Coding
Interwews

sssssssssssssssssssssssssss

ApPress’

Coding Interviews
Questions, Analysis & Solutions

Harry He

Apress’

Coding Interviews: Questions, Analysis & Solutions
Copyright © 2012 by Harry He

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal
reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained
through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright
Law.

ISBN 978-1-4302-4761-6
ISBN 978-1-4302-4762-3 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Saswata Mishra

Technical Reviewer: Jeffrey Pepper, Robert Hutchinson

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan
Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeftrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom
Welsh

Coordinating Editor: Jill Balzano

Copy Editor: Ann Dickson

Compositor: Apress

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New
York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress . com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook Licensing web page
atwww.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
Www.apress.com. For detailed information about how to locate your book’s source code, go to Www.apress.com/source-
code/.

To my wife, Rachel, and our little boy, Lewis.

Contents at a Glance /

Contentscccvcminimmmismmn s ————————————— Vii
About the Author ... —————— Xiii
Acknowledgmentsccccurussmmnnmmmsnnnnnnnsnssssssssnsssssssssnnsssnssnnssnnnnnnsnnnnnnnnnnns XV
Introduction..........ccccvvmmns i ————— xvii
CHAPTER 1: Interview Processcccocssmsmssssesssssmssssasssssnssssmssssansnssnsnas 1
CHAPTER 2: Programming Languages.......cccxerssssssssmssssnsssssssssssssnnnnns 13
CHAPTER 3: Data Structures...........ccconsmmmmmsmmmmmssssmmnsessmnisssssssssssnns 33
CHAPTER 4: Algorithmscccusseemmmmmmnsssnssmmmnsssssssnnssssssssssssssssssssnnnss 75
CHAPTER 5: High Quality Code.........csmssmmsnrsemsamsanssnssassassassasssnssanss 111
CHAPTER 6: Approaches to Solutions............ccccccmnnnnnnnnnnnnnnnnnnnnnnnas 143
CHAPTER 7: Optimization.......cccussseeemmmmmmmmnnmmmsssssssssssssssnnssssssssssssnnns 187
CHAPTER 8: SKkills for Interviews..........ccucsusmsmssesssssssssssssssassssansnnss 219
CHAPTER 9: Interview Casesccssussssssssssssssssssssssssssssssssnssnsansnnss 263

Table of Contents

Contents at a Glance..........cccccvviniemmssnneessnnn s sessssssenes V
About the AUthorccciiiiiie e —————— Xiii
Acknowledgmentsccccresmmmmmmssssssssssnssnssssssssssssssnnsssssssssssssesssnnnnnsssssssnes XV
Introduction.......cccccisinnemminnnees e XVl

CHAPTER 1: INtervieW ProCeSScueueuuseesssssmnssssnnsssssnnssssnnsssssnnsssnnnsssnnn 1

Types of INterVIEWS .uuvuueeeriiisssnmnmmssssnnnnmmssssnnnmsssssnsnnnsssssnsnssssssnnnssssssnnnnssssssnnnnssssnnnnnnssnn 1
11T L L (=T T 1
ON=SItE INTBIVIBWS ..eereeeeieeeiieei st e seseessseesssseessssessssssssseessssessssessasessnee s ssesesneesansesesnesssneessnnnesasnessnns 3

Phases Of INTerVIEWSiuermrrremssmsssssssssssssssssssssssssssnsssssnssssssssssnnnnsnssssssssnnnnnnnnsssnnnsnnnnnn 3
BERAVIOF INTBIVIBW .. eee it e et seeees e e s e s s e e s sse e s se e s ne e s se e sss e s sneessseessnsessanessaneenneensnnnessnnessnn 4
LTS (T (or U L =T T R 7
0N T (- X 11

£ 111 11T T 12

CHAPTER 2: Programming Languages.......cccoouussssssssssssssssnnnnsssssssssnss 13

13
Palindrome NUMDEScoiiiiiiiine et ss s s s ae s e s sn e e nnnnan 16
G aenttenssnnnnrra s s s b e a e E s a R R R R REE AR EEERRRRREEERRRRRRREERRRRRRREEERRRRRRREERRRRRRRRERRRRRRRERRES 17
I 0 313) 18
Analyzing EXeCUtion Of C++ COUE.....c.cucerrrrerrrreneresirsse s sesese s ssesessssesss s ssssessssessessssssesens 18
Implementing a Class or Member FUNCHON iN G4+ ...cvevveievceriererererresesessersesessesessessesessessensens 19
ASSIGNMENT OPEIALON ... s re e e e e e nnns 19
I 22
£ 1§10 o7 23
N T 27
JAVA KBYWOIUSciueieicircre et e b s s e e s e a e e s e e ae s nen e 27

vii

CONTENTS

[F2 i 0] 1 U L= 29
B 01T (0 ST 1< (1] 30
111 11T T 32

CHAPTER 3: Data Structures.......cccuurremsmmemssmmsssssmssssssssssssnsssssssnnssnnens 39

g 33
DUpliCAtion iN @N AITAY......ccvcerererrererereree s s s s s s e e s s aesa e e s e s e saesae e s e s aesaesaeannnes 34
Search in @ 2-D MatriX ... s 37

£ 1] 42
STNGS N C/CA+ v san e e s e e s ae e s pe e s e e nan e ns 42
SHNGS TN CH ..ot e e s s e e e sa e e e e e s e s R e e e e e e e e sae e ae e e e e e e aeeaesReeanannes 43
TSR (T - P 44
Replace BIanKs iN @ SIHNQ....c.ccveeereriiriereresersersere e sessesessesaesssssssessessesssssssessessessesassessessesassasses 45
B TN U 11 T TSR 49

LinKed LiStS ..uuuieeermrnssennnmmssssnnnmmssssssssssssssnnnsssssssnsnsssssssnnssssssnnsnssssssnnnssssssnnnnsssssnnnnnnss 53
Print Lists from Tail t0 Head ..ot snneas 54
SO LISES ...ttt e e AR e AR e R e ae R 56
00 0T N 0 SO 59

Tr@BS 1uuuurrrssssnnnnnnsssnnnnnnssssnssnnssssnnsnnsssssssnnesssssssnnesssssssnsssssnssnssssssssnssssssnsnnmsssssnnnsesssnnnsn 63
Next Nodes in BiNAry TIEES.......ccuciviierernsisserse e sesse s s sss s e s sss e s e s s snesnnnens 64
Binary Search Tree VErifiCationccocceveiinsensscrnsc s s sessens 66

Stack and QUEUE ...cuvvrieeerrrssssnnsmmsssssnsnssssssnsssssssssnssssssssnsnsssssssnnssssssnnnnsssssnnnnsssssnnnnness 70
Build a Queue With TWO SEACKSc.cceverrrircrrrn e 70
Build a Stack with TWO QUEUESccceriererrrirsirse st ss s sa s e s s ne e sean 72

Y T 7 74

CHAPTER 4: Algorithmscccuunmssseemmmmmmmmmmmmssssssssssssssnnnmnssssssssssnnnnnns 75

Recursion and Iteration..........ccccunemmmmminsssnnmmmssssnmmmssssmmssssnmsssssnsssssnmsa———m—ms 75
1T T oIS o 11 1= e OSSR 76

Search and Sort ... ————————————————————— 81
Binary Search in Partially SOrted Arrays........cccvrrrererrersersereressessessessessessssessesssssssssssssessessessssssses 84
M@JOTILIES N AITAYScvecercreseresre e ses e ses e e s e s e s s e e e s e s e s e e s e e sae e nae e s s e e srnnenensenes 87

viii

CONTENT

BaCKIracKingcccussseesmmssssnnnnnmssssnnnnnsssssnnnsssssssnnnnssssnsnnsnssssnnsnnsssssnnnnessssnnnnsssssnnnnnnssnns 90
String Path in MatriXccovieeierrrscrs s 91
RODOT MOVE ...t s e nnn s 93

Dynamic Programming and Greedy Algorithms.........ccccuneeemmmmssssssnmmsssssssmsssssssssnsnns 94
Edit DISTANCEc..eiveiecrccc e a e e e e e e nenan 95
Minimal Number of Coins for Changecccriererrrerresiesersssensessessesessssessessessessssessessessesasssssns 98
Minimal Times of Presses on Keybhoards ... ssesnnens 99

Bit Operations.........ccccuumisemnmmmmsssnnnmmmsssnnmmmsssssnmmssssnmesssnnmesssssna s a——————"n; 101
NUMDBEr Of 1S iN BiNAIYvoueeeceeeee e e 102
Numbers OCCUITING ONIY ONCE.....ceevereererrerrereresessersersessessssessessessesassasssssessessessessssessessesassasenss 105

8111 11T T 109

CHAPTER 5: High Quality Code.........ccusesmssmmsmmmsasmssnsmsmsmssssssnsssannsnnns 111

[T 111
COMPIELENESS ..uueeririssnnnnnnssssnnnnnsssssssnnnsssssnnnmsssssnnnnessssnnsnsssssnnnneessssnnnnessssnnnnsesssnnnnnnss 112
Test Cases for COMPIELENESS........cccvvrereririrrre e sa e s s s re e s 112
Strategies 10 HANAIE EITOrS.......ccocvererveriererere st serserese e ses e s e s e ssessesssssssessessesassasssssessesnesassns 113
POWET O INTEYRIS......coveeeereereeres e e s s e s n s e s 114
Big NUMDEIS @S SEHNQSevveeeeerirereree s sereresre s s s e ses e s ssesaesassasses e sassasssssessessessesssssnsanns 117
Delete Nodes from @ LiSt.......ccccvviicinicnnnsinsinnne s sse s ses e s s ssesss e s e s sassnssnnns 123
Partition NUMDEIS iN ArTAYS.....ccvceverererrerireresse s sessese e sssses s saesasssssessessssssssssessessessesassassnnas 127
RODUSINESS 1ociriiissnnemmnnnnirnssssssssssnnsnnsnsesssssssssssnnnnsnnssssssssssnnnnnnnsnesssssssssnnnnnnnnnensssssnnnnn 132
K" NOUE fIOM ENU..vvvevecrirreeseasesessssseasssasssssssssssssassssssssssassassesassans 132
REVEISE @ LiSt......ccoiireieeireerest s e sn s e 135
SUDSTIUCTUES N TIBES.....vi e e e s s s p e e s nennn e s 138
81T 11T T 141

CHAPTER 6: Approaches to Solutions..........cccccccuumemnnennnnnnnennnaceec.. 143

Figures to Visualize Problems.........ccucmmmmmmsssmsmmmmsssssnmmsssssssnmssssssssnsssssssssssssssnsnnssnns 143
Mirror Of BiNAIY TIEESccceueereecreecrerseres e se s e s se s se e sse s e se s e s e s e e nas 143
Print MatriX in SPiral Orderccocvcevererrerierere e s ses s s sassas e s e sassaeses e ssesnesassassnnas 146
Clone ComPIEX LISTS......ccceierrreriiniererse s s e s ss e s sassas e s sas st s e s snesresnnsnnns 149

ix

CONTENTS

Examples to Simplify Problemsccccccimmmnsemmmmnmsssssmmmmssssnmmssssssmmssssssssssssssssnnns 152
Stack With Min FUNCHION ..o s 152
Push and Pop SeqUENCE OF STACKScccererrerreriererseressensersesessssessessessesssssssessessesssssssessessessesaens 157
Print Binary Trees LeVel DY LEVEL. ... 159
Paths in BiNArY TIEES.......cvcvieriierer et a e s a e s e s s b s s n e nene 165

Divide and CONQUETccuiuusnmmmmmssssnnsmmsssssnsnmsssssssnsnsssssnsnsssssnnsnssssssnnnsnssssnnnnsssssnnnnnnss 168
Traversal Sequences and Binary TrEEScccecrvrirrcnesnsnsnse s s ses s snes 168
Binary Search Trees and Double-LinKed LiStSccccocevrrrnrierierenensensessesesse s sessessessssessessensens 174
Permutation and Combination ..o 179

8111 11T T 185

CHAPTER 7: Optimizationccccceenmmnnnnnnnnnnnnnnsnsnnssnnsnssnssssnnsnnnnnnnnnnnns 187

Time EffiCieNnCY..ccuiceuiiiiiecmmmmmissssnmmmssssssnmmsssssssnmsssssssnmnsssssnsnnssssssnnsnssssnnnnnessnnnnnnnnsnns 187
Median in @ SIFEAM.........cccie s a e s p e nae e 188
Minimum A NUMDEEScoviciiiesinerer et se s e ne e p e e nr s 191
Intersection Of SOMEA ArTAYSc.ccoererrererersererse s s e se s sessenennas 194
Greatest SUM Of SUD-AITAYSccvvererererrere s s e se e s sassas e s saesnesasssssesnens 196
Digit 1 Appears in Sequence from 110 M. 198
Concatenate an Array to Get a Minimum NUMDEFccvverivrvnrerierereres s sessessessessssassens 201

Space-Time Trade-0ffcccurmmmimmmssssmmssssnmsssesmsssness s s ssssssssansesss 203
UGIY NUMDELS ...t ss s s n s s s s sn e e s e a e e s e ne s aennnnns 204
Hash Tables for CharaCters..........ccuciererrrenieriene s sas s s sa e s s saesessens 207
ReVersed PaIrs iN AITaY......c.ccoeeeeerrerieresesessessese s s s ssesasses e ssessesasssssesssssessesssssssessesnesansnnns 213
First Intersection Node in TWO LiStScccccvvririeninnnnnin e ses e ssssesse s ssesessenas 216

L1111 T T 218

CHAPTER 8: Skills for Interviews......cccoureeesmmsmessmssmssssssssssssssssssnsssnes 219

Communication and Learning SKillScccciuummsmmnmmmssssssmmmmsssssmnmmssssssmsssssssssssssssnnn 219
CommMUNICALIONS SKIllSccvecerireerreriresrre e s sr e sr s s e s 219
Learning SKIllSccociiririerr s s e sn e e e s nne e 220

CONTENT

Knowledge Migration SKillcccccuuissemmmmmssssnsmmmssssssnmmsssssnsmmsssssssnnsssssssssssssssnssnsssnns 220
Time of Occurrences in @ SOMEU ArTayc.ccevverrrsernsesesresrsese s ssssessssessssesenns 221
Application of Binary Tree Traversalsccccceviriennensnninsin e sessessse s sssssssssssssssssssessens 223
SUM N SEOUENCESerueieieirire et s s s s a e e st ae e e e s e e e e aeebe e e nen e s 227
Reversing Words and Rotating Stringsccccveevvvrvrreriennnnsensesessssessessesessssssssssessessessssessessees 233
Maximum iN @ QUEBLEceceerererreereererreeraesesssessesseseesasssesesssessessesssessesassssesaessessssasssssnsesaesanenes 236

Mathematical Modeling SKill.........cccossemmmmnnssemnmmnnmsssnmmmssssmmmmsssssmmmssssssmssssssmmmns 241
Probabilities 0f DIiCe POINTScccucerieeeierresine e 241
Last NUMDEr iN @ GIFClE........cccvcriiecrer st sa st n s s p e s 243
Minimum Number of Moves t0 Sort Cards...........ccovvevreinnseninsesness e 246
MOSt Profit from STOCKcocvrererere e rrer s s s s s s e s a e s e s e e sae e nnens 249

Divergent Thinking SKillScciusesmmssasmmsssnsmsssssmsssasssssansssssssssssssssssanssssansssssnsssssnnnss 251
CalCUIAtiNg 1424 ../t e 252
Implementation of +, -, *, ANA /ccoverrrrirrrrer e 255
Final/Sealed ClassSes iN G4+cccccieererieicnisse s s ses s ssesasses e s e ssesssssssessessessessssessenns 259
Array CONSTITUCTIONcccerercvir e e s a e s s sa e e s s aesa e nn e e e e 261

111111 1 262

CHAPTER 9: INtervieW CASeScvurremsssrensssssnmsssssnsssssnssssnnnnssnsnnsssnes 203

Integer Value from a String......ccccccniemmmismmmssnsmsssssmssssnssssssssssssssssssnsssssssessansessnnness 263
The INtervieWEr's COMIMENTScocveeieeerireerrssrerssersssesssssessssessssessssssssssesessesssssessssessssesssssesssessas 267
Lowest Common Parent NOde iN @ Treeccuureemmsiuremmmssussmsmnssssnsnnssssnnnsssssnnnnsssnnnnnnss 269
The INtErvieWEr'S COMIMENTScovveeerieeriierisssresseessssessssressseesssesssssssassesessesssssessssessssesssnsesssessan 273
INO X euieereernnrnnasensnnnssnssnnssnnssnssnnsnnssnnssnnssnsssnssnnssnnsnnssnnssnnsnnssnnsnnnsannnn 275

xi

About the Author

Harry He has been a senior software engineer at Cisco since September 2010. His primary work involves
development of Cesium, which is a platform for Cisco to monitor and control hardware quality of its partners
(OEM/ODM). Prior to joining Cisco, Harry was associated with Autodesk and Microsoft for development of
Civil 3D and Winforms respectively. Over the years, he has interviewed many candidates for different
corporations where he developed his interest in coding interview questions. He has written dozens of blogs on
this topic.

Harry's published works include a book on programming interview questions in Chinese, which was
released in December 2011 with PHEI, China. He has exhaustive knowledge, experience, and understanding of
code-related questions and interviews.

xiii

Acknowledgments

The prototype of this book is my blogs about coding interview problems. Thanks to the readers of the blogs,
whose encouragement helped me make the decision to write this book.

Many friends and colleagues helped to review the first draft: Wesley Miao from Autodesk, Min Yang
from Amazon, Aldrin Lee from Cisco, Jiakai Liu and Huai Wang from Facebook, Xiang Fan, Chao Tian, Pung
Xu, and Bi Xue from Microsoft. They found many errors and made improvements that were invaluable
additions to this text.

Thanks to the folks at Apress, who include (but are not limited to): Saswata Mishra, Jeffrey Pepper, Ann
Dickson, and Jill Balzano. Their comments and revisions made this book much better.

Great thanks to my family members. My parents helped take care of the whole family. My father began
to learn to cook in his 60s, and now he provides truly delicious meals. Moreover, I began to work on this book
shortly after my little boy Lewis’s birth. His smile and baby babble gave me great pleasure while going through
the hard experience of writing a book. And, most of all, to Rachel, my wife and the love of my life. The day I
finally found her was the best day in my memory and I am sure will always be so in the future.

Harry He
Shanghai, China
November 2012

Introduction

I used to be one of those who searched through the Internet to prepare for interviews of well-known
companies. The information was scattered over lots of web sites, and it was not an easy task to collect coding
interview problems and solutions systematically. In order to facilitate my own interview preparation, as well as
others’, I began to write blogs about programming problems and their solutions.

After I wrote dozens of blogs, I found that there were common strategies to solve various coding interview
problems. Therefore, I gradually realized that it might be a good idea to summarize the strategies in a book.
With one-year of writing and revising, as well many friends’ encouragement and help, now this book is in your
hands or perhaps on your screen.

Distinguishing Features

This book analyzes coding problems from interviewers’ perspectives. There are many tips about the expected
behaviors in this book, which are based on my own experiences as an interviewer at Autodesk, Microsoft, and
Cisco. Moreover, many interview questions have different solutions. This book evaluates various solutions
from an interviewer’s point of view. When you read the problem analyses, you will get the idea as to why some
solutions are better than others, and you will grasp the capabilities required to the assure the quality of your
code through completeness, robustness, and efficiency.

This book not only solves more than 100 interview problems, but also summarizes common strategies to
conquer complex problems. When I analyzed and solved dozens of coding interview problems, I found that
there are many general strategies that are quite helpful to solve other similar problems during interviews. For
example, if an interview problem is quite complex, we may divide it into several small subproblems, and then
solve the subproblems recursively. We can also utilize hash tables implemented with arrays to solve many
interview problems about strings. Similar problems are grouped in sections in this book. Pay attention to the
similarities among problems in a section and the general ideas to solve them. When you meet new but similar
problems at your interviews, you may reapply the strategies illustrated in this book.

Sample questions in this book are real interview problems frequently met in the famous IT companies. The
coding interview is the most important phase of the whole interview process in many companies, such as
Facebook, Google, and Microsoft. The sample questions collected in this book are the most typical ones
adopted by interviewers in these companies. Don’t be discouraged when you find that the problems in this
book are not easy because interviews in big companies are not easy for most software engineers at first. You
will find that there are relatively few problems that truly test the capabilities of programmers in meaningful
ways. So, while you may not get a problem directly from this book, you should attain the skills required to
handle whatever an interviewer can dish out. When you gradually master the strategies to solve problems
summarized in this book, your capabilities to develop code and solve complex problems will be improved, and
you will feel confident when interviewed by the Facebooks and Googles of the world.

xvii

INTRODUCTION

Source code to solve sample interview problems along with a complete set of test cases to each problem is
included. After candidates finish writing code, many interviewers will ask them to design some test cases to test
their own code. Some candidates, especially fresh graduates, do not have clear ideas about how to design test
cases. When you finish reading this book, you should know how to improve code quality with functional test
cases, boundary test cases, performance test cases, and so on.

Summary of Chapters

The first chapter focuses on the interview process. A typical interview process can be divided into two phases:
phone interviews (including phone-screen interviews) and on-site interviews. Usually there are three steps in
each round of interview, which are the behavioral interview, technical interview, and general Q/A. Tips are
provided for each stage of interviews.

The next three chapters cover basic programming knowledge. Technical interview questions on four
popular programming languages (C, C++, C#, and Java) are discussed in Chapter 2. The most common data
structures (including arrays, strings, lists, trees, stacks, and queues) and algorithms (including search, sort,
backtracking, dynamic programming, greedy algorithms, and bit operations) are discussed in Chapter 3 and
Chapter 4 respectively.

Chapter 5 discusses three factors of high quality code. Interviewers usually expect candidates’ code to
fulfill the functional requirements as well as cover corner cases and handle invalid inputs gracefully. After
reading this chapter, you should get the idea so that you will write clear, complete, and robust code.

Three strategies to solve difficult coding interview problems are provided in Chapter 6. If hard problems
are met during interviews, candidates should figure out solutions before they write code. After reading this
chapter, you may get three strategies to solve problems: figures to visualize problems, step-by-step analysis on
examples to simplify problems, and divide-and-conquer strategies to break complex problems into
manageable pieces.

The topic of Chapter 7 is performance optimization. If there are multiple solutions to a problem, usually
interviewers expect the most efficient one. The strategies to improve time efficiency and make trade-off
decisions between time and space are discussed with several sample coding interview questions.

Chapter 8 summarizes various skills for interviews. Interviewers usually pay close attention to candidates’
communication and learning skills. Additionally, many interviewers like to examine candidates’ skills of
reapplying knowledge, mathematical modeling, and divergent thinking.

Chapter 9 closes this book with two interview cases, which highlight good behavior expected by
interviewers and the most common mistakes made by candidates.

Downloading the Code

The code for the examples shown in this book is available on the Apress web site, www.apress.com. A link
can be found on the book’s information page under the Source Code/Downloads tab. This tab is located
underneath the Related Titles section of the page.

Xviii

CHAPTER 1

Interview Process

Applying for a technical job is, in many ways, a unique experience. The interview process is unlike any
other. Applicants who do not know what to expect are at a severe disadvantage. The purpose of this
chapter is to acquaint you with the process so that, instead of being surprised, you will have an
advantage over your competition. By understanding the process, you will be prepared for even the
toughest interviews and have the opportunity to let your talents dictate your success.

Types of Interviews

It is often a long journey before a candidate receives an offer. Typically, a phone interview is the first step
in the process. If it goes smoothly, a candidate may receive an invitation for one or more rounds of on-
site interviews. A typical interview process is shown in Figure 1-1.

> Phone Interview >> On-site Interview >

Figure 1-1. The interview process

Phone Interviews

During the phone-interview phase, interviewers examine candidates via phone calls. Many interviewers
discuss time frames with candidates and schedule a specific time for the interview in advance, but
others do not. In some areas of the world, such as India, it is even possible for a candidate to receive an
unexpected phone call and be expected to perform an interview at that moment.

Whether the interview comes at an expected time or not, it is a good practice to find a comfortable
and quiet place to take the call. The place should be free of distractions so that the candidate and
interviewer can hear each other.

Compared to on-site interviews, during the phone interview the two sides on the phone can only
communicate via voice. It is more difficult for candidates to describe their ideas without auxiliary tools,
including body language and facial expressions, especially when describing complex data structures and
algorithms. For example, it is quite easy for a candidate to describe a binary tree during an on-site
interview because he or she can draw it on paper. However, interviewees on the phone can express a
clear idea about a binary tree only after describing the binary tree itself in detail, including what the left
child and right child of each node are. This kind of explanation can make for an awkward interview or
perhaps make it bog down in unnecessary detail.

CHAPTER 1 © INTERVIEW PROCESS

Sometimes voices are not very clear over phones. If candidates cannot hear interviewers' questions
or requirements clearly, they should feel free to ask the interviewers to clarify. Providing answers
irrelevant to the question should be avoided. Actually asking for more clarification is a good way for
candidates to show their communication skills. In some cases, it can also buy time to think of a good
response. During real software development, requirements are usually ambiguous at first, and engineers
have to ask end users for clarification. Therefore, the skill of asking for clarification is an important
component of the communication skills set an employer is likely to appreciate.

Tip Candidates should communicate their thoughts in sufficient detail during phone interviews so that they
are convinced interviewers understand their responses.

Phone-Screen Interviews

To facilitate phone interviews, many companies utilize online word-processing tools, such as Google
Docs and Collabedit, which allow candidates to easily share and collaborate with interviewers in real
time. Even though the two parties participating in the interview do not physically sit together,
interviewers can examine how candidates write code on their desktop screens. An interview that occurs
on the phone and uses these word-processing tools is often referred to as a phone-screen interview.

Interviewers pay a lot of attention to candidates' programming skills and habits. In most cases, they
look for the following programming habits:

e Thinking carefully before programming. It is not usually a good idea for a
candidate to begin coding hastily once he or she hears an interview question.
Without reflecting on the process, a candidate will be prone to write buggy code.
Remember that the interview situation puts more pressure on the candidates than
they feel when they are doing their day-to-day work. Candidates usually are
fearful, and sometimes panic, when their bugs are pointed out by interviewers. If
they have answered in too much haste, their code might be modified to create an
even bigger mess in such situations. A much better strategy for candidates is to
implement code after they have clear ideas about their solutions, including data
structures and algorithms to utilize, time and space efficiencies, cases requiring
error handling, and so on. Generally, the interviewer will respect the
thoughtfulness taken to arrive at the best result.

e Readable naming convention and indentation. Meaningful names of variables and
functions as well as clear, logical indentation improve code readability
dramatically, and they help interviewers to read and understand code. They also
help if you have to debug your code as it will be read more simply.

More advanced collaboration tools are used in some interviews, such as Microsoft Lync and Cisco
WebEx. Candidates share their desktops with remote interviewers to show their programming and
debugging processes in an IDE, such as Visual Studio or Eclipse.

What interviewers usually require is an ability to develop a function in order to solve a certain
problem. Candidates demonstrate their professional developing skills if they write unit test cases
immediately after they finish implementing functions. It is a good practice for a candidate to ask his or
her interviewer to review code only after all unit tests pass. It is more impressive if a candidate writes test
cases before functional code since test-driven developers are somewhat rare.

CHAPTER 1 I INTERVIEW PROCESS

It is quite common for candidates to meet difficult issues during a coding interview. Interviewers
pay alot of attention to candidates' behaviors when the candidates realize that their results are not as
expected. Interviewers will believe candidates have abundant development experience if they can fix
issues in a short time period by scrutinizing the code, setting break points, tracing each step, viewing
memory, and analyzing call stacks. Debugging skills are accumulated by lots of practice rather than
reading books, so interviewers look for them as a way of ferreting out professional developers.

On-Site Interviews

If a candidate performs well during a phone interview, it is quite possible for him or her to receive an
invitation for an on-site interview.
A day or two before the on-site interview, a candidate should consider the following items:

e Scheduling. Candidates need to plan how they will get to the interview, estimate
how much time is needed, and leave about half an hour or more for unexpected
situations such as traffic jams.

e Wearing comfortable clothes. The dress code in most IT companies is quite casual,
so usually it is not necessary for engineer candidates to be formally dressed. They
can choose whatever is comfortable within reason.

e Paying attention to the interview process. On-site interviews often contain several
rounds. For example, there are usually five rounds of on-site technical interviews
for Microsoft. It is quite common to feel fatigued after long interviews. Candidates
may wish to bring some vitalizing drinks or food.

e Asking a few questions. Interviewers generally leave a few minutes for candidates
to ask some questions before a round of interview ends. Candidates would be wise
to prepare some questions in advance.

On-site interviews are the most important part of the whole interview process because interviewers
examine candidates' programming skills as well as their communication skills, learning skills, and so on.
We will cover these skills in the following chapters.

Phases of Interviews

Each round of interview is usually split into three phases, as shown in Figure 1-2. The first phase is the
behavioral interview, in which interviewers examine candidates' experience while referring to their
résumés. The second phase is the technical interview when it is highly possible for a candidate to be
asked to solve some coding interview problems. Finally, the candidate is given time to ask a few
questions.

Behavnloral Techn!cal QA Time
Interview Interview

Figure 1-2. Three phases of a round of interview

CHAPTER 1 © INTERVIEW PROCESS

Behavior Interview

The first five to ten minutes of a round of interview is used for becoming acquainted. Usually, this is time
for the behavioral interview, and no difficult technical questions are asked. Interviewers look for
someone who would be a good fit for the job in terms of technical skills as well as personality. A person
who is too timid might not fit well into an environment where he or she needs to be vocal. Interviewers
also look for enthusiasm and excitement. If candidates are not excited about the position, they may not
be motivated to contribute, even if they are a strong technical fit.

Most interviews begin with candidates' introducing themselves. A candidate usually doesn’t need to
spend a lot of time introducing his or her main study and work experiences because interviewers have
seen his or her résumé which contains detailed information. However, if an interviewer feels interested
in a project the candidate has worked on, he or she may ask several questions on that subject in the
introductory phase.

Project Experience

After a candidate has introduced him- or herself, interviewers may follow up with some questions on
interesting projects listed on his or her résumé. It is recommended to use the STAR pattern to describe
each project both on your résumé and during interviews (Figure 1-3).

e Situation: Concise information about the project background, including the size,
features, and target customers of the project.

e Task: Concrete tasks should be listed when describing a big project. Please notice
the difference between “taking part in a project” and “taking charge of a project.”
When candidates mentioned they have taken charge of a project, it is highly
possible for them to be asked about the overall architectural design, core
algorithms, and team collaboration. These questions would be very difficult to
answer if the candidates only joined a team and wrote dozens of lines of code.
Candidates should be honest during interviews. Reference checks will also query
claims made on résumés.

e Action: Detailed information should be covered about how to finish tasks. If the
task was architectural design, what were the requirements and how were they
fulfilled? If the task was to implement a feature, what technologies were applied
on which platforms? If it was to test, was it tested automatically or manually, with
black boxes or white boxes?

e Result: Data, especially numbers, about your contribution should be listed
explicitly. If the task is to implement features, how many features have been
delivered in time? If the task is to maintain an existing system, how many bugs
have been fixed?

CHAPTER 1 I INTERVIEW PROCESS

What was What were What actions What was
the project the tasks were your
background? assigned? taken? contribution?

N
14

Figure 1-3. A STAR pattern describes project experiences on résumés and during interviews.

Let’s look at an example of the STAR patter in use. I usually describe my experience working on the
Microsoft Winforms team in the following terms:

Winforms is a mature Ul platform in Microsoft .NET (Situation). I mainly focused on maintenance
and on implementing a few new features (Task). For the new features, I implemented new Ul styles on
Winforms controls in C# in order to make them look consistent between Windows XP and Windows 7. I
tried to debug most of the reproducible issues we had with Visual Studio and employed WinDbg to
analyze dump files (Action). I fixed more than 200 bugs in those two years (Result).

Interviewers may follow up with a few questions if the information you supplied in these four
categories has not been described clearly. Additionally, interviewers are also interested in the
candidates’ answers to the following questions:

e What was the most difficult issue in the project? How did you solve it?
e What did you learn from the project?

¢ When did you conflict with other team members (developers, testers, Ul
designers, or project managers)? How did you eliminate these conflicts?

It is strongly recommended that candidates prepare answers to each of the questions above when
they write their résumés. The more time they spend preparing, the more confident they will be during
interviews.

Tip When describing a project either on a résumé or during an interview, candidates should be concise
regarding project background, but they should provide detailed information about their own tasks, actions, and
contributions.

Technical Skills

Besides project experiences, technical skills are also a key element that interviewers pay close attention
to on candidates’ résumés. Candidates should be honest in describing the proficiency level of their skills.
Only when candidates feel confident that they are capable of solving most of the problems in a certain
domain, should they declare themselves experts. Interviewers have higher expectation of candidates
who claim to be experts and ask them more difficult questions. It is very disappointing when you cannot
meet these expectations.

CHAPTER 1 © INTERVIEW PROCESS

For instance, I interviewed a candidate who declared himself an expert on C++, but he could not
answer questions about the initialization order of parameters in constructor functions.

Tip Candidates should be honest when they are describing their project experiences and technical skills.

“Why Do You Want to Change Your Current Job?”

If a candidate already has worked for a few years, it is highly likely for him or her to answer questions
regarding his or her reasons for wanting to change jobs. Because everyone has his or her own reasons for
wanting a new position, there are no standard answers. However, not all answers are appropriate for
interviews.

Candidates should avoid complaining because complaining reveals passive emotions, and passive
emotions are usually infectious in a team. When a candidate complains a lot, his or her interviewer
worries that he or she might become the source of passive emotions and affect the morale of the team as
awhole.

Complaints often arise from four categories. These complaints should be avoided during interviews:

e My boss is rigorous with high standards and strict requirements. If an interviewer is
the manager of the hiring position and she hears such an answer, she might
wonder if she would be the next rigorous boss after she hires the complaining
candidate.

e My teammates are not affable and friendly. If a candidate believes all of his or her
teammates are not easy to get along with, the candidate may be the one who is
difficult to work with.

e We work overtime too often. All companies look for diligent workers, and it is not
rare to work overtime in software and Internet companies. If the hiring position
also requires overtime, this response may disqualify the candidate.

e My salary is too low. Having a low salary is indeed the real reason many candidates
want to change jobs. However, it is not a suitable time to discuss salary
requirements during the technical interviews. The only purpose for interviews is
to get an offer. Candidates can discuss salary packages with the recruiters when
they pass the technical interviews.

A recommended answer on job hopping is to use the job you are applying for as the model job: “My
ideal job is to be working in the position you are hiring for because I am looking for a more challenging
job. I do not have much passion for aspects of my current job, and I would like to take on a more
fulfilling position.” Some detailed reasons should be given as to why you feel unmotivated on your
current job and why you are interested in the new position.

After I got on board, one of my interviewers at Microsoft told me that my answer was impressive. My
previous job at Autodesk was to develop new features for Civil 3D, which is well-known software for civil
engineering. I had to learn more civil engineering before I got promoted, but I was not interested in the
domain knowledge such as earthwork calculation, corridor design, and so on. Therefore, I was looking
for opportunities outside the company.

CHAPTER 1 I INTERVIEW PROCESS

Technical Interview

After interviewers get candidates' background information through the behavioral interviews, they move
on to the technical interview. Technical questions require about 40 to 50 minutes if the overall interview
time is an hour. This is the most important phase of the whole interview process.

Interviewers are generally interested in skills in five categories:

e Basic programming knowledge, including understanding of programming
languages, data structures, and algorithms

e Abilities to write clean, complete, and robust code

e Capabilities to analyze and solve complex problems

e Abilities to improve time and space efficiencies

e Skills involving communication, learning, divergent thinking, and so on.

Candidates should be well prepared before the interview and master knowledge of programming
languages, common data structures, and algorithms. If the coding interview questions are simple,
candidates should pay attention to details to write complete and robust code. If questions are difficult,
they may try to simplify problems with figures and examples, and by dividing problems into manageable
subproblems in order to get clear solutions before coding. Moreover, they should try their best to
improve time and space performance. Candidates can ask interviewers to clarify their requirements in
order to demonstrate communication skills. It is not difficult to get an offer if a candidate performs well
on these factors.

Basic Programming Knowledge

Having abundant programming knowledge is the key to being an outstanding developer, so it is the first
aptitude to be examined during the interview. It includes understanding of programming languages,
data structures, and algorithms.

First, every programmer should be proficient in at least one or two programming languages.
Interviewers examine the proficiency level of programming languages via coding and follow-up
questions. Take C++ as an example. If there is a pointer parameter in a candidate's source code, he or
she might be asked whether the parameter should be marked as const, and what the differences are if
const is placed before or after an asterisk symbol (*).

Second, many interview questions focus on data structures. Lists, trees, stacks, and queues appear
frequently in interviews, so candidates should be familiar with their operations. For example, candidates
should write bug-free code quickly to insert and delete nodes of lists, as well as traverse binary trees
iteratively and recursively with pre-order, in-order, and post-order algorithms.

Last but not least, algorithms are focal points in many interviews. Candidates should be familiar
with the differences between various searching and sorting algorithms as well as scenarios suitable for
each algorithm. There are many interview questions that are actually utilizations of binary search, merge
sort, and quick sort algorithms. For example, interview questions “Minimum of Rotated Array”
(Question 27) and “Times of Occurrences in Sorted Array” (Question 83) are about the binary search
algorithm, and the problem “Reversed Pairs in an Array” (Question 81) is essentially about the merge
sort algorithm. There are also many interview problems concerning dynamic programming and greedy
algorithms.

CHAPTER 1 © INTERVIEW PROCESS

Four of the most popular programming languages, C, C++, C#, and Java are covered in Chapter 2.
The most common data structures are discussed in Chapter 3, and algorithms are discussed in Chapter
4.

Clean, Complete, and Robust Code

Many candidates are confused and ask themselves, “Why wasn’t I hired even though the interview
questions seemed simple to me?” There are many reasons why people fail, and the most common one is
that there are some problems remaining in their solutions or written code. That is to say, they have to
improve their code quality.

The first standard of code quality is readability. If candidates are asked to write code on paper or
white boards, they must write neatly and cleanly. Additionally, readability is improved if code is written
with reasonable variable names and logical indentation.

The second standard is completeness. Many interviewers examine quality through boundary
checking and special inputs (such as NULL pointers and empty strings). There are lots of candidates who
fail their interviews because their code only fulfills the basic functional requirement.

Let’s take one of the most popular interview questions in Microsoft as an example: How would you
convert a string into an integer? (See Listing 1-1.) This question seems very simple, and some candidates
can finish writing code within three minutes.

Listing 1-1. C Code to Convert a String to an Integer

int StrToInt(char* string) {
int number = o;
while(*string != 0) {
number = number * 10 + *string - '0';
++string;

}

return number;

Do you also think this problem is quite easy after reading the code above? If you think so, it is highly
possible that you will be rejected by Microsoft.

The simpler the question is, the higher expectations an interviewer has. The problem above is
simple, so interviewers expect candidates to solve it completely. Besides basic functional requests,
boundary conditions and error handling should be considered. Converting a string into an integer is the
basic functional request to be fulfilled. Additionally, candidates should pay attention to more cases,
including the negative and positive symbols, the minimal and maximal integers, and overflow. The code
is also expected to handle cases when the input string is not numeric, with non-digit characters. When
we take all of these cases into consideration, it is not a simple problem anymore.

Besides incomplete solution and code, another intolerable mistake from an interviewer's
perspective is that code is not robust enough. If we scrutinize the code above carefully, we notice that it
crashes when the input string is a NULL pointer. It would be a disaster if such code were integrated into a
real software system.

Not all issues related to robustness are so obvious. Let’s take another popular problem as an
example: how to get the k" node from the tail of a list. Many candidates read its solution with two
pointers on the Internet. The first pointer moves k-1 steps, and then two pointers move together. When

CHAPTER 1 I INTERVIEW PROCESS

the first pointer reaches the tail node of the list, the second one reaches the k" node from the tail. They
feel lucky and write the code in Listing 1-2 with much confidence.

Listing 1-2. C++ Code to Get the k" Node from Tail

ListNode* FindKthToTail(ListNode* pListHead, unsigned int k) {
if(pListHead == NULL)
return NULL;

ListNode *pAhead = plListHead;

ListNode *pBehind = NULL;

for(unsigned int i = 0; 1 < k - 1; ++ 1) {
pAhead = pAhead->m_pNext;

pBehind = pListHead;

while(pAhead->m_pNext != NULL) {
pAhead = pAhead->m_pNext;
pBehind = pBehind->m_pNext;

return pBehind;

}

The candidate who writes the previous code feels more confident when he or she finds that the NULL
pointer is handled and, consequently, believes he or she will definitely be hired. Unfortunately, a
rejection letter might be received a few days later because there are still two serious issues left: (1) When
the number of nodes in a list is less than k; it crashes; (2) When the input kis zero, it crashes.

The best approach to solving this kind of problems is to figure out some test cases before coding.
Candidates may write complete code only if all possible inputs have been considered. It is not a good
strategy to ask interviewers to check their code immediately after they finish writing the code. They
should execute their code in their minds first and only hand the code to interviewers after they are sure it
gets expected results for all test cases.

We will discuss strategies to improve code quality in more detail in Chapter 5.

Tip Besides basic functional requirements, interviewers expect candidates to han