchie, G.L.D.: Chem. Phys. Lett. 274, 1 (1997)
[173] Keir, R.I., Lamb, D.W., Ritchie, G.L.D., Watson, J.N.: Chem. Phys. Lett. 279, 22 (1997)
[174] Battaglia, M.R., Buckingham, A.D., Neumark, D., Pierens, R.K., Williams, J.H.: Mol. Phys. 43,

1015 (1981)
[175] Ritchie, G.L.D.: Field-gradient induced birefringence: a direct route to molecular quadrupole

moments. In Clary, D.C., Orr, B., (eds) Optical, Electric and Magnetic Properties of Molecules,
pg. 67, Elsevier, Amsterdam, The Netherlands (1997)

[176] Buckingham, A.D., Disch, R.L., Dunmur, D.A.: J. Am. Chem. Soc. 90, 3104 (1968)
[177] de Lange, O.L., Raab, R.E.: Mol. Phys. 102, 125 (2004)
[178] Raab, R.E., de Lange, O.L.: Mol. Phys. 101, 3467 (2003)
[179] Rizzo, C., Rizzo, A., Bishop, D.M.: Int. Rev. Phys. Chem. 16, 81 (1997)
[180] Rizzo, A., Rizzo, C.: Mol. Phys. 96, 973 (1999)
[181] Muroo, K., Ninomiya, N., Yoshino, M., Takubo, Y.: J. Opt. Soc. Am. B. 20, 2249 (2003)
[182] Cameron, R., Cantatore, G., Melissinos, A.C., Rogers, J., Semertzidis, Y., Halama, H., Prodell,

A., Nezrick, F.A., Rizzo, C., Zavattini, E.: J. Opt. Soc. Am. B. 8, 520 (1991)
[183] Carusotto, S., Iacopini, E., Polacco, E., Scuri, F., Stefanini, G., Zavattini, E.: J. Opt. Soc. Am.

B. 1, 635 (1984)
[184] Rizzo, A., Coriani, S.: J. Chem. Phys. 119, 11064 (2003)
[185] Pawłowski, F., Jørgensen, P., Rizzo, A., Hättig, C.: to be published
[186] Rikken, G.L.J.A., Raupach, E., Roth, T.: Physica B. 294–295, 1 (2001)
[187] Roth, T., Rikken, G.L.J.A.: Phys. Rev. Lett. 85, 4478 (2000)
[188] Roth, T.: Experimental verification of the Jones birefringence induced in liquids. Diploma

thesis, Darmstadt University of Technology and Grenoble High Magnetic Field Laboratory
(2000)

[189] Rizzo, A., Cappelli, C., Jansík, B., Jonsson, D., Sałek, P., Coriani, S., Ågren, H.: J. Chem. Phys.
121, 8814 (2004)

[190] Rizzo, A., Cappelli, C., Jansík, B., Jonsson, D., Sałek, P., Coriani, S., Wilson, D.J.D., Helgaker,
T., Ågren, H.: J. Chem. Phys. 122, 234314 (2005)

[191] Koch, H., Jensen, H.J.A., Jørgensen, P., Helgaker, T.: J. Chem. Phys. 93, 3345 (1990)
[192] Christiansen, O., Koch, H., Halkier, A., Jørgensen, P., Helgaker, T., Sánchez de Merás, A.M.:

J. Chem. Phys. 105, 6921 (1996)
[193] Christiansen, O., Koch, H., Jørgensen, P., Helgaker, T.: Chem. Phys. Lett. 263, 530 (1996)
[194] Koch, H., Kobayashi, R., Sánchez de Merás, A., Jørgensen, P.: J. Chem. Phys. 100, 4393

(1994)
[195] Datta, B., Sen, P., Mukherjee, D.: J. Phys. Chem. 99, 6441 (1995)
[196] Stanton, J.F., Bartlett, R.J.: J. Chem. Phys. 99, 5178 (1993)
[197] Hald, K., Jørgensen, P., Olsen, J., Jaszuński, M.: J. Chem. Phys. 115, 671 (2001)
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CHAPTER 3

DETERMINATION OF VIBRATIONAL CONTRIBUTIONS
TO LINEAR AND NONLINEAR OPTICAL PROPERTIES

B. KIRTMAN AND J.M. LUIS
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
and Institute of Computational Chemistry and Department of Chemistry, University of Girona, Campus
de Montilivi, 17071 Girona, Catalonia, Spain

Abstract: A review of methods for calculating vibrational contributions to linear and nonlinear
optical properties is presented. Our aim is to provide an overview of the various approaches
that have been developed using illustrative equations supplemented with references to
the detailed formulations. The treatment of electrical and mechanical anharmonicity is
considered in some detail for resonant as well as non-resonant processes. Issues such
as the choice of basis set, the treatment of electron correlation, and the convergence
of perturbation expansions are examined. Although much of the presentation is general,
there is a special emphasis on organic pi-conjugated systems

Keywords: nonlinear optical properties, vibrational hyperpolarizabilities, nuclear relaxation hyper-
polarizabilities, curvature hyperpolarizabilities, field-induced coordinates, post-VSCF
methods, mode-mode coupling, optimized effective potential, TPA, Franck-Condon
factors, infinite periodic polymers

In this chapter we review some of the developments that have been made over
the past fifteen years with regard to the calculation of vibrational contributions
to linear and nonlinear (NLO) optical properties. Despite a number of advances
it is important to recognize that more are needed since there is still no fully
satisfactory general treatment for either resonant or non-resonant NLO processes in
polyatomic molecules. Two major intertwining approaches to practical computations
that include electrical and mechanical anharmonicity have emerged. The older
approach is from the viewpoint of ordinary sum-over-states perturbation theory and
it is presented in Section 1. The other approach, discussed in Section 2, is from what
may be called the nuclear relaxation/curvature point of view. Even though there is
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an exact correspondence between the two, which has been exploited in developing
the nuclear relaxation/curvature approach, the latter has spawned valuable new
concepts and related computational procedures. One such offshoot, namely field-
induced coordinates (FICs), is the subject of Section 3. The FICs have led to a
substantial reduction in computational cost.

An important issue with regard to any perturbation treatment is the convergence
behavior of the perturbation series. This is considered in Section 4 where problem-
atic cases are identified. Then a potentially viable treatment of such cases, based on
vibrational SCF and post-SCF procedures, is elaborated in Section 5. In Section 6
we turn to the practical issues of basis set requirements and treatment of electron
correlation. Here the emphasis is on quasilinear pi-conjugated molecules and, for
that case, we examine the difficulties encountered with the use of density functional
theory.

In all of the above the focus is on non-resonant properties. We turn our attention
in Section 7 to resonant phenomena, particularly one- and two-photon absorption
(OPA/TPA). After outlining the perturbation theory approach to OPA/TPA, the
problem of evaluating the key Franck-Condon (and related) integrals is examined.
There is increasing activity in this area, but we limit ourselves to a new procedure
that accounts for anharmonic mode-mode coupling along with Duschinsky rota-
tion of the normal coordinates and the shift in equilibrium geometry. Then, future
directions are indicated whereby calculations for resonant phenomena may catch
up to those for non-resonant processes. Finally, in the last section of this chapter
the specialized treatment required for infinite polymers, involving either extrapo-
lation of finite oligomer results or application of periodic boundary conditions is
considered.

1. PERTURBATION THEORY VIEWPOINT

We are interested here in the linear and nonlinear optical properties that determine
the response of a chemical system to spatially uniform electric fields. The vibrational
contribution to this response, which arises from vibronic coupling, can often be
as important as the pure electronic contribution or even more important [1–14].
In addition, it is often inadequate in this context to treat the effect of vibrational
motions at the harmonic level of approximation. The purpose of this review, then, is
to show how the vibrational contribution to linear and nonlinear optical properties
can be evaluated with both harmonic and anharmonic effects included.

1.1 Sum Over States Formulation

There are two major ways to view the vibrational contribution to molecular linear
and nonlinear optical properties, i.e. to (hyper)polarizabilities. One of these is from
the time-dependent sum-over-states (SOS) perturbation theory (PT) perspective. In
the usual SOS-PT expressions [15], based on the adiabatic approximation, the inter-
mediate vibronic states �K�k> are of two types. Either the electronic wavefunction
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�K> refers to the ground state �K = 0� or it refers to an excited state. The electronic
property is considered to arise entirely from K �= 0 intermediate states. Hence, all
terms containing one or more intermediate states with K = 0 are considered to be
part of what has come to be known as the pure vibrational contribution.

1.1.1 Resonant vs. non-resonant

The energy denominators in SOS-PT contain one or more factors of the general
form �kK ± �i�kK/2 + �� where �kK is the excitation frequency from the ground
vibronic state to �K�k>, �kK is the population decay rate for �K�k>, and � is an
optical frequency or a sum of the optical frequencies that characterize the particular
process. Resonant, or near-resonant processes occur when �kK ±� ≈ 0. Otherwise,
the process is non-resonant and we neglect �kK . The resonant case is discussed in
Section 7, while the remainder of this review focuses on the non-resonant case.

1.2 Clamped Nucleus Approximation

The first step in simplifying the SOS-PT formulas is to apply the clamped nucleus
approximation for the states K �= 0 [16]. In this approximation the energy denomi-
nators ��kK are replaced by the difference in electronic energies at a fixed nuclear
configuration, i.e. by E�K� R�−E�0� R�. The consequences of this approximation
have been investigated and were found to be negligible [16].

1.3 Bishop and Kirtman Perturbation Treatment

In the Bishop and Kirtman (BK) perturbation treatment [17–19] two basic additional
assumptions are made. First, when �K> is an intermediate excited electronic state it
is assumed that, under ordinary non-resonant conditions, one may ignore the optical
frequency term i�kK/2 +� in the corresponding energy denominator as compared
to the electronic excitation energy. Then, after summing over all intermediate
states other than K = 0, one is left with the pure vibrational (hyper)polarizability,
Pv. The latter may be expressed compactly in terms of so-called square bracket
quantities. Thus,

�v�−�	
�1� = ��2(1)

�v�−�	
�1��2� = ���+ ��3(2)

�v�−�	
�1��2��3� = ��2+ ���+ ��2�+ ��4(3)

in which, for example,

(4) ��� = 1
2�

∑
P���

∑

k

′����0k�����k0���k +�	�−1 + ��k −�	�−1

where the prime on the summation indicates that k = 0 is excluded. A complete
set of square bracket formulas is given in Table 1 of [19]. The total BK
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(hyper)polarizability is the sum of the pure clamped nucleus electronic term (eval-
uated at the electronic ground state equilibrium geometry) plus the pure vibrational
contribution plus the zero-point vibrational averaging correction, Pzpva. In order to
evaluate the quantities that depend upon nuclear motion BK assume that the instan-
taneous electrical properties (�, �, and the dipole moment �), as well as the pure
vibrational potential, may be expanded as a power series in the normal coordinate
displacements about the equilibrium electronic ground state geometry.

1.3.1 Double harmonic model

The zeroth-order approximation in the BK perturbation treatment of pure vibrational
NLO is the double harmonic model. As far as electrical properties are concerned
this approximation includes just the terms in the instantaneous property expression
that are linear in the normal coordinates (there is no vibrational contribution from
the constant term). To these are added the quadratic terms in the pure vibrational
(or mechanical) potential which constitute the usual harmonic approximation. Then,
in zeroth-order roughly half of the square brackets vanish leaving:

�v�−�	
�1� = ��20(5)

�v�−�	
�1��2� = ���0(6)

�v�−�	
�1��2��3� = ��20 + ���0(7)

The remaining anharmonic square bracket terms are obtained by BK using double
perturbation theory with the definition of orders given below.

1.3.2 Anharmonicity

Quadratic terms in the property expansions are considered to be first-order in elec-
trical anharmonicity, cubic terms are taken to be second-order, etc. Similarly, cubic
terms in the vibrational potential are considered to be first-order in mechanical
anharmonicity, quartic terms are second-order, and so forth. The notation �n�m�
is used hereafter for the order of electrical �n� and mechanical �m� anharmonicity
whereas the total order �n+m� is denoted by I, II, � � � . Although our definition of
orders is reasonable other choices are possible. Two key questions are: (1) How
important are anharmonicity contributions to vibrational NLO properties and (2)
What is the convergence behavior of the double perturbation series in electrical
and mechanical anharmonicity? Both questions will be addressed later. Here we
note that compact expressions, complete through order II in electrical plus mechan-
ical anharmonicity, have been presented [19]. The formulas of order I contain
either cubic force constants or second derivatives of the electrical properties with
respect to the normal coordinates. Depending upon the level of calculation at least
one order of numerical differentiation is ordinarily required to determine these
anharmonicity parameters. For electrical properties, the additional normal coor-
dinate derivative may be replaced by an electric field derivative using relations
such as �2�/�Qi�Qj = −�3E/�F�Qi�Qj = −�kij/�F where F is the field and kij is
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a vibrational force constant. There are only two non-vanishing square brackets of
order I: ��3I for �v and ��2�I for �v. Note that these are different from the square
brackets that appear in zeroth-order. In fact, each square bracket contains only
even-order or only odd-order contributions. For the formulas of order II a second
numerical differentiation is necessary. In that case direct calculation of the required
anharmonicity parameters can be quite tedious and subject to substantial round-off
error. All zeroth-order square brackets (i.e. Eq. (5)–(7)) have corresponding second-
order terms. In addition, �v contains a second-order ��4II square bracket which
vanishes in zeroth-order.

1.4 Comparison of Vibrational and Electronic NLO

In assessing the importance of vibrational NLO properties it is necessary to distin-
guish between processes that involve at least one dc field and those that do not.
The vibrational contribution is negligible for the latter category, which includes
second and third harmonic generation. However, there are many other processes
that do involve a dc-field. These include the dc-Pockels effect [dc-P; ��−�
�� 0�],
the electro-optic Kerr effect [EOKE; ��−�
�� 0� 0�], dc-second harmonic genera-
tion [dc-SHG; ��−2�
���� 0�], and all static properties. The intensity-dependent
refractive index [IDRI; ��−�
��−����] may also be put in this category because
the two optical frequencies of opposite phase in effect cancel one other. In
fact, the vibrational contribution to IDRI is usually large in keeping with the
general rule that this contribution becomes more important as the number of dc
fields increases (See for instance [20]). An example is the �-conjugated donor-
acceptor molecule �NO2�2�CH=CH�3�NH2�2. Our calculated results [21] for the
ratio Pv/Pe�static� (Pv is the vibrational property and Pe�static� the static electronic
property) are: ��static� = 87, ��static� = 6�4, ��EOKE� = 5�8, and ��IDRI� = 4�4.
For all other processes smaller ratios were obtained. As a very rough rule of
thumb, when the process involves one or more static fields the above ratio will be
on the order of unity for the �-conjugated organic molecules that are of interest
as NLO materials. It’s clear, however, that much larger ratios can be obtained
as well.

2. ALTERNATIVE NUCLEAR RELAXATION/CURVATURE
VIEWPOINT

There exists an alternative to the BK perturbation approach for calculating pure
vibrational contributions. It is based on determining the change in the electronic
and zero-point vibrational energy (or, more generally, Pe and Pzpva) due to the
distortion of the equilibrium geometry induced by a static external field [22–30].
From this viewpoint it is natural to divide the total static (hyper)polarizability into
pure electronic �Pe�, nuclear relaxation �Pnr� and curvature �Pc� contributions. On
the one hand, Pe is due to the change in the electronic cloud caused by the electric
field with the nuclei clamped at the field-free equilibrium geometry. On the other
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hand, Pnr arises from the change in the electronic energy caused by the field-
induced relaxation of the equilibrium geometry. Finally, Pc is due to the change in
zero-point vibrational energy caused by the change in the curvature, i.e., the shape,
of the potential energy surface (PES) induced by the static external field. Pc can
be divided into two terms: the zero-point vibrational averaging (zpva) contribution,
Pzpva, and the remainder Pc−zpva.

2.1 Static Nuclear Relaxation and Curvature (hyper)Polarizabilities

Under the influence of a uniform static electric field, the electronic energy of a
chemical system can be expressed as a double power series expansion in the normal
coordinates and the electric field [24]:

(8) V�Q� F� = ∑

n=0

3N−6∑

i1=1

· · ·
3N−6∑

in=1

∑

m=0

x�y�z∑

�1=1

· · ·
x�y�z∑

�m=1

ai1���in��1����m
nm Qi1

� � �Qin
F�1

� � � F�m

where

(9) ai1���in��1����m
nm = 1

n!m!

(
��n+m�V

(
Q1� � � � �Q3N−6�Fx�Fy�Fz

)

�Qi�Qj � � � �F�1
�F�m

� � �

)

Q=0�F=0

The Pnr and Pc contributions to the static property value may be obtained from
this power series in the following manner. First, we impose the minimum condition
(i.e. �V�Q� F�/�Qi = 0 ∀i) on the potential of Eq. (8). This leads to analytical
expressions for the field-dependent equilibrium geometry in terms of field-free
normal coordinate displacements. Then, substitution of these displacements back
into Eq. (8) yields a power series in the static electric field and that gives directly
the nuclear relaxation contribution, Pnr , to the static (hyper)polarizability [24]. For
instance, �nr

����0
 0� and �nr
����0
 0� 0� are obtained in this manner as:

(10) �nr
���0
 0� = 1

2

3N−6∑

i=1

P�� ai��
11 q

i��
1

and

�nr
����0
 0� 0� =

3N−6∑

i=1

P���a
i���
12 q

i��
1 −

3N−6∑

ij

P��� a
ij��
21 q

i��
1 q

j��
1(11)

+
3N−6∑

ijk

P��� a
ijk
30 qi��

1 q
j��
1 q

k��
1

where the notation

(12) qi��
1 = ai��

11

2 aii
20
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has been introduced and P�� indicates a sum over all permutations of the indices
�� � � � � Identical expressions for Pnr may be obtained by substituting back into the
�e expansion rather than the V expansion [23, 27].

The static Pc are derived in the same fashion as the static Pnr except that one
substitutes back into the double power series expansion for zero-point energy instead
of the electronic potential energy [22, 24]. In doing so it is important to take into
account the fact that the field-dependent harmonic force constant matrix contains
off-diagonal elements when expressed in terms of field-free normal coordinates.
The order of anharmonicity included in Pc depends upon the order included in the
zero-point energy, which is indicated by a roman superscript in parenthesis. Pc�I� is
derived from the first-order zero-point energy, Pc�III� from the third-order zero-point
energy, and so forth. The zero-point energy contains no even order corrections. As
will be explained further in Section 2.3, apart from Pzpva the terms in Pc�I� are all
higher-order in anharmonicity than those in Pnr . This may be seen, for example,
from the expression for �

c�I�
����0
 0�:

�
c�I�
�� �0
 0� = P��

4

3N−6∑

i=1

1
√

2aii
20

[

2a
ii���
22 −6

3N−6∑

j=1

a
iij
30q

j���
2 −6

3N−6∑

j=1

a
iij��
31 q

j��
1(13)

+12
3N−6∑

j�k=1

a
iijk
40 q

j��
1 q

k��
1 +6
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a
iij
30a

jk��
21

a
j
20

q
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1 −9
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jkl
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20
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+24
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Note that the first two terms on the rhs of Eq. (13), which are first-order, constitute
the zpva contribution. All the remaining terms are second-order. The same Pc�I�

expressions may be obtained from the ��zpvaI double power series expansion.

2.2 Connection with Perturbation Theory

There is a straightforward correspondence between the BK perturbation theory
formulas and those obtained from the nuclear relaxation/curvature approach. Pnr

contains the lowest-order BK term of each square bracket type in the expression for
Pv, whereas Pc contains the remaining BK Pv terms [1, 23]. As indicated above Pc

may be split into two components: Pzpva and Pc−zpva = Pc −Pzpva, from which one
obtains Pc�I� = �PzpvaI +Pc−zpva�I� and Pc�III� = �PzpvaIII +Pc−zpva�III�� etc. Pc−zpva�I�

contains exactly the same type of square bracket terms as Pnr except that they
are the next higher (non-vanishing) order. Pc−zpva�III� contains the next higher-order
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terms beyond those in Pc−zpva�I�, etc. For instance, the static �nr , �c−zpva�I� and
�c−zpva�III� are [22]:

�nr
�����0
 0� 0� 0� = ��20 + ���0 + ��2�I + ��4II(15)

�
c−zpva�I�
���� �0
 0� 0� 0� = ��2II + ���II + ��2�III + ��4IV(16)

�
c−zpva�III�
���� �0
 0� 0� 0� = ��2IV + ���IV + ��2�V + ��4VI(17)

2.3 Dynamic Infinite Optical Frequency Nuclear Relaxation and c-zpva
(hyper)Polarizabilities

Under the infinite optical frequency approximation, which corresponds to the limit
� → �, the expression for the dynamic Pnr and Pc−zpva also can be obtained from
the nuclear relaxation/curvature point of view. In general terms the criterion for
validity of this approximation is that ��v/��2 	 1 for all vibrational frequencies
�v. For typical laser optical frequencies test calculations [31–33] confirm that the
infinite optical frequency approximation is highly accurate, although this does not
necessarily hold at lower frequencies [33].

The � → � limit of Pnr may be obtained by means of the same proce-
dure as in Section 2.1, but expanding the static �e and �e as a double power
series instead of the electronic energy or �e [23, 27]. This leads to expres-
sions for �nr�−�
�� 0��→�� �nr�−�
�� 0� 0��→� and �nr�−2�
���� 0��→�. In
the � → � limit �nr�−2�
�����→� and �nr�−3�
�������→� are zero. Prop-
erties such as �nr�0
��−���→� and �nr�−�
��−�����→� cannot be obtained
by this procedure. Note that one or more of the higher-order square bracket terms
that appear in the static Pnr expression will vanish in the infinite optical frequency
limit. For instance, �nr�−�
�� 0� 0��→� is given by:

(18) �nr
�����−�
�� 0� 0��→� = ��20

�→� + ���0
�→� + ��2�I

�→�

Infinite optical frequency values for Pc−zpva�I� can be obtained by expanding the
static ��zpvaI and ��zpvaI as a double power series [22]. The treatment is exactly
analogous to that used to derive Pnr from the electronic � and �. Similarly, the
next-highest order nonvanishing zpva corrections, ��zpvaIII and ��zpvaIII, yield
the infinite optical frequency Pc−zpva�III�. However, if order III is required it is
undoubtedly better to use other methods, to be described later, that give all orders
simultaneously.

2.4 Finite Field Approach

The bottleneck in calculating Pnr and Pc−zpva from analytical expressions is due to
the required evaluation of high-order derivatives with respect to the normal modes
[34]. This problem can be circumvented by using Finite Field (FF) methods with
the nuclear relaxation/curvature approach, which is the major advantage of the
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latter. The FF calculations involve carrying out a geometry optimization for the
molecule in the presence of a static electric field. Because of the shift in geometry
the electronic and zpva properties will vary as a function of the field. Thus, we can
define:

(19) �Pe = Pe�RF� F�−Pe�R0� 0�

where F is the field and RF is the field-dependent equilibrium geometry. An exactly
analogous relation may be written for �Pzpva. Numerical differentiation of �Ee

or ��e��Ezpva or ��zpva� with respect to the field yields the static Pnr�Pc−zpva�,
whereas numerical differentiation of ��e and ��e (��zpva and ��zpva) leads to
the infinite optical frequency approximation for various Pnr�Pc−zpva� [22, 27]. For
example, the first derivative of ��e with respect to the field gives �e

����0
 0� 0�+
�nr

����−�
�� 0��→� (see [34] for other processes.) This method is the only feasible
way to carry out ab initio calculations for large chemical systems, or for medium
size molecules if accurate post-Hartree-Fock methods are applied.

2.4.1 Field-dependent geometry optimization and Eckart conditions

The key step in the FF determination of Pnr and Pc−zpva is the calculation of the
field-dependent equilibrium geometry. In such calculations the field-free Eckart
conditions must be enforced in order to prevent molecular reorientation during
geometry optimization. Since the Eckart conditions are mass-dependent Pnr will
exhibit an isotope effect. Although this feature is often not recognized, it is present
in both FF and analytical calculations. We have found that the nuclear relaxation
isotope effect is comparable to the zero-point vibrational averaging isotope effect,
but with a different mass-dependence [35].

2.5 Evaluation of Anharmonicity Contributions not Included
in Nuclear Relaxation

The evaluation of Pc−zpva using analytical expressions requires the calculation
of high-order derivatives. For instance, the expression for the square bracket
��4IV contains sixth-order derivatives of the electronic energy with respect to the
normal modes. That is why such calculations are computationally prohibitive for
medium/large organic molecules and can only be done with the FF method. In fact,
even the calculation of Pzpva, which must be done for P = � and � to obtain the
dynamic Pc−zpva, can become quite expensive for medium-size or larger molecules.
This cost can be dramatically reduced with the aid of field-induced coordinates as
we will see in the next section. Finally, one might be tempted to assume that high-
order anharmonic terms will make a negligible contribution to vibrational NLO.
However, the results we have obtained for typical �-conjugated NLO molecules
show that this may not be the case [34].
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3. FIELD INDUCED COORDINATES

The main problem in the analytical evaluation of vibrational hyperpolarizabilities
for medium size and larger molecules is the large number of nth-order derivatives
with respect to normal modes that must be computed. This number is on the order of
�3N-6�n with N being the number of normal modes. The static and infinite optical
frequency Pnr can be computed using the FF procedure and the same is true of
Pc−zpva assuming that Pzpva is available. However, in order to calculate Pzpva, or
Pnr and Pc−zpva at arbitrary frequencies, the BK analytical expressions are currently
the only available alternative. It turns out that one can circumvent this difficulty
by introducing a set of static field-induced vibrational coordinates which radically
reduce the number of nth-order derivatives to be evaluated [33, 35–39].

3.1 Definition and Determination of FICs

In the nuclear relaxation approach one determines the change in the equilibrium
geometry induced by a static applied field. This change in geometry constitutes
a displacement coordinate, which we call simply a field-induced coordinate (FIC)
[35]. Obviously, such a coordinate can be expanded as a power series in the field
giving rise to a first-order FIC, second-order FIC, etc. [36]. The first-order FIC
contains only harmonic terms, but the higher-order FICs can be broken down
further into harmonic and anharmonic components. As we will see below these
FICs have remarkable properties. For example, the first-order FIC generated by
a longitudinal field contains all the information necessary to compute the nuclear
relaxation contribution to the static longitudinal � or the longitudinal dc-P effect.
In other words, the perturbation theory expressions containing sums over 3N-6
normal coordinates can be reduced to formulas that involve only a single FIC.
Thus, instead of having to determine on the order of (3N-6)3 cubic force constants
only a single cubic force constant need be obtained. As one might imagine this
opens the possibility for major simplification of the calculations required to evaluate
anharmonic contributions to static nuclear relaxation (hyper)polarizabilities. It turns
out that the static FICs also yield relevant information to calculate the static Pzpva

as well as Pnr and Pc−zpva in the infinite optical frequency approximation. Although
the original definition of the FICs was based on static fields, the idea has been
extended to the construction of frequency-dependent FICs so that one can account
for the frequency dispersion of the vibrational NLO properties as well [33]. The
FICs may be determined either analytically or by an FF method.

3.1.1 Finite field determination

In the finite field approach the FICs are generated simply by evaluating numer-
ical derivatives of the change in equilibrium geometry induced by a finite field
with respect to the magnitude of that field [35]. However, the FICs may also be
determined analytically.
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3.1.2 Analytical expressions

The value of the ith field-free normal coordinate displacement induced by a uniform
static electric field, F, be written as a power series in the field:

(20) QF
i �Fx�Fy�Fz� =

x�y�z∑

�

�QF
i

�F�

F� +1
2

x�y�z∑

���

�2 QF
i

�F��F�

F� F� + � � �

Thus, the static first- and second-order FICs are defined by [36]:

��
1 =
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�QF
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In a similar fashion, higher order FICs are defined from the higher order terms
of Eq. (20).

As already mentioned the static FICs are useful for determining the static or
infinite optical frequency Pnr , Pzpva and Pc−zpva. In order to perform an equivalent
simplification for arbitrary frequencies we have also derived frequency-dependent
FICs [33]. Their derivation is based on the relationship between the static and
dynamic BK vibrational NLO expressions. For instance, the expression for the
first-order frequency-dependent FICs is given by:

(23) ��
1���� = −

3N−6∑

i=1

qi��
1���� Qi

where

(24) qi��
1���� =

ai��
11

2aii
20

−�2

Notice that ��
1���� correctly reduces to ��

1 when � = 0.

3.1.3 Harmonic and anharmonic FICs

The first-order FICs ���
1 � depend only on the harmonic parameters a11 and a20.

On the contrary, the second-order FICs ��
��
2 � depend also on the anharmonicity

parameters a21 and a30. Removing anharmonic terms from the �
��
2 expression one

can define the harmonic second-order static FIC:

(25) ���
2�har = 1

2

3N−6∑

i=1

(
�2 QF

i

�F��F�

)

har

Qi = −
3N−6∑

i=1

qi���
2 Qi

An analogous harmonic expression can be defined for any nth-order FIC.
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3.2 Analytical Calculation of Vibrational NLO from FICs

The analytical expressions for Pnr , Pzpva and Pc−zpva can be written in terms of
derivatives with respect to FICs rather than normal modes. Both sets of formulas
are completely equivalent, although the number of derivatives that appear in the
expression in terms of FICs is small and independent of molecular size. For
instance, �nr

zzz�−�
�� 0��→� can be written as a function of a single first-order
FIC. The first step in deriving this expression is to construct, in principle, a set
of vibrational coordinates which are orthogonal linear combinations of the field-
free normal coordinates. This set contains ��

1 = ��
1 and its orthogonal complement

��2��3� � � ��3N−6�. Then,

(26) �i =
3N−6∑

j=1

MijQj

where M is an orthogonal matrix and M1i = −qi�z
1 = �Qi/�Fz. Using the chain rule

to express ��zz/�Qi in terms of ��zz/��i we have:

�nr
zzz�−�
�� 0��→� =
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�Qi
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Whereas the normal mode expression for �nr
zzz�−�
�� 0��→� requires the evaluation

of 3N-6 ��zz/�Qi derivatives, the FIC expression requires calculation of just the
one property derivative ��zz/��1.

3.2.1 Nuclear relaxation contribution

For each diagonal component of the static or infinite optical frequency
nuclear relaxation (hyper)polarizability tensor only one or two FICs are
required. In the case of �nr

���0
 0�, �nr
����0
 0� 0�, �nr

����−�
�� 0��→� and
�nr

�����−2�
���� 0��→� one needs only ��
1 ; for �nr

�����−�
��−�����→� only
���

2�har ; for �nr
�����−�
�� 0� 0��→� only ��

1 and either ���
2�har or ���

2 ; and for
�nr

�����0
 0� 0� 0� only ��
1 and ���

2 [36]. In order to obtain all components one needs
all 3 ��

1 , or/and all 6 �
��
2�har (or all 6 �

��
2 ). Finally, for arbitrary frequencies the same

type and number of FICs are required as for the corresponding static properties
except that the static FICs are replaced by frequency-dependent FICs [33].

3.2.2 zpva contribution

In BK square bracket notation, the first-order zpva correction consists of two
terms, i.e. �PzpvaI = �P0�1 + �P1�0. The term �P1�0 contains the second derivatives
�2Pe/�Q2

a which are evaluated by obtaining the appropriate electric field derivative
of the diagonal element of the Hessian [37]. This is done without using FICs. On the



Determination of Vibrational Contributions 113

other hand, �P0�1 contains first derivatives of the diagonal elements of the Hessian
with respect to the set of normal modes and, in that case, FICs can be employed
advantageously. Indeed, the expression for �P0�1 may be written as [37]:

(28) �P0�1 = −�
4

(
3N−6∑

i

1
�i

��2
i

��P

)
�Pe/��P

�2
�P

where �i and ��P
are circular frequencies obtained from the diagonal element of

the Hessian defined by Qi and by the FIC �P . If Pe is the dipole moment, then
�P = ��

1 . Similarly, for the polarizability �P = �
��
2�har , whereas for the first and

second hyperpolarizability �P = �
���
3�har and �P = �

����
4�har .

3.2.3 c-zpva contribution

The analytical formulas for Pc−zpva can also be simplified using FICs. However,
the order of the derivatives involved is so high that their evaluation is feasible
only for small molecules. For that reason these vibrational contributions are usually
evaluated through the FF method of Kirtman, Luis and Bishop [22]. This method
utilizes the analytical evaluation of Pzpva as described in the immediately preceding
sub-section and, thus, the FICs have an important role in decreasing the cost of the
calculations [34].

3.3 Reduction in Computational Cost of Vibrational NLO

The fact that the number of FICs needed to compute any vibrational hyperpolariz-
ability does not depend upon the size of the molecule leads to important compu-
tational advantages. For instance, the calculation of the longitudinal component
of the static �nr for 1,1-diamino-6,6-diphosphinohexa-1,3,5-triene requires quartic
derivatives of the electronic energy with respect to vibrational displacements (i.e.
quartic force constants) [34]. Such fourth derivatives may be computed by double
numerical differentiation of the analytical Hessian matrix. With normal coordinates
it is necessary to compute the Hessian matrix 3660 times, whereas using FICs only
6 Hessian calculations are required.

4. BEHAVIOR OF PERTURBATION SERIES

The convergence behavior of the BK double perturbation series has not been exten-
sively studied. Recently, by using FICs in the FF procedures it has become possible
to investigate the initial convergence of the perturbation series for some typical
�-conjugated NLO molecules [21, 34]. One obvious way to monitor convergence
is by looking at the square bracket terms of successively higher order. However,
for quasilinear �-conjugated oligomers, the terms of order I and II are often larger
than the zeroth-order double harmonic terms [36]. Further consideration shows
that it is more appropriate to monitor the convergence by looking at two separate
perturbation sequences.
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4.1 Definition of Separate Electronic and zpva Perturbation Sequences

Based on the nuclear relaxation/curvature approach it is natural to divide the total
hyperpolarizability into two different perturbation sequences [37]:

Pe� �PzpvaI � �PzpvaIII � � � �(A)

Pnr�P�c−zpva��I�� P�c−zpva��III�� � � �(B)

All terms in each sequences are listed in increasing order of perturbation theory.
As seen earlier, the successive terms in sequence (B) can be calculated from the
effect of nuclear relaxation on the successive terms of sequence (A).

4.2 Initial Convergence of Perturbation Sequences

It is usually found, or assumed, that the perturbation series is, at least initially,
convergent [1]. For typical �-conjugated NLO molecules, �PzpvaI is small in
comparison with Pe provided the computations are done at a sufficiently high level
of theory (e.g. MP2/6-31+G(d)). However, the same is not always true for the first
two terms of sequence (B) [34, 40]. P�c−zpva��I�/Pnr ratios as large as 0.68 have been
calculated at the MP2/6-31G level for dynamic hyperpolarizabilities obtained in
the infinite optical frequency approximation. For static hyperpolarizabilities larger
ratios are found; they sometimes even exceed unity. This divergent behavior does
not occur for dynamic properties because some of the large anharmonic pertur-
bation terms contain the optical frequency in the denominator which makes the
contribution approach zero as the frequency of the optical field increases.

4.2.1 Treatment of problematic cases

When the mechanical and/or electrical anharmonicity terms are large compared
to the terms included in the double harmonic potential one can expect that the
BK perturbation treatment will either diverge or converge slowly. For weakly
bound systems, such as HF [41, 42] or H2O [41] dimers, calculations reveal that
the perturbation series diverges immediately. More generally, one can anticipate
that difficulties will arise whenever there are large amplitude vibrations, such as
a low frequency torsional mode. Even in less obvious cases, like some of the
�-conjugated NLO molecules referred to above, problematic behavior can occur.
In all these instances the approaches discussed thus far cannot be used in their
current form. As an alternative, a new FF procedure for calculating vibrational
(hyper)polarizabilities has been developed [43]. Instead of relying on the usual
perturbation expansion, this procedure utilizes a self-consistent mean field solution
of the vibrational Schrödinger equation. On top of that, the instantaneous mode-
mode coupling may be taken into account by many-body perturbation theory,
coupled cluster or configuration interaction techniques.
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5. VARIATIONAL TREATMENT

As noted in Section 4 the BK perturbation series is not always well-behaved.
Poor convergence behavior can, and does, occur when the anharmonicity is large.
One must be particularly alert to this possibility in the case of van der Waals
molecules or, in general, molecules that have large amplitude (low frequency) vibra-
tions. In such circumstances, Pnr is not sufficient to accurately describe vibrational
(hyper)polarizabilities and the addition of first-order zpva and c-zpva contributions
is likely not to be sufficient either. Then, we need to focus on the entire curvature
contribution which, in turn, is obtained from the entire zpva correction to the energy
and electrical properties (see Section 3).

5.1 VSCF Method

In recent years there has been growing interest in extending the methodology of
electronic structure calculations to vibrational problems. The starting point is a
self-consistent-field (SCF) treatment of the coupling between normal modes leading
to the vibrational SCF (VSCF) method [44–47]. Whereas electronic coupling is
limited to pair interactions, there may be terms in the vibrational potential that
couple all 3N-6 normal modes. However, one may expect the importance of the
coupling to diminish rapidly as the number of coupled modes increases. Computer
codes now exist for VSCF calculations that include coupling up to four modes at a
time [48], which should almost always be adequate. By solving the VSCF equations
numerically one accounts for intramode anharmonicity completely (see further
below) and mode-mode anharmonic coupling within a mean field approximation.
This approach has the advantage that it does not rely on an expansion in orders
of perturbation theory. The treatment of mode-mode coupling can subsequently be
improved by applying various post-SCF methods just as in the case of the electronic
structure problem.

As discussed in Section 2, the lowest-order effects due to anharmonicity are
included as part of the nuclear relaxation contribution to vibrational NLO proper-
ties, whereas all other anharmonic effects are part of the curvature term. Assuming
that nuclear relaxation can be evaluated as described above we focus here on curva-
ture, which is determined by the zero-point vibrationally averaged properties, at
least in the static and infinite optical frequency limits. Given the potential energy
surface (PES), solution of the VSCF equations yield the mean field approxima-
tion for the zero-point vibrational energy. If the zero-point energy calculation is
repeated in the presence of electric fields of different magnitude (but fixed direc-
tion), then numerical differentiation provides the c-zpva static electrical properties
in the direction of the field. Note that, in principle, all anharmonic effects beyond
lowest-order are thereby taken into account. A first set of calculations based on the
VSCF approach has very recently been reported for a few small molecules [43].
In principle, a similar treatment may be carried out with the PES replaced by the
dipole moment or (hyper)polarizability surface. For electrical property surfaces the
zero-point average would be obtained by numerical integration using the VSCF
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wavefunction. The dipole moment yields the same information as the potential
energy (with one less numerical differentiation required) whereas � and � give the
infinite optical frequency vibrational hyperpolarizabilities.

In order to carry out a VSCF treatment a PES or corresponding property surface
is required. For the VSCF and VMP2 methods an ‘exact’ (up to a given order
in the number of coupled modes) numerical ab initio PES can be used. This is
a very important advantage with respect to the BK formulation which relies on a
power series expansion in the normal coordinates that is truncated at some relatively
low order. Other post-SCF procedures discussed below currently use a normal
coordinate expansion as well. This tremendously simplifies the calculations but may
also introduce significant errors as found in trial VMP2 calculations [43]. In cases
where there is a known large amplitude motion not along a normal coordinate, the
expansion can be carried out at individual points along the ‘reaction path’ for that
particular motion [49, 50].

5.2 Post-VSCF Methods

All of the methods available for improving the electronic SCF treatment are, in
principle, available for improving vibrational wavefunctions and properties. The
lowest level post-VSCF treatment is VMP2. A few VMP2 calculations have now
been carried out using the ‘exact’ numerical PES with up to 3-mode coupling terms
included [43]. In doing so it was found that the standard methodology employed
in the GAMESS quantum chemistry program had to be modified (for both VMP2
and VSCF) in order to obtain satisfactory electric field derivatives. The VMP2
results turn out to be adequate as long as the anharmonic mode-mode coupling is
not too large. No higher level treatments have been carried out for the ‘exact’ PES,
although full vibrational CI (FVCI) calculations were done for a PES truncated at
the quartic terms and, in some instances, further modified to ensure proper behavior
of the potential. The key to extending the VCI [51–53] calculations so as to avoid
truncation lies in finding a convenient way to truncate the number of states that
are included without, of course, losing significant accuracy. Some progress along
these lines has been recently been achieved in connection with the related problem
of calculating Franck-Condon factors [54]. Other approaches that may eventually
prove fruitful are coupled cluster methods (VCC) [55] and, especially for quasilinear
molecules, the renormalization group method [56, 57].

6. BASIS SET REQUIREMENTS AND TREATMENT
OF ELECTRON CORRELATION

6.1 Basis Set Requirements

The basis set that should be used for a given calculation depends, of course, on
the desired accuracy. It also depends on the property, the nature of the system,
and the level of treatment. For NLO applications �-conjugated organic molecules
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are of particular interest. These molecules are usually extended spatially in one
dimension and the longitudinal component of the (hyper)polarizability tensor tends
to be dominant. As a general rule, it has been found that the atomic basis necessary
to achieve a given accuracy is smaller for the longitudinal electronic properties in
such systems than it is for the perpendicular properties (or for the properties of
more compact molecules) [58, 59]. The justifying argument is that basis functions
on neighboring atoms compensate for deficiencies on any one atom. Other rough
general rules for the electronic properties are that basis set requirements increase
with the order of the property and the level of correlation treatment. For vibrational
(hyper)polarizabilities only limited studies on medium-size organic molecules have
been carried out [21], but the same generalizations appear to be valid. In addition,
it seems that the basis set requirements increase with the order of anharmonicity. In
the vibrational (hyper)polarizability studies it turns out that the 6-31G basis, often
used in NLO calculations, does not always provide even qualitative accuracy. On
the other hand, in almost all instances the 6-31+G(d) basis has given adequate
results (10% accuracy) at the MP2 level for the total contribution and for each of
the individual terms.

6.2 Treatment of Electron Correlation by ab initio Methods

The effect of electron correlation on electronic and vibrational (hyper)polariz-
abilities can be quite important. Typical increases or decreases in individual
contributions to � and � are about a factor of two, but range up to an order of
magnitude [21, 34, 60, 61]. They originate indirectly from the change in geometry
and directly from the change in the electronic charge distribution. In �-conjugated
organic molecules a large geometry effect can occur because the properties are
very sensitive to the bond length alternation. As compared to QCISD, the MP2
method adequately reproduces the effect of correlation on the relative magnitude
of the various vibrational (and electronic) contributions to each property and, in
addition, gives a reasonable prediction for the individual terms. However, higher
level methods are necessary to obtain quantitative estimates for the latter. For
medium-size molecules (∼10 first row atoms) such calculations are feasible by
taking advantage of field-induced coordinates [36, 37]. However, for the larger
systems that are often of interest as NLO materials even an MP2 treatment may
prove quite tedious. This suggests that it might be worthwhile to consider DFT as an
alternative.

6.3 The DFT Alternative

It is now well-established [62–68] that there is a fundamental problem with DFT
electrical property calculations done on extended chains using conventional func-
tionals. Results obtained overshoot the correct values and the error grows dramat-
ically, especially for nonlinear polarizabilities, as the chain length increases. The
error has been traced to a poor treatment of electron exchange [63, 69, 70]; the DFT
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exchange potential should produce a counteracting field but conventional potentials
do not. Although some progress has made at solving this problem by introducing
the current density as an additional variable [66–68] the most promising approach
at this time appears to be through the use of an optimized effective potential (OEP)
[71, 72]. An efficient OEP procedure that has recently been developed [73, 74]
has now been applied for exact exchange (OEP-EXX) [70, 75] and been shown to
largely eliminate the dramatic overestimation problem. Of course, there remains a
significant correlation effect which is not accounted for by this procedure. Unfortu-
nately, conventional DFT correlation functionals are unsuitable for such purposes
since their effect on calculated electrical properties is minimal. However, OEP-
EXX does open the door for incorporating improved functionals in an efficient
DFT procedure that will avoid much more costly ab initio treatments. Work is in
progress towards that end.

7. RESONANT NLO PROPERTIES

In this section we consider the role of molecular vibrations in resonant L&NLO
properties. These properties govern the intensity of light absorption (or emission)
accompanying the transition between two vibronic energy levels. Of interest here is
one- and two-photon absorption (OPA and TPA). Applications of TPA, in particular,
include three-dimensional optical data storage and photodynamic therapy.

7.1 General Theory of OPA and TPA

We focus on absorption from the ground electronic state to some excited electronic
state �. The OPA intensities are determined by the imaginary part of the linear
polarizability whereas the TPA intensities are governed by the imaginary part of the
second hyperpolarizability expression for the intensity-dependent refractive index
(i.e. Im����� �−�
��−�����. In the former case the intensity will be significant
only when the incident photon frequency (�) coincides, or nearly coincides, with
the energy difference between the ground state and the excited state �. For TPA
the energy difference must nearly coincide with 2� in order to have simultaneous
absorption of two photons.

Expressions for vibrational OPA [76] and TPA [77–86] may be derived starting
from the same SOS vibronic (hyper)polarizability formula used by BK for non-
resonant processes except that now we are specifically interested in the imaginary
component. Thus, using the linear polarizability as an example, we have:

(29) Im����−�
�� = �−1 ∑′
K�k

⎛
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⎠
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where the primes indicate exclusion of the �0� 0> state in the sum over all vibronic
states. The phenomenological damping terms i�kK/2 that appear here allow us to
deal with the resonant and near-resonant region, where singularities would otherwise
occur. At or near a resonance there will be one term in the SOS for which �kK ≈
��K = �� while all other terms are considered to be negligible [77].

In the case of TPA we use the analogous expression for Im����� �−�
��−����
and the corresponding resonant condition is �kK ≈ 2��K = ��. After eliminating
the non-resonant states in the sum over K, we proceed as in the BK treatment of non-
resonant NLO. Thus, for all remaining intermediate states, except those involving
the electronic ground state, we use the clamped nucleus approximation for the
energy denominators. This is valid for TPA as long as there are no electronic one-
photon resonances or near-resonances at the optical frequency �. If such resonances
do occur, they require a treatment similar to ordinary OPA. That leaves a sum
over vibrational states associated with the ground electronic state and with the two-
photon resonant state. The imaginary part of this sum is the vibrational TPA. Using
a curly bracket notation analogous to the square brackets of the BK treatment one
obtains [77]:

(30) Im�v
���� �−�
��−���� = {

�2
}+{

�2�
}+{

�4
}

Note that, in contrast with the corresponding non-resonant process, there is no
���� term. Furthermore, in addition to ground state electrical properties the curly
bracket expressions also contain transition dipole moments and polarizabilities. For
example,

(31)
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where the superscripts 0 or � have been used to indicate the electronic state.

7.2 Perturbation Treatment

As in the BK treatment of non-resonant properties double perturbation theory may
be used to evaluate the curly bracket quantities. The curly brackets are more difficult
to evaluate than square brackets due to the presence of transition, as well as ground
state, electrical properties.

7.2.1 Overall procedure

As in the BK procedure, the electrical properties and the potential energy surface
may be expanded as a Taylor series in the normal coordinates. Orders of pertur-
bation theory are defined in the same way as for the non-resonant case. Electrical
property terms that are quadratic, cubic, � � � in the normal coordinates are taken
to be first-order, second-order, � � � ; terms in the potential energy function that are
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cubic, quartic, � � � are defined to be first-order, second-order, � � � For the electrical
properties it is convenient to employ the electronic ground state normal coordinates
in the expansion. Then the transition dipole moments and polarizabilities can be
written as a sum of terms each of which involves an easily evaluated normal coor-
dinate integral multiplied by a Franck-Condon (FC) integral. Hence, the calculation
of FC integrals is the key step in the procedure.

7.2.2 Evaluation of FC and related integrals

In the literature one can find several methodologies to evaluate FC integrals at
the harmonic level. Most of them [87–95] are based on the generating function
approach of Sharp and Rosenstock [96], or the recursion relations of Doctorov,
Malkin, and Man’ko [97]. However, including vibrational anharmonicity implies a
large increase in computational cost and in the complexity of formulation. Current
methods for including anharmonicity are either limited in practice to triatomic
molecules [98–101] or assume separability of the normal modes, which means that
only diagonal (in the normal modes) anharmonicity terms are taken into account
[102, 103]. Recently, a simple new method has been developed for calculating
accurate FC factors including non-diagonal (i.e. mode-mode) anharmonic coupling
and Duschinsky rotations [104]. This method was used to successfully simulate the
C2H+

4 X̃2B3u ← C2H4X̃
1Ag band in the photoelectron spectrum [54].

In formulating this new methodology one begins by taking the difference of
the Schrödinger equations for nuclear motion in the ground and excited electronic
states. Then, using the Hermitian property of the vibrational Hamiltonian, it is easy
to show that [104]:

(32)
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vg
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In Eq. (32) Ĥg, �g
vg

and Eg
vg

are the vibrational Hamiltonian, wavefunction and

energy of the ground electronic state; Ĥe, �e
ve

and Ee
ve

are their counterparts for

the electronic excited state; and Svgve
=

〈
�g

vg

∣
∣�e

ve

〉
is an FC overlap integral. Upon

expanding �g
vg

in the complete set of vibrational eigenfunctions for the excited
electronic state, and recognizing that the total nuclear kinetic energy operator is
the same for Ĥg and Ĥe, one obtains a set of homogenous linear simultaneous
equations for a given vg:

(33)
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∣�e

ve

〉
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��eve

]
= 0�∀ve

Eq. (33), together with the usual normalization condition, can readily be solved
in principle for the FC Svg vector. In practice, however, this is an infinite set of
equations that must be truncated (see further below) to obtain a solution.

In order to incorporate Duschinsky rotations and anharmonicity the potential
energy difference V̂ g − V̂ e is expanded as a power series in the excited electronic
state normal coordinates, Qe using the familiar relation Qg = JQe +K between the
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ground state normal coordinates, Qg, and Qe. Here J is the Duschinsky rotation
matrix given by J = Lg†Le and K = Lg†R arises because of the shift in equilibrium
geometry. Thus R is the difference between the ground state equilibrium geometry
(in mass-weighted Cartesian coordinates) and the excited state equilibrium geom-
etry, while Lg and Le are the unitary matrices that transform from mass-weighted
Cartesian displacement coordinates to normal coordinates (i.e. Qg = Lg†Xg and
Qe = Le†Xe�. The effect of anharmonicity can be accounted for by perturbation
theory. For instance, the first-order perturbation equation is given by:
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In Eq. (34) first-order corrections to the vibrational wavefunctions and energies
are determined by the terms in V̂ g and V̂ e that are cubic in the normal coor-
dinates. This equation is solved imposing the first-order normalization condition
(i.e. S�1�†

vg S�0�
vg = 0�.

The most critical step in this new procedure is the truncation of the vibrational
basis set for the excited electronic state. This basis set must contain all functions
necessary to obtain accurate FC factors, but must also be small enough for the calcu-
lations to be efficient. The algorithm used involves an iterative build-up of the basis
set by increasing the range of vibrational quantum numbers while, simultaneously,
removing unnecessary functions [54].

7.3 Future Variational Treatment

Initial results obtained for TPA and for photoelectron spectra of small systems, show
that anharmonicity must be included in the calculation of FC factors to reproduce
experiment [54, 77, 104]. However, it is difficult to treat larger anharmonic systems
by means of perturbation theory. Such systems can be handled by applying the
variation/perturbation methods of electronic structure theory that have been, and
continue to be, extended to the vibrational Schrödinger equation as discussed earlier.
The FC integrals that appear in the equations for resonant (hyper)polarizabilities
may be calculated employing approaches like VSCF, VMP2, VCI and VCC. That
will allow us to include anharmonic contributions to all orders and thereby remove
the intrinsic limitations of the perturbation expansion in terms of normal coordinates.

8. FROM MOLECULES TO INFINITE PERIODIC POLYMERS

8.1 Finite Oligomer Method

In the quest for systems having large NLO properties one is often interested in
quasilinear stereoregular pi-conjugated polymers. Although such polymers in prac-
tice have a finite conjugation length, the infinite chain limit is a useful model.
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Early calculations for infinite polymers were based on extrapolating the properties
of finite oligomer chains. However, extrapolation can be difficult because hyper-
polarizabilities converge slowly with chain length and the functional form for the
dependence on the number of repeat units is unknown. In dealing with these prob-
lems perhaps the most important observation to make is that defining the property
per repeat unit as P�N�−P�N−1� leads to much more rapid convergence than the
alternative, i.e. P�N�/N [105, 106]. This is because chain end effects are largely
cancelled in the former expression. In practice, however, it may not be possible in
some cases to use that expression when numerical errors lead to erratic behavior as
a function of N . Another useful ‘trick’ is illustrated by the following example. In
calculations on linear polyene chains [107] it has been found that the longitudinal �
converges slowly with chain length at both the HF and MP2 levels. The ratio of
the HF and MP2 values, on the other hand, converges a lot more rapidly. Thus,
if HF calculations are feasible on chains of sufficient length to obtain a reliable
extrapolation to the HF polymer result, then far shorter chains suffice to deter-
mine the corresponding MP2 value. This is fortunate considering the much longer
computation times required for MP2, as opposed to HF, calculations. The ratio
method just described is a general approach that has been successfully applied in a
number of different circumstances.

As far as the extrapolations per se are concerned, a reasonably satisfactory
‘stability’ procedure has been developed [105, 108]. This procedure utilizes a
variety of ad hoc fitting functions and data subsets to obtain a large number of
extrapolated values. Then, those values that show large variations with respect to
systematic extension of the fitting functions and/or data sets are eliminated leaving
a reduced set. From the latter one can obtain both a mean value for the infi-
nite chain property and an error estimate. There is also a mathematically more
rigorous approach to extrapolation that is based on the use of sequence trans-
formations to accelerate convergence [109]. Although sequence transformations
are promising, further studies are necessary since they have been applied only
to the field-free problem. Finally, we mention a novel Hartree-Fock ‘elongation’
algorithm [110–114] currently under development. This algorithm makes finite
oligomer calculations feasible for longer chains than could otherwise be done by
virtue of a linear scaling technique whereby monomers are successively added to a
growing chain.

8.2 Periodic Boundary Conditions and Electric Field Polarization

For a long time the finite oligomer approach was the only method available for
determining linear and nonlinear polarizabilities of infinite stereoregular polymers.
Recently, however, the problem of carrying out electronic band structure (or crystal
orbital) calculations in the presence of static or frequency-dependent electric fields
has been solved [115, 116]. A related discretized Berry phase treatment of static
electric field polarization has also been developed for 3D solid state systems
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[117–120]. Difficulties arise in the band structure treatment for quasilinear peri-
odic chains because the scalar dipole interaction potential is neither periodic nor
bounded. These difficulties are overcome in the approach presented in [115] by
using the time-dependent vector potential, A, instead of the scalar potential. In that
formulation the momentum operator p is replaced by � = p + �e/c�A while the
corresponding quasi-momentum k becomes � = k+ �e/c�A. Then, a proper treat-
ment of the time-dependence of �, leads to the time-dependent self-consistent field
Hartree-Fock (TDHF) equation [115]:

(35)
[

F�k�− iS�k�
�

�t

]

C�k�+eE�t�

[

M�k�+ iS�k�
�

�k

]

C�k� = S�k�C�k���k�

where E�t� is the time-dependent electric field. In Eq. (35) F = h +D�E�
[2J – K]� S� C and � are the usual k-dependent Fock, overlap, orbital coefficient
and Lagrangian multiplier matrices. The term proportional to E on the lhs is the
replacement for the usual scalar potential used in finite chain calculations. From the
formulas given in [115] M�k� can be immediately recognized as a sawtooth dipole
potential term, whereas the �/�k term is associated with a flow of charge through
the system. Taken together the two terms in square brackets represent the polariza-
tion of the infinite polymer induced by the field. In solving Eq. (35) by perturbation
theory the non-canonical method (i.e. non-diagonal �) due to Karna and Dupuis is
utilized [123]. An exactly analogous treatment is applicable to Kohn-Sham density
functional theory (KS-DFT) with the Fock matrix replaced by the corresponding
KS matrix. However, as discussed above, KS-DFT cannot be recommended for this
purpose until a satisfactory correlation potential is developed. Although it is clear
that a time-dependent MP2 formulation can be developed along the same lines as
above, the relevant equations have not been presented as yet.

8.3 Perturbation Treatment of Electric Fields

The quantities F(k), C(k) and ��k� all depend upon the electric field(s). By
expanding both sides of Eq. (35) as a power series in the field(s) and, then, equating
terms of like power and frequency-dependence one obtains crystal orbital perturba-
tion equations that are analogous to those of conventional (non-canonical) TDHF
theory for finite molecules [123]. In analogy with that conventional treatment, the
electrical properties can be obtained to all orders by evaluating the average value of
the polarization term (i.e. the second term in square brackets on the lhs of Eq. (35)).
Finally, by suitable algebraic manipulations one can derive a crystal orbital 2n+1
rule that is analogous to the molecular 2n+1 rule.

In zeroth-order � is chosen to be diagonal and the result is the ordinary field-free
Hartree-Fock crystal orbital equation. As usual C(k) is complex for arbitrary k.
Apart from this aspect the most important difference between the crystal orbital and
molecular TDHF perturbation equations is the presence of the �C/�k term in the
former. Since �C/�k is multiplied by E, field-free derivatives of C(k) with respect
to k appear for the first time in the first-order perturbation equations. These field-free



124 Kirtman and Luis

derivatives can be obtained, for the most part, by analytically differentiating S(k)
and the zeroth-order F(k) with respect to k. However, as shown in [116] �C/�k
also depends upon the choice made for the arbitrary phase factors that multiply
the orbital eigenvectors. The corresponding phase angles must vary continuously
with k in order to have well-defined derivatives. Although this requirement will
not automatically be fulfilled in a crystal orbital calculation, a satisfactory (but not
unique) procedure for imposing continuity has been provided in [116]. Even so, the
zeroth-order phase angle is inherently determined only up to an arbitrary integer
multiple of ka where a is the unit cell length. Beyond zeroth-order, perturbation
corrections to �C/�k can be handled in a normal manner without introducing any
further ambiguity. The arbitrariness in the phase angle does not affect calculated
(hyper)polarizabilities but the calculated dipole moment may differ from the true
value by an integer multiple of a. Fortunately, the dipole moment is normally known
well enough to eliminate the unintended contribution. This analysis accounts for the
behavior of the calculated dipole moment in infinite polymers that had previously
not been understood.

8.4 Finite Fields

In order to determine vibrational NLO properties efficiently it is necessary to carry
out finite field geometry optimizations as we have seen. In principle, Eq. (35)
can be used directly for this purpose. There are, however, practical considerations
related to convergence of the self-consistent field (SCF) iterations. The most obvious
iterative sequence is: (i) determine the zero-field solution; (ii) evaluate �C/�k; (iii)
substitute �C/�k from the previous step into the TDHF equation; (iv) solve for
C(k) and return to step (ii); etc. until convergence is achieved. In order to carry
out step (iv) the normalization condition C†SC = 1 may be used to write �C/�k =
���C/�k�C†SC. Then the multiplicative form of the field-free equation is preserved
and the polarization matrix will remain Hermitian for all iterations. Investigations
are underway to test the convergence properties of the above iterative sequence and
to determine how the convergence properties depend upon the magnitude of the field
as well as the number of k-points that are sampled in the band structure treatment.

9. WHICH IS THE BEST METHOD FOR CALCULATING
VIBRATIONAL CONTRIBUTIONS TO NONLINEAR
OPTICAL PROPERTIES?

There are three main factors to consider in deciding on the best method to compute
vibrational NLO properties: i) the frequency of the optical fields, ii) the size of
the chemical system, and iii) the anharmonicity of the (static) field-dependent PES.
When the frequencies of the optical fields are comparable to vibrational frequen-
cies, the only option is the BK procedure presented in Section 1. Nevertheless, the
computational cost of such calculations can be radically reduced by combining BK
expressions with frequency-dependent field-induced coordinates (see Section 3).
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In the static limit or at visible/near UV wavelengths, the nuclear relaxation/curvature
procedure is suitable (see Section 2), but the BK method may still be the best choice
if the molecule has less than a total of 20 atoms and the PES is nearly harmonic.
For larger chemical systems the only feasible methods are the nuclear relax-
ation/curvature procedures based on the Finite Field technique and field-induced
coordinates. These procedures are also preferred for small chemical systems when
the anharmonicity is such that one has to go beyond the lowest-order terms. In
general, this will occur whenever there are large amplitude vibrational motions
and/or large electrical anharmonicities. Under such circumstances it may happen
that the perturbation treatment is non-convergent (see Section 4), in which case
the Finite Field technique must be combined with vibrational SCF and post-SCF
methods to obtain the required zero-point vibrational average energies and electrical
properties (see Section 5). Currently all approximate procedures for calculating
the vibrational contribution to resonant NLO properties are based on perturbation
theory (see Section 7). In this case, however, the PES of a second state is also
involved. Hence, the likelihood of convergence problems is greater than for non-
resonant processes. This is particularly so when evaluating Franck-Condon, and
related, factors associated with highly excited vibrational states. Finally, for reason-
able accuracy it is advisable to use MP2/6-31+G or a higher level treatment to
evaluate the PES (see Section 6). Conventional DFT should not be employed for
longitudinally extended systems pending the design of a satisfactory potential for
electron correlation to accompany an optimized exchange potential.

Infinite stereoregular polymers require special consideration (see Section 8).
Band structure techniques that parallel the methodologies formulated for ordinary
molecules are evolving rapidly. However, the Finite Field procedures need further
development and we recommend that, for the time being, extrapolation of finite
oligomer calculations should be employed.
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CHAPTER 4

SOS METHODS IN CALCULATIONS
OF ELECTRONIC NLO PROPERTIES
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Abstract: The sum-over-states technique which is extensively used in calculations of nonlinear
optical properties, is presented and discussed. We focus on the electronic contributions
to first- and second-order hyperpolarizability. The SOS approach to the calculation of the
multiphoton absorption is also discussed. The various approximations to exact sum-over-
states formulae are presented. In particular, we describe the so-called few-levels models,
which are widely used in qualitative analysis of nonlinear electrical properties

Keywords: First-order hyperpolarizability; second-order hyperpolarizability; sum-over-states method;
multiphoton absorption; nonlinear optics

1. INTRODUCTION

In the past two decades, a significant effort has been made towards development
of reliable computational techniques for calculations of nonlinear optical properties
of molecules. This has been reflected in many methods for calculations of first-
(�) and second-order (�) hyperpolarizabilities implemented in widely available
quantum-chemical packages. However, the purely resonant properties, like two-
and three-photon absorptivities have been coded in only a few of them. Also the
inclusion of the influence of environment on NLO properties made a significant
step forward in comparisons of theoretical and experimental data for large organic
systems.
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Among several different approaches to the problem of the evaluation of the
nonlinear response of molecular systems, one can distinguish finite field (FF)
approaches [28, 47], response theory [89, 90], and sum-over-states (SOS) methods
[91, 113]. Those three approaches are available in many flavours. In this chapter
we shall describe the last approach to the computation of resonant and non-resonant
electronic nonlinear optical properties of molecules.

Obviously, there are numerous possible ways of classifying methods of compu-
tations of NLO properties. In the case of SOS techniques we classify the methods
according to the quality of representation of electronic excited states.

One of the methods most frequently used in calculations of electronic excited
states is the configuration interaction technique (CI). When combined with semiem-
pirical Hamiltonians the CI method becomes an attractive method for investigations
of electronic structure of large organic systems. Undoubtedly, it is the most popular
method for calculations of electronic contributions to NLO properties based on the
SOS formalism. The discussion of the CI/SOS techniques is presented in Section 4.

In early years of quantum chemistry, several theoretical papers were devoted
to calculations of linear and nonlinear responses of molecules to the electric field
perturbations using the Uncoupled Hartree-Fock (UCHF) method. In comparison
with the CI ansatz, the UCHF is less accurate in the description of electronic
structure of molecules. Since this method was of some interest in computations of
NLO properties we present this method in Section 5.

Much of the interest in the field of molecular nonlinear optics has been focused
on the so-called structure-property relationships. The most interesting systems are
organic �-conjugated molecules. The experience gained in this area indicates that
organic systems with low-lying energy states of charge-transfer character exhibit
relatively large nonlinear optical response in comparison with similar compounds
without such electronic states. The perturbation theory-based analysis gives a
rational explanation to these observations. Since the SOS formulae express the
nonlinear optical properties in terms of energies and dipole moments of excited
states, transition moments between various excited states, it is logical and conve-
nient to interpret the NLO properties in terms of these parameters. Such an approach
underlies the so-called few-states models and is presented in Section 6.

The evaluation of the vibrational counterpart of nonlinear optical properties is not
explicitly discussed in this review. This area is covered by appropriate references.
Methods to compute the vibrational contributions to linear and nonlinear optical
properties shall be presented by Kirtman and Luis in one of the chapters of the
present book.

The aim of the present contribution is to review computational techniques based
on the SOS formalism. We shall focus on electronic contributions to first- (�) and
second-order (�) hyperpolarizabilities. With the exception of the imaginary part
of �, the non-resonant properties shall be discussed. Some attention will be given
to the so-called few-states models, as being very useful ‘by-product’ of the SOS
formalism.
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2. BASIC DEFINITIONS

In the presence of static uniform electric field, the total energy of molecular system
can be expressed as a Taylor series:

E�F� = E�0�−��F� − 1
2!���F�F� − 1

3!����F�F�F�(1)

− 1
4!����	F�F�F�F	 − 
 
 


where E�0� denotes energy of a molecule without external perturbation. The Greek
symbols ��� 
 
 
 � label tensor quantities. Single subscript denotes the first-rank
tensor, double subscript stands for the second-rank tensor, etc. These subscripts
are chosen to be Cartesian co-ordinates. In the whole chapter we adopted the
Einstein summation convention. The above presented expansion is also known as
the T-convention [115].

On the assumption that external electric field separately influences the electronic
and nuclear motions, we may split the response of a molecule in two parts, namely
electronic and vibrational:

� = �e +�vib(2)

� = �e +�vib(3)

For the discussion of the vibrational counterpart of NLO properties we refer to
original papers and reviews [5, 14, 16, 18, 19, 20, 26, 38, 60, 99].

The general SOS formula for the n-th order polarizability tensor component
derived from time-dependent perturbation theory, Xn
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where �−�1�2�


�n denotes the operator permuting the pairs ���−��� ����1� 
 
 
 

The subscripts a1� a2� 
 
 
 � an run over excited states of the system with energies
��1���2� 
 
 
 ���n, respectively. These states, depending on the level of aproxima-
tion, may be purely electronic, vibronic or rotational-vibrational-electronic. In the
above formula we adopted the notation used by Bishop [15]. We find this notation
compact and elegant. One immediately identifies X1

���X2
��� and X3

���	 as ��������

and ����	, respectively.
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3. ELECTRONIC NLO PROPERTIES

The sum-over-states expression for the electronic first-order hyperpolarizability (�)
can be written as:

�����−���1��2�(5)

= �−2
∑

�−�1�2

∑′
K

∑′
L

�0��̂��K��K� ˆ̄���L��L��̂��0�
��K −����L −�2�

where ˆ̄� is the fluctuation dipole moment operator ˆ̄� = �̂ − �0��̂�0� and � =
�1 +�2. The symbol �K� stands for the electronic state K. The primes appearing
in the above equation indicate the exclusion of the ground electronic state from
the summation. The energies in the denominators are defined with respect to the
ground electronic state:

(6) �K = EK −E0

�

Formally, all electronic states should be included in Eq. (5). However, most of
the quantum-chemical methods employ the LCAO-MO method where finite set of
the so-called basis functions is used. Hence, only a finite set of electronic states
can be used in the summation given by Eq. (5).

In order to compare theoretical data with the quantity experimentally available for
polar molecules, the calculated components of the �ijk tensor are to be transformed
to the vector quantity defined as:

(7) �� = ∑

�=x�y�z

����

���
where

(8) �� = 1
5

∑

�=x�y�z

(
���� +���� +����

)

and ��� is the dipole moment.
It is important to stress the fact that most of the SOS calculations of first-order

hyperpolarizbility for organic systems were performed using semiempirical methods
combined with the various variants of the CI technique [1, 2, 6, 7, 11, 34, 41, 43,
44, 49, 52, 53, 57, 82, 83]. We will address this subject in more details in Section 4.

With all the symbols defined previously, the SOS equation defining the electronic
second-order hyperpolarizability (�) reads:

����	�−���1��2��3� = �
�+�
���	�−���1��2��3�+�

�−�
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��K −����L −�3���L +�2�

}
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The average value of second-order hyperpolarizability is defined as:

(10) ��� = 1
15

������ +����� +������

In the present contribution the discussion of the NLO response is restricted
to off-resonant case. The only exception is the purely resonant quantity,
namely imaginary part of second-order hyperpolarizability in the resonant regime
(Im��−����−����). This quantity describes the process of simultaneous absorp-
tion of two quanta. The two-photon absorption (TPA) process is much better
understood than the three-photon absorption. The basic quantity associated with
the two-photon absorption process is the two-photon absorption tensor (S0F ). In the
most general case referring to two different photons (different polarizations ��1 �= ��2

and different energies ��1 �= ��2) S0F
�� is given by [75, 81]:

(11) S0F
�� = �−1

∑
K

{
�0���1�̂��K��K���2�̂��F�

�K −�1

+ �0���2�̂��K��K���1�̂��F�
�K −�2

}

where ��1 + ��2 should satisfy the resonance condition and �K���1�̂�L� is the
transition moment between electronic states K and L, respectively.

Since in most experiments one source of photons is used, we can substitute the
angular frequencies �1 and �2 for 0
5 ·�F .

The averaging procedure of the two-photon absorption tensor over all orientations
of the absorbing molecule leads to [75, 81]:

�	0F� =
〈∣
∣S0F

����̄1� �̄2�
∣
∣2
〉

(12)

= 1
30
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(
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(
S0F

��

)∗
H
}

where F = F��̄1� �̄2�� G = G��̄1� �̄2�� H = H��̄1� �̄2� are the polarization variables.
Since in the Eq. (11) we include both the ground �0� and the final �F� state
and the tensor elements are real, the S0F tensor is symmetric. In the case of two
linearly polarized photons, all three polarization variables are equal to two and the
two-photon absorptivity can be wriiten as:

(13) �	0F� = 1
15

∑
��

{
S0F

��

(
S0F

��

)∗ +2S0F
��

(
S0F

��

)∗}

The possibility of simultaneous absorption of two quanta was concluded on purely
theoretical basis by Göppert-Mayer in 1931 [64]. First experimental observations
of this process in organic systems were reported in early 1960’s by Peticolas
et al. [96, 97]. Basically, there are two methods of calculation of two-photon
absorptivities. The first technique is based on response theory [90]. The two-photon
absorption cross section can be determined by the single residue of the cubic
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response function. Alternatively, one can extract the two-photon transition moments
from the single residue of the quadratic response function.

Most of the calculations of the two-photon absorptivities at the ab initio level
were performed using the response theory [61, 63, 65, 66, 86, 87, 112]. Recently,
Salek et al. [102] presented the implementation of the density-functional theory for
the linear and the nonlinear response functions. In particular, in their most recent
paper they reported on calculations of the two-photon absorption cross sections in
terms of the single residue of the quadratic response function [101].

The second method commonly used for the evaluation of the two-photon absorp-
tivities is the conventional sum-over-states technique. In general, the summation
over excited states converges very slowly. However, the molecules with low lying
excited state of charge-transfer character are frequently exception to this state-
ment. Most of the calculations employing this method have been performed at the
semiempirical level of theory [3, 10, 13, 35, 46, 67, 95, 127].

In their recent papers, Tretiak et al. proposed the technique for calculations of
TPA properties which is to some extent the combination of the methods described
above [45, 74, 108, 109]. The method proposed by Tretiak takes an advantage of the
quantities that can be calculated within the linear response theory framework. The
remaining quantities that appear in the expressions for the two-photon absorption
cross section can be evaluated as the functional derivatives based on the time-
dependent density functional (TDDFT) method. Although the response theory is
involved in their evaluation, it is important to note that the TPA cross section is
calculated via SOS formulae.

During the past decade, an increasing interest in multiphoton absorption of
organic molecular systems has been observed. There were many attempts to estab-
lish the so-called structure-property relationships for organic systems using compu-
tational techniques [3, 10, 46, 51, 58, 66, 87, 95, 118, 119, 125, 126, 127].

4. CI METHOD AND SOS FORMALISM

As mentioned in section 1, the combination of the CI method and semiempir-
ical Hamiltonians is an attractive method for calculations of excited states of
large organic systems. However, some of the variants of the CI ansatz are not
in practical use for large molecules even at the semiempirical level. In particular,
this holds for full configuration interaction method (FCI). The truncated CI expan-
sions suffer from several problems like the lack of size-consistency, and violation
of Hellmann-Feynman theorem. Additionally, the calculations of NLO properties
bring the problem of minimal level of excitation in CI expansion neccessary for the
correct description of electrical response calculated within the SOS formalism.

In the case of calculations of electronic contributions to � the problem of inclusion
of double excitations is much more pronounced than in the case of computations
of �. This can be illustrated as follows. Let the electronic states appearing in Eqs. (5)
and (9) be classified as pure singly or doubly excited states. This is plausible under
assumption that no mixing of singly and doubly excited configurations with the
ground states occurs without the perturbation. According to the rules of evaluation
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Figure 1. The dependence of the static first-order hyperpolarizability �zzz on the number of electronic
states included in Eq. (5)

of the matrix elements between determinants for one-electron operators (i.e., �̂)
no doubly excited configurations appear in Eq. (5) for �. However, in the case
of Eq. (9), doubly excited configurations do make contribution to �. Obviously,
this picture is only an approximate one. Nevertheless, it illustrates the importance
of inclusion of doubly excited configurations in the calculations of second-order
hyperpolarizability using SOS approach. The problem of treating electron-electron
interactions (EEI) via configuration interaction method (CI) and its influence on
the � values was addressed in details by Pierce [98] and Morley et al. [83].

The most frequent method of calculations of excited state wave functions
appearing in Eq. (9) is the CI method. A given electronic state is obtained by the
diagonalization of the CI matrix. Two variants of the CI method are most popular,
namely configuration interaction with singles (CIS) and configuration interaction
with singles and doubles (CISD). Mono-excited coniguration interaction method
(MECI) or Tamm-Dancoff approximation are the synonyms of the former. As arg-
ued previously, in most cases the CIS method should be sufficient level of theory
for description of first-order NLO response. The results of semiempirical calcula-
tions of � for organic systems confirm this supposition [8, 57]. Fig. 1 presents the
results of calculations of �zzz component for p-nitroaniline molecule (PNA) at the
CIS level of theory using the GRINDOL Hamiltonian [55]. The values of the longi-
tudinal component, �zzz, are normalized with respect to the converged value, i.e. �
calculated with inclusion of 100 electronic states. The electronic excited states were
obtained by diagonalization of the CI matrix constructed from 600 singly excited
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configurations. As one can see, the convergence of �zzz with respect to the number
of electronic states is rather fast. 20 electronic excited states are sufficient to account
for the most of the response of PNA through third order of external perturbation.
The sign of � is consistent with the ab initio results [62, 104]. For most organic
push-pull systems the SCI/SOS level of theory is satisfactory in reproducing the
values of �.

The comparison of CIS/SOS and CISD/SOS results of calulations of � leads
to the opposite conclusions. The double and possibly higher order excitations are
mandatory to obtain the second-order hyperpolarizability consistent with experi-
mental data. The total SOS formula for � can be divided into two parts, namely ��+�

and ��−�. The convergence of these terms with respect to the number of electronic
states included in summation is presented in Figs. 2 and 3. The first figure show
the longitudinal component ��zzzz�, while the second figure present the average
value ���.

As previously, the GRINDOL/SCI/SOS level of theory was employed in order to
illustrate the importance of double substitutions. In the first case, the �zzzz becomes
negative for 300 excited electronic states. It is important to note that both ��+�

and ��−� are of the same order of magniute, but with different signs. Hence, even
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small changes caused by the inclusion of high-lying electronic states may lead to
wrong sign of �zzzz. In the second case presented in Fig. 3 the averaged second-
order hyperpolarizability is negative in the whole range of excited states included
in Eq. (9). Based on the data presented by Pierce [98] (Tables 1 and 3 in his paper)
one may conclude what follows: The values of � for most organic systems are
positive. In order to reproduce the correct sign for � one should include at least
doubly substituted configurations in the CI expansion.

It has been observed that the semiempirical SOS results for � are much higher than
the respective values obtained using other techniques (like FF approach) [57, 115].
One of the reasons of this discrepancy lies in the overestimated values of transition
moments ��K��̂�L�� [98, 115].

5. UNCOUPLED HARTREE-FOCK METHOD

The Uncoupled-Hartree-Fock method (UCHF) [31, 32, 50, 54, 85, 88, 100, 110]
is also referred to as the sum-over-orbitals (SOO) method. In this technique, one
takes the unperturbed Hamiltonian H0 as a sum of one-particle Hamiltonians:

(14) H0 =∑
i
h0�i�



138 Bartkowiak and Zaleśny

with the perturbation being the sum of one-particle interactions:

(15) H ′ =∑
i
h′�i�

The eigenfunctions of the unperturbed Hamiltonian H0 are chosen to be the deter-
minants of the form:

(16) �� 0� = ���0�
1 
 
 
 ��0�

a 
 
 
 �
�0�
N �

where the subscript runs over the N spin orbitals. a�b� c� 
 
 
 denote the hole states,
while r� s� t� 
 
 
 are used for the particle states. The superscripts label the spin
orbitals being the solutions of the unperturbed eigenvalue problem:

(17) h0�
�0�
i = �

�0�
i �

�0�
i

The ground state wave function �� 0� is an eigenfunction of the Hamiltonian defined
by Eq. (14):

(18) H0�� 0� =
(∑

a
��0�

a

)
�� 0�

where the sum expands over all occupied orbitals a. Since the perturbation H ′ can be
written as a sum of one-particle interactions, we may write analogously to Eq. (18):

(19) �H0 +H ′���0� =
(∑

a
�a

)
��0�

where �a denote the energy of occupied orbital a in the presence of perturbation
H ′. The total energy of the perturbed system is:

(20) � =∑
a
�a

We may formally write down the perturbation expansion for the energy � and
introduce perturbation in explicit form, i.e. H ′ = −F�. The expressions for first-
��� and second-order ��� hyperpolarizabilities will be then given by:

�����0� = ������

{
∑

ars

�a����r��r����s��s����a�
��r − �a���s − �a�

(21)

−∑
abr

�a����r��b����a��r����b�
��r − �a���s − �b�

}

����	�0� = �����	�

{
∑

arst

�a����r��r��	�s��s����t��t����a�
��r − �a���s − �a���t − �a�

(22)

+∑
abcr

�a����r��b��	�a��c����b��r����c�
��r − �a���r − �b���r − �c�

−∑
abrs

�a����r��r��	�s��b����a��s����b�
��r − �a���s − �a���s − �b�

−∑
abrs

�a����r��b��	�a��r����s��s����b�
��r − �a���r − �b���s − �b�

−∑
abrs

�a����r��b��	�s��r����b��s����a�
��r − �a���r − �b���s − �a�

}
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In the above expressions � labels the appropriate symmetrizer. The way of deriving
frequency-independent � and � outlined above is also known as the orbital pertur-
bation theory. Alternatively, one can start from general expressions for � and �
obtained within time-dependent perturbation theory. The sum over excited states
follows then from the summation over excited determinants. The evaluation of
matrix elements is done using the Slater rules. The neglect of the frequency-
dependence in SOS expressions leads to Eqs. (21) and (22). The detailed description
of this procedure can be found in the paper of Jacquemin et al. [42]. The resulting
expressions for � and � are only crude approximations to those arising from more
advanced treatments. Instead of the energy differences between excited states of
the system and the ground state energy, the orbital energy differences appear. For
excited states with dominant singly substituted determinant ��r

a� the difference
��r −�a� is usually a poor representation of the excitation energy. In Table 1 there
are presented the results of calculations of NLO properties for the PNA molecule
together with the values of energies of HOMO and LUMO. The excitation energy
to the lowest-lying excited state of the charge-transfer character for PNA is about
4 eV. The CIS wave function for this state is dominated by configuration ��LUMO

HOMO�.
The excitation energy estimated as HOMO–LUMO difference gives the value about
10 eV. It can be a simple explanation of the fact, that UCHF hyperpolarizabilities
are usually underestimated in comparison with more advanced treatments. Simple
illustration of the importance of the energy differences appearing in denominators
in Eqs. (21) and (22) is presented in Table 5. As it is seen, the values of � and �
at the DFT level, are overestimated over an order of magnitude in comparison with
the HF results.

Hameka et al., has calculated polarizabilities up to third order for several organic
systems [40, 76, 77, 78, 121, 122, 123, 124]. In his pioneering papers, the nonlinear
polarizability was calculated by using sum over orbitals within the Hückel approxi-
mation. This approach was later improved by using extended Hückel method (EHM)
[123, 124]. The quality of EHM third-order electric susceptibility1 was tested by

Table 1. UCHF results of nonlinear optical properties of
p-nitroaniline molecule lying in xy plane. All values are
given in atomic units. The results are presented in the
so-called T-convention

HF/4-31G B3LYP/4-31G

�zzz 783 8870
�zzzz 48826 1288193
�HOMO −0
3268 −0
2251
�LUMO 0
0554 −0
0697
�� 0
3822 0
1554

1 In the original papers by Hameka et al., the quantity � is called susceptibility, but since they calculated
pure molecular response it should be rather referred to as the third-order polarizability or the second-order
hyperpolarizability.
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comparison with more advanced treatment, namely in Pariser-Parr-Pople (PPP)
calculations [121, 122, 123, 124]. The molecular excited states were calculated by
using configuration interactions with singles method at the PPP level.

More recent studies include calculations of NLO properties of polyene series
[4, 42] and various benzene derivatives [9, 24, 39, 105, 106, 107, 111]. Most recent
calculations based on the Uncoupled Hartree-Fock scheme were devoted to large
organic systems like fullerenes [103], nanotubes [116, 117], carbon cages [37],
oligomers [25] and polymers [92].

6. FEW-STATES MODELS

The popularity of the SOS methods in calculations of non-linear optical properties
of molecules is due to the so-called few-states approximations. The sum-over-states
formalism defines the response of a system in terms of the spectroscopic parameters,
like excitations energies and transition moments between various excited states.
Depending on the level of approximation, those states may be electronic or vibronic
or electronic-vibrational-rotational ones. Under the assumption that there are few
states which contribute more than others, the summation over the whole spectrum
of the Hamiltonian can be reduced to those states. In a very special case, one
may include only one excited state which is assumed to dominate the molecular
response through the given order in perturbation expansion. The first applications of
two-level model to calculations of � date from late 1970s [93, 94]. The two-states
model for first-order hyperpolarizability with only one excited state included can
be written as:

(23) �e
zzz�0� = 6�−2 ��K��̂z�K�−�0��̂z�0���0��̂z�K�2

�2
K

At first look, such an approximation seems to be very crude. However, there are
molecular systems for which such an approximation works quite well. An example
of such a molecule is p-nitroaniline. The results presented in Fig. 1 show that the
inclusion of the third electronic singlet state (with excitation energy near 4 eV) gives
the value of � close to the converged value for 100 electronic states in SOS method.
This is partially due to fortuitous cancellation of contributions from higher-lying
excited electronic states with excitation energies near 10 eV.

In a similar way it is possible to reduce the SOS expressions defining other
nonlinear optical properties. The two-photon transition moment within two-level
approximation reads:

(24) S0K
zz = 4

�0��̂z�K���K��̂z�K�−�0��̂z�0��
�K

where the summation over all intermediate electronic states is reduced to the final
electronic state �K�. The orientationally averaged two-photon absorptivity is then
given by:

(25) �	0K� = 16
5

(
S0K

zz

)2 = 16
5

�0��̂z�K���K��̂z�K�−�0��̂z�0��
�K
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The formulae for generalized few-state models for two-photon absorption with
numerical illustration at the ab initio level were given by Cronstrand et al. [29].
More recently, Cronstrand et al., have presented approximate expressions for three-
photon absorption with application to PNA and LiH molecules [30].

There were also some attempts to derive the few-states models for second-order
hyperpolarizability [23, 36, 48]. In the simplest case, i.e. within the two-level
approximation, we may write:

(26) �zzzz�0� = 24�−3 �0��̂z�K�2��K��̂z�K�−�0��̂z�0��−�0��̂z�K�4

�3
K

Although this approximation seems to be very rough there is an indication
that it works quite well for the betaine dye exhibiting strong negative solva-
tochromism [119].

6.1 Two-form Model

One of the most interesting applications of the few-state models in the interpretation
of the NLO properties of molecules is the two-form model proposed by Barzoukas
et al. [12, 21]. In the approach proposed by Barzoukas et al. [12, 21], the ground
state �0� of the system under study is reperesented as a linear combination of two
limiting resonant forms: neutral �N� and zwitterionic �Z� (see Fig. 4):

(27) �0� = cos
�

2
�N�+ sin

�

2
�Z�

while the excited electronic state �K� is given by:

(28) �K� = − sin
�

2
�N�+ cos

�

2
�Z�

Both �0� and �K� are assumed to be orthogonal. For small values of � the ground
state will be dominated by �N� and the excited state by �Z�. The opposite holds
for large values of � (� ∼ �). In the two-form model one introduces the coupling
element t:

(29) t = −�Z�H�N� = 1
2

V tan �

(
)n A

D+ (
)n

D
A–

Figure 4. Schematic representation of two limiting resonant-forms, namely neutral and zwitterionic
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where V is the energy gap between the two resonance forms is:

(30) V = �Z�H�Z�−�N �H�N�

Eq. (29) defines parameter �. Assuming transition dipole between two limiting
forms to be: �N ���Z� = 0 one can express ground state dipole moment (�0), excited
state dipole moment (�K), transition moment between states (�0K) and energy gap
(EK0) in terms of � parameter:

�0 = �0���0� = �N −�Z −�� cos �

2
(31)

�K = �K���K� = �N +�Z +�� cos �

2
(32)

�0K = �0���K� = �� sin �

2
(33)

E0K = 2t

sin �
(34)

where �� stands for dipole moments difference between two resonant forms:
�Z − �N . It is convenient to introduce one more parameter which describes the
extent of mixing of limiting forms2:

(35) � = − cos � = − V√
V 2 +4t2

Defined in such a way, the � parameter is proportional to �� and hence it becomes
a convenient quantity connecting molecular structure and amount of internal charge-
transfer in push-pull systems. Once the expressions for �0, �K , �0K and EK0 are
derived, one may relate the nonlinear optical properties (�, � and 	) to � parameter
[10, 12, 21]:

�e
zzz�0� = 6�−2 ��K��̂z�K�−�0��̂z�0���0��̂z�K�2

�K

(36)

= 3��3

8t2
sin4 � cos � = −��1−�2�2 3��3

8t2

�zzzz�0� = 24
�0��̂z�K�2��K��̂z�K��0��̂z�0��2 −�0��̂z�K�4

��K�3
(37)

= 3��4

16t3
sin5 ��5 cos2 � −1� = �1−�2�

5
2 �5�2 −1�

3��4

16t3

2 We use the symbol � here for the reason of compactness, although in the original papers the symbol
MIX was used.
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Figure 5. Evolution of non-linear optical properties (��� and 	) within two-state approximation as a
function of � parameter

In a similar way one may derive the expression for the two-photon absorptivity 	
as a function of �:

�	0F� = 16
5

�S0F
zz �2 = 16

5
�0��̂z�F���F ��̂z�F�−�0��̂z�0��

�F

=(38)

= ��4

5t2
sin4 � cos2 � = �2�1−�2�2 ��4

5t2

The evolution of �, � and 	 as a function of � parameter is presented in Fig. 5.
The two-form model has its roots in the valence-bond charge-transfer (VB-CT)

model derived by Mulliken [84] and used with minor modifications by Warshel et al.
for studying reactions in solutions [114]. Goddard et al. applied this VB-CT model
to study the nonlinear optical properties of the charge-transfer systems. [27, 59]. The
analysis of the relationship between electronic and vibrational components of the
hyperpolarizabilities within the two-state valence-bond approach was presented by
Bishop et al. [17]. Despite the limitations of the VB-CT model, it is very simple and
gives some insight into mutual relationships between nonlinear optical responses
through the various orders.

In his papers, Marder et al., have considered the relation between bond-legth
alternation (BLA) and non-linear optical properties of �-conjugated systems [22,
33, 68, 69, 70, 71, 72, 73, 79, 80]. As it was shown, the NLO properties strongly
depend on the BLA parameter. One can distinguish three forms of donor-�-acceptor
system: neutral, polymethine-like and zwitterionic. The variations of � and � for
different forms can be substantial. It is well know, that solvent molecules generate
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electric field across the push-pull systems. Depending on the polarity of the solvent
molecules, one may control the degree of internal charge-transfer in D-�-A system.
Thus, in the case of charge-transfer species we may find the correspondence between
the geometry (BLA) and internal charge-transfer which, due to the few-states model,
is connected with NLO properties.

7. FINAL REMARKS

The SOS method presented in this chapter is still of practical use in calculations
of large organic systems. In particular, many groups employ this technique for
calculations of multiphoton absorption. Probably, one of the most advantageous
features of this method is the possibility of analysis of the nonlinear optical proper-
ties of molecules in terms of contributions from electronic excited states. The most
common implementation of SOS formulae is based on the configuration interaction
expansion combined with semiempirical Hamiltonians. The fact, that any truncated
CI method is not size-consistent makes the SOS method of small usefullness in
calculations of NLO properties of aggregates and clusters. This is a serious limita-
tion. Moreover, the same argument holds for the NLO properties in excited states
even when calculated at the CIS level of theory [120]. One should also realize that
the violation of the Hellmann-Feynman theorem (which is the case for any truncated
CI expansions) may lead to the non-physical results of calculations of molecular
electric properties [56]. After the words of scepticism, it should be pointed out
that the SOS method gives a clear picture of the physics involved in the nonlinear
optical response of molecular systems.

Although the SOS method, as a practical way of calculations, is considered
nowadays to be obsolete for small molecules, for large systems it still seems to be
sufficiently attractive to use at low cost of calculations.
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Abstract: We review Kohn–Sham density-functional theory for time-dependent response func-
tions up to and including cubic response. The working expressions are derived from an
explicit exponential parametrization of the density operator and the Ehrenfest principle,
alternatively the quasi-energy ansatz. While the theory retains the adiabatic approxima-
tion, implying that the time-dependency of the functional is obtained only implicitly—
through the time-dependency of the density itself rather than through the form of
the exchange-correlation functionals—our implementation generalizes previous time-
dependent approaches in that arbitrary functionals can be chosen for the perturbed densi-
ties (energy derivatives or response functions). Thus, the response of the density can
always be obtained using the stated density functional, or optionally different functionals
can be applied for the unperturbed and perturbed densities, even different functionals for
different response order. In particular, general density functionals beyond the local density
approximation can be applied, such as hybrid functionals with exchange–correlation at
the generalized gradient-approximation level and fractional exact Hartree–Fock exchange.
We also review some recent progress in time-dependent density functional theory for
open-shell systems, in particular spin-restricted and spin restricted-unrestricted formalisms
for property calculations. We highlight a sample of applications of the theory

1. INTRODUCTION

The development of quantum modeling has by now reached a level where a wide
range of microscopic phenomena taking place at different length and time scales
can be studied. One important factor behind this development is the research in
linear scaling technologies for the Coulomb interaction and in the algorithms for
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optimization of the density or the wave function. Another factor is the development
of density functional theory, in particular, the improvement of exchange-correlation
functionals that match asymptotic criteria of various kinds. Yet another factor refers
to the general strive to augment electronic structure theory with concomitant theories
or models for the calculations of properties that have taken place over the last two
decades.

Analytic response theory, which represents a particular formulation of time-
dependent perturbation theory, has constituted a core technology in much of the
this development. Response functions provide a universal representation of the
response of a system to perturbations, and are applicable to all computational
models, density-functional as well as wave-function models, and to all kinds of
perturbations, dynamic as well as static, internal as well as external perturbations.
The analytical character of the theory with properties evaluated from analytically
derived expressions at finite frequencies, makes it applicable for a large range of
experimental conditions. The theory is also model transferable in that, once the
computational model has been defined, all properties are obtained on an equal
footing, without further approximations.

The vast success of density functional theory in chemistry on one hand and
of (time-dependent) response theory on the other has made it desirable to merge
the two into a modeling toolbox for general properties. A rigorous foundation of
time-dependent DFT was given by Runge and Gross [1] already in 1984 and there
has since been an ever increasing number of studies and applications concerning
time-dependent response properties [2–40]. Most of the applications have been
focused on linear properties, where in particular polarizabilities and excitation ener-
gies have been studied both for LDA and GGA type functionals. The generalization
of linear time-dependent response to quadratic and to cubic order of response theory
has recently been accomplished by the present authors [41, 42], motivated by the
great number of properties that then can be addressed, for instance in the field of
non-linear optics and magnetic resonance experiments. In parallel to generaliza-
tions to higher order we must also see generalizations to higher complexity in the
operators; spin dependence in the operators which imply spin-dependent response
in the wave function or density.

In order to accomplish such a goal we found it worthwhile to go back and edit
the formulation of response theory based on the Ehrenfest theorem, of Olsen and
Jorgensen in 1985, which has been very successful for ab initio property calcu-
lations, such as those based on Hartree–Fock, Multi-Configurational and Coupled
Cluster wave functions, and generalize it to a density functional theory in which
we make an exponential ansatz of the time-evolution of the density [41, 42]. The
results of such an approach was that we obtained a direct analogue in density
functional theory to what has been accomplished on the ab initio side, which also
is of pedagogic and programming advantage. The other, perhaps more decisive
advantage, is that we so obtained a time-dependent DFT methodology for linear
and non-linear properties that transcends the ALDA—adiabatic local density—
approximation in which the response of the density always is obtained from LDA
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functional derivatives even when the density itself is calculated using a finer
approximation, such as the generalized-gradient approximation. By contrast, in our
implementation, the response of the density is always obtained using the stated DFT
functional. We still invoke the adiabatic approximation, however, meaning that the
time-dependent functional is assumed to depend on the time-dependent density in the
same manner that the time-independent functional depends on the time-independent
density. This allows the application of basically all modern exchange-correlation
functionals for the perturbed density, like hybrid functionals including exchange–
correlation functionals at the general gradient-approximation level and fractional
exact Hartree–Fock exchange. This means also that different functionals can be
used for the unperturbed and perturbed densities, even different functionals for
different orders of the perturbation (different orders of response functions or energy
derivatives).

The purpose of this review is to highlight the recent theoretical development of
density functional response theory, or more specifically Kohn–Sham time-dependent
density functional theory, where we also address some recent progress in time-
dependent DFT for open-shell systems.

2. THEORY

2.1 Response Functions

Response theory is perturbation theory with emphasis on properties rather than
on states and energies, aiming to describe how the properties respond to internal
or external perturbations. Consider the expectation value of a time-independent
operator Â, which for the unperturbed system is given by �0�Â�0�. In the presence
of a time-dependent perturbation V̂ �t�, the expectation value of Â becomes time-
dependent and may furthermore be expanded in powers of the perturbation:

(1) �t�Â�t� = �t�Â�t��0�+�t�Â�t��1�+�t�Â�t��2�+�t�Â�t��3�+· · ·
Each term in this expansion has a Fourier representation of the form

�t�Â�t��1� =
∫

��Â� V̂ �1���1
exp�−i�1t�d�1(2)

�t�Â�t��2� = 1
2

∫∫
��Â� V̂ �1� V̂ �2���1��2

exp�−i��1 +�2�t�d�1 d�2(3)

�t�Â�t��3� = 1
6

∫∫∫
��Â� V̂ �1� V̂ �2� V̂ �3���1��2��3

(4)

× exp�−i��1 +�2 +�3�t�d�1 d�2 d�3

and so on, where V̂ � is the Fourier transform of V̂ �t�

(5) V̂ �t�=
∫ �

−�
V̂ � exp�−i�t�d�
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In practice, we work with monochromatic perturbations; the integrals in Eqs. (2)–(5)
are then replaced by discrete sums.

In the following, we shall derive and implement expressions for the linear,
quadratic, and cubic response functions ��Â� V̂ �1���1

, ��Â� V̂ �1� V̂ �2���1��2
, and

��Â� V̂ �1� V̂ �2� V̂ �3���1��2��3
within the framework of Kohn–Sham DFT. In this

particular formulation of DFT, the electron density 	�r� t� is parameterized in terms
of a time-dependent reference determinant �t�. There are thus no problems asso-
ciated with the calculation of expectation values of one-electron operators (even
differential ones), as assumed in Eq. (1).

2.2 The Spin-restricted Kohn–Sham Approach

2.2.1 Motivation

It is a fundamental fact of quantum mechanics, that a spin-independent Hamiltonian
will have pure spin eigenstates. For approximate wave functions that do not fulfill
this criterion, e.g. those obtained with various unrestricted methods, the expectation
value of the square of the total spin angular momentum operator, �S2�, has been used
as a measure of the degree of spin contamination. S2 is obviously a two-electron
operator and the evaluation of its expectation value thus requires knowledge of the
two-electron density matrix.

Density functional theory (DFT) is used to calculate the one-electron density
of an interacting system by means of a fictitious non-interacting system with
the same density. Within this framework it is thus not possible to evaluate two-
electron properties without further approximations. Tempting as it may be to use the
non-interacting two-electron density, because it is easily implemented in quantum
chemistry programs, it is not a theoretically justified procedure. Wang et al. [43]
expressed the two-electron density matrix in terms of one-electron density matrices,
using Löwdin’s relation [44], which is exact for a Slater determinant, but otherwise
an approximation. The one-electron density matrix was further written in terms of
the density and a correlation hole function, of which the latter was estimated within
two simple approximations; a Gaussian function and a homogeneous electron gas
approximation. It was shown that for the electron gas approximation the exact value
S�S+1� was a lower bound for the calculated value of �S2� and that spin contam-
ination was absent whenever 	
�r� > 	��r� in all space. This obviously holds for
spin-restricted density functional method where the non-interacting wave-function
is a high-spin determinant.

One of our main motivations for pursuing the development of a density func-
tional response theory for open-shell systems has been to calculate spin-Hamiltonian
parameters which are fundamental to experimental magnetic resonance spec-
troscopy. It is only within the context of a state with well-defined spin we can speak
of effective spin Hamiltonians. The relationship between microscopic and effective
Hamiltonians rely on the Wigner-Eckart theorem for tensor operators of a specific
rank and states which transform according to their irreducible representations [45].
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2.2.2 Spin-restricted optimization

In Kohn–Sham theory [46] the ground state energy of an interacting system of N
electrons in an external potential v�r� is obtained from

E�	�= −1
2

∫
dr�� �̂�r�†�2̂�r����+ 1

2

∫∫
dr1dr2

	�r1�	�r2�

�r1 − r2�
(6)

+Exc�	�+
∫
dr	�r�v�r�

where the use of Kohn–Sham (KS) spin-orbitals ��i� is implied;

	�r�=
N∑

i

�∗
i �i ≡ �� �̂�r�†̂�r��� ≡ �� �	̂�r���(7)

̂�r�=∑

i

�i�r�ai(8)

which diagonalize the effective one-electron Hamiltonian

(9) F�r�= −1
2
�2 +

∫
dr′ 	�r

′�
�r − r′� + �Exc

�	�r�
+v�r�

The expectation values in (6) and (7) are with respect to the KS determinant which
represents the state of the non-interacting reference system

(10) ��� = �
N∏

i=1

a†i ��vac�

The exact energy functional (and the exchange correlation functional) are indeed
functionals of the total density, even for open-shell systems [47]. However, for the
construction of approximate functionals of closed as well as open-shell systems,
it has been advantageous to consider functionals with more flexibility, where the

- and �-densities can be varied separately, i.e. E�	
�	��. The variational search for
a minimum of the E�	
�	�� functional can be carried out by unrestricted and spin-
restricted approaches. The two methods differ only by the conditions of constraint
imposed in minimization and lead to different sets of Kohn–Sham equations for
the spin orbitals. The unrestricted Kohn–Sham approach is the one most commonly
used and is implemented in various standard quantum chemistry software packages.
However, this method has a major disadvantage, namely a spin contamination
problem, and in recent years the alternative spin-restricted Kohn–Sham approach
has become a popular contester [48–50].

Consider a trial Kohn–Sham (KS) determinant, either a closed shell determinant
or an open-shell “high-spin” determinant where all singly occupied orbitals have 

spin. It is parameterized by a real unitary exponential operator, and the purpose of
the transformation is to transform the orbitals to a state of minimum energy

(11) �0̃� = e−�̂�0�
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If the 
 and � orbitals are constructed from the same set and the transformation is
of the form

(12) �̂=∑

rs

�rs�a
†
r
as
+a†r�as��

we have a spin-restricted optimization. Thus, a variation of the energy then gives

�E�	
�	��=
�∑

�=


∫
dr

�E

�	��r�
�	��r�(13)

=
�∑

�=


∫
dr

�E

�	��r�
����̂� 	̂��r���

= ����̂� F̂ ��
where we have introduced the Fock operator

(14) F̂ =
�∑

�=


∫
dr̂†��r�

�E

�	��r�
̂��r�=

�∑

�=


∑

rs

F�rsa
†
r�as�

of which the the 
- and �-parts have matrix representations corresponding to the
KS Fock matrices. A restricted open-shell Roothan optimization which is based
on the diagonalization of an effective Fock matrix can be designed in different
ways—the main criterion is that the off-diagonal blocks (closed-open, open-virtual,
closed-virtual) are zero for a converged state. If we translate ���̂� F̂ �� to a matrix
formulation in an atomic orbital basis and we use the overlap S, the closed- (c) and
open-shell (o) Fock matrices

Fc = F
+F�
2

(15)

Fo = F
(16)

and density matrices

Dc = 2D�(17)

Do =D
−D�(18)

we obtain a gradient of the form

(19) S�DcFc+DoFo�− �FcDc+FoDo�S
Similarly, a specific choice of an adequate effective Fock matrix is the closed shell
Fock matrix with a correction such that the off-diagonal blocks associated with the
open-shell orbitals are adjusted to be proportional to the orbital gradient

F = Fc+Fv+ �Fv�T(20)

Fv = SDo�Fc−Fo���Dc+Do�S−1�
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The effective Fock matrix (20) is in our implementation [51] the quantity which is
averaged in the optimization based on the direct inversion in the iterative subspace
(DIIS) method [52].

2.2.3 Spin polarization in restricted theories

Hyperfine couplings, in particular the isotropic part which measures the spin density
at the nuclei, puts special demands on spin-restricted wave-functions. For example,
complete active space (CAS) approaches are designed for a correlated treatment of
the valence orbitals, while the core orbitals are doubly occupied. This leaves little
flexibility in the wave function for calculating properties of this kind that depend on
the spin polarization near the nucleus. This is equally true for self-consistent field
methods, like restricted open-shell Hartree–Fock (ROHF) or Kohn–Sham (ROKS)
methods. On the other hand, unrestricted methods introduce spin contamination in
the reference (ground) state resulting in overestimation of the spin-polarization.

The philosophy of the restricted-unrestricted (RU) approach is a physically moti-
vated compromise between the restricted and unrestricted methods; to optimize the
wave function with a spin-restricted approach and to account for perturbations with
an unrestricted approach. That is, a ground state constructed from 
 and � spin-
orbitals with common orbital parts is used with satisfies the variational condition

(21)
dE

d�
= 0

where E is the electronic energy and � is a molecular (spatial) orbital parameter
(like the parameters of Eq. (12) collected in a vector). Next, the properties are
calculated with a set of parameters that allow the 
- and �-orbitals to respond
independently to the perturbation. This can be done by considering parameters for

 and �-orbitals separately, or as in the work of Fernandez et al. [53] in terms of
singlet and triplet rotations of the ground state orbitals �= ��s� �t�.

Next, we outline the derivations of Fernandez et al. [53] and the generalization
for DFT. The hyperfine coupling (HFC) Hamiltonian is scaled with a perturba-
tion strength parameter x equation such that the total energy and the wave func-
tion parameters are functions of x

(22) Ĥ�x�= Ĥ0 +xĤhfc

such that energy and the parameters are functions of x

(23) E�x���= ���x��Ĥ�x����x��
This gives a first-order change in the total electronic energy as

Ehfc = dE

dx

∣
∣
∣
∣
x=0

= �E

�x
+ ∑

�=s�t

�E

���

d��
dx

∣
∣
∣
∣
∣
x=0

(24)

= ���0��Ĥhfc���0��+ �E

��t

d�t
dx

∣
∣
∣
∣
x=0
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where we used Eq. (21), the variational condition for the singlet parameters; if the
wave function is assumed to be optimized for finite x, the first-order response of
the singlet-parameters is by definition zero.

In order to determine the response of the triplet parameters Fernandez et al.
[53] assume that the change in the non-zero energy gradient is negligible when the
perturbation is turned on (x 	= 0); this gives an unbiased treatment of perturbed and
un-perturbed systems and ensures a continuous energy. A second approximation
involves neglecting the singlet contributions in the calculations of the polarization
effects. This is the same as to neglect the singlet-triplet coupling in the second
derivative of the energy. The problem is then reduced to solving conventional
RPA-type equations and the energy shift becomes

(25) Ehfc = ���Ĥhfc���− �2E

�x��t

(
�2E

��2
t

)−1
�E

��t

∣
∣
∣
∣
∣
x=0

which using the notation for response functions is equivalent to

(26) Ehfc = �Ĥhfc�+��Ĥ0� Ĥhfc��0

This somewhat odd linear response function containing the unperturbed Hamiltonian
is thus not a physical property but a term which reflects the computational structure
of this theory (it vanishes for exact and fully variational theories).

In DFT the energy is not the expectation value of a Hamiltonian, but rather a
functional of the form

(27) E�	x� x�= E�	x�+x�Ĥhfc�
The ground state density will depend on the field strength parameter x, which
is denoted by a subscript. The functional has both an explicit and an implicit
dependence on x and the first-order energy correction, the total derivative is formed
by a partial derivative and a functional derivative

(28)
dE

dx

∣
∣
∣
∣
x=0

= �E

�x
+
∫
dr

�E

�	x�r�
�	x�r�
�x

∣
∣
∣
∣
x=0

The first term is the expectation value and from the fact that the density change is
the static linear response function

(29)
�	x
�x

∣
∣
∣
∣
x=0

= ��	̂�r�� Ĥhfc��

and identifying the Fock operator of Eq. (14) we have that the second part of (28)
is the linear response function for the Fock operator and the perturbation giving

(30)
dE

dx

∣
∣
∣
∣
x=0

= �Ĥhfc�+��F̂ � Ĥhfc��

For the special case that the exchange-correlation potential is the Hartree–Fock
exchange, Eqs. (26) and (30) are identical.
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2.3 Time-dependent Kohn–Sham Theory

In Kohn–Sham theory, we assume that the time-dependent density 	�r� t� is
represented in terms of a time-dependent reference Slater determinant �t�. The
Kohn–Sham energy is then written as a functional of this density in the following
manner:

(31) E�	� t�= Ts�	�+Vext�	� t�+ J�	�+Exc�	�+VNN

The first term is the kinetic energy evaluated as an expectation value

(32) Ts�	�= −1
2

∑

i

�t��2
i �t�

whereas the second and third terms represent, respectively, the classical Coulomb
interactions of the electron density with the external potential and with itself:

Vext�	� t�= VN�	�+V�	� t�=
∫
	�r� t��

∑

I

ZI
�r −RI �

+v�r� t��d�(33)

J�	�= 1
2

∫∫ 	�r1� t�	�r2� t�

r12

d�1 d�2

In Eq. (32), we have split the external potential into a static nuclear potential and an
explicitly time-dependent perturbation. The exchange–correlation functional Exc�	�
in Eq. (31) contains all two-electron interactions except the Hartree term J�	�—that
is, it includes the effects of exchange and correlation. In addition, it corrects for the
error made in the evaluation of the kinetic energy according to Eq. (32). The last
term in Eq. (31) represents the classical nuclear–nuclear repulsion energy.

In the widely used adiabatic approximation, which we have adopted here, the
time-dependence of the exchange–correlation energy is contained in the density—
that is, the exchange–correlation functional is approximated using the same func-
tional form in the time-dependent and time-independent cases. It is not obvious that
this approximation holds for other than slowly varying external fields, but it has
been verified that the adiabatic approximation is adequate for calculating excitation
energies [10].

In Kohn–Sham theory, the time evolution of the spin orbitals is governed by the
differential equation

(34) �f�r1� t�+v�r1� t���j�r1� t�= i
d�j�r1� t�

dt

where we have introduced the Kohn–Sham operator

(35) f�r1� t�= h�r1�+ j�r1� t�+vxc�r1� t�
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which we choose to define without the explicit perturbation term (it still depends
implicitly on the perturbation through the density). The first term in Eq. (35)
contains the one-electron combined kinetic and nuclear-attraction operators

(36) h�r1�= −1
2
�2

1 +∑
I

ZI
�r1 −RI �

whereas the last two terms are the Coulomb and exchange–correlation potentials,
respectively:

j�r1� t�=
∫ 	�r2� t�

�r1 − r2�
d�2(37)

vxc�r1� t�=
�Exc

�	�r1�

∣
∣
∣
∣
	�r1�=	�r1�t�

(38)

Note that these terms are themselves functionals of the density.

2.4 Time Evolution of the Reference Determinant and the Density

The Kohn–Sham reference determinant satisfies the equation

(39) �H+V��t� = i
d
dt

�t�� H =∑

i

f�ri� t�

where the total Kohn–Sham Hamiltonian has been partitioned into a term H implic-
itly dependent on the perturbation and the perturbation itself V (cf. Eq. (34)). In our
second-quantization formulation of time-dependent Kohn–Sham theory, we adopt
an exponential parameterization of the time-evolution operator, representing the
time-dependent reference Kohn–Sham determinant in the following manner:

(40) �t� = exp �−�̂�t�� �0�� �0� =∏

k��

a†k� �vac�

Here �0� is the unperturbed Kohn–Sham determinant, and �̂�t� the anti-Hermitian
operator

(41) �̂�t�=∑

rs

�rs�t�Ers =
∑

rs

�rs�t�
∑

�

a†r�as�� �∗
rs�t�= −�sr�t�

where a†r� and as� are the creation and annihilation operators, respectively, of spin
orbitals r and s of spin � .

The fundamental variational parameters of our theory are the elements of the
rotation matrix �rs�t�. As in Hartree–Fock theory, the non-redundant rotations
are those between occupied and unoccupied orbitals. Equation (40) implies that
the individual Kohn–Sham spin orbitals obey the transformation law

(42) a†k��t�= exp�−�̂�t��a†k� exp��̂�t��

and that orthonormality is preserved.



Kohn–Sham Time-Dependent Density Functional Theory 161

To study the time-dependence of the electron density, we introduce the second-
quantized density operator

(43) 	̂�r�=∑

pq

�∗
p�r��q�r�Epq

Recognizing that the density is an expectation value of this operator and given
the parameterization in Eq. (40), we obtain the following expression for the time-
dependent density:

(44) 	�r� t�= �t�	̂�r��t� = �0� exp��̂�t��	̂�r� exp�−�̂�t���0�
A Baker–Campbell–Hausdorff expansion of the exponential time-evolution operator
gives for the density (and similarly for other operators)

	�r� t�= 	�r�0�+�0���̂�t�� 	̂�r���0�+ 1
2
�0���̂�t�� ��̂�t�� 	̂�r����0�(45)

+ 1
6
�0���̂�t�� ��̂�t�� ��̂�t�� 	̂�r�����0�+���4�

which will be used frequently in the following sections.

2.5 Perturbation Expansion of the Density and Kohn–Sham Operators

In the absence of the perturbation, the time-evolution operator produces only a
dynamical phase factor, which cancels out for expectation values. In the presence
of the perturbation, it is assumed that an expansion in powers of the perturbation
exists such that

(46) �̂�t�= �̂�1��t�+ �̂�2��t�+ �̂�3��t�+· · ·
with Fourier representations

�̂�1��t�=
∫
�̂�1 exp �−i�1t� d�1(47)

�̂�2��t�= 1
2

∫∫
�̂�1��2 exp �−i��1 +�2�t� d�1 d�2(48)

�̂�3��t�= 1
6

∫∫∫
�̂�1��2��3 exp �−i��1 +�2 +�3�t� d�1 d�2 d�3(49)

For monochromatic perturbations, the integrations are replaced by summations.
Using the expansions Eqs. (45) and (46), we introduce the perturbed density matrices
up to third order as

D�0�pq = �0�Epq�0�(50)

D�1�pq = �0���̂�1��Epq��0�(51)
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D�2�pq = �0���̂�2��Epq�+
1
2
��̂�1�� ��̂�1��Epq���0�(52)

D�3�pq = �0���̂�3��Epq�+
1
2
��̂�1�� ��̂�2��Epq��+

1
2
��̂�2�� ��̂�1��Epq��(53)

+ 1
6
��̂�1�� ��̂�1�� ��̂�1��Epq����0�

which allow us to write the n:th order correction to the density as

(54) 	�n��r� t�=∑

pq

�∗
p�r��q�r�D

�n�
pq �t�

We now expand the second-quantized Kohn–Sham Hamiltonian in orders of the
perturbation

(55) Ĥ =∑

n

Ĥ�n�� Ĥ�n� =∑

pq

f �n�pq Epq

where

(56) f �n�pq = �n0 hpq + j�n�pq +v�n�xc�pq

The first contribution to f �0�pq is the one-electron integral over the kinetic-energy and
nuclear-attraction operators of Eq. (36),

(57) hpq = ��p�−
1
2
�2 +∑

I

ZI
�r −RI �

��q�

The electron-repulsion n:th order Coulomb interaction integrals

(58) j�n�pq =∑

rs

gpqrsD
�n�
rs

constitute the second contribution to the Kohn–Sham matrix element f �n�pq and are
obtained from the two-electron integrals

(59) gpqrs = ��p�1��r�1��
1
r12

��q�2��s�2��

and from the time-dependent density-matrix elements in Eqs. (50)–(52). The last
contribution to Eq. (56) is the integral over the exchange–correlation potential
vxc�	�,

(60) v�n�xc�pq�t�= ��p�v�n�xc �r� t���q�
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Since the potential depends on the density 	, this contribution to the Kohn–Sham
matrix element depends on the perturbation,

v�1�xc �r� t�=
∫ �vxc�r�
�	�r′�

	�1��r′� t�d� ′(61)

v�2�xc �r� t�=
∫ �vxc�r�
�	�r′�

	�2��r′� t�d� ′(62)

+ 1
2

∫∫ �2vxc�r�
�	�r′��	�r′′�

	�1��r′� t�	�1��r′′� t�d� ′ d� ′′

v�3�xc �r� t�=
∫ �vxc�r�
�	�r′�

	�3��r′� t�d� ′(63)

+
∫∫ �2vxc�r�

�	�r′��	�r′′�
	�1��r′� t�	�2��r′′� t�d� ′ d� ′′

+ 1
6

∫∫∫ �3vxc�r�
�	�r′��	�r′′��	�r′′′�

×	�1��r′� t�	�1��r′′� t�	�1��r′′′� t�d� ′ d� ′′ d� ′′′

2.6 The Ehrenfest Method

Let us consider the time-development Eq. (41) of the expectation value of an
operator Q̂ parametrized by �̂�t� [Eq. (41)]

(64) Q̂�t�= exp�−�̂�t��Q̂ exp��̂�t��

Differentiating the expectation value �t�Q̂�t��t� = �0�Q̂�0� [see Eq. (40)] with
respect to time and invoking the Schrödinger equation (atomic units)

(65)
(

Ĥ�t�+ V̂ �t�− i
d
dt

)

�t� = 0

we obtain the Ehrenfest theorem

(66) �t�i ˙̂
Q�t�+ �Q̂�t�� Ĥ�t�+ V̂ �t���t� = 0

which forms the basis for the time-dependent variation principle [54]. Collecting
the exponential operators in Eqs. (40) and (64) and using the identity

exp��̂�t��
(

d
dt

exp�−�̂�t��Q̂ exp��̂�t��
)

exp�−�̂�t��(67)

= �exp��̂�t��
(

d
dt

exp�−�̂�t��
)

� Q̂�
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we find that the Ehrenfest theorem may be written in the more convenient form

(68) �0��Q̂� exp��̂�t��
(

Ĥ�t�+ V̂ �t�− i
d
dt

)

exp�−�̂�t����0� = 0

This equation holds for any time-independent one-electron operator Q̂. In particular,
it holds for the spin-averaged excitation operators Epq in the expansion of �̂�t� in
Eq. (41). Collecting these operators in the column vector q̂, we arrive at a set of
nonlinear equations from which the time-dependence of �̂�t� may be determined. In
the following, we shall use these equations to determine the first- and second-order
terms in Eq. (46) and thereby the linear, quadratic, and cubic response functions.

2.6.1 Linear response

The linear response equations are obtained by expanding Eq. (68) to first order,
yielding a differential equation in time for �̂�1�,

(69) �0��q̂� ��̂�1�� Ĥ�0��+ Ĥ�1���0�+ i�0��q̂� ˙̂��1���0� = −�0��q̂� V̂ �t���0�
In the frequency domain, this equation becomes an algebraic equation for �̂�,

(70) �0��q̂� ��̂�� Ĥ�0��+ Ĥ���0�+��0��q̂� �̂���0� = −�0��q̂� V̂ ���0�
We have here introduced the Fourier transform of the perturbed Kohn–Sham matrix

(71) Ĥ� =∑

pq

f�pqEpq

where

f�pq = j�pq +v�xc�pq(72)

=∑

rs

gpqrsD
�
rs+��p�

∫ �vxc

�	�r′�
	��r′�d� ′��q�

D�rs = �0���̂��Ers��0�(73)

	��r�= �0���̂�� 	̂�r���0�(74)

To bring out the matrix structure of Eq. (70), we may express the first-order
parameters in matrix form

(75) �̂� = �· · ·Epq · · · �

⎛

⎜
⎜
⎝

���
��pq
���

⎞

⎟
⎟
⎠≡ q̂†��

such that we formally solve the linear equations

(76) �E−�S��� = V�
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In Eq. (76), the matrix E has the structure of an electronic Hessian

E = �0��q̂� �Ĥ�0�� q̂†��0�(77)

+∑

pqrs

�0��q̂�Epq��0�� 1
�r − r′� + �vxc�r�

�	�r′�
�pqrs�0��Ers� q̂†��0�

where, in the last term, we have introduced two-electron integrals defined by analogy
with Eq. (59). In Eq. (76), we have introduced the generalized overlap matrix

(78) S = �0��q̂� q̂†��0�

and the right-hand side is the perturbation vector of Eq. (70)

(79) V� = �0��q̂� V̂ ���0�

From the solution �̂� to Eq. (76), the linear response function is easily obtained for
any one-electron operator Â,

(80) ��Â� V̂ ��� = �0���̂�� Â��0� = −A†�E−�S�−1V�

where

(81) A = �0��q̂� Â��0�

It should be noted the working equations of linear response theory resemble
Eq. (70) more closely than Eq. (76) since E and S are never constructed explicitly
and since, in the iterative algorithms we use, � corresponds to trial vectors. Further-
more, the exchange–correlation potentials that we consider are local and never give
rise to two-electron integrals—even the GGA functionals are local in this sense.

2.6.2 Quadratic response

The quadratic response to a perturbation requires the solution of �̂�2� from the
second-order expansion of Eq. (68),

�0��q̂� ��̂�2�� Ĥ�0��+ Ĥ�2���0�+ i�0��q̂� ˙̂��2�+ 1
2
��̂�1�� ˙̂��1����0�(82)

= −�0�q̂� ��̂�1�� V̂ �t�+ Ĥ�1��+ 1
2
��̂�1�� ��̂�1�� Ĥ�0�����0�

With the Fourier transform Eq. (48), this equation can be rearranged to give

�0��q̂� ��̂�1��2� Ĥ�0��+ Ĥ�1��2 ��0�+ ��1 +�2��0��q̂� �̂�1��2 ��0�(83)

= −P̂12�0��q̂�2��̂�1� V̂ �2 + Ĥ�2 �+ ��̂�1� ��̂�2� Ĥ�0���+�2��̂
�1� �̂�2 ���0�
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Here the operator P̂12 symmetrizes with respect to the frequencies �1 and �2

(84) P̂12A��1��2�=
1
2
�A��1��2�+A��2��1��

and the elements of the second-order perturbed Kohn–Sham matrix

(85) Ĥ�1��2 =∑

pq

f�1��2Epq

are given by

(86) f�1��2
pq = j�1��2

pq +v�1��2
xc�pq

with Coulomb and exchange–correlation parts

j�1��2
pq =∑

rs

gpqrsD
�1��2
rs(87)

v�1��2
xc�pq = ��p�

∫ �vxc

�	�r′�
	�1��2�r′�d� ′��q�(88)

+ P̂12��p�
∫∫ �2vxc

�	�r′��	�r′′�
	�1�r′�	�2�r′′�d� ′ d� ′′��q�

The solution of Eq. (83) requires the separation of the second-order density matrix
elements into first- and second-order parts

	�1��2�r�=∑

pq

�∗
p�r��q�r�D

�1��2
pq(89)

D�1��2
rs = D̄�1��2

rs + ¯̄D�1��2

rs(90)

D̄�1��2
rs = P̂12�0���̂�1� ��̂�2�Ers���0�(91)

¯̄D�1��2
rs = �0���̂�1��2�Ers��0�(92)

such that the second-order Hamiltonian may be written as the sum of two operators
that depend on the first- and second-order parameters, respectively,

(93) Ĥ�1��2 = ˆ̄H�1��2 + ˆ̄̄
H�1��2

As in the linear case, the equation for the second-order parameters Eq. (83) may
then written in matrix form

(94) �E− ��1 +�2�S��
�1��2 = V�1��2

where all first-order parameters have been collected on the right-hand side.

V�1��2 = 2P̂12��0��q̂� ��̂�1� ��̂�2� Ĥ�0�����0�+�0��q̂� ��̂�1��2�̂
�2 ���0�(95)

+2�0��q̂� ���1� Ĥ�2 +V�2 ���0�+�0��q̂� ˆ̄H�1��2

��0��
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The quadratic response function may now be calculated as

(96) ��Â� V̂ � V̂ ���1��2
= �0���̂�1��2� Â��0�+ P̂12�0���̂�1� ��̂�2� Â���0�

where the first-order responses �̂�1 and �̂�2 are obtained from Eq. (70) and the
second-order response �̂�1��2 from Eq. (83). We note that the first term in Eq. (96)
resembles the evaluation of the linear response function,

(97) �0����1��2� Â��0� = −A†��1��2 = −A†�E− ��1 +�2�S�
−1V�1��2

An alternative approach is to solve the adjoint linear response equation for A at
frequency �1 +�2, as done in our implementation.

In short, for a given property Â and two periodic perturbations B̂ and Ĉ with
associated frequencies �b and �c respectively, the evaluation of the quadratic
response equation ��Â� B̂� Ĉ���b��c is carried out by first solving the three linear
response equations

�A
†

�E− ��a+�b�S�= A†(98)

�E−�bS��B = B(99)

�E−�cS��C = C(100)

and then evaluating

(101) ��Â� B̂� Ĉ���b��c = �Â†V�b��c + P̂bc�0���̂�b � ��̂�c � Â���0�
The main complication associated with extending a Hartree–Fock quadratic response
code to Kohn–Sham DFT is the evaluation of the exchange–correlation contribution
to V�b��c . We refer to [41] for detailed expressions and Section 3 for a discussion
of its implementation.

2.6.3 Cubic response

For the cubic response we need to determine �̂�3�. By expanding Eq. (68) (with Q
replaced by q̂) we obtained the following equation

�0��q̂� ��̂�3�� Ĥ�0��+ Ĥ�3���0�

+ i�0��q̂� ˙̂��3�+ 1
2
��̂�1�� ˙̂��2��+ 1

2
��̂�2�� ˙̂��1��+ 1

6
��̂�1�� ��̂�1�� ˙̂��1�����0�

= −�0��q̂� ��̂�2�� V̂ �t�+ Ĥ�1��+ ��̂�1�� Ĥ�2��+ 1
2
��̂�1�� ��̂�1�� V̂ �t�+ Ĥ�1���

+ 1
2
��̂�1�� ��̂�2�� Ĥ�0���+ 1

2
��̂�2�� ��̂�1�� Ĥ�0���

+ 1
6
��̂�1�� ��̂�1�� ��̂�1�� Ĥ�0������0�
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Transformation to the frequency domain yields an equation for �̂�1��2��3

�0��q̂� ��̂�1��2��3� Ĥ�0��+ Ĥ�1��2��3 ��0�+ ��1 +�2 +�3��0��q̂� �̂�1��2��3 ��0�(102)

= −P̂123�0��q̂�3��̂�1��2� V̂ �3 + Ĥ�3 �+3��̂�1� Ĥ�2��3 �

+3��̂�1� ��̂�2� V̂ �3 + Ĥ�3 ��+ 3
2
��̂�1� ��̂�2��3� Ĥ�0���

+ 3
2
��̂�1��2� ��̂�3� Ĥ�0���+ ��̂�1� ��̂�2� ��̂�3� Ĥ�0����+3�3��̂

�1��2� �̂�3 �

+3��2 +�3���̂
�1� �̂�2��3 �+�3��̂

�1� ��̂�2� �̂�3 ����0�

Here the operator P̂123 symmetrizes with respect to the frequencies �1, �2, and �3

P̂123A��1��2��3�=
1
6
�A��1��2��3�+A��1��3��2�+A��2��1��3�(103)

+A��2��3��1�+A��3��1��2�+A��3��2��1��

and the elements of the third-order perturbed Kohn–Sham matrix

(104) Ĥ�1��2��3 =∑

pq

f�1��2��3Epq =∑

pq

�j�1��2��3
pq +v�1��2��3

xc�pq �Epq

where Coulomb and exchange–correlation parts are given by

j�1��2��3
pq =∑

rs

gpqrsD
�1��2��3
rs(105)

v�1��2��3
xc�pq = ��p�

∫ �vxc

�	�r′�
	�1��2��3�r′�d� ′��q�(106)

+3P̂123��p�
∫∫ �2vxc

�	�r′��	�r′′�
	�1�r′�	�2��2�r′′�d� ′ d� ′′ d� ′��q�

+P̂123��p�
∫∫∫ �3vxc

�	�r′��	�r′′��	�r′′′�
	�1�r′�	�2�r′′�	�2�r′′′�

×d� ′ d� ′′ d� ′′′��q�

In order to solve Eq. (102) we need to separate the contribution from the third-order
parameters to the density matrix elements from the contributions from first- and
second-order parameters

	�1��2��3�r�=∑

pq

�∗
p�r��q�r�D

�1��2��3
pq(107)

D�1��2��3
rs = D̄�1��2��3

rs + ¯̄D�1��2��3

rs(108)
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D̄�1��2��3
rs = P̂123�0�3

2
��̂�1� ��̂�2��3�Ers��+

3
2
��̂�1��2� ��̂�3�Ers��(109)

+ ��̂�1� ��̂�2� ��̂�3�Ers����0�
¯̄D�1��2��3

rs = �0���̂�1��2��3�Ers��0�(110)

such that the third-order Hamiltonian may be written as the sum of two operators
that depend on the lower- and third-order parameters, respectively,

(111) Ĥ�1��2��3 = ˆ̄H�1��2��3 + ˆ̄̄
H
�1��2��3

As in the linear case, the equation for the third-order parameters Eq. (102) may
then written in matrix form

(112) �E− ��1 +�2 +�3�S��
�1��2��3 = V�1��2��3

where all first- and second-order parameters have been collected on the right-hand side

V�1��2��3 = P̂123��0��q̂� ��̂�1� ��̂�2� ��̂�3� Ĥ�0������0�(113)

+�3�0��q̂� ��̂�1� ��̂�2� �̂�3 ����0�

+ 3
2
�0��q̂� ��̂�1��2� ��̂�3� Ĥ�0�����0�+3�3�0��q̂� ��̂�1��2� �̂�3 ���0�

+ 3
2
�0��q̂� ��̂�1� ��̂�2��3� Ĥ�0�����0�+3��2 +�3��0��q̂� ��̂�1� �̂�2��3 ���0�

+3�0��q̂� ��̂�1� ��̂�2� V̂ �3 + Ĥ�3 ����0�+3�0��q̂� ��̂�1��2� V̂ �3 + Ĥ�3 ���0�
+3�0��q̂� ��̂�1� Ĥ�2��3 ���0�+�0��q̂� ˆ̄H�1��2��3 ��0���

The cubic response function may now be calculated as

��Â� V̂ � V̂ � V̂ ���1��2��3
= �0���̂�1��2��3� Â��0�+3P̂123�0���̂�1� ��̂�2��3� Â���0�(114)

+3P̂123�0���̂�1��2� ��̂�3� Â���0�+ P̂123�0���̂�1� ��̂�2� ��̂�3� Â����0�
where the first-, second-, and third-order responses are obtained from Eqs. (70),
(83), and (102), respectively. As for the quadratic case we note that the first term
in Eq. (114) resembles the evaluation of the linear response function,

(115) �0����1��2��3� Â��0� = −A†��1��2��3 = −A†�E−��1 +�2 +�3�S�
−1V�1��2��3

Similarly as for the quadratic case an alternative approach is to solve the adjoint
linear response equation for A at frequency �1 +�2 +�3, as done in our imple-
mentation.

Summing up, for a given property Â and three periodic perturbations B̂, Ĉ and
D̂ with associated frequencies �b, �c and �d respectively, the evaluation of the
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cubic response function ��Â� B̂� Ĉ� D̂���b��c��d is carried out by first solving the
four first-order linear response equations

�A
†
�E− ��b+�c+�d�S�= A†(116)

�E−�bS��B = B(117)

�E−�cS��C = C(118)

�E−�dS��D = D(119)

the three second-order linear response equations

�E− ��b+�c�S���b��c = V�b��c(120)

�E− ��b+�d�S���b��d = V�b��d(121)

�E− ��c+�d�S���c��d = V�c��d(122)

and finally evaluating

��Â� B̂� Ĉ� D̂���b��c��d = �Â†V�b��c��d +3P̂bcd�0���̂�b � ��̂�c��d � Â���0�(123)

+3P̂bcd�0���̂�b��c � ��̂�d � Â���0�+ P̂bcd�0���̂�b � ��̂�c � ��̂�d � Â����0�

Our implementation is based on the SCF [55] and MCSCF [56] cubic response
code in DALTON [51]. The main complication associated with the extension to
Kohn–Sham DFT is the evaluation of the exchange–correlation contributions to
V�b��c��d . We refer to [42] for detailed expressions.

2.7 Residues

By comparison with sum-over-state expressions for the exact case it is possible to
identify transition moments and excited state properties from different residues of
the response functions. This is in particular valuable for DFT where it is difficult to
straightforwardly extend the theory to excited states and where we have no explicit
representation of the excited state wave function.

2.7.1 Linear response

The matrices E and S in the expression for the linear response function in Eq. (80)
have a common set of eigenvectors Xk

X†
kEXk = �k(124)

X†
kSXk = ±1(125)
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Thus, the linear response function has poles where the absolute value of the
frequency is equal to an excitation energy of the system. From the corresponding
residues

(126) lim
�→�f

��−�f���Â� B̂��� = A†XfX
†
fB

and

(127) lim
�→−�f

��+�f���Â� B̂��� = B†XfX
†
fA

we may identify the matrix elements as

TAf
∗ = �0�Â�f� = A†Xf(128)

TBf = �f �B̂�0� = X†
fB(129)

in agreement with the exact case where

lim
�→�f

��−�f���Â� B̂��� = �0�Â�f��f �B̂�0�(130)

lim
�→−�f

��+�f���Â� B̂��� = �0�B̂�f��f �Â�0�(131)

For future use we note also that

lim
�→�f

��+�f��A† = B†XfX
†
f = TAf ∗

X†
f(132)

lim
�→�f

��−�f��B = XfX
†
fB = XfT

B
f(133)

2.7.2 Quadratic response

The quadratic response functions has poles where the absolute value of the frequency
parameters or their sum matches an excitation energy. We may also consider double
residues where two poles matches at the same time. The single residue of most
interest is

lim
�b+�c→�f

��b+�c−�f���Â� B̂� Ĉ���b��c = −TAf ∗TBCf(134)

TBCf = X†
fV

�b��c(135)

or alternatively

lim
�c→�f

��c−�f���Â� B̂� Ĉ��−�b��c �= −TABf TCf(136)

TABf = −�AX−�b
f − 1

2
��0���̂−�b � �X̂f � Â���0�+�0��X̂f � ��̂−�b � Â���0��(137)
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where X�b
f is defined to satisfy

(138) lim
�c→�f

��c−�f�V�b��c = X�b
f T

C
f

Even though Eqs. (135) and (137) have a different structure they give numerically
identical results. This follows from the permutation symmetry of the response
function. In this case there is no computational advantage to use one expression
before the other, we have to solve the same set of response equations in both cases.

When �b = 0 we can be interpret TABf as the induced transition amplitude of
an operator Â between the ground state (0) and an excited state (f ) due to a
perturbation B. With A as a dipole operator and spin–orbit coupling introduced
as a perturbation through B we can calculate singlet–triplet transition moments
(phosphorescence) [57]. For �b = 1

2�f and dipole operators TABf is the two-photon
absorption amplitude.

From the double residue

(139) lim
�b→−�e

��b+�e� lim
�c→�f

��c−�f���Â� B̂� Ĉ��−�b��c = −TAefTBe †TCf

we can identify the transition moment TAef between excited states (e) and (f ) in
accordance with the exact case

(140) TAef = �e�Â�f�−�ef�0�Â�0�
as

(141) TAef = −�AXef − 1
2
��0��X̂†e � �X̂f � Â���0�+�0��X̂e� �X̂†f � Â���0��

where Xef is defined to satisfy

(142) lim
�b→−�e

��b+�e� lim
�c→�f

��c−�f�V�b��c = XefT
B
e

†
TCf

When the two excited states are the same we get excited state first order properties

(143) TAff = �f �Â�f�−�0�Â�0�
2.7.3 Cubic response

The cubic response functions has poles where the frequency parameters or their
sum matches an excitation energy. As for the quadratic response function we may
also consider double residues where two poles matches at the same time (triple
residues turn out not to give anything new).

The single residue related to third-order transition moments is

lim
�0→�f

��0 −�f���Â� B̂� Ĉ� D̂��−�b��c��d = −TAf †TBCDf(144)

TBCDf = X†
fV

�b��c��d(145)
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or alternatively

lim
�d→�f

��d−�f���Â� B̂� Ĉ� D̂��−�b�−�c��d = −TABCf TDf(146)

TABCf = �Â†X�b��c
f +3P̂bcx�0���̂�b � ��̂�cf � Â���0�(147)

+3P̂bcx�0���̂�b��c � �X̂f � Â���0�+ P̂bcx�0���̂�b � ��̂�c � �X̂f � Â����0�
where X�b�c

f is defined to satisfy

(148) lim
�d→�f

��d−�f�V�b��c��d = X�b�c
f TDf

and �̂�cf is obtained by solving the modified second-order equation

(149) �E− ��c+�f�S���cf = X�c
f

As for the corresponding residues for quadratic response function, even though
Eqs. (145) and (147) have a different structure they give identical numerical results.
This time, however, there is a computational advantage to use Eq. (145) over
Eq. (147). In the first case we have to solve an eigenvalue equation for the excited
state in question and also the usual set of first- and second-order linear response
equations. In the second case we have to solve an additional set of modified second-
order response equations for each excited state. In particular, if we are interested in
several excited states we need not solve more response equations using Eq. (145)
but two sets of extra equations for each excited state using Eq. (147). If all operators
are the same we can solve one less response equation using Eq. (145) (2 versus 3)
even if we are only interested in one single excited state.

For the case �b = �c = 0 we can interpret TABCf as the induced transition ampli-
tude of an operator Â between the ground state (0) and an excited state (f ) due
to perturbations B and C. With one static perturbation we get induced two-photon
absorption. For �b = �c = 1

3�f and dipole operators, TABCf is the three-photon
absorption amplitude.

From the double residue

(150) lim
�c→−�e

��c+�e� lim
�d→�f

��d−�f���Â� B̂� Ĉ� D̂���b��c��d = −TABef TCe †TDf

we can identify the two-photon transition moment TABef between excited states (e)
and (f ). When the states are the same we obtain excited state dynamic second order
properties,

(151) TABff = 
0
AB��b�−
fAB��b�

where in the case of A and B being dipole operators 
0
AB and 
fAB are the dipole

polarizabilities of the ground and excited state respectively. Also here we can get
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an alternative expression by taking one of the residues at the A operator. We do
get a different set of response equations to solve, but there is no computational
advantage to this approach in this case.

For further details of DFT calculations of excited state polarizabilities and three-
photon absorption see [58, 59].

2.8 The Quasi-energy Method

The quasi-energy formulation provides an alternative time-dependent variation prin-
ciple for deriving dynamical response functions. It is arguably more attractive than
the Ehrenfest method in that it provides a unified framework for treating variational
and non-variational wave functions, by analogy with time-independent theory, to
which it naturally reduces in the limit of static perturbations [60–62]. As an addi-
tional advantage over the Ehrenfest method, the permutational symmetries (with
respect to the exchange of operators) becomes manifest in the quasi-energy method.

The concept of quasi-energy arises naturally in TDDFT—indeed, it turns out to
be nothing but the action integral of Runge and Gross [1], where the integration
limits are chosen to span a period of the perturbation, scaled by the inverse of
the period length. In the following, we discuss the application of the quasi-energy
method to the calculation of response functions in Kohn–Sham DFT. Since the
Kohn–Sham quasi-energy method follows closely the corresponding Hartree–Fock
method, we here consider only those aspects of Kohn–Sham theory that differ from
Hartree–Fock theory.

In Hartree–Fock theory, the quasi-energy and its time average are defined as
follows

Q�t�= �t�Ĥ− i
d

dt
�t�(152)

�Q�T = 1
T

∫ T/2

−T/2
Q�t�dt(153)

where T constitutes one period of the time-dependent perturbation. In Kohn–Sham
theory, there is an additional contribution to the quasi-energy from the exchange–
correlation functional,

(154) Qxc�t�= Exc�	�t��

The perturbation is expanded in its (discrete) Fourier components, each of which is
further expanded in field strengths ��kx coupled to a quantum-mechanical operator,

(155) V̂ �t�=∑

kx

e−i�kt��kx V̂
�k
x

Included in the summation is the operator Â, the response functions of which we
are calculating. We associate a nonzero frequency � but zero perturbation strength
with this operator.
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The periodic perturbation Eq. (155) induces a change in the quasi-energy, which
is expanded in orders of the perturbation:

(156) Q�t�=Q�0��t�+Q�1��t�+Q�2��t�+· · ·
The response function of order n is then recovered by differentiating the time-
averaged perturbed quasi-energy Q�n+1��t� with respect to the frequency-dependent
field strengths,

��Â� B̂��� = d2�Q�2��T
d�−�
A d��B

(157)

��Â� B̂� Ĉ���1��2
= d3�Q�3��T

d�−�1−�2
A d��1

B d��2
C

(158)

��Â� B̂� Ĉ� D̂���1��2��3
= d4�Q�4��T

d�−�1−�2−�3
A d��1

B d��2
C d��3

C

(159)

The frequency associated with Â is set equal to minus the sum of the perturbing
frequencies so that the time-averaged quasi-energy does not vanish.

To calculate the perturbed quasi-energy Eq. (156), we must first determine the
perturbed orbital-rotation parameters �̂�t�, which are likewise expanded in orders
of the perturbation,

�̂�1��t�=∑

kx

e−i�kt��kx �̂
�k
x(160)

�̂�2��t�= 1
2

∑

klxy

e−i��k+�l�t��kx �
�l
y �̂

�k
x �̂

�l
y(161)

�̂�3��t�= 1
6

∑

klmxyz

e−i��k+�l+�m�t��kx �
�l
y �

�m
z �̂

�k
x �̂

�l
y �̂

�m
z(162)

From the 2n+1 rule, it follows that, to calculate the quasi-energy to order 2n+1,
we need only determine �̂�t� to order n, the contributions from higher orders being
zero. Thus, to calculate the linear and quadratic response functions, we need only
determine �̂�1�. Note that, even though the contribution of for example �̂�2� to Q�2�

vanishes, its contribution to the exchange–correlation part of the quasi-energy Q�2�xc

is nonzero but cancelled by a similar contribution to Q�2�−Q�2�xc . In our discussion
of Q�2�xc and Q�3�xc we shall therefore ignore all contributions that do not depend on
�̂�1�, in accordance with the 2n+1 rule. To calculate the cubic response functions,
we need in addition to �̂�1� also �̂�2�, but not �̂�3� or �̂�4�. Accordingly we will only
consider contribution from �̂�1� and �̂�2� to Q�4�xc .

2.8.1 Linear response

In linear response theory, the exchange–correlation energy is expanded to second
order in �̂�1�:

(163) Ē�2�xc =
∫ �Exc

�	�r�
	̄�2��r� t�d�+ 1

2

∫∫ �2Exc

�	�r��	�r′�
	�1��r� t�	�1��r′� t�d� d� ′
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The perturbed densities are given by Eqs. (54) except that the contribution from
�̂�2� to 	�2� is ignored in accordance with the 2n+1 rule, as indicated by the bar in
Ē
�2�
xc and 	̄�2�. Next, we expand �̂�1��t� according to Eq. (160) and obtain

Ē�2�xc = 1
2

∑

kl

e−i��k+�l�t∑

xy

��kx �
�l
y

[∫ �Exc

�	�r�
	̄�1��2�r�d�(164)

+
∫∫ �2Exc

�	�r��	�r′�
	�1�r�	�2�r′�d� d� ′

]

where we have introduced

	�x = �0���̂�x � 	̂��0�(165)

	̄�1��2
xy = P̂12�0���̂�1

x � ��̂
�2
y � 	̂���0�(166)

The first-order parameters ��1
x and ��2

y are determined by a variational condition
on the second-order quasi-energy, the result of which is an equation identical to
Eq. (70). Differentiating the time-averaged exchange–correlation quasi-energy with
respect to the field strengths ��aa � �

�b
b , according to Eq. (157), we obtain

(167) ��Â� B̂��xc
�b

=
∫ �Exc

�	�r�
	�a��b �r�d�+

∫∫ �2Exc

�	�r��	�r′�
	�a�r�	�b�r′�d� d� ′

for the exchange–correlation energy contribution to the linear response function.

2.8.2 Quadratic response

The quadratic response function is obtained as the third derivative of the time-
averaged quasi-energy. The program is then to expand the energy to third order in
the first-order parameters:

Ē�3�xc =
∫ �Exc

�	�r�
	̄�3��r� t�d�(168)

+
∫∫ �2Exc

�	�r��	�r′�
	�1��r� t�	̄�2��r′� t�d� d� ′

+ 1
6

∫∫∫ �3Exc

�	�r��	�r′��	�r′′�
	�1��r� t�	�1��r′� t�	�1��r′′� t�d� d� ′ d� ′′

where

(169) 	̄�3��r� t�= 1
6
�0���̂�1��t�� ��̂�1��t�� ��̂�1��t�� 	̂�r�����0�
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Expanding the parameters as in the linear case Eq. (164), we obtain,

Ē�3�xc = 1
6

∑

klm

e−i��k+�l+�m�t∑

xyz

��kx �
�l
y �

�m
z(170)

×
[∫ �Exc

�	�r�
	̄�k��l��m�r�d�

+2P̂xyz
∫∫ �2Exc

�	�r��	�r′�
	�k�r�	̄�l��m�r′�d� d� ′

+
∫∫∫ �3Exc

�	�r��	�r′��	�r′′�
	�k�r�	�l�r′�	�l�r′′�d� d� ′ d� ′′

]

where the first- and second-order perturbed densities are given by Eqs. (165) and
(166) and the third-order perturbed density by

(171) 	̄�1��2��3
xyz �r�= P̂123�0���̂�1

x � ��̂
�2
y � ��̂

�3
z � 	̂�r�����0�

As in the linear case, time averaging cancels the time-dependent phase factor if the
sum of the frequencies is zero. The exchange–correlation energy contribution to the
quadratic response function then becomes,

��Â� B̂� Ĉ��xc
�b��c

= 1
6

[∫ �Exc

�	�r�
	�a��b��c �r�d�(172)

+3P̂ABC
∫∫ �2Exc

�	�r��	�r′�
	�a�r�	�b�c �r′�d� d� ′

+
∫∫∫ �3Exc

�	�r��	�r′��	�r′′�
	�a�r�	�b�r�	�c�r�d� d� ′ d� ′′

]

2.8.3 Cubic response

The cubic response function is obtained as the fourth derivative of the time-averaged
quasi-energy. Thus we expand the energy to fourth order in the first- and second-
order parameters,

Ē�4�xc =
∫ �Exc

�	�r�
	̄�4��r� t�d�(173)

+
∫∫ �2Exc

�	�r��	�r′�
�

1
2
	�2��r� t�	�2��r′� t�+	�1��r� t�	̄�3��r′� t��d� d� ′

+ 1
2

∫∫∫ �3Exc

�	�r��	�r′��	�r′′�
	�1��r� t�	�1��r′� t�	�2��r′′� t�d� d� ′ d� ′′

+ 1
24

∫∫∫∫ �4Exc

�	�r��	�r′��	�r′′��	�r′′′�

×	�1��r� t�	�1��r′� t�	�1��r′′� t�	�1��r′′′� t�d� d� ′ d� ′′ d� ′′′
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where

	̄�4��r� t�= 1
2
�0���̂�2��t�� ��̂�2��t�� 	̂�r����0�(174)

+ 1
6
�0���̂�1��t�� ��̂�1��t�� ��̂�2��t�� 	̂�r�����0�

+ 1
6
�0���̂�1��t�� ��̂�2��t�� ��̂�1��t�� 	̂�r�����0�

+ 1
6
�0���̂�2��t�� ��̂�1��t�� ��̂�1��t�� 	̂�r�����0�

+ 1
24

�0���̂�1��t�� ��̂�1��t�� ��̂�1��t�� ��̂�1��t�� 	̂�r������0�

	̄�3��r� t�= 1
2
�0���̂�1��t�� ��̂�2��t�� 	̂�r����0�(175)

+ 1
2
�0���̂�2��t�� ��̂�1��t�� 	̂�r����0�

+ 1
6
�0���̂�1��t�� ��̂�1��t�� ��̂�1��t�� 	̂�r�����0�

The bar indicates that, according to the 2n+ 1 rule, we only consider contribu-
tions from the first- and second-order parameters. This also means that 	̄�3��r� t�
differs from the quadratic case were only the first-order parameter were included.
Expanding the parameters according to Eqs. (160) and (161), we obtain,

Ē�4�xc = 1
24

∑

klmn

e−i��k+�l+�m+�n�t∑

xyzu

��kx �
�l
y �

�m
z �

�n
u(176)

×
[∫ �Exc

�	�r�
	̄�k��l��m��n�r�d�

+3P̂xyzu
∫∫ �2Exc

�	�r��	�r′�
	�k��l �r�	�m��n�r′�d� d� ′

+4P̂xyzu
∫∫ �2Exc

�	�r��	�r′�
	�k�r�	̄�l��m��n�r′�d� d� ′

+6P̂xyzu
∫∫∫ �3Exc

�	�r��	�r′��	�r′′�
	�k�r�	�l�r′�	�m��n�r′′�d� d� ′ d� ′′

+
∫∫∫∫ �4Exc

�	�r��	�r′��	�r′′��	�r′′′�

×	�k�r�	�l�r′�	�m�r′′�	�n�r′′′�d� d� ′ d� ′′ d� ′′′
]
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where the perturbed densities are given by

	�1
x �r�= �0���̂�1

x � 	̂�r���0�(177)

	�1��2
xy �r�= �0���̂�1��2

xy � 	̂�r�����0�+ P̂12�0���̂�1
x � ��̂

�2
y � 	̂�r����0�

	̄�1��2��3
xyz �r�= 3

2
P̂123�0���̂�1

x � ��̂
�2��3
yz � 	̂�r����0�

+ 3
2
P̂123�0���̂�1��2

xy � ��̂�3
z � 	̂�r����0�

+ P̂123�0���̂�1
x � ��̂

�2
y � ��̂

�3
z � 	̂�r�����0�

	̄�1��2��3��4
xyzu �r�= 3P̂1234�0���̂�1��2

xy � ��̂�3��4
zu � 	̂�r����0�

+2P̂1234�0���̂�1
x � ��̂

�2
y � ��̂

�3��4
zu � 	̂�r�����0�

+2P̂1234�0���̂�1
x � ��̂

�2��3
yz � ��̂�4

u � 	̂�r�����0�
+2P̂1234�0���̂�1��2

xy � ��̂�3
z � ��̂

�4
u � 	̂�r�����0�

+ P̂1234�0���̂�1
x � ��̂

�2
y � ��̂

�3
z � ��̂

�4
u � 	̂�r������0�

Time averaging cancels the time-dependent phase factor if the sum of the frequen-
cies is zero. The exchange–correlation energy contribution to the cubic response
function then becomes:

��Â� B̂� Ĉ� D̂��xc
�b��c��d

= 1
24

[∫ �Exc

�	�r�
	̄�a��b��c��d �r�d�(178)

+3P̂ABCD
∫∫ �2Exc

�	�r��	�r′�
	�a��b �r�	�c��d �r′�d� d� ′

+4P̂ABCD
∫∫ �2Exc

�	�r��	�r′�
	�a�r�	̄�b��c��d �r′�d� d� ′

+6P̂ABCD
∫∫∫ �3Exc

�	�r��	�r′��	�r′′�
	�a�r�	�b�r′�	�c��d �r′′�d� d� ′ d� ′′

+
∫∫∫∫ �4Exc

�	�r��	�r′��	�r′′��	�r′′′�

×	�a�r�	�b�r′�	�c�r′′�	�d�r′′′�d� d� ′ d� ′′ d� ′′′
]

3. IMPLEMENTATION

Numerical evaluations of Kohn–Sham matrix elements and exchange-correlation
(xc) contributions to response vectors follow the same scheme. In contrast to
the Coulomb and exact Hartree–Fock exchange contributions which are usually
evaluated by summing analytically computed integrals between basis functions
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(c.f. Eq. (58)), one has to resort to an explicit numerical integration of the exchange-
correlation contribution. Another difference in the evaluation of the xc contribution
is that the functionals are non-linear with respect to the density and therefore time-
dependent density functional theory requires knowledge of higher order derivatives
of functionals. Evaluation of any of these contributions consists of three basic
building blocks: Generation of the numerical grid, assembly of various prefactors
depending on functional derivatives and expectation values of perturbed densities,
and adding contributions to respective matrix elements. Generation of the numerical
grid is a crucial component determining the accuracy of the xc evaluation. It is a
well researched topic [63–65] and we are not going to dwell on it here. Instead,
we will focus on the remaining parts, commenting occasionally on the efficiency
aspects of appearing expressions. We only assume further that the grid consists of
P points rx with associated weights wx�x ∈ �1 � � � P�.

3.1 Implementation of Linear Transformations

Computing linear response of a molecular property from Eq. (80) requires knowl-
edge of a response vector �̂� corresponding to the perturbation V̂ �. This response
vector can be found by solving a linear set of equations in Eq. (76). This set of
equations is large and therefore is solved iteratively for N occ ×N virt variables where
N occ is a number of occupied orbitals and N virt is number of virtuals.

The xc contribution to the matrix being implicitly inverted is

f�xc�pq =
∫ �vxc

�	�r�

∣
∣
∣
∣
	=	�r�

	��r��k���pq�dr(179)

�pq = �p�r��q�r�(180)

where 	��r� is given by Eq. (74). The integral in Eq. (179) is evaluated numerically
by summing contributions from all the grid points with appropriate weights. At each
grid point, we could compute the expectation value of the perturbed density 	��r�,
compute relevant derivatives of the exchange-correlation potential, and compute
the contribution to pq matrix element of f�.

This is however not how the actual calculation is done. Generally, computing xc
contributions is time-consuming because of usually large number of grid points and
therefore one wants to minimize the amount of calculation performed at each grid
point. Straightforward implementation of the scheme above will perform matrix-
matrix multiplications at each grid point requiring N 3 of work at each grid point
and scale like N 4 with the system size. A simple improvement would be to avoid
constructing �pq =�p�r��q�r� matrices explicitly and instead multiply other terms
by �p�r� from the left or right side when needed. This reduces the scaling by one
order of magnitude to N 2 at each grid point and N 3. One can do better though:
A constant amount of work per grid point (and a linear scaling in total) can be
achieved by utilizing locality of basis set functions and the fact that the number
of nonvanishing basis functions at given point in space does not change strongly
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as the system size increases. This requires however that the expression above is
transformed to atomic-orbital (AO) basis. The transformation is done with help of
the matrix of molecular orbital coefficients C.

The entire calculation looks as follows:
• a perturbed density 	̃� in AO basis is created

(181) 	̃�pq = {
C�DMO� ���C†

}
pq

=
occ∑

i

∑

r

Cpi�
�
irCqr −Cpr��riCqi

• the xc contribution to the response vector transformation is being integrated
numerically where only elements corresponding to basis functions bp�r� nonva-
nishing at given grid point rx are actually computed,

e�pq =
P∑

x=1

wx
�vxc

�	�r�

∣
∣
∣
∣
	=	�rx�

�	̃��rx��bp�rx�bq�rx�(182)

�	̃��rx�� =∑

pq

bp�rx�	̃
�
pqbq�rx�(183)

• finally, the response e� is transformed back to the MO basis and added to the
Coulomb contribution:

(184) f xc = C†e�C⇔ f�xc�pq =∑

rs

Crpe
�
rsCsq

Observe, that for LDA-type functionals the first order variation of the potential can
be expressed as the second order derivative of the functional with respect to the
density,

(185) Exc�	�=
∫
F�	�r��dr ⇒ �vxc

�	�r�
= �2F

�	2

It is critical to include in the sum in Eq. (182) only those grid points that contribute
to the given matrix element e�pq. The easiest way to achieve this is to divide grid
points into spatial boxes and associate each box with a list of nonvanishing basis
functions bp�r�. The integration for a box needs then only evaluate the nonvanishing
basis functions and matrix elements they contribute to.

Higher order transformations are performed in a similar fashion with the excep-
tion that more terms appears in the sums. For example, the quadratic response
transformation is in general a sum of several matrices with appropriate prefactors
(again, we omit gradient-dependent terms for brevity)

(186) f xc =
P∑

x

wx
(
r�BC + rB�C + rC�B+ rBC�)
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where,

�B = ���B���(187)

�BC = 1
2
����B� ���C ����+ ���C � ���B�����(188)

The coefficients r, rB, rC are expressed in terms of functional derivatives and
expectation values of commutators 	B = �	̃�B�r��,

r = 1
2
�F

�	
(189)

rB = 	B �
2F

�	2
(190)

rBC = 	B	C �
3F

�	3
+	BC �

2F

�	2
(191)

where we see third order derivatives of the exchange-correlation functional
appearing. The quadratic response expression in Eq. (186) is formulated in terms
of matrix commutators at a cost per grid point that scales as N 3. A speedup by one
order of magnitude can be obtained by utilizing the structure of the �ij = �i�j
matrix and transforming the working formula to a form that uses only matrix–
vector operations scaling as N 2 as suggested above for linear response. However,
similarly to linear response, the expressions above can—and should—be evaluated
in the atomic orbital basis to take advantage of the basis function locality. Such
implementation gives manyfold speedup for all systems but the smallest ones.

3.2 Implementation of Functional Derivatives

As demonstrated above, time-dependent DFT may require higher derivatives of
E�	�. The number of needed derivatives is multiplied additionally by the fact that
in many practical applications an unrestricted formalism has to be used and 
 and
� electron densities and gradients have to be treated as independent. Specifically,
the derivatives need to be evaluated separately with respect to 	
, 	� and the
corresponding density gradient components ��	
 ·�	
��	
 ·�	���	� ·�	��.

For each functional, several set of functions needs to be implemented. Namely the
functional itself, its first derivatives needed for the evaluation of the Kohn–Sham
matrix, the second derivatives for the evaluation of the linear response transfor-
mations, the third derivatives for the quadratic response and finally the fourth
derivatives are needed for the cubic response. Systematic handling of such a large
number of derivatives is a daunting task: for the functionals that we have imple-
mented, there are 5 different first order derivatives to compute, 12 second order
derivatives and 23 third order derivatives. The number of fourth order derivatives
is even higher. It is therefore not surprising that many have chosen to neglect the
gradient dependence in the linear and higher response calculations [66] or compute
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the derivatives using finite-difference methods (as in [67]). We have however devel-
oped a systematic framework for analytical evaluation of functional derivatives,
allowing also in many cases for automatic code generation.

4. SAMPLE APPLICATIONS

By choosing different operators for Â, B̂, Ĉ and D̂ in the expressions for the response
functions derived in the previous section a wide range of different properties can
be calculated. The most common example being the (hyper)polarizability were all
operators are electric dipole moment operators. In this section we will present
sample calculations of a few out of great many properties that are available from
response functions.

Section 4.1.1 reviews second harmonic generation (SHG) for para-nitroaniline
(PNA), Section 4.1.2 the polarizability and second hyperpolarizability of nitrogen
and benzene, Section 4.1.3 the second hyperpolarizability of C60, Section 4.2 the
excited state polarizability of pyrimidine and s-tetrazine, Section 4.3 three-photon
absorption, and finally, in Section 4.5 the electronic g-tensor and the hyperfine
coupling tensor are reviewed as examples of open shell DFT response properties.

4.1 Hyperpolarizabilities

4.1.1 Para-nitroaniline

With an NH2 donor and an NO2 acceptor substituted on a phenyl ring,
para-nitroaniline (PNA) shows an exceptionally strong charge-transfer character
accompanied by a large polarizability and hyperpolarizability. It has served in
the past as an important test system for experimental and theoretical investi-
gations of hyperpolarizabilities, see for instance [69–73]. Of particular interest
here is the parallel component of the SHG hyperpolarizability tensor �SHG

z ��� =∑
k ��zkk+�kzk+�llz� where z is the molecular C2v symmetry axis. Early Hartree–

Fock and �-electron multiconfigurational self-consistent field (MCSCF) quadratic-
response calculations [73] gave 5.7 and 8�2 × 10−30 esu, respectively, for this
component at 1.17 eV, which is too low compared with an experimental value of
16�9×10−30 esu, as extrapolated from solvent measurements at the same frequency
[69]. These discrepancies were first attributed to solvation but subsequent gas-phase
measurements [70] yielded a similar value of 15�4×10−30 esu, however, seemingly
using a different convention for defining �. Recently, Sałek et al. calculated the
hyperpolarizability of PNA at the B3LYP level of theory, obtaining the values
listed in Table 2, along with previous calculations and measurements of �SHG

z ���
in PNA.

Calculated excitation energies and oscillator strengths are listed in Table 1. The
accurate description of the hyperpolarizability is strongly linked to the description of
the intensive amino-to-nitro charge-transfer (CT) transition at 4.35 eV [68], which
collects nearly all of the oscillator strength for the manifold of low-lying states. DFT
represents a significant improvement on RPA, reducing the excitation energy, as
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Table 2. The hyperpolarizability �SHG
z ��� average of PNA in units of 10−30 esu

(1 au = 8�639418×10−33 esu), using the B-convention. Reproduced from [74]

��eV� 0 0.65 1.17 1.364 1.494

RHFa 4.09 4.50 5.68 6.50 7.24
MCSCFa 5.93 6.52 8.20 9.38 10.43
MP2b 12.0
LDA/ALDAc 16.99
LB94/ALDAc 21.16
B3LYPd 6.72 7.94 12.33 16.28 21.16
B3LYPe 6.85 8.15 12.94 17.41 23.09
CCSDf 5.82 8.47
CCSDg 7.50 8.24 11.52 13.83 16.12
CCSDh 7.38 11.37
Exp.i 9�6±0�5 16�9±0�4 25±1 40±3
Exp.j 15�44±0�63

a From [73].
b From [75] using RPA dispersion.
c From [76].
d From [77] using the aug-cc-pVDZ basis.
e From [77] using the Sadlej basis.
f From [74] using the cc-pVDZ basis.
g From [74] using the aug-cc-pVDZ basis.
h From [74] using a stripped down aug-cc-pVTZ basis.
i Experiment from [69] extrapolated from solvent measurements.
j Experiment from [70] in the gas phase.

expected from the increased correlation contribution to � from the � electrons. Still,
DFT results are clearly dependent on the functional, the local exchange functionals
giving too low excitation energies (and too large �). The hybrid B3LYP functional
gives the best result—that is, 4.13 eV in the cc-pVDZ basis—consistent with the
nonlocal nature of the CT excitation.

At low frequencies, the agreement of the B3LYP values with experiment is
reasonable. Thus, at 1.17 eV, the B3LYP model gives 12�9 × 10−30 esu, which is
16% lower than the experimental result. At higher frequencies, however, the B3LYP
values are in poorer agreement with experiment, underestimating the experimental
values by 30% at 1.364 eV and by more than 40% at 1.494 eV (see Table 2).
However, in view of the large uncertainties in the experimental values and the
fact that they were obtained by extrapolation from solvent measurements, these
discrepancies may also arise from problems with the experimental measurements
at high frequencies.

In Table 2, we have listed the values of �SHG
z ��� calculated using the CCSD

model with different basis sets, including a stripped down aug-cc-pVTZ basis. At
1.17 eV, the CCSD model gives a value of 11�4×10−30 esu, somewhat lower than
the B3LYP result of 12�9×10−30 esu and much lower than the experimental value of
15�4×10−30 esu. Since, at higher frequencies, the discrepancy between the B3LYP
and CCSD models increases even more, it appears that the very large differences
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observed between the experimental measurements and the B3LYP values must
arise from problems with the experimental measurements rather than with the
calculations. In fact, from a comparison of the B3LYP and CCSD results, it appears
that the B3LYP model gives an overestimation rather than an underestimation of
the hyperpolarizabilities at high frequencies.

4.1.2 Nitrogen and benzene

Static and dynamic polarizabilities and hyperpolarizabilities of benzene and molec-
ular nitrogen were computed and analyzed in [42] with respect to basis set and
selected DFT method. The static values are reproduced in Tables 3 and 4.

The experimental value [78, 80] for the average polarizability 
ave is 11.76 a.u.
for the nitrogen molecule and 69.51 a.u. for benzene. For the best basis set, i.e.
the aug-cc-pVTZ basis set, we observe that all of the methods, including HF, are
within 5% error. The HF method always slightly underestimates the polarizability

, due the general tendency of this method to overestimate excitation frequencies.
The LDA approximation based on the uniform electron gas model, on the other
hand, overestimates. The source of this behavior, which in this case is related to
the tendency to underestimate the excitation frequencies, especially the HOMO-
LUMO gap, is well understood: The LDA potential is simply not attractive enough
in the outer region, due to the spurious problem of self-interaction [82]. As a
correction to this problem the LB94 potential with the proper asymptotic limit
has been proposed [83]. Using this potential and the LDA kernels, we obtain an
excellent agreement with experiment for the nitrogen molecule. The 
ave value

Table 3. The basis set dependence of the average static polarizability 
ave and the second
hyperpolarizability �ave of the nitrogen molecule. The HF, the DFT Potential/Kernel combinations and
the CCSD methods were used. daug/taug-cc-pVTZ denotes doubly/triply augmented cc-pVTZ basis set.
Reproduced from [42]

Potential/ HF/ LDA/ LB94/ B3LYP/ B3LYP/ PBE/ CCSD Expt.
Kernel HF LDA LDA LDA B3LYP PBE

Polarizability 
ave in a.u.
aug-cc-pVDZ 11�30 12�04 11�47 10�89 11�78 12�05 11�57
aug-cc-pVTZ 11�54 12�23 11�76 11�11 12�00 12�24 11�65
daug-cc-pVTZ 11�57 12�28 11�77 11�15 12�04 12�28 11�67
taug-cc-pVTZ 11�57 12�28 11�77 11�15 12�04 12�28 11�67
aug-cc-pVQZ 11�54 12�26 11�70 11�14 12�04 12�27 11�62 11.76a

Second hyperpolarizability �ave in a.u.
aug-cc-pVDZ 456�0 923�2 634�5 640�5 773�9 925�0 684�4
aug-cc-pVTZ 560�1 1020�8 706�0 737�2 879�9 1022�8 745�2
daug-cc-pVTZ 697�1 1312�3 834�4 947�2 1132�4 1315�0 895�4
taug-cc-pVTZ 710�2 1327�5 841�6 958�3 1144�3 1330�1 903�1
aug-cc-pVQZ 654�3 1182�7 795�5 860�6 1020�2 1185�0 822�1 917±5b

a From [78].
b From [79].
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Table 4. The basis set dependence of the average static polarizability 
ave and the second hyperpolariz-
ability �ave of benzene. The HF, the DFT Potential/Kernel combinations and the CCSD methods were
used. Reproduced from [42]

Potential/ HF/ LDA/ LB94/ B3LYP/ B3LYP/ PBE/ CCSD Expt.
Kernel HF LDA LDA LDA B3LYP PBE

Polarizability 
ave in a.u.
cc-pVDZ 56�48 58�58 60�18 52�44 57�89 58�59
cc-pVTZ 62�08 64�39 65�53 57�78 63�48 64�41
cc-pVQZ 65�20 67�52 67�99 60�68 66�56 67�54
4-31G+pd 63�40 66�44 65�70 59�73 64�36 66�47
6-31G+sd 62�27 64�00 65�47 57�46 63�10 64�01
6-31G+spd 67�06 69�53 69�11 62�56 68�57 69�56
aug-cc-pVDZ 68�38 70�99 70�60 63�87 70�01 71�02 69.24 67.5a

aug-cc-pVTZ 68�65 71�10 70�53 64�05 70�21 71�13 69.5b

Second hyperpolarizability �ave in 103 a.u.
4-31G 1�01 1�37 1�49 1�06 1�21 1�37
6-31G 1�80 1�43 1�55 1�12 1�26 1�44
cc-pVDZ 1�67 2�68 2�85 1�95 2�26 2�68
cc-pVTZ 2�59 4�18 4�03 3�09 3�60 4�19
cc-pVQZ 3�97 6�30 5�70 4�73 5�45 6�31
4-31G+pd 15�11 22�61 14�45 17�78 20�34 22�66
6-31G+sd 2�21 3�36 3�19 2�54 2�97 3�36
6-31G+spd 10�02 14�91 10�01 11�44 13�40 14�94
aug-cc-pVDZ 11�63 16�44 11�05 12�90 15�18 16�47 14.31
aug-cc-pVTZ 13�28 17�92 11�75 14�27 16�78 17�96 16.4c

a From [78].
b From [80].
c From [81].

of benzene also decreased compared to LDA, but not significantly. We have also
used the LDA, BLYP and B3LYP kernels in connection with the B3LYP poten-
tial. The B3LYP/LDA method, where the B3LYP potential and LDA kernels are
combined, provides surprisingly low values; 11.11 a.u. for nitrogen and 64.1 for
benzene. The B3LYP/BLYP method where the BLYP kernels were used in addi-
tion to the B3LYP potential underestimates the reference value even more. Finally,
the pure B3LYP/B3LYP method where both the potential and the kernels are of the
B3LYP type functional, slightly overestimates the reference value of 11.76 (69.51
for benzene) resulting in 12.00 (70.2), both being close to the reference value.
The PBE functional shows results similar to LDA; the values of the polarizability
are overestimated by a few percent. The CCSD result is only 0.11 a.u lower than
experiment and is lower than most of the DFT methods. It may be concluded that
the DFT methods tend to overestimate values of the polarizability 
ave.

The second hyperpolarizability �ave is a more difficult case. It is both more
sensitive to the basis set and to the selected DFT method. Reported gas phase
static experimental values are 917 ± 5 a�u. [79] and 16�4 × 103 a�u. [84] for � of
N2 and benzene, respectively. When we compare the performance of the methods,
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Table 5. The static and dynamic average polarizability 
ave and the second hyperpolarizability �ave of
the nitrogen molecule in the aug-cc-pVTZ basis set. The HF, the DFT Potential/Kernel combinations
and the CCSD methods were used. Reproduced from [42]

Potential/ HF/ LDA/ LB94/ BLYP/ B3LYP/ B3LYP/ B3LYP/ PBE/ CCSD Expt.
Kernel HF LDA LDA BLYP LDA BLYP B3LYP PBE

Polarizability 
�−���� in a.u.
457.9 nm 11�81 12�58 12�06 12�66 11�34 11�19 12�32 12�59 11�93 12�06a

488.0 nm 11�77 12�53 12�03 12�62 11�31 11�16 12�28 12�54 11�89 12�03a

514.8 nm 11�75 12�50 12�00 12�59 11�29 11�14 12�25 12�51 11�87 12�00a

� 11�53 12�23 11�76 12�31 11�11 10�96 12�00 12�24 11�65 11�76a

Second hyperpolarizability ��−3�������� in a.u.
457.9 nm 1072�9 2630�1 1485�5 2990�6 1479�9 1337�1 2081�3 2637�4 1529�1
488.0 nm 981�6 2286�0 1338�9 2567�8 1343�3 1216�9 1839�5 2292�0 1382�9
514.8 nm 920�8 2072�2 1243�0 2309�8 1253�3 1137�5 1685�6 2077�4 1287�1
� 560�1 1020�8 706�0 1086�0 737�2 675�1 879�9 1022�8 745�2 917±5b

a From [78].
b From [79].

qualitatively very similar but more pronounced trends are found as those for the
polarizability 
. HF underestimates by 20–25% compared to CCSD in the same
diffuse basis set. The LDA model has a strong tendency to overestimate the reference
values for the same reasons as for 
. Overestimation is reduced by adding the LB94
correction to the potential. For the case of benzene, the reduction in the average �
goes below the HF value. The B3LYP/LDA, B3LYP/BLYP and B3LYP/B3LYP
series follow the same trend as for 
 and pure B3LYP gives a balanced result also in
the case of �, approaching the experimental values. The PBE functional, consistent
with the 
 results, performs similarly as the LDA functional which once again
indicates that gradient corrections are not important for the description of properties.
Among the studied potentials, the LB94 potential with the unique property of proper
asymptotic behavior seems to perform very well for the polarizability 
 but tend to
underestimate the second hyperpolarizability �.

That the frequency dependent values can be obtained as readily as the frequency
independent ones is an attractive feature of response theory as experimental
measurements of (hyper)polarizabilities most often are carried out at non-zero
frequencies.

The dispersion behavior of 
 and � for a few selected frequencies can be
found in Tables 5 and 6 for nitrogen and benzene, respectively. We have selected
the ESHG process for benzene and the THG processes for nitrogen to study the
frequency dependence of �. The conclusions are consistent between the processes:
When the CCSD dispersion is taken as a reference value, we observe that the
DFT methods provide satisfactory dispersion for the polarizability 
. However,
for the hyperpolarizability � there is a significant tendency to deviate from the
CCSD dispersion curve. The only exception is the LB94/LDA method, where the
deviation from the CCSD dispersion is found to be almost constant for the examined
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Table 6. The static and dynamic average polarizability 
ave and the second hyperpolarizability �ave of
benzene in the aug-cc-pVTZ basis set. HF and different DFT Potential/Kernel combinations were used.
Reproduced from [42]

Potential/ HF/ LDA/ LB94/ BLYP/ B3LYP/ B3LYP/ B3LYP/ PBE/ Expt.
Kernel HF LDA LDA BLYP LDA BLYP B3LYP PBE

Polarizability 
�−���� in a.u.
620.0 nm 71.1 73.9 73.2 74.4 65.9 64.3 73.0 73.9
670.0 nm 70.8 73.5 72.8 74.0 65.6 64.0 72.6 73.5
693.4 nm 70.6 73.3 72.6 73.8 65.5 63.9 72.4 73.4
� 68.6 71.1 70.5 71.5 64.1 62.6 70.2 71.1 69.5a

Second hyperpolarizability ��−2������0� in 103 a.u.
620.0 nm 23.60 32.71 18.29 39.88 22.99 19.90 31.40 32.79 26�80±0�5b

670.0 nm 21.43 29.51 17.01 35.25 21.26 18.44 28.19 29.58 24�54±0�5b

693.4 nm 20.66 28.39 16.54 33.70 20.64 17.92 27.07 28.45 24�54±0�6b

� 13.28 17.92 11.75 19.89 14.27 12.48 16.78 17.96 16.46c

a From [80].
b From [84].
c From [81].

range of frequencies. To sum up what we have observed for nitrogen and benzene:
LDA/LDA and PBE/PBE give similar and generally too large values—the PBE
gradient correction is not an improvement for properties. The same holds for the
BLYP functional. LB94/LDA gives systematically lower values: the difference is
not large for the polarizability but significant for the hyperpolarizability. This shows
that an improved potential does not necessarily leads to better properties. The
B3LYP potential with the same kernels provide balanced results in good agreement
with experiment.

4.1.3 C60 fullerene

The chemistry and physics of fullerenes have constituted one of the most fast
growing research fields during the last decade [90]. A summary of the early results
for the second hyperpolarizability can be found in [91, 92]. There are a number
of factors that make comparison of these results difficult, for instance the type of
optical process, the phase of the samples, and the reference standard [91, 93]. The
theoretical results, on the other hand, seem to be more consistent, especially among
those from the first-principle calculations, such as ab initio Hartree-Fock and the
density functional theory (DFT) methods [14, 89, 94, 95]. The recent applications
of time-dependent DFT [14, 96] to NLO properties of the fullerenes has improved
the situation considerably.

Two tailored basis sets were used in [42]: A 4-31G+pd basis set based upon a
standard 4-31G basis set augmented with diffuse p(0.0780) and d(0.1870) exponents.
The other basis set cc-pVDZ+spd is based upon the standard cc-pVDZ basis set,
augmented with s(0.0469), p(0.0800) and d(0.3140) exponents. Experimental data
for the polarizability 
, which have been deduced from the measurements of the
dielectric constant in thin films, are in the range of 579–595 a.u. [85–87]. Another
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Table 7. The average static polarizability 
ave and the second hyperpolarizability �ave of the C60

fullerene, using 4-31G+pd and cc-pVDZ+spd taylored basis sets. Several DFT Potential/Kernel
combinations were used. Reproduced from [42]

Potential/ LB94/ B3LYP/ B3LYP/ B3LYP/ PBE/ Expt.
Kernel LB94 LDA BLYP B3LYP PBE

Polarizability 
ave in a.u.
4-31G+pd 496.2 495.9 535.7 544�7
cc-pVDZ + spd 544.1 506.3 506.0 547.0 554�9 579–595a

Second hyperpolarizability �ave in 103 a.u.
4-31G+pd 65.58 65.25 76.31 80�32
cc-pVDZ + spd 87�02 96.84 96.38 118.27 119�23 93±14b

a From [85–87].
b Experimental value from [88] corrected for dispersion as described in [89].

measurement by Antoine et al. [97] provides the static polarizability 
 value as
516±54 a.u. In the calculated data in Table 7, we can observe similar trends as for
the smaller nitrogen and benzene molecules. The results are within 15% of the thin
film experiment and are well within the error bars of the experiment of [97]. The
remaining deficiency can be attributed to the basis set and the state of the sample
in the first case. However, we also obtain very good agreement with theoretical
results of other authors. Our values for LB94 (544), B3LYP (547), and PBE (544)
compare well with the analytical results of van Gisbergen et al; [98] LDA (557)
and LB94 (544) and Iwata et al; [96] VWN(541), BLYP(545), and LB94(544),
obtained using a numerical real-space method.

For the hyperpolarizability � experimental data based on the measurement of
�3 are not unambiguous, see discussion of Norman et al. [89]. The experimental
value of 170 ± 24 × 103 a.u. was given in [88]. The estimation of the dispersion
by a two-state model brings this value down to 93 ± 14 × 103 a.u. [89]. We see
that the B3LYP/LDA/cc-pVDZ+spd basis set gives results within the error bars of
the experiment, while B3LYP seems to overestimate somewhat and LB94 slightly
underestimate. However, we need to keep in mind that we have seen the deficiency
in the basis set already for the 
 values and that also the reliability of the estimation
of the dispersion effect by a two-state model might be questioned.

When we compare to the theoretical work of other authors, the situation is more
interesting for �: van Gisbergen et al. [98] obtained � values from finite-field
differentiation of the first hyperpolarizability � using a Slater basis. They obtained
an LB94 � value of 65�5 × 103 a.u. which is considerably lower than what we
obtain. Due to their use of LDA kernels this does not give identical results as
the analytical calculation we carried out. The results of van Gisbergen et al. were
criticized by Yabana and coworkers [96] for deficiencies in the basis set. Using
a basis set free real space numerical method and the VWN, BLYP and LB94
potentials, they obtained a LB94 result of 94300 which is in excellent agreement
with our, analytical calculations. This indicates that the problem with the results
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of van Gisbergen et al. is not due to the basis set, but that it is methodological.
We note, however, that the LB94 results of Yabana et al. are not fully consistent
since all the calculations were performed with pseudo potentials derived from LDA
calculations.

4.2 Excited State Polarizabilities

Excited state properties of molecules are often important parameters in different
models of interacting systems and chemical reactions. For example, excited state
polarizabilities are key quantities in the description of electrochromic and solva-
tochromic shifts [99–103]. In gas phase there has been a series of experiments were
excited state polarizabilities have been determined from Laser Stark spectroscopy
by Hese and coworkers [104–106]. However, in the experiments most often not all
the tensor components can be determined uniquely without extra information from
either theory or other experiments.

Calculations of analytic excited state properties for correlated methods have been
reported by several groups [107–118]. Excited state dynamic properties from cubic
response theory were first obtained by Norman et al. at the SCF level [55] and by
Jonsson et al. at the MCSCF [56] level, and in a subsequent study a polarizable
continuum model was applied to account for solvation effects [119]. Hättig et al.
presented a general theory for excited state response functions at the CC level
using a quasi-energy formulation [120] which was subsequently implemented and
applied at the CCSD level [121, 122]. The first TD DFT calculation of dynamic
excited state polarizabilities, which we will shortly review here, was presented in
[58] for pyrimidine and s-tetrazine utilizing the double residue of the cubic response
function derived in Section 2.7.3.

For both S0 and S1 of pyrimidine we have used the experimental ground
state geometry from [123]. For s-tetrazine S0 we used the experimental geometry

Table 8. The static dipole polarizability for the ground state and the first excited singlet state of
pyrimidine in a.u. Coupled cluster values from [121]. The polarizability anisotropy parameter is defined
as � = �
xx+
yy�/2−
zz. Reproduced from [58]

Component SCF CCS CC2 CCSD LDA BLYP B3LYP

S0 ground state

xx 64.6 69�3 71�1 67�8 69�3 69�9 67�9

yy 66.5 71�5 74�1 70�2 72�4 72�8 70�6

zz 36.7 39�7 38�3 37�5 37�5 37�7 37�0
� 30�7 34�3 31�5 33�3 33�6 32�3

S1 exited state

xx 111�9 128�6 111�8 118�8 117�6 107�2

yy 76�0 75�8 71�4 73�0 73�6 71�8

zz 46�2 44�5 42�2 41�2 42�4 41�3
� 47�8 57�7 49�4 54�7 53�2 48�2
�
zz 6�5 6�2 4�7 3�7 4�7 4�3
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Figure 1. The change of the dynamic polarizability of pyrimidine upon excitation to the lowest excited
singlet state. Reproduced from [58]

[124, 125] and for S1 the optimized structure of Stanton and Gauss [115]. This
is also the basis set and geometries used for pyrimidine and s-tetrazine in [121]
making our results directly comparable to theirs.

The static polarizabilities for the ground and first singlet excited state of pyrim-
idine employing the LDA, BLYP and B3LYP functionals can be found in Table 8.
For comparison we list also CCS, CC2, and CCSD values from [121]. It is inter-
esting to note that the DFT errors (compared to CCSD) for the polarizabilities are
much smaller than for the excitation energies and that all the DFT methods provide
better results than CC2 which is not even better than CCS. The B3LYP ground
and excited state polarizabilities are within 2% and 5%, respectively, of the CCSD
values. Considering that the errors in excitation energies in many cases were much
larger for LDA and BLYP it is somewhat surprising that these functionals still
produces quite reasonable excited state polarizaiblities, even though the results are
not as good as for B3LYP. We can conclude a general good agreement for the static
ground and excited state polarizabilities of pyrimidine for all the DFT methods.

For the pyrimidine molecule we also calculated the frequency dependence of
the S1 state polarizability up to the first resonance. The change of the dynamic
polarizability upon excitation is displayed in Fig. 1, for the 
xx, 
yy, and 
zz
components, respectively. The dispersion of the ground state polarizabilities in the
same frequency interval as for the excited state does not differ significantly from
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Table 9. The static dipole polarizability for the ground state and the first excited singlet state of s-tetrazine
in a.u. Numbers in parenthesis are for the S1 geometry. The polarizability anisotropy parameter is defined
as � = �
yy+
zz�/2−
xx. Reproduced from [58]

Comp. SCFa CASSCFa CASPT2b CCSDc CCSD resp.d B3LYPe Exp.f

S0 ground state

xx 29.8 29.8 32.6 32.0 32.7 32.3

yy 52.7 53.4 55.1 54.4 56.0 54.0

zz 57.4 53.8 60.0 59.0 60.7 62.1
� 25.2 23.8 25.0 24.7 26.7 25.8 5.4

S1 exited state

xx 28.7 38.2 32.4 31.3 31.9 (31.1) 31.1 (31.3)

yy 70.8 74.4 67.2 74.0 80.1 (83.2) 75.8 (78.1)

zz 63.7 66.6 66.0 63.9 61.5 (65.7) 71.0 (65.5)
� 38.4 42.3 34.2 37.6 41.1 (43.4) 42.3 (40.5) 45.2
�
xx −1�1 −1�6 −0�2 −0�7 −0�9 (−0�7) −1�1 (−0�9) −17�5

a Response calcaulation in a [4s4p2d/2s1p] basis, [126].
b Finite field calculation in the Sadlej POL basis, [127].
c Finite field calculation in the Sadlej POL basis, [115].
d Response calculation in the Sadlej POL basis, [121].
e B3LYP response calculation in Sadlej’s POL basis, this work.
f Laser Stark spectroscopy, [105].

the static case and are therefore not presented here. As can be seen in the figures
B3LYP generally compares well to the CCSD values almost all the way up to the
first resonance, whereas LDA and BLYP tend to deviate from the CCSD results
much earlier. We may note that the CCS values (not displayed here) are completely
wrong for a large part of the frequency range and that the CC2 values generally are
of the same quality as the B3LYP numbers.

The static polarizabilities for the ground and first singlet excited state of
s-tetrazine for the B3LYP functional is presented in Table 9 compared to several
other methods as well as experiment. As for pyrimidine the B3LYP ground state
polarizabilities are within 2% of the CCSD values and there is in general good
agreement between the different DFT methods. For the excited state there is good
general agreement but larger differences than for pyrimidine. The largest deviation
is observed for the S1
zz component were B3LYP is 15% larger than CCSD. It
is also notable that the CCSD S1
yy component differs by 10% even though the
only difference between the CCSD results from [115] and [121] is that the latter
analytic results do not contain orbital relaxation. As noted before [115, 121, 127]
the general good agreement between all the different theoretical methods warrants
a reinvestigation of the experiment [105].

4.3 Three-photon Absorption

Though experimentally verified already in 1964 by Singh and Bradley [128], three-
photon absorption (3PA) is far less examined than the two-photon absorption
(TPA) analog. However, the increased attention directed toward non-linear optical



194 Jonsson et al.

processes [129–131] have lately been broadened to include higher order multi-
photon excitations [132–134]. The simultaneous absorption of three photons inherits
many of the profitable characteristics of the extensively studied TPA process,
such as spatial confinement due to higher order dependence on the intensity, and
increased penetrability due to that fundamental excitations can be reached by longer
wavelengths. In addition, it also enables the spectroscopic access of states which
are TPA forbidden.

The three-photon absorption cross section is related to the fifth order susceptibility
which clearly forms a challenging computational task. Most often we are interested
in the resonant absorption to a particular state, f , in which case the cross section
can be expressed in terms of the third-order transition moment to this state, which
in turn is much easier to compute. Hence, for 3PA it is sufficient to evaluate the
third-order transition moment, Tabcf , as

(192) Tabcf =∑
�abc

∑

m�n

�0��a�m��m��b�n��n��c�f�
��m−2�f/3���n−�f/3�

which in turn can be identified from the single residue of the cubic response function
as described in Section 2.7.3. In order to ascertain three-photon probabilities and
cross-sections in an isotropic medium, the third order transition moments has to be
orientationally averaged as devised by McClain [135]. For linearly polarized light
the three-photon probabilities are given by

(193) �3PA
L = 1

35
�2
∑

ijk

TiijTkkj +3
∑

ijk

TijkTijk�

and the three-photon cross section, �3PA, is defined as

(194) �3PA = 4�3a8
0


3c0

�3g���

�f
�3PA

where g��� relates to the spectral line profile and �f to the lifetime broadening of
the final state [136]. Provided that CGS units are used for a0 and c0 and atomic units
for �3PA, � and �f , the final cross sections will given in units of cm6 · s2 ·photon−1.

4.3.1 Small molecules

Calculated excitation energies and three-photon probabilities for HF, NH3, and
H2O can be found in Table 10. The oscillatory predictions in the sequence CCS-
CC2-CCSD observed for the excitation energies is substantially more pronounced
for �3PA, which may not be surprising considering the order of the property. The
moderate contributions from triples, as estimated from the insignificant differences
between excitation energies predicted by CCSD and CC3, strengthen the predictive
credibility of the �3PA values obtained at the CCSD level. Even though the accuracy



Kohn–Sham Time-Dependent Density Functional Theory 195

T
ab

le
10

.
E

xc
ita

tio
n

en
er

gi
es

in
eV

an
d

th
re

e-
ph

ot
on

pr
ob

ab
ili

tie
s,
�

3P
A

,
fo

r
lin

ea
rl

y
po

la
ri

ze
d

lig
ht

in
10

4
a.

u.
fo

r
H

F,
N

H
3
,

an
d

H
2
O

as
ca

lc
ul

at
ed

by
re

sp
on

se
th

eo
ry

at
C

C
,D

FT
an

d
H

F
le

ve
ls

w
ith

au
g-

cc
-p

V
T

Z
ba

si
s

se
t.

R
ep

ro
du

ce
d

fr
om

[5
9]

St
at

e
C

C
S

C
C

2
C

C
SD

C
C

3
B

3L
Y

P
B

L
Y

P
L

D
A

H
F

H
F

1 
11
�6

6
0�

80
9�

87
2�

80
10
�3

5
1�

66
10
�3

8
-

9�
38

2�
39

8�
58

3�
96

8�
95

3�
48

11
�6

0
0�

66
2 

15
�0

1
0�

90
13
�0

3
2�

14
13
�6

5
1�

60
13
�7

1
-

12
�1

8
1�

17
11
�2

6
1�

16
11
�6

4
0�

98
14
�9

8
0�

88
2!

15
�1

8
0�

55
13
�9

4
3�

10
14
�3

2
1�

10
14
�3

6
-

13
�2

2
0�

56
12
�5

0
2�

56
12
�8

2
0�

87
15
�1

4
0�

50
N

H
3

A
′′ 2

7�
42

12
�2

0
6�

36
29
�0

8
6�

58
19
�1

2
6�

55
-

5�
90

13
8

5�
35

25
2

5�
61

16
4

7�
38

28
�4

E
′′

8�
88

9�
72

7�
83

47
�4

2
8�

13
25
�7

0
8�

12
-

7�
16

11
7�

5
6�

49
22

0
6�

82
18

0
8�

86
23
�0

H
2
O

1B
2

8�
65

4�
19

7�
20

13
�9

6
7�

57
8�

35
7�

58
-

6�
87

11
�9

6�
24

26
�1

6�
54

19
�5

8�
60

3�
46

1B
1

10
�3

2
0�

61
8�

86
3�

72
9�

33
2�

06
9�

35
-

8�
28

2�
96

7�
50

5�
51

7�
87

4�
72

10
�2

7
0�

49
1A

1
10
�9

0
3�

57
9�

53
8�

56
9�

91
5�

26
9�

91
-

9�
01

6�
60

8�
35

8�
82

8�
61

10
�6

10
�8

7
2�

98
2B

2
11
�7

8
5�

24
10
�3

5
54
�6

6
10
�7

9
26
�6

9
10
�8

2
-

9�
80

17
�9

8�
98

39
�8

9�
31

26
�5

11
�7

5
3�

45
2A

2
12
�4

3
14
�6

5
10
�8

8
**

**
11
�3

5
**

**
11
�3

5
-

10
�4

6
56

0
9�

82
13

9
10
�1

4
24

9
12
�3

5
11
�0



196 Jonsson et al.

for excitation energies may not inarguably transfer to estimates of �3PA, we will
consider them as tentative benchmark values for comparison with the results attained
by Hartree-Fock and by the DFT functionals B3LYP, BLYP and LDA.

It is also shown in Table 10 that excitation energies are underestimated compared
to CC3 and CCSD, by approximately 1 eV for B3LYP and around 2 eV for BLYP
and LDA. Hartree-Fock on the the other hand overshoots around 1–2 eV.

All functionals, and HF to some extent, do predict similar trends, which overall
are in reasonable accordance with the CC-result as long as the excitation energies do
not exceed the threshold of resonance; i.e. 3/2 the energy of the first excited state.
For the CC2 and CCSD calculations of the H2O molecule, the 2A2 state matches
exactly 3/2 of the energy of the lowest excited state 1B2 and thereby escapes the
numerical precision of the program. Among the DFT methods and non-resonant
states, expectedly B3LYP appears as the most well tempered method which rather
closely follows the CCSD-results.

Fig. 2 displays the predictions by CCSD, B3LYP, HF for all non-resonant states.
While the excitation energies predicted by CCSD neatly is bracketed between the HF
and B3LYP results the ordering between the estimations for �3PA is more irregular.
The HF results are uniformly the lowest, but CCSD and B3LYP interchangeably
predict the largest value. A mean deviation between B3LYP and CCSD can be
estimated to 40%, which can be compared with almost a factor 3 for HF and CCSD.
The overall mutual agreement between CCSD and B3LYP seems to support the use
of B3LYP for exploring �3PA for larger structures, optionally in conjunction with
another low-scaling method such as HF.

10

15

ω
 (e

V
)

CCSD
B3LYP
HF

100

102

104

δ3P
A

HF H2O NH3

Figure 2. Comparison between CCSD, B3LYP and HF results obtained for the non-resonant states of
HF�NH3 and H2O. Reproduced from [59]
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4.3.2 Chromophores

In Table 11 we display the three-photon absorption probabilities, �3PA, for the first
excited state for a series of modified trans-stilbene (TS) and dithienothiophene
(DTT) molecules depicted in Fig. 3. Introducing electron accepting (A) and electron
donating (D) groups to conjugated systems has the well known effect of local-
izing the otherwise de-localized highest occupied and lowest unoccupied orbitals
(HOMO-LUMO) and thereby establishing an effective charge-transfer path across
the molecule. Due to the increase of transition dipole moment guiding this transition
and an overall alignment involving all transition dipole moments, this technique
leads to enhancements of several orders of magnitude for TPA [137, 138]. The
corresponding effect on 3PA of this process is less explored, but can be expected
to benefit in the same manner as TPA. The qualitative mutual agreement between
HF and DFT is comforting, though the intensities may differ with one order of
magnitude. Except for reversing TS-DD and TS-AA, HF predicts the same ordering
of the systems with respect to increasing �3PA as DFT. We note that the TS and
DTT systems behave analogously upon substitution, though, the enhancement when
attaching substituents is in general predicted to be more dramatic with DFT than
for HF. We partly ascribe the quite large difference of 3PA cross sections between
HF and DFT to the tendency to overshoot, respectively, (slightly) undershoot exci-
tation energies, and partly to that the interstate transition moments seem to be
systematically too small in the HF case.

A homologous (AA or DD) substitution will raise �3PA approximately by a
factor between 2 and 18. Indisputably, AD substituted compounds give the largest
responses and supersedes the non-substituted systems with at least one order of

Table 11. Excitation energies in eV, three-photon probabilities, �3PA, for linear polarized light in 106 a.u.
and three-photon cross sections, �3PA in 10−82 cm6 s2 as calculated by response theory at HF and DFT
levels with 6-31G basis set. Reproduced from [59]

Molecule Exp. HF DFT

� � �3PA �3PA � �3PA �3PA

TS ≈ 4�0a 4.59 12�3 0.121 4.08 76�6 0�533
TS-DD 3�32b 4.35 32�9 0.277 3.67 261 1�32
TS-AA 4.22 77�8 0.598 3.34 138 0�525
TS-AD 3�06c 4.05 289 1.96 2.78 5990 13�1
DTT 3.17 806�08 2.63 2.66 11574 22�2
DTT-DD(101) 2�88d2�67e 3.10 1382�17 4.20 2.50 31842�6 50�8
DTT-AA 2�92e 3.01 2590�45 7.25 2.25 114951 134
DTT-AD(102) 2�85d 2.97 4808�37 12.9 1.92 649761 472

a From [139, 140].
b From [141].
c From [142].
d From [143].
e From [144].
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Figure 3. Molecular structures. Reproduced from [59]

magnitude and often close to two. As demonstrated by the substantial differences
between the TS- and DTT-based systems, the electron richness of the basic building
block, interpreted as the strength of the �-center, also strongly influences the �3PA.

4.4 Birefringences

That response theory encompasses a great number of of properties of various kind,
was nicely illustrated in [145] and [146], which presented and analyzed results from
the theory of this review applied to five different types of birefringences. These were
the Kerr, Cotton–Mouton, Buckingham, Jones and Magneto-electric birefringences
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applied on benzene, respectively, hexafluorobenzene. The computational analysis
was thus carried out with DFT using analytical (up to cubic) response theory
and, for the purpose of comparison, with the Hartree-Fock SCF and CCSD wave
function models. Different DFT functionals were employed in the study, and in some
instances also different functionals for the energy and wave function determining
step and for the subsequent response calculation. The general conclusion was that
DFT proves to be a suitable approach for these rather exotic and, in all cases,
demanding properties. The “standard” approach, where a single functional was
applied all through the response calculations performed in general far better than
that where a different functional is employed for the response part. The B3LYP
functional was found to yield on average the best agreement with coupled cluster
results, and reproduced in general with fairly good accuracy experimental data,
which however, in some cases contain huge error bars. For a proper definition of
these birefringences and for details of their evaluation, we refer to the original
articles [145, 146].

4.5 EPR Spin Hamiltonian Parameters

As illustrating examples for the use of the open-shell time-dependent DFT, we
review some examples of its recent applications concerning electron paramagnetic
resonance (EPR) parameters. This choice find motivation in that EPR techniques
are most important tools in the current arsenal of experimentalists for investigations
of paramagnetic species, i.e. molecules with non-vanishing total electronic spin.
Irrespective of EPR methodology chosen for a particular application, the general
motivation is always the same, namely, to gather information about electronic struc-
ture and geometry of the compound in order to supply the experimentalist with
microscopic interpretation and understanding of the data. However, extracting this
information from EPR measurements represents often a formidable challenge in
actual cases. Conventionally, one relates the so-called spin Hamiltonian parameters,
which are the underlying quantities of EPR spectral analysis, to molecular structure
via known empirical relationships. These relationships therefore form the keys
for structural information [147, 148]. However, for molecules with complex elec-
tronic structure it often turns out difficult to predict geometrical structure with an
acceptable and uniform precision via such empirical “spin Hamiltonian parameter–
molecular structure” relationships. The development of density functional theory
methods for evaluation of NMR and EPR spin Hamiltonian parameters serves as an
alternative possibility to more rigorously relate geometrical and electronic structure
with these parameters that has emerged in recent years [148, 149]. In fact, nowadays
DFT calculations of EPR spin Hamiltonian parameters have become a significant
aid for experimentalists to interpret their measurements. In the following part of
this chapter we will shortly review some applications of spin-restricted open-shell
density functional response theory for evaluation of two main EPR spin Hamiltonian
parameters, namely the electronic g-tensor and the hyperfine coupling tensor.
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4.5.1 Electronic g-tensor

The electronic g-tensor is a fundamental parameter in descriptions of the electronic
Zeeman effect and one of the key elements in characterization of EPR spectra. It
couples the external magnetic field, B, with the total spin angular momentum, S,
of the molecule and is conventionally evaluated as the second derivative of the
molecular energy:

(195) g = 1
�B

�2E

�S�B

∣
∣
∣
∣
S=0�B=0

where �B is the Bohr magneton. It is convenient to separate the electronic g-tensor
into two parts, g = ge1 +�g, the free electron g-factor �ge = 2�0023�, and the
so-called g-tensor shift, �g, which accounts for the effects of electronic interactions
in the molecule. The electronic g-tensor shift, correct up to second order in the fine
structure constant 
, has contributions in first- and second order of perturbation
theory which are based on the partitioning of the electronic Breit–Pauli Hamilto-
nian into a non-relativistic and a relativistic part. The first-order contributions are
the relativistic mass-velocity correction to the electronic Zeeman effect and the
so-called diamagnetic, or gauge-correction, terms, which correspond to the field-
dependent parts of the one- and two-electron spin-orbit operators. The second-order
paramagnetic contribution, which is often dominating, is the sum of cross terms
between the orbital Zeeman operator and the canonical part of the one- and two-
electron spin-orbit operators. This contribution can be evaluated in response theory
employing the linear response function

(196) �gxyso = 1
S
���LxO� Ĥyso�1e���0

+��LxO� Ĥyso�2e���0
�

where LO is the total orbital angular momentum operator with respect to a gauge
origin O, and Ĥso�1e� and Ĥso�2e� are the one- and two-electron spin-orbit operators.
S is the spin quantum number of the reference state (assuming maximum projection
MS = S) and originates from the Wigner-Eckart relations that have been applied in
relating the spin Hamiltonian to the full Hamiltonian.

Computation of the spin-orbit contribution to the electronic g-tensor shift can in
principle be carried out using linear density functional response theory, however,
one needs to introduce an efficient approximation of the two-electron spin-orbit
operator, which formally can not be described in density functional theory. One way
to solve this problem is to introduce the atomic mean-field (AMFI) approximation
of the spin-orbit operator, which is well known for its accurate description of the
spin-orbit interaction in molecules containing heavy atoms. Another two-electron
operator appears in the first order diamagnetic two-electron contribution to the
g-tensor shift, but in most molecules the contribution of this operator is negligible
and can be safely omitted from actual calculations. These approximations have
effectively resolved the DFT dilemma of dealing with two-electron operators and
have so allowed to take a practical approach to evaluate electronic g-tensors in
DFT. Conventionally, DFT calculations of this kind are based on the unrestricted
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Kohn–Sham formalism, which suffers from the spin contamination problem, and
on the sum-over-states or coupled perturbed Kohn–Sham approaches. In recent
articles devoted to computations of electronic g-tensors we advocated the use of
an alternative approach, namely linear response theory based on the spin-restricted
open-shell Kohn–Sham formalism, which is free from spin contamination problem
(see Theory section). In the following we briefly review the applicability of this
approach for some paramagnetic compounds.

DFT methods are well known for providing accurate electronic g-tensor values
for various main group radicals, where unrestricted and spin-restricted DFT
formalisms both give similar results [150] and which for most compounds agree
with experimental data up to 500 ppm. In order to achieve such accuracy one
can recommend to employ the AMFI approximation for spin-orbit operators and
perform calculations using the BP86 exchange–correlation functional in a basis set
that is sufficiently flexible in the valence region and at the same time is augmented
by at least one set of d and p type polarization functions. The success achieved by
DFT in predictions of electronic g-tensors of the main group radicals does unfor-
tunately not extend into the domain of transition metal compounds, where both
unrestricted and spin-restricted formalisms underestimate the experimental g-tensor
components by 40–60% (see Table 12). The limited capability of current DFT in
computation of electronic g-tensors of transition metal compounds can be traced
back to an inaccurate description of excitation energies for such compounds. This
in turn is caused by shortcomings in ordinary density functional response theory in
describing a mix between single and double excitations encountered in open-shell
molecules, as well as by deficiencies of currently available exchange-correlation

Table 12. Electronic g-tensors of transition metals compounds evaluated with various exchange–
correlation functionals.a�b Reproduced from [150]

Molecule �gii LDA BLYP B3LYP UBPc UB3LYPd Exp.e

TiF3 �g� 0.3 0.3 0�2 −1�7 −1�1 −11�1
�g⊥ −47�0 −32�9 −49�1 −42�8 −41�8 −111�9

VOF2−
4 �g� −37�0 −30�3 −39�5 −36�0 −34�1 −58�8

�g⊥ −29�6 −21�8 −24�2 −28�0 −25�0 −51�1
VOCl2−

4 �g� −20�6 −16�0 −28�3 −18�0 −20�5 −51�1
�g⊥ −17�9 −14�4 −16�9 −20�0 −20�6 −32�2

CrOF−
4 �g� −15�9 −12�4 −17�5 −19�0 −18�1 −33�5

�g⊥ −27�9 −21�4 −21�9 −29�0 −27�0 −50�7
Cu�NO3�2 �g11 126.5 120.0 173�3 … 171�2 246.6

�g22 31.6 30.9 44�4 … 46�0 49.9
�g33 29.0 28.9 43�9 … 44�6 49.9

a Calculation performed at the geometries taken from [151].
b Electronic g-tensor shifts are given in the principal axis system. Values are in ppt.
c [152]. Unrestricted coupled perturbed Kohn–Sham calculations in gauge invariant atomic orbitals.
d [151]. Unrestricted coupled perturbed Kohn–Sham calculations.
e Experimental data taken from [151].
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functionals. Apparently, one way to at least partially improve this situation is to
introduce local hybrid exchange–correlation functionals which recently have been
implemented by Kaupp et al. [153] for the unrestricted DFT formalism. However,
the latter approach is not entirely satisfactory as it suffers from spin contamination.
Their calculations accordingly show a significant deterioration of accuracy with
increase of the spin-contamination. Further improvements will be given by imple-
mentation of local hybrid exchange-correlation functionals for the spin restricted
DFT formalism combined with a response formalism which accounts for mixing of
single and double excitations in open-shell molecules. Hopefully, this development
will allow to resolve problems with the accuracy of DFT for electronic g-tensors of
transition metal compounds and make the DFT formalism an uncontested approach
for quantitative prediction of electronic g-tensors in large molecular systems of
experimentalist interest.

The development of DFT computations of electronic g-tensors has mainly focused
on improving the accuracy and applicability for isolated systems, while only little
attention has been devoted to account for environmental effects. Most studies of
solvent or matrix effects on electronic g-tensors have adopted the supermolecular
approach, in which the solvent molecules are explicitly introduced into the model
used in the calculations. Recently, we developed an electronic g-tensor formalism in
which solvent effects are accounted for by the polarizable continuum model [154].
We applied this approach to investigate solvent effects on electronic g-tensors of
di-t-butyl nitric oxide (N-I) and diphenyl nitric oxide (N-II). Calculations were
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Figure 4. Experimental and theoretical isotropic g-tensor shifts of di-t-butyl nitric oxide for different
solvents. Reproduced from [154]
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carried out for both protic (methanol, water) and aprotic solvents (carbon tetrachlo-
ride, toluene, acetone, acetonitrile). In the case of aprotic solvents, the PCM model
was capable of qualitative predictions of the solvent effects on the g-tensor (see
Fig. 4); calculated isotropic g-shifts decrease with increase of dielectric constant of
the solvent, while in the case of protic solvents the experimentally observed pattern
could not be reproduced. This owes to the fact that the PCM model is only designed
to handle long-range electrostatic effects, while in case of protic solvents hydrogen
bonding is responsible for the major part of the solvent effect on the g-tensor. This
limitation of the PCM model is well known and calls for a semi-continuum model
that includes a the solvation shell of molecules with explicit treatment and which
is augmented by PCM for the long-range effects. Such a semi-continuum PCM
model gives accurate electronic g-tensors for the N-I and N-II molecules solvated in
methanol and water and provides a computationally well defined and inexpensive
way for modeling electronic g-tensors of large bioradicals.

4.5.2 Hyperfine coupling tensor

Another important EPR spin Hamiltonian parameter, featured in most observed EPR
spectra, is the hyperfine coupling tensor for a magnetic nucleus K in a molecule,
which describes the interaction of the electric spin angular momentum with the
magnetic field created by the nucleus. According to this definition the hyperfine
coupling tensor is evaluated as a second molecular energy derivative with respect
to the nuclear spin, IK , and the total spin angular momentum:

(197) AK = �2E

�S�IK

∣
∣
∣
∣
S=0�IK=0

The hyperfine coupling tensor AK is correct to second order ��
2� and consists
of two contributions; the Fermi contact and spin-dipolar terms, which describe
the interaction between the magnetic moments of the electrons with the magnetic
moment of nucleus K via the Fermi contact and the classical dipolar mechanisms,
respectively. The evaluation of the two contributions is in principle straightforward
as it only involves computations of expectation values of the corresponding terms
of the Breit–Pauli Hamiltonian. However, in practice these calculations are non-
trivial due to the need for an accurate account of spin-polarization (especially
close to the nuclei) and electron correlation simultaneously. DFT methods based
on the unrestricted Kohn–Sham formalism account for spin polarization and are
capable of treating larger molecular systems, but, as commented in the previous
subsection, the unrestricted Kohn–Sham formalism suffers from spin-contamination,
something that causes significant deterioration of the hyperfine coupling values
as also observed for transition metal compounds in the work of qKaupp et al.
[156]. An alternative way to calculate hyperfine coupling constants in DFT is to
employ a spin-restricted Kohn–Sham formalism, which, however, does not account
for spin polarization and therefore can not give reliable results when this effect
is crucial. One way to overcome this problem of the spin-restricted Kohn–Sham
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Table 13. Calculated isotropic HFC constants, in MHz, of transition metal compounds and their depen-
dence on the exchange-correlation functionals. Reproduced from [155]

Molecule Isotope B3LYP BHPW91 UB3LYPa UBHPW91a Exp.b

TiO 47Ti −248�6 −211�1 −252�8 −227�0 −241�0�60�
17O −7�9 3�7 −4�9 1�6 · · ·

VN 51V 1317�4 1764�9 1388�9 1081�7 1311�8
14N 4�7 35�7 3�2 −7�2 · · ·

VO 51V 791�2 784�5 829�5 753�4 778�0�2�
17O −2�5 1�8 1�1 8�0 0�4�

MnO 55Mn 508�6 904�5 521�8 504�7 479�9�100�
17O −9�4 −24�2 −8�0 −8�8 · · ·

MnH 55Mn 309�7 242�9 331�8 276�3 279�4�12�
1H 28�1 7�1 28�0 10�1 20�7�39�

TiF3
47Ti −158�2 −175�2 −192�2 −149�4 −184�8�4�
19F 1�6 −13�8 −5�6 −24�3 8�3�4�

MnO3
55Mn 1476�2 1900�8 1735�5 1111�7 1613�6�
17O −6�4 8�4 2�6 19�0 · · ·

a [156]. Unrestricted Kohn–Sham formalism.
b Experimental data taken from [156].

formalism is to introduce spin-polarization in the property calculations through a
restricted-unrestricted approach, as was described in the Theory part of this chapter.

The restricted-unrestricted approach (RU) in [155] has been applied to calcu-
late the isotropic hyperfine coupling constants of a sequence of organic radicals
and transition metal compounds. In the case of organic compounds, both spin-
restricted and unrestricted approaches could accurately describe the isotropic hyper-
fine coupling constants which matched the accuracy achieved by coupled cluster
methods. The situation is different for transition metal compounds for which the
overall quality of the RU results is slightly better than the corresponding unrestricted
results (see Table 13), independently on the exchange-correlation functional used
in calculations.

The restricted-unrestricted approach not only improves results from the unre-
stricted approach, but also allows to rigorously describe the effect of spin polariza-
tion for the hyperfine coupling constants as well as to provide ways to analyze the
behavior of spin polarization (response term in RU approach, see Theory part) in
problematic cases. The RU approach therefore provides a higher degree of control
over the calculation and its analysis compared to the unrestricted formalism. It can
consequently be recommended for investigations of hyperfine coupling constants
in various molecular systems.

4.6 Outlook

In this chapter we reviewed modern Kohn–Sham time-dependent density functional
theory and its applications to linear and non-linear properties. As evident from
a variety of application examples, DFT methods undoubtedly hold a prominent
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position among quantum chemistry approaches designed for calculations of molec-
ular properties. Despite these achievements, density functional theory remains an
evolving field of research in which new methods are developed and in which old
ones are constantly improved. In view of the current state of DFT, in our opinion,
two major methodological developments will have significant impact on the compu-
tation of molecular properties in the future: 1) implementation of efficient linear
scaling techniques applicable to large molecules; 2) development of new DFT
methods for evaluation of properties of molecular systems with arbitrary ground
states, such as near-degenerate and low spin ground states. In recent years excep-
tional progress in development of linear scaling DFT response methods has been
achieved, see e.g. [157–159], but currently existing codes are mainly experimental
and remaining issues of algorithmic character must be resolved before they become
practical tools for molecular properties.

The second area of density functional theory, which we suggest will be impor-
tant in the future, is rather unexplored. For instance, only a few of the proposed
methods capable of treating molecular systems, in which static electron correla-
tion is important, have been implemented [160–162]. One can foresee development
of DFT approaches for molecular systems which feature large static correlation,
that are, for instance, commonly encountered in active sites of various proteins
and in compounds with exceptional magnetic properties. Furthermore, research in
this area will probably stimulate development of general DFT response methods,
which are capable to correctly describe multiplet excitations from a given ground
state, and consequently lead to the introduction of new exchange-correlation kernels
beyond the single electron excitation formulation of current time-dependent DFT
response theory [163]. Research along both above mentioned directions are pursued
by various groups in the quantum chemistry community, something that probably
will maintain time-dependent density functional theory as a leading approach for
the evaluation of molecular properties.
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CHAPTER 6

NON-LINEAR PULSE PROPAGATION
IN MANY-PHOTON ACTIVE ISOTROPIC MEDIA

A. BAEV, S. POLYUTOV, I. MINKOV, F. GEL’MUKHANOV
AND H. ÅGREN
Theoretical Chemistry, Roslagstullsbacken 15, Royal Institute of Technology, S-106 91 Stockholm,
Sweden

Abstract: It is an experimental fact that light propagation in a medium is sensitively dependent on
the shape and intensity of the optical pulse as well as on the electronic and vibrational
structure of the basic molecular units. We review in this paper results of systematic studies
of this problem for isotropic media. Our theoretical approach is based on numerical
solutions of the density matrix and Maxwell’s equations and a quantum mechanical
account of the complexity of the many-level electron-nuclear medium. This allows to
accommodate a variety of non-linear effects which accomplish the propagation of strong
light pulses. Particular attention is paid to the understanding of the role of coherent
and sequential excitations of electron-nuclear degrees of freedoms. We highlight the
combination of quantum chemistry with classical pulse propagation which allows to
estimate the optical transmission from cross sections of multi-photon absorption processes
and from considerations of propagation effects, saturation and pulse effects. It is shown
that in the non-linear regime it is often necessary to account simultaneously for coherent
one-step and incoherent step-wise multi-photon absorption, as well as for off-resonant
excitations even when resonance conditions prevail. The dynamic theory of non-linear
propagation of a few interacting intense light pulses has been successfully applied to study,
for example, frequency-upconversion cavity-less lasing in a chromophore solution, namely
in an organic stilbenechromophore 4-[N-(2-hydroxyethyl)-N-(methyl)amino phenyl]-4′-
(6-hydroxyhexyl sulphonyl) dissolved in dimethyl sulphoxide. Furthermore, the theory
has been used to explain observed differences between spectral shapes of one- and two-
photon absorption in the di-phenyl-amino-nitro-stilbene molecule. The present simulations
evidence that the reason for this effect is the competition between two-step and coherent
two-photon absorption processes
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1. INTRODUCTION

The field of non-linear optics is to a large extent driven and motivated by the
anticipation of large technological dividends. The use of lasers in modern technology
is now commonplace, ranging in application from high-density data storage on
optical disks [1, 2] to improved surgical techniques in ophthalmology, neurosurgery,
dermatology and biology imaging [3, 4]. Non-linear optics has also the potential to
revolutionize future telecommunication and computer technologies [5–7]. A new
extension of non-linear optics and non-linear spectroscopy is biophotonics, which
involves a fusion of photonics and biology [4]. However, it is a common view that
for future use more sophisticated understanding of the basic mechanisms underlying
non-linear phenomena will be required. The scientific problems of this kind motivate
us to explore non-linear propagation of light pulses through complex media, where
details of the quantum structure of the molecular units become essential. Ideas and
theories can be tested through wide parameter ranges, and quantitative support can
be given to complement the qualitative understanding obtained through the use of
general arguments and simple models. It is our belief that the techniques of modern
computer simulations of the coupled matter and Maxwell’s equations will transform
the arsenal of theoretical tools to qualitatively higher levels, paving the way to the
crucial understanding of non-linear phenomena.

Non-linear optics has developed into an extensive branch of science presenting
many models which mimic certain aspects or special effects. However, when light
propagates through a real system one faces the problem of having different phys-
ical effects operating simultaneously, in particular so in the non-linear regime. In
such cases a unified theoretical approach is needed which takes into account the
complexity of the many-level electron-nuclear medium as well as a variety of non-
linear effects which regulate the propagation of strong light pulses. The main goal
of our review is to demonstrate the usefulness of such a unified theoretical tool
in some fundamental problems of non-linear optics, like many-photon absorption
and upconverted lasing. Understanding the formation of many-photon spectra is
essential in order to tailor structure-property relations for non-linear materials and
so to improve their use in technical applications. For example, one salient feature
of two-photon spectra is that they in general are very different from their one-
photon counterparts. The character of many-photon absorption in condensed phases
is often complicated by the competition between one-step and sequential absorption
channels.

We begin in the next section (Section 2) by describing a general theoretical tool
for the solution of the Maxwell’s and matter density matrix equations. We pay
attention to the importance of two mechanisms of light-matter interactions, namely
those given by the coherent and incoherent, or step-like, channels. The shape of
the wings of the spectral line is of crucial importance in the competition between
these different excitation channels (Section 2.4). We then review the application
of the general theory to studies of the role of saturation effects and pulse shapes
in many-photon absorption, and bidirectional propagation of stimulated emission
(Section 3.4). The role of the vibrational degrees of freedom is discussed in Section 4
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devoted to the spectral shape of one- and two-photon absorption. Findings and
conclusions are highlighted in Section 6.

2. GENERAL THEORY OF NON-LINEAR PULSE PROPAGATION

2.1 Non-Linear Polarization

When light propagates through matter it induces some displacement of the charge
distribution inside the molecules. Such an influence can be rather easily understood
with use of the forced harmonic oscillator model in which atoms, constituting the
material, are seen as charge distributions pushed away from their equilibrium state
when exposed to the electric field. The contribution from the magnetic field part
of the light is much weaker and is usually neglected giving rise to the so-called
electric-dipole approximation. These induced microscopic displacements of charge
distributions or induced electric dipoles, which in the linear approximation oscillate
with the frequency of an applied electric field, add up to the macroscopic polariza-
tion. The latter is proportional to the field applied: P�t� r� = �0�

�1�E�t� r�, where
the tensor ��1� is the first order susceptibility—an intrinsic characteristic of the
given material. The linear coupling model holds while the amplitude of the electric
field is small compared to the intra-atomic field (109 V/cm for the hydrogen atom).
For larger amplitudes the linear motion of the displaced charges will be distorted
and non-linear terms will be important. Provided that these new terms are still
small compared to the linear term one can write down a general expansion for the
polarization in a power series in E�t� r� [5, 8]:

P�r� t� = PL�r� t�+PNL�r� t� =
∫ +�

−�
dt
∫

dr ��k��e−ı��t−k·r�(1)
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Here �
�n�
j1���jn

�−k�	k1�1� � � � �kn�n� is the nth order susceptibility. The 
-functions
show the momentum and energy conservation (phase matching):

k =
n∑
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The conventional formula for ��k�� follows directly from Eq. (2) when the fields
are monochromatic: ��kj�j� = 
�kj − k0

j �
��j −�0
j ���k

0
j �

0
j �. It is necessary to

note that the expansion (2) can break down for very high intensities when various
saturation effects come into play.



214 Baev et al.

The induced polarization displays some important properties. Firstly, as
mentioned above, the induced electric dipoles oscillate with the frequency of the
perturbing field. As far as any oscillating dipole emits radiation, with the frequency
of the oscillation, the optical field that induced the polarization will, in turn, be
modified. Moreover, the polarization will contain terms that oscillate at double,
triple and so on frequencies and will even contain a non-oscillating, direct current,
component in addition to the linear component oscillating at the input frequency. In
a material with a center of symmetry (isotropic media such as achiral glasses, liquids
and gases) the even order terms in the expansion of the polarization are absent for
symmetry reasons. The lowest order non-linearity is then the cubic one. This term
is responsible for all four-wave mixing processes such as third-harmonic gener-
ation and the quadratic electrooptic effect, and for intensity dependent refractive
index effects such as self-focusing. One of the most important manifestations of
the cubic non-linearity, from both spectroscopic and technological points of view,
is two-photon absorption.

Higher-order non-linearities are not so widely studied as the second- and third-
order terms. The effects are usually very small, but if the process is resonantly
enhanced they can easily be detected. It should be mentioned here that the suscepti-
bility is in general complex and frequency dependent because of the finite response
time of the medium.

2.2 Maxwell’s Equations

The polarization expansion (2) over a power series in the electric field is the
constitutive relation that describes how matter responds to the applied optical field.
The interaction works both ways and the polarized medium will modify existing
fields and create new ones. This is governed by Maxwell’s equations. When the
intensity of the applied field is high, which means that the number of photons
interacting with matter is large, it is justified to use the classical representation
of the electromagnetic field. For homogeneous, non-conductive and non- magnetic
media (permeability, �, is equal to that of free space, �0), Maxwell’s equations (SI
system of units) read [6]:

 ×H�r� t� = �D�r� t�
�t

�  ×E�r� t� = −�0

�H�r� t�
�t

(3)

 ·H�r� t� = 0�  ·D�r� t� = �(4)

Here D(r, t) is the displacement vector, � is free charge density, �0 is the free space
permittivity:

(5) D�r� t� = �0E�r� t�+P�r� t�� �0�0 = 1
c2
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It follows, after all necessary transformations, that the field E(r, t) satisfies the wave
equation:

(6)  × � ×E�r� t��+ 1
c2

�2E�r� t�
�t2

= − 1
�0c

2

�2P�r� t�
�t2

Provided that there are no free charges in the medium under consideration, Eq. (6)
can be rewritten as follows:

(7) −�E�r� t�− 1
�0

� ·P�r� t��+ 1
c2

�2E�r� t�
�t2

= − 1
�0c

2

�2P�r� t�
�t2

A traveling wave representation of the electric field and polarization enables us to
make the following factorization:

E�r� t� = 1
2
��r� t�e−ı��t−k·r+��r�t�� + c�c�(8)

P�r� t� = 1
2
��r� t�e−ı��t−k·r+��r�t�� + c�c�(9)

where ��r� t�, ��r� t� and ��r� t� are slowly varying functions of position-vector
and time. This Slowly-Varying Envelope Approximation (SVEA) is justified when
the electric field and the polarization amplitudes, as well as the phase ��r� t�,
do not change appreciably in an optical frequency period. SVEA breaks down in
the case of ultrashort �� ∼ 1 fs� pulses when the inverse pulse duration becomes
comparable with the carrier frequency. Another assumption, which is commonly
used in non-linear optics of gas and liquid phases, is that the susceptibility itself is
a slowly varying function of r in the wavelength scale. In this case one can neglect
the second term at the left-hand side of the equation (7). This is, however, not true
in the general case and one of the examples where this assumption does not hold
is photonic crystals—artificially created periodic structures with variable dielectric
constant ��r� [7]. The spatial scale of modulation of the dielectric constant for
these crystals is comparable with the wavelengths of incoming light (at least in the
optical region).

An extraction of the fast variables in equation (7) results in the following paraxial
wave equation, connecting the slowly varying amplitudes ��r� t� and ��r� t�:

(10)
(

�

�z
+ 1

c

�

�t
− ı

2k
�⊥

)

� = ık

�0

�

The cross Laplacian, �⊥, is important for narrow light beams, for systems with
self-focusing. It is worthwhile to stress here that most of the currently cherished
approaches applied for solving Eq. (10), are based on the power series expan-
sion (2) of the polarization over the laser field amplitude and on an account of
only the coherent contributions to the corresponding polarizabilities. However, this
approximation breaks down even for fairly short laser pulses, which is the case
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in many types of experiments carried out, when various saturation limits come
into play. Moreover, large homogeneous broadenings in solutions, which appear
to be typical experimental media, changes the correlation between coherent and
incoherent processes quite drastically [9, 10]. Thus, the series (2) diverges when
the intensity of the light is rather high, for example when the intensity is higher
than the saturation intensity.

An alternative to the power series expansion (2) of the polarization approach
is to explicitly account for the coupling of multi-photon processes in a strong
field. The formalism is based on a Fourier expansion of the density matrix (see
Section 2.3) and allows to deal with photon-matter interaction events of any order,
depending on the resonant conditions introduced [11]. The corresponding theory is
generalized to the case of few interacting strong fields [12] to be able to model
processes like mirrorless laser generation (upconverted stimulated emission induced
by multi-photon absorption [11, 13]). This theory is based on a strict solution of
the density matrix equations of a many-level system without using an expansion of
the density matrix over powers of the light intensity and without using the rotatory
wave approximation. In this way the saturation effects as well as the coherent and
incoherent processes are accounted for explicitly.

2.3 Density Matrix Equations

The non-linear susceptibilities of the expansion (2) can be evaluated by means of
the density matrix formalism. Recall that the non-linear polarization of a non-polar
medium is equal to the induced dipole moment of a unit volume which, in turn,
can be easily represented by standard methodology of quantum mechanics as an
expectation value of the dipole moment. After some straightforward derivations
we get:

(11) P = �d�t�� = Tr ���t�d�t�� =∑

��

d���t�����t�

where d���t�= d�� exp�ı���t� is the transition dipole moment, ��� = �E� −E��/�
is the frequency of the quantum transition � → �, and ����t� is the density matrix
of the medium which obeys the following equation in the interaction representation:

L̂��t� = ı

�
���t��V�t�� � Tr ���t�� = N� L̂ = �

�t
+v · + �̂(12)

V�t� = eıH0t/�Ve−ıH0t/�� V = −E�r� t� ·d�t�

Here, V is the interaction of the electric field with the molecule, N is the concen-
tration of the absorbing molecules, v is the thermal velocity of molecules, and the
term v · is responsible for the Doppler effect. The relaxation matrix, �̂ , contains
the rates of various radiative and non-radiative transitions.

The physical meaning of the density matrix elements arises from its definition:
The diagonal elements are related to level populations and the off-diagonal elements
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are related to the polarization of the medium. Thus, the kinetic equations for
populations, ���, and off-diagonal elements, ���, of the density matrix read

(13)
(
�

�t
+v · +���

)

��� = 
���

∑

�>�

��
� ��� + ı

�

∑

�

����V�� −V������

It is often convenient to rewrite the field-system interaction via the Rabi frequencies
G�� = � ·d��/2�:

(14)
1
�
V�� = eı���tG��

(
eık·r−ı��t+�� + e−ık·r+ı��t+��

)

Let us now switch to the case of a many-mode field [12]. We consider the
propagation of N electromagnetic fields, �j exp�−ı�jt+ ıkj · r − ı�j�, through a
non-linear many-level medium. These fields with frequencies, �j , wave vectors,
kj , and phases, �j , form the total electromagnetic wave:

(15) E = 1
2

N∑

j=1

�j e
−ı�j t+ıkj·r−ı�j + c�c�

We will then assume that the initial phases �j are constant, �̇j = 0. We want to
consider here non-linear interaction of waves with frequencies and wave vectors
that do not match:

(16)
∑

j

nj�j 	= 0�
∑

j

njkj 	= 0

Many applied and scientific problems satisfy these conditions. The opposite limiting
case which will not be touched here is complete phase matching.

Let us now seek for a solution of the density matrix equations (13) making use
of the Fourier transform:

(17) ��� = eı���t
∑

n

rn�� eı�n
k·r−n
�t−n
��

Here we introduce the N-dimensional vector n and the N- dimensional scalar product

(18) n ≡ �n1� n2� · · · � nN �� n
� ≡
N∑

j=1

nj�j� n
k ≡
N∑

j=1

njkj

with nj = 0�±1�±2� · · · ± � as the number of photons of the field �j;
� = ��1��2� · · · ��N �, and k = �k1�k2� · · · �kN �. We refer to rn�� as the density
matrix in the photon occupation number representation. In fact, this is a mixed
representation because rn�� depends also on the quantum states �, � of a molecule.

To clarify the physical meaning of the Fourier expansion (Eq. 17) we consider the
case of two fields n= �2�−1�. In this case rn�� = r

�2�−1�
�� describes absorption of two
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photons �n1 = 2� with the frequency �1 and emission of one photon �n2 = −1� with
the frequency �2. The substitution of the Fourier expansion (17) into the density
matrix equation (13) using the conditions (16) gives the following equations:

(
�

�t
− ı�n
 ��−k ·v�−����+���

)

rn�� = 
��

∑

�>�

��
� r

n
��(19)

+ ı
N∑

j=1

∑

�

[(
r
n−1j
�� + r

n+1j
��

)
G

�j�
�� −G�j�

��

(
r
n−1j
�� + r

n+1j
��

)]

The origin of the upper indices of the density matrix, r
n±1j
�� , in the field term

(20) n±1j ≡ �n1� n2� · · · � nj ±1� · · · � nN �

is the absorption or emission of one photon of the jth mode due to the molecule-field
interaction.

A few remarks are necessary, concerning the general properties of the density
matrix. Keeping in mind Eq. (17) and that the density matrix is Hermitian ���� =
�∗
��� we obtain the following symmetry relations:

(21) rn�����k� = (
r−n
�� ���k�

)∗
� rn�����k� = (

rn���−��−k�
)∗

The first equation indicates that the population is real

(22) r0
�� = r0∗

��

The particle conservation law
(∑

�

��� = N , �
∑

�

���/�t = 0
)

and Eq. (17) results in

∑

�

r0
�� = �(23)

∑

�

rn�� = 0� except n = 0� or n
 �k ·v −�� = 0

The upper equation indicates that only r0
�� has the meaning of a population of the �th

level. Meanwhile rn���n 	= 0� describes fast oscillations of population, exp�−ın
�t�,
near the population r0

�� (see Eq. 17).
Thus, Eq. (19) together with the wave equations (10) solve the problem of

propagation of a strong multi-mode field through a non-linear many-level medium
without restrictions on the mode intensities.

2.4 Relaxation Hierarchy; Role of Collisions; Scattering Duration Time

Let us imagine that because of some perturbation a molecule is excited from its
ground state to an upper level. After a while this molecule will decay to the ground
state with the released energy converted to a photon. A recorded emission spectrum
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will show that the emission line is broadened. Apparently, a longer lifetime would
give a narrower line according to Heisenberg’s uncertainty principle, �E�t ∼ �.
The Weisskopf-Wigner theory states that for isolated molecules the spectral line
broadening for transitions between electronic states � and �, with finite decay
rates �� and ��, is equal to half the sum of these decay rates [14]. This approach,
which neglects interaction between a solute (molecular chromophore) and solvent,
is justified in the optical region only for rarefied gases. The situation changes
drastically for molecules in solutions, where the concentration of buffer (solvent)
particles is much higher than in the gas phase and where the collisions broaden
the spectral lines. Homogeneous line broadening is essentiallly a dynamical process
caused by collisions between solute and solvent, which are sufficiently fast to affect
different chromophores in the same way. The spectral shape of a solute in a solvent
experiences also static or inhomogeneous broadening due to the fact that the resonant
frequency of solute molecule is different in different local environments [15]. The
question which broadening mechanism is the major one is far from clear (compare
[16] and [17]). In our study we include the broadening phenomenologically and
due to this the effective broadening of the spectral line includes both mechanisms
of the broadening. For simplicity we will refer below to the broadenings caused by
dynamical or static interaction with solvent as to collisional broadening.

We study here organic molecules that strongly change the permanent dipole
moment under electronic excitation. Due to this, the interaction potential UJ�R�
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Figure 1. Illustration of collisional broadening



220 Baev et al.

between chromophore and solvent molecule is different for different electronic
states (Fig. 1a). This means that the resonant frequency changes during collisions,
����R�=U��R�−U��R� 	= const (Fig. 1a and b). Let us consider first the case of a
rarefied gas. During the mean time between collisions the molecules do not interact
and the transition frequency is constant ������. When the molecules approach
the van der Waals or Weisskopf radius they interact during a short time (∼10 fs)
and change the frequency. Such a sharp random change of the resonant frequency
is depicted in Fig. 1c. The mean time between collisions decreases with increase
of molecular concentration. This makes the mean time between collisions to be
comparable with the duration of collision. Due to this circumstance, the modulation
of ����R�t�� in the time domain is not sharp. One can see directly from Fig. 1c
and d the origin of the collisional broadening �. The rate � is the amplitude of

deviation ����R�t�� from the expectation value �̄ij: � =
√
�����R�t���− �̄ij�

2. The
asymmetry of R-dependence of ����R� results in blue or red shift of spectral line.

The collisional broadening can be expressed by a simple formula [23]

(24) ��� = Nv̄���

where ��� is the cross section of dephasing collisions, N is the concentration of
buffer particles and v̄ is the thermal velocity. The total spectral line broadening
now reads:

(25) ��� = �� +��

2
+���

Motivated by numerous experiments, we study the interaction of light with a
solution. In solutions, the dephasing rate, ���, makes the rate of relaxation for the
polarization large compared to the decay rate of the population: ���  ���. We will
consider the quite common case of a pump pulse with a duration, �, longer than
the time of decay of polarization and �−1

��

(26) �  �−1
�� �

1
�
�

1
�����

�
1

√
�2

�� +�2
��

This allows to neglect the time derivatives in all equations, except for r�� in Eq. (19).
We have to stress here that there are many works devoted to the experimental

measurements of � available from the literature. A commonly used electronic
dephasing rate for large conjugated organic molecules in solution is � ≈ 0�1 eV
[17] near the resonance. Photon-echo measurements give � ≈ 0�01 eV for the same
compounds [18, 19], while according to another experimental technique [20, 21]
� ≈ 0.02–0.06 eV. Probably, the photon-echo measurements give more accurate
value of �. Apparently the dephasing rate is sensitive to local environment. All in
all, we could not find the dephasing rates for molecules of our interest and, due to
this we performed simulations for different values of � (0.01–0.1 eV).
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Furthermore, as it is seen from numerous experiments, the far red wing of
the absorption profile of chromophores in solutions does not appear to follow a
Lorentzian decay, as implemented in the conventional expression for the frequency
dependent linear absorption cross section, but rather some kind of fast exponential,
Urbach-like, decay [22, 23].

To model this non-Lorentzian decay we introduce a homogeneous broadening
which depends on the wave length of the exciting light, or, equivalently, on the
detuning from resonance:

(27) ������ = �
�0�
�� +����

where we extracted the natural broadening (spontaneous decay)

(28) �
�0�
�� = 1

2
���� +����

which does not depend on the detuning from resonance �=�−��� and collisional
broadening which depends on the detuning:

(29) ���� = ��0�e−��−����/a� � > ���

where a has dimensionality of the length and can be treated as fitting param-
eter. Here,

(30) � = 2�
k

= 2�c
n�

� ��� = 2�c
n���

� �−��� = 2�c
(
��� −�

n����

)

where n is the refraction index. Let us note that Eq. (29) is only valid for � > ���,
the �-dependence for � < ��� is weaker. One can see from Eqs. (27) and (29) that
��� decreases in the red wing:

(31) ������ → �
�0�
�� � ���  ��0�

which can be easily understood in terms of scattering duration time. The process of
photoabsorption from the ground state is necessarily followed by the decay to the
same ground state, either radiative or non-radiative. In case of pure radiative decay,
the entire process can be considered as elastic photon scattering. The scattering
duration time is inversely proportional to the photon detuning from the molecular
resonance, �scat ∼ 1/� [24]. When the detuning is large, the scattering time can be
shorter than the time of collisions, and hence, the natural broadening dominates.

Taking into account that the linear photoabsorption cross section reads

(32) ���� = ��ij���

�2 +�2
ij���

where � = ��0��ij�0� is expressed through the resonant values of the cross section
and the dephasing rate.

We can extract the parameter a from experimental measurements. For example,
for Rhodamine B in ethanol the parameter a is found [25] equal to 80 nm, assuming
exponential decay from the profile peak maximum at 542 nm to the far red wing at
600 nm and ��0� set to 0.1 eV.
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3. SAMPLE APPLICATIONS: AMPLIFIED SPONTANEOUS
EMISSION

Three-photon active (3PA) materials have been studied extensively over the last
few years owing to their potential applications in the fields of telecommunications
and biophotonics [26–28, 30]. Two major advantages of these materials—longer
excitation wavelengths and much better spatial confinement—make them attractive
in comparison with two-photon absorption (2PA) based materials [29]. One of the
most important applications of 3PA materials is three-photon pumped frequency-
upconversion cavity-less lasing [26, 30]. Short infra-red (IR) pulses induce the
ASE process via 3-photon absorption followed by fast non-radiative decay to a
long-lived state which collects population. Conventional experiments with a pulsed
longitudinal pump [27, 28, 30] show that stimulated emission occurs in both forward
and backward directions with respect to the pump pulse.

Our dynamic theory of non-linear propagation of a few interacting intense
light pulses has been successfully applied to study this frequency-upconversion
cavity-less lasing in a chromophore solution [11, 13, 30], namely in an
organic stilbenechromophore 4-[N-(2-hydroxyethyl)-N-(methyl)amino phenyl]-
4′-(6-hydroxyhexyl sulphonyl) (abbreviated as APSS) dissolved in dimethyl
sulphoxide (DMSO). The influence of the solvent was modeled by the collisional
dephasing rate which is assumed to be the same, 0.01 eV, for all transitions. For
details of the electronic structure calculations we refer the reader to [11]. The exper-
imental data, such as concentration of molecules in the solvent, the length of the
active medium (cuvette length), input laser intensity and pulse duration, are taken
from [30].

3.1 Theory

3.1.1 Formulation of the problem

We explore the propagation along the z−axis of a strong pump, � exp�−ı�t+ ıkz�,
and an ASE field through a non-linear many-level medium. The total electromag-
netic field, E = Epump +EASE , consists of pump and probe (ASE) contributions. The
ASE field, EASE , consists of two components

(33) EASE = �R

2
e−ı�Rt+ıkRz−ı�R + �L

2
e−ı�Lt−ıkLz−ı�L + c�c�

propagating, respectively, to the right and to the left (R-component and L-component
below) along the z−axis which is parallel to the propagation direction of the pump
field. The R-component propagates in the same direction as the pump field. The
strengths, ��, the frequencies, ��, and the wave vectors, k�, of the ASE fields are
indexed by � = R�L. Three-photon absorption of the pump field with the forth-
coming non-radiative decay to a long-lived state results in a population inversion
leading to the ASE (see Fig. 2). In turn, the ASE field affects the population
distribution when it becomes strong. This effect makes the propagation of the ASE
field non-linear.
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Figure 2. Energy level diagram

3.1.2 Induced polarization

The polarization oscillating with the frequencies of the pump and the ASE fields
has the following structure:

(34) P = Tr�d�� = �e−ı�t+ıkz +�Re−ı�Rt+ıkRz−ı�R +�Le−ı�Lt−ıkLz−ı�L + c�c�

where the trace is taken over the energy levels. According to (33) we select polar-
izations � and �� which oscillate with the frequencies of the pump and ASE fields,
respectively. To know the polarization we need the transition dipole moments,
d���t� = d�� exp�ı���t�, and the density matrix, ���, of the medium.

3.1.3 Paraxial Maxwell’s equation

The substitution of the total field E and the polarization P in Maxwell’s equations
and a selection of contributions with the frequencies �, �R and �L, and momenta
k, kR and −kL results in the following paraxial wave equations for the amplitudes
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of the pump field and the amplitudes of the R- and L-component of the ASE field
(SVEA is applied, see Section 2.2):

(
�

�z
+ 1

c

�

�t
− ı

2k
�⊥

)

� = ık

�0

�(35)

(
�

�z
+ 1

c

�

�t
− ı

2kR
�⊥

)

�R = ıkR
�0

�R

(

− �

�z
+ 1

c

�

�t
− ı

2kL
�⊥

)

�L = ıkL
�0

�L

where the SI system of units is used. The phase, ��, of the ASE fields is assumed
to be constant.

3.1.4 Density matrix

Let us assume that ASE field is weak and neglect the Doppler effect which is small
in liquids. This allows to seek a solution of the density matrix 19 as the sum of
contributions of strong pump and weak ASE fields

(36) ��� = eı���t

[
∑

n

r
�n�
�� e

−ı�n�t+�� +���e
ı���t−��� +�∗

��e
−ı���t−���

]

Making use of Eq. (19) we derived the density matrix related to the ASE field
[11, 12]:

(37) �
�
�� ≈

ı
∑

�

(
r��G

�
�� −G�

��r��
)

��� − ı��� −����
� � = L�R

where G
�
�� = �� ·d��/2� are the Rabi frequencies of the ASE field and r�� are the

elements of the density matrix induced by the pump field (see [11, 12] for details).
Apparently, the populations r��, created by the pump field contribute mainly to the
density matrix (37). In our case, the main mechanism initiating redistribution of
populations is three-photon absorption. To ensure this in the modeling we applied
special resonant conditions: � = �10/3, where � is the frequency of the pumping
field and �10 is frequency of the vertical transition from the ground to the first
excited state of the molecule. The off-diagonal elements r�� are very small because
of their off-resonant character, though they are included explicitly. We neglected
the time derivative in Eq. (37) because of the large value of the dephasing rate in
solutions (see [9–13]).

In order to relate the wave equations (34) with the solution of the density matrix
equations (19), we use the following definitions:

(38) � =∑

��

d��r
�1�
�� � �� =∑

��

d���
�
��



Non-Linear Pulse Propagation in Many-Photon Active Isotropic Media 225

3.1.5 Final wave equations for the intensities

Substitution of the polarizations � and �� in the wave equations (34) yields finally
the following paraxial equations for the pump and ASE fields:

(
�

�z
+ 1

c

�

�t
− ı

2k
�⊥

)

� = ık

�0

∑

��

d��r
�1�
��(39)

(
�

�z
+ 1

c

�

�t
− ı

2kR
�⊥

)

�R = ıkR
�0

∑

��

d���
R
��

(

− �

�z
+ 1

c

�

�t
− ı

2kL
�⊥

)

�L = ıkL
�0

∑

��

d���
L
��

Often the transverse inhomogeneity of the fields is small. In such cases, one
can directly write down the equations for the intensities I = c�0���2/2 and I� =
c�0����2/2:

(
�

�z
+ 1

c

�

�t

)

I = 2�� �m∑
��

G̃��r
�1�
��(40)

(
�

�z
+ 1

c

�

�t

)

IR = gRIR

(

− �

�z
+ 1

c

�

�t

)

IL = gLIL

where we introduce the gain of ASE fields

(41) g� = 2��

c�0

�m∑
��

d���̃
�
��� �̃

�
�� = �

�
��/�

�

When the photons are linearly polarized, the Rabi frequencies G̃�� = ��∗ ·d���/2�
coincide with the above defined Rabi frequencies. We assume real transition dipole
moments and amplitudes of the electromagnetic fields and use the following expres-
sions for the field amplitudes, � =√

2I/c�0, �� =√
2I�/c�0. Here � = e�, �� =

e���; e and e� are the polarization vectors of strong pump and ASE fields.
It is worthwhile to stress that the L- and R-components of the ASE field have

different frequencies in general [27]. The experimental data [30] show that �R =�L

for the studied APSS molecule. Using this fact in our simulations, we find that
�̃R
�� = �̃L

��, and, hence gR = gL = g.

3.1.6 Averaging over orientations

As the molecules in solution have random orientations, we have to average the
right-hand side of the field equations over all molecular orientations: �� → ����
or ��

�� → ���
���. We perform the orientational averaging over the angle 0 ≤ �≤ 2�

between the molecular axis and the polarization vector, � x, numerically [11]. We
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note that our averaging procedure ignores rotations of molecules, consistent with
the fact that they are very slow in comparison to the inverse broadening of the
spectral transitions.

3.1.7 Influence of the ASE field on populations

The strict equations for populations take into account the change of populations by
the ASE field:

(42)
(
�

�t
+���

)

r�� = ∑

�>�

��
� r�� +W� +WR

� +WL
�

The pump and ASE fields change the population of the �th level with probabilities
per unit time

W� = 2�m∑
�

[
G��r

�1�0�
�� − r

�1�0�
�� G���

]
(43)

W�
� = 2�m∑

�

[
G

�
���

�
�� −�

�
��G

�
���
]

respectively. The pump and ASE fields are assumed linearly polarized with the same
direction of polarization vector. Equation (42) is strict: The only approximation we
used is the density matrix, ��

�� (37), induced by the ASE field.
When the system is long, the ASE field becomes high enough to change the

populations, in accordance with Eq. (42). It leads to a decrease of the population
inversion, r33 − r22 and, hence, to a cease of the amplification.

3.2 Numerical Simulations

3.2.1 Organization of the code

Let us describe the scheme of the solution of the density matrix and field equations.
The code consists of three main blocks. The pump field block appears first in the
code. It is split up in two main parts: the first one solves the algebraic density
matrix equations for all the components of the Fourier series expansion (this is
the most time consuming step because it involves matrices of large dimension),
the second one deals with the wave equation at a given time-point through the
whole active medium with the parameters obtained from the first part. We used the
following initial and boundary conditions for the pump intensity I�t� z�: I�0� z� =
I0 exp�−�z/c� + 4�2� and I�t� z� = I0 exp�−�t/� − 4�2�, which are consistent with
the initial pulse shape, I�t� z� = I0 exp�−�t− z/c− t0�

2/�2�.
The second block is the solution of the wave equation for ASE intensity devel-

oping out of uniform spontaneous noise (see Section 3.2.3). The final, third, block of
the code gives the solution to differential equations for populations with pump and
ASE intensities evaluated in the previous two blocks. All three blocks are looped
with respect to time while the space dependence is vectorized. The orientational
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Figure 3. The flow-diagram of our simulations

averaging is performed according to the procedure described in Section 3.1.6. The
code is written in such a way that it accepts any number of levels, specified by the
matrices of transition and permanent dipole moments, transition frequencies and
relaxation constants. Another important parameter related to numerical simulations
is the number of Fourier components in the expansion (17). Our tests, performed
before the main calculations, have shown that for n = 4 the numerical solution to
the algebraical density matrix problem is quite stable, i.e. for any input values of the
pump field intensity and of the populations the values of the off-diagonal elements
contributing to the polarization (r�1��� and ���) do not change if we increase this
number. The energy conservation law has been checked numerically at all instances.
The flow-diagram of our simulations is shown in Fig. 3.

3.2.2 Five-state model

An analysis of the calculated transition dipole moments of the APSS molecule shows
that only transitions between the singlet S0, S1 and S2 states dominate in the non-
linear optical process of interest (see Fig. 2) and we therefore restricted our simula-
tions to comprise these three states. To explain the observed delay between the ASE
and pump pulses, we need to take into account the vibrational structure. We model
this structure for the levels S1 and S0 by including two pairs of vibrational levels,
(4, 3) and (2, 1), respectively, making use of the one-mode approximation. The
vibrational levels 3 and 1 are the lowest vibrational states for the electronic states
S1 and S0, respectively (Fig. 2). The vibrational state 4 models the group of vibra-
tional states nearby the vertical photoabsorption transition S0 → S1. Apparently, the
vertical transition has larger probability. The lasing transition takes place from the
vibrational level 3 to the vibrational level 2 which corresponds to the vertical decay
S1 → S0 (Fig. 2). The transition matrix element is a product of the electronic matrix
element and the Franck-Condon amplitude between vibrational states  and  ′:

(44) dSi �Sj 
′ = dSi�Sj

� � ′�
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Our model gives the following picture which is in agreement with the discussed
experiment [30]: the lasing level 3 is populated mainly due to two distinct channels –
1 → 3 and 1 → 4 → 3. The low intensive adiabatic transition 1 → 3 populates
instantaneously the lasing level 3. Therefore, this channel results in an ASE pulse
without delay relative to the pump pulse. However, a delay time between the ASE
and pump pulses takes place for the strong vertical channel 1 → 4 → 3. Indeed,
the instantaneously populated level 4 is quenched non-radiatively into the lasing
level 3. An inversion, r33 − r22, between the lasing levels 3 and 2 is created during
this non-radiative decay.

Unfortunately, we lack information on FC factors for the S0 → S1 and
S1 → S2 excitations, and we had therefore to introduce phenomenological
FC amplitudes, aiming to get a reasonable fit with the experimental data
on the three-photon absorption coefficient and the energy conversion coef-
ficient: �1�4� = �3�2� = 0�99994, �4�2� = �1�3� = √

1−�1�4�2 = 0�0100. These
FC amplitudes satisfy the completeness condition for the two-level approxima-
tion: �3� �2 +�4� �2 = 1, �2� �2 +�1� �2 = 1. All FC amplitudes involving upper
level 5 are assumed to be the same: �5� � = 1

√
2.

3.2.3 Spontaneous noise and initial conditions

The ASE process is initiated by the spontaneously generated noise photons (SPs)
with intensity

(45) Isp = ����

�2

�

8�

Due to amplification, only SPs from the spectral interval �� ≈ �/
√
gL participate

in the lasing. The solid angle �=�S/L2 in which SPs are emitted can be estimated
through the waist radius, w0 ≈ 30�m, of the focal spot of the pump pulse: �S ≈
�w2

0. This gives Isp ≈ 10−4 W/cm2. In the simulations, we used the following initial
and boundary conditions for the ASE intensity I�t� z� ! I��0� z� = I��t�0� = Isp ≈
10−4 W/cm2.

As is well known [31], the ASE intensity stops to be sensitive to Isp when the
active medium is long and that the ASE intensity exceeds the saturation inten-
sity, Isat. This is easy to see from the equation d"�/dz = g"�/�1 + "�� for the
saturation parameter "��z� = I��z�/Isat. The saturation parameter is related to the
resonant saturation parameter as "� = "r

��
2/����−�32�

2 +�2�. The intensity grows
exponentially, "��z� = "��0� exp�gz�, until the point z0, where "� = 1. The ASE
intensity looses memory about the SP noise at z > z0: "��z� ≈ 1+g�z− zo�.

3.3 Pump Pulse Propagation

The profile of the pump pulse shown on Fig. 4 demonstrates the decrease of the
intensity I at the expense of non-linear photoabsorption during propagation. One
can see that the pump pulse moves without essential change of the shape.
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Figure 4. Propagation of the pump pulse through a non-linear medium of APSS molecules in solution.
Initial intensity is 190 GW/cm2, the pulse duration (FWHM) is 2 ps, the wavelength is 1�3�m, the
sample length is 10 mm. Input data are collected in Table 1a

3.3.1 Effective three-photon absorption cross section

In the quoted experimental paper [30] the effective three-photon absorption cross
section ��3� is obtained making use of the formula

(46) � = 1
2L

I2
0/I

2 −1

I2
0

� ��3� = �

N
�

where L is the length of the non-linear medium, I0 and I are the peak intensities of
the pump pulse before and after the absorber, respectively. This formula is obtained
from the equation for the light intensity dI�z�/dz = −�I3�z�, assuming that ��3�

does not depend on the intensity of the pump pulse. This equation assumes that the
three-photon absorption is the major process. This assumption ceases to be valid
when the one-photon off-resonant absorption becomes important (see discussion in
Section 3.3.3). Clearly, the cross section ��3� defined by Eq. (46) does not coincide
with the strict three-photon absorption cross section when the intensity of the pump
pulse is large and, hence, ��3� depends on the intensity.

We calculate � making use of Eq. (46) with the purpose to compare the theoretical
value with the measured one [30] (see Table 1. Here the headings a, b, c� � �f
correspond to different sets of the initial simulation parameters. As one can see, the
output parameters, such as � and ��, change as some of the input parameters vary.)
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Table 1. Basic results of simulations, where � is the 3PA coefficient, �� is the delay between the pump
and ASE pulses, � is the efficiency of nonlinear conversion of the pump energy to the ASE energy.
I0 = 190 GW/cm2. (1ph—one-photon absorption dominates)

Input Simulations

a b c d e f

� , eV 0.01 0.01 0.01 0.01 0.01 0.1
�−1

44 , ps 30 100 10 30 30 30
�1�4� 0.99994 0.99994 0.99994 0.8367 0.9487 0.99994
�1�3� 0.01 0.01 0.01 0.5477 0.3162 0.01

Output Simulations Exp. [30]

��10−4 cm3/GW2 8.8 8.8 8.8 6.3 8.2 1ph 0.5
��, ps 2.6 1.0 2.3 0 0.5 25 12
ASE FWHM, ps 22 70 9.9 3 12 40 40
�, % 4 3 4.6 2.5 3.1 0.01 2.1

It is worth noting that the effective cross section ��3� depends in general also on
the intensity of the ASE pulse, I�. However, the ASE pulse is delayed relative
to the pump pulse (in the studied experimental situation) and, therefore, does not
significantly influence the propagation of the pump pulse (see also Section 3.4.2).
The experiment, as well as our simulations, show that the pump pulse runs ahead
of the ASE pulse. It means that ��3� is not noticeably influenced by the ASE pulse.

3.3.2 Ab initio computations of three-photon absorption cross sections

The microscopic origin of the three-photon absorption can be traced to the fourth
order hyperpolarizability. Despite the high order of this property, it is still attainable
due to two decisive steps of simplification. First, at resonance, i.e. under excitation
with a frequency equal to one-third to the excitation energy of the final state, �f/3,
a fraction of the terms will dominate the summation completely, which leads to
a formulation where the fourth order hyperpolarizability can be expressed as a
product of third order transition dipole moments:

(47) Tabc =∑
�a�b�c

∑

n�m

�0��a�m��m��b�n��n��c�f�
��m −2�f/3���n −�f/3�

where
∑

�a�b�c denotes permutations with respect to the Cartesian indexes a, b,
and c. This contains apparently an infinite summation, but can be identified as the
first residue of the second order hyperpolarizability. In the response formalism it
corresponds to the single residue of the cubic response function, as implemented in
the DALTON package [32, 33].

Even though the response approach represents a significant simplification, it is
still computationally demanding for three-photon absorption, and the third order
transition moments are therefore obtained at the RPA level, i.e. cubic response
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Table 2. Excitation energies of the final state, ��e, the third order transition moment, Tzzz and the
three-photon probability, 
L3P , calculated at SCF level with the basis sets 6-31G and 6-31G∗. Geometry
is optimized by DFT/B3LYP with 6-31G∗

6-31G 6-31G∗

��e, eV Tzzz� a�u� 
L3P , a.u. ��e, eV Tzzz� a�u� 
L3P , a.u.

4.18 31693�08 0�196×109 4.10 29380�22 0�168×109

5.46 6519�29 0�899×107 5.33 5734�72 0�328×107

theory applied to a singe-determinant SCF reference state [34]. These calculations
are carried out for 6-31G and 6-31G∗ basis sets. The geometry of the APSS
molecule was optimized with a B3LYP functional and a 6-31G∗ basis set using the
GAUSSIAN package. The results of our calculations are collected in Table 2.

We recalculated the three-photon absorption coefficient, �, making use of the
formulas which relate the third order transition dipole moment, Tabc, three-photon
transition probability, 
3p and �:

� = N��−1

2c2�3
0�

· 

L
3p

���
� 
L

3P = 1
35

�2
F +3
G�(48)


F =∑

ijk

TiijTkkj� 
G =∑

ijk

TijkTijk

where � is the wavelength of the incoming photon. The three-photon transition
probability for linearly polarized light, 
L

3P , is averaged over molecular orienta-
tions. To estimate the quantity (47), we used experimental data from [30]. The
three-photon absorption coefficient is found to be equal to 1�06×10−29 m3/W2 or
0�11×10−4 cm3/GW2 for the 6-31G basis set and 0�91×10−29 m3/W2 or 0�091×
10−4 cm3/GW2 for the 6-31G∗ basis set and for ��� = 0�1 eV. This latter theo-
retical value is 5 times lower than the one evaluated from the experiment. We
did the same estimation also for ��� = 0�01 eV. The results are the following:
� = 1�06 × 10−4 cm3/GW2 for the 6-31G basis set and 0�91 × 10−4 cm3/GW2 for
the 6-31G∗ basis set, which is remarkably close to the experimental value. However,
at the SCF level the energies are usually overestimated which could give an under-
estimated value of the three-photon absorption coefficient.

3.3.3 One-photon versus three-photon absorption

We are faced with the important problem to elucidate the competition between
resonant (here three-photon) absorption and off-resonant one-photon absorption
for pumping of the excited state. From previous work on two-photon excitation
[9, 10, 35] we learnt that the balance is most delicately dependent on factors like
pulse lengths, excited state lifetimes and saturation. The transition dipole moment,
dS1S0

≈ −9�25 D, between the ground and the first excited electronic states of the
studied molecule is the largest one and oriented mainly along the molecular x axis.
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Due to this, one can use the two-level approximation both for one- and three-photon
absorption. The length of one-photon absorption is

l1p = 1
N�1p

� �1p = kd2
S1S0

cos2 #

��0

�

�2
s + ��−�41�

2
(49)

�s = �
√

1+"r cos2 #

Here, # is the angle between e and dS1S0
, and "r = I/Is is the resonant saturation

parameter with the saturation intensity Is = �0c�
2��44/2d2

S1S0
(Is ≈ 7�9×105 W/cm2

for � = 0�01 eV). The length of the three-photon absorption reads:

(50) l3p = 1
�I2

� 
L
3p = 1

7

(
54d3

S1S0

�2
41

)2

The ratio

(51)
l3p

l1p
≈ 1�23×10−2

(
190 GW/cm2

I

)2(
�

0�01 eV

)2
(

9�25D
dS1S0

)4

indicates that the role of the one-photon pumping becomes important for large � .
In this estimation we neglected the “one-photon” saturation parameter, "r , which
is equal to "r = 2�4 × 105 for I = 190 GW/cm2, � = 0�01 eV. In this case, �s ≈
�
√

1+"r/3 ≈ 2�84 eV becomes comparable with ��−�41� = 2�41/3 = 2�31 eV.
This means that the saturation does not essentially change the estimation (51).

We see that the one- and three-photon pumping of the excited state compete
with each other and this competition is very sensitive to the homogeneous broad-
ening � . However, the results of experimental measurements of � are rather vague.
A commonly used electronic dephasing rate for large conjugated organic molecules
in solution is � = 0�1 eV [17]. The photon-echo measurements give � ≈ 0�01 eV for
the same compounds [18, 19], while according to another experimental technique
[20, 21] � ≈ 0�02−0�06 eV.

Let us now estimate l1p and l3p for I = 190 GW/cm2, N = 3�6 × 1019 cm−3,
�44 = 2�2 × 10−5 eV, dS1S0

= −9�25 D, and cos2 # = 1/3 neglecting the saturation.
Eqs. (48) and (50) give l1p = 1�1 cm and l3p = 0�014 cm for � = 0�01 eV, and
l1p = 0�11 cm and l3p = 0�14 cm for � = 0�1 eV. Thus, the three-photon pumping
dominates when � = 0�01 eV, while when � = 0�1 the one-photon off-resonant
population of the excited state becomes the major one.

Our conclusions based on estimation (51) need support from strict simulations,
which, however, are not easily obtained because we cannot select one-photon or
three-photon pumping using strict equations. This means that we can use only some
fingerprints of one- or three-photon excitations. One of these fingerprints is the
transmission of the pump field

(52) T = J�L�

J�0�
� J�z� =

∫
I�t� z�dt
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which is a ratio of integral intensities. The transmission shown on Fig. 5 demon-
strates qualitatively different dependences on the pump intensity for � = 0�01 eV
and � = 0�1 eV. The decrease of T with increase of I for � = 0�01 eV agrees with
the trend of the transmission for the three-photon absorption, T = 1/

√
1+2L�J 2�0�

(see Eq. 46). When � = 0�1 eV, the transmission increases with I . This is in
agreement with the one-photon transmission: T = exp�−L/l1p�. Indeed, according
to Eq. (48) the length of the one-photon absorption increases for large inten-
sities due to the saturation. So, one can conclude that when the intensity is
quite large the three-photon absorption dominates for � = 0�01 eV, while the one-
photon pumping is more important when � = 0�1 eV. Apparently, the one-photon
absorption dominates for quite small intensities because of small three-photon
absorption, �I2.

Another fingerprint is the unrealistically large three-photon absorption, � ∼
1 cm3/GW2 for � = 0�1 eV. This value was obtained for different sets of parameters
making use of strict simulations and Eq. (46) based on the assumption that the
three-photon absorption dominates. So the large magnitude of � compared with the
experimental value 0�5 × 10−4 cm3/GW2 indicates that the one-photon absorption
channel is the dominating one for � = 0�1 eV.
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Figure 5. Transmission (52) versus input pump intensity. A: � = 0�01 eV, parameters from Table 1a.
B: � = 0�1 eV, parameters from Table 1f
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3.3.4 Role of saturation on three-photon absorption

As shown in our previous works [9, 10] saturation effects are of great importance
for long-pulse �� > 100 fs� multi-photon absorption processes. They lead to certain
dependencies for the absorption cross section on the input intensity of the incoming
light. A sufficiently accurate estimation of the saturation intensities can be obtained
making use of the following expressions:

I
�1�
41 = c�0�

2�44

2�d41�2�41

[
1

��−�41�
2
+ 1

��+�41�
2

]−1

(53)

I
�3�
41 = 2c�0�

2

[
�44�41

�4T 2
xxx

]1/3

where I
�1�
41 and I

�3�
41 are the saturation intensities for off-resonant, 1 → 4, one-

photon and a resonant, 1 → 4, three-photon transitions, respectively, and Txxx is
the third order transition dipole moment (47). For the input intensities less than
the three-photon saturation intensity a measured three-photon absorption cross
section estimated according to Eq. (46) should not depend on the length of the
active medium. For intensities higher than the one-photon saturation intensity, the
measured three-photon absorption cross section drops down increasing the intensity.
The reason is that the incoherent, step-wise, contribution to the total cross section is
saturated and the coherent three-photon absorption process becomes dominant (the
saturation intensity for the three-photon absorption cross section is much higher
than for the one-photon process). If, due to some reasons, the step-wise processes
are eliminated then the measured total three-photon absorption cross section will
be fully represented by the pure coherent contribution. One reason for such an
elimination would be a shortening of the pulse duration, i.e. when the contribution
of step-wise processes is suppressed with the factor of �ii� [9].

To check whether the parameters of our system satisfy coherent three-photon
“purity”, we carried out two calculations with pump pulse duration FWHM = 2 ps.
The first calculation based on input data from Table 1a corresponds to the suppres-
sion factors �ii� ∼ 10−3 − 10−1 (depending on �ii). In the second calculation the
suppression factors were decreased by three orders of magnitude by decreasing all
�ii in 103 times. Both calculations gave almost the same three-photon absorption
coefficient, � (46) (the relative difference ��/� ≈ 7%). This is a direct evidence
of negligibly small step-wise absorption processes compared to the coherent three-
photon absorption.

Applying the estimations (52) to our model we found the saturation intensi-
ties to be equal to 35 GW/cm2 for off-resonant one-photon transitions 1 → 4,
0�035 MW/cm2 for resonant one-photon transitions 3 → 2 and 169 GW/cm2 for
resonant three-photon transitions 1 → 4. For comparison, the saturation intensity for
off-resonant one-photon transitions 4 → 5 is equal to 1�02 × 104 GW/cm2. These
numbers indicate that we face strong saturation effects for both one- and three-
photon processes. Indeed, the calculated three-photon absorption coefficient was
found to be equal to 15�3×10−4 cm3/GW2 for the initial intensity of 70 GW/cm2



Non-Linear Pulse Propagation in Many-Photon Active Isotropic Media 235

and to 8�8 × 10−4 cm3/GW2 for the initial intensity of 190 GW/cm2. We should
note here that for smaller intensities the contribution of one-photon absorption could
be significant, and, therefore, the estimation according to Eq. (46) does not hold.

3.4 Propagation of the ASE Pulses

3.4.1 Inversion, gain and threshold

Clearly, lasing is possible when the pump intensity exceeds the ASE threshold:
I > Ith. Let us estimate Ith. In the case of ASE, the gain, g =N��amp−�abs�∼ I−Ith,
is given by the difference between amplification and absorption cross sections and
can be written for the studied system as

(54) g ≈ k�

�0�

[

�r33 − r22�
d2

32

�
− �r11 − r44�

d2
41�

�2
� +�2

]

Here �� =��−�41, �41 ≈ �32 ≈ � . In Eq. (54) we used the four-level approximation
(1�2�3�4), the resonant condition for a lasing photon, �� = �32 (Fig. 2), and took
into account only the strongest photoabsorption channel 1 → 4. We also did not
consider inhomogeneous broadening of molecular transitions caused by variations
of the molecular environment. The solution of the equations for r33 and r44 and the
threshold condition g = 0 give the following estimation of the threshold intensity:

(55) Ith ≈
[
���44

N��3�
· r33

��3
4

]1/3

where r33 ≈N/�1+�1+�2
�/�

2�d2
32/d2

41�≈ 7×10−5N for d32/d41 = �3�2�/�4�1� = 1.
Making use of this number and of the experimental value � = 0�5×10−4 cm3/GW2

[30], we find that the threshold intensity to be equal to Ith ≈ 20 GW/cm2

which is one order of magnitude smaller than the incident pump intensity I ≈
190 GW/cm2 [30].

3.4.2 Delay of the ASE pulse relative to the pump pulse

The ASE dynamics is characterized by two important parameters, the delay between
the maxima of the pump and ASE pulses, ��, and the temporal width of the
ASE pulse, � (full width at half maximum (FWHM)). The fulfillment of the ASE
threshold condition, g = 0, takes some time, which implies that the delay time ��
is non-zero in the general case. The first impression which arises is to relate ��
to the lifetime of level 4, 1/�44, because the lasing level 3 is populated during
this particular time. According to the experiment [30] the delay between pump
and right-propagating ASE pulses is equal to 10–15 ps. This value is shorter than
1/�44 = 30 ps. Our simulations show the same trend (see Table 1). From Table 1
we see that �� varies in the range 0–25 ps and is sensitive to � , ���, and to the
FC factors. The conclusion is that the delay time is a rather complicated function
of different parameters and that �� is not related directly to 1/�44 (see [11] for
details).
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3.4.3 Temporal width of the ASE pulse

Our simulations gives temporal width �≈ 22 ps (Table 1a) for the right-propagating
ASE pulse which is close to the experimental value of 40 ps. We see both from
the experiment and from our simulations that the width of the ASE pulse is much
shorter than the averaged fluorescence lifetime of 1/�33 = 720 ps. Such a temporal
narrowing or “gain-narrowing” is a characteristic of stimulated emission.

3.4.4 Formation of the ASE pulses

We will try to understand the formation of the right- and left-propagating ASE
pulses following a scheme outlined in [13]. We assume an infinitely “narrow”
source of photons, moving to the right along the z-axis with the speed of light.
“Narrow” means that the lasing threshold is suddenly overcome at a point inside
the medium at a certain time and then suppressed at the same time because the
population inversion is eliminated by the emitted photons. This source is the gain.
So, at each point of the medium a bunch of photons is emitted in equal numbers to
the right and to the left (Fig. 6).

This number depends on the value of the gain. We suppose the emission is
discrete, with time lapses �t. The photons emitted to the right at time instant t = 0
will then move further with the gain. At time �t a new portion of photons will be
emitted. The gain will be at the point c�t as well as the photons emitted at the
preceding moment. So, the R-component of the ASE would be infinitely narrow in
this case and would be growing with negative gradient as the gain is being depleted.
In contrast, the left-propagating ASE component would be broad. The reason is
the following. At time t = 0 a bunch of photons is emitted to the left. At time �t
the gain coordinate is c�t and the previously emitted left-propagating photons are

z

0 z

t = 0

t = τ

–cτ cτ0

Figure 6. Illustration of narrow gain propagation—formation of the L- and R-components of the ASE
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Figure 7. Snapshots of the (A) gain and (B) single R-component at different time instants

located at −c�t. In a case of only two emission acts (for instance the gain is then
negative) the temporal width of the left-propagating ASE component is 2�t. The
pulse would look like a saw jag if the gain were decreasing. Let us stress once again
that such an asymmetry of the right- and left-propagating components of the ASE
owes to the right-propagating longitudinal pump.

Apparently, the picture of formation of the ASE pulses given above is a naive
one. In reality, the gain is continuously decreasing through the medium if observed
at a certain instant of time (see for example Figs. 7 and 8 at t = 15 ps). The reason
for this is the population of the lasing level 3 through the exponential decay of
level 4. Such character of the gain is maintained until the intensity of the ASE
components is smaller than the saturation intensity of the lasing transition. When
the ASE intensity becomes comparable with the saturation intensity, the ASE starts
to change the populations and, hence, the gain (Figs. 7 and 8). The broad dips of
the gain are formed by the leading edges of the R- and L-components. The leading
edges with high intensity cut off the gain due to an abrupt decrease of the population
inversion. Because of the continuous gain the R-component of the ASE becomes
broad, with a steep front and a long, slowly decreasing tail. The forward pulse is
growing chasing the leading edge of the decreasing gain. This leading edge of the
gain looks like our model “narrow” source of photons—it supports the growth of
the leading edge of the forward ASE pulse. The source amplitude decreases because
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the pump pulse, creating the population inversion, is being absorbed when it runs
through the medium.

As mentioned earlier, the formation of the L-component of the ASE takes place
at a very short distance from the entrance of the cell, about 1 mm. As we can see in
Fig. 8, the peaks of the gain supplying photons to R- and L-components are located
at the same distance from the left edge of the cell at different time instants. The
right-hand slope of the gain, spanning to the right, is “eaten away” by the forward
ASE pulse because its intensity at this short distance of 1 mm reaches the saturation
intensity of the lasing transition. It is necessary to note that the output energies
of the R- and L-components of the ASE differ substantially due to the asymmetry
with respect to the pump.

3.4.5 Efficiency and maximum of conversion

The net conversion coefficient, � = �′/�1 − T�, is a very important parameter
defining how much of the absorbed energy of a pump pulse is converted to ASE
radiation. Here, �′ is the ratio of the energy of the overall output ASE (both forward
and backward) to the energy of the incident pump pulse and T is the transmission
of the pump pulse. To make comparison between the R- and L-components of the
ASE we evaluated the partial coefficients, �′

� and ��[13]. The overall coefficients
can be found as a sum of the partial ones.

The results of our calculations of partial �� are visualized in Fig. 9. We used
six different values of the concentration for comparison. As one can see, for each
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Figure 9. Conversion coefficient versus concentration. “Right” means simulations for the one-component
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value of the concentration the net conversion coefficient, �R, is larger in the case
when the left-propagation is not accounted for. The cause behind this observation
is that a part of the absorbed energy is consumed by the left-propagating ASE pulse
in the opposite case.

Note that the difference between �R for the single R-component case and the two-
component case grows with decrease of the molecular concentration. The reason
for this is found in the temporal oscillations of the ASE R-component at the end of
the active medium when both R- and L-components are accounted for. A numerical
check showed that the oscillations cannot be attributed to the accuracy of the
simulations. The period and amplitude of the oscillations strongly depend on the
concentration, as demonstrated in Fig. 10(A).

As the concentration decreases, the period of oscillations increases and the peaks
become wider. A similar behaviour is observed for the L-component as demon-
strated in Fig. 10(B). However, as we can see in the figure, the amplitude of
oscillations is larger for the L-component which certainly reflects the asymmetry
of the ASE propagation with respect to the pump.

Based on our observations we concluded that oscillations built up in a certain
point of the medium are blurred as the ASE pulse propagates to the right with
an increase of intensity. The closer to the left edge the pulse emerges, the longer
distance it travels through. Apparently, for higher concentrations of the absorbing
molecules the formation of the ASE pulse is faster in space and time according
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to Eq. (39). The degree of delay of the leading edge of the R- and L-components
depending on concentration seen in Fig. 10 proves this statement.

Let us now pay attention to the fact that the efficiency of the conversion is a
non-linear function of concentration of the active molecules (see Fig. 9). We know
that the peak intensity of the ASE in an optically thin medium is determined by
the interruption of the population inversion which occurs when the ASE intensity
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approaches some critical value. This value refers to the resonant saturation inten-
sity of the lasing transition and is independent of the concentration. In our case, the
saturation intensity of the 3 → 2 transition is approximately equal to 3 MW/cm2. As
the ASE pulse propagates, it gains intensity until some maximal value is reached.
This maximal value is determined by the pump depletion, i.e. when the pump
pulse intensity is less than the lasing threshold intensity the ASE ceases to grow
and experiences reabsorption as it propagates through the medium. If the pump
pulse is almost depleted near the entrance to the cell, which is the case for higher
concentrations, the right-propagating ASE pulse starts to be reabsorbed far from
the right edge of the cell. In the case of lower concentrations, the ASE pulse is
formed further from the left edge of the cell, which means a shorter reabsorption
path for the R-component. At given length of the gain medium (10 mm in our
case), the output energy of the forward ASE pulse is maximal for a certain value of
the concentration. It then drops down as the concentration decreases, because the
ASE starts to be formed so close to the right edge of the cell that it does not have
time to reach the maximum. Fig. 11 shows that the maximum level of the ASE R-
component intensity is approximately the same for all values of the concentration.
But for the lowest value this maximum is reached at the very end of the medium.
Thus, a decrease of the concentration shifts the maximum of the intensity towards
the end of the cell.

4. SPECTRAL PROFILES OF TWO-PHOTON
ABSORPTION: COHERENT VERSUS TWO-STEP
TWO-PHOTON ABSORPTION

One salient feature of two-photon spectra is that they in general are very
different from their one-photon counterparts. Two-photon absorption of polyatomic
molecules is strongly influenced by vibrational interaction, providing a general
broadening of the spectra with fine structure. As for other types of electronic tran-
sitions this merely reflects the fact that the potential surface changes going from
the ground to the final state of the optical excitation. In the conventional theory of
photoexcitation, using the sudden approximation, the spectral profile is defined by
the Franck-Condon factors between the ground and the excited state. This means
that the two-photon profile has to copy the profile of the one-photon absorption as a
consequence of the Franck-Condon principle. However, experiments, e.g. [36, 37],
indicate a strong violation of this statement. Our explanation of this is based on two
notions: First of all, considering the full spectrum, one-photon as well as coherent
TPA absorption are formed by resonance transitions to a set of excited electronic
states, each with its particular cross section for the two processes. Secondly, the
conventional coherent TPA absorption (one-step absorption) is accompanied by
a two-step absorption, which has the same order of magnitude as the one-step
TPA and which in general both broadens and distorts the profile of the partic-
ular band. A third reason, which in general is less important and not operating
for the example reviewed here, is that the spectral shapes of one- and two-photon
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Figure 12. N-101 molecule

absorption can be different also due to vibronic coupling between the states. As
illustration we review results of simulations [38] of the two-photon absorption of the
the di-phenyl-amino-nitro-stilbene molecule, called N-101 (Fig. 12), experimentally
studied recently in [36].
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Here, �� ��i i
is the frequency of electron-vibrational transition �i i� → �� ��;

� i� �� is the Franck-Condon (FC) amplitude between vibrational states  i and  �
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One can see that the vibrational profile of the one-photon absorption
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copies the vibrational profile of the one-step TPA (55) for the same final electronic
state. The vibrational profile of the two-step TPA (56) differs qualitatively from
the one-step TPA profile because of the difference in the FC factors in Eqs. (56)
and (55).

Our simulations are based on response theory in the framework of the Hartree-
Fock (HF) method, outlined in [32]. In the simulations we take into account the first
five excited electronic states. The important parameter is the energy of the vertical
transition from the ground to the first excited electronic state, �V

10. In the calculations
of the TPA cross sections, we used the intermediate value �V

10 = 3�01 eV as moti-
vated in [38]. Another fitting parameter we used is the ratio �10��10/2�/�11 ≈ 10−3.
We extracted this value from the experimental profile of the one-step absorption
measured in a broad energy region [25] (see also discussion in Section 2.4). The
width of the spectral line near the resonance is assumed be equal to �ij��res� =
0�01 eV. The many-dimensional FC amplitudes are calculated using the harmonic
approximation. The gradients of the excited state potentials are obtained making
use of a code for analytical derivation of the excited state gradients, implemented
in the DALTON suite of programs.

We assume that the pulse is long �Rjj ≈ 1� and the molecule has time to
relax to the lowest vibrational level of the electronic level i. The case of
short pulse differs qualitatively as illustrated in Fig. 13. First of all we simu-
lated the spectra of one-photon (Fig. 14) and coherent two-photon absorption,
(Fig. 15). One can see that the one-photon spectrum consists of two vibrational
bands related to transitions to the first �0 → 1� and the fourth �0 → 4� elec-
tronic states. This is in agreement with experiment [36]. The coherent TPA
cross section is formed mainly due to the TPA transition to the first electronic
state 0 → 1 (see Fig. 15). One can see clearly that this band copies strictly
the 0 → 1 band in the one-photon absorption (Fig. 14). One-step TPA cannot
explain the long wavelength band in the experimental spectrum [36]. As one can
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see from our simulations, this band appears when the two-step TPA process is
taken into account. The origin of this band is the electron-vibrational transitions
0 → 1�1 → 2 and 0 → 1�1 → 3 to the second and the third electronic states.
The central part of the TPA profile is influenced by the two-step TPA transitions
from the first excited state to the electronic states 2, 3, 4 and 5. The TPA transitions
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to higher electronic states give negligible contribution. Thus, the two-step TPA
absorption explains the red shift of the TPA spectral profile comparing to the
one-photon absorption.

5. FUTURE PROSPECTS OF AB-INITIO SIMULATIONS OF
PULSE PROPAGATION THROUGH NONLINEAR MEDIA

The simulation technique which we presented is still restricted in a few aspects. First
of all, by the size of a chromophore molecule. At present, sufficiently accurate (less
than a few tenths of an eV in a relative energy scale) ab initio electronic structure
calculations can be performed on molecules containing about a hundred of heavy
(non hydrogen) atoms. A typical electronic structure calculation of a molecule with
50 atoms, using DFT and a double zeta basis set on a 2.8 GHz Pentium Xeon
processor, takes roughly a day. This barrier is being slowly lifted with the increase
of the computational power of the modern computers. Even more important is
the development of different algorithms, allowing linear scaling of certain steps
of the computational procedure. These advances will make possible the theoretical
investigation of even larger, possibly biologically important, chromophores.

Another aspect of the chromophore size is the amount of vibrational frequencies
to be accounted for. As this number increases quite fast (3N)—the computational
time becomes unrealistically large. Thus, smart approximations need to be made
in order to account only for the important vibrational degrees of freedom. More
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theoretical and code development work should be done in order to easily manage
the electron-nuclear coupling inside the chromophores.

We achieved good agreement of our simulations with the available experimental
data. This proves the possibility of reversing the roles—theoretical design of a
molecule with valuable properties followed by synthesis and eventual experimental
confirmation. Still, the time required and the complexity of the simulations prevent
us from leading the experiment in a desired direction.

6. SUMMARY

Owing to successful synthesis of different multi-photon absorption based materials
there is much ongoing research activity that aims to capitalize on the potential of
such materials for optical applications. Although multiphoton materials in general
are possible to design for a particular application, their characterization often poses
an arduous or time-consuming undertaking in the laboratory. It is therefore rele-
vant to make a versatile modeling toolbox accessible for laboratory simulations of
prospective materials under different experimental conditions and that can aid in
the design and the characterization. This review presents the standpoint that it is
essential to combine into such a toolbox quantum chemistry methods for predicting
basic electronic properties and cross sections, with classical Maxwell’s theory, in
order to investigate the properties of the materials with respect to the interaction
with electromagnetic fields of various wavelengths and strengths. An important
asset of the toolbox is that it transcends the power series approach in which the non-
linear polarization is expanded over powers of the electric field, accounting for the
coupling of multi-photon processes, and that it goes beyond the so-called rotatory
wave approximation meaning that off-resonant in addition to resonant effects can
be considered. In fact, as reviewed in this paper, in the non-linear regime it is often
necessary to account simultaneously for coherent one-step and incoherent step-wise
multi-photon absorption, as well as for off-resonant excitations even when reso-
nance conditions prevail. This dynamic theory of non-linear propagation of a few
interacting intense light pulses has been successfully applied to studies of varying
phenomena involving propagation of light, some of them being reviewed here.

We expect that our dynamical theory based on the density matrix formalism can
be useful in modeling other fundamental and applied problems of nonlinear optics
like spectral-hole burning, self-focusing, white light generation, the dynamics of
the spectral profiles of amplified stimulated emission etc. The scope is certainly
wide for future researh in these areas.
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Abstract: We discuss cooperative and collective behavior resulting from classical electrostatic
intermolecular interactions in molecular materials with negligible intermolecular overlap.
With reference to materials based on push-pull chromophores, we discuss the merits
of several approximation schemes for the calculation of linear and non-linear optical
susceptibilities. Collective and cooperative behavior is recognized in important deviations
of the material properties from the oriented gas approximation scheme, and/or from
the exciton model. Extreme collective and cooperative behavior in attractive clusters is
discussed, where bistable behavior and the phenomenon of multielectron-transfer appear

Keywords: Molecular materials, molecular functional materials, intermolecular interactions, non-
linear optical properties, push-pull chromophores, polarizability, optical spectra, excitons

1. INTRODUCTION

Molecular functional materials are the Holy Grail of modern materials science, with
promising applications in the fields of molecular electronics [1] and photonics [2, 3].
Indeed molecular materials (mm) already found an appealing and rewarding applica-
tion in organic-light emitting devices, that first devised in the 1980’s, are nowadays
present in the market [4]. From a different perspective, fundamental biological
processes often involve supramolecular arrangements of functional molecules, as
nicely demonstrated by the light harvesting complexes central in the photosynthetic
process [5]. A thorough understanding of these processes will unveil some funda-
mental mechanism of life, offering at the same time important clues for the optimal
engineering of molecular devices.
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Molecular materials of interest for applications, molecular functional or intelli-
gent materials, are materials that respond in a qualitatively different way to different
inputs: non-linearity is the qualifying property for functional behavior. Delocalized
electrons are an obvious source of non-linearity [6]: interesting classes of mate-
rials then involve, to cite a few, charge-transfer (CT) complexes and salts, materials
based on �-conjugated molecules or polymers, inorganic complexes, and so on.

In this work we will limit attention to mm made up of large �-conjugated
molecules of interest for NLO applications. Intermolecular distances larger than the
sum of Van der Waals radii point to negligible overlap of molecular orbitals on
different molecules, so that electrons are basically localized on the molecular units.
Non-linear, functional behavior is, in these materials, a consequence of the large
electronic delocalization within each molecular unit, related to the presence of a large
�-conjugated backbone. Non-trivial collective and cooperative behavior in materials
of this kind was foreseen in the early 60’s by McConnell and coworkers who, in a
seminal paper titled Collective Electronic States in Molecular Crystals, wrote: Based
on rough calculations, we believe it not unlikely that such strong interactions (charge
resonance coupling, responsible for collective behavior) are to be found in molec-
ular crystals of large dye-like molecules, and perhaps even in molecular aggregates
that play a role in photosynthesis or other biological phenomena [7]. In this contri-
bution we develop this suggestion and demonstrate that collective and cooperative
behavior in molecular functional materials appears as a consequence of the strong
polarizability and hyperpolarizabilities of large �-conjugated chromophores.

Molecular crystals are the simplest example of mm. According to textbook
descriptions [8], in molecular crystals the intermolecular (electrostatic and/or Van
der Waals) forces are pretty weak if compared with the strong chemical forces
acting within each molecule. The molecular units then keep their identity in the
crystal and their properties are only marginally affected by the surrounding [9]. This
description is the base of the oriented gas model (OGM) for molecular crystals [10],
where the properties of the materials are calculated as the sum of the properties of
the isolated molecules, of course accounting for the specific mutual orientation of
the molecules in the solid.

Deviations from the additive behavior predicted by OGM are usually referred to
as collective and/or cooperative effects. Of course OGM is expected to fail in so
called CT molecular crystals, i.e in the special class of molecular crystals where,
due to the finite overlap of frontier orbitals on adjacent molecules, CT degrees
of freedom become relevant [11]. In these systems intermolecular electronic
delocalization is observed, as demonstrated by the appearance of an intense CT
absorption band lying at lower energy than the localized molecular excitations.
Of course the CT band, and many related spectroscopic phenomena, can only be
described by relaxing the OGM approximation [11, 12]. Collective and cooperative
phenomena in CT materials are very interesting in several respects, but here
we concentrate on more subtle phenomena occurring in mm with negligible
intermolecular delocalization, i.e. in materials where CT states lye at much
higher energies than local molecular excitations, as it occurs when intermolecular
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distances are larger than Van der Waals distances. The low-energy physics of
these materials is dominated by local, Frenkel-like excitations [13]. Collective
and cooperative behavior in these materials cannot be ascribed to intermolecular
delocalization, but results from classical electrostatic intermolecular interactions.

Deviations from OGM were recognized early on spectroscopic properties of
molecular crystals: Davydov shifts and splittings of absorption bands in molecular
crystals are clear deviations from OGM and were rationalized based on the excitonic
model (EM) [10, 14, 15, 16, 17]. This same model proved extremely successful
to describe the complex and technologically relevant spectroscopy of molecular
aggregates, i.e. of clusters of molecules that spontaneously self-assemble in solution
or in condensed phases [18]. Much as it occurs in molecular crystals, due to
intermolecular electrostatic interactions the local bound electron-hole pair created
upon photoexcitation travels in the lattice and the corresponding wave function
describes an extended delocalized object called an exciton. We explicitly remark
that the Frenkel picture of the exciton, as a bound electron-hole pair, both residing
on the same molecule, survives, or better is the basis for the excitonic picture.
The delocalization of the exciton refers to the fact that the relevant wave function
describes a Frenkel exciton (a bound e-h pair) that travels in the lattice, and this is of
course possible even when electrons and/or holes are, separately, totally localized.
In other terms, the EM describes localized charges, but delocalized excitations.

The simple additivity of the OGM is lost in the EM: excitons are collective objects
whose wave function extends over the lattice, so that they cannot be described in
any local picture. In the following we will reserve the term collective to indicate
all phenomena that are intrinsically related to delocalized states.

EM, allowing for the exciton motion, played a central role in understanding
energy transport in mm, at least as long as Forster mechanism dominates over
the Dexter exchange process [19]. Instead, not allowing for charge motion, EM
cannot describe charge transport. As a matter of fact charge transport requires a
finite overlap between orbitals on different molecules and is therefore beyond the
scope of this contribution. However, we underline that non-additive behavior was
early recognized in the context of charge transport. A charge carrier inside a mm
in fact polarizes the surrounding molecules and the resulting electric field screens
the charge. Several schemes of different complexity were proposed to calculate the
induced polarization as sum of contributions from properly defined subunits, but,
as it was recognized early, the problem is intrinsically non-linear and hence non-
additive [16, 17]. In fact each subunit, being it a molecule, a molecular fragment
or even an atom, is a polarizable object that responds to the presence of a charge
by generating a local electric field that sums up to the field generated by all other
subunits and by the added charge, leading to a complex self-consistent problem that
is the basis for non-linearity [20, 21, 22, 23, 24, 25].

The problem of the polarization of the material in response to an added charge
shares the same physics with another long-standing problem [26]: the calculation of
linear and non-linear optical responses of mm. In fact the molecules are polarized
by any electric field, being it an externally applied field or generated by a charge
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carrier. Linear and non-linear optical responses of mm are technologically relevant
and a lot of theoretical and experimental effort was spent to optimize molecular
responses [27, 28, 29, 30, 31]. Quite reliable structure-properties relationships have
been devised at the molecular level, but supramolecular interactions can affect
heavily the responses at the material level [32, 33], and reliable relationships
between the supramolecular structure and the material responses are still lacking. In
diluted samples the simple additive behavior of OGM possibly applies, even if local
field corrections must be properly accounted for [34]. However for medium-large
concentrations, and particularly for molecules with large (hyper-)polarizabilities
(i.e. exactly for those molecules that are more interesting for applications), the
readjustment of the molecular charge distribution in response to the interaction with
the applied field and with the field generated by all surrounding molecules lead to
very important non-linear effects that, depending on the lattice geometry, can either
amplify or reduce the response, as it will be discussed in the following.

Apart from some very special cases that will be discussed in Section 7, in mm
the gs describes a collection of molecules each one in its local gs. Non-additivity of
static NLO responses, that are gs properties, cannot be ascribed to delocalization and
hence is not a signature of collective behavior. Non-additivity of NLO responses can
be understood in these terms: the response of each molecule is truly local, but it is
affected in a self-consistent way by the interaction with the surrounding molecules.
Non-additivity of static NLO responses thus results from cooperative behavior.

Whereas the distinction between collective and cooperative effects can appear
artificial, it is obvious that, since optical responses are gs properties, their non-
additivity cannot be ascribed to the delocalized nature of excited states. On the other
hand, static responses can be calculated from sum-over-state (SOS) expressions
involving excited state energies and transition dipole moments [35]. And in fact the
exciton model has been recently used by several authors to calculate and/or discuss
linear and non-linear optical responses of mm [36, 37, 38, 39, 40, 41, 42]. But the
excitonic model hardly accounts for cooperativity and one may ask if there is any
link between collective effects related to the delocalized nature of exciton states
and cooperative effects in the gs, related to the self-consistent dependence of the
local molecular gs on the surrounding molecules.

The so called supermolecule approach offers a powerful and interesting way
to investigate the properties of mm by performing quantum chemical calculations
on clusters of molecules of finite size (the ‘supermolecule’). The approach was
pioneered by the Wagniere group in the 80’s [36]. Adopting a Pariser-Parr-Pople
model for the supermolecule, the authors were able to appreciate the multifaced role
of intermolecular interactions in mm: on one side electrostatic intermolecular forces
between polarizable molecules lead to a variation of the molecular charge distribu-
tion; on the other hand, the interactions between transition dipole moments and/or
permanent dipole moments lead to anomalous excitation spectra that hardly recon-
cile with the prediction of either OGM or EM. Di Bella and coworkers [37] presented
an extensive discussion of NLO responses of a dimer of paranitroaniline (a prototyp-
ical push-pull chromophore) in different geometries. Based on a ZINDO approxima-
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tion they observe the deformation of the molecular charge distribution as a result of
intermolecular interactions and discuss its role in the definition of the second-order
NLO response. More recently, similar studies were presented by several authors, [42,
43] that, studying several dimers of different push-pull chromophores, underlined
again the non-trivial role of intermolecular interactions. Other studies on dimers of
push-pull chromophores where presented based on ab initio approaches [44].

The supermolecule approach has the obvious advantage of a complete description
of intermolecular interactions, at least at the level of the model adopted to describe
the molecular structure. However the approach is computationally demanding, so
that, depending on the size of the molecule, only small clusters and/or not too
refined models (specifically not too large basis sets) can be treated. Apart from
these technical limitations, that will be overcome with the increase of computational
power, extracting relevant information from the analysis of numerical data is a
demanding and subtle task. In this respect we notice that Hamada [45] presented
very interesting results of ab initio calculations of second order NLO response
of dimers of 2-methyl-4-nitroaniline. He observed important deviations from the
OGM model, with the response strongly reduced as a consequence of intermolecular
interactions. He ascribed this phenomenon to the reduction of the molecular polarity
in the dimer as a consequence of the molecular polarizability. This is for sure an
important observation, but, as it will be discussed in detail in Section 6, the effects
of intermolecular interactions on NLO responses are more subtle.

Recently an extensive review has been published covering the calculation of
NLO properties in the solid state [44]. We refer the interested reader to this
work for an extensive coverage of previous literature devoted to intermolecular
interactions and their effects on optical responses of mm. In this work we will
discuss models for collective and cooperative effects as occurring in mm with
particular emphasis on the relation between the description of excited states and
linear and non-linear static optical responses. We will mention a few seminal
papers where the concepts of collective and cooperative behavior appeared. The
proposed references then follow a very personal and unavoidably incomplete view
of the very rich literature in the field.

The paper is organized as follows. Section 2 shortly introduces the exciton model
and its approximations. Section 3 reviews calculations of ground state properties
(mainly the polarization and polarizability) paying special attention to the mean-field
approximation. Push-pull chromophores, the special family of polar and polarizable
molecules studied in this contribution, are presented in Section 4, with a brief
discussion of their properties in solution and of relevant models. In Section 5 we
present a model for interacting push-pull chromophores that will be the basis for
the discussion of collective and cooperative effects in relevant materials. Static
susceptibilities of clusters of push-pull chromophores are discussed in Section 6,
focusing attention on cooperative effects in the ground state. Excited state properties
are addressed in Section 7, with special emphasis to systems where intermolecular
interactions lead to extreme consequences. Section 8 finally summarizes main
results.
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2. THE EXCITONIC PICTURE: A MODEL FOR HARDLY
POLARIZABLE MOLECULES

EM applies to clusters of non-overlapping and weakly interacting molecules
describing either a molecular crystal or an aggregate. Intermolecular interactions
are treated perturbatively, so that the zeroth order basis for the cluster is the direct
product of the local basis relevant to each molecular sites. For the sake of simplicity
we shall refer to the case when just a ground state (gs), �gi�, and a single excited
state, �ei�, are defined on each molecular site. The zeroth order energies are the sum
of local energies, and, assigning energy 0 to the gs, states with n local excitations
have energy n��0, where �0 is the excitation energy of the isolated molecule. The
first effect of intermolecular interactions is a perturbative correction of the excita-
tion energy: � = �0 + D, where D, the Davydov shift, is the difference between
the energy of interaction of the excited molecule and the unexcited molecule with
all other molecules in the cluster [10, 46].

States with n local excitations are degenerate, and any tiny perturbation
induced by intermolecular interactions mixes them effectively. EM accounts for
the mixing of degenerate states so that n is a conserved quantity. The relevant
Hamiltonian is [46]:

(1) HJ = 1
2

∑

i�j

Jij�b
†
i bj +bjb

†
i �

where i� j indeces run on the molecular sites, b†
i creates a local excitation on

the i-th site and Jij is the matrix element that transfers the excitation between
sites i and j. In the simple dipolar approximation for electrostatic forces, Jij

measures the interaction between the transition dipole moments on the i and j
molecules. It dyes off quickly with the intermolecular distance so that often only
the nearest-neighbor exciton hopping is retained. In any case, states with n local
excitations are mixed by the Hamiltonian in Eq. (1) to form delocalized n-exciton
states. Of course, due to delocalization, the additivity of the OGM is lost and
collective phenomena appears.

The simplest example is that of a one-dimensional cluster of N equivalent
molecules with nearest neighbor J interaction, periodic boundary conditions and
intermolecular spacing r. The N states with a single local excitation are mixed to
give a band of 1-exciton states with energies Ek = 2J cos�kr�, and wave vector
k = 0�±�/Nr�±2�/Nr� � � � ��/r, as sketched in Fig. 1.

Only the k = 0 state is optically allowed, and for attractive/repulsive J it lies
at the bottom/top of the band. In attractive J < 0 lattices the absorption spectrum
is red-shifted with respect to �0 by 2J (J-aggregates), whereas a blue-shift by
the same amount is expected for repulsive interactions (J > 0, H-aggregates). The
most impressive collective phenomenon in this simple model is recognized in the
fluorescence behavior. In H-aggregates the fast relaxation of excited states to the
bottom of the 1-exciton band leads to an optically forbidden state so that fluores-
cence is strongly suppressed in the material. In J-aggregates instead fluorescence is
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Figure 1. One-exciton band (energy vs wave vector) for a 15-site lattice described by the Hamiltonian in
Eq. (1), with only nearest-neighbor exciton hopping, J , and constant intermolecular spacing, r = 1. Left
and right panels refer to negative and positive J , respectively. The arrows mark one-photon absorption
and emission processes. The emission process for J > 0 is forbidden

allowed and the corresponding transition dipole moment has contributions from all
molecular transition dipole moments leading to a collective emission often referred
to as super-radiance [18].

The same J -interaction appearing in Eq. (1) enters the Hamiltonian with the
following term [46]:

(2) H ′
J = 1

2

∑

i�j

Jij�b
†
i b

†
j +bibj�

This term breaks down the excitonic approximation mixing up states whose
exciton number differs by two units. This so called non-Heitler-London term
has negligible effects for systems with J � 2�0 [47]. So the excitonic approxi-
mation is expected to work well for clusters of molecules with large excitation
energies and not too large transition dipole moments, i.e. for hardly polarizable
molecules.

EM was quite extensively and successfully applied to model optical spectra of
molecular crystals and aggregates. Extensions were discussed [18] to account for
disorder, whose effects are particularly important in aggregates, and to include
the coupling between electronic degrees of freedom and molecular vibrations [48],
needed to properly describe the absorption and emission bandshapes. However, as
it was already recognized in original papers [7, 46], other terms enter the excitonic
Hamiltonian. Electrostatic interactions between local excitations can in fact be
introduced as:

(3) Hee = 1
2

∑

i�j

Uijb
†
i bib

†
j bj
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where Uij measures the difference between the electrostatic interactions of the
two i� j molecules in the excited and in the gs. This term is small for clusters
of non-polar molecules, but for polar molecules it can be pretty large. In the
dipolar approximation it is proportional to the interaction between the two molecular
mesomeric dipole moments, where the mesomeric dipole moment measures the
difference between the molecular dipole moments in the excited and ground state.
Exciton-exciton interactions have been discussed in models for aggregates and
crystals of polar chromophores [49], as well as in related models for CT crystals
with a mixed stack motif and a largely neutral gs [50]. Important effects of exciton-
exciton interactions are recognized in the appearance of bound biexciton states [49]
or even in the formation of exciton-strings [50].

The Hamiltonian in Eq. (3) conserves the exciton number and, by itself, does
not break the excitonic approximation. However large exciton-exciton interac-
tions may eventually lead to the breakdown of EM. Consider in fact the case
of large attractive interactions between adjacent excitons. The energy of the
two-exciton state with two nearby excitons is lowered with respect to 2� then
making the non-Heitler-London term in Eq. (2) much more effective. But for
clusters of polar molecules an additional term appears that directly breaks the
excitonic approximation [46]:

(4) Hw =∑

i�j

Wij�b
†
i +bi�b

†
j bj

where, in the dipole approximation, Wij measures the interaction between the tran-
sition dipole moment and the mesomeric dipole moment on sites i and j. This
term mixes up states whose excitation number differs by just one unit and its
effects are negligible when Wij � �0. This requirement is more stringent that that
enforced by the neglect of the non-Heitler London term (cf the discussion following
Eq. (2)), and is particularly stringent for materials based on polar molecules
whose mesomeric dipole moment are larger than transition dipole moments, and
hence Wij > Jij .

The short discussion in this Section demonstrates that EM is hardly applicable
to describe mm based on largely polarizable molecules: in these materials in fact
transition dipole moments are large and excitation frequencies are low. The situa-
tion is even worse for mm based on polar and polarizable molecules, where U - and
W -like interactions appear. Push-pull chromophores are a very interesting family of
polar and largely (hyper)polarizable molecules, characterized by an intense optical
transition in the visible region, whose large solvatochromism is related to a large
mesomeric dipole moment [51, 52]. Materials based on push-pull chromophores
are extremely attractive for second order NLO applications [28, 29, 33, 53, 54, 55],
but they are also actively investigated in the related field of molecular elec-
tronics [56, 57]. According to previous discussion these materials cannot be
described within the standard excitonic picture and large deviations from EM are
expected.
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3. POLARIZABLE MOLECULES: THE MEAN-FIELD
APPROXIMATION FOR GS PROPERTIES

Static linear and non-linear polarizabilities measure the successive derivatives of
the gs dipole moment vs an applied static electric field. More precisely for extended
systems the (hyper)polarizabilities are defined as intensive properties, i.e. as deriva-
tives of the polarization, P, the gs dipole moment per unit volume. But the proper
definition of P, and hence of the polarizabilities, is a tricky problem in extended
systems, where several choices are possible for the definition of the basic unit
cell, leading to different values of P. In a different perspective, periodic boundary
conditions, that are needed to preserve the symmetry of the extended system, are
difficult to reconcile with finite P, or, for what matters, with a uniform static electric
field. A very elegant and powerful solution of this problem was recently proposed
by Resta [58], that defined P in systems with periodic boundary conditions as the
phase of the gs wave function. The general formulation of P as a phase bypasses
the unit cell problem in extended insulators and opens the way to the calculation
of corresponding polarizability and hyperpolarizabilities [26, 59, 60]. In extended
mm with strictly non-overlapping molecules, however, the P problem is irrelevant.
In this case in fact the definition of the unit cell as a non-overlapping unit is
unambiguous: the charge redistribution is purely intramolecular and conventional
molecular approaches to the polarization are adequate [26].

The neglect of intermolecular overlap solves the unit-cell problem, but, in spite of
that, the calculation of linear and non-linear polarizabilities of mm or of molecular
aggregates is not at all easy. Deviations of the polarizabilities from the additive
OGM behavior were recognized and discussed early [61]. The first improvement
on OGM approximation accounts for local field corrections: basically the response
of the material is again calculated as the sum of the responses of the molecular
units, but accounting for the fact that each molecule experiences a local field that is
different from the external field. Several approximation schemes have been proposed
for the non-trivial calculation of local-field corrections [44] ranging from simple
Lorentz field models to detailed calculations of local fields in the point-dipole
approximation [20]. Indeed the definition of proper local fields is a subtle problem
since the dipole approximation for extended molecular units is questionable: several
approaches have then been proposed to describe each molecule as a collection of
local dipoles that are by themselves polarizable [20]. Describing the lattice as a
collection of polar and polarizable dipoles lead unavoidably to a complex self-
consistent problem [21, 22, 23] whose solution becomes more and more demanding
as the model adopted to describe the molecular units becomes more sophisticated
and hence more realistic. An important consideration is that, particularly for polar
molecules, large permanent local fields are found in the material that can profoundly
alter the gs polarity of the molecular units and hence all their properties [23].

This observation paves the way to the work by Tsiper and Soos that proposed a
mean-field approximation for the calculation of the linear polarizability of molecular
crystals and films [25, 62, 63, 64]. The approach is based again on the neglect of
intermolecular overlap. A quantum chemical model is adopted for each molecular
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unit, and its interaction with the surrounding molecules is described by introducing
into the molecular Hamiltonian an electrostatic potential that is calculated based
on the geometry of the cluster and on the charge distribution on the molecular
units. The problem is clearly self-consistent, since the charge distribution on each
molecule, and hence the generated potential, depend on the potential itself, but at
each iteration the QM problem to be solved just describes a single molecule. Of
course at each iteration one must also calculate the electrostatic potential, but this is
easily done through standard Ewald summation schemes [62]. Once convergence is
reached, the total polarization P of the lattice can be calculated and its derivatives
with respect to an applied electric field yield the polarizabilities. The method is
pretty general, and the quality of the results depend on the quality of the quantum
chemical model adopted to describe the molecular units and of the model adopted
to describe the charge distribution. So far results have been published for the linear
polarizability of crystals and films of non-polar molecules (including polyacenes
and PTCDA), described at a INDO level and adopting a Lödwin description of
atomic charges [25, 62, 63, 64]. The intramolecular charge fluxes are well described
within this approach and they add to the atomic polarizabilities giving the largest
contribution to the linear optical response of the material (the dielectric constant).
Particularly important effects from charge reorganization are observed in materials
based on PTCDA, a quadrupolar molecule [62, 63]. Even larger effects are expected
in materials based on polar and polarizable molecules where local fields are very
large and can largely affect the molecular polarity and polarizability [22, 23].

4. PUSH-PULL CHROMOPHORES: AN INTERESTING FAMILY
OF POLAR AND (HYPER-)POLARIZABLE MOLECULES

Push-pull chromophores are molecules made up by an electron donor (D) and an
acceptor (A) group connected by a �-conjugated bridge. The neutral (DA) and
zwitterionic (i.e. charge separated, D+A−) states have similar energies and both
contribute to the gs. These molecules are actively investigated in several, apparently
unrelated fields. Push-pull chromophores are the molecules of choice for second-
order NLO applications [28, 29, 33, 53, 54], are typical solvation probes [52], and
are useful model systems for electron transfer [65]. All these applications exploit
the presence of a low-lying excited-state characterized by a different electronic
distribution from the gs. Good solvation probes have an electronic absorption and/or
emission band well separated from the other transitions, with good intensity (i.e.,
a sizable transition dipole moment), and whose position strongly depends on the
solvent polarity. This last requirement is easily fulfilled if the mesomeric dipole
moment is large [52]. A large mesomeric dipole moment implies a large charge
redistribution upon excitation, so that the absorption process basically models a
photoinduced electron transfer, whereas the emission process models a spontaneous
electron transfer [65]. On the other hand, large transition and mesomeric dipole
moments guarantee for large NLO responses [66]. Push-pull chromophores are then
a very interesting class of polar and highly (hyper-)polarizable molecules, and we
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adopt the versatile acronym of pp chromophores for them that also reads as an
acronym of polar-polarizable chromophores.

In the last years we devoted considerable effort to understand the properties of
pp chromophores in different environments. The basic idea is that pp chromophores
respond largely and non-linearly to electric fields, being them externally applied
field, or internal fields generated by the interaction with the surrounding. In this
section we will briefly review our work on NLO responses of pp chromophores
and on their spectroscopic behavior in solution. This work set the stage for building
up models for mm based on pp chromophores, where intermolecular electrostatic
interactions dominate the physics of the material.

Our choice is to use extremely simple models where a few basic interactions are
accounted for. Our aim is not the detailed and accurate modeling of all the mate-
rial properties, but rather to understand the basic physics governing the behavior
of pp chromophores in different environments, and sorting out relevant interac-
tions and parameters. Simple models are instrumental in this respect, moreover,
being amenable to exact, or at least, non-perturbative solutions, they offer stringent
reliability tests for common approximation schemes.

We describe the electronic structure of pp chromophores based on an old, but
extremely powerful model, originally proposed by Mulliken [67] to describe DA
complexes in solution. The model is based on the assumption that the low-energy
physics of pp chromophores is dominated by the resonance between the neutral and
the charge separated (zwitterionic) structures. Two basis states, �DA� and �D+A−�,
separated by an energy 2z and mixed by a matrix element −√

2t, completely
define the electronic Hamiltonian. The solution of this problem is trivial and was
already discussed by several authors (see, e.g. [68] and reference therein). For future
reference we explicitly write the ground and excited states:

�g� =√
1−��DA�+√

��D+A−�(5)

�e� = √
��DA�−√1−��D+A−�

where � = �1 − z/
√

z2 +2t2�/2 measures the weight of �D+A−� in the gs and
is therefore a measure of the molecular polarity. Following Mulliken [67], we
recognize that in the adopted basis the dipole moment operator is strongly dominated
by 	0, the dipole moment relevant to �D+A−�, so that all quantities of interest for
spectroscopy can be derived as follows [68]:

	G = �G�	̂�G� = 	0�(6)

	E = �E�	̂�E� = 	0�1−��(7)

	CT = �G�	̂�E� = 	0

√
��1−��(8)

��CT = �E −�G = √
2t/
√

��1−��(9)

On this basis close expressions for static NLO responses were written, that proved
particularly useful since they relate linear and non-linear susceptibilities to easily
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Figure 2. Potential energy surfaces for the basis states (left panel) and for the adiabatic ground and
excited states (right panel)

accessible spectroscopic observables [66, 68, 69]. In this respect, the use of
simple models in guiding the synthesis of molecules with desired properties proved
extremely powerful [30, 31, 70, 71].

To properly describe optical spectra of pp chromophores in solution the Mulliken
model has to be extended to account for the coupling of electronic and vibrational
degrees of freedom, i.e. for the different molecular geometries associated with
the two basis states. In the framework of the Holstein model [72, 73], we assign
the two basis states two harmonic potential energy surfaces (PES) with exactly the
same curvatures, but displaced along the coupled coordinates, Qi, as sketched in
Fig. 2, left panel, as to account for the different geometry associated with the two
basis states. The resulting model describes linear electron-phonon (e-ph) coupling,
with the z parameter (half the energy gap between the two basis states) linearly
depending on vibrational coordinates (cf Fig. 2). The model is easily diagonalized
in the adiabatic approximation yielding to the anharmonic PES for the ground and
excited states sketched in the right panels of Fig. 2 [74, 75, 76, 77]. Anharmonicity
is a clear signature of non-linear behavior and results, in our model for linear e-ph
coupling, from the strongly non-linear response of the electronic system [78, 79].

Common spectroscopic techniques test small portions of the ground and/or
excited state PES either around the gs minimum (IR and non-resonant Raman
spectra, electronic absorption spectra.) or in the proximity of the excited state
minimum (steady-state fluorescence). These spectra are then satisfactorily described
in the best harmonic approximation, a local harmonic approach that approximates
the PES with parabolas whose curvatures match the exact curvatures calculated
at the specific position of interest [78]. Anharmonicity in this approach mani-
fests itself with the dependence of harmonic frequencies and relaxation energies
on the actual nuclear configuration [79]. Along these lines we predicted softened
(hardened) vibrational frequencies for the ground (excited) state [74], amplified
and �-dependent infrared and Raman intensities [68, 74], different Frank-Condon
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factors for absorption and steady-state emissions leading to narrower emission than
absorption bands [75, 80].

The non-linearity of the electronic response to the vibrational perturbation,
evidenced by the anharmonicity of the PES in the right panel of Fig. 2, shows up
most directly in NLO responses. The large static electric fields involved in NLO
susceptibilities force the systems to explore large regions around the equilibrium:
anharmonic corrections to static NLO responses are very large and increase with
the order on linearity, as extensively discussed in [77, 78] where a detailed test of
the adiabatic approximation was also presented. Interesting consequences of e-ph
coupling, or better of the non-linear response of the electronic system to vibrational
perturbation, are recognized in NLO responses at optical frequencies. In particular
new purely vibrational channels to dynamic NLO responses, such as SHG or TPA
where demonstrated as due to e-ph coupling leading to very interesting effects
on bandshapes and intensities [81, 82]. Some of the effects predicted for TPA
spectra have found at least qualitative confirmation in recent experimental data [83],
demonstrating that, in spite of its crudeness, the proposed model catches the basic
physics of pp chromophores. However a more extensive model validation requires
the introduction of environmental interactions. As a first step in this direction we
considered pp chromophores in solution: this comparatively simple system offers a
good test for models of environmental interactions, also allowing for an extensive
validation against the very large body of available experimental data.

The solvent surrounding a polar molecule polarizes itself generating a reaction
field at the chromophore position [51, 52]. The electronic polarization of the solvent
is very fast and, as such, only results in a renormalization of the electronic states
[84]. The slow orientational component of the solvent polarization, as occurring
in polar solvents instead plays essentially the same role as internal vibrations, the
main difference being that the relevant solvation coordinate is a very slow, actually
overdamped coordinate [74, 85]. The similarity of polar solvation and vibrational
coupling is not accidental: in pp chromophores molecular vibrations induce a flux
of electronic charge back and forth between the D and A sites and hence plays
exactly the same role as an electric field [86]. Much as with the reaction field, the
amplitude of the oscillations self-consistently depends on the molecular polarity.

A pp chromophore dissolved in a polar solvent readjusts its polarity in response
to the polarity of the surrounding, and its properties are affected accordingly. But
other more subtle phenomena can be predicted, including amplification of NLO
responses [74, 87], and inhomogeneous broadening effects as observed e.g in vibra-
tional and resonant-Raman spectra [74]. Particularly interesting results were obtained
modeling time-resolved absorption and fluorescence spectra of pp chromophores in
polar solvents [88], were we were able to reproduce quantitatively the time evolution of
the emission frequency and bandshapes as experimentally observed for several dyes.

The described approach to spectroscopic properties of pp chromophores in solu-
tion is semiempirical in nature: it is based on a specific model for the electronic
structure, molecular vibration, and solute-solvent interactions that allows to calcu-
late a large variety of (low-energy) spectroscopic properties, including steady-state
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and time resolved electronic and vibrational spectra, in terms of few microscopic
parameters to be extracted from a judiciously chosen subset of experimental data.
The approach has been validated and its predictive capabilities have been demon-
strated via an extensive and detailed comparison with experimental data on several
chromophores [74, 75, 88, 89]. The resulting picture is both robust and simple
enough to offer a good starting point to describe the more complex behavior of
dense clusters of pp chromophore where intermolecular interactions play a role.

5. INTERACTING POLAR AND POLARIZABLE MOLECULES:
A TOY MODEL

Based on the discussion in the previous Section we define the following Hamiltonian
for a cluster of non-overlapping pp chromophores:

(10) H =∑

i

(
2z�̂i −

√
2t
̂x�i

)
+∑

i>j

Vij�̂i�̂j

where i runs on the N molecular sites. The first term above describes each chro-
mophore in terms of the two-state Mulliken model introduced in the previous
section, and the last term accounts for electrostatic interchromophore interactions.
We have defined �̂i = �1− 
̂z�i�/2 as the operator measuring the amount of CT from
D to A in the i-th molecules, and 
̂z/x�i as the z/x Pauli matrices defined on the two
basis states for the i-th chromophores. Since the charge distribution on the i-th chro-
mophore is fully defined by the expectation value of �̂i, the operator representing
the electrostatic interaction between i and j chromophores is proportional to �̂i�̂j

through a proportionality constant, Vij , measuring the interaction energy between
the two fully zwitterionic (D+A−) molecules. Of course several models are possible
for Vij , including dipolar or multipolar approximations, possibly accounting for
screening effects.

The natural basis set for the above Hamiltonian is given by the 2N functions
obtained from the direct product of the two basis states, �DA� and �D+A−� on
each molecular site. The corresponding Hamiltonian matrix is easily diagonalized
for clusters of finite dimension. Specifically, by exploiting translational symmetry,
we obtained exact solutions for systems with up to 16 sites and periodic boundary
conditions.

The model can be extended to account for e-ph coupling, but dealing with
the coupled electronic and bosonic problem is computationally very demanding.
Preliminary results have been obtained only for dimers [90]. As long as the adiabatic
approximation holds, i.e. as long as electronic degrees of freedom (including inter-
molecular ones) are faster than vibrational degrees of freedom, the coupling between
electrons and molecular vibrations can be accounted for via a self-consistent renor-
malization of molecular parameters [89] so that in that limit the basic physics of
interacting chromophores is described by the Hamiltonian in Eq. (10).

The Hamiltonian in Eq. (10) is very simple but describes a fairly rich physics.
Indeed it encompasses both the mf and the excitonic models for interacting chro-
mophores. To demonstrate this important point we rewrite the same Hamiltonian
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on a different basis. Specifically, we define a new basis by rotating the two original
basis states on each chromophore, �DA� and �D+A−�, by an arbitrary angle. This
amounts to use on each site a couple of orthogonal states �gi� and �ei� defined,
according to Eq. (5), as a linear combination of the two original states, with an
arbitrary mixing coefficient �, ranging from 0 to 1: the extreme values 0, 1 corre-
spond to rotation angles of 0 and �/2, respectively. We define the vacuum state,
�0�, as the state where all molecules are in the �gi� state: the complete basis is
then obtained by repeated applications of the hard-boson creation operator b†

i that,
applied to �gi� switches it to �ei�. With these definitions the Hamiltonian in Eq. (10)
can be rewritten as the sum of three terms [91]:

(11) H = Hmf +Hex +Huex

with

Hmf =∑

i

[
2�1−2���z+M��+4

√
2t
√

��1−��
]

n̂i(12)

+∑
i

[
2
√

��1−���z+M��−√
2t�1−2��

]
�b̂†

i + b̂i�

Hex = ∑

i�j>i

Vij

[
��1−���b̂†

i b̂j + b̂j b̂
†
i �+ �1−2��2n̂in̂j

]
(13)

Huex = ∑

i�j>i

Vij��1−���b̂ib̂j + b̂†
j b̂

†
i �(14)

+ ∑

i�j �=i

Vij�1−2��
√

��1−���b̂†
i + b̂i�n̂j

where n̂i = b̂†
i b̂i counts the excitations on the ith site, and M =∑

i�j>i Vij/N is the
Madelung energy. The transformation from the Hamiltonian in Eq. (10) to Eq. (11)
is general, but the above expressions have been written for the special case where
all molecular sites are equivalent; inequivalent sites can be treated analogously, but
the notation becomes cumbersome.

The first term (Hmf ) above describes an effective Hamiltonian for non-interacting
chromophores, and then defines the mean-field approximation. In the mf approxi-
mation in fact the gs describes a collection of molecules each one in the local �gi�
states, so that it corresponds to the vacuum state for a specific choice of �. With
this choice Hexc and Huex are irrelevant in the definition of the gs. The requirement
that �0� corresponds to the lowest eigenstate of Hmf fixes the optimal mf value
of � as to impose the vanishing of the term in �b†

i +bi) in Hmf . This amount to fix
� at the value relevant to a molecule feeling the electrostatic potential generated
by all surrounding molecules in their local gs [91]. The self-consistent mf problem
can be easily solved along the lines originally proposed by Soos and coworkers
working on a similar Hamiltonian in a different context [92].

The mf solution for the gs fully accounts for the molecular polarizability: each
molecular (polarizable) dipole readjusts itself in response to the local field created
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at its locations by all other (polarizable) dipoles. The feedback loop generated by
interacting pp chromophores is the key to understand cooperative effects on gs
properties, as it will be discussed in Section 6. However, the mf gs describes the
molecular units as totally uncorrelated and therefore cannot account for collective
behavior. In spite of that the mf gs is a good starting point to define the excitonic
approximation. In particular, once � is fixed to the mf value the mf Hamiltonian
simplifies in:

(15) Hmf = ��CT

∑

i

n̂i

where ��CT is the local molecular excitation energy, whose dependence on � is
defined by Eq. (9). This Hamiltonian, assigning energy ��CT to each local excitation
defines the zeroth order functions for the excitonic approximations. Indeed, the local
excitation, �gi� → �ei� is fully defined by the mf solution. All relevant spectroscopic
quantities are defined as functions of the mf � by Eqs. (6)–(9).

Hex in Eq. (13) collects all terms in the Hamiltonian conserving the number
of excitation and therefore defines the excitonic Hamiltonian. The first term
in 13 accounts for exciton hopping and corresponds to HJ in Eq. (1), with
Jij = Vij��1−�� describing the electrostatic interaction between transition dipole
moments (cf Eq. (8)). The second term in (13) accounts for exciton-exciton inter-
action and corresponds to He−e in Eq. (3), with Uij = Vij�1 − 2��2 measuring the
electrostatic interaction between mesomeric dipole moments (cf. Eq. (6), (7)). The
sum of the mf Hamiltonian in Eq. (15) and of the excitonic term in Eq. (13),
Hmf +Hexc, defines the best excitonic approximation to the general Hamiltonian in
Eq. (10). In fact, relying on the mf description of the gs and of local excitations, it
is based on the best uncorrelated description for the molecules in the cluster.

The third portion of the total Hamiltonian, Huex in (14), collects all terms beyond
the excitonic approximation, being responsible for the mixing of states with different
number of excitons. The first term in this ultraexcitonic Hamiltonian corresponds
to the non-Heitler London term in Eq. (2), as originating from the interaction
between transition dipole moments. The second term describes the interaction
between transition and mesomeric dipole moments and corresponds to the term in
Eq. (4) with Wkl = Vkl�1−2��

√
��1−�� (cf. Eqs. (8)–(7)).

All the terms in our transformed Hamiltonian were already derived by Agranovich
[46] in the discussion of clusters of two-level molecules interacting via electrostatic
forces. The main novelty of the proposed approach is that it is based on local
(molecular) ground and excited states as obtained in the mf approximation and
therefore it explicitly accounts for the dependence of the local ground and excited
state on the supramolecular interactions. In the standard approach instead the term
in �b†

i + bi� in Eq. (12) is disregarded [46], and the local wave functions do not
depend on the supramolecular geometry. The strength of our approach is in its
ability to follow the evolution of the properties of the supramolecular systems



Collective and Cooperative Phenomena in Molecular Materials 267

when the supramolecular structure is changed, then accounting at the same time for
collective and cooperative behavior.

6. INTERACTING POLAR AND POLARIZABLE MOLECULES:
COOPERATIVE EFFECTS ON OPTICAL SUSCEPTIBILITIES

In this Section we discuss optical susceptibilities of some representative clusters.
Specifically, we consider one-dimensional arrays of equivalent molecules (periodic
boundary conditions are imposed) with the three geometries sketched in Fig. 3,
where the arrows represents the dipolar pp chromophores. In cluster A all chro-
mophores are oriented in the same direction, perpendicularly to the stack axis. This
geometry then corresponds to repulsive intermolecular interactions. Clusters B and
C instead describe attractive lattices. In cluster B the antiparallel orientation of
chromophores leads to a structure with two molecules per unit cell, an inversion
center lying in the middle of each pair of molecules.

Several choices are possible for the definition of Vij , the interaction energy
between two zwitterionic molecules at i� j sites. The simplest approximation models
�D+A−� molecules as point dipoles. The dipolar approximation is however poor for
pp dyes, that are fairly elongated molecules. We therefore adopt a different model
that, while retaining the simplicity of the dipolar approximation, accounts for the
finite size of the chromophore. Therefore we model the zwitterionic molecule as
a rigid rod of length l with the positive and negative charges located at the two
ends. This defines the basic unit of electrostatic energy: v = e2/l. In the following
we discuss unscreened interactions and introduce the dimensionless inverse inter-
molecular distance, w = l/r , where r is the distance between the chromophores.

j N

r

i

l

1

A

ji
C

l
r

j N

r

i

l

1

B

Figure 3. The three one-dimensional lattices considered in this paper. Each molecule is sketched by an
arrow, representing its permanent dipole moment



268 Painelli and Terenziani

For C-clusters the condition w < 1 applies. For any cluster Vij interactions can be
defined in terms of v and w parameters [91].

Fig. 4 shows the evolution of the gs polarity (�) with the inverse intermolecular
distance for the three lattices with N = 16, and v = 1 (here and hereafter all
energies are measured in units with

√
2t = 1). For pp chromophores

√
2t ∼ 1

eV, so that v = 1 corresponds to molecular lengths of the order of 14 Å. For
each cluster geometry, results are reported for z = 1 and z = −1 (top and bottom
panels, respectively), corresponding to neutral and zwitterionic isolated molecules
(w = 0), respectively. For the repulsive A cluster the gs polarity decreases with
increasing w, i.e. with decreasing intermolecular distance. Of course the opposite
behavior, with � increasing with increasing w, is observed in the attractive B and C
clusters. In this respect, for A clusters the z = −1 case is particularly interesting: the
isolated zwitterionic chromophores can be driven towards a neutral gs by simply
packing them together at intermolecular distances smaller than about 2/3 of the
molecular length (say 10 Å for molecules 14 Å long). For attractive B and C clusters
neutral isolated chromophores (z = 1) can be turned zwitterionic by packing them at
intermolecular distances of about 1/2 and 4/3 of the molecular length, respectively.

The possibility to completely reverse the nature of the molecular gs (from neutral
to zwitterionic or viceversa) by simply putting molecules close together, and/or
by changing their intermolecular packing or distance is an important consequence
of cooperativity. This offers a new and powerful tool to tune the molecular and
hence the material properties via a careful supramolecular design. On the back-side
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Figure 4. Ground state polarity vs the inverse intermolecular distance for A, B and C, lattices with v=1
and z = ±1. Dashed lines: mf results for N = �; continuous lines: exact results for N = 16
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however it makes the prediction of the material properties a difficult task that
requires a careful modeling and understanding of supramolecular interactions.

The mf approximation offers simple clues to cooperativity: within mf each
molecule is affected by the electric field created by the surrounding molecules.
Cooperative behavior then results from the self-consistent dependence of the molec-
ular polarity from the polarity of the surrounding molecules. The mf �, shown as
dashed lines in Fig. 4, compares well with exact results obtained from the complete
diagonalization of the Hamiltonian in (10) (full lines in Fig. 4). More interestingly
the mf approach rationalizes the qualitatively different shape and slope of the ��w�
curves for attractive and repulsive clusters. In fact, in the mf picture, the molecular
polarity is obtained by solving the two state molecular problem defined in Section 4,
but with an effective z that self-consistently depends on the molecular polarity:
z → z+M�. The slope of the � curve vs M is then:

(16)
��

�M
= d�

dz
�

(

1−M
d�

dz

)−1

Since d�/dz < 0, for repulsive lattices (M > 0) the ��M� slope varies smoothly with
M , and hence we observe fairly smooth ��w� curves. For attractive clusters (M < 0)
the ��/�M slope can eventually change sign when M increases in magnitude, going
through a divergence at M = −2. This explains the sharp curves calculated for B
and C clusters (cf panels (c) and (e) in Fig. 4), and also leads to the interesting
prediction of bistable behavior in attractive lattices as it will be discussed in the
next Section.

Exact static optical susceptibilities are conveniently calculated as successive
derivatives on an applied electric field of the gs polarization, defined, in linear
aggregates, as the dipole moment per unit length. The linear polarizability (�), the
first and second hyperpolarizabilities ( and �, respectively) obtained for 16-sites
clusters are shown as full lines in Fig. 5. Left, middle and right panels refer to
A, B and C clusters, respectively, for the parameters that, in Fig. 4 drive the
system through the neutral-zwitterionic interface. Susceptibilities show a strong
and non-trivial dependence on the intermolecular distance, and, to understand the
physical origin of this complex and interesting behavior we shall discuss several
approximated results.

OGM, as discussed in Section 1, represents the simplest approach to NLO
responses: the response of the cluster is defined as the sum of the molecular
responses, properly accounting for the chromophore orientation in the cluster. This
approach is for sure very poor for clusters of pp chromophores, since it disregards
the dependence of the molecular polarity, and hence of all molecular properties, on
intermolecular interactions. A slightly more refined approach is a mf-based OGM.
The mf gs describes a collection of uncorrelated molecules, each one in the local
(mf) gs. Accordingly, the mf-OGM approach calculates the susceptibilities of the
cluster as the sum of the susceptibilities of the (oriented) molecules in their local mf
gs. The mf-OGM approach for sure improves over the crude OGM, since it accounts
for the polarizability of the molecular units and hence for the dependence of the
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molecular polarity (and hence of the molecular properties) on the supramolecular
structure. However the mf-OGM results, reported in Fig. 5 as dotted lines, grossly
deviate from exact susceptibility, a surprising result, particularly if contrasted with
the good quality of the mf approximation in the calculation of � (cf. Fig. 4). Indeed
the mf-OGM fails since it does not account for local field corrections. Deviation
of mf-OGM results from exact susceptibilities increase with the order on non-
linearity and are particularly important for clusters with � ∼ 0�5, where molecules
are maximally polarizable. This suggests that the most important contributions to
local field corrections arise from the molecular polarizability rather than from the
molecular polarity (we notice that the effect of the local electric field generated
by the molecules in their gs is already accounted for by the variation of � with
the supramolecular arrangement and is therefore already included in the mf-OGM
result). Another important observation is that intermolecular interactions strongly
tune the molecular polarity, hence affecting the molecular and material responses,
but this does not exhaust the role of intermolecular interactions. Depending on the
cluster geometry and on model parameters, mf-OGM can either over- or under-
estimate NLO responses: the role of supramolecular interactions is far from trivial
and a detailed modeling is needed to devise reliable relationships between the
supramolecular structure and the properties of mm.
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Linear and non-linear susceptibilities calculated within the mf approach, but
relaxing the OGM approximation, lead to much better results, as shown by the
dashed lines in Fig. 5. These results are calculated from the field derivatives of the
total mf polarization, i.e. from the field derivatives of the sum of molecular dipole
moments, rather than summing up derivatives of the molecular dipole moments as
done in mf-OGM. Apart from very narrow regions around the neutral-zwitterionic
interface in attractive lattices where the mf approximation itself is rather poor
(cf results for � in Fig. 4, and the discussion in the next Section), the mf approx-
imation to linear and non-linear susceptibilities is fairly good, suggesting that
cooperativity dominates the gs properties of the material. This observation gives
confidence on the reliability of mf approaches to static optical responses, as that
proposed by Tsiper and Soos [25, 62, 63, 64] for the calculation of the linear polar-
izability of clusters of non-polar molecules, and suggests its extension to clusters
of polar molecules, and to the calculation of non-linear susceptibilities.

Sum-over-state (SOS) expressions [35] relate static susceptibilities to optical
excitations. Of course (hyper)polarizabilities obtained as field derivatives of P coin-
cide with SOS results, provided that the calculations refer to the same Hamiltonian.
In this respect it is particularly interesting to discuss the merit of the excitonic
approximation in the calculation of susceptibilities. Our best excitonic approxima-
tion to the Hamiltonian for interacting molecules in Eq. (10) defines the vacuum
states for the excitonic model as the mf gs, i.e. adopts as gs the best uncorrelated
solution of the total Hamiltonian. Therefore exactly the same OGM and mf-OGM
susceptibilities discussed above can be obtained also in the EM approach from the
derivatives or the relevant gs polarization. As a matter of fact mf-OGM results
can also be obtained from a SOS calculation, summing over the excited states
of the cluster described by the mf Hamiltonian in Eq. (15), or, equivalently, by
summing up the SOS susceptibilities calculated for the chromophores in their mf
gs. Instead, susceptibilities obtained by summing over the excited states calculated
in the excitonic approximation (i.e. by diagonalizing Hmf +Hex) are different, and
are reported as dot-dashed lines in Fig. 5. The excitonic susceptibilities improve
over mf-OGM, but badly deviates from exact results. So, accounting for exciton
delocalization, as described in the excitonic picture, partly accounts for the coop-
erative effects in the gs, but EM estimates of linear or non-linear polarizabilities
are not reliable. We notice in particular that the failure of the excitonic model
for polarizabilities is already apparent in regions where the mf approximation to
the same quantities is very good. Our best excitonic model starts with the mf gs
and then fully accounts for the molecular polarizability in the definition of the
local ground and excited states. However, not allowing for the mixing of states
with different number of excitations, it does not allow for the reorganization of the
molecular polarity in response to excitations on nearby sites. So we expect ultraex-
citonic corrections to be particularly large in the definition of excited states with a
large number of excitations and particularly so for polar and polarizable molecules.
Similarly, large ultraexcitonic contributions to linear and non-linear polarizabilities
are understood since the electric field itself mixes up states with a different number
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of excitations and this mixing breaks down the excitonic approximation. In other
terms, reliable estimates of (hyper)polarizabilities of molecular clusters cannot be
obtained within the EM approximation that, not allowing for the mixing of states
with a different number of excitations, does not account for the readjustment of
the charge distribution on the molecular units in response to the applied fields:
(hyper)polarizabilities cannot be reliably described by models that do not properly
account for the molecular (hyper)polarizabilities.

7. EXCITED STATES IN CLUSTERS OF POLAR
AND POLARIZABLE MOLECULES: EXTREME
COLLECTIVE AND COOPERATIVE BEHAVIOR

To better appreciate the merits and limits of EM when applied to clusters of pp chro-
mophores we now discuss in some detail excited states. Fig. 6 shows the complete
set of excitation energies obtained in the exciton approximation (i.e. diagonalizing
Hmf + Hexc). Specifically, for each eigenstate we plot the energy (setting to zero
the gs energy) vs the exciton number, n. In order to avoid overcrowded figures we
report data for clusters with N=6. The same parameters are chosen as in Fig. 5,
but data are reported only for two w values for each cluster, corresponding to
interactions of weak and medium strength (upper and lower panels, respectively):
the insets show the relevant ��w� curves, with the vertical dotted lines marking the
w values of the corresponding parent panels.

Since n is conserved in EM, in all panels of Fig. 6 the excitonic states group
in bands with the same n. The energy spread of the excitonic bands is determined
by the exciton hopping, while the exciton-exciton interactions are responsible for
(de)stabilization of multiexcitonic states. Within each band, states can be labeled
by their wave-vector, k; for example, for clusters A and B, the k = 0 one-exciton
state is at the top of the one-exciton band, while for C clusters it is at the bottom
(see states marked by error bars). As a matter of fact, A and C clusters correspond
to H- and J-aggregates, respectively (cf Fig. 1). B clusters are somehow different:
intermolecular interactions are attractive (as much as in J-aggregates), but there are
two molecules per unit cell and hence two k = 0 states, and out of them only that one
lying at the top of the one-exciton band (corresponding to the antisymmetric state
with respect to the inversion center lying between each couple of chromophores) is
allowed by one photon absorption.

Ultraexcitonic terms in the Hamiltonian mix states with a different number of
excitons: exact excitation energies, reported in Fig. 7, are not perfectly aligned in
bands. For weak interaction (upper panels) deviations from EM are small, and the
exciton number is almost conserved, confirming the validity of EM to describe
low-lying excitations for clusters of weakly interacting molecules. But for larger
interactions (lower panels) the failure of the excitonic approximation becomes
apparent. We underline that increasing intermolecular interactions (increasing w)
has a twofold effect: on one side it increases the absolute value of ultraexcitonic
mixing in Hamiltonian 14, on the other side, for the chosen parameters, it drives the
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Figure 7. The same excitation spectrum as in Fig. 6, but obtained from the diagonalization of the
complete Hamiltonian

molecules towards states with � → 0�5, where the molecules are more polarizable
and hence the EM approximation more dangerous.

Error bars in Figs. 6 and 7 measure for each excited state, the squared transition
dipole moment from the gs and are therefore proportional to the intensity of the
relevant transition (notice that in all panels a single state has appreciable inten-
sity). In EM, the absorption of one photon always populates the zero-wavevector



274 Painelli and Terenziani

one-exciton state, creating just a single exciton. While this stays approximately true
for weak intermolecular interactions (upper panels), EM is completely spoiled for
stronger interactions. In fact data in the lower panels of Fig. 7 show that the absorp-
tion of one photon populates a state having an exciton number sizeably different
from 1. So ultra-excitonic terms in the Hamiltonian breaks the �n = 1 selection
rule for optical transitions. This interesting effect becomes even more important in
attractive lattices where the charge crossover becomes discontinuous, as it will be
shortly discussed below.

While discussing ��w� curves in the previous Section, we anticipated that within
mf bistable behavior is predicted for attractive (B or C) clusters for specific choices
of model parameters. This is shown in Fig. 8 where S-shaped ��w� curves obtained
in mf for a C-cluster clearly indicate the presence of a bistability region, i.e. a
region where for the same w two states with different polarity are both stable
(the states lying in the portion of the ��w� curve with negative slope correspond
to unstable states). Bistability signals the presence of a discontinuous neutral-
zwitterionic interface [91], that closely resembles the well known neutral-ionic
phase transition observed in charge-transfer crystals with a mixed (D-A) stack motif
[11, 92]. Bistability is hardly recognized in the exact ��w� curves, since only stable
states are found by exact diagonalization, neither metastable nor unstable states are
addressed: exact diagonalization always leads to single-valued ��w� curves. Hints
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Figure 8. Exact ground state polarity vs the inverse intermolecular distance for a 16-site C cluster with
v = 2 and z = 1�5 (squares) and 2 (circles). Dashed lines show N = � mf results
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of discontinuity are however easily appreciated in the exact curves in Fig. 8 (squares
and triangles).

The appearance of bistability regions in clusters of pp chromophores is a very
interesting result. It represents the extreme consequence of cooperativity, and has
no counterpart for isolated molecules. Moreover, if we are able to prepare our
material in the close proximity of the bistability region, any tiny variation of external
conditions can easily switch the material between two phases with macroscopically
different properties, a quite appealing phenomenon in view of the possibility to
produce molecular-based switches.

The mf � in Fig. 8 show sizeable deviations from the exact result in the proximity
of the discontinuous crossover: this marks the appearance of correlation of the elec-
tronic motion on different molecules [91, 93]. But before addressing this important
point we concentrate attention on the excitation spectrum near the discontinuous
charge crossover. In Fig. 9 the n-dependence of excitation energies is reported
for a 10-site C cluster with parameters corresponding to a discontinuous neutral-
zwitterionic crossover (as in Fig. 8, z = 1�5). Results are reported for w = 0�69,
corresponding to a neutral gs, just before the abrupt transition to the zwitterionic gs.
For the sake of clarity, only k = 0 eigenstates are reported, with circles and crosses
referring to exact and excitonic results, respectively. Error bars in the figures are
proportional to the squared transition dipole moment from the gs.

Data in Fig. 9 shows that excitonic bands relevant to states with different n
overlap in energy: in these conditions ultra-excitonic terms mix up degenerate
or quasi-degenerate states and are therefore responsible for large deviations from
EM. The exciton number is not even approximately conserved for exact results
in Fig.9, and, what is even more impressive, the energy of excited-states shows a
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Figure 9. The (zero-wavevector) spectrum of a 10 site C-cluster with v = 2, z = 1�5 and w = 0�69.
Excitation energies of zero-wavevector states are reported vs n. Circles and crosses refer to exact and
excitonic eigenstates, respectively. Error bars are proportional to the squared transition dipole moment
from the ground-state
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non- monotonic dependence on n: a state with n ∼ 3�5 has lower energy that several
states with lower n. As a matter of fact, the low-energy n ∼ 3�5 state is the state with
the largest oscillator strength. This means that the absorption of one photon creates
more that 3 excitations at a time, switching more than three molecules from the
local ground to the local excited state. This result completely spoils the excitonic
picture where a single excitation is created upon photon absorption.

To better understand this result we go back to the original basis built from
the �DA� and �D+A−� states and calculate the number of �D+A−� molecules that
are created upon photoexcitation, or, equivalently, the number of electrons that
are transferred from D to A moieties: � = N ��E1��̂�E1�−�G��̂�G�� (negative �
means that electrons are transferred from A− to D+). In EM the absorption of a
photon creates a single excitation, switching a molecule from the local ground to
the local excited state. Then in this approximation � = 1 − 2�, and the number
of transferred electrons upon photoexcitation is always smaller than 1. The upper
panels in Fig. 10 shows the evolution with w of �, calculated for a 16-site C lattice
near to a continuous and a discontinuous neutral to zwitterionic interface (left and
right panels, respectively, cf. bottom panels, where the relevant ��w� curves are
shown). The dotted lines mark the extreme limits of the excitonic approximation for
�, i.e. ��� < 1: no more than a single electron is transferred upon photoexcitation
according to EM. This simple result is spoiled by ultraexcitonic coupling: deviations
are minor near a continuous interface (left panels), but become important near
a discontinuous interface: for the parameters in Fig. 10, up to 6 electrons are
transferred upon absorption of a single photon.
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Figure 10. Upper panels: number of zwitterionic species created upon photoexcitation (�) vs the inverse
interchromophore distance. Dotted lines delimitate the �-region allowed according to the exciton model.
Lower panels: corresponding evolution of the gs polarity. Results are obtained for a 16-site C cluster.
Left panels: v = 1, z = 1; right panels: v = 2, z = 2
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To investigate in greater detail this phenomenon we define the following l-th
order correlation function:

(17) fl =
N∑

i=1

��̂i�̂i+1 · · ·�i+l−1�−
N∑

i=1

��̂i�l

This function exactly vanishes for uncorrelated states, i.e. states that can be defined
as products of local molecular states (as in the mf and EM assumption). Positive
(negative) fl indicates instead an increased (decreased) probability of finding l
nearby zwitterionic molecules with respect to the uncorrelated state at the same
average polarity. Fig. 11 shows the l dependence of fl calculated for the most
optically active state (left panel) and for the gs (right panel) of the same cluster as in
Fig. 9. For the active excited state, a sizeable weight is found of wave functions with
several (say 2 to 6) nearby fully zwitterionic molecules (we will call these wave
functions ‘I-droplets’). This demonstrates that the phenomenon of photoinduced
multielectron transfer corresponds to a concerted motion of electrons on several
nearby molecular sites [93].

But also the gs deviates from the uncorrelated limits, with fl �= 0, in Fig. 11, panel
b), even if, quite predictably, deviations are much smaller than for excited states.
Finite fl near the discontinuous neutral-zwitterionic crossover show that the gs cannot
be described as the product of local molecular states and therefore does not coin-
cide with the mf or excitonic vacuum state: the very same gs is collective in nature
and I-droplet states contribute to the gs. This is the key to understand multielectron
transfer: wave functions with I-droplet character have, in C-clusters, very large perma-
nent dipole moments, so that their finite amplitude in the gs is the origin of sizeable
transition dipole moments towards states characterized by a high I-droplet character.

Discontinuous charge crossovers can also be observed for B clusters, that, much as
C clusters have attractive intermolecular interactions. Multielectron transfer instead
is not observed for B geometry. B and C lattices in fact have different symmetry
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Figure 11. The l dependence of the fl correlation function for a 16-site C-cluster with v = 2, z = 1�5
and w = 0�69. Left and right panels refer to the excited state with the largest transition dipole moment,
and to the gs, respectively. Lines are drawn as guide for eyes
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and hence a qualitatively different spectroscopic behavior. In particular, lattice C
has one molecule per unit cell and all k = 0 state are optically allowed, even if
most of them have negligible intensity. The two molecules per cell in lattice B
are exchanged by reflection, so that only k = 0 antisymmetric states are accessible
by one-photon absorption from the (totally-symmetric) gs. The special low-energy
state with large n is a dark state in B-clusters, but corresponds to the state with the
largest oscillator strength in C-clusters.

The phenomenon of multielectron transfer is an extreme manifestation of coop-
erative and collective behavior. Collective behavior is recognized in the nature of
the state reached upon photoexcitation with large correlation of electrons on several
nearby molecules. But the gs itself near the discontinuous charge crossover is collec-
tive in nature, even if at a lower extent than excited states. The cooperative nature
of multielectron transfer is recognized in the fact that a single-electron operator,
like the transition dipole moment, is responsible for the motion of several electrons.
Cooperative and collective phenomena are strictly connected near a discontinuous
charge crossover where intermolecular interactions have extremely large effects on
the material behavior: cooperativity and collectivity have in our model the very
same origin. Indeed electrostatic intermolecular interactions dominate the physics
of the material at the discontinuous charge crossover: they are responsible for the
appearance of bistability, the extreme manifestation of cooperative behavior, as
well as for excitonic and ultraexcitonic mixing of states with the same and different
exciton number, and hence for nontrivial collective behavior.

8. CONCLUSIONS

Molecular functional materials, and specifically mm for NLO applications, are based
on large �-conjugated molecules whose large (hyper)polarizability is responsible
for the qualifying properties of the material itself, but, at the same time, makes our
understanding of the material properties quite difficult. Non-trivial collective and
cooperative behavior in materials based on large conjugated dyes were predicted 40
years ago [7] and have been discussed at different level of sophistication in different
approaches ranging from the crude OGM [16, 17], to the mean field approximation
for the calculation of polarization and polarizability [25], to the excitonic model for
optical spectra [18]. Sophisticated quantum chemical calculations on supermolecular
structures also shed some light on the complex role of intermolecular interactions
in mm [44], but these calculations are computationally too demanding to allow for
a wide statistics. Moreover the underlying models are very complex and extracting
a coherent picture from the resulting data is a very hard task.

We follow a different, complementary strategy based on the definition of
extremely simple (toy) models for the material where only few interactions are
accounted for. Toy models are easily diagonalized on large systems, and an enor-
mous amount of calculations can be performed testing different parameters regimes
at an irrelevant fraction of the computational power required by quantum chemical
calculations. This opens the way to appreciate the role of different interactions



Collective and Cooperative Phenomena in Molecular Materials 279

and to test approximation schemes, leading, in favorable cases to a clear physical
picture of the phenomena of interest. Of course toy models lack the accuracy of
more refined models, and, being semiempirical in nature, must rely on an extensive
validation against experimental data.

In this contribution we discuss mm based on pp chromophores, a very inter-
esting class of molecules for applications in molecular photonics and electronics.
Push-pull chromophores are both polar and polarizable and this makes the role
of intermolecular interactions particularly important. The toy model we propose
for clusters of pp chromophores neglects intermolecular overlap, just accounting
for classical electrostatic intermolecular interactions, and describes each pp chro-
mophore based on a two state model. The two-state model for pp chromophores has
been discussed and validated via an extensive comparison with the spectroscopic
properties of several dyes in solution [74, 75, 90]. The emerging picture is safe and
led to the definition of a reliable set of molecular parameters for selected dyes. This
analysis then offers valuable information to be inserted into models for clusters
of interacting chromophores, in a the bottom-up modeling strategy that was nicely
exemplified in Ref. [90].

Whereas in this paper we focus attention on mm based on pp chromophores,
some fundamental concepts emerge from the discussion with wider applicability. In
Section 5 we defined the best EM for the working Hamiltonian as the EM that has
the same gs, and the same local excitations as obtained in the mf approximation.
The relation between the mf and the excitonic approach is indeed fundamental.
In EM excitations are created on top of an uncorrelated gs: the mf solution then
gives the best gs for the excitonic calculation. The definition of the local states for
the excitonic problem as the eigenstates of the local mf Hamiltonian unambigu-
ously defines the excitonic and ultraexcitonic Hamiltonian for any supramolecular
arrangement, based on the adopted model for the isolated molecule. Uncovering a
direct link from the molecular to the supramolecular description gives an impor-
tant contribution to our understanding of mm, and is a fundamental step to devise
approaches to guide the chemical synthesis of functional mm from the molecular
to the supramolecular level. The mf description of mm can be set up for different
kinds of molecules described at different level of sophistication and is therefore of
general applicability.

The reliability of mf approximation for the calculation of static linear and non-
linear susceptibilities is another important result that is expected to hold for mm
with negligible intermolecular overlap and not too near to charge instabilities (i.e.
to phase transitions or to precursor of phase transitions in finite size systems).
This is related to the uncorrelated nature of the gs in these materials, that is fairly
well captured within mf. On the opposite, EM does not properly account for the
molecular polarizability: it can possibly describe low-lying excited states in clusters
of weakly interacting and hardly polarizable molecules, but it is for sure inadequate
to calculate linear and non-linear susceptibilities for mm of interest for applications.

As for clusters of pp chromophores we have shown that classical electrostatic
intermolecular interactions lead to the appearance of new phenomena that widely
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extend the scope of applications of mm. The possibility to tune the polarity of
the molecule by simply affecting the geometry of the cluster adds new value to
the supramolecular engineering of mm. To fully exploit the potential of mm, we
must however extend our knowledge of structure properties relationships from the
molecular to the supramolecular level. The discontinuous charge crossover and the
related bistable regime open the possibility of molecular-based switches that can be
driven by applying pressure or stresses to the sample. The observation of multielec-
tron transfer suggests on one side the possibility of photoinduced transformations
that were indeed observed [94] in related materials like CT salts with a mixed stack
motif. On the other side, the possibility to move several electrons upon absorption
of a single photon opens new perspectives for efficient photoconversion devices.
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CHAPTER 8

MULTICONFIGURATIONAL SELF-CONSISTENT
FIELD-MOLECULAR MECHANICS RESPONSE
METHODS

KURT V. MIKKELSEN
Danish Center for Scientific Computing, Department of Chemistry, University of Copenhagen,
DK-2100 Copenhagen Ø, Denmark

Abstract: The fundamental aspects of response theory for the multiconfigurational self-consistent
field electronic structure method coupled to molecular mechanics force fields are outlined.
An overwiew of the theoretical developments presented in the work by Poulsen et al. is
given. Poulsen et al. have developed multiconfigurational self-consistent field molecular
mechanics (MCSCF/MM) response methods to include third order molecular properties
and these approaches are discussed

Keywords: Multiconfigurational self-consistent field molecular mechanics response methods,
MCSCF/MM energies, MCSCF/MM response properties to third order

1. INTRODUCTION

The present contribution concerns an outline of the response theory for the multicon-
figurational self-consistent field electronic structure method coupled to molecular
mechanics force fields and it gives an overview of the theoretical developments
presented in the work by Poulsen et al. [7, 8, 9]. The multiconfigurational self-
consistent field molecular mechanics (MCSCF/MM) response method has been
developed to include third order molecular properties [7, 8, 9]. This contribu-
tion contains a section that describes the establisment of the energy functional for
the situation where a multiconfigurational self-consistent field electronic structure
method is coupled to a classical molecular mechanics field. The second section
provides the necessary background for forming the fundamental equations within
response theory. The third and fourth sections present the linear and quadratic,
respectively, response equations for the MCSCF/MM response method. The fifth
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section gives a short overview of the results obtained by the MCSCF/MM response
method. A conclusion is given in the final section.

2. ENERGY FUNCTIONAL

The starting point for the MCSCF/MM response method is the Hamiltonian for
the total system containing both the quantum mechanical and the classical system
and it is given by the sum of three terms: the Hamiltonian of the quantum
mechanical system in vacuum �ĤQM�, the Hamiltonian, represented as a force
field, for the classical system �ĤMM� and the interactions between the quantum
mechanical and the classical system �ĤQM/MM�. This is written as

(1) Ĥ = ĤQM + ĤQM/MM + ĤMM

The interaction operator between the classical and quantum mechanical subsystems
is given by three terms: (i) the electrostatic interactions �Ĥel�, (ii) the polarization
interactions �Ĥpol� and (iii) the van der Waals interactions �Ĥvdw�

(2) ĤQM/MM = Ĥel + Ĥvdw + Ĥpol

In the following equations, the indices i and m run over all the electrons and nuclei,
respectively, in the quantum mechanical subsystem and s runs over all the sites in
the classical subsystem. The coordinates corresponding to particles and sites are
denoted r̄i, R̄m, and R̄s, respectively.

The electrostatic term is given by

(3) Ĥel = −
S∑

s=1

N∑

i=1

qs

�r̄i − R̄s�
+

S∑

s=1

M∑

m=1

qsZm

�R̄s − R̄m�
The polarization interaction term between the quantum and classical subsystems

is given by

Ĥpol = 1
2

N∑

i=1

A∑

a=1

�̄ind
a · �R̄a − r̄i�

�R̄a − r̄i�3
(4)

− 1
2

M∑

m=1

A∑

a=1

Zm�̄ind
a · �R̄a − R̄m�

�R̄a − R̄m�3

and the index a runs over polarization sites. The induced dipole moment ��̄ind
a � is

proportional to the total electric field and it is given by

(5) �̄ind
a = �

(�Ee�R̄a�+ �Em�R̄a�+ �Es�R̄a�+ �Eind�R̄a�
)

where the isotropic polarizability at the polarization site is given by �. The electric
fields are due to the electric field associated with (i) the electrons in the quantum
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mechanical subsystem, (ii) the nuclei in the quantum mechanical subsystem with
the charges Zm, (iii) the charges, qs, in the classical subsystem and (iv) the induced
dipole moments within the classical subsystem.

The van der Waal term Ĥvdw is written as

Ĥvdw =
A∑

a=1

∑

m�center

4�ma

[(
�ma

�R̄m − R̄a�
)12

−
(

�ma

�R̄m − R̄a�
)6
]

(6)

=
A∑

a=1

∑

m�center

[
Ama

�R̄m − R̄a�12
− Bma

�R̄m − R̄a�6
]

with Ama = 4�ma�
12
ma and Bma = 4�ma�

6
ma. Note that the indices i and m run over all

the electrons and nuclei within the quantum mechanical subsystem and the index
s runs over all the interaction sites within the classical subsystem.

The total QM/MM energy is given by

EQM/MM = Eel +Epol +Evdw(7)

= ÕAs′
mm′ −

S∑

s=1

�Ns�− 1
2

�
A∑

a=1

�Rra�
{�Rra�+ ŌaS′

mm′
}

+ Evdw +Eel	nuc
S	M︸ ︷︷ ︸

independ. of elec.

with the following definition for ŌaS′
mm′

ŌaS′
mm′ = 2

M∑

m=1

Zm�R̄a − R̄m�

�R̄a − R̄m�3 +∑

s′ �∈a

qs′�R̄a − R̄s′�

�R̄a − R̄s′ �3(8)

+ ∑

a′ �=a

{
3��̄ind

a′ · �R̄a − R̄a′���R̄a − R̄a′�

�R̄a − R̄a′ �5 − �̄ind
a′

�R̄a − R̄a′ �3
}

and for ÕAs′
mm′

ÕAs′
mm′ = 1

2
�

M∑

m=1

A∑

a=1

−Zm

�R̄a − R̄m�

�R̄a − R̄m�3(9)

·
[

M∑

m′=1

Zm′
�R̄a − R̄m′�

�R̄a − R̄m′ �3 +∑

s′ �∈a

qs′
�R̄a − R̄s′�

�R̄a − R̄s′ �3

+ ∑

a′ �=a

{
3��̄ind

a′ · �R̄a − R̄a′���R̄a − R̄a′�

�R̄a − R̄a′ �5 − �̄ind
a′

�R̄a − R̄a′ �3
}]
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Furthermore, the terms involving Rra are defined by

(10) Rra =∑

pq

ta
pqEpq

and

(11) �Rra� = �0�Rra�0�
�0�0� =∑

pq

Dpqt
a
pq

where

(12) ta
pq = �
p�

r̄i − R̄a

�r̄i − R̄a�3
�
q�

and the terms involving Ns are given by

Ns =∑

pq

ns
pqEpq(13)

�Ns� =∑

pq

Dpqn
s
pq(14)

where

(15) ns
pq = �
p

∣
∣
∣
∣

qs

�R̄s − r̄i�
∣
∣
∣
∣
q�

Finally, the term describing the nuclear part of the electrostatic interaction is
given by

(16) Eel	nuc
S	M =

S∑

s=1

M∑

m=1

qsZm

�R̄m − R̄s�

3. THE MCSCF WAVEFUNCTION

The total electronic free energy for the QM/MM model is given by

(17) �QM/MM��� = �vac���+�QM/MM���

where electronic wave function is presented by the parameters �. In the case of a
MCSCF electronic wave function we have that

(18) �0� = exp

[
∑

r>s

�sr�Esr −Ers�

]
∑

i

ci�i�
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where the � parameters are represented by a combined set of orbital ��� and
configurational �ci� parameters. The function �i� denotes the set of configuration
state functions (CSFs).

Utilizing the above expression for the electronic wave function, the energy func-
tional is expanded to second order in the non-redundant electronic parameters
�, ��k� where k indicates the current iteration.

���2���−��k����k�� = ��2���−��k����k��−����k��(19)

= gT ��−��k��+ 1
2

��−��k��T H��−��k��

The QM/MM energy in Eq. (7) gives rise to the following gradient contribution

(20)
�EQM/MM

��i

= −
S∑

s=1

��Ns�
��i

−�
A∑

a=1

��Rra�
��i

{

�Rra�+ 1
2

ŌaS′
mm′

}

and it is convenient to introduce the following operator

(21) Tg =
S∑

s=1

�−Ns�−�
A∑

a=1

{

�Rra�+ 1
2

ŌaS′
mm′

}

Rra

Thereby, the configuration part of the gradient is given by

�EQM/MM

�c�

=
S∑

s=1

(

−��Ns�
�c�

)

−�
A∑

a=1

��Rra�
�c�

{

�Rra�+ 1
2

ŌaS′
mm′

}

(22)

= 2
[���Tg�0�−�0�Tg�0�c�

]

and the orbital part of the gradient is given by

�EQM/MM

��pq

=
S∑

s=1

(

−��Ns�
��pq

)

−�
A∑

a=1

��Rra�
��pq

{

�Rra�+ 1
2

ŌaS′
mm′

}

(23)

= 2�0��Epq	 T g��0�

The Hessian contribution to the energy functional, �
�k�
i , is determined by a linear

transformation algorithm utilizing trial vectors b�k�

(24) �
�k�
i =∑

j

�2E

��j��i

b�k�
i
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The following relates to a CSF trial vector,

�
c	QM/MM
j =∑

�

�2EQM/MM

�c���j

b�c�(25)

= −
S∑

s=1

∑

�

�2�Ns�
�c���j

b�c�
�

−�
A∑

a=1

{

�Rra�+ 1
2

ŌaS′
mm′

}
∑

�

�2�Rra�
�c���j

b�c�
�

−�
A∑

a=1

��Rra�
��j

∑

�

��Rra�
�c�

b�c�
�

This gives the following compact expressions

�c	QM/MM
� = 2

[���Tg�B�−�0�Tg�0�b�c�
�

]
(26)

+2
[���Txc�0�−�0�Txc�0�c�

]

and

(27) �c	QM/MM
pq = 2

[�0��Epq	 T g��B�+�0��Epq	 T xc��B�]

having the operator, Txc defined as

(28) Txc = −2�
A∑

a=1

�0�Rra�B	 �Rra

and

(29) �B� =∑

�

b�c�
� ���

An orbital trial vector leads to the following results

�
o	QM/MM
j =∑

pq

�2EQM/MM

��j��pq

b�o�
pq(30)

=−
S∑

s=1

∑

pq

�2�Ns�
��j��pq

b�o�
pq

−�
A∑

a=1

{

�Rra�+ 1
2

ŌaS′
mm′

}
∑

pq

�2�Rra�
��j��pq

b�o�
pq

−�
A∑

a=1

��Rra�
��j

∑

pq

��Rra�
��pq

b�o�
pq



Multiconfigurational Self-Consistent Field-Molecular Mechanics 289

with the effective expressions given as

(31) �
o	QM/MM
j = 2���Tyo�0�+2

[���Txo�0�−�0�Txo�0�c�

]

and

�o	QM/MM
pq = 2�0��Epq	 T yo��0�+2�0��Epq	 T xo��0�(32)

+∑
t

(�0��Etq	 T g��0�bpt −�0��Etp	 T g��0�bqt

)

Here, the effective operators Tyo and Txo are defined as

(33) Tyo =
S∑

s=1

�−V s�−�
A∑

a=1

{

�Rra�+ 1
2

ŌaS′
mm′

}

Qa

and

(34) Txo = −�
A∑

a=1

�0�Qa�0�Rra

The terms V s and Qa are defined as

(35) V s =∑

pq

V s
pqEpq

with

(36) V s
pq =∑

r

[
�prn

s
rq −ns

pr�rq

]

and

(37) Qa =∑

pq

Qa
pqEpq

with

(38) Qa
pq =∑

r

[
�prt

a
rq − ta

pr�rq

]

The procedure for optimization of the MCSCF/MM wave function is similar to
that seen for the vacuum [2, 3] and reaction field [4, 5] approaches within MCSCF
wave functions.
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4. RESPONSE EQUATIONS

In order to determine time-dependent molecular properties utilizing the
MCSCF/MM approach it is necessary to consider the time evolution of the appro-
priate operators and this is done by applying the Ehrenfest’s equation for the
evolution of an expectation value of an operator, X

(39)
d

dt
�X� = ��X

�t
�− i��X	H��

and the Hamiltonian for the quantum mechanical subsystem is given by

(40) H = H0 +WQM/MM +V�t�

Here, a state �0� is perturbed by an external field represented by the perturbation
operator V�t� that describes the interactions between the quantum subsystem and
the external field. The Hamiltonian H0 describes the isolated quantum mechanical
subsystem and WQM/MM denotes the interaction operator describing the interactions
between the quantum mechanical and the classical mechanical subsystems.

The expectation values are determined from the time-dependent wave
function �0t�

(41) �� � �� = �t0� � � � �0t�

The external interactions between the quantum mechanical subsystem and the
external field are expressed through the interaction operator in the frequency domain

(42) V�t� =
∫ 	

−	
d�V �exp�−�i�+��t�

Here � is a positive infinitesimal number that ensures the proper boundary condi-
tions V�t → −	� = 0. The term V � is the Fourier transform of V�t�.

We obtain the reference state, �0� as a solution to the following Hamiltonian

(43) �H0 +WQM/MM��0� = E0�0�

where [6]

(44) WQM/MM = Evdw +Eel	nuc
S	M + ÕAs′

mm′ +Tg

The operator Tg is defined as

(45) Tg =
S∑

s=1

�−Ns�−�
A∑

a=1

��Rra�+ 1
2

ŌaS′
mm′�Rra
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In order to determine the time-evolution of expectation values it is crucial to
know the time-evolution of time-transformed operators T†	t. The time-transformed
operators are defined as

(46) T†	t =

⎛

⎜
⎜
⎝

qt

Rt

q†	t

R†	t

⎞

⎟
⎟
⎠

where qt
k = exp�i��t��qkexp�−i��t�� and Rt

n = exp�i��t��exp�iS�t��Rnexp�−iS�t��
exp�−i��t��. We have the following for the orbital excitation operators

(47) q†
k = Epq ≡ a†

p�aq� +a†
p�aq� p > q

We represent the state transfer operators as

(48) R†
n = �n >< 0�

The next step utilizes the time transformed operators and the Ehrenfest’s equation
where the object of the game is to establish building blocks for how the time
transformed operators are changed due to the external perturbation.

d

dt
�T†	t� = ��T†	t

�t
�− i��T†	t	H0��(49)

− i��T†	t	 V�t���− i��T†	t	WQM/MM��

Our present interest is on the added contributions due to the QM/MM term

−i��T†	t	WQM/MM�� = −i��T†	t	 T g��(50)

= G
�a�
QM/MM +G

�b�
QM/MM +G

�c�
QM/MM

where

G
�a�
QM/MM = −i�−��

∑

a	pq	p′q′
ta
pq�t0� [T†	t	 Epq

] �0t�ta
p′q′ �t0�Ep′q′ �0t�(51)

G
�b�
QM/MM = −i�−1

2
��
∑

a	pq

ŌaS′
mm′ �t0� [T†	t	 Epq

] �0t�ta
pq(52)

G
�c�
QM/MM = −i�−∑

s	pq

�t0� [T†	t	 Epq

] �0t�ns
pq�(53)

The two terms denoted G
�a�
QM/MM and G

�b�
QM/MM represent the polarization interac-

tions between the two subsystems, and the term G
�c�
QM/MM gives the electrostatic

interactions between the quantum mechanical and the classical subsystems.
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The incorporation of the time evolution of the electronic wave function is taken
care of by the following parameterization

(54) �0t� = exp�i��t��exp�iS�t���0�
The two unitary operators exp�i��t�� and exp�iS�t�� ensure that one is able to
perform unitary transformations in the orbital and configuration space, respectively.

4.1 Linear Response Equations

Here, the implication of the three terms on the structure of the linear response
equations will be considered and for the first term G

�a�
QM/MM we will illustrate the

modifications related to the operator qt
k = exp�i��t��qkexp�−i��t��

G
�a�
QM/MM = −i�−��

∑

a	pq	p′q′
ta
pqt

a
p′q′ �0�exp�−iS�t��exp�−i��t��(55)

× [exp�i��t��qkexp�−i��t��	 Epq

]
exp�i��t��exp�iS�t���0�

×�0�exp�−i��t��exp�−iS�t��Ep′q′ exp�i��t��exp�iS�t���0�
At this point it is convenient to introduce the following states

�0R� = −∑
n

SnR
†
n�0� = −∑

n

Sn�n�(56)

�0L� =∑

n

�0��S ′
nR

†
n� =∑

n

S′
n�n�

and in the case of linear response theory we consider terms linear in S�t� and ��t�,
and therefore we write G

�a�
QM/MM as

G
�a�
QM/MM =−�

∑

a	pq	p′q′
ta
p′q′���0��qk	 Epq��0R�+�0L��qk	 Epq��0��ta

pq(57)

+Qa
pq�0��qk	 Epq��0���0�Ep′q′ �0�

−�
∑

a	pq	p′q′
ta
pq���0�Ep′q′ �0R�+�0L�Ep′q′ �0��ta

p′q′

+Qa
p′q′ �0�Ep′q′ �0���0��qk	 Epq��0�

where we have used the one-index transformed integrals defined as

Qa
pq =∑

r

[
�prt

a
rq − ta

pr�rq

]
(58)

Qa =∑

pq

Qa
pqEpq(59)

where Qa
pq�Q

a� is the index tranformed integral.
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Similarly we find for the two other terms G
�b�
QM/MM and G

�c�
QM/MM when inserting

the operator qt
k

G
�b�
QM/MM = −1

2
�
∑

a	pq

ŌaS′
mm′���0��qk	 Epq��0R�(60)

+�0L��qk	 Epq��0��ta
pq +Qa

pq�0��qk	 Epq��0��

and

G
�c�
QM/MM = −∑

s	pq

���0��qk	 Epq��0R�+�0L��qk	 Epq��0��ns
pq(61)

+V s
pq�0��qk	 Epq��0��

For a compact and effective representation we use the following effective operators,
Tg (Eq. 45), Txc, Txo, and Tyo. They are given by

Txc = −�
A∑

a=1

{�0�Rra�0R�+�0L�Rra�0�}Rra(62)

Txo = −�
A∑

a=1

�0�Qa�0�Rra(63)

Tyo =
S∑

s=1

�−V s�−�
A∑

a=1

{

�Rra�+ 1
2

ŌaS′
mm′

}

Qa(64)

Having these effective operators we are able to rewrite the three terms G
�a�
QM/MM ,

G
�b�
QM/MM , and G

�c�
QM/MM and we obtain

W �2��qk� = −i��qk	WQM/MM�� =−�0L��qk	T g��0�−�0��qk	T g��0R�(65)

−�0��qk	T xc��0�
−�0��qk	T yo +Txo��0�

The same can be done for the three other time-transformed operators q†	t
k , Rt

n, and
R†	t

n . For the time-transformed operators involving the state transfer operators Rt
n

we obtain

W �2��Rn� = −i��Rn	WQM/MM�� =−�n�Tg�0R�−�0�Tg�0�Sn�t�(66)

−�n�Txc�0�
−�n�Tyo +Txo�0�



294 Mikkelsen

Finally, we are able to write the MCSCF/MM contributions to the linear response
function as

W
�2�

j�k�N
1 = −

⎛

⎜
⎜
⎝

�0��qj	W��01R�+�01L��qj	W��0�
�j�W �01R�

�0��q†
j 	W��01R�+�01L��q†

j 	W��0�
�01L�W �j�

⎞

⎟
⎟
⎠(67)

−

⎛

⎜
⎜
⎝

�0��qj	W�1��+2A1��0�
�j�W�1��+2A1�0�

�0��q†
j 	W�1��+2A1��0�

−�0�W�1��+2A1�j�

⎞

⎟
⎟
⎠−�0�W �0�

⎛

⎜
⎜
⎝

0
1Sj

0
1S′

j

⎞

⎟
⎟
⎠

and here a new set of effective operators has been defined

T = −�
A∑

a=1

�0�Rra�0�Rra(68)

W = T − 1
2

�
A∑

a=1

ŌaS′
mm′ −

S∑

s=1

Ns = Tg(69)

2A1 = −�
A∑

a=1

{�0�Rra�
1���0�+�01L�Rra�0�+�0�Rra�01R�}Rra(70)

4.2 Quadratic Response Equations

This subsection presents the modification of the response equations when consid-
ering the quadratic response equations for calculating third order time-dependent
molecular properties.

As in the case of the linear response a set of convenient and effective operators
is introduced and the operators are given by

T = −�
A∑

a=1

�0�Rra�0�Rra(71)

W = T − 1
2

�
A∑

a=1

ŌaS′
mm′ −

S∑

s=1

Ns(72)

2A1 = −�
A∑

a=1

{�0�Rra�
1���0�+�01L�Rra�0�+�0�Rra�01R�}Rra(73)

and

2A12 =−�
A∑

a=1

��0�Rra�
1�	 2���0�(74)

+2��01L�Rra�
2���0�+�0�Rra�
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Having these definitions we are able to write the QM/MM contributions to the
quadratic response equations as

(
W

�3�
jl1l2

+W
�3�
jl2l1

)1
Nl1

2Nl2
(75)

= 1
2
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⎟
⎟
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⎠

The physical significance of the terms involving the T , Ai, Aij operators is related to
the solvent polarization interactions. The interactions between the effective charges
of the solvent and the solute’s electronic charge distribution is denoted W .

The similarities between the coupling to a molecular mechanics field or to a
dielectric medium are obvious when investigating the derivation of Eq. (75) and
the derivation presented in [10]. It is also clear that Eq. (75) has the same structure
as the response equations for the molecule in vacuum [1] and the only changes
due to the QM/MM interaction are represented by the effective QM/MM operators.
Therefore, the implementation of this QM/MM response method into an existing
response program requires changes of existing subroutines for calculating W [3]
in Eq. (75). The implementation of these MCSCF/MM response equations enables
investigation of linear and nonlinear molecular properties within the MCSCF/MM
model. The actual use of computational resouces of the MCSCF/MM calculations
is comparable to that of an ordinary MCSCF vacuum calculations. The extra work
requires an extra storage and retrieval of one-electron integrals.
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5. APPLICATIONS OF THE MCSCF/MM RESPONSE METHOD

This section contains a short overview of the results of the applications presented
in the work by Poulsen et al., [7, 8, 9]. This work represents the utilization of
the multiconfigurational self-consistent field molecular mechanics (MCSCF/MM)
response method to calculate molecular properties up to the level of third order
molecular properties [7, 8, 9]. Having a MCSCF/MM response method enables
investigations of solvation energies and potential energy surfaces with higher accu-
racy compared to uncorrelated electronic structure methods or density functional
methods. The advantages of the MCSCF/MM approach are related to its flexibility
for investigating general systems and states such as excited and ionized states that
are not described well by single determinant wave functions or semi-empirical
density functional methods. Initially, the method has been utilized for the solvation
of water and how solvent effects affect the molecular properties of water. The
QM/MM system is given by a sample of 128 H2O molecules and one of these is
selected as the quantum mechanical subsystem and the other 127 H2O molecules
represent the classical subsystem.

The calculations of ground state energies have shown that the method provides
good agreement with the experimental values of the solvation enthalpy and the
solvation energy of water. Furthermore, we have seen that the polarization term from
Eq. (2) contributes ∼ 20-25% of the total QM/MM energy for the ground state. This
is a term that is often neglected but from our applications it plays a crucial part in
understanding solvent effects and solvation. In the case of excited and ionized states,
we find that the polarization term is of larger importance having a contribution
that is about five times larger than that seen in the ground state. For these cases,
the magnitude of the polarization term is about the same as the magnitude for the
electrostatic term. Generally, we find that the contribution to the total energy due
to the QM/MM interactions is much larger in the excited and ionized state than in
the ground state. Finally, the values for the solvent binding energy shift obtained
using the QM/MM approach are in excellent agreement with experiment. For the
induced dipole moment we have obtained using the MCSCF/MM model a value of
around 0.8 D which is in good agreement with the experimental data.

The MCSCF/MM calculations of electronic excitation processes considered the
transitions to the first and second electronically excited states of H2O. Compared
to the dielectric continuum model, we have observed that the excitation energies
obtained using the QM/MM model are uniformly equal to or larger than those
obtained using the continuum model. The solvent shifts of the excitation ener-
gies are in good agreement with experimental results. Additionally, we observed
that the polarization terms contribute significantly. The transition moments are
enhanced when going from a gas-phase representation to a QM/MM model and the
calculations of transition moments clearly illutrates how the solvent perturbs the
electronic transitions substantially and especially forbidden transitions. This aspect
is not treated correctly by the continuum models due to the lack of intermolecular
descriptions of short-range interactions.
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The polarizabilities calculated using the MCSCF/MM response method show that
the polarizabilities increase with frequency in the same way as the corresponding
gas-phase results and in general the MCSCF/MM values are about 10% larger
than the corresponding HF/MM values. For the anisotropies, we observe that the
MCSCF/MM results and the dielectric continuum results are similar in magnitude.

The MCSCF/MM quadratic response functions give the hyperpolarizability tensor
and the two-photon absorption cross sections. The latter is given by the residues of
the quadratic response functions. Generally, all the individual tensor components
are shifted substantially compared to the results from a corresponding vacuum
calculation. The MCSCF/MM qudaratic response calculations lead to a sign change
in the average value of the hyperpolarizability which is also observed experimen-
tally. Quadratic response calculation within the MCSCF/MM approach without the
polarization interactions gives significantly smaller values for the average hyper-
polarizability which illustrates the importance of including the polarization terms
in the QM/MM model. The two-photon absorption cross section are also strongly
perturbed by the presence of the solvent and in some cases enhance the transitions
significantly in the case of forbidden transitions. The results from the MCSCF/MM
model compare very well with the available experimental data on two-photon cross
sections of liquid water.

6. SUMMARY

The main purpose of this presentation has been to give an overview of the theo-
retical developments concerning MCSCF/MM response theory. The overview has
presented the necessary contributions arising from the coupling to the classical
molecular mechanics field for performing calculations of zeroth, first, second and
third order molecular properties within the multiconfigurational response frame-
work. The focus has been on methodology development of MCSCF/MM response
theory. The MSCSF/MM method is a rather promising method not only for studying
ground state solvent effects, but also excited and ionized states, calculations of
frequency-dependent linear and nonlinear polarizabilities, transition moments, and
vertical excitation energies. The MCSCF/MM response method is a recent molecular
response method for obtaining frequency-dependent molecular properties for a
solute perturbed by solvent interactions. This is achieved by treating the solute on
a quantum mechanical level and the solvent is described by a molecular mechanics
force field. The coupling between the two parts is included directly in the optimized
wave function.
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CHAPTER 9

SOLVATOCHROMISM AND NONLINEAR OPTICAL
PROPERTIES OF DONOR-ACCEPTOR �-CONJUGATED
MOLECULES
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Wyspiańskiego 27, 50-370 Wrocław, Poland, e-mail: wojciech.bartkowiak@pwr.wroc.pl;
bartkowiak@kchk.ch.pwr.wroc.pl

Abstract: We review the theoretical approaches based on the perturbation theory, namely few-states
approximations. These approaches are extensively used in the description of the solvent
effects on nonlinear response of molecular systems. The connection between the nonlinear
optical response and solvatochromic behavior of the donor-acceptor �-conjugated
molecules is considered. The general relations between molecular (hyper)polarizabilities
and two-photon absorption for the positively and negatively solvatochromic compounds
are presented

Keywords: solvatochromism, solvent effect, intramolecular charge-transfer (CT), hyperpolarizabili-
ties, two-photon absorption, nonlinear optical properties

1. INTRODUCTION

In this contribution we review the connection between the nonlinear optical
(NLO) response and the solvatochromic behavior of the important class of organic
molecules, namely donor-acceptor �-conjugated compounds (D-�-A). In these
compounds, also called push-pull chromophores, an electron-donating group D is
conjugated to an electron-acceptor substituent A through a system of the local-
ized �-bonds (Scheme 1). It is well established that such compounds exhibit the
following properties [1–7]:
• large ground state dipole moment,
• an intense low-lying �� → �∗� transition in the UV-Vis spectral region which

is assigned to the intramolecular charge-transfer (CT) occurring along the
molecule axis,
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• large values of the molecular first-order electronic hyperpolarizabilities (�) in
comparison with other non-centrosymmetric organic molecules.

D A

Scheme 1

π

It should be noticed that the lowest CT excited state is found to dominate both
linear and nonlinear optical responses of the D-�-A chromophores [3–7]. The
term ‘CT excited state’ denotes the photoinduced Franck-Condon electronic excited
state which differs significantly from the ground electronic state. This difference
is mainly connected with a large change of the permanent dipole moment of the
D-�-A molecule during the electronic excitation. The perturbative approach may
be used to studying the response of the chromophores of the D-�-A type to external
electric field. The simplification of the perturbative expressions for molecular
(hyper)polarizabilities gives an insight into the relation between the spectroscopic
parameters and nonlinear optical properties of considered molecular systems [8–13].
The approximate sum-over-states expression for the two-level system was proposed
by Oudar and Chemla [8]. On the basis of the few-states approximations one
can express the NLO properties in terms of the transition moments (or oscillator
strengths), the excitation energies, and the dipole moments differences. The few-
states approximations may be very useful in the design of chromophores with large
NLO response [3–13].

The theoretical and experimental works clearly shows that the environment plays
a remarkable role in the considerations of the first- (�) and the second-order
hyperpolarizabilities (�) of the D-�-A type chromophores [14–45]. Not only the
magnitudes of � and �, but also the signs of these properties can be affected by
change of the solvent polarity. On the other hand, the linear polarizability (�) is
less affected by the solvent than the higher order polarizabilities, namely � and �.

The development of the theoretical models and computational methods, which
can accurately account for the solvent effects on the NLO properties of molecular
systems is one of the largest challenges in the contemporary quantum chemistry.
The important conceptional and computational difficulty arises from the fact that the
nature of the solute-solvent interaction in the condensed phase is extremely compli-
cated. In modern quantum chemistry the solute-solvent interactions are modeled
by a number of different approaches that can be divided into three main groups:
supermolecular approximations, discrete simulations and continuum models.

Most of the proposed models are based on the classical electrostatic description.
For the detailed study of these models we refer readers to monographs, reviews
and original papers [27, 30, 31, 33, 40, 46–58]. Numerous theoretical works have
also been conducted to understand the relation between the micro- and macroscopic
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optical properties [50, 51, 59–63]. The methodology developed on this field plays
a key role in a direct comparison between the calculated and experimental values
for �, �, and � as well as for the macroscopic susceptibilities.

This article is devoted to the methodology of predicting the direction of the
changes of molecular (hyper)polarizabilities values as a function of the solvent
polarity. Since the environmental effect on the two-photon absorption (TPA) is
still poorly understood, we will consider the two-level approximation to describe
the influence of the solvent effects on TPA from the ground to the CT excited
state of the D-�-A type chromophores. Only electronic contributions will be taken
into account. In contrast to the TPA process, the substantial progress in theoretical
description of the solvent influence on the vibrational (hyper)polarizabilities has
been observed recently [64–67].

2. SOLVATOCHROMISM PHENOMENON

The term ‘solvatochromism’ is used to describe the change of position, intensity and
shape of the UV-Vis absorption band of the chromophore in solvents of different
polarity [1, 2]. This phenomenon can be explained on the basis of the theory of
intermolecular solute-solvent interactions in the ground �g� and the Franck-Condon
excited state �e�. We will consider only the effect of the solute-solvent interaction
on the electronic absorption and nonlinear optical response of a dilute solution of
the solute. This way we avoid the explicit discussion of the solute-solute interaction,
which significantly obscures the picture of the solvatochromism phenomenon.

It should be noticed that, in many theoretical works, the term ‘solvent polarity’
is defined by the values of the relative electric permittivity, �r , also called dielec-
tric constant. However, such a definition is by no means precise. The existence
of hydrogen bonds (H-bonds) between solute and solvent molecules is one of the
important limitations of the use of the continuum models based on the theory
of dielectrics. In modern physical chemistry of solutions in order to quantita-
tively describe the solvatochromism phenomenon various empirical scales of the
polarity are used. The exhaustive reviews on this topic have been presented by
Reichardt [1, 2].

According to the work of Li, Cramer and Truhlar, the solvatochromic shift of the
maximum absorption band (	
) can be divided into the following contributions [68]:

(1) 	
 = 	
E +	
D +	
H

where 	
E is the pure electrostatic contribution, 	
D denotes the dispersion contri-
bution and 	
H is connected with the short-range specific interaction between the
solvent and solute, e.g., hydrogen bonding. The deeper insight into the nature of the
above contributions is crucial for the better understanding of the relations between
NLO response and the solvatochromism. Hence, the more detailed analysis will be
presented here.
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2.1 The Electrostatic Contribution

The electronic transition from the ground state to the CT excited state leads to
the substantial change of the electronic density of solute molecule. Hence, a large
change in the permanent dipole moment is observed during the excitation process.
Due to the difference in the solute-solvent electrostatic interaction energy between
the ground and the CT excited state of the solute the strong solvatochromic shift
occurs going from the gas phase to the polar solvents. The basic fundamental contri-
butions to a modern understanding of the influence of the solute-solvent electrostatic
interactions �	
E� on the electronic absorption are often based on the classical
Onsager’s reaction field theory. The excellent monographs and reviews have to be
addressed here [1, 2, 69–73]. In all of these theories solvent is usually treated as an
isotropic dielectric medium characterized by its relative electric permittivity ��r�
and refractive index �n�. Starting from this assumption, such theories predict the
linear dependence of solvatochromic shift on dipole moment difference between
the ground and the CT excited state �	�gCT �. In particular, the combination of the
perturbation theory and the reaction field method has lead Amos and Burrows to
establishing the relation between the solvent effects and the transition energy from
the ground to the CT excited state of the form [71]:

(2) �	
gCT = A	�gCT

(
�CT +�g

)+B	�gCT �g

where

A = 1
a3

n2 −1
2n2 +1

� B = 2
a3

�r −1
2�r +1

− n2 −1
2n2 +1

and �	
gCT = �	

gas
gCT −�	
sol

gCT is the change in the transition energy, �g and �CT

denote the ground state and the CT excited state solute dipole moment, respectively
and 	�gCT = �g −�CT . The parameter a stands for a radius of a spherical cavity
occupied by the solute molecule. On the basis of the above equation it is possible to
simply explain the direction of the shifts of the absorption bands with the increase
of the solvent polarity (negative and positive solvatochromism) [1, 2, 70–72]. The
positive solvatochromism (red or bathochromic shift) is exhibited by the molecules
with the larger polarization for the CT excited state (zwitterionic form) than for the
ground state (neutral form), �g < �CT (see Scheme 2). For such molecules, highly
polar solvents cause better stabilization for the excited than the ground state. Hence,
the excitation energy is significantly decreased.

In the case of the negative solvatochromism (blue or hypsochromic shift), the
ground state is better stabilized by the polar solvent than the CT excited state,

Scheme 2

Positive solvatochromism S0 : D – π – A S1 : +D – π – A–

Negative solvatochromism S1 : D – π – A

hv

hv
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�g > �CT . It leads to the enhancement of the excitation energy of the solute. For
the schematic representation of the two types of excitations see Scheme 2.

2.2 The Dispersion Contribution

The dispersion energy plays a role both in polar and in nonpolar solvents. The
quantum chemical and classical description of the influence of the dispersion effect,
	
D, on the excitation energy of molecules in the condensed phase is much more
complicated than that of the electrostatic solute-solvent interactions, 	
E . However,
it is well established that the dispersion effects lead to the red shift (positive
solvatochromism) of the electronic absorption band [1, 2, 68, 69, 73, 74]. It arises
from the fact that the excited state exhibits larger linear polarizability than the ground
state. Hence, the dispersion contribution to the interaction energy between the
excited solute molecules with the environment is substantialy larger than in the case
of the dispersion interactions of the solute in the ground state. It is worth noticing
that in the case of the intramolecular CT transition the influence of the dispersion
contribution, 	
D, on the position of the electronic absorption band in the polar
solvents is less important than the impact of the electrostatic effects, 	
E [1, 2].

2.3 The H-bonds Contribution

The H-bond formation may affect the energies of various excited states in different
ways [1, 2, 68]. It is well established that the specific H-bond interactions strongly
influence the n → �∗ transition of carbonyl compounds [1, 2, 68, 69, 75, 76]. In this
case, the H-bonding interactions �	
H� stabilize the ground state better than the
less-dipolar excited state. Hence, the H-bonds donating solvents exhibit the solvent-
induced blue shifts (negative solvatochromism). On the other hand, the presence
of H-bonds can also strongly influence the intensity of the CT absorption band
�� → �∗� as it is observed in the case of the p-nitroaniline (PNA) molecule [77].

The theoretical and experimental investigations of the specific H-bonding effects
on the nonlinear optical response of the donor-acceptor chromophores were also
carried out. The widely analyzed the prototypical PNA molecule can form H-bonds
involving the NH groups and electron donor atoms of solvent. Huyskens et al. have
shown that the formation of specific solute-solvent interactions such as H-bonds
always increases hyperpolarizability � [35]. The statistical study of a large number
of H-bonding solvents has lead Huyskens et al. to the following expression for �:

(3) � = �gas +�0a
√

�S/VS + (1−�0
)
b
√

�S

where a and b are constants for a given solute molecule, �S is the gaseous dipole
moment, and VS denotes the solvent molar volume. �0 stands for the period of
the time during which the solute is not involved in H-bonding with the solvent
molecules. Luo et al. have considered the possibility of forming H-bonding between
PNA and different solvent molecules (acetone, methanol, and acetonitrile) using the
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polarizable continuum model (PCM) combined with the supermolecular approach
[42]. The significant influence of the H-bonds on the electronic structure of PNA
has been shown. The substantial effects of the H-bonds on the spectroscopic as well
as NLO properties of aminobenzodifuranone (ABF) derivative exhibiting the largest
positive solvatochromic shift in comparison with the other known chromophores
have been illustrated by Bartkowiak and Lipkowski [78]. It has been shown that
the H-bonds formation involving NH groups of the ABF molecule and donor atoms
of a hexamethylphosphoramide (HMPA) solvent substantially increases the value
of � in comparison with the gas phase.

3. SOLVATOCHROMISM AND MOLECULAR
(HYPER)POLARIZABILITIES

A substantial change in the NLO response of the D-�-A chromophores as a function
of the solvent polarity may be understood on the basis of the simple two-state model
combined with the solvatochromic phenomenon. The origin of these changes is
related to the solute-solvent interaction in the ground and CT excited state. Consid-
ering the D-�-A molecules exhibiting the monotonic behavior of the NLO properties
as a function of the solvent polarity, one can draw the following conclusions: Posi-
tively solvatochromic molecules, i.e. exhibiting red shift of the CT absorption band,
are characterized by the increase of �, �, and � values while increasing the solvent
polarity [15–20, 26–38, 40–43]. For the negative solvatochromism manifesting
itself in the blue shift of the CT absorption band, the solvent dependence of �, �,
and � shows opposite trends [14, 38, 39, 79]. On the other hand, there is a group
of the D-�-A type molecules exhibiting the so-called reversible solvatochromism.
This type of solvatochromism is observed in particular for relatively long push-pull
polyene molecules and various merocyanine dyes [1, 22–25, 28, 45, 80, 81]. Their
ground state geometry is strongly affected by the presence of solvent. The ground
state of such molecules can be viewed as a combination of two valence-bond (VB)
forms, namely neutral and zwitterionic. Both of these forms differ in the extent of
the charge separation (Scheme 3).

polyene (neutral) form 

cyanine form

D – π – A

δ +D – π – Aδ  –

+D – π – A–

Scheme 3

The relative contribution of these VB forms depends on the strength of the donor
and acceptor substituents, the structure of �-conjugated bridge, as well as on the
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solvent polarity [1, 14, 21–25, 28, 38, 45, 80, 81]. Hence, the solvatochromic
behavior of such systems is determined by the VB form dominating in the ground
state for the given solvent.

Marder et al. [11, 21–25, 80, 82–84], in their pioneering works, have shown
that structural parameters such as bond length alternation (BLA) and bond order
alternation (BOA) strongly influence the values of �, �, and � of organic compounds
with delocalized �-electron systems. The bond length alternation (BLA) is usually
defined as a difference between the average single and double bond distances in
the �-conjugated pathway. Hence, this structural parameter can be applied to the
quantitative description of evolution of the ground state geometry from the neutral
polyene structure (D-�-A) to a highly polar zwitterionic form �D+-�-A−�. The
intermediate structure of the cyanine-type is composed of the equal contributions
from neutral and charge-separated resonance forms (Scheme 3). During the past
years, the relationship between molecular structure (BLA) and molecular linear and
nonlinear polarizabilities for several donor-acceptor organic molecules has been
established [11, 21–25, 80, 82–86]. The molecular (hyper)polarizabilities exhibit
minima and maxima as a function of BLA.

Barzoukas, Blanchard-Desce and Thompson et al. have developed simple two-
form formalism based on VB-CT approach in order to derive analytical relations
between the ground state polarization and NLO properties for donor-acceptor
�-conjugated molecules [87–91]. This approach is known as a valence-bond state
model (VBSM). It should be mentioned that in the two-form formalism the validity
of the two-state models for �, �, and � is assumed. In the two-form approach, a
MIX parameter, characterizing the mixing between the limiting neutral and zwit-
terionic resonance forms is introduced. Since the MIX parameter is proportional
to the change in the dipole moment between the ground and CT excited states, it
can be extracted from the experimental data similarly as the remaining parameters
included in the model. Recently, the two-form model has been applied in order
to obtain the qualitative insight into mutual relations between hyperpolarizabilities
as well as two-photon cross section and BLA for the donor-acceptor �-conjugated
organic molecules [92]. This topic is presented by Bartkowiak and Zaleśny in one
of the chapters of the present book.

Lu, Goddard III, Perry et al. have independently proposed the valence-bond
charge-transfer (VB-CT) model to predict (hyper)polarizabilities of the donor-
acceptor �-conjugated molecules [93–94]. The VB-CT model accounts for the
dependence of the (hyper)polarizabilities on the charge transfer energy. The
(hyper)polarizabilities are related to the BLA parameter which from the other side is
proportional to the fraction of the wave function having CT characters. The VBSM
and VB-CT models have been succesfully applied to predict the solvent and BLA
effects on the NLO properties for the large group of the donor-acceptor �-conjugated
molecules. The usefulness and popularity of the above simple models comes from
the fact that for numerous systems not only qualitative but also quantitative picture
of the NLO response has been achieved.
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It should be noticed that an important contribution to understand solvatochromism
and NLO response of molecules of the D-�-A type has been given by Painelli
et al. [95–100]. These authors have developed a simple non-perturbative model
for the description of the NLO response and low-energy spectral properties of
numerous donor-acceptor systems. A polar molecule in solution is modeled in terms
of the two electronic states linearly coupled to molecular vibrations and to so-called
solvation coordinate. This coordinate describes orientational degrees of freedom of
the surrounding solvent.

In the present contribution we will discuss the direction of the changes of the
NLO response and the solvatochromic behavior as a function of solvent polarity
of the D-�-A chromophores. The best starting point for these considerations seems
to be the simple two-state model for the first-order hyperpolarizability ��� [8].
To avoid the extreme complexity of the sum-over-states (SOS) expression [101],
Oudar and Chemla proposed the relation between the dominant component of �
along the molecular axis (let it be the x-axis) and the spectroscopic parameters of
the low-lying CT transition [8]. The use of the two-level approximation in the static
case �
 = 00� has lead to the following expression for the static xxx component of
the first-order hyperpolarizability tensor:

(4) �xxx�0� = 6
�g� rx �CT�2 	�gCT�x

(

gCT

)2

where �
gCT is the transition energy from the ground to the CT excited state,
and �g� rx �CT� denotes the transition dipole moment. The atomic units and the T
convention are adopted in the above equation [102].

Alternatively, noticing that �g� rx �CT�2 is proportional to the oscillator strength,
f , the expression for �xxx�0� can be rewritten as

(5) �xxx�0� = 9
f	�gCT�x
(

gCT

)3

The above expressions become slightly modified when the frequency dependent
�xxx is evaluated. In order to calculate the first-order hyperpolarizability for a
second-harmonic generation (SHG) process ��xxx�2
��, the denominator in Eqs. (4)
and (5) should be modified by a factor reflecting the frequency dependence (the
dispersion factor) of the form:

(6)
(
1−
2/
2

gCT

) (
1−4
2/
2

gCT

)

where 
 is the polarization frequency (below the electric resonance).
Thus, the equation for the off-resonance �xxx�2
� can be expressed as

(6a) �xxx �2
� = �xxx �0�
(
1−
2/
2

gCT

) (
1−4
2/
2

gCT

)
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The Oudar-Chemla equation has been tested for many donor-acceptor
�-conjugated organic molecules. The two-state model works quite well in most
cases. However, it should not be left unmentioned that the values of �xxx are usually
overestimated in comparison to the more advanced quantum chemical calculations
[3, 31, 38–40]. Hence, the two-state model should be treated only as a rather rough
approximation to the SOS method. On the other hand, for the most applications, the
relative values of the first-order hyperpolarizabilies are of the higher importance.
The two-state model allows to establish the structure-NLO properties relationship
in terms of relatively simple spectroscopic parameters.

The two-state model is also applied to determine the first-order hyperpolarizabil-
ities based on the experimental measurements of the spectroscopic quantities [103].
The ground state and the CT excited state dipole moments, excitation energy, as
well as transition dipole moment (or oscillator strength) can be determined through
the solvatochromic effect measurements. In particular, the first-order hyperpolariz-
ability can be obtained in such a way by employing Eq. (4) or Eq. (6a).

The influence of the solute-solvent interactions on �xxx is easily understandable
in terms of the two-state model. This approach clearly shows that �xxx strongly
depends on the excitation energy, �
gCT . According to Eq. (5), �xxx is inversely
proportional to the third power of the excitation energy.

The excitation energies ��
gCT � in Eqs. (4), (5), and (6a) correspond to the
experimental UV-Vis absorption band peaks. As it was mentioned previously, the
solvatochromic effect manifests itself as a shift of the positions of the low-energy
CT bands in electronic absorption spectra of dissolved solute molecules. The shift
arises from the interactions with solvents of various polarity. Hence, from the
theoretical point of view, the leading contribution to the solvent effect on �xxx

should be approximately described by a different change of the CT transition energy.
This relation has been confirmed theoretically and experimentally [15, 16, 19, 20,
27, 29, 31, 34, 38–40, 42]. On the other hand, the influence of the solvent on �xxx

is also reflected in a substantial changes of the values of �g� rx �CT�2 (or f ) and
	�gCT . In the case of the positively solvatochromic compounds the increase of
�xxx is followed by the red shift of the CT absorption band. It translates into the
decreasing value of �
gCT and increasing value of the product f	�gCT going from
the gas-phase to the polar solvents. These two contributions can have a comparable
influence on the value of �xxx. In [38] the example of 4-nitro-4′-aminostilbene
(ANS) was considered. In that paper, the product of f	�gCT causes the increase
of the �xxx value by about 46%, while the transition energy ��
gCT � change—by
about 53% on going from the gas phase to aqueous solutions. Thus, this example
clearly shows that the methods based exclusively on the transition energy shifts
(e.g. the solvatochromic methods) may lead to the erroneous results. The presence
of the dispersion factor in Eq. (6a) indicates that the inclusion of the dispersion
effects lead to the larger enhancement �xxx�2
� in comparison to the static case,
�xxx�0�, when the solvent effects are taken into account. There are much more
theoertical and experimental studies in the literature devoted to the positive than
to the negative solvatochromism phenomenon of the chromophores of the D-�-A
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type. The chromophores exhibiting positive solvatochromism show significantly
smaller sensitivity on the specific interactions. This makes them more suitable for
the description of the solvent polarity parameters in terms of unspecific electrostatic
interactions [1, 2, 104].

In general, in the case of the chromophores exhibiting large negative solva-
tochromism, the presence of polar environment leads to the substantial decrease
of �xxx values [14, 38, 39, 79]. The important examples are heterocyclic betaine
dyes. This class of compounds exhibits the zwitterionic character even in solvents
of relatively small polarity. The well known representative of the betaine dyes
is the so-called Reichardt’s betaine dye [1, 2]. This type of molecules has large
negative value of the vector part of the first-order hyperpolarizability, ��. �� is
evaluated using the electric field induced second-harmonic generation (EFISH)
technique [47, 49, 102]. For the one-dimensional polar donor-acceptor molecules
�� is proportional to �xxx. According to the two-level model, the negative sign
of �� is due to the sign of 	�gCT . There is a dramatic decrease in the polarity
of the betaine dyes upon excitation from the ground state to the CT excited state.
This change of 	�gCT is reflected in a considerable negative solvatochromic shift
of the intramolecular CT absorption band. Such an effect leads to a significant
decrease of the values of �xxx in the polar solution in comparison to the gas phase.
It comes from the fact that the increasing 	�gCT is partially neutralized by dimin-
ished intensity of the CT absorption band. The quantum chemical calculations
confirm these findings [38, 39]. A similar trends are observed for the negatively
solvatochromic merocyanine dyes in the polar solvents [14, 45]. The solvent effects

Solvent polarity
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Figure 1. Two-level picture corresponds to the second-harmonic generation (SHG) process in the
gas phase and in polar solvent: a) positively solvatochromic molecule, b) negatively solvatochromic
molecule



Solvatochromism and NLO Properties of Donor-Acceptor 309

on the first-order hyperpolarizabilities, �xxx�2
� within the two-level picture for
the positively as well as negatively solvatochromic molecules are schematically
presented on Figure 1.

A similar reasoning can be applied to linear polarizabilities, �, and second-order
hyperpolarizabilities, �, for the donor-acceptor �-conjugated molecules. The two-
state models for � and � are given in Appendix A. Similarly as in the case of �,
the lowest CT excited state gives also a significant contribution to the values of
� and � for the analyzed molecules [11, 14, 17–19, 38, 40]. Also, the behaviour
of � and � as a function of the solvent polarity seems to reflect the tendencies
for �. However, the � values appear to be less sensitive to the solvent effects than
� and � [14, 19, 26, 31, 36, 38]. Recently, for the case of static vector components
of � and scalar part of �, it has been shown that the calculated ratio of �sol/�gas

is approximately equal to the �sol/�gas ratio for a variety of the donor-acceptor
chromophores exhibiting the positive solvatochromism [40]. An explanation of
these observations can be proposed on the basis on the two-state models for � and �.

4. SOLVATOCHROMISM AND TPA CROSS SECTION

The two-photon absorption phenomenon of molecular systems is connected with
a process of a simultaneous absorption of two-photon. The electronic contribution
to the two-photon absorption is usually studied on the basis of the Monson and
McClain formalism [105, 106]. The two-photon absorption cross section from a
ground �g� to a final state �f� ��gf � for molecules in isotropic media is defined as

(7)
〈
�gf

〉=
〈∣
∣Sgf

(	�1� 	�2

)∣
∣2
〉
= 1

30

∑

ij

[
SiiS

∗
jjF +SijS

∗
ijG+SijS

∗
jiH
]

where F = F
(	�1� 	�2

)
�G = G

(	�1� 	�2

)
, and H = H

(	�1� 	�2

)
are the polarization

variables and Sij denotes the two-photon transition moment. The equation for the
two-photon matrix elements,

(8) S
gf
ij =∑

k

(〈
g
∣
∣	�1	r

∣
∣k
〉 〈

k
∣
∣	�2	r

∣
∣f
〉


kg −
1

+
〈
g
∣
∣	�2	r

∣
∣k
〉 〈

k
∣
∣	�1	r

∣
∣f
〉


kg −
2

)

can be obtained directly from the time-dependent perturbation theory, choosing the
interaction of a molecule with an electromagnetic field as a perturbation [106].
Labels i� j in Eq. (8) refer to the Cartesian coordinates and 	�1� 	�2 denote polarization
of photons with energies �
1��
2. Summation in Eq. (8) runs over all the interme-
diate states �k� including the ground �g� and the final state �f�. If we consider the
simultaneous absorption of the two photons from one monochromatic laser beam,
the energies of both photons are equal, thus one can write: �
1 = �
2 = 1

2�
gf . In
the case of both photons polarized linearly with a parallel polarization, Eq. (7) can
be rewritten in the simplified form:

(9)
〈
�gf

〉= 1
15

∑

ij

[
SiiS

∗
jj +2SijS

∗
ij

]
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Alternatively, the TPA cross section can also be shown to be proportional to
the imaginary part of the averaged second-order hyperpolarizability <�>, defined
at the absorption frequency of 
��gf ∝ Im��−
�
�−
�
��. It has been shown
by Luo et al. that for TPA into a particular excited state, both approaches are
equivalent [107].

Direct comparison between <�gf > (in atomic units) estimated theoretically from
Eq. (9) and from the experimental data requires the knowledge of the line shape
function g�
� for investigated molecule. The experimental TPA cross section (in
the conventional cm4 s/photon units) is connected with the <�gf > via the following
equation [108, 109]:

(10) �
�2�
gf = 8�3�2

�
3

e4


2g �
�

�f

/
2

〈
�gf

〉

Here � is a fine-structure constant, �f stands for the lifetime broadening of final
state and �
 denotes the photon energy.

As it was mentioned in the Introduction, in contrast to the extensive investi-
gations on the solvent influence on the molecular (hyper)polarizabilites, there are
only few theoretical works on the TPA cross section ��� of the donor-acceptor
�-conjugated organic molecules in which TPA from the ground to the CT excited
state is considered. Below, we give short review of these works.

Luo et al. have investigated the influence of the solvent polarity on the NLO
properties of a simple donor-acceptor polyene molecule (Scheme 4) at the ab initio
level of theory applying the continuum model of solvent [107]. It has been shown
that the evolution of the TPA cross section with respect to the bond length alternation
(BLA) closely follows that of the static first-order hyperpolarizability, �. The TPA
cross section is strongly dependent on the geometrical changes. Moreover, these
authors have noticed that the solvent effect on the TPA cross section (for the CT
excited state) in the typical donor-acceptor polyene molecule exhibiting the positive
solvatochromism is smaller than the influence of the solvent on the values of �.

NO
NH2

Scheme 4

Das and Dudis have found that the second-order transition moments �Sij� of the
PNA molecule are strongly influenced by the presence of the solvent (Scheme 5)
[110]. It has been also demonstrated that the diagonal polarizability components
�ij = ��xx��yy��zz� are weakly affected by the solvents in comparison with Sij . In
that work, �ij and Sij have been evaluated by using the modified sum-over-states
(MSOS) approach combined with the semicontinuum model for the solvent.

Zaleśny, Bartkowiak and co-workers have considered the influence of the
solvent polarity on the hyperpolarizabilities and TPA cross section of the simplest
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NH2 NO2

pyridinium-N -phenolate betaine dye [4-(1-pyridinium-1-yl)phenolate] (Scheme 6)
[111]. The molecule investigated in that study, also known as Betaine-30, is
a less substituted derivative of Reichrd’s dye [2,6-diphenyl-4-(2,4,6-triphenyl-N -
pyridinium-1-yl)phenolate]. Reichardt has found that Betaine-30 exhibits the largest
blue shift of the longest-wavelength absorption band in comparison with other
known solvatochromic compounds. According to the results of calculations, the
extremely decreased values of the TPA cross section and molecular hyperpolariz-
abilities have been observed. The quantum chemical calculations have been carried
out in the all-valence INDO-like approximation. The reaction field contribution of
the solvent has been evaluated using the non-cavity quantum-mechanical Langevin
dipoles/Monte Carlo (QM/LD/MC) technique. It should be noticed that the hete-
rocyclic betaine dyes are not typical donor-acceptor �-conjugated compounds.
The CT electronic transition in these molecules arises owing to the interac-
tion of the � orbitals of the donor and acceptor moieties through the � bond
(�-�-� bond coupling). Hence, the structure of the molecule can be schematically
described as D-�-�-�-A.

N O

Scheme 6

The drastical enhancement of the TPA cross section in the presence of the solvent
for the two-photon polymerization initiator [4-trans-[p-(N,N-Di-n-butylamino)-p-
stilbenyl vinyl]piridine (DBASVP) has been illustrated in a recent work by Wong
et al. [112]. The DBASVP is the typical D-�-A molecule exhibiting the posi-
tive solvatochromism (scheme 7). Hence, the lowest excited state of the DBASVP
molecule has been found to be a CT state, which completely dominates the
linear absorption spectrum. Wong et al. have combined the time-dependent density
functional theory and the polarized continuum model (PCM) to evaluate the
solvatochromic shift, TPA cross-section, and oxidation potential of the DBASVP
molecule in different solutions.

Recently, the general considerations related to the solvent effects on the TPA cross
section and molecular (hyper)polarizabilities have been presented by Bartkowiak
et al. [113]. On the basis of the full quantum chemical calculations as well as
discussion within the simple two-state models it has been shown that the solvent
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N N
R

R

Scheme 7

dependence in the case of the TPA cross-section is significantly larger than for
the molecular (hyper)polarizabilities. This general conclusion is restricted to the
positively solvatochromic D-�-A compounds exhibiting a monotonic behavior with
respect to the polarity of the solvents. In general, there is an important discrep-
ancy between works of Luo et al. [107] and Bartkowiak et al. [113]. As was
mentioned above, Luo et al. have shown that the first-order hyperpolarizability is
more solvent sensitive than the TPA cross section for the positively solvatochromic
donor-acceptor polyene.

It has been shown in a few theoretical studies that the TPA cross section � of
the donor-acceptor �-conjugated molecules can be correctly described, similarly as
the molecular (hyper)polarizabilities by a simple two-state model, involving only
the ground and the CT excited state [111–114]. Hence, the solvent effect on � can
be discussed within this approximation. It leads to the better understanding of the
theoretical results cited in the above papers. Including only the ground and the
CT excited state in the Eq. (8), one obtains the two-state approximate equation for
dominant component along the molecular axis (in this case chosen as x axis):

(11) SgCT
xx = 4 �g� rx �CT�	�gCT�x


gCT

In order to obtain the expression of <�gCT >, one can combine Eq. (11) with Eq. (9).
Finally, the expression for TPA cross section becomes:

(12)
〈
�gCT

〉≈ 〈
�xx

gCT

〉= 16
5

S2
xx = 16

5

�g� rx �CT�2 (	�gCT�x

)2


2
gCT

It should be noted that the meaning of the spectroscopic parameters in above
equations is the same as in the case of Eq. (4) for �xxx. Alternatively, the two-
state expression for <�gCT >, similarly as in the case of �xxx, can be written
(in atomic units) as

(13)
〈
�xx

gCT

〉= 24
5

f
(
	�gCT�x

)2


3
gCT

A direct comparison between Eq. (5) and Eq. (13) shows that the TPA cross
section is a quadratic function of 	�gCT�x

(〈
�xx

gCT

〉∼ f
(
	�gCT�x

)2
)

while �xxx being
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a linear one
(
�xxx ∼ f	�gCT�x

)
. In other words, the TPA cross section is directly

connected to the static first-order hyperpolarizability through the relation:
〈
�xx

gCT

〉∼
�xxx	�gCT�x. This important observation indicates that the influence of the solvent
effects on the TPA cross section of the positively solvatochromic D-�-A molecules
should be larger than that for �xxx [113]. It should be noticed that the structure
of Eq. (13) shows that sign of <�gCT > is always positive (in opposite to ��

for the negatively solvatochromic dyes). This result has been confirmed by the
direct quantum chemical calculations including the solvent effect [111]. Moreover,
the simple two-state relations presented in this section allow for the systematic
analysis of the theoretical data obtained in the works cited above [110–113]. On
the basis of the limited available theoretical results, it is possible to formulate a
hypothesis that the directions of changes in the values of the TPA cross section as a
function of the solvent polarity are similar to the molecular (hyper)polarizabilities
(see also Figure 2). Unfortunately, there are no systematic results of experimental
measurements of the TPA cross section in different solvents for the donor-acceptor
�-conjugated molecules. This is important limitation for the discussion presented
in this review. Moreover, it should be remembered that, according to Eq. (10), the
direct comparison between experimental and theoretical data requires the knowledge
of the line shape function g�
� for any investigated molecule. This quantity depends
on the many parameters such as the given solvent in which measurements are
carried out. It is very difficult to establish of g�
� on the theoretical way [115]. It
can be a much more important solvent effect that the pure dielectric response of
the medium.

Solvent polarity

E

|g> |g>

a)

ω’

ω’

b)

ω’

ω’

|g>

|g>

|CT>

|CT>

|CT>

|CT>

ω

ω ω

ω

Figure 2. Transition diagrams involved in the two-level description of TPA in the gas phase and in
polar solvent: a) positively solvatochromic molecule, b) negatively solvatochromic molecule
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In general, the investigations based on the quantum chemical calculations as well
as on the other literature data show that the following order of magnitude holds for
the TPA cross section and the molecular (hyper)polarizabilities:

(14) <�>sol/<�>gas > �sol/�gas ≈ �sol/�gas > �sol/�gas

This relation is restricted for (a) the positively solvatochromic donor-acceptor
�-conjugated molecules, (b) the two-photon absorption from the ground state to
the CT excited state, and (c) the static molecular (hyper)polarizabilities. The above
ordering was confirmed for the extended variety of the donor-acceptor �-conjugated
molecules exhibiting the monotonic behavior as a function of the solvent polarity
[40, 113, 116]. However, this trend dose not hold in some cases (see [40]).

In the case of the negatively solvatochromic compounds, according to our best
knowledge there is probably only one theoretical work for TPA cross section in
the gas phase and in polar solvent [111]. Hence, a generalization is impossible
at the moment.

5. CONCLUDING REMARKS

In this review, we focus our interest on the donor-acceptor �-conjugated molecules.
This type of molecules is promising for applications in various nonlinear optical
devices because of the significant values of the molecular hyperpolarizabilities. The
high NLO responses of the donor-acceptor �-conjugated molecules are related to the
intramolecular charge transfer (CT) excited state. The optimization of materials for
nonlinear optical devices requires understanding of NLO processes as a function of
electronic and geometrical molecular structure. On the other hand, the environmental
effect on the molecule in a crystal, film, solution etc., may lead to the substantially
change their nonlinear optical response in comparison with the gas phase. It is an
additional fact, which should be taken into account in design of new nonlinear
optical materials.

The understanding and reliable prediction of the influence of the solute-solvent
interactions on the nonlinear optical properties of molecular systems is a significant
issue for a width range of theoretical and experimental areas of studies. In this
review, it was shown that the simple two-state approximations combined with the
solvatochromic methods are an effective tools in prediction the direction of the
changes of molecular nonlinear responses as a function of solvent polarity. This
methodology based on the description of the solvent effects at the molecular level
should be treated as a supporting for the most sophisticated quantum chemical
approaches.

APPENDIX A. TWO-LEVEL MODELS FOR � AND �

Including only the ground and the CT excited state in the sum-over states
(SOS) expressions for the static � and �, one obtains the two-state approximate
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equations for dominating components along the molecular axis (in this case x axis)
[101, 102, 117]:

�xx = 2
�g �rx�CT�2


gCT

(A1)

�xxxx = 24
�g �rx�CT�2 (	�gCT�x

)2 −�g �rx�CT�4

(

gCT

)3(A2)

The meaning of the spectroscopic parameters in above expressions is the same as
in the case of �xxx (see Eq. (4) in the main text).
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CHAPTER 10

SYMMETRY BASED APPROACH TO THE EVALUATION
OF SECOND ORDER NLO PROPERTIES OF CARBON
NANOTUBES

L. DE DOMINICIS AND R. FANTONI
Advanced Technologies Department, ENEA Frascati Via E. Fermi 45, 00044 Frascati – Italy

Abstract: This chapter presents a review of the direct implantation of symmetry into calculations of
carbon nanotubes (CNTs) second order nonlinear optical properties (NLO). Emphasis is
given to potentiality of the method to estimate quantitatively the magnitude of first hyper-
polarizability for several CNTs topologies. The main advantage of performing calculations
with symmetrized eigenfunctions, relies on the direct identification of the state-to-state
transitions contributing to the hyperpolarizability. An estimated value of � ∼ 10−30 esu
for the non-resonant hyperpolarizability of chiral CNTs is obtained

Keywords: Nonlinear spectroscopy; hyperpolarizability; carbon nanotubes; irreducible representations

1. INTRODUCTION

The discovery of Carbon Nanotubes (CNTs) dates back to 1991 [1]. Since then
CNTs, for their excellent electrical and mechanical properties, have been an hot topic
in several scientific and technological fields ranging from chemistry to mechanics
[2]. Most of the remarkable properties of CNTs are a direct consequence of their
peculiar topology. From a topological point of view, a single wall CNT is a graphite
sheet rolled up into a cylinder with nanometer size diameter. The wrapping proce-
dure leads to considerable changes in the topological space of the formed structure
(CNT) with respect to the original graphite sheet. First of all, due to the large aspect
ratio (length/diameter ∼ 104), a CNT can be considered a quasi one-dimensional
(1D) structure. In addition, the wrapping procedure maps the symmetry group
of graphite into a new class of symmetry operations leaving the CNT structure
invariant. In particular, according to the direction of the wrapping axis with respect
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the basic vectors of the graphite unit cell, the CNT may display a chiral structure [3].
The wrapping procedure, at the basis of CNT formation from a graphite sheet, then
singles out a transformation from a 2D achiral topology to a quasi-1D topological
space with, eventually, a chiral structure.

The drastic change of the topological space accessible to the delocalized
� electrons coming from the C=C bond, is expected to strongly influence the
properties of their wavefunction and consequently the CNT optical response. The
reduced dimensionality of the topological space leads to a quantum confinement of
the � electronic wavefunction in the radial and circumferential directions with subse-
quent quantization of the angular momentum component along the tube axis (band
index m). As a consequence, plane wave motion occurs only along the nanotube
axis corresponding to a large number of closely spaced allowed wavevector k.

In addition, as far as electron-electron interaction is neglected, the � electrons
are subject to a potential with the full spatial symmetry of the CNT topology. The
electronic wavefunctions can then be classified according to their transformation
properties under the symmetry operations leaving the CNT invariant. As far as
dipole approximation holds, both the linear and nonlinear optical response of a
CNT are governed by matrix elements of the dipole operator between two elec-
tronic wavefunctions. Being the selection rules of dipole matrix elements essentially
determined by the wavefunctions symmetry, it turns out that the optical properties
of CNT are essentially rooted in their topology.

The most striking demonstration of the deep influence of direct implantation
of symmetry into CNTs linear optical properties calculation, is reported in the
works of Bozović [4] and Damnjanović [5]. On the other side, the nonlinear optical
properties (NLO) of CNTs have attracted a certain interest in the last decade. The
first attempt of modeling third order CNT nonlinearity has to be ascribed to Xie [6],
Wan [7], Margulis [8] and Jiang [9]. The works of Slepyan [10, 11] shed light
on the high harmonic generation processes both from an individual CNT and a
CNTs rope. On the experimental side, the third order NLO of CNTs have been
demonstrated by several works. Optical limiting properties of CNT was observed
by Vivien [12], Jin [13]. Third harmonic generation has been studied by Stanciu
[14] and Koronov [15] at femtosecond time regime, while Wang [16] probed Kerr
type nonlinear processes. Degenerate four wave mixing experiments by Liu [16]
and Botti [17] allowed to estimate in � ∼ 10−11 esu the second hyperpolarizability
of CNT at nanosecond time scale. Less attention has been paid to second order
NLO of CNTs. Experimental evidence of second harmonic generation (SHG) is
reported by De Dominicis [18] and Koronov [15] at nanosecond and femtosecond
time regime respectively, while theoretical investigations on the role played by
CNT topology and quantum confinement in affecting SHG are still at an early
stage [19].

The issue of modeling the second order NLO of CNTs is strictly related
to the advances in CNTs assembling technology. In fact, as far as fully oriented
non-centrosymmetric assembling of CNTs are being developed [20], samples
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characterized by a non-vanishing second order susceptibility becomes available,
allowing the study of second order NLO of CNTs.

In the present chapter an approximate method for quantitative estimation of
CNT first hyperpolarizability is presented. The method fully takes advantage of
the algorithm developed by Damnjanovic [21] to calculate CNT eigenstates by
means of the modified projector technique with tight binding approach. The direct
incorporation of symmetry into calculations allows to identify the state-to-state
transitions contributing to � both for electron with k at the origin and inside the
irreducible domain (ID) �0��/a�, where a is the translational periodicity of the CNT.
Under appropriate approximations, whose validity can be only checked a posteriori,
the developed code runs on commercially available PC. Within this limits, values
of � up to 10−30 esu �1 esu = 3	7 · 10−21 C3J−2 m3
 are obtained, thus positioning
CNTs among the most efficient second order nonlinear optical materials.

The chapter is organized as follows. In Section 2 the symmetry properties of
CNTs and the selection rules for electronic transitions are described. In Section 3 the
form of � tensor is determined, together with the several state-to-state contributions
coming from electrons inside the ID. In Section 4 the principles for estimation of
the magnitude of � are reported together with the results of a calculation for several
CNT topologies.

2. CARBON NANOTUBES SYMMETRY PROPERTIES
AND ELECTRONIC TRANSITIONS SELECTION RULES

CNTs topology is completely determined [2] by two integers �n1� n2
. The particular
cases �n�n
 and �n� 0
 give rise to armchair �A
 and zigzag �Z
 CNTs respectively.
A and Z CNTs are characterized by invariance under mirror reflection and then can
be grouped as achiral CNTs. All other possible combinations of �n1� n2
 have a chiral
topology. The symmetry properties of a CNT are gathered in the symmetry group
G giving all the transformations which leave the CNT invariant. Both for chiral and
achiral CNTs G is a line group (symmetry group of an object translationally periodic
along a line) given by [3] (the Hermann-Mauguin international notation is used)

Gc = Lqp22(1)

GZA = L2NN /mcm

where N is the greatest common divisor of n1 and n2. The q parameter is given by

(2) q = 2�n2
1 +n2

2 +n1n2
/NR

with R = 3 or R = 1 whether �n1 −n2
/3N is an integer or not. The parameter p is
expressed in terms of n1� n2 and N by numerical functions [3].

Between the elements of G there are screw axes �Cr
q

∣
∣Na/q
t, consisting of a

rotation of 2�rt/q around the tube axis followed by a translation of Nta/q along
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the tube axis direction. Here t is an integer and the helicity parameter r and the
translational period a given by

r = q

N
Fr

[
N

qR

(

3−2
n1 −n2

n1

)

+ n

n1

(n1 −n2

N

)�� n1
N 
−1

]

(3)

a =
√

3q

2RN
a0

where F�x� is the fractional part of x, ��n
 the Euler function and a0 = 2	461Å.
Other elements are rotations Cs

N of 2�s/N around tube axis �s = 0� 1� 	 	 	 	N -1
 and
rotations �U� U′
 of � around a direction perpendicular to the tube axis (Fig. 1).
For armchair and zigzag CNT we have additional vertical ��v
 and horizontal ��h

mirror planes and glide planes �� ′

v�� ′
h
.

Let us define the orbit of a carbon atom in a CNT as the set of atoms generated
by the symmetry transformations from any arbitrary chosen initial atoms. Within
this scheme, a CNT is a mono-orbit system in which the atom Ctsu is obtained by
the action of

(4) ZTr = (
Cr

q �na/q
)t

Cs
nU

u

on the initial one C000. The subgroup ZTr is called the transversal of the CNT
symmetry group G and is obtained by neglecting all the site symmetry transfor-
mations (set of transformations for which the initial atom is a fixed point). It is
interesting to note that for chiral CNT ZTr = G.

All the achiral CNTs have a point of inversion symmetry located on the tube
axis. For achiral CNTs with even n this can be easily demonstrated. In fact, for even
n, C2 is a symmetry transformation, which together with �h acts as the inversion
transformation I on CNT structure.

This consideration has a very important consequence on the central issue of
this work. In fact, the presence of an inversion centre makes vanishing the third

Figure 1. Symmetry of the single wall CNT (8,6), (6,0) and (6,6). The horizontal rotational axes U
and U′ are symmetries of all the tubes, while the mirror planes ��v��h
, the glide plane � ′

v and the
roto-reflectional plane � ′

h are symmetries of the achiral tubes only (from [3])
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rank tensor responsible for the second order nonlinear optical response of achiral
CNTs. In the following, attention will then be restricted only to chiral CNTs,
which, lacking inversion symmetry, have a non-vanishing second order nonlinear
optical response. Within this context, it is important to mention that Slepyan [6]
demonstrated theoretically, following a power expansion method of the current
density, the absence of even high harmonics generation in chiral CNT illuminated
by an intense laser pulse.

As far as electron-electron interaction is neglected, the Hamiltonian H a �
electron in a CNT commutes with all the element of G making, according to the
basic theory of group representation [22], the electronic eigenfunctions a set of
basis functions for the irreducible representations of G. In fact, the basis functions
�i�i=1			l of an irreducible representation of dimension l are characterized by the
property

(5) gi =
l∑

k=1

gikk ∀g ∈ G

where gik are the matrix elements of the irreducible representation.
It is easy to verify that if �H�G� = 0, the l degenerate eigenfunctions �i�i=1			l of

H which belong to the same eigenvalue � obey to the transformation law in Eq. (5).
In fact we have

(6) Hj = �j j = 1 	 	 	 l → gHj = H�gj
 = ��gj


Then gj is still an eigenfunction of H with eigenvalue �. But the �i�i=1			l are
linearly independent and a linear combination of degenerate eigenfunctions is still
an eigenfunction with the same eigenvalue, then we must have

(7) gj =
l∑

k=1

gjkk ∀g ∈ G

The demonstration that the coefficients in the summation in Eq. (7) are with the
matrix elements of the irreducible representations of G is out of the scope of the
present treatment and can be found in [22].

It is then demonstrated that the irreducible representations of the symmetry group
G decompose the electronic state space of the CNT into invariant subspaces in
which the eigenfunctions of H act as bases.

The irreducible representations (irreps) of the line groups in (1) have been exten-
sively studied by Bozovic [23] and Damnjanovic [24].

The irreps are given as a function of the parameters k ∈ �0��/a� and
m = �−q/2� q/2�. The k = 0 condition means the suppression of all the translations
making the symmetry operations to collapse into a point group. This point group P
is called isogonal and is given, for chiral and achiral CNT, by

Pc = Dq(8)

PZA = D�2N
h
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Within this scheme the parameter k, being associated with translational symme-
tries, plays the role of a quasi-linear momentum, while m is the component of a
quasi-angular momentum along the tube axis. The two quantum numbers behave
differently when an optical excitation induces a state-to-state transition. On one
hand, k is a conserved quantity, being the parametrization of the CNT translational
symmetries which form a subgroup of G. On the other hand, m is not a conserved
physical quantity in electromagnetic interaction being associated to the isogonal
rotations which are not a subgroup of G, as dictated by the non-symmorphic (P not
a subgroup of G) nature of G both for achiral and chiral CNTs.

An electronic state can be then labelled as �k�m���, with the quantum numbers
k and m, plus an additional quantum number � gathering all the other possible
symmetries �U��v��h
.

As far as dipole approximation holds, the probability of an electronic transition
due to the interaction of CNT with an optical field, is governed by the position
operator matrix elements taken between the initial �i
 and final �f
 states

(9)
〈
kf �mf ��f �	r�ki�mi��i

〉

General selection rules governing the process can be obtained by observing that
the decomposition onto irreducible representations of the position operator both for
chiral and achiral CNTs contains only contributions with k = 0 and m = 0� 1. In fact,
the matrix elements in Eq. (9) can be expressed in the Wigner-Eckart form as [5]

〈
kf �mf ��f

∣
∣	r∣∣ki�mi��i

〉
(10)

= 〈
kf �mf ��f �0�m���ki�mi��i

〉 · 	r (kf �mf ��f 
0�m��
ki�mi��i

)

where 	r (kf �mf ��f 
0�m��
ki�mi��i

)
and

〈
kf �mf ��f �0�m���ki�mi��i

〉
are

the reduced matrix element and the Clebsch-Gordan coefficient, respectively. The
Clebsh-Gordan coefficients, being independent on 	r, are subject to quite general
selection rules given by [5]

kf = ki(11)

mf −mi = m

�f = ��i

In order to better understand the importance of the selection rules in Eq. (11) it
must be outlined that the dispersion relations �m�k
, giving the electron energy as
a function of k, have a band structure labelled by the quantum number m. The
selection rules in Eq. (11) determine that in a CNT, under the action of an optical
field, the electrons are subject to interband direct transitions with �m = 0� 1.

Moreover, the meaning of the third selection rules in Eq. (11) is strictly related
to symmetry labelling of the �k�m��� states. The symmetry properties of the
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Table 1. Irreps of CNT electronic states at the origin and inside the ID

Chiral Achiral

k = 0 0Em 0A
±
0 0A

±
q/2 0E

±
m 0A

±
0 0B

±
0 0A

±
n 0B

±
n

k ∈ �0��/a
 kEm kGm kE
a/b
0 kE

a/b
n

electronic states of a CNT, as dictated by the irreps of G, are listed in Table 1 as a
function of CNT topology [24] and of quantum numbers k and m. The symmetry of
electronic states for achiral topology is reported only for the sake of completeness.
The dimension of a representation gives the degeneracy of the energy level �m�k
.
The A and B states are one-dimensional, the states E two dimensional while G
states span a four dimensional representation. For chiral CNTs, the A states have
the superscript + or − according to the parity of the eigenfunction under the U
symmetry operation. For achiral CNTs the a or b superscript indicates parity with
respect to �v, while parity under �h is indicated by + or − superscript. It is
worthwhile to note that achiral CNT have a well defined parity under �v only at
the origin of the irreducible domain.

Within the formalism of the irreducible representation the position operator is
decomposed in 0E1 + 0A

−
0 for chiral CNTs and 0E

+
1 + 0A

−
0 for achiral topology.

Armed with this formalism is possible to determine the allowed optical transitions
in dipole approximation as determined by the matrix element in Eq. (9).

Let start to analyze the element for chiral CNT. A x,y,z reference frame intrinsic
to the CNT is introduce with the z axis along the tube axis. For chiral CNT, U
is the only additional symmetry operation, which is equivalent to the inversion of
z axis. An electronic wavefunction labelled with “+” corresponds to a distribution
invariant under U, and is then characterized by � = +1. On the other hand a
wavefunction with “−” change its sign under U and then has � = −1. Because of
z has � = −1, it turns out that, the third selection rules in Eq. (11) asserts that for
chiral CNT we have the following non-vanishing matrix elements

(12)
〈
0A

±
0 �z� 0A

∓
0

〉 〈
0A

±
q/2 �z� 0A

∓
q/2

〉 �kEm �z� kE
∗
m�

Where the asterisk indicates an electron in conduction band. Note that in Eq. (12)
�m = 0 because the irreducible representation of z is characterized by m = 0.

When analyzing the matrix element in Eq. (9) with x and y, it must be considered
that the two operators have a m = 1 irreps, which, in view of the second selection
rules in Eq. (11), results in the following non-vanishing elements

〈
0A

±
0 �x� 0E1

〉 〈
0A

±
0 �y� 0E1

〉
(13)

〈
kEm �x� kE

∗
m+1

〉 〈
kEm �y� kE

∗
m+1

〉

〈
0Aq/2 �x� 0Eq/2−1

〉 〈
0Aq/2 �y� 0Eq/2−1

〉
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3. CNT HYPERPOLARIZABILITY

At microscopic scale, to second order in the incident field, the induced dipole
moment � on a carbon nanotube is given by

(14) �i = �ijEj +�ijkEjEk + 	 	 	 	

where i� j� k run over the axes of an intrinsic CNT reference frame, �ij is the
polarizability tensor and �ijk the first hyperpolarizability. The efficiency of a CNT
as SHG emitter is then related to the magnitude of the first hyperpolarizability. The
SHG hyperpolarizability can be written in dipole approximation as [25]

(15) �ijk �2�����
 = e3
∑

lmn

[ �l �i�m� �n �j�m� �n �k� l�
��nl −2�− i�nl
 ��ml −�− i�ml


+ 	 	 	 	 	 	 	 	 	 	

]

where l�m�n run over the electronic eigenstates, e is the electronic charge and the
terms summarized by dots are obtained by permuting the first term. The parameters
�nl are related to the state lifetime � by the relation

(16) �nl = 1
�n

+ 1
�l

The form of the � tensor for chiral CNT can be established quite generally from
consideration based on the symmetry group GC . As described previously, chiral
CNT are invariant under U symmetry transformation. If the x axis is taken along U,
the transformation corresponds to x → x, y → −y, z → −z. It follows that, under
U, we have �zzz → −�zzz, �zzy → −�zzy, �yyz → −�yyz.

These transformations rules are in accordance with the invariance of the CNT
under U if and only if

(17) �zzz = �zzx = �xzz = �zzy = �yzz = �zxx = �xzx = �zyy = �yzy = 0

The first hyperpolarizability tensor for chiral CNT has then the form

(18) ��2�����
 =
⎛

⎝
0 0 0 xyz xzy 0 0 0 0
0 0 0 0 0 yzx yxz 0 0
0 0 0 0 0 0 0 zxy zyx

⎞

⎠

It is interesting to note that for chiral CNT the symmetry properties of the hyper-
polarizability tensor are governed by the isogonal point group. In fact the hyperpo-
larizability tensor of a system with Dq (q even) symmetry point group transforms
like [26] the tensor in Eq. (18). This finding enforces the statement that CNTs with
achiral topology have a vanishing hyperpolarizability. In fact, the isogonal point
group of achiral CNTs is D�2N
h, which is characterized [26] by � = 0. In the zero
temperature approximation, if, in Eq. (15), the state l is taken in the valence band,
the summation over m and n runs over conduction band states. The selection rules
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in Eqs. (12) and (13) allow to identify the state to state transition contributing to
summation in Eq. (15). In fact, the necessary condition for a non-vanishing CNT
electronic hyperpolarizability is the existence of three electronic eigensates satis-
fying, in view of the selection rules in Eqs. (12) and (13) and the tensorial form in
Eq. (18), the condition

�k�m�� �x�k�m±1��′� �k�m��′ �y�k�m±1��′′�(19)

�k�m��′′ �z�k�m��� �= 0

where the state �k�m��� singles out an irreps of the symmetry group GC .
The contributions ��0


xyz from k = 0 and ��k�m

xyz for k inside the ID for a given m, as

determined from the allowed transitions reported in Eq. (12) and (13), are shown
in Figs. 2 and 3.
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Figure 2. Diagrams of state to state transitions contribution to hyperpolarizability for k = 0
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Figure 3. Diagrams of state to state transitions contribution to hyperpolarizability for k inside the ID
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The hyperpolarizability of a chiral CNT is obtained by integrating ��k�m

xyz ,

after summation over band index m, for k inside the ID and adding the k = 0
contribution ��0


xyz.

�xyz�2�����
 = ��0

xyz + lim

�→0

q/2∑

m=−q/2+1

⎛

⎝
��/a
−�∫

0+�

�xyz�kEm� kE
∗
m+1� kE

∗
m
dk(20)

+
��/a
−�∫

0+�

�xyz�kEm� kE
∗
m−1� kE

∗
m
dk

⎞

⎠

As far as � and 2� do not match an allowed transition among the ones involved
in Figs. 2 and 3, the contributions to � in Eq. (15) are all out of resonance and
their magnitude is of the same order. On contrary, as � or 2� approaches the
energy of a state-to-state transition contributing to �, the associated term becomes
resonant and dominates with respect the others. In both cases, for a quantitative
determination of the magnitude of the � tensor an exact knowledge of the band
structure �m�k
, as dictated by CNT topology, is required. In the off-resonant case
the band structure, in principle, considerably complicates the integration over k. On
contrary, for resonant interaction, the integration over k collapses into a discrete
summation, but the quantitative determination depends now also on the knowledge
of the �nl parameters Eq. (16).

4. QUANTITATIVE CALCULATION OF �

The quantitative determination of the magnitude of the �xyz tensor component is
based on the explicit knowledge of the spatial dependence of the �k�m��� electronic
wavefunctions. As pointed out in Section 2 the �k�m��� functions transform as
the basis functions of the irreps of the symmetry group G and can be obtained with
the modified projector technique method [23] in tight binding approximation. The
so obtained symmetrized wavefunctions preserve the transformation properties as
dictated by the irreps of the symmetry group G.

For example, the wavefunction
∣
∣
0A

+
0

〉
, corresponding to the one dimensional

irreducible representation of G and obtained with the projector technique in tight
binding approximation, results to be fully symmetric under the symmetry transfor-
mations of G.

In the following, in order to simplify calculations and notation, the attention is
restricted to CNTs with N = 1 and hence s = 0. Despite the extension of calculations
to CNTs with N �= 1 is straightforward, it must be noted that almost all the CNTs
chiral topologies are characterized by N = 1. For such a class of CNTs the whole
topology is generated by the set of transformation

(
Cr

q�a/q
)t

U u. Being a CNT a
mono-orbit system, as pointed out in Section 2, the position vector 	Rtu of a carbon
atom is obtained with the transformation

(21) 	Rtu = (
Cr

q�a/q
)t

U u 	R00
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where 	R00 is the position vector of the atom chosen as origin, given in cylindrical
coordinates by

	R00 = ��0�0� z0
 =
(

D/2� 2�
n1 +n2

qR
�

n1 −n2√
6qR

a0

)

(22)

D = 1
�

√
Rq/2a0

It turns out that

(23) 	Rtu =
(

�0� �−1
u 0 +2�
rt

q
� �−1
u z0 + t

a

q

)

If �tu� indicates an orbital centred on the atoms at 	Rtu, in a similar fashion we
have �tu� = (

Cr
q�a/q

)t
U u�00�, where �00� is the orbital centred on the atom chosen

as origin. Armed with this formalism, it is possible to write down (Table 2) the
symmetry adapted electronic eigenfunctions in tight binding approximation, also
called generalized Bloch eigenfunctions, as calculated by Damnjanovic [21, 24]
with the modified projector technique method.

Where

�k
m�t
 = ka+2�mr

q
t hk

m = Arg�h1
m�k

(24)

h1
m�k
 =∑

t

Ht1e
i�k

m�t
 Ht1 = �00�H �t1�

As the expressions in Table 2 show, the generalized Bloch functions are constructed
by taking a linear combination of atomic orbitals centred on the carbon atom sites
and modulated with a phase factor. The so obtained functions are the projection
of a tight binding constructed eigenfunction on the irreducible bases of the group
Gc. For example, the symmetry transformation U of Gc corresponds to the 0 ↔ 1
exchange in the generalized Bloch functions in Table 2.

It is easy to verify that while the one dimensional representation A have a well
defined parity under U, the two dimensional representation E have not a defined
symmetry under U, in agreement with the general statement in Section 2. From

Table 2. Irreducible representation and generalized Bloch functions for the electronic
states of a chiral carbon nanotubes. GC is the dimension of the symmetry group

Irreducible Representation Generalized Bloch functions

0A
�
m�m = 0� q/2
 �0m�� = 1√

GC

∑

t
e−i�0

m�t
 ��t0�+� �t1�

kEm �km� = 1√

GC

∑

t
e−i�k

m�t

(
�t0�± eihk

m �t1�
)

kE
∗
m �km� = 1√

GC

∑

t
e−i�k

m�t

(
�t1�± eihk

m �t0�
)
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a theoretical point of view, summations over the index t in Table 2 are extended
from −� to +� but for calculations the summation can be truncated at an integer
tcutoff for which boundary effects are negligible. The integer tcutoff is related to
a characteristic CNT length Lchar to which all calculated values of hyperpolariz-
ability in the following will be referred. At first approximation we can assume that
Lchar ≈ 103�a/q
. This means that nearly 103 group elements characterize the tube
of length Lchar . In this case, for a carbon nanotube with topology �10� 1
 Lchar is
nearly equal to 200 nm.

The introduction of the generalized Bloch states reported in Table 2 allows to
obtain an explicit form for the matrix element in Eqs. (12) and (13) and then
ultimately of ��0


xyz and ��k�m

xyz . Quantitative calculation of

∣
∣�xyz �2�����


∣
∣ is then

possible once that the summation is truncated at some t ≤ tcutoff and only nearest
neighbours integrals are taking into account.

As pointed out, before the quantitative calculation of � requires the exact knowl-
edge of CNT energy band structures �m�k
. For the a non-resonant CNT-laser
interaction, when both � and 2� do not match the energy difference �m�k
−�m′�k

of a direct transition between two different bands, at a first approximation the k, m
dependence of denominators can be neglected. In such a limit, the term in Eq. (15)
have the following approximate expression

(25)
�l� i �m� �n� j �m� �m�k �l�

��nl −2�
��ml −�

≈ �l� i �m� �n� j �m� �m�k �l�

2�3

In this case a further simplification occurs, because the summation and integration
variable are separable allowing to obtain the various contribution to � in Eq. (20)
in a closed form.

As explicative example, the form of ��k�m

xyz is here reported for t = 0

��k�m

xyz ≈ {

cos �k
m�−n2
A�−n2� z
+ cos �k

m�n1
A�n1� z
(26)

+ cos �k
m�n1 −n2
A�n1 −n2� z


} ·
·{cos �k

m�−n2
A�−n2� x
+ cos �k
m�n1
A�n1� x


+ cos �k
m�n1 −n2
A�n1 −n2� x


} ·
·{cos �k

m�−n2
A�−n2� y
+ cos �k
m�n1
A�n1� y


+ cos �k
m�n1 −n2
A�n1 −n2� y


}

where

(27) A�n1z
 = �n10 �z�00�+�01 �z�n10�+�n11 �z�00�+�01 �z�n11�

The problem of the numerical estimation of � is now reduced to the choice of an
atomic wavefunction �tu�.
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At first approximation, the localized states �tu� are assumed as one p orbital
pointing along the normal of the CNT surface and centred on the atom at position 	Rtu

(28)
〈	r�tu〉= p

tu�	r
 = 	ctu · �	r − 	Rtu
 exp

⎡

⎢
⎣−

Z
∣
∣
∣	r − 	Rtu

∣
∣
∣

2aB

⎤

⎥
⎦

where 	ctu is a versor normal to CNT surface at atomic position, Z = 3	65 is
the effective nuclear charge as calculated following the Slate method and aB the
Bohr radius. With the replacement �tu� → 

p
tu�	r
 in the wavefunctions in Table 2,

quantitative calculations of optical properties of chiral CNT are possible once that
the summation is truncated at some t. In this case the dimension of the symmetry
group GC has to be taken equal to the number of atomic sites included in summation.

The approximation to p-orbitals, together with the restriction of interaction
to nearest neighbours, limits the validity of the following calculations to thick

Table 3. For each investigated topology the CNT diameter, the contribution
to �xyz from electrons with k = 0 and the calculated value of �xyz, are listed

CNT topology Diameter (Å)
∣
∣
∣�

�0

xyz

∣
∣
∣ (esu)

∣
∣�xyz

∣
∣ (esu)

�7� 5
 8	183 3	61 ·10−36 1	1 ·10−30

�8� 3
 7	719 5	28 ·10−35 1	3 ·10−30

�8� 5
 8	9 2	17 ·10−36 1	01 ·10−30

�9� 1
 7	477 2	00 ·10−31 4	1 ·10−30

�10� 7
 11	59 1	19 ·10−37 3	3 ·10−30

�10� 3
 9	24 1	8 ·10−35 0	74 ·10−30

�11� 2
 9	5 3	2 ·10−37 5	2 ·10−30

�11� 4
 10.5 6	39 ·10−36 1	21 ·10−30

�11� 5
 11	11 2	5 ·10−34 2	9 ·10−30

�11� 8
 12	95 3	00 ·10−40 1	58 ·10−30

�12� 7
 13	04 6	7 ·10−41 0	63 ·10−30

�12� 11
 15	06 2	3 ·10−33 0	6 ·10−30

�13� 2
 11	05 7	48 ·10−39 4	2 ·10−30

�13� 4
 12	06 4	6 ·10−36 3	04 ·10−30

�13� 5
 12	16 7	03 ·10−40 2	16 ·10−30

�13� 6
 13.18 1	76 ·10−34 2	9 ·10−30

�13� 7
 13	77 8	79 ·10−35 2	19 ·10−30

�13� 8
 14	38 7	5 ·10−42 0	63 ·10−30

�13� 10
 15	65 1	55 ·10−41 2	6 ·10−30

�13� 12
 16	97 2	11 ·10−33 0	81 ·10−30

�14� 1
 11	38 2	3 ·10−31 1	36 ·10−30

�14� 3
 12	31 4	88 ·10−39 1	9 ·10−30

�14� 5
 13	37 2	02 ·10−36 4	45 ·10−30

�14� 11
 17	01 2	9 ·10−43 0	98 ·10−30

�14� 13
 18	33 1	73 ·10−33 0	82 ·10−30

�15� 1
 12	16 2	3 ·10−31 0	72 ·10−30

�15� 14
 19	68 1	58 ·10−33 0	56 ·10−30

�16� 7
 16	005 1	58 ·10−44 2	47 ·10−30
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nanotubes (diameter greater than 7 Å) being the approximations plausible for
them only.

The results of non-resonant hyperpolarizability quantitative estimation for several
CNTs topologies and with � = 1 eV, are reported in Table 3. In the calculations all
series have been truncated at t = 1.

Within the model considered and in the limit of the described approximations,
the code estimates a value � ∼ 10−30 esu for most of the chiral CNT topologies.
No regular dependence of � on CNT diameter, ranging from 7.7 to 19.68 Å for the
investigated topologies, has been found in simulations.

The contribution from electrons at the origin of the ID is, for most of the
simulated topologies, order of magnitudes less than the contribution coming from
inside the ID. For (n1, n1 − 1) and (n1� 1) topologies, the k = 0 contribution is
only three and one order of magnitude, respectively, less than that from inside
the ID. It is interesting to note that these topologies, having a structure close to
the armchair and zigzag CNTs, are characterized by a low degree of chirality.
This result is in agreement with the findings in Section 2, where it was asserted
that hyperpolarizability of achiral CNTs is most determined by the transformations
properties of the k = 0 irreps.

It must be noted that no significant differences have been found between calcu-
lations performed for t = 0 and t = 1. This is a direct consequence of restriction to
nearest neighbours interaction and of the mono-orbit nature of the CNT topology.
In fact, within this scheme, the single carbon atom in the CNT constitutes an
elementary cell for the whole structure and hence the properties of the CNT, at
first approximation, are a replica of the properties of the elementary cell as deter-
mined by its interaction with nearest neighbours. The extension of sums to t > 1
is expected to refine the estimations and also to account for the reduced effect of
quantum confinement at increasing CNT diameters. Nevertheless, the extension of
summation to t > 1 stretches the limits of commercial PC computational resources
and extends considerably the computational time.

Conversely, if also non-nearest neighbours interactions are taken into account,
the truncation to t << tcutoff is not more valid and parallel calculation methods are
required to run the code.

If the exciting laser field interacts with the CNT resonantly, the magnitude
of the hyperpolarizabilty tensor is also affected by the lifetimes of the involved
electronic levels. Lifetime of electronic states in a CNT is mostly determined by
electron-electron scattering events. As far as electrons in a CNT are treated as a
Fermi liquid (despite there are experimental evidence of Luttinger liquid behaviour
[27]) the lifetime of an electronic state with an energy E above the Fermi level EF ,
is given by

(29) � ∝ 1

�E −EF
2

Lifetime increases for weakly excited state due to phase space limitations for
scattering events near the Fermi level. Hertel [28] demonstrated experimentally that
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� varies from 235 fs for E−EF = 0	03 eV to 18 fs for E−EF > 1	5 eV. It results that,
for excitation wavelengths in the near infrared (� ∼ 1 eV), the hyperpolarizability
can be enhanced up to one order of magnitude under resonant interaction regime.
Hyperpolarizabilities of the order of 10−29 esu are then in principle possible for
selected chiral CNT topologies. This value is slightly lower then the estimated
hyperpolarizability of chromophores and Sol-Gel, usually accounted as the most
efficient second order nonlinear optical materials [29].

5. CONCLUSIONS

We have presented the description of an approximate method to calculate the elec-
tronic hyperpolarizability for chiral CNTs topologies. The method extends to NLO
calculations the formalism developed by Damnjanovic [5] to model the influence
of topology on CNT linear optical response. The direct incorporation of CNT
symmetry properties into the set of basis function used for calculation, allows
to identify the state-to-state transitions which give a contribution to �. Despite
the heavy assumption of neglecting the detailed bands structure of the CNT and
the restriction of calculations to few atoms, the estimated values are typical of
systems with delocalized � electrons. This result essentially reflects the profound
meaning of direct incorporation of symmetry into calculations. The values of reso-
nant hyperpolarizability obtained with the developed method allows to set CNTs
next to the most efficient second order nonlinear optical materials. Nevertheless,
due to the high optical damage threshold [13], CNTs have to be considered very
promising second order optical materials for application in the high laser power
regime �P ∼ 1013 W/cm2
.

Being the selection rules selecting the various contributions, rooted in the CNT
topology as dictated by the couples of integers �n1� n2
, the method establishes,
in principle, a connection between NLO properties and growing mechanisms of
CNTs. In fact, for a given exciting laser frequency �, an assembling of CNTs with
a well-specified topology �n1� n2
 tailoring the band structure at resonance with an
allowed contribution to �, is expected to strongly enhance the quantum yield of
SHG from the sample.
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CHAPTER 11

ATOMISTIC MOLECULAR MODELING OF ELECTRIC
FIELD POLING OF NONLINEAR OPTICAL POLYMERS

MEGAN R. LEAHY-HOPPA, JOSEPH A. FRENCH,
PAUL D. CUNNINGHAM, AND L. MICHAEL HAYDEN
Department of Physics, University of Maryland, Baltimore County, Baltimore Maryland, USA

Abstract: The orientation of the nonlinear optical chromophore in a guest-host polymer system
under the application of an external electric field plays an important role in the electro-
optic activity in the material. The process of electric field poling of nonlinear optical
chromophores in polymer systems has been studied through both Monte Carlo simulations
and atomistic molecular modeling simulations. We review the progress of simulations
in this area as well as describe our efforts and progress in understanding the process of
electric field poling at an atomistic level of theory

Keywords: Atomistic molecular modeling; nonlinear optical polymers

1. INTRODUCTION

Molecular modeling is a valuable tool which can aide in the design and modification
of a wide variety of molecules from drugs to proteins through investigations of
the structure and properties of the materials. Industries from the pharmaceutical
industry to the fuel industry use molecular modeling to design new drugs, better
fuel additives, and improve polymers for packaging. Molecular modeling can be
used as a tool to investigate nonlinear optical polymers in an effort to identify the
structures which give rise to experimentally observed features and properties in the
material. The studies reported here investigate the behavior of the polymers under
the application of an external electric field. Electric field poling of nonlinear optical
polymers is a widely used experimental technique. Modeling of this process, as
described in this chapter, will be compared with experimental results from literature.

Nonlinear optical (NLO) polymers have been widely studied for their use in
electro-optic (EO) applications. The EO coefficient is one parameter that can be
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optimized to improve the performance of NLO materials and is directly proportional
to the applied electric poling field. Both atomistic and statistical modeling methods
have been previously applied in an effort to understand the poling process on a
microscopic level in these types of materials [1–4].

Although there are only a few groups which have studied the electric field
poling of NLO chromophores [1–4], molecular modeling has been used for a wide
variety of research over the past two decades. Theodorou and Suter [5–7] devel-
oped an atomistic model to study the molecular structure of amorphous glassy
polymers in order to enable the predictions of structural and thermodynamic prop-
erties of the bulk polymer. They used their model to further investigate mechanical
properties of amorphous polypropylene. Suter and others [8–10] followed this
work by investigating chain dynamics, conformational changes, and packing effects
in the bulk of a polycarbonate polymer glass. Mattice and co-workers [11, 12]
further investigated structural and conformational properties of glassy polymers
by modeling amorphous polybutadiene. Rigby and Roe [13–16] used alkane-like
chains to explore many properties of the bulk liquid and glass of these long-chain
molecules. The dependence of the glass transition temperature on different prop-
erties of the chains, the short range ordering of the chains and the orientational
correlations between sub-chains, density, pressure, and temperature dependence of
chain conformational distributions, and the distribution of free volume in the system
are among the properties Rigby and Roe investigated in the liquid and glass phases
of the alkane-like chains. Greenfield and Theodorou [17] and Misra and Mattice
[18] also studied free volume distribution in both liquid and glassy polypropy-
lene and atactic polybutadienes respectively. Time dependent properties such as
local chain dynamics near and above the glass transition temperature [19, 20] and
local dynamics of polyisoprene chains [21], bulk amorphous polybutadienes [22],
and polyisoprene chains [23] have also been studied. Diffusion properties of small
molecules in polymers have also been the topic of research for several groups
[24–26]. Several studies have focused on the development of methods for using
molecular modeling to determine glass transition temperatures of polymers [27–29].

More recently, Robinson and co-workers [2, 4, 30] have used Monte Carlo simu-
lations in order to investigate the electric field poling and its effects in organic
nonlinear optical materials. They investigated the role of intermolecular forces
between the chromophore molecules. In addition, concentration effects have been
studied. Kim and Hayden [1] used atomistic molecular modeling to examine the
electric field poling in a guest-host NLO polymer as well as static conforma-
tional properties of the polymer and dopant. Makowska-Janusik and co-workers [3]
followed Kim and Hayden’s work using atomistic molecular modeling and inves-
tigated guest-host NLO systems with various chromophore dopants.

Both classical and quantum mechanical methods are employed for various levels
of molecular modeling. While quantum mechanical methods can be used with small
molecules to yield precise results, classical force-field methods provide faster yet
approximate solutions for large molecules or molecular systems that could not
be studied using quantum methods. Although these two types of methods differ
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fundamentally in their calculations of the energy of the system, the two methods
are complementary. Classical methods are often parameterized using data from
quantum simulations. For studying large molecular systems, classical molecular
dynamics must be employed to investigate these materials since the systems are too
large for quantum mechanical calculations.

Molecular dynamics employs Newtonian mechanics to model the time evolution
of the system. The positions, velocities, and accelerations of each atom in the system
are calculated from the force-field potential. Newtonian mechanics describes the
relationship between the potential felt by each atom, the forces on each atom, and,
therefore, the accelerations, velocities, and positions of each atom at each time
step of the simulation. From the time evolution of the system, we can calculate
many properties of the system. In this chapter, we describe the history, methods,
and results of the work on the electric field poling of nonlinear optical polymeric
guest-host systems.

Kim and Hayden [1] were first to employ fully atomistic molecular modeling to
study the static and dynamic properties of a guest-host NLO polymeric system. Their
system consisted of the polymer host poly(methyl-methacrylate) (PMMA) and the
chromophore guest N ,N -dimethyl-p-nitroaniline (DPNA) with 3% mass fraction of
DPNA in the system. They studied static and dynamic properties of the system in
both poled and unpoled states at two different densities corresponding to systems
above and below the glass transition temperature, Tg. They also investigated the
locations of the chromophores with respect to the polymer backbone and torsional
angles of the polymer chain for the static case. In the dynamic case, they inves-
tigated the orientation of the dipole moments of the NLO chromophores during a
poling simulation. They compared the calculated values of < cos �> and < cos3 �>
obtained from the simulation trajectories to the theoretical values predicted by the
Langevin functions, L1( p) and L3( p), which correspond to the orientational distri-
bution for an ensemble of non-interacting dipoles in the presence of an external
electric field. They found that the calculated values of < cos �> and < cos3 �>
agreed with the theoretical prediction above Tg but not below Tg. Additionally, for
the sub-Tg system, the chromophores oriented themselves with the electric field
noticeably slower than those in the systems poled above Tg.

Makowska-Janusik, et al. [3] extended Kim and Hayden’s work, modeling the
electric field poling and the cooling process for three chromophores of differing
shapes. Both Kim and Hayden and Makowska-Janusik investigate electric field
poling in guest-host systems in which a polymer host is doped with an NLO guest
chromophore.

Robinson and Dalton [2] employed both equilibrium statistical mechanics using
Piekara’s [31] mean field approximation and Monte Carlo simulations to study the
effects of the poling field on NLO chromophores. Their investigation also included
studies of the effects of the shape of the chromophore and the number density
of chromophores in the system on the EO coefficient. One significant finding of
this study is the roll-off of the EO coefficient with increased chromophore loading
density. They found that the EO coefficient increases with number density to a
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peak value after which the EO coefficient steadily decreases with increased chro-
mophore loading [2]. This phenomenon was attributed to competition between the
chromophore-chromophore inter-dipolar energy and the electrostatic energy of the
applied field. The resulting “effective field” felt by the chromophores is described
in terms of a vectoral combination of the applied field and the local dipolar
fields due to near-by chromophores. Robinson and Dalton demonstrate consis-
tent results between calculations using the two different models. The Monte Carlo
simulations provide more detailed information about the systems than the equilib-
rium statistical mechanics using Piekara’s approximation [2]. One of the goals of
atomistic modeling is to provide even more detailed structural information of the
poling process.

2. THEORY

Electro-optic activity in guest-host materials can be quantified in terms of the
electro-optic coefficient, r33, which can be expressed as

(1) r33 =
∣
∣
∣
∣
2Nf�

〈
cos3 �

〉

n4

∣
∣
∣
∣ �

where N is the chromophore number density, f is a product of local field factors,
�(�� 0��) is the molecular hyperpolarizability, and n is the index of refraction.
The order parameter < cos3 � > reveals the level of ordering that has been achieved
in the material under the application of the electric field. This quantity plays a
significant role in understanding the materials under investigation [2].

In order to understand the overall orientation of the chromophores within guest-
host systems under differing external electric fields, we examine the orientational
alignment of the dipole moment of the chromophores with respect to the direction
of the external electric field. In the non-interacting rigid gas model, the intermolec-
ular electrostatic interactions are ignored and one can describe a general order
parameter of

(2) �cosn �� = Ln �p�

where Ln�p� is the nth order Langevin function [31] with � the angle between the
dipole moment of the chromophore and the external electric field vector and p given
by 	E/kT . Here, 	 is the dipole moment of the chromophore, E is the strength of
the applied electric field, k is Boltzmann’s constant, and T is the temperature of
the simulation in Kelvin. Given the above assumptions, one can then express the
order parameter as

L1 �p� = coth �p�−1/p = �cos �� �(3)

L3 �p� = (
1+6/p2

)
L1 �p�−2/p = 〈

cos3 ���
〉



This model predicts a linear increase in the electro-optic coefficient with an increase
in the chromophore concentration. For small dipole moment molecules and for
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extremely dilute concentrations of chromophores, this theory reasonably predicts
the order parameter achieved experimentally and via atomistic molecular modeling.
But even for small dipole molecules we do not find a linear increase in the electro-
optic coefficient with increasing the chromophore concentration, but instead find
that the electro-optic increases sub-linearly (see Figure 7 later). This roll-off of the
electro-optic coefficient has been seen both experimentally and through Monte Carlo
simulations [2]. The roll-off can be attributed to electrostatic interchromophore
interactions, which must be included in the model in order to accurately predict the
order parameter.

When the intermolecular electrostatic energy cannot be neglected, we can use
the methodology of London [30, 32] to obtain an expression accounting for the
“effective field” the chromophores experience

(4) < cos3 �> = L3 �p�
[
1−L2

1 �W/kT�
]
�

where W is the chromophore-chromophore interaction energy and is expressed as

(5) W = �1/R6�
[
�2	4/3kT�+2	2�+3I�2/4

]



Here, R is the average distance between chromophores, � is the polarizability,
and I is the ionization potential of the chromophores [30, 33]. The multiplicative
factor which scales the Langevin function in Equation (4) is highly dependent on
the interchromophore separation distance. Using simulation parameters for typical
NLO dopant molecules, Figure 1 shows a graph of the bracketed quantity in
Equation (4) as a function of interchromophore separation distance for three different
dipole moments. Although the polarizability of a molecule is dependent on the
dipole moment, we illustrate the trend of the functional form of this bracketed
quantity with a change in dipole moment in Figure 1. Since the classical force-
field being used does not take into account the polarizability, we only vary the
quantity which is taken into account by the force-field. Since we can vary the
dipole moment of a chromophore by changing the charges assigned to the atoms in
the chromophore, we investigate the effect of the change in the dipole moment of
the chromophore in the bracketed quantity in Equation (5) and hence its effect on
the overall order predicted by Equation (4).

In Equation (5) we observe the combination of three types of electrostatic inter-
actions. The first term in brackets �	4/R6� denotes a dipole-dipole interaction. The
second term �	2�/R6� denotes a dipole interaction with an induced dipole. The
third term �I�2/R6� denotes an induced dipole interaction with another induced
dipole. Given the simulation parameters from Figure 1 and a dipole moment of
15 D, the dipole-induced dipole interactions are more than one order of magnitude
smaller than the dipole-dipole interactions and the induced dipole-induced dipole
interactions are smaller by a factor of about three. From these estimations, it can
easily be seen that for molecules with large dipole moments, it is important to
include the dipole-dipole interactions and perhaps induced dipole-induced dipole
electrostatic interactions.
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narrow region over which the factor dramatically decreases the predicted order parameter

3. METHODS/TECHNIQUES

Both Monte Carlo statistical mechanical simulations and atomistic molecular
dynamics simulations have been employed to study the phenomenon of the electric
field poling of NLO materials. The Monte Carlo approach has been used by the
groups of Robinson and Dalton [2, 30, 33, 34]. These workers have investigated the
role of the shapes and concentrations of the chromophores, the role of intermolec-
ular interactions, and the competition between the intermolecular interactions and
the poling process. The atomistic molecular dynamics of the poling of NLO chro-
mophores has been studied by Kim and Hayden [1] as well as Makowska-Janusik,
et al. [3]. Both of these groups have investigated the poling of small chromophores
with low dipole moments at dilute concentrations. Kim and Hayden have addition-
ally investigated the static conformational properties of both poled and unpoled
systems. Makowska-Janusik, et al., have extended the work of Kim and Hayden to
include the cooling process under the continued application of the electric field.

3.1 Monte Carlo Statistical Mechanics

Robinson and Dalton use Monte Carlo statistical mechanics to explore concentra-
tion and shape dependencies of the chromophores. Monte Carlo methods provide
valuable information about the distribution of a collection of chromophores but
are not able to provide atomistic information about the systems. The Monte Carlo
simulations performed by Robinson and Dalton employ an array of point dipoles on
a periodic lattice with the given parameters for the shape of the chromophores and
the chromophore spacing adjustable to achieve the desired chromophore concentra-
tion. The model system consisted of 1000 chromophores on a body-centered cubic
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lattice with 3 dimensions �10×10×10�. The lattice spacing was controlled to vary
the chromophore concentration. These studies have provided valuable information
regarding the optimal loading concentration for a chromophore of a given shape and
dipole moment. In performing their simulations, dipole i was chosen to rotate to a
new angle through a step of step size � (cos �i) and � (i) to the new angles cos �i

and i. The change in energy from the move, �Ei, was calculated and the move
was accepted if the criteria �E < 0 was met. In other words, if the move resulted in
a decrease in energy for the system, the move was accepted. If the criteria was not
met, e.g. �E > 0 and the system experienced an increase in energy due to the move,
the probability of that move, exp�−�Ei/kT�, was compared with a random number
uniformly generated between 0 and 1. If the probability of the move was greater
than the random number generated, the move was accepted, otherwise, the move
was rejected. This implies that if the move produces a small change in energy, the
move is most likely to be accepted. This procedure assures a Boltzmann distribution
in cos �i and i [2, 35].

3.2 Molecular Modeling

Kim and Hayden and Makowska-Janusik, et al., both employ classical molecular
dynamics to model the behavior of the chromophores under the application of an
electric field. Although the method is classical, the force-fields are parameterized
using data from both empirical data sets and ab-initio calculations.

In our current work, in addition to that of Kim and Hayden [1], the molecular
dynamics were performed using the DISCOVER (98.0) [36] molecular modeling
package employing the consistent valence force-field (CVFF) [37, 38]. The force-
field parameters used can be found in Kim and Hayden’s reference. Makowska-
Janusik, et al., used the GROMACS [39–41] molecular dynamics package and a
CVFF force-field with different parameters [3]. The potential energy was calculated
using the terms

(6) V = Vbond +Vangle +Vtorsion +Voop +Vnonbond + (Vfield

)

where Vbond is the potential energy of bond stretching, Vangle is the potential energy
of the angle bending interactions, Vtorsion is the potential energy of the torsional
interactions, Voop is the potential energy of the out of plane interactions, and Vnonbond

encompasses both non-bonded van der Waals and Coulombic interactions. The
potential energy of the external electric field, Vfield, is calculated using the summa-
tion over all the particles of the dot product of the position vector of each particle
with the product of the charge of the particle with the applied field,

(7) Vfield =
n∑

i=1

ri · �qiE� �

where i is the particle index. The inclusion of the energy of the external field in
the potential energy calculation is limited to the poling stage of the calculation.
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Group-based cutoff distances were used in the non-bond energy term calculations
in order to avoid artificial splitting of dipoles. Neutral charge groups were created
using the partial charges assigned by the force-field for the polymer host and by
the semi-empirical method MOPAC [42] for the chromophore. The cutoff distances
varied as a function of the total size of the amorphous cell. For van der Waals
interactions, the cut-off distance used was 9.5 Å and for the Coulomb interactions,
the cut-off distance is set equal to half the length of one side of the amorphous
cell, which in our case is cubic. We found that in most cases the force-field
assigned partial charges underestimate the dipole moment of the chromophore
significantly. In order to more reasonably represent the dipole moment of the
chromophores, and therefore the interactions between chromophores, we find it
necessary to replace the partial charges assigned by the force-field with that from
a MOPAC calculation with the AM1 Hamiltonian. Semi-empirical and quantum
mechanical calculations of the dipole moment of chromophores as well as other
material parameters, such as the first hyperpolarizabiilty �, are widely accepted
values of these parameters [33, 43–45].

The amorphous cells were generated using a Monte Carlo method implemented
in Cerius2 [46] at the given densities with three-dimensional periodic boundary
conditions. In order to avoid large energy jumps between sequential configurations
in the molecular dynamics simulations, the systems were first equilibrated. We
used a similar equilibration procedure as Kim and Hayden. Experimentally, chro-
mophore reorientation occurs on time scales larger than nanoseconds, which is the
currently realizable computational time scale. In order to expedite the orientation
process to computational timescales, the temperature and applied electric field are
increased [47] while maintaining a constant ratio in the parameter p. The temper-
ature is chosen to be in the rubbery region for the material which is determined
through constant pressure and temperature dynamics studies for each material under
investigation. Additionally, for polymers, it has been experimentally shown that as
pressure increases, the glass transition temperature, Tg, of the system increases by
approximately 20 �C per 1000 atmospheres of pressure [48–51]. Because of this
rise in Tg with an increase in pressure, the density of the system is also chosen to
keep the pressure in the system at atmospheric pressure.

The NPT studies involve performing molecular dynamics on the system while
allowing the volume and therefore density of the system to vary at a given temper-
ature and pressure. We begin with a system at a high temperature, e.g., 700 K, and
perform molecular dynamics to allow the system to reach an equilibrium configu-
ration. Monitoring the density of the system throughout the simulation, we can find
the equilibrium density of the system. Then, the system is cooled in an increment
of 50 K and molecular dynamics are performed until the system once again reaches
equilibrium. The equilibrium density is again recorded and the process continues
in 50 K increments until the system has been cooled to about 200 K. This process
allows us to plot the density of the system as a function of temperature. Exam-
ining this plot, we observe a break in the curve which defines the simulated glass
transition temperature. Figure 2 shows an example of this plot for a chromophore
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which we call ezFTC (Figure 3) as the guest in the polymer host poly(methyl
methacrylate), PMMA, in a 9% by weight concentration.

The NPT study allows us to determine the appropriate temperature and density
to ensure the simulations are occurring in the rubbery region of the material. It
should be noted that the simulated and experimental glass transition temperatures
for many materials are different. The simulated Tg is usually found to be higher
than that determined experimentally [3, 28]. This high glass transition temperature
results from the high cooling rate of the system, 50 degrees in 1.5 ns or 3×1010

degrees/sec. The procedure was adapted from a study by Soldera [28] in which
the simulated glass transition temperature of two tacticities of PMMA was investi-
gated. For syndiotactic PMMA the simulated Tg was found to be 211 �C or 484 K
and for isotactic PMMA the simulated Tg was found to be 157 �C or 430 K. For
comparison, the experimental Tg of PMMA is around 100 �C. Although there is a
difference between the two values, as the experimental Tg is the important quantity
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for determining optimal poling conditions in the laboratory, the simulated Tg is the
quantity that is important for determining optimal simulation poling conditions.

Once the simulation parameters have been determined, the system equilibration
process can begin. Thirty to fifty amorphous cells are constructed from which those
with the lowest energy are selected. All cells undergo energy minimization until
convergence is reached using a conjugate gradient method with a convergence
criteria of 0
1 kcal mol−1 Å−1. We then choose the desired number of configurations
with the lowest energy in order to make certain that all starting configurations are
energetically stable and will not experience a sudden large jump or drop in energy
during the next phase of the equilibration process. For example, if the systems are
in a high-energy configuration, there will be a large difference in energy between
successive steps in the molecular dynamics and the simulation will terminate. The
second step is the relaxation by NVT molecular dynamics (MD) for 100–200 ps
at the poling temperature, recording the configuration every 100 fs. The lowest
potential energy configuration of the MD is further minimized for 500 iterations
with the same convergence criteria as the initial energy minimization. The last
configuration of this second minimization is the beginning configuration for the
poling stage of the simulation. The poling stage of the simulation consists of 1–2 ns
of NVT MD, recording the configuration every 1 ps, with the applied electric field
turned on for the entire length of the simulation. The temperature of all the MD
simulations is controlled with the velocity scaling method [52] with a temperature
window of 10 K around the simulation temperature. The NVT MD was performed
using a 1 fs time step using the velocity Verlet method [53]. The procedure and
parameters employed are similar to those of Kim and Hayden [1]. Calculations
were executed on an SGI Challenge-XL server with 0.248 s/step of CPU time for
the MIPS R10000 processor and a XEON 2 GHz based LINUX server.

4. RESULTS

The Monte Carlo simulation work of Robinson and Dalton has shown good
agreement with experimental work. The electro-optic coefficient of a material exper-
imentally exhibits what we will call a roll-off with increased chromophore concen-
tration past a peak value. The EO coefficient increases linearly with increasing
chromophore concentration at low concentrations for all chromophores and at all
concentrations for chromophores with small dipole moments. For chromophores
with larger dipole moments, the roll-off of the electro-optic coefficient is depen-
dent on the shape of the chromophore and the dipole moment. For more spherical
chromophores, the EO coefficient slightly deviates from the predicted linear value
at higher concentrations. The actual EO coefficient is lower than that predicted by
the non-interacting rigid gas model, but at high concentrations, the EO coefficient
is still increasing with increasing chromophore concentration, just at a slower rate.
For ellipsoidal-shaped chromophores, the electro-optic coefficient increases linearly
at low chromophore concentrations but after a certain concentration, determined by
the dipole moment of the chromophore, the EO coefficient actually decreases in
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value. This is the roll-off of the electro-optic coefficient referred to earlier in this
paper. Robinson and Dalton’s Monte Carlo simulations have accurately modeled
the experimental roll-off of the electro-optic coefficients adjusting for the shape
of the chromophore (spherical or ellipsoidal) and the value of the dipole moment.
Although this finding is extremely valuable, it is limited in its predictive capa-
bilities for future development of chromophores. The only adjustable parameters
with respect to the chromophores in the systems are the shape, dipole moment,
and concentration of the chromophores. Detailed structural information cannot be
obtained through these types of simulations. For more detailed structural informa-
tion, we must turn to atomistic molecular modeling.

Both Kim and Hayden [1] and Makowska-Janusik, et al., [3] have used a dilute
concentration of a small, nearly spherically shaped chromophore with a small
dipole moment, N ,N -dimethyl-p-nitroaniline (DPNA) in a guest-host configuration
with the polymer host poly(methyl methacrylate) (PMMA) (Figure 4). The order
parameter obtained from their simulations, < cos3 � >, which is directly proportional
to the electro-optic coefficient, matched that predicted by the non-interacting rigid
gas model in both studies. Given the dilute concentration of only 3% by weight of
chromophore and the small dipole moment of the chromophore �< 4D� it is expected
that the chromophores in this system would follow the non-interacting rigid gas
model. Makowska–Janusik, et al., expanded this poling work to include not only
DPNA but two other chromophores, 4-(dimethylamino)-4′-nitrostilbene (DMANS)
and N ,N′-di-n-propyl-2,4-dinitro-1,5-diaminobenzene (DPDNDAB). DMANS is a
more rod-like chromophore than DPNA and DPDNDAB is more spherical (see
Figure 4).

In the work of Mankowska-Janusik, et al., [3] for DPNA, the orientational
alignment of the chromophores was in agreement with the prediction from the
non-interacting rigid gas model. For the DPDNDAB chromophore, which is larger,
only at extremely high poling fields did the order in the system approximate that
predicted by the non-interacting rigid gas model. At lower fields, the order in the
system is significantly less than that predicted by the non-interacting rigid gas
model. For DMANS, even at high poling fields, the orientation achieved in the
system is not equivalent to the predicted values. Because the DMANS chromophore
is a more elongated chromophore, there is a greater chance of entanglement with
the polymer matrix. The entanglement with the polymer would inhibit the mobility
of the chromophores, therefore leading to a lower degree of orientation with the
poling field than with the smaller chromophores. The DMANS chromophore did
not align with the poling field as well as the smaller chromophores, pointing to the
fact that this chromophore had decreased mobility in the polymer host.

Recently we have been working toward the extension of the earlier work to
include larger chromophores representative of those we use experimentally, in addi-
tion to the integration of potential terms which specifically include the electrostatic
interactions between the chromophores within the system. All the systems we have
investigated are guest-host systems with the polymer host PMMA. Similarly to
Kim and Hayden, we found agreement between the poled order exhibited by small
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Figure 4. Diagram of the three chromophores DPNA, DMANS, DPDNDAB, and the polymer PMMA

chromophores and the order predicted by the non-interacting rigid gas model. The
orientational order in the system is strongly influenced by the strength of the poling
field allowing any level of ordering in the system by manipulating the strength of
the poling field while keeping all other simulation parameters constant, i.e., temper-
ature, density. Figure 5 shows the effect of changing the poling field by a factor of
5 while keeping the other simulation parameters constant in the system.

The DPNA chromophore has a small dipole moment, less than 4 D, as calculated
using the partial charges on the atoms assigned by the force-field. It would be
difficult to see the concentration effect of the roll-off of the electro-optic coefficient
with that small of a dipole moment.

In order to increase the dipole moment of the chromophore, we substituted the
partial charges associated with the chromophore from the semi-empirical calculation
MOPAC in the place of the force-field charges. Using the MOPAC charges, DPNA
has a dipole moment around 8 D. Although this dipole moment is more than two
times larger than that obtained using the force-field charges, it is still too small to
see chromophore-chromophore interactions at typical concentrations. We created
a chromophore which we named dinitrovinylmethylpyridine (DNVMP) (Figure 6)
which is approximately the same length and shape as DPNA, but has a dipole
moment of 13 D using the MOPAC charges. According to Robinson and Dalton’s
Monte Carlo simulations, an elliptically shaped chromophore with a dipole moment
around 13 D should exhibit a roll-off of the electro-optic coefficient with a peak
value occurring around a concentration of 4
5×1020 molecules/cm3.

Figure 7 shows the results of a concentration study of DNVMP in PMMA. At
the lower concentrations, the linear trend in the data agree with the prediction of the
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Figure 6. Structure of DNVMP

non-interacting rigid gas model. In the highest concentration, however, the order
observed in the system is significantly less than that predicted by the non-interacting
rigid gas model. The deviation from the straight line fit to the first points can easily
be seen.

Recall that not only does the dipole moment of the chromophore play a role in
the poling of the systems but also the shape of the chromophore. The DNVMP
chromophore has a large dipole moment but is a small chromophore. It is more
spherical in shape than elliptical. We initially used the DNVMP chromophore since
we know that small chromophores like DPNA are able to be poled well with
reasonable simulation parameters, temperature and applied field values. Moving to a
chromophore with larger dipole moment, but not changing the shape, minimized the
number of parameters we changed between studies, therefore limiting the number
of factors which may have caused differences between the poling behavior of the
DPNA system and the DNVMP system. In Figure 7, although we do see a devia-
tion from the linear relationship of the electro-optic coefficient with chromophore
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Figure 7. Concentration study of DNVMP in PMMA. Data points are the solid circles. Line is a linear
fit to the first three points of data. The most concentrated system experiences a deviation from the linear
curve. Here the strength of the poling field is 1
2 kV/�m

concentration, we do not see as large a roll-off as is expected with an elliptical
chromophore with the same dipole moment. This leads us to conclude that the
DNVMP chromophore, although it has a large dipole moment, is too spherical
in shape to see the sharp roll-off as is seen in systems with chromophores with
large dipole moments which are elliptical in shape. It is evident that in order to
model the roll-off of the electro-optic coefficient with the increase in chromophore
concentration, we need to not only increase the size of the dipole moment of the
chromophore, but also to make the shape of the chromophore elliptical.

The shift to the elliptical chromophore is a large jump from the simulations
with DNVMP and DPNA since they both are small chromophores. Determining
the simulation parameters for which a dilute solution of the larger dopant gives
the simulated order parameter equal to those predicted by the non-interacting rigid
gas model is non-trivial. The chromophore we chose to use for this stage in the
simulations we call ezFTC (Figure 3). First we performed an NPT study (Figure 2)
to determine the temperature and density of the polymer composite of ezFTC
and PMMA which corresponds to atmospheric pressure. The break between the
two fit functions for the glassy and rubbery regions defines the simulated glass
transition temperature of the system. We use the curve to guide our choice of
starting parameters so that we ensure that poling occurs in the rubbery region.

We chose the temperature of 600 K for our simulations and initially choose a
density of 0
9 g/cm3 so that we were performing the simulations in the rubbery
region of the polymer. Examination of the poling results (Figure 8) reveals that at
this density and temperature, and a dilute concentration (5% by weight), the system
does not behave as the non-interacting rigid gas model predicts. The predicted
order for this system has a value of 0.60. The system’s calculated order parameter
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was 0
32 ± 0
11. The ezFTC chromophores are much larger than the DPNA and
DNVMP chromophores which are each approximately 8 Å in length whereas the
ezFTC chromophore is about 22 Å long. We have attributed the lack of alignment
in the ezFTC system at 0
90 g/cm3 to steric hindrance. The large chromophores
need more free volume in the system in order to be able to freely rotate. The
chromophores need to be able to push the polymer out of the way in order to have
enough room to rotate to align with the applied field. By lowering the density,
we begin to see alignment which agrees with the predicted value from the non-
interacting rigid gas model. The comparison between the systems with densities
of 0
70 g/cm3�< cos3 �> = 0
50±0
08� and 0
50 g/cm3�< cos3 �> = 0
60±0
07�
does not show an extremely large difference in the ordering of the chromophores
in the systems, however, the systems at 0
50 g/cm3 ordered as predicted by the
non-interacting rigid gas model. All three density system calculations consisted of
16 amorphous cells which were equilibrated using the technique described earlier
and were poled for 2 ns. The average order parameter, < cos3 �>, has been time
averaged over the last 1 ns of simulation. Based on this study of the ordering
of the systems at different densities, we chose the lowest density to perform a
concentration study for the ezFTC chromophore in PMMA.

In the concentration study, several different concentrations of the polymer and
chromophore were created and poled in order to see the effect of increased concen-
tration on the orientational order in the systems. Due to the low density in the
systems, the range of concentrations we were able to study is only from 0
45×1020

to 5
57×1020 molecules/cm3.
It is important to understand the magnitude of all contributions to the energy

of the system before choosing a poling field. Although the chromphores will align
more with a strong poling field, if the poling field interaction energy with the
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dipole moment of the chromophores is much greater than inter-chromophore inter-
action energies, there will be no way to investigate the inter-chromophore effects
in the poling process. Since these inter-chromophore effects play a large role in
the experimental poling efficiency, it is essential to consider these interactions in
the modeling of the poling process. For example, for the ezFTC chromophore
system, with a dipole moment of 14 D, a polarizability of 6
43×10−23 cm3, and an
ionization potential of 1
29×10−18 J, Figure 9 shows the values of the poling field
interactions with the dipoles (solid horizontal lines), and the three inter-molecular
interactions between, two dipoles, a dipole and an induced dipole, and two induced
dipoles (dashed lines). Given an inter-chromophore interaction distance of 15 Å,
the poling field interaction with the dipole moment for the p = 5
65 case, where
the poling field strength is 1 kV/�m, is five times as large as the largest of the
three inter-molecular interactions, the dipole-dipole interaction energy. At this p
and an interchromophore separation distance of 15 Å, we would not expect to
see any inter-chromophore effects due to the overwhelming poling field interac-
tion energy. In our ezFTC simulations, the inter-chromophore separation distances
are 6 to 9 Å. According to Figure 9, intermolecular interactions between dipoles
are on the order of or greater than the interaction energy between the poling
field and the chromophores. From Figure 10, however, it is clear that intermolec-
ular interactions are not driving the ordering of the system as the concentration
of the system is increased. In addition, visual inspection of the locations of the
chromophores within the simulation boxes reveals a phase separation between the
chromophores and the polymer at the higher concentrations. The concentrations
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Figure 9. Interaction energy between the poling field and the chromophore (solid lines) for various
values of the parameter p. Interaction energy between two dipoles, two induced dipoles, and a dipole and
an induced dipole (dashed lines). The vertical axis is the interaction energy for each of the intermolecular
interactions as well as for the poling field interaction with the chromophore
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Figure 10. Concentration effect of ezFTC chromophores in PMMA for the parameters corresponding
to a value p = 5
65, E = 1 kV/�m, T = 600 K. The linear increase in the electro-optic coefficient with
an increase in concentration corresponds to the poling field-dipole interaction energy overwhelming the
inter-chromophore interactions. Solid line is a linear fit to the data (circles)

we are using in this simulation are significantly higher than what is used exper-
imentally for all except the lowest two concentrations shown on the graph on
Figure 10. With a similar chromophore, experimental concentrations of the system
reach a maximum electro-optic activity around 25% by weight. For comparison,
the second point on the graph in Figure 10 has a concentration of 25%. The linear
increase in the electro-optic activity in the material with increasing concentration
shown in Figure 10 may be a result of the phase separation in the systems with the
close packing of the chromophores having a minimum energy configuration in the
poled state.

The inter-chromophore interactions between the dipoles competes with the inter-
action between the poling field and the chromophores. These inter-chromophore
interactions, if present, should reduce the ordering in the systems with chromophores
which are in close proximity to their neighbors. In the case of the ezFTC system
at the density under investigation, 0
50 g/cm3, if chromophore-chromophore inter-
actions were observable we would expect a significant reduction in ordering at
concentrations greater than 5 × 1020 molecules/cm3. However, we do not see any
reduction of order (Figure 10) for increasing chromophore concentration. This
might be explained by recalling (Figure 9) that for p = 5
65, the poling field
interaction is significantly stronger than the inter-chromophore interactions at this
concentration.

In our current model, the non-bond interactions between atoms take two inter-
actions into account, the Coulombic interaction between atoms and the interaction
between the poling field and the atoms. The Coulombic interaction is inversely
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proportional to the distance between atoms and directly proportional to the charges
associated with those atoms,

(8) UCoulomb ∼ qq

r

This can be readily compared with the dipole-dipole interaction,

(9) Udipole-dipole ∼ 	2

r3
�

which is directly proportional to the dipole moment squared and inversely propor-
tional to the distance between dipoles cubed. The dipole moment, however, is
simply a combination of the charges and locations of the atoms in the chromophores.
It can be seen, then, that the Coulomb interactions include (strictly) the dipole-
dipole interactions since the dipole-dipole interactions are a combination of charges
and distances. Therefore, without the addition of any extra terms in the potential
force-field, the largest of the inter-chromophore interactions should be observable
as long as the poling field interaction does not overpower the inter-chromophore
interaction. Finding the correct balance between the poling field strength, which
affects poling efficiency because of steric hindrance, and the interactions between
the chromophores is not a trivial task.

5. DISCUSSION

Atomistic molecular modeling studies of the electric field poling of nonlinear
optical polymers have been studied by at least two groups over the past few years.
Methods for determining the simulation parameters corresponding to appropriate
experimental conditions are ongoing. It is important to keep the simulations rooted
in experiments as their applicability is limited if the simulation parameters keep the
simulations far from reality.

In performing molecular dynamics, the first important quantity to determine is
the simulation glass transition temperature of the system. To do this, constant
temperature and pressure molecular dynamics is performed at a temperature much
higher than the “expected” glass transition temperature of the material, 700 K
for example, and repeated to “slowly” cool the system to below the transition
temperature, 200 K for example. The linear fits to the beginning and end of the
data map out two regions in the material, the glassy region and the rubbery region.
The crossing point of the two fit functions defines the simulation glass transition
temperature. Recall that this temperature will be higher than the corresponding glass
transition temperature of the material due to the high cooling rate. A temperature
change of 50 degrees per 1.5 ns yields a cooling rate of about 3×1010 degrees per
second. This high cooling rate is unavoidable with the current computational time
scales.

Once the temperature and density of the simulation at atmospheric pressure have
been determined from the NPT study, the strength of the poling field should be
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chosen so that inter-molecular forces such as the dipole-dipole interactions are not
overwhelmed. This requires some knowledge of the concentrations at which the
simulations will be performed, however, as a rough calculation, the chromophore
concentration can be approximated as 1/ 3

√
N where N is the number density of

the chromophores in the system. Using this information to approximate the inter-
chromophore interaction distance, the choice of poling field can be made.

Before beginning the concentration study, a simulation with a single chromophore
dopant should be performed to verify ordering equivalent to the thermodynamic
prediction of the rigid gas model. If the orientational order of this system does
not correspond to the non-interacting rigid gas model prediction, the density of the
amorphous cells should be adjusted such that the orientational order in the system
is in agreement with the non-interacting rigid gas model, i.e., < cos3 �> = L3�p�.

Although no one has yet reproduced the experimental roll-off of the electro-optic
coefficient with increased chromophore concentration using the atomistic molecular
modeling methods to date, significant progress has been made. We are currently
working on integrating the three explicit terms for the dipole-dipole interaction, the
dipole-induced dipole interaction, and the induced dipole-induced dipole interaction
into the simulation. The results of this work will be published elsewhere.
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NONLINEAR OPTICAL PROPERTIES
OF CHIRAL LIQUIDS
Electric-dipolar pseudoscalars in nonlinear optics
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Abstract: We give an overview of linear and nonlinear optical processes that can be specific
to chiral molecules in isotropic media. Specifically, we discuss the pseudoscalars that
underlie nonlinear optical activity and chiral frequency conversion processes in fluids.
We show that nonlinear optical techniques open entirely new ways of exploring chirality:
Sum-frequency-generation (SFG) at second-order and BioCARS at fourth-order arise in
the electric-dipole approximation and do not require circularly polarized light to detect
chiral molecules in solution. Here the frequency conversion in itself is a measure of
chirality. This is in contrast to natural optical activity phenomena which are based on
the interference of radiation from induced oscillating electric and magnetic dipoles, and
which are observed as a differential response to right and left circularly polarized light.
We give examples from our SFG experiments in optically active solutions and show how
the application of an additional static electric field to sum-frequency generation allows
the absolute configuration of the chiral solute to be determined via an electric-dipolar
process. Results from ab initio calculations of the SFG pseudoscalar are presented for a
number of chiral molecules

Keywords: chiral molecules; optical activity; pseudoscalars; liquids; second-order nonlinear optics;
sum-frequency generation; SFG; electric field induced SFG; nonlinear optical activity

1. INTRODUCTION

The term “chirality”, first introduced by Lord Kelvin in his Baltimore lectures,
describes any system or structure that possesses a sufficiently low symmetry such
that it is distinct from its mirror image [1, 2]:

“I call any geometrical figure, or group of points, chiral, and say that it has chirality if its image in
a plane mirror, ideally realized, cannot be brought to coincide with itself.”
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Chirality is found at all physical length scales: from interactions mediated by the
weak force to the anatomy of living organisms. It plays a particularly important
role in biochemistry, as most biological molecules, including proteins, DNA, and
their building blocks – the amino-acids1 and sugars – are chiral. Surprisingly, all
living organisms contain almost only ‘left-handed’ amino-acids and ‘right-handed’
sugars. This exclusive homochirality (having all molecules of one type of the same
handedness) has the important consequence that the pharmaceutical activity of many
biological molecules is often directly related to their chirality. Besides sugars, which
organisms can only metabolize in the D-form, there are many examples of the
different physiological action of the two mirror-image forms (enantiomers) of a
chiral molecule. Despite clear differences in biological action, the enantiomers of
a chiral molecule are, however, exactly alike in all chemical and physical proper-
ties except those that involve a left-right difference. This makes the observation
and detection of chirality a challenging task. Only under a chiral influence, such
as another chiral molecule or circularly polarized light, can interactions distinguish
between the mirror-image forms of a chiral molecule. Optical methods are often the
only practical physical means to probe molecular chirality, and a liquid’s ability to
rotate the plane of polarization of a linearly polarized light beam traversing it (in
the absence of a static magnetic field), is the classical distinguishing characteristic
of a chiral liquid, i.e. one that is “optically active”. Conventional optical activity
phenomena, such as optical rotation and circular dichroism, are based on the interfer-
ence of induced oscillating electric- and magnetic (and electric-quadrupole) moments,
and arise from a differential response to left and right circularly polarized light.

In the presence of intense electromagnetic radiation from a laser, the induced
moments may show a nonlinear dependence on the incident field strength. Nonlinear
optical activity as well as new chiroptical phenomena may now be observed.

Nonlinear optical activity phenomena arise at third-order and include intensity
dependent contributions to optical rotation and circular dichroism, as well as a
coherent form of Raman optical activity. The third-order observables are – like their
linear analogs – pseudoscalars (scalars which change sign under parity) and require
electric-dipole as well as magnetic-dipole transitions. Nonlinear optical activity is
circular differential.

Sum-frequency generation (SFG) at second-order and the nonlinear Raman spec-
troscopy BioCARS at fourth-order can also probe chiral molecules. They have
no analog in linear optics. We show that both are only symmetry allowed in a
fluid, if the fluid is chiral. However, in contrast to optical activity phenomena,
these processes arise entirely from induced electric-dipoles (without magnetic or
quadrupolar transitions) and they are not circular differential. All laser beams can
be linearly polarized and no polarization modulation is required as the detection
of a sum-frequency (viz. five-wave mixing) photon is in itself a measure of the
solution’s chirality. Since an achiral solvent can not contribute to the signal, these
techniques are sensitive, background-free probes of molecular chirality. The SFG

1 All amino acids (except for glycine) have a chiral carbon atom.
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pseudoscalar corresponds to the isotropic part of the second-order electric-dipolar
first hyperpolarizability, which is the focus of this chapter. We discuss our recent
SFG experiments, and ab initio computations, as well as a new chiral electro-optic
effect that makes it possible to determine the sign of the second-order susceptibility
and hence the absolute configuration (handedness) of a chiral solute.

Nonlinear optical phenomena are generally discussed in terms of an induced
polarization �P�t� written as a power series in the applied electric field �E [3],

(1) �P�t� = �0

(
↔
�

�1� �E + ↔
�

�2� �E �E + ↔
�

�3� �E �E �E + ↔
�

�4� �E �E �E �E + � � �

)

Most linear optical phenomena such as refraction, absorption and Rayleigh scat-
tering are described by the first term in Eq. (1) where

↔
��1� is the linear susceptibility

tensor. The higher order terms and susceptibilities are responsible for nonlinear
optical effects. The second-order susceptibility tensor

↔
��2� underlies SFG, whereas

and BioCARS arises within
↔
��4�. As we are concerned with optical effects of

randomly oriented molecules in fluids, we need to consider unweighted orientational
averages of the susceptibility tensors in Eq. (1). We will show that the symmetries
of the corresponding isotropic components ��2� and ��4� correspond to time-even
pseudoscalars: the hallmark of chiral observables [2].

In order to describe linear and nonlinear optical activity, it becomes necessary
to consider susceptibilities other than the electric-dipole susceptibilities in Eq. (1).
We will only briefly discuss such nonlocal terms.

This chapter is organized as follows: In Section 2 we discuss the general symmetry
requirements of chiroptical processes in isotropic media. In particular, we consider
linear and nonlinear optical activity and we describe how frequency conversion
at second-order (and at fourth-order) is specific to chiral molecules in fluids. In
Section 3 we discuss our work on SFG in optically active solutions, and the
computation of the SFG pseudoscalar is described in Section 4. Results from recent
computations are given in Section 5. Conclusions are drawn in Section 6.

Sections 2 and 3 are in part based on a recent review article by Fischer and
Hache [4]. The article gives an overview of chiral nonlinear optical spectroscopies in
solution and at interfaces, and includes a discussion of second-harmonic generation
from chiral surfaces [4].

2. PSEUDOSCALARS AND SYMMETRY

Parity, or space inversion, is the symmetry operation that interconverts a chiral
molecule into its mirror image. All coordinates �x� y� z� are replaced everywhere by
�−x�−y�−z� under space inversion [2]. A chirality specific response in liquids and
gases requires that the isotropic component of the susceptibility is odd under parity.
Further, since the isotropic part of any tensor is necessarily a scalar, it follows that
pseudoscalars – independent of the choice of coordinate axes and of opposite sign
for enantiomers – underlie chiral observables in fluids. The isotropic medium may
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be a gas or a liquid. Typically, however, the experiments are conducted in liquids
whereas, so far, the computations are for molecules in the gas phase. We also
require that the pseudoscalars are even with respect to time-reversal symmetry, as
we do not consider the application of a static magnetic field and since we assume
that the liquid is stationary [2, 5].

In summary, we seek susceptibilities that are
• time-even,
• parity-odd, and
• have a non-vanishing isotropic part.
Susceptibilities at all orders can satisfy these requirements, but only those at even-
order can do so within the electric-dipole approximation. We now discuss pseu-
doscalars at the different orders, but we shall concentrate on those that arise within
the electric-dipole approximation.

2.1 Linear Optical Activity

In a liquid, the electric-dipole polarization linear in the field is given by

(2) �P = �0�
�1� �E + � � � �

where the achiral scalar ��1� is related to the molecular polarizability via

(3) ��1� = N

�0

1
3

��xx +�yy +�zz� ≡ N

�0

��

N is the number density. In order to describe natural optical activity it becomes
necessary to go beyond the electric-dipole approximation. Apart from the polariza-
tion �P = N

〈�	ind

〉
, we also need to consider the magnetization �M = N

〈 �mind

〉
and the

quadrupole density
↔
Q = N�↔


ind�. �	ind� �mind, and
↔

ind are respectively the induced

molecular electric dipole, magnetic dipole and electric quadrupole moments. For a
chiral molecule we need to consider [2, 6, 7]

�	ind = ↔
� �E +�−1

↔
G′ �̇B+ � � �(4)

�mind = −�−1
↔
G′ �̇E + � � �

where the dot denotes a derivative with respect to time, and where
↔
G′ is the

optical rotation tensor, which is a function of the rotational strength. We have

not considered
↔

ind and any quadrupolar contributions to Eq. (4) as they average

to zero in an isotropic medium. However, the electric quadrupole induced by the
electric field as well as the electric dipole induced by the electric field gradient of
the electromagnetic wave need to be considered should the molecules be oriented
(anisotropic) [8]. We also note that in condensed media, such as liquids, the field
at the molecule will be different from the applied optical electric field, �E, due to
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induced dipole-dipole interactions of the surrounding molecules. �E in microscopic
expressions, such as Eq. (4), should be replaced with a ‘local field’, which is in the
Lorentz model approximately given by

(
�+2

3

) �E.
Considering an effective polarization that combines the polarization, magnetiza-

tion and quadrupole density [9, 10],

(5) �Peff = �P + i
�

�� × �M − �� · ↔
Q

we can write for an optically active fluid [4]:

(6)
↔
P±

eff = �0

(
N�

�0

± 2NG′n0

�0c

)

�E±

where the upper sign corresponds to right-circularly polarized and the lower to
left-circularly polarized light, and where n0 is the linear refractive index. The
effective polarization is of the form �Peff = �0�eff

�E, and since the refractive index
of a non-magnetic dielectric is, in general, given by

(7) n = �1+�eff�
1/2

we obtain the refractive index of an optically active liquid for right �+� and left �−�
circularly polarized light:

(8) n�±� ≈ n0 ±g0� where g0 ≡ NG′

�0c

The optical rotation  in radians developed over a path length l is a function of the
wavelength � and the circular birefringence, and is given by [2]:

(9)  = �l

�

(
n�−� −n�+�

)≈ −2�l

�

N

�0c
G′

The linear pseudoscalar G′ is the isotropic part of the optical rotation tensor, and
G′ ≡ �G′

xx +G′
yy +G′

zz�/3. Time-dependent perturbation may be used to obtain a
sum-over-states expression for G′ away from resonance [2, 7]:

(10) G′ = − 2
3�

∑

j 	=g

�

�2
jg −�2

Im
[�g
 �	 
j� · �j
 �m 
g�]

where �jg is the Bohr angular frequency in the basis set for which g is the ground
state, and all the other symbols have their usual meaning. The electric dipole moment
is odd under parity whereas the magnetic transition dipole is parity-even. Time-
reversal inverts the direction of momenta and spins but leaves charge invariant. It
follows that the transition electric-dipole moment is symmetric under time-reversal
and that the magnetic moment is time-antisymmetric. However, the imaginary
part of the time-odd magnetic moment is time-even. Hence, G′ is a time-even
pseudoscalar. We will now show that the nonlinear pseudoscalar at second-order
arises entirely in the electric-dipole approximation.



364 Fischer and Champagne

2.2 The Sum-Frequency Generation Pseudoscalar

We can write the polarization of a sum-frequency generation process �3 = �1 +�2

for two incident monochromatic waves at �1 and �2 as

(11) �P��3� = �0

↔
��2��E��1��E��2�

In an isotropic medium, such as a liquid, the polarization is given by the vector
cross product of the electric fields

(12) �P��3� = �0�
�2� �E��1�× �E��2�

and the isotropic part of the second order susceptibility takes the form

(13) ��2� = N

2�0

1
6

��xyz −�xzy +�yzx −�yxz +�zxy −�zyx� ≡ N

2�0

�

The term in parentheses vanishes for any molecule that possesses reflection planes, a
center of inversion, or rotation-reflection axes, and � is thus only non-zero for a
chiral molecule. It is of opposite sign for the enantiomers of a chiral molecule.
In Rayleigh-Schrödinger perturbation theory the isotropic component of the first
electric-dipolar hyperpolarizability at �3 = �1 +�2 may be written as

� = ��2 −�1�

6�2

∑

j�k

�	gk · (�	kj × �	jg

)
(14)

{
1

��̃jk −�3���̃jg −�2���̃jg −�1�

+ 1
��̃∗

kj +�3���̃
∗
kg +�2���̃

∗
kg +�1�

+ 1
��̃kg −�3���̃jg −�2���̃jg −�1�

+ 1
��̃∗

jg +�3���̃
∗
kg +�2���̃

∗
kg +�1�

}

where the summation is over all excited states j� k. By allowing the transition
frequency to be the complex quantity defined by �̃jk = �jk −( i

2

)
�k, where �jk is the

real transition frequency and �k is the population decay rate of the upper level k, the
theory is appropriate for near-resonant frequencies. The electric-dipole transition
moments are defined as �	gj = �g
 �	 
j�. It is seen in Eq. (14) that � vanishes for a
two-state system, and for degenerate incident frequencies, i.e. SHG with �1 = �2.
Even though diagonal (single state) terms often play an important role in resonance
phenomena, all diagonal contributions �j = k� to � vanish. Furthermore, � has no
static limit and, as we shall see, its dispersion is consequently much more dramatic
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than that of a regular nonzero tensor component of the first hyperpolarizability. In
practice, � needs to be near resonance for there to be an appreciable sum-frequency
response.

We note, that when deducing the expression for the Pockels effect �� = �+0�
from the fully dynamic sum-over-states expression for �, care has to be taken that
both the optical frequency and the associated complex damping terms are set to
zero [11, 12]. It is then seen that the Pockels effect vanishes in any liquid [11, 12].

We have discussed the symmetries of linear optical activity and sum-frequency
generation. The former is an odd-order process that requires a nonlocal response
tensor in order to be specific to chiral molecules in solution, whereas the latter
is an even-order response where the dominant electric-dipolar susceptibility is a
probe of chirality. These observations can be extended to pseudoscalars at third-
and fourth-order.

2.3 Pseudoscalars at Order n

We can deduce the symmetry of a response tensor by considering the operators
that enter the numerator of its quantum mechanical expression. For example, the
product of three electric-dipole transition moment operators in Eq. (14) render SFG
a parity-odd and time-even process. It follows that a third-order process requires
nonlocal magnetic-dipole contributions in order to be parity-odd and that a local
fourth-order process is parity-odd within the electric-dipole approximation. Some
pseudoscalars that arise at order n are tabulated below.

Both the third-order and the fourth-order susceptibilities have non-vanishing
isotropic parts [13]. The pseudoscalar m̂m̂	̂ underlies the magnetochiral effect in
linear optics; it is not circular differential and has recently been observed [14–16].
In nonlinear optics a m̂m̂	̂ effect is predicted to give rise to inverse magnetochiral

Table 1. Some chirality specific susceptibilities in fluids and the operators that enter the numerator of
the corresponding quantum mechanical expressions

Order ��n� Operators Pseudoscalar Examples of associated optical phenomena

�1� im̂	̂ g0�G′ optical activity (optical rotation, circular
dichroism)

�2� 	̂	̂	̂ ��2��� three-wave mixing:
m̂m̂	̂ sum- and difference frequency generation
i
̂m̂	̂ magnetochiral effect, inverse magnetochiral

birefringence, etc.

�3� im̂	̂	̂	̂ g2 four-wave mixing:

̂	̂	̂	̂ nonlinear optical activity (nonlinear optical

rotation, nonlinear circular dichroism)
coherent Raman optical activity

�4� 	̂	̂	̂	̂	̂ ��4� five-wave mixing:
e.g. BioCARS
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birefringence, the radiation induced generation of a static magnetization. Other
effects exist that have pseudoscalars associated with them which are not listed in
the Table.

2.3.1 Nonlinear optical activity

In the case of degenerate four-wave mixing, i.e. � = � + � − �, a nonlocal ��3�

may support nonlinear optical activity and thus intensity dependent contributions
to optical rotation and circular dichroism [4, 13, 17–19]. In analogy to Eq. (8) we
can include nonlinear optical activity phenomena by writing [4].

(15) n± ≈ �n0 +n2I�± �g0 +g2I�

where I is the intensity of the light beam, n2 is the usual nonlinear index of refrac-
tion, and where we have introduced a nonlinear optical activity index, g2. Nonlinear
optical rotation has been observed experimentally in the gas phase by Cameron and
Tabisz [20], and nonlinear circular dichroism has recently been observed by Mesnil
and Hache in solutions of the ruthenium(II) tris(bipyridyl) salt [21, 22].

In the case of non-degenerate frequencies, the nonlocal third-order effects may
give rise to chiral pump-probe spectroscopies. The only observation of a coherent
Raman optical activity process to date is also due to a third-order pseudoscalar.
Spiegel and Schneider have observed Raman optical activity in coherent anti-Stokes
Raman scattering in a liquid of (+)-trans-pinane and report chiral signals that are
∼10−3 of the conventional electric-dipolar CARS intensity [23].

2.3.2 BioCARS

The nonlinear polarization of a fourth-order process in a liquid is for two incident
fields at �1 and �2 given by [24, 25]

(16) �P�3�1 −�2� = �0�
�4��3�1 −�2�

(�E��1�× �E��2�
)(�E��1� · �E��1�

)

There is one experimental report of such a process in liquids to date. Using two
noncollinear frequency degenerate beams ��1 = �2� Shkurinov et al. report the
observation of weak signals from aqueous solutions of arabinose that they attribute
to the electric-dipolar pseudoscalar at fourth-order [4, 26].

A new coherent chiral Raman spectroscopy that arises when 3�1 −�2 in Eq. (16)
is resonant with the angular frequency of a vibration has been proposed by
Koroteev [27]. Known as BioCARS, such a spectroscopy could exclusively probe
chiral vibrations that are simultaneously Raman and hyper-Raman active [27, 28].
BioCARS has not yet been observed.

We now concentrate on our experimental observations and computations of �
and ��2�.
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3. SUM-FREQUENCY GENERATION IN LIQUIDS

Two optical fields of different frequency may interact coherently in a chiral liquid
to generate light at their sum- (or difference) frequency, as first predicted by
Giordmaine [29]. From Eq. (12) it follows that the electric fields at �1, �2 and �3

need to span the X, Y , and Z directions of a Cartesian frame. Hence, a non-collinear
beam geometry is required where two beams are polarized parallel – and one beam
is polarized perpendicular to the plane defined by the input beams. This would
suggest that the two incident beams make a right angle. However, momentum
conservation favours collinear beams. The optimum angle to observe SFG in an
optically active solution is thus a balance of these two requirements. Figure 1 shows
a schematic of the experimental arrangement.

For a solution that contains only the R- and S-enantiomers of a chiral molecule,
we can write the isotropic part of the electric-dipolar second-order susceptibility as

(17) ��2� = 1000NA

�0

��R�− �S���R

where �R is the � of the R-enantiomer, NA is Avogadro’s number, and where
the square brackets denote a concentration in mol/l. We have used the identity
�R = −�S. It is seen that ��2� is zero for a racemic solution (where �R� = �S�). Since
the intensity at the sum-frequency is proportional to the square of the isotropic
component of the second-order susceptibility, ISFG ∝ ∣∣��2�

∣
∣2, SFG can in general

not distinguish between optical isomers.
This is illustrated in Figure 2 where we have performed an enantiomeric excess

titration of 1,1′-bi-2-naphthol (BN) in tetrahydrofuran. The solution is initially
R-(+)-BN and through the addition of S-(−)-BN the solution is taken through its
racemic mid-point to one that has an enantiomeric excess of S-(−)-BN, whilst the

amplified Ti:Sapphire laser
oscillator-stretcher-amplifier-compressor

800 nm 0.8mJ
150 fs
1khz

BS
F

BBO

delay
line

400 nm

liquid cell

PMT

λ /2

λ /2

SFG
266 nm

Figure 1. Experimental arrangement for the observation of SFG from a chiral liquid. The optical
elements shown include a beam splitter (BS), a filter (F), a photomultiplier tube (PMT), and a nonlinear
crystal (BBO)
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Figure 2. Titration starting with R-(+)-BN to which S-(−)-BN is added until the solution is racemic.
At this point some of the racemic solution is removed, and more S-(−)-BN is added. The SFG signal is
proportional to the square of the (fractional) concentration difference of the R-(+) and S-(−) enantiomers,
which is plotted by the solid line [30]. Inset: structure of R-(+)-BN

total concentration ��R�+ �S�� is kept at 0.4 M. ISFG obeys the expected quadratic
dependence on the mole fraction of the enantiomeric difference.

Within the noise of the experiment, no signal is recorded for the racemic mixture.
SFG is thus effectively background free: any achiral signals (solvent, higher-order
multipolar contributions) are either weak or can be eliminated by choosing appro-
priate beam polarizations [30, 31]. Table 2 lists the polarization combinations that
allow chiral bulk SFG signals to be discerned from SFG signals that have an achiral
origin.

Not only is chiral SFG background-free, but it is entirely electric-dipolar. This
is significant, as magnetic-dipole (and electric-quadrupole) transitions are typically
much weaker than electric-dipole transitions. Nevertheless, the absolute strength of
the SFG signals is low. In principle, this is not a problem, as it is possible to detect
low light levels with single photon counting methods, especially as there is little
or no background in SFG from chiral liquids. However, in practice at least one of
the three frequencies needs to be near or on (electronic or vibrational) resonance

Table 2. Polarization combinations of the three fields and the origin
of the SFG signal. For S-polarized light the electric field vector is
orthogonal to the plane defined by the two incident beams, and for
P-polarized light it is parallel to the plane [31]

Polarizations Chiral SFG Achiral SFG

PPP — yes
SPP, PSP, PPS yes —
PSS, SPS, SSP — yes
SSS — —
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Table 3. Comparison between linear optical activity and nonlinear optical sum-frequency generation
from a chiral liquid [4]

Optical activity Sum-frequency generation

Pseudoscalar G′ ∝ �Im��	gj · �mjg�

electric- and magnetic-dipolar
� ∝ ��1 −�2� �	gk · [�	kj × �	jg

]

electric-dipolar

Signal ∼ G′ different response to cp light ∼ ∣∣�∣∣2 intensity at sum-frequency
Chiral probe circularly polarized light x� y� z components of three linearly

polarized light beams
Signal contains chiral and achiral response only chiral response, no background

for there to be a measurable SFG signal. The concomitant linear absorption near
resonance further limits the conversion efficiency, which is already low as the
SFG process can not be phase-matched in liquids. Table 3 summarizes differences
between linear optical activity and chiral SFG.

3.1 Electric-field Induced SFG

As the sum-frequency signal is proportional to the square of the enantiomeric
concentration difference, SFG can in general not distinguish between the enan-
tiomers of a chiral solute. However, Buckingham and Fischer have shown that the
application of a static electric field to SFG makes it possible to determine the sign
of the pseudoscalar ��2� and thus the absolute configuration of the chiral solute [32].
The static field does not change the phase matching conditions of the sum-frequency
process, but it gives rise to an electric-field induced contribution to the signal. The
combined sum-frequency polarization along x is given by

(18) Px��3� = �0

⎡

⎢
⎣��2�Ey��1�Ez��2�︸ ︷︷ ︸

chiral

+��3�Ey��1�Ey��2�Ex�0�
︸ ︷︷ ︸

achiral

⎤

⎥
⎦

where we assume that the �1 beam travels along the z-direction and has its electric
field vector oscillating along y, and the �2 beam to be plane polarized in the
yz-plane (see Figure 3). The beat between chirality-sensitive SFG (a second-order
process) and achiral electric-field induced sum-frequency generation (a third order

process) yields a contribution to the intensity (ISFG ∝
∣
∣
∣�P��3�

∣
∣
∣
2

� that changes sign
with the enantiomer. The cross-term linear in the static electric field is [33]

(19) ISFG�E� ∝ Re���2�
(
��3�
)∗

�E�0�I��1�I��2�

The effect can therefore be used to determine the absolute sign of the isotropic part
of the sum-frequency hyperpolarizability. The effect has recently been observed
in solutions of 1,1′-bi-2-naphthol [33]. Figure 3 shows that the ISFG�E� signals
depend linearly on the strength of the static electric field and that they change sign
with the enantiomer. Ab initio computations can be used to relate the sign of the
pseudoscalar to the absolute configuration of the enantiomers [33].
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Figure 3. Intensity of SFG linear in the static field measured as a function of the fractional concentration
difference in R-(+)-BN and S(−)-BN. Beam geometry for SFG�E� [33]

4. COMPUTATIONAL METHODS

Hyperpolarizabilities can be calculated in a number of different ways. The quantum
chemical calculations may be based on a perturbation approach that directly
evaluates sum-over-states (SOS) expressions such as Eq. (14), or on differentiation
of the energy or induced moments for which (electric field) perturbed wavefunctions
and/or electron densities are explicitly calculated. These techniques may be imple-
mented at different levels of approximation ranging from semi-empirical to density
functional methods that account for electron correlation through approximations to
the exact exchange-correlation functionals to high-level ab initio calculations which
systematically include electron correlation effects.

Additional approximations are typically made. The application of external electric
fields not only perturbs the electron densities, but it can also modify the nuclear
configuration. However, a global calculation that evaluates hyperpolarizabilities
with a sum over rovibronic states [34] is often computationally too demanding for
polyatomic molecules. Instead, one can use a two-step procedure which sequentially,
rather than simultaneously, treats the effects of the applied electric fields upon the
motion of the electrons and nuclei. In the so-called clamped-nucleus approximation
[35], the effects of the electric field on the electron distribution are determined first,
giving the electronic contributions to the hyperpolarizability. In a second step, the
field-induced relaxation on the potential energy surface is considered. It gives rise
to vibrational hyperpolarizabilities, which can be decomposed into a nuclear relax-
ation and a curvature part or into a pure vibrational contribution and a zero-point
vibrationally-averaged (ZPVA) correction [36, 37]. Although important for many
non-linear optical processes [36], the pure vibrational contribution to second-order
sum-frequency generation is negligible for wavelengths in the UV/visible. Although
preliminary investigations have shown that the ZPVA correction to the first hyperpo-
larizability of p-nitroaniline is less than 20% of its electronic counterpart [38], less is
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known about the ZPVA correction and its importance for compounds like binaphtol
or helicenes. We have therefore limited our theoretical investigations of the SFG
pseudoscalar to the purely electronic contributions to the hyperpolarizability.

In the condensed phase the field at the molecule will be different from the
applied macroscopic field due to induced dipole-dipole (and higher order multipolar)
interactions with the surrounding molecules, as briefly mentioned in Section 2.1
[39]. In addition, the molecules’ properties are changed due to the interaction with
the surrounding medium. Several computational schemes have been proposed to
address these effects. They are essentially based on the extension of the Onsager
reaction field cavity model and give effective hyperpolarizabilities, i.e. molecular
hyperpolarizabilities induced by the external fields that include the modifica-
tions due to the surrounding molecules as well as local (cavity) field effects
[40–42]. These condensed-phase effects have, however, not yet been included in
the SFG hyperpolarizability calculations, which are therefore strictly gas-phase
calculations.

4.1 CIS-SOS

A sum-over-states calculation of the (electronic) hyperpolarizability and hence the
pseudoscalar is particularly attractive as it makes use of transition moments and
frequencies that can be directly related to spectroscopic quantities. The use of
phenomenological damping terms ensures that the SOS expression in Eq. (14) can
also be used near resonance. This is important, as the pseudoscalar has no static
limit and in practice resonance enhancement is required so that a measurable SFG
signal can be obtained.

Accurate SOS calculations of the first hyperpolarizabilities in turn require accu-
rate ground and excited state wavefunctions and derived properties, such as exci-
tation energies, dipole transition moments, and dipole moments. The excited state
wavefunctions and energies are typically calculated at the Configuration Interac-
tion Singles (CIS) level of approximation, and a large number of such studies
on conjugated compounds employing semi-empirical Hamiltonians have been
published [43]. Ab initio SOS/CIS studies are less frequent [44]. They can be applied
to any kind of system, but suffer from two drawbacks: the truncation of the sum
(also present in semi-empirical calculations) and an overestimation of the excitation
energies. Limited computational resources often make it necessary that the SOS is
truncated after inclusion of only a few excited states. Related to truncated SOS/CIS
expressions is the loss of size consistency. Although the absence of intruder states
cannot be guaranteed, a study of the evolution of the SOS hyperpolarizability as
function of the number of excited states enables one to assess its convergence (for
the particular basis) [45]. This is illustrated in Fig. 4 for a CIS/6-311++G∗∗ SOS
calculation of � for R-monofluoro-oxirane (structure is shown in Fig. 5).

The overestimation of the excitation energies is in general due to a neglect of
electron correlation effects. Although several highly-correlated schemes have been
elaborated [46–51], it is often sufficient to simply downshift all the excitation
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Figure 5. Dispersion of R-monofluoro-oxirane (a) and R-propylene oxide (b) determined at the CIS and
TDHF levels of approximation. A damping factor of 1000 cm−1 has been used in the CIS calculations.
Both methods employ the 6-311++G∗∗ basis set

energies by a fixed amount using a so-called ‘scissor operator’. Typically, the
excited state energies are reduced such that the calculation agrees with the experi-
mental UV absorption spectrum or such that the lowest-lying states agree with the
energies obtained from highly-correlated calculations. The correction is particularly
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important for calculations that concern the SFG hyperpolarizability/pseudoscalar
near resonance [30].

4.2 TDHF

Apart from SOS approaches, hyperpolarizabilities can be evaluated by differenti-
ating the energy or the dipole moment with respect to the applied electric field(s):

(20) � =
(

�2��E�

�E2

)

E=0

= −
(

�3W �E�

�E3

)

E=0

In principle, the differentiation is either done numerically in the so-called finite-
field methods, or in an analytical scheme, or a combination of both. Numerical
finite-field calculations are limited to derivatives with respect to static fields. Since
SFG is an optical process that involves dynamic oscillating fields, it becomes
necessary to use an analytical approach, such as the time-dependent Hartree Fock
(TDHF) method.

TDHF [52, 53] is one of the most widely-employed ab initio techniques to
evaluate nonlinear-optical response tensors. The TDHF approach is size consistent
but cannot account for the finite lifetime of the excited states. The matrices of
the TDHF equation are expanded in a Taylor series of the perturbation due to the
static and/or dynamic electric fields and are solved for each order [52, 53]. The
so-obtained successive field-derivatives of the density matrix are then inserted into
the expressions for the hyperpolarizability,

(21) �xyz �−3�� 2���� = −Tr ��xDyz �2�����

where �x is the dipole moment matrix in the x direction and Dyz �2���� is the
second-order derivative of the density matrix with respect to electric fields at 2�
and � along y and z, respectively. The original TDHF scheme [52, 53] has recently
been generalized to evaluate the SFG response (Eq. (21)) using the 2n+1 rule [54].
The latter consists in evaluating Eq. (21), which apparently depends on second-
order response wavefunctions, using only first-order quantities. Extensions of the
TDHF approach have been developed that can account for the effects of electron
correlation [46, 48, 55–58].

In order to compare ab initio SOS/CIS with TDHF calculations we have
evaluated the SFG response of two model chiral compounds, R-(+)-propylene
oxide and R-mono-fluoro-oxirane. The computed excited state energies have
all been down-shifted by 2.675 eV for R-(+)-propylene oxide (and 2.27 eV for
R-mono-fluoro-oxirane) [59]. Figure 5 shows that both methods calculate very
similar magnitudes and dispersions of the SFG pseudoscalar.

Apart from calculations at the ab initio level, the TDHF scheme has also been
used with semi-empirical Hamiltonians. This makes it possible to calculate larger
molecules while partially accounting for electron correlation effects. Indeed, when
estimating the dynamic first hyperpolarizability of reference push-pull �-conjugated
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compounds, the semi-empirical TDHF scheme performs generally better than the
ab initio TDHF approach in comparison with high-level ab initio methods [60].

4.3 DFT

In addition to the traditional wavefunction CIS-SOS and TDHF methods, density
functional theory (DFT) can be used to calculate frequency dependent hyperpolar-
izabilities [61–67]. For small to medium-sized molecules DFT methods calculate
hyperpolarizabilities that are in rather good agreement with post Hartree-Fock
methods. However, the conventional exchange-correlation functionals are local
functions of the density (and its derivatives) and cannot properly describe the ultra-
non-local effects associated with the hyperpolarizabilities of large (conjugated)
molecules [68]. Newer DFT methods such as those based on current-density-
functional theory [69] or exact exchange [70] require further development before
they can be used to accurately model dynamic first hyperpolarizabilities of push-pull
�-conjugated systems.

5. CALCULATIONS OF �

The isotropic part of the first hyperpolarizability, �, may be calculated using a
number of methods – ranging from a simple single-centre chiral molecular orbital
approach to ab initio calculations at varying levels of approximation (see Section 4).
We have computed � for a number of chiral molecules in order to establish the
typical strength and frequency dispersion of the pseudoscalar [30, 54, 59, 71]. � is
a measure of the signal strength in SFG experiments and a convenient measure that
facilitates direct comparison with achiral second-order nonlinear optical processes.

For a given class of molecules it is interesting to explore whether the presence of
certain functional groups can enhance �. We survey calculations based on the AM1
semi-empirical Hamiltonian and the TDHF scheme that explore how molecular
structure, here for helical molecules such as helicenes and heliphenes, influences
the magnitude of � [54, 72, 73].

5.1 Strength of
∣
∣�
∣
∣

The simplest possible chiral molecule consists of a central atom bonded to three
different, non-coplanar substituents. The bonding can be modeled by four sp3

molecular orbitals �g, ��, �m, and �n formed from the s, px, py, and pz atomic
orbitals located on the central atom. The molecular ground state is chosen to be
chiral and, following [71], is predominately of s character. A particular set is
given by:

(22)
(
�g�����m��n

)=

⎛

⎜
⎜
⎝

0�93 0�10 0�20 0�30
0�093 −0�99 0�02 0�03
0�26 0 −0�95 −0�16
0�26 0 0�22 −0�94
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⎟
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In this phenomenological model the transition energies to the states ��, �m, and
�n are respectively taken to be 45,000, 50,000, and 55� 000 cm−1. The transition
dipole moment �s 
	x
px� = 〈s ∣∣	y

∣
∣py

〉 = �s 
	z
pz� is taken to be 1.0 debye (D)
(= 0�3935 a.u.). From Eq. (22) it follows that the permanent dipole moment has
the components 	x = 0�19 D, 	y = 0�37 D, and 	z = 0�56 D. Substituting these
quantities into Eq. (14) for � = 694 nm and � = 1000 cm−1, we compute that the
sum-frequency pseudoscalar ��−3�� 2���� = 0�0087 a.u. [1.0 atomic unit (a.u.)
of first hyperpolarizability = 3�2063 × 10−53C3m3J−2 = 8�641 × 10−33 esu], which
should be compared to an individual tensor component of the first hyperpolariz-
ability, such as �xyz �−3�� 2���� = 1�38 a.u. [59].

Similarly small magnitudes of ��−3�� 2���� are obtained in ab initio
calculations on the chiral molecules R-�+�-propylene oxide and R-monofluoro-
oxirane (their structures are shown in Fig. 5). For �� < 0�04 a.u.,

∣
∣��−3�� 2����

∣
∣

is less than 10−3 a.u.. Closer to resonance, at �� = 0�07 (0.08) a.u. for propylene
oxide (monofluoro-oxirane), i.e. less than 0.01 a.u. below the first excited state,
the magnitude of ��−3�� 2���� is still < 0�3 a.u.. The finding that

∣
∣�
∣
∣ is several

orders of magnitude smaller compared to the strength of an individual hyperpolar-
izability tensor component [71] calls into question the first experimental report on
SFG from optically active liquids that suggested that ��−3�� 2���� of arabinose
may be 14 a.u. (at � = 2�c/�694 nm�) [74, 75].

5.2 Dispersion of
∣
∣�
∣
∣

The
∣
∣�
∣
∣ calculations (vide supra) suggest that the SFG pseudoscalar is, even near

resonance, much weaker than a regular nonzero tensor component of the first hyper-
polarizability [30, 59, 71]. Since � has no static limit, its dispersion is, however,
much more dramatic. We have computed the dispersion of R-�+� and S-�−�-1, 1′-
bi-2-naphtol (BN) to illustrate this point. Figure 6 shows the frequency dependence
of ��−3�� 2���� for R-�+�−1, 1′-bi-2-naphtol calculated ab initio at the TDHF/6-
31G∗ level of approximation. For �� = 1�5 eV�� = 828 nm�, ��−3�� 2����
amounts to 0.4862 a.u., which is still rather small considering that it is so close
to resonance – at approximately 1.61 eV the 2� beam is resonant with the lowest
lying absorption peak of BN. Similar calculations (TDHF/6-31G) estimate that the
corresponding pseudoscalars for [4]-helicene and [5]-helicene are of comparable
strength [54].

Even though the nonlinearity of BN is predominantly electric-dipolar, recent
experiments show that nonlocal higher-order multipolar (magnetic and electric
quadrupolar) contributions to SFG from BN are measurable [30]. However, the
polarization of all three fields in bulk SFG experiments may always be chosen such
that only the chiral electric-dipolar signals are observed.

Figure 7 shows the enhancement by many orders of magnitude that the SFG
signal (which is proportional to the square of �) from BN experiences over a
relatively small wavelength range [30]. Shown is the dispersion of � relative to the
(achiral) vector component of the first hyperpolarizability.
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Figure 6. ��−3�� 2���� of R-�+�-1,1′-bi-2-naphtol as a function of the incident photon energy

Figure 7. Dispersion of the chirality specific (chiral) pseudoscalar relative to for the SFG process in
optically active 1,1′-bi-2-naphthol. Configuration Interaction Singles SOS calculation with the cc-pVDZ
basis, damping = 3000 cm−1

5.3 Molecular Structure and
∣
∣�
∣
∣

Among the many classes of chiral molecules, helical systems are particularly
fascinating. Their structure is relevant to proposed mechanisms of handedness
induction in relation to chiral amplification [76]. Helicenes ([N ]-H) are helical
molecules formed from N -ortho-fused benzene rings (Fig. 8) which display consid-
erable rotatory power [77]. Helicenes are presently the subject of intense synthesis
efforts that try to functionalize these molecules in order to attain enhanced electric,
magnetic, and optical properties [78, 79]. Phenylenes ([N ]-P), or heliphenes, consti-
tute another class of helical aromatic compounds for which syntheses have recently
been reported [80, 81]. They are made up of N benzene rings fused together with
N −1 cyclobutadiene rings (Fig. 8).



Nonlinear Optical Properties of Chiral Liquids 377

The magnitude of ��−3�� 2���� has been investigated for [N ]-H and [N ]-P at
the TDHF/AM1 level as a function of the number of units [72]. Figure 9 shows that,
with the exception of the smallest members of the series, which are approximately
planar, ��−3�� 2���� increases approximately linearly with N . Indeed, when
N = 3 (i.e. anthracene in the helicene series) the molecules are planar and achiral,
and therefore � is necessarily zero. For N > 3 the [N ]-H and [N ]-P series display
similar chiral SFG responses, indicating that the strength of ��−3�� 2���� depends
primarily on the size of the helix (the number of turns).

Figure 8. Representation of [10]-H (left) and [10]-P (right)
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Figure 9. ��−3�� 2���� for [N]-H and [N]-P as a function of N ��� = 0�5 a�u�)
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Table 4. �̄�−3�� 2���� of substituted tetrathia-[7]-helicenes as a function of the number and position
of the D/A NH2/NO2 substituents. All quantities are in atomic units (a.u.) and have been obtained at
the TDHF/AM1 level with � = 1907 nm. Representation of tetrathia-[7]-helicene and numbering of the
substituent positions

M/7 M′/8 N/2 N′/13 �̄�SFG�

H H H H −0�38
H H NO2 NH2 −0�05
NH2 H NO2 H 0.52
NH2 H H NO2 −0�27
NO2 H H NH2 −1�97
NO2 H NH2 H −2�36
NO2 NH2 H H −0�58
NO2 NO2 H H −3�51
NH2 NH2 H H −0�87
H H NO2 NO2 0.67
H H NH2 NH2 −1�30
NO2 NO2 NH2 NH2 −8�43
NH2 NH2 NO2 NO2 1.35
NH2 NO2 NH2 NO2 −0�68
NH2 NO2 NO2 NH2 0.41

It is interesting to explore how substitution of the helical molecules affects
��−3�� 2����. It was found that hexahelicene substituted with an amino/nitro
�NH2/NO2� donor/acceptor pair at the terminal positions hardly affects the strength
of �̄�−3�� 2���� [72]. The same was found for octahelicene, even though its
electric-field induced second-harmonic generation (EFISH) second-order response
is strongly affected upon such a substitution. However, a similar investigation of
substitution effects for tetrathia-[7]-helicene [73] demonstrates that here an appro-
priately chosen position of the donor/acceptor pair can enhance ��−3�� 2���� by
up to two orders of magnitude Table 4. In particular, strong acceptor groups on the
central sites (M, M′) lead to large SFG responses while donor groups maximize the
SFG response when placed at the ends of the helix (N, N′), or vice versa. Never-
theless, much work remains to be done in order to systematically unravel what
functional groups maximize the SFG pseudoscalar. Comparison of such calculations
with experiments will certainly be helpful. Apart from the strength of

∣
∣�
∣
∣ it is also

important to consider the solubility of the compounds.

6. CONCLUSIONS

Symmetry arguments show that parity-odd, time-even molecular properties which
have a non-vanishing isotropic part underlie chirality specific experiments in liquids.
In linear optics it is the isotropic part of the optical rotation tensor, G′, that gives rise
to optical rotation and vibrational optical activity. Pseudoscalars can also arise in
nonlinear optics. Similar to the optical rotation tensor, the odd-order susceptibilities
require magnetic-dipole (electric-quadrupole) transitions to be chirally sensitive.
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Nonlocal third-order susceptibilities can give rise to nonlinear optical rotation and
nonlinear circular dichroism.

Interestingly, pseudoscalars formed at even orders ���2�� ��4�� arise within the
electric dipole approximation and have no analog in linear optics. They give rise to
frequency conversion processes only if the liquid is optically active and it is thus
the generation of a photon which is the measure of a liquid’s chirality.

We focus on sum-frequency generation (SFG) and present results from our
experiments. We demonstrate how electric-field induced sum-frequency generation
can be used to determine the handedness of the chiral solute.

The molecular and spectral properties of the SFG pseudoscalar � are discussed.
We survey a number of different computational methods that may be used to
calculate �. Examples are given for small chiral molecules that possess a single
chiral center as well as larger, conjugated molecules that exhibit a helical structure
due to steric interference. The calculations show that the magnitude of � is, even
near resonance, small compared with a regular nonzero tensor component of the first
hyperpolarizability. Calculations on helicenes suggest that the chiral SFG response
can be enhanced by appropriately placed functional groups. General structure-
property relationships have not yet been deduced.
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CHAPTER 13

RECENT PROGRESS IN MOLECULAR DESIGN OF IONIC
SECOND-ORDER NONLINEAR OPTICAL MATERIALS

PARESH CHANDRA RAY
Jackson State University, Department of Chemistry, 1400 J.R. Lynch Street, Jackson, MS, USA

Abstract: This chapter deals with recent and important developments in the field of the molecular
design of ionic organic materials with and without metals for second-order nonlinear
optics. The first section discusses 1) the origin of optical nonlinearity, 2) the relationship
between microscopic and macroscopic polarizabilities and 3) the importance of ionic
chromophores as second-order nonlinear optical (NLO) materials. The second section
reviews 4) the current experimental and theoretical developments in the design of dipolar
and octupolar ionic chromophores for second-order nonlinear optics and 5) the progress
on zwitterionic second-order NLO materials. The third section presents 6) possible device
applications based on ionic chromophores

Keywords: Nonlinear optical materials; Ionic octupolar; Zwitterionic; Ab initio; Stilbazolium;
Aggregates

1. BACKGROUND

Photonics is playing an ever-increasing role in our modern information society.
Photon is gradually replacing the electron, the elementary particle in electronics.
Several books and reviews have appeared dealing with the theory of nonlinear optics
and the structural characteristics and applications of nonlinear optical molecules and
materials [1–18]. The earliest nonlinear optical (NLO) effect discovered was the
electro-optic (EO) effect. The linear EO coefficient rijk defines the Pockel effect,
discovered in 1906, while the quadratic (nonlinear) EO coefficient sijk relates to
the Kerr effect, discovered 31 years later (1875). Truly, all-optical NLO effects
were not discovered until the discovery of lasers. Second harmonic generation
(SHG) was first observed in a single crystal of quartz by Franken et al. [1] in
1961. They frequency doubled the output of a ruby laser (694.3 nm) into the
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ultraviolet (347.15 nm) with a conversion efficiency of only about 10−4% in their
best experiments, but the ground had been broken. The early discoveries often
originated in two- or multi-photon spectroscopic studies being conducted at that
time. Parametric amplification was observed in lithium niobate �LiNbO3� by two-
wave mixing in temperature-tuned single crystals [2]. Rentzepis and Pao [3] made
the first observation of SHG in an organic material, benzpyrene, in 1964. Heilmeir
examined hexamethylenetetramine single crystal SHG in the same year [4]. Two
other organic materials followed rapidly: hippuric acid and benzil [6]. Benzil was
the first material that proved relatively easy to grow into large single crystals. Over
the last three decades the study of nonlinear optical process in organic and polymer
systems has enjoyed rapid and sustained growth. One indication of the growth is
the increase in the number of articles published in refereed society journals. The
four years period 1980–1983 saw the publication of 124 such articles. In the next
four years period 1984–1987, the production of articles increased to 736 (nearly six
times). From 1988–1992, the number of articles increased to more than 4000. In
the last decade, academia, industry and government laboratories have been working
in this field to replace electronics by photonics and as a result, the number of
publications reached more than 50,000.

The rapid growth of the field is mainly due to the technological promise of these
materials. Materials with high NLO activities are useful as EO switching elements
for telecommunication and optical information processing. For communication, the
electron as a carrier in a metallic conductor has been replaced by the photon in
an optical fiber. Multi-wavelength optical communication increases the capacity on
an optical network by orders of magnitudes over electronic communication. Tradi-
tionally, the materials used to measure second-order NLO behavior were inorganic
crystals, such as lithium niobate �LiNbO3� and potassium dihydrogen phosphate
(KDP). The optical nonlinearity in these materials is to a large fraction caused by
the nuclear displacement in an applied electric field, and to a smaller fraction by
the movement of the electrons. This limits the bandwidth of the modulator. Organic
materials have a number of advantages over inorganic materials for NLO applica-
tions, such as (i) their dielectric constants and refractive indices are much smaller,
(ii) polarizabilities are purely electronic and therefore faster and (iii) molecules are
compatible with the polymer matrix. The ease of modification of organic molecular
structures makes it possible to synthesize tailor-made molecules and to fine-tune
the properties for the desired application. In the case of second-order nonlinear
optical processes, the macroscopic nonlinearity of the material (bulk susceptibility)
is derived from the microscopic molecular nonlinearity and the geometrical arrange-
ment of the NLO-chromophores.

So, optimizing the nonlinearity of a material begins at the molecular structural
level, which requires a detailed understanding of the origin of an induced nonlinear
polarization and its relationship to the molecular electronic structure. For this reason,
much attention has been paid to the theoretical calculations of the nonlinear optical
response by ab initio and semi-empirical methods, providing the chemist with the
information that indicates which synthetic strategy should be followed [16–24].
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In addition, the experimental data obtained from the NLO characterization of the
chromophores can be used to verify and improve computational concepts. The
theory of NLO has been described thoroughly by Chemla and Zyss [7, 8], Prasad
and Williams [9] which will be shortly summarized.

2. THEORY OF NONLINEAR OPTICS

NLO is concerned with how the electromagnetic field of light waves interacts with
the electromagnetic fields of matter and other light waves. The interaction of an
electromagnetic field with matter induces a polarization in that matter. In linear
optics, there is an instantaneous displacement (polarization) of the electron density
of an atom by the electric field E of the light wave. The displacement of the electron
density away from the nucleus results in a charge separation (an induced dipole) with
a moment �. For a weak field, the displacement of the charge from the equilibrium
position (polarization) is proportional to the strength of the applied field.

(1) Polarization�p� = �E

Thus the plot of polarization as a function of the applied field is a straight line
whose slope is the linear polarizabilty, �, of the molecule or atom. If the field oscil-
lates with a frequency, then the induced polarization will have the same frequency
and phase, if the response is instantaneous. Most applications of experiments with
NLO are carried out on bulk or macroscopic materials and in this case, the linear
polarization can be defined as

(2) P = �E

where � is the linear susceptibility of a collection of molecules (on which the
parameters of the dielectric constant and refractive index have a bearing).

When a molecule is subjected to laser light (that is—very high intensity elec-
tric field), its polarizability can change and be driven beyond the normal regime.
Therefore, the polarization, which is a function of the applied field and leads to
nonlinear effect, can be expressed as,

(3) P = �E +�E2 +	E3 + 
 
 
 
 
 
 
 
 
 


where � is the first molecular hyperpolarizability (second-order effect) and 	 is
the second molecular hyperpolarizability (third-order effect). Typical values of �’s
are in the order of 10−30 esu (esu unit mean that the dimensions are in CGS units
and the charge is in electrostatic units, thus “� in esu” means � in the units of
cm3 esu3/erg2), 	’s are in the order of 10−36 esu and �’s are in the order of 10−24

esu. With increasing field strengths, nonlinear effects become more important due to
the higher powers of the field E. Since � is much greater than � and 	, NLO effects
were not commonly observed before the invention of lasers. For the electric field
of Q-switched YAG laser light, ∼ 104 stat volts/cm, the contribution to P from �E2
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is 10−4 (D). These polarizations are infinitesimal on the scale of chemical thinking.
Yet, these small polarizations are responsible for the exotic effects described
throughout this chapter. For a macroscopic system this equation can be written as

(4) P = ��1�E +��2�E2 +��3�E3 + 
 
 
 
 
 
 


��1� (a second-rank tensor) is the first-order susceptibility, ��2� (third-rank tensor)
is the second-order nonlinear susceptibility, describing the action of two electric
field vectors into a polarization, and ��3� (fourth-rank tensor) is the nonlinear
susceptibility describing third-order processes. When equation (2) is written as

(5) P = �effE

The nonlinear index of refraction is related to the applied electric field, E, through
the electric-field-dependent susceptibility, �eff , of a material,

(6) n2 = � = 1+4��eff

with � being the dielectric constant of the material at optical frequencies. The
induced polarization therefore results in a modulation of the refractive index of
a material. If one of the acting fields is a static dc-field �E0� and the other an
optical field, E��, the polarization at the fundamental frequency �� will depend
on the amplitude of the applied electric field. This is known as the linear EO
effect (or Pockels effect), with its magnitude being proportional to �(2). This is
the NLO phenomenon responsible for optical switching [15, 16]. Other second-
order NLO are sum- and difference-frequency generation (where two different
fundamental wavelengths �1�2� interact with each other) and SHG in which the
two interacting fields are of the same frequency. The manifestation of SHG can
clearly be seen by substituting a sinusoidal field into the linear and first nonlinear
term of the following equation:

(7) P = ��1�E0 sin�t�+��2�E2
0 sin2�t�+ 
 
 
 
 
 
 
 
 
 


Since sin2�t� = 1/2−1/2 cos�2t�,

(8) P = 1/2��2�E2
0 +��1�E0 sin�t�−1/2��2�E2

0 cos�2t�+ 
 
 
 
 
 
 


Equation (8) shows the presence of new frequency components in addition
to having the fundamental frequency : a frequency-independent one (optical
rectification), and the 2 contribution.

3. SYMMETRY CONSIDERATIONS

The response of centrosymmetric molecules to an external field is given by
P�−E� = −P�E�. This relation expresses the requirement that the induced polar-
ization of centrosymmetric molecules is opposite and of equal magnitude when
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Figure 1. Electric-field-induced polarization from donor to acceptor and vice versa in a D-A molecule

the field is reversed. In order for the equation (3) to satisfy this condition, all
coefficients of even powers of E ��� � 
 
 
� have to be equal to zero. Hence, only non-
centrosymmetric molecules have a non-zero � value, since then P(−E) �= −P(E).
This is illustrated in the Figure 1, where the polarization in para-disubstituted
benzene is larger in the direction from the donor (D) to the acceptor (A) than in the
opposite way, since electrons are more easily moved from an electron-rich (donor)
to an electron-poor (acceptor) environment.

The requirement of non-centrosymmetry is not restricted to the molecular level,
but also applies to the macroscopic nonlinear susceptibility, ��2�, which means
that the NLO molecules have to be organized in a non-centrosymmetric alignment.
The first measurements of the macroscopic second-order susceptibility, ��2�, have
been performed on crystals without centrosymmetry [5]. However, many organic
molecules crystallize in a centrosymmetric way. Other condensed oriented phases
such as Langmuir-Blodgett (LB) films and poled polymers therefore seem to be the
most promising bulk systems for NLO applications.

4. IMPORTANCE OF ORGANIC IONIC NLO MATERIALS

In the recent years, an intense worldwide effort has been focused on the research,
design and development of new materials with large optical non-linearities due
to their potential applications in various optical devices [7–16]. The EO effect is
a second-order NLO effect. Not all organic materials display second-order NLO
properties. At the molecular level, they need to be non-centrosymmetric. A large
number of organic �-conjugated molecules have been investigated [7–16, 25–30]
in the last twenty years. The outcome of the results has helped to establish certain
guidelines for molecular design to get good second order NLO materials. However,
roughly more than 80% of all �-conjugated organic molecules crystallize in centro-
symmetric space groups, therefore producing materials with no second order bulk
susceptibility ��2�. To overcome this problem, ionic organic chromophores are
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considered to be an important class of materials for applications in second-order
NLO. Due to their ionic interaction, they conquer the dipole attraction and in
fact, ionic compounds exhibit excellent bulk SHG efficiency [7–16, 32–34]. The
largest SHG efficiency to date is reported for a stilbazolium salt [32–34]. The main
advantage of using ionic compounds for second-order NLO are (i) the alignment
of the ionic chromophore into a polar structure can be controlled by changing the
counter ion [32–34], and (ii) the dipolar interaction that provides a strong driving
force for centerosymmetric crystallization in neutral compounds is countered by the
columbic interaction, thus favoring non-centrosymmetric space groups with good
SHG efficiency.

The field of ionic organics for NLO has been hampered by the lack of a widely
applicable, simple and fast screening procedure for NLO applications. The tech-
nique that used to be used to determine how good an organic molecule was for
second-order NLO, was the Electric-Filed–Induced Second Harmonic Generation
(EFISHG) technique. Since a second-order effect can only be observed from a non-
centrosymmetric bulk arrangement, an external electric dc field was applied over
a solution of neutral candidate molecules with a dipole. Neutral dipolar molecules
were the only candidates that were studied for prototype of an organic EO modulator.
However, non-centrosymmetry does not automatically imply a dipolar molecule,
or, more generally, vectorial properties. Molecules without dipole moment can
also exhibit high second-order NLO properties. However, they cannot be oriented
in an electric field, due to the absence of dipole moment and therefore EFISGH
cannot be used for the measurement of their � values. Similarly, although ionic
species have maximum SHG response in bulk, their � values cannot be measured
by EFISHG technique, since ionic species will migrate, rather than rotate, under
the influence of an electric field. The � values of these ionic chromophores had not
been evaluated until the hyper-Rayleigh scattering (HRS) method was established.
Second–order nonlinear light scattering [35–36] or the HRS technique was discov-
ered soon after the availability of the pulsed ruby laser but only after the advent of
reliable, electro-optically Q-switched Nd3+-YAG laser, Clays et al. [36] reinvented
this technique to measure the hyperpolarizabilities of molecules in solution. The
technique is both experimentally and theoretically much simpler and more widely
applicable, and has quickly became the technique of choice for the determination
of the first hyperpolarizabilities of a wealth of newly designed and synthesized
chromophores [36–64].

In this chapter, we will give an overview of recent major advances in the design
of ionic NLO materials. An understanding of the electronic origin of molecular
NLO response is of fundamental scientific interest as well as a crucial compo-
nent in the development of state-of-the-art NLO materials. Quantum chemical
chromophore structure-NLO response analysis permits researchers to identify the
electronic structure signature characteristic of enhanced macroscopic NLO response,
and ultimately to design molecular structure with potentially optimal NLO suscepti-
bilities. Many theoretical papers [65–80] have addressed the NLO response of ionic
organic molecules. Here, we will also discuss the overview of the recent literature
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on the quantum chemical analysis on the origin of high second-order NLO optical
properties of ionic molecules.

5. STILBAZOLIUM BASED DIPOLAR CHARGED
ORGANIC COMPOUNDS

5.1 Effect of Counter Ions on SHG Properties

Ionic organic compounds have been known in the last two decades as an interesting
class of NLO materials, especially for the development of single crystals [7–10,
32, 34] and LB films [7–9, 33, 81] with high NLO properties. Most attention
has been devoted in this series on 4-N,N-dimethylamino-4′-N′-methyl–stilbazolium
tosylate (DAST) and this is due to the fact that the largest SHG efficiency reported
till now is from DAST salt and single crystals of different structures that can be
grown simply by changing the counter ions. Marder et al. have shown [26] (data
in Table 1) that the variation of the counter ions in the ionic stilbazolium salts lead
to a material with the highest SHG efficiency reported till to date and it is about
1000 times that of the urea reference. The measurement has been performed using
1907 nm fundamental wavelength.

Their data suggest that dipolar ionic compounds show higher tendency to
crystallize in non-centrosymmetric fashion than the corresponding dipolar covalent

Table 1. Powder SHG efficiencies for compounds of the form RCH=CHC5H4NCH3+X- (Reprinted
with permission from (S.R. Marder, J.W. Perry and P.W. Schaefer, (1989) Science, 245, 626). Copyright
[1989] AAAS

R X−

CF3SO −
3 BF −

4 p-CH3C6H4SO −
3 Cl−

4-CH3OC6H−
4 50 0 120 60

54 0 100 270
4-CH3OC6H4-CH = CH- 0
0 1
0 28 48

0
0 2
2 50 4
3
4-CH3SC6H4- 0
0 0
0 0
0

0
0 0
0 1
0 0
0
2� 4-�CH3�2C6H3- 40 5
5 0
0 0
4

67 2
9 0
08 0
7
C10H8-�pyrenyl� 0
8 37

1
1 14
4-�CH2CH2CH2CH2N�C6H4- 0
5 5
2 0
2 1
1

0
06 0
05 0
03 0
0
4-BrC6H4- 0
0 0
0 1
7 22

0
0 0
02 5
0 100
4-�CH3�2NC6H4- 0
0 75 1000 0
0

0
0 15 0
0
4-�CH3�2NC6H4- CH = CH- ∼ 500 350 115 0
0

5
0 4
2 5 0
0
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Figure 2. Ion Exchange scheme in LB films containing stilbazolium chromophores. (Reprinted with
permission from (S. Di-Bella, I. Fragala, M.A. Ratner and T.J. Marks, (1995) Chem. Mater., 7, 400).
Copyright (1995) American Chemical Soceity.)

compounds. It also has been demonstrated that the counter ion can play a significant
role in crystallographic packing architecture. Roscoe et al. [82] has demonstrated
that the counter ions of these stilbazolium salts can be exchanged using LB films
using the following scheme. Polarized SHG measurement at 1064 nm indicates that
the second–order NLO response from counter ion varies from 34% to 44% as
moved from I− to ethyl orange.

These results indicate that the local environment of the chromophore or chro-
mophore cation-anion interactions play an important role in the bulk SHG prop-
erties of stilbazolium derivatives. The relative NLO contributions due to packing
architecture and the role of anion identity in bulk SHG response cannot be well
understood from the above experimental data. To overcome this problem, Di Bella
et al. [80] have investigated theoretical studies on the dependence of NLO response
in chromophoric ion pairs by changing the nature and packing arrangement of
the constituent species, as shown in Figure 2. They investigated theoretically the
effect of anion environment on the second-order NLO properties of stilbazolium ion
using (intermediate neglect of differential overlap package of Zerner) ZINDO/SOS
(Sum-Over-States) method. Recently we have shown [59] that the calculated dimmer
hyperpolarizabilities depend strongly on relative molecular orientation. We have
found that this increment in hyperpolarizability is due to increase in the oscil-
lator strength and the change in the dipole moment. We have used DFT(density
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functional theory)/3-21G/SCRF(self-consistent reaction field) scheme to calcu-
late the structure of dimers of compound at different configuration (eclipsed,
slipped and tilted) as shown in Figure 3. This suggests a powerful new tech-
nique of arranging donor and acceptor groups in a manner that significantly
enhances the NLO properties of a system. Figure 4a shows how the � value varies
with the interplanar separation between two monomers. At interplanar distance

OH

x z

y

A D

A D A D

A DA D

D

R R
R'

DA

A

α
R

a
b

H3C — N
+

Figure 3. Molecular geometry of substituted stilbene dimmer a) eclipsed, b) slipped and
c) tilted conformation. (Figure has been adapted from reference 59) (Reprinted with
permission from (Z. Sainudeen and P.C. Ray, (2005) Inter. J. Quan. Chem, 1054, 348. Copyright (2005)
Wiley InterScience.)
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Figure 4a. Plot of � vs. interplanar distance (Å). (Reprinted with permission from (Z. Sainudeen and
P.C. Ray, (2005) Inter. J. Quan. Chem, 1054, 348. Copyright (2005) Wiley InterScience.)
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Figure 4b. Plot of � vs. slip distance (Å). (Reprinted with permission from (Z. Sainudeen and P.C. Ray,
(2005) Inter. J. Quan. Chem, 1054, 348. Copyright (2005) Wiley InterScience.)

near 3 Å, the van der Waals interaction in typical crystal, the plot reaches a
flat minimum and then increases asymptotically. In case of slipped conformer
(b), different behavior has been noted (shown in Figure 4b). In this arrange-
ment, � remains unchanged till 2 Å and then increased monotonically with more
separation. An interesting result (Figure 4c) has been found in case of tilted
conformer (c). After a slit initial increase for smaller angle, � values fall of for larger
angles and finally reached to zero at 180�, due to fully coplanar centrosymmetric
structure.

The greatest increases in �zzz values are associated with the displacement (R′) of
the anion from the pyridinium acceptor. To understand the origin of this increment,
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Figure 4c. Plot of � vs. tilt angle (in degree). (Reprinted with permission from (Z. Sainudeen and
P.C. Ray, (2005) Inter. J. Quan. Chem., 1054, 348. Copyright (2005) Wiley InterScience.)

they calculated the change in dipole moment between ground and charge-transfer
excited state ���10�. According to the two-state model [82],

(9) �two state =
3�2

eg��eg

—-——–
E2

eg
static factor

2
eg

———————————
�1−42/2

eg��
2
eg −2�

dispersion factor


 
 
 
 
 
 


where �eg is the transition dipole moment between the ground state �g> and the
charge-transfer excited state �e>, ��eg is the difference in dipole moment and E10

is the transition energy. Their calculations indicate that ��10 values increase with
the displacement of R′ due to the reduced ground state dipole moment, �z along
the CT axis and Eeg decreases due to the reduced energy gap between the relevant
MOs (molecular orbital). Largest �zzz has been observed at R′ ≥ 4
25 A0. These
results indicate that the large hyperpolarizability and hence �

�2�
zzz enhancement can

be understood on the basis of plausible anion-cation packing configurations.

5.2 First Hyperpolarizabilities of Stilbazolium Ions

The molecular hyperpolarizability of charged ionic compounds was not directly
accessible for measurement until the HRS method was reestablished [36]. Therefore
only recently research has been focused on the effect of donor or acceptor substitu-
tion and elongation of the conjugation path length to demonstrate the engineering
guidelines for enhancing molecular optical nonlinearities.
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5.2.1 Effect of donor-acceptor strength

Duan et al. [67–69] investigated first hyperpolarizability of stilbazolium cation with
different donors as shown in Figure 5 and their measured values are shown in
Table 2.

The experimental �0 values for stilbazolium cations are obtained using two-state
model and from the experimental � values obtained from the literature [67–69],
which was measured at a fundamental wavelength of 1064 nm light from Nd:YAG
laser. The trends in static hyperpolarizabilities with the change of substituents
follow the Hammett Parameter Constant ��p� as we have seen before for neutral
molecules.

To compare the experimental measurements with the theoretical findings [77],
we have performed the geometry optimization as well as hyperpolarizability
calculations with solvent dielectric constant for methanol �� = 33� using the
SCRF [83] approaches as implemented in Gaussian Package [84]. �0’s calcu-
lated by DFT/6-31G∗∗/SCRF methods are listed above. They are in quite good
agreement with experimental values. The little discrepancy between experimental
and theoretical values can be due to neglect of other effects in computation such

N Me2

Y
+

Pyridinium Ring

Styryl Ring

Figure 5. Donor-acceptor substituted stilbazolium ions used for this calculation

Table 2. Experimental (Exp) and theoretical static first hyperpolarizability
(in 10−30 esu) values of substituted stibazolium cation

Compound
No.

Y �0
ab-initio �0

ab-initio
(solvent)

�0
Exp

5a Br 79 128 160
5b H 63 92 100
5c Me 91 114 130
5d OH 107 150 160
5e OMe 128 164 150
5f NH2 190 270
5g NMe2 218 295 370
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as hydrogen bonding between solute and solvent specifically when the solvent is
methanol. Another possibility can be due to resonance contributions to measured
�’s. This is definitely true for compound 5f, where the molecule absorbs quite
significantly at 532 nm. Since the measurement has been done at 1064 nm and
molecules have absorption at 532 nm, the resonance contribution to the HRS signal
cannot be neglected. To understand the origin of the very high �’s for stilbazolium
cations, we calculated change in dipole moment between ground and first excited
state ���eg�, oscillator strengths (f) and transition energies �Eeg� values for N,
N-dimethyl amino substituted stilbazolium cation and corresponding nitro stilbene
using ZINDO package employing correction vector (CV) method [18, 23–24]. We
also included solvent effects through a SCRF [83]. According to the two-state
model, the calculated static �0’s is proportional to the product of f, ��eg, and E−3

eg .
Calculated f and Eeg values are about the same for both compounds, but the ��eg

is about 3.02 times higher for stilbazolium cation than stilbene compound, and
this could be the main factor for about 4.2 times higher �0 for the stilbazolium
cation.

5.2.2 Influence of the conjugation length

Elongation of the conjugation pathway is one of the primary design steps for
increasing � values of neutral organic molecules and several studies have been
performed in this direction [7–16]. Only very recently, investigation has been started
for first hyperpolarizability of ionic molecules in that direction [37–41]. Clays
et al. [37] have reported highly unusual effects on the influence of the conjugation
length in first nonlinearity of extended conjugated stilbazolium ions as shown in
Figure 6.

They have extended the conjugation from n = 1 to 5. Their experimental values
show that the � value is at maximum at n = 3 for ionic N-aryl substituted
stilbazolium chromophores. � value increases very sharply from n = 1 to 2 to 3 (100
to 1640 to 2045) and then decreases with the increment of chain length. Hence it is
apparent that the design criteria for ionic NLO chromophore can diverge dramati-
cally from those of purely organic molecules. To understand this unusual behavior,
we performed quantum mechanical calculation for the same molecules using the
BL3YP/6-31G∗∗/SCRF scheme and chloroform solvent to calculate the structure of

N
+

C18H37

N

n

Me

Me

Figure 6. Structure of all-trans extended conjugated stilbazolium ions used in their investigation.
(Reprinted from Chemical Physics Letter, P.C. Ray, (2004) Chem. Phys. Lett., 394, 354, Copyright
(2004), with permission from Elsevier)
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all the hemicyanine dyes with the increment of number of double bonds from
2 to 7. The optimized geometry of the isolated all-trans molecule is almost linear.
Frequency analysis indicates that all the structures are minima on the potential
energy surface. To compare the theoretical � values with experimental data, we
have computed the first hyperpolarizabilities for all the compounds with elonga-
tion of double bonds from n = 1 to 7, using the ZINDO/CV/SCRF method. Since
molecules with n = 3 and above have strong absorption at 650 nm as reported by
Clays et al. [37], we have used photon energy corresponding to 1907 nm exci-
tation source for ZINDO calculation, though the experiment has been performed
at 1300 nm. It is interesting to note that the experimental � values increase very
sharply from n = 1 to 2 to 3 (100 to 1640 to 2045) and then decrease with the
increment of chain length as shown in the Figure 7.

However, the theoretical values increase with the elongation of the chain length
untill n = 7. To understand the origin of high �vec hemicyanine dyes and the
difference in experimental and theoretical findings, we have calculated �max and the
change in dipole moment between ground and charge-transfer excited state ���10�
as shown in the Table 3 below.

Both ��10 and �max increase with n for all the compounds till n = 7. So the
unusual effect observed by experimental studies cannot be explained using the
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Figure 7. Plot of � vs. n for trans, cis and experimental values for extended conjugated stilbazolium.
(Reprinted from Chemical Physics Letter, P.C. Ray, (2004) Chem. Phys. Lett., 394, 354, Copyright
(2004), with permission from Elsevier)



Recent Progress in Molecular Design 397

Table 3. Theoretical dynamic first hyperpolarizabilities (in 10−30 esu), � max (nm) and ��10 values of
the compound 1a and corresponding experimental∗ values for different conjugation lengths from n = 1
to 7. (Reprinted from Chemical Physics Letter, P.C. Ray, (2004) Chem. Phys. Lett., 394, 354, Copyright
(2004), with permission from Elsevier)

n 1 2 3 4 5 6 7

�max (exp) 496 524 546 556 570 – −
�max (theo) 462 501 527 541 554 565 573
��10 (theo) 18
8 24
6 28
5 31
2 36
6 40
7 44
� (theo) 360 740 1320 2090 2980 3690 4200
� (exp) 100 1640 2045 780 1200 – −

(∗) Experimental values have been taken from, J. Opt. Soc. Am. B. 17, (2000), 256.

two-state model. This can be due to several other factors as we discussed in our
recent publication [77] and these are:

i) Cis-Trans isomerization in highly conjugated structures;
ii) Aggregation of ionic compounds in nonaqueous solvents like chloroform;

iii) Degradation of compounds during the measurements.
In the next session, we will discuss thoroughly each of the above-mentioned

aspects.
To perform the first hyperpolarizability calculation for cis configuration, we have

adapted two different strategies, cis conformation through single bonds and through
double bonds as shown in Figure 8.

We have optimized the geometry using ab initio methods as we did for compound
5a-g in this chapter and then calculated their � using ZINDO/CV/SCRF methods.
The plot of experimental and theoretical � in cis and trans form with n is shown
in the Figure 7. First hyperpolarizabilities of cis conformers are about (50–60)%
of trans conformers with equivalent chain lengths and the trends in � values with
chain length are the same for both conformers. Even in the cis form, the theoretical
� values are much higher than the experimentally measured values, whereas the

N C18H37N

Me

Me n'

+

N C18H37N

Me

n
+

Figure 8. Different cis forms of extended conjugated stilbazolium ions have used for this. (Reprinted
from Chemical Physics Letter, P.C. Ray, (2004) Chem. Phys. Lett., 394, 354, Copyright (2004), with
permission from Elsevier)
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experimental values for n=2 and n=3 are much higher than the theoretical finding.
Again, the fluorescence intensity is maximum for n=3 and the fluorescence intensity
pattern follows closely the pattern of � values for n=1 to n=5. So it is hard to believe
that the cis-trans isomerization is alone responsible for the observed discrepancies.
A detailed non-resonant Raman spectroscopic investigation is necessary to resolve
this question.

It is known in the literature [45, 63, 73, 86] that the HRS intensity increases
with aggregation. We have shown [63] previously that the HRS intensity increases
tremendously as melamine forms supra molecular aggregates with cyanuric acid.
Clays et al. [45] also noted the same phenomena for bacteriorhodopsin trimer.
Recently, Gross et al. has shown that [73] the aggregation is very common for ionic
and zwitterionic molecules and it can affect the measured � values tremendously.
The larger dipole will also favor dimerization for longer chromophores and it can
form a centrosymmetric dimer in the solution that can alter � values as discussed
by Gross et al. [73]. However, it is not clear why the � values are so high only for
n=2 and n=3. Clays et al. [37] have measured the absorption spectra before and
after the HRS measurement and since the values are the same, we can neglect the
degradation of the compounds during measurements.

It is known that resonance effect can enhance the � values by an appreciable
amount. Also due to the noncoherent nature, one cannot separate the multi-photon
emission signal from the HRS signal. Though Clays et al. have used femtosecond
HRS technique to separate the HRS signal from multi-photon fluorescence signal,
the fluorescence intensity pattern follows closely the pattern of � values for n=1
to n=5. Since all the molecules have strong absorption at second harmonic light
of the fundamental, one cannot neglect the resonance contribution to the observed
experimental values. Only measurement at 1907 nm fundamental light can resolve
the situation. Recently Zyss et al. [87] have measured the first hyperpolarizability of
conjugated stilbazolium dyes (see Figure 9) using EFISHG technique at 1907 nm.

They have used donor groups and acceptor groups similar to the one used by
Clays et al. [37]. We have calculated static first hyperpolarizabilities of the same
compound using the TD-DFT (Time-dependent density functional theory), SOS-FF
(sum-over-states finite field) method and compared our theoretical values of ���0�

with the experimental findings as shown in Figure 10. Interestingly, the EFISHG
results indicate that the ���0� value increases with the increment of conjugation and
the trends of their experimental findings match very well with our theoretical results.
Since the measurement has been done using 1907 nm, we can neglect the resonance
contribution to their experimental values. Due to the coherent nature, EFISHG

N
+

Et
N

Bu

Bu

Figure 9. All trans extended conjugated stilbazolium ions used in their measurements
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Figure 10. Experimental and theoretical �� values for compounds shown in Figure 9

signal cannot mix with fluorescence signal. Therefore, multi-photon emission and
resonance effect are possible main contributions to the observed experimental trend.

Coe et al. has synthesized and measured first hyperpolarizabilities of a series
of pyridinium and stylbazolium salts [38–40]. Since he has discussed his work in
detail in his chapter, I will not focus on that here.

6. IONIC ORGANOMETALLIC IONIC NLO CHROMOPHORES

Loucif et al. [88] have investigated the influence of complexation of ferrocenyl
derivatives on the second-order hyperpolarizabilities �. They performed their �
value measurements using dc EFISHG technique at 1.34 and 1
9 �m. Significantly
increased � values were observed for these new bimetallic ferrocenyl derivatives.
Their best � value (123
5 × 10−30 esu at 1
34 �m) is comparable to the highest
reported values for organometallic complexes. The nature of the second metal ion
has a weak influence on the � value, in consequence to the change in geometry
of the associated complex. Laidlaw et al. [30] have reported the first hyperpolariz-
ability, �, of a bimetallic complex ion, ��CN�5Ru-�-CN-Ru�NH3�5�- and a novel
organometallic analog, ���5-C5H5�Ru�PPh3�2-�-CN-Ru�NH3�5�

3+. Their measured
� values at the wavelength of 1064 nm using the HRS technique was greater than
10−27 esu which are among the largest reported for the solution species.

Pal et al. [89] have reported on substituted ferrocenyl compounds, where one of
the cyclopentadienyl rings is linked to an aromatic Schiff base, that were synthesized
and analyzed for their second-order nonlinearity ���. Their results indicate that the
metal to ligand charge transfer (MLCT) transition dominates their second-order
response. These compounds form charge transfer (CT) complexes with acceptors
such as I2, p-chloranil (CA), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ),
tetracyanoethylene (TCNE), and 7,7,8,8-tetracyanoquinodimethane (TCNQ). The
CT complexes exhibit much higher second-order response. Bisferrocenyl complexes
where two ferrocene moieties are linked through the same aromatic Schiff base
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spacer were also synthesized and characterized by Pal et al. [89]. The � values of
the bisferrocenyl complexes and their CT counterparts are much higher than the
corresponding monoferrocene complexes.

Wostyn et al. [61] have reported the molecular nonlinear optical polarizability
of lanthanate complexes containing stilbazolium ions. Their experimental results
indicate that the hyperpolarizability is independent of the nature of the lanthanide,
though the complex anion size is a function of the size of the ligand on the
lanthanide cation. Andreu et al. [55] have synthesized a new chiral cyanine dye,
4′-[2-(methoxymethyl)pyrrolidinyl]-1-methylstilbazolium iodide (MPMS+ I). They
have reported that MPMS + I exhibits phase-matched SHG with the efficiency of
up to 80 times that of urea.

Recently Coe et al. [39–40] have reported highly unusual effects on the influ-
ence of the conjugation length on the first nonlinearity of ionic organometallic
chromophores based on stilbazolium ions. Their experimental values show that the
first hyperpolarizability is maximum for n=2 in ionic organometallic complex with
Ruthenium (II) amine donor and N-methyl pyridinum as an acceptor. To under-
stand the origin of the unusual effect, we have computed and reported [77] the
first hyperpolarizabilities for all the compounds with elongation of double bonds
from n=1 to 5, using the ZINDO/CV/SCRF method in the acetonitrile solvent.
For Ruthenium complexes (as shown in Figure 11), we have taken the mainframe
structure from the crystal structure available in the literature [39–40].

Since these molecules have strong MLCT absorption around 550 nm as reported
by Benjamin et al. [39–40] we have used photon energy corresponding to 1907 nm
as the excitation source for ZINDO calculation though the experiment has been
performed at 1064 nm. In case of ruthenium complexes, we observed unusual effects

N

N

n
11a

11b

Me

RuNH3

NH3 NH3

NH3 NH3

NRuNH3

NH3 NH3

NH3 NH3

NO2

n

+

Figure 11. Extended conjugated, all trans. ruthenium complex of stilbazolium cations have used in our
calculation. (Reprinted from Chemical Physics Letter, P.C. Ray, (2004) Chem. Phys. Lett., 394, 354,
Copyright (2004), with permission from Elsevier)
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of �-conjugation extension on the first nonlinearity. Table 4 show the experimental
and theoretical �s with n for the compound 11b. It is interesting to note that the
trend of our theoretical result [77] matches very well with the experimental finding
[39–40]. To understand this unusual effect, we have calculated �max for the MLCT
transition and change in dipole moment between ground and charge-transfer excited
state ���10� that are listed in Table 4. One can note that the trends in � and
��10 with n are same for both compounds and also �max decreases with n. So
the two-state model can interpret our results. Since both the pyridinium rings are
primarily acceptors at both ends, it is not really surprising to see the above results.
To find out if the above statement is correct or not, we have computed the first

Table 4. Theoretical dynamic first hyperpolarizabilities (in 10−30 esu), �max (nm) and ��10 values of
the compound 1b and the corresponding experimental∗ values for different conjugation lengths from
n = 0 to 4 (Reprinted from Chemical Physics Letter, P.C. Ray, (2004) Chem. Phys. Lett., 394, 354,
Copyright (2004), with permission from Elsevier)

n 0 1 2 3 4

�max (exp) 590 595 584 568 −
�max (theo) 568 574 560 545 530
��10 (theo) 17
6 24
5 27
6 18
6 16.2
� (theo) 240 440 760 345 220
� (exp) 750 828 2593 1308 −

�∗� Experimental values have been taken from, J. Am. Chem. Soc., 126, (2004), 2004.
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Figure 12. � vs. n for compound 11a and 11b. (Reprinted from Chemical Physics Letter, P.C. Ray,
(2004) Chem. Phys. Lett., 394, 354, Copyright (2004), with permission from Elsevier)
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hyperpolarizabilities of compound 11b in the acetonitrile solvent. The difference
between compound 11a and 11b is the presence of −NO2 group as an acceptor
instead of pyridinium ring. Plots of experimental �’s [16] for the compound 11a,
theoretical �’s for the compound 11a and 11b with n is shown in Figure 12. One
can note that though the pyridinium ring has been substituted by −NO2 group in
compound c, the trends in � values with n is almost the same. The only difference
is that the �s are lower for the compound 11a, than the corresponding compound
11b. This can be due to the fact that the pyridinium ring is much stronger acceptor
than −NO2.

7. FIRST HYPERPOLARIZABILITIES OF RETINAL
SCHIFF BASES

Hendrickx et al. [41–42] have reported the first hyperpolarizabilities of retinal,
retinal Schiff base and retinal protonated Schiff base at 1064 nm excitation wave-
length. Retinal protonated Schiff base is responsible for the linear and NLO
properties of bacteriorhodopsin protein. Their measured hyperpolarizabilities are
3600 × 10−30 esu for retinal protonated Schiff base and 470 × 10−30 esu for retinal
Schiff base. They also investigated theoretical understanding of the first hyperpo-
larizabilities of retinal derivatives. Results are shown in Table 5.

Schmalzlin et al. [90] have used the HRS technique to determine the molecular
first hyperpolarizabilities � values of retinal Schiff base in its protonated and
unprotonated form. Results of their HRS measurements performed at 1064, 1300 and
1500 nm were reported. The derived hyperpolarizabilities are self-consistent with
the two-state model for all three wavelengths, but they are an order of magnitude
lower than those reported by Hendrickx et al.

Table 5. Experimental and theoretical hyperpolarizabilities (in 10−30 esu) of various retinal derivatives.
(Reprinted with permission from (E. Hendrickx, K. Clays, A. Persoons, C. Dehu and J.L. Bredas, (1995)
J. Am. Chem. Soc., 117, 3547). Copyright (1995) American Chemical Society

Compound �eg�eV�

MeOH
(Exp)a

�eg(eV)
INDO
(Theretical)

�

1064 nm
MeOH
(Exp)

�0
�

INDO/SOS
(Theoretical)

�0
� two-state

INDO/SOS
(Theoretical)

�0 (Exp)

Vitamin A acetate 3.80 3.78 140 2.4 22.9 80
Retinoic acid 3.53 3.52 310 38.0 114.4 160
Retinal Schiff base 3.40 3.60 470 17.9 70.0 220
Retinal 3.26 3.50 730 41.5 120.5 300
RPSB 2.79 2.42 3600 214.6 388.6 900

a The measurements are performed in methanol. The columns refer to the first optical transition energy,
�eg the experimental ��2� = 1064 nm� values, the calculated static �0

� values (obtained over
40 states and using the two-state model), the experimental extrapolated static �0 values.
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8. FIRST HYPERPOLARIZABILITIES OF IONIC
OCTUPOLAR MOLECULES

Zyss et al. [16, 30, 51] recognized in early nineties that this inherent conflict between
dipole minimization and molecular hyperpolarizability is not essential. It could be
ultimately resolved by enlarging the pool of candidate molecules to encompass
non-centrosymmetric systems known as octopuses with symmetry ensured cancel-
lation of their dipole moment as well as of any other physical property behaving
like a vector under symmetry operations. A common way to design second-order
NLO-active octupolar molecules is to develop non-centrosymmetrically substi-
tuted trigonal or tetrahedral �-conjugated systems that display efficient CT from
the periphery to the center of the molecule. The presence of a 3-fold symmetry
axis in octupolar 1,3,5 substituted aromatic ring systems can lead to better trans-
parency characteristics [16, 30, 48–54] and the lack of a molecular dipole can
enhance the prospects of non-centrosymmetric crystal packing [16]. Crystal violet
(tris(p-(dimethylamino)phenyl)methyl ion or CV) is one of the intensely studied as
the prototype octupolar molecules for NLO. It is cationic chromophore (as shown
in Figure 13), which exhibited considerable NLO properties, which is comparable
to traditional dipolar NLO materials.

Crystal violet, a trigonal conjugated cationic dye with electronic CT from periph-
eral dimethylamino donor groups to an electron deficient sp2 hybridized central
carbon atom. A resonantly enhanced � value of 580×10−30 esu has been reported at
1.064 nm, in acetone solution (�max = 590 nm) by Zyss et al. [16] The 1st hyperpo-
larizability, �, of crystal violet dye was measured at 1450 and 1500 nm by Rao et al.
[91]. The resonance-free � value, ��0� for this octupole is comparable with that of the
dipolar dye Disperse Red 1 but with the nonlinearity-transparency trade-off worse
for the octupole. Symmetric cyanine dyes of the kind Me2N+�CH-�CH�CH�n-NMe2

normally exhibit no first hyperpolarizabilities but have relatively long absorption

C+

N(CH3)2
 (H3C)2N

Figure 13. Structure of crystal violet
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wavelengths. Therefore they are not suitable NLO chromophores for second-
order applications. However, if these chromophores are converted into octupolar
molecules either by coupling an extra aldiminium group onto the dye molecules or
by grafting three vinamidinium units onto a benzene ring, NLO chromophores with
considerable first hyperpolarizabilities are reported by Stadler et al. [52]. To prove
this, the � values at 1064 nm, of both kinds of octupoles in solution have been
determined via the HRS technique. We have already shown [53] experimentally that
the symmetrically substituted triazines have larger first hyperpolarizabilities than
their corresponding benzene analogues. Cho et al. [48] have reported 1,3,5 tricyano-
2,4,6-tris(vinyl) benzene derivatives with very large second-order NLO properties.
Recently [79] we have reported first hyperpolarizabilities of the ionic octupolar
NLO systems based on 1,3,5 substituted aromatic rings as shown in Figure 14.

Due to their ionic interaction, they conquer the dipole attraction and in fact,
ionic dipolar compounds exhibit excellent bulk SHG efficiency [7–10]. Dynamic
hyperpolarizabilities of 1,3,5 substituted benzenes and triazines cations calculated
by ZINDO/CV/SCRF method are listed in Table 6. Experimental data [92] for the
corresponding neutral octupolar molecules (as shown in Figure 15) are also listed
in Table 6.

The comparison the magnitudes of the molecular first-order hyperpolarizabilities
obtained from the HRS studies [35–36] does not require the computation of �

projected onto dipole moment ���, since the orientation averaged value is the

N+

N+

Me

D

D

D

+N

n

u

n

Figure 14. Structure of ionic extended conjugated octupolar compounds used in this investigation.
(Reprinted from Chemical Physics Letter, P.C. Ray and J. Leszczynski, (2004) Chem. Phys. Lett., 399,
162, Copyright (2004), with permission from Elsevier)
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Table 6. Theoretical (ZINDO/CV/SCRF) dynamic first hyperpolarizabilities (in 10−30 esu) for compound
1 and 2 with different donor-acceptors. The conversion factor for � values are, 1×10−30 esu = 371
1×
10−53 C3 m3 J−2 = 115
74 aus. (Reprinted from Chemical Physics Letter, P.C. Ray and J. Leszczynski,
(2004) Chem. Phys. Lett., 399, 162, Copyright (2004), with permission from Elsevier

Donor <�zzz
ionic> <�zzz

2a> <�zzz
2b> <�800

2b> <�exp
2b∗

>

NMe2 210 75 40 48 —
NH2 180 60 32 38 —
OMe 130 40 20 24 34
Me 80 26 11 14 18
F 89 28 13 16 19

Experimental data has been taken from G. Hendrickx, I Asselberghs, K. Clays and A. Persoons, J. Org.
Chem, 69 (2004) 5077.
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Figure 15. Structure of neutral extended conjugated octupolar compounds used in this calculation;
a) A = -NO2; b) A = -H. (Reprinted from Chemical Physics Letter, P.C. Ray and J. Leszczynski, (2004)
Chem. Phys. Lett., 399, 162, Copyright (2004), with permission from Elsevier)

relevant parameter and is evaluated directly. In the HRS experiment [32], one
measures average <�2> for any molecule, where,

(10) <�2
HRS> = <�2

ZZZ>+<�2
XZZ>
 
 
 
 
 
 
 
 
 


For a octupolar molecule with C3 or D3 or D3h symmetry,

(11) <�2
ZZZ> = 24/105 �2

ZZZ 
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and

(12) <�2
XZZ> = 16/105�2

ZZZ 
 
 
 
 
 
 
 
 
 



Though in the HRS expression, an isotropic average is made for molecule’s all the
� tensor components, indicating that the HRS is sensitive to all such contributions.
But for octupolar molecules, only <�zzz> tensor contributes to the total �.

The trends in hyperpolarizabilities with the change of substituents follow the
Hammett Parameter Constant (�p) as we can see from Figure 16.

It is interesting to note that �zzz’s for ionic octupolar chromophores are 2–3 times
higher than that of the corresponding neutral molecules. Three-level model can
approximate the quadratic hyperpolarizability of a D3h symmetric molecule. The
energy gap between the ground and two-fold degenerate excited state monotoni-
cally decreases and the transition dipole matrix elements monotonically increase
with the increase of Hammett parameter constant for donor and as we move from
neutral to ionic system for the same donor groups. Though the trends in experi-
mental and theoretical � values for the compound 15b is same, the experimental
�zzz’s are always higher than our theoretical values and it can be due to two factors:
i) the experimental values were measured at a incident wavelength of 800 nm light
and calculation has been performed at 1907 nm. To compare with the experimental
results perfectly, we also calculated �’s using 800 nm excitation source as listed in
Table 1. One can note that the � values calculated using 800 nm are higher than
the corresponding � values calculated using 1907 nm and it is obvious according to
the three-state model. ii) Since these molecules have some absorption at 400 nm,
the experimental signal can have a significant contribution from two-photon fluo-
rescence as discussed by several publications recently.
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Figure 16. Plot of �zzz vs. � for compound 14 and 15. (Reprinted from Chemical Physics Letter,
P.C. Ray and J. Leszczynski, (2004) Chem. Phys. Lett., 399, 162, Copyright (2004), with permission
from Elsevier)
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Elongation of the conjugation pathway is one of the primary design steps for
increasing � values of neutral and ionic dipolar organic molecules and several
studies have been performed in this direction [7–16]. But to the best of our knowl-
edge, there are no reports on the relevant studies for the octupolar molecules in
this direction. We have used DFT/6-31G∗∗/PCM (Polarizable Continuum Model)
scheme using CHCl3 solvent to optimized the structure of compound 14 and 15a
with NMe2 donor and ZINDO/CV/SCRF scheme to calculate their dynamic � values
with increment of number of double bonds from 2 to 5. The optimized geometry of
all the molecules is characterized by D3 symmetry. Harmonic vibrational frequency
analysis indicates that all the structures are minima on the potential energy surface.
Figure 17 shows how the first hyperpolarizabilities increase with the elongation of
chain lengths.

Our data indicate a significant increase in the first hyperpolarizability on elonga-
tion on the conjugation pathway. � increases 1.6 times as one increase the number
of conjugated double bonds from 1 to 2. � values can be fitted with the function
of �zzz	Nm, where n is the number of conjugated � bonds. A linear dependence
of log��zzz� vs. log (n) is also observed for compounds 14 and 15, as shown in
Figure 18. The exponent m provides insight into the chain length dependence of
�zzz. Though the trends in �zzz’s for both series are same, always for a given number
of � bonds (n values), the static first hyperpolarizabilities for ionic octupoles are
much higher than corresponding neutral octuples and the slope is higher for ionic
octupolar chromophores.
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Figure 17. Plot of �zzz vs. n for compound 14 and 15a. (Reprinted from Chemical Physics Letter, P.C.
Ray and J. Leszczynski, (2004) Chem. Phys. Lett., 399, 162, Copyright (2004), with permission from
Elsevier)
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Figure 18. Plot of log��zzz� vs. log (n) for compound 14 and 15. (Reprinted from Chemical Physics
Letter, P.C. Ray and J. Leszczynski, (2004) Chem. Phys. Lett., 399, 162, Copyright (2004), with
permission from Elsevier)

9. ZWITTERIONIC DYES BASED ON PYRIDINIUM
OR STILBAZOLIUM RING

Zyss et al. [93] have reported the synthesis and bulk SHG properties of a new class
of stilbazolium derivatives in which the anionic and cationic parts are liked together
by a n-alkyl chain. These molecules are inner salts in the zwitterionic families as
shown in Figure 19. These zwitterionic molecules have a large dipole moment,
which is independent of the intermolecular CT.

Among them, the most active compounds in SHG were obtained from sulfonato-
propyl derivatives as shown in Table 7.
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D

H

H

R
X–

D = Donating group
X– = Anion
R = Alkyl chain

N+

D

H

H

(CH2)n–SO3
–

D = Donating group
n = 2,3,4

Figure 19. Structure of zwitterionic stilbazolium derivatives: 1) 4-substituted 4′-(N-alkyl)-stilbazolium,
2) 4-substituted 4′-(N-sulfonatoalkyl)-stilbazolium. (Reprinted with permission from (C. Serbutoviez,
J.F. Nicould, I. Ledoux and J. Zyss, (1994) Chem., Mater., 6, 1358). Copyright (1994) American
Chemical Soceity.)
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Table 7. Powder SHG values obtained from zwitterionic 4-substituted 4′-(N-sulfonatopropyl)-
stilbazolium derivatives, where + denotes a signal comparable to or a few times greater
than that of urea. ++, +++, and ++++ refer to 1,2, or 3 orders of magnitude greater
signals respectively and − denotes no eye detectable SHG signal (Reprinted with permission
from (C. Serbutoviez, J.F. Nicould, I. Ledoux and J. Zyss, (1994) Chem. Mater., 6, 1358).
Copyright (1994) American Chemical Soceity.)

Compound 2 � (SHG) n = 2 n = 3 n = 4

10, MTSPS
D = CH3S 1
06 �m ++ ++++ −

phase I: 2
4×NPP
phase II: 1
3×NPP
phase III: inactive −

1
34 �m ++ ++++
1
06 �m / 11, BSPS /

D = nC4H9 ++
1
34 �m / / /

D = H 12, SPS
1
06 �m − ++ −

phase I: inactive
phase II: 15×urea
phase III: inactive

− −
1
34 �m ++

4-Methylthio-4′-(3-sulfonatopropyl) stilbazolium derivatives exhibits two highly
SHG-active monohydrated crystalline phase and their measured SHG values were
2.4 and 1.3 times of NPP at 1
06 �m excitation.

9.1 Molecular Hyperpolarizabilities

Betaine analogues that are zwitterionic in the ground state, containing two oppositely
charged heteroaromatic rings linked directly or through a vinyl unit have been
considered as second order NLO chromophore theoretically and experimentally by
Abe et al. [70–72] Lambert et al. [94] have studied a new family of zwitterionic
NLO chromophores in which a polyene bridge is capped by phenyl rings substituted
by NR+

3 in one end and at the other end by BR−
3 . This molecular design leads

to (i) a very high degree of ground state polarization (high dipole moment) and
(ii) higher transparency in the visible wavelength region with respect to push-pull
diphenylpolyenes, presumably due to a shorter conjugation length, from which the
saturated groups can be considered to be at least partially excluded. Victor et al. [95]
presented a quantum-chemical analysis of the molecular structure and second-and
third-order polarizabilities in a series of promising NLO chromophores (as shown
in Figure 20), the zwitterionic ammonio/borato diphenylpolyenes, R3N+Ph�C =
C�nPhB−R3, whose experimental results have been reported by Lambert et al. [94]
The origin of the remarkable NLO response of these zwitterionic molecules was
elucidated with the help of two complementary theoretical frameworks.
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Figure 20. Structures of different aliphatic and aromatic zwitterionic molecules. (Reprinted with permis-
sion from (V.M. Geskin, C. Lambert and J.L. Bredas, (2003) J. Am. Chem. Soc., 125 15651). Copyright
(2003) American Chemical Soceity.)

Real-space finite-field results directly point to the most NLO-active segments in
the molecules: these are primarily phenylene groups. The sum-over-states analysis
highlights the essential role of a single excitation channel in the zwitterionic series.
It consists of the ground state to lowest excited state channel, corresponding to
the HOMO → LUMO excitation. This transition involves an inter-phenylene elec-
tron density transfer; again underlining the critical role of the phenylene rings in
generating the NLO response. Bartkowiak et al. have repoted the solvent effect on
the first hyperpolarizabilities [96] and two photon absorption cross sections [97]
of zwitterionic betaine dyes. Szablewski et al. [86] have reported the synthesis and
NLO properties of a series of novel zwitterionic chromophores. Their measured
second-order nonlinearity using the HRS technique for one series of compound
predicted ���0� = 9500 × 10−48 esu, one of the highest values reported till now in
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the literature. Zwitterionic merocyanine dyes are very interesting especially for
EO applications due to the large nonlinear optical susceptibilities and the good
alignment of the chromophores in the co-crystal. Mericyanine dyes can switch from
zwitterionic to quinoid character in ground state (Figure 21) with solvent polarity
as shown below.

The merocyanines achieve this zwitterionic state in polar solvents largely because
there is an increase in aromaticity to be gained from the charge separation. In order to
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Figure 21. Structure of zwitterionic molecules used in this investigation. (Reprinted from Chemical
Physics Letter, P.C. Ray, (2004) Chem. Phys. Lett., 395, 269, Copyright (2004), with permission from
Elsevier)
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understand the effect of solvent-solute interactions on the NLO properties of the
zwitterionic molecules, we have performed [78] a systematic study of the first
hyperpolarizabilities of a series of merocyanine dyes (Figure 21) using TD-DFT
calculations with fairly extensive basis set (6-31G∗∗). TD-DFT performs the calcu-
lations of frequency-dependent response properties like electronic excitations and
frequency dependent hyperpolarizabilities [21]. To understand how the solvent
polarity affects the structure and NLO properties of the zwitterionic dyes, we have
used SCRF approach with PCM [19], as implemented in Gaussian 03 [84].

To investigate how this structural change in different solvents affects � values,
we have calculated the first hyperpolarizabilities of all the molecules using
ZINDO/CV/SCRF method using different solvent parameters and 1907 nm as exci-
tation source. Computed � values are plotted with the solvent parameter as shown
in Figure 22.

Our calculation shows a remarkable solvent effect on the first hyperpolarizabil-
ities of zwitterionic molecules. First order NLO responses are low and positive
in the gas phase and then increases slowly with solvent polarity. Then it started
to decrease with the solvent polarity. The � values remain negative in all the
polar solvents and pauses highest values at a moderate � (6–8) and then again
decrease slowly with the increase in �. This behavior is mainly due to the change
of the structure from quinoid to zwitterionic form. Once it is in mostly zwitteri-
onic form, � values decrease with the increase of solvent polarity. Recently similar
behavior has been observed experimentally by Cross et al [73] and Abbotto et al.
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Figure 22. Plot of � vs. n for zwitterionic and neutral (DANS) dyes. (Reprinted from Chemical Physics
Letter, P.C. Ray, (2004) Chem. Phys. Lett., 395, 269, Copyright (2004), with permission from Elsevier)
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[66, 74] for zwitterionic molecules. Changing the solvent from low to high dielec-
tric causes not only an increase in magnitude of � but also a change in sign,
therefore passing through zero at intermediate dielectric. There are clearly impor-
tant consequences from this, in choice of solvent and molecular environment when
evaluating NLO molecules. An excellent NLO response in solution might vanish
when the active chromophore is dispersed in a matrix with suitable �. The same
chromophore can prove to perform very well under appropriately chosen solvent.
The commonly established procedure for the NLO compound to report � values in
one solvent may in certain cases be insufficient to draw definite conclusions on the
overall chromophore performance and the prospect for different design strategies.
To compare this result with the corresponding neutral and ionic molecules, we
also computed � values for DANS in different solvents and their values plotted in
Figure 22. First of all, the first nonlinearity is much lower for neutral molecules
than the corresponding zwitterionic molecules. For neutral molecule, first hyper-
polarizability is always positive and increases as we move from gas phase to
solvent phase and keeps increasing with the solvent polarity. This phenomenon
for neutral molecule is very common and the same trend has been reported in the
literature [7–16].

To understand the origin of the remarkable solvent effects in zwitterionic
molecules, we calculated the change in dipole moment between ground and
charge-transfer excited state ���10�. Figure 23 shows the plot of the ��10 vs. � for
different solvents. It is interesting to note that the trend in the variation of ��10 and
� with � is quite similar, which follows two-state model perfectly. This confirms
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Figure 23. Plot of � vs. � for zwitterionic and neutral dyes. (Reprinted from Chemical Physics Letter,
P.C. Ray, (2004) Chem. Phys. Lett., 395, 269, Copyright (2004), with permission from Elsevier)
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that the ��10 could be the main factor for the remarkable solvent effect on the
first hyperpolarizabilities of the zwitterionic molecules. We have also calculated the
��10 for DANS molecule in different solvent and plotted in the same Figure 23. For
DANS molecule, ��10 is always positive and increases slowly with the variation of
�. As a result, � is positive for DANS molecule and increase slowly with solvent
parameter.

10. DEVICE APPLICATIONS

DAST crystals are very interesting especially for EO applications due to the excep-
tionally large NLO susceptibilities and good alignment of the chromophores in the
crystals. Pan et al. [98–102], have found that DAST crystal exhibits very pronounced
NLO effect, with EO coefficients, e.g. r111 = 47 pm/V at 1535 nm. Their results
indicate that DAST is a very interesting material for EO applications in the near
infrared. Their measured EO coefficients in the spectral range of 700 to 1535 nm
are shown in Table 8.

Meier et al. [98] have shown that DAST crystal is also a very interesting
material for phase-matched parametric oscillation around the telecommunication
wavelength at � = 1318 and 1542 nm. Their results (as shown in Table 9) indicate
that the second-order NLO coefficient d111 = 1010 pm/V at 1318 nm for DAST
crystal.

They have shown that there exist phase-matching configurations for frequency
doubling with large effective NLO coefficients at telecommunication wavelength,
which is interesting for applications such as the cascading of the second-order
nonlinearities and optical parametric oscillation. Thakur et al. [102] have reported
(as shown in Figure 24) high EO modulation using single-crystal film of stilbazolium
salts with light propagating perpendicular to the film.

Table 8. Linear EO coefficients rijk (pm/V), reduced half-wave voltages vijk
� (kV), dielectric constants

ef , and linear polarization optical coefficients, fijk�m2/C� of DAST (Reprinted with permission from
(F. Pan, G. Knopfle, Ch. Bosshard, S. Follonier, R. Spreiter, M.S. Wong and P. Gunter, (1996) Appl.
Phys. Lett., 69, 13). Copyright (1996), American Institute of Physics)

� = 1535 nm � = 1313 nm � = 800 nm � = 720 nm

r111 47±8 53±6 77±8 92±9
v111

� 3.5 2.4 0.79 0.53
r221 21±4 25±3 42±4 60±6
v221

� 17 12 4.0 2.3
r333 < 0
1 < 0
1 < 0
1 0
8±0
2
r311 < 0
1 < 0
1 < 0
1 0
7±0
2
r223 < 0
1 < 0
1 < 0
1 < 0
1

ej@103−105 KHz: e1 = 5
2±0
4, e2 = 4
1±0
4, e3 = 3
0±0
3
fijk@� = 800 nm: f�1� = 2
1±0
3, f221 = 1
5±0
3, f113 = 0
85±0
13

DAST exhibited large EO coefficients with low dielectric constants, e.g. � = 5
2.
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Table 9. Second-order nonlinear optical coefficients dijk (pm/V) and coherence lengths lc (nm) of
DAST. The reference value dQ111 of � quartz is given for completeness. (Reprinted with permission
from (U. Meier, M. Bosch, F. Pan and P. Gunter, (1998) J. Appl. Phys., 83, 3486). Copyright (1998),
American Institute of Physics)

� (nm) d111 l111
c d122 l122

c d212 l212
c dQ

111

1318 1010±10 0
64±0
02 96±9 0
30±0
02 53±12 3
9 ±0
8 0.292
1542 290±15 1
38±0
05 41±3 0
48±0
01 39± 2 2
50±0
02 0.286
1907 210±55 3
2 ±0
3 32±4 0
67±0
03 25± 3 2
10±0
02 0.277
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Figure 24. Electro-optic responses as a function of frequency. (Reprinted with permission from
(M. Thakur, A. Mishra, J. Titur and A.C. Atiyi, (2002) Appl. Phys. Lett., 81, 3738). Copyright (2002),
American Institute of Physics)

They have indicated excellent signal-to-noise ratio at a low applied voltage
(1V across 15 �m gap) for a 3 �m thick film due to the exceptionally large EO
coefficients. The devices based on these films have much greater design flexibility,
which can be comparable with liquid crystal devices with the additional advantage
of orders of magnitude higher speed than liquid crystals.

11. SUMMARY

In this chapter we have attempted to provide an overview of the field of molecular
design of ionic NLO materials. Here we summarized the experimental advances
that has been made in the past two decades and described the theoretical research
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that have been attempted to explain the experimental results. We believe that the
field of molecular design of ionic NLO materials is still in infancy and we expect
this field to be fruitful one for many years to come.
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CHAPTER 14

CHARACTERIZATION TECHNIQUES OF NONLINEAR
OPTICAL MATERIALS
An introduction to experimental nonlinear optical techniques

INGE ASSELBERGHS, JAVIER PÉREZ-MORENO AND KOEN CLAYS
Department of Chemistry, University of Leuven, Celestijnenlaan 200D, Leuven, Belgium

Abstract: Different techniques to characterize the strength of the second- and third-order nonlinear
optical response are presented, with particular emphasis on the relationship between the
macroscopic measurable quantities and the intrinsic molecular nonlinear properties

Keywords: Characterization techniques, Second-order nonlinear optical response, Third-order
nonlinear optical response, Molecular hyperpolarizabilities, Nonlinear susceptibilities,
Intensity-dependent refractive index

1. INTRODUCTION

Nonlinear optics (NLO) is the study of the interaction of intense light beams
with matter, where the response of the media is nonlinear in the applied optical
field. Nonlinear optics was born only four decades ago, when the first observation
of second-harmonic generation was reported [1]. Despite its late start, nonlinear
optics has undergone a very rapid growth, a growth that has benefited both the
scientific and the technological world. Scientifically, with the development of
nonlinear optics, the understanding of the essential interaction of light and matter
has improved. Technologically, nonlinear optical processes are the basic tools of
optoelectronic and photonic applications. In essence, optoelectronics and photonic
applications are the equivalent to electronic applications, where the role of the
electrons to store, manage and transmit information is played by photons.

Some of the relevant applications of nonlinear optics are currently used in laser
technology and fiber communications, such as optical frequency conversion, optical
parametric oscillation and amplification, the linear electrooptic effect (Pockels
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effect) and optical phase conjugation. Other applications, such as optical bista-
bility and optical solitons are candidates to become the basic elements of optical
computing and long-distance fiber communications.

The use of optical frequency conversion and optical parametric oscillation
allows the generation of new frequencies from a source frequency [2, 3].
Second- and third-harmonic generation are particular cases of optical frequency
conversion, where respectively, the original frequency is doubled or tripled. Optical
frequency conversion and parametric oscillation devices are commonly used in laser
technology [4–6].

The linear electrooptic effect is the change in the index of refraction of a medium
due to the presence of a dc or low-frequency electric field, in such a manner
that the change in the index of refraction depends linearly in the strength of
the low-frequency electric field. The linear electrooptic effect is the mechanism
behind optical intensity modulators that are used in optical switching and fiber-
optics communications, where the optical signal is modulated at high frequencies
(out to 110 GHz) [7–9].

Optical phase conjugation allows the reversal of the phase of the electromagnetic
wave associated with a beam of light. It has applications in real-time adaptive
optics where it is used to correct aberrations, in image processing and in optical
computing [10–12].

The realization of stable optical solitons will have a significant impact in long
distance optical communications and information technology. A stable optical
soliton is able to propagate through an optical fiber without pulse broadening or
dispersion (a feature that cannot be avoided in the linear regime) which minimizes
information losses [13–15].

Optical bistability is a nonlinear process where for the same optical input intensity
in a material, there are two possible output intensities and it is a consequence
of nonlinear saturable absorption. Optical bistability allows the design of optical
logical circuits and will play a fundamental role in the development of optical
communication and optical computing [16–18].

The implementation of nonlinear optical applications depends strongly on the
discovery and development of new nonlinear materials. Although in principle, all
materials might show nonlinear optical effects, the response is generally too small to
be of any use. Furthermore, in order to observe even-order nonlinear optical effects,
the material has to be noncentrosymmetric at both the molecular and the bulk level.
Therefore, the design of optoelectronic and photonic devices relies heavily in the
development of new nonlinear optical materials.

Following the description of Prasad and Williams [19], nonlinear materials are
classified in two categories: molecular materials and bulk materials.

Molecular materials are basically molecular units that are bonded chemically and
that interact in the bulk through van der Waals interactions. In these materials,
the optical nonlinearity is produced as a consequence of the molecular structure.
Examples of this type of materials are organic crystals and polymers. Because the
nonlinear response of the material is due to the nonlinear response of the molecular
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sites, it is possible to define microscopic nonlinear coefficients. The microscopic
nonlinear coefficients are called the molecular hyperpolarizabilities and are the
molecular equivalent of the bulk nonlinear susceptibilities. In this manner, the
bulk susceptibility is related to the molecular susceptibilities by simple addition
principles.

Since in molecular materials the nonlinear effect occurs fundamentally at the
molecular level, it is possible to assemble new molecules by substituting groups of
donors or acceptors to optimize the nonlinear optical response. The optimization
of optical nonlinearities at the molecular level constitutes a field that incorporates
elements of chemistry, physics, polymer science and material science, known as
organic molecular engineering.

In contrast, the nonlinearities in bulk materials are due to the response of electrons
not associated with individual sites, as it occurs in metals or semiconductors. In
these materials, the nonlinear response is caused by effects of band structure or other
mechanisms that are determined by the electronic response of the bulk medium. The
first nonlinear materials that were applied successfully in the fabrication of passive
and active photonic devices were in fact ferroelectric inorganic crystals, such as the
potassium dihydrogen phosphate (KDP) crystal or the lithium niobate �LiNbO3�
[20–22]. In the present, potassium dihydrogen phosphate crystal is broadly used
as a laser frequency doubler, while the lithium niobate is the main material for
optical electrooptic modulators that operate in the near-infrared spectral range.
Another ferroelectric inorganic crystal, barium titanate �BaTiO3�, is currently used
in phase-conjugation applications [23].

New bulk materials have arisen recently, such as the quantum well structures
derived from GaAs and II-VI semiconductors. The introduction of these new inor-
ganic semiconductor materials has recovered the interest in inorganic materials.
However, the engineering of efficient multiple well structures is not a trivial task.
The design of such structures is very expensive especially in comparison with
organic materials. Also, while in organic materials, optimization is achieved funda-
mentally at the molecular level, the nonlinear optical optimization of quantum
well structures needs more elaborated approaches (such as band theory). For these
reasons, inorganic semiconductor materials are expected to complement organic
materials rather than compete with them in the design of photonic applications.

With respect to the traditional inorganic materials, organic materials are relatively
new, and yet, they have become the leading systems for fabrication of optoelectronic
and photonic devices. The main advantage of organic materials is the availability of
optimization at the molecular level. Compared to inorganic materials they are rela-
tively cheap to produce. Also, organic materials are easy to grow, manipulate and
incorporate into different structures. Finally, another advantage of organic materials
is their low dielectric constants, especially in comparison with inorganic crystals.
Low dielectric constants are required in order to design efficient electrooptic
devices, leading to a large operating bandwidth modulation (up to > 10 GHz).

The origin of the nonlinearities at the microscopic level of organic structures is the
existence of the delocalized � electrons of the molecules, which are loosely bound to
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the positive nuclear sites and have orbitals that can extend over the entire molecule.
The existence of this unique chemical � bonding results in the largest nonabsorptive
optical nonlinearities. Since in general, absorption and heat dissipation limits the
response time, organic materials are preferred because in the nonabsorptive regime,
the delocalized � electrons provide the fastest type of response.

The rest of this chapter is organized as follows: A brief section introduces the
basic definitions needed to describe the nonlinear optical response, with some
remarks about the different available notations. Next, a general overview of the
experimental techniques used to characterize the nonlinear response is developed.
The overview starts with second-order nonlinear characterization, where the Second-
Harmonic Generation, Electric Field Induced Second-Harmonic Generation and
Hyper-Rayleigh Scattering techniques are described. Also, general experimental
techniques that are also applied to characterize the third-order nonlinear response
such as the Maker Fringe technique or the Wedge-shaped technique are intro-
duced. Finally, the basic elements of some characterization techniques of the
third-order nonlinear response are presented: Third-Harmonic Generation, Electric-
Field-Induced Second-Harmonic Generation, Degenerate Four-Wave Mixing and
Optical Phase Conjugation, Optical Kerr-Gate, Self-focusing methods and Nonlinear
Fabry-Perot methods.

2. NOTATION AND DEFINITIONS

2.1 The Electromagnetic Description

The generation of new frequency components from the original frequencies of the
incident radiation field can be understood by the use of the Maxwell equations. In
Gaussian units, the Maxwell equations can be written as [24]:

� × �E = −1
c

��B
�t

(1)

� × �B = 1
c

� �E
�t

+ 4�

c
�J

� · �E = 4��

� · �B = 0

where �E ≡ �E��r� t� is the electric field, �B ≡ �B��r� t� is the magnetic field, �J ≡ �J��r� t�
is the current density, � ≡ ���r� t� is the charge density and c is the speed of light.

The current density and the charge density are usually expanded in a series of
multipoles:

�J = �J0 + ��P
�t

+ c� × �M + �

�t
�� · �Q�+ 	 	 	(2)

� = �0 −� · �P −��� · �Q�+ 	 	 	
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where �P is the electric dipole polarization, �Q the electric quadrupole polarization
and �M the dipole magnetization. For many applications of nonlinear optics, the
dipole magnetization and higher-order multipoles can be ignored. This is known as
the electric dipole approximation. In this regime, the Maxwell equations become:

� × �E = −1
c

��B
�t

(3)

� × �B = 1
c

�

�t
��E +4� �P�+ 4�

c
�J0

� · ��E +4� �P� = 0

� · �B = 0

In the nonlinear regime, the electric dipole polarization is expanded in a Taylor
series in terms of the total applied electric field. This approximation assumes that
the electric field is small. The electric dipole polarization is then written as:

(4) �P = �P�1� + �P�2� + �P�3� + 	 	 	+ �P�n� + 	 	 	

where �P�1� is linear in the electric field, �P�2� is quadratic in the electric field, �P�3�

is cubic in the electric field and so on. In general, the total applied electric field
is the sum of different fields at different frequencies, so it is convenient to expand
the field in terms of Fourier components.

Due to the fact that the study of nonlinear optics has been approached from
many disciplines and has been growing very quickly, different notations have been
developed to describe the nonlinear optical phenomena. This can sometimes be a
source of confusion. Here we list the four most used conventions as reported by
Shi and Garito [25]. The conventions differ in the way of defining the nonlinear
polarization and the interacting fields in the frequency domain.

CONVENTION I

This convention defines the nth-order nonlinear susceptibility, 
�n� in terms of the
nth-order polarization and the electric fields as:

(5) P
�n+1
i = ∑

jk			m



�n�
ijk			m�−�n+1��1� 	 	 	 ��n�E

�1
j E

�2
k 	 	 	E�n

m

where P
�n+1
i is the i-component of the nth-order polarization field at frequency

�n+1, E
�1
j is j-component of the electric field amplitude at frequency �1, and the



�n�
ijk			l terms are the components the nth-order electric susceptibility of the medium,


�n�. 
�n� is a �n + 1�-order tensor that determines completely the optical (linear
and nonlinear) properties of the medium. Conservation of energy requires that
�n+1 = �1 +�2 + 	 	 	+�n at all orders.
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In this convention, the time-dependence of the electric and polarization fields are
expanded in Fourier series as:

(6) �E�t� = 1
2

∑

�≥0

�E� exp�−i�t�+ �E−� exp�i�t��� with
(

⇀

E�

)∗
= ⇀

E−�

and

(7) �P�t� = 1
2

∑

�≥0

�P� exp�−i�t�+ �P−� exp�i�t��� with
(

⇀

P�

)∗
= ⇀

P−�

This notation is probably the simplest but it suffers from the fact that different
susceptibilities do not converge to the same value in the zero-frequency limit. This
is solved in Convention II by introducing frequency dependent numerical factors.

CONVENTION II

Convention II uses the following definitions:

P
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i = ∑

jk			m
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2
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The numerical factors K�−�n+1��1� 	 	 	 ��n� are defined through:

(11) K�−�n+1��1� 	 	 	 ��n� = D

2q−p

where q is the number of nonzero input frequencies and p is equal to zero if
�n+1 = 0 and unity otherwise, while D is the number of distinguishable orderings
in the input frequencies.

CONVENTION III

Convention III defines the nonlinear susceptibility in the same manner as
convention II:

P
�n+1
i = ∑

jk			m

K�−�n+1��1� 	 	 	 ��n�

�n�
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However, the electric field and polarization are defined as:

(13) �E�t� = ∑

�≥0

�E� exp�−i�t�+ �E−� exp�i�t��� with
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⇀
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⇀
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CONVENTION IV

In convention IV the nonlinear susceptibility is defined in terms of the Taylor
expansion:

(15) 

�n�
ijk			m�−�n+1��1� 	 	 	 ��n� = �nP
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which makes it very suitable for finite field calculations
The time-dependence of the electric and polarization fields are expanded in the

same manner as in convention I:

(16) �E�t� = 1
2
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�≥0
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Shi and Garito recommend conventions I and II, because they are the ones
most used to report values in organic nonlinear optics. As pointed out previously,
convention IV is widely used in finite field calculations, and experimentally it is
also used to report values on gas phase atoms or molecules.

From the different definitions it is possible to relate the nonlinear susceptibilities
from the first three conventions:



�n�I
ijk			m�−�n+1��1���2� 	 	 	 ��n�

= K�−�n+1��1���2� 	 	 	 ��n�

�n�II
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(20)
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with q and p defined in Eq. (11).
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Convention IV is mostly used in the static limit, where the following relationship
holds:

(21) 

�n�II
ijk			m�0� 0� 0� 	 	 	 � 0� = 1

n!

�n�IV
ijk			m�0� 0� 0� 	 	 	 � 0�

As an example, we can consider the values of 
�3�
xxxx�−2������ 0� which can be

measured using Electric-Field-Induced Second-Harmonic Generation techniques.
The values of 
�3�

xxxx�−2������ 0� in the different conventions will obey the
following relationships

(22) 
�n�I
xxxx�−2������ 0� = 3

2

�n�II

xxxx�−2������ 0� = 1
2


�n�III
xxxx �−2������ 0�

This simple example warns about the danger of neglecting the differences between
author conventions. Less used conventions as well as more details on the relation-
ships between them can be found in [25].

Another source of confusion might be the units used to report nonlinear optical
values. In order to compare the results of two different experiments or confront
a theoretical prediction with experimental data, it is necessary to make sure the
same units are used. Commonly, in nonlinear optics, CGS (esu) units or MKS units
are used. Table 1 lists some fundamental quantities of nonlinear optics, as well as
the corresponding units in both CGS (esu) and MKS, together with the conversion
factors between the two systems of units [24, 25].

Thus, in order to compare values of the nonlinear electric susceptibilities, 
�n�,
one has to make sure that the same system of units is used, and check out the
conventions that have been used to describe the nonlinear optical response.

Because the electric susceptibilities fully determine the optical properties of the
medium, one of the essential tasks of nonlinear optics is the characterization of the

Table 1. Fundamental quantities of nonlinear optics and its units in CGS �esu� and MKS.
The conversion factor between both systems of units, Q, defined as NCGS = Q ·NMKS , where
NCGS is the quantity in CGS units, while NMKS is the quantity in MKS units, is also provided

Quantity CGS (esu) Conversion Factor, Q MKS

length, l cm 10−2 m
mass, m g 10−3 kg
force, F dyn 10−5 N
energy, E erg 10−7 J
charge, q statcoulomb 3	336×10−10 C
potential, V statvolt 2	998×10−2 V
electric field,E stavolt/cm 2	998×10−4 V/m
polarization,P statvolt/cm 3	336×10−6 Cm−2


�1� (none) 1	257×101 (none)

�2� statvolt−1 cm 4	188×10−4 mV−1


�3� statvolt−2 cm2 1	397×10−8 m2 V−2
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different tensorial components of the nonlinear electric susceptibilities. However,
since in general the magnitude of the response decreases as the order of the
nonlinearity increases, it is usually enough to characterize second- and third-order
nonlinear susceptibilities, 
�2� and 
�3�, respectively.

In organic materials, it is convenient to define microscopic nonlinear coefficients
that relate the molecular dipole moment with the electric field applied to the
molecule. Including the possibility of a permanent molecular dipole moment, �0,
the molecular dipole moment is related to the electric field components in the
frequency domain by:

��
i = �0

i �0�� +∑
j

�
�1�
ij �−���� ·E�

j +∑
jk

�
�2�
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j E
�2
k E

�3
l + 	 	 	

where ��1�, ��2� and ��3� are the tensors corresponding to the first-, second-, and
third-order molecular susceptibilities. The nonlinear molecular susceptibilities, ��2�

and ��3� are also called the first and second hyperpolarizabilities, respectively.
It has to be noted that the field applied to the molecule is not necessarily the

electric field associated with the applied optical beam in the experimental set up. To
account for this, one uses local field factors that vary depending on the particular
characteristics of the molecular ensemble.

3. CHARACTERIZATION TECHNIQUES OF SECOND-ORDER
SUSCEPTIBILITIES

3.1 Material Requirements: Symmetry Conditions in Second-order
Nonlinear Optics

Neumann’s principle states that under any symmetry operation on the
system, the sign and the amplitude of the physical property should remain
unchanged. This has a severe consequence for second-order effects: only
non-centrosymmetric systems are allowed. A system is centrosymmetric when
its physical properties remind unchanged under the inversion symmetry
transformation (x → −x, y → −y, z → −z).

If we consider a centrosymmetric system we can examine the influence of the
inversion symmetry on the polarization of a general second-order nonlinear process:

(24) P
�2�
i ���� = 


�2�
ijk E

�1
j E

�2
k

Upon inversion, the electric field and the polarization transform as:

(25) Pi���� → −Pi�����E
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�2
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Therefore, Eq. (23) becomes:

(26) −P
�2�
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k �

or

(27) P
�2�
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�2
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As can be seen by comparing Eq. (24) and Eq. (27), the polarization has changed
sign and therefore the statement can only be true if:

(28) 

�2�
ijk = 0

This means that no second-harmonic generation can come from a centrosym-
metric medium. Only noncentrosymmetric media will give a second-order response.

We should keep in mind that this rule is applied on the molecular as well
as on the macroscopic scale. At the molecular scale this problem can be solved
by using electron donor and acceptor substituted conjugated D-�-A dipolar or
octopolar molecules. When all these molecules are also randomly oriented, no
second-order signal will occur. A polar order should be induced in the macroscopic
scale. This can be achieved by electric poling, noncentrosymmetric crystal growth,
the Langmuir-Blodgett technique, etc. An exception to this rule is Hyper-Rayleigh
Scattering, where the natural orientational fluctuations of molecules in solution leads
to local breaking of the centrosymmetry, allowing the measurement of second-order
nonlinear response.

3.2 Second-Harmonic Generation

In Second-Harmonic Generation (SHG) experiments, an input beam of frequency
� incident in the material generates an output beam of frequency 2�. The response
is described by the second-order nonlinear susceptibility:

(29) Pi�2�� = 1
2



�2�
ijk �−2������Ej���Ek���

By solving the nonlinear wave equation, under the assumption of undepleted
input beams, it is found that the intensity of the output wave at frequency 2� varies
as a function of the interaction length inside of the sample, l, and the wave vector
mismatch �k [26]:

(30) I2� = Imax
2�

sin2��k l/2�

��k l/2�2

where the wave vector mismatch is defined as:

(31) �k = 2k� −k2�

From Eq. (30) we can see that by varying the interaction length inside of the
sample, the output intensity at frequency 2� will be changed. This is the basic idea
behind most Second-Harmonic Generation measurement techniques.



Characterization Techniques of Nonlinear Optical Materials 429

3.2.1 Second-harmonic generation on crystals

The Maker fringe method is one of the most used methods for determining the
second-order nonlinear susceptibility 


�2�
ijk of a crystal [27]. It is a relative method

and is only useful when the second-harmonic signal is compared with the signal
from a crystal with known 


�2�
ijk values. The experiment is designed as follows.

A light beam at frequency � and associated with an electric field E� is interacting
with a nonlinear active crystal. The light is linearly polarized. The electric field E�,
associated with the wavevector k�, will interact with the crystal with thickness l.
The incident angle of the light beam on the crystal surface is �. Then a nonlinear
polarization is induced in the crystal. Inside the crystal two waves are present: the
first wave is called a forced wave and is at incident frequency � and progresses at
a speed n� (n� = refractive index at frequency �). The propagation wavevector is
k′

�. At the surface a second wave is generated, the harmonic wave and is proceeding
with a speed n2� (n2� = refractive index at frequency 2�). This wave is associated
with the wavevector k′

2�. The material is then rotated around an axis perpendicular
to the incoming laser beam. The fringes are then caused by the angular dependence
of the phase mismatch �k between the forced and harmonic waves:

(32) �k = 2k� −k2� = 4�

��n� cos �′
� −n2� cos �′

2��

where �′
� and �′

2� are the angles of refraction at the two frequencies. The rela-
tionship between these quantities can schematically be seen in Figure 1.

The study of the output fringe pattern, as a function of the incident angle, �,
allows to determine 


�2�
ijk .

The harmonic power P2� varies with the angle �:

(33) P2� = Im��� sin2 �

where � is defined as:

(34) � = �l

2lc���

χ 
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Figure 1. Schematic view of the wave propagation in a second-order active crystal
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while the angular dependence of the coherence length, lc, is given by:

(35) lc��� = �

4�n� cos �� −n2� cos �2��

The quantity Im��� is an envelope function defined by:

(36) Im��� = G
(



�2�
ijk

)2
P2

�

where 

�2�
ijk is the effective second-order nonlinear coefficient and P� the incident

power. The proportionality constant G contains reflection and transmission coeffi-
cients and other optical factors for determining the magnitude of the optical fields
inside the crystal. A more detailed description has been provided by Kurtz [28].

The oscillating pattern can also be obtained by measuring at a constant angle �
and varying the interaction length l inside of the crystal. In this case the crystal is
wedge-shaped and the crystal is moved perpendicular to the incoming laser beam.
In this case the coherence length is a constant and the fringes result from the
variation of l [29]:

(37) P2� = G
(



�2�
ijk

)2
P2

� sin2 �

where

(38) � = 2� �n l

�

with

(39) �n = �n� cos �� −n2� cos �2��

at a specific incoming angle �.

3.2.2 Second-harmonic generation on films

To determine the 

�2�
ijk in a film, the centrosymmetry of the film should be broken.

This can be achieved by poling the polymer film or depositing the film on a glass
substrate by the Langmuir-Blodgett technique. In the case of poled polymer films,
the film is prepared by adding a polymer layer on the substrate by spincoating. The
sample is then heated near the glass transition temperature Tg and the dipoles are
aligned by applying an electric field. After cooling the sample to room temperature
the electric field is turned off. The nonlinear dipoles are frozen in a noncentrosym-
metric condition (see Figure 2).

An often used material is a “guest-host” system, where the dipoles are mixed in
a polymer, usually PMMA. This is a relatively easy system to obtain but has the
disadvantage of being relatively unstable in time. To avoid relaxation after poling
the matrix is often cross-linked after poling. To have better alignment of the chro-
mophores a polymer with semi-crystalline side-chains can be introduced, which
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T E T↑ ↑ ↓

Figure 2. Schematic view of the alignment of dipoles in a polymer matrix by poling. First the sample
is heated above the glass transition temperature. Then an external electric field is applied. When the
dipoles are aligned the temperature is lowered below the glass transition temperature. The result is a
noncentrosymmetric distribution of nonlinear dipoles even in the absence of the external applied field

increases the poling condition by a factor of two. The mayor disadvantage of this
“guest-host” system is the relatively low solubility of the dipoles in the polymer
matrix. It is common to use a fully functionalized polymer, where the dipole is cova-
lently linked to the side chain of the polymer, with or without crystalline side chains.

Poling induces a polar axis in the polymer film. The z-axis is essentially an
infinite-fold rotational axis with an infinite number of mirror planes. This type of
symmetry is denominated �mm or C�v. In this case the molecules are distributed
cylindrically about the z-axis and the angle �, defined as the angle between the
z-axis and the dipole moment of the molecule, varies from molecule to molecule.
In the weak poling limit the distribution of � is broad, but with a tendency to orient
in the direction of z compared to the unpoled state. The non-vanishing nonlinear
coefficients for C�v symmetry are 
�2�

xxz = 
�2�
xzx = 
�2�

yyz = 
�2�
yzy� 
�2�

zxx = 
�2�
zyy and 
�2�

zzz .
A second technique to obtain a noncentrosymmetric film is by the Langmuir-

Blodgett deposition technique. This technique is useful for ordering (small)
amphiphilic molecules consisting of a polar hydrophobic head group and a long
hydrophilic aliphatic chain. On a water layer an ordered condensed monolayer of
nonlinear active molecules is formed. The force of the water surface and the lateral
surface pressure are used to condense a randomized set of molecules to a highly
organized and stabilized monolayer of molecules by the van der Waals forces
between the molecules. The film can be transferred to a glass substrate as a film.
A schematic view of the classical deposition is presented in Figure 3. A typical
amphiphilic molecule to deposit LB films is a steric acid (eg C17H35COOH) where
the acid group is the polar head group, symbolized by a circle with an attached
aliphatic section (the alkyl chain). The first withdrawal of a polar surface induces
the addition of the polar head group on the substrate (see step 2 on Figure 3).
A re-immersion organizes an additional layer in a tail-to-tail configuration. The
next withdrawal is responsible for a head-to-head deposition. This can be repeated
several times until films of a thickness of about 1 �m are formed. This type of
deposition is referred to as Y-type deposition. Different types of deposition are used
to obtain LB films. For instance, one can chose for horizontal or vertical deposition
of the substrate on the monolayer.
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Step 1 Step 2 Step 3 Step 4

Figure 3. Schematic representation of the deposition of Langmuir-Blodgett layers on a polar substrate.
Step1: the molecules are aligned on the water surface forming a monolayer (polar head group (circle),
aliphatic alkyl chain). Step 2: the substrate is removed out of the water surface, depositing an organized
monolayer onto the surface. Step 3: the surface is immersed into the water layer again depositing a
second layer in a tail-to-tail configuration. Step 4: the surface is withdrawed from the water depositing
a third layer, this time in a head-to-head position, generating a classical Y-type deposition

Since LB films posses the same symmetry as poled polymer films, which is
also C�v, the same tensor components will be non-vanishing: 
�2�

xxz = 
�2�
xzx = 
�2�

yyz =

�2�

yzy� 
�2�
zxx = 
�2�

zyy and 
�2�
zzz .

At this point we should also mention the possibility of introducing chirality into
the sample [30]. A chiral molecule is inherently noncentrosymmetric and even a
random distribution of enantiomerically pure molecules will never lead to systems
with inversion symmetry. In fact, the requirement of noncentrosymmetry is only
strictly required in the electric dipole approximation. In the presence of magnetic
dipole and electric quadrupole contributions to the nonlinearity, noncentrosymmetry
is not a strong requirement anymore for observing second-order processes. Only
chiral systems have substantial magnetic dipole and electric quadrupole contribution
to nonlinear optics. It can be shown that for a chiral isotropic surface, the non-
vanishing tensor components are:

(40) 
�2�
zzz� 
�2�

zxx = 
�2�
zyy� 
�2�

xxz = 
�2�
yyz = 
�2�

yzy = 
�2�
xzx� 
�2�

xyz = −
�2�
yxz = −
�2�

yzx = 
�2�
xzy

Apart from their symmetry properties, the interest for chiral structures was
enhanced by the discovery of their optical activity. Chiral molecules have different
efficiencies for generating second-harmonic light for left- and right-handed circu-
larly polarized fundamental light. This effect is called Second-Harmonic Generation
Circular Dichroism (SHG-CD). The SHG-CD effect is several orders of magnitude
higher than circular dichroism in linear optics. Since centrosymmetry is broken
at surfaces or interfaces and so SHG is sensitive to surfaces, and SHG-CD is an
effect specific to chiral materials, SHG-CD is used to investigate chiral surfaces
and interfaces. SHG-CD can be used to probe a chiral surface but can also be used
to enhance the second-order nonlinear response.

The second-order susceptibility tensor can be measured by performing polar-
ization experiments (see Figure 4). In this type of experiments a fundamental
p-polarized light is passed through a quarter wave plate which is continuously
rotated. The second-harmonic signal is detected in reflection and transmission. Only
the s or p polarization is detected because of the presence of an analyzer in front of



Characterization Techniques of Nonlinear Optical Materials 433

PMT

PMT
LASER

WP

A

A

IR

2ω

2ω
IR

Figure 4. Schematic view of the experiment that characterizes the tensor elements on a thin film. WP =
waveplate (quarter wave or half wave), A = analyzers (p or s polarized depending on the experiment),
IR = infra-red blocking filter; PMT = photomultiplier tube

the detector. The same experiments are done by using a half-wave plate. The exact
equation and further detailed explanation can be found in [31].

3.2.3 Electric-field-induced second-harmonic generation

The Electric-Field-Induced Second-Harmonic Generation (EFISHG) technique
makes it possible to measure the molecular hyperpolarizability, �, on liquids or
molecular solutions. The centrosymmetry of the solution is broken by applying a
DC electric field to induce an average orientation of the molecules due to interac-
tions of the permanent dipoles of the molecules and the electric field. The energy
of a dipole with a permanent dipole �� in an electric field �E is given by:

(41) U = −�� · �E cos �

where � is the angle between the dipole moment and the applied electric field.
An isolated dipole reduces its energy by orientating in the direction of the electric

field. In solution, however, the thermal energy induces spatial distribution on the
dipole orientation in a Boltzman distribution. The degree of orientation of the
dipoles by the electric field results in an averaged angle 	cos �
. In a non-oriented
medium 	cos �
 = 0 and in a perfect aligned medium 	cos �
 = 1.

Because a strong electric field is required to align the molecules, further restric-
tions are imposed on the molecules: they should have a permanent dipole moment.
For instance, EFISHG can not be applied to measure the second-order nonlinear
susceptibilities of octopolar molecules, even though at the molecular level, their
molecular hyperpolarizability, �ijk, is non-zero. Also, EFISHG can not be used with
ionic molecules or with a polar solvent.

In order to measure the molecular first hyperpolarizability �ijk of a molecule,
a strong static electric field and two optical fields are applied on the designed
molecules. By the interaction of the two optical fields, coming from a laser beam,
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and the static electric field we actually measure a third-order effect, related to

�3��−2������ 0� through:

(42) Pi�2�� = 3
2



�3�
ijkl�−2������ 0�Ej���Ek���El�0�

where 

�3�
ijkl is the macroscopic third-order susceptibility. Ej��� and Ek��� are

the optical electric field components at frequency �, while Ej�0� is the applied
static electric field. The macroscopic susceptibility 


�3�
ijkl is linked to the third-order

molecular polarizability �ijkl by the following relation [32]:

(43) 

�3�
ijkl = N f0 f2� f 2

� �ijkl

where N equals the number density of the molecules in solution and f0, f2� and f�

are the local field factors. The first correction for the applied static electric field is
given by:

(44) f0 = �0�n
2 +2�

�n2 +2�0�

where �0 is the static dielectric constant. This correction takes into account the
orientation of permanent dipoles due to the interaction with neighboring dipoles,
and is known as the Onsager local field factor.

The other two correction factors account for the effects of induced dipoles in
the medium through electronic polarization, and are known as the Lorentz-Lorenz
correction factors. The correction for the optical field at frequency 2� is given by:

(45) f2� = n2
2� +2

3

and the correction factor for the optical field at frequency � is given by:

(46) f� = n2
� +2

3

The molecular third-order polarizability �ijkl has three contributions [33]:

(47) �ijkl = �e
ijkl +��

ijkl +�r
ijkl

�e
ijkl is the averaged electronic contribution, ��

ijkl is the averaged vibronic contri-
bution and �r

ijkl is the averaged dipole rotation contribution. It is this last contribution
that is proportional to the second-order polarizability:

(48) �r
ijkl = �z�z

5kT

where �z is the vector component of the tensor �ijk projected on the axis of the
dipole moment [34].

(49) �z �z = �z �iiz +�z �izi +�z �zii
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This can be represented as �̄ · �̄, where �̄ is the vectorial part of the third-rank
tensor �ijk [35];

(50) �z = �zzz + 1
3

(
�zxx +�zyy +�xzx +�yzy +�xxz +�yyz

)

and since �ijk = �ikj due to the intrinsic permutation symmetry we find:

(51) �z = �zzz + 1
3

(
�zxx +�zyy +2�xzx +2�yzy

)

Far-off from resonances, where there is no energy dissipation in the material,
we can use Kleinman symmetry ��ijk = �jki = �kij�, which reduces the number of
independent tensorial components even more:

(52) �z = �zzz +�zxx +�zyy

For conjugated molecular systems [36, 37]: �r � �e and �r � �� so we can
conclude:

(53) 
�3� = N f0 f2� f 2
� �r

or equivalently,

(54) 
�3� = N f0 f2� f 2
�

�z�z

5kT

In EFISHG an oscillating pattern is observed as is done with SHG on a crystal.
The theory has been developed by Levine and Bethea [38–41]. The measuring cell
is wedge-shaped. An external electric field is applied over the cell. The analysis
of the harmonic signal however is a little different than for the crystal. The glass
slides will also contribute to the overall signal. The total intensity at the harmonic
wavelength can be written as:

(55) I2� = I2� �G1�+ I2��L�+ I2��G2�

with G1 and G2 referring to the contributions of the first and second glass slide
forming the wedge-shaped cell and L to the solution in between. The relation
between the macroscopic third-order polarizability 
�3� and the harmonic intensity
is found by solving the Maxwell equations in the separate parts:

(56)
�E2�

�z2
+�2�

�E2�

�z
+k2

f E2� = −4��2��2

c2

�3��E��z��2E0e

ikbz

where z is the propagation direction of the fundamental laser beam, �2� is the
absorption coefficient at frequency 2�, E��z� is the amplitude of the fundamental
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field and E0 is the amplitude of the applied external static dc field. The wave vectors
of the fundamental and harmonic wave are defined as:

(57) k2� = 2�n2�

c
and k� = �n�

c

In the absence of absorption at fundamental and harmonic frequency, the
harmonic intensity is then given by:

(58) I2� = c

2�

(
tG
2�

(
TGEG

� −TLEL
2�

))2
sin2

(
�l

2lL
c

)

where l is the interaction length inside of the solution and with:

tG
2� = 2nG

2�

1+nG
2�

�TG = nG
� +nL

2�

nL
2� +nG

2�

�TL = nL
� +nL

2�

nL
2� +nG

2�

� lL
c = �

4�nL
2� −nL

��
(59)

EG
� = 4�

�nG
2��2 − �nL

��2

LE0

(

E�

2
1+nG

�

)2

(60)

EL
� = 4�

�nG
2��2 − �nL

��2

LE0

(

E�

2
1+nG

�

2nG
�

nL
� +nG

�

)2

(61)

The translation of the measuring cell, perpendicular to the laser beam, induces a
fringe pattern in a sin2-function of the harmonic intensity by variation of the path
length l (see Fig. 5).

Several reference methods can be used. The first method is using a quartz
reference wedge-shaped crystal. The ratio of the harmonic intensities of the cell
IL

2� and the quarts crystal IQ
2� gives 


�3�
ijkl. Since the 


�3�
ijkl values from some solvents

are described in literature [42], they can be used as a reference. The harmonic
intensities of the pure solvent S and the solution L are then measured in the same
experimental conditions and the ratio of IL

2� and IS
2� determine 


�3�
ijkl. From the value



�3�
ijkl, the product �z�z can be obtained (Eq. 54). If the molecular dipole moment is

known, �z is calculated.

PMT
LASER

HWP

P2

IR
2ωω

P1

Z

Figure 5. Schematic representation of an EFISHG experiment: HWP = half-wave plate to set the input
intensity, P1 = polarizer to set the input s-polarization, wedge-shaped cell translated in the z-direction
to vary the pathlength l, P2 = second polarizer to polarize the second-harmonic light, IR = infra-red
blocking filter, PMT = photomultiplier tube for detection of second-harmonic light
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3.2.4 Hyper-Rayleigh scattering

Hyper-Rayleigh scattering (HRS) is another technique to measure the second-order
polarizability or first hyperpolarizability of compounds and is now one of the most
used technique to do so. HRS has several advantages over the EFISHG technique.
With this technique no knowledge of the dipole moment is required. Because no
external electric field is applied, ionic molecules can also be measured. Since
alignment is not necessary, octopolar molecules can be investigated as well. The
centrosymmetry of the solution is broken by orientational fluctuations. Additionally,
the depolarization ratio can give inside into the tensorial character of the molecules.

However, HRS has also some disadvantages. Unlike EFISHG, it is a non-coherent
technique and second-order efficiencies are low. The incoherent scattering is also
responsible for not being able to distinguish between harmonic hyper-Rayleigh
signal and multi-photon fluorescence [43–45], which can result in an overestimation
of the hyperpolarizability �. Three-photon fluorescence (3PF) should theoretically
be detectable due to the cubic dependence of the fundamental intensity I�. Experi-
mentally, it is not always easy to distinguish between a quadratic dependence and
a quadratic dependence with a small contribution of cubic dependence [46]. A
3PF band can extend as far as to the second-harmonic wavelength. Two-photon
fluorescence (2PF) is also quadratically dependent on the fundamental intensity,
and based on intensity dependence no discrimination between HRS and 2PF can
be made. 2PF exhibits in most cases a Stokes shift to longer wavelengths which
allows discrimination between HRS and 2PF by using a narrow interference filter.
However, anti-stokes 2PF has also been reported [45, 47]. In this case, an optical
filter has no use. Since there is a difference in spectral width, HRS signal is a small
sharp peak while 2PF is a broad background peak, this can be used to discrim-
inate between both signals by detecting the signal at different wavelengths. This
technique has been reported but seems to be very time-consuming [45].

A more elegant solution is to use the time difference between the time-delayed
MPF and the immediate HRS [46]. Since a typical fluorescence lifetime is in the ns
scale, the classical set-up with a Nd3+ � YAG laser is unsuited for performing this
experiments. A ps or fs pulsed laser would be more appropriate. The use of a narrow
and early temporal gate together with fast counting electronics makes the experiment
possible. The Fourier transform of this technique in the frequency domain has
been implemented in our group [48], which is experimentally easier to achieve
than the time-domain approach. The principle of this set-up will be explained later
after the introduction to Hyper-Rayleigh scattering and the experimental details of
classical “ns” HRS.

A Hyper-Rayleigh scattering experiment is performed by measuring the intensity
of the incoherently scattered frequency-doubled light generated by an intense laser
beam from an isotropic solution [49, 50]. The scattered intensity of a single molecule
at the harmonic wavelength can be calculated by performing an orientational average
over �:

(62) I2� = 32�2

c�3
0�

4r2

〈
�2

HRS

〉
I2
�
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The brackets indicate the orientational averaging, � the fundamental wavelength
and r the distance to the scattering molecule, c the speed of light in vacuum
�c = 2	998×108 m/s� and �0 the permittivity of free space ��0 = 8	85×10−12 F/m�.

Since an isotropic solution consists of a large number of molecules, summing
the electric fields scattered by the individual molecules in the scattering volume
and then squaring the result could provide the total scattering intensity if they are
correlated scatterers. However, assuming the molecules in the scattering volume are
independent, the total intensity is proportional to the sum of the intensity scattered
by the individual molecules:

(63) I2� = 32�2

c�3
0�

4r2
Nf 4

�f 2
2�

〈
�2

HRS

〉
I2
�

where N is the concentration of chromophores, and f� and f2� are the local field
factors, as defined in Eqs. (45) and (46). Until now, no evidence has been found
that individual molecules in solution should be treated as correlated.

The relationship between
〈
�2

HRS

〉
and the molecular tensor components �ijk

depends on the polarization state of both fundamental and harmonic light and the
scattering geometry. In classical HRS experiments the 90� angle geometry is mainly
used. This means we build the set-up in such a way that the fundamental light
beam is propagating in the X-direction and polarized in the Z-direction, and the
scattered light is collected in the Y-direction (see Figure 6). Note that we distinguish
between the laboratory coordinate system of reference (X, Y, Z), and the molecular
coordinate system of reference (x, y, z).

In such a measuring geometry the relation between the orientationally averaged
tensor components and the molecular tensor components are expressed as follows:

〈
�2

ZZZ

〉= 1
7

∑

i

�2
iii +

6
35

∑

i =j

�iii�ijj + 9
35

∑

i =j

�2
iij(64)

+ 6
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∑
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�iij�jkk + 12
35

�2
ijk

X

Y

Z

I2ω

Figure 6. Schematic view of the classical 90� angle HRS geometry. An intense infrared laser beam
is brought to focus in a cell containing the isotropic solution and the frequency-doubled light I2� is
collected and detected under 90�
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The first subscript (X or Z) refers to the polarization state of the frequency-
doubled light (in the laboratory coordinate system). Since both polarizations are
detected with equal sensitivity, and the fundamental light polarized vertically, the
orientational average over � is the sum of both equations.

(66)
〈
�2

HRS

〉= 〈
�2

ZZZ

〉+ 〈�2
XZZ

〉

The orientational averaged hyperpolarizability squared
〈
�2

HRS

〉
is related to the

molecular hyperpolarizability tensor components according to Eq. (64) and Eq. (65).
For a molecule of C�v symmetry, these equations reduce to:

〈
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35
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zyy(67)
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The square root of the orientational averaged hyperpolarizability:

(69)
√〈

�2
HRS

〉=
√〈

�2
XZZ

〉+ 〈�2
ZZZ

〉

is related to �zzz and reduces to:

(70)
〈
�2

HRS

〉≈
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1
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)

�2
zzz = 6

35
�2

zzz

under the assumption that �zzz is much larger than �zyy and �zxx.
For an octopolar molecule with D3h symmetry only 4 equal tensor components

remain �zzz = −�zzx = −�xzx = −�xxz and Eqs. (64) and (65) reduce to:
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and therefore:

(73)
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Note that the orientational averaged hyperpolarizability is dependent on the
symmetry of the molecule investigated and that there are different relations to
the molecular tensor elements. It is also important to mention that the vectorial
part of the hyperpolarizability �vec is constituted out of different tensor elements
than the orientational averaged hyperpolarizability measured by hyper-Rayleigh
scattering.

The exact experimental details are described elsewhere [51] but basically, the
technique works as follows: Since HRS is a forbidden process in isotropic solution,
the efficiency is very low. As a consequence the optical fields with high optical
power-density are needed together with an efficient collection system to detect the
HRS signal. The fundamental light beam is passed between two crossed polarizers.
A half-wave plate is place in between the two polarizers to control the intensity
of the fundamental beam. Then the fundamental beam is focused in the cell. Part
of the intensity is split of and detected by a photodiode (PD) which will read the
fundamental signal I�. The collection system is constituted out of a concave mirror,
an aspherical lens, a planoconvex lens and a photomultiplier. Separation of the
fundamental and harmonic light is achieved by an interference filter. A schematic
view of the set-up is shown in Figure 7.

For a solution of two components (solvent and solute), the harmonic intensity
I2� equals:

(74) I2� = G
(
Ns

〈
�2

HRS

〉
s
+Nx

〈
�2

HRS

〉
x

)
I2
�

where G includes all experimental factors and the subscripts s and x refer
to solvent and chromophores, respectively. From a concentration series

〈
�2

HRS

〉
x

can be determined when
〈
�2

HRS

〉
s

is known. This method is referred to as the
internal reference method. There is also an external reference method where also
a concentration series of a reference compound, with known hyperpolarizability, is
measured. The ratio of both slopes gives

〈
�2

HRS

〉
x
.
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P P
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BS I1
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Figure 7. Schematic view of the experimental HRS set-up. (LASER, P = polarizer, HWP = half-wave
plate, BS = beam splitter, M = concave mirror, l1 = focusing lens, l2 = aspheric lens, l3 = planoconvex
lens, Int	 = interference filter, PD = photodiode, PMT = photomultiplier)
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In a classical HRS experiment a ns pulsed laser (often Nd3+ � YAG laser with
a fundamental lightbeam of 1064 nm) is used. Because of the low repetition rate
of the laser pulses, gated integrators are used to measure the intensity of the HRS
signal. The measurement is computer controlled and I� and I2� are recorded.

The principle of discriminating between immediate HRS and time-delayed fluo-
rescence is based on the phase shift � and the demodulation M = MF /MR (ratio
between the intensity of fluorescence, MF , and the intensity of excitation MR)
that the fluorescence acquires versus the excitation light at a particular amplitude
modulation frequency � = 2�f . The normalized magnitude M and the phase � of
the fluorescence at a particular frequency � = 2�f are experimentally observable
in the time domain and in the real and imaginary part of the Fourier transform.
The frequency dependence of � and M is determined by the fluorescence decay
parameters, which is the fluorescence lifetime and its respective amplitude. In
the frequency domain the phase shift � of the fluorescence tends to 90� and the
normalized magnitude M tends to zero for long lifetimes � and/or high modulation
frequencies. It is said that than the fluorescence is “out-of-phase” and completely
“demodulated” with the excitation. Thus an attractive way is offered to eliminate
fluorescence from the scattered light through high frequency modulation of the
incident light. A repetitive short pulse in the time domain contains the fundamental
repetition frequency and its higher harmonics under an envelope that is determined
by the inverse of the pulse width. A Ti3+:sapphire laser with a pulse width of
100 fs, has modulation frequencies available well into the GHz frequency range.
The intrinsic high harmonic content of the repetitive femtosecond pulse is used as
a source for high-frequency amplitude modulation. The set-up is constructed in the
same way as for classical ns HRS. The electronic reading of the signals is somewhat
different. Experimental details are described by Olbrechts et al [48].

So far we can say that efforts have been made to improve the measurements of the
second-order nonlinear optical response. In time, techniques have been developed
for determining the hyperpolarizability of compounds. First they were measured
in their crystal structure. The disadvantage of this technique is that the molecules
should crystalize in a non-centrosymmetric space group, and that it is not always
easy to grow large crystals. The Kurz-powder technique has the advantage that
only small crystals are needed. It is not always easy to determine the size of the
powder and still the crystal needs to be in a noncentrosymmetric space group.
It can be however that a dipolar molecule (which should exhibit second-order
effects), is crystalized in a noncentrosymmetric space group and therefore has no
harmonic signal. The EFISHG technique can measure the hyperpolarizability of
molecules in solution. The molecules are limited to be neutral molecules with a
permanent dipole moment. The HRS technique however can measure also octopolar
and ionic molecules. This is the mean advantage of the technique and has lead
to the recent improvements of the technique. HRS has been combined with elec-
trochemistry to probe the changes in hyperpolarizability on structural change by
oxidation or reduction [52]. An overview of different switching mechanism can be
found in [53].
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4. CHARACTERIZATION TECHNIQUES OF THIRD-ORDER
SUSCEPTIBILITIES

4.1 The Intensity-dependent Refractive Index

An extremely useful feature of the third-order nonlinear optical response is the
intensity-dependent refractive index, where the refractive index of the medium
changes due to the interaction with a light beam. This optically-induced change in
the refractive index is essential for all-optical switching applications.

The intensity-dependent refractive index can be defined as [54]:

(75) n�
⇀
r � t� = n0�

⇀
r � t�+�nI�

⇀
r � t��

where n0�
⇀
r � t� is the linear refractive index which dominates the response for low

intensity fields while �nI��r� t�� represents the component of the refractive index
that depends on the intensity I��r� t�. In optical Kerr-like media, this dependence is
linear so it is possible to write �nI��r� t�� as:

(76) �n = 2n2

∣
∣
∣�E
∣
∣
∣
2

where �E is the total optical field.

Since the intensity is proportional to the optical field, I ∝
∣
∣
∣�E
∣
∣
∣

2

, in optical Kerr-like
media:

(77) �n = n′
2I

Again, it has to be realized that the definitions of �nI��r� t�� are different in
different conventions.

In order to successfully substitute the role of the electron by the photon in photonic
applications, it is necessary to achieve high processing speeds. For applications of
the intensity-dependent refractive index, one could define the following figure of
merit that evaluates the optical switching performance of a third-order nonlinear
optical material [24]:

(78) F��� = 
�3����

�′����

where 
�3� is the magnitude of the third-order electronic susceptibility corresponding
to the third-order nonlinear response of the material, �′ is the absorptivity of the
material, and � is the lifetime of the third-order nonlinear optical response. Both

�3� and �′ are usually dependent on the wavelength of the optical beam, �.

The reasoning for such figure of merit is the following: as the magnitude of 
�3�

increases, less light intensity is needed to induce the response; as the absorptivity
lowers, the longer the propagation length possible for an induced nonlinear response;
and for the shorter the lifetime, the faster the processing speed of the response.
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However, the figure of merit presented in Eq. (78) is not useful in characterizing
third-order nonlinear materials because it is not dimensionless and it does not
separate between linear and nonlinear absorption. More appropriate dimensionless
figures of merit have been proposed by Stegeman [55, 56].

4.2 Physical Mechanisms of the Third-order Nonlinear Response

In order to select a particular experimental technique to measure 
�3�, it is very
important to keep in mind which parameter of the third-order nonlinear response has
to be characterized. For example, if one wants to determine the time-response due to
molecular reorientation, one cannot choose Third-Harmonic Generation or Electric-
Field-Induced Second-Harmonic Generation, since none of these techniques provide
time-response information. Depending on the parameter of interest, a specific tech-
nique must be chosen. The following physical mechanisms can contribute to the
third-order nonlinear response [54]:

4.2.1 Electronic polarization

Through this mechanism, the nonlinear response is produced by the changes on the
electronic cloud around the atom or molecule through the optical field. It is related
to the microscopic third-order molecular polarizability �. Typically, nonresonant
electronic processes in non-absorbing media yield values of 
�3� ∼ 10−14 esu. The
time response of nonresonant electronic processes is ∼10−15 s. This is the fastest
time response for third-order nonlinear processes.

4.2.2 Raman induced Kerr effect

This effect is related with the Stimulated Raman scattering process. A strong beam
(pump) incident on a Raman active medium induces a change of the refractive index,
which in turn influences the propagation of a weaker beam (probe). A typical value
for Raman susceptibility is

∣
∣Re�
�3��

∣
∣∼ 10−12 esu, with a time response ∼10−12 s.

4.2.3 Molecular orientational effects

Anisotropic molecules show optically isotropic behavior in the bulk when they are
disordered and randomly oriented, for instance in solutions or liquid crystal above
the transition temperature. Under the influence of a strong beam, the induced dipole
moment of the molecules feels a torque that tends to orient the molecule. The
reorientation of the molecular dipoles induces a change in the refractive index. The
typical values for molecular susceptibilities and the time-responses vary depending
on the type of systems. For small anisotropic molecular systems, 
�3� ∼ 10−12 esu,
with a time response ∼10−12 s. However, in the nematic phase, liquid crystal
molecules are strongly correlated, resulting in much higher values, 
�3� ∼ 10−2 esu,
with slow time responses ∼10−3 −10−2 s.
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4.2.4 Electrostriction

Electrostriction is an effect that requires the existence of inhomogeneities in the
intensity of the electric field. The inhomogeneous field creates a force on the
molecules proportional to the gradient of the intensity of the electric field. A
typical value for electrostriction susceptibility is 
�3� ∼ 10−12 esu, with a time
response ∼10−9 s.

4.2.5 Population redistribution

This effect occurs when the frequency of the incident beam is near a resonant energy
transition of the atom or molecule that is responsible for the nonlinear behavior.
Near the resonance the electrons occupy a real excited state for a finite period of
time. For low intensity light, the population redistribution results in a change of the
index of reflection, since it is mostly determined by the molecules in the ground
state. A typical value for population redistribution susceptibility is 
�3� ∼ 10−8 esu,
with a time response ∼10−8 s.

4.2.6 Thermal contributions

In this case, the change in the refractive index is related to the changes of tempera-
ture. In general, as the temperature increases, the density of the material decreases.
A change in the density reflects in a change of the refractive index. A typical
value for population redistribution susceptibility is 
�3� ∼ 10−4 esu, with a time
response ∼10−3 s.

4.2.7 Cascade second-order effects

Through cascade second-order effects, the second-order optical nonlinearities result
on a third-order optical effect in a multistep or cascade process. This process is a
due to the existence of microscopic electric fields that are generated by second-order
nonlinear aligning of molecular dipoles.

4.2.8 Photorefractive Effect

The photorefractive effect is a physical mechanism where the change in the
intensity-dependent refractive index is dependent on the spatial variations of inten-
sity. It is a non-local process, because unlike most processes, the change in the
refractive index is not dependent on the magnitude of the intensity that produces
such change.

Comparing results from different techniques is difficult. First, the tensorial char-
acter of 
�3� has to be taken into account. 
�3� is a fourth-rank tensor, which means
that it has 81 components. In isotropic media there are only three independent
components, 
�3�

xxxx, 
�3�
xyxy and 
�3�

xxyy. In the case of purely electronic contributions in
the off-resonance regime the components are further related: 
�3�

xxxx = 3
�3�
xxyy = 3
�3�

xyxy.
Secondly, since 
�3� is dependent on the input frequencies and near the electronic

or vibrational resonances of the material the dependence is very strong, one has
to be very careful when results from different techniques are compared since they
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might operate in the vicinity of different resonances. In fact, only the electronic
contribution should be compared. Sometimes the experimental values are extrapo-
lated to the off-resonance regime, which requires the use of a quantum mechanical
model for the material response.

Finally, near a resonance, 
�3� is a complex quantity. This has to be taken into
account when the experiments only measure the magnitude of 
�3�. The imaginary
part of 
�3� generally leads to nonlinear absorption and therefore will deplete the
beam intensity. Although some experimental setups allow the combined measure-
ment of both the real and imaginary part of 
�3�, in general, different techniques
will be needed to completely characterize the complex 
�3� near the resonance.

The wavelength of operation is very important due to the strong frequency
dependence of 
�3� close to the resonance. Also in order to measure only the
electronic contribution to 
�3� and to avoid the dynamic nonlinearities that occur
at time scales longer than ps, a short pulse duration and a low repetition rate is
required.

Most measurements are made with respect to a reference material that has to be
very well characterized. Each technique might need a different material as reference.
For instance, while in Third-Harmonic Generation, glass is used as a reference, in
Degenerate Four-Wave Mixing it is usually carbon sulfide.

Each experimental technique is best suited for a particular type of sample and will
be more relevant for a particular type of application, but in general, the different
experimental techniques complement each other allowing the study of the various
parameters that determine 
�3�.

4.3 Third-Harmonic Generation

In the Third-Harmonic Generation (THG) experiment an input beam at frequency �
is incident into the nonlinear sample and an optical signal oscillating at frequency
3� is generated through the nonlinear interaction inside of the material. This is
described by 
�3��−3��������:

(79) Pi�3�� = 1
4



�3�
ijkl�−3��������Ej���Ek���El���

Through THG only the electronic contribution to 
�3� is measured, because no
other mechanism is fast enough to produce a nonlinear polarization oscillating
at the third-harmonic frequency of the incident beam. Harmonic generation is a
coherent process that occurs through purely electronic interactions that are almost
instantaneous.

The intensity of the third-harmonic signal is related to the path length of the
beam inside of the material (in MKS units) through [57]:

(80) I3� = �3��2

n3�n3
�c4�2

0

sin2�k�l/2��

�k�l/2��2

∣
∣
�3�

∣
∣2 l2I3

�



446 Asselberghs et al.

where I3� is the intensity of the third-harmonic generated beam, I� is the intensity
of the input beam at frequency �, n� is the linear refractive index at frequency �,
�0 is the permittivity of the free space, l is the interaction length and �k is the wave
vector mismatch. The above equation assumes non-depletion for the fundamental
beam and non-absorbing media. These two conditions can be relaxed.

The third-harmonic signal is maximized when there is exact phase-matching:

(81) �k = k3� −3k� = 3�
�n3� −n��

c
= 0

Since for most materials n� < n3�, exact phase-matching is very difficult to
obtain. Instead, in third-harmonic generation measurements the signal is maximized
by proper change of the interaction length.

For non-phased THG, the Maker fringe or wedge-shaped fringe method is
used to determine the coherence length of the material, lc. The coherence length
is defined as:

(82) lc = �/�k

By studying the dependence of the third-harmonic signal as a function of the
interaction length, the coherence length of the material is obtained.

With this method, absolute values of 
�3� can be measured. In the simple case
described by Eq. (80), the dependence of I3� as a function of I� could be obtained.
Further knowledge of the material parameters (n�, n3�, �0) is needed, as well as an
accurate measurement of the interaction length. Furthermore, the pump intensity I�

has to be properly characterized, the beam 1/e2 radius has to be determined and in
the case of pulsing lasers, the pulse width has to be measured carefully.

In practice, it is customary to perform relative measurements, using a well-
characterized reference material. Under the same experimental conditions (same
input intensity in sample and reference), the coherence length is measured for both
the reference and the sample. The third-order susceptibility is then approximated as:

(83)
I3��sample

I3��reference

=
(



�3�
sample



�3�
reference

)2(
lreference
c

l
sample
c

)2

	

In the case of relative measurements, the selection of the wavelength is very
crucial, since the reference values of 
�3� are frequency dependent. Traditionally
BK-7 glass has been used as reference material for THG. Heflin, Cai and Garito
[58] report a value THG of 
�3�

xxxx = 5	8 × 10−15 esu at frequency � = 1910 nm. If
one intends to measure 
�3� of a liquid solution, chloroform is a more convenient
reference. However, for liquid samples, the contribution of the container windows
to 
�3� has to be taken into account. Kajzar and Messier report the following values
of 
�3� and lc for fused silica (window material) and chloroform (reference material)
at frequency � = 1064 nm [59]:

Fused Silica � 
�3�
xxxx = 3	1×10−14 esu and lc = 6	6 �m(84)

Chloroform � 
�3�
xxxx = 7	0×10−14 esu and lc = 5	2 �m(85)
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In practice, THG measurements are complicated by the fact that all materials show
third-order nonlinear effects (unlike second-order nonlinear effects which require
non-centrosymmetry). This means that the surroundings of the sample (including
air) will contribute to 
�3�. Different ways of minimizing the contributions of the
air and film support materials have been proposed [59–62].

Because THG only measures the electronic contribution to 
�3�, the pulse width
it is not as relevant as in other type of experiments. Usually a Q-switched pulsed
Nd3+:Yag laser with nanosecond pulses is used, at low repetition rate (10–30 Hz).
The selection of the wavelength is important in THG, especially when organic
materials have to be characterized since organic materials generally absorb in the
UV spectral range. For this reason, the fundamental output of the Nd3+:Yag laser
is usually shifted to a longer wavelength.

The laser beam is split in two parts. The first one goes through the reference
and generates the third-harmonic signal in the reference, while the second one
goes through the sample and generates the third-harmonic signal in the sample. By
changing the path length of the sample and reference the coherence lengths are
obtained, and the value of 
�3� for the sample is obtained through Eq. (83).

4.4 Electric-Field-Induced Second-Harmonic Generation

This method is used to indirectly compute 
�2� and the molecular hyperpolarizability,
�. By applying a static electric field, one obtains 
eff which has two components,
one related to the third-order nonlinearity 
�3�, while the other one is related to the
second-order nonlinearity, through dipole orientation (see section 3.2.3 for details).
For clarity, we reproduce Eq. (42), which relates the induced polarization Pi�2��
with the third-order nonlinear susceptibility 
�3��−2������ 0�:

(86) Pi�2�� = 3
2



�3�
ijkl�−2������ 0�Ej���Ek���El�0�

The solution of the non-linear wave equation can be approximated as the solution
for SHG intensity with the strength of the response given by 
�3� instead of 
�2�:

(87) I2� = Imax
2�

sin2��k l/2�

��k l/2�2

In this case the wave vector mismatch is defined as:

(88) �k = 2k� −k2� = 2�
�n� −n2��

c

The EFISHG technique obtains 
�3� from both second- and third-order nonlin-
earities. In the case of solutions, 
�3� will be related to the microscopic third-order
polarizability �0 of the dissolved molecules which is given by:

(89) �0 = 	�
+ � ·�vec

5kT
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where � ·�vec is the scalar product between the molecular dipole moment vector
with the vector part of the second-order polarizability tensor and 	�
 is the scalar
orientationally averaged part of the third-order polarizability tensor.

Although EFISHG is used to indirectly compute 
�2� and the molecular first
hyperpolarizability, for centrosymmetric structures, when � = 0 and � = 0, EFISHG
will measure only contributions from the third-order molecular polarizability.

As in the THG measurements, no time response is obtained by EFISHG.
Maker fringe or wedge-shaped fringe techniques can be applied to measure

�3��−2������ 0� of samples. As the interaction length is changed, the second-
harmonic signal undergoes maxima and minima. The spacing between the two
consecutive maxima is two times the coherence length, lc. For experimental setup
details, refer to Section 3.2.3.

Levine and Bethea have estimated the third-order susceptibilities for solutions in
terms of the coherence lengths and second-harmonic signal intensities using quartz
as a reference [33, 63]:

(90) 
�3� = �nL
2� +nG

2��lG
c

�nG
2� +nG

��lL
c



�3�
G + �nL

2� +nG
2��d11l

Q
c

�nG
2� +nG

��E0l
L
c

(
eAIL

2�

IQ
2�

)1/2

where L stand for the liquid solution, G for the glass window cell, and Q
for the reference quartz; n� is the linear refractive index at frequency �; lc is
the coherence length; E0 is the amplitude of the applied electric field, A is the
attenuation coefficient induced by absorption of harmonic light; I2� is the peak
intensity of the harmonic light; and d11 for quartz is defined as half the value of
the second-order polarizability of quartz.

4.5 Degenerate Four-Wave Mixing

Four-Wave Mixing is the optical process where the nonlinear interaction between
three beams generates a fourth beam. When the frequencies of the input waves are
different, new frequencies are generated. The case of equal frequencies is called
degenerate four-wave mixing (DFWM).

DFWM experiments are of particular interest in order to characterize centrosym-
metric isotropic materials, where there is no competition with second-order effects
and the time-response of the nonlinearity has to be evaluated.

The expression for the induced nonlinear polarization as a function of the input
electric fields is given by:

(91) Pi��� = 1
2



�3�
ijkl�−������−��Ej���Ek���E∗

l ���

DFWM processes get contributions from both the imaginary and real parts of

�3�. It also allows measurement of electronic and dynamic contributions (molec-
ular orientational, electrostriction, thermal effects 	 	 	) to the third-order nonlinear
susceptibility.
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Two different geometries can be used in DFWM experimental setups: forward-
wave geometry and backward-wave geometry.

In the forward-wave geometry, all the waves travel in the forward direction,
making this type of geometry very well suited for the study of nonlinearities in
thin samples. The typical configuration for the forward-wave DFWM geometry is
shown in Fig. 8.

In this configuration, a forward pump Ef is incident in the sample, while a weaker
probe beam Ep coming also in the forward direction is incident on the medium,
making an angle � with the forward pump Ef . Probe and pump beam overlap inside
the sample and the output waves include a conjugated beam Ec apart from the
transmitted pump and probe beams. Actually, in the case of a thin medium, there
might be more than one new generated output wave. The nonlinear interaction of the
pump and probe beams inside of the sample creates an index grating in the medium.
The optically thin created grating self-diffracts these waves through Raman-Nath
diffraction. Usually it is enough to consider only the conjugated beam Ec.

For the induced nonlinear polarization given by Eq. (91) the nonlinear wave
equation can be solved under the assumption of no pump depletion and using the
slowly varying approximation [26]. As in the case of THG or EFISGH, the wave
equation yields a phase-matching condition on the wave-vectors of the four beams:

(92) �k1 + �k2 + �k3 + �k4 = 0

For the forward-geometry configuration, Eq. (92) determines the angle between
the transmitted pump beam Ef and the generated conjugated beam Ec.

In the backward-wave geometry two waves, a pump and the probe, travel in
the forward direction while the two other travel in the backward direction, one of
them being the other pump and the other being the generated conjugated beam. As
illustrated in Fig. 9, the sample is hit with two strong pump beams with opposite
directions, Ef in the forward direction and Eb in the backward direction. At the same
time, the probe beam Ep is incident at an angle � with respect to the forward pump
beam Ef , which results in the creation of a conjugated beam Ec that propagates
counter to the probe beam.

The generated conjugated beam is proportional to the third-order polarization
oscillating at frequency � (Eq. 91). Since �kf = −�kb and �kp = −�kc, the backward-
geometry is always phase-matched.

Ef Ef

Ep

Ep

Ec

Nonlinear Sample

θ

Figure 8. Schematic configuration for the forward-wave DFWM geometry



450 Asselberghs et al.

Ec

Ep

θ

Ef Eb

Figure 9. Schematic diagram for the backward-wave DFWM geometry

Backward-wave geometry is preferred when transparent and weakly absorbing
samples are going to be studied. Because in this geometry the phase-matching
condition (Eq. 92) is satisfied automatically, the method is very sensitive on the
alignment of the beams.

4.5.1 Optical phase conjugation

When the backward geometry is used in a DFWM process, the process is also called
Optical Phase Conjugation (OPC) [64]. One of the most interesting applications of
OPC is the correction of optical (phase) aberrations. In the backward geometry,
the conjugated wave travels in the opposite direction of the probe with exactly the
time-reversed phase of the probe wave, so it becomes the “reflected” conjugated
wave and the material responsible for the effect becomes a “phase-conjugated
mirror”. In OPC, when the probe beam goes through an aberrating medium, the
reflected phase-conjugated beam has to follow exactly the reversed path through
the aberration medium. Its reversed phase will then suffer the same aberration but
with an opposite sign, so it cancels out with the positive phase aberration. In this
way, through OPC an aberration-free output is generated.

Under the assumption of no depletion of the pumps, low reflectivity and no
absorption, the intensity of the conjugated beam is related to the intensity of the
other three beams [24].

(93) Ic = �3

4c2n2
�

∣
∣
�3�

∣
∣2 l2If IbIp

Usually, the three input beams are obtained from the same fundamental beam,
and the conjugated signal shows a cubic dependence with respect to the fundamental
intensity. The efficiency of the backward-geometry DFWM is measured through
the reflectivity R = Ic/Ip. Because the phase-conjugated beam can get energy from
the pump beams, reflectivities higher than 100% have been reported [65–67].

Since both electronic and dynamic components can be measured, the choice
of the laser pulse width is very important to determine which components
will be measured. In organic materials, the peak power is usually in the
10 MW/cm2 −1 GW/cm2 range. The laser pulses have to be well resolved tempo-
rally and spatially and pulse fluctuations should be minimized. With long laser
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pulses, on the order of ns, dynamic nonlinearity and thermal contributions due to
absorption might dominate the response. In order to measure only the electronic
contribution, ps or smaller laser pulses should be used.

In the backward-wave geometry, the fundamental laser beam is usually split
into forward, backward and pump beam. It is necessary to use delay lines in the
case where the pulses are very short in order to assure a good temporal overlap
between the three input beams. The output phase-conjugated intensity is maximized
by changing the path length of one of the pump beams. The maximum value for
the DFWM signal is measured for both sample �Isample� and a reference �Ireference�.
In the case of non-absorbing medium, they are simply related [24]:

(94)



�3�
sample



�3�
reference

=
(

n0
sample

n0
reference

)2
lreference

lsample

√
Isample

Ireference

where n0 is the linear refractive index and l is the path length of the media.
Eq. (94) assumes that the interaction lengths of both sample and reference are the
same as the path lengths, which means that experimentally the angle between the
pump beam and the probe beam should be minimized and strong focusing should
be avoided. Eq. (94) also assumes a cubic dependence of the DFWM signal on the
input intensity, a fact that has to be monitored in the experimental setup.

Eq. (94) can be corrected for absorbing samples if the linear absorption coefficient
is known. In any case, the value of the linear refractive index must be known. For
liquid samples an Abe refractometer can be used. For solid samples index matching
liquids can be used, although for thin films the most convenient method is the
m-line technique [68].

DFWM has several advantages: the conjugated beam is easily distinguished
through spatial separation; the intensity dependence of the conjugated beam is easy
to check; different sample shapes can be used; all the components of 
�3� can be
determined; it does not depend strongly in the beam shape and it allows to study
the time dependence of the nonlinearity.

However, it also has some disadvantages: it does not separate between real and
imaginary parts of 
�3� and it is very sensitive on the alignment of the incident
beams, which usually requires short pulses on the order of ps and a good control
of the experimental conditions.

4.6 Optical Kerr Gate

The Optical Kerr Gate (OKG) method allows measurement of 
�3� by studying the
polarization change of a probe beam, propagating through the system where the
optical birefringence is induced through an intensity-dependent refractive index.
The method was described by Ho [69].

An intense linearly polarized beam is used to induce optical birefringence in the
media, �n = n�� −n⊥, which results on a change of polarization of the weaker probe
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beam. Monitoring the time evolution of the birefringence provides information for
the response time of 
�3�.

The method is better suited for isotropic materials, since the optically induced
anisotropy is usually small. The values of �n are obtained by monitoring the phase
retardation of the probe beam, ��, as a function of the delay time between the
probe and the orienting pulsing:

(95) ���t� = 2�l

�
�n�t�

where l is the sample path length and � is the wavelength of the probe beam.
When the response is purely electronic the phase retardation can be related to

the intensity of the pump beam through:

(96) ���t� = 2�l

�
n′

2Ipump

where n′
2 is related with 
�3� by:

(97) n′
2 = 12�

n0
�
�3�

xxxx −
�3�
xxyy�

4.7 Self-Focusing Methods

When there is a spatial variation of the laser intensity, the beam shape might change
as it travels through a nonlinear material. This effect, which relates to the intensity-
dependent refractive index, allows measurement of 
�3� by two simple methods:
Power Limiting and Z-scan.

The first method, Power Limiting, was proposed by Soileau et al. [70] and it
is based on the idea of studying the intensity of the transmitted beam through a
sample. It assumes a positive intensity-dependent refractive index.

When the intensity of the incident beam is low, the nonlinear effects are negli-
gible, and the transmitted intensity (measured by a detector) is linear with the input
intensity (see Fig. 10). After the intensity reaches a critical power, Pc, self-focusing
occurs. A more focused beam induces other nonlinear effects which levels-off
the transmitted power (see Figure 11). Therefore, for powers greater than Pc, the
transmitted intensity does not depend linearly on the input intensity.

L L A
S

D

Figure 10. Schematic diagram representing the Power Limiting method at low input intensities.
L: focusing lens; S: nonlinear sample; A: optical aperture; D: detector
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Figure 11. Schematic diagram representing the Power Limiting at high input intensities. L: focusing
lens; S: nonlinear sample; A: optical aperture; D: detector
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S

D

z < 0 z = 0 z > 0

Figure 12. Schematic diagram representing the Z-scan method. L: focusing lens; S: nonlinear sample;
A: optical aperture; D: detector. The sampled is moved along the z-axis

By solving the nonlinear equation for a focused Gaussian beam, Pc and n2 can
be related [71]:

(98) Pc = 3	72c�2

32�2n2

The second method, Z-scan, was developed by Sheik-bahae et al. [72] Z-scan
allows measurement of both the sign and the magnitude of 
�3� with a simple setup
(see Figure 12).

A Gaussian beam is focused and made to pass through the nonlinear medium.
The output power is measured as a function of the sample position in the z-direction
(with respect to the focal plane). The analysis of the transmitted intensity power
profile provides the sign and magnitude of 
�3�.

While the main advantage of Z-scan is the fact that it requires a relatively simple
set-up, it suffers from some disadvantages. It requires a high quality Gaussian beam
shape �TEM00�. It also needs a high power density together with a long interaction
length, so it is not recommended for polymers. Thermal effects are expected due
to the required long interaction length. Finally, it does not provide time response
information.

4.8 Nonlinear Fabry-Perot Methods

With the Fabry-Perot etalon method, 
�3� is obtained by measuring the intensity-
dependent phase shift that results from the intensity-dependent refractive index.
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A Fabry-Perot etalon consists of two mirrors separated by a medium of refractive
index n and thickness l. When a beam enters the etalon it undergoes successive
multiple reflections. The ratio between incident and transmitted intensity is given by:

(99)
It

Ic

= 1−R2

�1−R�2 +4R sin2��/2�

where no losses are assumed, R is the reflectivity of the mirrors and � is the phase
delay between two transmitted waves, differing in pathlength by one round-trip
inside of the cavity. For normal incidence:

(100) � = 4�nl

�

From Eq. (100), maximum transmittance occurs when � = 2m�, where m is
any integer. Thus the length separation between two consecutive maxima (�l� is
given by [54]:

(101)
n�l

�
= 1

2

Therefore, measuring the length of separation between two consecutive maxima
provides the refractive index. By monitoring the values of the refractive index as
a function of the input intensity, n2 can be obtained and then 
�3�. The nonlinear
Fabry-Perot method can be used with liquids and solids.

4.9 Connection Between Microscopic and Macroscopic Quantities in
Third-order Nonlinear Optics

Macroscopically the third-order nonlinear susceptibility 
�3� is defined to correlate
the third-order nonlinear polarization with the electric fields:

(102)
⇀

P�3���� ∝ 
�3��� = �i +�j +�k�
⇀

E��i�
⇀

E��j�
⇀

E��k�

At the molecular level the third-order nonlinear polarization
⇀
�, is correlated to the

local electric fields �
⇀

f � through the third-order nonlinear molecular susceptibility �:

(103)
⇀
��3���� ∝ ��� = �i +�j +�k�

⇀

f ��i�
⇀

f ��j�
⇀

f ��k�

With organic compounds it is very useful to characterize the nonlinear optical
response at the molecular level, and it becomes necessary to establish the relation-
ships between the macroscopic and microscopic quantities.

When the macroscopic third-order electric susceptibility 

�3�
IJKL is measured in the

laboratory (the subscripts I , J , K, L refering to the axes in the laboratory-fixed coor-
dinate system), it is first related to the microscopic third-order coefficients cIJKL [19]:

(104) 

�3�
IJKL = NfI��1�fJ ��2�fK��3�fL��4�cIJKL
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where N is the species number density and fI��i� is the local field factor
corresponding to the radiation frequency �i. The simplest way to calculate the local
field factors is to use the Lorentz local field model that applies to dipolar liquid or
solid solutions [73]:

(105) fI��i� = n��i�+2
3

where n��i� is the refractive index for the liquid at frequency �i. The Lorentz
local field model is an approximation that assumes that the species occupy a
spherical cavity in the material and that the local surroundings of the species are
treated as a continuum.

The microscopic third-order nonlinear coefficients cIJKL are expressed in
laboratory-fixed coordinates and must be related to the molecule-fixed coordinate
system. Instantaneously:

(106) cIJKL =∑

ijkl

�Ii�Jj�Kk�Ll�ijkl

where �Ii is the direction cosine between the laboratory-fixed I axis and the
molecule-fixed i axis, and �ijkl is the ijkl component of the third-order polarizability
tensor.

In the case of isotropic liquids, the instantaneous coefficients have to be aver-
aged over all direction in order to obtain the orientationally averaged third-order
polarizability, showing the statistical contributions of all molecules:

(107) 	�
 = 	cIJKL
 =∑〈
�Ii�Jj�Kk�Ll

〉
�ijkl

As the third-order electric susceptibility, �ijkl has 81 components. Fortunately, the
symmetry of the molecule allows to reduce the number of nonzero components. As
an example, if molecules belonging to the orthorhombic point group are considered
there are only 21 nonzero components [74]: �iiii, where i = x� y� z and �iijj , �ijij ,
�jiji, �ijji, �jjii, �jiij , where i� j = x� y; i� j = x� z; and i� j = y� z.

Far off from the resonances, under the assumption that there is no energy dissi-
pation through the nonlinear process, Kleinman symmetry can be used to reduce
the number of independent components of �ijkl [75]. In the case of molecules that
belong to the orthorhombic point group, the 21 nonzero components get reduced to
only 6 independent components: �xxxx, �yyyy, �zzzz, 6�xxyy, 6�xxzz and 6�yyzz.

Assuming an isotropic liquid of the orthorhombic point group, Eq. (107)
reduces to:

(108) 	�
 = 1
5

��xxxx = �yyyy +�zzzz +2�xxyy +2�xxzz +2�yyzz�

It is important to realize that experimentally, for amorphous materials, only the
averaged third-order polarizability can be measured, so the information about the
different components of �ijkl is lost.
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5. CONCLUSIONS

We have reviewed the principles of operation of the most relevant techniques
employed to characterize the second- and third-order response of nonlinear media.

While, in principle, the second-order response should have a higher strength than
the third-order response, a strong geometrical condition (noncentrosymmetry at the
atomic/molecular and at the bulk levels) limits the availability of second-order
nonlinear materials. Experimentally, one has to ensure that a noncentrosymmetric
configuration is used if one desires to measure the strength of the second-order
nonlinear response, characterized by 
�2�.

The measurement of third-order nonlinear response, characterized by 
�3�, is
simplified because no geometrical condition in the material is required. The
intensity-dependent refractive index, a unique feature of the third-order nonlinear
response, allows to characterize 
�3� by studying the change in the refractive index
of the nonlinear material. This effect is exploited in numerous technical applications,
and results in different experimental techniques that determine 
�3�. However, the
absence of a geometrical condition in the material results in an extra complication
when measurements are performed, since all materials (cell walls, glass, air, 	 	 	)
contribute to 
�3�.

Both 
�2� and 
�3� are complex tensorial quantities and in general, the different
experimental techniques complement each other in order to fully characterize 
�2�

and 
�3�. In the case of molecular materials, the response of the bulk can be related
to the individual molecular response. One has to always keep in mind that the
experimental setup has to meet the appropriate conditions imposed by the particular
model applied to derive 
�2� or 
�3� from the experimental measurements.

Although absolute methods are available, in most cases reference samples are
used to simplify the experimental procedure. The general techniques must be
adapted to perform measurements on crystals, films, solutions, etc, which adds
some complexity to the methods.

Finally, it is important to realize that the development and improvement of
characterization techniques rely heavily on instrumental developments, a fact that
can not be overemphasized. After all, nonlinear optical effects were not known until
the invention of a highly coherent and powerful enough light source, the laser.
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CHAPTER 15

THIRD-ORDER NONLINEAR OPTICAL RESPONSE
OF METAL NANOPARTICLES

BRUNO PALPANT
Institut des Nano-Sciences de Paris, Université Pierre et Marie Curie – Paris 6, Université Denis
Diderot – Paris 7, CNRS, Campus Boucicaut, 140 rue de Lourmel, 75015 Paris, France

Abstract: We present a review of the main results reported in the literature regarding the third-order
nonlinear optical response of nanocomposite media consisting of noble metal nanoparticles
surrounded by a dielectric host. This phenomenon, known as optical Kerr effect, can
be characterized by the intensity-dependent complex optical index of the material or,
equivalently, its complex third-order susceptibility. The theoretical basis of the linear
and nonlinear optical properties of metal nanoparticles and nanocomposite media are
described first. The different third-order optical phenomena which have been observed
in such materials are then examined. The dependence of the nonlinear properties on
morphological parameters – nature of the dielectric host, metal concentration, particle
size and shape – as well as on laser excitation characteristics – wavelength, intensity,
pulsewidth – will be explained and illustrated by selected experimental results. The final
part points out the important role played by thermal effects in the nonlinear optical
response

Keywords: Noble metals; nanoparticles; nanocomposite materials; surface plasmon resonance; local
field enhancement; nonlinear optical response; optical Kerr effect; third-order suscepti-
bility; saturation of absorption; optical limiting; self-focusing; metal concentration; size
effects; spectral dispersion; interband transitions; hot electrons; thermal lensing

1. INTRODUCTION

The fascinating optical properties of metal nanoparticles have caught the attention
of many researchers from the pioneering and almost parallel works of G. Mie and
J.C. Maxwell-Garnett at the beginning of the twentieth century. These original
properties, like many other phenomena specifically appearing in matter divided
to the nanoscale, are linked with confinement effects, since quasi-free conduction
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electrons cannot spread beyond the limits of the metal nanoparticle. When particle
size ranges from nanometer to a few tens of nanometers, confinement results in
the possibility of resonantly exciting the electron gas collectively by coupling
with an appropriate oscillating electromagnetic field. This phenomenon is known
as the surface plasmon resonance (SPR). Whereas some of its detailed features
may be explained by invoking quantum effects, its essential characteristics are
understandable through very classical considerations. In the optical response of a
material containing metal nanoparticles it manifests itself as an absorption band,
which is located in the visible or near ultraviolet spectral domain for noble metal
spheres.

As the local electric field in the particles is enhanced at the SPR, the metal
nonlinear optical response can be amplified as compared to the bulk solid one.
Moreover, the intrinsic nonlinear properties of metals may themselves be modified
by effects linked with electronic confinement. These interesting features have led
an increasing number of people to devote their research to the study of nonlinear
optical properties of nanocomposite media for about two decades. The third-order
nonlinear response known as optical Kerr effect have been particularly investigated,
both theoretically and experimentally. It results in the linear variation of both the
refraction index and the absorption coefficient as a function of light intensity. These
effects are usually measured by techniques employing pulsed lasers.

In this chapter, we will present a large but non-exhaustive review of the main
results which have been published about the third-order nonlinear optical properties
of metal/dielectric nanocomposite materials. These properties depend significantly
on many factors regarding both the materials themselves (metal and host medium
kinds, metal concentration, particle size, shape and spatial arrangement) and the
excitation laser (wavelength, intensity, pulsewidth). The comparison of different
experimental results then appears to be a quite difficult task to perform if one aims
at highlighting the role played by each of these factors independently. Nevertheless,
several general features can be extracted from the abundant literature, as will be
established in the different following sections.

In the first part, emphasis will be put on the linear optical properties of dielec-
tric media doped with noble metal nanoparticles. Indeed, the study of the linear
response is definitely needed to further explore the nonlinear one. We will then
introduce the fundamentals of the theoretical tools required to understand why
and how people inquire into the third-order nonlinear properties of nanocomposite
materials. In the second part, experimental results will be presented by first exam-
ining the different nonlinear optical phenomena which have been observed in these
media. We will then focus on the nanoparticle intrinsic nonlinear susceptibility
before analysing the influence of the main morphological factors on the nonlinear
optical response. The dependence of the latter on laser characteristics will finally
be investigated, as well as the crucial role played by different thermal effects.
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2. LINEAR OPTICAL PROPERTIES OF NOBLE METAL
NANOPARTICLES AND NANOCOMPOSITE MEDIA

The propagation, in the linear regime, of an electromagnetic wave in a homogeneous
and isotropic medium is governed by the usual complex optical index ñ = n+ i�
of the latter. n is the refractive index and � the extinction coefficient, proportional
to the absorption coefficient � = 4��/� where � is the wavelength of the incident
radiation. The complex index is linked to the medium dielectric function � = �1 + i�2

through � = ñ2. We will now particularly examine the optical properties of noble
metals, first in their bulk phase, then as nanoparticles, before getting insight into
those of nanocomposite materials.

2.1 Dielectric Function of the Noble Metals

Noble metals – copper, silver and gold – are monovalent elements with a fcc-like
crystallographic structure in the bulk phase under normal conditions. Their dielectric
function has been the subject of various experimental investigations in the past
[1–6]. A compilation and an analyse of the main results can be found in [7]. The
response of noble metals to an electromagnetic excitation in the UV–visible range
cannot be described, contrarily to the case of alkalis, by the only behaviour of the
quasi-free conduction electrons (sp band), but must include the influence of the
bound electrons of the so-called d bands [8]. Hence, the total dielectric function
�m of noble metals can be written as the sum of two contributions, one due to
electronic transitions within the conduction band (intraband transitions) and the
other stemming from transitions from the d bands to the conduction one (interband
transitions):

(1) � = �f +�ib�

�f stands for the free-electron contribution, which can be described in a classical
way by the Drude model [9]:

(2) �f �	
 = 1− 	2
p

	�	+ i�

�

	 is the applied wave circular frequency, � is a phenomenological damping constant
characterizing all the collision processes experienced by the electrons in the metal,
and 	p is the volume plasmon circular frequency, given by

(3) 	p =
√

Ne2

m∗�0

where N , e and m∗ are the density, charge and effective mass of the conduction
electrons, respectively, and �0 the permittivity of vacuum. The interband contribu-
tion to the dielectric function, �ib, can be calculated from the detailed band structure
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of the metal [1, 10–13]. Usually, only the imaginary part of �ib is determined this
way, the real part being subsequently deduced using the Kramers-Kronig relations.
Due to the Pauli principle, there is a minimum photon energy for which an inter-
band (IB) transition can occur, corresponding to the excitation of an electron from
the top of the d band to the Fermi level. This defines an energy threshold under
which the imaginary part of �ib is zero. Whereas this threshold lies in the UV
for silver (∼ 3�9 eV) [1] it is in the visible for gold and copper (at about 2.4 and
2.1 eV, respectively) [1, 4], which explains the specific colour of these metals in
the bulk phase.

2.2 The Surface Plasmon Resonance in Nanoparticles

2.2.1 Intuitive description

When dividing bulk metal into very small entities, its optical response changes
drastically due to the confinement of the electrons. Indeed, if the size of such an
entity is much smaller than the applied radiation wavelength (which is the case of
nanoparticles in the near-UV–visible spectral range), all the conduction electrons
experience the same homogeneous electromagnetic field and oscillate collectively
like, at first order, a giant dipole. This excitation is resonant when the applied wave
frequency matches the eigenfrequency of the electron gas motion relative to the
ionic core. This phenomenon is known as the surface plasmon resonance (SPR).
From the more realistic quantum point of view, it corresponds to the excitation of
coherent electronic transitions within the conduction band.

2.2.2 Local field factor

The SPR can be simply formalized, in a first approach, by solving Laplace’s equation
in the case of a single conducting sphere surrounded by a homogeneous transparent
medium, with the appropriate continuity relations at the metal–dielectric interface
and assuming that the sphere radius is much lower than the wavelength (quasi-
static approximation). The homogeneous local electric field inside the particle, El,
then writes

(4) El = 3�d

�m +2�d

E0�

where E0 is the applied field, �m and �d the dielectric functions of metal and host
medium, respectively. One then defines the local field factor, f , as the ratio of the
local field to the applied one: f = El/E0. It is a complex quantity and will be a
highly relevant parameter when discussing below the third-order nonlinear response
of nanocomposite materials. It can be seen in Eq. (4) that �f � presents a resonance
behaviour at the minimum value of ��m +2�d�. The dielectric host being transparent
in the spectral range of interest, �d is real. If �m2 is negligible, or if �m2/	 ≈ 0,
the resonance condition simplifies into

(5) �m1 = −2�d�
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For a noble metal nanoparticle the dielectric function of which is given by
Eqs. (1) and (2) with 	 � � , this condition leads to the following resonance circular
frequency:

(6) 	sp = 	p√
�ib1�	sp
+2�d�	sp


which simplifies into 	sp = 	p/
√

3 for a sphere of simple metal in vacuum. Unfor-
tunately, Eq. (6) fails in accurately predicting the SPR frequency for gold and
especially copper nanoparticles, because the hypotheses leading to Eq. (5) are not
valid, due to the spectral proximity of the SPR to the IB transition threshold. Never-
theless, such a simple analytical formula allows to discuss the influence of the
bound d electrons or the host matrix refractive index on the SPR spectral location.

Equation (4) is illustrated on Fig. 1 which exhibits the spectral dependence of
the local field modulus in different cases, and from which several major features
regarding the SPR can be highlighted. First, the SPR of silver particles, located
in the UV, has a larger oscillator strength than the gold particle one, lying in the
visible. This is mainly due to the coupling between the core d electrons and the
conduction electrons, which is significant in gold (as well as in copper) while
being negligible in silver. Secondly, the SPR amplitude is as large as the host
matrix refractive index is high. Thirdly, the SPR maximum shifts towards red with
increasing �d.

As the existence of a resonance behaviour can be explained by pure electromag-
netic considerations, using as only ingredients macroscopic quantities that are the
dielectric functions of the different media, the local field amplification phenomenon
is often said to originate from dielectric confinement.
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Figure 1. Modulus of the local field factor, �f �, calculated by using Eq. (4) for silver nanoparticles in
vacuum ��d = 1
 and gold nanoparticles in different surrounding media: Vacuum, silica ��d ≈ 2�1
 and
alumina ��d ≈ 2�6
. The precise dielectric functions are those of [7]
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2.2.3 Mie theory

At the beginning of the twentieth century, G. Mie published his results regarding
the optical response of a sphere to an electromagnetic wave excitation [14]. A
detailed development of his calculations can be found in [15] and [16]. He obtained
the analytical expression of the extinction cross section as a multipolar expansion
by solving Maxwell’s equations in spherical coordinates. Hence, his theory can be
applied for particles much bigger than the ones we are dealing with in the present
article, where the first dipolar electric term alone largely dominates the optical
behaviour; extinction reduces to pure absorption, elastic scattering of light being
negligible. In this case, the absorption cross section writes

(7) �abs�	
 = 9
	

c
�d�	
3/2V

�m2�	


��m1�	
+2�d�	
�2 +�m2�	
2

where c is the speed of light in vacuum and V the particle volume. �abs exhibits a
resonance profile, with the same resonance condition as the one obtained above for
the local field factor (Eq. 5).

The SPR is then also called Mie resonance. For simple metals, the SPR absorp-
tion band has a Lorentzian shape peaked at 	sp, the width of which is directly
proportional to the collision constant � introduced in the Drude description of the
metal dielectric constant (Eq. 2). Of course, for noble metals the absorption due to
interband transitions has to be taken into account in order to obtain the complete
spectrum.

2.2.4 Finite size effects

In the dipolar approximation of the Mie theory, particle size is involved only insofar
as absorption is proportional to particle volume (Eq. 7). It will play an important
part as soon as higher order terms in the multipolar expansion of the extinction
cross section become significant [17, 18]. In the corresponding size range (a few
tens of nanometers to micrometers) the Mie theory is fully suited to describe, for
example, the scattering of light by atmospheric dusts, fog, factory smokes, etc � � �
However, it fails in explaining size effects observed in the optical response of
nanoparticles whose radius is lower than about a few nanometers. In particular, there
are other phenomena, linked to the finite size, which lead to the modification of
the SPR spectral location, amplitude and width. The term electronic confinement is
sometimes used in the literature to design all the finite (quantum) size effects. It has
been the subject of a very large number of both theoretical and experimental studies,
the description of which would obviously be out of the scope of this article. A very
complete review of these works – and, more generally, of the studies devoted to
the linear optical properties of metal nanoparticles – has been written by U. Kreibig
and M. Vollmer about ten years ago in [19].

The theoretical approaches range from the simplest phenomenological models to
complex quantum calculations. They can be split into two main strategies. The first
one consists in keeping the classical Mie expression for the absorption cross section
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and modifying in a proper manner the metal dielectric function by introducing
a size dependence in its parameters. In this aim, one can either restrict oneself
to a pure classical description of the phenomena involved, or use the results of
quantum calculations. Of course, such an approach cannot hold if particles are
very small (less than a few hundreds of atoms, i.e. having a sub-nanometric size);
in this case, the discrete electronic shell structure governs the optical response
[20]. In the size range we are dealing with in the scope of this chapter, the high
electron density of noble metals makes the energy level splitting be sufficiently
small to assimilate the conduction band to a quasi-continuum. The second strategy
consists in calculating directly the nanoparticle optical response through a fully
microscopic quantum approach, without using the Mie formulation. Whatever the
method chosen, the number and complexity of the physical mechanisms to be taken
into account in order to describe an experimental situation in a realistic manner
render the calculation a hard task. Very often, the quantum approach is carried out
by selecting a phenomenon among all and study independently its influence on the
optical response, the others being included in a phenomenological way.

As several works devoted to the nonlinear optical properties of metal nanopar-
ticles include a size dependence of the linear dielectric function, it seems to us
relevant to introduce and briefly comment now the most widespread approach
used to describe such a dependence. It consists in modifying the phenomenological
collision factor � in the Drude contribution (Eq. 2) as:

(8) ��R
 = �� +A
vF

R
�

�� is the bulk collision constant, A is a positive dimensionless factor, vF is the Fermi
velocity and R the particle radius. From a classical point of view, this modification
is supported by the fact that, when the radius is smaller than the bulk mean free
path of the electrons, there is an additional scattering factor at the particle surface.
This phenomenon, known as the mean free path effect, is abundantly discussed in
[19]. In a quantum approach, the boundary conditions imposed to the electron wave
functions lead to the appearance of individual electron-hole excitations (Landau
damping) [21] resulting in the broadening of the SPR band proportional to the
inverse of the particle radius as in Eq. (8) [22]. A chemical interface damping
mechanism has also been considered, leading to the 1/R dependence of � [23].

Whereas Eq. (8) succeeds in explaining qualitatively the broadening and damping
of the SPR absorption band with decreasing nanoparticle size, it presents some
major drawbacks. First, the parameter A takes different values, from tenths to few
units, depending on the theory. The value A = 1 is arbitrarily the most often used.
Secondly, the introduction of such a 1/R dependence in the Drude model results in
the red-shift of the SPR with decreasing size, whereas a blue-shift is observed for
noble metal nanoparticles [19]. This is due to the influence of bound d electrons
which is ignored in the size-dependence considerations that we have described until
now [24–27]. However – and even if it cannot of course explain on its own all
the size effects – the 1/R dependence of different factors is an attractive intuitive
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idea as the magnitude of the physical mechanisms involved in the nanoparticle
properties often amounts to a balance between their volume and surface.

Hence, finite size effects on the optical response of metal nanoparticles are very
difficult to take into account in an accurate manner. Moreover, in most experiments
carried out on thin nanocomposite films or colloidal solutions the particle size
distribution is not mono-dispersed but more or less broad, that can be usually
determined by analysis of transmission electronic microscopy images. It should be
underlined that the relevant quantity for studying size effects in the optical response
of such media can definitely not be the mean cluster radius <R>, although it
is often used in the literature [28–33], since the contribution of one nanoparticle
to the optical response of the whole medium is proportional to its volume, i.e.
to R3 (cf. Eq. 7). The relevant quantity, that we call the “optical mean radius”
<Ropt>, would then rather be the third-order momentum of the size distribution,
<Ropt> = <R3>1/3.

2.3 Nanocomposite Materials

In the preceding section, we have examined the optical response of a single nanopar-
ticle surrounded by a transparent dielectric medium. In practice, such an approach
can be relevant for studying individual particles (using, for instance, near field
optical microscopy techniques [34, 35]), or in a pinch for composite materials with
a very weak metal concentration (dilute medium limit). As metal volume fraction
becomes larger, while keeping particle size constant, electromagnetic interactions
between neighbouring particles cannot be neglected any more. In order to include
them in the calculation of the linear optical response of nanocomposite materials,
different effective medium theories (EMT) have been developed, each of them being
suited for a specific morphology and a given concentration range. Whereas such
theories generally provide an analytical expression of the whole material effective
dielectric susceptibility, other approaches are being developed, which are based on
the numerical resolution of the electromagnetic equations governing the interaction
of an applied wave with a sampled volume of an inhomogeneous medium. The
principles of both strategies are now briefly presented.

2.3.1 Effective medium theories

Heterogeneous media consisting of a mixing of non-miscible materials exhibit
specific macroscopic physical properties, different from the ones of their
constituents. One is then tempted to define a fictitious homogeneous medium which
would have, for one or a few given properties, the same macroscopic response
as the heterogeneous material one; this defines the concept of effective medium.
Such a process is valid only in return for some restriction imposed on the material
morphology. In particular, the simulation of its optical properties by those of an
effective medium requires constraints on the size of its components as compared to
the incident radiation wavelength (light scattering can be neglected), as well as on
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the volume fraction occupied by these components in the medium. These conditions
being fulfilled, one is brought to define the concept of effective dielectric function.

The materials we are interested in are made of metallic inclusions (nanoparticles)
embedded in a dielectric host (solid matrix or solution). We suppose that the
conditions required for using the dipolar and the quasi-static approximations are
satisfied. The inclusions can then be likened as dipoles. The calculation of the
effective dielectric function can be performed directly through the Mie theory
[36, 37], but the usual procedure is rather based on the evaluation of the local field
which polarizes each dipole; this field is the sum of the macroscopic applied field
and the fields created by all the other dipoles. Its determination can be simplified
by using the concept of the Lorentz sphere and is carried out exactly as for the
microscopic calculation of the dielectric function of a homogeneous material leading
to the Clausius-Mossotti relation [8]. There exists a lot of effective medium theories,
adapted for different types of inclusions (spheres, ellipsoids, coated particles, � � �)
and concentration ranges, from the dilute medium to the percolated one [38]. The
most famous theories – and, from a historical point of view, the pioneering ones –
are those of Maxwell-Garnett [39] and Bruggeman [40]. The former (MG) considers
one type of identical spherical inclusions embedded in a continuous matrix. The
calculation amounts to determining the volume mean value of the field in a unit
cell containing a metal particle and the surrounding dielectric so as to preserve the
metal volume fraction, p [41, 42]. One then obtains the MG expression for the
effective dielectric function, �eff :

(9) �eff = �d

�1+2p
�m +2�1−p
�d

�1−p
�m + �2+p
�d

�

The MG theory neglects the dipolar interactions between particles; its strict
quantitative applicability is thus limited to weak metal concentrations �p < 10%
,
but it can reasonably be used for a somewhat higher p values. Bruggeman’s approach
is different: All constituents of the heterogeneous material – that is, here, metal
and dielectric – are considered as inclusions embedded in the effective medium
and treated the same way in the calculation of the mean field. Hence, unlike MG
theory, Bruggeman’s one is fully symmetric regarding the different constituents of
the medium. It overestimates the dipolar interactions between particles, and is a
priori better suited for high metal concentrations. From there, numerous refinements
have been proposed to adapt these basic EMT to more complex situations [43] like
non-spherical inclusions (ellipsoids [44, 45], cylinders [46]), presence of an oxide
layer [47], nanoshells [48–51], and effect of a size distribution [52–54].

2.3.2 Beyond EMT

The hypotheses on which effective medium theories lie remain quite restrictive
regarding the material morphology. Indeed, whereas they hold for pure random
particle spatial distribution or perfectly ordered superlattices, they are unsuited for
distributions where partial coalescence, aggregation, or dense packing of individual
particles is present [19].
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In these cases, both the quasi-static and the dipolar approximations may be
invalid. For example, MG theory is unable to reproduce the anomalous IR linear
absorption observed in nanocomposite media with large metal amount [55], where
field retardation effects as well as multipolar electromagnetic interactions have to
be taken into account. Among the numerous approaches which have been developed
in this sense, two general alternatives can be distinguished. The first one consists in
extending and generalizing effective medium theories [56], sometimes by treating
the material morphology through statistical methods [57]; several developments
of this kind rest on the formalism of the spectral density [58], which is used for
nonlinear optics as well (see Section 3.2.5 below). The second alternative consists
in calculating the optical response of a given specific nanoparticle arrangement, like
a particle pair, triplet, chain, or any more complex distribution, including percolated
and fractal structures [59, 60]. This can be performed analytically or numerically
with more or less approximations; for example, the linear (and third-order nonlinear)
optical properties of a chain of silver spheres coated with a dielectric shell has
been recently calculated by numerically solving Maxwell’s equations thanks to the
3D finite-difference time-domain method [61]. The resulting polarizability of the
complex object may then be possibly inserted in a classical EMT [62]. The general-
ized Mie theory is based on such an approach: An individual particle is described by
its polarizability as given by the classical Mie theory, and the interaction between
all particles of a chosen sample of inhomogeneous medium is treated by calculating
the multiscattered near-fields, including both retardation and multipolar effects [63].
The extinction spectrum of the whole sample can then be deduced by properly
summing the contributions of all particles [64]. The medium sample is defined by
the number, radius, and spatial location of each particle in the dielectric host. The
sample size is limited by computing capacities and degree of approximation autho-
rized. For calculating the field scattered by the interacting spheres of the sample an
approach based on a recursive transfer matrix method has been recently proposed,
allowing to determine the complex electric field topography [65–67]. Such calcu-
lations make available the simulation of the optical response of nanocomposite
materials containing spherical nanoparticles with any given spatial arrangement.
Moreover, they provide relevant information for understanding the influence of
local field enhancement on the material nonlinear optical properties [67].

3. OPTICAL KERR EFFECT IN NANOCOMPOSITE MEDIA

3.1 Third-order Nonlinear Response of Materials

3.1.1 Third-order nonlinear susceptibility

When the electric field associated with the incoming light wave is sufficiently
intense �103–104 V/cm
, the relationship between the polarization induced in a
material and the field amplitude is no longer linear. The real polarization P can be
expanded into a power series of the real electric field E

(10) P = �0

[
��1
E+��2
E2 +��3
E3 + � � �+��p
Ep + � � �

]
�
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��1
 = �− 1 is the linear susceptibility and ��p
 is the pth-order nonlinear suscep-
tibility which is a tensor of rank p + 1. The actual situation is, in fact, more
complicated, as the preceding expression holds for isotropic and homogeneous
media with nonlinear susceptibilities being real scalar quantities. In the general
case, the susceptibilities are complex tensors, defined through the relationship
between the spatiotemporal Fourier components of both the polarization and the
electric field [68, 69].

In centrosymmetric media (i.e. media exhibiting inversion symmetry) the even-
order susceptibilities from electric dipole origin vanish. The first non-zero nonlinear
susceptibility is then the third-order one. In the following, all the materials
we will deal with present such inversion symmetry. Let us mention, however,
that there have yet been experimental results concerning the enhancement of
second harmonic generation (SHG) in noble metal particles due to the SPR. This
second-order nonlinear optical response is rendered possible, whether when parti-
cles are not spherical [70], or when spherical particles are dispersed at the interface
between two different media, thus breaking the inversion symmetry [71], or clus-
tered together in low-symmetry aggregates, or even in the centrosymmetric situation
by exciting the electric quadrupole contribution [72]. We refer the reader to the
article of P.-F. Brevet and co-workers in the present book for more details regarding
SHG in gold nanoparticles.

The component P
�3

i �	m
 �i = x� y� z
 of the third-order nonlinear polarization,

oscillating at circular frequency 	m, is expressed as the sum of terms proportional
to the product of three Fourier components of the electric field

(11) P
�3

i �	m
 = �0

∑

npq

∑

jkl

�
�3

ijkl�−	m�	n�	p�	q
Ej�	n
Ek�	p
El�	q
�

Of course, the frequencies and wave vectors fulfil the phase-matching condi-
tions. The third-order susceptibility �

�3

ijkl is a fourth-rank tensor having a priori 81

elements. In an isotropic material, there remain 21 non-vanishing elements, among
which only three are independent [69]. The simplest case consists in a unique
incident plane wave, linearly polarized. Indeed, the third-order polarization vector
is then parallel to the electric field and reduces to the sum of two propagating
terms, one oscillating at the wave circular frequency 	, and another at the circular
frequency 3	. The amplitudes of these two contributions write, respectively,

(12)

{
P�3
�	
 = 3�0�

�3
�	
 �E�	
�2 E�	


P�3
�3	
 = �0�
�3
�3	
E3�	
�

In these expressions, the simplified susceptibilities denote (if the field oscillates
along the x axis)

(13)

{
��3
�	
 = ��3


xxxx�−	�	�	�−	


��3
�3	
 = ��3

xxxx�−3	�	�	�	
�
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The first contribution to the polarization induces a modification of the wave propa-
gation in the material, for both its amplitude and phase, but without any frequency
change. This phenomenon is known as the optical Kerr effect, by analogy with the
magneto-optic and electro-optic Kerr effects where the medium refractive index
varies proportionally with the square of the applied magnetic or electric static field.
The second contribution corresponds to the third harmonics generation (THG).

Most of the studies devoted to the nonlinear optical properties of metal nanoparti-
cles use the notation ��3
�	
 to refer to the susceptibility for the optical Kerr effect.
Unless otherwise specified, we will also adopt this simplified designation in the
following. Let us just recall that it corresponds, in fact, to an experimental situation
where a unique plane wave, linearly polarized (or three plane waves with same
polarization and frequency), generates the third-order nonlinear optical phenomenon
in an isotropic medium at the same frequency, and that the susceptibility is a priori
a complex quantity.

3.1.2 Intensity-dependent optical coefficients

The optical Kerr effect, introduced in the preceding section through the third-order
nonlinear susceptibility, results in the dependence of the complex optical index of
the material on wave intensity, I , as

(14)

{
n = n0 +�I

� = �0 +�I�

n0 and �0 are the linear refractive index and absorption coefficient, respectively
(§ 2); � is the nonlinear refraction coefficient, while � is the nonlinear absorption
coefficient. By developing the relation between the electric displacement and the
electric field and neglecting the terms proportional to I2, one easily obtains the
link between these coefficients and the complex third-order nonlinear susceptibility,
��3
 = ��3


r + i�
�3

i [73–75]:

(15)

⎧
⎪⎪⎪⎨
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��3

r = 2�0cn0

3

(

2n0� − �0�

2k2

)

�
�3

i = 2�0cn0

3

(
n0�

k
+ �0�

k

)

where k denotes the modulus of the wave vector. Whereas Eq. (15) holds in
the general case, it can be simplified when linear absorption in the material is
negligible, i.e. when �0 = �0/2k 	 n0. The real and imaginary parts of the nonlinear
susceptibility are then proportional, respectively, to the nonlinear refraction and
absorption coefficients through

(16)

⎧
⎪⎪⎨

⎪⎪⎩

��3
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3
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Let us stress that these approximated relations have often been wrongly used in
the literature concerning metal nanoparticles. Indeed, linear absorption in materials
containing such particles is, most of the time, absolutely not negligible, and Eq. (15)
has to be used instead of Eq. (16).

3.1.3 Units

In Eqs. (15) and (16), the different quantities are expressed in SI units. However,
the third-order nonlinear susceptibility is often expressed in electrostatic units (esu):

(17) ��3
�esu
 = 10−8 c2

4�
��3
�SI
�

In this case, Eq. (15) becomes

(18)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

��3

r �esu
 = cn0

240�2

(

2n0� − �0�

2k2

)

�
�3

i �esu
 = cn0

240�2

(
n0�

k
+ �0�

k

)

�

Moreover, the nonlinear optical coefficients � and � are often expressed in the
submultiple units cm2 W−1 and cm W−1, respectively.

3.1.4 Figure-of-merit for all-optical telecom applications

Due to the possibility of modifying optical absorption or refraction in a medium
by using light as command, materials exhibiting sufficiently large nonlinear optical
coefficients – among which are nanocomposite media – are thought to be possibly
used in all-optical signal processing devices, such as ultrafast switches [76]. Such
a functionality requires not only a high nonlinear response in the spectral range
of interest (near infrared for fiber-optics communications, for instance), but also
a low linear absorption �0 as well as a fast response time �. Thus, the following
figures-of-merit are often determined in the literature, as, either [76]

(19) F = ��3


�0

or

(20) F� = ��3


�0�
�

However, there is most of the time an ambiguity regarding the nonlinear suscepti-
bility in these formula, since, either the real part, the imaginary part, or the modulus
of ��3
 should be prioritized depending on the application envisaged. Let us finally
mention that other figures-of-merit have sometimes been proposed [77, 78].
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3.2 The Case of Nanocomposite Materials

As for the linear optical response, different approaches have been proposed to
describe the nonlinear optical properties of nanocomposite media. Nevertheless, a
few general principles can be identified. First, each component of such a medium
possesses its own susceptibility; however, as the typical structure size is much
smaller than the wavelength, the observable result of light interaction with the
medium is different from a simple combination of the individual responses of the
separated constituents (again, we do not treat the case of spatially-resolved studies
of the optical response). One is then again led to introduce the concept of effective
medium, extended to the case of nonlinear optical properties.

Secondly, as stated in the introduction, the local electromagnetic field enhance-
ment in the metal nanoparticles at the SPR is responsible for the large enhancement
of the metal nonlinear optical response [79, 80]. This is a direct consequence of
the dielectric confinement described above (§ 2.2.2): Metal divided into nanometric
entities can present a nonlinear response several orders of magnitude larger than
the one of its bulk phase. Several studies have shown that the optical nonlinear-
ities in nanocomposite materials originate from particles and not from their host
matrix, but let us qualify this statement: If the metal nonlinear response is indeed
much larger than the matrix one, it is further amplified by the SPR phenomenon
which depends significantly on the dielectric contrast between the particles and the
host medium. Thus, strictly speaking, metal alone cannot explain by itself the high
nonlinear response of nanocomposite media.

Thirdly, just like the linear ones, the metal nonlinear properties are affected by
electronic confinement. In other words, the intrinsic nonlinear optical susceptibility
of a small particle might be different from the bulk metal one, due to finite size
effects as already evoked in Section 2.2.4 for the linear susceptibility.

We will now discuss each point through different approaches of the nanocom-
posite material nonlinear optical response.

3.2.1 A general formulation of the effective third-order nonlinear
susceptibility

Following the method of Stroud and Hui [81], Stroud and Wood [82], and later
Ma et al. [83], have derived from Maxwell’s equations the general expression of
the effective ��3
 in the quasi-static approximation. For this, they have considered
that the magnitude of the nonlinear coefficients remains sufficiently small to neglect
the nonlinearity in the electric field evaluation. �

�3

eff then writes

(21) �
�3

eff =

1
V

∫
��3
�r
 �E�r
�2 E�r
2dr

�E0�r
�2 E0�r
2
�

V denotes an averaging volume of the inhomogeneous medium and E0 the spatially
averaged applied electric field. The frequency dependence of the different quantities
involved has been omitted for sake of clarity. It is easy to deduce from this
formula that – at least for its modulus – the effective nonlinear susceptibility will
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be enhanced as soon as the amplitude of the local electric field E�r
 is enhanced
itself somewhere in the medium. Moreover, as Eq. (21) exhibits the dependence of
�

�3

eff on the fourth power of the local field, any enhancement of the latter will lead

to an amplification of the nonlinear response relatively much higher than the one
of the linear optical response. Of course, the precise result of Eq. (21) depends on
both material morphology and intrinsic susceptibilities of the constituents, which
are, just like the electric field, complex quantities.

Most of the time, the nanocomposite materials studied in experiments contain
metal inclusions the nonlinear susceptibility of which has a much larger modulus
than the one of the surrounding host matrix. For example,

∣
∣��3


∣
∣ values of the order

of 10−8 esu and 10−14 esu have been reported for bulk gold [73] (or gold particles
[80]) and different transparent materials [84–86] respectively, in the visible or near
infrared range. Assuming that the third-order nonlinear susceptibility of metal, ��3


m ,
is the same for all inclusions of the medium and constant in each of them, Eq. (21)
can then be simplified into

(22) �
�3

eff = ��3


m

1
V

∫
metal

�E�r
�2 E�r
2dr

�E0�r
�2 E0�r
2

where the integral runs over the volume of all metal inclusions encompassed in the
total medium volume V .

This equation underlines the need to know the local field topography in the
material if one aims at determining the actual complex value of the effective ��3
. It
can be further simplified if the field inside particles is homogeneous (mean field, or
“decoupling”, approximation) [82, 83]. Indeed, in this case the normalized volume
averaged product (i.e. the quotient in Eq. (22)) reduces to give

(23) �
�3

eff = p

〈
f 2�r


〉
m

〈
�f�r
�2

〉

m
��3


m �

f�r
 denotes the local field factor and the brackets indicate volume averaging in
metal particles.

3.2.2 Simple approach for dilute media

Equation 23 can be significantly simplified in the limit of dilute media, that is, for
low metal concentrations, since in this case the local field factor is the same for all
inclusions and is given by Eq. (4). D. Ricard et al. have proposed a straightforward
perturbation method to get the expression of �

�3

eff in the dilute medium approxima-

tion [79]. The optical Kerr effect in the material amounts to modifying the effective
dielectric function under the action of the applied field E0 as

(24) ��eff = �
�3

eff �E0�2 �

This change is due to the modification of the particle dielectric function under the
action of the local field El

(25) ��m = ��3

m �El�2 �
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Moreover, the derivation of the Maxwell-Garnett expression of �eff with respect to
�m (Eq. (9)) provides

(26)
�eff

�m

= pf 2�

f = El/E0 being given by Eq. (4). Combining Eqs. (24)–(26), one obtains

�
�3

eff = pf 2 �f �2 ��3


m(27)

= p

(
3�d

�m +2�d

)2 ∣∣
∣
∣

3�d

�m +2�d

∣
∣
∣
∣

2

��3

m �

This formulation can be also obtained by other approaches [81, 83, 87, 88]. It
is extensively used in the literature to analyse the nonlinear optical properties of
nanocomposite materials determined experimentally.

3.2.3 Intrinsic nonlinear optical properties of metal nanoparticles

Whatever the degree of approximation used in evaluating the effective nonlinear
susceptibility of a composite medium, it can be seen in Eqs. (22), (23) or (27) that
the result depends on the product of two complex quantities: One linked with the
medium morphology and composition (the local field factor), the other linked with
the nonlinear optical properties of the metal inclusions themselves (the intrinsic
third-order susceptibility, ��3


m 
 – inasmuch as the own contribution of the host
matrix to the whole nonlinear response still remains negligible. We will focus here
on the second factor. It is noteworthy that very few theoretical work has been
accomplished regarding the value of ��3


m for noble metal nanoparticles after the
pioneering studies of Flytzanis and coworkers [79, 80, 89, 90]. Moreover, as will
be underlined below, their results may not be used in every experimental situation
as they are.

In Flytzanis’ group investigations the different electronic contributions to the
third-order nonlinear susceptibility of a gold particle, including its tensor aspect,
were calculated. They first evaluated, using quantum mechanics density matrix
theory, the intraband contribution, �

�3

intra, that is the electric dipole nonlinear suscep-

tibility associated with transitions involving the only confined conduction electrons
[80]. This contribution is expected to depend on particle size as 1/R3 if R is
sufficiently small. Rautian proposed an alternative calculation of the intraband
contribution and refuted some important points of the approach of Hache et al.,
leading to discrepancies between their respective results, in particular regarding the
frequency dependence of �

�3

intra [91]. Whatever the theoretical method used, let us

emphasize that this contribution is due to electronic confinement, that is, stems
from a quantum size effect, and is therefore absent in the metal bulk phase.

The second contribution, on the contrary, is size-independent down to very small
R values and already exists in bulk metal. It originates from transitions from the
fulfilled core-electron d band to the conduction sp band and is called, therefore, the
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interband contribution, �
�3

inter . As it corresponds to resonant two-levels transitions

which saturate, its value is expected to be mainly imaginary and negative. However,
let us stress that this statement may only be valid for photon energies at least as large
as the IB transition threshold. Moreover, the calculation of Hache et al. is carried
out in a particular spectral range, close to both the SPR of gold particles and the IB
transition threshold (in the vicinity of the X point of the Brillouin zone) [89]. This
means that the imaginary character of �

�3

inter as well as its sign and magnitude are

likely to experience spectral variations, what is rarely considered in the literature.
When using a light source with high instantaneous power, like ultrashort pulse

lasers, and at a frequency close to the SPR one, the energy absorbed by the
conduction electron gas is sufficiently high to induce a significant rise of their
temperature, thus modifying the Fermi-Dirac distribution around the Fermi level.
This phenomenon, known as Fermi smearing, leads to the modification of the
transition probabilities and, consequently, of the linear optical properties [92, 93].
Whereas this is not, strictly speaking, a direct electronic nonlinearity, Hache and
coworkers could nevertheless establish, within certain approximations, a propor-
tionality between the incident wave intensity and the induced variation of the
metal dielectric function [89]. They thus associated a third contribution to the metal
particle nonlinear susceptibility, called the hot electron contribution, �

�3

hot electrons.

However, the expression they obtained exhibits a temperature dependence
due to the temperature-dependent heat capacity of electrons (see Eq. (23) in [89]).
Now electron temperature varies of course with the energy absorbed; �

�3

hot electrons

is then not a real third-order susceptibility, independent of incident intensity.
Moreover, the calculation is restricted, not only to a particular photon energy
domain close to the SPR, but also to a particular excitation pulsewidth (picosecond
pulses), a parameter on which the electron temperature is highly dependent
as we will detail deeper in § 8.3.

From the above discussion it can be inferred that the approach of Flytzanis’ group
has to be considered with care, since its strict applicability imposes constraints
regarding light excitation wavelength, intensity and temporal regime. However,
within these limited range, it provides a good idea of the nature and order of magni-
tude of the different contributions. Let us summarize their main results: At the SPR
frequency of gold nanoparticles the intraband contribution is found to be negligible
against the interband one. The latter is mainly imaginary and has a negative sign:
Im�

�3

inter ∼ −1�7×10−8 esu. For picosecond pulse excitation at the SPR, the hot elec-

tron contribution is also mainly imaginary but has a positive sign. Its magnitude
is higher than the one of �

�3

inter � Im�

�3

hot electron ∼ 1�1 × 10−7 esu. Additionally, the

Kerr susceptibility ��3
�	�	�−	�	
 is calculated to be larger by several orders of
magnitude than the third-harmonics one, ��3
�3	�	�	�	
 [89].

3.2.4 Consequences and illustration

One of the main consequences of dielectric confinement for the third-order nonlinear
optical properties is the fact that the response of a composite medium can be very
different in both sign and magnitude from the one of its constituents [73, 89, 94].
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This can be easily understood by examining Eq. (27): Both f and ��3

m are complex

quantities, and the resulting effective susceptibility may exhibit unexpected values.
This is exemplified in Fig. 2, where we have reported the spectral variations of the
real and imaginary parts of �

�3

eff , as well as its modulus, calculated using Eq. (27)

for a Au:SiO2 medium with p = 1%. The gold particle intrinsic susceptibility has
been taken equal to ��3


m = �−1+5i
×10−8 esu, as evaluated by Smith et al. from
experiments realised on a gold-glass composite film with 30 ps laser pulses at
� = 532 nm (see § 6 below) [73]. Let us recall that, as previously discussed in
§ 3.2.3, the actual complex value of ��3


m is surely not constant over the spectral
range under consideration (and, moreover, depends on the pulse duration). However,
we use a constant value here since we only aim at emphasizing the effect of both
the complex nature of f and its enhancement at the SPR. Hence, it can be observed
on Fig. 2 that, whereas ��3


m is mainly imaginary and positive, �
�3

eff is also mainly

imaginary but negative at the SPR. This stems from the local field correction, since
f is itself mainly imaginary at the resonance due to phase shift between the external
and local electromagnetic fields.

Another consequence of the local field correction is that both the real and imagi-
nary parts of the effective susceptibility undergo strong sign and magnitude spectral
variations in the vicinity of the SPR. One can nevertheless deduce from Eq. (27)
that the enhancement of the local field – i.e. �f � > 1 – at the SPR induces a high

enhancement of the global amplitude of the material nonlinear response, since
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Figure 2. Real part (dashed line), imaginary part (dotted line) and modulus (solid line) of the effective
third-order nonlinear susceptibility, �
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eff , of a Au:SiO2 nanocomposite medium, calculated by using

Eq. (27) with p = 1% and �
�3

m = �−1+5i
×10−8 esu
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varies as �f �4. This is again confirmed by Fig. 2, where
∣
∣
∣�

�3

eff

∣
∣
∣ exhibits a reso-

nance behaviour at the SPR (compare with �f � in Fig. 1). This, of course, renders
such nanocomposite materials interesting for their remarkable nonlinear optical
properties.

Let us finally notice that, investigating the dispersion theory for the effective third-
order nonlinear susceptibility of nanocomposite media, Peiponen et al. established
that Kramers-Kronig relations are not valid for �

�3

eff , whereas they are valid for

other nonlinear processes such as frequency conversion [95].

3.2.5 Nonlinear EMT and other theoretical approaches

As for the linear properties, numerous approaches have been proposed to predict
and explain the nonlinear optical response of nanocomposite materials beyond
the hypothesis leading to the simple model presented above (§ 3.2.2). Especially,
Eq. (27) does not hold as soon as metal concentration is large and, a fortiori,
reaches the percolation threshold. Several EMT or topological methods have then
been developed to account for such regimes and for different types of material
morphology, using different calculation methods [38, 81, 83, 88, 96–116]. Let
us mention works devoted to ellipsoidal [99, 100, 109] or cylindrical [97] inclu-
sions, effect of a shape distribution [110, 115], core-shell particles [114, 116],
layered composites [103], nonlinear inclusions in a nonlinear host medium [88],
linear inclusions in a nonlinear host medium [108], percolated media and fractals
[101, 104–106, 108]. Attempts to simulate in a nonlinear EMT the influence of
temperature have also been reported [107, 113].

As an example among the significant results of such theoretical developments,
we would like to underline that a spectral decoupling between the linear absorption
maximum and the nonlinear response maximum has been predicted for ellipsoidal
metal particles [110]; the longitudinal SPR of such particles being shifted to longer
wavelengths as their asymmetry increases, one can thus expect to get a high figure-
of-merit (Eq. 19) in the telecom IR spectral range by optimizing particle shape.

In the case where metal concentration is high, that is, close to or above the
percolation threshold, there have been predictions for giant spatial fluctuations
of the electromagnetic field [105, 106], which have been verified experimentally
[117]. Consequently, the possibility of locally obtaining very large enhancements
of the third-order nonlinear optical response in such highly-concentrated media is
expected. The Sheng EMT also predicts a maximum enhancement of ��3
 at the
percolation threshold for certain wavelengths [83].

Finally, as for the linear optical properties, alternative approaches are being
developed to calculate the nonlinear optical response of nanostructured materials.
They are most of the time based on the numerical resolution of the equations
governing the electromagnetic behaviour of a finite set of nanoparticles in a given
spatial arrangement [61].

It is unfortunately worth noticing that, up to now, there has been very few
published literature regarding the experimental verification of nonlinear EMT
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predictions [83, 112]. Only those established within the framework of the simple
dilute medium approximation are generally considered.

4. EXPERIMENTAL STUDIES: SOME GENERALITIES

4.1 Experimental Methods

Most of the time, metal/dielectric nanocomposites are studied in the form of
solutions or thin solid films on a substrate: Colloids, doped and annealed
glasses, sol-gels, surfactant-stabilized nanoparticles, micelles, two- or three-
dimension self-assembled nanocomposites, self-organized mesoporous oxides filled
with metals, electrochemically-loaded template membranes, metal-ion implanted
crystals, nanocomposite films elaborated by laser ablation, cluster-beam deposition,
radio-frequency sputtering, or nanolithography.

The usual experimental techniques developed to study the optical Kerr effect in
materials have already been described in a preceding chapter of this book. We only
mention here the methods which have especially been used for nanocomposite mate-
rials as colloidal solutions or thin films: Degenerate four-wave mixing (DFWM)
and optical phase conjugation, which provide the modulus of ��3
 only and may be
completed by interferometry techniques to get its phase as well, optical limiting,
optical Kerr shutter, and z-scan, which is probably the most common technique used
in recent years due to its ability to provide simultaneously the nonlinear refraction
and absorption coefficients of the same sample point [118].

4.2 Relevant Parameters and Orders of Magnitude of the Nonlinear
Response

It appears to us worthwhile to point out the different parameters relevant to the
analysis of the third-order nonlinear optical response of nanocomposite materials,
because some of them are sometimes omitted in the literature, rendering the compar-
ison difficult. They can be classified into two main sets. First, some parameters
are linked with the optical excitation source, which usually consists of a pulsed
laser beam: Wavelength �, pulse energy E, pulse duration �, repetition rate �.
Secondly, other relevant parameters concern the material itself: Particle size and
shape (and distributions), metal volume fraction p, particle spatial arrangement in
the host medium.

There are sometimes ambiguities in the literature regarding “��3
”, which can
be used to denote either ��3


r , �
�3

i or

∣
∣��3


∣
∣. In the following sections the notation

“��3
” will refer to the complex third-order nonlinear susceptibility of the composite
material. As a large part of experimental works focus on its modulus, we will also
use the notation ��3
 = ∣

∣��3

∣
∣ ei� where � denotes the phase of ��3
.

Finally, before closing this general introduction to experimental studies, let us
provide orders of magnitude of the third-order nonlinear response of nanocom-
posite materials. Depending on the composition and morphological characteristics
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of the latter, as well as on the experimental conditions regarding in particular laser
excitation, the nonlinear absorption and refraction coefficient absolute values can
reach ��� ∼ 10−7 cm2/W and ��� ∼ 10−2 cm/W. The magnitude of the third-order
susceptibility takes values within ∼ 10−13 and 10−5 esu, whereas the figure-of-merit
F defined in Eq. (19) ranges between ∼ 10−13 and 10−10 esu cm.

5. DIFFERENT THIRD-ORDER NONLINEAR OPTICAL
PHENOMENA

5.1 Third-harmonic Generation

Several aspects of the nonlinear optical behaviour of metal/dielectric nanocompos-
ites have been reported in the literature. First, very few works have been devoted
to the third-harmonics generation (THG) from such materials. The THG from
� = 1064 nm, � = 35 ps pulses has been measured in colloidal Au, Ag, Pt and
Cu in [119]. While no signal could be detected for Au and Ag, the authors found
a linear variation of the TH intensity with the pump one for Pt and Cu, providing
a maximum conversion efficiency of 7 × 10−7 and 3 × 10−7, respectively. The
corresponding values of ��3
�3	
 (Eq. 13) are worth �1�5 ± 0�75
× 10−14 esu and
�1�0±0�5
×10−14 esu, and are of the same order of magnitude as the Kerr suscep-
tibilities ��3
�	
. In [121] the THG in metal nanoparticles is not really studied for
itself, but rather used as a probe for measuring the SPR decay time with femtosecond
resolution. The advantage of THG over SHG lies in the fact that it allows the
study of particles having centrosymmetric shape. Very recently, THG efficiency
has been measured on individual gold colloids excited at � = 1500 nm with � = 1 ps
pulses [119]. Lastly, let us mention recent investigations regarding the observation
of nonlinear magneto-optical Kerr effect (NOMOKE) and magnetization-induced
optical THG (and SHG) in CoxAg1−x nanogranular films (5–20 nm in size) [122].
The SPR in silver nanoparticles at the Co–Ag interface is thought to be involved
in these effects.

5.2 Saturation of Absorption

We now focus on the main subject of this contribution, namely the optical Kerr
effect. Depending on the material characteristics and experimental conditions – that
is, on laser wavelength and power as well as on metal and matrix kinds and relative
amounts – the nonlinear absorption coefficient � is found to be either negative or
positive. The influence of each of these parameters on the nonlinear response will
be examined in details in forthcoming sections.

The case � < 0 corresponds, in the spectral domain of a resonant transition, to
a saturation of absorption (SA) phenomenon. The origin of such a behaviour in
metal/insulator nanocomposite media is not described the same way from authors
to others. On the one hand, the simple and intuitive explanation generally given
is that strong light absorption at the SPR causes the saturation (bleaching) of the
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corresponding electronic transition [123, 124]. The two levels involved are then the
SPR ground and excited states. On the other hand, the hot electron phenomenon is
evoked. The calculation of the third-order susceptibility of Au:SiO2 nanocompos-
ites at the SPR performed by Hache et al. leads to such a conclusion. Indeed, as
already evoked in § 3.2.3, among the three contributions to ��3


m the hot electron
one (imaginary and positive) slightly dominates over the interband one (imagi-
nary and negative), both dominating the intraband contribution (also imaginary
and negative). To corroborate their theoretical findings, these authors studied, by
optical phase conjugation and SA experiments with � = 527 nm, � = 5 ps and
� = 532 nm, �=25 ps pulses the nonlinear response of glasses doped with gold
nanoparticles �R = 1–15 nm� p ∼ 10−5
 [89]. The wavelengths used were close to
the SPR maximum of the nanoparticles �∼ 530 nm
. The authors measured a nega-
tive value for the imaginary part of ��3
, that is a negative value of � since the low
linear absorption due to the very weak metal volume fraction justifies the use of
Eq. (16). The local field factor being mainly imaginary at the SPR, they deduced
through Eq. (27) that the imaginary part of the gold particle intrinsic susceptibility
is positive (see discussion in § 6 below). This is consistent with their theoretical
investigations carried out within the same conditions and using the same parameters
as those of their experiments. However, it seems hard to explain that way the persis-
tence of a SA-like behaviour in experiments using long-lasting laser pulses in the
vicinity of the SPR [74, 125–132], since in such a temporal excitation regime the hot
electron phenomenon should be negligible for usual experimental conditions (see
§ 8.3.2.2). In this case, an alternative origin of the absorptive nonlinear response
could possibly be found in a slow thermo-optical effect, as will be discussed later.

The SA phenomenon can be described within the framework of a two-level
atomic model [69]. When the medium can be assimilated to a coherent ensemble
of identical two-level systems all having the same response – that is, when the
broadening of the transition is purely homogeneous –, the absorption coefficient is
related to the incident light intensity I through

(28) ��I
 = �0

1+ I/Is

where Is is defined as the saturation intensity [69]. The second expression in Eq. (14)
can then be viewed as the first-order truncation of the power series expansion of
Eq. (28) relative to I . Puech et al. examined the dependence of the absorption
coefficient on laser intensity in colloidal solutions of gold nanoparticles with p 	 1
[125]. For this, they used � = 500 ps, � = 516 and 522 nm, � = 5 Hz pulses at a
peak intensity I00 of about 1 GW/cm2. It was found that, whereas Eq. (28) cannot
correctly account for the experimental results, the latter are well fitted by the
following law, suited for inhomogeneously broadened two-level systems

(29) ��I
 = �0√
1+ I/Is

�

The authors confirmed this finding afterwards by studying the ultrafast dephasing
time of the coherent excitation [133]. The inhomogeneous broadening is thought
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to stem from size and shape distributions. Whereas such distributions are likely
to be significant in many experiments, no other group, to our knowledge, has
used Eq. (29) rather than Eq. (28) for describing the intensity dependence of the
absorption coefficient from the SA point of view.

5.3 Positive Nonlinear Absorption and Optical Limiting

The case � > 0, opposite to the previous one, can stem in nanocomposite media
from reverse saturation of absorption (RSA), multi-photon absorption, or nonlinear
scattering. It is of course of high interest for optical limiting applications.

5.3.1 Multi-photon processes

Two-photon absorption may be the dominant effect in a spectral range far from any
resonant transition, i.e. where �0�	
 is negligible, but with significant absorption at
frequency 2	. This occurs in noble metal nanoparticles for 2	 matching the SPR
spectral domain, or for 2	 larger than the IB transition threshold. Such a nonlinear
mechanism has been observed, for example, at � = 1064 nm in silica glasses doped
with Cu nanoparticles ��SPR ∼ 560 nm
 [134]. Both two-photon and three-photon
absorption processes have been simultaneously observed in Ag nanorods in borosil-
icate glass at � = 800 nm [135]. They are respectively associated with the transverse
SPR ��SPR ∼ 400 nm
 and the interband transitions in silver. Two-photon absorption
connected with IB transitions has also been reported in Cu and Ag nanoparticles
produced by ion implantation in silica [136, 137].

5.3.2 Reverse saturation of absorption

RSA corresponds to the situation where the absorption cross section of the excited
state is larger than the ground state one. RSA was found by Ganeev et al. to be
the dominant nonlinear absorption mechanism in Ag and Pt colloidal solutions at
� = 1064 nm �� = 35 ps
 [120]. In this case, the photon energy is not sufficient to
induce two-photon absorption associated either with the SPR or with interband tran-
sitions. More surprisingly, RSA was also found to occur at 532 nm in Au colloids,
that is close to their SPR ��SPR = 525 nm
, whereas other experimental studies
showed a SA behaviour within similar conditions, as reported in the preceding
section. Finally, both RSA and two-photon absorption occurred in the same gold
colloids at 1064 nm. Other authors have observed either SA or RSA in the same
nanocomposite medium, depending on metal concentration (cf. § 7.3) [138, 139] or
on laser intensity (cf. § 8.1) [123, 124, 140, 141].

5.3.3 Nonlinear scattering

Let us now examine the case of a nonlinear scattering process. Ispasoiu et al.
deduced from considerations regarding the excited-state lifetime that the optical
limiting observed using nanosecond laser pulses at � = 532 nm in their silver-
dendrimer nanocomposite aqueous solution was due to absorption-induced nonlinear
scattering [142]. They suggested that the scattering centres were micro-bubbles
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produced by local heating. Examining the calculation results of the thermal response
of nanocomposite media under pulsed light excitation, as will be discussed below
(§ 8.3.2), this assumption is quite probable. François et al. also invoked absorption-
induced nonlinear scattering to interpret the positive sign of � in gold nanoparticles,
but they distinguished between medium laser fluences, with the generation of
solvent bubbles, and high fluences, with fast expansion and vaporization of the
particles [143, 144].

5.3.4 Optical limiting

Whatever the nonlinear process involved, the metal/dielectric nanocomposites have
been often inquired into for their optical limiting (OL) properties [120, 123, 124,
140–150], owing to the important stake that such a functionality represents for
civil and military applications in human eye or detector protection. Indeed, as for
telecom applications, metal nanoparticles present the advantages of both intense
and fast nonlinear response.

Figure 3 compiles selected results obtained for optical limiting properties of
materials containing gold or silver nanoparticles. Note that the ordinate axis shows
the normalized transmission – that is, the transmission normalized to unity at low
input fluence – and not the absolute one. All kinds of materials roughly present the
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Figure 3. Normalized transmission as a function of laser fluence for material containing gold and silver
nanoparticles. a: Ag-dendrimer nanocomposites in aqueous solution, � = 532 nm and � = 6�5 ns [142];
b� c and d: octadecanethiol-caped Ag, Au, and AuAg0�75 colloids �R = 3–4 nm
 in toluene, respectively,
at � = 532 nm with � = 35 ps [123]; e and f : Au colloidal solutions �R = 15 nm
 at � = 530 nm
and � = 630 nm, respectively, with � = 8 ns [143]; g and h: colloidal silver and gold, respectively,
� = 1064 nm and � = 35 ps [120]; i: ligand (C60tpy)-protected Au colloids �R = 5–15 nm
 in chloroform,
� = 532 nm and � = 8 ns [147]; j: Au nanoparticle �R = 5–15 nm
 in glass, � = 532 nm and � = 8 ns
[124]; and k: C60 suspension in toluene with identical linear transmission as sample i (70%), � = 532 nm
and � = 8 ns [147]
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same OL efficiency, with varying thresholds, apart from C60tpy-Au in chloroform
(sample i) which appears better than C60 in toluene, a compound which is yet
itself known for its high OL ability [147, 148]. A similar result was previously
established by the same group for [60]fullerene-silver nanocomposites (DTC60-Ag)
in hexane (not shown in the figure) [146]. This strong OL is expected by the authors
to originate from the excited state interaction between the [60]fullerene and metal
nanoparticles.

Let us also notice the special case of material j (Au nanoparticles in glass excited
at the SPR by 8 ns pulses): Transmission begins to increase (SA phenomenon)
and then decreases as the input fluence rises above ∼ 1 J/cm2. Such a behaviour
illustrates the fact that, within similar conditions but with different laser powers,
either a negative or a positive sign has been found for the nonlinear absorption
coefficient, as already evoked above (§ 5.2 and 5.3.2). François et al. studied the
influence of particle size on the OL performances of gold colloidal solutions excited
by nanosecond pulses at the SPR, in the range R = 2�5–15 nm [143]. They found
that, as R increases, both the OL threshold and amplitude increase. Moreover, they
reported later the influence of wavelength on the OL efficiency, and established
that the latter is as high as � is close to �SPR [144]. All these observation are
fully coherent with the interpretation given by the authors in terms of nonlinear
scattering, as described in Section 5.3.3.

5.4 Self-focusing and Self-defocusing

As for the absorption nonlinear properties, the refraction ones have also been shown
to present either negative or positive sign. Intensity-induced positive (negative)
refraction is usually denoted by self-focusing (self-defocusing). Of course, � is
likely to vary with wavelength in the SPR spectral domain like ��3


r and �
�3

i (cf.

Fig. 2), but may also vary with laser fluence, pulsewidth, metal concentration, matrix
index � � � The mechanisms involved to explain the self-focusing or self-defocusing
are the same as those described for nonlinear absorption, comprising both electronic
and thermal effects [132].

6. Determination of ��3�
m

In order to analyse the microscopic origin of their experimental results regarding
the third-order nonlinear optical response of nanocomposite media, several authors
have extracted the value of ��3


m by inverting Eq. (27). We want to stress here
that this procedure is sometimes applied incorrectly in the following cases: �i
 the
material metal concentration is too large, whereas Eq. (27) has been established
assuming low p value [128]; (ii) moreover, the material complex ��3
 is often
deduced from the measured values of � and � through the simplified relations 16,
valid for low linear absorption, whereas in most cases Eq. (15) should be used
instead; (iii) the local field factor f involved in Eq. (27) is generally estimated from
tabulated bulk values of the metal and matrix linear dielectric functions, which do
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not take into account the SPR maximum spectral shift and quenching due to finite
size effects (§ 2.2.4); a simple test of the validity of the f values might be realised
by comparing the experimental linear absorption spectrum with the calculated one.

Due to these points, and especially the last one, the applicability of Eq. (27)
to measurement results appears quite restricted. Nevertheless, it allows to outline
qualitative trends and to provide an estimated order of magnitude for the particle
intrinsic nonlinear susceptibility. We now focus on results selected from the litera-
ture which appear to be relevant following the preceding clarification.

First, let us recall that, at the SPR, the local field effect results in the opposite signs
of the metal inclusion and composite material imaginary third-order susceptibilities,
respectively. This was already stated when discussing the results of Hache et al. in
§ 5.2. This feature was also pointed out later by Smith and co-workers in the case
of gold colloids in solution [94]. They also showed that the sign of �

�3

i of gold

colloids was opposite to the one of a thin gold film [73].
In Table 1 we have reported the value of ��3


m = Re��3

m + iIm��3


m = ∣
∣��3


m

∣
∣ ei�m

for noble metal nanoparticles in different host media and excited at different laser
wavelengths and pulsewidths [151–163].

Several features can be deduced from these data. First, Au and Cu nanoparticles
excited at or close to the SPR present higher nonlinear response (i.e. higher

∣
∣��3


m

∣
∣


than Ag particles in similar conditions. This may be due to the fact that, in Ag,
the photon energy corresponding to the plasmon resonance is lower than the IB
transition threshold; hence, at �SPR, the contribution of interband transitions to∣
∣��3


m

∣
∣ is weaker in silver than in gold and copper. Puech et al. have experimentally

shown, moreover, that for colloidal gold in acetone (R = 50 nm, �SPR = 530 nm),∣
∣��3


m

∣
∣ is almost wavelength-independent in the spectral range � = 562–606 nm

(� = 5 ps) [155]. Indeed, this range corresponds to photon energies close but lower
than the IB transition threshold (2.4 eV, see § 2.1); the dispersion of

∣
∣��3


m

∣
∣ is then

expected to be weak. This property was also previously suggested by Hamanaka
et al. [161].

Secondly, looking at Table 1, one can notice that there is no significant effect of
the surrounding medium on the value of ��3


m . Let us just remind that its refractive
index governs the SPR wavelength. Thirdly, pulsewidth has a large influence on the
value of ��3


m , the magnitude of which increases by several orders when increasing
pulse duration. This is directly linked with the generation of different thermal
effects, that is, hot electron contribution for ultrafast pulses, and thermal lensing
for long-lasting pulses [74]. This point will be specifically discussed in Section 8.3.
Finally, no clear feature can be extracted from Table 1 regarding either the phase
of the metal particle intrinsic susceptibility or the sign of its real component. For
its imaginary one, it seems that it is positive for wavelengths close to the SPR,
but the precise comparison of the corresponding results is rendered difficult since
it should also integrate considerations about the IB transition threshold and the
pulsewidth altogether. The influence of particle size on ��3


m will be tackled in the
next paragraph.
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Table 1. Intrinsic third-order nonlinear susceptibility of noble metal nanoparticles, �
�3

m , determined

through Eq. (27) from ��3
 values measured on low-p nanocomposite media

Metal Host
medium

Pulse
width

� (nm) ���3

m � (esu) �m�

 Im�

�3

m

(esu)
Re�

�3

m

(esu)
Reference

Au SiO2 110 fs 560 9×10−10 −169 −1�7×10−10 −8�8×10−10 [74]
Au SiO2 200 fs 532 34×10−10 [159]
Au water 5–25 ps 527–532 5�0×10−8 80 4�9×10−8 0�9×10−8 [89]
Au acetone 5 ps 562–606 2�5×10−8 [155]
Au water 30 ps 532 11×10−8 [94]
Au water 30 ps 532 4–10 ×10−8 [151]
Au glass 30 ps 532 5�1×10−8 −79 5�0×10−8 −1�0×10−8 [73]
Au SiO2 70 ps 532 4�2×10−8 [159]
Au water 0.5 ns 516, 522 22×10−8 [125]
Au water 0.5 ns 522 1�4×10−8 [133]
Au glass 7 ns 532 2�5×10−8 [152]
Au SiO2 7 ns 560 1�6×10−6 −62 −1�4×10−6 0�75×10−6 [74]
Au Al2O3 8 ns 530 7�1×10−6 [158]

550 8�9×10−6

570 20×10−6

Au SiO2 ns 530–570 1�1×10−6 [157]
Au SiO2 20 ns 530 30×10−8 [156]
Ag glass 150 fs 384–574 1�5×10−10 63 1�3×10−10 0�7×10−10 [162]
Ag glass 500 fs 388 0�11×10−10 [161]
Ag water 28 ps 400 2�4×10−9 [79]
Ag glass 7 ns 415–430 2–4×10−9 [154]
Cu Al2O3 12 ps 585 1�5×10−8 [163]
Cu Al2O3 30 ps 590 5–25×10−8 [160]
Cu SiO2 35 ps 532 5–47×10−9 [153]
Cu glass 7 ns 565–580 1–2×10−6 [154]

7. INFLUENCE OF MATERIAL MORPHOLOGY

As for linear optical properties, the morphology of the material is of course expected
to influence its nonlinear response as well [164]. We now examine the most impor-
tant effects of the morphological parameters as found in the literature.

7.1 Finite Size Effects

A rather large number of experimental studies have been devoted to the influence
of nanoparticle size on the optical Kerr effect in nanocomposite media. � and/or
� have been found to present a R-dependence, sometimes even accompanied with
a sign change in the size range investigated. The interpretation of such results has
to be carried out with care: First, as stated at the end of § 2.2.4, the evaluation
of the relevant mean particle size in a material is not straightforward for broad
size distributions. Secondly, in the long-lasting pulse domain of laser excitation, or
when using high pulse repetition rates, the thermo-optical response of the material
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may also depend on particle radius, as will be evoked in Section 8.3.2.2. Thirdly, a
change in mean particle size from one sample to another often comes with a change
in linear absorption spectrum, or even with a change in metal concentration. Hence,
some results which have been reported in the literature regarding the size variation
of � and � appear to be quite difficult to analyse [165, 166].

The possible variation of the material third-order susceptibility or nonlinear
optical coefficients with particle size can originate from extrinsic effects, as the
local field factor and metal concentration, or from intrinsic ones, that is from
the size dependence of ��3


m . Let us recall that, for Hache et al., the only size
dependence of ��3


m lies in the intraband contribution, due to quantum confinement
(cf. § 3.2.3). However, they predicted and evidenced experimentally that ��3


m is
roughly size independent at the SPR for R varying from 1.4 to 15 nm [89]. This fact
was confirmed by other experimental investigations [151, 152, 154]. The intraband
contribution was then deduced to be negligible against the others [89]. However, in
a similar small size range, a few authors found a size effect on the value of ��3


m for
copper nanoparticles at or close to the SPR frequency [153, 160]. Moreover,

∣
∣��3


m

∣
∣

was found, in these cases, to roughly follow the 1/R3 dependence expected for the
intraband contribution only [80], whereas among the three noble metals Cu is likely
to exhibit the highest relative contribution of the interband part at the SPR, due to
its low IB transition threshold. There has been, up to now, no clear explanation for
such discrepancies.

Several authors have underlined the role of the size dependence of the local
field factor on the nonlinear response. An increase of the

∣
∣��3


∣
∣ value with R has

been reported for radii up to ∼ 20 nm, attributed to the increase of �f � [152, 154,
167–170]. Whereas in this small size domain the dipolar approximation holds, field
retardation effects and multipolar terms in the polarization cannot be neglected for
larger particles [18]. The SPR resonance is then increasingly red-shifted, damped
and broadened as R increases above few tens of nanometres. The amplification of
the nonlinear response due to the local field enhancement is of course affected by
these effects, and

∣
∣��3


∣
∣ also begins to decrease [167, 169, 170].

7.2 Nature of the Host Matrix

We now look at the different roles that the surrounding host medium can play in
the composite material nonlinear response. The main one is easily understood when
examining Eq. (27) and Fig. 1, even if there are valid for weakly concentrated
media only: The larger the refractive index of the surrounding dielectric, the larger
the local field enhancement at the SPR [167, 171, 172]. If the chemical interac-
tion between particle and matrix is weak, that is, if the modification of the metal
electronic properties induced by the presence of the surrounding medium is negli-
gible, the value of ��3


m is independent of the kind of matrix. This already appeared
to be demonstrated by different experimental studies in Section 6. However, Gao
and Li claimed that the metal/dielectric interactions at the interface largely affect
the third-order susceptibility [173]. This fact was, to our knowledge, unfortunately
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never clearly confirmed elsewhere [174]. The host medium may also present itself
a substantial nonlinear response, which can be enhanced by the large local electro-
magnetic field scattered in the vicinity of the metal particles excited at the SPR.
This is the case for certain crystals and/or semiconductor materials, or molecules
in solutions [94, 170, 171]. In the same way, the nonlinear optical properties of
the composite can be modified by doping the host medium with other species
[175, 176]. Let us finally mention that in some cases the host medium may have
an influence through slow thermal effects (see Section 8.3.2 below). The relevant
parameter is then its thermal conductivity.

Whereas the majority of experimental works has been focused on silica-, glass-
or alumina-embedded noble metal nanoparticles, or aqueous colloidal solutions, a
few ones have dealt with other kinds of matrices, either amorphous (BaO [177],
BaTiO3 [164, 167], Bi2O3 [178], Nb2O5 [179], TiO2 [180, 181], ZrO2 � � � [167])
or crystalline (BaTiO3 [164, 182, 183], Bi2O3 [184], LiNbO3 [185], SrTiO3 [172],
ZnO � � � [186]). A direct comparison of the nonlinear properties from one matrix to
another is difficult to carry out, since all other parameters should be kept constant
while tuning the wavelength as to match the SPR maximum.

7.3 Metal Concentration

7.3.1 Local field enhancement

When looking at the simple model suited for low metal concentration (Eq. 27), one
expects a linear variation of the material effective third-order susceptibility with p.
Such a behaviour has been experimentally evidenced in nanocomposite media with
very low filling factors [94, 125, 187].

For larger metal volume fractions, the material complex nonlinear optical
response may depend on p in a way different from a simple proportionality. For
instance, both � and � are found in [130] to increase with p in Au:BaTiO3. We
also already mentioned in § 5.3.2 that some authors reported the evolution of the
nonlinear absorption from RSA-like (� > 0) into SA-like (� < 0) with increasing p
[138, 139]. This behaviour is possibly accompanied by a change from self-focusing
(� > 0) to self-defocusing (� < 0) [138]. The modification of the complex local field
factor linked with the rise of p, due to the increase of electromagnetic interactions
between particles within the medium as already evoked in Section 2.3, is of course
thought to be responsible for such phenomena [67]. Let us recall that the complex
third-order susceptibility of the whole material is very sensitive to the complex
value of the local field factor in the SPR spectral domain. Hence, a variation of
f may possibly induce a sign and magnitude change of the real and imaginary
parts of ��3
 at a given wavelength [188, 189]. This can occur via the nanoparticle
intrinsic nonlinear response (Eq. 22) and, when slow thermal processes are involved
like in experiments using long-lasting pulses [130, 138], via the complex thermo-
optical response of each of the constituents, as will be evoked at the end of this
chapter.
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Figure 4. Modulus of the third-order nonlinear susceptibility of different metal/dielectric nanocom-
posite materials as a function of metal volume fraction, p. a: Au:SiO2, � = 532 nm, � = 70 ps [190];
b: Au:Al2O3, � = 532 nm, � = 70 ps [191]; c and d: Au:SiO2, � = 532 nm, � = 200 fs and 70 ps, respec-

tively [159]; e and f : Au:SiO2, � = 560 nm, � = 110 fs and 6.5 ns, respectively [74]; g:
∣
∣
∣�

�3

i

∣
∣
∣ of Au:SiO2,

� = 520–560 nm, � = 150 fs [193]; h, i and j: Au:TiO2, � = 532 nm, 630 nm and 670 nm, respectively,
� = 70 ps [180]; k: Cu:Al2O3, � = 585 nm, � = 12 ps [163]; l: Ag:Bi2O3, � = 800 nm, � = 100 fs [192]

Figure 4 presents the variation of
∣
∣��3


∣
∣ with p for different metal/dielectric

composites, measured at different excitation wavelengths and with different
pulsewidths, as selected from the literature [74, 139, 163, 180, 190–193]. The influ-
ence of both � and � on the nonlinear response will be discussed in Section 8.
Nevertheless, one can already notice that the concentration dependence of

∣
∣��3


∣
∣

exhibits a similar behaviour whatever the experimental conditions, that is a propor-
tionality to p for very low concentrations (p < 10%), then a stronger increase
with p in the intermediate concentration range until about p = 20–30%, mainly
due to increasing electromagnetic interactions between particles [188, 189, 193],
followed by a saturation which will be discussed in the next paragraph. Takeda
et al. found a similar p-dependence profile for � of Cu:SiO2 nanocomposites excited
with femtosecond pulses [194]. Some authors have established a p3 dependence of∣
∣��3


∣
∣ in the second regime [190], but no obvious theoretical support could help

assessing this finding. It is unfortunately noteworthy that only very few works have
dealt with the complex nature of ��3
 regarding the influence of metal concen-
tration, that is, have reported the p-dependence of its phase together with the
one of its modulus [74, 139]. Our group measured a rather constant value for �

(around −135
) in Au:SiO2 composites excited at 560 nm in the femtosecond pulse
regime, while in the nanosecond regime it varies between about −10
 and −105


in the concentration range under investigation [74]. These variations were ascribed
to a thermo-optical effect.
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7.3.2 Reaching the optical percolation threshold

The saturation of
∣
∣��3


∣
∣ at high metal concentration – and even more its decrease

at higher p values – has been reported in several papers [159, 163, 190, 191, 193],
where different interpretations have been given. For Liao et al. [159, 190, 191],
it stems from an “optical percolation” effect: At high concentration the particle
size becomes large so that only the particle outer layer contributes to the local
field enhancement. The explanation of del Coso et al. [163] is rather similar:
The decrease of

∣
∣��3


∣
∣ at high p stems from the percolated spatial arrangement of

particles, the susceptibility of which tends to the bulk metal one. For Hamanaka
et al., [193] the saturation and further decrease originate from the suppression
of the local field enhancement due to an electron tunnelling effect between very
close particles through the thin dielectric spacer. While such interpretations may be
plausible, though needing further investigations for being confirmed, we think from
our part that the saturation and decrease phenomenon stems from the appearance of
significant multipolar electromagnetic interactions between particles. This statement
is supported by the results of numerical simulations of the local field enhancement in
random nanocomposite media with various metal concentrations. These calculations,
recently performed in our group, do not include any tunnelling or optical percolation
effect. They consist in evaluating, by using a recursive transfer matrix method, the
topography of the complex electromagnetic field due to multi-order Mie scattering
from all particles of a sample distribution [67]. Our results regarding large numerical
samples of random nanocomposites have not yet been published.

7.4 Particle Shape

As already mentioned in § 3.2.5, non-spherical metal nanoparticles or core-shell
particles may exhibit original nonlinear optical properties as predicted by certain
theoretical investigations. However, there have been up to now too rare experimental
works devoted to such materials. Deviation from spherical shape leads to the
modification of the SPR characteristics, and, subsequently, of the local field factor
spectral profile. Haus et al. found that the presence of gold spheroids with a random
orientation in a colloidal solution has a large influence on the DFWM signal
measured [100]. Liao et al. also studied the nonlinear response of spheroidal Au
particles, but a clear shape influence is difficult to extract from their results since
both particle size and volume fraction increase with anisotropy [195]. Kyoung and
Lee obtained interesting results regarding the nonlinear absorption and refraction
coefficients in parallel silver nanorods in borosilicate glass [135]. Such anisotropic
material exhibits a longitudinal SPR around 800 nm, matching the wavelength of
the � = 240 fs laser pulses used in this study. Positive and negative values were
respectively measured for the two- and three-photon absorption coefficients. The
two-photon absorption energy matches the transverse SPR while remaining too low
to generate interband transitions in silver. Moreover, � is found to be positive. When
exciting the transverse SPR, � is about ten times lower than with the longitudinal
one. Qu et al. compared the nonlinear optical coefficients of gold nanorods with
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two different aspect ratios excited with 8 ns pulses at � = 532 nm, that is at their
transverse SPR maximum [149]. Both present self-focusing behaviour and RSA-
like nonlinear absorption, which is ascribed to scattering from thermally-induced
formation of micro-bubbles (see § 5.3.3). West et al. showed that the optical limiting
efficiency is larger for gold nanorods than for gold nanospheres, both excited at
� = 532 nm with 6.5 ns pulses [196]. They ascribed this to strong light scattering
processes in nanorods.

Okada and coworkers investigated the nonlinear optical response of silver trian-
gular nanoprisms by pump-probe femtosecond spectroscopy [197]. They reported a
different �

�3

i value at the in-plane dipole and quadrupole plasmon resonances, which

they showed to correspond to the difference in local field enhancement factors. In
both cases, the spectral dispersion of the nonlinear susceptibility exhibits similar
behaviour, that is negative and positive values at the low-energy and high-energy
sides of the plasmon band, respectively.

Finally, let us mention the original work performed by Yang and co-workers,
who studied the nonlinear optical properties of spherical gold nanoparticles coated
with a CdS shell at � = 800 nm with � = 200 fs pulses [171]. With increasing shell
thickness, the optical Kerr effect signal decreases, which is again explained by local
field effects.

8. INFLUENCE OF LASER CHARACTERISTICS

8.1 Intensity Dependence of ��3�

In Sections 5.2–5.4 we discussed the variation of the complex optical index of
nanocomposite materials as a function of laser intensity I . But may the nonlinear
coefficients be intensity-dependent themselves? If so, it amounts to go further in
the development of Eq. (14). The expression given in Eq. (28) (or 29) is then
better suited to account for such a development, at least for the absorptive part
of the index. In this sense, � depends itself on I . In optical limiting experiments
(§ 5.3.4) the variation of the material transmittance with laser fluence may reflect
such features. The identification of a three-photon absorption process (i.e. a fifth-
order nonlinearity) has already been reported in § 5.3.1 [135–137]. The sign of
the nonlinear absorption coefficient has sometimes been found to change with
increasing laser intensity I (with fluence up to several J/cm2), mostly when using
nanosecond pulses: SA → RSA processes have been reported (see, for example,
curve j in Fig. 3) [123, 124, 141] as well as RSA → SA [139, 198], and even SA →
RSA → SA [140]. Similar phenomena are also sometimes observed for refraction:
Change from self-focusing to self-defocusing [198], or the inverse evolution [124,
199]. These results are explained through excited-state theory for the conduction-
band electrons [124], i.e. SPR bleach followed by free-carrier absorption [123, 140],
thermo-optical effects [198], and photochemical changes [140]. It is likely that slow
thermal effects play an important role in this excitation temporal regime, as will be
discussed in § 8.3.2.2, associated with pure electronic nonlinear mechanisms as the
above-mentioned ones.
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Following our work reported in [74], we analysed the dependence of
∣
∣��3


∣
∣ and �

on laser intensity for Au:SiO2 thin films (�SPR = 495 to 560 nm, increasing with p)
at 560 nm.

∣
∣��3


∣
∣ is found to decrease with rising intensity (I < 150 GW/cm2) in

the femtosecond pulse regime, whereas � remains constant. The interpretation lies
on both the hot electron effect and the local field enhancement. In the nanosecond
regime,

∣
∣��3


∣
∣ and � of the same samples exhibit a I-dependence which is as obvious

as p is large. We assign this trend to the influence of thermo-optical effects. These
results have not yet been published. Moreover, we recently found no significant
variation of � in Cu:ZnO nanocomposites (�SPR ∼ 600 nm) with varying intensity
(I = 8–16 MW/cm2) when exciting at 532 nm with nanosecond pulses [186]. This
is certainly due to the low metal filling fraction and the fact that the measurement
is carried out rather off resonance.

8.2 Spectral Dependence of ��3�

As already stated for other experimental parameters, two factors may account for
the nonlinear optical response dependence on excitation wavelength: Local field
factor, f , and intrinsic nonlinear properties of the particles, ��3


m . The interband
contribution to ��3


m is expected to vary only for photon energies at least equal to
the IB transition threshold, provided the intraband contribution remains negligible.
On the other hand, the hot electron contribution, which accounts for the Fermi
smearing mechanism, presents spectral variations for photon energies close to the
IB transition threshold, since the electron distribution is modified around the Fermi
level by the temperature increase subsequent to light absorption (see § 3.2.3). The
wavelength dependence of ��3


m has been already discussed in Section 6.
Regarding the local field factor, a glance at Figs. 1 and 2 allows to easily

understand its influence on the spectral dispersion of ��3
. Two important facts
have been highlighted in the literature. First, the nonlinear response is as large
as � is close to �SPR, due to the maximum enhancement of �f �. This has been
experimentally established in numerous metal/dielectric composites [100, 136, 154,
156–159, 162, 163, 173, 181, 193, 200]. Let us emphasize that in the long-lasting
pulse temporal regime this behaviour is thought to originate from the enhancement
of the thermo-optical response at the SPR rather than from the one of electronic
nonlinear properties. Secondly, as predicted with a simple model in § 3.2.4 and
exemplified in Fig. 2, both ��3


r and �
�3

i undergo strong sign changes in the SPR

spectral domain, due to f dispersion. To our knowledge, two recent papers only
have up to now addressed this point, by using the z-scan technique. Hamanaka
et al. measured the complex optical properties of Ag:glass nanocomposites with
very low volume fraction (�SPR = 419 nm) as a function of photon energy, from
2.16 to 3.23 eV (574–384 nm), with � = 150 fs pulses at � = 1 kHz repetition rate
[162]. They assumed a constant ��3


m value over this spectral range, since the
IB transition threshold is located at higher energy in silver. They then extracted
the complex value of ��3


m by fitting the model (Eq. 27) on the measured ��3
.
Good agreement was found up to ∼ 2�9 eV photon energy, but discrepancies were
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significant above. They envisaged them to stem from higher-order Mie resonance
or frequency-dependent ��3


m when approaching the IB threshold. This last statement
looks rather plausible. Takeda et al. studied ��3
 dispersion in Cu:SrTiO3 (p = 30%,
�SPR = 608 nm) using � = 200 fs pulses at � = 1 kHz in the spectral range 2.0–2.3 eV
(610–540 nm) [172]. Their results qualitatively agree with calculations of ��3


r and
�

�3

i through Eq. (27), but the use of the latter is doubtful since p is too high to

ensure the validity of the simple expression of f . Moreover, the host medium is
found to exhibit a significant nonlinear response itself, not taken into account in the
calculation.

8.3 Influence of the Excitation Pulsewidth

8.3.1 Experimental facts

Among the numerous works related to the third-order nonlinear optical response
of nanocomposite media, some have been especially devoted to the influence of
the excitation laser pulsewidth on the value of ��3
 [74, 89, 120, 159]. Liao et al.
have shown by DFWM experiments that, as this pulsewidth decreases from 70 ps
to 200 fs,

∣
∣��3


∣
∣ of Au:SiO2 composites undergoes strong reduction of about one

order of magnitude, whatever metal concentration (curves c and d in Fig. 4) [159].
The authors invoke thermal effects to explain the differences observed between
their excitation temporal regimes. Ganeev et al. have also demonstrated, thanks to
z-scan measurements, that the drastic reduction of the nonlinear refraction coeffi-
cient of noble metal colloidal solutions observed when decreasing the pulsewidth
from nanosecond to picosecond can be mainly ascribed to a thermal lensing effect
present in the former temporal regime [120]. Our group has recently reported that∣
∣��3


∣
∣ of Au:SiO2 materials with different gold concentration exhibits a significant

dependence on pulse duration � (see Fig. 4, curves e and f ) [74]: When using 6.5 ns
pulses, the value of

∣
∣��3


∣
∣ is at least three orders of magnitude larger than with

110 fs pulses, the ratio globally increasing with p as for the results of Liao et al.
(curves c and d of Fig. 4). As we used the z-scan technique, we could also measure
the phase of ��3
. We found that its variations with p has a different behaviour
depending on �, as reported at the end of § 7.3.1.

8.3.2 Role of thermal effects in the third-order nonlinear optical response

When the pulse duration is much shorter than the nonlinear response time of the
material (transient case), the third-order nonlinear susceptibility can be expressed
in a phenomenological time-independent form similar to the one corresponding to
the long-lasting pulse regime – the adiabatic case [68]. It is then a priori possible
to compare the measurement results obtained in such opposite temporal regimes,
provided the physical processes involved in the optical response remain exactly the
same and, especially, are not intensity-dependent. This condition being fulfilled, the
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modulus of the susceptibility measured in a short pulse regime,
∣
∣
∣�

�3

pulse

∣
∣
∣, is linked

with the adiabatic one
∣
∣��3


cw

∣
∣ through [201]

(30)
∣
∣��3


cw

∣
∣=

∣
∣
∣�

�3

pulse

∣
∣
∣�

T1

�
�

� is a dimensionless factor accounting for the pulse temporal shape and T1 denotes
the material nonlinear response time. Eq. (30) holds for � 	 T1. When the decay
is multi-exponential, T1 may be replaced by an effective lifetime as in the work of
Li et al., who have successfully applied such an analysis to the case of

∣
∣��3


∣
∣ in

semiconducting CuBr nanocrystals [201].
In nanocomposite media, T1 is worth about a few picoseconds (see § 8.3.2.3

below). Eq. (30) then helps explaining the fact that, as noticed in the preceding
section,

∣
∣��3


∣
∣ values measured with femtosecond pulses are smaller than those

obtained with longer pulsewidths. However, dynamical thermal effects are likely
to play a crucial role in the material nonlinear optical response, as will be shown
in the following. As their influence depends on the excitation temporal regime,
the measurement analysis is not as simple as one could expect from the only
characteristic time comparison of Eq. (30). We now go deeper into these thermal
effects.

8.3.2.1 Thermal effects in the dynamics of the optical response. As the physical
mechanisms involved in the optical response of nanocomposite media exhibit
specific temporal behaviour, many time-resolved optical studies using pump-probe
techniques have been reported in the literature; all of them converge on the link
between the dynamics of these physical mechanisms and the dynamics of thermal
effects [202–211]. The latter have different origins. The first one has already been
evoked in § 3.2.3: Ultrafast pulse absorption by metal nanoparticles leads to a
high rise of the electron gas temperature, thus modifying the optical properties
through the Fermi smearing mechanism [89, 202–206, 208–211]. This dynamical
process is of course linked with the hot electron contribution to the third-order
nonlinear susceptibility. Additionally, the electron-electron and electron-phonon
scattering processes may also exhibit a possible electron temperature dependence
[202, 204, 206, 208, 209, 211]; moreover, the electron-surface interaction has been
shown to become a significant relaxation channel in small nanoparticles [204].
Second, once the metal lattice has been heated by coupling with the hot electron gas,
the subsequent metal density modification affects the optical properties [210, 211].
Finally, as thermal energy diffuses towards the surrounding host, the whole material
is heated.

In conventional nonlinear optical experiments a single laser pulse both excites
the nonlinear response and probes it. The high sensitivity of ��3
 on the excitation
pulsewidth evoked in Section 8.3.1 in then very likely to partially stem from thermal
effects, as it has already been suggested in the literature [132, 159, 207, 212].
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8.3.2.2 Long-lasting pulse excitation. Following the work of Hamanaka et al
[210], a numerical method has been recently proposed by our group to solve,
whatever the excitation temporal regime, the three coupled differential equations
governing the time-dependence of the electron, metal lattice and surrounding host
temperatures for a single nanosphere [74, 213]. Moreover, this model has been
improved so as to include the influence of thermal exchanges between neigh-
bouring particles in the medium, and has further been especially adapted for
the case of thin nanocomposite films [213]. In a regime of long-lasting pulses
(� longer than a few hundreds of picoseconds), or continuous-wave excitation,
the electron and lattice baths in metal nanoparticles are in quasi-equilibrium at
the timescale of a pulse within usual power ranges. Electron temperature then
reaches much weaker values than in ultrashort pulse experiments. Indeed, the
energy being provided slowly as compared with the characteristic relaxation times,
heat is released to the surrounding matrix during the optical absorption process
itself. This implies that, while the hot electron phenomenon can be neglected in
this temporal regime, the whole material is significantly heated during the pulse
passage. This is of course not the case in ultrashort pulse regime with low repetition
rate. We also established that the material temperature increases with both R and
p due to, respectively, the decrease of the particle surface/volume ratio and the
rising overheating stemming from thermal diffusion from neighbouring particles
[213]. The size dependence was already demonstrated, for instance, in [214]
and [215].

8.3.2.3 Ultrashort pulse excitation and relaxation time of the nonlinear
response. In the ultrashort pulse temporal regime (� smaller than a few picosec-
onds) the electron temperature can reach several thousand Kelvin under usual power
conditions. The contribution of the hot electron phenomenon to ��3


m is then expected
to be significant. It is also possible to rest with an athermal (non Fermi-Dirac) elec-
tron distribution for the whole pulse duration under low power excitation conditions
[209]. Many different phenomena can affect the ultrafast dynamics of the optical
response – and then the hot electron contribution to ��3


m –, the description of which
is largely out of the scope of this chapter [208, 209].

Among the numerous works concerned with this dynamics, a few ones were
directly focused on the nonlinear response, that is, on ��3
 [79, 158, 161, 163,
177, 197, 207, 216, 217]. It is usually found that the nonlinear response relaxation
time presents two components, a fast one (∼ 1–5 ps) corresponding to electron-
phonon coupling in metal nanoparticles, and a slow one (∼ 10–500 ps) linked
with the thermal energy diffusion towards the surrounding medium. Some authors
additionally showed that the slow process characteristic time is as large as metal
concentration is high [159, 163, 180, 214], which confirms our own theoretical
results [213]. In the particular configuration of optical Kerr-shutter experiments, the
Kerr signal has been found to present a response time of the order of 200–400 fs
[177, 206, 217].
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8.3.2.4 Thermal lensing contribution to the measured nonlinear optical
properties. If the pulse duration is longer than the characteristic time of the heat
diffusion in the medium, or if this time is itself longer than the delay between
successive pulses, material heating may lead to an observable transient thermal lens
phenomenon [120, 165, 212, 218, 219]. This can show itself, in experiments, with
characteristics similar to those of a pure (electronic) Kerr effect. There have been
some attempts to extract the respective values of the thermal and electronic contri-
butions to � from z-scan measurements [136, 160, 165, 166, 175, 220]. However,
de Nalda et al. proved later that this method was not reliable enough to get quanti-
tative results [219].

The sign and magnitude of the resulting “thermal nonlinear refraction” coeffi-
cient (which is, actually, a pure linear effect [219]) depend on the thermo-optical
coefficient n/T of the material. This coefficient has sometimes been assimilated
to the one of the surrounding host only [132, 218], but we have recently shown that,
due to local field enhancement at the SPR, they can be very different – even for
weakly concentrated media –, exactly as for the pure electronic nonlinear properties
as demonstrated in Section 3.2.4. Moreover, an absorptive thermo-optical effect,
which is always disregarded in the literature, can occur parallel to the refractive
one. These conclusions will be published soon.

In the ultrashort excitation regime the pulse energy is too weak and its duration
too short for a thermo-optical effect to be induced by a single pulse, but cumulative
heating can occur when using high pulse repetition rates (above a few tens of
kHz) [155, 165, 212, 219]. In the long-lasting pulse regime, on the contrary, the
thermal lens effect may be easily excited due to the possibility of generating a
significant material overheating during each pulse passage. Moreover, as discussed
in § 8.3.2.2, the material temperature increases with metal concentration and needs
to be calculated accurately by accounting for the composite morphology of the
medium, the time-dependence of the excitation, and the possible finite dimensions
of the sample [213].

9. CONCLUSION

In this chapter we have shown that the third-order nonlinear optical response
of metal/dielectric nanocomposite media varies in a complex manner with many
parameters. These parameters are difficult to control independently in experimental
investigations. We have distinguished the roles respectively played by the local
field enhancement and the metal particle intrinsic nonlinearity. We have highlighted
the influence of different parameters, and emphasized the significant links between
optical properties and thermal effects.

Due to their high and ultrashort nonlinear response, nanocomposite materials
are expected, at least when reading most of the numerous papers published on the
subject, to open promising outlooks for technological applications in optical limiting
or all-optical telecommunications (for signal processing, switching, reshaping), as
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already mentioned in Section 3.1.4. However, no such concrete achievement has,
to our knowledge, been up to now reported.

The specific optical properties of metal nanoparticles have yet found many appli-
cations [221], as in labelling of biological molecules, biosensors, surface-enhanced
Raman scattering, or even commercial paintings. One of the most fascinating
realisations is the recent use of core-shell nanoparticles with tailored SPR wave-
length as local heat sources for targeted cancer tumoral cell destruction [222].
The principle is simply based on the thermal energy release from the particles
to the surrounding medium after light absorption in metal nanoshells. We believe
such nano-objects – as well as metal nanorods or ellipsoids (see § 3.2.5) – to be
also good candidates for the conception of ultrafast all-optical signal processing
devices. Indeed, the SPR wavelength can be easily tuned to the telecom infrared by
modifying the particle geometrical characteristics. Another interesting outlook may
consist in inserting nanocomposite materials in photonic band gap structures, as
recently proposed [223]. Whatever the application envisaged, fundamental investi-
gations need to be further carried out for better understanding the physics inherent
to the metal nanoparticle nonlinear optical properties.
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CHAPTER 16

FROM DIPOLAR TO OCTUPOLAR
PHTHALOCYANINE DERIVATIVES:
THE EXAMPLE OF SUBPHTHALOCYANINES

CHRISTIAN G. CLAESSENS, GEMA DE LA TORRE AND TOMÁS TORRES
Universidad Autónoma de Madrid, Departamento de Química Orgánica C-I, Campus de Cantoblanco,
28049 Madrid, Spain

Abstract: Boron-subphthalocyanines (SubPcs)—cone-shaped 14-� electron aromatic macrocycles—
are lower phthalocyanine analogues which consist of three isoindole units N -fused around
a central boron atom which fourth valency is occupied by an axial ligand. SubPcs
have been shown to possess very interesting features for NLO. Although they present a
permanent dipole moment along the boron-axial substituent axis, their optical response is
essentially associated to charge transfer inside the macrocycle �-surface. Moreover, due
to the C3v symmetry of the SubPc core, its NLO behavior is mostly octupolar. It will be
shown that the application to SubPcs of the design criteria that have been successful in
phthalocyanines and porphyrins led to high-performance second-harmonic generators

Keywords: Phthalocyanines – Subphthalocyanines–Boron–Nonlinear Optics-Dipolar Compounds –
Octupolar Compounds

1. INTRODUCTION

The last few decades have witnessed a spectacular growth of multidisci-
plinary research activity involving materials that exhibit nonlinear optical (NLO)
behavior [1–3]. NLO activity was first found in semiconductors and inorganic
crystals [2, 3] followed by the coming out of organic materials [4–10] by the mid-
1980’s. The latter have fascinated most scientists in this area because they present
advantages over conventional inorganics for practical applications. First, they are,
in general, easier to process and to integrate into micro-optoelectronic devices.
Moreover, the inherent tailorability of organic compounds renders them suitable
for achieving a fine-tuning of the NLO properties by rational modification of the
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Figure 1. Molecular structures of from left to right: phthalocyanine; porphyrins and subphthalocyanine

chemical structure. Typically, organic molecules for nonlinear optics possess highly
polarizable delocalized �-electrons, i.e. polyenes. Among organic compounds,
phthalocyanines (1, Figure 1, left) [11–14] and other related aromatic macrocycles
such as porphyrins (2, Figure 1, center) [14] and subphthalocyanines (3, Figure 1,
right) [15], stand out because of the fast and large nonlinearities they exhibit and
their stability and processability features. In addition, their chemical versatility
allows the manipulation of the electronic distribution of the macrocyclic core and,
therefore, the fine-tuning of the NLO response [16–19].

In recent years there has been a growing interest in the search for mate-
rials with large macroscopic second-order nonlinearities [20–22] because of their
practical utility as frequency doublers, frequency converters and electro-optic
modulators [23] by means of second-harmonic generation, parametric frequency
conversion (or mixing) and the electro-optic (EO) effect. They are described by
��2��2���������2�����1 ± �2����2���� 0���, respectively. In order to optimize
these effects, highly efficient materials have to be engineered. Second-order NLO
effects are usually observed from noncentrosymmetric materials which are built
up, for example, by incorporating donor-acceptor substituted organic molecules
that have nonvanishing molecular hyperpolarizability �	�. Thus, molecular engi-
neering of one-dimensional (1-D) chromophores has been particularly active,
leading to push-pull derivatives displaying huge first-order hyperpolarizabilities
[24–26]. However, such chromophores display an intense absorption band in the
visible region, due to a strong intramolecular charge transfer (ICT) transition, which
is an important drawback especially in the context of effective materials for SHG in
the visible. Moreover, the polarity of such molecules is a disadvantage for obtaining
non-centrosymmetric crystals because dipole-dipole interactions favor an antipar-
allel alignment of the chromophores. For these reasons, another type of molecules
having planar or quasi-planar structures and an octupolar charge distribution have
been developed; in this way they offer additional parameters for the optimization of
the NLO response. So, have been brought into consideration molecular symmetries
such as D3h which, lacking a permanent dipole moment, can exhibit non-zero 	
due to the non-diagonal contribution to the 	 tensor. The octupolar route, pioneered
by Lehn, Zyss and coworkers [27, 28], allows the optimization of the efficiency-
transparency trade-off and hold potential for non-centrosymmetric crystallization.
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In this chapter we report on some novel strategies that have been pursued to
obtain efficient second-order nonlinear molecules starting from the well-known
phthalocyanines. In principle, these planar centrosymmetric molecules do not
present second-order activity and have been extensively studied for third-order
applications. In order to induce asymmetry, two main approaches have been
followed: a) peripheral substitution of the macrocycle with donor and acceptor
groups and b) structural modifications of the Pc core to reduce the symmetry,
the resulting-noncentrosymmetric compounds (i.e. subphthalocyanines) presenting
variable degrees of dipolarity/octupolarity in the nonlinear response.

2. FROM DIPOLAR TO OCTUPOLAR APPROACHES:
PHTHALOCYANINES AND RELATED MACROCYCLES

As mentioned above, in many organic compounds the second-order optical nonlin-
earity arises from one-dimensional highly polarizable �-conjugated systems capped
with groups of different electron affinities. Such dipolar polarizable molecules
exhibit one dominant hyperpolarizability component lying in the direction of the
charge transfer axis. There are also examples of 2D and 3D systems displaying
second-order NLO behavior, but the available data are still scarce. Although high
values have been determined or calculated for 	, in only a few cases they approach
the best 1D values. Phthalocyanines and other related analogues such as porphyrins
and subphthalocyanines are among the most relevant 2D/3D targets for second-order
NLO. The main advantage of these multidimensional compounds is that they offer
the possibility of investigating the role of dimensionality on the NLO response; the
correlation between structure and NLO response is much richer for these than for
1D molecules and offers more variables of optimization.

In the case of molecules having inversion symmetry, as non-substituted
phthalocyanines, all the components of the first hyperpolarizability 	 are zero. For
this reason, appropriately substituted phthalocyanines have to be designed if one
wishes to obtain efficient second-order NLO responses. Thus, theoretical calcula-
tions developed at the end of the 80’s by T. J. Marks and coworkers [29] suggested
that push-pull unsymmetrically substituted phthalocyanines with suitable electron-
donor and acceptor groups and efficient intramolecular charge transfer should yield
interesting compounds for second-order applications.

Therefore, prediction of the 	 values for a given chemical structure is essential
in the second-order NLO field in order to prepare appropriate systems for a specific
application and constitutes the basis for the optimization of the microscopic NLO
performance. The most widely used theoretical model to discuss the NLO perfor-
mance of organic molecules consists of a summation over the electronic states of the
system (SOS: sum over states). The general SOS expressions for the compo-
nents of the 	 tensors are well-known [30]. In many cases, only a few electronic
levels contribute significantly to the NLO response and the general expressions
simplify. For 1D charge-transfer molecules (such as p-nitroaniline) a two-level
model has yielded satisfactory results for the quadratic hyperpolarizability. For
planar (2D) systems, as most phthalocyanines and analogous compounds, three
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levels (or even more) are generally required to account for 	. However, for strongly
push-pull phthalocyanines with a dominant optical absorption band, a two-level
model may still be a reasonable approximation. In principle, it is convenient to
consider the second-order response of phthalocyanines in a three level model (the
ground 0 and the excited 1 and 2 levels, responsible for the Q band).

In accordance with their electronic structure, phthalocyanines present intense �-�
bands at the visible (Q band) and UV (B or Soret band) spectral regions that mostly
determine the NLO response (Figure 2). The Q band corresponds to transitions to
the lowest excited state orbitals �eg� from the highest occupied orbital �au�. For
metal-free phthalocyanines, the Q band is split into two main components whilst
metal-containing phthalocyanines with D4h symmetry exhibit only a single Q band
in their visible spectra (Figure 2). The exact position of these bands depends on
the particular structure, metal complexation and peripheral substituents [11]. For
peripherally substituted metallic Pcs (e.g. push-pull compounds) the degenerate Q
bands show some splitting due to the reduction in symmetry. The broad absorption
valley between the B and Q bands is the zone used for frequency doubling into
the green spectral region. The two- and three-level models mostly used to account
for the second-order NLO behavior of phthalocyanines include either the doubly
degenerate or split excited levels responsible for the sharp Q band.

Since the former theoretical predictions of “push-pull” substituted phthalocya-
nines as candidates for second-order NLO properties, some work has been devoted
to prepare and study different substituted derivatives with the aim to establish the
key structural parameters affecting the NLO response. Some revisions have already
been done on the second-order NLO behavior of phthalocyanines [16, 17, 31]. For
most of the unsymmetrically substituted push-pull compounds (planar conjugated
�-electron systems in the XZ plane), C2v symmetry may be assumed due to the
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presence of the charge-transfer axis z. In this case, three non-zero and independent
components of the 	 tensor can be considered, namely 	zzz, 	zxx and 	xxz.
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In these expressions �01 and �02 stand for the peak frequencies of the two
relevant optical transitions, 
01, 
02 and 
12 refer to the optical transition moments
and �
01 and �
02 to the change in electrical dipole moment when the molecule is
excited from the ground to the 1 or 2 excited states, respectively. Damping factors
are neglected. When states 1 and 2 coincide one goes from the three to the two-level
model and the corresponding expressions write
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Most of the studies on push-pull phthalocyanines have been carried out by means
of Electric Field Induced Second Harmonic (EFISH) Generation experiments in
solution. Since only one experimental condition is favorable for EFISH, namely,
parallel polarizations for all optical and static fields, these experiments lead to only
one observable: the vector component along the charge transfer axis (	zzz = 	z,
assuming that the dipole moment vector and the vector part of the third-rank tensor
along the molecular z-axis are collinear).

EFISH studies on push-pull phthalocyanines have been focused on determining
the role of the donor-acceptor substitution pattern, the electron donor or acceptor
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Figure 3. Highly conjugated “push-pull” phthalocyanines

strength of the substituents or the central metal while keeping the peripheral groups.
The approach followed by some authors in order to enhance the quadratic hyper-
polarizabilities is the extension of the conjugation pathway by the introduction of
�-delocalized electron-acceptor substituents [32–37], Particularly, EFISH experi-
ments have been performed on solutions of phthalocyanines bearing one and two
4-nitrophenylethynyl moieties as the acceptor component of the push-pull system
(Figure 3, top) [37]. Moreover, Hyper-Raleigh Scattering (HRS) experiments have
been also carried out which lead to the experimental determination of an addi-
tional off-diagonal tensor element, 	zxx. The 	HRS values obtained from the exper-
iments are exceptionally high, particularly for the dinitrophenylethynyl-Pc (right
in Figure 3), whose 	HRS value can be estimated in ca. 550 × 10−30 esu. These
values are the largest found for push-pull phthalocyanines and offer a route for the
optimization of the SHG response.

Beyond the classical approach, one has to consider the concept of octupolar
nonlinearity in order to optimize the NLO response. Thus, it is sometimes conve-
nient to decompose the 	 tensor into irreducible spherical multipolar components
[27, 28]. When Kleinman symmetry applies i.e. under off-resonant conditions, the
decomposition for 	 is as follows,

(4) 	 = 	J=1 ⊕	J=3

where 	J=1�	1�−1�	1�0�	1�1� and 	J=3�	3�−2�	3�−1�	3�0�	3�1�	3�2� stand for the
vector (dipolar) and octupolar components of the 	 tensor. For 2D molecules in
the XZ plane

	1�0 = �2/�15�1/2 �	zzz +	zxx�(5)

	1�1 = −	1�−1 = −�3/�30�1/2�	xxx +	xzz�

	3�±3 = �±1/2�2�1/2�−	xxx�

	3�±2 = �2/�3�1/2	zxx

	3�±1 = �±3/2�30�1/2�	xxx −4	xzz�

	3�0 = �1/�10�1/2 �2	zzz −3	zxx�
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In the case of 	J=1 = 0 (octupolar symmetry) the molecule does not possess any
permanent dipole moment even if it still presents second-order activity associated
to 	J=3. Since this type of molecules present multidirectional charge transfer, the
simple two-level model is clearly non valid [38]. Therefore, for 2D molecules one
can go from purely dipolar to purely octupolar behavior and so examine the role of
multipolarity on the response.

One of the advantages of octupolar molecules in comparison to dipolar systems
is the improved nonlinearity-transparency trade-off. The archetype of the octupolar
structure is a cube with alternating donor and acceptor groups at the edges. Pure
octupolar symmetries are derived from this cubic Td structure, either by projection
along a C3 axis, giving rise to D3h or D3 symmetry (the so-called “TATB route”),
or by fusion of one type of charge in the barycenter, leading to D3h, D3, Td or
D2d symmetry (the so-called “guanidinium route”). Some of these octupolar charge
distributions are illustrated in Figure 4.

Most octupolar systems developed to date are organic molecules. Molecular
engineering of these octupoles is based on a spatially controlled organization of
charge transfers within a molecule in order to reach the desired symmetry. They are
usually designed by chemical functionalization of a central core and can be grouped
into: a 2D molecules of global D3h symmetry, obtained by 1,3,5 functionalization
of aromatic cores such as phenyl [27, 39–43], or triazine [44, 45]; b D3h or slightly
twisted D3 molecules such as appropriately functionalized trivalent carbons [46, 47];
and c three-dimensional tetrahedral molecules, such as tetrasubstituted carbon [48],
phosphonium [49, 50] or tin derivatives [51]. Coordination chemistry can also offer
a way to build up octupolar arrangements [52–57].

In the phthalocyanine field, the octupolar route provides additional degrees of
freedom to help in the design of efficient nonlinear molecules. One of the possible
methodologies to reach Pc-based octupolar architectures is the arrangement of
the Pc cores into D3h or Td structures by means of attaching the macrocycles to
benzene [58] or to a tetravalent atom such as phosphorus. Thus, for example, aryl
trisphthalocyanine phosphonium salt (Figure 5) has been prepared and the second-
order NLO response at the molecular level has been measured by HRS [59]. The
	HRS values at � = 1�06 
m�189×10−30 esu� is superior to those available for other
related unsymmetrically substituted phthalocyanines with dipolar characteristics.
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This fact points out the role of “central acceptor” played by the positively charged
phosphorus atom in tailoring the multipolar character of the hyperpolarizability
[49, 50].

Another possible approach to the octupolar route is the axial substitution of
appropriate metallic phthalocyanines. The introduction of a substituent in the axial
position breaks the centrosymmetry of the Pc macrocycle and adds to the molecule a
non-negligible octupolar character and a dipole moment perpendicular to the surface
of the phthalocyanine. It is well-known that the combination of dipolar and octupolar
features yields interesting NLO properties. Some examples of axially substituted
phthalocyanines have been reported, namely, titanium(IV) [60], gallium(III) [60]
and indium(III) derivatives [61] axially substituted by different ligands. Particularly,
titanium and gallium phthalocyanines have been measured by EFISH and HRS.

Among the formal structural modifications of the phthalocyanine core to reduce
the symmetry, the most exciting one is the subphthalocyanine route (Figure 1,
right) [15]. These compounds have shown to be excellent high-performance
second-order molecules and therefore constitute an optimal route to practical NLO
applications. Hence, we will focus now on the outstanding optical properties that
these compounds exhibit, giving a detailed description of the NLO measurements
performed in solution and condensed phases of these fascinating molecules.

3. SUBPHTHALOCYANINES

Subphthalocyanines are cone-shaped 14-� electron aromatic macrocycles, which
consist of three isoindole units N -fused around a central boron atom. Preparation
of subphthalocyanines is carried out by condensation reaction of the appropriate
phthalonitriles in the presence of BCl3 or BBr3. The halogen atom linked to
the boron core defines the z molecular axis along which a dipole moment may
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Figure 6. Top (left) and side (right) views of chlorosubphthalocyanine

exist. The molecular topology of these molecules (Figure 6) (exact C2v symmetry
with a Td-like charge distribution) provides them with a multipolar character; the
combination of dipolar and octupolar features makes them very attractive for
practical NLO applications, since it allows the preparation of ordered macro-
molecular structures, i.e. via corona poling and the achievement of high NLO
responses.

Despite being non planar, subphthalocyanines exhibit aromatic behavior associ-
ated with the delocalized 14 �-electron system. The UV-visible spectra of SubPcs
are comparable to those of Pcs in that they both show a Q-band and Soret B band
as in other aza aromatic macrocyclic compounds. In the case of SubPcs there is
a tendency for both the Soret band (300 nm) and the Q-band (560 nm) to shift to
shorter wavelength with respect to Pcs as a consequence of the decrease of the
�-conjugation system (Figure 7). Absorption coefficients (�) in both the Soret band
and the Q-band also decrease on going from Pcs to SubPcs. For example, the �
values of the Q-band of SubPcs are ca. 5-6×104 dm3 mol−1 cm−1, and for most Pcs
are in the range 8-24×104 dm3 mol−1 cm−1. The smaller Q-band intensity of SubPcs
compared to that of Pcs may be attributed to their nonplanar structure. Peripheral
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Figure 7. UV-vis spectrum of chlorosubphthalocyanine (thick line) compared to that of nickel phthalo-
cyanine (thin line) in chloroform
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donor and acceptor substituents tend to shift the Q-band of SubPcs towards longer
wavelengths, while axial substituents have no or only a very small effect on the
position of the bands.

4. NONLINEAR OPTICAL PROPERTIES
OF SUBPHTHALOCYANINES IN SOLUTION

4.1 Influence of the Peripheral Substituents

The influence of the substituent at the periphery of the macrocycle on the NLO
properties was studied in solution. Thus, various subphthalocyanines bearing repre-
sentative electron-donor or acceptor groups were synthesized and their NLO proper-
ties were measured employing HRS, EFISH and Third Harmonic Generation (THG)
methods [62, 63].

Not that many functional groups could be introduced at the periphery of the SubPc
macrocycle as a consequence of their incompatibility with boron trihalides (Figure 8).
Thus, subphthalocyanines 3, 6, 8 and 9 that bear three or six donor substituents in the
form of thioether groups were synthesized. Subpcs 1, 5, 7, 10, and 11 possess three
or six electron withdrawing groups in their peripheral positions. Tri-iodoSubPc 4 is a
borderline case that can not be assigned to any category since iodine is �-donor and
�-acceptor. Thus SubPc 4 will be considered as neutral along with 2.

The experimental NLO data for all investigated molecules are summarized in
Table 1 along with the experimental values for the permanent dipole moment �
0�.

It appears that, as a general trend, subphthalocyanines are moderately polar,
whereas 5, 8, and 10 are more strongly polar �
0 ≥ 10 D�.
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Table 1. Experimental data obtained from EFISH, THG, and HRS experiments for compounds 1–11

Compd. �max (nm) 
0 (D) �EFISH �10−34 esu� �THG �10−34 esu� 	HRS �10−30 esu�

1�9 
m 1�34 
m 1�34 
m 1�34 
m 1�46 
m

1a 586 5�5 −8�5 16 −13 2000 144�3
2 565 0 −6 – – 296 –
3 570 1�3 −3 – – 380 –
4 573 5�3 −7�3 4�3 −5�8 – 164�5
5 590 10�1 −6�0 7�0 −14 – 38
6 584 6�7 −3�7 9�7 −23�4 – 76�5
7 570 7�6 −6�6 22�3 −18 – 168�5
8 603 15 −3�0 13�0 −106 – 40
9 607 4�8 −8�0 13�6 −70 – 64�3

10 579 14�8 −15�0 80 −27 – 260
11 587 8�6 −13�4 130 −1�6 – 211�5

a The measurements were performed on a 1:3 isomeric mixture 1a:1b (see part 4.3)

�EFISH values at 1�9 
m are essentially negative and do not indicate large
differences among the various molecules. On the other hand, at 1�34 
m, the
EFISH hyperpolarizability becomes positive, and the measured values become
strongly dependent on the specific compound. These values are rather high for
the molecules possessing acceptor substituents and reach a remarkable value for
10 �80 × 10−34 esu� and particularly for SubPc 11 �130 × 10−34 esu�. On the other
hand, molecules bearing donor substituents (6, 8, and 9) show somewhat small
�EFISH�1�34 
m� values �∼ 10 × 10−34 esu�. These are in the same range as those
reported for some unsymmetrically substituted Pcs [64].

The �THG data presented in Table 1 indicate that the electronic contribution �e

to �EFISH can not be neglected. Thus, the determination of the 	EFISH values is
not feasible with enough precision in this case. It would be necessary, as will
be commented below, to evaluate �e from theoretical models and then infer the
	EFISH = <	�2������>ZZZ values following equation (6).

(6) �EFISH �−2������ 0� = �� �2������ 0���ZZZZ + �	�2�������ZZZ

EZ �0�

The 	HRS values of subphthalocyanines 1–11 depend very much on the
donor/acceptor character of the substituents and show the same trend as that
described for �EFISH at � = 1�34 
m. The highest values (ca. 2000 ×10−30 esu) are
reached for the molecules containing the electron acceptor groups (1, 4, 7, 10,
and 11), whereas much lower values are measured in the case of electron-donor
groups (3, 6, 8, and 9). It is noteworthy that these lower values correspond to
more resonant conditions than those of acceptor groups. One should observe that
the 	HRS value, measured at � = 1�46 
m, for trinitro-chlorosubphthalocyanine 1 is
remarkably lower than that at � = 1�34 
m. This is most probably due to residual
fluorescence contamination at the latter wavelength that could not be avoided in
the 1�34 
m setup.
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With regard to the cubic hyperpolarizability data, �THG, the values obtained are
negative and markedly lower than those reported for symmetric phthalocyanines but
quite comparable to those of some unsymmetric Pcs. This could indicate a decrease
in �-conjugation related to the smaller aromaticity of SubPcs in comparison to Pcs.
On the other hand, they show a completely opposite tendency with the substituents
to that observed for the 	HRS. In fact, the highest �THG values are obtained for those
subphthalocyanines, 6, 8, and 9, containing donor substituents. This behavior may
be due, in part, to the large red shift of the Q-band that most probably increases
the resonant behavior at 2�. Furthermore, these compounds show an additional
absorption band at ca. 400 nm, due to the n-� donation of the sulfur atoms, which
is strongly resonant at the third-harmonic frequency and so should also contribute
to the enhancement of the NLO response.

In order to suppress any multiphoton fluorescence that often contributes to the
detected second harmonic signal in the HRS experiment, Clays et al. devised
an experimental setup that effectively excludes any fluorescence phenomenon
[65–67]. Thus, by high-frequency demodulation of the fluorescence contribution
it was demonstrated unambiguously that multiphoton fluorescence does indeed
participate in the overall second harmonic signal (see compound 1 for example).
Previously described results dealing with subphthalocyanines were shown to over-
estimate greatly the purely second order response. This technique was applied to a
series of hexasubstituted SubPcs 8, 12–14 (Figure 9) that were shown to possess
interesting liquid crystalline properties. At � = 1�3 
m, for the lowest modulation
frequency (1.6 kHz chopper frequency) the total response includes the modula-
tion frequency independent HRS signal and the entire fluorescence signal. Such a
setup at this low chopper frequency is the equivalent of a standard HRS exper-
iment without any action taken to exclude fluorescence contribution, resulting in
an overestimation of the apparent 	HRS value. For higher modulation frequencies
(higher harmonics of the laser repetition frequency of 80 MHz), the total signal
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decreases. This is caused by the decrease in amplitude (demodulation) of the multi-
photon fluorescence contribution.

The resulting fluorescence-free 	HRS value for the hexa-octyl-subphthalocyanine
8 amounts to 190 ± 30×10−30 esu in chloroform at 1�3 
m. This is clearly much
smaller than the value that would have been obtained without the fluorescence
demodulation 1760 ± 30×10−30 esu. By studying the other members of the series
12–14, it was found that the nonlinear optical properties are not affected by the
length of the alkyl chain. The same values (within experimental error) for the hyper-
polarizability were retrieved for the four homologues 8, 12–14. This demonstrates
that the absence of multiphoton fluorescence to the Hyper-Rayleigh scattering signal
appears indispensable when reporting values for the first hyperpolarizability of
fluorescent molecules in general and subphthalocyanines in particular.

4.2 Influence of the Expansion of the �-surface

Bearing in mind the results obtained with the various peripheral substituents
described in part 4.1, the next logical step is to check the effect of the expan-
sion of the subphthalocyanine �-conjugated system without touching its intrinsic
cone-shaped geometry.

This study has been achieved by comparing second-order NLO properties of
chlorosubphthalocyanine 2 and chlorosubnaphthalocyanine (SubNc, 15) that is
composed of three N -fused 2,3-dicyanonaphthalene units in the same fashion as in
the case of subphthalocyanines (Figure 10) [68]. The calculated and experimental
	HRS data at 1�064 
m and the �EFISH susceptibilities at 1.064 and 1�9 
m for
unsubstituted SubPc 2 and SubNc 15 are presented in Tables 2 and 3, respectively.

For a purely octupolar molecule, the orientational contribution to �EFISH should
be 0, so the measured value should correspond as a whole to the electronic
contribution. Therefore, the information on the 	 tensor is almost entirely expressed
in the 	HRS. For the unsubstituted SubPc 2, the 	HRS at � = 1�06 
m are in the
range measured for donor subphthalocyanines 6, 8 and 9 at � = 1�46 
m. The
	HRS value measured for the unsubstituted SubNc 15 is about a factor 2 smaller.
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Table 2. Calculated and experimental quadratic hyperpolarizability, 	HRS values
in units of 10−30 esu

Compound Calculated Experimental

	xxx�1�06� 	xxx�1�06� 	HRS�0� 	HRS�1�06�

SubPc 2 164 101 38 92
SubNc 15 109 67 35 41

Table 3. Calculated and experimental �EFISH values in units of 10−33 esu

Compound �calculd�1�06� �exptl�1�06� �calculd�1�9� �exptl�1�9�

SubPc 2 1.1 −9�7 1.2 −2�9
SubNc 15 0.5 9.5 10.5 −6�0

However, the two values become approximately identical when the SHG response
is extrapolated at � = 0. The essentially octupolar nature of 2 and 15 requires at
least a three-level model. In general, due to the predominance of the Q band in
the absorption spectrum, it appears reasonable to consider the ground and the two
lowest degenerate excited states. Assuming a D3h molecular symmetry, the nonzero
components of the 	 tensor are 	xxx = −	xyy = −	yyx = −	yxy with

(7) 	xxx =
3�2

01

[
�
x

01

(
�
x

01�
2 − (
y

02

)2
)

−2
x
01


x
12

]

2�2
(
�2

01 −�2
) (

�2
01 −4�2

)

where damping corrections, the effects of uncertainty, Doppler, collisional, and
other mechanisms that lead to the broadening of the electronic transitions, have
been ignored. In expression 7, �
 x

01 represents the x component of the change in
dipole moment between ground and first excited states. For a planar molecule with
D3h symmetry, 	HRS is given by:

(8) �	HRS� = 2

√
2
21

	xxx

in which the x axis is defined as perpendicular to one of � planes of the C3v

molecules. 	xxx and 	HRS (Table 2) were obtained by introducing into expres-
sions 7 and 8 the parameters obtained from the INDO semiempirical calculations.
Thus, INDO parameters seem to describe correctly the experimental trend and
account for superior 	HRS value for the SubPc 2 over that of the SubNc 15 at
� = 1�06 
m. The theoretical values are larger by 10% (for SubPc 2) and 60%
(for SubNc 15) than the experimental ones. These differences may be considered
reasonable taking into account the neglect of damping factors and higher electronic
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levels in Equation (7), as well as the approximations involved in the quantum-
chemistry semiempirical methods. Finally, this theoretical framework allows the
determination of 	HRS values at � = 0 that are also included in Table 2. It comes
out that at low frequencies (i.e., off-resonance) SubPc 2 and SubNc 15 show an
essentially similar SHG performance. The differences found at � = 1�06 
m are
mostly caused by frequency dispersion.

The analysis of �EFISH experimental and theoretical values is more complicated.
The electronic contribution to �EFISH was calculated using the corresponding formula
for D3h symmetry. The expression for the electronic contribution to �EFISH is

(9) �elec = 8
30�3

[
�
01�2 �
12�2

] 6∑

i=1

Di
111 − 7

30�3

[
�
01�4

] 3∑

i=1

di
11

Where the Di
111 and di

11 are the appropriate resonance factors given next:

6∑

i=1

Di
111 = 6�3

01

(
2�2

01 −5�2
)

(
�2

01 −4�2
)2 (

�2
01 −4�2

)2(10)

3∑

i=1

di
11 = 12�01(

�2
01 −4�2

) (
�2

01 −4�2
)

Results are given in Table 3. The agreement with the experiment is very poor.
In particular, the theoretical nearly off-resonant values (at � = 1�90 
m) are very
small and positive at variance with the negative sign found in experiment. So, �EFISH

values obtained from INDO calculations under a restrictive D3h symmetry are much
less valid. Of course, this is not surprising since subphthalocyanines are nonplanar
molecules with C3v symmetry with a non-zero dipole moment along the three-fold z
axis. This fact introduces additional nonzero components of the 	 tensor involving
the z axis. Consequently, a dipolar (vector) component for 	 should contribute to
the orientational term in �EFISH that has not been included in the calculations.
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Figure 11. Fused subphthalocyanine dimer 16
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As a conclusion for this section, it appears that the expansion of the �-surface
of subphthalocyanines into subnaphthalocyaines does not modify significantly its
second and third order NLO response.

Another interesting �-extended subphthalocyanine derivative that would be
worthwhile to compare with standard SubPc is the fused subphthalocyanine dimer
16 whose NLO properties have not been yet studied (Figure 11) [69]. The presence
of two isomers possessing very different dipole moment but identical �-surfaces
should give rise to interesting differences that may contribute to the understanding
of the NLO behavior of this type of �-extended molecules.

4.3 Influence of the Substitution Pattern

In order to go even deeper into the understanding of the nonlinear optical properties
of subphthalocyanines in solution, and in particular of its mixed octupolar/dipolar
character, HRS and EFISH experimental studies were performed on four structural
isomers of trinitro chlorosubphthalocyanine 1a-d (Figure 12). These studies were
reinforced by theoretical calculation at high to very high level [70].

The experimental 	HRS values (Table 4) for all four isomers are rather similar
and comparable to those of the trinitro chlorosubphthalocyanine isomeric mixture
1a-b (in a 1 to 3 ratio, respectively, see part 4.2), showing the very little influ-
ence of the substitution pattern on the “octupolar” NLO response. This trend is
further confirmed by the similarity between the (i) HOMO-LUMO energy differ-
ences (Table 4) and (ii) the SOS-derived �elec values (Table 5) between all four
compounds.
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Figure 12. Four trinitro chlorosubphthalocyanine isomers
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Table 4. Experimental and theoretical values for 	HRS�×10−30 esu�a

�EHOMO→LUMO Exper. Theoretical

(eV) 	HRS 	SOS
b 	SOS(0) 	FF

b

m−C3 (1a) 2.5 92 196 36 48
m−C1 (1b) 2.5 94 236 42 40
o−C3 (1c) 2.7 104 145 31 40
o−C1 (1d) 2.6 78 129 33 36

a � = 1�34 
m.
b SOS and FF stand for sum over states and finite field calculation methods, respectively.

On the contrary, the �EFISH experimental values (Table 5) are extremely sensitive
to the substitution pattern at the periphery of the subphthalocyanine core and also
depend strongly on the orientational contribution �orient to �EFISH. As observed in
Table 5, �EFISH depends on the permanent dipole moment of the molecule, and in
particular on its component along the axis defined by the B-Cl bond (z axis). The
correlation is such that sign reversal of the dipole moment value along the B-Cl axis
induces a change in the sign of �EFISH at both theoretical and experimental levels.

The observed independence of the 	HRS values with respect to the substitution
pattern at the periphery of the SubPc macrocycle may be understood as a signa-
ture of the dominant octupolar character of the subphthalocyanine core, as further
confirmed by FF calculations. As seen in Table 6, both C3-symmetrical SubPcs

Table 5. �EFISH�×10−34 esu� experimental and theoretical values for SubPcs 1a-d

Exper. Calculated SOS Calc. FF


0 (D) �EFISH
a �EFISH

a �elec
a �orient

a �total
b �total

b

m−C3 (1a) 0.4 −7.7 −2�5 −1�5 −1�0 −1�5 −1�7
m−C1 (1b) 4.1 −9.0 −10�3 −2�2 −8�1 −6�1 −8�4
o−C3 (1c) 4.6 17.9 6.6 −1�4 8.0 5.9 3.6
o−C1 (1d) 9.2 11.6 9.8 −1�7 11.5 6.2 9.4

a Values at � = 1�9 
m.
b Values at � = 0.

Table 6. Dipolar and octupolar spherical components and molecular anisotropy ratio, �, for
compounds 1a-d

m-C3 (1a) m-C1 (1b) o-C3 (1c) o-C1 (1d)

∥
∥	J=1

∥
∥2

0.4 11140 0.02 14040
∥
∥	J=3

∥
∥2

306700 131510 61750 23620
� 840 3 1690 1



526 Claessens et al.

1a and 1c present a strong octupolar character (	J=3�, with a weak 	J=1 dipolar
component. For C1-symmetrical SubPcs 1b and 1d, dipolar to octupolar ratio of
the NLO response is close to unity, showing that especially for o-C1 (1d) these
molecules present a relatively smaller octupolar behavior. This is however expected,
since 1d possesses the highest permanent dipole moment. Still, in all the four
isomers the octupolar component is stronger than the dipolar one, confirming the
robust octupolar character of all four SubPc isomers.

4.4 Degenerate Four Wave Mixing Experiments

The third-order optical nonlinearity of bromosubphthalocyanine 17 (Figure 13)
in absolute ethanol was measured by the 3D DFWM technique which provides
information on the magnitude, speed and origin of the third order susceptibility ��3�

[71, 72]. It was observed that the phase conjugate signal is symmetrical with respect
to the zero time delay, indicating a response time limited by the pulse duration of
the laser (35 ps). At the high excitation intensities employed in the experiment, the
broadening of the phase conjugate response were absent and the signals become
very similar to those observed for nonresonant ��3� materials. The shortening of the
lifetime of the excited state, observed at high excitation intensities, is attributed to
exciton-exciton annihilation mechanism. Since the working wavelength (532 nm)
lies in the region of strong absorption, the observed effects should involve resonance
processes.

The third-order nonlinear optical susceptibility ��3� was obtained by comparing
the measured signals for the sample with that of carbon disulfide as reference under
the same experimental condition. The measured ��3� value is 6�2×10−14 esu for the
subphthalocyanine at a concentration 1�25×10−4 M. Considering an isotropic media
under the Lorenz-Lorentz approximation, the second hyperpolarizability <�> value
was found to be 3�0 × 10−31 esu. Furthermore, �

�3�
pure corresponding to the pure

subphthalocyanine 17 was calculated to be 6�9×10−10 esu, about four times higher
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Figure 13. Trineopentyloxi-bromosubphthalocyanine
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than ��3� values obtained with SubPc thin films (see section 5). The experimental
errors are estimated to be 20%.

The 3D DFWM signal intensity was also measured as a function of the incident
fluence. At low incident fluences a linear correlation was found in the log-log plot
with a slope of ca. 3, which demonstrates that a third order nonlinear optical process
occurs, and saturates at higher intensities which is indicative of an absorption
saturation effect.

Thus, subphthalocyanine 17 exhibits a large resonant third-order optical nonlin-
earity and fast response. The measured resonant third-order NLO response is two
orders of magnitude larger than the off-resonant values of chloroboron subph-
thalocyanine, and of the same order of magnitude as the off-resonant values of
polydiacetylene due to resonant enhancement.

4.5 Remarks on Theoretical Calculations with Subphthalocyanines

4.5.1 THE SOS and FF methods

Most of the NLO experiments performed with subphthalocyanines could not be
interpreted without theoretical calculations. Thus, it is crucial to possess the knowl-
edge of the minimum requirements for obtaining reliable theoretical values that
may be compared to the experimental ones in the case of SubPcs. The molecular
hyperpolarizabilities are generally calculated employing two parallel theoretical
approaches: (i) the finite field (FF) method and (ii) the sum over states (SOS)
formalism as stated earlier.

In the FF procedure, the dipole moment (
) of a molecule in its ground state, in
the presence of a static external electric field (E), is expanded as a Taylor series:

(11) 
induced = 
i +�ij ·Ei +1
/

2!	ijk ·Ei ·Ej +1
/

3!�ijkl ·Ei ·Ej ·Ek

The tensor component of the molecular polarizability (�ij) and hyperpolarizabil-
ities (	ijk and �ijkl) may be calculated by taking the appropriate derivatives of the
total electronic energy or dipole moment with respect to the external electric field:

(12) 
i = �U

�Ei

��ij = �
i

�Ej

�	ijk = �2
i

�Ej�Ek

��ijkl = �3
i

�Ej�Ek�El

In the SOS procedure, the theoretical description of hyperpolarizability tensors
	ijk and �ijkl requires a three-level model. Within this formalism, the more general
expression for 	ijk is given by:

	ijk = 	ijk

(
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where:

(14) 	ijk �2lev � �n� = 1
�2

[

i

0n

(
�


j
0n


k
0n +�
k

0n

j
0n

)
D�a�

nn +�
i
0n


j
0n


k
0nD

�b�
nn

]

is the theoretical expression in a two-level system. The dispersion factors D are
given by:

D�a�
nm = �0n�0m +2�2

2
(
�2

0n −4�2
) (

�2
0m −�2

)(15)

D�b�
nm = �0n�0m −�2

2
(
�2

0n −�2
) (

�2
0m −�2

)

Those expressions are of great relevance since they allow the evaluation of the
dispersive contribution to the signal when the harmonic wavelength is close to the
linear absorption wavelength.

The accuracy of the polarizability and hyperpolarizabilities SOS calculations for
subphthalocyanines are strongly dependent on both: (i) the active space selected
for the calculations and (ii) the method employed in deriving the ground state
properties. As a rule the active space in the best calculations consists of the highest
occupied molecular orbital (HOMO) and the two lowest unoccupied ones (LUMO
and LUMO+1) which are energetically degenerated in the C3-symmetrical SubPcs.
This active space very well reproduces the electronic low-energy transitions of
the SubPcs due to the breakdown of the Gouterman four-level model observed in
these compounds. Nevertheless, the expression for �ijkl in a three-level model is
appreciably complex, and only in the case of reduced symmetry the final expression
is manageable. Molecular symmetry in the studied compounds is C1 or C3, which
means that a mixed x,y,z character of the transitions is present and SOS calculations
become rather tiresome. Thus, theoretical treatment with a two-level model is
usually employed so as to calculate �ijkl under Kleinman symmetry conditions for
a C3 system. The permanent dipolar moments, if not experimentally available,
employed in the SOS calculations are calculated at semiempirical level by the INDO
method using the DFT optimized geometries.

4.5.2 	HRS and �EFISH calculations

Using the tensor components of the molecular hyperpolarizabilities (	ijk and �ijkl)
obtained by SOS and FF procedures, it is possible to infer the contributions to
the HRS and EFISH signals. Depending on the C1 or C3 molecular symmetry, the
expressions for 	HRS and �EFISH are given by:

〈
	2

HRS

〉
C3

= 6
35

	2
zzz + 32

105
	zzz	zxx + 40

105
	2

xxx + 40
105

	2
yyy(16)

+ 108
105

	2
zxx + 60

35
	2

xyz
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〈
	2
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〉
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xxx +	2
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)
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And the general expression for �EFISH is given by Equation (1).
Where, assuming Kleinman symmetry conditions,

�	�Kleinman
��ZZZ = 
0Ez �0�

5kT

(
	zzz +	zxx +	zyy

)
(18)

and�

�Kleinman
electronic = 1

5

x�y�z∑

i 
=j

(
�iiii +�iijj

)

In the case of the electronic contribution to the �EFISH, the expression for a C3

symmetry gives:

(19) �
C3
elec = 1

5

[
�zzzz +2�xxxx +4�xxzz +2�xxyy

]

These expressions allow the comparison between theoretical and experimental
results, as well as the determination of the relative strength of the electronic contri-
bution to �EFISH.

4.5.3 Calculations of the dipolar and octupolar contributions to �

In order to quantify the dipolar to octupolar contribution to the NLO response, two
spherical components of 	 related to the dipolar and octupolar molecular anisotropy
are employed. They represent the dipolar and octupolar contributions to the NLO
response of the molecules. The expressions which define them are, respectively:

∥
∥	J=1

∥
∥2 = 3

5

(
	xxx +	xyy

)2
(20)

∥
∥	J=3

∥
∥2 = 1

20

[
3
(
	xxx +	xyy

)2 +5
(
	xxx −3	xyy

)2
]

(21)

The nonlinear molecular anisotropy ratio � is then defined from the previous
equations in the following manner:

(22) � =
∥
∥	J=3

∥
∥

�	J=1�
Whose values run from 0 (pure dipole) to � (pure octupole).
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5. NONLINEAR OPTICAL PROPERTIES
OF SUBPHTHALOCYANINES IN CONDENSED PHASES

Establishing the relationship between microscopic and macroscopic second-order
behavior of subphthalocyanines still remains a challenging target. Consequently, a
number of studies have been performed on SubPc systems in condensed phases.

A detailed study of the SHG from both spin-coated and evaporated films of
trinitro-(1) [73, 74], triiodo-(4) [74] and trioctylsulfonyl-(7) [74] subphthalocyanines
has been carried out. In order to induce molecular ordering in the spin coated film,
a corona poling technique was used. Films were prepared by spin-coating from
a solution of the corresponding SubPc in poly(methylmethacrylate) (PMMA). For
comparison purposes, evaporated films were also prepared by vacuum sublimation
onto amorphous silica plates.

Three polarizations of a 1�064 �m fundamental light source are needed to deter-
mine the three non-zero components of the �

�2�
ijk tensor. The polarizations are: (i)

along the x axis, (ii) along the y axis, (iii) at 45 from either the x or y axis (see
Figure 14).

Poling the spin-coated films causes a slight decrease in the Q-band intensity of
the chromophores. This behavior can be rationalized assuming that the transition
dipole moment responsible for the Q-band absorption is aligned, as the permanent
ground-state dipole moment, along the B-Cl axis. Molecular modeling at DFT level
confirmed this fact [70]. The molecular ordering prompted by the poling field
partially aligns these moments perpendicularly to the film faces and hence, for
light propagation along this z-axis, the absorption decreases in comparison with
that observed for a purely isotropic distribution. It is worthwhile to mention that
evaporated films show similar ordering, as can be deduced from the dependence
of the SHG yield on rotating angle � for incident x and y polarization. It can be
assumed that, during deposition, SubPc molecules preferentially arrange with their
macrocycle plane parallel to the glass substrate.

Taking into account the C�� symmetry expected for the spin-coated and evap-
orated films and fitting the experimental theoretical expressions [75] to the exper-
imental data (SHG yield vs rotation angle �) for the three different polarizations,
the values for the three non-zero independent components of the ��2� tensor (�31

�2�,
�15

�2�, �33
�2�, using Voigt notation: 1 ↔ 11, 2 ↔ 22, 3 ↔ 33, 4 ↔ 23, 5 ↔ 31,

6 ↔ 12) have been determined (see Table 7). The values are about one order

Eω
E2ω

Z

Y

X

θ
θ’

Figure 14. Orientation of the spin-coated films of compounds 1, 4, 7 with respect to the incident beam
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Table 7. Components of the �ij
�2� tensor, molecular density (N) and thickness of the films

SubPc Type of film N Thickness �31
�2� �15

�2� �33
�2�

(1020 cm−3) (
m) �10−10 esu� �10−10 esu� �10−10 esu�

1 Spin coated 0.4 2.7 4.3 −2�0 0.3
4 Spin coated 0.8 1.5 5.7 −2�6 0.3
7 Spin coated 0.2 1.9 7.7 −3�1 1.1
1 Evaporated 6.8 0.1 14.5 −5�0 0.5
4 Evaporated 13 0.08 25 −4�5 4.4

of magnitude smaller than those reported [75, 76] for guest-host PMMA systems
containing the well known dye DR1, but the molecular concentrations are also
significantly lower. It is worth mentioning that, for the two types of films, �31

�2�

and �15
�2� come out with opposite (but undetermined) sign, whereas �33

�2� has the
same sign as �31

�2�. The values given in Table 7 come from assuming �31
�2� > 0.

One should note that �31
�2�, �15

�2� ≥ �33
�2�, this situation being clearly at vari-

ance with that found for linear molecules, where the relation �31
�2� = �33

�2�/3
should be obeyed. Another conclusion is that Kleinman symmetry implying �31

�2� =
�15

�2� is not obeyed. As expected, subphthalocyanine bearing the stronger acceptor
SO2C8H17 (7) shows the highest �ij

�2�.
The microscopic SHG response has been also evaluated from the determined

�ij
�2� tensor for the spin-coated films. The correlation between �ij

�2� and 	ij tensor
component, assuming non-interacting molecules in thermal equilibrium under an
applied field is well known [77]. Only the components 	31, 	15 and 	33 common
to C3, C3� and C�� symmetry groups can be determined from the measured �

�2�
31 ,

�
�2�
15 and �

�2�
33 . The calculated 	ij values are listed in Table 8. In all cases, the

highest component is 	31 and the most efficient response corresponds to the trioctyl-
sulfonylsubphthalocyanine 7. This result confirms that peripheral substitution with
electron acceptor groups enhances the second-order NLO response.

One should note that the predominance of the 	31 and 	15 components in relation
to 	33 is consistent with a charge flow pattern during light excitation from (or to)
the peripheral substituents into (or from) the capping Cl [78].

Another study on the macroscopic SHG response of subphthalocyanines is that
carried out on Langmuir-Blodgett (LB) films of compounds substituted with long

Table 8. Calculated quadratic molecular hyperpolarizabilities 	ij from the
spin-coated films data

SubPc 	31�10−30 esu� 	15�10−30 esu� 	33�10−30 esu�

1 9 −4 0.4
4 5 −2 −0�3
7 29 −9 ≈ 0
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a) b)

Figure 15. Schematic representations of a) an edge-on and b) a side-on disposition for subphthalocya-
nines at the air-water interface

alkyl chains. The Langmuir-Blodgett technique is one of the best ways for obtaining
well-defined multilayers of an organic compound on a solid substrate [79].

Subphthalocyanines 3, 6, 7 and 10 have been organized into Langmuir films at
the air-water interface. From the compression isotherms, an edge-on disposition
may be assumed for compounds 3, 6, and 7 (see Figure 15a). However, SubPc 10
is forced to lie flat on the water surface (see Figure 15b). These results open a new
way for the chemical modulation of the SubPcs organization, and hence, for the
modulation of the second-order macroscopic response: by increasing the number of
the polar groups in the periphery or adding a bulky group in the axial position, we
can achieve respectively a somewhat edge-on or side-on disposition.

Only SubPcs 3, 6, and 7 have been successfully transferred onto hydrophobic
glass substrates. Further structural characterizations and preliminary SHG measure-
ments were done exclusively in the case of compound 7. Infrared linear dichroism
suggests that various transition dipoles of SubPcs are tilted versus the normal
to the substrate with an angle of ca. 60, thus indicating that the macrocycle is
tilted in the LB film. Preliminary SHG experiments have been also carried out at
� = 1�064 �m on LB films made of 100 layers of SubPc 7. For an s-polarized
fundamental beam, the data show small but appreciable SHG yield when the
observation and illumination directions lie at an angle of ≈50 with the normal
to the film. However, no significant yield could be measured for a p-polarized
fundamental beam. These results are consistent with a non-centrosymmetric
ordering restricted to the first layers on the glass substrate. On the other hand,
a strong increase of the SHG response was obtained from alternated films of
SubPc 7 and behenic acid. From this data, one can conclude that layer alterna-
tion induces non-centrosymmetrical molecular ordering through the whole film
thickness.

Even if it is out of the scope of the present chapter, it is worth mentioning that
the third-order NLO behavior of SubPcs-based condensed phases has been also
studied. Resonant and off-resonant third-order NLO properties of spin-coated films
of SubPc 17 were determined via Z-scan technique [80]. THG experiments have
been also performed on sublimated boron SubPc 2 thin films [81].
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6. CONCLUDING REMARKS

Chemical variations on Pcs can alter the electronic structure of their macrocyclic
core, thus allowing the fine tuning of their nonlinear response. Pc-related molecules
present very attractive features for fundamental NLO studies. They offer the possi-
bility of investigating the role of dimensionality on the NLO response. By core
modification one can alter the point-group symmetry and the ratio between off-
diagonal and diagonal tensor components. In fact, for 2D molecules one can go from
purely dipolar to purely octupolar behavior and so examine the role of multipolarity
on the NLO response. Moreover, it is possible to obtain three-dimensional (3D)
structures with pyramidal shape and examine the effect of the third dimension on the
NLO response. In any case, NLO measurements provide sensitive and meaningful
tests that serve to assess theoretical models both on geometrical and electronic
points of views. In this sense, subpthalocyanines represent a very good example
of versatile three-dimensional NLO chromophores. One of the main advantages of
these nearly octupolar molecules is the existence of a dipole moment along the
B-Cl axis that is fundamental for their organization in condensed phases.
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NLO PROPERTIES OF METAL ALKYNYL
AND RELATED COMPLEXES
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Abstract: The NLO properties of iron, ruthenium, osmium, nickel, and gold alkynyl complexes and
some related compounds prepared in the authors’ laboratories are reviewed. Structure-
property relationships for both quadratic and cubic NLO merit for these complexes have
been developed from hyper-Rayleigh scattering studies at 1�064 �m and Z-scan studies
at 0�800 �m, respectively

Keywords: Organometallics, Alkynyl, Vinylidene, Quadratic Hyperpolarizability, Cubic Hyper-
polarizability

1. INTRODUCTION

Many different types of molecular and bulk material have been examined as
possible nonlinear optical (NLO) materials, one very important category being
organic molecules containing conjugated �-systems with unsymmetrical charge
distributions. Organometallic complexes are similar to organic molecules in that
they can possess large NLO responses, fast response times, and ease of fabrication
and integration into composites, but they possess greater flexibility at the design
stage; variation in the metal oxidation state, ligand environment, and geometry
can permit tuning of NLO response in ways not possible for organic molecules.
As a result, organometallic complexes have come under considerable scrutiny
[1–13]. However, reports from various laboratories employing different techniques
at varying measurement wavelengths, with different pulse lengths, (internal) stan-
dards, and indeed definitions of NLO properties render comparisons and thereby
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development of structure-property relationships difficult, if not impossible. To
achieve reliable structure-property trends, standardization of most or all of these
potential variables is required.

This Chapter summarizes our studies of specific organometallic complexes
(largely alkynyl compounds) over the past decade. In almost all instances, second-
order NLO properties have been measured by hyper-Rayleigh scattering (HRS)
at 1�064 �m as part of an ongoing collaboration with the Leuven group of Prof.
André Persoons, and third-order NLO properties have been measured by Z-scan
at 0�800 �m in our labs at ANU, although electric field-induced second-harmonic
generation (EFISH, at Leuven) and degenerate four-wave mixing (DFWM, at ANU)
studies have been undertaken to provide complementary information in limited
cases (for a thorough discussion of these experimental techniques, see the Chapter
by Asselberghs et al). This standardization facilitates development of structure-NLO
property relationships.

The molecular composition that we explored in our earlier studies is depicted
in Figure 1. Metal alkynyl complexes are organometallic compounds that have
attracted considerable interest[14]. In metal alkynyl complexes, the metal is in the
plane of the organic �-system, an important molecular design concept that has
been suggested to optimize NLO properties[15], and in contrast to probably the
most extensively-studied organometallic system, namely metallocenyl complexes,
for which the metal-to-ligand charge-transfer (MLCT) axis is perpendicular to the
plane of the organic �-system (Figure 2). The molecular compositions in Figures 1
and 2 permit a systematic examination of the effect of varying metal, co-ligands,
d-electron count, and nature of the �-bridge and acceptor group on quadratic and
cubic NLO properties.

One shortcoming of the donor-bridge-acceptor design illustrated in Figures 1
and 2 is that increasing the nonlinearity is correlated with a red shift of the charge-
transfer absorption band (the so-called nonlinearity-transparency trade-off).

A possible means to increase the nonlinearity without sacrificing transparency is
to replace the dipolar with an octupolar composition[16], so more recently we have
explored trigonally-branched metal alkynyl complexes as potential NLO materials,

Figure 1. Molecular composition of metal alkynyl complexes explored in our dipolar studies.
LnM≡ ligated metal

Figure 2. Metallocenyl complex composition for second-order NLO application. M ≡ metal
(commonly Fe)
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Figure 3. Trigonally-branched molecular composition explored in our studies

which has lead to a study of metal alkynyl octupolar complexes (Figure 3 (a)) and
dendrimers (Figure 3 (b)). The results from our quadratic and cubic NLO studies
of dipolar and octupolar complexes are described in this Chapter.

2. SECOND-ORDER NLO STUDIES

As was mentioned above, one important variable in our molecular composition
is the nature of the metal. We therefore carried out a study of iron, ruthenium,
and osmium alkynyl complexes by HRS at 1�064 �m, the results from which are
tabulated in Table 1; examples of efficient molecules are depicted in Figure 4.
The �HRS values for the metal alkynyl complexes �M�C≡C-4-C6H4NO2	�dppe	
�
5-C5H5	��M = Fe� Ru� Os	 and trans-�M�C≡C-4-C6H4NO2	�Cl��R�R	−diph2�
[diph ≡ 1,2-bis(methylphenylphosphino)benzene] increase as Fe ≤ Ru ≤ Os. The
iron alkynyl complexes have absorption bands closer to the second harmonic wave-
length of 532 nm than either the ruthenium or osmium homologues (with the
exception of the iron and ruthenium carbonyl complexes), suggesting that the �HRS

values for the iron complexes contain a larger resonance contribution than those of
the ruthenium and osmium homologues. The �HRS values for the osmium alkynyl
complexes are, in each case, greater than the values for the ruthenium-containing
complexes. Absorption bands for the osmium complexes are closer to the second-
harmonic than are those of the ruthenium homologues. For the cyclopentadienyl
complexes, if static � values are calculated from the experimental �HRS values using
a two-level model, then the trend remains the same as for the experimental values.
The values for the complexes containing the diph ligand show that ruthenium has
the higher calculated static value. While this suggests some ambiguity, the two-level
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Figure 4. The effect of varying group 8 metal on frequency-dependent and two-level-corrected � values
for selected alkynyl complexes

model may have limited applicability with organometallic complexes of this type.
The present data is suggestive of �HRS values for this type of complex following
the ordering Fe ≤ Ru ≤ Os.

Comparison of the �HRS values in Table 1 permits assessment of the effect
of varying co-ligands. Replacement of the electron-donating diphosphine ligand
with the relatively strongly electron-withdrawing carbonyls results in a significant
reduction of the second-order NLO response.

This is readily rationalized because the amount of electron density available to the
donating metal centre, and hence its donor strength, is reduced on replacing diphos-
phine by two carbonyl groups. This is an example of one strength of organometallic
systems, viz. the possibility of tuning donor strength by ligand modification.

The metal centres in the iron, ruthenium, and osmium alkynyl complexes listed
in Table 1 possess 18 valence electrons. Table 2 contains HRS data at 1�064 �m
and two-level-corrected values for similar 18 valence electron alkynyl and chloro
nickel complexes, and a particularly efficient example is illustrated in Figure 5.
These data are substantially resonance enhanced, although the relative orderings
are maintained with two-level-corrected values.

The experimental data for the nickel complexes with “extended-chain” alkynyl
ligandsrevealanefficiencysequenceE-ene-linkage>yne-linkage≈ imino-linkage >
biphenylene unit, but intense �� > 10 000	 linear optical absorption maxima for
all “extended-chain” alkynyl complexes within 100 nm of 2� are consistent with
substantial dispersion enhancement of the observed nonlinearities. It has been
suggested that the two-state model is appropriate in the limited cases where struc-
tural change is restricted to the molecular component responsible for the charge-
transfer band contributing to the hyperpolarizability [19]. It is likely for these nickel
complexes that the higher energy bands are associated with transitions involving
other ligands, with little change in dipole moment between ground and excited
states, and hence only a small contribution to the optical nonlinearity.

Although the absolute value of �HRS for the biphenyl-linked �Ni�C≡
C-4-C6H4-4-C6H4NO2	�PPh3	�


5-C5H5	� is less than that for the phenyl-containing
chromophore �Ni�C≡C-4-C6H4NO2	�PPh3	�


5-C5H5	�, this relative ordering is
reversed with two-level-corrected values. Two pyridyl-containing complexes were
examined, their quadratic nonlinearities being similar in magnitude to their phenyl-
containing analogues.
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Figure 5. The most efficient nickel-containing complex from these studies

Figure 6. The most efficient gold-containing complex from these studies

The studies summarized above involve complexes with 18 valence electron metal
centres. We also examined related 14 electron gold alkynyl complexes. Molecular
quadratic hyperpolarizabilities of gold alkynyl complexes by HRS measurements
at 1�064 �m are given in Table 3, and the most efficient gold-containing complex
is depicted in Figure 6.

Complex �Au�C≡CPh	�PPh3	� has a large �1�064 for a compound that can be
considered as a phenyl group containing a donor substituent �Ph3PAuC≡C	 only.
Replacement of the 4-arylalkynyl H in �Au�C≡CPh	�PPh3	� by a nitro substituent to
generate the donor-acceptor alkynyl complex �Au�C≡C-4-C6H4NO2	�PPh3	� leads
to a substantial increase in the nonlinearity, with an efficiency similar to that of
4-nitroaniline (21�4×10−30 esu, THF solvent) [19].

Examination of the effect of �-system lengthening on optical nonlinearity of
donor-acceptor gold alkynyl complexes reveals an order �Au�C≡C-4-C6H4NO2	
�PPh3	� < �Au�C≡C-4-C6H4-4-C6H4NO2	�PPh3	� < �Au�C≡C-4-C6H4-�Z	-CH=
CH-4-C6H4NO2�PPh3	� ≈ �Au�C≡C-4-C6H4C≡C-4-C6H4NO2	�PPh3	� < �Au
�C≡C-4-C6H4N=CH-4-C6H4NO2	�PPh3	� < �Au�C≡C-4-C6H4-�E	-CH=CH-4-
C6H4NO2�PPh3	� < �Au�C≡C-4-C6H4-�E	-N=N-4-C6H4NO2�PPh3	�. These
data are consistent with an increase in nonlinearity for “extended chain” two-ring
organometallic alkynyl chromophores versus one-ring complexes, confirming
the observation in the nickel system. Examination of the effect of varying
carbon-containing bridges in the “extended” two-ring gold alkynyl complexes
reveals an efficiency sequence C6H4C6H4 ≈ C6H4C≡CC6H4 < C6H4CH=CHC6H4

for C-containing bridges; the linear optical absorption bands for the gold alkynyl
complexes are significantly removed from the harmonic frequency, suggesting that
this relative ordering accurately reflects off-resonance nonlinearities.

Torsion effects at the phenyl-phenyl linkage (for diphenyl compounds) and
orbital energy mismatch of p orbitals of sp-hybridized alkynyl carbons with p
orbitals of sp2-hybridized phenyl carbons (for diphenylacetylene compounds) have
been suggested as reasons for lower � values for C6H4C6H4- and C6H4C≡CC6H4-
linked organic compounds, compared with their trans-stilbene analogues [28]; it is
likely that the same factors influence relative nonlinearities for “extended-chain”
alkynyl complexes, as the trend in the nonlinear optical merit for the gold alkynyl
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complexes mirrors that of the organic compounds. Observed nonlinearities suggest
that ���Z	� < ���E	� for bridge stereochemistry variation in the C6H4CH=CHC6H4

linked complexes; although it is tempting to ascribe this variation to dipole
moment differences (the molecular geometry of the E isomer leads to an
increased charge separation compared to the Z isomer), the relevant optical tran-
sition in the E isomer is almost twice as intense as that for the Z isomer,
and a combination of these effects is likely. The difference in intrinsic nonlin-
earity between the Z and E isomers is likely to be substantially greater
than that observed experimentally; the Z form fluoresces significantly at the
frequency-doubled wavelength, inflating its observed nonlinearity compared to
that of the E isomer. Effects of bridge atom variation on observed nonlinearity
reveal the experimentally determined nonlinearity for the (E)-imino-complex �Au
�C≡C-4-C6H4N=CH-4-C6H4NO2	�PPh3	� is about two-thirds that of the (E)-ene-
linked complex �Au�C≡C-4-C6H4-�E	-CH=CH-4-C6H4NO2	�PPh3	�. In the gold
system, it is evident that ene-linkage is more effective than imino-linkage at maxi-
mizing nonlinearity in these organometallic alkynyl chromophores.

Table 3 also includes the two-level corrected values, with �0 values about half
those of �1�064 values for the gold alkynyl complexes. The two-state model may not
be adequate for donor-acceptor organometallic systems where two dominant optical
transitions are close to 2�, as is the case for the “extended-chain” complexes (by
analogy with previous work on ethynylgold(I) complexes [29, 30], the higher energy
bands (� < 310 nm) are probably due to ��Au ← P	 → �∗�PPh	 transitions; the low
nonlinearity for �Au�C≡CPh	�PPh3	� suggests that these transitions do not signifi-
cantly influence the observed nonlinearities for �Au�C≡C-4-C6H4NO2	�PPh3	� and
the “extended-chain” complexes, and any contribution that they make is likely to be
consistent across the series of complexes). For these gold complexes, the relative
ordering for observed and two-level corrected � are the same, and all complexes
are optically transparent at 2�; it is therefore almost certain that the effects of
structural modification on observed nonlinearity reflect their effect upon intrinsic
nonlinearity.

Table 3 also affords the possibility of assessing acceptor group variation,
phenyl substitution resulting in � values increasing as 4-H < 4-CH�C�O	Me2,
4-CHO�CH2	3O< 4-CHO < 4-NO2, the expected trend for increasing acceptor
strength in these dipolar molecules. Replacing co-ligand PPh3 by PMe3

in proceeding from �Au�4-C≡CC6H4CHO�CH2	3O�PPh3	� to �Au�4-C≡
CC6H4CHO�CH2	3O�PMe3	� results in a three-fold increase in �1�064 and �0.
PMe3 is a more basic phosphine, resulting in a more electron-rich gold donor,
but PPh3 provides for more extensive �-delocalization; these data suggest that
donor strength is the more important factor influencing the magnitude of �

in these complexes. The most efficient complex from the series is �Au�C≡
C-4-C6H4-�E	-N=N-4-C6H4NO2�PPh3	�, suggesting that azo-linked compounds
may be viable alternatives to ene-linked complexes if possible photoisomerization
at the azo linkage is not a problem.
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Data for 18 valence electron ruthenium vinylidene and alkynyl complexes
are collected in Table 4. Cyclopentadienylbis(phosphine)ruthenium complexes
containing thesamealkynyl ligandsas those listedabove fornickel andgoldcomplexes
have been examined; one of the most efficient of these complexes is depicted in
Figure 7. The linear optical absorption spectra for these donor-acceptor alkynyl
complexes have a low-energy MLCT transition that undergoes a red shift on alkynyl
ligand chain-lengthening, with the lowest energy absorption for the imine-linked
alkynyl complex. The nonlinearities have been determined experimentally by HRS
and confirmed for two complexes, �Ru�C≡C-4-C6H4N=CH-4-C6H4NO2	 �PPh3	2

�
5-C5H5	� and �Ru�C≡C-4-C6H4-�E	-CH =CH-4-C6H4NO2�PPh3	2�

5-C5H5	�,

by EFISH. The experimentally obtained � ·�1�064 values, 9700 × 10−48 esu and
5800 × 10−48 esu, respectively, are resonance enhanced, but extremely large in
magnitude compared to previously reported organometallic data (the � ·� product is
the relevant parameter to assess poled polymer potential) [31]. Experimentally deter-
mined dipole moments of 6.7 D and 7.6 D, respectively, afford �vec values consistent
with those obtained by HRS. As the values of � measured by EFISH and HRS
are equal, and considering that these techniques determine different combinations
of tensor components, one can conclude that there is only one dominating tensor
component, and that therefore the � as determined by HRS for these complexes
can also be considered as �vec��EFISH=�HRS=�vec=�zzz	. Not surprisingly, chain-
lengthening in proceeding from �Ru�C≡C-4-C6H4NO2	�PPh3	2�


5-C5H5	� to
�Ru�C≡C-4-C6H4-�E	-X=CH-4-C6H4NO2�PPh3	2�


5-C5H5	��X=CH or N) leads
to an increased nonlinearity.

Phosphine replacement (in proceeding from �Ru�C≡C-4-C6H4NO2	�PMe3	2

�
5-C5H5	� to �Ru�C≡C-4-C6H4NO2	�PPh3	2�

5-C5H5	�) leads to an increase in

corrected quadratic nonlinearity, but further data is needed to corroborate this
result. Although it might be expected that the more strongly electron-donating
PMe3 ligand should give rise to increased nonlinearity (cf. the observation with
gold alkynyl complexes summarized above), Mulliken analyses of charge density
suggest that the ruthenium in the PPh3 complex is more electron rich than in the
PMe3 complex (+1�40 and +1�47, respectively); this may be responsible for its
higher-than-expected nonlinearity.

The lack of contribution from transitions involving other ligands is also suggested
by the low nonlinearity of the precursor chloride �RuCl�PPh3	2�


5-C5H5	�. Given
the preceding, it is possible that the two-level corrected values may have some
significance. The corrected nonlinearities suggest an efficiency series E-ene-
linkage ≥ yne-linkage > azo-linkage > biphenyl > imino-linkage [28].

Both HRS and EFISH data suggest a substantial increase in two-level-corrected
�vec on atom replacement of N by CH in the bridging group, there being a
three-fold increase in quadratic optical nonlinearity at 1�064 �m in proceeding
from �Ru�C≡C-4-C6H4N=CH-4-C6H4NO2	�PPh3	2�


5-C5H5	� to �Ru�C≡C-4-C6

H4-�E	-CH=CH-4-C6H4NO2�PPh3	2�

5-C5H5	�. The significant difference

between �Ru�C≡C-4-C6H4-�E	-CH=CH-4-C6H4NO2�PPh3	2�

5-C5H5	� and

�Ru�C≡C-4-C6H4N=CH-4-C6H4NO2	�PPh3	2�

5-C5H5	� is the strength of the
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Figure 7. One of the most efficient cyclopentadienylbis(triphenylphosphine)ruthenium-containing
complexes from these studies

MLCT optical transition; the ene-linked alkynyl complex has an oscillator strength
for this transition twice that of the imino-linked analogue. The two-level corrected
�vec is dependent on the difference in dipole moments between ground and
excited states, and extinction coefficients of the relevant transition. Assuming that
the excited state dipoles for these complexes are similar, and knowing dipole
moments for these complexes are comparable, the three-fold enhancement in
�0 in proceeding from �Ru�C≡C-4-C6H4N=CH-4-C6H4NO2	�PPh3	2�


5-C5H5	�
to �Ru�C≡C-4-C6H4-�E	-CH=CH-4-C6H4NO2�PPh3	2�


5-C5H5	� arises largely
from differences in oscillator strength for the dominant transition. Replacement of
ene-linkage by yne-linkage to give �Ru�C≡C-4-C6H4C≡C-4-C6H4NO2	�PPh3	2

�
5-C5H5	� affords a complex with a large nonlinearity, suggesting that yne-linkage
may be worthy of consideration for the preparation of longer chromophores
(while the nonlinearities of �Ru�C≡C-4-C6H4-�E	-CH=CH-4-C6H4NO2�PPh3	2

�
5-C5H5	� and �Ru�C≡C-4-C6H4C≡C-4-C6H4NO2	�PPh3	2�

5-C5H5	� are com-

parable, the latter involves less trade-off in optical transparency).
We have also studied a further ruthenium-containing series of complexes with

a different ligand set, namely chlorobis(bidentate phosphine)ruthenium alkynyl
complexes, the results from which are summarized in Table 4, and efficient exam-
ples illustrated in Figure 8.

Chain-lengthening in proceeding from trans-�Ru�C≡C-4-C6H4NO2	Cl�dppm	2�
and trans-�Ru�C≡C-4-C6H4C≡C-4-C6H4NO2	Cl�dppm	2� to trans-�Ru�C≡C-4-
C6H4C≡C-4-C6H4C≡C-4-C6H4NO2	Cl�dppm	2� results in increased � and �0,
as expected (Figure 9). Surprisingly, though, proceeding from trans-�Ru�C≡C-4-
C6H4NO2	Cl�dppm	2� to trans-�Ru�C≡C-4-C6H4C≡C-4-C6H4NO2	Cl�dppm	2�
does not result in a significant increase in � or �0 value. It has been shown with
organic compounds that “chain-lengthening” arylalkynes leads to a saturation of the
� response for two repeat units, whereas the � response for oligo-phenylenevinylene
compounds does not saturate until the complex contains approximately twenty repeat

Figure 8. Efficient chlorobis(bidentate phosphine)ruthenium alkynyl complexes from these studies
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units [38]. These ruthenium-containing compounds afford an unusual series for which
minimal increase in � or �0 (within the error margin of ±10%) is seen on progressing
from n = 0 to 1 for trans-�Ru�C≡C-4-�C6H4-4-C≡C	nC6H4NO2Cl�dppm	2� but a
significant increase is seen on progressing to n = 2. For this series of complexes,
increasing � is not correlated with a red-shift in �max; chain-lengthening is
accompanied by a blue-shift in optical absorption maxima. Replacing an yne-
linkage by an ene-linkage results in increased � and �0 as demonstrated in
proceeding from trans-�Ru�C≡C-4-C6H4C≡C-4-C6H4NO2	Cl�dppm	2� to trans-
�Ru�C≡C-4-C6H4-�E	-CH=CH-4-C6H4NO2Cl�dppm	2� [23, 39].

These alkynyl complexes can be protonated to afford vinylidene complexes,
which can in turn be deprotonated to give the starting alkynyl complex, reactions
that are spectroscopically quantitative. The tabulated data also provide the oppor-
tunity to assess the effect of this protonation, in proceeding from alkynyl complex
to vinylidene derivative. One would perhaps expect that replacing the electron-rich
ruthenium donor in the alkynyl complexes with a (formally) cationic ruthenium
centre in the vinylidene complexes would result in a significant decrease in nonlin-
earity.

However, some vinylidene/alkynyl complex pairs have similar nonlineari-
ties (e.g. trans-�Ru�C=CHPh	Cl�dppm	2��PF6	, trans-�Ru�C≡CPh	Cl�dppm	2�;
trans-�Ru�C=CH-4-C6H4NO2	Cl�dppm	2��PF6), trans-�Ru�C≡C-4-C6H4NO2	
Cl�dppm	2�), while in some instances the “expected” trend ��vinylidene	 <
��alkynyl complex	 is observed (e.g. trans-�Ru�C=CH-4-C6H4C≡CPh	Cl
�dppm	2��PF6	, trans-�Ru�C≡C-4-C6H4C≡CPh	Cl�dppm	2�; trans-�Ru�C=CH-
4-C6H4C≡C-4-C6H4NO2	Cl�dppm	2��PF6	, trans-�Ru�C≡C-4-C6H4C≡C-4-C6H4

NO2	Cl�dppm	2�). If �exp and �0 values for vinylidene/alkynyl complex pairs differ
sufficiently to readily distinguish � signals into bi-stable “off” and “on” states, the
alkynyl complexes can be reprotonated to afford the precursor vinylidene complex,
and this sequence can be repeated. These complex pairs can therefore provide
a protically-switchable NLO-active system where the “on” signal is the alkynyl
complex.

The alkynyl ligands that were coupled to the nickel, gold, and cyclopentadi-
enylbis(triphenylphosphine)ruthenium centres described above were also attached
to the chlorobis(bidentate phosphine)ruthenium moiety, with a similar outcome
in relative quadratic NLO merit upon alkynyl ligand variation. Further variation

Figure 9. Effect of phenyleneethynylene chain-lengthening on quadratic nonlinearities for selected
ruthenium complexes
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in alkynyl ligand was pursued; phenyl substituent location affects �, in replacing
3-CHO by 4-CHO (proceeding from trans-�Ru�C≡C-3-C6H4CHO	Cl�dppm	2� to
trans-�Ru�C≡C-3-C6H4CHO	Cl�dppm	2�), with the magnitude increasing upon
formal conjugation of the metal centre with the acceptor formyl unit; however,
this result does not translate to increased corrected nonlinearities, experimentally
indistinguishable �0 values being observed.

A shortcoming with the arylalkynyl ligands described so far is that the
polarization of the electron density is rendered energetically unfavourable
by the loss of aromatic stabilization energy. To circumvent this problem,
indoaniline compounds have been suggested by Marder et al. [40]. The rela-
tively low � values recorded for the indoaniline compounds trans-�Ru�C≡
C-4-C6H4N=CCHCButC�O	CBut=CH	Cl�dppm	2� and trans-�Ru�C≡C-4-C6

H4N=CCHCButC�O	CBut=CH	�PPh3	2�

5-C5H4	� may be due to the presence of

the tert-butyl groups on the quinone ring (Figure 10). These relatively electron rich
groups may be expected to reduce the electron acceptor properties of the quinone
ring, consistent with the results of Marder et al. [40].

As was mentioned above, replacing the traditional dipolar composition with
alternative multipolar geometries is of significant interest. The molecular hyperpo-
larizability of �1-�HC≡C	C6H3-3,5-�C≡CNi�PPh3	�


5-C5H5	2� was determined to
be 96×10−30 esu, with the two-level corrected value �0 = 57×10−30 esu amongst
the largest values for an organometallic complex lacking a donor-acceptor
composition. Significantly, attaching two Ni�PPh3	�


5-C5H5	 units to the
central 1,3,5-triethynylbenzene core to afford �1-�HC≡C	C6H3-3,5-�C≡CNi�PPh3	
�
5-C5H5	2� leads to a nonlinearity four times that of the monometallic analogue
�Ni�C≡CPh	�PPh3	�


5-C5H5	�, but with negligible shift to low energy of �max.
With this exception, though, our focus has been on octupolar ruthenium alkynyl
complexes (Tables 4, 5 and 6). The ligated ruthenium centre is sufficiently large
that insertion of phenylethynyl or phenylethenyl “spacer” groups is required to
accommodate three such units about a 1,3,5-trisubstituted benzene core.

The complex �1,3,5-C6H3-trans-�C≡C-4-C6H4C≡C�RuCl�dppe	2�3� possesses
a significant �HRS. Extending the delocalized �-system through the metal
in progressing to [1,3,5-C6H3-trans-�C≡C-4-C6H4C≡C[Ru(C≡CPh)(dppe)2]}3]
(Figure 11), though, is ineffective in increasing �, indicating that the trans-
phenylalkynyl ligand is acting largely as a �-donor ligand (it has been reported
that phenylalkynyl ligands are pseudo-halides in complexes of this type) [41]; a
similar lack of � enhancement on extending the �-system through a metal has been

Figure 10. Indoanilinoalkynylruthenium complex from these studies
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Figure 11. Example of an octupolar alkynyl complex and its linear alkynyl complex analogue from
these studies

reported recently in a dipolar system [42]. trans-�Ru�C≡C-4-C6H4C≡CPh	�C≡
CPh	�dppe	2� (Figure 11) is a linear fragment of the octupolar complex
�1,3,5-C6H3-trans-�C≡C-4-C6H4C≡C�Ru�C≡CPh	�dppe	2�3]; progressing from
the linear fragment to the octupolar complex results in a three-fold increase in oscil-
lator strength of the UV-vis band assigned to the MLCT transition, and a three-fold
increase in quadratic NLO merit.

The absolute value of �HRS for �1,3,5-C6H3-trans-�C≡C-4-C6H4C≡C�Ru�C≡
CPh	�dppe	2�3� is amongst the largest thus far for a multipolar compound optically
transparent at the second-harmonic, for which resonance enhancement is much less
important. It is also amongst the largest thus far for a multipolar compound lacking
a formal acceptor moiety (results with organic compounds suggest that a further
increase in � is likely upon replacing the arene ring with an electron acceptor such
as 2,4,6-trinitroaryl or 2,4,6-triazine groups).

HRS measurements of trans-�Ru�C≡C-4-C6H4-�E	-CH=CHPhCl�dppm	2�
and �1,3,5-�trans-��dppm	2ClRu�C≡C-4-C6H4-�E	-CH=CH�	3C6H3� and their
protio-vinylidene derivatives are listed in Table 6. These complexes are trans-
parent at the second-harmonic wavelength of 532 nm, permitting assessment
of the impact of structural variation on quadratic NLO merit. Nonlineari-
ties for �1,3,5-�trans-��dppm	2ClRu�C=CH-4-C6H4-�E	-CH=CH�	3C6H3��PF6	3

and �1,3,5-�trans-��dppm	2ClRu�C≡C-4-C6H4-�E	-CH=CH�	3C6H3� are large
for octupolar complexes without polarizing acceptor substituents, but data
for trans-[Ru{C≡C-4-C6H4-(E)-CH=CHPh}Cl(dppm)2], [1,3,5-(trans-[(dppm)2

ClRu{C=CH-4-C6H4-(E)-CH=CH}])3C6H3](PF6)3 and [1,3,5-(trans-[(dppm)2

ClRu{C≡C-4-C6H4-(E)-CH=CH}])3C6H3] are experimentally indistinguishable
within the error margins; the ene-linked alkynyl complexes have �1�064 values
larger that those of the related yne-linked complexes [1,3,5-(trans-[(dppm)2
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ClRu{C≡C-4-C6H4C≡C}])3C6H3] described above. HRS measurements of these
complexes at 800 nm with femtosecond pulses are also listed in Table 6;
fluorescence contributions could not be completely eliminated from the data
for trans-[Ru{C≡C-4-C6H4-(E)-CH=CHPh}Cl(dppm)2], but are absent from the
other three complexes (there is no demodulation of the signals as modula-
tion frequency is varied). Proceeding from vinylidene complex [1,3,5-(trans-
[(dppm)2ClRu{C=CH-4-C6H4-(E)-CH=CH}])3C6H3](PF6)3 to alkynyl complex
[1,3,5-(trans-[(dppm)2ClRu{C≡C-4-C6H4-(E)-CH=CH}])3C6H3] results in a two-
fold increase in �0�800, the latter suggestive of a similar increase in �1�064 obscured
by error margins. These complexes are rare examples of organometallics for which
quadratic optical nonlinearities have been determined at more than one wavelength.
The �0�800 values are mostly significantly larger than their �1�064 values, consis-
tent with significant resonance enhancement for the former resulting from close
proximity of the optical absorption maxima to the second-harmonic wavelength
(400 nm).

3. THIRD-ORDER NLO STUDIES

Our studies of the third-order NLO properties of alkynyl metal complexes have
focused on iron, ruthenium, nickel and gold complexes. Most of the iron-
containing examples are ferrocene derivatives, listed in Table 7. The real compo-
nents �real of the nonlinearities for most of the ferrocenyl complexes are nega-
tive, and the imaginary components �imag for most are significant, consistent
with two-photon absorption contributions to the observed molecular nonlineari-
ties �; comment on the effect of structural variation on the magnitude of �
is therefore cautious, particularly in the light of the significant error margins.
Replacing the 14 electron gold centre with an 18 electron ligated ruthenium centre
(in proceeding to �Fe�
5-C5H4-�E	-4-CH=CHC6H4CH=CRuCl�dppm	22��PF6	2

and �Fe�
5-C5H4-�E	-4-CH=CHC6H4C≡CRuCl�dppm	22�) (Figure 12) results in
intense transitions in the UV-vis spectra close to the second-harmonic wavelength
of our Ti-sapphire laser (400 nm) and, as a consequence, these complexes possess
large negative �real and large �imag values.

Third-order NLO data for nickel complexes are collected in Table 8 and the
most efficient example depicted in Figure 13. Similar to the ferrocenyl complexes
above, the real component of the � values for the nitro-containing nickel complexes
are large, negative and incorporate substantial error margins; the negative real
components and presence of significant imaginary components of the nonlinearities
indicate two-photon dispersion is contributing to the observed responses.

As noted above, the two-photon states become important for an 800 nm irra-
diating wavelength when complexes contain �max > 400 nm, and real compo-
nents for the nickel complexes considered here become negative when the optical
absorption maximum fulfils this criterion. Despite the large error margins, an
increase in the real component of the nonlinearity upon chain-lengthening is
evident, and an increase in efficiency upon replacing Z by E stereochemistry, in
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Figure 12. The most efficient iron-containing alkynyl complex in these third-order NLO studies

Figure 13. The most efficient nickel-containing complex from these studies

progressing from �Ni�C≡C-4-C6H4-�E	-CH=CH-4-C6H4NO2�PPh3	�

5-C5H5	�

to �Ni�C≡C-4-C6H4-�Z	-CH=CH-4-C6H4NO2�PPh3	�

5-C5H5	�, is suggested.

The linear optical absorption maxima for all gold complexes excepting the
ferrocenyl-containing examples lie to higher energy of 2�, reducing problems
arising from two-photon states, and permitting comment on the effect of alkynyl
ligand variation on cubic NLO merit. Third-order NLO data for gold complexes
are listed in Table 9, and efficient examples depicted in Figure 14.

A number of conclusions from comparisons across these data can be made.
Replacement of 4-H by 4-NO2 in proceeding from �Au�C≡CPh	�PPh3	� to
�Au�C≡C-4-C6H4NO2	�PPh3	� results in a substantial increase in nonlinearity;
unlike the related nitro-containing nickel alkynyl complexes above, for which nega-
tive nonlinearities were obtained, �real values for almost all nitro-containing gold
alkynyl compounds considered here are positive, consistent with greatly dimin-
ished two-photon dispersion [it should be emphasized, though, that the presence
of imaginary components in the � values for most examples (associated with
nonlinear absorption) suggests that electronic resonance enhancement still exists,
though diminished with respect to the nickel complexes]. Chain-lengthening of the
alkynyl chromophore leads to a dramatic increase in nonlinearity, with nonlinearities

Figure 14. Efficient gold-containing complexes from these studies
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for �Au�C≡C-4-C6H4-4-C6H4NO2	�PPh3	�, �Au�C≡C-4-C6H4-�E	-CH=CH-4-C6

H4NO2�PPh3	�, �Au�C≡C-4-C6H4-�Z	-CH=CH-4-C6H4NO2�PPh3	�, and �Au
�C≡C-4-C6H4C≡C-4-C6H4NO2	�PPh3	� significantly larger than that for �Au�C≡
C-4-C6H4NO2	�PPh3	�. The present data permit discrimination of the merit of
the linking unit: ene-linkage �Au�C≡C-4-C6H4-�E	-CH=CH-4-C6H4NO2�PPh3	�
and yne-linkage �Au�C≡C-4-C6H4C≡C-4-C6H4NO2	�PPh3	� are much more effec-
tive than biphenyl linkage �Au�C≡C-4-C6H4-4-C6H4NO2	�PPh3	�, torsional effects
at polyphenyl groups probably leading to difficulty in enforcing coplanarity of
rings and efficient �-delocalization. The effect of bridging unit stereochemistry
for the ene-linked complexes has also been probed: �real for the E complex
�Au�C≡C-4-C6H4-�E	-CH=CH-4-C6H4NO2�PPh3	� is about three times larger
than that for the Z complex �Au�C≡ C-4- C6H4-�Z	-CH=CH-4-C6H4NO2�PPh3	�.

Although the �-system is the same length for �Au�C≡C-4-C6H4-�E	-CH=CH-
4-C6H4NO2�PPh3	� and �Au�C≡C-4-C6H4-�Z	-CH=CH-4-C6H4NO2�PPh3	�, the
E geometry leads to a greater charge separation for the important MLCT tran-
sition (difference in ground and excited state dipole moment is an impor-
tant contributor to one of three terms influencing � in the perturbation
theory-derived three-level model [48–50], but validity of this model for
organometallic complexes of the type considered here is unclear. Contribu-
tions from the oscillator strength (that of [Au{C≡C-4-C6H4-�E	-CH=CH-4-
C6H4NO2�PPh3	� is twice that of �Au�C≡C-4-C6H4-�Z	-CH=CH-4-C6H4NO2
�PPh3	�) may also be important]. The effect of bridging atom variation
was also probed, replacing CH in �Au�C≡C-4-C6H4-�E	-CH=CH-4-C6H4NO2
�PPh3	� by N to afford �Au�C≡C-4-C6H4N=CH-4-C6H4NO2�PPh3	�. Surpris-
ingly, there is an order of magnitude difference in �real between �Au�C≡
C-4-C6H4-�E	-CH=CH-4-C6H4NO2	�PPh3	� and �Au�C≡C-4-C6H4N=CH-4-C6

H4NO2	�PPh3	�, consistent with electronegative atoms in the �-system diminishing
electron delocalization. There are broad similarities in relative efficiency for � with
those for �.

The effect on refractive nonlinearity �real of phosphine ligand replacement in
the dipolar series �Au�C≡C-4-C6H4NO2	�PCy3	�, �Au�C≡C-4-C6H4NO2	�PPh3	�,
and �Au�C≡C-4-C6H4NO2	�PMe3	� is negligible, all �real data being equivalent
within the error margins; unlike �Au�C≡C-4-C6H4NO2	�PPh3	�, no detectable
�imag component is present for �Au�C≡C-4-C6H4NO2	�PCy3	� and �Au�C≡
C-4-C6H4NO2	�PMe3	�. In contrast, replacing PMe3 by PPh3 in proceeding
from �Au�C≡C-4-C6H4CHO	�PMe3	� to �Au�C≡C-4-C6H4CHO	�PPh3	� results in
increased �real and �.

By far the largest class of complexes we have examined as third-order NLO mate-
rials are ruthenium alkynyl and vinylidene compounds, the results being summarized
in Table 10. The observed cubic responses are not simply the sums of nonlinearities for
the molecular fragments; � for �Ru�C≡C-4-C6H4NO2	�PMe3	2�


5-C5H5	� is much
larger than that for �RuCl�PMe3	2�


5-C5H5	� and 4-nitrophenylethyne (≤ 80×10−36

esu and 20 × 10−36 esu, respectively), indicating that electronic communication
between the ligated metal and alkynyl fragments is important. Only one pair of
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complexes varying in trialkyl-vs triaryl-phosphine ��Ru�C≡C-4-C6H4NO2	�PPh3	2

�
5-C5H5	�� �Ru�C≡C-4-C6H4NO2	�PMe3	2�

5-C5H5	�	 give sufficiently large

nonlinearities to permit comparison. Proceeding from �Ru�C≡C-4-C6H4NO2	
��PPh3	2


5-C5H5	� to �Ru�C≡C-4-C6H4NO2	�PMe3	2�

5-C5H5	� makes little

difference to �real, although a 50% decrease in response was noted with the corre-
sponding �HRS values. Minor variation in the alkynyl ligand (replacement of 4-H by
4-Br in proceeding from �Ru�C≡CPh	�PPh3	2�


5-C5H5	� to �Ru�C≡C-4-C6H4Br	
�PPh3	2�


5-C5H5	�) has no discernible effect on �real.
However, replacement of H by the strongly-withdrawing NO2 ��Ru�C≡CPh	

�PPh3	2�

5-C5H5	� to �Ru�C≡C-4-C6H4NO2	�PPh3	2�


5-C5H5	�) makes a signif-
icant difference to the cubic nonlinearity; a similar increase was observed in
proceeding from styrene to its 4-nitro derivative.[57] Not surprisingly, extension
from a one-ring chromophore �Ru�C≡C-4-C6H4NO2	�PPh3	2�


5-C5H5	� to
“extended-chain” two-ring chromophores �Ru�C≡C-4-C6H4-4-C6H4NO2	�PPh3	2

�
5-C5H5	�� �Ru�C≡C-4-C6H4-�E	-CH=CH-4-C6H4NO2�PPh3	2�

5-C5H5	�, and

�Ru�C≡C-4-C6H4C≡C-4-C6H4NO2	�PPh3	2�

5-C5H5	� leads to a large increase

in �real. Complexes �Ru�C≡CPh	�PPh3	2�

5-C5H5	� and �Ru�C≡C-4-C6H4Br	

�PPh3	2�

5-C5H5	� have positive �real, whereas the nitro-containing cyclopentadi-

enylruthenium complexes incorporating a strong donor-acceptor interaction have
negative �real. It was of interest to ascertain the origin of the negative responses.
Investigations on �Ru�C≡C-4-C6H4NO2	�PPh3	2�


5-C5H5	� and �Ru�C≡C-4-
C6H4NO2	�PMe3	2�


5-C5H5	� by femtosecond time-resolved DFWM confirm that
the negative �real are not due to thermal lensing; the observed response of solu-
tions shows a concentration dependence characteristic for a negative real part
of � of the solute while the DFWM signal retains its femtosecond response.
The observation of a negative real component of � together with a complex
component (as evident for �Ru�C≡C-4-C6H4NO2	�PMe3	2�


5-C5H5	� and �Ru�C≡
C-4-C6H4-�E	-CH=CH-4-C6H4NO2�PPh3	2�


5-C5H5	�) is suggestive of electro-
nic resonance enhancement, with the imaginary part relating to nonlinear absorption.
It is perhaps significant that negative � is observed for complexes with �max longer
than 400 nm, and positive � for complexes with �max shorter than 400 nm, consis-
tent with the dispersion effect of two-photon states contributing to the observed
responses.

Nonlinearities of the bis(bidentate phosphine)ruthenium vinylidene and alkynyl
complexes are characterized by large error margins in many instances, rendering
extraction of structure-property relationships difficult, and negative real components
and significant imaginary components for many complexes, indicative of two-
photon resonance effects. Nevertheless, as observed with �exp and �0 trends, the
effect of chain lengthening on � is insignificant within error margins on
proceeding from trans-�Ru�C≡C-4-C6H4NO2	Cl�dppm	2� to trans-�Ru�C≡C-4-
C6H4C≡C-4-C6H4NO2	Cl�dppm	2�, but there is a dramatic increase in � in
proceeding to trans-�Ru�C≡C-4-C6H4C≡C-4-C6H4C≡C-4-C6H4NO2	Cl�dppm	2�.
The vinylidene/alkynyl pair trans-�Ru�C=CH-4-C6H4NO2	Cl�dppm	2��PF6	 and
trans-�Ru�C≡C-4-C6H4NO2	Cl�dppm	2� have significantly different �imag values.
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Since �imag is related to the two-photon absorption (TPA) cross-section �2, the
significant variation in �imag values for this pair provides protically-switchable mate-
rials in which the TPA response can be alternatively switched “on” and “off”.
Replacing NO2 in the dipolar examples with trans-��C≡C	RuCl�dppm	2� to
afford trans� trans-�RuCl�dppm	2�C≡C-4-C6H4C≡C	RuCl�dppm	2� or trans�
trans-�RuCl�dppm	2�C≡C-4-C6H4-4-C6H4C≡C	RuCl�dppm	2� results in signif-
icant increases in �, the presence of the second electron-rich metal centre
being more important than dipolar composition in enhancing cubic NLO merit.
These data suggest that extending �-delocalization is the critical factor.
Significant extension of the �-system, in proceeding from trans� trans-�RuCl
�dppm	2�C≡C-4-C6H4C≡C	RuCl�dppm	2� and trans� trans-�RuCl�dppm	2��-C≡
C-4-C6H4-4-C6H4C≡C	RuCl�dppm	2� to �Fe�
5-C5H4-�E	-CH=CH-4-C6H4C≡
CRuCl�dppm	22�, results in a further considerable increase in �.

The dendritic ruthenium alkynyl complexes have very large cubic NLO coef-
ficients. Inspection of � values for trans-�Ru�C≡CC6H4-4-C≡CPh�C≡CPh	
�dppe	2� and �1� 3� 5-C6H3-trans-�C≡C-4-C≡CC6H4C≡C�Ru�C≡CPh	�dppe	2�3�

Figure 15. Alkynylruthenium dendrimer from these studies
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Figure 16. Octupolar alkynylruthenium complexes incorporating phenylenevinylene groups from these
studies

reveals a significant increase in the imaginary component on progressing from
the linear to the multipolar complex, but no increase in �real. Both real and
imaginary components of the third-order hyperpolarizability for the dendrimer
�1� 3� 5-C6H3- trans- �C≡C-4-C≡CC6H4C≡C�Ru�dppe	2�C≡C-3,5-C6H3-trans-
�C≡C-4-C≡CC6H4C≡C�Ru�C≡CPh	�dppe	2�23	� (Figure 15) are much larger
than those of its components �HC≡C-3� 5-C6H3-trans-�C≡C-4-C≡CC6H4

C≡C�Ru�C≡CPh	�dppe	2�2� and �1� 3� 5-C6H3-trans-�C≡C-4-C≡CC6H4C≡C
�RuCl�dppe	2�3� or the related complex 1� 3� 5-C6H3-trans-�C≡C-4-C≡CC6H4C≡
C�Ru�C≡CPh	�dppe	2�3�. In particular, progressing from �1� 3� 5-C6H3-trans-
�C≡C-4-C≡CC6H4C≡C�Ru�C≡CPh	�dppe	2�3� to �1� 3� 5-C6H3-trans-�C≡C-4-
C≡CC6H4C≡C�Ru�dppe	2�C≡C-3� 5-C6H3-trans-�C≡C-4-C≡CC6H4C≡C�Ru
�C≡CPh	�dppe	2�23	� results in increases in both �real and �imag proportionately
greater than either the increase in the number of phenylethynyl groups or the
extinction coefficient.

Comparison of the complexes �1� 3� 5-�trans-��dppe	2ClRu�C≡C-4-C6H4-�E	-
CH=CH�	3C6H3� and �1� 3� 5-�trans-��dppe	2�PhC≡C	Ru�C≡C-4-C6H4-�E	-
CH=CH�	3C6H3� (Figure 16) with the analogous alkynyl complexes above
demonstrates enhancement of third-order NLO properties by replacement of
acetylene linkages with (E)-ene linkages.

Two-photon absorption cross-sections have been calculated, selected examples
of which are listed in Table 11. The �2 values increase upon increase in dendrimer
size and �-system, with the value for the dendrimer depicted in Figure 15 amongst
the largest for organometallic compounds.
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4. CONCLUSION

The studies described above have resulted in identification of the key structural
components for quadratic NLO response in alkynylmetal complexes and the iden-
tification of compounds with some of the largest cubic NLO coefficients and
particularly TPA cross-sections thus far. Quadratic hyperpolarizabilities increase
upon similar structural modifications to the alkynyl ligands as those that increase
NLO response in organic chromophores but, significantly, also upon increasing
metal valence electron count, ease of oxidation, and ligand substitution at the
metal centre. Cubic hyperpolarizabilities increase substantially upon increasing
�-system length and “dimensionality” (progressing to octupolar complexes and
dendrimers). Recently, attention has turned to reversibly “switching” such responses
using a variety of stimuli, and this Chapter contains examples of protic switching
with reversible interconversion of alkynyl and vinylidene ligands. The ruthenium
complexes also possess readily accessible and fully reversible RuII/III redox couples;
our experiments demonstrating electrochemically induced NLO “switching” of these
complexes are summarized in the Chapter by Coe.
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CHAPTER 18

RUTHENIUM COMPLEXES AS VERSATILE
CHROMOPHORES WITH LARGE, SWITCHABLE
HYPERPOLARIZABILITIES

BENJAMIN J. COE
School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

Abstract: This work provides a relatively comprehensive review of studies involving ruthe-
nium coordination and organometallic complexes as nonlinear optical (NLO)
compounds/materials, including both quadratic (second-order) and cubic (third-order)
effects, as well as dipolar and octupolar chromophores. Such complexes can display very
large molecular NLO responses, as characterised by hyperpolarizabilities, and bulk effects
such as second harmonic generation have also been observed in some instances. The
great diversity of ruthenium chemistry provides an unparalleled variety of chromophoric
structures, and facile RuII → RuIII redox processes can allow reversible and very effective
switching of both quadratic and cubic NLO effects

Keywords: ruthenium complexes; hyperpolarizabilities; redox-switching; protic-switching; second
harmonic generation

1. INTRODUCTION: THE CASE FOR RUTHENIUM

Amongst transition metal complexes with nonlinear optical (NLO) properties [1, 2],
ruthenium compounds have been studied particularly intensively for both their
quadratic (second-order) and cubic (third-order) behaviour. This situation has arisen
partly because of the very extensive coordination and organometallic chemistry of
ruthenium, which involves an attractive balance between stability and reactivity
towards ligand substitutions. However, more importantly, electron-rich d6 ruthe-
nium(II) centres are especially well-suited for incorporation into NLO chromophores
because their highly polarizable d orbitals can engender effective �-electron-
donating properties when coordinated to ligands with low-lying �∗ orbitals. A wide
variety of Ru(II) complexes has been studied over the past 15 or so years, such
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as ruthenocene derivatives, �-acetylide, ammine and polypyridyl complexes. These
chromophores include neutral and charged complexes, possessing both dipolar and
octupolar electronic structures. As such, ruthenium complexes display an unsur-
passed degree of chromophoric diversity, combined with extensive opportunities for
tuning, switching and optimisation of molecular hyperpolarizabilities and associated
optical properties. This review includes almost all of the main primary litera-
ture citations concerning ruthenium-based NLO compounds and materials, with an
emphasis on the specific and often seminal contributions that such studies have
brought to the broader NLO research field.

2. RUTHENOCENYL DERIVATIVES AND OTHER COMPLEXES
OF �5-CYCLOPENTADIENYL AND RELATED LIGANDS

The first reported studies concerning the NLO properties of RuII complexes of
�5-cyclopentadienyl (Cp) ligands involve the amphiphilic derivative 1 in multilayer
Langmuir-Blodgett (LB) films [3]. Such thin films of a cyanoterphenyl complex
give 532 nm second harmonic generation (SHG), allowing Richardson et al. to
estimate first molecular hyperpolarizabilities �, and mixed films also containing the
free cyanoterphenyl ligand show 50% increased SHG intensities [3]. Many related
complexes with �-bonded acetylide ligands are known to display NLO properties,
but these will be discussed separately in section 5 below.

C5H11–nC
+ PF6

–

1
PPh3Ph3P

Ru N Ru

2

S NO2

Ferrocenyl derivatives have historically attracted considerable interest for their
NLO properties, and ruthenium analogues of certain of the most promising chro-
mophores have also been investigated [4, 5]. Such d6 metallocenyl units behave
as relatively strong electron donors, and 1907 nm electric-field-induced SHG
(EFISHG) experiments by Calabrese et al. show that replacement of iron by ruthe-
nium causes � to decrease [5]. This observation is attributed to the higher ionisation
potential of a ruthenocenyl group when compared with ferrocenyl, i.e. the RuII

unit is a weaker electron donor than its FeII counterpart, also evidenced by a blue-
shifting of the lowest energy metal-to-ligand charge-transfer (MLCT) absorption
in ruthenocenyl chromophores [5]. Detailed analyses of the electronic structures
of donor-acceptor metallocenyl dyes involving density-functional theory (DFT)
calculations and electronic Stark effect (electroabsorption) spectroscopy have been
reported by Barlow et al. [6] The results of these studies indicate that both the
MLCT and higher energy (predominantly intraligand charge-transfer (ILCT), with
some metal character) transitions contribute to the � responses [6, 7].
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Ru
N

N

3

Ru NC

CN
O

O
S

4

The introduction of molecular chirality is one means to favour the forma-
tion of noncentrosymmetric materials, and studies on some chiral ruthenocene
derivatives by Yamazaki et al. reveal a relatively high 1064 nm powder SHG
efficiency of 27 × urea for the �+� enantiomer of one complex (2) [8]. 1340 nm
EFISHG measurements by Bourgault et al. on the vinylruthenocene 3 with a pendent
2,2′-bipyridyl (bpy) unit show that coordination to octahedral fac-ReICl�CO�3

or tetrahedral ZnII�OAc�2 centres red-shifts the MLCT band and approximately
doubles � [9]. Ruthenocenyl polyenes with powerful heterocyclic electron acceptor
groups show very large �� values (� = dipole moment), as determined via
1907 nm EFISHG studies by Alain et al. [10]. In keeping with expectations,
extension of the polyene chain causes red-shifting of the MLCT bands, accom-
panied by increasing NLO responses, and the superior donor strength of a
ferrocenyl unit is again apparent [10]. The largest �� (1900 × 10−48 esu in
chloroform) is shown by the complex 4 which contains a 3-(dicyanomethylidene)-
2,3-dihydrobenzo-thiophene-1,1-dioxide acceptor group [10]. In an early report
by Kimura et al., a series of asymmetric sandwich complexes with RuIICp units
coordinated to �5- or �6-aryl ligands were found to display 1064 nm powder SHG
efficiencies of 0	7-1	0×urea [11].

Ru

+ PF6
–

5

+
Fe

Ru

2+ [PF6
–]2

6

Heck and co-workers have investigated a range of mono- and dinuclear
sesquifulvalene-based and related complexes, a number of which contain rutheno-
cenyl units [12–14]. 1064 nm hyper-Rayleigh scattering (HRS) experiments
conducted in both nitromethane and dichloromethane afford relatively large �
responses (ca. 350-650 × 10−30 esu) for the mononuclear complex in salt 5 with
a vinyltropylium electron acceptor group [13], and these NLO properties are
maintained when the latter is complexed to a 
RuII��5-C5R5��

+ (R = H or Me)
moiety [14]. However, the complexity of their electronic structures, combined with
extensive resonance-enhancement, serve to limit the extent to which meaningful
structure-activity relationships can be derived from these studies. Further related
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investigations by Heck and colleagues describe dinuclear complexes in which a
ferrocenyl group is attached to a guaiazulenylium-
RuIICp�+ or a borabenzene-

RuII��6-C6H6��

+ unit [15, 16]. The former compound (6) displays an intense
charge-transfer (CT) band at the visible-NIR boundary ��max = 698 nm� and
possesses a � response of 326 × 10−30 esu, as determined by 1064 nm HRS (data
in dichloromethane) [15]. In contrast, the borabenzene complex shows only weak
visible absorption which is associated with the absence of a detectable HRS signal
at 532 nm, and its BPh4

− salt unfortunately adopts a centrosymmetric crystal
structure [16].

PPh2Ph2P

Ru NO2CN +

O
O

7

CF3SO3
–

NO2C + PF6
–

8

PPh2Ph2P

Ru N

Besides the original work of Richardson et al. [3], a number of other complexes
containing RuIICp electron donor centres coordinated to aryl nitrile derivatives are
known to display NLO properties [17–22]. Dias et al. have reported a series of
salts of the complex RuIICp
�+�-�DIOP���nbn��+ DIOP = 2,3-O-isopropylidene-
2,3-dihydroxy-1,4-bis(diphenylphosphino)butane, nbn = 4-nitrobenzonitrile] which
show powder SHG activity at 1064 nm, with the largest signal of 10 × urea being
for the CF3SO3

− salt (7) [17]. Subsequent studies with further related compounds
do not reveal any materials with greater SHG activities, but 7 is found to crystallise
noncentrosymmetrically in the monoclinic space group P21 (Figure 1), whilst its
PF6

− counterpart �SHG = 2	7×urea� crystallises in the triclinic P1 [18]. Estimates
of the angle between the molecular CT axis and the polar crystal axis are 70	3�

for 7 and 83	5� for the PF6
− salt, which are both far from the optimum values

for phase-matched SHG in the relevant space groups (54	74� for P21 and 35	26�

for P1) [18].
Salt 7, together with its PF6

− and MeC6H4SO3
− analogues and several related

species containing dppe [1,2-bis(diphenylphosphino)ethane] instead of �+�-DIOP
also show third harmonic generation (THG) when doped in polymethylmethacrylate
(PMMA) thin films, as probed by Dias et al. using the Maker fringe technique [19].
As expected, extension of the conjugated �-system of the electron-accepting nitrile
ligand causes the THG intensity to increase, and the introduction of a second pheny-
lene ring to give a 4-(4-nitrophenyl)benzonitrile (npbn) ligand produces a relatively
large second molecular hyperpolarizability � of 2	3×10−33 esu for the PF6

− salt of
the dppe complex (8) [19]. Wenseleers et al. have also subjected 8, its nbn analogue
and related compounds of CoIII, NiII and FeII to 1064 nm HRS experiments [20].
Although the results indicate that � increases as the metal changes in the order
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Figure 1. Crystal packing diagram of the complex salt 7 (mono-diethyl ether solvate), showing the
noncentrosymmetric arrangement of the chromophoric complex cations (solvent and anions omitted) [18].
The arrows indicate the approximate directions of the molecular dipolar axes

Co < Ni < Ru < Fe, resonance effects play an important part in this apparent trend,
with the complex FeIICp�dppe��nbn��+ absorbing strongly at 532 nm. Further-
more, the applicability of the widely used two-state model to such chromophores is
restricted since RuIICp�dppe��nbn��+ shows two strongly overlapping absorptions
in the region 300–500 nm. The observations that the complexes of nbn ligands show
red-shifted MLCT absorptions and larger � values when compared with their npbn
analogues may be attributable to torsion between the phenylene rings in npbn which
decreases donor–acceptor electronic coupling (Figure 2) [20].

1064 nm HRS measurements have also been carried out by Mata et al. on the
heterobimetallic complex 9 which contains a N -coordinated 1-ferrocenyl-2-E-(4-
cyanophenyl)ethylene ligand [21]. As expected, variation of the counter-anion does
not affect the linear absorption spectrum, but the BF4

− salt apparently shows a
considerably larger � response than its PF6

− counterpart, although a convincing
explanation for such unusual behaviour remains elusive [21]. Similar studies by
Garcia et al. on complexes featuring a Cr(phenyl)(CO)3 unit connected to a

Figure 2. Canonical representations of the MLCT excited state in (a) nbn and (b) npbn ruthenium
complexes, showing how torsion between the phenylene rings can act to diminish electronic coupling
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C

9

PPh3Ph3P

Ru N
+

Fe

S

Ru
NO2

+ CF3SO3
–

10

nitrile-coordinated 
RuIICp�dppe��+ centre confirm the superior electron donating
ability of an FeII fragment with respect to an analogous RuII-containing moiety [22].
Lee et al. have applied 1064 nm HRS and time-dependent DFT (TD-DFT) calcula-
tions to mononuclear sandwich complexes with aryl RuII units coordinated to a range
of E-styryl-2-thiophene derivatives [23]. Such chromophores combine relatively
high � responses (up to 389×10−30 esu for 10) with good visible transparency, and
display predictable enhancements in � with increasing electron accepting strength
of substituents at the 4-position of the styryl ring [23]. Furthermore, the TD-DFT-
calculated UV-visible maxima generally agree very closely with those measured in
nitromethane solutions [23].

3. AMMINE COMPLEXES

R = H (11), t-Bu (12)

Ru

H3N NH3

NH3H3N

H3N Ru

H3N NH3

NH3

NH3H3N

CN C N
R

5+ [PF6
–]5

Ru

H3N NH3

NH3H3N

H3N N Ru

NC CN

CN

CNNC

C

– Li+•3H2O

13

In one of the first ever studies of ruthenium complexes with NLO properties,
waveguides comprising LB films of the binuclear RuIII complexes 11 and 12 were
considered for SHG of a 1064 nm laser [24]. Although it was anticipated that
phase-matching might be achievable due to anomalous dispersion arising from
the intense CT absorptions at ca. 800 nm, these materials unfortunately proved
to be insufficiently photostable for such an application [24]. A few years later,
some particularly notable results were disclosed by Laidlaw et al. who used 1064 nm
HRS to determine unusually large � values for two mixed-valence bimetallics
(e.g. 13) having intense, low energy intervalence CT transitions [25]. However,
these data were subsequently found to be markedly overestimated due to a 6-fold
error in the � used for the solvent reference [26], leading to results which are more
in keeping with the rather short conjugation pathlengths of the chromophores. In
these complexes, the electron-deficient d5 RuIII and electron-rich d6 RuII ions are
respectively stabilised by strongly basic ammine and �-accepting cyanide ligands.
Static first hyperpolarizabilities �0 for 13 have also been derived using the two-state
model equation �0 = 3��12��12�

2/�Emax�
2 (where ��12 = dipole moment change,
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�12 = transition dipole moment and Emax = CT energy): Laidlaw et al. used a ��12

value calculated for transfer of 1 electron over the geometric RuII–RuIII distance to
afford �0 = 41×10−30 esu [26], whereas Vance et al. obtained �0 = 28×10−30 esu
by using a ��12 derived from Stark spectroscopy [in 1:1 (v:v) ethylene glycol-
water at 77 K] [27]. The discrepancy between the latter and that obtained from HRS
(81×10−30 esu in water) may be due to errors arising from resonance-enhancement
in the HRS data [27].

Coe and colleagues have carried out a number of investigations into the NLO
properties of ruthenium ammine complexes of (mostly) pyridyl ligands, early studies
focusing largely on the development of structure-activity relationships for � values
derived via HRS at 1064 nm [28–34]. Results for 14 and 15 show that the �0

response of the laser dye coumarin-510 (33×10−30 esu from EFISHG in chloroform)
is not significantly affected by complexation or by RuII → RuIII oxidation, because
the 3-substitution at the pyridyl ring allows only weak coumarin-metal �-electronic
coupling [28]. In contrast, the significant increase in �0 for 16 (49 × 10−30 esu
in acetonitrile, MeCN) when compared with that of the free dye coumarin-523
(32 ×10−30 esu from EFISHG in chloroform) is ascribed to the inductive electron-
withdrawing effect of the RuIII centre [28].
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Systematic studies by Coe et al. with salts of the form trans-RuII�NH3�4�LD�
�LA��PF6�n (LD = an electron-rich ligand; LA = an electron acceptor-substituted
ligand; n = 2 or 3) initially focused on species where LA = 4-acetylpyridine,
ethylisonicotinate or N -methyl-4� 4′-bipyridinium �MeQ+� [29]. The intense,
visible RuII → LA MLCT absorptions of these complexes are strongly solva-
tochromic and dominate the � responses [29]. HRS-derived �0 values in
the range 10-130 × 10−30 esu were obtained, with the largest for trans-
RuII�NH3�4�MeQ+��dmap��PF6�3 [dmap = 4-(dimethylamino)pyridine] [29]. As
expected, complexes of the MeQ+ ligand have larger �0 values when compared with
their analogues with monopyridyl LA ligands due to extended �-conjugation [29].
The salt trans-RuII�NH3�4�MeQ+��PTZ��PF6�3 · Me2CO (acetone solvate of 17,
PTZ = phenothiazine) crystallizes in the noncentrosymmetric hexagonal space
group P63, with an almost planar MeQ+ ligand (pyridyl-pyridyl torsion angle
= 9	6�) [29]. Although the dipolar cations exhibit a strong projected component
along the z axis, crystal twinning precludes bulk NLO effects [29].



578 Coe

Ru

H3N NH3

N

NH3H3N

HN S N
+

17

Ru

H3N NH3

N

NH3H3N

NMe2N N
O+ 3+ [PF6

–]3

3+ [PF6
–]3

18

Subsequent studies by Coe and co-workers have permitted further tuning
and enhancement of the molecular NLO responses of complex salts trans-
RuII�NH3�4�LD��LA��PF6�3 [30–35], affording the important conclusion that
N -arylation of 4� 4′-bipyridinium cations is an effective approach to red-shifting
MLCT bands and increasing �0. The most active chromophore to be discovered
during these investigations is that in salt 18 (�0 = 410 ×10−30 esu in MeCN) [31].
Arguably the most significant and far-reaching result to emerge from these early
studies is the demonstration that the MLCT absorptions and �0 responses of the
pentaammine complexes can be very effectively decreased (10–20-fold for �) by
RuII → RuIII oxidation using H2O2 (Figure 3) [33–37]. This unprecedented and
facile redox-induced switching of NLO responses is fully reversible and provides an
important incentive for incorporating RuII centres into NLO chromophores. Indeed,
similar effects have subsequently been reported by other research groups using

Figure 3. Redox-switching of (a) MLCT absorption and (b) molecular quadratic NLO response in
ruthenium pentaammine complexes [33–37]
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several different types of organotransition metal complexes, including those studied
by Humphrey and co-workers (see Section 5 later).

A later report by Coe et al. describes detailed Stark spectroscopic studies carried
out in butyronitrile (PrCN) glasses at 77 K which provide verification and rational-
isation of the previously obtained HRS results [38]. Remarkably good agreement
is found between the �0 values calculated according to the two-state model equa-
tion �0 = 3��12��12�

2/�Emax�
2 and the HRS-derived data [38]. Red-shifting of the

MLCT band and increases in both �12 and ��12 are generally associated with
enhancements in �0, and placing a E-ethylene unit between the pyridyl and pyri-
dinium rings of LA increases �0 by up to 50% [38]. ZINDO computations on the
pentaammine complexes predict the dipole properties fairly accurately, but do not
reliably reproduce Emax or �0 [38]. In contrast, Lin et al. have found that the TD-DFT
method gives reasonably good agreement with the �0HRS� values for some of
Coe’s complexes (e.g. �0 = 31×10−30 esu for 19, as opposed to 27×10−30 esu in
MeCN [29], and �0 = 326 × 10−30 esu for 18), and is more reliable than the ab
initio Hartree-Fock approach in treating such species [39]. Additional Stark and
HRS studies by Coe et al. show that replacement of a neutral LD ligand such as
dmap with a (presumably N -coordinated) thiocyanate anion increases the electron-
donating strength of the RuII centre [40]. This simple structural change logically
translates into enhanced �0 responses (e.g. �0HRS� = 513 × 10−30 esu for 20 in
MeCN; �0Stark� = 553×10−30 esu), the magnitude of the observed increase with
respect to the analogous N -methylimidazole (mim) complexes varying over a range
of ca. 25–120%, depending on LA [40].
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Further studies by Coe and colleagues involving extended dipolar RuII ammine
systems have uncovered some very unusual optical behaviour [41, 42]. Within
three series of pyridyl polyene chromophores (e.g. the mim-containing 21–24),
the MLCT energy unexpectedly increases as the conjugated system extends from
n = 1 to 3 [41, 42]. The �0 values obtained via HRS and Stark spectroscopy are
very large (ca.100–600 × 10−30 esu) and maximize at n = 2, in marked contrast
to other known electron donor-acceptor polyenes in which �0 increases steadily
with n [41, 42]. TD-DFT and finite field (FF) calculations generally predict the
empirical trends, both in terms of the blue-shifting of the MLCT bands and
the unusual behaviour of �0 [42]. The TD-DFT results show that the HOMO
gains in � character as n increases and consequently the lowest energy transition
usually considered as purely MLCT in character has some ILCT contribution which
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increases with the conjugation pathlength [42]. Hence, the Emax and ��12 values
are respectively larger and smaller than expected, causing �0 to decrease [42].
Notably, these studies show that metal-containing NLO chromophores can
show very different optical behaviour when compared with their more thoroughly-
studied purely organic counterparts [41, 42].
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The differences in optical properties between RuII ammine complexes and closely
related purely organic chromophores have been thoroughly investigated in three
further publications by Coe et al. [43–45] Initial studies with compounds featuring
-C6H4-4-NMe2 or pyridyl-coordinated 
RuII�NH3�5�

2+ units connected directly to
pyridinium electron acceptors show that the RuII centre is more effective (in terms
of enhancing �0) than the organic group as a �-electron donor [43]. This differ-
ence arises because the higher HOMO energy of the metal centre more than
offsets the more effective �-orbital overlap in the analogous purely organic chro-
mophores [43]. More extensive studies including TD-DFT and FF calculations
confirm that extension of polyene chains in purely organic pyridinium chromophores
leads to normal optical behaviour, i.e. red-shifting of the intramolecular CT (ICT)
bands and increasing ��12 and �0 [44, 45]. The contrasting dependencies of
the optical properties on polyene chain length for the RuII and -C6H4-4-NMe2

compounds (Figure 4) are attributable to the degree of donor–acceptor electronic
coupling [44, 45]. Electrochemical, 1H NMR and Stark spectroscopic data all show
that �-orbital overlap is more effective in the purely organic compounds than in
their RuII counterparts [44, 45]. The less effective donor–acceptor communication
in the complexes becomes increasingly evident over long distances, so that �0, �12

and Hab (the electronic coupling matrix element) all decrease above n = 2 [44, 45].
Although the RuII pyridyl ammine centres are generally more effective than a
-C6H4-4- NMe2 group as �-electron donors, in terms of enhancing �0, such benefits
are lost when n = 3 [44, 45].

Coe and co-workers have also investigated a number of complexes featuring redox-
switchable cis-
RuII�NH3�4�

2+ centres coordinated to monodentate bipyridinium
ligands and related chelating derivatives of 2� 2′ � 4� 4′′ � 4′� 4′′′- quaterpyridyl [46–
48]. Such unusual charged 2-dimensional NLO chromophores can display multiple
MLCT bands, the energies �Emax� of which decrease in the order R = Me > Ph >
4-AcPh > 2-Pym (2-Pym = 2-pyrimidyl), as the electron-accepting ability of the
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Figure 4. Illustrative examples of the contrasting electronic absorption (a) and molecular quadratic
NLO responses (b) of ruthenium ammine complexes and related purely organic pyridinium polyene
chromophores [45]. In (b), the squares refer to the organic series, while the diamonds refer to the
complex salts 21–24, the circles refer to the analogous series with trans pyridine (py) ligands, and the
triangles refer to the pentaammine series

pyridinium groups increases [46–48]. This trend mirrors that observed previously in
related 1-dimensional dipolar species [32]. � values have been measured by using
HRS at 800 nm and Stark spectroscopy, incorporating Gaussian fitting to deconvo-
lute the MLCT transitions [46–48]. These dipolar pseudo-C2v chromophores exhibit
two substantial components of the � tensor, �zzz and �zyy, with the difference
between them being most marked for the non-chelated systems [48]. For example,
25 has �zzz = 110×10−30 esu and �zyy = 298×10−30 esu from Stark data (in PrCN
at 77 K) [48]. The orbital structures have been elucidated by using TD-DFT which
shows that the lowest energy MLCT transition is associated with the �zyy response
and the higher energy transition with �zzz, with the former “off-diagonal” component
being the larger [48].

Perhaps surprisingly, the cubic NLO properties of ruthenium ammine complexes
have not yet been studied experimentally, but a single theoretical report of such
behaviour has appeared [49]. Application of a linear algebraic method afforded
remarkably high cubic bulk NLO susceptibilities ��3� for linear, mixed-valence
RuIII/II “Creutz-Taube” oligomeric chain complexes having pyrazine-bridged trans-

Ru�NH3�4�

n+ (n = 2 or 3) centres with terminal 
Ru�NH3�5�
n+ (n = 2 or 3)

units [49].
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4. COMPLEXES OF 2,2′-BIPYRIDYL AND OTHER CHELATING
POLYPYRIDYL LIGANDS

Derivatives of the famous complex RuII�bpy�3�
2+ (RTB) have been investigated

for their quadratic NLO properties by Sakaguchi and co-workers [50–55], early
reports noting SHG from complex salts (e.g. 26) in alternate Y-type LB films [50]
or crystalline powders [51]. For 26, a � value of 70 ×10−30 esu was estimated (at
1064 nm) [50], the presence of the electron-withdrawing amide substituents being
expected to give an increase in � when compared with RTB [51]. Related studies
have involved the use of photoexcitation to allow rapid modulation of the SHG
from LB films (Figure 5) of 26 [52–55]. Upon 378 nm irradiation, the SHG from
a 590 nm dye laser decreases by 30% in under 2 ps and is restored within several
hundred ps [54]. Similar effects are observed following excitation at 355 or 460 nm
with a 1064 nm probe [52, 53, 55]. The SHG time-profile and the decay of the
MLCT-derived luminescence correlate quantitatively, indicating that changes in
� on MLCT excitation are responsible for the SHG switching [52–55]. Matsuo
and co-workers have shown that impregnation of the n-hexadecyl analogue of 26
into ultrathin PVC films affords SHG active materials [56, 57], and this group
have also described SHG from amphiphilic RTB derivatives in LB films [58–60],
More recently, incorporation of the 1,10-phenanthroline (phen)-containing complex
salt 27 into hybrid LB multilayers of a clay mineral has allowed probing of bulk
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Figure 5. Schematic representation of alternating LB films containing the complex salt 26. The actual
samples feature 30 bilayers on each side of the support [52–55]
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structures [61]. The SHG from a 1064 nm fundamental is enhanced when using only
the � enantiomer of 27 rather than its racemic form, demonstrating the usefulness
of the fabrication method for creating noncentrosymmetric ultrathin films [61].
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R = N(n-Bu)2 (28), NEt2 (29), OOct (30)

Zyss et al. first pointed out the octupolar electronic structures of D3 tris-chelate
complexes, using HRS and a three-state model to obtain respective �0 values of
53 × 10−30 and 47 × 10−30 esu for the salts RTB�Br2 and RuII�phen�3�Cl2 [62].
Around the same time, Persoons et al. reported somewhat smaller �0 values for
these chromophores, and showed that chemical oxidation to the corresponding RuIII

species causes � to decrease [63]. More recently, Hache and co-workers have
published several studies describing the observation of nonlinear circular dichroism
in solutions of the resolved � and � isomers of RTB [64–67]. This cubic NLO effect
is of interest for use in ultrafast time-resolved dynamic studies of chiral molecules.
The two-photon absorption (TPA) properties of RuII�4� 7-Me2phen�3�ClO4�2 have
also been described [68]. Other NLO studies have involved more elaborately substi-
tuted derivatives of RTB and related complexes. A particularly significant report by
Dhenaut et al. quotes an extremely large �0 (2200×10−30 esu in chloroform) from
1340 nm HRS for a derivative of RTB with electron-donating styryl substituents
(28) [69]. However, this �0 value is apparently overestimated due to luminescence
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Figure 6. Schematic representation of the opposing charge-transfer excitation processes in complex salts
such as 29 [72]

contributions [70], and subsequent studies have afforded a smaller (but still large)
�0 of 380 × 10−30 esu for 28 [71]. The RTB unit itself is octupolar, but polarized
HRS and Stark spectroscopic experiments by Vance and Hupp show that the �
response of 29 is more accurately described as being associated with several degen-
erate dipolar CT processes, rather than a truly octupolar transition [72]. Notably,
the dominant transitions in such chromophores are of an ILCT nature, red-shifted
on RuII coordination, and opposing the MLCT processes (Figure 6) [71, 72].

The effects of variation of the donor substituents and the metal centre have
also been investigated in 1320 nm HRS studies with compounds related to 28 and
29 by Le Bozec and colleagues [71, 73]. Even though the relatively complicated
electronic structures of such tris-(�-diimine) complexes hinders the development
of clear structure-activity relationships, the smaller �0 of 30 (298 × 10−30 esu in
chloroform) clearly corresponds with a higher ILCT energy when compared with
28 [71, 73]. These differences are attributable to the weaker electron-donating
ability of an alkoxy as opposed to a dialkylamino unit [71]. In similar fashion,
the presence of a more electron-rich FeII centre gives rise to a blue-shifted ILCT
absorption and red-shifted MLCT band when compared with 28 [71, 73], and both
of these changes are consistent with the observed � decrease. Notably, the ZnII

analogue of 28 displays a similarly large �0 value, but possesses a wider visible
transparency range, due to the absence of MLCT transitions for the d10 ion [71].
Further data from 1907 nm HRS experiments with 28, its n-octyloxy analogue and
a range of related chromophores have recently been reported [74], and these results
confirm that the RuII species have larger � responses than their FeII analogues.

Interestingly, Le Bozec and co-workers have recently incorporated the chro-
mophoric units of 28 and 29 into macromolecular systems which may lead
to useful NLO materials [75–78]. A polyimide derivative of 28 (31) with
high thermal stability has a � of 1300 × 10−30 esu (from HRS at 1907 nm in
dichloromethane), several times larger than that of the corresponding monomer [75].
Even more remarkably, a dendrimeric assembly comprising 7 units derived from
29 shows a very large � of 1900 × 10−30 esu (also from HRS at 1907 nm in
dichloromethane) [76]. It is apparent that quasi-optimized octupolar ordering of the



Ruthenium Complexes as Versatile Chromophores 585

individual complex moieties in the latter structure is responsible for its enhanced
� response when compared with the linear polymer which contains on average
twice as many chromophoric units [76–78]. Each monomeric unit hence contributes
coherently to the HRS response in a highly ordered dendritic architecture, whereas
the linear polymer has a fully disordered structure [77, 78]. Another linear polymer
derived from poly(disilanylene-2� 2′-bipyridine-5� 5′-diyl) and incorporating cis-

RuII�bpy�2�

2+ units into the backbone has been subjected to SHG, nonlinear
absorption and optical limiting studies by Zeng and co-workers [79–81], and 532 nm
Z-scan measurements have been applied to a related polydiacetylene-based material
by Camacho et al. [82].
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Further cubic NLO measurements on RuII tris-(�-diimine) complexes have been
reported by Ji and colleagues, using Z-scan at 540 or 532 nm; all of the compounds
investigated display both NLO absorption and self-defocusing properties [83–87].
The ��3� and � responses of complex salts such as 32 are relatively large and increase
with the position of the -NO2 substituent in the order 3- < 2- < 4- [83]. Furthermore,
these NLO responses decrease if the imidazolyl nitrogens are deprotonated (but the
effect is only statistically significant for 32), an effect attributable to the concomitant
reduction in �-accepting ability of the phen-based ligand [83]. Experiments with
complex salts such as 33 predictably show that � decreases with contraction of the
�-system by the sequential removal of aryl rings from the benzo[i]dipyrido[3,2-a:
2′,3′-c]phenazine ligand (� = 47	8×10−30 esu for the phen analogue of 33 in
dimethylformamide, DMF) [84]. The ��3� and � values of the tetranuclear compound
34 are larger than those of its mono- or dinuclear relatives, and scale with the number
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of metal centres (e.g. � = 268	5×10−30 esu for 34 as opposed to 73	4 × 10−30 esu
for the monomer in MeCN), indicating that the individual chromophoric units
contribute additively to the NLO responses [85]. � values in the range 4	15-4	86×
10−29 esu (in DMF), increasing with n, are observed for the complex salts
RuII�bpy�3−n�PIP�n�ClO4�2 (PIP = 2-phenylimidazo[4,5-f]-1,10-phenanthroline)
[86]. Lahiri and co-workers have recently carried out Z-scan measurements of � on
some trinuclear RuII bpy/phen/arylazopyridine complexes with 1,3,5-triazine-2,4,6-
trithiolato cores (and a related mononuclear compound) [88, 89]. 532 nm degenerate
four-wave mixing (DFWM) and nonlinear absorption studies on several binuclear
complexes with two cis-
RuII�bpy�2�

2+ units linked via chelating bridging ligands
have been described by Sun et al. [90] Of these complexes, 35 displays the largest
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� value of 1	1×10−29 esu (in MeCN), which is ca. 2.5 times larger than that of the
corresponding RuII-RuIII mixed-valence species [90].

In the light of the relatively extensive NLO studies involving RuII tris-(�-
diimine) species, it is perhaps surprising that only two investigations with related
complexes of tridentate ligands have been reported [91, 92]. 532 nm Z-scan studies
by Konstantaki et al. on several bis-(tpy)-based (tpy = 2,2′:6′,2′′-terpyridyl) RuII or
OsII complexes, reveal very large cubic NLO responses for compounds including
36 (� = 228×10−30 esu in MeCN) [91]. In addition, on 10 ns laser pulse excitation,
the RuII complexes show reverse saturable absorption, but their OsII counterparts
show saturable absorption at low incident intensities, turning into reverse saturable
absorption above a concentration-dependent intensity threshold. However, all of the
complexes show only saturable absorption under faster (500 fs) laser excitation [91].
HRS studies by Uyeda et al. on ZnII porphyrins with appended MII�tpy�2�

2+

(M = Ru or Os) groups reveal unusual frequency dispersion behaviour of �, with
a particularly large (albeit resonance enhanced) response of 5100×10−30 esu being
observed for one RuII compound (37, in dichloromethane) at the technologically
important wavelength of 1300 nm [92]. Roberto et al. have disclosed the first NLO
studies with mono-tpy species, subjecting complexes of 4′-(4-dibutylaminophenyl)-
tpy with several different metal centres to 1340 nm EFISHG [93]. Enhancements
of � are observed in all cases (when compared with the free ligand), being positive
for ZnII species with trigonal bipyramidal structures, but negative for octahedral
RuIII or IrIII complexes [93].
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5. COMPLEXES OF �-BONDED ACETYLIDE
AND RELATED LIGANDS

The NLO properties of organometallic RuII complexes of �-acetylide ligands have
been extensively studied, most notably by Humphrey and co-workers [94–127], who
have also published several recent reviews [128–131]. Many of these complexes
also feature Cp co-ligands. Compounds of this type are particularly attractive due to
their facile syntheses, high stability and potential for incorporation into polynuclear
assemblies.

Whittall et al. carried out 1064 nm powder SHG studies on a series of aryl-
diazovinylidene RuII complex salts and found relatively modest activities of
up to about that of urea [94]. Surprisingly, the most active compound (38)
crystallises centrosymmetrically in P1, and the SHG activity was attributed to
surface effects or small deviations from centrosymmetry [94]. Subsequent early
reports from this group describe the NLO properties of a range of dipolar �-acetylide
complexes featuring either 
RuIICp�PR3�2�

+ (R = Ph or Me) [95–97, 102] or
trans-
RuII�dppm�2�

2+ [dppm = bis(diphenylphosphino)methane] [98–101, 103]
electron donor groups. ZINDO calculations on 39 afford a �vec of 31 × 10−30 esu
(at 1907 nm) and indicate that replacement of the -NO2 substituent with H and/or
substituting PPh3 for PMe3 cause the NLO response to decrease, as the strengths of
the electron donating and accepting groups are diminished [95]. Complex 39 and
its analogue lacking a -NO2 substituent crystallise in the noncentrosymmetric space
groups Pca21 and Cc, respectively [95]. In keeping with normal design principles
for NLO molecules, the extended dipolar complex 40 has much larger �0 values
of 232 and 234×10−30 esu, determined at 1064 nm via HRS and EFISHG, respec-
tively (both in tetrahydrofuran, THF) [97]. The corresponding ZINDO-derived
value is 45×10−30 esu (essentially non-resonant at 1907 nm), but 40 unfortunately
crystallises centrosymmetrically in P21/n [97].

The cubic NLO properties of 40, which has a low energy MLCT absorption
at 476 nm (in THF), together with those of some related complexes, have been
assessed via DFWM and Z-scan measurements at 800 nm, revealing moderate �
values [96]. Similar results have been obtained from Z-scan studies with related
trans-
RuII�dppm�2�

2+ complexes [100], and further ZINDO calculations [98, 99]
reveal the expected increases in �vec on extension of conjugated chains, with a
value of 60 × 10−30 esu (at 1907 nm) for 41 [98]. HRS at 1064 nm was subse-
quently used to derive a �0 value of 235 × 10−30 esu for the latter compound
(in THF), which is about 30% larger than that of the analogous species lacking
an E-ethylene bridge in the acetylide ligand [103]. A binuclear complex of C2v

symmetry with two trans-
RuIICl�dppm�2�
+ centres (42) was found by 1064 nm

HRS to display a � response approximately twice that of its mononuclear counter-
part trans-RuIICl�C≡CPh��dppm�2 [101].

Particularly notable reports from McDonagh et al. describe the molecular
quadratic and cubic NLO properties of the 3-fold symmetric octupolar RuII

complexes 43 and 44 [104, 105]. According to the results of 1064 nm HRS experi-
ments, moving from the dipolar complex 45 to its octupolar analogue 44 produces
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a ca. 3-fold enhancement in the uncorrected � response, with only a small accom-
panying loss of visible transparency (the MLCT �max changes from 383 to 411 nm
in THF) [105]. Z-scan studies at 800 nm on these same compounds afford the
first such cubic NLO data for organometallic complexes, and despite large exper-
imental errors, indicate a ca. 2-fold increase in � on moving from 45 to 44 [105].
By extending the molecular structure of such octupolar species in 3 directions,
McDonagh et al. have also prepared and studied a nonanuclear dendrimeric complex
(46) [106]. 800 nm Z-scan measurements show that progression from 44 to 46
results in no loss of visible transparency, but a very large increase in � of almost an
order of magnitude (to 207×10−34 esu in THF), together with a dramatic enhance-
ment of the TPA cross-section ��2� [106]. Remarkably, this observed increase in
� is proportionately several times greater than either the increase in the number
of phenylethynyl groups or the extinction coefficient for the MLCT band which is
expected to dominate the NLO response [106].

McDonagh et al. have also used HRS at 1064 nm to study dipolar

RuIICp�PR3�2�

+ and trans-
RuIICl�dppm�2�
+ complexes of ligands featuring
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imino or diazo units within the electron-acceptor-substituted �-acetylide ligands
[107, 108]. The complexes containing indoanilino units (e.g. 47) have especially
low energy MLCT bands in the 620–650 nm region (in THF) and large, albeit reso-
nantly enhanced, � responses [107]. Related HRS studies with 
RuIICp�PPh3�2�

+

aryldiazovinylidene complexes reveal that such chromophores have smaller responses
than similar �-acetylide species [109], in keeping with their higher energy MLCT
transitions. A number of vinylidene complexes with 
RuIICp�PPh3�2�

+ or trans-

RuIICl�P– P�2�

+ [P–P = dppm or dppe] electron donor units have also been prepared
and compared with their �-acetylide counterparts by using HRS and 800 nm Z-scan
measurements [111–113]. The extended complex 48 has an especially large �0 of
365 × 10−30 esu, a � of 13 × 10−34 esu and MLCT maximum at 439 nm (all in THF)
[112]. These vinylidine species are converted into their analogous �-acetylides simply
via deprotonation; although in some cases this change causes substantial modulation of
�0 (for example, for the dppe analogue of 41, �0 decreases from 342 to 74×10−30 esu
on deprotonation), such variations in �0 are overall inconsistent, meaning that this is
not a general approach to switching first hyperpolarizabilities [112]. However, the �2

values are about an order of magnitude larger for the �-acetylides in two such pairs of
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complexes, providing a potential mechanism for protic-switching of TPA effects
(Figure 7) [112].

Ru

PPh2Ph2P

Cl C C N

O

t-Bu

t-Bu

PPh2Ph2P

47

Ru

PPh2Ph2P

Cl C C

PPh2Ph2P

NO2CCCC

48

RuII complexes containing optically active 1,2-bis(methylphenylphosphino)-
benzene [(R,R)-diph] ligands in trans-RuIICl
�R�R�-diph�2�

+ centres have also
been studied, together with their FeII and OsII analogues in the case of 49 [110].
Although the HRS �0 values indicate that the RuII and OsII complexes have similar
responses, whilst that of the corresponding FeII species is apparently smaller [110],
resonance effects complicate this comparison because the MLCT band for the FeII

complex is very close to 532 nm. These RuII and OsII complexes show no or little
powder SHG activity at 1064 nm, but the FeII analogue has an efficiency of ca.
twice that of urea, indicating the adoption of a noncentrosymmetric crystal struc-
ture [110]. Notably, the complex 50 has a �0 of 406 × 10−30 esu, apparently the
largest for such a mononuclear RuII�-acetylide, and a MLCT maximum at 481 nm
(in THF) [110]. Comparison of this NLO response with that for 40 indicates that
a trans-RuIICl
�R�R�-diph�2�

+ centre is a rather more effective electron donor
group than a 
RuIICp�PPh3�2�

+ unit.
Recent reports from Humphrey and colleagues have included several demonstra-

tions of redox-switching of quadratic and cubic NLO responses in RuII�-acetylides
[114, 115, 118, 123]. Such compounds generally display reversible RuIII/II processes
at potentials similar to those of the ammine species studied by Coe et al. [36].
The first switching of nonlinear absorption (a cubic effect) was achieved with two

Figure 7. Protic-switching of cubic NLO responses in ruthenium �-acetylide/vinylidene complexes. The
imaginary component of the second hyperpolarizability �imag is related to �2 [112]
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dipolar trans-
RuIICl�P–P�2�
+�P–P = dppm or dppe� complexes and the octupolar

43 by using 800 nm Z-scans in an OTTLE cell [114, 115]. Three-electron oxida-
tion of the trinuclear 43 causes a large increase in � and a transition from TPA
to saturable absorption behaviour [114, 115], and these changes have also been
monitored by using a combination of femtosecond DFWM and transient-absorption
experiments at 800 nm [123]. The UV-vis-NIR absorption spectral changes upon
oxidation of 43 are depicted in Figure 8 [115]. Related detailed redox-switching
studies with a series of dipolar trans-
RuIICl�dppe�2�

+ complexes have included
further UV-vis-NIR spectroelectrochemical experiments and TD-DFT calculations
as a means to assist rationalisation of the optical absorption spectra [118]. The RuII

species are transparent below about 460 nm, whilst their RuIII analogues show NIR

Figure 8. UV-vis-NIR spectra of a dichloromethane solution of complex 43 in a 0.5 mm pathlength
OTTLE cell during oxidation with an applied potential of ca. 0.80 V vs. Ag–AgCl at 248 K (all three
RuII centres oxidise at identical potentials of ca. 0.5 V) [115]
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absorption bands, assigned to transitions from either a chloride or an ethynyl p
orbital to the partially occupied HOMO [118].

Hurst et al. and Powell et al. have described 800 nm Z-scan studies on some
symmetrical binuclear �-acetylide complexes of trans-
RuIICl�P– P�2�

+�P–P =
dppm or dppe� centres [116, 119]. At the time of writing, complex 51 had the
largest �2 to molecular weight ratio reported for an organometallic compound [116].
The related species 52 containing a ferrocenyl bridging unit has been characterised
crystallographically, and a four-fold decrease in �2 and � on conversion of 52 into its
vinylidene analogue shows that these compounds have potential for protic-switching
of NLO effects [119]. Further NLO studies with C3 octupolar RuII�-acetylides
have been reported recently [117, 120, 121]. 1064 nm HRS data shows that the �
responses of such chromophores with stilbenyl linkages are large, and especially
so given the absence of strongly electron-accepting substituents [117, 120, 121].
The cubic molecular NLO parameters �2 and � increase on moving from linear
dipolar to octupolar species, showing what has been termed as a “dimensional
evolution” [117, 120]. These octupoles possess notably large cubic NLO properties
as assessed via Z-scan experiments, and bulk ��3� values determined by using Stark
spectroscopy with doped PMMA thin films also scale with the number of metal
ions [117, 120, 121].

RuCCC C CRu

PPh2Ph2P

PPh2Ph2P

PPh2Ph2P

PPh2Ph2P

PPh2Ph2P

PPh2Ph2P

PPh2Ph2PPPh2Ph2P

CC C C C CC

51

Fe
RuCl C C

Ru ClCC

52

Powell et al. have reported 1064 nm HRS and TD-DFT results for the carbonyl
�-acetylide complex 53 and its analogues in which PPh3 or dppe replace the CO
ligands [122]. These phosphine complexes have considerably larger �0 responses
than their CO counterpart, consistent with their lower RuIII/II potentials and MLCT
energies [122]. Comparisons with the analogous FeII and OsII dppe complexes
show that �0 increases in the order Fe ≤ Ru ≤ Os, although the observed MLCT
energies follow the order Fe < Os < Ru and the corrresponding calculated trend
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is Fe < Ru < Os [122]. Further studies describing the use of Z-scan to probe the
dispersion of � in a hexanuclear dendrimeric complex (54) have recently been
disclosed [124, 125]. The observed NLO behaviour is rationalised in terms of an
interplay between TPA and absorption saturation, and can be reproduced by using
a simple dispersion equation [125]. A collaboration with Adams and colleagues
has included Z-scan measurements on several mixed �-acetylide-bpy complexes of
the form RuII�C≡CR�2�4,4′-Me2bpy��PPh3�2 (R = alkyl or aryl), including 55, for
which only modest � values were determined [126].

Several other research groups have described NLO studies with RuII�-acetylide
complexes [132–139]. Gimeno and co-workers have prepared a number of indenyl
complexes, including heterobinuclear species, with 
RuII��5-C9H7��PPh3�2�

+
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electron donor groups and studied them by using HRS at 1064 nm [132–134].
The complex 56 which features a nitrile-coordinated W(CO)5 electron-accepting
unit was studied as a mixture of its E and Z stereoisomers, giving a MLCT �max

of 456 nm and a �0 of 150 × 10−30 esu (in dichloromethane), which is notably
large for a binuclear complex [132–134]. The mononuclear RuII precursor has a
smaller �0 of 71 × 10−30 esu and a blue-shifted �max of 427 nm, demonstrating
the inductive electron-withdrawing effect of the W(CO)5 moiety [132–134]. The
ferrocenyl complex 57 also has a large �0 response, despite the presence of two
electron-donating metal centres [134].

Lin and colleagues have carried out HRS studies with 
RuIICp�PPh3�2�
+

complexes having a N -methylpyridinium [135] or nitroaryl [136] electron acceptor
group. Measurements with a 1560 nm laser show that incorporation of thienyl rings
into such chromophores acts to enhance quadratic NLO responses, as also noted in
purely organic species [136]. The extended complex 58 has �0 = 195 × 10−30 esu
and �maxMLCT� = 536 nm (in dichloromethane), which compares favourably with
the �0 of 105 × 10−30 esu determined for 40 under the same conditions [136].
By using off-resonance 1907 nm EFISHG data for two 
RuII��5-C5Me5��dppe��+

complexes, Paul et al. have concluded that the analogous FeII centre is a more
effective electron donor [138], at odds with some other studies [110, 122]. A recent
report by Fillaut et al. describes DFWM results and also acoustically-induced SHG
from PMMA-included trans-
RuIICl�dppe�2�

+ complexes with oligothienyl spacers
and aldehyde acceptor groups, including 59 [139]. Interestingly, �-stacking inter-
actions between thiophene carboxaldehyde units cause the latter complex to adopt
the centrosymmetric space group P1 (Figure 9) [139].

The first NLO studies on RuII�-vinyl complexes have been reported recently by
Xia et al. [140] The C3 symmetric species 60 and 61 have structures reminiscent of
some of the octupolar �-acetylide complexes studied by Humphey and co-workers
[104, 105, 117, 120, 121], but 1064 nm HRS experiments in chloroform reveal only
relatively small �0 values of 9 and 14×10−30 esu, for 60 and 61, respectively [140].
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Figure 9. Crystal packing diagram of the complex 59 (bis-dichloromethane solvate), showing the
centrosymmetric arrangement of the complexes (solvent omitted) and the �-stacking interactions [139]

6. MISCELLANEOUS COMPLEXES

The cubic NLO properties of a RuII phthalocyanine (Pc) and 3,4-naphthalocyanine
(NPc) complexes have been investigated [141, 142]. Hanack and co-workers
have carried out 1064 nm DFWM and THG studies on spin-cast thin films of soluble
RuII�t-Bu�4Pc oligomers with 4-diisocyanobenzene bridges (62) [141]. The DFWM
wavelength was varied over the complete range of the Pc Q-band absorption,
showing the dispersion of ��3� to a maximum value of 11	5 × 10−8 esu [141]. The
optical properties of this oligomer are primarily determined by the planar macro-
cylic units (which show saturable absorption behaviour), due to only weak axial
electronic coupling via the bridging ligands [141]. Nalwa et al. have reported THG
measurements on a tetra-t-Bu substituted NPc complex (63), deriving a ��3� value
of 1	0 × 10−12 esu when using a 2100 nm laser [142]. Similar cubic NLO suscep-
tibilities were found for several related NPcs, showing that the optical properties
are dominated by the NPc organic macrocycle [142]. Wang et al. have investigated
the ultrafast cubic NLO responses of RuIII and FeIII complexes of the derivatised
fullerene C60�NH2CN�5 by using the femtosecond optical Kerr gate technique in
dimethylsulfoxide at 830 nm [143]. The presence of two N -coordinated RuIII centres
enhances the � of the fullerene unit by more than an order of magnitude, whilst
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FeIII has an opposite effect (although only one metal ion appears to be coordinated
in this case) [143]. Despite speculation regarding bridging of several C60 units by
RuIII [143], the origin of the observed optical effects is unclear.

Coe et al. have studied a series of RuII complexes of the chelating ligand 1,2-
phenylenebis(dimethylarsine) (pdma), in part for purposes of comparison with the
related ammine compounds of the same pyridinium-substituted ligands [144–146].
A major advantage of these arsine species is their improved crystallisation
behaviour. Although many phosphine-containing complexes have been investi-
gated (see section 5 above), no other arsine species appear to have been studied
for NLO effects. Initial studies showed that the lower electron-richness of a
trans-
RuIICl�pdma�2�

+ centre when compared with a 
RuII�NH3�5�
2+ group

leads to increased RuIII/II potentials and MLCT energies, although the same
trends are observed in both arsine and ammine species as the structure of the
pyridinium-substituted ligand is varied [144]. An analysis of bond lengths and
dihedral angles obtained from crystallographic studies provides no evidence for
ground state charge-transfer, despite the strongly dipolar, polarizable nature of
these complexes [144]. Stark spectroscopic studies reveal that the � responses of
the pdma complexes are only a little smaller than those of their 
RuII�NH3�5�

2+

analogues, but this result is partly attributable to unexpected changes in the relative
�12 values on freezing [145, 146]. The complex of a N -(4-acetylphenyl)-4,4′-
bipyridinium ligand as its PF6

− salt (64) adopts the noncentrosymmetric space
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Figure 10. Crystal packing diagram of the complex salt 64 (mono-acetone solvate), showing the noncen-
trosymmetric arrangement of the chromophoric complex cations (solvent and anions omitted) [144]. The
arrows indicate the approximate directions of the molecular dipolar axes

group Pna21 (Figure 10) [144], and with a � of 170×10−30 esu (in PrCN at 77 K)
can be expected to show substantial bulk NLO effects [145, 146].

7. CONCLUSIONS AND OUTLOOK

There is no doubt that the studies described herein form an important contribution
to the field of molecular NLO materials. A very wide range of Ru complexes has
been prepared and investigated, many of which are relatively easily synthesised
and highly stable. Chromophores possessing very large molecular NLO responses,
which can compete with those of all but the very best known purely organic
species, have been identified in several instances. Although the design criteria
for Ru-containing NLO chromophores have generally been found to mirror those
already established for metal-free organic compounds, some unusual effects have
been noted, such as the decreasing of �0 values with �-conjugation extension
in pyridyl polyene complexes. Furthermore, the interesting and potentially useful
phenomena of redox-switching of molecular hyperpolarizabilities and associated
properties were first demonstrated in Ru complexes, and have subsequently been
observed in other metal complexes. Whilst most of the work to date has focused
on the molecular level, i.e. tuning and optimisation of chromophoric properties, a
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number of studies have uncovered crystalline materials showing bulk NLO effects,
and several different types of polymeric RuII-containing materials have also been
created. Although future studies can be expected to feature an increased emphasis
upon such materials aspects, fundamental molecular engineering investigations are
still valuable and desirable and can be expected to afford further insights. Further-
more, the potential for applications of transition metal complex dyes in a wide
range of electronic/photonic areas [147], means that studies with NLO properties
as their primary focus may have spin-off relevance, e.g. for photovoltaic devices.
In a relatively short time period, Ru complexes have become established as being
amongst the most versatile and fascinating NLO compounds, and their future is
surely promising.
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CHAPTER 19

LINEAR AND NONLINEAR OPTICAL PROPERTIES
OF SELECTED ROTAXANES AND CATENANES

JACEK NIZIOL, KAMILA NOWICKA AND FRANCOIS KAJZAR
Commissariat à l’Energie Atomique, DRT – LITEN, DSEN/GENEC/L2C, CEA Saclay,
91191 Gif sur Yvette, France

Abstract: Linear and nonlinear optical properties of catenanes and rotaxanes in thin films and in solu-
tion are reviewed and discussed. The compounds represent a new class of molecules, with
mobile subparts. It offers a new kind of applications, particularly for optical switching.
The rotational mobility of the subparts of these molecules was studied by the electro-optic
Kerr effect. Both catenanes and rotaxanes can be processed into partly ordered thin films
by vacuum sublimation. The degree of order may be controlled by an adequate chemical
modification of the molecules, as it was observed in a series of substituted rotaxanes.
Methods for controlling the motion of the components using light and electric fields
are presented. The linear optical properties were studied by UV-Vis spectrometry and
m-lines technique. The nonlinear optical properties were studied in solution and/or in
thin films by the optical second and third harmonic generation techniques and by the
quadratic electro-optic Kerr effect. The knowledge on the rotaxanes and the catenanes
linear and nonlinear optical properties obtained by theses studies is important for the
future construction of synthetic molecular machines and optical switching elements

Keywords: catenanes, rotaxanes, molecular switching, electro-optic effect, Kerr effect, photoiso-
merization, second harmonic generation, third harmonic generation, refractive index
dispersion, absorption, molecular motors

1. INTRODUCTION

Catenanes and rotaxanes (for a review see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13]), belong to a new class of supramolecules composed from, mechanically bond,
constituent smaller molecules, able to move independently. Due to this unique
property these new class of organic molecules represent a great interest for potential
applications in photonics, particularly in all optical and electro-optic switching
[14, 15, 16, 17, 18].
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The name of catenanes originates from latin catena which means a chain.
Indeed these supramolecules are fundamentally made from interlocked macrocy-
cles (Figure 1(a)) with, as already mentioned, ability of a relative movement of
one macrocycle with respect to the another one(s) (pirouetting). The number of
macrocycle is included in the used notation: [n] catenanes denote n interlocked
chains. Up to now supramolecules of up to 4 macrocycles were synthesized. Large
catenanes �Mw = 105� are present in nature in DNA as intermediates during the
replication, transcription, and recombination process. Since the first two-ring cate-
nane was obtained in early sixties, smaller synthetic catenanes �Mw = 103� have
attracted the interest of chemists and physicists.

The name of rotaxanes takes its origin in latin too. Rota and axis mean, respec-
tively wheel and axle. In the case of rotaxanes the macrocycle (or more of them)
is locked onto a linear thread terminated on both sides with bulky stoppers (cf.
Figure 1(b)). Rotaxanes exhibit more degrees of freedom than catenanes. The
macrocycle can not only rotate along the thread (piroutetting as in the case of
catenanes, cf. Fig. 2a) but can also move along it (shuttling, Fig. 2b). The shuttling
movement of macrocycle is limited by stoppers located at the both ends of thread
(two phenyl rings in the case of nitrone [2] rotaxane, cf. Figure 1(b)). Another
degree of freedom consists on a “bending” movement of rotaxane thread which
may lead to clipping. This could be realized by an appropriate design of thread
(e.g. a photo isomerising one). It may be leading to a reversible (or irreversible)
transformation of a [2] rotaxane into [2] catenane under an external stimulus
(e.g. light), as shown in Figure 2c. This could be possible with threads containing
alternate e.g. photoisomerizable –C = C– or –N = N– segments [19, 20, 21, 22].
Because of these different degrees of freedom in these molecules they represent
a particular interest for the fabrication of the nanoscale (nano motors) devices
[6, 9, 14, 16, 23, 24, 25, 26, 27, 28, 29].

The interest in the development of these supramolecules is triggered not only by
the possible applications in photonics, but also in medicine, biology and everyday
life. Indeed many phenomena of biological interest originate directly from the light
induced and/or controlled mechanical motions at the molecular level. One of the
very well known exemple is our vision which exploits the trans-cis isomerisation of

a) b)

macrocycle stopper thread

Catenanes Rotaxanes

Figure 1. Schematic representation of a [2] catenane (a) and a [2] rotaxane (b)
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(a)

(c)

(b)

Figure 2. Schematic representation of different possible movements in rotaxanes: a) pirouetting,
b) shuttling, and c) clipping, the last leading to the reversible (or irreversible) transformation of a [2]
rotaxane into a [2] catenane

retinal molecule. Another famous example is the energy conversion in cells based
on the rotary motion of the enzyme F1-ATPase. But there are also other aspects of
the use of these molecules to trap atoms, virus, transport atoms, molecules and as
memory elements. Therefore it is important to know how different external stimulis
like low (AC fields) and high frequency optical fields may control and/or induce
some well defined mechanical motions.

Both catenanes and rotaxanes can be functionalized and their physico-chemical
properties can be tailored by an adequate substitution. Some of them can be
processed into good optical quality thin films by vacuum sublimation.

In this paper we review the linear and nonlinear optical properties studies
performed on solutions or thin film of rotaxanes and catenanes. The linear optical
properties were studied by UV-Vis spectrometry and m-line techniques. The nonlinear
optical properties were studied by second (SHG) and third (THG) harmonic genera-
tion in thin films and by electro-optic Kerr effect measurements in solutions.

2. CHEMICAL SYNTHESIS AND MATERIAL PROCESSING

2.1 Synthesis of Catenanes and Rotaxanes

The early syntheses of catenanes and rotaxanes were mainly based on statistical
threading approaches or on directed methodologies involving chemical conversion
[30]. To obtain a catenated molecule, one ring must be closed in the presence of a
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second ring (“clipping”). In the case of rotaxanes, there are three routes leading to
their formation:

(i) synthesis of a macrocycle and then of thread, followed of its capping on
the ends

(ii) slipping of a preformed ring over the stoppers of a preformed dumbbell-stopped
component into a thermodynamically favorable site on the rod part of the
dumbbell, and

(iii) clipping of a preformed dumbbell with a suitable u-type component that is
subsequently cyclized.

Catenanes and rotaxanes were first synthesized by Stoddart and coworkers
[31, 32], Ashton and coworkers [33, 34, 35, 36] and by Sauvage and coworkers
[37, 38, 39]. The strategies chosen by Stoddart and his co-workers are based on
electron donor-acceptor interactions and hydrogen bonding between crown ethers
and ammonium ions [32]. In the case of the donor-acceptor interactions, their
work is mainly based on the combination of �-electron deficient bipyridinium and
�-electron rich hydroquinone moieties. By employing a supramolecularly assisted
synthetic methodology based on �-� stacking and �C-H · · ·O� hydrogen-bonding
interactions, they have self-assembled [2] catenanes [35]. Also rotaxanes based
on �-donor-acceptor interactions have been prepared via both the threading and
slippage procedure [34]. The rotaxanes in which the most important interaction
is hydrogen bonding, are based on the inclusion complexes between ammonium
ions and crownethers [33]. Among the strongest type of interactions, which are
used in the synthesis of interlocked molecules, is the metal coordination of organic
ligands. The synthesis and the studies of rotaxanes and catenanes, based on these
interactions, have been performed by the group of Sauvage [37, 39]. They exploited
the coordination of suitable ligands around a tetrahedral copper(I) to template
the formation of interlocked molecules [38]. Once the Cu(I) complex is formed,

Figure 3. Synthetic route for catenanes as proposed by D. Leigh group (after [40, 41])
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conventional organic reactions are employed to close the rings of catenanes and to
attach the stoppers to rotaxanes.

Later on the group of D. Leigh, presently at the University of Edinburgh,
proposed a simpler and more efficient route for the chemical synthesis of catenanes
giving a high yield [40, 41]. The proposed method uses the commercially available
para-xylylene diamine and isophthaloyl chloride compounds and catenanes
are obtained by their condensation in an appropriate solvent, as it is shown
schematically in Fig. 3. As amphasized by the authors this reaction is very versatile
and may be used for the synthesis of a large number of catenanes with different
functional groups [41]. The chemical synthesis of the molecules whose studies are
describe in this paper was done by the D. Leigh group. In the case of benzylic
amide catenane it was derived from isophthaloyl dichloride and xylylene diamine
with purity greater than 95% [40, 41].

The rotaxanes studied by us were also synthesied by the D. Leigh group using the
thirdmethod.First the threadwasprepared, as it’s showninFig.4.Than,byacondensa-
tion of triethylamine, isophthaloyl dichloride and xylylene diamine in chloroform, the
rotaxanes were obtained [42, 43, 44]. We have studied more particularly the rotaxanes
with the fumaric (fumrot) and nitrone (norot) threads (cf. Fig. 5).

2.2 Thin Film Processing

The simplest catenanes and rotaxanes such as benzylic amide [2] catenanes, fumrots
and norots were successfully processed into thin films by using 3 techniques:

(i) vacuum sublimation
(ii) spinning

(iii) drawing

Figure 4. Synthetic route for rotaxanes as proposed by D. Leigh group [42, 43]
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Figure 5. Chemical structures of norot (a), fumrot (b) and of macrocycle (c)

The first techniques yields good optical quality thin films with thickness controlled
by the deposition time. Thin films with thickness varying from ca. 100 to
1000 nm were easily obtained. The conditions for thin film deposition were as
follows:

Initial and final level of vacuum: −10−6 and 10−5 Torr, respectively
Crucible temperatures: −220� C
Target temperature: −25� C.
Deposition rate: – from 10 to 30 A/s.

The films were deposited on both glass and fused silica substrates. As example,
Table 1 gives the thicknesses of vacuum deposited thin films determined by 3
different techniques:

Profilometry
Fabry Perrot intereference
m-lines technique

Within the experimental accuracy these techniques give the same result, showing
the good homogeneity of the deposited films.

Both solution cast techniques led to very thin films, because of limited solubility.
Due to their polycrystalline structure these films scatter highly light.
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Table 1. Comparison of the thin films thickness values as measured by use of different
techniques

Sample d �±30 nm�

profilometry
d �±20 nm�m-line
spectroscopy

d (nm)

Fabry Perot interferometry

BAC-A 756 800 820±20
BAC-B 350 388 336±25
BAC-W 826 829 844±40

3. LINEAR OPTICAL PROPERTIES

3.1 Optical Absorption Spectra

The absorption spectra of solution and thin films of studied catenanes and rotaxanes
were recorded in transmission mode using a Perkin Elmer Lambda 19 spectrometer.
The solution optical absorption of benzylic amide [2] catenane and of fumrot as
well as of norot are shown in Figs. 6 and 7, respectively. The first macromolecule
exhibit a large transparency range. Due to the absorption of silica cell we were
able to measure only the edge of its absorption, which is defined by the absorption
of phenyl rings of macrocycle. When the concentration is increasing the tail of
absorption band is shifting towards larger wavelengths, as it is seen in Fig. 6.

In the case of fumrot and norot rotaxanes the transparency range is slightly
smaller, due to the absorption by the conjugated thread. Its absorption band is

Figure 6. Edge of the absorption spectrum (in log scale) of benzylic amide [2] catenane as function
of solution concentration. The increasing number correspond to decreasing concentration. The spectra
1-5 were recorded in solutions with a concentration of 7.5, 4.0, 1.5, 0.88, and 0.36 g/l respectively. The
dashed line (7) is the spectrum of a solution in methanol with a concentration of about 0.04 g/l. Its
optical density of 7 is multiplied by a factor of 10
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Figure 7. Absorption spectra of fumrot and norot. In the case of Norot two different solvents were used:
dioxane and DMSO

located around 274 nm in the case of fumrot and around 346 nm in the case of norot,
respectively. No solvatochromic effect was abserved when changing the solvent
polarity (cf. Fig. 7).

The absorption spectra of vacuum sublimated thin films of catenanes and rotax-
anes on fused silica substrates are shown in Figs. 8 and 9 respectively. Simi-
larly as in the solution case the catenane thin films exhibit a large transparency
range, as it is seen in Fig. 8. In this figure the optical absorption spectrum of
a solution cast (spinning) thin film is also shown. This film exhibits a larger
light scattering, due to its polycrystalline structure, as compared to the vacuum
evaporated thin films and as it is seen from the tail of optical absorption spec-
trum. Due to the poor solubility of these molecules only very thin films were
obtained.

We have deposited also thin films of a modified fumrot by functionalizing
the macrocycle with NO2 group, as it is seen in Fig. 10. The optical absorption
spectra of modified in this way fumrot with mono and di-substitution are shown in
Fig. 11. Later we will show that such modification, which doesn’t alter significantly
the absorption band, influence significantly the structural order and the value of
refractive index through the influence of the substitution on the molecular packing
in solid state.

3.2 m-lines Spectroscopy

The refractive indices of vacuum deposited thin films of the studied catenanes and
rotaxanes were determined by the m-lines technique. It consists on finding solutions
of an eigen equation for modes propagating in thin film. For a planar waveguide,
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Figure 8. Absorption spectra of thin films the benzylic amide [2] catenane obtained by vacuum evapo-
ration and by solution cast

Figure 9. Absorption spectra of vaccum evaporated thin films fumrot (solid line) and norot (dashed line)

shown schematically in Fig. 12, this equation, derived from boundary condition for
optical wave propagation in a thin layer, has the following form [45, 46]:

(1) 2kn2d sin�m −2�23 −2�21 = 2j�

where j = 0	1	2 
 
 
 
 is the mode number, d is the waveguide thickness, k is the
wavector, ni’s are refractive indices of the guiding layer �n2� and of the buffer
layers �n1, n2�, respectively (cf. Fig. 12) and �ij are the phase factors, which for
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Figure 10. Chemical structure of pure (1), mono – (2), di – (2) substitued fumrot

Figure 11. Absorption spectra of vacuum deposited thin films of pure (1), mono – (2), di – (2) substitued
fumrot. The observed modulations are most likely due to the Fabry–Perrot interferences

the TE polarization of propagating wave are given by

(2) �23 = tg−1

[
�n2

2 sin2 �2 −n2
3�

1/2

n2 cos�2

]

and

(3) �21 = tg−1

[
�n2

2 sin2 �2 −n2
1�

1/2

n2 cos�2

]

where �i’s are propagation angles in corresponding media (cf. Fig. 12).
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Figure 12. Schematic representation of wave propagation in a planar waveguide

The corresponding expressions for TM polarization are as follows

(4) �23 = tg−1

[

n2
2

�n2
2 sin2 �2 −n2

3�
1/2

n2
3n2 cos�2

]

and

(5) �21 = tg−1

[

n2
2

�n2
2 sin2 �2 −n2

1�
1/2

n2
1n2 cos�2

]

By measuring the coupling angles for a series of modes j with the experimental set
up shown schematically in Fig. 13 and by solving the eigen equation (1) for a given
mode propagation (or rather a set of modes) one can determine both the thin film
thickness d and its refractive index for a given polarization of propagating wave
(TE or TM). The precision depends on the number of modes propagating in thin
film, thus on the thin film thickness and on the differences of refractive indices
between the substrate and the measured film. Usually the upper buffer layer is air
or vacuum �n1 = 1�. In this determination a precise knowledge of the substrate
refractive index is required.

The m – lines technique allows also to measure the anisotropy of refractive
index. Figure 14 shows, as example, the measured intensity dependence of reflected
laser beam (no coupling into waveguide) on the interface coupling prism – air
gap controlled by the point pressure on the substrate (e.g. a bolt, (cf. Fig. 13)) as
function of the incidence angle. The coupling is manifesting by a dip occurring
at the output light intensity. The deepness of this dip depends on the quality of
thin film. A sharp, narrow and dip coupling curve is a finger print of good optical
quality of thin films.

3.3 Refractive Index Dispersion

The measured refractive index dispersions for benzylic amide [2] catenane, fumrot
and norot are displayed in Figs. 15–17, respectively. In all cases we observe a
birefringence due to the order created during the thin film deposition and favored by
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Figure 13. Schematic representation of experimental set-up for refractive index and thin film thickness
determination by using the m-lines technique

Figure 14. Example of the measured output intensity, as function of incidence angle using the experi-
mental set up shown schematically in Fig. 13. The wave coupling corresponds to the dips in the measured
output intensity

the structure of molecules. Apparently there is more phenyl rings oriented parallel
than perpendicular to the substrate plane, as the ordinary index of refraction is
larger than the extraordinary.

In the case of benzylic amide [2] catenane (cf. Fig. 15) we observe a large
refractive index, larger than for common, organic and nonconjugated polymeric thin
films. This is most likely due to a good packing, as it follows from Clausius-Masotti
formula, linking index of refraction to the material density. The refractive indices
of fumrot and norot are large too. It reflects influence not only of the conjugated
thread, but also of packing. Indeed, when functionalizing the macrocycle by NO2

substitution we observe the decrease of refractive index, thus worse packing and
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Figure 15. Refractive index dispersion in a vacuum evaporated thin film of benzylic amide [2] catenane

Figure 16. Refractive index dispersion in evaporated thin film of norot

decrease of order. For the di-substituted fumrot the vacuum evaporated thin films
are isotropic, as it is seen in Fig. 18.

The dispersions of refractive indices of these materials can be well fitted by the
Sellmeier formula

(6) n2 = n2
0 + A

�2
0 −�2

where n0 is refractive index at zero frequency and � is the wavelength. In Table 2
we reported the values of least square fit parameters n0, � and A for selected BAC,
fumrot and norot thin films.
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Figure 17. Refractive index dispersion in evaporated thin film of fumrot

Figure 18. Refractive index dispersion in evaporated thin films of pure (triangles), monosubstitued
(circles) and disubstitued fumrot (squares) (cf. Fig. 10). Full figures show ordinary whereas the open
the extraordinary index of refraction, respectively. Solid lines are Sellmeier fits
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Table 2. Values for the Sellmeier’s fit parameters (cf. Eq. 6) for selected thin films

Molecule Polarization n0 A�nm2� �0 (nm)

BAC TE 1.610 34500.00 198.00
TM 1.588 33300.00 198.00

NOROT TE 1.4624 35780.71 245.34
TM 1.4229 39021.21 201.19

FUMROT TE 1.5383 76728.1 201.01
TM 1.5199 73538.5 208.2

3.4 Propagation Losses

One of the important factor determining the use of thin films in optics, particularly
in waveguiding configuration are propagation losses defined as

(7) PL = 10
d

log10

Id
I0

where d is the propagation length, I0 and Id are the light intensities at the entrance
to the medium and at the distance d, respectively. Usually d is expressed in cm
giving propagation losses in commonly used units dB/cm.

The optical propagation losses in the vacuum evaporated benzylic amide [2]
catenane thin films, measured in planar waveguide configuration [47, 48] were
found to be PL = 2
8 ± 0
1 dB/cm at � = 1
32m and PL = 4
0 ± 0
1 dB/cm at
� = 1
55m, respectively. These values were determined by a two prism method
[49]. As for polycrystalline thin films these value are significantly smaller han
usually observed. It shows the ability of these molecules to form good optical
quality thin films by using these technologically friendly technique. It shows also
that the crystallites are very small, tens to a few hundreds of nanometers size.

4. NONLINEAR OPTICAL PROPERTIES

4.1 Definitions

Under the action of a strong electric field (DC or AC) the polarization of a medium
is changing and its variation can be expanded, in dipolar approximation, into the
power series of the forcing external field strength E giving

�P = P����−P0 = K1�
�1�
IJ �−������E

��
J(8)

+K2�
�2�
IJK�−����1	�2�E

�1
J E

�2
K

+K3�
�3�
IJKL�−����1	�2	�3�E

�1
J E

�2
K E

�3
L + 
 
 


where P0 is the static polarization (in absence of external field), ��n� is a three dimen-
sional �n + 1� rank tensor describing linear �n = 0� and nonlinear �n > 1� optical
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properties of a given material, K’s are coefficients depending on the conventions
used. For the Fourrier transform of electric field we use

(9) E�r	 t� = 1
2
E�r�

[
ei��t−kr� + c
c

]

and similarly for the polarization field. We include also all degeneracy factors into
K coefficients for a given process.

Similar expansion is valid on the molecule level for its dipole moment variation
under the applied external electric field:

��i���� = �i����−�0i = K1�ij�−������Ej(10)

+K2�ijk�−����1	�2�EjEk

+K3�ijkl�−����1	�2�EjEkEl + 
 
 


Due to the screening of external field by molecular field the field intervening in
Eq. (10) is given by

(11) E��� = f�E���

where f� is the local field factor giving the corresponding correction. For a cylin-
drical shape molecule this factor is equal to 1, while for a molecule with spherical
symmetry it is given by

(12) f� = ����+2
3

where ���� is the dielectric constant of material at optical frequency �.

4.2 Second-order NLO Properties

The second order NLO effects are described by ��2� susceptibility on macroscopic
level and by first hyperpolarizability � on microscopic one. From symmetry consid-
eration and within the dipolar approximation for a centrosymmetric molecule or a
bulk material with center of inversion the corresponding quantities describing the
NLO response are equal to zero. For a single crystal and for noninteracting dipole
moments the macroscopic NLO susceptibilities can be obtained by transformation
of � hyperpolarizability from the molecule reference frame to the laboratory system:

(13) �
�2�
IJK�−����1	�2�= f

��
I f

�1
J f

�2
K

∑

n

N �n�
∑

ijk

a
�n�
iI a

�n�
jJ a

�n�
kK�

�n�
ijk �−����1	�2�

Where N�n� is the density of (n) molecular specie and aiJ are Wigner’s rotation
matrices. Often this transformation leads to centrosymmetric bulk materials with



Linear and Nonlinear Optical Properties 625

��2� ≡ 0 because of dipole–dipole interaction favorizing usually their antiparallel
alignment. Therefore a lot of efforts is done in order to get a noncentrosymmetric
arrangement of molecules. In the case of partly ordered materials the relation (13)
is replaced by an orientational average:

(14) �
�2�
IJK�−����1	�2� = f

��
I f

�1
J f

�2
K

∑

n

N �n� < �
�n�
ijk �−����1	�2� >IJK

In the case of thin films with point symmetry �mm there are 2 nonzero ��2� tensor
components: �ZZZ

�2� and �XXZ
�2�, were Z is the symmetry axis. For historical reasons

often in the literature “d” tensor is used to describe the second order NLO properties,
with corresponding components defined as dsp = 1

2�XXZ
�2� and dpp = 1

2�ZZZ
�2�. In

practice “s” denotes the polarization of fundamental beam and “p” of the harmonic
one, respectively.

Although the studied catenanes and rotaxanes are presumably centrosymmetric
the vacuum deposited thin films of benzylic amide [2] catenane exhibit SHG ability
with the susceptibilities given in Table 2. The ��2��−2���	�� susceptibility was
measured, using the experimental set up shown in Fig. 19 for 3 films with different
thicknesses. The measurements were done at 1064.2 nm fundamental wavelength
with 13 ns pules and 10 Hz operation rate. The films were rotated along an axis
perpendicular to the propagation direction. The measurements were performed
for two fundamental – harmonic beam polarization configurations: p-p and s-p,
allowing to determine the nonzero diagonal and off diagonal ��2��−2���	�� tensor
components.

Figure 20 shows the incidence angle dependence of SHG intensity at pp funda-
mental – harmonic beam polarization configuration for a vacuum evaporated
BAC thin film, showing very similar dependence as poled polymers with point
symmetry �mm. This dependence can be well described by the formulas derived
for this symmetry [50]. The fact that the measured quadratic NLO susceptibilities

Figure 19. Experimental set-up used for harmonic generation measurements: BS – beam splitter, P –
prism, PB – Pellin –Broca prism, PMT – photomultiplier
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Figure 20. Incidence angle dependence of SHG intensity for a thin film of benzylic amide [2] catenane.
Full squares depict a least square fit to experimental data with ��2��−2���	�� suceptibility tensor
components corresponding to �mm point symmetry of thin film

(cf. Table 2) don’t depend on the thin films thickness is in favor of a bulk response
and not a surface effect. The data were calibrated with SHG measurements on a
single crystal plate of �-quartz (�111

�2��−2���	�� = 0
6 pm/V [51]). The average
�ZZZ

�2� susceptibility found for these films is of about 0.025 pm/V.
The diagonal component of the linear electro-optical tensor was measured

for a pristine vacuum evaporated BAC thin film by the modulated ellipsometry
technique [52, 53, 54] at the wavelength � = 633 nm. It was found to be r33 =
�1
2 ± 0
2�pm/V [47]. This is significantly larger than measured by the second
harmonic generation technique (cf. Table 3) at the fundamental wavelength of
�f = 1064 nm with ��2�

ZZZ�−2���	�� = 0
024 pm/V for a film 106 nm thick.

Table 3. Diagonal �ZZZ
�2��−2���	�� and off diagonal �XXZ

�2��−2���	�� components of
quadratic susceptibility for vacuum evaporated BAC thin films. The data were calibrated with
SHG measurements on a single crystal plate of �-quartz carried out at the same conditions
with uadratic susceptibility �XXX

�2��−2���	�� = 0
6 pm/V [51]

Sample Thicknees (nm) �XXZ
�2��−2���	�� �ZZZ

�2��−2���	��

(pm/V) (pm/V)

A 754 0
0086±0
001 0
034±0
004
B 354 0
0050±0
0005 0
016±0
002
C 106 0
0008±0
00001 0
024±0
002
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From theoretical considerations a ratio of r33/�ZZZ
�2� = 0
3 is expected by taking

into account only electronic contributions to the electro-optic coefficient, in a large
disagreement with the observed ratio of 60 [47, 48].

Although the origin of the observed nonzero �
�2�
ZZZ susceptibility is not very

clear, it may be either quadrupolar, or of higher order. It may be also due to an
intrinsic noncentrosymmetry in vacuum deposited thin films of benzylic acide [2]
catenane. The observed large linear electro-optic (Pockels) effect is also in favor of
an intrinsic noncentrosymmetry. Moreover, it was also shown that the linear electro-
optic effect depends on the applied external field, increasing with its strength. This
observation was tentatively interpreted by the field induced mobility of, most likely,
macrocycles.

SHG measurements were performed also on vacuum deposited thin films of
fumrot. Within the experimental sensitivity, no SHG was observed on pristine
sublimed film, as it was the case of catenane films. However these films have
shown the ability to be poled by an external DC field (corona poling). Significantly
larger values of �ZZZ

�2� susceptibility, of up to 6.8 pm/V at 1064 nm fundamental
wavelength, were observed. The poling kinetics was very similar to that observed in
poled polymers, as it is shown in Fig. 21. The poling efficiency depends on poling
temperature, thus on the thermal mobility of molecules. There is a temperature range
(cf. Fig. 22) at which the poling efficiency is increasing. However, above a certain
temperature this efficiency starts to decrease. It’s also a very similar behaviour
to that observed in polymers, where the limiting temperature corresponding to the
maximum poling temperature is the glass transition temperature.

Also, similarly as in functionalized polymers the induced orientation is unstable
in time due to the relaxation of induced polar order. The kinetics of relaxation

Figure 21. Temporal growth of SHG intensity for fumrot during the corona poling at different
temperatures
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Figure 22. Temperature variation of corona poling efficiency as measured by SHG: in situ (squares) or
by taking maximum of SHG signal after poling (diamonds)

Figure 23. Temporal decay of SHG intensity for corona poled fumrot at different temperatures [20]

depends also on temperature, as it is seen in Fig. 23. The time constants dependence
corresponding to the poling and to the relaxation as function of temperature exhibit
very similar behavior, as it is seen in Fig. 24. However the relaxation time constants
are larger than that of for orientation, what has interesting practical implications.
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Figure 24. Temperature variation of time constants of polar orientation (squares) and relaxation
(diamonds) in corona poled rotaxane [20]

4.2.1 Optical depoling

Recently it was observed that shining with light in the absorption band of poled
polymers, functionalized with NLO chromophores leads to a reversible destruction
of polar order [55, 56]. The order is restored (under the DC field) when the light is
switched off. The amount of polar order remained constant in the case of PMMA
functionalized with Disperse Red 1 for a large number of on – off cycles with
the light, whereas in the case of zwiterionic chromophores an increase in polar
order, with its better temporal stability was observed [56]. We have applied similar
treatment to the poled norot films. At the beginning we observed a reversible
destruction of polar order as in preceding cases, however the amplitude of varia-
tion was decreasing with the number of cycle (cf. Fig. 25), leading to a constant
amount of polar order. Most likely the light induced some mobility to the rotaxane
molecule (or rather its subparts) and after some number of cycles the system
is locked. Again it’s an interesting result concerning the practical application of
these molecules as such a behavior leads to stable in time noncentrosymmetric
structure.

4.3 Third-order NLO Properties

The third-order NLO effects are described by ��3� susceptibility on macroscopic
level and by second hyperpolarizability � tensor on microscopic one. In contrary
to the second order NLO effects the third order effects are present in all molecules
and in bulk materials. There exists also a similar relationship between the corre-
sponding bulk susceptibilities and the molecular hyperpolarizabilities as in the
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Figure 25. Temporal variation of the SHG intensity from the corona poled rotaxane thin film subjected
to the action of light in its absorption band

case of 2nd order NLO effects. For a single crystal it is given by the following
expression:

�
�3�
IJKL�−����1	�2	�3� = f

��
I f

�1
J f

�2
K f

�3
L

∑

n

N �n�(15)

×∑
ijk

a
�n�
iI a

�n�
jJ a

�n�
kKa

�n�
lL �

�n�
ijkl�−����1	�2	�3�

(for notations cf. Eq. (13)).
Similarly, for a disordered system the cubic susceptibility is given as a configu-

rational average over all non zero � tensor components:

�
�2�
IJKL�−����1	�2	�3� = f

��
I f

�1
J f

�2
K f

�3
L(16)

×∑
n

N �n� < �
�n�
ijkl�−����1	�2	�3� >IJKL

The nonlinear optical properties of rotaxanes and catenanes were studied mainly
by three techniques: the optical second and third harmonic generation and the
electro-optic Kerr effect. As already mentioned, the harmonic generation tech-
niques give the fast, electronic in origin, molecular and bulk hyperpolarizabili-
ties, whereas the electro-optic methods are sensitive to all effects which induce
optical birefringence, such as e.g. the rotation of molecules. Therefore the last
technique is very useful to study the rotational mobility of molecules and/or
their parts.
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4.3.1 Third harmonic generation measurements

The THG measurements were done in solution of catenanes and in thin films
of catenanes and rotaxanes using the experimental setup shown in Fig. 18. The
measurements were performed at 1 064.2 and 1 907 nm. The last wavelength was
obtained by first Stock shift of the fundamental 1 064.2 nm beam in a Raman cell.
Similarly as in SHG experiments the TH intensities were collected as function of
incidence angle when rotating the film along an axis perpendicular to the beam
propagation direction. Figure 26 shows an example of such a dependence for
a vacuum evaporated catenane thin film. The nonzero minima are due to the
contribution from thin film. All THG experiments were performed in vacuum in
order to avoid the air contribution [57]. The harmonic intensity, I3�, generated by
a thin film deposited on a substrate is given by the following expression [58, 59].

I3���� = 64�4

c2

∣
∣
∣
∣
��3��−3���	�	��

��

∣
∣
∣
∣
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S
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∣
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(
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) [
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(
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)−1
]}

2I3
�

where I� is the intensity of the fundamental beam, ��3��−3���	�	�� is the cubic
susceptibility describing the THG process

(18)  =
(
��3�

�!

)

f

/(��3�

�!

)

s

Figure 26. Incidence angle dependence of THG intensity for vacuum evaporated BAC film at 1064 nm
fundamental wavelength. Circles are measured values whereas solid line depicts the calculated ones [47]
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Figure 27. Thickness dependence of the ratio �
�3�
BAC�−3���	�	��/��3�

silica�−3���	�	�� at 1064 nm
(circles) and 1907 nm (triangles) fundamental wavelength [76]

is the ratio of the cubic susceptibility of the film (f) to that of substrate (s)

(19) �� = �3� −��

is the dielectric constant dispersion of substrate

(20) �� = �� −�3� �i = f	 s�

is the phase mismatch between the fundamental and the harmonic beams, respec-
tively, and is given by

(21) ���3�� = 6�dn��3��

��

cos���3��

where d is the medium thickness and �� is the fundamental beam wavelength.
Figure 26 shows an example of the fit of Eq. (17) to experimental data. A

very good agreement is obtained. Such a fit allows to determine precisely the
ratio  (cf. Eq. (18)) and the phase of thin film third order NLO susceptibility
if independent THG measurements are done on substrate at the same condi-
tions. At the same time the substrate serves to calibrate the data if its THG
susceptibility is known. In our case we used silica as substrate and for calibra-
tion the ��3��−3���	�	��silica values of 2
8 × 10−14 esu at 1 907 nm [60] and
3
1 × 10−14 esu at 1064 nm [57].

The measured values for representative molecules are collected in Table 4. As
expected they can be well interpreted in terms of the bond additivity model [47],
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Table 4. Third order NLO susceptibilities and molecular second hyperpolarizabilities of simple catenane
and rotaxane molecules as determined by the optical third harmonic generation technique

Molecule Wavelength n� n3� lc (nm) ��3��−3�������� ��−3��������
(nm) 10−13 esu 10−34 esu

BAC 1064 . 2.9 0.65
Fumrot ” 1.5601 1.8174 689.39 3.77 1.49
Norot ” 1.4732 1.6376 1082.16 5.79 1.67
BAC 1907 . 2.9 0.65
Fumrot � 1.5452 1.6062 5210.38 4.17 1.99
Norot ” 1.4658 1.4978 9895.8 6.86 2.13

showing no enhancement in ultra fast ��3� susceptibility owing to the pecular
structure and mobility of these supramolecules.

4.3.2 Quadratic electro-optic effect

Electro-optic effects refer to the changes in the refractive index of a material induced
by the application of an external electric field, which “modulates” their optical
properties [61, 62]. Application of an applied external field induces in an optically
isotropic material, like liquids, isotropic thin films, an optical birefringence. The
size of this effect is represented by a coefficient B, called Kerr constant. The electric
field induced refractive index difference is given by

(22) �n = nII −n⊥ = B�E2

where nII	n⊥ are refractive indices parallel and perpendicular to the applied external
field, respectively, � is the wavelength of the incident light, E is the strength of
the applied electric field, and B is the Kerr constant. This electric field induced
birefringence induced a phase change �� of the propagating beam in a Kerr cell
of thickness l under an applied electric field E which is given by

(23) �� = �kl = 2�
�

l�n = 2�dBE2

where k is the wave vector and l is the interaction length of the light with wavelength
� within the material. The applied electrical field E is given by E�t� = E∼ sin�t,
where E∼ is its amplitude. Thus, Equation (23) takes a special form

(24) �� = 2�dB
[

1
2
E2

∼ − 1
2
E2

∼ cos 2�elt

]

That means that, beside a time-independent phase shift, there exists a phase shift
of the frequency 2�el, where �el is the circular frequency of the electric field. The
Kerr cell is a set of two parallel electrodes placed between crossed polarizers. Thus
the optical signal s behind the crossed polarizers is given by
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(25) s�t� = smax sin2

(
��t�

2

)

where ��t� is the time dependent phase difference between components of electric
field vector of the laser beam parallel and perpendicular to the electric field gener-
ated by the metal electrodes; smax is the maximum signal going through the setup
at a phase difference � = �. When we replace the phase change �� by the signal
amplitude s∼�s∼ = 1

2 smax�lBE
2� at the phase shift � = �/2, the electrode length l

by the distance d of the gap between the ITO layers, the Kerr constant in the case
of parallel glass plates is [61]:

(26) B = G

�

s∼
smax

(
d

U 2

)

where U is the effective value of the applied voltage and G is a geometrical
factor [62]. Figure 28 depicts the experimental set up for electro-optic Kerr effect
measurements in solution. The light source is a cw He-Ne laser operating at the
wavelength of 633 nm. The laser beam is propagating through a polarizer (P) and
than a Soleil-Babinet compensator (SBC). The incident beam polarization is fixed
at 45 degrees with respect to the incidence plane. We used SBC to introduce an
extra phase shift between s and p polarizations of incident wave in order to control
the phase shift between the components of the electric field vector perpendicular
and parallel to the electric field generated by the electrodes. Afterwards, the beam
is sent into the Kerr cell, whose normal is tilted by an angle of ca. 45� with respect
to the beam propagation direction. The Kerr cell consists of the material being
examined, placed in an insulating container with two electrodes attached to supply
the necessary electric field. Next, the light passes through another polarizer (the
analyzer (A)). Finally, the light is filtered from background and scattered light
by using appropriate interference filter and sent into a photodetector. Initially, the

Figure 28. Schematic representation of the experimental set up for electro-optic Kerr effect measure-
ments. The normal to the sample is tilted by 45 degrees with respect to the beam propagation direction
and the incident polarization makes an angle of 45� with incidence plane



Linear and Nonlinear Optical Properties 635

Figure 29. Frequency dependence of Kerr constant B (in pmV−2) for fumrot and norot in dioxan
solution 1 and 2. a, Kerr constant of 1 (triangles) and 2 (circles) as a function of the AC frequency of
the electric field in dioxane at 296 K. Applied voltage U = 7 V; separation between electrodes = 20m
(that is, an electric field strength of 0
35 Vm−1). Solid lines are Lorentz fits (maxima at 57.7 Hz, 53.3
and 82 Hz [63]

polarizer-Kerr cell-analyzer combination is adjusted so that no light is transmitted
in the absence of the external electric field. By applying the external electric field
is to the Kerr cell one creates optical birefringence (cf. Eq. (22)) and consequently
a phase mismatch between the s and p polarized waves resulting in a small signal
in detector. By using the lock-in detection, tuned at 2�el frequency with the use of
appropriate filters very weak �n values can be measured.

As already mentioned, the electro-optic Kerr effect measurements in solution
permits to test the rotational mobility of molecules, or their parts, under the applied
low frequency AC field. Applying this technique for rotaxane solutions [63] a reso-
nance enhancement in Kerr constant B at the frequency of 57.7 for norot at the
external field strength 0
35 Vm−1 (cf. Fig. 29) was observed the first time. For
similar fumrot solutions a more complex frequency dependence of Kerr constant is
seen, with a strong resonance at 53.3 Hz, accompanied by a shoulder at 83 Hz (cf.
Fig. 29). The generated signals are large due to large birefringences created by rota-
tion of these big molecules. At the concentration of 10−7 mol dm−3 the measured
Kerr constant was comparable to that of liquid nitrobenzene �44 000 10−16 m V−2�
[64]. The resonance frequencies depend on the strength of applied electric field and
on temperature as its is seen in Figs. 30 and 31, respectively. It shifts toward lower
values when the strength of electric field is increasing. It shows that it is possible
to control the speed of rotation of macrocycle by electric field. The decrease of
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the pirouetting rate with the field strength shows braking effect of electric field,
as expected. The increase of temperature (cf. Fig. 31) leads to the increase of
resonance frequency, which is also expected because of temperature dependence of
solution viscosity.

Figure 30. Field-strength-dependence of the Kerr constant a function of the AC frequency of the electric
field at 296 K. Applied voltage U = 7 V (open circles, maxima at 56 Hz), 11 V (full circles, maxima at
36 Hz), 13 V (open squares, maxima at 33 Hz) and 16 V (bfull squares, maxima at 25 Hz)

Figure 31. Temperature dependence of resonance frequency in norot solutions in dioxan
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The rotation of macrocycle around the thread in fumrot and norot was also
observed by the 1H NMR spectroscopy [63], however at frequencies significantly
larger than those observed in the Kerr effect measurements: 405 Hz and 310 Hz
for fumrot and norot, respectively. As already mentioned (cf. Fig. 30) the reso-
nance frequency is increasing with decreasing field strength. The measurements
of resonance frequency at different field strength values permitted to extrapolate
the resonance frequency to zeroth field strength, finding it slightly larger than that
observed by NMR spectroscopy.

Large electro-optic Kerr effect was also observed in BAC solutions in dioxan
(cf. Fig. 32). At the concentration of 10−4 mol dm−3 and at the field strength of
1
6 V�m−1 a resonance in B constant at the frequency value close to 2000 Hz was
observed [65]. This frequency is significantly larger than that observed in rotaxanes,
but smaller than measured by NMR. Again, we believe, this difference can be
explained by the braking effect of external field on the macrocycle rotation. Indeed
it was also found [65] that the resonance frequency depends on the external field
strength, shifting to lower values with its increasing strength.

4.3.3 Trans-cis izomerization (clipping movement)

The molecular structure of the fumaramide and nitrone thread predispose them to
bending under the light illumination and/or through heating through the already
mentioned trans-cis izomerization process. This is expected to lead to a clipping

Figure 32. Frequency dependence of electro-optic Kerr constant B for BAC (squares) macrocycle
(triangles) solutions in dioxan. The applied voltage was equal to 40 V and the distance between electrodes
of 25m [65]
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movement. The first studies made on silica deposited thin films indicated such a
movement through 3 observations due to the irradiation at the tread single – double
band absorption band:

(i) reversible shift of optical absorption spectrum
(ii) reversible change of the thin film Fabry – Perot fringes pattern

(iii) reversible variation of the ��3��- 3���	�	�� susceptibility, after its initial
decrease

However, the IR studies made on thin films of pure trans and cis forms of fumrot,
deposited on CaF2 substrates show a little variation of their IR specrum after UV
irradiation. It means that the energy barrier for this transformation is very high.
The IR spectra in the �1000–4000� cm−1 region of the studied rotaxane films are
shown in Figure 33. The bands due to the " hydrogen stretching vibration of the
trans isomers appears at 3326, 3246 and 3049 cm−1, whereas bands associated with
the " carbon-carbon double stretching vibrations appear at 1667, 1627, 1539 and
1438 cm−1. For the cis form there are two hydrogen bands at 3279 and 3063 cm−1,
and carbon-carbon double bands at 1647 and 1526 cm−1. In order to check the
photoisomerization process the infrared absorption spectra were collected in func-
tion of the irradiation time. The rotaxane film was irradiated with an UV mercury
vapors lamp at 365 nm. The absorbance was measured irradiating the sample and
than during the relaxation. Figure 34 shows the variation of the 1539 cm−1 band
during and after UV irradiation. These measurements were performed over a long
period of time, to study in detail the thermal cis-trans back-relaxation process.
After few minutes the absorbance increases. This behavior is essentially due to
the angular redistribution of trans and cis isomers according to their capability to
rotate by random thermal interactions. Six hours after irradiation the absorption
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Figure 34. Variation of the transmission intensity of the carbon-carbon double band at 1539 cm−1 as a
function of time

spectra almost recover their initial shape. The observation of the transient changes
in the optical absorption spectrum after photoexcitation allows direct quantitative
monitoring of the submolecular translational process.

Recently, Gatti et al. have shown [19] that the rate of rotation of the interlocked
components of fumaric-derived [2] rotaxanes can be accelerated by isomerizing
them to the corresponding maleamide [2] rotaxanes. Using light, the researchers
were able to disrupt the hydrogen-bonding motif between the ring and the thread,
drastically reducing energy barriers and allowing the components to move with
respect to each other at far greater speeds. As a result, the rate of the pirouetting
motion was increased approximately by six orders of magnitude. In the second type
of rotaxane, intermolecular photoinduced electron transfer was used to induce a
reversible shuttling motion on a time scale of microseconds.

5. CONCLUSIONS

In conclusion, we have reviewed the linear and nonlinear optical properties of
simplest benzylic acide [2] catenanes and benzylic amide [2] rotaxanes. These
molecules can be processed into good optical quality thin films with a high refractive
index, which can be modified by a subsequent functionalization, as it was shown
in the case of rotaxanes.

We have shown that the electro—optic Kerr effect in solution is a useful tool to
study the relative motion of these molecules. We observed a strong birefringence
at frequencies that correspond to the rate at which the molecular cycle “pirouettes”
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around another component. The rotation rate of macrocycle in catenane solutions is
significantly larger (more than one order of magnitude) than in rotaxanes. In both
cases the rate of rotation depends on the strength of applied field and decreases with
its increase. The rotation rate depends also on temperature and increases with its
increase as it was observed in the case of rotaxanes. It shows that these molecules re
interesting, functional materials, whose properties can be controlled under external
excitation, like electric field and light.

Rotaxanes were proposed as challenging materials in areas covering molecular
electronics like for example switches [66], molecular wires [14], and finally, logic
gates [14]. These molecules are already known for their binary reversible states
arising from shuttling of the macrocycle along the thread.

Many physical phenomena have been exploited to distinguish between two posi-
tions of the shuttling macrocycle. In particular the interest was drawn by optical
properties. For example the UV-vis absorption spectroscopy and circular dichroism
measurements were applied [67]. The authors studied peptido[2]rotaxanes consisting
of an intrinsically achiral benzylic amide macrocycle locked onto various chiral
dipeptide. Their results, although very interesting required lot of experimental skill
since the dichroic induced changes manifested in the wavelength region below
300 nm, where most of solvents start to absorb the light. A competitive, convenient
and cost effective methods relies on fluorescence output. The reason is accessibility
of high performance laser able to excite in a tiny volume without producing side-
products. Some materials adapted for this technique have already been reported
[68, 69, 70]. The light is therein used both to induce macrocycle movement and
“read” its position relative to the thread terminations. For example, the authors
[70, 71] fabricated [2]rotaxanes terminated by two different fluorescent stoppers.
The thread is terminated by 4-amino-1,8-naphtalimide-3,6-disulphonic disodium
salt (“N” stopper) and 1,8-naphtalimide-5-sulphonic sodium salt (“S” stopper). The
macrocycle in bell shape was �-cyclodextrin. Under illumination with the 360 nm
line, the molecule changes its isomer form from cis to trans. Excitation with the
430 nm line reverses the process. The maximum of fluorescence originating from
“N” stopper is around of 520 nm and that of its counterpart in the vicinity of 395 nm.
It was shown that in the presence of the macrocycle enhanced characteristic fluo-
rescence of the neighbouring stopper. In that way the total fluorescence spectrum
can be altered by shuttling movement of the macrocycle. The experiment was done
in solution.

Fluorescence spectroscopy was used also as a detection tool in case of a peptide
based [2]rotaxane [72]. It was observed that in polar solvents like dimethyl sulfoxide
(DMSO) fluorescence emission spectra were virtually same like those of the thread
alone. Since fluorescence origins in this rotaxane from anthracene group, it was
concluded that hydrogen bonds linking the macrocycle to the anthracene-based
stopper were broken and the macrocycle resided on the alkyl side of the thread.
When the solvent was hardly polar like 1,4-dioxane, the macrocycle rest bonded
to the anthracene stopper and the spectrum broadened and red-shifted. By mean
of time-resolved fluorescence spectroscopy, the authors demonstrated that it was
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possible to induce the macrocycle motion on nanosecond scale without any other
external assistance but photons.

Finally, the anthracene-based [2] rotaxanes were studied in single layer OLED
architecture [73, 74]. The measurements revealed new features in electrolumines-
cence spectra comparing to photoluminescence both in solid state and in solution.
However, the origin of the phenomena is not still well understood and far to be
exploited in applications.

Polymerized [2]rotaxanes were claimed as good chemical vapour sensors [75].
In thin film form they were sensible to phenol vapours as well as to other H-bond
donors such as p-nitrophenol or 2,2,2-trifluoroethanol. The observed phenomena
was reversible and resulted in fluorescence quenching accompanied by a slight
bathochromic shift. It was also found that the polymers were apt to metal bonding
due to the presence of the tetrahedral pockets. This fact manifested itself in the
appearance of an additional absorption band. The sensitivity of a given polymer
thin film was proportional to the film porosity defined by steric properties of
the R-substituant. The studies and applications of these molecules are just at the
beginning.
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CHAPTER 20

SECOND HARMONIC GENERATION FROM GOLD
AND SILVER NANOPARTICLES IN LIQUID
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Abstract: A general review of the second harmonic (SH) light scattered from aqueous suspensions
of small gold and silver metallic particles is presented. The first part is devoted to the
general theory of the SH generation from particles in order to discuss the incidence of
the shape of the particles and the retardation effects of the electromagnetic fields on the
total SH scattered field. The next part focuses on the problem of the polarization fields,
a problem rather specific to metallic particles. Because of their strong polarizability and
the possibility of resonance enhancements through surface plasmon (SP) excitations, the
exciting field cannot be taken as the incident field only but rather as the superposition
of the incident and the polarization fields. An illustration of this problem is presented
with the determination of the exact origin of the SH response from metallic particles.
This experimental section presents two different sets of data: the size dependence of
the SH intensity and the polarization patterns recorded in the geometrical configuration
of Hyper Rayleigh Scattering. SP resonance enhancements of the absolute values of
the hyperpolarizabilities are then discussed before a presentation of the SH response of
aggregating suspensions of particles and their possible applications is given

Keywords: Second Harmonic Generation – Hyper Rayleigh Scattering – Surface Plasmon Reso-
nances – Hyperpolarizability – Retardation effects – Local fields – Core-Shell particles –
Aggregation – Bioassay

1. INTRODUCTION

The synthesis and application of small metallic particles date back from the very
early days of history when the stability of gold metal particles conferred them a
prominent role in medicine against ailments. During the 1990’s, dramatic efforts
have been undertaken to develop new routes for the synthesis of metal particles
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with different sizes, shapes, morphologies or compositions [1]. A particular atten-
tion has been paid to particles made from noble metals like silver and gold because
of their chemical stability, their use in the elaboration of complex structures and
most notably their optical properties. Indeed, their photo-absorption spectra in the
visible region of the spectrum between 400–800 nm is dominated by the surface
plasmon resonance (SPR), namely the collective oscillation of the conduction band
electrons [2]. This resonance confers to aqueous suspensions of gold metal parti-
cles a ruby red colour and to that of silver metal particles a bright yellow colour.
In recent years, the developments of new synthesis routes have been pursued
with different motivations: for instance the grafting of organic compounds at the
surface of the particles to develop a refined chemistry based on these nano-objects,
the synthesis of a whole range of shapes, from spheres and rods to prisms and
cubes or the assembling of the particles into organized films by self-assembling or
templating techniques. In parallel, the study of fundamental physical phenomena
has been devoted to the understanding of the quantum confinement on their optical
and electronic properties and of the relaxation mechanisms following a light pulse
perturbation or to the electromagnetic response of the assemblies of such parti-
cles [3–5]. In particular, experimental methods at the single particle level or on
two-dimensional assembly films have been investigated [6–8].

It is not surprising therefore that the optical properties of small metal parti-
cles have received a considerable interest worldwide. Their large range of appli-
cations goes from surface sensitive spectroscopic analysis to catalysis and even
photonics with microwave polarizers [9–15]. These developments have sparked a
renewed interest in the optical characterization of metallic particle suspensions, often
routinely carried out by transmission electron microscopy (TEM) and UV-visible
photo-absorption spectroscopy. The recent observation of large SP enhancements of
the non linear optical response from these particles, initially for third order processes
and more recently for second order processes has also initiated a particular attention
for non linear optical phenomena [16–18]. Furthermore, the paradox that second
order processes should vanish at first order for perfectly spherical particles whereas
experimentally large intensities were collected for supposedly near-spherical particle
suspensions had to be resolved. It is the purpose of the present review to describe
the current picture on the problem.

2. GENERAL THEORY

We are interested in a first stage in the description of the SH response from
arbitrary particles, with minimum restrictions on their shape or their size. Before
discussing the particular case of small gold and silver metallic particles, we wish
to recast the problem in its generality. Originally, second harmonic generation
(SHG), the process through which two photons at a fundamental frequency are
converted into one photon at the harmonic frequency, has been used to investigate
planar interfaces [19–21]. The advantage of this second order nonlinear technique
as compared to linear optical methods is that the conversion process is forbidden in
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media possessing a centre of inversion. Hence, interfaces between two such media
are readily accessible through the technique. Buried interfaces like solid/liquid
or liquid/liquid interfaces are therefore within reach and many studies have been
reported on this topic in the literature to date [22–25]. It is thus of interest to see
the possibilities of the technique in the case of non planar interfaces.

To do so, we consider an interface between two media possessing a centre of
inversion. Within the electric dipole approximation, no signal may arise from the
volume of both media and the spatial location of the source to the conversion process
is reduced to a thin layer of material at the surface of the particle. One of the two
media is the external medium and the other one the inner medium or the particle
medium. Disregarding polarization fields, the incoming exciting fundamental field
at any point �r ′ at the surface of the particle is simply �E��� �r ′�, which taken as a
plane monochromatic wave, writes [26]:

(1) �E��� �r ′� = Eê��� exp�−i�t� exp�−i�k��� · �r ′�
where ê��� is a unit vector, E is the field amplitude and �k��� is the wave vector

of the plane wave. For simplicity, we have dropped the complex conjugate and we
assume a geometrical configuration where the incoming field propagates along the
Oz axis and the incoming field is polarized in the Oxy plane with a polarization
angle �, namely:

(2) ê��� = cos �x̂+ sin �ŷ

see Figure 1.
The induced local nonlinear polarization �p�	� �r ′� at the harmonic frequency

	 = 2� at the location �r ′ on the surface of the particle is then [27]:

(3) �p�	� �r ′� = ↔
T�r̂ ′�

↔

�r̂ ′� � �E��� r̂ ′��E��� r̂ ′�

ẑ

n̂

x̂

E(ω,r')

k (ω)

E(Ω,r)
�� K 

(Ω)
�

'r
�

γ � �

� φ
θ

ω

Γ Ω

Figure 1. Schematics of the geometrical configuration used for the HRS from small particles
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written in the laboratory frame. Hence, in Eq. (3),
↔

�r̂ ′� is the local hyperpo-

larizability tensor at location �r ′ in the surface local frame and
↔
T�r̂ ′� is the frame

transformation tensor allowing passage from the local surface frame to the labora-

tory frame. Some considerations on the local hyperpolarizability tensor
↔

�r̂ ′� can

be discussed at that point. For instance, the elements of this local tensor vanish
according to the local symmetry of the surface. If an isotropic surface is considered,
then the local surface normal must be distinguished from the two in-plane axes, the
latter two axes being undistinguishable. Thus, the local hyperpolarizability tensor
possesses only three independent elements, namely 
zzz�r̂

′��
zxx�r̂
′� and 
xzx�r̂

′�,
and seven non vanishing elements:


zzz�r̂
′�(4a)


zxx�r̂
′�(4b)


xxz�r̂
′� = 
xzx�r̂

′�(4c)


zyy�r̂
′�(4d)


yyz�r̂
′� = 
yzy�r̂

′�(4e)

with the added relationships:


xxz�r̂
′� = 
yyz�r̂

′�(4f)


zxx�r̂
′� = 
zyy�r̂

′�(4g)

For metallic surfaces, the three non vanishing and independent elements have
been recast into three parameters, also named the three Rudnick and Stern param-
eters a, b and d, corresponding to the three nonlinear currents induced at the
harmonic frequency, respectively two surface currents perpendicular and parallel to
the surface and one volume current perpendicular to the surface [28]. Theoretical
expressions for these parameters are known within some approximations and for
perfect surfaces [29, 30]. For anisotropic surfaces, the elements of the hyperpolariz-
ability tensor would follow different relationships from Eq. (4) and would be taken
from the usual Tables [31]. For metallic particles, the polarization field inside the
particle is non negligible and the local exciting field should be taken as the super-
position of the incoming and polarization fields. It is also still debatable whether
the sheet of polarization is located inside or outside the particle. This problem has
been discussed for planar interfaces and a similar discussion could be developed
here. The problem of the exciting field will be discussed further below for metallic
particles.

At this stage, each single point �r ′ radiates a spherical SH wave and the total
field amplitude collected at the harmonic frequency at a position �r is given by the
coherent superposition of these spherical waves:

(5) �E�	� �r� =
∮

S

eiK�	���r−�r ′ �
∣
∣�r −�r ′∣∣

([

n̂× ↔
T�r̂ ′�

↔

�r̂ ′��E��r ′����E��r ′���

]

× n̂

)

dr̂ ′
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where we have introduced the direction of collection n̂ through n̂ = �r/r.
Equation (5) is rather general, except that the polarization field at the SH frequency
is disregarded, similarly to that at the fundamental frequency. This simple model is
though applicable to many systems like molecular systems where the interactions
between the scattering centres are weak enough to be neglected. For instance, this
model is valid for dye molecules at the surface of liposomes or micelles [32, 33].
Equation (5) is also valid for particles of arbitrary sizes and shapes. Actually, the
domain of validity covered by Eq. (5) is larger than that of the SH generation from
the surface of particles and could be extended to the case of the SH generation
from a collection of point sources located within a known volume. In Eq. (5), a
d�r ′ volume integration would be inserted in place of the dr̂ ′ surface integration.
Retardation effects are taken into account through the full expression of the expo-
nential phase factors. In the approximation of small particles, with a radius much
smaller than � the wavelength of light, the spatial phases can be expanded and
truncated to their first order in r ′/�. In general, the field amplitude does not vanish
except if the surface of integration is centrosymmetrical. In particular, the total field
vanishes altogether for spherical surfaces. On the opposite, if the particles are no
longer small, the phase retardation must be taken into account and in that case an
SH signal can be collected in the forward direction irrespective of the shape of the
particle if the condition:

(6) k ·a = (
2k��� −K�	�

)
a >> 1

is fulfilled where a is the radius of the particle.
One final point must be underlined in the case of rather large particles where

the spatial variation of the fields cannot be neglected anymore. For these particles,
the field gradients inside to particles no longer vanish and therefore we should not
disregard a volume contribution to the nonlinear polarization of the form:

(7) �p�	� �r ′� = � ��
[�E2��� �r ′�

]
+
�E��� �r ′��� · �E��� �r ′�

where � and 
 are two complex parameters. Since we are interested in rather small
metallic particles in the remainder of the text, we will not discuss this contribution
although, originally, it has been introduced and discussed as the source to the SH
generation [34, 35].

3. SMALL METALLIC PARTICLES

The problem of metallic particles like gold and silver particles is similar to the
previous case except that the material is now highly polarizable. Hence, the polar-
ization sheet is excited by the local field which cannot be taken as the incoming field
only. It must be taken as the superposition of the incoming field and the polarization
field. This problem is rather difficult in general and several theories have been
proposed in the past [35–40]. For arbitrary shapes, one may directly use a numerical
approach like the discrete dipole approximation (DDA) for instance. It has however
been solved analytically for spherical particles by G. Mie and H. Chew et al. in
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Figure 2. Transmission Electron Microscopy (TEM) picture of small gold metallic particles. The shape
of the particles approaches that of perfect spheres

different circumstances for different boundary conditions [41–43]. If we assume
that the particles do not depart too far from the spherical shape, this model of
the spherical expansion may still be valid. As observed from transmission electron
microscopy pictures, this is often the case, see Figure 2.

We therefore start assuming that the particles are compact and define the radius
a of the smallest sphere containing the particle [44]. Thus, the condition r ′ ≈ a is
always fulfilled. The incoming plane wave can be expanded into spherical waves
through a multipole expansion with respect to the parameter x = a/� [27]:

(8) �E��� �r ′� =∑

l

{�El��� �r ′�+ �Ml��� �r ′�
}

The first order term of Eq. (8) is reduced to the field �E1��� �r ′�, the electric dipole
field, whereas the second order term, linear with the parameter order x = a/�, is
the sum of the fields �E2��� �r ′� and �M1��� �r ′�, respectively the electric quadrupole
and the magnetic dipole fields. The surface nonlinear polarization of the form of
Eq. (3) is now a series expansion with respect to the parameter x = a/� too. Its
general expression is:

(9) �p�	� �r ′� =∑

l

�pl�	� �r ′�

but because of the tensorial product of the fundamental field �E��� �r ′� its first
order term is:

(10) �p1�	� �r ′� = ↔
T��r ′�

↔

��r ′� � �E1��� �r ′��E1��� �r ′�
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and its second order term:

(11) �p2�	� �r ′� = 2
↔
T��r ′�

↔

��r ′� � �E1��� �r ′�

(�E2��� �r ′�+ �M1��� �r ′�
)

The nonlinear polarization �p1�	� �r ′� of Eq. (10) is a purely local surface polar-
ization because it only depends on the value of the fields at location �r ′. Because it
depends on the fundamental field inside the particle, it is subjected to resonances
when the quantity ����+2�m vanishes, where ���� is the complex dielectric func-
tion of the metal and �m that of the surrounding medium. On the opposite, the
nonlinear polarization �p2�	� �r ′� of the form of Eq. (11) is a non local nonlinear
polarization since it depends on spatially varying fields within the particle. Simi-
larly to the first order contribution, it is subjected to resonances when the quantity
2����+3�m vanishes. These resonances are the usual surface plasmon resonances
of the particle. Within the condition of non magnetic media, the magnetic dipole
field does not introduce any resonances. We neglect higher order terms.

At the harmonic wavelength, the source to the radiated fields is the sheet of
polarization. However, the total field radiated at location �r in the outer medium
cannot be taken as the simple superposition of the spherical waves generated by
each point �r ′ at the surface of the particle because the metal particle is also highly
polarizable at the harmonic frequency. The total field in the particle must be
the superposition of the radiated field and the polarization field at the harmonic
wavelength and the total field at the detector in the outer medium is obtained
by solving the boundary conditions at the surface of the particle. In spherical
coordinates, the harmonic field at location �r radiated by a nonlinear polarization
source at location �r ′ is now also an expansion of the parameter x = a/� of the
form:

(12) �E�	� �r� �r ′� =∑

l

{�El�	� �r� �r ′�+ �Ml�	� �r� �r ′�
}

where the first order term, the electric dipole field �El�	� �r� �r ′�, is equivalent
to the radiation at the harmonic frequency by a point-like dipole located at the
centre of the particle and the second order term, the sum of the electric quadrupole
field �E2�	� �r� �r ′� and the magnetic dipole field �M1�	� �r� �r ′�, is the first-order
correction term accounting for the non-vanishing size of the particle. In a way
similar to the case at the fundamental frequency, surface plasmon resonances can
occur at the harmonic frequency. Hence, the first order term has a resonance
whenever the quantity ��	�+ 2�m vanishes and the second order term whenever
the quantity 2��	� + 3�m vanishes. It therefore appears that the SP resonances
may be excited through either the fundamental or the harmonic fields. Because the
nonlinear polarization is a surface nonlinear polarization, see Eq. (3), the total field
collected at the detector, located at position �r, is a surface integral:

(13) �E�	� �r� =
∮

s

�E�	� �r� �r ′�dr̂ ′
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In order to have a better insight into the problem, we first discuss the case of
the first term �E1�	� �r� of the multipole expansion of the total field �E�	� �r� which
arises from the insertion of Eq. (12) into Eq. (13). The latter SH field �E1�	� �r� is
generated by a nonlinear polarization source itself the sum of a local and a non
local contribution, as seen from Eq. (9)–(11), two successive order of the scaling
parameter x = a/�. The purely local contribution to the total SH field generated
thus stems from the local source to the nonlinear polarization and the local SH
harmonic field �E1�	� �r�. This purely local contribution to the total field scales
with the second power of the parameter x = a/� through the surface integral of
Eq. (13). It also has SP resonances at the fundamental or the harmonic frequency
whenever the quantities ���� + 2�m or ��	� + 2�m vanishes. Interestingly, the
SP resonance at the fundamental frequency should be sharper because it involves
a higher power of the fundamental field. The non local contribution to the SH
harmonic field on the opposite stems from two origins: the first one is a non
local contribution to the nonlinear polarization through the electric quadrupole and
magnetic dipole fields �E2��� �r ′� and �M1��� �r ′� at the fundamental frequency and
the second one through the non local contribution to the SH field �E2�	� �r� with
the local nonlinear polarization �p1�	� �r ′�. Interestingly, the first of these two non
local contributions has its SP resonance frequencies determined by the conditions
2����+3�m = 0 and ��	�+2�m = 0 whereas the second one has its SP resonance
frequencies determined by the conditions ���� + 2�m = 0 and 2��	� + 3�m = 0,
according to their different origins. The non local contribution to the total SH field,
whether originating from the retardation effects at the fundamental or the harmonic
frequency, scales with the third power of the parameter x.

In agreement with the considerations developed above for spherical particles, the
first purely local contribution vanishes for perfectly centrosymmetrical particles,
and in particular for spheres. In that case, the model developed above coincides
with that proposed by J.I. Dadap et al. [39, 40]. In particular, the two non local
contributions correspond to the effective dipole �peff and effective quadrupole �Qeff

contributions introduced in that work. The effective dipole arises from retardation
effects taken into account at the fundamental frequency and the effective quadrupole
to retardation effects at the harmonic frequency only. Contributions with retardation
effects at both the fundamental and the harmonic frequencies would be of higher
orders of the parameter x. As we shall see later, the different contributions may be
distinguished through their angular and polarization patterns.

4. HYPER RAYLEIGH SCATTERING

SH generation from aqueous suspensions of particles is not a coherent process
because of random arrangement of the particles. No phase relationships occurs
between the SH waves produced by each single particle. However the best agreement
is obtained with theoretical models because for a liquid suspension of particles,
the environment is rather homogeneous. The liquid medium can be described with
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Figure 3. Schematics of an experimental arrangement for the measurement of the Hyper Rayleigh
Scattering intensity (HWP: half-wave plate; LPF: low-pass filter, L1 and L2: lens; BD: beam dump;
A: analyzer, HPF: high-pass filter)

continuous models. A general experimental set-up of this method, called hyper
Rayleigh scattering (HRS), is presented in Figure 3 [45–47].

The total scattered intensity is the mere superposition of the intensities scattered
from each particles:

(14) I�
HRS = GN

〈
E��	� �r�E∗

� �	� �r�
〉

where G is a constant and N is the number of particles in the volume of
interaction. The Hyper Rayleigh Scattering (HRS) intensity collected for the light
vertically polarized is obtained setting � = 0 or (V) and for the light horizontally
polarized setting � = �/2 or (H) in Eq. (14).

The intensity therefore scales with the number density of the particles in the
solution and it is common practice to verify this behaviour in experiments, see
Figure 4.

As expected from the theoretical developments previously available for non
centrosymmetrical molecules, the HRS intensity for the two polarization states as
a function of the input fundamental wave polarization angle � is given by [44]:

(15) I�
HRS = a��� cos4 � +b��� cos2 � sin2 � + c��� sin4 �

when the retardation effects at the fundamental and the harmonic frequencies are
neglected. In that case, the only contribution to the total intensity is the purely local
contribution, similarly to molecules. The real coefficients a���, b��� and c��� are then
defined by:

a��� = GNa4K���
a

1

�����+2�m�4
1

���	�+2�m�2
〈
�
�XX�2

〉
(16a)
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Figure 4. Dependence of the HRS intensity with the number density of the particles for an aqueous
suspension of gold particles of 20 nm diameter. The HRS intensity is normalized with the neat water
HRS signal

b��� = GNa4K
���
b

1

�����+2�m�4
1

���	�+2�m�2(16b)

×
〈

�XX
∗

�YY +
∗
�XX
�YY +2 �
�XY �2

〉

c��� = GNa4K���
c

1

�����+2�m�4
1

���	�+2�m�2
〈
�
�YY �2

〉
(16c)

where K���
a , K

���
b and K���

c are constants and where the elements of the hyperpo-
larizability tensor have been reported into the laboratory frame. These coefficients
are not independent and they obey the following relationships [48]:

a�0� + c�0� = b�0�(17a)

2a��/2� = 2c��/2� = b��/2�(17b)

The HRS intensity given through Eqs. (15)–(17) thus possesses a dependence
with the power of four of the radius of the particles a and also SP resonances at
both the fundamental and the harmonic frequency.

Formally, the expression of Eq. (15) of the HRS intensity is similar to the one
usually given in the literature as:

(18) IHRS = G′ 〈N0

2
0 +N
2

〉
I2 exp �−�2A���+A�	��

where we have furthermore introduced the linear absorption coefficients at the
fundamental and the harmonic intensity. In expression Eq. (18), we have made
explicit the non vanishing signal arising from the solvent molecules. It is straight-
forward to see that expression Eq. (15) reduces to expression Eq. (18) for the
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polarization configuration � = 0 and � = 0 or � = �/2 and � = �/2, two configu-
rations known as vV and hH respectively. For other polarization configurations, the
connection between the hyperpolarizability tensor elements of expressions Eq. (15)
and Eq. (18) is not simple and involves linear combinations. From the slope of the
line fit of the HRS intensity as a function of the number density of particles, see
Figure 4, its normalization with the extrapolated value of the HRS intensity for a
vanishing concentration of particles, taken the usual value of 
0 = 0�56×10−30 esu
for the molecular hyperpolarizability of water, the absolute value of the hyperpo-
larizability of a particle can be obtained [17].

5. ORIGIN OF THE HRS SIGNAL

It is important to see that the expression of Eq. (15) of the HRS intensity given
above vanishes altogether if the particles are perfect spheres. In that case, only
the non local contribution to the HRS intensity must be considered, a contribution
scaling with the power of six of the radius of the particles. The experimental
determination of the vanishing character of the first order term is available: on one
hand it is possible to determine the power dependence of the HRS intensity with the
radius of the particle. A power of four indicates a pure local response arising from
non perfect spheres whereas a power of six indicates a volume contribution from
centrosymmetrical particles like perfect spheres. On the other hand, it is possible
to investigate the dependence of the HRS intensity with the angle of polarization
of the incoming wave. From J.I. Dadap et al. work, the following dependence for
prefect spheres should be observed [39]:

IV
HRS = K��2�2 sin2 2�I2(19)

IH
HRS = K��1�2I2(20)

where K is a constant, I is the fundamental intensity and �1��2 are the compo-
nents in the laboratory frame of the effective electric dipole �peff and vector part of

the electric quadrupole
↔
Qeff �ŷ� along the ŷ axis defined through:

�peff = �1ẑ(21)
↔
Qeff �ŷ� = �2 sin ��cos �x̂+ sin �ŷ�(22)

The experimental work has been recently performed for aqueous suspensions of
small gold particles at a fundamental wavelength of 800 nm with a femtosecond
laser in a range of diameters between 12 nm and 150 nm [44]. The dependence of
the logarithm of the square root of the HRS intensity with the particle diameter is
reported in Figure 5. The slope of the line fit is in agreement with a power of four
dependence of the HRS intensity with the radius of the particle. This result alone
ensures that the origin of the SH process in the particles is indeed of electric dipole
origin, stemming from the breaking of the centrosymmetry of the particle shape.
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Figure 5. Logarithmic plot of the square root of the HRS intensity, recorded for both the input funda-
mental and the output harmonic intensities polarized along the Ox direction, versus the diameter of the
particles. The slope is 1�9+/−0�2 in agreement with a surface origin of the signal (Reprinted from 44
with permission from the American Physical Society)

A possible origin arising from volume defects in the cubic crystalline structure of
the material is also ruled out since such a hypothesis would lead to a dependence of
the HRS intensity with the power of six of the particle radius because this is a volume
effect. It was however emphasized that the breaking of the particle centrosymmetry
can arise from a genuine geometrical shape effect or an inhomogeneous distribution
of surface states or adsorbates at the surface of the particle.

It is interesting to note that a similar work has been performed in the past at
a fundamental energy of 1064 nm with a nanosecond laser for similar aqueous
suspensions of gold particles [18]. The absolute value of the hyperpolarizablity
of the gold metallic particles was reported in terms of its value per number of
metal atoms in the particle as a function of the particle diameter. This reduced
hyperpolarizability 
 of the particle, is simply defined by:

(23) 
 = 


n

The experimental values are in fact in agreement with such a pure surface electric
dipole origin, see Figure 6. This fact was not immediately recognized at that time
although the incompatibility with the model of perfect spheres was noticed.

The analysis of the HRS intensity as a function of the angle of polarization of the
fundamental wave has also been performed recently [44]. Figure 7 reports the polar
plot of the HRS intensity as a function of this angle of polarization for an aqueous
suspension of 20 nm diameter gold particles for the output SH light vertically
and horizontally polarized. The patterns presented are in agreement with Eq. (15).
Unambiguously, the plots do not agree with the dependence expected for perfect
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Figure 6. HRS intensity of gold particles in aqueous suspensions as a function of the particle diameter.
The continuous line is a fit to a a4 curve. Data taken from 18
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Figure 7. Polarization pattern, given as a polar plot of the HRS intensity as a function of the angle of
polarization of the fundamental wave, for an aqueous suspension of 20 nm diameter gold. (a) Vertically
polarized SH scattered light and (b) horizontally polarized SH scattered light (Reprinted from 44 with
permission from the American Physical Society)

spheres, see Eqs. (19)–(20). The observed patterns are rather in agreement with
the expected patterns of point-like sources of SH waves, like dipolar or octupolar
molecules.

All these results confirm that the origin of the SH process in small metallic
particles arises from the surface of the particle owing to the deviation of the
particle shape from that of a perfect sphere. The possibility of a non vanishing
hyperpolarizability for small metallic particles has already been discussed with the
introduction of shape distortions [49]. All these results underline the sensitivity of
the SH process to the breaking of the centrosymmetry.
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Figure 8. Polarization pattern, given as a polar plot of the HRS intensity as a function of the angle of
polarization of the fundamental wave, for an aqueous suspension of 80 nm diameter gold for vertically
polarized SH scattered light collected at 400 nm (Reprinted from 44 with permission from the American
Physical Society)

Figure 8 gives the pattern obtained for an aqueous suspension of 80 nm gold
metallic particles. The pattern no longer follows the form of expression Eq. (15)
and now resembles more closely that of a quadrupolar pattern with four lobes. In
fact, for 80 nm diameter particles, retardation effects must be taken into account.
The total scattered field at the harmonic frequency cannot be described with the
pure local contribution only. One has to introduce the non local contribution too.
The polarization pattern of the HRS intensity takes the following general form [44]:

(24)
I�
HRS = a��� cos4 � ↑ +b��� cos2 � sin2 � + c��� sin4 �

+d��� cos3 � sin � + e��� cos � sin3 �

with the insertion of two new coefficients d��� and e���. The relationships of
Eqs. (17) followed by the coefficients a���� b��� and c��� are no longer valid, neither
are Eqs. (16).

In fact, these three coefficients have an expression of the form:

(25) a��� = a′���x4 +a′′���x5

whereas the two newly introduced coefficients directly scale as:

(26) d��� = d′′���x5
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since they do not appear in the first order expressions. These results demonstrate
that as the particles grow in diameter, the deviation from the perfect shape of
a sphere is weaker. More mathematically, the local parameter ��r̂ ′� = �1 − r ′/a�
describing the extent of the deviation of the particle from the shape of a perfect
sphere decreases for all values of r̂ ′ and the response more closely resembles that
of a perfect sphere.

6. ABSOLUTE HYPERPOLARIZABILITIES

Hyperpolarizabilities of gold and silver metallic particles are expected to have
rather large magnitudes because of the possibility of resonance enhancements
through SP excitations. This possibility has been clearly identified above, see
Eq. (16) for instance. Such resonance enhancements have also been observed for the
second harmonic generation collected from particles deposited on surfaces [50, 51].
However, in that particular case, the breaking of the particle symmetry is induced
by the substrate and even a small static polarization of the particles will lead to
a pure electric dipole origin for the signal. Hence, we concentrate in this review
on aqueous suspensions of dispersed particles in order to avoid any complications
arising from the substrates. In the solution, the surrounding medium is considered
homogeneous and modelled through its dielectric function �m. In these conditions,
large values for the hyperpolarizability tensor magnitudes have been measured for
silver and gold particles for diameters in the range of 5 nm to 150 nm.

Gold and silver metal particles have been investigated principally since copper
particles are not stable in aqueous solutions [17, 18, 52]. Copper particles require
a careful passivation to prevent the re-oxidation of copper. Gold particles with
diameters of 22 nm were found to have a hyperpolarizability magnitude of about
16�6 × 10−25 esu and particles with diameters of 5 nm only 0�60 × 10−25 esu when
studied with nanosecond light pulses at a harmonic frequency in resonance with the
electric dipole SP resonance, namely with a fundamental wavelength of 1064 nm
and a harmonic wavelength of 532 nm. Off SP resonances, experiments were
also performed and magnitudes of the hyperpolarizability tensor also obtained, for
instance 43 × 10−25 esu for 20 nm diameter gold particles at a fundamental wave-
length of 820 nm with femtosecond light pulses. In this case, the harmonic frequency
with a wavelength of 410 nm is in resonance with the interband transitions and
not the SP resonance. Silver particles of 21 nm diameter exhibited similar strong
hyperpolarizability magnitudes of about 7 × 10−25 esu off resonance at 532 nm for
the harmonic wavelength and nanosecond pulses. Not surprisingly, platinum parti-
cles did not give any detectable signal, a feature attributed to the absence of an SP
resonance in the vicinity of the excitation frequency [53, 54].

Because the HRS intensity from metallic particles may be enhanced through
SP resonances, wavelength dependence measurements were also performed. These
experiments allow for a direct confrontation of the theoretical developments with
the experimental data. The first wavelength dependence of the HRS intensity for
metallic particles dispersed in a homogeneous environment has been reported for
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32 nm diameter silver particles by E.C Hao et al. [55]. Figure 9 clearly displays the
electric dipole and the electric quadrupole SP resonances. According to the discus-
sion given above, this indicates that in these 32 nm diameter particles retardation
effects are already present and non negligible. Furthermore, the spectral location of
the two SP resonances are in agreement with the conditions ��	�+ 2�m = 0 and
2��	�+3�m = 0. In Fig. 9, the continuous curves are theoretical models adjusted
to the experimental data points for two different ratios of the weights A and B
determined by:

(27) IHRS = ACA���

���	�+�m�2 + BCB���

�2��	�+3�m�2

where the functions CA��� and CB��� of the fundamental polarization angle
must be introduced to account for the solid angle integration of the total intensity
detected [56]. The adjustment of the model yields an idea of the different contribu-
tions to the total SH scattered intensity. However, it has to be noted that according
to the previous discussion above, the first term contains the purely local contribu-
tion as well as the non local contribution at the fundamental frequency whereas the
second term only contains the non local contribution at the harmonic wavelength.

In Eq. (27), the expression is valid for a detection at right angle from the direction
of propagation of the incoming exciting wave. The ratio of the two parameters
A and B can be modified using a slit arrangement. This possibility arises from the
different angular patterns exhibited by the electric dipole and electric quadrupole
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Figure 9. Wavelength dependence of the HRS intensity for an aqueous solution of silver particles the
diameter of which is 32 nm for a disk solid angle. Solid lines are (1) fit to the model with A = 1 and
B = 6�2 and (2) G.S. Agarwal and S.S. Jha’s model [35] (Reprinted from 54 with permission from the
American Institute of Physics)
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contributions to the total SH intensity. The slit indeed modifies the solid angle of
the collection.

A similar wavelength dependence of the HRS intensity has been reported for an
aqueous suspension of the smaller 12 nm diameter gold particles and has yielded
only one single electric dipole SP resonance, see Figure 10 [56]. For these particles,
only the electric dipole SP resonance is expected. Indeed, even for the larger 20 nm
diameter particles, no retardation effects where observed through the polarization
pattern. Hence, in Eq. (27), the coefficient B vanishes and the first term only
involves the purely local contribution. Similar theoretical curves are also presented
for different ratios of the coefficients A and B in order to indicate where the electric
quadrupole SP resonance is expected to appear.

One question that has not been discussed so far concerns the metal dielectric
functions used in the modelling. It appears in fact that the dielectric functions of the
bulk metals, either gold or silver dielectric functions as taken from P.B. Johnson
and R.W Christie for example, do not yield a good agreement of the models with the
experimental data [57]. Hence, the models used in Figures 9 and 10 are calculated
with the use of Drude type dielectric functions of the form ���� = �1���+ i�2���
such that [58]:

�1��� = �� − �2
P

�2
(28)

�2��� = −�� −�1���

��
(29)
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Figure 10. Wavelength dependence of the HRS intensity for an aqueous solution of gold particles the
diameter of which is 12 nm. Solid line is a fit with A = 1 and B = 0, dash-dotted line is a fit with A = 1
and B = 6�2 and dotted line is a fit with A = 1 and B = 10 (Reprinted from 56 with permission from
the American Institute of Physics)
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The interband transitions in particular are only described through the constant ��
which may be adjusted for the best agreement between theory and experiments. It
therefore appears that the interband transitions do not lead to strong resonances, as
this is experimentally observed on Figure 10 at frequencies above the electric dipole
SP resonance with the absence of strong HRS intensities. To further emphasize this
problem, gold core – silver shell particles have been investigated, albeit at the
water-1,2-dichloroethane interface [59]. The SH intensity ISHG collected with the
fundamental light p-polarized and the SH light P-polarized has the following form:

(30) ISHG = �2

8�0c
3

√
�o�	�

[
�o�	�−�o��� sin2 ��

o

]
∣
∣
∣�

�2�
S

∣
∣
∣ I2

where �o��� and �o�	� are the optical dielectric constants of the organic medium
at the fundamental and the harmonic frequency, ��

o is the incidence angle from the
organic medium and I is the fundamental intensity. The surface tensor �

�2�
S is the

product of the number of particles per unit surface N and the hyperpolarizability of
a single nanoparticle 
. The SH light collected is thus a coherent signal from the
assembly of particles adsorbed at the interface but the wavelength dependence of
the signal is determined by the wavelength dependence of the hyperpolarizability of
the particles, apart from a factor �2. Because a liquid/liquid interface has a minimal
dielectric constant mismatch, it is expected that the induced polarization of the
particles will be minimum. It is though highly likely that the origin of the SH signal
arising from the particles has an electric dipole origin stemming from the surface
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Figure 11. Surface SHG spectra of gold core – silver shell nanoparticles at the water/1,2-dichloroethane
interface for different % silver contents: (disks) 20% silver content, (squares) 30% silver content,
(triangles) 40% silver content and (inverted triangles) 50% silver content (Reprinted from 59 with
permission from the American Institute of Physics)
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Figure 12. Photo-absorption spectra of aqueous solutions of gold core – silver shell particles for different
silver molar contents: (solid) 0%, (dots) 10%, (large dots) 20%, (dashed) 30%, (dashed-dotted) 40% and
(large dash-dotted) 50% (Reprinted from 59 with permission from the American Institute of Physics)

induced breaking of the symmetry of the particles. Figure 11 gives the wavelength
dependence of the surface SHG signal for gold core – silver shell particles at the
liquid-liquid interface.

Two electric dipole SP resonances are observed for such composite particles, in
agreement with the theory for the linear optical absorption from core-shell particles,
see Figure 12. Furthermore, as the amount of silver in the shell of the particles
is increased, the amplitude of the high energy SP resonances increases. However,
it is clearly seen that the interband transitions are observed in the linear optical
photo-absorption spectroscopy of liquid suspensions of these gold core – silver shell
particles but not observed on the corresponding SHG spectra. This question of the
role of the interband transitions is still open.

7. AGGREGATION

Aqueous suspensions of metallic particles are not very stable if no stabilizing agents
or passivation layers are used. Hence, aggregation may be initiated in these suspen-
sions by simply modifying the ionic strength of the solution thereby decreasing
the screening Debye length. This has been recently performed by adding sodium
chloride to an aqueous suspension of gold particles by F.W. Vance et al. [17]. The
aggregation was followed by Rayleigh and hyper Rayleigh scattering as a function
of the amount of NaCl introduced into the solution. A colourful change of the
solution from red to blue was observed with an increase of both the Rayleigh and
hyper Rayleigh signals, see Figure 13.
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Figure 13. Effect on the Rayleigh and hyper Rayleigh signal intensities recorded at 400 nm of the NaCl
induced aggregation of an aqueous suspension of gold particles with a diameter of 13 nm (Reprinted
from 17 with permission from the American Chemical Society)

The model of linear chain-like aggregates has been demonstrated in the past to
be the initial geometry taken by the aggregates [60]. Thus, the appearance of a
longitudinal SP resonance mode in the particle aggregates at longer wavelengths,
between 550 nm and 800 nm depending on the aspect ratio of the aggregates, besides
the initial SP resonance mode of the spheres located at 525 nm is responsible for the
colour changes. In the meantime, this latter transverse SP resonance mode at 525 nm
is damped. The HRS intensity during the NaCl induced aggregation was reported
for a harmonic wavelength of 410 nm and a fundamental wavelength of 820 nm. The
HRS intensity exhibited pronounced enhancements reaching eventually an order of
magnitude as compared to the non aggregated solution, for concentrations of NaCl
as small as 20 mM, concentrations at which the linear Rayleigh scattering signal
did not show any sign of enhancement. This feature was attributed to the greater
sensitivity of the HRS signal to small aggregates. One reason for this sensitivity is
the occurrence of the longitudinal SP resonance at longer wavelengths, closer to the
fundamental wavelength of 820 nm used in this experiments. Large enhancements
are indeed expected at the fundamental frequency. Another reason is the possibility
that the aggregates have non centrosymmetrical shapes and that this strong breaking
of the centrosymmetry enhances the HRS signal intensities.

In order to investigate further these questions, similar experiments were conducted
on the aggregation process of gold particles suspensions with pyridine. In this case,
pyridine displaces citrate, the charged organic compound stabilizing the suspension.
Aggregation is then quickly initiated but minute amounts of pyridine are required
to yield a slow kinetics necessary for HRS experiments [61]. Similar measurements
have been performed for silver particles [62]. The latter measurements indeed
usually require long acquisition times. Large enhancements by a factor of about 10
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Figure 14. HRS intensity as a function of the pyridine concentration for an aqueous solution of gold
particles with a diameter of 22 nm (Reprinted from 61 with permission from the American Chemical
Society)

of the HRS intensity were observed for a harmonic wavelength in resonance with
the transverse SP mode at 532 nm, see Figure 14. Since the aggregates are expected
to take a linear geometry, a simple model based on ellipsoidal particles can be used
to describe the data. Obviously, as the aggregation proceeds, larger aggregates are
formed which eventually reach radii in excess of the size of the wavelength of light.
In that case, the particles should be described with the full multipole expansion of
the fields, provided the spherical expansion remains valid.

The enhancement for elliptical particles can be defined as compared to spherical
particles:

(31) � =
∣
∣f 2

agg���fagg�	�
∣
∣2

∣
∣f 2

sph���fsph�	�
∣
∣2

where the field enhancement factors of the aggregates and the spherical particles
at the fundamental and the harmonic frequencies are defined using the longitudinal
and the transverse polarizabilities �l

i��� and �t
i��� of the ellipsoidal particles:

(32) f��� = 4�

V

∑

i

wi

Im ��t
i���+2�t

i����

Im����

with the introduction of the weights wi of the linear aggregates with a well defined
ratio present in the suspension. The model is in good agreement with the experi-
mental data and it was concluded that the enhancement of the HRS intensity could
be attributed to the excitation of the longitudinal SP resonance mode at the funda-
mental frequency. These results initiated an interest in the control and the design
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of dense aqueous suspensions of particles [63]. Synthesis of molecularly-bridged
dimers and trimers of gold particles was also achieved and the HRS intensity
from aqueous solutions of these aggregates compared for particle diameters ranging
between 5 nm and 10 nm. Dimers had large hyperpolarizabilities, larger than that of
monomers but trimers had much larger hyperpolarizabilities. This was attributed to
the symmetry change operated from the centrosymmetrical monomers and dimers
to the non centrosymmetrical trimers. The distance between the different particles
of a common aggregate is also an important parameter determining the hyperpo-
larizability of the ensemble in this case since the size of the aggregate ultimately
controls the retardation effects [64].

More recently, HRS from aggregated particles has been used as a possible route to
develop new techniques for bio-assay [65]. Protein-modified gold particles were
dispersed in solution and their aggregation state was modified by seeding the
solution with antigens, see Figure 15. The resulting advancement of the aggregation
was monitored by HRS, see Figure 16.

Gold Gold GoldIgG

IgG IgG IgGAntigen

Antigen

Figure 15. Graphical scheme of Gold-IgG conjugation and antigen induced aggregation (Reprinted from
65 with permission from the American Chemical Society)
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the American Chemical Society)



Second Harmonic Generation from Gold and Silver Nanoparticles 667

The gold particles were first coated by goat-anti-human IgG proteins and as
expected, the HRS signal from the protein-aggregated particle solution was larger
than that of the non aggregated particle solution. Interestingly, the aging of the
solution was described in terms of the time evolution of the HRS intensity after
the bio-conjugation of the particles by the proteins, a phenomenon attributed to the
rise of a contribution from the surface of the particles. Upon addition of human
IgG, aggregation of the gold particles was further induced, in a manner very close
to the aggregation reaction observed with addition of NaCl or pyridine.

Comparison with UV-visible photoabsorption spectroscopy showed that HRS
was a more sensitive technique revealing the aggregation process at smaller antigen
concentration. For instance, at an antigen concentration of 20 �g/ml, the HRS signal
had already increased by 6% from its initial value whereas the extinction coefficient
has not increased by more than 1%.

The reason for such a sensitivity of HRS as compared to a linear optical method
was attributed to the weak protein-protein interactions. Aggregation was so weak
between the particles that linear spectroscopy could not resolve any change in the
SP resonances due to the weak electromagnetic coupling between the particles. The
possibility of sensing very small aggregates with HRS was thus proven. HRS is then
potentially a sensitive method to follow the antigen concentration by conjugation
in aqueous samples.

8. CONCLUSION

From the size dependence and the polarization analysis of the HRS intensity from
small metallic particle suspensions, it has been demonstrated that the origin of the
nonlinear optical response stems from the breaking of the centrosymmetry at the
surface of the particles. The origin of the breaking of the centrosymmetry, in turn,
should be clarified too but the deviation of the shape of the particles from that of the
perfect sphere is observed on TEM images. For large particles, retardation effects
become dominant. A spectral analysis also shows that it is possible to distinguish
between the electric dipole and electric quadrupole surface plasmon resonances but
only in the absence of the latter does the electric dipole resonance characterize a
pure local origin of the response. Anyhow, these surface plasmon resonances confer
a large magnitude to the hyperpolarizability of the particles. The problem of the
role of the interband transitions is though still open.

A great sensitivity of the HRS signal to the aggregation state of the particles
has also been noticed. In this case, the exact origin of the nonlinear polarization is
still very much in debate. It seems that at the initial stages of the aggregation, the
geometry of the aggregates is linear. A model based on the local fields in ellipsoidal
particles then correctly accounts for the enhancement of the HRS intensities. At
later stages of the aggregation, the exact geometry of the aggregates becomes an
important parameter. These concepts have been explored in recent experiments to
investigate the potentiality of the HRS technique for immunoassay with interesting
perspectives.
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Atomistic molecular modeling, 337
Automatic code generation, 183

Basis set convergence, 62, 67, 74, 79
Bathochromic shift, 302, 641
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Bloch functions, 329
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Collective phenomena, 251ff
Configuration Interaction (CI), 58, 114, 130ff

CI singles and doubles (CISD, SDCI), 135
CI singles only (CIS), 135, 371
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Cubic NLO properties, 538, 581, 588, 593, 596

671
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Davydov shift, 253, 256
Davydov splitting, 253
Degenerate four wave mixing, 322, 366, 422,

445, 448, 480, 526, 538, 586
Delocalization, 252f, 271, 545, 559, 564
Density functional theory, 53, 151ff, 154, 189,

374, 572
Density matrix, 216f, 224
Dephasing rate, electronic, 220, 232
Dexter exchange, 253
Dielectric constant, 189, 203, 215, 260, 301, 384,

385, 386, 394, 421, 434, 624, 632, 662
Dielectric continuum model, 31, 47, 296
Dielectric function, 463ff, 651, 659, 661
Difference-frequency generation, 6–8, 386
Di-phenyl-amino-nitro-stilbene, 211, 243
Dipolar ruthenium complexes, 571ff
Dipole fluctuation operator, 18, 132
Direct inversion in the iterative subspace

(DIIS), 157
Dispersion, 303, 375
Donor-acceptor � conjugated molecules

(D-“�”-A), 299ff
Doppler effect, 216, 224
Drude model, 463, 467
Duschinsky rotation, 102, 120, 121
Dynamics, 235, 342–346, 398–399, 495–6

Effective medium, 468–470, 474
Ehrenfest equation, 174, 290–291
Ehrenfest theorem, 44, 152, 163f, 174
Elastic scattering, 3–4, 466
Electric field induced second harmonic

generation, 308, 378, 422, 426, 433, 443,
447, 513, 538

Electric-dipole approximation, 213, 362,
363, 365

Electro-optic coefficient, 340–341, 346–350,
355, 627

Electro-optical Kerr effect, 10, 105, 472, 497,
611, 630, 634, 635, 637, 639

Electro-optical Pockels effect, 41, 627
Electron paramagnetic resonance (EPR), 199ff
Electron-phonon coupling (e-ph), 262
Electrooptic effect, 214, 419, 420, 627
Electrostatic interactions, 253, 257–258, 261,

264, 266, 284, 286, 291, 296, 302, 308, 340,
341, 347

Electrostriction, 444
Enantiomeric excess, 367
Exchange-correlation (xc), 152–153, 159–162,

165, 167–168, 170, 174, 179ff

Excited-state polarizabilities, 183, 191ff
of pyrimidine, 183, 191f
of s-tetrazine, 183, 191f

Excited state properties in DFT, 170f
Exciton, 253
Exciton hopping, 256, 266, 272
Exciton-exciton interaction, 258, 266, 272
Excitonic model (EM), 253, 254, 264, 266,

271, 278
Extended Hückel approximation, 139

Faraday effect, 54, 73, 74
Fermi liquid, 332
Few-states approximation, 140, 300
Few-states model, 130, 140, 141, 144
Finite field, 110, 124–125, 130, 190, 373,

527, 579
Finite field approach, 33, 36, 108, 110
Five-state model, 227
Fluorescence lifetime, 236, 437, 441
Force-field, 338, 339, 341, 343–344, 348, 354
Forster mechanism, 253
Four-wave mixing, 214, 366, 422, 445
Frank-Condon factors, 262
Free energy, 286
Frenkel-like excitation, 253
Frequency-dependent properties, 52–54, 56–57,

59, 60, 61, 63, 66, 68–69, 73, 92, 297, 412
Frequency-upconversion, 211, 222

Gain-narrowing, 236
Generalized gradient approximation

(GGA), 151ff
Gold complexes, 545–546, 554, 557
GRINDOL (method, program), 135
G-tensor, 200ff

di-t-butyl nitric oxide, 202
diamagnetic term, 200
diphenyl nitric oxide, 202
environmental effects, 202, 301, 314
paramagnetic contribution, 200
in polarizable continuum model, 191, 202,

304, 407
relativistic mass velocity correction, 200
of transition metal compounds, 201ff

Guest-host, 337–340, 347, 430–431, 531

H-aggregates, 256, 272
Hamiltonian

electronic, 28, 40, 261
molecular, 11, 36, 40, 43, 260
nuclear, 28
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Hardly polarizable molecules, 256f, 279
Helicene, 371, 374–379
Hellmann-Feynman theorem, 32–33, 37, 45–46,

134, 144
Hexamethylphosphoramide (HMPA), 304
Holstein model, 262
Hot electrons, 477, 482, 486, 493, 495–496
Hyperfine coupling, 157, 183, 199, 203–204

tensor, 183, 199, 203
Hyperpolarizabilities, 25, 61, 66, 183, 393, 402,

403, 409, 571, 659
Hyperpolarizability

electronic, 64, 300, 327, 333, 371
first-order, 6, 15, 17–20, 23, 25–26, 38, 41,

130ff, 140, 306ff, 404, 510
fourth-order, 66
higher-order, 25
imaginary part, 15, 17, 118, 133, 310
pure vibrational, 28, 103
residues, 19, 23, 170, 297
second-order, 19, 22ff, 39, 42, 130ff, 166, 300,

309, 399
zero-point vibrational average, 28

Hyper-Rayleigh scattering, 388, 422, 428, 437,
440, 521, 538, 573

Hypsochromic, 302

Infinite optical frequency approximation, 108,
110, 114

Infinite periodic polymers, 121
Infinite polymers, 102, 122–124
Intensity-dependent refractive index, 105, 118,

214, 442, 444, 451–453, 456
Interband transitions, 463, 466, 483, 486, 491,

659, 662–663, 667
Intermolecular interactions, 253ff,

342, 352
Intramolecular charge-transfer (CT), 299, 314,

510–511
Ionic NLO materials, 387, 388, 399
Ionic octupolar, 403, 404, 406, 407
Iron complexes, 539
Irreducible representation, 323–325, 328–329

J-aggregates, 256, 272
Jones birefringence, 54, 73

Kerr constant, 633–637
Kerr effect, 73, 105, 383, 443, 462, 470, 472,

475, 480, 481, 487, 492, 497, 611, 630,
634–635, 637, 639

Kohn–Sham theory, 151ff, 159, 174
spin-restricted, 155ff, 201, 203
spin-unrestricted, 155, 201, 204
time dependent, 159, 160

Kurz powder technique, 441

Langevin dipoles, 311
Langmuir-Blodgett films, 387,

531, 572
Lasing, 227–228, 235–238, 242
LiH, 141
Line broadening

collisional, 219, 220
emission, 219
homogeneous, 219, 221, 232
inhomogeneous, 219, 263
inverse, 226
solvent effect, 219
static, 219

Linear electrooptic effect, 419, 420, 627
Liquids, 359, 361, 362, 366–369, 375, 378
Local density approximation (LDA), 151f,

181, 186ff
Local field

enhancement, 470, 488, 489, 491–493, 497
factor, 464ff

Local field factor, 464ff
Local field, 47, 259, 270, 363, 649, 667
Lorentzian decay, 221

Madelung energy, 265
Magnetic circular dichroism, 54, 73
Magneto-electric birefringence, 73, 89, 91, 198
Maxwell equations, 214f, 422, 423, 435

paraxial, 223, 225
Mean-field approximation (mf), 255, 259, 265
Merocyanine dyes, 304, 308, 411–412
Metal concentration, 462, 468, 469, 475, 479,

483, 485, 489–491, 494, 496, 497
Metallic particles, 646, 648–650,

656–659, 663
Metalloorganic compounds, 537
Mode-mode coupling, 102, 115–116
Molecular crystals, 252, 253, 257, 259

charge transfer (CT) molecular crystals,
252, 274

Molecular design, 383ff, 409
Molecular dynamics, 339, 342, 343–344,

346, 354
Molecular electronics, 258
Molecular functional materials, 251ff
Molecular hyperpolarizabilities, 409, 421
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Molecular materials (mm), 251ff
calculation of linear and nonlinear

response of, 253
Molecular mechanics, 283ff
Molecular switching, 609
Monson and McClain formalism, 309
Monte Carlo, 311, 337–340, 341, 342, 344,

346–347, 348
Multiconfigurational self-cosistent field –

Molecular mechanics (MCSCF/MM), 283ff
linear response, 292f
linear response, 292f
quadratic response, 294f
residue, 297
third-order molecular properties, 283
time-dependent molecular properties, 290

Multielectron transfer, 277f
Multi-photon absorption, 144, 193, 211, 216

coherent, 212
incoherent, 212
saturation, 212, 228, 234

Nanocomposite materials, 462–464, 468, 470,
474–476, 479, 480, 490, 492, 497, 498

Nanoparticle, 461–474, 476, 477, 479–489, 491,
492, 495, 496, 498

Net conversion coefficient, 238–239
Neumann principle, 427
Nickel complexes, 541, 554, 557
Nitrogen, 186
Noble metal, 461
Non-Heitler-London term, 257f, 266
Non-interacting rigid gas, 340, 347ff
Nonlinear optical activity, 360, 361, 365, 366
Nonlinear optical materials, 383ff, 419
Nonlinear optical polymers, 337ff, 354
Nonlinear optical properties (NLO), 3, 51, 101,

124, 299, 359, 518, 530, 623
Nonlinear optical response, 2, 130, 143, 300,

301, 303, 314, 320, 323, 373, 384, 421–422,
426, 441, 442, 454, 461ff, 494

Nonlinear optics, 1ff, 52, 385, 419, 427, 454
Nonlinear polarization, 247, 366, 384, 429, 445,

448–449, 454, 471, 647, 649–652
Nonlinear spectroscopy, 319
Nonlinear susceptibility, 386–387
Non-resonant NLO processes, 101
Nuclear relaxation hyperpolarizabilities, 105,

106, 108, 110, 112

Octupolar compounds, 404, 405
Octupolar ruthenium complexes, 551

One-photon absorption (OPA), 232, 233, 235,
242, 244, 245, 257

between excited states, 139, 172, 173
ground-to-excited states, 19

One-photon transition, 19, 40, 234
off-resonant, 234, 514, 527
resonant, 118–121
two-level approximation, 140, 228, 232,

301, 306
Onsager reaction field theory, 371
Open-shell systems, 153
Optical depoling, 629
Optical index, 463, 472
Optical Kerr effect, 470–480
Optical Kerr Gate, 422, 451–452
Optical limiting, 483–485
Optical phase conjugation, 450–451
Orbital excitation operator, 291
Orbital perturbation theory, 139
Organometallics, 399–402
Oriented gas model (OGM), 252
Osmium complexes, 539

Parity, 325, 361
Pauli matrices, 264
Periodic polymers, 121–124
Perturbation treatment of pure vibrational

NLO, 104
Perturbative approach, 300
Phosphorescence, 172
Photoabsorption cross section, 221

effective TPA, 243
three-photon, 229

Photoisomerization, 545, 638
Photon occupation number

representation, 217
Photon-echo, 220, 232
Photonic crystals, 215
Photorefractive effect, 444
Phthalocyanines, 511–516
PNA, 40, 183, 303, 310
P-Nitroaniline (PNA), 135, 140, 303, 339,

347, 370
Polar-polarizable chromophores (pp), 261
Polar solvation, 263
Polarizability

electronic, 122–123
excited state, 191–193
linear, 13–15, 270
nonlinear, 30, 305, 366, 454
pure vibrational, 29, 52, 104, 370
residues, 170–174
zero-point vibrational average, 125
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Polarization interactions, 284, 291, 297
solvent, 295

Polarization propagator, 14, 43–45
Polarized continuum model

(PCM), 311
Polyacenes, 260
Post-VSCF methods, 116
Potential energy surface, 28, 262
Propagation losses, 623
Protic-switching, 591
Pseudoscalars, 361–366
Pulse propagation, 211ff
Pulsewidth, 462, 477, 485, 486, 493–497
Push-pull chromophores (pp), 260–264, 299

optical spectra in solution, 257, 262, 278

Quadratic electrooptic effect, 214
Quadratic hyperpolarizability, 406, 511, 522
Quadratic NLO properties, 582
Quantum mechanical (QM), 365
Quantum-mechanical-Langevin dipoles/Monte

Carlo method (QM/LD/MC), 311
Quantum mechanics, 284, 285
Quasi-energy, 43, 45, 151, 174–179
Quasi-energy ansatz, 151
Quasi-energy Lagrangian, 56, 57

Rabi frequencies, 217, 224, 225
Redox-switching, 578, 592, 598
Refractive index, 442–443, 488, 620–3
Relaxation matrix, 216
Renormalization, 116, 263, 264
Resonant (hyper)polarizabilities, 103, 118–121
Response functions

cubic, 53, 58, 61, 73, 86, 154, 169, 172–174
linear, 14, 17, 27, 43, 92, 134, 158, 165,

170–171
quadratic, 58, 59, 61, 72, 74, 88, 134, 167,

171, 172, 176–177
Response theory, 42–46, 54–61

cubic, 191
Restricted-unrestricted approach, 157, 204
Retardation effects, 470, 488, 649, 652,

658, 660
Reverse saturation of absorption, 483
Rotaxanes, 609ff
Ruthenium 2,2′-bipyridyl complexes, 582–587
Ruthenium ammine complexes, 581
Ruthenium arsine complexes, 597
Ruthenium complexes, 571–599
Ruthenium phthalocyanine complexes, 509–533

RutheniumII �-acetylide complexes, 594
Ruthenium � 5-cyclopentadienyl complexes,

572–576
Ruthenocenyl derivatives, 572–576

Safe transfer operator, 291, 293
Saturation of absorption, 481–483
Scattering duration time, 218–221
Second-harmonic generation (SHG), 4, 308,

422–441, 447–448
Second-order nonlinear optical response,

441, 471
Second-order nonlinear optics, 383ff, 427–428
Self-defocusing, 485
Self-focusing, 214, 215, 247,

452–453, 485
Size effects, 466–468, 487–8
Slowly-varying envelope approximation (SVEA),

215, 224
Solute-solvent interaction, 263, 300, 301,

304, 307
Solvation coordinate, 263, 306
Solvation, 296

energy of water, 296
enthalpy of water, 296

Solvatochromic shift, 301, 302, 304, 308
dispersion contribution, 303
electrostatic contribution, 301, 302–303
H-bonds contribution, 303–304
short-range specific interaction, 301

Solvatochromism, 299ff
negative, 141, 302, 303, 304, 308
positive, 302, 303, 308, 309, 310, 311

Solvent effects, 93, 300, 302
Solvent polarity, 308, 313
Spectral dispersion, 492, 493
Spectral line broadening, see Line broadening
Spin contamination, 154, 155, 157, 201, 202
Spin Hamiltonian parameter –molecular structure

relationships, 199
Spin–orbit coupling, 172
Spontaneous noise, 228
Spontaneously generated noise photons

(SP), 228
Stark spectroscopy, 191, 577, 579, 581
Stilbazolium, 389–399
Stimulated emission, 212, 216, 222,

236, 247
Subphthalocyanines, 509–533
Sudden approximation, 242
Sum-frequency generation, 364–365
Sum-over-orbitals (SOO), 137
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Sum-over-states (SOS), 39–42
first-order hyperpolarizability, 15–19, 42, 135
modified (MSOS), 310
polarizability, 13–14, 192
second-order hyperpolarizability, 19–25, 136,

137, 310
Sum-over-states perturbation theory, 101
Super-radiance, 257
Supermolecule approach, 254–255
Supramolecular interaction, 266, 269, 270
Surface plasmon resonance, 464–468
Susceptibility, 470, 474–475, 490

density matrix approach, 216–218
first-order, 15–19, 42, 135
kinetic equations, 217
nth order, 110, 213, 340
simulations, 226

Symmetry, 319ff, 361–366, 386–387, 427–8

Tamm-Dancoff approximation, 135
Thermal effect, 494–495
Thermal lensing, 486, 497
Thin Film, 433, 480, 572, 614–615, 617, 621,

622, 626
Third-harmonic generation, 445–447
Third-order nonlinear optical response, 442, 461ff
Third-order susceptibility, 489, 526
Three-photon absorption (3PA), 193–198,

229–230, 231–3
ab-initio computations, 230–231
coefficient, 239, 472
coherent, 242–246
cross section, 229–231
incoherent, 212, 216
saturation, 234
two-level approximation, 140, 141

Three-photon matrix element, 23, 193–198
Three-wave mixing, 365
Time-dependent density functional theory

(TDDLFT), 151ff, 398
Time-dependent DFT (TDDFT), 152, 182, 199,

205, 576
Time-dependent Hartree-Fock (TDHF), 57
Time-dependent perturbation theory, 10–27

open-shell, 92, 153, 155
Time-dependent polarization, 5, 7, 12
Time-dependent self-consistent field

Hartree-Fock (TDHF) equation, 34, 36,
123, 152

Time-reversal, 362
Transition dipole moment, 275, 277,

306, 307
Transition dipole moments in DFT, 197

Transition moment, 14, 19, 130
third order, 27, 442–445

Transmission, 233, 650
Transmission electron microscopy, 646, 650
Two-form model, 141–144
Two-photon absorption (TPA), 23, 26, 133, 172,

193, 242, 483, 566
coherent, 234, 242–246
cross section, 229, 230, 245, 246, 309–314
excited-to-excited state, 19
ground-to-excited-state, 19
Monson and McClain formalism, 309
and second-order hyperpolarizability, 19–25,

133, 137
solvent effects on, 300–301, 313
and static first-order hyperpolarizability, 135,

310, 313
tensor, 200, 201, 203–204, 531
two-level approximation, 140, 141, 232,

301, 306
two-step, 242–246
vibrational interaction, 242

Two-photon matrix element, 19, 26,
242–246, 309

Two-state model, 42, 190, 307, 309
for “alpha”, “gamma”, 309, 314–315
valence-bond (VB), 304

Ultraexcitonic correction, 271, 272
Uncoupled Hartree-Fock (UCHF), 130, 137–140
Urbach-like decay, 221

Valence-bond charge transfer model (VB-CT),
143, 305

Valence-bond state model (VBSM), 305
Van der Waals interactions, 253, 284, 343, 344,

392, 420
Van der Waals radius, 220, 252
Verdet constant, 75, 76
Vibrational hyperpolarizabilities, 110, 116, 370
Vinylidene, 560, 567, 591, 593
Virtual excited state, 3
VSCF method, 115

Weisskopf radius, 220
Wrapping procedure, 319, 320

Zero-point vibrational average, 125
Zigzag CNTs, 322, 332
ZPVA contribution, 106, 112, 113
Z-scan, 452, 453, 532, 538, 585
Zwitterion, 141, 143, 305, 308, 398, 408–414
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