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Foreword

This text is an expanded version of informal notes prepared by the first author
for a minicourse of eight hours, reviewing the links between hypoelliptic tech-
niques and the spectral theory of Schrödinger type operators. These lectures
were given at Rennes for the workshop “Equations cinétiques, hypoellipticité
et Laplacien de Witten” organized in February 2003 by the second author.
Their content has been substantially completed after the workshop by the two
authors with the aim of showing applications to the Fokker-Planck operator in
continuation of the work by Hérau-Nier. Among other things it will be shown
how the Witten Laplacian occurs as the natural elliptic model for the hypoel-
liptic drift diffusion operator involved in the kinetic Fokker-Planck equation.
While presenting the analysis of these two operators and improving recent
results, this book presents a review of known techniques in the following top-
ics : hypoellipticity of polynomial of vector fields and its global counterpart,
global Weyl-Hörmander pseudo-differential calculus, spectral theory of non
self-adjoint operators, semi-classical analysis of Schrödinger type operators,
Witten complexes and Morse inequalities.

The authors take the opportunity to thank J.-M. Bony, who permits
them to reproduce its very recent unpublished results, and also M. Derridj,
M. Hairer, F. Hérau, J. Johnsen, M. Klein, M. Ledoux, N. Lerner, J.M. Lion,
H.M. Maire, O. Matte, J. Moeller, A. Morame, J. Nourrigat, C.A. Pillet,
L. Rey-Bellet, D. Robert, J. Sjöstrand and C. Villani for former collabora-
tions or discussions on the subjects treated in this text. The first author would
like to thank the Mittag-Leffler institute and the Ludwig Maximilian Univer-
sität (Munich) where part of these notes were prepared and acknowledges
the support of the European Union through the IHP network of the EU No
HPRN-CT-2002-00277 and of the European Science foundation (programme
SPECT). The second author visited the Mittag-Leffler institute in september
2002 and acknowledges the support of the french “ACI-jeunes chercheurs :
Systèmes hors-équilibres quantiques et classiques”, of the Région Bretagne, of
Université de Rennes 1 and of Rennes-Métropole for the organization of the
workshop “CinHypWit : Equations cinétiques, Hypoellipticité et Laplaciens
de Witten” held in Rennes 24/02/03-28/02/03.
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1

Introduction

This text presents applications and new issues for hypoelliptic techniques
initially developed for the regularity analysis of partial differential operators.
The main motivation comes from the theory of kinetic equation and statistical
physics. We will focus on the Fokker-Planck (Kramers) operator:

K = v · ∂x − (∂xV (x)) · ∂v −Δv +
v2

4
− n

2
= X0 −Δv +

v2

4
− n

2
, (1.1)

and the Witten Laplacian

Δ
(0)
Φ/2,h := −h2Δ +

1
4
|∇Φ|2 − h

2
ΔΦ , (1.2)

where

Φ(x, v) =
v2

2
+ V (x)

is a classical hamiltonian on R2n
x,v and

X0 = v · ∂x − (∂xV (x)) · ∂v

is the corresponding hamiltonian vector field.
The aim of this text is threefold:

1. exhibit the strong relationship between these two operators,
2. review the known techniques initially devoted to the analysis of hypoel-

liptic differential operators and show how they can become extremely
efficient in this new framework,

3. present, complete or simplify the existing recent results concerned with
the two operators (1.1) and (1.2).

At the mathematical level the analysis of these two operators leads to ex-
plore or revisit various topics, namely: hypoellipticity of polynomials of vector
fields and its global counterpart, global Weyl-Hörmander pseudo-differential
calculus, spectral theory of non self-adjoint operators, semi-classical analysis
of Schrödinger type operators, Witten complexes and Morse inequalities. The
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2 1 Introduction

point of view chosen in this text is, instead of considering more complex phys-
ical models, to focus on these two operators and to push as far as possible the
analysis. In doing so, new results are obtained and some new questions arise
about the existing mathematical tools.

We will prove that (e−tK)t≥0 and (e−tΔ
(0)
Φ/2)t≥0 are well defined contraction

semigroups on L2(R2n, dx dv) for any V ∈ C∞(Rn
x). Meanwhile the Maxwellian

M(x, v) =
{
e−

Φ(x,v)
2 if e−

Φ(x,v)
2 ∈ L2(R2n)

0 else ,

is the (unique up to normalization) equilibrium for K and Δ
(0)
Φ/2:

KM = Δ
(0)
Φ/2M = 0 .

Two questions arise from statistical physics or the theory of kinetic equations:
Question 1:
Is there an exponential return to the equilibrium ? By this, we mean the
existence of τ > 0 such that:∥∥e−tPu− cuM

∥∥ ≤ e−τt ‖u‖ , ∀u ∈ L2(R2n) ,

where P = K or P = Δ
(0)
Φ/2 and cu (in the case M �= 0) is the scalar product

in L2(R2n) of u and M/||M ||.
Question 2:
Is it possible to get quantitative estimates of the rate τ ?

For P = Δ
(0)
Φ/2 which is essentially self-adjoint it is reduced to the es-

timate of its first nonzero eigenvalue. Several recent articles, like [DesVi],
[EckPiRe-Be], [EckHai1], [EckHai2], [HerNi], [Re-BeTh1], [Re-BeTh2],
[Re-BeTh3], [Ta1], [Ta2] and [Vi1], analyzed this problem for operators sim-
ilar to K, with various approaches going from pure probabilistic analysis to
pure partial differential equation (PDE) techniques and to spectral theory.
The point of view developed here is PDE oriented and will strongly use hy-
poelliptic techniques together with the the spectral theory for non self-adjoint
operators.

Note that a related and preliminary result in this “spectral gap” approach
concerns the compactness of the resolvent. One of the results which establish
the strong relationship between K and Δ

(0)
Φ/2 says:

Theorem 1.1.
The implication(

(1 + K)−1 compact
) ⇒ (

(1 + Δ
(0)
Φ )−1 compact

)
(1.3)

holds under the only assumption V ∈ C∞(Rn)1.

1 Indeed the C∞ regularity is not the crucial point here and the most important
fact is that nothing is assumed about the behaviour at infinity.
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In [HerNi] the reverse implication was proved for quite general elliptic poten-
tials, satisfying for some μ ≥ 1 ,

|∂α
xV (x)| ≤ Cα〈x〉2μ−|α| and C−1〈x〉2μ ≤ 1 + |V (x)| ≤ Cα〈x〉2μ .

Among other things in the present text, we will explore as deeply as possible
the validity of the following conjecture:

Conjecture 1.2.
The Fokker-Planck operator (1.1) has a compact resolvent if and only if the
Witten Laplacian on 0-forms (1.2) has a compact resolvent.

Hypoelliptic techniques enter at this level twice:

1. in the proof of the equivalence when it is possible;
2. in order to get effective criteria for the compactness of (1 + Δ

(0)
Φ/2)

−1.

In this direction, the present text provides a (non complete) review of various
techniques due to Hörmander [Hor1], Kohn [Ko], Helffer-Mohamed [HelMo],
Helffer-Nourrigat [HelNo1, HelNo2, HelNo3, HelNo4], while emphasizing new
applications of rather old results devoted to subellipticity of systems by Maire
[Mai1, Mai2], Trèves [Tr2] and Nourrigat [No1]. Among those works, one can
distinguish at least two methods for the treatment of the hypoellipticity, one
referred to as Kohn’s method which is not optimal but flexible enough to
permit several variants and another one which is based on the idea initiated
by Rothschild-Stein [RoSt] and developed by Helffer-Nourrigat to approximate
the operators by left invariant operators on nilpotent Lie groups.
By writing

Δ
(0)
Φ/2 = Δ

(0)
V/2 ⊗ Idv + Idx ⊗ (−Δv +

v2

4
− n

2
)

and
Δ

(0)
V/2 = −Δx +

1
4
|∇V |2 − 1

2
ΔV (x) ,

which can also be expressed in the form

Δ
(0)
V/2 =

n∑
j=1

L∗
jLj =

n∑
j=1

X2
j + Y 2

j + i [Xj , Yj ] ,

with Lj = Xj + Yj , Xj = ∂xj , Yj = 1
2i∂xjV (x), the conditions on V (x) which

ensure the compactness of (1+Δ
(0)
Φ/2)

−1 can be analyzed very accurately with
nilpotent techniques.
Although it is possible to write K as a non commutative polynomial of ∂xj ,
∂xjV (x), ∂vj , vj , the relationship between K and Δ

(0)
Φ/2 is more clearly exhib-

ited after writing

K = X0 + b∗b = X0 +
n∑

j=1

b∗jbj
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which looks like a “type 2 Hörmander’s operators”, X0 +
∑n

j=1 Y
2
j if one

replaces the vector field Yj by the annihilation operators

bj = ∂vj +
vj

2
, for j = 1, . . . , n ,

associated with the harmonic oscillator hamiltonian

b∗b = −Δv +
v2

4
− n

2
.

We will follow and improve the variant of the Kohn’s method used by Hérau-
Nier in [HerNi] which was partly inspired by former works of Eckmann-Pillet-
Rey-Bellet [EckPiRe-Be], Eckmann-Hairer [EckHai1]. Precisely our results
will require one of the two following assumptions after setting

h(x) =
√

1 + |∇V (x)|2 .

Assumption 1.3.
The potential V (x) belongs to C∞(Rn) and satisfies:

∀α ∈ N
n, |α| ≥ 1, ∃Cα s.t. ∀x ∈ R

n , |∂α
xV (x)| ≤ Cαh(x) , (1.4)

∃M , C ≥ 1 , s.t ∀x ∈ R
n , h(x) ≤ C 〈x〉M , (1.5)

and the coercivity condition

∃M , C ≥ 1 , s.t. ∀x ∈ Rn , C−1 〈x〉1/M ≤ h(x) . (1.6)

Assumption 1.4.
The potential V (x) belongs to C∞(Rn) and satisfies (1.4) (1.5) with the co-
ercivity condition (1.6) replaced by the existence of ρ0 > 0 and C > 0 such
that:

∀x ∈ R
n, |∇h(x)| ≤ C h(x) 〈x〉−ρ0 . (1.7)

Theorem 1.5.
If the potential V ∈ C∞(Rn) verifies Assumption 1.3 or Assumption 1.4, then
there exists a constant C > 0 such that

∀u ∈ S(R2n),
∥∥∥Λ1/4u

∥∥∥2

≤ C
(
‖Ku‖2 + ‖u‖2

)
, (1.8)

with Λ2 = (1 + Δ
(0)
Φ/2)

Corollary 1.6.
If the potential V ∈ C∞(Rn) satisfies Assumption 1.3 then the operator K has
a compact resolvent.
If the potential V ∈ C∞(Rn) satisfies Assumption 1.4, then K has a compact
resolvent if (and only if) the Witten Laplacian Δ

(0)
V/2 has a compact resolvent.
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After the proof of these results, we show by analyzing the example of a
quadratic potential V that the exponent 1/4 is not optimal. We also address
the question whether nilpotent algebra method can be applied directly to the
operator K and explain why a naive application of Helffer-Nourrigat results
in [HelNo3] does not work. We emphasize that the hypoelliptic estimate (1.8)
is not only used for the question of the compactness of (1 + K)−1. Indeed a
variant of it permits to give a meaning to the contour integral

e−tK =
1

2iπ

∫
∂SK

e−tz(z −K)−1 dz ,

for t > 0, although we cannot say more on the numerical range of K, than

{〈u,Ku〉, u ∈ D(K)} ⊂ {z ∈ C, Re z ≥ 0} .

This last point is crucial in the quantitative analysis of the rate of return to
the equilibrium.

We will not reproduce the complete quantitative analysis of [HerNi] which
provides upper and lower bounds of the rate of return to the equilibrium for

Kγ0,m,β = v · ∂x − 1
m

(∂xV (x)) · ∂v − γ0

mβ

(
∂v − mβ

2
v

)
·
(
∂v +

mβ

2
v

)
in terms of the friction coefficient γ0, the particle mass m and the inverse
temperature β. These bounds are expressed, up to some explicit algebraic
factor in (γ0,m, β), in terms of the first non zero eigenvalue of the semiclassical
Witten Laplacian

Δ
(0)
V/2,h = −h2Δx +

1
4
|∇V (x)|2 − h

2
ΔV (x) with h = β−1 .

The latter part of this text gives an account of the semiclassical analysis of
this Witten Laplacian. We will recall the relationship with Morse inequalities
according to Witten [Wi], after introducing the whole Witten complex and the
corresponding deformed Hodge Laplacians Δ(p)

f,h on all p-forms. After recalling
some basic tools in semiclassical analysis, we recall the more accurate results
of Helffer-Sjöstrand [HelSj1, HelSj4] stating that the O(h3/2) eigenvalues of
these Witten Laplacians are actually O(e−

C
h ) and that the restriction of the

Witten complex, to suitable finite dimensional spectral spaces, leads by a lim-
iting procedure to the orientation complex which was introduced in topology.
Finally, we will discuss and propose some improvements about the accurate
asymptotics of those exponentially small eigenvalues given, by Bovier-Eckhoff-
Gayrard-Klein in [BovGayKl], [BovEckGayKl1] and [BovEckGayKl2]. This
last result will at the end be combined with the comparison inequalities of
[HerNi] for the rates of trend to the equilibrium between Kγ0,m,β and Δ

(0)
V/2,h,

(h = β−1).
Here is an example of quantitative results which can be obtained.
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Proposition 1.7.
Assume that the potential V is a C∞ Morse function with

• two local minima U
(0)
1 and U

(0)
2 , such that V (U (0)

1 ) < V (U (0)
2 ),

• one critical point with index 1 U (1),
• V (x) = |x|2 for |x| ≥ C.

Then for fixed any fixed γ0 > 0 and m > 0, the rate τ(γ0,m, β) satisfies

lim inf
β→∞

e
β
(

V (U(1))−V (U
(0)
2 )

)
τ(γ0,m, β) > 0 ,

and lim sup
β→∞

e
β
2

(
V (U(1))−V (U

(0)
2 )

)
τ(γ0,m, β)

β log β
< +∞ .

At the level of the methods, there is no strict separation between the quali-
tative and the quantitative analysis. This is especially true for the maximal
estimates obtained for operators on nilpotent Lie algebra: the existence of
uniform estimates can indeed lead by a kind of addition of variable procedure
standard in physics to semi-classical estimates.

In order to help the reader who is not necessarily specialist in all the
techniques, we now give a rather precise description of the contents of the
book, chapter by chapter. We mention in particular the possibilities for the
reader to omit some part at the first reading.

• In Chapter 2, we present the Hörmander condition for a family of vec-
tor fields and the proof given by J. Kohn of the subellipticity of the
Hörmander’s operators

∑
X2

j and X0 +
∑

X2
j . Although it is a rather

standard material, we thought that it was useful to give the details be-
cause many other proofs will be modelled on this first one. The use of the
pseudo-differential theory is minimal in this chapter, and appears essen-
tially only for operators of the form Λs := φ(x)(1 − Δ)sχ(x), composed
with partial differential operators. We give all the details for the brackets
arguments but do not recall how the hypoellipticity can be derived from
these subelliptic estimates.

• In Chapter 3, we recall some basic criteria for the compactness of the re-
solvent of the Schrödinger operator following a paper of Helffer-Mohamed.
Again, this is rather standard material but we show how to use the Kohn’s
argument in the context of global problems. The bracket’s technique is
used here in order to prove that the form domain of the Schrödinger op-
erator is compactly embedded in L2. This is simply obtained by showing
the continuous imbedding of the form domain in a weighted L2 space. We
have not resisted to the pleasure to present the connected problem of the
magnetic bottles.
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• In Chapter 4, we recall some elements of the Weyl-Hörmander calcu-
lus. The main aim is to construct the analog of the Λs appearing in
Kohn’s proof in a very large context. Because we wanted here to extend
as much as possible the previous work of Hérau-Nier in [HerNi], we were
naturally led to introduce a rather general class of pseudo-differential op-
erators adapted to this problem. The reader can at the first reading omit
this chapter and just take the main result as a fact. The existence of this
family (Λs)s∈R of pseudo-differential operators when Λ is a globally elliptic
or globally quasi-elliptic operator (whose simplest example is the square
root of the harmonic oscillator) is rather old (See for example the work
by D. Robert in the seventies). Here the Beals criterion in the framework
of Weyl-Hörmander calculus allows to consider once and for all possibly
degenerate cases. We close the discussion by presenting new results of J.-
M. Bony about the geodesic temperance.

• Chapter 5 is the first key chapter. We first show that our Fokker-Planck
operators are maximally accretive by extending a self-adjointness crite-
rion of Simader. This result seems to be new. We then analyze various
properties of the Fokker-Planck operator. The main point is the analy-
sis of the compactness of the resolvent. Developing an approach initiated
by Hérau-Nier and implementing the family Λs analyzed in the previous
chapter, the proof is a tricky mixture between Kohn’s proof of subelliptic-
ity, Helffer-Mohamed’s proof for the compactness of the resolvent of the
Schrödinger operator and of the algebraic structure of the Fokker-Planck
operator. The link with a Witten Laplacian is emphasized and this leads to
propose a natural necessary and sufficient condition for the compactness
of the resolvent of the Fokker-Planck operator which is partially left open.
This disproves also that only an Hörmander’s type global condition is suf-
ficient. We also analyze carefully the so called quadratic model, recalling
on one hand the explicit computations presented in the book by Risken
and showing on the other hand how “microlocal analysis” can be used for
improving Kohn’s type estimates.

• Chapter 6 shows how the previous hypoelliptic estimates permit to control
the decay of the semi-group attached to the Fokker-Planck operator. The
reader will find here the main motivation coming from the Kinetic theory.
Again, we meet, when trying to be more quantitative, the question of
estimating carefully the behavior of the lowest non zero eigenvalue of a
canonical Witten Laplacian.

• Chapter 7 is devoted to a short description (without proofs) of the char-
acterization of the hypoellipticity for homogeneous operators on nilpotent
groups. The main result is a conjecture of Rockland which was proved in
the late 70’s by Helffer-Nourrigat. The reason for including this presenta-
tion in the book is two fold. First the hypoellipticity plays an important
role in the analysis of the Fokker-Planck operator and the Witten Lapla-
cian with degenerate ellipticity. Secondly, we consider maximal estimates
and the proof of Helffer-Nourrigat was actually establishing as a technical
tool a lot of spectral estimates for operators with polynomial coefficients.
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• Chapter 8 develops the relationship between the nilpotent analysis and the
more general analysis of maximal hypoellipticity of polynomial of vector
fields. The breakthrough was the paper by Rothschild-Stein which opened
the possibility to establish and prove good criteria of maximal hypoellip-
ticity. We very briefly present some ideas of the results obtained in this
spirit by Helffer-Nourrigat and Nourrigat during the eightie’s.

• Chapter 9 is a first try to apply nilpotent techniques directly to the Fokker-
Planck operator. We present the main difficulties and discuss various pos-
sible approaches. As an application of these ideas we obtain a first result
containing the quadratic Fokker-Planck model, which is far from proving
the general conjecture, but leads to optimal estimates.

• Chapter 10 presents how the nilpotent techniques work for particular sys-
tems. Instead of looking at the Witten Laplacian, it is better to look at
the system corresponding to the first distorted differential of the Witten
complex. The analysis of the microlocal maximal hypoellipticity or of the
microlocal subellipticity of these systems of complex vector fields, which
was done in the eighties mainly motivated by the ∂̄b-problem in complex
analysis, gives as byproducts new results for the compactness of the resol-
vent and for the semi-classical regime. Following a former lecture note of
Nourrigat, our presentation (without proof) of the basic results in microlo-
cal analysis can be understood independently of the nilpotent language.

• Chapter 11 is continuing the investigation of the Witten Laplacian on Rn.
After recalling its general properties and its relationship with statistical
mechanics (this point is detailed in Chapter 12), we present recent criteria
for the compactness of its resolvent obtained by the authors and discuss
many examples. New results are presented in connection with the subel-
lipticity of some tangential system of vector fields.

• With Chapter 12, we start the presentation of the semi-classical analysis.
The chapter is mainly devoted to the analysis of the so called harmonic
approximation and we give a flavour of what is going on for large dimension
systems which appear naturally in statistical physics.

• Chapter 13 enters more deeply in the analysis of the tunneling effect.
Because there are already pedagogical books on the subject, we choose to
select some of the important ideas and limit ourselves to the treatment of
the first model of the theory: the double well problem.

• Chapter 14 starts the analysis of the Witten Laplacian in the semi-classical
regime. We recall how E. Witten uses the harmonic approximation tech-
nique for suitable Laplacians on p-forms attached to a distorted complex
of the de Rham complex in order to give an analytic proof of the Morse
inequalities.

• Chapter 15 is again a key chapter. We now would like to analyze exponen-
tially small effects. We recall (in a sometimes sketchy way) the main steps
of the so called Witten-Helffer-Sjöstrand’s proof that the Betti numbers
are also the cohomology numbers of the orientation complex.
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• Chapter 16 explores how this approach permits to understand and partially
recover some recent results by Bovier-Gayrard-Klein. We also present the
recent results obtained in collaboration with M. Klein. We close the chapter
by an application to the splitting for the Witten Laplacian on functions.

• Chapter 17 is devoted to the presentation of the result obtained by Hérau-
Nier for the rate of decay for the semi-group associated to the Fokker-
Planck operators which was one of the main motivations of the whole
study.

• The last chapter gives additional information on quite recent results ob-
tained or announced in the last year.



2

Kohn’s Proof of the Hypoellipticity
of the Hörmander Operators

2.1 Vector Fields and Hörmander Condition

We consider p C∞ real vector fields (X1, · · · , Xp) in a open set Ω of Rn. If
X and Y are two vector fields, the bracket of X and Y , denoted by [X,Y ] or
(adX) Y , is defined by

[X,Y ]f = X(Y f) − Y (Xf) .

We note that [X,Y ] is a new vector field. We are interested in the case when
the Hörmander condition [Hor1] is satisfied.

Definition 2.1. Hörmander Condition
We say that the Hörmander condition is satisfied at x0, if there exists r(x0) ≥
1 such that the vector space generated by the iterated brackets (adX)αXk at
x0 with |α| ≤ r(x0) − 1 is R

n.

When r(x0) = 1, we say that the system is elliptic and this imposes of
course p ≥ n. Let us give typical examples.

Heisenberg algebra:

n = 3 , p = 2 , r = 2 ,
X1 = ∂x, X2 = x∂z + ∂y ,
[X1 , X2] = ∂z .

(2.1)

Grushin’s operator:

n = 2 , r = 2 ,
X1 = ∂x , X2 = x∂y ,
[X1, X2] = ∂y .

B. Helffer and F. Nier: LNM 1862, pp. 11–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Nilpotent group G4:

n = 4 , r = 3 ,
X1 = ∂x , X2 = 1

2x
2∂t + x∂z + ∂y ,

[X1, X2] = x∂t + ∂z ,
[X1, [X1, X2]] = ∂t .

We say that the vector fields Xj satisfy the Hörmander condition of rank
r in an open set Ω if rmin(x0) ≤ r, for all x ∈ Ω .

2.2 Main Results in Hypoellipticity

We first start by recalling the basic definition of hypoellipticity introduced by
L. Schwartz:

Definition 2.2.
A differential operator with C∞ coefficients in an open set Ω is hypoelliptic
in Ω , if, for any ω ⊂ Ω, any u ∈ D′(Ω), such that Pu ∈ C∞(ω), belongs to
C∞(ω) .

This terminology was motivated by the fact that the elliptic operators have
this property and that in the fifties a very natural question was to give a char-
acterization of the hypoellipticity for the operators with constant coefficients.
Once this was settled, the second challenge was to understand the hypoellip-
ticity of non necessarily elliptic operators with variable coefficients and the
next theorem was probably one of the first general results in this direction.

Theorem 2.3.
If the vector fields (Xj) (j = 1, . . . , p) satisfy the Hörmander condition for
some r in Ω, then the operator:

L =
p∑

j=1

X2
j , (2.2)

which will be called “type 1 Hörmander’s operator”, is hypoelliptic in Ω .

This result is due to L. Hörmander [Hor1].

Remark 2.4.
The Hörmander condition is a necessary condition for getting hypoellipticity
in the case when the Xj’s have analytic coefficients. The proof (due to Derridj
[Der]) is based on Nagano’s Theorem. In the C∞ case, the hypoelliptic oper-
ator − d2

dx2 − exp− 1
x2

d2

dy2 in R2 shows that the Hörmander condition (which
is not satisfied when x = 0) is not in general necessary.
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Theorem 2.5.
If the Hörmander condition is satisfied for some r in Ω, then, for any compact
subset K ⊂ Ω, there exists CK such that

||u||21
r
≤ C

⎛⎝∑
j

||Xju||20 + ||u||20

⎞⎠ , ∀u ∈ C∞
0 (Ω) , with suppu ⊂ K ,

(2.3)
where ||u||s is the Sobolev norm corresponding to Hs.

Remark 2.6.
One can actually show (see for example [BoCaNo]) that the validity of the
inequality (2.3) (also called subelliptic estimates) implies the Hörmander con-
dition of rank r.

Remark 2.7.
Except for the case of operators with constant coefficients where the construc-
tion of a suitable fundamental solution can lead directly to the proof of the
hypoellipticity, one is usually obliged1 to get the C∞ regularity by showing
that u ∈ Hs

loc(ω) for any s. It is indeed standard that C∞(ω) = ∩s∈RH
s
loc(ω).

The proof of Hs-regularity is obtained through the proof of a priori estimates
in Sobolev spaces fo regular functions. The subelliptic estimate above is the
starting point for getting a complete family of inequalities of the type

||u||2
s+ 1

r
≤ C

⎛⎝∑
j

||Xju||2s + ||u||2s

⎞⎠ , ∀u ∈ C∞
0 (Ω) , with suppu ⊂ K ,

(2.4)
for any s > 0.

Remark 2.8.
There exists a microlocal version of this inequality which is due to Bolley-
Camus-Nourrigat [BoCaNo]. We will give precise definitions later in Chap-
ter 10.

Remark 2.9.
Note that it is immediate to see that (2.3) implies the same inequality with
Xj replaced by Xj + cj where the cj ’s are C∞ functions.

We also have to consider “type 2 Hörmander’s operators”, correspond-
ing to:

L =
p∑

j=1

X2
j + X0 , (2.5)

where the vector fields (X0, X1, ...., Xp) satisfy the Hörmander condition. The
simplest example is the heat equation:
1 Unless one constructs Parametrices



14 2 Kohn’s Proof of the Hypoellipticity of the Hörmander Operators

−Δx1,...,xn−1 + ∂xn

A more typical case is the Kolmogorov operator [Kol]:

−∂2
x + (x∂z + ∂y) ,

which was the motivating example for the analysis of Hörmander [Hor1]. As
seen in the introduction, the motivating models like (1.1) are actually of this
type.

2.3 Kohn’s Proof

This section will be devoted to Kohn’s proof [Ko] of some subelliptic esti-
mates. It is simpler than the initial proof of Hörmander [Hor1] and permits
other extensions. As a corollary, but this needs extrawork the existence of such
inequalities imply the hypoellipticity of the corresponding Hörmander oper-
ator. These estimates are not optimal, in the sense that 1

r in the left hand
side of (2.3) is replaced by the weaker 2−r. Finally, let us emphasize that we
are more interested in describing how the proof is going than in the result of
hypoellipticity which is nowadays rather standard.
We consider the operator (2.5). The starting point is to get

p∑
j=1

||Xju||2 ≤ C
(|Re 〈Lu | u〉| + ||u||20

)
, ∀u ∈ C∞

0 (V ) , (2.6)

where V is an open set.
This inequality is immediate by integration by parts if one observes that

X∗
j = −Xj + cj , (2.7)

for a C∞ function cj and that:

2|Re 〈X0u | u〉| = |〈c0u | u〉| ≤ C||u||20 .

A Cauchy-Schwarz argument permits then to conclude.
We observe that this inequality of course implies:

p∑
j=1

||Xju||2 ≤ C
(|〈Lu | u〉| + ||u||20

)
, (2.8)

and
p∑

j=1

||Xju||2 ≤ C
(||Lu||20 + ||u||20

)
. (2.9)

Note that some information is lost in (2.9) in comparison with (2.6).
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There is a general proof establishing that the subelliptic estimates (2.3)
(or some weaker subelliptic estimate) joint with this inequality gives the hy-
poellipticity. The critical point in this part of the proof that we omit is the
control of commutators of L with pseudo-differential operators.
In the case X0 = 0 (the case X0 �= 0 requires more attention), the two

inequalities (2.3) and (2.9) yield for some ε > 0:

||u||2ε ≤ C
(||Lu||20 + ||u||20

)
, (2.10)

but this inequality alone is not enough for proving hypoellipticity.
We now concentrate on the proof of the above subelliptic estimates, written

in the form:
||u||2ε ≤ C

(||Lu||20 + ||u||20
)
, ∀u ∈ C∞

0 (V ) , (2.11)

where ε > 0 and V is a fixed open set containing the point in the neighbor-
hood of which we want to show the hypoellipticity.
Although the general theory of pseudo-differential operators is not completely
necessary, let us briefly recall that the pseudo-differential operators are oper-
ators which are defined by u �→ Op (a)u with:

Op (a)u(x) :=
1

(2π)n

∫
Rn

exp ix · ξ a(x, ξ) û(ξ) dξ . (2.12)

Here R2n � (x, ξ) �→ a(x, ξ) is a C∞-symbol which admits as |ξ| → +∞ an
expansion in homogeneous terms with respect to the ξ variables:

a(x, ξ) ∼
∑
j≥0

am−j(x, ξ) ,

with
a�(x, λξ) = λ�a�(x, ξ) , ∀λ > 0 , ∀ξ ∈ R

n \ {0} .
The real number m is called the degree of the symbol (or of the corresponding
pseudo-differential operator). Actually we only need here the composition of
operators which are the multiplications by C∞ functions, the differentiations
and the family of convolution operators Λs, s ∈ R, where Λs corresponds to
the symbol 〈ξ〉s = (1 + |ξ|2) s

2 . When s = 1, we simply write Λ.

The important point is that the composition of two pseudo-differential op-
erator of order m1 and m2 is a pseudo-differential operator of order (m1 +m2)
whose principal symbol is the product of the two principal symbols. Pseudo-
differential operators of order 0 form an algebra of bounded operators in
L(L2(Rn)).

Now let P be the set of all pseudo-differential operators of order 0 such
that if P ∈ P , then there exists ε > 0 and C > 0 such that:

||Pu||2ε ≤ C
(||Lu||20 + ||u||20

)
, ∀u ∈ C∞

0 (V ) . (2.13)

This set satisfies the following properties:
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Property 2.10.
(P1) P is a left and right ideal in the set of all pseudo-differential operators
of order 0 .

Property 2.11.
(P2) P is stable by taking the adjoint.

Property 2.12.
(P3) XjΛ

−1 ∈ P for j = 0, . . . , p .

Property 2.13.
(P4) If P ∈ P then [Xj , P ] ∈ P for j = 0, . . . , p .

Let us first observe that one can prove inductively starting from (P4)
that Xi1···ipΛ

−1 ∈ P , with Xi1···ip = [Xi1 , [Xi2 , . . . [Xip−1 , Xip ] . . .]]. Let us for
example show that [Xj, Xk]Λ−1 belongs to P . We know that [Xj , XkΛ

−1] has
the property. But

[Xj , XkΛ
−1] = [Xj , Xk]Λ−1 + Xk[Xj , Λ

−1] .

Now
Xk[Xj , Λ

−1] = XkΛ
−1(Λ[Xj , Λ

−1]) ,

and the operator Λ[Xj , Λ
−1] is a pseudo-differential operator of order 0. Using

(P1), we get that XkΛ
−1(Λ[Xj, Λ

−1]) belongs to P .
Hence, using Hörmander condition of rank r, we deduce that P contains any
pseudo-differential operator of order 0. It remains to prove the properties (Pj).

Proof of (P1)
It is a left ideal because pseudo-differential operators of order 0 are bounded
in any Sobolev space. It is a right ideal as well owing to the property (P2).

Proof of (P2)
It is enough to observe that if P is a pseudo-differential operator of order 0,
then

||ΛεP ∗u||2 = 〈PΛ2εP ∗u | u〉 = ||ΛεPu||2 + 〈(PΛ2εP ∗ − P ∗Λ2εP
)
u | u〉 .

We conclude by noticing that
(
PΛ2εP ∗ − P ∗Λ2εP

)
is a pseudo-differential

operator of order −1 + 2ε ≤ 0 if ε ≤ 1
2 .

Proof of (P3)

For j > 1 , we have

||Λ−1Xju||2ε ≤ C(||Xju||2 + ||u||2) ,
if ε ≤ 1 . One can then conclude that Λ−1Xj ∈ P . Now we observe that
XjΛ

−1 = −(Λ−1Xj)∗ + cjΛ
−1 . We then use (P2) and we obtain XjΛ

−1 ∈ P .
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The treatment of the case of X0 is a little more delicate.
We start from:

||Λ−1X0u||21
2

= 〈X0u | Tu〉 , (2.14)

where T is a pseudo-differential operator of order 0.
Then we write X0u = Lu−∑

j X
2
j u, which leads to the estimate:

||Λ−1X0u||21
2
≤ |〈Lu | Tu〉|+

∑
j>0

|〈X2
j u | Tu〉| . (2.15)

The first term of the right hand side is controlled. Let us show how the second
one is treated. We have:

|〈X2
j u | Tu〉| = |〈Xju | X∗

j Tu〉| ≤ C||Xju||(||XjTu||+ ||u||) .
Then we observe that

||XjTu|| ≤ (||Xju|| + ||[Xj , T ]u||) ≤ C (||Xju|| + ||u||) .

So we have shown that Λ−1X0 belongs to P with ε = 1
2 . Taking the adjoint

and observing that a pseudo-differential operator of strictly negative order
belongs to P we get the result.

Proof of (P4)
Let us start from a P such that (2.11) holds for some ε > 0.

The case j > 0 .
Now consider:

||[Xj, P ]u||2δ = 〈[Xj , P ]u | Λ2δ[Xj, P ]u〉
= 〈XjPu | T 2δu〉 − 〈PXju | T 2δu〉 ,

where T 2δ is a pseudo-differental operator of order 2δ. It then follows that:

|〈PXju | T 2δu〉| ≤ |〈Xju | P ∗T 2δu〉|
≤ ||Xju||2 + ||P ∗T 2δu||2
≤ ||Xju||2 + ||T 2δPu||2 + C||u||22δ−1 .

Similarly, with (2.7):

|〈XjPu | T 2δu〉| ≤ |〈Pu | XjT
2δu〉| + C||Pu||2δ||u||0

≤ C||Pu||2δ||Xju||0 + |〈Pu | [Xj , T2δ]u〉| + C||Pu||2δ||u||0 .

It remains to observe that:

|〈Pu | [Xj , T2δ]u〉| ≤ C||Pu||2δ||u|| .
Hence, the j’s, j > 0, are done by choosing δ ≤ min(1

2 ,
ε
2 ) .
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The case j = 0.
It is a little more delicate. We write, with (2.7) and δ ≤ 1/2 ,

|〈X0Pu | T 2δu〉| ≤ |〈Pu | T 2δX0u〉|
+C||Pu||22δ + C||u||20

≤ |〈Pu | T 2δLu〉| + ∑
j>0 |〈Pu | T 2δX2

j u〉|
+C||Pu||22δ + C||u||20

≤ ||Lu||2 +
∑

j>0 |〈XjPu | T 2δXju〉|
+C||Pu||22δ + C||u||20 + C||Pu||2δ||Xju||

≤ C
(
||Lu||2 +

∑
j>0 ||XjPu||22δ + ||Pu||22δ + ||u||20

)
.

It remains to treat ||XjPu||22δ. We claim that

||XjPu||22δ ≤ C
(||Lu||20 + ||Pu||24δ + ||u||20

)
. (2.16)

We have indeed

||XjPu||22δ = ||Λ2δXjPu||2
≤ C

(∑
j>0 ||XjΛ

2δPu||2 + ||Pu||22δ

)
.

Then using (2.8), we get2:∑
j>0 ||XjΛ

2δPu||2 ≤ C
(|〈LΛ2δPu | Λ2δPu〉| + ||Pu||22δ + ||u||20

)
≤ C

(|〈[L,Λ2δP ]u | Λ2δPu〉| + ||Pu||24δ + ||Lu||20 + ||u||20
)

≤ C
(∑

j |〈Xju | Q4δPu〉| + ||Pu||24δ + ||Lu||20 + ||u||20
)

≤ C
(||Pu||24δ + ||Lu||20 + ||u||20

)
.

This proves (2.16).
Taking δ ≤ min( ε

4 ,
1
4 ), the right hand side is controlled.

The treatment of the term |〈PX0u | T 2δu〉| is similar.

Remark 2.14.
If p = n, the operator

∑
j X

2
j +

∑
j Y

2
j + it

∑
[Xj , Yj ] for |t| < 1 is also

hypoelliptic. The problem is that this is the case t = ±1 which we would like
to understand better.

2 We cheat a little because we do not take care of the supports, but the pseudo-local
character of the pseudo-differential operators permits to circumvent this problem.
Here we recall that a linear operator P , which is defined on distributions, is
pseudolocal if ψPφ can be defined by a C∞ distribution kernel, when φ and ψ
are C∞ functions with disjoint compact supports. A differential linear operator
has evidently this property because ψPφ is identically 0.
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Compactness Criteria for the Resolvent
of Schrödinger Operators

3.1 Introduction

It is well known [ReSi] that a Schrödinger operator, defined on C∞
0 (Rd) by

−Δ+V , where V is semi-bounded from below on Rd and in C∞(Rd), admits
a unique selfadjoint extension on L2(Rd), i. e. is essentially self-adjoint. It is
less known but still true that it is also the case under the weaker condition
that −Δ + V is semi-bounded from below on C∞

0 (see [Sim1] or for example
[Hel11]), i.e. satisfying:

∃C > 0, ∀u ∈ C∞
0 (Rd), 〈(−Δ + V )u | u〉 ≥ −C ‖u‖2

.

If in addition the potential V (x) tends to +∞ as |x| → ∞, then the
Schrödinger operator has a compact resolvent. The form domain of the oper-
ator is indeed given by DQ = {u ∈ H1(Rd) | √V + C1u ∈ L2(Rd)} and it is
immediate to verify, by a precompactness characterization, that the injection
of DQ into L2(Rd) is compact. Our aim here is to analyze some cases when
V does not necessarily tend to ∞.

The first well known example of such an operator which has nevertheless
a compact resolvent is the operator −Δ + x2

1x
2
2 in two dimension. One easy

proof is as follow. Although the potential V = x2
1x

2
2 is 0 along {x1 = 0} or

{x2 = 0}, the estimate for the one-dimensional rescaled harmonic oscillator
gives

−Δ + x2
1x

2
2 ≥ 1

2
(−∂2

x1
+ x2

2x
2
1

)
+

1
2
(−∂2

x2
+ x2

1x
2
2

) ≥ 1
2
(|x2| + |x1|) ,

where this comparison is the comparison between symmetric operators on
C∞

0 (R2).
This permits to show that the form domain of the Schrödinger operator is
included in the space {u ∈ H1(R2) | |x| 12 u ∈ L2(R2)}, which is compactly
embedded in L2(R2). Hence, the operator −Δ+x2

1x
2
2 has a compact resolvent.

This example can actually be treated by many approaches (see [Rob2], [Sim1],
[HelNo3] and [HelMo]).

B. Helffer and F. Nier: LNM 1862, pp. 19–26, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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3.2 About Witten Laplacians and Schrödinger Operators

Let us consider the Laplacian introduced in (1.2)

Δ
(0)
Φ := −Δ + |∇Φ|2 −ΔΦ .

For a C∞ potential Φ on Rd, this Laplacian is first defined as the Friedrichs
extension associated with the form

∀u ∈ C∞
0 (Rd), 〈u | Δ(0)

Φ u〉 =
∥∥e−Φ∇xe

Φu
∥∥2

L2(Rd)
.

Of course this is nothing but a specific Schrödinger operator and one can first
think that it is enough to apply the general criteria for Schrödinger operators.
Actually we look for criteria involving as directly as possible the function Φ.

This operator is called Witten Laplacian on 0-forms because it is a restric-
tion of a more general Laplacian defined on all C∞ forms, but it can also be
considered as a Laplacian associated to a Dirichlet form like in probability.
This Laplacian, which is positive by construction, is essentially self-adjoint on
C∞

0 –which means admits a unique self-adjoint extension–(see for example1

[Hel11] and [Sima]) and its self-adjoint closure has the domain

D(Δ(0)
Φ ) =

{
u ∈ L2(Rd), Δ

(0)
Φ u ∈ L2(Rd)

}
.

Of course, it is easy to show that Δ(0)
Φ has a compact resolvent when

|∇Φ(x)|2 −ΔΦ(x) → +∞ , as |x| → +∞ . (3.1)

But this condition is not optimal ! A first improvement can indeed be obtained
through the following “ bracket argument”.
We start from the inequality:

d∑
j=1

(||Xju||2 + α||Yju||2
) ≥ ±i

√
α

d∑
j=1

〈[Xj , Yj ]u | u〉 , ∀u ∈ C∞
0 (Rd) , (3.2)

where Xj = 1
i ∂xj and Yj = ∂xjΦ.

We observe also that
d∑

j=1

[Xj , Yj ] = iΔφ

and that

1 We will present a similar argument in the analysis of the maximal accretivity of
the Fokker-Planck operator (Section 5.2). Let us simply recall that the point is

to show that I + Δ
(0)
Φ has dense range in L2(Rd).
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Δ
(0)
Φ =

d∑
j=1

(
X2

j + Y 2
j − i[Xj, Yj ]

)
.

By convex combination, we obtain:

〈Δ(0)
Φ u | u〉 ≥

∫ (
(1 − ε)|∇Φ|2 + (

√
ε− 1)ΔΦ

) |u(x)|2 dx , ∀u ∈ C∞
0 (Rd) .

(3.3)
This gives:

〈Δ(0)
Φ u | u〉 ≥ (1 −√

ε)
∫ (

(1 +
√
ε)|∇Φ|2 −ΔΦ

) |u(x)|2 dx , (3.4)

for any ε ∈]0, 1[.
So we have obtained the following proposition (see [BoDaHel], [Hel11]).

Proposition 3.1.
Let us assume that there exists t ∈]0, 2[ such that

t|∇Φ(x)|2 −ΔΦ(x) → +∞ , as |x| → +∞ . (3.5)

Then the Witten Laplacian Δ
(0)
Φ has a compact resolvent.

One should notice that, for the function

R
2 � (x1, x2) �→ Φ(x1, x2) = x2

1x
2
2 + ε(x2

1 + x2
2) ,

where ε ≥ 0 , the corresponding potential V = |∇Φ|2−ΔΦ goes to −∞ as x1 →
+∞ and x2 = 0 . Meanwhile the operator Δ(0)

Φ is positive by construction and
we shall show in Theorem 11.10 that it has a compact resolvent if (and only
if) ε > 0 .

Remark 3.2.
One can also find criteria taking into account higher derivatives of Φ . See
[BoDaHel] and Chapter 10.

Proposition 3.3.
If Δ(0)

Φ has a compact resolvent then the operator SΦ := −Δ+ |∇Φ|2 has also
a compact resolvent.

Proof.
This follows immediately from the comparison:

0 ≤ Δ
(0)
Φ ≤ 2SΦ , (3.6)

between symmetric operators on C∞
0 (Rd) and from the essential self-adjoint-

ness of these operators.
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3.3 Compact Resolvent and Magnetic Bottles

Here we follow the proof of Helffer-Mohamed [HelMo], actually inspired by
Kohn’s proof presented in Section 2.3. We will analyze the problem for the
family of operators:

PA =
n∑

j=1

(Dxj −Aj(x))2 +
p∑

�=1

V�(x)2 . (3.7)

Here the magnetic potential A(x) = (A1(x), A2(x), · · · , An(x)) is supposed to
be C∞ and the electric potential V (x) =

∑
j Vj(x)2 is such that Vj ∈ C∞.

Under these conditions, the operator is essentially self-adjoint on C∞
0 (Rn).

We note also that it has the form:

PA =
n+p∑
j=1

X2
j =

n∑
j=1

X2
j +

p∑
�=1

Y 2
� ,

with
Xj = (Dxj −Aj(x)) , j = 1, . . . , n , Y� = V� , � = 1, . . . , p .

In particular, the magnetic field is recovered by observing that

Bjk =
1
i
[Xj , Xk] = ∂jAk − ∂kAj , for j, k = 1, . . . , n .

We start with two trivial easy cases.
First we consider the case when V → +∞. In this case, it is well known that
the operator has a compact resolvent.(see the argument below).
On the opposite, we assume that V = 0 and consider the case when n = 2
and when V = 0. We assume moreover that B(x) = B12 ≥ 0 . Then one
immediately observe the following inequality:∫

B(x)|u(x)|2dx ≤ ||X1u||2 + ||X2u||2 = 〈PAu | u〉 . (3.8)

Under the condition that limx→∞B(x) = +∞, this implies that the operator
has a compact resolvent .

Example 3.4.

A1(x1, x2) = x2x
2
1 , A2(x1, x2) = −x1x

2
2 .

Indeed it is sufficient to show that the form domain of the operator D(qA)
which is defined by:

D(qA) = {u ∈ L2(Rn) , Xju ∈ L2(Rn) , for j = 1, . . . , n + p} . (3.9)

is contained in the weighted L2-space,
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L2
ρ(R

n) = {u ∈ S′(Rn) | ρ 1
2 u ∈ L2(Rn)} , (3.10)

for some positive continuous function x �→ ρ(x) tending to ∞ as |x| → ∞.
In order to treat more general situations, we introduce the quantities:

mq(x) =
∑

�

∑
|α|=q

|∂α
xV�| +

∑
j<k

∑
|α|=q−1

|∂α
xBjk(x)| . (3.11)

It is easy to reinterpret this quantity in terms of commutators of the Xj’s.
When q = 0, the convention is that

m0(x) =
∑

�

|V�(x)| . (3.12)

Let us also introduce

mr(x) = 1 +
r∑

q=0

mq(x) . (3.13)

Then the criterion is

Theorem 3.5.
Let us assume that there exists r and a constant C such that

mr+1(x) ≤ C mr(x) , ∀x ∈ R
n , (3.14)

and
mr(x) → +∞ , as |x| → +∞ . (3.15)

Then PA(h) has a compact resolvent.

Remark 3.6.
It is shown in [Mef], that one can get the same result as in Theorem 3.5 under
the weaker assumption that

mr+1(x) ≤ Cmr(x)1+δ , (3.16)

where δ = 1
2r+1−3 (r ≥ 1). This result is optimal for r = 1 according to a coun-

terexample by A. Iwatsuka [Iw]. He gives indeed an example of a Schrödinger
operator which has a non compact resolvent and such that

∑
j<k |∇Bjk(x)|

has the same order as
∑

j<k |Bj<k|2.
Other generalizations are given in [She] (Corollary 0.11) (see also references
therein and [KonShu] for a quite recent contribution including other refer-
ences).
One can for example replace

∑
j V

2
j by V and the conditions on the mj’s can

be reformulated in terms of the variation of V and B in suitable balls. In
particular A. Iwatsuka [Iw] showed that a necessary condition is:∫

B(x,1)

⎛⎝V (x) +
∑
j<k

Bjk(x)2

⎞⎠ dx → +∞ as |x| → +∞ , (3.17)

where B(x, 1) is the ball of radius 1 centered at x.
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Remark 3.7.
If p = n, the operator

∑n
j=1 X

2
j +

∑n
j=1 Y

2
j + it

∑
[Xj , Yj ] , for |t| < 1, has

also a compact resolvent under the conditions of Theorem 3.5. The problem
is that this is the case t = ±1 which appears in the analysis of the Witten
Laplacian.

Before entering into the core of the proof, we observe that we can replace
mr(x) by an equivalent C∞ function Ψ(x) which has the property that there
exist constants Cα and C > 0 such that:

1
CΨ(x) ≤ mr(x) ≤ CΨ(x) ,
|Dα

xΨ(x)| ≤ CαΨ(x) . (3.18)

Indeed, it suffices to replace quantities like
∑ |uk| by (

∑ |uk|2)1/2, in the
definition (3.11) of mq. Tne second condition is a consequence of (3.14).
In the same spirit as in Kohn’s proof, let us introduce for all s > 0

Definition 3.8.
We denote by M s the space of C∞ functions T such that there exists Cs such
that:

||Ψ−1+sTu||2 ≤ Cs

(〈PAu | u〉 + ||u||2) , ∀u ∈ C∞
0 (Rn) . (3.19)

We observe that
V� ∈ M1 , (3.20)

and we will show the

Lemma 3.9.
[Xj, Xk] ∈ M

1
2 , ∀j, k = 1, . . . , n . (3.21)

Another claim is contained in the

Lemma 3.10.
If T is in M s and |∂α

x T | ≤ CαΨ then [Xk, T ] ∈ M
s
2 , when |α| = 1 or |α| = 2 .

Assuming these two lemmas, then it is clear that

Ψ(x) ∈ M2−r

.

Lemma 3.10 and (3.20) lead to

∂α
xV� ∈ M2−|α|

,

and we deduce from Lemmas 3.9 and 3.10:

∂α
xBjk ∈ M2−(|α|+1)

.

The proof of Theorem 3.5 then becomes easy.
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Proof of Lemma 3.9
We start from the identity (and observing that X∗

j = Xj):

||Ψ− 1
2 [Xj, Xk]u||2 = 〈(XjXk −XkXj)u | Ψ−1[Xj , Xk]u〉

= 〈Xku | XjΨ
−1[Xj , Xk]u〉

−〈Xju | XkΨ
−1[Xj , Xk]u〉

= 〈Xju | Ψ−1[Xk, Xj ]Xku〉
−〈Xku | Ψ−1[Xk, Xj]Xku〉
+〈Xju | [Xk, Ψ

−1[Xk, Xj]]u〉
−〈Xku | [Xj , Ψ

−1[Xk, Xj]]u〉 .

If we observe that Ψ−1[Xk, Xj] and [Xk, Ψ
−1[Xk, Xj]] are bounded (look at

the definition of Ψ), we obtain:

||Ψ− 1
2 [Xj , Xk]u||2 ≤ C

(||Xku||2 + ||Xju||2 + ||u||2) .

This ends the proof of the lemma.
Proof of Lemma 3.10
Let T ∈ M s. For each k, we can write:

||Ψ−1+ s
2 [Xk, T ]u||2 = 〈Ψ−1+s(XkT − TXk)u | Ψ−1[Xk, T ]u〉

= 〈Ψ−1+sXkTu | Ψ−1[Xk, T ]u〉
−〈Ψ−1+sTXku | Ψ−1[Xk, T ]u〉

= 〈Ψ−1+sTu | Ψ−1[Xk, T ]Xku〉
−〈Xku | Ψ−1[Xk, T ]Ψ−1+sTu〉
+〈Tu | [Xk, Ψ

−2+s[Xk, T ]]u〉
= 〈Ψ−1+sTu | Ψ−1[Xk, T ]Xku〉

−〈Xku | Ψ−1[Xk, T ]Ψ−1+sTu〉
+〈Ψ−1+sTu | Ψ1−s[Xk, Ψ

−2+s[Xk, T ]]u〉 .
We now observe, according to the assumptions of the lemma and the properties
of Ψ , that Ψ1−s[Xk, Ψ

−2+s[Xk, T ]] and Ψ−1[Xk, T ] are bounded.
So finally we get:

||Ψ− 1
2 [Xj , T ]u||2 ≤ C

(||Ψ−1+sTu||2 + ||Xku||2 + ||u||2) .

This ends the proof of the lemma.

Remark 3.11.
Helffer-Mohamed describe also in [HelMo] the essential spectrum when the
compactness criterion of the resolvent is not satisfied.
We mention also the negative answer to the problem of finding magnetic
bottles for the Dirac operator due to Helffer-Nourrigat-Wang [HeNoWa] (see
the book by B. Thaller [Tha] on this question). It is indeed “essentially”
(the proof is under additional technical conditions) shown that, in the two
dimensional case, the resolvent of the Dirac operator

∑2
j=1 σj(Dxj − Aj(x))

is never compact. Here the σj are two by two self-adjoint matrices such that
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σ2
1 = σ2

2 = I , σ1σ2 = −σ2σ1 .

The standard choice is

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
.

We also observe that the square of this operator is diagonal and that the
diagonal corresponds to the so called Pauli operators

2∑
j=1

(Dxj −Aj(x))2 ±B(x) .

These operators have the structure observed in Remark 3.7, with t = ±1.

Remark 3.12.
As it can for example be seen in [HelNo3], similar problems occur in the theory
of the ∂-Neumann Laplacian and more specifically for the �b operator. We
refer to the quite recent papers by Fu-Straube [FuSt] and Christ-Fu [ChFu]
for a presentation of the theory initiated by J. Kohn [Ko] and for a complete
list of references.



4

Global Pseudo-differential Calculus

This chapter is a review, in a specific case, of basic properties of pseudo-
differential operators. Our motivation was the construction of a chain of
powers of positive “elliptic” operators which could replace the chain
(1 − Δ)s (s ∈ R) appearing in Kohn’s proof of hypoellipticity. Because this
leads, independently of –but motivated by– this application, to interesting
questions about the Weyl-Hörmander calculus, we have added new results on
this calculus, with the kind help of J.M. Bony. In a first reading, the reader
which is not a specialist in microlocal analysis can skip part of these techniques
and proceeds by admitting the result of Theorem 4.8. Note that similar results
were obtained under stronger assumptions in the seventies (see the comments
at the end of the chapter). The main properties of these pseudo-differential
operators will be recalled in Section 4.2.

4.1 The Weyl-Hörmander Pseudo-differential Calculus

We just give in this section, a small account on the so-called Weyl-Hörmander
calculus. It is in some sense the most sophisticated and the most powerful
version of the pseudo-differential calculus1, whose first version was presented
around (2.12) in Section 2.3.
In R2d

z,ζ (this will be applied later with d = 2n, z = (x, v) and ζ = (ξ, η)) we
consider the class of C∞ functions which satisfy

∀α, β ∈ N
d, ∃Cα,β > 0, ∀(z, ζ) ∈ R

2d,
∣∣∣∂α

z ∂
β
ζ a(z, ζ)

∣∣∣ ≤ Cα,βΨ(z, ζ)m−|β|,

for some m ∈ R.
The function Ψ is a fixed C∞ function bounded from below by 1, with other
properties specified below. By introducing the metric

1 resulting of the efforts of many mathematicians mainly in the period 70-85, in-
cluding R. Beals and L. Hörmander,

B. Helffer and F. Nier: LNM 1862, pp. 27–42, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



28 4 Global Pseudo-differential Calculus

g = dz2 +
dζ2

Ψ2
,

the above condition writes |T1 · · ·TJa(z, ζ)| ≤ CJΨ
m(z, ζ) for any finite se-

quence of vector fields (Tj)j=1,...,J such that g(Tj) ≤ 1 uniformly. This class
of symbols is usually denoted by S(Ψm, g) and we shall write shortly Sm

Ψ .
This space of symbols Sm

Ψ endowed with the seminorms

|a|k,Sm
Ψ

= sup
|α+β|≤k

sup
(z,ζ)∈R2d

Ψ−m+|β|(z, ζ)
∣∣∣∂α

z ∂
β
ζ a(z, ζ)

∣∣∣ , k ∈ N

is a Fréchet space.

For any symbol in S ′(R2d), the pseudo-differential operator aW (z,Dz) is an
operator from S(Rd) into S′(Rd) whose Schwartz kernel (that is distribution
kernel) is defined by the oscillatory integral:

aW (z,Dz)(z, z′) =
1

(2π)d

∫
Rd

ei(z−z′)·ζa
(
z + z′

2
, ζ

)
dζ . (4.1)

This is known as the Weyl quantization of the symbol a and other quantiza-
tions, as we have seen in Section 2.1 (see (2.12)) are possible

a(t)(z,Dz)(z, z′) =
1

(2π)d

∫
Rd

ei(z−z′).ζa((1 − t)z + tz′, ζ) dζ, t ∈ [0, 1] ,

(4.2)
where t = 0 corresponds to the standard pseudo-differential calculus and
t = 1 to the adjoint calculus. The Weyl quantization corresponds to the case
t = 1/2 and has the following nice property.

Proposition 4.1.
The operator aW (z,Dz) is symmetric2 on S(Rd), when a is real.

Its central role in the theory, is due to the fact that it exhibits the fundamental
relationship between quantization and the symplectic structure of R2d = T ∗Rd

endowed with its canonical symplectic form

σ =
d∑

j=1

dζj ∧ dzj , σ(Z,Z ′) =
d∑

j=1

(
ζjz

′
j − zjζ

′
j

)
. (4.3)

Here and in the sequel, the capital character Z denotes the pair (z, ζ) in R
2d.

The dual metric with respect to the symplectic form σ is given here by

2 This means:

〈aW (z, Dz)u | v〉L2(Rd) = 〈u | aW (z, Dz)v〉L2(Rd) , ∀u, v ∈ S(Rd) .
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gσ = Ψ2dz2 + dζ2 .

The condition Ψ ≥ 1 ensures that the metric is compatible with the uncer-
tainty principle, which takes here the form:

g ≤ gσ . (4.4)

We now assume that the function Ψ satisfies uniformly for some constants
c1 ≥ 1, c2 ≥ 0 and ν ≥ 0:

|z − z′| ≤ c−1
1

|ζ − ζ′| ≤ c−1
1 Ψ(z, ζ)

}
⇒

(
Ψ(z, ζ)
Ψ(z′, ζ′)

)±1

≤ c1 (4.5)

and (
Ψ(z, ζ)
Ψ(z′, ζ′)

)±1

≤ c2

(
1 + Ψ(z, ζ)2 |z − z′|2 + |ζ − ζ′|2

)ν

. (4.6)

Then the metric g satisfies the Hörmander slowness condition:

(gZ(Z − Z ′) ≤ C1) ⇒
(

sup
T 	=0

(
gZ(T )
gZ′(T )

)±1

≤ 1
C1

)
(4.7)

for some uniform constant C1 ≤ 1, and the Hörmander temperance condi-
tion: (

sup
T 	=0

gZ(T )
gZ′(T )

)±1

≤ C2 (1 + gσ
Z(Z − Z ′))N

, (4.8)

for some uniform constants C2 > 0 and N > 0 .
It is possible to check that the temperance is equivalent to the symmetric
temperance introduced in [BoLe] and used in [BonChe] and [NaNi].

4.2 Basic Properties

We now give the consequences of these properties, which can be found in
[Hor2]-Chap XVIII after noticing the value of the gain for our specific calculus:

λ(Z) =
(

min
T 	=0

gσ
Z(T )
gZ(T )

)1/2

= Ψ(Z) .

4.2.1 Composition

For any m ∈ R and any a ∈ Sm
Ψ the operator aW (x,Dx) acts continuously

on S(Rd) and on S′(Rd). Thus two pseudo-differential operators can be com-
posed as operators in L(S(Rd)) or in L(S′(Rd)). The natural question is then
whether the product is also a pseudo-differential operator. This is the topic
of the next subsection.
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4.2.2 The Algebra ∪m∈R Op Sm
Ψ

If a ∈ Sm(R2d) and b ∈ Sm′
(Rd), then aW (z,Dz) ◦ bW (z,Dz) = cW (z,Dz)

with c ∈ Sm+m′
Ψ . The symbol c is denoted by a�W b and we have the expansion:

a�W b(Z) =
(
e

i
2 σ(DZ1 ,DZ2)a(Z1)b(Z2)

) ∣∣∣
Z1=Z2=Z

(4.9)

=
J−1∑
j=0

(
i
2σ(DZ1 , DZ2)

)j

j!
a(Z1)b(Z2)

∣∣∣
Z1=Z2=Z

(4.10)

+
∫ 1

0

(1 − θ)J−1

(J − 1)!
e

i
2 θσ(DZ1 ,DZ2 )

(
i

2
σ(DZ1 , DZ2)

)J

a(Z1)b(Z2)
∣∣∣
Z1=Z2=Z

(4.11)

=
J−1∑
j=0

(
i
2σ(DZ1 , DZ2)

)j

j!
a(Z1)b(Z2)

∣∣∣
Z1=Z2=Z

+ RJ (a, b)(Z) , (4.12)

where RJ is a continuous bilinear operator from Sm
Ψ ×Sm′

Ψ into Sm+m′−J
Ψ (i.e.

any seminorm of RJ(a, b) is controlled by some bilinear expression of a finite
number of seminorms of a and b).

Let OpSm
Ψ denote the set of pseudo-differential operators, the main con-

sequences of the previous relations can be summarized by:

Proposition 4.2.
The space ∪m∈R OpSm

Ψ is an algebra with

OpSm
Ψ ◦ OpSm′

Ψ ⊂ OpSm+m′
Ψ (4.13)

and [
OpSm

Ψ ,OpSm′
Ψ

]
⊂ OpSm+m′−1

Ψ . (4.14)

Note also that the principal symbols (symbol modulo lower order terms3) of
aW (z,Dz) ◦ bW (z,Dz) and i[aW (z,Dz), bW (z,Dz)] respectively equal ab and
the Poisson bracket {a, b} =

∑d
k=1 ∂ζk

a∂zk
b− ∂zk

a∂ζk
b.

4.2.3 Equivalence of Quantizations

Since our metric g is splitted, gZ(tz,−tζ) = gZ(tz, tζ), all the quantizations
are equivalent at the principal symbol level. More precisely, for any a ∈ Sm

Ψ

and for any t, t′ ∈ [0, 1], there exists a unique symbol at,t′ ∈ Sm
Ψ such that

a
(t′)
t,t′ (z,Dz) = a(t)(z,Dz). They satisfy

at,t′ = e−i(t−t′)Dz.Dζa =
J−1∑
j=0

(−i(t− t′)DzDζ)
j

j!
a + Rt,t′,J(a) ,

where Rt,t′,J is a continuous operator from Sm
Ψ into Sm−J

Ψ . Hence in any
quantization the symbol of the formal adjoint of at(z,DZ) is a up to lower
order terms.
3 Here the case Φ = 1 is not excluded and “lower order” may mean “same order”.
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4.2.4 L2(Rd)-Continuity

The following theorem is an extension of the celebrated Calderon-Vaillancourt
Theorem giving the L2-continuity of pseudo-differential operator of order 0:

Theorem 4.3.

OpS0
Ψ ⊂ L(L2(Rd)). (4.15)

According to the previous remark, this holds for any quantization.

4.2.5 Compact Pseudo-differential Operators

Proposition 4.4.
If the function Ψ satisfies lim(z,ζ)→∞ Ψ(z, ζ) = +∞ then, for any ε > 0,
OpS−ε

Ψ is continuously embedded in the space K(L2(Rd)) of compact operators
in L2(Rd).

4.3 Fully Elliptic Operators
and Beals Type Characterization

A pseudo-differential operator aW (z,Dz) ∈ OpSm
Ψ is said to be fully elliptic

if its symbol satisfies
|a(z, ζ)| ≥ C−1Ψm(z, ζ) , (4.16)

for some C > 0, while it is said elliptic if the inequality holds up to some
remainder R ∈ Sm−δ

Ψ , δ > 0. Any fully elliptic operator admits at any order
a left and right parametrix. We can first write

a�W a−1 = 1 − r1, with r1 ∈ S−1
Ψ ,

and then �W -multiply on the right with 1 + r1 in order to get 1 − r2, with
r2 ∈ S−2

Ψ , at the right-hand side, and so on. The left parametrix at arbitrary
order is obtained similarly.

In [BonChe], J.M. Bony and J.Y. Chemin introduced in a wide generality
Sobolev spaces attached to the Weyl-Hörmander calculus and gave a version
of the Beals criterion (some other details and improvements where given by
J.M. Bony [Bon1] in his graduate course at Ecole Polytechnique in 1997-1998).
In our case, the results of [BonChe] provide a Sobolev scale of Hilbert spaces
Hs

Ψ , indexed by s ∈ R , such that

S(Rd) ⊂ Hs
Ψ ⊂ Hs′

Ψ ⊂ S′(Rd) , for s ≥ s′ ,
∀s,m ∈ R , ∀a ∈ Sm

Ψ , aW (z,Dz) ∈ L (
Hs

Ψ ;Hs−m
Ψ

)
,

H0
Ψ = L2(Rd) and (Hs

Ψ )′ = H−s
Ψ .
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In our case, the metric is diagonal in a fixed basis (see [NaNi] for a detailed
version of Remark 5.6 of [BonChe]) and an operator A : S(Rd) → S′(Rd)
belongs to OpSm

Ψ if and only if it satisfies the estimates

∀α, β ∈ N
d, ∃Cα,β > 0,

∥∥∥ad α
z ad β

Dz
A
∥∥∥
L(Hs

Ψ ;H
s−m+|α|
Ψ )

≤ Cα,β ,

for some s ∈ R.
Moreover the maps a �→

∥∥∥ad α
z ad β

Dz
A
∥∥∥
L(Hs

Ψ ;H
s−m+|α|
Ψ )

(with A = aW (z,Dz))

define, for (α, β) ∈ Nd ×Nd , a set of seminorms which is equivalent to the set
of semi-norms a �→

(
|a|k,Sm

ψ

)
k∈N

on Sm
Ψ . We now apply these results in some

specific case. Our aim is to check that arbitrary real powers of a positive elliptic
pseudo-differential operator are pseudo-differential operators. Although some
statements sound like standard results, these results have to be checked for
general Ψ (see the comments in Section 4.5 below).

Proposition 4.5.
a) Let A = aW (z,Dz) be a fully elliptic operator in OpSm

Ψ ,

|a| ≥ C−1Ψm .

If the operator A : Hs0
Ψ → Hs0−m

Ψ is invertible for some s0 ∈ R, then it is an
isomorphism from Hs

Ψ onto Hs−m
Ψ for any s ∈ R .

b) Let A = aW (z,Dz) ∈ OpSm
Ψ , m > 0 , be a symmetric (the symbol a is real

valued) elliptic operator,

|a| ≥ C−1Ψm + R ,

with R ∈ Sm−δ
Ψ , δ > 0 . Then the operator (A,D(A) = Hm

Ψ ) is self-adjoint
on L2(Rd) and the Sobolev scale (Hs

Ψ )s∈R
coincides with the Sobolev scale

associated with the self-adjoint operator (A,D(A) = Hm
Ψ ).

Moreover, if A ≥ c0Id, then for any s ∈ R the norms u �→ ‖u‖Hs
Ψ

and u �→∥∥As/mu
∥∥

L2 are equivalent.

Proof of a).
First note that A∗ with symbol a satisfies the same properties as A with s0

replaced by −s0+m . The result is proved if As := A considered as an operator
from Hs

Ψ into Hs−m
Ψ has a closed range, Ker (As) = {0} and Ker (A∗

s) = 0.
This is a consequence of elliptic regularity. For any s ∈ R, A ∈ OpSm

Ψ implies

∀u ∈ Hs
Ψ , ‖Au‖Hs−m

Ψ
≤ C ‖u‖Hs

Ψ
.

Conversely, since A admits a left parametrix BJ at any order, i.e.

∃BJ ∈ OpS−m
Ψ , BJA = Id + RJ , with RJ ∈ OpS−J

Ψ ,

the estimate
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‖v‖Hs ≤ ‖BJAu−RJu‖Hs ≤ C ‖Av‖Hs−m
Ψ

+ ‖u‖Hs−m
Ψ

holds for any v ∈ Hs
Ψ (take J ≥ m). Hence the operator As : Hs

Ψ → Hs−m
Ψ

has a closed range.
If u ∈ Hs

Ψ satisfies Asu = 0 , there are two cases:

1. s ≥ s0.
Then u ∈ Hs0

Ψ belongs to Ker (A) and we have u = 0 .
2. s < s0 .

Using again the left parametrix with J large enough, we get

0 = BJAu = u + RJu ,

which implies that u = −RJu belongs to Hs0
Ψ . Therefore u = 0 .

Similarly the same properties for A∗ lead to Ker (A∗
s) = {0} and A defines

an isomorphism from Hs
Ψ onto Hs−m

Ψ for any s ∈ R .

Proof of b).
Notice first that an elliptic real valued symbol a can be made fully elliptic by
adding it0 with t0 ∈ R and |t0| large enough. Hence, it suffices to check that
for t0 ∈ R, |t0| large enough, it0 +A : Hm

Ψ → L2(Rd) is invertible and then to
apply the results of a). The identity (4.10) shows that the remainder RJ (a, b)
depends only on the J th derivatives of the symbols a and b and leads to

(it0 + a)�W
(

1
it0 + a

)
= 1 +

1
2i

{
it0 + a,

1
it0 + a

}
+ R2(it0 + a, (it0 + a)−1)

= 1 + R2(a, (it0 + a)−1) , (4.17)

where R2 is continuous from Sm
Ψ × S−m+2

Ψ to S0
Ψ . The seminorms of the

symbol (it0 + a)−1 in S−m+2
Ψ are of order |t0|−2/m and the right-hand side

1 + R2(a, (t0 + a)−1) is invertible in L(L2(Rd)) for |t0| large enough. Hence
(it0 +A) : Hm

Ψ → L2(Rd) admits a right inverse. A left inverse is constructed
similarly for |t0| large enough and (A,D(A) = Hm

Ψ ) is self-adjoint. The equal-
ity of the two Sobolev scales and the equivalence of the norms are consequences
of a).

Remark 4.6.
An example of such an operator A is t0 + a(z,Dz) with a ≥ 0, a ∈ S1

Ψ elliptic
and the constant t0 > 0 large enough.

Proposition 4.7.
Let A ∈ OpSm

Ψ , m > 0, be elliptic and satisfy A ≥ c0Id . Then for any fixed
λ �∈ σ(A), (A−λ)−1 belongs to OpS−m

Ψ . Moreover, the seminorms of (t+A)−1

in OpS−m
Ψ are bounded uniformly with respect to t ≥ 0.
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By Proposition 4.5, (A,D(A) = Hm
Ψ ) is self-adjoint and for any fixed s ∈ R the

norms ‖u‖Hs
Ψ

and
∥∥As/mu

∥∥
L2 are equivalent. We shall use the Beals criterion

in the form

∀α, β ∈ N
d, ∃Cα,β > 0,

∥∥∥A1+|α|/mad α
z ad β

Dz
(λ−A)−1

∥∥∥
L(L2)

≤ Cα,β,λ .

The relation

0 = ad α
z ad β

Dz
((A − λ)(A− λ)−1)

=
∑

(α1,β1)≤(α,β)

cα,β,α1β1

[
ad α−α1

z ad β−β1
Dz

(A− λ)
]
◦
[
ad α1

z ad β1
Dz

(A− λ)−1
]

makes sense, if one considers the factors ad α1
z ad β1

Dz
(A − λ)−1 as continu-

ous operators from S(Rd) to S′(Rd) because the pseudo-differential factors
ad α−α1

z ad β−β1
Dz

(A− λ) are continuous in S′(Rd) .
The result is derived by induction from this relation in the form

ad α
z ad β

Dz
(A− λ)−1

= −
∑

(α1,β1)<(α,β)

cα,β,α1β1

[
ad α−α1

z ad β−β1
Dz

A
]
◦
[
ad α1

z ad β1
Dz

(A− λ)−1
]
,

with:

A(A− λ)−1 ∈ L(L2) ,

A|α|/m
[
ad α−α1

z ad β−β1
Dz

A
]
A−1−|α1|/m ∈ L(L2) ,

and A1+|α1|/m
[
ad α1

z ad β1
Dz

(A− λ)−1
]
∈ L(L2) for (α1, β1) < (α, β) .

Here (α1, β1) < (α, β) means {α1 ≤ α, β1 ≤ β, and α1 + β1 < α + β} .
When λ = −t the uniform estimates of the seminorms of (A+ t)−1 ∈ OpS−m

Ψ

are a consequence of ∥∥A(A + t)−1
∥∥ ≤ 1 .

4.4 Powers of Positive Elliptic Operators

We conclude this chapter with a result about powers of positive elliptic oper-
ators.

Theorem 4.8.
Let A ∈ OpSm

Ψ , m ≥ 1, be a positive operator, A ≥ c0Id, c0 > 0, with
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A = aW (z,Dz), a ≥ C−1Ψm −R , R ∈ Sm−δ
Ψ , δ > 0. Then for any real s ∈ R,

As belongs to OpSms
Ψ and there exists a constant t0 > 0 such that for all

s ∈ R

As − [(t0 + a)s]W ∈ OpSms−1
Ψ . (4.18)

For a constant t0 > 0 large enough, the ellipticity assumption implies that
t0 + A = t0 + aW (z,Dz) is fully elliptic:

t0 + a ≥ C−1
1 Ψm, C1 > 0 .

The identity (4.17) gives for any t ≥ 0

(t + t0 + A) ◦ [(t + t0 + a)−1]W = 1 + B2,t ,

where the seminorms of B2,t in OpS−1
Ψ are bilinearly controlled by the semi-

norms of A ∈ OpSm
Ψ and the seminorms of (t + t0 + a)−1 ∈ S−m+1

Ψ . These
seminorms of (t + t0 + a)−1 in S−m+1

Ψ are of order O(〈t〉−1/m). Moreover the
seminorms of (t + t0 + A)−1 ∈ OpS−m

Ψ are uniformly bounded according to
Proposition 4.7. Hence we get

∀t ≥ 0, (t + t0 + A)−1 − [(t + t0 + a)−1]W = Et ∈ OpS−m−1
Ψ ,

with all the seminorms of Et in OpS−m−1
Ψ bounded by 〈t〉−1/m .

The first resolvent identity gives, for any t ≥ 0,

(t + A)−1 = (t + t0 + A)−1 + t0(t + A)−1(t + t0 + A)−1 .

With t = 0, this leads to

A−1 = [(t0 + a)−1]W + E0 + t0A
−1(t0 + A)−1 .

Since A−1 and (t0+A)−1 belong to OpS−m
Ψ with m ≥ 1 and E0 ∈ OpS−m−1

Ψ ,
the pseudo-differential calculus gives

∀p ∈ Z, Ap − [(t0 + a)p]W ∈ OpSmp−1
Ψ .

Let us consider now the case of non integer exponents r ∈ R. Indeed the
pseudo-differential calculus reduces the problem to

∀r ∈ I, Ar − [(t0 + a)r]W ∈ OpSmr−1
Ψ ,

for some open interval I of R . We will use the formula (see for example [Yos])

Ar = − sin(πr)
π

∫ ∞

0

dt tr(t + A)−1, r ∈ (−1, 0) . (4.19)

We iterate the first resolvent formula:

(t + A)−1 = (t + t0 + A)−1 + t0(t + t0 + A)−2 + t20(t + A)−1(t + t0 + A)−2

= (1) + (2) + (3) .
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Term (1):
The identity

(t + t0 + A)−1 = [(t + t0 + a)−1]W + Et (4.20)

will be used as it is, but it also implies that all the seminorms of (t+ t0 +A)−1

in OpS−m+1 are bounded by 〈t〉−1/m.
Term (2):
The equality (4.10) gives

(t+t0+a)−1�W (t+t0+a)−1 = (t+t0 +a)−2+R2((t+t0 +a)−1 (t+t0+a)−1) ,

where the seminorms of R2((t+t0+a)−1, (t+t0+a)−1) in S−2m
Ψ and therefore

in S−m−1
Ψ are controlled by the seminorm of (t0 + t + a)−1 in S−m+1

Ψ . With
(4.20), this yields

(t + t0 + A)−2 = [(t + t0 + a)−2]W + E′(t) , (4.21)

with all the seminorms of E′(t) in OpS−m−1 bounded by 〈t〉−1/m .
Term (3):
The operator (t+A)−1 and (t+ t0 +A)−1 are uniformly bounded in OpS−m

Ψ

while all the seminorms of (t+t0+A)−1 in OpS−m+1
Ψ are bounded by 〈t〉−1/m.

With m ≥ 1 again, the seminorms of the term (3) in OpS−m−1
Ψ are bounded

by 〈t〉−1/m .

The three above estimates lead to

(t + A)−1 = [(t + t0 + a)−1]W + [(t + t0 + a)−2]W + E′′(t) ,

with all the seminorms of E′′(t) in OpS−m−1
Ψ bounded by 〈t〉−1/m . With

r ∈ (−1,−1 + 1/m), the integral∫ +∞

0

dt trE′′(t)

converges in OpS−m−1
Ψ , while we have

− sin(πr)
π

∫ ∞

0

dt tr(t + t0 + a)−1 = (t0 + a)r (4.22)

and
− sin(πr)

π

∫ ∞

0

dt tr(t + t0 + a)−1 = −r(t0 + a)r−1 . (4.23)

We have proved

(t + A)r = [(t0 + a)r]W − rt0[(t0 + a)r−1]W + Fr , for Fr ∈ OpS−m−1
Ψ ,

= [(t0 + a)r]W + F ′
r , for F ′

r ∈ OpSrm−1
Ψ ,

and for all r ∈ I = (−1,−1 + 1/m) .
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4.5 Comments

i) The condition m ≥ 1 is necessary for −t0 = A − (t0 + a)W cannot belong
to OpSm−1

Ψ if m < 1 .
ii) Several formulas for the functional calculus are available in order to prove

that powers of pseudo-differential operators are pseudo-differential op-
erators, or more generally in order to estimate commutators with pow-
ers of some self-adjoint or sectorial operators. For sectorial operators A,
one can use contour integrals involving the exponential (see [Yos]). For
self-adjoint operators which are not semi-bounded (like the Dirac opera-
tor), one can use the Dynkin-Helffer-Sjöstrand formula (see [HelSj6], [Ni2]
or Davies [Dav2]) for defining the functional calculus and recognize the
pseudo-differential character of the function of the operator. For a positive
operator any version of (4.19) works.

iii) The analysis of powers of operators in connection with the pseudo-
differential operators now has a long history. It goes back at least to the
work of R. Seeley in [See] for operators on a compact manifold and was
generalized in the same spirit for operators on R

n by D. Robert in [Rob].
Let us explain the difference with their strategy and their result. First
notice that our result is valid with Ψ = 1 (then Theorem 4.8 says noth-
ing but As ∈ OpS0

Ψ because there is no notion of principal symbol) and
all intermediate cases where Ψ grows partially to ∞. In [See] and [Rob]
there is a clear asymptotics with notions of principal symbols and asymp-
totic expansion up to operators of order −∞. It is not the present case.
More generally there are two strategies to attack the pseudo-differential
properties of an operator provided by functional analysis:
1. If the pseudo-differential calculus contains a clear asymptotics (high

frequencies, semiclassical asymptotics, spatial weights) then one can
follow the usual approach by studying recursively all the terms of some
asymptotic expansion;

2. Use the Beals criterion in the framework of global pseudo-differential
calculus. This criterion introduced by Beals in [Be1][Be2][Be3] was
clarified by Bony and Chemin in [BonChe] after the introduction of
the biconfinement inequalities in [BoLe].

iv) In [Bon1], J.M. Bony gave another version of the Beals criterion under the
assumption gσ = λ2g and g geodesically temperate . Under this addi-
tional assumption and with this new criterion, it is possible to prove that
the inverse of an invertible operator in L(L2(Rd)) is a pseudo-differential
operator, without any ellipticity assumption. With the help of Dynkin-
Helffer-Sjöstrand formula [Dav1] it is then possible to study the functions
of self-adjoint pseudo-differential operators with this more direct version of
the Beals criterion. For general metrics, it is not known whether the tem-
perance implies the geodesic temperance (the other implication is true).
We shall come back to this point in Section 4.7 where we reproduce a
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remark communicated to us by J.M. Bony after reading the first version
of this text.

v) The analysis of globally elliptic or globally hypoelliptic operators has also
a long story. In addition to the previous references, let us also mention
Tulovskii-Shubin [TuSh], Robert [Rob], Helffer [Hel0], Mohamed [Moh]
and more recently [Glo3] and [BoBuRo] (and references therein).

vi) The global pseudo-differential calculus was recently used for Witten Lapla-
cians in [Iwas] in connection with the Hodge-Kodaira theory.

4.6 Other Types of Pseudo-differential Calculus

For conciseness and clarity, we did not present the pseudo-differential calculus
in its full generality. However the general theory applies in many different
situations. Often the main difficulty for a specific application is reduced to
finding the right metric. Many works have already been done in this spirit
and when one studies compactness properties of resolvent, the basic example
is associated with the metric:

(1 + |z|2 + |ζ|2)−1(dz2 + dζ2) .

We refer the reader to [Hel0] for a detailed presentation of this calculus. There
the class of symbols, which satisfy∣∣∂α

z,ζa(z, ζ)
∣∣ ≤ Cα 〈z, ζ〉m−ρ|α| ,

was denoted by Γm
ρ , 0 < ρ ≤ 1, and the Sobolev scale associated to this

calculus is the one given by the harmonic oscillator Δz + |z|2 . Unfortunately,
this classical example cannot be applied to the analysis of the Fokker-Planck
operator, except in the case when the potential is (almost) quadratic. We
will use it in a paragraph devoted to the quadratic case and we will need
the additional standard comparison with the anti-Wick calculus (sometimes
called Wick-calculus by some authors, see [Shu], [BeSh], [Hel0] and [Ler]).

As discussed in Shubin [Shu] or in [Hel0], one gets the same class of op-
erators when using the Weyl calculus, the standard calculus or the anti-Wick
calculus. The anti-Wick quantization is the positive quantization modelled on
Gaussians and given by

aA−Wick(z,Dz) :=
∫

R2d

a(τ)Πτ
dτ

(2π)d
,

where Πτ is the projector associated to the Gaussian φτ ∈ L2(Rd)

φτ (z) = (π)−d/4eizτ2/2e−
1
2 |z−τ1|2 .

It is immediate to see that aA−Wick(z,Dz) is positive if a is positive and one
can verify that
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aA−Wick(z,Dz) =
(
a ∗ (π)−de−|z|2−|ζ|2

)Weyl

(z,Dz).

A consequence is that4 for any a ∈ Γm
1 the difference

aWeyl(z,Dz) − aA−Wick(z,Dz) ∈ OpΓm−2
1 . (4.24)

In particular, if m ≥ 2, this difference is bounded in L(L2(Rd)). Indeed the
general comparison between anti-Wick and Weyl quantization is accessible for
many metrics including metrics of the type dz2 + dζ2

Ψ2 by following a process
of partition of unity which relies on the slowness and temperance properties
(see for example [Ler]) but we will not need it in the sequel. Note that the re-
mainder of (4.24) is in OpΓm−2

1 because the gain associated with this calculus
is:

λ(Z) =
(

min
T 	=0

gσ(T )
g(T )

)1/2

= (1 + |z|2 + |ζ|2) .

4.7 A Remark by J.M. Bony
About the Geodesic Temperance

In [Bon1] and [Bon2], J.M. Bony introduced the geodesic temperance condi-
tion which looks stronger than the temperance:(

gZ

gZ′

)±1

≤ C (1 + dist gσ (Z,Z ′))N
,

where dist gσ is the geodesic distance associated with the dual metric gσ. For
the metrics which satisfy this condition (with gσ = λ2g, as is the case for us)
there is a good theory of Fourier integral operators and the Beals criterion can
be simplified. For this last point, one considers the class S+

g of C∞ functions
� on R2d which satisfy

|T0T1 . . . TN �(Z)| ≤ CN,� ,

for any finite family, N ∈ N, of vector fields such that g(Ti) ≤ 1 for 1 ≤ i ≤ N
and gσ(T0) ≤ 1 hold uniformly.
An operator A : S(Rd) → S′(Rd) belongs to OpS(1, g) if and only if for any
finite family �1, . . . , �N in S+

g , N ∈ N, one has

ad L1 . . . ad LNA ∈ L(L2(Rd)) Lj = �W
j (z,Dz) .

Then the inverse of any invertible A ∈ OpS(1, g) belongs to OpS(1, g) and
the use of this Beals criterion can simplify the analysis of functions of self-
adjoint pseudodifferential operators.

4 The proof can for example be found in [Hel0] (Chapitre 1, Theorem 1.4.6)
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After reading the initial version of this text, J.-M. Bony [Bon3] showed us
that for the metrics of the form g = dz2 + dζ2

ψ(Z) in which we are interested, the
temperance implies the geodesic temperance. We reproduce here his proof.

Theorem 4.9.
Let g be a metric on R2d

z,ζ = R2d
Z of the form

g = dz2 +
dζ2

Ψ(Z)2
, with Ψ ≥ 1 ,

and which satisfies Hörmander’s slowness and temperance conditions. Then g
is geodesically temperate.

Lemma 4.10.
Let γ be a metric in Rν such that for any x, y ∈ Rν , γx and γy are proportional
with the uniform estimate(

γx

γy

)±1

≤ C (1 + γx(x− y))N .

Then there exist two positive constants C′ > 0 and N ′ > 0 such that

∀x, y ∈ R
ν , γx(x− y) ≤ C′ (1 + dist γ(x, y))N ′

.

Let t → xt be a C1 curve going from x to y with γ-length � and set R =
γx(x− y)1/2. It suffices to consider the case R ≥ 1. Let t1 be the largest time
such that

γx(xt − x)1/2 ≤ R/2

and let t2 be the smallest t > t1 such that

γx(xt − x)1/2 ≥ R .

The curve t → xt is parametrized such that γxt(ẋt) = γxt(xt − x). Then the
proportionality assumption yields γx(ẋt) = γx(xt−x), where this quantity has
to be smaller than R2 in the interval [t1, t2]. The Cauchy-Schwarz inequality
and the triangular inequality for γx then lead to:

3
4
R2 = γx(xt2 − x) − γx(xt1 − x)

≤ γx(xt2 − xt1)
1/2γx (xt2 − x + xt1 − x)1/2

≤
∫ t2

t1

γx (ẋt)
1/2 dt× 3R

2

≤ 3R2

2
(t2 − t1) .
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We must have t2 − t1 ≥ 1/2. Finally we use the temperance inequality with
γx(xt − x) ≥ 1/4 for t ∈ [t1, t2] (R ≥ 1), in

� ≥
∫ t2

t1

γxt(ẋt) dt ≥
∫ t2

t1

γxt(xt − x)1/2 dt

≥ C−1
0

∫ t2

t1

γx(xt − x)1/(2N+2) dt

≥ C−1
1 R1/(N+1) .

Proof of Theorem 4.9:
The dual metric equals here gσ = Ψ(Z)2dz2 + dζ2. For X,Y ∈ R

2d we call
d(X,Y ) their geodesic distance for gσ. The small parameter ε > 0 will be
fixed in the end. It suffices to prove

∀X,Y ∈ R
2d, gσ

X(X − Y ) ≤ C′(1 + d(X,Y ))N ′
.

We recall X = (x, ξ) and Y = (y, η) and

TXY =
{
Z = (z, ζ) ∈ R

2d, |ζ − ξ| < gσ
X(X − Y )ε

}
.

There are two cases:
a) A gσ-geodesic curve going from X to Y leaves the region TXY . Then there
exists Z0 �∈ TXY such that

d(X,Y ) ≥ d(X,Z0) ≥ |ζ0 − ξ| ≥ gσ
X(X − Y )ε .

b) A gσ-geodesic curve t → Zt between X = Z0 and Y = Z1 lies in TXY . We
set Z ′

t = (zt, ξ) and Y ′ = Z ′
1 = (y, ξ). In this case we have

gσ
Zt

(Zt − Z ′
t) = |ζt − ξ|2 ≤ gσ

X(X − Y )2ε .

The temperance property then gives(
gZt

gZ′
t

)±1

≤ C (1 + gσ
X(X − Y ))2Nε

.

Denoting by δ(x, y) the geodesic distance for the metric Ψ(z, ξ)2dz2, the pre-
vious inequality yields

d(X,Y ) ≥ C−1 (1 + gσ
X(X − Y ))−Nε

δ(x, y)
and

1 + d(X,Y ) ≥ C−1 (1 + gσ
X(X − Y ))−Nε (1 + δ(x, y)) .
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The temperance condition on g ensures that the metric ψ(z, ξ)dz2 in Rd
z sat-

isfies the assumptions of Lemma 4.10 with constants C,N independent of
ξ ∈ Rd. Hence there are some constants C1 > 0 and N1 > 0 such that

1 + δ(x, y) ≥ C−1
1 (1 + gσ

X(Y ′ −X))1/N1 .

With

gσ
X(Y −X) ≤ 2gσ

X(Y ′ −X) + 2 |η − ξ|2 ≤ 2gσ
X(Y ′ −X) + 2gσ

X(Y −X)ε ,

we obtain
1 + δ(x, y) ≥ C−1

2 (1 + gσ
X(Y −X))1/N1 ,

and therefore

1 + d(X,Y ) ≥ C−1
3 (1 + gσ

X(X − Y ))1/(N1−Nε)
.

We conclude by taking ε ≤ 1/(2N1N).
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Analysis of Some Fokker-Planck Operator

5.1 Introduction

The analysis presented in this chapter is an application of the Kohn method.
The same ingredients are indeed present: existence of a family of Λs and com-
mutator techniques. We follow with some improvements the analysis given
by Hérau-Nier in [HerNi]. For the Fokker-Planck equation it seems more ef-
ficient to work with the creation-annihilation operators −∂v + v

2 , ∂v + v
2 , of

the harmonic oscillator and their distorted version associated with the Wit-
ten Laplacian −∂x + 1

2∂xV and ∂x + 1
2∂xV , rather than separating ∂v, v, ∂x

and ∂xV (x). Nevertheless the work of J.P. Eckmann and M. Hairer relies in
a more general context on this second approach and we refer the reader to
[EckHai1, EckHai2] for details in this direction.
Following [HerNi], we would like to analyze the links between the compact
resolvent property for the Fokker-Planck operator and the same property for
the corresponding Witten Laplacian.

5.2 Maximal Accretivity of the Fokker-Planck Operator

5.2.1 Accretive Operators

We collect here some material on accretive operators. The references could
be the books by Dautray-Lions (Vol. 5, Chapter XVII), Reed-Simon [ReSi] or
[Dav1]. Let H be a complex (or real) Hilbert space.

Definition 5.1.
Let A be an unbounded operator in H with domain D(A). We say that A is
accretive if

Re 〈Ax | x〉H ≥ 0 , ∀x ∈ D(A) . (5.1)

Definition 5.2.
An accretive operator A is maximally accretive if it does not exist an accretive
extension Ã with strict inclusion of D(A) in D(Ã).

B. Helffer and F. Nier: LNM 1862, pp. 43–64, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Proposition 5.3.
Let A be an accretive operator with domain D(A) dense in H. Then A is
closable and its closed extension A is accretive.

For the analysis of the Fokker-Planck operator, the following criterion,
which extends the standard criterion of essential self-adjointness, will be the
most suitable

Theorem 5.4.
For an accretive operator A, the following conditions are equivalent

1. A is maximally accretive.
2. There exists λ0 > 0 such that A∗ + λ0I is injective.
3. There exists λ1 > 0 such that the range of A + λ1I is dense in H.

Note that in this case −A is the infinitesimal generator of a contraction
semi-group.

5.2.2 Application to the Fokker-Planck Operator

We would like to show

Proposition 5.5.
Let V be a C∞ potential on Rn, then the closure K of the Fokker-Planck
operator defined on C∞

0 (R2n) by

K := −Δv +
1
4
|v|2 − n

2
+ X0 , (5.2)

where
X0 := −∇V (x) · ∂v + v · ∂x (5.3)

is maximally accretive.
Moreover K∗ is also maximally accretive.

The idea is to adapt the proof that a semi-bounded Schrödinger operator with
regular potential is essentially self-adjoint on L2(Rn) (See for example Theo-
rem 6.6.2 in [Hel11] for a proof of this result of Simader). The result is already
known under additional restrictions, see Hérau–Nier [HerNi], Eckmann–Pillet–
Rey-Bellet [EckPiRe-Be] Eckmann–Hairer [EckHai1, EckHai2], Rey-Bellet–
Thomas [Re-BeTh1, Re-BeTh2, Re-BeTh3].

Proof:
We apply the abstract criterion taking H = L2(Rn×Rn) and A = K. The op-
erators being real, we can consider everywhere real functions. The accretivity
on C∞

0 (R2n) is clear. We can then consider the closure K.
Changing K in T := K + (n

2 + 1)I, we would like to show that its range
is dense.
Let f ∈ L2(Rm), with m = 2n, such that
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< f | Tu >H= 0 , ∀u ∈ C∞
0 (Rm) . (5.4)

We have to show that f = 0.
Because K is real, one can assume that f is real.
We first observe that (5.4) implies that:

(−Δv + v2/4 + 1 −X0)f = 0 , in D′(Rm) .

The standard hypoellipticity theorem for the Hörmander operators of type 2
(See Section 2.2) implies that f ∈ C∞(Rm).
We now introduce a family of cut-off functions ζk := ζk1,k2 by

ζk1,k2(x, v) := ζ(x/k1)ζ(v/k2) , ∀k ∈ N
2 , (5.5)

where ζ is a C∞ function satisfying 0 ≤ ζ ≤ 1, ζ = 1 on B(0, 1) and supp ζ ⊂
B(0, 2).
For any u ∈ C∞

0 , we have the identity∫ ∇v(ζkf) · ∇v(ζku) dxdv +
∫
ζk(x, v)2(v2/4 + 1)u(x, v) f(x, v) dx dv

+
∫
f(x, v)(X0(ζ2

ku))(x, v) dx dv
=

∫ |(∇vζk)(x, v)|2u(x, v)f(x, v) dx dv
+
∑m

i=1

∫
(f(∂viu) − u(∂vif)) (x, v)ζk(x, v)(∂viζk)(x, v) dx dv

+〈f(x, v) | Tζ2
ku〉 .

(5.6)

When f satisfies (5.4), we get:∫
Rm ∇v(ζkf) · ∇v(ζku) dxdv +

∫
ζ2
k(v2/4 + 1)u(x, v) f(x, v) dx dv

+
∫
f(x, v)(X0(ζ2

ku))(x, v)dx dv
=

∫ |(∇yζk)(x)|2u(x)f(x, v) dx dv
+
∑m

i=1

∫
(f(∂viu) − u(∂vif)) (x, v)ζk(x, v)(∂viζk)(x, v) dx dv ,

(5.7)

for all u ∈ C∞(Rm). In particular, we can take u = f .
We obtain

< ∇v(ζkf) | ∇v(ζkf) > +
∫
ζ2
k(v2/4 + 1)|f(x, v)|2 dx dv

+
∫
f(x, v)(X0(ζ2

kf))(x, v) dx dv
=

∫ |∇vζk|2|f(x, v)|2 dx dv .
(5.8)

With an additional integration by part, we get

< ∇v(ζkf) | ∇v(ζkf) > +
∫
ζ2
k(v2/4 + 1)|f(x, v)|2 dx dv

+
∫
ζkf(x, v)2(X0ζk)(x, v) dx dv

=
∫ |∇vζk|2|f(x, v)|2 dx dv .

(5.9)

This leads to the existence of a constant C such that, for all k,

||ζkf ||2 + 1
4 ||ζkvf ||2

≤ C 1
k2
2
||f ||2 + C 1

k1
||vζkf || ||f || + C 1

k2
||∇V (x)ζkf || ||f || . (5.10)
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(The constant C will possibly be changed from line to line). This leads to

||ζk f ||2 +
1
8
||ζk v f ||2 ≤ C(

1
k2
2

+
1
k2
1

)||f ||2 + C(k1)
1
k2

||ζkf || ||f || , (5.11)

where
C(k1) = sup

|x|≤2k1

|∇xV (x)|

This implies

||ζk f ||2 ≤ C(
C̃(k1)
k2
2

+
1
k2
1

)||f ||2 . (5.12)

This finally leads to f = 0. For example, one can take first the limit
k2 → +∞, which leads to

||ζ( x
k1

)f ||2 ≤ C

k2
1

||f ||2 ,

and then the limit k1 → +∞ .

5.3 Sufficient Conditions for the Compactness
of the Resolvent of the Fokker-Planck Operator

5.3.1 Main Result

Let us introduce some convenient notations. We observe that the operator K
defined in (5.2) and (5.3)) can be written

K = X0 + b∗b , (5.13)

where

X0 = (b∗a− a∗b) . (5.14)

with

b = ∂v +
v

2
=

⎛⎜⎝ b1
...
bn

⎞⎟⎠ , a = ∂x +
1
2
∂xV =

⎛⎜⎝ a1

...
an

⎞⎟⎠ . (5.15)

The adjoint forms of a and b are

b∗ = (b∗1, . . . , b
∗
n) and a∗ = (a∗1, . . . , a

∗
n); . (5.16)

With these notations we introduce the operator Λ defined by

Λ2 = 1 + a∗a + b∗b ,
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and which provides a natural Sobolev scale for the problem. Note that the
operator

Λ2 − 1 = a∗a + b∗b = Δ
(0)
Φ/2 = Δ

(0)
V/2 ⊗ Idv + Idx ⊗Δ

(0)
v2/4

is the phase-space Witten Laplacian associated to Φ/2 , with Φ = v2

2 + V (x) .
In order to establish the main theorem, let us introduce some notations and
assumptions. We first introduce the notation

h(x) =
√

1 + |∇V (x)|2 ,

and

Assumption 5.6.
The potential V (x) belongs to C∞(Rn) and satisfies:

∀α ∈ N
n , |α| ≥ 1, ∀x ∈ R

n |∂α
xV (x)| ≤ Cαh(x) , (5.17)

∃M,C ≥ 1, ∀x ∈ Rn, h(x) ≤ C 〈x〉M , (5.18)

and the coercivity condition

∃M,C ≥ 1, ∀x ∈ R
n, C−1 〈x〉1/M ≤ h(x) . (5.19)

Assumption 5.7.
The potential V (x) belongs to C∞(Rn) and satisfies (5.17) (5.18) with the
coercivity condition (5.19) replaced by the existence of ρ0 > 0 and C > 0 such
that:

∀x ∈ R
n, |∇h(x)| ≤ C h(x) 〈x〉−ρ0 . (5.20)

Theorem 5.8.
If the potential V ∈ C∞(Rn) verifies Assumption 5.6 or Assumption 5.7, then
there exists a constant C > 0 such that

∀u ∈ S(R2n) ,
∥∥∥Λ1/4u

∥∥∥2

≤ C
(
‖Ku‖2 + ‖u‖2

)
. (5.21)

Remark 5.9.
As for the Kohn’s proof for the hypoellipticity, the exponent 1

4 in (5.21) is not
optimal. We shall give better results, in the quadratic case, in Subsection 5.5.2
and in Section 9.2.

Corollary 5.10.
If the potential V ∈ C∞(Rn) satisfies Assumption 5.6 then the operator K has
a compact resolvent.
If the potential V ∈ C∞(Rn) satisfies Assumption 5.7, then K has a compact
resolvent if (and only if) the Witten Laplacian Δ

(0)
V/2 has a compact resolvent.
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Proof:
The closure of K, initially defined on S(Rn), is maximally accretive according
to Proposition 5.5. Theorem 5.8 says that the first factor of

(1 + K)−1 =
[
(1 + K)−1Λ1/4

]
Λ−1/4

is bounded, while the second one belongs to the class OpS−1/4
Ψ which is spec-

ified below. Under Assumption 5.6, the function Ψ satisfies

lim
(x,v,ξ,η)→∞

Ψ(x, v, ξ, η) = +∞

and Λ−1/4 is compact. This last condition is not implied by Assumption 5.7
but the compactness of Λ−1/4 is then a consequence of the compactness of

Λ−2 =
(
1 + Δ

(0)
V/2 + Δ

(0)
v2/2

)−1

. The “only if” part will be discussed in Section
5.4.

5.3.2 A Metric Adapted to the Fokker-Planck Equation
and Weak Ellipticity Assumptions

We will apply the results of Chapter 4 with a metric adapted to the analy-
sis of the Fokker-Planck equation and more precisely to the resolvent of the
associated Witten Laplacian

a∗a + b∗b = −Δx +
1
4
|∇xV (x)|2 − 1

2
ΔxV (x) −Δv +

v2

4
− n

2
= Δ

(0)
Φ/2 ,

with Φ(x, v) = v2/2 +V (x). We will consider on R4n
x,v,ξ,η = T ∗R2n

x,v the metric

g = dx2 + dv2 +
dξ2 + dη2

Ψ2
, (5.22)

with
Ψ(x, ξ, v, η)2 = 1 + |ξ|2 + |η|2 +

1
4
|v|2 +

1
4
|∇V (x)|2 . (5.23)

Some assumptions on the potential V appearing in Theorem 5.8 are ac-
tually required in order to enter in the global pseudo-differential calculus
presented in Chapter 4.

Proposition 5.11.
Under Assumptions 5.6 or 5.7, the metric g = dx2 + dv2 + dξ2+dη2

Ψ2 satisfies
the slowness and temperance properties (4.7)-(4.8).

First of all note that the Assumptions 5.6 or 5.7 for the potential V imply
similar properties for the phase space potential Φ(x, v) = v2/2 + V (x) (the
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constant factors are not important here). It suffices to check the slowness and
temperance properties for the metric

γ = dx2 +
dξ2

|ξ|2 + h(x)2
.

The result for the metric g is derived similarly after replacing x by (x, v), ξ
by (ξ, η) and |ξ|2 + h(x)2 by Ψ2.

It is a consequence of the following lemma.

Lemma 5.12.
Under Assumptions 5.6 or 5.7, the function h(x) =

√
1 + |∇V (x)|2 satisfies

for some constants C0, C1, N1, N2 > 0 the uniform estimates

(|x− x′| ≤ C−1
0

) ⇒ ((
h(x)
h(x′)

)±1

≤ C0

)
, (5.24)

and (
h(x)
h(x′)

)±1

≤ C1h(x)N1〈x− x′〉N2 . (5.25)

In this chapter X and X ′ will denote the variables (x, ξ) and (x′, ξ′).

Slowness.

Assume γX(X −X ′) ≤ δ2 with 0 < δ ≤ C−1
0 . It implies

|x− x′| ≤ δ and |ξ − ξ′|2 ≤ δ2
(
|ξ|2 + h(x)2

)
.

The inequality

|ξ|2 − 2 |ξ − ξ′|2 ≤ 2 |ξ′|2 ≤ 4 |ξ|2 + 4 |ξ − ξ′|2 .
yields

|ξ|2 − 2δ2
(
|ξ|2 + h(x)2

)
≤ 2 |ξ′|2 ≤ 4 |ξ|2 + 4δ2

(
|ξ|2 + h(x)2

)
.

Moreover the relation (5.24) gives

C−2
0 h(x) ≤ h(x′) ≤ C2

0h(x) .

By taking 2δ2 smaller than min(1/2, C−2
0 /2) we find a constant C2 > 0 such

that (
γX(X −X ′) ≤ δ2

) ⇒ (
sup
T 	=0

(
γX(T )
γX′(T )

)±1

≤ C2

)
. (5.26)
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Temperance.

According to (5.26) it suffices to consider the case γX(X − X ′) ≥ δ2 with
0 < δ ≤ √

C0 and δ small enough. There are two cases:
a) Assume |x− x′|2 ≤ δ2/2 and |ξ − ξ′|2 ≥ δ2(|ξ|2 + h(x)2). Then we get

|ξ′|2 + h(x′)2 ≤ 2 |ξ|2 + 2 |ξ − ξ′|2 + C2
0h(x)2

≤ 2 max(2, C2
0 )

δ2
|ξ − ξ′|2

≤ C3γ
σ(X −X ′) ≤ C3

(
|ξ|2 + h(x)2

)
(1 + γσ

X(X −X ′)) ,

where we used h(x) ≥ 1 in the last inequality. Conversely, the lower bound
h(x′) ≥ 1 yields

|ξ|2 + h(x)2 ≤ 1
δ2

|ξ − ξ′|2 ≤ C′
3

(
|ξ′|2 + h(x′)2

)
(1 + γσ

X(X −X ′)) .

b) Assume |x− x′|2 ≥ δ2/2. It implies for any N > 0, |x− x′|N ≥ C−1
4,N 〈x −

x′〉N ≤ C−1
4,N for some positive constant C4,N > 0. We write according to the

inequality (5.25)

|ξ′|2 + h(x′)2 ≤ 2 |ξ|2 + 2 |ξ − ξ′|2 + C2
1h(x)2+2N1〈x − x′〉2N2

≤ 2(|ξ|2 + h(x)2) + 2 |ξ − ξ′|2 +
C2

1C4,2N2(|ξ|2 + h(x)2)N1+1|x− x′|2N2 .

The lower bound h ≥ 1 implies |ξ − ξ′|2 ≤ (|ξ|2 + h(x)2)|ξ − ξ′|2. Thus there
exist C5, C6 > 0 such that

|ξ′|2 + h(x′)2 ≤ C5(|ξ|2 + h(x)2)
[
1 + (|ξ|2 + h(x)2)N1 |x− x′|2N2 + |ξ − ξ′|2

]
≤ C6(|ξ|2 + h(x)2) [1 + γσ

X(X −X ′)]1+N1+N2 .

By the same process we derive from (5.25) the estimates

|ξ|2 + h(x)2 ≤ 2 |ξ′|2 + 2 |ξ − ξ′|2 + C2
1h(x′)2h(x)2N1〈x− x′〉2N2

≤ C′
6(|ξ′|2 + h(x′)2) [1 + γσ

X(X −X ′)]1+N1+N2 .

Proof of Lemma 5.12:
The first estimate (5.24) is an easy consequence of |∇h| ≤ Ch. We focus on
(5.25) which requires different proofs according to Assumption 5.6 or Assump-
tion 5.7.
Proof under Assumption 5.6 .
We simply write
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h(x) ≤ h(y) + C supt∈[0,1] |∇h(tx + (1 − t)y)|〈x− y〉
≤ h(y) + C2 supt∈[0,1] h(tx + (1 − t)y)〈x− y〉
≤ h(y) + C3〈x〉M 〈x− y〉M+1

≤ h(y) + C4h(x)M2 〈x− y〉M+1

≤ h(y)[1 + C4h(x)M2 〈x− y〉M+1]
≤ C5h(y)h(x)M2 〈x− y〉M+1 .

Similarly, one obtains:

h(y) ≤ h(x) + C4h(x)M2 〈x− y〉M+1

≤ h(x)
[
1 + C4h(x)M2 〈x − y〉M+1

]
.

Proof under Assumption 5.7.
We cut the space Rn

x × Rn
x′ in two regions:

{〈x− x′〉 ≥ 〈x〉�1} and {〈x− x′〉 ≤ 〈x〉�1} ,
where  1 ∈ (0, 1) will be fixed later in terms of ρ0 > 0 .
For 〈x− x′〉 ≥ 〈x〉�1 , we write

h(x′) ≤ h(x) + |x′ − x|
∫ 1

0

|∇h((1 − t)x + tx′)| dt

≤ h(x)
[
1 + |x′ − x|

∫ 1

0

〈(1 − t)x + tx′〉M dt

]
≤ Ch(x)〈x〉M 〈x′ − x〉M+1 ≤ C′h(x)〈x − x′〉(1+1/ρ1)M+1.

Conversely, one gets h(x) ≤ C′′h(x′)〈x− x′〉(1+1/ρ1)M+1 by starting with the
inequality h(x) ≤ h(x′) + |x′ − x| ∫ 1

0
|∇h(tx + (1 − t)x′)| dt.

For 〈x− x′〉 ≤ 〈x〉�1 , we set ϕ(t) = h((1 − t)x + tx′). Assumption 5.7 gives

|ϕ′|
ϕ

≤ C |x− x′| 〈(1 − t)x + tx′〉−ρ0 .

With ρ0 > 0, the inequality

∀t ∈ [0, 1] ,
〈x〉ρ0

〈(1 − t)x + tx′〉−ρ0
≤ Cρ0 〈t(x− x′)〉ρ0 ≤ Cρ0 〈x− x′〉ρ0

leads to
|ϕ′|
ϕ

≤ C2
〈x− x′〉ρ0+1

〈x〉ρ0
≤ C2〈x〉ρ1(ρ0+1)−ρ0 .

By taking ρ1 ≤ ρ0
ρ0+1 , we obtain |ϕ′|

ϕ ≤ C2, which yields(
h(x)
h(x′)

)±1

=
(
ϕ(0)
ϕ(1)

)±1

≤ C3 ≤ C3〈x− x′〉(1+1/ρ1)M+1 .
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Remarks 5.13.
a) Assumptions 5.6 and 5.7 are weak ellipticity assumptions. They ensure
that the Witten Laplacian Δ

(0)
Φ/2 = a∗a+ b∗b is an elliptic operator in OpS2

Ψ .

In terms of the potential V , the fact that the weight h(x) =
√

1 + |∇V (x)|2
controls the higher order derivatives according to (5.17) is an ellipticity as-
sumption, which is weaker than the one introduced in [HerNi]. For example,
Assumptions 5.6 and 5.7 are satisfied by the potential

V (x1, x2) = x2
1x

2
2 + (x2

1 + x2
2)

3/2

but not by the potential

V (x1, x2) = x2
1x

2
2 + (x2

1 + x2
2) .

If one writes the condition (5.20) of Assumption 5.7 in the more explicit (and
slightly stronger) form

∀α ∈ N
n, |α| = 2, ∀x ∈ R

n, |∂α
xV (x)| ≤ Cαh(x),

the two types of assumptions appearing in Assumptions 5.6 and 5.7 lead to

|∇V (x)|2 − 2ΔV (x) ≥ C−1 |∇V (x)|2 , for |x| ≥ C .

b) Assumption 5.6 implies that Δ
(0)
Φ/2 = a∗a + b∗b has a compact resolvent.

This is no more the case under Assumption 5.7. With the coercivity condition
(5.19), the function Ψ(x, v, ξ, η) satisfies:

lim
(x,v,ξ,η)→∞

Ψ(x, v, ξ, η) = +∞ .

Hence the resolvent (1 + a∗a + b∗b)−1 ∈ OpS−2
Ψ is compact.

Assumption 5.7 holds for V (x) = 〈x〉 for which ∇V is bounded. Under As-
sumption 5.7, the hypoelliptic estimate of Theorem 5.8 holds but one can
conclude that the Fokker-Planck operator K has a compact resolvent only by
adding the assumption that (1 + Δ

(0)
V/2)

−1 is compact.
c) A more general “local” (but non temperate) calculus was developed by
N. Dencker [Den] in continuation of [Fei] under the weaker assumption that:

|∇h(x)| ≤ C |h(x)|1+δ ,

for some δ < 1 . This condition appeared in (3.16).

5.3.3 Algebraic Properties of the Fokker-Planck Operator

Before starting the proof of Theorem 5.8 let us recall the algebraic properties
associated with the Fokker-Planck operator.
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The Canonical Commutation Relations (CCR) of the annihilation-creation
operators bj, b∗j are satisfied:

[bj , bk] = [b∗j , b
∗
k] = 0 , [bj , b

∗
k] = δjk . (5.27)

More generally with ∂xj∂xk
V = ∂xk

∂xjV , we have:

[aj , ak] = [ak, aj ] = 0 , [aj , a
∗
k] = ∂2

xjxk
V . (5.28)

The a’s and b’s commute with each other

[a†j, b
�
k] = 0 , (5.29)

where a† (resp. b�) equals a or a∗ (resp. b or b∗).
The aj ’s, a∗j ’s are in the Lie algebra generated by the bj ’s, b∗j ’s and the vector
field X0:

[bj , X0] = aj , [b∗j , X0] = a∗j . (5.30)

Similarly, the bj ’s and b∗j ’s can be derived from the aj ’s, a∗j ’s and X0

[aj , X0] = −
d∑

k=1

(
∂2

xjxk
V
)
bk , [a∗j , X0] = −

d∑
k=1

b∗k
(
∂2

xkxj
V
)

. (5.31)

For any r, r′ ∈ R, we have:[
Λr, (1 + a∗a)r′]

=
[
Λr, (1 + b∗b)r′]

= 0 . (5.32)

The relations (5.30) and (5.31) are summarized by

[b,X0] = a , [b∗, X0] = a∗ ,
[a,X0] = −HessV b , [a∗, X0] = −b∗ HessV (5.33)

where we make use of the notations (5.15) and (5.16).We will often use this
matricial notation where ∗ refers to forms or line matrices. As an example, we
also have by combination the formulas:[

Λ2, X0

]
= −b∗(HessV − Id)a− a∗(HessV − Id)b (5.34)

and

b(b∗b) = (b∗b + 1)b . (5.35)

Remark 5.14.
Note that since we are working with pseudo-differential operators which all
belong to classes associated with the metric dx2 + dv2 + dξ2 + dη2, all the
commutators are well defined as continuous operators from S to S or from S′

to S′.
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5.3.4 Hypoelliptic Estimates: A Basic Lemma

As a consequence of these relations combined with the estimates1∥∥Λ2ρ−2a∗
∥∥ ≤ 1 (5.36)

and ∥∥Λ2ρ−2b∗
∥∥ ≤ 1 , (5.37)

for ρ ≤ 1/2 , one has the following result which is adapted from Lemma 2.5
of [HerNi].

Lemma 5.15.
Take ρ ∈ [0, 1/4]. The estimate

‖Λρu‖2 ≤ Re 〈Ku | (L + L∗)u〉 − Re 〈A∗bu | u〉 + Re 〈LKu | Lu〉
−Re 〈A∗bu | Lu〉 + 3 ‖bu‖2 + 3 ‖u‖2

,
(5.38)

holds for any u ∈ S(R2n), with

L = Λ2ρ−2a∗b = Λ2ρ−2(
∑

j

a∗jbj)

and
A∗ =

[
Λ2ρ−2a∗, X0

]
= (A∗

j ) , A∗
j =

[
Λ2ρ−2a∗j , X0

]
.

Let us give the proof for the sake of completeness.
Step 1.
We first show that:

‖Λρu‖2 ≤ Re 〈X0u | (L + L∗)u〉 − Re 〈A∗bu | u〉 + ||bu|| ||u|| + ∥∥Λρ−1u
∥∥2

.
(5.39)

The starting point is

‖Λρu‖2 = 〈Λ2ρ−2b∗bu | u〉 + 〈Λ2ρ−2a∗au | u〉 + 〈Λ2ρ−2u | u〉 .

We obtain the result immediately from (5.37) and from the identity

〈Λ2ρ−2a∗au | u〉 = Re 〈X0u | (L + L∗)u〉 − Re 〈A∗bu | u〉 ,

which simply results from a = bX0 −X0b (cf (5.33) ).
Step 2.
We now show that

Re 〈X0u | (L + L∗)u) ≤ Re 〈Ku | (L + L∗)u〉 − 2 Re 〈b∗bu | Lu〉+ ||bu|| ||u|| .
(5.40)

1 Actually, we do not need for our qualitative presentation to have such a precise
control.



5.3 Sufficient Conditions for the Compactness of the Resolvent 55

We start from

Re 〈X0u | (L+L∗)u)= Re 〈Ku | (L+L∗)u〉−Re 〈b∗bu | Lu〉−Re 〈b∗bu | L∗u〉 ,

and work on the last term of the right hand side. We have

Re 〈b∗bu | L∗u〉 = Re 〈bb∗bu | aΛ2ρ−2u〉 .

Using bb∗b = (b∗b + 1) b we get

Re 〈b∗bu | L∗u〉 = Re 〈b∗bbu | aΛ2ρ−2u〉 + Re 〈bu | aΛ2ρ−2u〉 .

The next point is to observe the commutation of b∗b with Λ

Re 〈b∗bu | L∗u〉 = Re 〈bu, | aΛ2ρ−2b∗bu〉 + Re 〈bu | aΛ2ρ−2u〉
= Re 〈b∗bu | Lu〉 + Re 〈bu | aΛ2ρ−2u〉 .

We conclude by using for the last term (5.36).
Step 3.
It remains to control −2 Re 〈b∗bu | Lu〉. We will show

−2 Re 〈b∗bu | Lu〉 ≤ 3
2
||bu||2 + Re 〈LKu | Lu〉 − Re 〈A∗bu | Lu〉 +

1
2
||u||2 .

(5.41)
We start from

−2 Re 〈b∗bu | Lu〉 ≤ ||bu||2 + ||bLu||2
≤ ||bu||2 + Re 〈KLu | Lu〉
≤ ||bu||2 + Re 〈[K,L]u | Lu〉+ Re 〈LKu | Lu〉 .

We now observe that:

[K,L] = −L−A∗b− Λ2ρ−2a∗a .

The last term to control is

−Re 〈Λ2ρ−2a∗au | Lu〉 = −Re 〈aΛ4ρ−4a∗au | bu〉 .

Using again (5.36), it is controlled when ρ ≤ 1
4 .

Putting together (5.39), (5.40) and (5.41) ends the proof of the lemma.

5.3.5 Proof of Theorem 5.8

We are now able to prove Theorem 5.8 by bounding each of the six terms in
the right-hand side of (5.38):
First term:
We write
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|〈Ku | Lu〉| ≤ ‖Ku‖ ‖Lu‖ ≤ ‖Ku‖∥∥Λ2ρ−2a∗
∥∥ ‖bu‖

and recall
∥∥Λ2ρ−2a∗

∥∥ ≤ 1 for ρ ≤ 1/2. The simple inequality

‖bu‖2 = 〈b∗bu | u〉 = Re 〈Ku | u〉 ≤ ‖Ku‖ ‖u‖
now gives

|〈Ku | Lu〉| ≤ ‖Ku‖3/2 ‖u‖1/2
.

For the second part we write |〈Ku | L∗u〉| ≤ ‖Ku‖ ‖L∗u‖ and we use, observ-
ing the commutation of b∗b with a and Λ,

L∗ = b∗aΛ2ρ−2(1 + b∗b)−1/2(1 + b∗b)1/2 = b∗(1 + b∗b)−1/2aΛ2ρ−2(1 + b∗b)1/2 .

From this we deduce

‖L∗u‖ ≤
∥∥∥b∗(1 + b∗b)−1/2

∥∥∥ ∥∥aΛ2ρ−2
∥∥ ∥∥∥(1 + b∗b)1/2u

∥∥∥
≤ Cn

(
‖Ku‖ ‖u‖ + ‖u‖2

)1/2

,

and we obtain

|〈Ku | (L + L∗)u〉| ≤ C
(
‖Ku‖2 + ‖u‖2

)
.

Terms 5 and 6:
They are all bounded by

C
(
‖bu‖2 + ‖u‖2

)
≤ C′

(
‖Ku‖2 + ‖u‖2

)
.

Term 3:
We write

Re 〈LKu | Lu〉 = Re 〈Λ2ρ−2a∗bKu | Λ2ρ−2a∗bu〉 = Re 〈aΛ4ρ−4a∗bKu | bu〉 .
Since a, a∗ and b belong to OpS1

Ψ , the operator aΛ4ρ−4a∗b is bounded for
ρ ≤ 1/4, which is just the condition appearing in Theorem 5.8. We get

|Re 〈LKu | Lu〉| ≤ C ‖Ku‖ ‖bu‖ ≤ C
(
‖Ku‖2 + ‖u‖2

)
,

for ρ ≤ 1/4.
Term 4:
We write

Re 〈A∗bu | Lu〉 = Re 〈[Λ2ρ−2a∗, X0

]
bu | Λ2ρ−2a∗bu〉

= Re 〈aΛ2ρ−2
[
Λ2ρ−2a∗, X0

]
bu | bu〉 .

The hamiltonian vector field X0 belongs to OpS2
Ψ (see (5.14)) and the pseudo-

differential calculus for commutators gives:
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aΛ2ρ−2
[
Λ2ρ−2a∗, X0

] ∈ OpS1+4ρ−4+1+2−1
Ψ = OpS4ρ−1

Ψ ⊂ L(L2) ,

for ρ ≤ 1/4. We conclude like for the third term with

|Re 〈A∗bu | Lu〉| ≤ C
(
‖Ku‖2 + ‖u‖2

)
.

Term 2:
This term is the more delicate and we have to split the variables x and v
while refining our pseudo-differential calculus with some exact commutator
expressions. First we have

A∗ =
[
Λ2ρ−2a∗, X0

]
=
[
Λ2ρ−2, X0

]
a∗ + Λ2ρ−2b∗HessV

= (b∗b + 1)1/2
[
Λ2ρ−2a∗, (b∗b + 1)−1/2X0

]
a∗

+(b∗b + 1)1/2Λ2ρ−2(b∗b + 1)−1/2b∗HessV
= (b∗b + 1)1/2(A1 + A2) ,

with
A1 := (1 + b∗b)−1/2

[
Λ2ρ−2, X0

]
,

and
A2 := Λ2ρ−2(b∗b + 1)−1/2b∗HessV .

If A1 and A2 are bounded, one obtains

|Re 〈A∗bu | u〉| ≤
∥∥∥Re 〈(A1 + A2)bu | (1 + b∗b)1/2u〉

∥∥∥ ≤ C
(
‖Ku‖2 + ‖u‖2

)
.

The boundedness of A2 is simple to verify. The coefficients Λ2ρ−2∂2
xi xj

V be-
long to OpS2ρ−2+1

Ψ and are bounded if ρ ≤ 1/2 . The boundedness of A2 is
then a consequence of the property that (1 + b∗b)−1/2 b∗ ∈ L(L2) .

Noting that A1 =
(
(1 + b∗b)−1/2

[
Λ2ρ−2, X0

]
Λ
) (

Λ−1a∗
)
, the boundedness

of A1 is given by the following lemma applied with r1 = 0, r2 = 2ρ − 2 and
r3 = 1 (this requires ρ ≤ 1/2).

Lemma 5.16.
For r1 + r2 + r3 ≤ 0, the operator (1+ b∗b)−1/2Λr1 [Λr2 , X0]Λr3 is bounded on
L2(R2n) .

Proof:
Since Λr1 [Λr2 , X0] = [Λr1+r2 , X0] − [Λr1 , X0]Λr2 we can simply consider the
case r1 = 0 . Note that the vector field X0 = v · ∂x − ∂xV (x) · ∂v is the sum of
terms in the form �(v,Dv)a(x, v,Dx, Dv) where � is a linear symbol in (v, η)
and a ∈ S1

Ψ . We expand the commutator as

[Λr2 , �(v,Dv)a(x, v,Dx, Dv)]
= [Λr2 , �(v,Dv)] a(x, v,Dx, Dv) + �(v,Dv) [Λr2 , a(x, v,Dx, Dv)]

:= B1 + B2.
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Since the commutator [Λr2 , a(x, v,Dx, Dv)] belongs to OpSr2
Ψ , we have

(1 + b∗b)−1B2Λ
−r2 ∈ L(L2) .

Let us now look at B1. It is enough to show the

Sublemma 5.17.
[Λr2 , �(v,Dv)] ∈ OpSr2−1

Ψ .

We first note that this is not a direct consequence of the previous pseudo-
differential calculus which says only that this term is in OpSr2

Ψ . But this
calculus says that modulo Sr2−1

Ψ the symbol of the commutator is obtained
by 1

i the Poisson bracket of the principal symbols of Λr2 (computed in Theo-
rem 4.8) and of �(v,Dv). An explicit computation based on (4.18) gives that
this Poisson bracket is actually in Sr2−1

Ψ .

We proved
|Re 〈A∗bu | u〉| ≤ C

(
‖Ku‖2 + ‖u‖2

)
,

which ends the proof of (5.21) in Theorem 5.8.

Another version of the estimate (5.21) can be written by following the
same lines as in the proof of Theorem 5.8 if one notices that X0 occurs only
through commutators and that adding a term iν to X0 or K with ν ∈ R does
not change the real part of K. So Theorem 5.8 admits the following extension.

Theorem 5.18.
Under assumption (5.6) or (5.7) for V , there exists a constant C > 0 such
that

∀ν ∈ R, ∀u ∈ D(K),
∥∥∥Λ1/4u

∥∥∥2

≤ C
(
‖(K − iν)u‖2 + ‖u‖2

)
. (5.42)

5.4 Necessary Conditions
with Respect to the Corresponding Witten Laplacian

We recall that for any V ∈ C∞(Rn), the Laplacian Δ
(0)
V/2 is essentially self-

adjoint on C∞
0 (Rn) or on S(Rn) if V is tempered (i.e. with all its derivatives

polynomially bounded).
The operators K = v · ∂x − ∂xV (x) · ∂v − (∂v − v/2) · (∂v + v/2) = X0 + b∗b
and K− = −X0 + b∗b with domain C∞

0 (R2n) (or S(R2n) if V is tempered)
are accretive and closable, with maximally accretive closure. We use the same
notation K for the closure of K.

We recall that λ ∈ C belongs to the essential spectrum of K if there
exists a normalized sequence (Uk)k∈N in L2(R2n), with Uk ∈ D(K), such that
limk→∞ ‖(K − λ)Uk‖ = 0.



5.5 Analysis of the Fokker-Planck Quadratic Model 59

Proposition 5.19.
Assume that V is C∞ function.

i) If K has a compact resolvent then the Witten Laplacian Δ
(0)
V/2 has a compact

resolvent.
ii) If 0 belongs to the essential spectrum of Δ

(0)
V/2 then 0 is in the essential

spectrum of K (and K−).

Let us first consider i).
By contradiction, assume that Δ(0)

V/2 does not have a compact resolvent. Then
there exists an orthonormal sequence (uk)k∈N such that

〈uk | Δ(0)
V/2uk〉 = ‖auk‖2

is bounded. The sequence given by

Uk(x, v) = uk(x)(2π)−n/4e−v2/4

is orthonormal and satisfies

∀k ∈ N, KUk = auk ⊗ (2π)−n/4ve−v2/4 in D′(R2n) .

Since K = K∗
−, each function Uk belongs to D(K) and the sequence KUk

is bounded. If K has a compact resolvent, we could extract a Cauchy subse-
quence Uk. This immediately implies that uk should be a Cauchy sequence in
L2(Rn). But this is in contradiction with the fact that uk is an orthonormal
sequence.
For ii), we assume limk→∞〈uk | Δ

(0)
V/2uk〉 = limk→∞ ‖auk‖2 = 0 and the

consequence limk→∞ ‖KUk‖ = 0 says that 0 belongs to the essential spectrum
of K.

Remark 5.20.
The results of Proposition 5.19 tell us that it is not possible to derive
directly the compactness of the resolvent of the Fokker-Planck operator
K = X0 + b∗b from the one of −Δx + 1

4 |∇V (x)|2. We will indeed prove (see
Subsection 11.3.1) that Δ(0)

V/2 has not a compact resolvent for V (x1, x2) = x2
1x

2
2

contrary to −Δx+ 1
4 |∇V (x)|2. As a consequence a naive application of Kohn’s

method as presented in Section 2.3 would surely fail and one has to introduce
in the analysis the operators a and a∗ or by some other mean the specific
structure of the Witten Laplacian Δ

(0)
V/2.

5.5 Analysis of the Fokker-Planck Quadratic Model

In the case when the potential V is quadratic, we will see in Subsection 5.5.1
that the spectrum can be explicitly computed. One should not overestimate



60 5 Analysis of Some Fokker-Planck Operator

the interest of explicit computations. The operator being diagonalized (in the
generic case) in a non orthonormal basis, this does not lead to good estimates
for the resolvent which have to be proven in a different way. Nethertheless,
we shall show in Subsection 5.5.2 how one can improve in the quadratic case
the estimates obtained in Theorem 5.8.

5.5.1 Explicit Computation of the Spectrum

We follow here Risken [Ris], who refers actually to [Brin]. We consider the
case when n = 1 and V (x) = ω2

0
x2

2 . After a dilation in the x variable we have
consequently to analyze the operator:

L = − d2

dv2
+

1
4
v2 − 1

2
− ω0(v∂x − x∂v) , (5.43)

with ω0 �= 0.
With

b = ∂v +
1
2
v , a = ∂x +

1
2
x ,

this can also be written as:

L = b∗b + ω0(b∗a− a∗b) . (5.44)

The trick is to see the operator as a “complex” harmonic oscillator .
We are looking for an expression of the type:

L = λ1c1,+c1,− + λ2c2,+c2,− (5.45)

where λ1 and λ2 are complex numbers and c1,−, c1,+, c2,− and c2,+ satisfy
standard commutation relations:

[c1,− , c1,+] = [c2,− , c2,+] = 1 ,
[c1,− , c2,+] = [c1,+ , c2,−] = [c1,− , c2,−] = [c1,+ , c2,+] = 0 ,

(5.46)

and the other equation:
[L , ci,±] = ∓ci,± . (5.47)

More explicitly,
c1,+ = δ−

1
2
(√

λ1b
∗ −√

λ2a
∗) ,

c1,− = δ−
1
2
(√

λ1b +
√
λ2a

)
,

c2,+ = δ−
1
2
(−√

λ2b
∗ +

√
λ1a

∗) ,

c2,− = δ−
1
2
(√

λ2b +
√
λ1a

)
.

(5.48)

Here
δ =

√
1 − 4ω2

0 ,

(which is assumed to be different from 0) and
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λ1 = (1 + δ)/2 , λ2 = (1 − δ)/2 .

We emphasize that in general cj,− IS NOT the formal adjoint of cj,+

but nethertheless the construction of the eigenvectors, by use of “creation
operator”, is working. One obtains actually a complete system of eigenvectors
by introducing:

ψn1,n2 = (n1!n2!)−
1
2 (c1,+)n1(c2,+)n2ψ0,0 ,

where
ψ0,0 = (1/2π)

1
2 exp−1

4
(x2 + v2) .

The corresponding eigenvalue is:

λn1,n2 = λ1n1 + λ2n2 . (5.49)

So there are mainly two cases according to the sign of (1 − 4ω2
0) and a

special case corresponding to ω0 = ± 1
2 . We emphasize that these various

cases do not appear in the discussion of the compactness of the resolvent.
When 0 < |ω0| < 1

2 , the eigenvalues λj are real, so the spectrum of the
Fokker-Planck operator is real.
When |ω0| > 1

2 , the spectrum is contained in a strictly convex sector in C.

In the special case, λ1 = λ2. The previous method does not work !!

Remark 5.21.
Another approach is proposed in Risken [Ris]. It consists in expanding a
function u in L2(R2) in the basis of the eigenfunctions of the harmonic os-
cillator, that is in the basis of the usual Hermite functions hk1,k2(x1, x2) =
hk1(x1)hk2(x2) in two variables, and to observe that, for a given N , the spaces
VN generated by the hk1,k2 with k1 + k2 = N are stable. We then have to
analyze the restriction of the operator L to each VN , that is a (N+1)×(N+1)
matrix, whose eigenvalues can be explicitly computed.
The eigenvalue equation takes the form, for y = (y0, . . . , yN ) and with the
convention that y−1 = yN+1 = 0,

nω0yn−1 + (n− λ)yn − (N − n)ω0yn+1 = 0 , (5.50)

for n = 0, . . . , N .
In the generic case, the eigenvalues are given by (5.49), with the additional
condition n1 + n2 = N :

λn1,n2 =
N

2
+

1
2
δ(n1 − n2) . (5.51)

In the case when ω0 = ± 1
2 , the matrix has a unique eigenvalue N

2 (with
algebraic multiplicity (N + 1)). One can only write a Jordan form.

Note that this example has some connection with a model also discussed
by Davies [Dav5] and later in [Sj6].
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5.5.2 Improved Estimates for the Quadratic Potential

We will show by some more explicit method that the lower bound (5.21) can
be improved when the potential is quadratic.

Proposition 5.22.
Let V be a polynomial real potential of degree less or equal to 2 with

det(HessV ) �= 0 .

Let K denote the maximally accretive operator

K := v · ∂x − ∂xV (x) · ∂v −Δv +
v2

4
− n/2 ,

and set
Λx = (−Δ2

x + x2/4)1/2 , Λv = (−Δ2
v + v2/4)1/2 .

Then there exists a constant C > 0 such that

∀u ∈ D(K),
∥∥∥Λ2/3

x u
∥∥∥2

+ ‖Λvu‖2 ≤ C
(
‖Ku‖2 + ‖u‖2

)
.

We shall first consider for X = (x, ξ) ∈ R
2n the operator

KX = iξ · v − x · ∂v −Δv +
v2

4
− n/2

acting on L2(Rn
v ). After conjugation with a unitary dilation it equals

K ′
X′ = iξ′ · v − x′ · ∂v − 1

2
(−Δv + v2 − n

)
,

with X ′ = (x′, ξ′) = (2−1/2x, 21/2ξ). Let Hk denote the harmonic oscillator
1
2

(−Δvk
+ v2

k

)
. Then, for any a ∈ S′(R2n), we have

eitkHka(v,Dv)e−itkHk =
a(. . . , vk cos(tk) −Dvk

sin(tk), vk sin(tk) + Dvk
cos(tk), . . .) ,

where the dots stand for unchanged variables. We use it with a(v,Dv) = K ′
X′

and we obtain
Πn

k=1e
−itkHkK ′

X′Πn
k=1e

itkHk = K ′
X′′(t)

with t = (t1, . . . , tn), X ′′(t) = (x′′(t), ξ′′(t)) and{
x′′(t)k = x′k cos(tk) − ξ′k sin(tk)
ξ′′(t)k = x′k sin(tk) + ξ′k cos(tk)

For any k ∈ {1, . . . , n}, we choose tk so that
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x′′(tk)k = 0 and ξ′′(tk)k =
√
|x′k|2 + |ξ′k|2 = ρk .

With this choice we obtain

K ′′
X′′(t) =

1
2

(
n∑

k=1

(
iρkvk − ∂2

vk
+ v2

k

)− n

)
.

After a metaplectic transformation associated to a rotation in the v-variable,
we arrive to

K̂(3) =
1
2
(
ρv1 −Δv + v2 − n

)
. (5.52)

ρ =
√∑

k

ρ2
k .

After another unitary transform we obtain

K(4) =
1
h

(
i

2
v1 − h2Δv +

v2

4
− nh

2

)
,

with

h = ρ−2 and ρ =
√∑

k

ρ2
k.

The problem is then reduced to the analysis of the operator

−h2Δ +
1
4
v2 +

i

2
v1 , v ∈ R

n

for which a semi-classical version (cf [DeSjZw], in particular Figure 1.1) of
a classical theorem on principal type differential subelliptic operators (See
Chapter 27 in [Hor2]) of the form L1 + iL2, with [L2, [L2, L1]] �= 0 , can be
applied.
The symbol (η2 + 1

4v
2) + i 1

2v1 vanishes only at the point (v, η) = (0, 0), and
we have at this point:

{v1, (
1
4
v2 + η2)} = 0 and {v1, {v1, η

2 +
1
4
v2}} = 2 �= 0.

The result of [DeSjZw] gives the estimate2:

∀u ∈ C∞
0 (Rn), h2/3 ‖u‖ ≤ C

∥∥(−h2Δv + v2 + iv1)u
∥∥ .

After the unitary transforms, we obtain for some constant C1 > 0

∀u ∈ C∞
0 (Rn

v ), |ρ|4/3 ‖u‖2 ≤ C1

(∥∥∥K ′′
X′′(t)u

∥∥∥2

+ ‖u‖2

)
,

2 Another approach will be introduced later in Chapter 9.
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hence

∀u ∈ D(KX), (1 + |X |2)2/3 ‖u‖2 ≤ C1

(
‖KXu‖2 + ‖u‖2

)
. (5.53)

We now consider the operator K = v.∂x − ∂xV (x).∂v −Δ2
v + v2/4 − n/2

where V is a polynomial of degree not greater than 2 . After diagonalizing the
quadratic part and possibly using a unitary transform U defined by

f �→ Uf(x, v) = eiη0vf(x− x0) ,

it suffices to consider the case

K =
n∑

k=1

(
vk∂xk

− λkxk∂vk
− ∂2

vk
+

1
4
v2

k

)
− C0 .

The operator (1 + K∗K) has the following form

(1 + K∗K) =
∑

j

Qj(x,Dx)Pj(v,Dv) + (−Δ2 + v2/4)2 − C′
0 ,

where the Qj ’s and Pj ’s are polynomials of degree less or equal to 2.

We now use the anti-Wick quantization and its comparison with the Weyl
quantization . This comparison is given by (4.24) in the calculus associated
with the metric (1+ |x|2 + |ξ|2)−1(dx2 +dξ2) in which quadratic symbols enter
naturally (We apply here the relation (4.24) in dimension d = n with z = x
and ζ = ξ). It leads to

(1 + K∗K) ≥
∑

j

QA−Wick
j (x,Dx)Pj(v,Dv)

+(−Δ2 + v2 − n/2)2 − C3(−Δv + v2/4)
≥ (1 + K∗

Xλ
KXλ

)A−Wick,x − C4(−Δv + v2/4) ,

where Xλ = (λ1x1, . . . , λnxn, ξ), where the constants C3 and C4 depend on
the second derivatives of V (x) and where the superscript “ A−Wick, x ”
refers to the anti-Wick quantization with respect to the x variable only. By

setting λ4/3(x, ξ) =
(
|ξ|2 + x2/4 + 1

)2/3

, the comparison of Weyl and anti-
Wick quantization (4.24) yields

(−Δx + x2/4)2/3 = λA−Wick
4/3 (x,Dx) + R, with R ∈ L(L2(Rn)) .

Now since the anti-Wick quantization is a positive quantization (it associates
to a positive symbol a positive operator) the estimate (5.53) gives

C5(1 + K∗K) ≥ (−Δx + x2/4)2/3 − C5

(−Δv + v2/4
)
.

We conclude with the inequality:

‖u‖2 + ‖Ku‖2 ≥ Re 〈Ku | u〉 ≥ 〈
(
−Δv +

1
4
v2 − n

2

)
u | u〉 , ∀u ∈ C∞

0 (R2n) .
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Return to Equilibrium
for the Fokker-Planck Operator

6.1 Abstract Analysis

In the case when A is a self-adjoint maximally accretive operator, the com-
pactness of the resolvent suffices to give exponential return to equilibrium,
which means here that by denoting Π0 the spectral projection1 on KerA,

∃C,α1 > 0, ∀t ≥ 0
∥∥e−tA −Π0

∥∥ ≤ Ce−α1t .

This is the case of the Witten Laplacian which is (after conjugation by
a unitary operator) the generator of the Feller semi-group associated with
the corresponding Dirichlet form. Another situation which is standard is
when ellipticity leads to a sectorial operator with sector included in the set
{z ∈ C, arg(z) ∈ [−θ0, θ0]}, with θ0 < π/2 . In the case of the Fokker-Planck
operator K, we have a non self-adjoint operator which is moreover not ellip-
tic. Hence its numerical range, {〈u,Ku〉, u ∈ D(K)}, is a priori the full closed
half-plane {z ∈ C, Re z ≥ 0}. However the hypoelliptic estimate can help for
proving exponential return to equilibrium.

We summarize here in a pure functional analysis framework some of the
arguments used in [HerNi] and [EckHai2], but we will not cover all the quan-
titative analysis which is given in [HerNi].

In a separable Hilbert space H we consider a maximally accretive operator
(K,D(K)) such that

σ(K) ∩ iR = σdisc(K) ∩ iR ⊂ {0} . (6.1)

The spectral projection on its kernel will be denoted Π0. We assume that there
exist a self-adjoint operator (Λ,D(Λ)), Λ ≥ 1, and three constants C > 0 and
M ≥ m > 0 such that

‖Λmu‖2 ≤ C
(
‖(K − iν)u‖2 + ‖u‖2

)
, ∀ν ∈ R, ∀u ∈ D(K) , (6.2)

1 When Ker A = 0, it should be understood that Π0 = 0.

B. Helffer and F. Nier: LNM 1862, pp. 65–72, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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‖Ku‖2 ≤ C
∥∥ΛMu

∥∥2
, ∀u ∈ D(ΛM ) . (6.3)

In the applications Λ is associated with some Sobolev scale. The second es-
timate says that K is a finite order operator in this scale, (in the case of
the Fokker-Planck operator, K ∈ OpS2

Ψ and M = 2). The first one is an
hypoelliptic estimate as stated in Theorem 5.18 with m = 1/4.

Theorem 6.1.
If K is a maximally accretive operator on H which satisfies (6.1),(6.2) and
(6.3), then there exist two positive constants C,α1 > 0 such that

∀t ≥ 0,
∥∥e−tK −Π0

∥∥ ≤ Ce−α1t.

As a consequence of Von Neumann theorem (see [RiNa]), for any maximally
accretive operator K, the semi-group e−tK can be written as the weakly (con-
sider 〈e−tKu0 | ϕ〉 with u0 ∈ H and ϕ ∈ D(K∗)) convergent integral

e−tK =
1

2iπ

∫ −i∞

+i∞
e−tz(z −K)−1 dz .

In order to prove the exponential return to equilibrium it suffices to deform the
contour [+i∞,−i∞] into a contour essentially inside {Re z > 0} with some
algebraic positive lower bound of Re z and some algebraic upper bound of∥∥(z −K)−1

∥∥ with respect to |z|. Then we can write according to the next
picture

e−tK =
1

2iπ

∫
∂SK

e−tz(z −K)−1 dz

and

e−tK −Π0 =
1

2iπ

∫
∂S′

K

e−tz(z −K)−1 dz .

Hence we are led to localize the spectrum of K and control the norm of its
resolvent within its numerical range. This enters in the more general problem
of localizing the pseudospectrum. We recall that pseudospectral estimates
require the introduction a small parameter:

Definition 6.2.
For a closed operator (A,D(A)) on a Hilbert space H , and for ε > 0 , the
ε-spectrum is defined by

εσ(A) =
{
z ∈ C,

∥∥(z − A)−1
∥∥ ≤ 1

ε

}
.

For any ε > 0, the ε-spectrum contains σ(A) and is stable with respect to
perturbations even when A is not self-adjoint nor normal. The information
that it contains can be quite accurate especially when one considers some
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Fig. 6.1. Integration contour: ∂SK = Γ0 ∪ Γ∞, ∂S′
K = Γ1 ∪ Γ∞, oriented from

Im z = +∞ to Im z = −∞ .

specific families (Aε)ε>0 of operators which depend on ε. With some variants,
the pseudospectrum is then defined as ∩ε>0εσ(Aε).
Motivated by problems in numerical analysis and the analysis of non self-
adjoint spectral problems this has received recent interest in the semiclassical
regime (see [Bou], [Dav3], [Dav4], [Tref], [Zwo] and [DeSjZw] for further details
and references).
Here we are interested in the large |z| regime and we set z = Lζ with ζ ∈ C

bounded and L → ∞. We are looking for an estimate of the form

∀ζ ∈ C, 1/2 < |ζ| ≤ 1,
∥∥(ζ − L−1K)−1

∥∥ ≤ CLN0 ,

with C,N0 > 0 independent of (L, ζ).

Theorem 6.1 is proved in three steps:
First step:
It is a simple consequence of the hypoellipticity assumption (6.2). We write,
for z = μ + iν ∈ C, μ = Re z ≥ −1/2, and u ∈ D(K),

‖Λmu‖2 ≤ C
(
‖(K − iν)u‖2 + ‖u‖2

)
≤ C

(
2 ‖(K − z)u‖2 + (2μ2 + 1) ‖u‖2

)
.

We get
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‖Λmu‖2 ≤ 2C
(
‖(K − z)u‖2 + (Re z + 1)2 ‖u‖2

)
,

∀z ∈ C, Re z ≥ −1/2, ∀u ∈ D(K) .
(6.4)

Second step:
The following lemma holds for any maximally accretive operator. The proof
can be found in [HerNi].

Lemma 6.3.
Let (K,D(K)) be a maximally accretive operator in the Hilbert space H. For
any η ∈]0, 1[, the estimate

|z + 1|2η ‖u‖2 ≤ 4 〈 ( (K + 1)∗(K + 1) )η
u | u 〉 + 4 ‖(z −K)u‖2

holds for all u ∈ D(K) and z ∈ C with Re z ≥ −1 .

Although the proof does not follow any usual interpolation scheme, it can be
viewed as an interpolation of the inequalities valid with coefficients 2 instead
of 4 for η ∈ {0, 1}.
Third step:
Assumption (6.3) leads to the inequality

0 ≤ (1 + K∗)(1 + K) ≤ (1 +
√
C)2Λ2M ,

and, according to the monotonicity of the operator functional A → Aα for
α ∈ [0, 1], to

0 ≤ ((1 + K∗)(1 + K))
m
M ≤ (1 +

√
C)

2m
M Λ2m.

We apply the Lemma 6.3 with η = m
M and obtain, for Re z ≥ −1/2 and

u ∈ D(K),

|z + 1|2m/M ‖u‖2 ≤ 4(1 +
√
C)

2m
M ‖Λmu‖2 + 4 ‖(K − z)u‖2

.

With the inequality (6.4) we obtain

∀z ∈ C , Re z ≥ −1/2 , ∀u ∈ D(K) ,

|z + 1| 2m
M ‖u‖2 ≤ C1 ‖(K − z)u‖2 + C2(Re z + 1)2 ‖u‖2

,

with C1 = (8C(1 +
√
C)

2m
M + 4) and C2 = 4C(1 +

√
C)

2m
M .

By taking C′ =
√

2C2 and C′′ =
√
C2/C1, we deduce that the spectrum σ(K)

satisfies
σ(K) ⊂ SK ∩ ({Re z > 0} ∪ {0}) , (6.5)

where SK is a C∞ domain included in

SK =
{
z ∈ C, Re z ≥ −1/2, |z + 1|m/M ≤ C′(Re z + 1)

}
.

Moreover we have the resolvent estimate
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∀z ∈ C \ SK , Re z ≥ −1/2,
∥∥(z −K)−1

∥∥ ≤ C′′ |z + 1|−m/M .

The assumption (6.1) says that there is no spectrum on iR except the pos-
sible eigenvalue 0 which is isolated and with finite multiplicity. Therefore it
is possible to find an α1 > 0 which makes possible the contour deformation
from ∂SK to ∂S′

K , where Π0 arises as the remaining residue.

6.2 Applications to the Fokker-Planck Operator

We conclude this chapter by giving explicit translations of Theorem 6.1 for the
Fokker-Planck operator and its adjoint under the weak ellipticity assumption
of Subsection 5.3.2. Note that, when exp−V is in L1, we have

KerK = Ce−1/2(v2/2+V (x)) ,

while this kernel is 0 if V takes negative values near infinity. In any case,
KerK = KerK∗ and the spectral projection Π0 is orthogonal. We shall
denote by M(x, v) the Maxwellian M(x, v) = e−(v2/2+V (x)) and we write
when M ∈ L1(R2n)

∀u0 ∈ L2(R2n), Π0u0 =

∫
R2n M1/2(x, v)u(x, v) dx dv∫

R2n M(x, v) dx dv
.

We first give a result which holds when K has a compact resolvent. An ex-
tension will be sketched in the forthcoming subsection.

Theorem 6.4.
Assume that the potential V (x) satisfies Assumption 5.6 or 5.7. Assume ad-
ditionally in the second case that the Witten Laplacian Δ

(0)
V/2 has a compact

resolvent. Let K = X0 + b∗b be the maximally accretive operator defined by
(5.2). Then there exists α1 > 0 and C > 0 so that

∀u0 ∈ L2(R2n),
∥∥e−tKu0 −Π0u0

∥∥
L2 ≤ Ce−α1t ‖u0‖ . (6.6)

Proof.
According to Corollary 5.10, the Fokker-Planck operator K has a compact
resolvent. We have only to check that Ku = iλu with λ ∈ R implies λ = 0. The
relation 〈Ku | u〉 = 0 implies u = ϕ(x)e−v2/4 and Ku =

∑n
i=1 (aϕ) vie

−v2/4

which is possible only if aϕ = 0 and λ = 0 .

Corollary 6.5.
Under the assumption of Theorem 6.4, the same result holds for

K∗ = −X0 + b∗b

with the same constants:

∀u0 ∈ L2(R2n),
∥∥∥e−tK∗

u0 −Π0u0

∥∥∥
L2

≤ Ce−α1t ‖u0‖ . (6.7)
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It suffices to notice
K∗ = UKU∗ ,

where U is the unitary transform given by Uu(x, v) = u(x,−v).

Remark 6.6.
It is actually possible (see [HerNi]):

1. to prove also that e−tK sends S′(R2n) into S(R2n) and that the exponen-
tial decay holds for any initial data u0 ∈ S′(R2n) up to some algebraic
factor in (t, 1/t) ;

2. to derive from this exponential return to equilibrium, the exponential
decay of some relative entropy associated with the probability mesure(∫

M
)−1

M when V (x) is positive near infinity;
3. to get sharp lower and upper bounds for the constant α1 in terms of the

physical constants usually introduced with this equation, particle mass,
temperature and friction coefficient.

6.3 Return to Equilibrium Without Compact Resolvent

We already said in Remark 5.13 that Assumption 5.7 allows to consider cases
like V (x) = 〈x〉 for which the hypoelliptic estimate (5.21) holds without the
compactness of the resolvent for Δ(0)

V/2, Δ
(0)
Φ/2 and K. Nevertheless if 0 belongs

to the discrete spectrum of Δ(0)
V/2, it is still possible to prove

σ(K) ∩ iR = σdisc(K) ∩ iR ⊂ {0} ,

and therefore to get an exponential return to equilibrium. It cannot be done
simply by functional analysis arguments since we do not know how to prove
directly that K + iλ, for λ ∈ R, has a closed range. It is actually possible to
adapt the method of [HerNi]-Section 5, for proving that there is no spectrum
except possibly 0 in {Re z ≤ α1} for some α1 > 0. Let us sketch the argu-
ments:
First step:
One uses an hypoelliptic estimate like (5.38) with Λ replaced by Λδ, Λ2

δ =
δ2 + a∗a + b∗b, and with an explicit control with respect to δ > 0 of the
right-hand side. These estimates rely on the algebraic properties associated
with the Fokker-Planck equation, the existence of a good pseudo-differential
calculus (especially Lemma 5.16 is required) and the estimate2

sup
x∈Rn

max σ
[
(Hess (V ))2(x) − (

1
4
|∇V (x)|2 − 1

2
ΔV (x))Id

]
< +∞ ,

2 max σ(A) denotes the highest eigenvalue of the matrix A.



6.4 On Other Links Between Fokker-Planck Operators and Witten Laplacians 71

which is satisfied when the condition (5.19) of Assumption 5.7 is replaced by

∀α ∈ N
n, |α| = 2, ∀x ∈ R

n, |∂α
xV (x)| ≤ Cα(1 + |∇V (x)|) 〈x〉−ρ0 .

Second step:
One optimizes the parameter δ by making use of the orthogonal decomposition
written with E0 = KerK = Ker

[
Δ

(0)
V/2

]
⊗ Ce−v2/4 ,

K = K
∣∣∣
E0

⊥⊕K
∣∣∣
E⊥

0

K∗ = K∗
∣∣∣
E0

⊥⊕K∗
∣∣∣
E⊥

0

and Λδ = Λδ

∣∣∣
E0

⊥⊕Λδ

∣∣∣
E⊥

0

, with Λ2
δ = δ2 + a∗a + b∗b .

As an example, one obtains with this method the exponential return to equi-
librium for any polyhomogeneous potential for which the principal part is
|x|ϕ( x

|x|) and ϕ does not vanish on Sn−1 (see Section 11.3).3

6.4 On Other Links Between Fokker-Planck Operators
and Witten Laplacians

As used in an essential way in [HerNi], there are further links between the two
operators. This will be done more quantitatively in Chapter 17 at the end of
this book but let us just give as illustrating example some relations between
α1 and the lowest non zero eigenvalue ω1 of the Witten Laplacian (assuming
it exists).

If g0 is chosen as

g0 = Ψ(x)(2π)−
d
4 exp−v2

4

where Ψ(x) is a normalized eigenfunction of Δ(0)
V
2

corresponding to the eigen-
value ω1 > 0, then we observe (using (6.6) and (6.7)) the following inequality

d
dt || exp−tKg0||2 = −2 Re 〈K exp−tKg0 | exp−tKg0〉

≥ −2||Kg0|| || exp−tK∗ exp−tKg0||
≥ −2

√
d + 2

√
ω1C

2 exp−2α1t .
(6.8)

Integrating between 0 and t, leads to

1 − || exp−tKg0||2 ≤ 1
α1

√
d + 2

√
ω1C

2(1 − exp−2α1t) .

Taking the limit t → +∞, this leads to

3 We thank C. Villani who asked the question about this case which is missing in
[HerNi].
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α1 ≤ √
d + 2

√
ω1 C

2 .

Of course it is only interesting when controlling the constant C as it is done
in [HerNi]. One expects that in the semi-classical case the constants C will
be controlled by some negative power of h. This will say in this case, that if
ω1 is shown to be exponentially small, then one should expect that the best
α1 has necessarily the same property. We shall come back to this point in
Chapter 17.

6.5 Fokker-Planck Operators and Kinetic Equations

If one considers the evolution of probability measures in the phase space,
which is the point of view of kinetic equations, the Fokker-Planck equation is
written in the form{

∂tf + v · ∂xf − ∂xV (x) · ∂vf − ∂v · (∂v + v)f = 0
f(t = 0) = f0

which means that one considers the operator K1 = M1/2KM−1/2. On the
contrary probabilists are sometimes interested in the dual equation which
governs the evolution of observables{

∂tg + v · ∂xg − ∂xV (x) · ∂vg + (−∂v + v) · ∂vg = 0
g(t = 0) = g0

and the operator is K0 = M−1/2KM1/2. We consider the case when the
normalized Maxwellian μ =

(∫
M

)−1
M is a probability measure. Theorem 6.4

says that for any g0 ∈ M−1/2L2(R2n) (and this can be extended to g0 ∈
M−1/2S′(R2n)) we have

μ
(
|g(t) − μ(g0)|2

)
≤ C2e−2α1t .

This permits exponentially increasing initial data but does not give any L∞

bound on g(t). On the other side, for any f0 ∈ M1/2L2(R2n) (and this can be
extended to f0 ∈ M1/2S′(R2n)), Theorem 6.4 gives∫

R2n

∣∣∣∣f(t) −
(∫

R2n

f0

)
μ

∣∣∣∣2 M−1 dx dv ≤ C2e−2α1t ,

which gives a strong control of
∣∣f(x, v, ; t) − (∫

f0

)
μ(x, v)

∣∣ but does not hold
for general f0 ∈ L1(R2n). From this point of view and if one wants to treat
with such techniques nonlinear kinetic equations, Theorem 6.4 is not com-
pletely satisfactory because the preservation of the L1-norm is one of the few
preserved quantities which are used for nonlinear problems. With this respect,
it would be interesting to extend the proof of exponential decay for initial data
f0 ∈ L1(R2n).
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Hypoellipticity and Nilpotent Groups

7.1 Introduction

The analysis of left invariant homogeneous operators on a nilpotent graded
Lie group has played a very important role in the understanding of the hy-
poellipticity. There are two important points:

• There is a beautiful characterization of the hypoellipticity for these oper-
ators initially conjectured by C. Rockland [Roc]. We will describe these
results in Section 7.4.

• These models appear as the right approximation (in a suitable sense) of
many more general (and non necessarily invariant) differential operators.
We will describe the result in Chapter 8.

7.2 Nilpotent Lie Algebras

We refer to [No5] and [HelNo3] for a more comprehensive description of the
theory. Let us explain this roughly. The starting point is an abstract Lie
algebra G (think of a subalgebra of the up-triangular maps) admitting the
following decomposition:

G = ⊕r
j=1Gj ,

with the property that the Gj ’s are vector subspaces in direct sum satisfying

[Gi,Gj ] ⊂ Gi+j .

Usually, we will consider the case when G is generated by G1, that is the case
of a stratified algebra but it could be necessary to consider other cases in
order to treat the Hörmander operators of type 2.

Definition 7.1.
We will say that a graded Lie algebra is stratified if it is generated by G1. We
will say that a graded Lie algebra is stratified of type 2 if it is generated by
G1 ⊕ G2.

B. Helffer and F. Nier: LNM 1862, pp. 73–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The second case occurs for the type 2 Hörmander’s operator, where X0 is
considered in G2 and the Lie algebra is generated by G1 and X0.

In the case of these algebras there exists a global diffeomorphism from G
onto a simply connected group G via the exponential map (restriction of the
exponential map on matrices). This gives a group structure on G denoted by
“◦” (which is then identified with G). Typically when the algebra is of rank
2, we get

a ◦ b = a + b +
1
2
[a, b] .

When the algebra is of rank 3, we have:

a ◦ b = a + b +
1
2
[a, b] +

1
12

[a, [a, b]] +
1
12

[[a, b], b] .

One can then identify an element v of G to a left invariant vector field ρ(v)
on the group G (identified with G via the exponential map) by the formula:

(ρ(v)g)(u) =
d

ds
g(u ◦ (sv))|s=0 . (7.1)

In the same way, an element of the enveloping algebra U(G) , that is a non-
commutative polynomial

P :=
∑

aαY
α ,

(where Y� is a basis of G, or of G1 in the stratified case, and aα ∈ C) can be
identified to a left invariant operator on the group G.

On this Lie algebra, we have a natural δt which is linear map with the
property that

δt(X) = tjX , if X ∈ Gj . (7.2)

It is then immediate to extend δt to U(G) and to define what is an homoge-
neous operator of order m in the enveloping algebra and we denote by Um(G)
the linear space of these operators. We note that the Hörmander operator∑

j Y
2
j where Yj is a basis of G1 is in U2(G).

7.3 Representation Theory

We now explain very briefly the Kirillov theory. Starting from a unitary rep-
resentation of the group G, we can always attach a representation of the Lie
algebra . Among these representations, the irreducible representations will
play an important role. The Kirillov theory permits to associate to any ele-
ment of the dual G∗ of G an irreducible representation. Moreover this theory
says that any unitary representation can be represented in this way. Finally
two irreducible representations are unitarily equivalent if they belong to the
same orbit.
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In order to be more precise, let us give the definition of induced representa-
tion (which is due to Mackey). We give here a rather “pedestrian” definition.
The starting point is a subalgebra H ⊂ G and a linear form on G such that:
�([H,H]) = 0. Then we will associate a representation π�,H of the group G
into L2(Rk(�)), which is uniquely defined modulo a unitary conjugation, where
k(�) is the codimension of H in G. For this construction and using the nilpo-
tent character, we can find k = k(�) independent vectors e1, . . . , ek such that
any g can be written in the form

g = h exp skek exp sk−1ek−1 · · · exp s1e1 , (7.3)

and if
Aj = H⊕ Rek ⊕ · · · ⊕ Rek−j+1 , (7.4)

then Aj−1 is an ideal of codimension 1 in Aj .
With this construction, one can get that g �→ (s, h) is a global diffeomorphism
from G onto Rk ×H.

The induced representation is given by:

(π�,H(exp a)f)(t) = exp i〈�, h(t, a)〉 f(σ(t, a)) .

Here h(t, a) and σ(t, a) are defined by:

exp tkek · · · exp t1e1 expa
= exph(t, a) expσk(t, a)ek · · · expσ1(t, a)e1 .

The corresponding representation of G is defined by:

(π�,H(a)f)(t) =
d

ds
((π�,H(exp sa)f)(t))s=0 ,

with h(t, a) ∈ H, according to Formula (7.3). More explicitly, we get:

π�,H(a) = i〈�, h′(t, a)〉 +
k∑

j=1

σ′
j(t, a)∂tj , (7.5)

where
h′(t, a) =

d

ds
(h(t, sa))/s=0 , σ′(t, a) =

d

ds
(σ(t, sa))/s=0 .

There are two particular cases, which are interesting. When � = 0, we
get the standard extension of the trivial representation of the subgroup H
of G. It can be considered as a representation on L2(G/H). An interesting
problem is to characterize the maximal hypoellipticity of π0,H(P ) for P in
Um(G) (elements of U(G) with degree m).

The second point is when H is of maximal dimension, for a given �, with
the above property. In this case, one can show that the representation is
irreducible.
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By this way one can construct all the irreducible representations. Starting
this time from an � in G∗, one can construct a maximal subalgebra V� such
that �([V�, V�]) = 0. One can show that the codimension k(�) of V� is equal to
1
2 rankB� where B� is the two-form:

G × G � (X,Y ) �→ �([X,Y ]) .

For a ∈ G, we define by (ad a)∗ the adjoint of ada:

(ad a)∗�(b) = �([a, b]) .

The group G acts naturally on G∗ by:

g �→ g� =
r∑

k=0

1
k!

(ad − a)∗
k

� ,

with g = expa. This action is called the coadjoint action.
So what we know from Kirillov’s theory is that if � and �̃ are on the same
orbit, then the corresponding unitary representations are equivalent.
Conversely two different orbits give two non equivalent irreducible represen-
tations, so, one can identify the set Ĝ of the irreducible representations of G
with the set of the G-orbits in G∗:

Ĝ = G∗/G . (7.6)

7.4 Rockland’s Conjecture

The following theorem was conjectured by C. Rockland [Roc] and proved in
full generality by B. Helffer and J. Nourrigat [HelNo1, HelNo2] (See later
[Glo1, Glo2, Mel]):

Theorem 7.2.
An element P in Um(G) is hypoelliptic if and only if, for any non trivial
representation π of G, π(P ) is injective in Sπ (defined below in (7.10)).

For the basic example, the proof of the hypoellipticity of
∑p

j=1 Y
2
j as a

consequence of Theorem 7.2 becomes trivial. The condition that u satisfies
π(P )u = 0 implies π(Yj)u = 0, for any j = 1, . . . , p. This implies, in the
stratified case that π(Y )u = 0 for any Y ∈ G. A characterization of the
irreducibility of π and the assumption that π is not trivial gives u = 0.

An important ingredient is the proof of maximal inequalities of the type

||π(Q)u|| ≤ CQ,π ||π(P )u|| , ∀u ∈ Sπ (7.7)

for all Q ∈ Um(G) and all irreducible representations π of G. Here Sπ is the
space of C∞ vectors of the representation (see (7.10).
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The goal is then to deduce, from this family of inequalities, the corre-
sponding maximal inequality for P , that is

||Qu|| ≤ CQ ||Pu|| , ∀u ∈ S(G) , (7.8)

for all Q ∈ Um(G).
A fundamental point for proving these maximal inequalities, , which will imply
hypoellipticity, is to show that the constant CQ,π can be chosen independent
of π and to have it for Q belonging to a basis of Um(G). We can not explain
here all the recursion argument, which is strongly related to Kirillov’s theory,
but we would like to emphasize on some ingredients of the proof, which can
give an interesting light for other problems.

Remark 7.3.
We note for future use, that in this case we get also a maximal inequality
for operators π(P ) associated to other, non necessarily irreducible, represen-
tations π. For example, this can be applied to the operator π�,H(P ), where
π�,H is the representation introduced in Section 7.3.

7.5 Spectral Properties

We assume for simplicity that we are in the stratified case. Sometimes, we
shall consider the stratified case of type 2 (in this case the operators will be
assumed to be homogeneous of even order). For m ∈ N and for a unitary
representation in Hπ, the Sobolev spaces Hm

π are naturally defined. H0
π is by

definition the space of representations Hπ (It is enough for our applications
to consider1 the case when Hπ := L2(Rk) for some k ≥ 0). Then:

Hm
π = {u ∈ H0

π | (π(Y ))αu ∈ Hπ} . (7.9)

These spaces have a natural Hilbert structure. One can also define the Hm
π

for m ∈ Z (and by complex interpolation for m ∈ R). Moreover

Sπ = ∩mHm
π , (7.10)

is dense in each of the Hm
π . When π is irreducible, then we have compact

imbedding of Hm′
π into Hm

π if m′ > m, and we can identify Sπ and S(Rk) and
S′(Rk) with

S′
π := ∪mHm

π . (7.11)

If P satisfies the Rockland condition for all the degenerate π’s, that is for
irreducible representations associated to elements � ∈ G∗ such that �r = �

∣∣
Gr

=
0, then π(P ) is a Fredholm operator of Hm

π onto H0
π = Hπ. If P is symmetric,

π(P ) is essentially self-adjoint on Sπ , with domain Hm
π , and has consequently

1 We have in particular seen that the irreducible representations are of this type.
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a compact resolvent, when m > 0.
One of the steps in the proof is to show an inequality with remainder:

||π(Q)u|| ≤ CQ,π(||π(P )u|| + ||u||) , ∀u ∈ Sπ . (7.12)

There are actually many examples in physics which can be recognized as
π(P ) for some homogeneous P ∈ U(G). The most standard is the harmonic
oscillator, which can be recognized as a π(Y 2

1 +Y 2
2 ) in the case when G is the

three dimensional Heisenberg algebra and π is the irreducible representation
attached to �2([Y1, Y2]) = 1.

But let us also look at Y 2
1 +Y 2

2 −i[Y1, Y2]. This operator is not hypoelliptic.
But it satisfies the degenerate Rockland condition. The corresponding π(P )
is −∂2

t + t2 − 1. It has effectively a compact resolvent but is not injective.
The important remark is that if we want to prove by this ap-

proach that some operators have compact resolvent it is enough to
consider the so called degenerate Rockland’s condition.
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Maximal Hypoellipticity for Polynomial
of Vector Fields and Spectral Byproducts

8.1 Introduction

We assume that we are given p vector fields on an open set Ω ⊂ Rn, sat-
isfying the rank r Hörmander condition (see Section 2.1). Let P be a non-
commutative polynomial of degree less or equal to m of vector fields with C∞

coefficients, that is an operator of the form

P :=
∑

|α|≤m

aα(x)Xα ,

where α ∈ {1, . . . , p}k , |α| = k .
We say that P is maximally hypoelliptic if, for any compact K ⊂ Ω , there
exists a constant CK > 0 such that:∑

|α|≤m

||Xαu||2 ≤ C
(||Pu||20 + ||u||20

)
, (8.1)

∀u ∈ C∞
0 (Ω) s.t. suppu ⊂ K .

Localized version:

We say that the property of maximal hypoellipticity is satisfied at x0 if there
exists an open neighborhood of x0, in which the previous property is satisfied
with Ω replaced by ωx0 .
One can show1 that this inequality (jointly with the Hörmander condition) im-
plies the hypoellipticity of P in Ω. Using a technique of lifting of the problem
on a nilpotent universal group and fine harmonic analysis, Rothschild-Stein
[RoSt] have proven the following theorem.

Theorem 8.1.
If the vector fields Xj (j = 1, . . . , p) satisfy the Hörmander condition at any
point of Ω, then the operator L1 :=

∑p
j=1 X

2
j is maximally hypoelliptic.

1 A standard reference is [Tr1]

B. Helffer and F. Nier: LNM 1862, pp. 79–87, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Similarly, they treat also the case of the Hörmander’s operator of type 2.

Theorem 8.2.
If the vector fields X0, Xj (j = 1, . . . , p) satisfy the Hörmander condition
at any point of Ω, then the operator L2 :=

∑p
j=1 X

2
j + X0 is maximally

hypoelliptic in the following sense. For any compact K ⊂ Ω, there exists a
constant CK > 0 such that:

||X0u||2 +
∑p

j=1 ||Xju||2 +
∑p

j,k=1 ||XjXku||2 ≤ C
(||L2u||20 + ||u||20

)
,
(8.2)

∀u ∈ C∞
0 (Ω) s. t. suppu ⊂ K .

We observe that in ((8.2)) we have given the weight 2 to X0 and the weight
1 to the other vector fields Xj . With this convention, L2 appears to be an
homogeneous operator of degree 2.

Because this property of maximal hypoellipticity is much stronger and
robust than hypoellipticity, there is a hope to characterize the maximally
hypoelliptic operators (cf [HelNo3]). We have already seen that all the homo-
geneous left invariant hypoelliptic operators are maximally hypoelliptic. Our
aim in this chapter is to give a flavor about the nature of the criteria and also
to explain some byproducts of the proofs.

These maximally hypoelliptic operators are more stable in the sense that
this property depends only on the “principal part”

P0 :=
∑

|α|=m

aα(x)Xα .

8.2 Rothschild-Stein Lifting
and Towards a General Criterion

L.P. Rothschild and E. Stein [RoSt] (see also Goodman [Goo]) have shown
that the analysis of the maximal hypoellipticity of the operator

∑
j X

2
j or of

X0+
∑

j X
2
j can be deduced, when the vector fields satisfy the rank r condition

on an open set Ω, from the analysis of a corresponding invariant homogeneous
operator defined on a free nilpotent Lie group of rank r. The free Lie algebra
of rank r with p generators G = Gr,p is the maximal Lie algebra with this
property, that is the only relations existing are the necessary conditions sat-
isfied by any Lie algebra of rank r with p generators. For example, the rank
2 free algebra with p generators has a basis:

Y1, · · · , Yp ; [Yi, Yj ] (i < j) .

One can show that there exists a unique linear application λ from G into the
algebra of the vector fields defined on Ω such that:
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λ(Yi) = Xi .

Moreover λ is a partial homomorphism of rank r, that is:

[λ(ai), λ(aj)] = λ([ai, aj ]) , ∀ai ∈ Gi, aj ∈ Gj with i + j ≤ r .

For x ∈ Ω, we denote by λx the map from G into TxΩ defined by:

λx(a) = (λ(a))x , ∀a ∈ G ,

and by λ∗
x the transposed map from T ∗

xΩ into G∗. For any u ∈ G, we can
write:

λ(u) =
∑

j

aj(x, u)∂xj ,

and we denote by y(t, u, x) the integral curve of λ(u) starting from x at t = 0 .
We then introduce:

(x, u) �→ ψ(x, u) := y(1, u, x) ,

which is a C∞ map in a neighborhood of say (x0, 0) in Ω × G with value in
Ω. For any x ∈ Ω, we can then introduce, for f ∈ C∞(Ω),

(Wxf)(u) = f(ψ(x, u)) .

Then we have the following approximation theorem

lim
t→0

δ−1
t Wxλ(δtv)W−1

x = ρ(v) ,

where ρ(v) is the left invariant vector field associated with v, by (7.1). In par-
ticular, the Rothschild-Stein theory permits to deduce that if Pm(Y1, · · · , Yp)
is hypoelliptic then P (X1, · · · , Xp) is maximally hypoelliptic. This theorem is
very strong at the level of the regularity, but still too weak in the sense that
it gives only a sufficient condition of maximal hypoellipticity, which can be
quite far from necessary. The other weakness is that it does not give a way to
find criteria for the hypoellipticity of Pm(Y1, · · · , Yp) .

So it is natural to formulate after [HelNo3] the following conjecture.

Conjecture 8.3.
There exists a subset Γ of G∗, which is

• closed,
• stable by the coadjoint action,
• and stable by dilation,

such that P is maximally hypoelliptic at x0, if and only if π�(P ) is injective
for any � ∈ Γ \ {0}.

The candidate Γ = Γx0 can be defined as follows:
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Definition 8.4.
The set Γx0 is attached to the vector fields X1, · · · , Xp by:

Γx0 = {� ∈ G∗ | � = limn→+∞ δ∗tn
�n |

for some sequence (tn, �n) with tn > 0 , tn → 0 , �n = �xn,ξn} .
(8.3)

Here �xn,ξn ∈ G∗ is defined by

�xn,ξn(Y ) =
1
i
σ(λ(Y ))(xn, ξn) , ∀Y ∈ G ,

where σ(λ(Y )) denotes the symbol of λ(Y ). Moreover, we impose that

|ξn| → +∞ and xn → x0 .

Note that
1
i
σ(λ(Y ))(xn, ξn) = λ∗

xn
ξn(Y ) ,

so
�xn,ξn = λ∗

xn
ξn .

It can be shown that Γx0 is a closed G-invariant homogeneous set in G∗.
The necessity of the conjecture with Γ = Γx0 was proved by J. Nourrigat

(cf Chapter 3 in [HelNo3]) and a microlocal version for systems is given in
[No3]. The sufficiency is proved in many cases [HelNo3], containing in partic-
ular the case when [G2,G2] = 0 (this condition will be always satisfied in our
examples). There is a general proof for systems given by J. Nourrigat in the
80’s [No6, No7]. We will discuss some aspects of the theory in Chapter 10.

A particular case is the case when P = π0,H(P ). In this case Γ is the so
called “spectrum of the induced representation” or “support of the induced
representation”:

Γ = Sp (π0,H) = G · H⊥ (8.4)

There is a microlocal version of the conjecture. First recall that, if u ∈
D′(Ω) and if (x0, ξ0) is a point in T ∗Ω \ {0}, one says that this point does
not belong to the Wave Front of u (denoted by WF u) if for a cut-off function
χ ∈ C∞

0 (Ω) such that χ(x0) �= 0 there exists a conical neighborhood of ξ0 in
which χ̂u(ξ) is rapidly decreasing. This defines a closed subset in T ∗Ω \ {0}
whose projection on Ω gives the so called singular support of u: Sing suppu.
Then a microlocally hypoelliptic operator is an operator such that

WF (u) ⊂ WF (Pu) , ∀u ∈ D′(Ω) . (8.5)

More generally, this notion can be localized2 in cones Γ ∗ := ω×γ of T ∗Ω\{0}
or at the point (x0, ξ0) in the sense that there exists an open conic neigh-
borhood Γ ∗

x0,ξ0
of (x0, ξ0) in which the operator is microlocally hypoelliptic.

2 Just write
WF (u) ∩ Γ ∗ ⊂ WF (Pu) , ∀u ∈ D′(Ω) .
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Similarly (we refer to [HelNo3] for a precise definition or to Chapter 10 in a
particular case) we can introduce the notion of maximal microhypoellipticity
and Helffer and Nourrigat [HelNo3] formulate the following conjecture.

Conjecture 8.5.
There exists a subset Γ of G∗, which is closed, stable by the coadjoint action
and by dilation, such that P is microlocally maximally hypoelliptic at (x0, ξ0)
if and only if π�(P ) is injective for any � ∈ Γ \ {0}.
The set Γx0 appearing in the “local” conjecture is then replaced at a point
(x0, ξ0) ∈ Ω × Rd \ {0} by:

Definition 8.6.
The set Γx0,ξ0 is defined by

Γx0,ξ0 = {� ∈ G∗ | � = limn→+∞ δ∗tn
�n |

for some sequence (tn, �n) with tn > 0 , tn → 0 , �n = �xn,ξn} ,
(8.6)

with in addition
lim

n→+∞xn = x0 , lim
n→+∞

ξn

|ξn| =
ξ0
|ξ0| .

This set is also closed, G-stable and dilation invariant. Note also that the
definition of Γx0,ξ0 only depends on ξ0/|ξ0|, so: Γx0,tξ0 = Γx0,ξ0 .

8.3 Folland’s Result

We refer here to [Fol] and to the discussion in [HelNo3] (p. 27-28). Let V be
a real vector space admitting a decomposition as a direct sum of spaces Vi

(1 ≤ i ≤ r). For every t > 0, we define the dilation ht on V by

ht(
r∑

j=1

xj) =
r∑

j=1

tjxj , for xj ∈ Vj . (8.7)

We say that a differential operator P on V is homogeneous of degree m if

P (f ◦ ht) = tm(Pf) ◦ ht , ∀f ∈ C∞(V ) . (8.8)

Let X1, · · · , Xp a system of C∞ real vector fields homogeneous of degree 1
and satisfying the rank r Hörmander condition.
Let G be the free nilpotent Lie Algebra of rank r with p generators. Let L(V )
the Lie algebra of C∞ vector fields on V . Then there exists a unique linear
map from G into L(V ) such that:

λ(Yj) = Xj ,
λ([aj , ak]) = [λ(aj), λ(ak)] , for aj ∈ Gj , ak ∈ Gk .

(8.9)
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One can verify that λ is an homomorphism (compare with the general
Rothschild-Stein theory where we have only a partial homomorphism of rank
r). We observe indeed that an homogeneous vector field of degree > r is
necessarily identically 0.

We now define H as the subspace of G generated by the a’s such that λ(a)
vanishes at 0. It is immediate to see that H is a subalgebra of G and stable
by the dilations of G:

λ ◦ δt = ht ◦ λ . (8.10)

Moreover the codimension of H is equal to dimV . Folland [Fol] has proved
the

Proposition 8.7.
There exists a global diffeomorphism θ from V onto R dim V with Jacobian 1,
such that for all a ∈ G and f ∈ C∞

0 (R dim V ), we have:

π0,H(a)f = (λ(a)(f ◦ θ)) ◦ θ−1 . (8.11)

Moreover, the map f �→ f ◦ θ sends S(R dim V ) onto S(V ).

The Witten situation

Let us consider the Witten case. We take an homogeneous polynomial Φ of
degree r on R

n. We take V1 = R
n
x , V2 = · · · = Vr−1 = {0}, Vr = Rt. We

define:
Xj = ∂xj , Xj+n = (∂xjΦ)∂t .

We assume that r ≥ 2. Then it is clear that H in G, is generated by
G′′

1 ⊕ G2 ⊕ · · · Gr−1 where G′′
1 is generated by the Xj+n (j = 1, . . . , n).

What is the spectrum of π0,H ? Coming back to the definition (8.4), we
obtain that � in G∗ is in the spectrum of the representation, if there exists a
sequence (xn, τn) such that:

�1(Xj+n) = limn→+∞(∂xjΦ)(xn)τn , for j = 1, . . . , n ,
�2([Xk, Xj+n]) = limn→+∞(∂xk

∂xjΦ)(xn)τn , for j, k = 1, . . . , n ,
�2([Xk+n, Xj+n]) = 0 , for j, k = 1, . . . , n ,
· · · · · ·
�q(adXαX�+n) = limn→+∞(∂α

x ∂x

Φ)(xn)τn , for |α| + 1 = q ≤ r .

Note that the Hörmander condition is satisfied if the polynomial Φ is not
identically constant. Note also that the representation πτ is irreducible for
τ �= 0, if limx→∞

∑
|α|≥1 |∂α

xΦ(x)| = +∞.

Remark 8.8.
It is sometimes better to work directly with a smaller algebra than the free
algebra, by choosing an algebra taking into account the bracket properties of
the vector fields Xj (for example if two vector fields commute).
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If for the hypoellipticity of π0,H(P ), it is the injectivity of π(P ) for any
π in the spectrum of π0,H. The property that πτ (P ) has a compact resolvent
for τ �= 0 can be obtained on the basis that π(P ) is injective for all π in the
spectrum of π0,H which are degenerate on Gr and non trivial.

The investigation of the proof in Helffer-Nourrigat [HelNo3] permits to
separate the case τ > 0 and the case τ < 0. This corresponds to a disjoint
analysis of the microlocal hypoellipticity at the two points in T ∗

0 Rn+1 \ {0},
where the operator π(0,H) is not elliptic.

Let us treat the easy case. This is the case when Φ is elliptic outside 0 or
more generally when ∇Φ does not vanish on the unit sphere Sn−1. In this case,
we get easily that the only representations which belong to this “degenerate”
spectrum are the representations which corresponds in Kirillov’s Theory to
elements of G∗ ∩ (G2)⊥, i.e. which vanish on G2 =

∑r
j=2 Gj . One gets imme-

diately that for these π’s (π not trivial), π(P ) is injective.

Of course this result can be proved quite easily by the criterion given in
Proposition 3.1.

When Φ is not elliptic, there are other cases where one can give an answer
but we postpone this to the next chapters. The simplest example is Φ(x1, x2) =
±x2

1x
2
2. But this case can again be treated (for the sign −) by Proposition 3.1.

8.4 Discussion on Rothschild-Stein
and Helffer-Métivier-Nourrigat Results

We would like to analyze the properties of

L := Σp1
j=1Y

2
j +

i

2

∑
j,k

bjk [Yj , Yk] , (8.12)

where bjk is a real antisymmetric matrix and the Yj ’s form a basis of G1 and
G1 generates a stratified Lie algebra:

G = ⊕r
j=1Gj .

Let us introduce some definitions. If ρ is a real antisymmetric matrix, we can
define its trace norm by

||ρ||1 =
∑

j

|ρj | , (8.13)

where the ρj are the eigenvalues of ρ.
We denote by S the subspace of the real antisymmetric matrices such that∑

j,k

sjk [Yj , Yk] = 0 . (8.14)
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Theorem 8.9.
Suppose that G is not an Heisenberg algebra. Then L is hypoelliptic if and only
if:

sup
||ρ||1≤1 , ρ∈S⊥

|Tr (bρ)| < 1 . (8.15)

(Here S⊥ is the set of ρ’s such that Tr (sρ) = 0, ∀s ∈ S .)

The sufficiency part is proved in [RoSt] and the assumption that G is not an
Heisenberg algebra is not needed. The case of an Heisenberg algebra can be
treated separately and discrete phenomena appear. The result was completed
in [Hel1] (or3 [Hel2])

For the comparison with Witten Laplacians. It is enough to concentrate
on the following case. The space G1 admits a decomposition:

G1 = G′
1 ⊕ G′′

1 , (8.16)

with
dimG′

1 = dimG′′
1 .

Moreover
[G2,G2] = 0 ,

and
dimGr = 1 .

Our operator is

L :=
p′
1∑

j=1

(Y ′
j )2 +

p′
1∑

j=1

(Y ′′
j )2 + i

p′
1∑

j=1

[Y ′
j , Y

′′
j ] , (8.17)

where Y ′
j (j = 1, . . . , p′1) (resp. Y ′′

j (j = 1, . . . , p′1) ) denotes a basis of G′
1

(resp. G′
2).

Actually, we are not exactly interested in this operator but more in the
properties of Π(P ), where Π is some representation of the enveloping algebra.
This representation Π will actually be an induced representation π(0,H), with
H = G′′

1 ⊕ G2 ⊕ · · · ⊕ Gr−1.

3 Note that Lemma 3.2 as stated in these notes is obviously wrong and that the
argument has to be corrected, like in the proof of (5.10) in [Hel3].
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Remark 8.10.
In a completely different context4, [GHH] analyze the properties of some
“Dirac type” operator presenting similar “bad” properties. More precisely
they consider on L2(R2,C2) the operator

(−∂2
x − ∂2

y + x2y2) ⊗ I + xσ3 + yσ1 ,

where the σj ’s are the Pauli matrices (see Remark 3.11). Here σ3 =
(

1 0
0 −1

)
.

This is in some sense a “vector valued” example of the type described in
(8.12), if one observes that:

[∂x, xy] = y , [∂y, xy] = x .

4 We thank J. Hoppe for this remark
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On Fokker-Planck Operators
and Nilpotent Techniques

9.1 Is There a Lie Algebra Approach
for the Fokker-Planck Equation?

We give here some remarks about the possible Lie algebra structures which
can be associated with the Fokker-Planck equation.
First approach:
As suggested in the introduction one can write the Fokker-Planck operator as

K = X0 −
∑

�

(
(X�

1)
2 + (X�

2)
2 − i[X�

1, X
�
2]
)
,

with X0 = v∂x − ∂xV (x)∂v, X�
1 = ∂v


and X�
2 = iv�/2 . The problem here

is that K cannot be viewed as a polynomial of vector fields in some induced
representation of a nilpotent Lie algebra. For simplicity, consider the quadratic
case V (x) = x2/2 in dimension n = 1. We are looking for a graded algebra
G =

∑
j Gj and for a representation π of the algebra such that:

• dimG1 = 2 and there exists a basis Y1, Y2 such that π(Yj) = Xj .
• dimG2 = 2 and G2 admits as a basis [Y1, Y2] , Y0 , with π(Y0) = X0 .

As a consequence K will appear as

K = π
(
Y0 + i[Y1, Y2] − Y 2

1 − Y 2
2

)
.

By computing the successive commutators one gets the infinite structure

π(G2) contains X0 and i ;
π(G3) contains ∂x and ix ;
π(G4) is reduced to 0 ;
π(G5) contains iv and ∂v ;
π(G6) contains i ;
π(G7) contains ∂x and x and so on ...

B. Helffer and F. Nier: LNM 1862, pp. 89–95, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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There are no finite dimensional Lie algebra which permits to do the job like
in Folland’s example. Hence Helffer-Nourrigat’s approach cannot be applied
without finding a way to cancel high order irrelevant commutators. This is
actually what is done in the analysis of the local hypoellipticity when we ne-
glect the brackets of order (r + 1) but we have here a more difficult global
problem. We will see in the next section how to adapt partly the nilpotent
techniques.

Second approach:

We can also consider K as an homogeneous operator of order 2 on a
stratified nilpotent Lie algebra:

K =
∑

�

iX�
2Y

�
1 − iY �

2 X
�
1 −

(
(X�

1)
2 + (X�

2)
2 − i[X�

1, X
�
2]
)
,

with X�
1 = ∂v


, X�
2 = iv�/2, Y �

1 = ∂x

and Y �

2 = i(∂x

V )(x). When V is a

polynomial of degree m one gets a stratified nilpotent Lie algebra of rank m
by taking X�

1,2, Y
�
1,2 ∈ G1 and K is an homogeneous polynomial of degree 2.

(Note that in this case we have [G2,G2] = 0.)
By assuming that the Witten Laplacian is the image πτ (P ) by a represen-

tation πτ of a maximally microlocally hypoellitic operator P on a nilpotent
group, there is no difficulty to check that for any representation such that

π(X�
1) = ∂v


and π(X�
2) = i v�/2 , (9.1)

the operator π(K) is injective.
The problem comes from the fact that there are non trivial representations

for which π(X�
1) = π(X�

2) = 0 and for which therefore π(K) = 0 is not
injective. Hence the nilpotent techniques (see for example [RoSt], [HelNo3],
[No1]) cannot be applied directly.

One can think of considering the closed set of representations which satisfy
the condition (9.1) but this set is not homogeneous and this leads to difficulties
in the adaptation of Helffer-Nourrigat’s analysis (see [HelNo3], Chap VIII).

Third approach:
In the previous presentations, one does not recover directly the structure of
Witten Laplacian which has to play a role as discussed in Chapter 5 (Indeed it
is hidden in the injectivity property for the second approach). We now present
an alternative approach which relies as the analysis of the elliptic case on the
writing of K with distorted creation-annihilation operators . We consider the
(n + 1) × (n + 1) matrix valued operator K = X0 −X2

1 with
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X0 = diag (b∗a− a∗b) ,

X1 = i

(
0 b
b∗ 0

)
= i

⎛⎜⎜⎜⎝
0 . . . 0 b1
...

...
...

0 . . . bn

b∗1 . . . b∗n 0

⎞⎟⎟⎟⎠ ,

where we used the notations (5.15)(5.16). One recovers the Fokker-Planck
operator as the last row of X0 −X2

1 and a simple calculation gives

[X0, X1] = X2 = −i

(
0 a
a∗ 0

)
,

where the Witten Laplacian in x will appear in the last diagonal element of
−X2

2 . This has some connection with the differential form structure but it is
not clear that this would help for the proof of maximal estimates.

9.2 Maximal Estimates
for Some Fokker-Planck Operators

We come back to the analysis of the global estimates for the quadratic model
developed in Section 5.5 and show how a nilpotent approach lead to better
estimates. The theorem is the following.

Theorem 9.1.
Let us assume that, for |α| = 2,

|Dα
xV (x)| ≤ Cα < ∇V (x) >1−ρ0 , (9.2)

with
ρ0 >

1
3
, (9.3)

and that
|∇V (x)| → +∞ . (9.4)

Then the Fokker-Planck operator K has compact resolvent and we have the
inequality

|| |∇V (x)| 23 u ||2 ≤ C
(||Ku||2 + ||u||2) , ∀u ∈ C∞

0 (Rn) . (9.5)

Remark 9.2.
When V is quadratic and non degenerate, we recover all the statements given
in Chapter 5 (or at least the results concerning the control at ∞). When
|∇V (x)| tends to +∞ with a control < ∇V (x) >≥ 1

C < x >
1
C and a suitable

control of the higher derivatives (see (5.17)), we got already the compactness
of the resolvent through the weaker estimate

|| |∇V (x)| 14 u||2 ≤ C
(||Ku||2 + ||u||2) , ∀u ∈ C∞

0 (Rn) . (9.6)

But (9.2) is much stronger than (5.17) for the second derivatives of V .
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Heuristics.

The approach is the following. One first replaces ∇V (x) by a constant vector,
and prove a global estimate for this model, and then use a partition of unity
and control the errors.
Let us present for simplification the approach when n = 1 (but this restriction
is not important).

The first point (this part is common to the approach given for the quadratic
model) is consequently to analyze (with ∇V (x0) replaced by w):

Fw = (v∂x − w∂v) + (−∂2
v +

1
4
v2 − 1

2
) . (9.7)

By partial Fourier transform, we get

Fw,ξ = (ivξ − w∂v) + (−∂2
v +

1
4
v2 − 1

2
) . (9.8)

We would like to have uniform estimates with respect to the parameters v,
ξ. There is some invariance by rotation in these two variables, so the main
parameter is only

λ =
√
w2 + ξ2 . (9.9)

This leads after a change of variable to the model (see (5.52)):

F̂λ = iλt + (−∂2
t +

1
4
t2 − 1

2
) , (9.10)

for which one can show the existence of a constant C > 0, such that for any
λ ≥ 0, the following maximal estimate:

||u||2 + ||F̂λu||2 ≥ 1
C

⎛⎝λ
4
3 ||u||2 +

∑
k+�≤2

||Dk
t t

�u||2
⎞⎠ , ∀u ∈ S(R) , (9.11)

is satisfied.

Proof of the maximal estimate.
We propose to get it as a consequence of the nilpotent techniques. We will

explicitly realize the lifting (this is a particular case of Folland’s construction).
We introduce the following algebra generated by

X1 = ∂t , X2 = ∂x − t∂y , X0 = ∂z − t∂s .

It defines a rank 3 algebra, whose underlying vector space is R
5, where G1

is spanned by X1, X2, G2 is spanned by X0 and [X2, X1] = ∂y, and G3 is
spanned by [X0, X1] = ∂s.
The operator

L = X2
1 + X2

2 + X0
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is a type 2 Hörmander operator and Rothschild-Stein have shown that this
operator is maximally hypoelliptic (see 7.8). So we have in particular

||X0u||2 + ||X2
1u||2 + ||X1X2u||2 + ||X2

2u||2 ≤ C ||Lu||2 , ∀u ∈ C∞
0 (R5) ,

(9.12)
where the || · || denote L2(R5) norms. We emphasize here that it is a global
estimate (i.e. better than (8.1)), which can also be deduced from [HelNo2],
through the Rockland’s criterion. Now one obtains immediately that

||∂2
su|| = ||[X1, X0]2u|| ≤ C||u||hom

H6
G

, ∀u ∈ C∞
0 (R5) . (9.13)

Here the H2�
G , for � ∈ N, are the Sobolev space attached to the vector fields

X1, X2, X0 considering X0 as homogeneous of order 2. Because everything is
homogeneous by dilation, we consider the homogeneous semi-norms:

C∞
0 (R5) � u �→ ||u||hom,2� =

∑
|α|1,2=2�

||Xαu||2 , (9.14)

where Xα = Xα1Xα2 ...Xαp with αi ∈ {0, 1, 2}, and

|α|1,2 =
p∑

j=1

εj |αj | ,

with εj = 1 if αj = 1, 2 and εj = 2 if αj = 0.
By complex interpolation theory, we get

||(−∂2
s )

1
3u|| ≤ C||u||hom

H2
G

≤ C′||Lu|| , ∀u ∈ C∞
0 (R5) . (9.15)

Using partial Fourier transform and implementing particular choices of fami-
lies of test functions in inequalities (9.12) and (9.15), we get the inequality

||(F̂λ +
1
2
)u||2 ≥ 1

C

(
|λ| 43 ||u||2 +

∑
k+�=2

||Dk
t t

�u||2
)

. (9.16)

This leads to (9.11).

Proof of the theorem.
Coming back to the initial coordinates, we get:

||f ||2L2(R) + ||Fw,ξf ||2L2(R) ≥
1
C

⎛⎝w
4
3 ||f ||2L2(R) +

∑
k+�≤2

||Dk
vv

�f ||2L2(R)

⎞⎠ ,

(9.17)
for all f ∈ C∞

0 (R) . Note that by interpolation, this implies also

||f ||2L2(R)+||Fw,ξf ||2L2(R) ≥
1
C

(
w

2
3 ||vf ||2L2(R) + |w| 23 ||∂vf ||2L2(R)

)
, ∀f ∈ C∞

0 (R) .

(9.18)
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One can now introduce a partition of unity φj in the x variable corresponding
to a covering by intervals I(xj , r(xj)) =]xj − r(xj), xj + r(xj)[ (with the
property of uniform finite intersection1), where r(x) has the expression

r(x) := δ0 < ∇V (x) >− 1
3 , (9.19)

and where δ0 ≥ 1 is an extra parameter which will be chosen later. So the
support of each φj is contained in I(xj , r(xj)) and we have∑

j

φ2
j (x) = 1 . (9.20)

Moreover there exists a constant C, s. t. for all j and for all δ0 ≥ 1 ,

|∇φj(x)| ≤ C

δ0
< ∇V (xj) >

1
3 . (9.21)

More precisely, there exists another partition of unity χj with support in
I(xj , 2r(xj)), such that ∑

χ2
j ≤ C ,

and
|∇φj(x)| ≤ C

δ0
< ∇V (xj) >

1
3 χj(x) . (9.22)

Note that one can find Cδ0 such that for |xj | ≥ Cδ0 , we have

1
2
≤ |∇V (x)|/|∇V (xj)| ≤ 3

2
, ∀x ∈ I(xj , 2r(xj)) .

This introduces two types of errors, one is due to the comparison in the in-
terval of ∂xV (x) and of ∂xV (x0) leading to an error in V ′′(x0)r(x0) which
has to be small in comparison with the gain |∂xV (x0)| 13 . This leads to the
assumption that |V ′′(x0)|r(x0) should be controlled by < ∇V (x0) >

2
3 . The

second type error is due to the partition of unity χj . The typical error to
control is here ||φ′

j(x)yf ||2 which will be controlled, if r(x)−1 is controlled by
< ∇V (x) >

1
3 . So this explains our choice of radius and our assumptions on

V ′′(x) .

Detailed proof.
Let us now give the detailed proof. We start, for u ∈ C∞

0 (R2) , from

||Ku||2 =
∑

j ||φjKu||2
=

∑ ||Kφju||2 −
∑ ||[K,φj ]u||2

=
∑ ||Kφju||2 −

∑ ||(X0φj)u||2
=

∑ ||Kφju||2 −
∑ ||(∇φj)(x)vu||2

≥ ∑ ||Kφju||2 − C2

δ2
0

∑ ||χj < ∇V (xj) >
1
3 vu||2 .

1 That is there exists an integer n0 such that any point is covered by less than n0

intervals, belonging to the covering family.
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Let us now write on the support of φj :

K = K − Fwj + Fwj ,

with
wj = ∇V (xj) .

We verify that

||(K − Fwj )φju||2 = ||φj(x)(∇V (x) −∇V (xj)) ∂vu||2
≤ Cδ2

0 < ∇V (xj) >2−2ρ0− 2
3 ||φj∂vu||2 .

These errors have to be controlled by the main term.
We note that we have

||Fwjφju||2 ≥ 1
C
|||∇V (x)| 23φju||2+ 1

C
|||∇V (x)| 23φj∂vu||2+ 1

C
|||∇V (x)| 23φjvu||2 .

Finally, we observe that

||Kφju||2 ≥ 1
2
||Fwjφju||2 − ||(K − Fwj )φju||2 .

Summing up over j, we have obtained the existence of a constant C such that,
for any δ0 ≥ 1 and for all u ∈ C∞

0 (R2),

||u||2 + ||Ku||2
≥ 1

C || |∇V (x)| 23 u ||2 + 1
C || |∇V (x)| 13 ∂vu ||2 + 1

C || |∇V (x)| 13 vu ||2
−Cδ2

0 || |∇V (x)| 23−ρ0 ∂vu ||2 − C 1
δ2
0
|| |∇V (x)| 13 ∂vu ||2

−Cδ0(||vu||2 + ||u||2 + ||∂vu||2) .
If we choose δ0 large enough, we can achieve the proof by observing that
|∇V (x)| tends to +∞ and that ρ0 > 1

3 .
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Maximal Microhypoellipticity for Systems
and Applications to Witten Laplacians

10.1 Introduction

Although the previous theory for operators on nilpotent groups applies more
generally to systems, the criteria which appear for specific first order systems
are much more explicit and permit to go much further in the analysis. We de-
velop in more detail a version of the previous point of view, which is adapted
to some systems and will show how it leads to new results. Although Kirillov’s
theory is everywhere behind the formulation of the statements, the language
of the nilpotent groups has been in some sense eliminated from the presen-
tation, and the reader of this chapter can survive without any knowledge of
this theory.
Here we are mainly inspired by the presentation given by J. Nourrigat in [No1]
of results of Helffer-Nourrigat and Nourrigat which appear in a less explicit
form in the book [HelNo3]. This is a particular aspect of the large program
developed by J. Nourrigat in continuation of [HelNo3] at the end of the 80’s
for understanding the maximal hypoellipticity of differential systems of order
1 in connection with the chatracterization of subelliptic systems [No1]-[No7].
As we shall see, an interest of this analysis of the maximal hypoellipticity
by an approach based on the nilpotent Lie group techniques is that it pro-
vides, on the way, global, local or microlocal estimates, leading to sufficient
conditions for the compactness of the resolvent or to semiclassical local lower
bounds. The comparison with other hypoellipticity results by Maire and their
implication to semi-classical analysis will be discussed here and in Section 11.5.

More precisely, our aim is to analyze the maximal hypoellipticity of the
system of n first order complex vector fields

Lj = (Xj − iYj), where Xj = ∂xj and Yj = (∂xjΦ(x)) ∂t , (10.1)

in a neighborhood V(0)×Rt of 0 ∈ Rn+1, where Φ ∈ C∞(V(0)). We will show
at the same time how the techniques used for this analysis will lead to some

B. Helffer and F. Nier: LNM 1862, pp. 97–112, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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information on the question concerning the Witten Laplacian associated to
Φ.

We assume that the real function Φ is such that the rank r Hörmander
condition is satisfied for the vector fields (Xj), (Yj) at (0, 0) (and hence at any
point (0, t0) due to the invariance by translation in the t-variable). This is an
immediate consequence of the condition:∑

1≤|α|≤r

|∂α
xΦ(0)| > 0 . (10.2)

Let us start by extending the previous notion of maximal hypoellipticity
to systems. By maximal hypoellipticity for the system (10.1), we mean the
existence of the inequality:

∑
j

||Xju||2 +
∑

j

||Yju||2 ≤ C

⎛⎝∑
j

||Lju||2 + ||u||2
⎞⎠ , ∀u ∈ C∞

0 (V(0)×Rt) .

(10.3)
The symbol of the system is the map:

T ∗(V(0) × R) \ {0} � (x, t, ξ, τ)
�→ σ(L)(x, t, ξ, τ) :=

(
iξj + τ(∂xjΦ)(x)

)
j=1,...,n

∈ C
n .

(10.4)

Note that it is also the the principal symbol, which is homogeneous of degree 1:

σ(L)(x, t, ρξ, ρτ) = ρ σ(x, t, ξ, τ) , ∀ρ > 0 . (10.5)

The characteristic set is then by definition the set of zeroes of (the principal
symbol of) σ(L):

σ(L)−1(0) = {(x, t, ξ, τ) ∈ T ∗(Rn+1) \ {0} | ξ = 0 , ∇Φ(x) = 0} , (10.6)

and is consequently a conic subset of T ∗(V(0) × R) \ {0}. Outside this set
the system is microlocally elliptic (its (principal) symbol does not vanish)
and hence (maximally) microlocally hypoelliptic. So the local (maximal) hy-
poellipticity will result of the microlocal analysis in the neighborhood of the
characteristic set, which has actually two connected components defined by
{±τ > 0}. So we are more precisely interested in the microlocal hypoellip-
ticity in a conic neighborhood V± of (x, t; ξ, τ) = (0; 0,±1), that is with the
microlocalized version of the inequality (10.3), which writes:

∑
j ||χ±(x, t,Dx, Dt)Xju||2 +

∑
j ||χ±(x, t,Dx, Dt)Yju||2

≤ C
(∑

j ||Lju||2 + ||u||2
)

, ∀u ∈ C∞
0 (V(0) × Rt) ,

(10.7)

where χ± is a classical pseudo-differential operator of order 0 which localizes
in V± (whose principal symbol should be elliptic at (0; 0,±1)).
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Actually, due to the invariance of the problem with respect to the t vari-
able, we will more precisely look for the existence of an inequality which is
local in x but global in the t variable:∑

j ||χ±(x,Dx, Dt)Xju||2 +
∑

j ||χ±(x,Dx, Dt)Yju||2
≤ C

(∑
j ||Lju||2 + ||u||2

)
, ∀u ∈ C∞

0 (V(0) × Rt) .
(10.8)

This will permit to consider the partial Fourier transform with respect to t in
order to analyze the problem.
It is interesting to observe that in the right hand side of (10.8), we can write:∑

j

||Lju||2 =
∑

j

〈L∗
jLju | u〉 , (10.9)

and that

∑
j

L∗
jLj = −

⎛⎝∑
j

X2
j +

∑
j

Y 2
j − i

∑
j

[Xj , Yj ]

⎞⎠ . (10.10)

10.2 Microlocal Hypoellipticity
and Semi-classical Analysis

In this section, we show how global estimates for operators with t-independent
coefficients lead after partial Fourier transform with respect to the t-variable
to semiclassical results.

10.2.1 Analysis of the Links

Observing the translation invariance with respect to t of the system (10.1),
it is natural to ask for the existence of C > 0, such that, for any τ ∈ R, the
inequality:

∑
j

||πτ (Xj)v||2 +
∑

j

||πτ (Yj)v||2 ≤ C

⎛⎝∑
j

||πτ (Lj)v||2 + ||v||2
⎞⎠ , (10.11)

is satisfied for all v ∈ C∞
0 (V(0)), where V(0) is a neighborhood of 0 in Rn and

πτ (Lj) = πτ (Xj) − iπτ (Yj) = ∂xj + τ(∂jΦ)(x) . (10.12)

The emphasize that the constant C above is independent of τ .
Using the partial Fourier transform with respect to t, one can indeed show
that the proof of (10.11) uniformly with respect to τ is the main point for
getting the maximal estimate. We now give two remarks:
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1. The estimate (10.11) is trivial for τ in a bounded set.
2. Depending on which connected component of the characteristic set is con-

cerned, we have to consider the inequality for ±τ ≥ 0 (τ large).

From now on, we choose the + component and assume

τ > 0 (10.13)

for simplicity. In any case, changing Φ into −Φ exchanges the roles of τ > 0
and τ < 0, so there is no loss of generality in this choice. If we introduce the
semi-classical parameter by:

h =
1
τ
, (10.14)

the inequality (10.11) becomes, after division by τ2:∑
j

||(h∂xj )v||2 +
∑

j

||(∂xjΦ) v||2 ≤ C
(
〈Δ(0)

Φ,hv | v〉 + h2||v||2
)

, (10.15)

for all v ∈ C∞
0 (V(0)), where

Δ
(0)
Φ,h = −h2Δ + |∇Φ|2 − hΔΦ , (10.16)

is the semi-classical Witten Laplacian on functions introduced in (1.2).
Hörmander’s condition gives as a consequence of the microlocal subelliptic

estimate (cf also [BoCaNo]) the existence of V(0), h0 > 0 and C > 0 such
that:

h2− 2
r ||v||2 ≤ C

⎛⎝∑
j

||(h∂xj )v||2 +
∑

j

||(∂xjΦ) v||2
⎞⎠ (10.17)

for h ∈]0, h0] and v ∈ C∞
0 (V(0)).

So we finally obtain the existence of V(0), h0 > 0 and C > 0 such that:

h2− 2
r ||v||2 ≤ C 〈Δ(0)

Φ,hv | v〉 , ∀v ∈ C∞
0 (V(0)) , (10.18)

for h ∈]0, h0]. So the maximal microhypoellipticity (actually the subellipticity
would have been enough) in the “+” component implies some semi-classical
localized lower bound for the semi-classical Witten Laplacian of order 0.

Remark 10.1.
We refer to [HelNo4] for an analysis of a connected semi-classical subelliptic
uncertainty principle.

Of course, many semi-classical results can be obtained by other techniques,
particularly in the case when Φ is a Morse function with a critical point at
0. This will be analyzed in great detail in Section 14.4. So it is more in de-
generate cases that these “old” microlocal results can be relooked for giving
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“new” semi-classical results. In the case when r = 2, we will see in particular
that, when Φ is a Morse function, then the condition for the maximal microlo-
cal hypoellipticity at (0; 0, 1) is that Φ is not a local minimum. According to
Maire’s results in [Mai1] a similar condition occurs more generally when Φ is
analytic.

For the discussion of the different approaches, it is convenient to introduce
the

Definition 10.2.
The semiclassical Witten Laplacian Δ

(0)
Φ,h is said δ-subelliptic, 0 ≤ δ < 1, in

an open set Ω, if1 there exist C > 0 and h0 > 0 such that the estimate,

h2δ ‖v‖2 ≤ C ||d(0)
Φ,hv||2 , (10.19)

holds uniformly for all h ∈ (0, h0] and v ∈ C∞
0 (Ω).

The estimate (10.18) says that Δ
(0)
Φ,h is (1 − 1

r )-subelliptic in a neighborhood
of x = 0. If one goes back to the system with τ = 1

h , the δ-subellipticity of
Δ

(0)
Φ,h gives for the system Lj :

τ2−2δ ‖v‖2 ≤ C

⎛⎝∑
j

‖πτ (Lj)v‖2

⎞⎠ , ∀τ > 0 ,

which means that the system (Lj) is microlocally hypoelliptic near (0; 0,+1)
with loss of δ derivatives, in comparison with the elliptic case where δ = 0.

10.2.2 Analysis of the Microhypoellipticity for Systems

Let us now express what the group theoretical criteria will give for the semi-
classical Witten Laplacian.

Definition 10.3.
We denote by L0 the set of all polynomials P of degree less or equal to r
vanishing at 0 (P ∈ Er) such that there exists a sequence xn → 0, τn → +∞
and dn → 0 such that:

d|α|
n τn(∂α

xΦ)(xn) → ∂α
xP (0) . (10.20)

Remark 10.4.
If the Hörmander condition of rank r can not be improved at 0 (or equivalently,
choose the smallest r such that (10.2) is satisfied), we have:

lim
n→+∞ dr

nτn �= 0 . (10.21)

1 Strictly speaking, one should have added: for any compact K in Ω, there exists
CK ... , but this is unimportant here because Ω is not given a priori but will be
some neighborhood of a given point.
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In the case, when Φ is a Morse function, the set L0 is simply the quadratic
approximation of Φ at 0 up to a multiplicative positive constant. Now, the
translation of Helffer-Nourrigat’s Theorem [HelNo3] provides the semiclassical
estimate:

Theorem 10.5.
We assume that (10.2) is satisfied at rank r. Then, if the condition:
No polynomial in L0 except 0 has a local minimum at the origin,
then the operator Δ

(0)
Φ,h is (1 − 1

r )-subelliptic in a neighborhood of x = 0 (in-
equality (10.18) holds for h small enough). Moreover, the condition is neces-
sary for getting the maximal estimate (10.15).

Remark 10.6.
There is an equivalent way to express the condition in Theorem 10.5. There

exists a neighborhood V of 0 and two constants d0 and c0, such that:

inf
|x−x1|≤d

(Φ(x) − Φ(x1)) ≤ −c0 sup
|x−x1|≤d

|Φ(x) − Φ(x1)| ,

for all x1 ∈ V and for all d ∈ [0, d0[ . We refer also to F. Trèves [Tr2] (and
[No1]-[No7], [HelNo3] and [Mai1]).

Remark 10.7.
When Φ is a Morse function, and if Φ has a local minimum at a point xmin, the
implementation in (10.18) of the trial function χ exp−Φ

h , where χ is a cut-off
function localizing in the neighborhood of xmin, shows that there are no hope
to have a subelliptic estimate . The right hand side in (10.18) becomes indeed
exponentially small O(exp−α

h ), for some α > 0. This argument works more
generally under the weaker assumption that Φ has isolated critical points,
without assuming the Morse property.

In connection with previous work by F. Trèves [Tr2], Maire’s results [Mai1]
suggest the

Conjecture 10.8.
Under the assumption that Φ is analytic and that Φ has no local minimum at
the origin, then Δ

(0)
Φ,h is δ-subelliptic in a neighborhood of 0 for some δ ∈ [0, 1).

Maire’s result on hypoellipticity relies crucially on the Lojaciewicz’s inequality,
saying that for an analytic function Φ defined in say a neighborhood of 0, then
there exists a constant C > 0 and θ ∈]0, 1[ such that in a possibly smaller
neighborhood V0 of 0, we have:

|∇Φ(x)| ≥ C |Φ(x)|θ , ∀x ∈ V0 .

Actually the work of Maire [Mai1] is concerned with more general systems
for which τ lies in a multidimensional space. The situation met here is one
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dimensional, but the proof of Maire leads2 only to a weak form of subellipticity,
implying microlocal hypoellipticity but giving only an L∞ version of (10.19).
Note that Maire has also shown that this “subellipticity” is not equivalent
to maximal hypoellipticity of the system, when n > 1 (cf Proposition 20 in
[Mai2]). For example (cf Example 1.2, p. 56, in [Mai4]), the system{

L1 = ∂x1 − i
(
(2�+ 1)x2�

1 − x2
2

)
∂t ,

L2 = ∂x2 + 2ix1x2∂t ,
(10.22)

is, according to Maire3 L2-microlocally subelliptic with loss of 2�
2�+1 deriva-

tives. According to Definition 10.2, this implies that the Witten Laplacian
Δ

(0)
Φ,h, with

Φ = x2�+1
1 − x1x

2
2 ,

is 2�
2�+1 -subelliptic in a neighborhood of x = 0. Actually this exponent δ = 2�

2�+1
can not be improved and we will come back to this point in Section 11.5.
Meanwhile the microlocal maximal hypoellipticity would give δ = 1 − 1/3 =
2/3 because the Hörmander condition is satisfied at rank 3. Hence the above
system cannot be microlocally maximally hypoelliptic for � > 1 at (0; 0, 1)
and the semiclassical estimate (10.17) does not hold.

10.3 Around the Proof of Theorem 10.5

The proof is based on a priori estimates obtained by a recursion argument
strongly related to Kirillov’s theory. All this section is strongly inspired by the
presentation of J. Nourrigat [No1]. We first observe that the set L0 introduced
in Definition 10.3 has some stability4 properties.

Proposition 10.9.
The set L0 has the following properties:

1. If P ∈ L0 and y ∈ Rn, then the polynomial defined by

Q(x) = P (x + y) − P (y), ∀x ∈ R
n ,

is also in L0 .
2. If P ∈ L0 and λ > 0, then Q(x) = P (λx) is also in L0 .
3. L0 is a closed subset of Er .

Definition 10.10.
A set in Er satisfying the three conditions of Proposition 10.9 will be called
canonical set .
2 We missed this point in the preliminary version of these notes and thank

H.M. Maire and M. Derridj for pointing out this difficulty.
3 Personal communication ([Mai2] provides a weaker result).
4 which are actually the translation of the group theoretical properties appearing

before the definition of Γx0,ξ0 in Conjecture 8.3,
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To each polynomial P ∈ Er, we can associate a system of differential
operators in R

n by

πP (Xj) = Dxj , πP (Yj) = ∂xjP , πP (Lj) = πP (Xj) − iπP (Yj) . (10.23)

Reduction of the number of variables

In order to prove maximal estimates like:∑
j

||Dxju||2 + λ2||(∂xjP )u||2 ≤ C
∑

j

||(Dxj − iλ(∂xjP ))u||2 , (10.24)

we should also consider operators obtained from above by reduction of the
number of variables. After a suitable linear change of variables x �→ t, we get
an integer k = k(P ) and a family depending on τ ∈ Rn−k of operators on Rk

πP̂ ,τ (Xj) = Dtj , for j = 1, . . . , k , πP̂ ,τ (Xj) = τj , for j = k + 1 . . . n ,

πP̂ ,τ (Yj) = ∂tj P̂ , for j = 1, . . . , n ,

(10.25)
with P̂ (t) = P (x). Note that (∂tj P̂ ) is a polynomial which is independent of
the variables tk+1, · · · , tn for j = 1, . . . , n. When k(P ) = n, πP corresponds to
an irreducible representation. When k(P ) < n, what we have briefly described
is how one can decompose πP as an Hilbertian integral (in the τ -variables) of
irreducible representations πP̂ ,τ .

It is not to difficult to show:

Proposition 10.11.
If a polynomial P ∈ Er, P �= 0 has no local minimum in Rn, then, for any
τ ∈ Rn−k, the system πP̂ ,τ (Lj) is injective5 on S(Rk(P )).

One observes indeed that for τ = 0 (which is the unique non trivial case),
a solution of πP̂ ,τ (Lj)u = 0 is necessarily (up to a multiplicative constant)
u = exp−P̂ (t). The function u being in S(Rk(P )) and positive should have a
maximum in contradiction with the property of P̂ .

The next proposition appears in a different but equivalent language in
[HelNo3] and is the core of the proof:

Proposition 10.12.
Let L be a canonical subset of Er. We assume that for any P ∈ L \ {0} and
for any τ ∈ Rn−k(P ) the system πP̂ ,τ (Lj) is injective. Then there exists a
constant c0 > 0 such that:∑

j

||πP (Xj)u||2 +
∑

j

||πP (Yj)u||2 ≤ c0
∑

j

||πP (Lj)u||2 , (10.26)

for all P ∈ L and for all u ∈ S(Rn) .
5 In other words, one can not find any trivial u ∈ S(Rk(P )) such that πP̂ ,τ (Lj)u = 0

for j = 1, . . . , n .
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We shall not give the complete, actually rather involved, proof of the
proposition but we would like to emphasize various points of the proof which
will actually have also consequences for the analysis of the Witten Laplacian.

1. Continuity.

An intermediate step is to show that∑
j

||πP̂ ,τ (Xj)u||2 +
∑

j

||πP̂ ,τ (Yj)u||2 ≤ c0(P̂ , τ)
∑

j

||πP̂ ,τ (Lj)u||2 , (10.27)

for all u ∈ S(Rk(P )), and to control the uniformity of the constant c0(P̂ , τ)
with respect to τ . This leads to (10.26) for some constant c0(P ) depending
on P ∈ L \ {0}. Then the second difficult point is to control the uniformity
of the constant c0(P ) with respect to P .

2. Control at ∞.

We would like to first mention the following key lemma:

Lemma 10.13.
With

RP (x) =
∑

1≤|α|≤r

|∂α
xP (x)| 1

|α| ,

there exists a constant c1 > 0 such that

||RPu||2 ≤ c1

⎛⎝∑
j

||πP (Xj)u||2 + ||πP (Yj)u||2
⎞⎠ , (10.28)

for all P ∈ Er and for all u ∈ S(Rn).

Remark 10.14.
This last estimate is much more accurate than what is obtained by the ap-
proach of Helffer-Mohamed [HelMo] presented in Section 3.3.

3. Inequality with remainder.

The proof of this proposition being by induction on the rank. The argument
which permit to pass from rank (r−1) to rank r is the following intermediate
result.

Proposition 10.15.
If L is canonical and if (10.26) is valid for all P ∈ L∩Er−1, then there exists
c1 > 0 such that:

∑
j

||πP (Xj)u||2 +
∑

j

||πP (Yj)u||2 ≤ c1

⎛⎝∑
j

||πP (Lj)u||2 + [P ]2r||u||2
⎞⎠ ,

(10.29)
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for all P ∈ L and for all u ∈ S(Rn), with

[P ]r =

⎡⎣ ∑
|α|=r

∣∣∣P (α)(0)
∣∣∣
⎤⎦1/r

.

10.4 Spectral By-products for the Witten Laplacians

10.4.1 Main Statements

We shall use Proposition 10.15 in the following way. For a polynomial Φ ∈ Er,
we denote by LΦ the smallest canonical closed set containing Φ.

Theorem 10.16.
Let Φ ∈ Er and let us assume that:

1. The representation πΦ is irreducible6.
2. The canonical set LΦ ∩ Er−1 does not contain any non zero polynomial

having a local minimum.

Then the Witten Laplacian Δ
(0)
Φ has compact resolvent. Moreover we have

maximal estimates for the system d
(0)
Φ and for the corresponding Laplacian

Δ
(0)
Φ .

1. The condition of irreducibility is necessary for having compact resolvent
(see [HelNo3] and the discussion in Chapter 11).

2. Let us observe that the condition is stable if one replace Φ by λΦ, with
λ > 0. It will be the same for the results of Helffer-Nier [HelNi1], that will
be discussed in Chapter 11.

3. It seems reasonable that, by extra work, one could treat the case of more
general functions Φ, which are no more polynomials. We shall present a
more pedestrian approach in Chapter 11 in the case when the function Φ
is a sum of homogeneous functions at ∞.

4. Another interesting problem would be to determine in the spirit of Helffer-
Mohamed [HelMo] the essential spectrum of the Witten Laplacian, when
the condition of compactness is not satisfied. We are indeed mainly inter-
ested, for the applications to the Fokker-Planck operator, in determining
the existence of a gap between 0 and the lowest non zero eigenvalue.

5. Another idea which could be efficient would be to analyze in the same
way the corresponding Witten Laplacian on the one-forms. The existence
of a gap for Δ

(0)
Φ should be, in the semi-classical limit, a consequence of

the microhypoellipticity of the operator on one forms:

6 We recall that this condition is equivalent to k(Φ) = n or to the property that∑
|α|>0 |Dα

x Φ(x)| → +∞ as |x| → +∞ .
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(
∑

j

L∗
jLj) × I − i HessΦ ∂t ,

with Lj defined in (10.1).
6. Other examples of this type are considered in [GHH].

The above theorem could look rather difficult to apply to concrete examples.
This is indeed true but let us now give examples showing that one can recover
some of the results already obtained and also new results. Let us analyze how
one can apply our Theorem 10.16

10.4.2 Applications for Homogeneous Examples

Let us assume that Φ is an homogeneous polynomial of degree r without
translational invariance (here the point of view developed in Section 8.3 with
the induced representation π0,H is also working). In order to apply Theorem
10.16, we have to determine the set LΦ ∩ Er−1. One has consequently to
determine the polynomials P∞ of order r − 1 appearing as limits:

P∞ = lim
n→+∞ (λr

nΦ(· + hn) − λr
nΦ(hn)) ,

for some sequence (λn, hn) with

λn → 0 .

The coefficients of this limiting polynomial P∞ should satisfy:

lim
n→+∞λr

n(∂α
xΦ)(hn) = (∂α

xP∞)(0) .

10.4.2.1. Elliptic case.

Let us treat the “elliptic” case corrresponding to

∇Φ(x) �= 0 , ∀x �= 0 . (10.30)

Let us show that the limit polynomial is necessarily of degree 1. If it was not
the case, there would be some α with |α| ≥ 2, such that

lim
n→+∞ |λr

n(∂α
xΦ)(hn)| > 0 .

This would imply the existence of a constant C1 > 0 such that:

1
C1

≤ |hn|r−|α||λn|r ,

and hence |hn| → +∞.
We now use the ellipticity. We have, for suitable positive constants C1, C2,
and C3,
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C3 ≥ |∇Φ(hn)||λn|r ≥ 1
C2

|hn|r−1λr
n ≥ 1

C1C2
|hn||α|−1 .

This leads to a contradiction with |α| > 1 and limn→+∞ |hn| = +∞. So P∞
is a polynomial of degree one, which clearly can not have any local minimum.

This case can also be treated more directly by observing that, under as-
sumption (10.30), |∇Φ(x)| → +∞ as |x| → +∞ and by observing that ΔΦ is
of lower order. We indeed immediately obtain that:

lim
|x|→+∞

(|∇Φ(x)|2 −ΔΦ(x)
)

= +∞ .

So at this point, the applications are reconforting but rather poor.

10.4.2.2. Generic non-elliptic case

We assume now that

|∇Φ|−1(0) ∩ (Rn \ {0}) �= ∅ , (10.31)

and introduce the non degeneracy condition:∑
1≤|α|≤2

|Φ(α)(x)| �= 0 , ∀x �= 0 . (10.32)

It is easy to see that, under this condition, all the limiting polynomials in
LΦ ∩Er−1 should be of order less than 2. Because Φ is homogeneous, we have
the additional following property:

∀ω ∈ (∇Φ)−1({0}) ∩ S
n−1 , Φ′′(ω) · ω = 0 . (10.33)

Then we have the following

Proposition 10.17.
Under assumptions (10.32) and if, for all ω ∈ (∇Φ)−1({0}) ∩ Sn−1, the

Hessian Φ′′(ω) restricted to (Rω)⊥ is non degenerate and not of index 0, then
the corresponding Witten Laplacian Δ

(0)
Φ has a compact resolvent.

Proof.
First we observe that the non degeneracy condition implies that all the lim-
iting polynomials are of degree ≤ 2. Their homogeneous part is up to some
positive multiplicative factor the Hessian of Φ at ω, for some ω such that
∇Φ(ω) = 0. The assumption says that the signature of this Hessian can not
be (0,+, . . . ,+). But this was the only case when the Hessian can have a local
minimum. In the other case, the quadratic polynomial has no local minimum
and this property cannot be perturbed by linear terms.
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Remark 10.18.
The proposition is still true when a polynomial of lower order is added to Φ.
We will see in the next subsection that, in contrary, the compactness of the
resolvent for the Witten Laplacian Δ

(0)
Φ could be true for some non homoge-

neous Φ whose homogeneous principal part does not satisfy the conditions of
Proposition 10.17.

Let us consider as an example the case:

Φε(x1, x2) = εx2
1x

2
2 , with ε = ±1 , (10.34)

and let us determine more explicitly all the limiting polynomials. Writing a
limiting polynomial in the form:

P∞(x) = �1x1 + �2x2 +
1
2
�11x

2
1 + �12x1x2 +

1
2
�22x

2
2 ,

we obtain, using the same notations as in the previous example

2ελ4
nx1,n x2

2,n → �1 ,
2ελ4

nx
2
1,n x2,n → �2 ,

2ελ4
nx

2
2,n → �11 ,

4ελ4
nx1,nx2,n → �12 ,

2ελ4
nx

2
1,n → �22 .

(10.35)

The limits should obviously verify:

�212 = 4�11�22 ,
�21�22 = �22�11 .

(10.36)

The only non trivial polynomials which can have a local minimum should be
effectively of order 2. So we assume that∑

i,j

�2ij �= 0 . (10.37)

This is only possible, due to the first line of (10.36), if

�211 + �222 �= 0 . (10.38)

Because λn → 0, we deduce from this property that

x2
1,n + x2

2,n → +∞ . (10.39)

We now show that
�12 = 0 . (10.40)

If it was not the case, we get immediately a contradiction between (10.39),
the fourth line of (10.35) and the first or the second line of (10.35).
Using the first line of (10.36) we get that
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�11�22 = 0 . (10.41)

Using finally the second line of (10.37) and (10.38), we have finally found two
different cases:

P∞(x) = γ
2x

2
1 + �1x1 , (with εγ > 0) ,

P∞(x) = γ
2x

2
2 + �2x2 , (with εγ > 0) . (10.42)

The conclusion is

Proposition 10.19.
For Φ(x1, x2) = −x2

1x
2
2, the corresponding Witten Laplacian has a compact

resolvent. Moreover, we have the following maximal estimates:

||∂x1u||2 + ||∂x2u||2 + ||x1x2u||2 ≤ C〈Δ(0)
Φ u | u〉

and

||∂2
x1
u||2 + ||∂x1x2u||2 + ||∂2

x2
u||2 + ||x2

1x
2
2u||2 ≤ C 〈Δ(0)

Φ u | u〉 .

We recover in this case what we get directly from Proposition 3.1 but note
that this new proof gives however a stronger estimate, which does not result
from this proposition.
When ε = 1, one can find a non trivial polynomial having a local minimum.
The criterion does not apply. We will show later that the operator actually
does not have a compact resolvent.

10.4.3 Applications for Non-homogeneous Examples

As an illustration of the second comment in Remark 10.18, let us analyze two
examples.

10.4.3.1. The example: x2
1x

2
2 + ε(x2

1 + x2
2), when ε �= 0.

The proof is a variant of the previous computation. We just mention the
differences. (10.35) is replaced by

2λ4
nx1,n x2

2,n + 2ελ2
nx1,n → �1 ,

2λ4
nx

2
1,n x2,n + 2ελ2

nx2,n → �2 ,
2λ4

nx
2
2,n + 2ελ2

n → �11 ,
4λ4

nx1,nx2,n → �12 ,
2λ4

nx
2
1,n + 2ελ2

n → �22 .

(10.43)

One shows again that �12 = 0 and that we have then the following cases to
consider:

�11 > 0 , �22 = 0 , �2 = ±ε
√

2�11 ,

and
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�22 > 0 , �11 = 0 , �1 = ±ε
√

2�22 .

So the limiting non-trivial polynomials (up to translation and renormaliza-
tion) have the form

γ

2
x2

1 ± ε
√

2γx2 ,

(with γ > 0) and
γ

2
x2

2 ± ε
√

2γx1 ,

(with γ > 0), and can not have local minima. So we have obtained

Proposition 10.20.
For ε �= 0, the Witten Laplacian attached to Φ = x2

1x
2
2 + ε(x2

1 + x2
2) has a

compact resolvent.

We will give another proof of this property for ε > 0 (see Theorems 11.3 and
11.10). Note also that in the case when Φ = x2

1x
2
2 + ε(x2

1 − x2
2) the Witten

Laplacian has also a compact resolvent.

10.4.3.2. The example Φε = (x2
1 − x2)2 + εx2

2 in R2 with ε ∈ R.

As we will now check, Theorem 10.16 gives a complete answer:

Proposition 10.21.
Δ

(0)
Φε

has a compact resolvent if and only if ε �= 0 and 0 ∈ σess

(
Δ

(0)
Φ0

)
.

The last statement is obtained by considering a Weyl sequence7 (n ≥ 2)
of functions (x1, x2) �→ un(x1, x2) := χ(x1−n2

n ) exp−Φ0(x1, x2) and using the
change of variable

y1 = x1 , y2 = x2 − x2
1 ,

which preserves the Lebesgue measure.

In order to check the hypotheses of Theorem 10.16, we have to specify the
elements of LΦε ∩E3, that is to consider the polynomials of degree ≤ 3 which
are limits of

Qλ,y(x) = Φε(λ(x + y)) − Φε(λy) .

It suffices to look at the possible limits of the derivatives at 0, ∂α
x [Φε(λx)]. We

get:

α = (4, 0): 24λ4 → 0. We are looking at polynomials with degree ≤ 3 which
forces the limit to be 0.

α = (1, 0): 4λ4x3
1 − 4λ3x2x1 → �1 .

α = (0, 1): −2λ3x2
1 + 2(1 + ε)λ2x2 → �2 .

α = (2, 0): 12λ4x2
1 − 4λ3x2 → �11 .

7 Here we get an orthonormal sequence un such that ||Δ(0)
Φ0

un||L2(R2) → 0,
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α = (0, 2): 2(1 + ε)λ2 → 0 .
This zero limit is a consequence of the first one which gives λ → 0 .

α = (1, 1): −4λ3x1 → �12 .
α = (3, 0): 24λ4x1 → �111 .
α = (2, 1): −4λ3 → 0 .

This zero limit is also a consequence of the first one which gives λ → 0.

It is easy to check that the only possible limits must verify

�11 = �12 = �111 = 0 ,

for ε �= 0 . Hence LΦε ∩ E3 is a set of affine polynomials which have no local
minimum and Δ

(0)
Φε

has a compact resolvent.
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Spectral Properties of the Witten-Laplacians
in Connection with Poincaré Inequalities

for Laplace Integrals

11.1 Laplace Integrals and Associated Laplacians

We would like to analyze for a given Φ ∈ C∞ the properties of the measure
exp−2Φ dx where dx is either the canonical measure on a compact riemannian
manifold M or the Lebesgue measure on M = Rd. Assuming, at least at the
beginning that:

Z =
∫

M

exp−2Φ(x) dx < +∞ , (11.1)

we are interested in Poincaré inequalities, that is in the existence of a constant
CP such that, for all f ∈ H1(M ; exp−2Φdx) ,

var Φ(f) := 〈(f − 〈f〉Φ)2〉Φ ≤ CP ||∇f ||2L2(M,exp−2Φ(x)dx) . (11.2)

Here,

〈f〉Φ = Z−1

∫
M

f(x) exp−2Φ(x) dx , (11.3)

denotes the mean value of f . In the context of the statistical mechanics (see
for example [Hel11] for a more detailed presentation), it can be important to
control, once the existence of a constant CP is shown, the dependence of this
constant on various parameters (the semi-classical parameter, the dimension,
the phase....).
In this context, it has been realized that the Laplacian attached to the Dirich-
let form:

f �→ ||∇f ||2L2(M,exp−2Φ dx) (11.4)

plays the important role. We call the associated Laplacian A
(0)
Φ the Dirichlet

Laplacian.
If, in the case of a compact manifold, the existence of the constant CP is not
a problem.
– The lowest eigenvalue λ1 of the Dirichlet Laplacian (which has a compact
resolvent) is a simple eigenvalue equal to 0, and one can consequently take

B. Helffer and F. Nier: LNM 1862, pp. 113–131, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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CP = 1
λ2

, where λ2 is the second one, –
all these questions become more complicate in the case of M = Rd or more
generally when M is not compact.
In this situation, it was recognized by J. Sjöstrand [Sj4], reinterpreting pre-
vious results of [HelSj8], that these questions can be more easily understood
with the Witten Laplacian approach and this point of view has become pop-
ular and has been developed in many contexts by various authors including
Bach, Bodineau, Helffer, Jecko, Moeller, Sjöstrand ([BaJeSj, BaMo1, BaMo2,
Hel11, HelSj8, Sj4, Sj5]).
The question of the existence of a Poincaré inequality becomes the question
of determining if 0 is isolated in the spectrum of the operator Δ(0)

Φ . We note
that the assumption (11.1) is no more needed for stating the problem.
The answer can be a consequence of the property that Δ

(0)
Φ has a compact

resolvent, but this suggests to do more generally the analysis of the essential
spectrum of this operator (See for example J. Johnsen [Jo] and the next sec-
tion).
Moreover, if one forgets the origin of the problem where the assumption (11.1
is naturally made, which has the immediate consequence that “0 is in the
spectrum”, we can also discuss under which assumption on Φ, this last prop-
erty is satisfied. This question was analyzed by Helffer-Nier in [HelNi1].

Once these qualitative questions are solved, one can also look for more
quantitative control with respect to the various involved parameters and many
contributions have been devoted to this problem. We will review some of the
semi-classical results in the last chapters.

11.2 Links with the Witten Laplacians

11.2.1 On Poincaré and Brascamp-Lieb Inequalities

Coming from the Laplace integral, one finds more naturally the de Rham
complex but with a new adjoint related to the measure exp−2Φ(x) dx. This
leads to the operators A(j)

Φ which are related to the Witten Laplacians by:

A
(j)
Φ = expΦ Δ

(j)
Φ exp−Φ . (11.5)

Let us show how one can play with the Witten Laplacian in this context.
If A

(0)
Φ has 0 as isolated point in the spectrum, then we can find for any

f ∈ L2(M, exp−2Φdx), u such that:

f − 〈f〉Φ = A
(0)
Φ u , (11.6)

with u orthogonal to the constant functions, that is:

〈u〉 = 0 .
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Inserting in the formula (11.2) for the variance, we get:

var (f) = 〈A(0)
Φ u | f − 〈f〉〉

= 〈du | df〉 .
If we differentiate (11.6), we get:

df = dA
(0)
Φ u = A

(1)
Φ du .

When A
(1)
Φ is invertible (note that under the previous assumption it is at least

invertible on the exact forms), we get

du = (A(1)
Φ )−1df ,

and we get the formula:

var f = 〈(A(1)
Φ )−1df | df〉 . (11.7)

This identity has appeared to be very useful in the context of statistical
mechanics.
It leads immediately to:

| var (f)| ≤ ||(A(1)
Φ )−1|| ||df ||2 , (11.8)

where the norms appearing in the right hand side are respectively in
L(L2(exp−2Φdx)) and L2(exp−2Φdx). Although this new inequality is not
necessarily optimal, the bottom of the spectrum of A

(1)
Φ can be below the

bottom of σ(A(0)
Φ ) \ {0}, this inequality can be easier to prove.

The other standard point to mention is that, when Φ is uniformly strictly
convex and using the identity:

A
(1)
Φ = A

(0)
Φ ⊗ I + 2 HessΦ , (11.9)

we get

var (f) ≤ 1
2
〈(HessΦ)−1df | df〉 , (11.10)

which is called the Brascamp-Lieb Inequality.

Proposition 11.1.
If Φ be a C∞ function such that 2 HessΦ ≥ λ1 Id holds uniformly for some
λ1 > 0, then the Poincaré inequality (11.2) holds.

11.2.2 Links with Spectra of Higher Order Witten Laplacians

Let us also emphasize, some spectral consequences of this Witten Laplacian
approach (which of course was already present in other works by Bakry-
Emery) (see [Aetall], [DeuSt], [Jo]). It may be easier to come back to the
Witten Laplacians with corresponding Hilbert L2(Rd).
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Let u be an eigenvector of Δ(0)
Φ attached to some eigenvalue λ �= 0:

Δ
(0)
Φ u = λu ,

and let us assume for simplicity that u ∈ S(Rd). Then

d
(0)
Φ Δ

(0)
Φ u = Δ

(1)
Φ d

(0)
Φ u = λd

(0)
Φ u . (11.11)

We get then the alternative:

• either the one-form ω = d
(0)
Φ u is 0 (but this is excluded by λ �= 0),

• or it is an eigenvector of Δ(1)
Φ .

This leads to the inequality:

inf σ(Δ(1)
Φ ) ≤ inf

(
σ(Δ(0)

Φ ) \ {0}
)
. (11.12)

Here we have been rather formal in the description of the argument.
J. Johnsen [Jo], using the Weyl Calculus has given rather general criteria
under which one can show that u ∈ S(Rd).

It can be shown that we have always equality (11.12) in the one dimen-
sional case, but the inequality may be strict in general.

The next remark is based on discussions with J. Schach Moeller (see
[MaMo]) and on the paper of J. Johnsen [Jo]. The idea is to pursue the
analysis by comparing the spectra of Δ(1)

Φ and Δ
(2)
Φ . If ω is an eigenvector of

Δ
(1)
Φ attached to the eigenvalue λ:

Δ
(1)
Φ ω = λω , (11.13)

and let us assume that ω ∈ S(Rd; Rd)). Then

d
(1)
Φ Δ

(1)
Φ u = Δ

(2)
Φ d

(1)
Φ ω = λd

(1)
Φ ω . (11.14)

We have then the alternative that the two-form σ = d
(1)
Φ ω is either 0 or an

eigenvector of Δ(2)
Φ .

The first case in the alternative cannot be treated so easily.
Suppose that we can show that ω = d

(0)
Φ u with 〈u | e−Φ

h 〉 = 0, we get from
(11.13):

d
(0)
Φ (Δ(0)

Φ u− λu) = 0 ,

and consequently, there exists γ ∈ R such that:

Δ
(0)
Φ u− λu = γ exp−Φ .

But taking the scalar product with exp−Φ, we get: γ = 0 and u is an eigen-
value of Δ(0)

Φ .
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So if λ is an eigenvalue of Δ(1)
Φ , then λ is either an eigenvalue of Δ(2)

Φ or
of Δ(0)

Φ .

It remains to discuss the existence of u with these properties under the
additional assumption that dΦω = 0. As observed initially by J. Sjöstrand
(See [Sj4, Jo, HelNi1]), this can be done if there exists δ > 0 and C > 0 such
that:

x · ∇Φ(x) ≥ 1
C
〈x〉1+δ for |x| ≥ C . (11.15)

This assumption was used for proving the strict positivity of Δ(1)
Φ . Note that

this condition is implied by an assumption of strict convexity at ∞:

lim inf
|x|→+∞

HessΦ(x) > 0 .

We refer to [Jo] and to [HerNi] for further discussions on the subject.
Another question is whether the Poincaré inequality holds when σ(Δ(1)

Φ ) ⊂
[λ,+∞) for some λ > 0, without assuming the compactness of the resolvent
of Δ(0)

Φ nor convexity of Φ.

11.3 Some Necessary and Sufficient Conditions
for Polyhomogeneous Potentials

We now summarize some results of [HelNi1], which provide necessary and
sufficient conditions for the Poincaré inequality and for the compactness of
the resolvent of Δ(0)

Φ , for a class a C∞ polyhomogeneous potentials satisfying:

Φ(x) =
N∑

i=1

rαiϕi(θ) + R(x) , for x = rθ , r ≥ 1 , θ ∈ S
n−1 , (11.16)

with ϕi ∈ C∞(Sn−1), α1 > . . . > αN > 0 and R ∈ L∞(Rn) .

11.3.1 Non-negative Polyhomogeneous Potential Near Infinity

Definition 11.2.
With a function Φ like in (11.16), we associate the following sets and func-
tions:

Z :=
N∪

i=1
ϕ−1

i ({0}) , (11.17)

{αi > 1} := {i ∈ {1, . . . , N} , αi > 1} , (11.18)
{αi ≥ 1} := {i ∈ {1, . . . , N} , αi ≥ 1} , (11.19)

and for all I ⊂ {1, . . . , N} ,
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ZI := ∩
i∈I

ϕ−1
i ({0}) , (11.20)

ΦI(x) :=
∑
i∈I

Φi(x) . (11.21)

Sufficient conditions for the Poincaré inequality and for the compactness of
the resolvent are given by the following result.

Theorem 11.3.
Assume Φ ∈ C∞(Rd) of the form (11.16) and let I denote either the set
{αi > 1} or the set {αi ≥ 1} according to the Definition 11.2. Assume that
for θ ∈ Sd−1, there exists a neighborhood Nθ of θ and an index iθ ∈ I such
that

ϕiθ

∣∣∣
Nθ

> 0 and ∀i ∈ {1, . . . , iθ − 1} , ϕi

∣∣∣
Nθ

≥ 0 . (11.22)

Case I = {αi > 1}:
The Witten Laplacian Δ

(0)
Φ has a compact resolvent.

Case I = {αi ≥ 1}:
The Poincaré inequality (11.2) holds for some CP > 0.

Corollary 11.4.
Let us assume that all ϕi, i ∈ {1, . . . , N}, are non negative.
i) The condition

lim
|x|→∞

Φ{αi>1}(x) = +∞ , (11.23)

is sufficient for the compactness of the resolvent of Δ(0)
Φ .

ii) The condition
lim inf
|x|→∞

Φ{αi≥1}(x) > 0 , (11.24)

is sufficient for the validity of the Poincaré inequality (11.2)for some CP > 0.

As stated below the condition lim inf |x|→∞ Φ{αi≥1} > 0 of Corollary 11.4 is
necessary.

Theorem 11.5.
Let Φ be given by (11.16) with all ϕi , i ∈ {1, . . . , N} , non negative and
‖∂rR(r.)‖L∞(Sn−1) = o(1) , as r → ∞. If

{αi ≥ 1} = ∅ ,

or
Z{αi≥1} �= ∅ ,

then Δ
(0)
Φ has not a compact resolvent and 0 ∈ σess(Δ

(0)
Φ ) .
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11.3.2 Analysis of the Kernel

By the analysis of the distribution solutions u of d(0)
Φ u = 0 , the analysis of the

kernel amounts to determine if the function e−Φ belongs to L2(Rn) . We still
consider a potential Φ of the form (11.16). When N = 1 and ϕ1 is analytic on
Sn−1, the resolution of singularities technique for Laplace integrals described
in [ArGuVar] leads to criteria for e−2Φ belonging to L1(Rn) . For N > 1 and
even with analytic functions ϕi , a general answer does not seem to be known.
For the sake of simplicity, we restrict the analysis to the case described below
which is generic, if all the ϕi are assumed non negative.

Assumption 11.6.
For z ∈ Z and for all i ∈ {1, . . . , N}, there exist mi(z) ≥ 0, a neighborhood
Ni(z) ⊂ Sn−1 of z and a constant ci > 1 such that

∀θ ∈ Ni((z)) , c−1
i |θ − z|mi(z) ≤ ϕi(θ) ≤ ci |θ − z|mi(z)

. (11.25)

Under this assumption, we associate with Φ the index

IΦ := min
z∈Z

max
i∈{1,...,N}

αi

mi(z)
∈ R+ . (11.26)

It is not difficult to check

Proposition 11.7.
Let us assume Assumption 11.6. Then

e−2Φ ∈ L1(Rn) , if and only if IΦ >
n

n− 1
.

11.3.3 Non-positive Polyhomogeneous Potential Near Infinity

Here the situation is even simpler because for the ϕi ≤ 0, the term −ΔΦ
is nonnegative. It suffices to get a lower bound of −Δ + |∇Φ|2 by following
the Kohn method adapted by Helffer-Morame [HelMo] and presented in Sec-
tion 3.3. Note that in this case 0 cannot be an eigenvalue of Δ(0)

Φ and the
compactness of the resolvent implies Δ

(0)
Φ > 0 .

Let A be the integer part of the maximum degree α1 in (11.16). We asso-
ciate with Φ the function

q(x) :=
∑

1≤|β|≤A

∣∣∂β
xΦ(x)

∣∣ . (11.27)

The exact assumptions are
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Assumption 11.8.
The function Φ ∈ C∞(Rn) has the form (11.16) with lim|x|→∞ q(x) = +∞.
Let us assume also that, for all θ ∈ Sd−1,

either:
there exist iθ such that αiθ

> 1 and a neighborhood Nθ of θ such that

ϕiθ

∣∣∣
Nθ

< 0 , ∀i ∈ {1, . . . , iθ} , ϕi

∣∣∣
Nθ

≤ 0 ;

or:
there exists a neighborhood Nθ of θ such that

∀i with αi > 2, ϕi

∣∣∣
Nθ

≤ 0 and Δθϕi

∣∣∣
Nθ

≤ 0 .

The result is:

Theorem 11.9.
Under Assumption 11.8, the operator Δ

(0)
Φ has a compact resolvent.

11.4 Applications in the Polynomial Case

11.4.1 Main Result

We now show how the results of Sections 11.3 and 10.4 give a complete answer
to the questions raised in Section 11.1 at least for polynomial potentials (with
the above sign conditions). First of all, the results of the previous section give
an alternative and more direct characterization (in comparison with Theorem
10.16) for some specific class of polynomials.

Theorem 11.10.
Let Φ ∈ R[X1, . . . , Xd] be a polynomial potential.

i) If Φ is a sum of non negative monomials, then we have:

(11.2) ⇔
(

lim
|x|→∞

Φ(x) = +∞
)

⇔
(
(1 + Δ

(0)
Φ )−1 compact

)
.

ii) If Φ is a sum of non positive monomials, then Δ
(0)
Φ has a compact resolvent

if and only if q(x) :=
∑

|α|>0 |Dα
xΦ(x)| → +∞ .

We refer to [HelNi1] for a detailed proof but let us just mention the three
simple properties which are involved in the proof.

1. The first point is that one can localize using a partition of unity (see
(12.11)) the proof in suitable cones.
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2. The second point is that the existence of a Poincaré inequality or the
compactness of the resolvent does not depend on the addition of a bounded
function (see [DeuSt]).

3. The last point is that, for any decomposition of Φ = Φ1 +Φ2, one has the
identity:

Δ
(0)
Φ = Δ

(0)
Φ1

+ 2∇Φ1 · ∇Φ2 + |∇Φ2|2 −ΔΦ2 . (11.28)

This is particularly useful when we can find a decomposition such that:
• ∇Φ1 · ∇Φ2 ≥ 0 ,
• |∇Φ2(x)|2 −ΔΦ2(x) tends to +∞ as |x| → +∞.
The most typical example is Φ = x2

1x
2
2 + ε(x2

1 + x2
2) with ε > 0, which will

be discussed below.

11.4.2 Examples

Here is a list of examples which show various possibilities.
11.4.2.a: Φ = x2

1x
2
2 in R

2.
We have Z{αi≥1} �= ∅ and 0 belongs to the essential spectrum of Δ(0)

Φ . The
Poincaré inequality (11.2) does not hold. Assumption 11.6 is satisfied and the
index Iϕ equals 2 = 2

2−1 . Thus e−2Φ is not in L1(Rd) and 0 is not an eigen-

value of Δ(0)
Φ .

11.4.2.b: Φ = x2
1x

2
2(x

2
1 + x2

2) in R2.
We have Z{αi≥1} �= ∅ and IΦ equals 3 > 2. Thus, 0 is an eigenvalue contained
in the essential spectrum.

11.4.2.c: Φ = x2
1x

2
2x

2
3 in R3.

We have Z{αi≥1} �= ∅ and the Poincaré inequality is not satisfied. This case
does not satisfy Assumption 11.6 but integration with respect to x3 ∈ R shows
that the function e−Φ is not in L2(R3).

11.4.2.d: Φ = (x2
1 + x2

2)(x
2
2 + x2

3) + (x2
1 + x2

3) in R3.
Then the set Z{αi>1} = ∅ and Δ

(0)
Φ has a compact resolvent.

11.4.2.e: Φ =
(
1 + |x2|)1/2 in Rd.

The function e−2Φ belongs to L1(Rd). The Poincaré inequality is satisfied
because Z{αi≥1} = ∅. But since V = |∇Φ|2 − ΔΦ belongs to L∞(Rd), the
resolvent of Δ(0)

Φ is not compact.

11.4.2.f: Φε = x2
1x

2
2 + ε(x2

1 + x2
2) in R

2.
The Witten Laplacian Δ

(0)
Φε

has a compact resolvent for any ε > 0. This was

also observed by a different approach in Proposition 10.21. Hence the Δ(0)
Φε

does

not converge to Δ
(0)
Φ0

in the norm resolvent sense as ε → 0. Note also that, for
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any ε > 0, this potential is far from being convex since the determinant of its
Hessian (

2x2
2 + ε 4x1x2

4x1x2 2x2
1 + ε

)
is equal to (2t2 + ε)2 − 16t4 on the lines x1 = ±x2 = t.

11.4.2.g: Φε = (x2
1 − x2)2 + εx2

2 in R2 with ε ∈ R.
This potential is equal to

Φε = x4
1 − 2x2

1x2 + (1 + ε)x2
2

and it does not satisfy the assumptions of Theorem 11.10, Theorem 11.5, The-
orem 11.3 and Theorem 11.7 since the term with total degree 3 is negative for
x1 �= 0, x2 > 0. As mentioned in [HelNi1], it is possible to get the compact-
ness of the resolvent via a simple comparison argument (see 3. after Theorem
11.10) for ε > 1/8. The general case was analyzed in Section 10.4.

11.5 About the Poincaré Inequality
for an Homogeneous Potential

Here we make the connection between the results of Sections 10.4 and 11.3.
We consider the simple case of an homogeneous potential near ∞ without sign
condition:

∀x ∈ R
n, |x| ≥ 1, Φ(x) = |x|m ϕ(

x

|x| ) . (11.29)

With the homogeneity degree m, we associate the integer

m̂ = max {μ ∈ N, μ < m} . (11.30)

We shall provide here various necessary and sufficient conditions for the com-
pactness of the resolvent of Δ(0)

Φ . The sufficient conditions will rely on max-
imal or non-maximal microhypoellipticity of associated complex differential
systems and the comparison of the two cases will be done. When ϕ is a Morse
function, we have necessary and sufficient conditions which depend on m. We
end this analysis with a remark on the links between the topology of Φ at
infinity (that is of ϕ) and the compactness of the resolvent.

11.5.1 Necessary Conditions

A necessary condition is given in the next proposition.

Proposition 11.11.
Assume that the Φ ∈ C∞(Rn) satisfies (11.29). If the Witten Laplacian Δ

(0)
Φ

has a compact resolvent, then
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i) m > 1 ;
ii) ϕ does not vanish at order m̂ + 1,

∑
|α|≤m̂ |∂α

θ ϕ(θ)| > 0 ;
iii) There is no pair K ⊂ U with K ⊂ ϕ−1({0}) compact, K �= ∅ and U ⊂

S
n−1 open, such that

∀θ ∈ U \K, ϕ(θ) > 0 .

Proof of i)
The condition m > 1 is obviously1 necessary and we will restrict our attention
to this case.
Proof of ii)
Let us assume that ϕ vanishes at θ0 at order m̂+1. Since ϕ is a C∞ function
there exist a neighborhood Vθ0 and a constant Cθ0 such that

∀θ ∈ Vθ0 , −Cθ0 |θ − θ0|m̂+1 ≤ ϕ(θ) ≤ Cθ0 |θ − θ0|m̂+1
.

For a function χ1 ∈ C∞
0 (R), χ1 = 1 in a neighborhood of 0, χ1 ≥ 0, there

exist two constants R1 > 0 and C1 > 0, so that the integral

Iχ1 (r) =
∫

Sn−1

(
χ1(r

m
m̂+1 |θ − θ0|)

)2

e−2rmϕ(θ) dθ

satisfies

∀r ≥ R1, C−1
1 r−

(n−1)m
m̂+1 ≤ Iχ1(r) ≤ C1r

− (n−1)m
m̂+1 . (11.31)

Let χ2 be a C∞(]1/2, 3[) function, such that χ2 = 1 on [1, 2], χ2 ≥ 0. We
introduce the family of functions

uε(x) = uε(rθ) = χ2(εr)χ1(r
m

m̂+1 |θ − θ0|) e−rmϕ(θ) , for ε > 0 ,

written with r = |x| and θ = x
|x| . For u(x) = a(x)e−Φ(x), the Φ-differential

dΦu = e−Φda equals
(
∂ra
1
r∂θa

)
e−Φ in a polar basis. Hence the radial compo-

nent of dΦuε is estimated by∣∣e−Φ∂r(eΦuε)
∣∣ ≤ C(r−1 + ε)γε(r, θ) ≤ C εγε(r, θ) ,

and the angular component by∣∣∣∣e−Φ 1
r
∂θ(eΦuε)

∣∣∣∣ ≤ C r
m

m̂+1−1γε(r, θ) ≤ Cε−
m−m̂−1

m γε(r, θ) ,

where γε is given by γε(r, θ) = 1[ 1
2ε , 3ε ](r)χ̃1(r

m
m+1 |θ − θ0|) , for some cut-off

function χ̃1 which equals 1 on suppχ1.
Thus we have
1 If not, Δ

(0)
Φ is a bounded perturbation of −Δ.
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∣∣e−Φ∂r(eΦuε)
∣∣2 +

∣∣∣∣e−Φ 1
r
∂θ(eΦuε)

∣∣∣∣2 ≤ C ε−2m−m̂−1
m γε(r, θ) .

After integrating with respect to θ with the upper bound (11.31) applied to
Iχ̃1 (r), we obtain∫

Sn−1

∣∣e−Φ∂r(eΦuε)
∣∣2 +

∣∣∣∣e−Φ 1
r
∂θ(eΦuε)

∣∣∣∣2 ≤ Cε−2m−m̂−1
m 1[ 1

2ε , 3
ε ](r)ε

m(n−1)
m̂+1 .

Meanwhile the lower bound (11.31) applied to Iχ̃1 gives∫
Sn−1

|uε|2 dθ ≥ C−11[ 1ε , 2
ε ](r)ε

m(n−1)
m̂+1 .

After integrating with rn−1dr, there exist ε0 and C > 0 such that

∀ε ∈]0, ε0],
〈uε | Δ(0)

Φ uε〉
‖uε‖2 =

‖dΦuε‖2

‖uε‖2 ≤ Cε2 m̂+1−m
m .

By taking εn = 8−n, we obtain a sequence of functions uεn with disjoint sup-

ports so that the Rayleigh quotient 〈uεn | Δ
(0)
Φ uεn 〉

‖uεn‖2 is bounded as n → ∞. It is a

Weyl sequence which gives the boundedness of minσess(Δ
(0)
Φ ) (this minimum

is 0 if m �∈ N).
Proof of iii)
After a localization in θ independent of r, the construction of a Weyl sequence
reduces to the case where ϕ ≥ 0 on Sn−1 and vanishes on K. This case was
considered in [HelNi1] and we refer to it for the proof.

11.5.2 Sufficient Conditions

We now consider sufficient conditions. We will see that the necessary condition
iii) of Proposition 11.11, which says that ϕ admits no 0-valued minimum has
to be strengthened. Indeed the compactness of the resolvent of Δ

(0)
Φ , with

Φ(rθ) = |x|m ϕ( x
|x|) is related to the microhypoellipticity of the system ∂θj +

(∂θjϕ(θ))Dt near the point (θ0, t0, θ̂, τ = +1) in (Sn−1 × Rt) × (Rn \ {0}),
where θ0 is a zero of ϕ. A condition related to Remark 10.6 permits maximal
hypoellipticity arguments and leads to the compactness of the resolvent for
Δ

(0)
Φ . Meanwhile the condition that ϕ is analytic with no 0-valued minimum,

which leads to microhypoellipticity properties, will not be sufficient in general.
We start with a lemma which will be used in the different cases. First we

introduce for c > 1, the shell:

Sc =
{
x ∈ R

d, c−1 < |x| < c
}
,

with closure Sc. We will use the notation L2,s for the weighted L2 space
L2

(
Rn, 〈x〉2s dx

)
with the corresponding norm ‖u‖L2,s = ‖〈x〉su‖.
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Lemma 11.12.
Let Φ ∈ C∞(Rn) be of the form (11.29), m > 1 , and such that ϕ does not
vanish at order m̂ + 1. If for some c > 1 and μ ≥ 1, the function Φ is
homogeneous in

{|x| ≥ c−1
}

and the semiclassical Witten Laplacian Δ
(0)
Φ,h

is (1 − 1
μ )-subelliptic in Sc , according to Definition 10.2, then the Witten

Laplacian Δ
(0)
Φ (h = 1) is bounded from below by C−1〈x〉2( m

μ −1) −C and has
a compact resolvent if m

μ > 1 .

Let x �→ χ0(x)2 +
∑∞

j=1 χ
2(c−jx) be a c-adic partition of unity on [0,∞), with

χ0 ∈ C∞
0 ([0,∞) equal to 1 in a neighborhood of 0 and χ ∈ C∞

0 (]c−1, c[). For
u ∈ C∞

0 (Rd), we set u0 = χ0(|x|)u and for j ≥ 1 , uj = χ(c−j |x|)u . Then the
norm of ‖ ‖L2,s is equivalent to

‖u‖2
L2,s = ‖〈x〉su‖2 ∼

∑
j∈N

c2js ‖uj‖2
,

with constants determined by s ∈ R and the partition of unity. We write again

Δ
(0)
Φ = χ0Δ

(0)
Φ χ0 +

∞∑
j=1

χ(c−j |x|)Δ(0)
Φ χ(c−j |x|)

− |χ′
0(|x|)|2 −

∞∑
j=1

c−2j
∣∣χ′(c−j |x|)∣∣2 .

From this we get

〈u | Δ(0)
Φ u〉 ≥

∞∑
j=1

〈uj | Δ(0)
Φ uj〉 − C

∞∑
j=0

c−2j ‖uj‖2
.

For the first sum, we set vj(x) = cnj/2uj(cjx) , so that all the vj ’s belong to
C∞

0 (Sc) with ‖vj‖ = ‖uj‖ . Due to the homogeneity of Φ, we have

〈uj | Δ(0)
Φ uj〉 = cj(2m−2)〈vj | Δ(0)

Φ,c−mjvj〉 .
By referring to Definition 10.2, we assumed that the semiclassical Witten
Laplacian Δ

(0)
Φ,h satisfies

∀v ∈ C∞
0 (Sc) , 〈Δ(0)

Φ,hv | v〉 ≥ C−1h2(1− 1
μ ) ‖v‖2

,

uniformly for h ∈ (0, h0], h0 > 0. Hence we, we get for j0 > 0 large enough:

∀j ≥ j0, 〈vj | Δ(0)
Φ,c−mjvj〉 ≥ C−1c−mj(2− 2

μ ) ‖vj‖2
,

which means

∀j ≥ j0, 〈uj | Δ(0)
Φ uj〉 ≥ C−1c(

2m
μ −2)j ‖uj‖2

.
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Summing over j the previous estimates, we get

∀u ∈ C∞
0 (Rn), 〈u | Δ(0)

Φ u〉 ≥ C−1 ‖u‖2

L
2, m

μ
−1 − C ‖u‖2

.

This yields Δ
(0)
Φ ≥ C−1 〈x〉2( m

μ −1) − C and Δ
(0)
Φ has a compact resolvent as

soon as m
μ > 1 .

Remark 11.13.
For m

μ > 1 we proved that the domain D(Δ(0)
Φ ) is contained in L2, m

μ −1. One
can show similarly, for any s ∈ R, the estimate

∀u ∈ C∞
0 (Rn), ‖u‖2

L
2,s+ m

μ
−1 ≤ Cs

[∥∥∥Δ(0)
Φ u

∥∥∥2

L2,s
+ ‖u‖2

L2,s

]
,

which says that the resolvent sends L2,s into L2,s+m
μ −1.

Here is a sufficient condition for the compactness of the resolvent of Δ(0)
Φ which

relies on maximal hypoellipticity.

Proposition 11.14.
Assume that Φ ∈ C∞(Rn) has the form (11.29), m > 1, and satisfies
(1) ϕ does not vanish at order m̂ + 1
and
(2) For all θ0 ∈ ϕ−1 ({0}), there exist a neighborhood Vθ0 of θ0 and two
constants dθ0 > 0 and cθ0 > 0, such that, for all d ∈]0, dθ0 ], for all θ1 ∈ Vθ0 ,

inf
|θ−θ1|≤d

(ϕ(θ) − ϕ(θ1)) ≤ −cθ0 sup
|θ−θ1|≤d

|ϕ(θ) − ϕ(θ1)| . (11.32)

Then the Witten Laplacian Δ
(0)
Φ has a compact resolvent.

Remark 11.15.
In dimension n = 2, the sphere Sn−1 is one dimensional and the condition
(11.32) is equivalent to the absence of 0-valued local minimum.

Indeed it will be a straightforward application of Lemma 11.12 once
we have checked that the semiclassical Witten Laplacian Δ

(0)
Φ,h is (1 − 1

m̂ )-
subelliptic in any shell Sc, c > 1. We fix c > 1 and first work in the shell S2c

(by assuming that Φ is homogeneous in
{|x| ≥ (2c)−1

}
) For x0 in S2c one can

find dx0 > 0, cx0 > 0 and a neighborhood Vx0 such that:

∀d ∈]0, dx0 ], ∀x1 ∈ Vx0 , inf
|x−x1|≤d

(Φ(x)−Φ(x1)) ≤ −cx0 sup
|x−x1|≤d

|Φ(x)−Φ(x1)| .

Indeed there are two cases:
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1. Either x0
|x0| does not belong to ϕ−1({0}) and ∂rΦ(x0) �= 0 so that |∇Φ| is

uniformly bounded from below in a small enough neighborhood of x0.
2. Or x0

|x0| belongs to ϕ−1 ({0}) and it is a consequence of the condition
(11.32) combined with the homogeneity of Φ in (2c)−1 < r < 2c .

According to Theorem 10.5, this leads to the semiclassical estimate

∀u ∈ C∞
0 (Vx0) , h

2− 2
μx0 ‖u‖2 ≤ Cx0 〈u | Δ(0)

Φ,hu〉 , (11.33)

for some constant Cx0 > 0 and with μx0 ≤ m̂ due to the non vanishing of ϕ at
order m̂ + 1. Here μx0 which replaces the r of Theorem 10.5 is the vanishing
order of ϕ at x0

|x0| . This result holds for any x0 ∈ S2c and in particular for any

x0 ∈ Sc . For any partition of unity
∑N

i=1 χ
2
i = 1 on Sc , with χi ∈ C∞

0 (Rn) ,
we have

∀u ∈ C∞
0 (Sc) , 〈u | Δ(0)

Φ,hu〉 −
N∑

i=1

〈χiu | ΔΦ,hχiu〉 = −h2
N∑

i=1

〈u | |∇χi|2 u〉 .

The compactness of Sc then leads to

∀u ∈ C∞
0 , h2− 2

μ ‖u‖2 ≤ Cc〈u | Δ(0)
Φ,hu〉 , (11.34)

for h ∈]0, hc] , with the constants Cc > 0 and hc > 0 depending on c and
where μ ∈ N, μ ≤ m̂ < m , is the maximal vanishing order of ϕ .

11.5.3 The Analytic Case

If the condition iii) (with i) and ii)) of Proposition 11.11 is satisfied and
if the function ϕ is real analytic, then Φ is a real analytic function in the
shell Sc , c > 1 , without any minimum. Compared to Proposition 11.14, the
analyticity property and the absence of 0-valued local minimum for ϕ are
weaker assumptions. In Proposition 11.14, the condition (11.32) on ϕ, which
gives the maximal microhypoellipticity, is semilocal in the sense that a uniform
estimate has to be satisfied in the neighborhood of any point where ϕ vanishes.
This condition adds to the absence of 0-valued minimum a control of higher
order derivatives in the neighborhood of any point of ϕ−1 ({0}) . Meanwhile,
the condition that a real analytic ϕ has no 0-valued minimum does not contain
enough information on the behaviour of ϕ around ϕ−1({0}).

Although the condition iii) of Proposition 11.11 leads in the analytic frame-
work according to Maire in [Mai1, Mai4] to microhypoellipticity properties of
the system ∂θj + (∂θjϕ(θ))Dt, it is not sufficient to ensure, after adding the
conditions i) and ii) of Proposition 11.11, the compactness of the resolvent
of Δ(0)

Φ , contrary to the maximal microhypoelliptic framework (Proposition
11.14). Actually the maximal microhypoellipticity which is of algebraic nature
is more robust than the microhypoellipticity studied by Maire.
We will even give a more accurate version of these remarks by considering an
example similar to (10.22).



128 11 Witten Laplacians and Poincaré Inequalities

An interesting example.

Take in R
3 a function Φ of the form (11.29), with m > 2 such that∑

|α|≤1 |∂α
θ ϕ(θ)| �= 0 except at the point θ0 around which ϕ is analytic. As-

sume moreover that, in (normal) local coordinates θ = (θ1, θ2) with θ0 = (0, 0)
the function ϕ is given by

ϕ(θ1, θ2) = θ2�+1
1 − θ1θ

2
2, � > 1.

Let c > 1 . Around any x ∈ Sc such that x
|x| �= θ0, the condition (11.32) is

satisfied for ∇Φ(x) �= 0 and the semiclassical Witten Laplacian Δ
(0)
Φ,h is 1/2-

subelliptic.
If the result stated in [Mai4] holds for the L2-subellipticity (See the discussion
of Section 10.2 around Conjecture 10.8 and the footnote 3) this implies that
Δ

(0)
Φ,h is 2�

2�+1 -subelliptic in a neighborhood of any point x ∈ Sc such that
x
|x| = θ0. Hence we have μ ≥ 2� + 1 and m

μ is larger than 1 if m > 2� + 1 .
According to Lemma 11.12 a positive answer to Conjecture 10.8 in this case
implies that Δ(0)

Φ has a compact resolvent if m > 2�+ 1.
Note that the function ϕ satisfies

∑
|α|≤3 |∂α

θ ϕ(θ)| �= 0 for all θ ∈ Sd−1. Under
the condition (11.32) (which is not true here at θ = θ0) the compactness of
the resolvent would hold as soon as m > 3 .
We now check that the condition m > 2�+ 1 is optimal.

Proposition 11.16. With the previous choice of the function ϕ, the Witten
Laplacian Δ

(0)
Φ , with Φ = |x|m ϕ( x

|x|) for |x| ≥ 1, does not have a compact re-

solvent without the additional condition m > 2�+1. Moreover 0 ∈ σess

(
Δ

(0)
Φ

)
if m < 2� + 1.

In particular if � > 1, this says that Δ
(0)
Φ does not have a compact resolvent

when m ∈ (3, 2� + 1] although the conditions i), ii) and iii) of Proposition
11.11 are satisfied.
Proof: Let χ1 be a C∞ (

R2
)

function such that 0 ≤ χ1 ≤ 1 with suppχ1 ⊂
{|θ| < 1} and χ1(θ) ≡ 1 for |θ| ≤ 1/2. Let χ2 be in C∞(]c−1, c[) . We set

χh
1 (θ) = χ1

(
θ1 + 2h

1
2
+1

h
1

2
+1
,

θ2

h
1

2
+1

)
, χh(x) = χh

1 (
x

|x| )χ2 (|x|) ,

and vh = χh(x)e−Φ(x)/h.

We have 〈
Δ

(0)
Φ,hvh | vh

〉
‖vh‖2 =

∥∥(h∇χh)e−Φ(x)/h
∥∥2∥∥χhe−Φ(x)/h

∥∥ .

We are led to estimate the quotient
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� θ1

θ2

ϕ� 0

ϕ� 0

ϕ� 0

ϕ� 0

ϕ� 0

ϕ� 0 ϕ� 0

suppχh
1

�2h
1

2��1

�3h
1

2��1

Fig. 11.1. Position of supp χh
1 with respect to the level curves of ϕ.

∫ ∣∣∇θχ
h
1 (θ)

∣∣2 e−2λϕ(θ)/h d̃θ∫ ∣∣χh
1 (θ)

∣∣2 e−2λϕ(θ)/h d̃θ
, (11.35)

with λ ∈ [c−m, cm], d̃θ = α(θ) dθ, α(0) = 1.
The support of χh

1 is contained in θ1 < 0 (indeed in the ball centered at
(−2h1/(2�+1), 0) with radius h1/(2�+1)) so that

∀θ ∈ suppχh
1 , (ϕ(θ) < 0) ⇔

{
|θ2| ≤ |θ1|�

}
.

By taking the constant C > 0 large enough, the quotient behaves like∫
|θ2|≤C|θ1|


∣∣∇θχ
h
1 (θ)

∣∣2 e−2λϕ(θ)/h d̃θ∫
|θ2|≤C|θ1|


∣∣χh
1 (θ)

∣∣2 e−2λϕ(θ)/h d̃θ
.

In suppχh
1 ∩

{
|θ2| ≤ C |θ1|�

}
the estimate ϕ(θ) ≥ −C′h yields

∫ ∣∣∇θχ
h
1(θ)

∣∣2 e−2λϕ(θ)/h d̃θ∫ ∣∣χh
1 (θ)

∣∣2 e−2λϕ(θ)/h d̃θ
= O(h−2/(2�+1)) .

We obtain 〈
Δ

(0)
Φ,hvh | vh

〉
≤ C′′h2−2/(2�+1) ‖vh‖2

,
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and Δ
(0)
Φ,h cannot be (1 − 1/μ)-subelliptic with μ < 2�+ 1 .

Finally a sequence uk = h
n/2
k vhk

(hkx) , with (hk)k∈N will be a Weyl sequence
for Δ

(0)
Φ so that the resolvent of Δ

(0)
Φ is not compact for m ≤ 2� + 1 and

0 ∈ σess

(
Δ

(0)
Φ

)
if m < 2�+ 1 .

11.5.4 Homotopy Properties

We end this chapter by describing some homotopy properties of Witten Lapla-
cians on zero forms associated with homogeneous functions of degree m > 1 .
If one studies the full Witten complex given by dΦ = e−ΦdeΦ, the kernel
KerΔ(0)

Φ is the homology group of order 0. It is equal to C e−Φ when ϕ > 0
and to {0} when ϕ(θ0) < 0 for some θ0. This suggests that one cannot go
from the case ϕ > 0 on Sn−1 to the case ϕ(θ0) < 0 for some θ0 while keeping
the compactness of the resolvent. We start with a definition.

Definition 11.17.
Two Witten Laplacians Δ

(0)
Φ0

, Δ(0)
Φ1

, with Φi = rmϕi(θ) for r ≥ 1 and ϕi ∈
C∞(Sn−1) are said homotopic if there is a continuous family (ϕt)t∈[0,1] in
C∞(Sn−1) , endowed with the C∞ topology, which coincides with ϕ0 at t = 0
and ϕ1 at t = 1 such that (1 + Δ

(0)
Φt

)−1 is norm continuous in L(L2(Rn)) , if
Φt is associated with ϕt according to (11.29).

From the necessary condition of Proposition 11.11 iii) and since the space
of compact operators K(L2(Rn)) is closed in L(L2(Rn)) we deduce the next
result.

Proposition 11.18.
The set of Witten Laplacians Δ

(0)
Φ , Φ(rθ) = rmϕ(θ) for r ≥ 1 , m > 1

ϕ ∈ C∞(Sn−1), has at least two homotopy classes.

Let Mm(Sn−1) denote the set of Morse functions on Sn−1 for which 0 is not
(the value of) a local minimum when m > 2 and the set of Morse functions
for which 0 is not a critical value when 1 < m ≤ 2. It is an open dense set
in C∞(Sn−1) . All its elements satisfy Condition (11.32). We call Mm the
topological space of functions Φ ∈ C∞(Rn) of the form Φ(rθ) = rmϕ(θ) for
r ≥ 1 with ϕ ∈ Mm(Sn−1), endowed with the C∞({|x| ≤ 1})-topology.

Lemma 11.19.
For m > 1 the application Mm � ϕ → (1 + Δ

(0)
Φ )−1 ∈ K(L2(Rn)) , with

Φ(rθ) = rmϕ(θ) (r ≥ 1) is norm continuous.

We can forget the behaviour of Φ in B(0, C) because this leads to relatively
compact perturbations. Since (1 + Δ

(0)
Φ )−1 is a non negative operator and

A → Aα is monotonous for α ∈]0, 1[, it suffices to check that the map ϕ �→ (1+
Δ

(0)
Φ )−N is continuous for N ∈ N large enough. By differentiating (1+Δ

(0)
Φt

)−N
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with respect to t ∈ [0, 1] with ϕt = (1− t)ϕ0 + tϕ1 , we obtain a sum of terms
of the form

(1 + Δ
(0)
Φt

)−N1B(x)(1 + Δ
(0)
Φt

)−N2 , N1 + N2 = N + 1 , (11.36)

with B ∈ C∞(Rd) and B(x) = O(〈x〉2m−2) . According to Remark 11.13, the
operator (1 + Δ

(0)
Φ )−1 is continuous from L2,s to L2,s+ m

μ −1 with here μ = 1
if m ∈]1, 2] and μ ≤ 2 if m > 2 . Moreover the constants in the semiclassical
estimates (11.33)(11.34) can be taken uniform when one works in a neighbor-
hood in the C∞-topology of a given Morse function ϕ0 (Note that here the
semiclassical estimate (11.33) simply relies on some quadratic approximation
technique and does not require the full hypoelliptic machinery). Thus the norm
of (1 + Δ

(0)
Φ )−1 : L2,s → L2,s+ m

μ −1 is uniformly bounded by some constant
Cϕ0 when ϕ belongs to some small neighborhood Nϕ0 of a given Morse func-
tion ϕ0. Hence the operator (11.36) is uniformly bounded for N + 1 ≥ 2m−2

m
μ −1

in such a neighborhood Nϕ0 . This implies the continuity of (1 +Δ
(0)
Φ )−1 with

respect to ϕ.
By considering the possible deformation of Morse functions while avoiding

0 as (the value of) a local minimum (m > 2) or a critical value (1 < m ≤ 2),
one proves the

Proposition 11.20.
For m > 2 , the set of Witten Laplacian on 0-forms Δ

(0)
Φ , Φ ∈ Mm, has

exactly two homotopy classes. For m ∈]1, 2], there is an infinite number of
homotopy classes.

In the case m ∈]1, 2], the gradient of ϕ must not vanish on ϕ−1 {0}. Hence
ϕ−1(] −∞, 0]) is made of a finite number of connected C∞ closed subset of
Sn−1. It is impossible to modify this number of connected components without
having a vanishing gradient, hence without having a non compact resolvent for
Δ

(0)
Φ . The number of connected components of ϕ−1 (] −∞, 0) is an homotopy

invariant in the case m ∈]1, 2]. In the case m > 2, one can reduce the number
of connected components ϕ−1 (] −∞, 0]) to 1, if there is any, while staying in
Mm.
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Semi-classical Analysis for the Schrödinger
Operator: Harmonic Approximation

12.1 Introduction

The harmonic oscillator plays a crucial role in Quantum Mechanics. This is
not only the fact that its spectrum can be computed explicitly. As we shall
see here, it gives also the right approximation when analyzing the spectrum of
the Schrödinger operator near the bottom in the generic situation where there
is a unique non degenerate minimum. The harmonic approximation consists
indeed in comparing in the one well case, the spectrum of −h2Δ + V and
the spectrum of the corresponding Harmonic oscillator obtained by replacing
V by its quadratic approximation at the minimum. We shall analyze in this
chapter this approximation, some large dimension aspects and also higher
order approximations. We refer for this chapter to the books [CFKS], [Hel4]
and [DiSj].

12.2 The Case of Dimension 1

We start with the simplest one-well problem:

Sh
v := −h2d2/dx2 + v(x) , (12.1)

where v is a C∞- function tending to ∞ and admitting a unique minimum at
say 0 with v(0) = 0 .
Let us assume that the minimum is non degenerate, i. e.

v′′(0) > 0 . (12.2)

In this very simple case, the justification of the harmonic approximation is an
elementary exercise. We first consider the harmonic oscillator attached to 0:

−h2d2/dx2 +
1
2
v′′(0)x2 . (12.3)

B. Helffer and F. Nier: LNM 1862, pp. 133–145, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Using the dilation x = h
1
2 y, we observe that this operator is unitarily equiv-

alent to

h

[
−d2/dy2 +

1
2
v′′(0)y2

]
. (12.4)

Consequently, the eigenvalues are given as

λn(h) = h · λn(1) = (2n + 1)h ·
√

v′′(0)
2

, (12.5)

and the corresponding eigenfunctions are

uh
n(x) = h− 1

4u1
n(

x

h
1
2
) , (12.6)

with 1

u1
n(y) = Pn(y) exp−

√
v′′(0)

2
y2

2
. (12.7)

We are just looking for simplification at the first eigenvalue. We consider the
function uh,app.

1

x �→ χ(x)uh
1 (x) = c · χ(x)h− 1

4 exp−
√

v′′(0)
2

x2

2h
,

where χ is compactly supported in a small neighborhood of 0 and equal to
1 in a smaller neighborhood of 0. The constant c > 0 is chosen such that
||uh,app.

1 U ||L2 = 1 +O(h) . We now get, the existence of C0 and h0 such that,
for all h ∈ (0, h0),

||(Sh
v − h ·

√
v′′(0)

2
)uh,app.

1 || ≤ C0 h
3
2 ||uh,app.

1 || . (12.8)

The coefficients corresponding to the commutation of Sh
v and χ give exponen-

tially small terms. The main contribution in the computation of the L2-norm
of the l.h.s of (12.8) is

||(v(x) − 1
2
v′′(0)x2)χ(x)uh

1 (x)||L2 ,

which is easily seen as O(h
3
2 ). Then the spectral theorem gives the existence

for Sh
v of an eigenvalue λ(h) such that

|λ(h) − h ·
√

v′′(0)
2

| ≤ C0 · h 3
2 ,

where C0 was introduced in (12.8).
1 We normalize by assuming that the L2-norm is one. For the first eigenvalue, we

have seen that, by assuming in addition that the function is strictly positive, we
determine completely uh

1 (x).
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In particular, we get the inequality

λ1(h) ≤ h ·
√

v′′(0)
2

+ Ch
3
2 . (12.9)

Remark 12.1.
At this level, we have only from (12.9) an inequality in one direction. If we
analyze what we have done, we have used that uh

1 (x) and its first derivative
are exponentially small like O(exp−ε/h) in L2 outside a neighborhood of 0
and the finer estimate ||x3 · uh

1 (x)||L2 = O(h
3
2 ). If we want to exchange in

the proof the roles of the harmonic oscillator and of Sh
v , we have to prove the

same properties for the first eigenfunction of Sh
v without using the explicit

expression of the first eigenfunction which is unknown for a general v. This
will be done Chapter 13 through the proof of the so-called Agmon estimates.

Remark 12.2.
Note that the proof works also in the case of a potential with more than one
minimum. Observe that with the introduction of χ, we have used only the
behavior of v near one minimum.

Complete expansions.

We now sketch one way for getting a complete expansion for the eigenvalue
(see also what we shall get later by WKB constructions). We will prove the
following

Proposition 12.3.
Under assumptions (12.1)-(12.2), there exists, for any m, a normalized quasi-
mode uh,app.,m

1 and μh,m
1 such that

(Sh
v − μh,m

1 )uh,app.,m
1 = O(h1+ m+1

2 ) .

We start with a completely formal expansion in powers of h
1
2 and x. For this

we consider the Taylor expansion of v at 0:

v(x) ∼
∑
k≥2

vkx
k .

One will make more precise the feeling that everything depends only on this
Taylor’s expansion at the origin (modulo an error of order O(h∞)).
Let us consider the formal operator

−h2d2/dx2 +
∑
k≥2

vkx
k .

Following what we have done for the harmonic approximation, we consider
the dilation associated with the change of variables
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x = h
1
2 y .

In the new variables, we get the new formal operator

h

⎛⎝−d2/dy2 +
∑
k≥2

h
k
2−1vky

k

⎞⎠ ,

that we write in the form

h

(∑
�∈N

h


2T�

)
,

with
T0 = −d2/dy2 + v2y

2 ,
T� = v� y

�+2 for � ≥ 1 .

The formal problem consists in looking for a family (w�, μ1,�) in S(R) × R

such that (∑
�∈N

h


2 (T� − μ1,�)

)(∑
�

h


2w�

)
∼ 0 ,

when identifying the different powers of h
1
2 .

The first equation is
(T0 − μ1,0)w0 = 0 .

This is solved by taking as μ1,0 the first eigenvalue of the harmonic oscillator
T0 and as w0 the first eigenfunction. Until now we have just reproduced the
previous construction.
Let us now consider the second equation. We find

(T0 − μ1,0)w1 = T1w0 − μ1,1w0 .

This new equation can only be satisfied if the right hand side is orthogonal to
w0. The range of (T0 −μ1,0) is indeed the orthogonal of the kernel (according
to the standard Fredhom theory). This condition gives

μ1,1 = 〈T1w0 | w0〉 ,
that is, using the property that w0 is even,

μ1,1 = 0 .

Then we can solve the equation by adding the condition that w1 is orthogonal
to w0. We write

w1 = R′(μ1,0)(T1w0 − μ1,1w0) = R′(μ1,0)(T1w0) ,

where
R′(μ1,0) = (T0 − μ1,0)−1 ,
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on the orthogonal of R · w0 and

R′(μ1,0)w0 = 0 .

w1 is a priori2 in B2 but, using the “global ellipticity” of the harmonic oscil-
lator (see [Hel0] or Section 4.6), it is clear that w0 being in S(R) = ∩k∈NB

k,
the same is true for w1.

The next equations can be solved in the same way. The general equation is

(T0 − μ1,0)w� =
�−1∑
k=0

(T�−k − μ1,�−k)wk ,

and μ1,� is obtained by

μ1,� =
�−1∑
k=1

〈(T�−k − μ1,�−k)wk | w0〉 + 〈T�w0 | w0〉 .

Remark 12.4.
If we observe that w0 is even and that the operators T� conserve the parity
for � even and inverse the parity for � odd, then we get that μ1,� = 0 for odd
�.

Remark 12.5.
If we have referred to functional analysis and to the regularity for the harmonic
oscillator, it was just for presenting relatively general arguments working in
a more general situation. In the particular case, we can work much more
explicitly using the Hermite polynomials . If one for example looks at the
equation corresponding to � = 1, one has just to express y3w0 as a linear
combination of the second eigenvector and of the fourth eigenvector of T0

and we have an explicit expression for w1 as a new combination of these two
eigenvectors. It is then clear from this explicit expression that w1 is in S(R)
and actually of gaussian type.

From the formal construction to an approximate solution

For a given m, we now take for our approximate solution the candidate

uh,app.,m
1 (x) = h− 1

4 χ(x)
m∑

�=0

h


2 w�(x · h− 1

2 ) , (12.10)

2 We recall that

Bk(Rm) = {u ∈ L2(Rm) | xαDβ
xu ∈ L2 , ∀α, β ∈ N

m with |α| + |β| ≤ k} .
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where χ is a C∞ function with compact support and equal to 1 in a neigh-
borhood of 0, and one gets easily the announced properties. This proves the
proposition.

Decomposition by partition of unity:

The following decomposition is valid for any partition of unity:

〈−Δu | u〉 =
∑

j

−〈Δφju | φju〉 −
∑

j

|| |∇φj |u ||2 (12.11)

for all u in C∞
0 if ∑

j

φ2
j = 1 . (12.12)

This formula permits, modulo a remainder term, to control the lower
bound of −h2Δ + V by considering separately the Schrödinger operator in
the support of a fixed φj . In our special case, the best is to use a h-dependent
partition of unity constructed with (around the wells) functions of the form
φ(x · h− 2

5 ). We shall explain this in detail for the case in large dimension in
Section 12.4.

12.3 Quadratic Models

We look in this section at the quadratic case. The only point to observe is that,
if A is a definite positive matrix on Rm, then the spectrum of the Harmonic
oscillator:

−Δ + 〈Ax | x〉
can be explicitly computed.
One can indeed diagonalize A and if we denote by αj the eigenvalues of A, we
get that the harmonic oscillator is unitarily equivalent to:

−Δ +
∑

j

αjx
2
j ,

and one is reduced to the one dimensional case. The spectrum is discrete and
the eigenvalues are given by

λp1,··· ,pm = Tr
√
A + 2

∑
k

pk
√
αk .

Let us do explicit computations for the following model

y �→ Q(y) =
b

2

∑
j

y2
j +

a

2

∑
j∈Z/mZ

(yj − yj+1)2 . (12.13)
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This potential is sometimes called the harmonic spin-chain potential. The
corresponding matrix can be written as

A :=
1
2
(b + 2a)Id− a

2
(τ+1 + τ−1) ,

where (τ1u)k = uk−1 for k = 1, . . . ,m (with the convention that u0 = um).
The spectrum of this matrix is well known. One way to prove that these
eigenvalues are

ωi(m) = b + 2a
(

1 − cos(2π
(i− 1)
m

)
)

, i = 1, . . . ,m ,

is to use the discrete Fourier transform defined on Cm by a �→ â, with

â(k) =
1√
m

m∑
n=1

exp(−2iπ
kn

m
) an ,

in order to diagonalize A. The first eigenvalue of the corresponding harmonic
oscillator is then given by

λosc(m) =
m∑

i=1

√
b

2
+ a

(
1 − cos(2π

(i− 1)
m

)
)
. (12.14)

The thermodynamic limit is then

lim
m→∞

λosc(m)
m

=
∫ 1

0

√
b

2
+ a (1 − cos(2πθ)) dθ .

12.4 The Harmonic Approximation, Analysis in Large
Dimension

We follow here the proof given in [CFKS] (initially given in [Sim2]). Addition-
ally, we present the proof given in [Hel8] where the remainders are controlled
on a model with respect to the dimension. This permits to control the ther-
modynamic limit.
If the upper bound is immediate by the use of quasimodes, the lower bound
is usually more delicate. What is used here is an adapted partition of unity.
Although this method is easier (and permits to follow more easily the de-
pendence on other parameters), the proof of Helffer-Sjöstrand [HelSj7] gives
better remainders.
We focus on the model

V (m)(x) =
m∑

j=1

(
v(xj) +

a

2
|xj − xj+1|2

)
.

We first observe that
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Lemma 12.6.
If v has a unique minimum on R at 0 (single well), the minimum of V (m) is
unique and equal to m · min v.
If v is symmetric and has two minima on R at ±s (for some s > 0) (double
well), then V (m) has two minima at the following two points:

xc ±(m) = ±xc(m) with xc = s (1, 1, 1, ...., 1). (12.15)

At xc, the Hessian corresponds3 to

Q0(x̄) =
1
2
v′′(s)

m∑
k=1

x̄2
k +

a

2

m∑
k=1

(x̄k − x̄k+1)2 (12.16)

where we have written:
x = x̄ + xc (12.17)

The harmonic approximation consists in replacing Sh by

Hh = −h2Δx̄ + Q0(x̄) .

We first look at the simple case when v has a unique minimum and

• min v = v(0) = 0,
• v′′(x) ≥ v′′(0) > 0,

and
• 0 ≤ v(x) ≤ C · 〈x〉N1 .

Proposition 12.7. (the convex case )
Under these assumptions, there exist positive constants C and h0 such that,
for all h ∈]0, h0] and all m ≥ 1, we have:

hλapp.(m) ≤ λ1(m,h) ≤ hλapp.(m) + C ·m · h 3
2 , (12.18)

where λapp.(m) is the first eigenvalue of the harmonic approximating oscillator

H1 = −Δx̄ + Q0(x̄) . (12.19)

Remark 12.8.
The validity of the harmonic approximation has been already explained. What
is analyzed in detail here is the simultaneous control of the remainder with
respect to h and m.

We now look at the non convex case.

Proposition 12.9. (the non convex case)
Let us assume that v is a double well potential with two non degenerate minima
at ±s, with v(±s) = 0. Then there exist positive constants C and h0 such that
for all h ∈]0, h0] and all m ≥ 1 , we have:

hλapp.(m) − C ·m · h 6
5 ≤ λ1(m,h) ≤ hλapp.(m) + Cmh

3
2 . (12.20)

3 we take s = 0 in the one well case.
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Proof:
The lower bound on the first eigenvalue is no more evident because the lower
bound by the quadratic approximation is no more true. The proof given by
B. Simon [Sim2] does not give a satisfactory result and introduces a bad
behavior of the remainder with respect to m at least if one takes the initial
partition of the unity. The proof of the upper bound, on the contrary, is easier
because we can work with explicit expressions. We refer to [HelSj7].
Proof of the lower bound:
The idea is to construct an adapted partition of unity. We treat here the case
of the operator

S(m)(h) = −h2
m∑

k=1

∂2
xk

+
a

2

m∑
k=1

(xk − xk+1)2 +
m∑

k=1

v(xk) ,

(We recall the convention xm+1 = x1 ).

The inequality we want to prove can be rewritten in the form

−C ·m · h 6
5 ≤ λ1(m,h) − h · λapp.(m) , (12.21)

where λapp.(m) is the already computed first eigenvalue of

−
m∑

k=1

∂2
xk

+
a

2

m∑
k=1

(xk − xk+1)2 +
v′′(s)

2
|x|2 ,

which is directly obtained as TrQ
1
2 where Q

1
2 is the positive square root of

the matrix Q attached to the quadratic form

〈x|Q|x〉 =
a

2

m∑
k=1

(xk − xk+1)2 +
v′′(s)

2
|x|2 .

A partition of unity

Let θ be a function in C∞
0 (] − 1,+1[) such that

0 ≤ θ ≤ 1 with θ = 1 on ] − 1/2, 1/2[ .

We now introduce for j ∈ {−1, 1} and k ∈ {1, .....,m},

φj(t, h) = θ((t − js)/h
2
5 ) , (12.22)

and we choose θ and φ0 such that the following relation is satisfied:∑
j∈{−1,0,1}

φj(t, h)2 = 1 . (12.23)

We now associate to a multi-index α, with
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α = (α1, α2, . . . , αm) with αk ∈ {−1, 0, 1} ,

the cut-off function:

R
m ��→ φα(x, h) =

m∏
k=1

φαk
(xk, h) .

We deduce from (12.22) and (12.23) the following properties:∑
α

φα(x, h)2 = 1 , (12.24)

and ∑
α

||∇φα(x, h)||2 ≤ C ·m · h− 4
5 , (12.25)

where C is independent of h and m. The first step is a very elementary and
old formula4 , which appears already in (12.11),

S(h) =
∑

α

φαS(h)φα − h2
∑
α

||∇φα||2 . (12.26)

According to (12.25), Formula (12.26) permits to reduce the proof of (12.21)
to the determination of a constant C, such that, for all α , m , we have

−Cmh
6
5 + hλapp.(m) ≤ inf

u ∈ C∞
0 (Eα) ,

||u|| = 1

〈S(h)u | u〉L2 , (12.27)

where Eα is defined as

Eα =
m∏

k=1

Bαk
,

where,

• for j = ±1,
Bj = {t , |t− j.s| ≤ h

2
5 } ,

and

• for j = 0, by

B0 = {t , |t− �.s| ≥ 1
2
h

2
5 for � = ±1} .

4 This formula is called in the context of the analysis of the essential spectrum of
many body Schrödinger operators, see for example the book by Cycon-Froese-
Kirsch-Simon [CFKS] , the ”IMS localization formula”.
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We now observe that, if

|z − � s| ≥ 1
2
h

2
5 for � = ±1 ,

there exists δ > 0 s.t
v(z) ≥ δ h

4
5 , (12.28)

and we get consequently, for x ∈ Eα , with αk = 0 ,

v(xk) ≥ δ h
4
5 . (12.29)

We have now localized the problem in a box Eα . Of course all our constants
have to be found independently of α, m and h. We now introduce, for a given
α ,

Cα = {k | αk = 0} . (12.30)

Note that, when Cα = ∅, the box Eα is a product of intervals, each interval
containing s or −s. In order to prove (12.27), we can, according to (12.29),
bound S(h) in Eα from below by S′(h, Cα) where S′(h, C) equals

S′(h, C) = −h2Δ +
a

2

m∑
k=1

(xk − xk+1)2 +
∑
k 	∈C

v(xk) + δ nC h
4
5 , (12.31)

and
nC = Cardinal C . (12.32)

We have now to prove

−Cmh
6
5 + hλapp.(m) ≤ inf

u ∈ C∞
0 (Eα),

||u|| = 1

〈S′(h, Cα)u | u〉L2 . (12.33)

Now in each Eα, we can approach v(xk), for k �∈ Cα, by its quadratic approxi-
mation v′′(s)

2 .(xk −αk s)2 with, for each term, an error of order C (xk −αk s)3,
that is in Eα of order C h

6
5 . But there are (m− nCα) terms of this type and

this error is consequently bounded from above by Cmh
6
5 in this quadratic

approximation.
We are now reduced to the study of a family of harmonic oscillators. We

introduce

S(h, α) = −h2Δ +
a

2

m∑
k=1

(xk − xk+1)2 +
v′′(s)

2

∑
k 	∈Cα

(xk − αk s)2 + δ nCα h
4
5 ,

(12.34)
and it is sufficient to prove the existence of h0 such that for all 0 < h ≤ h0,
for all m and for all α s.t Cα = C, we have



144 12 Harmonic Approximation

h.λapp.(m) ≤ inf⎧⎨⎩ u ∈ C∞
0 (Rm),

||u|| = 1

⎫⎬⎭
〈S(h, α)u | u〉L2 . (12.35)

We observe that the left hand side corresponds by definition to the right hand
side with C = ∅ and {αk = 1 , ∀k} or {αk = −1 , ∀k}.
Let us consider the operator S(h, α). The potential

Vα(x) =
a

2

m∑
k=1

(xk − xk+1)2 +
v′′(s)

2

∑
k 	∈Cα

(xk − αk s)2

is a polynomial of order less than two and admits, if Cα is different of
{1, ....,m}, a unique minimum Vα ≥ 0 and its quadratic part is (except
through Cα) independent of α . If Cα = {1, ....,m} , the minimum is given
by xk = xk+1 , k = 1, ....,m.
After a translation, the operator S(h, α) − δ nCα h

4
5 becomes unitarily equiv-

alent to:

−h2Δy + minVα + a
2

∑m
k=1(yk − yk+1)2 + v′′(s)

2

∑
k 	∈C y

2
k

≥ −h2Δy + a
2

∑m
k=1(yk − yk+1)2 + v′′(s)

2

∑
k 	∈C y

2
k ,

with C = Cα .
We are now reduced to a problem which depends only on α through C = Cα.
The last step is in the proof of the following

Lemma 12.10.
There exists h0, such that, for all m and all C, for all u ∈ C∞

0 (Rm), we have

〈
(
−h2Δy + a

2

∑m
k=1(yk − yk+1)2 + v′′(s)

2

∑
k 	∈C y

2
k + δ nC h

4
5

)
u | u〉

≥ hλapp.(m)||u||2 .
(12.36)

Proof:
Because we know explicitly the spectrum of the harmonic oscillator, we have
to prove:

hTr (Q
1
2
C ) + δ nC h

4
5 ≥ hTr (Q

1
2 ) , (12.37)

where QC is the matrix attached to the quadratic form

QC(y) =
a

2

m∑
k=1

(yk − yk+1)2 +
v′′(s)

2

∑
k 	∈C

y2
k , Q = Q∅ .

The problem is of course to control the uniformity with respect to m. We shall
now prove the existence of C0, such that, for all m and C

Tr (Q
1
2
C ) + nC C0 ≥ Tr (Q

1
2 ) , (12.38)

It is then not difficult to deduce that (12.33) is satisfied for h ≤ ( δ
C0

)5 .
It is a direct consequence of the following algebraic lemma.
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Lemma 12.11.
Let A and B be two positive p× p matrices (symmetric real matrices or self-
adjoint complex matrices) such that, for some c > 0,

• A ≥ c Id ,
• A−B ≥ 0 .

Then
Tr

[
A1/2 −B1/2

]
≤ 1

σ
‖A−B‖1 ,

where σ is the smallest eigenvalue of A1/2 + B1/2 and ‖C‖1 = Tr
(√

C∗C
)
.

Proof:
We will use a commutator argument. We write

A1/2 −B1/2 =
(
A−B +

[
A1/2, B1/2

])(
A1/2 + B1/2

)−1

,

and
A1/2 −B1/2 =

(
A1/2 + B1/2

)−1 (
A−B −

[
A1/2, B1/2

])
.

We take the trace of the sum and use the cyclicity of the trace. We get
immediately

Tr
(
A1/2 −B1/2

)
= Tr

((
A1/2 + B1/2

)−1

(A−B)
)
,

which yields

Tr
(
A1/2 −B1/2

)
≤

∥∥∥∥(A1/2 + B1/2
)−1

∥∥∥∥ Tr (A−B) ≤ 1
σ

Tr (A−B) .

We apply the lemma with A = Q and B = QC . We compute

‖A−B‖1 =
1
2
v′′(s)nC

and we can choose

σ =
(
v′′(s)

2

)1/2

and C0 =
v′′(s)

(2v′′(s))1/2
= (

1
2
v′′(s))1/2.

Remark 12.12.
The analysis of the excited states is much more difficult and will strongly
depend on the properties of v. Except in the case of a strictly uniformly convex
case where the splitting between the second eigenvalue and the first one has
a uniform lower bound [Sj3, HelSj7], general fine results with explicit control
with respect to the dimension are still missing (see however [Hel9, Hel10]).

Let us also mention the large dimension analysis of excited states of
Matte-Moeller [MaMo], where the authors play with the structure of the
Witten Laplacians and the so-called supersymmetric argument (see Subsec-
tion 11.2.2).
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Decay of Eigenfunctions
and Application to the Splitting

13.1 Introduction

As we have already seen when comparing the spectra of the harmonic oscillator
and of the Schrödinger operator, it could be quite important to know a priori
how the eigenfunction of the Schrödinger operator, associated to an eigenvalue
λ(h), decays in the classically forbidden region, i.e. outside the classical region
V −1(] −∞, λ(h)]) as h → 0.
The Agmon [Ag] estimates give a very efficient1 way to control such a decay.
We refer to [Hel7] or to the original papers [Sj2, Sj3] and [HelSj7] for details
and complements on this point. Here we will recall a more standard material
that one can find in the original paper [HelSj1] or in the books [Hel4], [DiSj].

13.2 Energy Inequalities

The main but basic tool is a very simple identity attached to the Schrödinger
operator

Sh = −h2Δ + V .

Proposition 13.1.
Let Ω be a bounded open domain in Rm with C2 boundary. Let V ∈ C0(Ω; R)
and φ a real valued lipschitzian function on Ω. Then, for any u ∈ C2(Ω; R)
with u/∂Ω = 0, we have

h2
∫

Ω
|∇(exp φ

h u)|2 dx +
∫

Ω
(V − |∇φ|2) exp 2φ

h u2 dx =∫
Ω exp 2φ

h (Shu)(x) · u(x) dx .
(13.1)

Proof:
In the case when φ is a C2(Ω)- function, this is an immediate consequence of
the Green-Riemann formula
1 cf the contributions of Helffer-Sjöstrand [HelSj1] and Simon [Sim2] in the 80’s.

B. Helffer and F. Nier: LNM 1862, pp. 147–161, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Ω

|∇v|2 dx = −
∫

Ω

Δv · v dx , (13.2)

for all v ∈ C2(Ω) such that v/∂Ω = 0 .
This can actually be extended to u ∈ H1

0 (Ω). To treat the general case, we
just write φ as a limit as ε → 0 of φε = χε # φ where χε(x) = ε−m χ(x

ε ) is
the standard mollifier and we remark that, by Rademacher’s Theorem, ∇φ is
almost everywhere the limit of ∇φε = ∇χε # φ.

13.3 The Agmon Distance

The Agmon metric attached to an energy E and a potential V is defined
as (V − E)+dx2 where dx2 is the standard2 metric on Rm. This metric is
degenerate. It is indeeed identically 0 at points living in the classical region:

UE := {x | V (x) ≤ E} . (13.3)

Associated to the Agmon metric, we define a natural distance

(x, y) �→ d(V −E)+(x, y)

by taking the infimum of the length of piecewise C1 paths connecting x and
y:

d(V −E)+(x, y) = inf⎧⎨⎩ γ
γ(0) = x , γ(1) = y

⎫⎬⎭

∫ 1

0

[(V (γ(t)) − E)+]
1
2 |γ′(t)| dt .

(13.4)
When there is no ambiguity, we shall write more simply d(V −E)+ = d.
Similarly to the Euclidean case, we obtain the following properties:

• Triangular inequality

|d(x′, y) − d(x, y)| ≤ d(x′, x) , ∀x, x′, y ∈ R
m ; (13.5)

•
|∇xd(x, y)|2 ≤ (V − E)+(x) a.e. x . (13.6)

We observe that the second inequality is satisfied for other distances like

d(x, U) = inf
y∈U

d(x, y) .

The most useful case will be the case when, for a given energy E, U equals
UE .

2 One has also a natural extension on a complete Riemannian manifold.
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13.4 Decay of Eigenfunctions
for the Schrödinger Operator

When uh is a normalized eigenfunction of the Dirichlet realization in Ω satis-
fying

Shuh = λhuh ,

then (13.1) gives roughly that the function exp φ
h uh is well controlled (in

L2(Ω)) in a region

Ω1(ε1, h) = {x | V (x) − |∇φ(x)|2 − λh > ε1 > 0} ,

by exp
(
supΩ\Ω1(ε1,h)

φ(x)
h

)
. The choice of a suitable φ (possibly depending

on h) is related to the Agmon metric (V −E)+ dx2, when λh → E as h → 0.
Of course it could seem more natural to consider (V − λh)+dx2 for optimal
results but we prefer to work with a fix energy E. The typical choice is φ(x) =
(1 − ε)d(x), where d(x) is the Agmon distance to UE :

d(x) := d(V −E)+(x, UE) . (13.7)

In this case we get that the eigenfunction is localized inside a small neighbor-
hood of UE and we can measure the decay of the eigenfunction outside UE

by

exp(1 − ε)
d(x)
h

uh = O(exp
ε

h
) , (13.8)

for any ε > 0.
More precisely we get for example the following theorem

Theorem 13.2.
Assume that V is C∞, semibounded and satisfies

lim inf
|x|→∞

V > inf V = 0 , (13.9)

and
V (x) > 0 for |x| �= 0 . (13.10)

Let uh be a (family of) normalized eigenfunctions such that

Shuh = λhuh , (13.11)

with λh → 0 as h → 0. Then for all ε and all compact K ⊂ Rm, there exists
a constant Cε,K such that, for h small enough,

||∇(exp
d

h
· uh)||L2(K) + || exp

d

h
· uh||L2(K) ≤ Cε,K exp

ε

h
, (13.12)

where x → d(x) is the Agmon distance between x and 0 attached to the Agmon
metric V · dx2.
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Useful improvements in the case when E = minV and when the minima are
non degenerate can be obtained by controlling more carefully with respect to
h. It leads for example in (13.12) to an upperbound in O(h−N ) instead of
Cε,K exp ε

h in a neighborhood of the minimum. It is also possible to control
the eigenfunction at ∞. This was actually the initial goal of S. Agmon [Ag].

Proof:
Let us choose some ε > 0. We shall use the identity (13.1) with

• V replaced by V − λh,
• φ = (1 − δ) d(x, UE), with δ small enough depending on ε,
• u = uh,
• Sh = −h2Δ + V − λh .

Let
Ω+

δ = {x ∈ Ω , V (x) ≥ δ}
and

Ω−
δ = {x ∈ Ω , V (x) < δ} .

We deduce from (13.1)

h2
∫

Ω |∇(exp φ
huh)|2dx +

∫
Ω+

δ
(V − λh − |∇φ|2) exp 2φ

h u2
h dx

≤ supx∈Ω−
δ
|V (x) − λh − |∇φ|2|

(∫
Ω−

δ
exp 2φ

h u2
h dx

)
.

Then, for some constant C independent of h ∈]0, h0] and δ ∈]0, 1], we get

h2
∫

Ω |∇(exp φ
huh)|2dx +

∫
Ω+

δ
(V − λh − |∇φ|2) exp 2φ

h u2
h dx

≤ C ·
(∫

Ω−
δ

exp 2φ
h u2

h dx
)

.

Let us observe now that on Ω+
δ we have (with φ = (1 − δ)d(·, U)):

V − λh − |∇φ|2 ≥ (2 − δ)δ2 + o(1) .

Choosing h(δ) small enough, we then get for any h ∈]0, h(δ)]

V − λh − |∇φ|2 ≥ δ2 .

This permits to get the estimate

h2
∫

Ω
|∇(exp φ

huh)|2dx + δ2
∫

Ω+
δ

exp 2φ
h u2

h dx ≤ C ·
(∫

Ω−
δ

exp 2φ
h u2

h dx
)

,

and finally

h2
∫

Ω |∇(exp φ
huh)|2dx + δ2

∫
Ω exp 2φ

h u2
h dx ≤ C̃ · exp a(δ)

h ,
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where a(δ) = 2 supx∈Ω−
δ
φ(x). We now observe that limδ→0 a(δ) = 0 and the

end of the proof is then easy.

Application: Comparison of two Dirichlet problems
Let us consider two open sets Ω1 and Ω2 containing a unique well3

UE = V −1(] − ∞, E]) attached to an energy E. If for example Ω1 ⊂ Ω2,
the Agmon estimates permit to prove the existence of a bijection b between
the spectrum of S(h,Ω1) in an interval I(h) tending (as h → 0) to E and the
corresponding spectrum of S(h,Ω2) such that |b(λ) − λ| = O(exp−S

h ) (under
a weak assumption on the spectrum at ∂I(h)). S is here any constant such
that

0 < S < d(V −E)+(∂Ω1, U) .

One can simply use that any eigenfunction of one operator can be used, after
multiplication by a cut-off function, as an approximate eigenfunction for the
other one, and the a priori Agmon decay estimates permits to control the
error due to the cut-off.
This can actually be improved (using more sophisticated perturbation theory)
as O(exp− 2S

h ).

13.5 Estimates on the Resolvent

Although the proof of the decay estimates was done differently in [HelSj1]
(See [Hel4]), the systematic use of resolvent estimates was decisive for all the
other papers [HelSj2, HelSj3, HelSj4]. The use of the Agmon estimates for
(Sh − z), where z avoids the spectrum, leads indeed to useful estimates on
the resolvent (see [HelSj2] or Proposition 6.5 in [DiSj]) that we shall briefly
describe. We consider for simplicity the case when V has a unique well U (of
diameter 0 for the Agmon distance associated to the energy 0). Let us first
give some definitions.

Definition 13.3.
Let J ⊂]0, 1] such that 0 ∈ J and let A = Ah(h ∈ J ) a family of bounded
operators from L2(M) into H1(M). Here M is a C∞-riemannian manifold
(possibly with boundary). Let f ∈ C0(M × M ; R). We say that the family
of distribution kernels Ah(x, y;h) associated4 to Ah is Õ(exp− f(x,y)

h ), if the
following property is satisfied:
∀x0, y0 ∈ M, ε > 0, there exist neighborhoods V ⊂ M of x0, U ⊂ M of y0 and
Cε > 0 s.t.:

||Ahu||H1(V ) ≤ Cε exp− [f(x0, y0) − ε]
h

||u||L2(U) ,

3 This means that UE is connected
4 We recall that this means that 〈Ahφ | ψ〉L2 = Ah(φ ⊗ ψ), where (φ ⊗ ψ)(x, y) =

φ(x)ψ(y).
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for all u ∈ L2(M) such that suppu ⊂ U .

As a consequence, we get the continuity of the operator Ah in weighted spaces
with control of the norms with respect to h. Typically, if ϕ and ψ are contin-
uous functions on M such that:

−ϕ(x) ≤ f(x, y) − ψ(y) ,

then, for any ε > 0, there exists Cε and hε such that, for h ∈]0, hε],

||Ahu||L2(M,exp− 2ϕ
h dx) ≤ Cε exp

ε

h
||u||L2(M,exp− 2ψ

h dx) , ∀u ∈ C∞(M) .

We can now state the main result:

Proposition 13.4.
Under the above assumptions, we have, for h small enough,

(Sh − z)−1(x, y) = Õ(exp−d(x, y)
h

) , (13.13)

uniformly, with respect to z satisfying the conditions

z ∈ B(V (U), εh) , εh → 0 ,

and
d(z, σ(Sh)) ≥ 1

Cε
exp− ε

h
, ∀ε > 0 .

We will give an application of this proposition in Section 13.8.

13.6 WKB Constructions

Although the harmonic approximation (and its refinement given in Proposi-
tion 12.3) is satisfactory for determining the asymptotics (modulo O(h∞))
of a fixed number of low lying eigenvalues, it does not give the exact behav-
ior of the corresponding eigenfunctions. This can be immediately seen in the
1-dimensional case. In the analysis of finer effects like the splitting between
the two lowest eigenvalues (in the case for multiple wells problems), we need
a better information on the eigenfunctions of some reference problems “far”
from the well which in suitable coordinates is the point 0. This is done by
the construction of WKB solutions. We will remain rather sketchy and refer
to [DiSj] (or to the original paper [HelSj1] for details). These solutions are
obtained in the form:

uwkb(x, h) = h−n
4 a(x, h) exp−φ(x)

h
, (13.14)

where φ is a real phase such that
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φ ≥ 0 , φ(0) = 0 , (13.15)

and where the amplitude a(x, h) admits an expansion:

a(x, h) ∼
+∞∑
j=0

aj(x)hj , (13.16)

where we take as initial condition:

a0(0) �= 0 , aj(0) = 0 , ∀j > 0 . (13.17)

The condition on φ is natural: we would like to have an approximate eigen-
function which is well localized at 0 and the eigenfunction in the case of the
harmonic oscillator has this form with φ(x) = αx2 (α > 0).
One is now looking for a formal eigenvalue

E(h) ∼
+∞∑
j=0

Ejh
j , (13.18)

with E0 = inf V , and such that formally, that is at the level of the formal
series expansion in powers of h,

exp
φ(x)
h

(Sh − E(h))uwkb(x, h) ∼ 0 . (13.19)

The identity,

e
φ(x)

h (h2Δ)e−
φ(x)

h = h2Δ + h (−2∇φ.∇−Δφ) + |∇φ|2 ,

leads first (by expressing the cancellation of the coefficient of h0)

|∇φ(x)|2 = V (x) − inf V , (13.20)

and to, once this first equation, called the eikonal equation, is satisfied,

−h2Δa + 2h(∇φ · ∇ a + Δφa) − (
∑
j>0

Ej) a ∼ 0 . (13.21)

The second one will be cancelled term by term (according to the powers of h)
and will lead to the so called transport equations. It was proved in [HelSj1] (see
also [DiSj]) that the eikonal equation (13.20), with the additional condition
(13.15), admits a C∞ solution near the bottom of V when the minimum is
non degenenerate. Fix this non degenerate minimum at x = 0. The function
φ is defined as the generating function of the Lagrangian manifold in T ∗Rm,
denoted by Λ, of which the existence is given by the stable manifold theorem.
This manifold is defined in a neighborhood of (0, 0) as

Λ = {(x, ξ) ∈ T ∗
R

m | lim
t→−∞Φt(x, ξ) = (0, 0)} ,
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where Φt is the flow of the hamiltonian Hq associated to q(x, ξ) = −ξ2+V (x).
By construction this manifold is invariant by Hq. To say that φ is a generating
function means that locally

Λ = Λφ = {(x,∇φ(x)) | x ∈ V(0)} .

One notices that the integral curves of Hq in q−1(0) are projected by the map
(x, ξ) �→ x on the integral curves of ∇φ. One can also verify that

φ(x) = d(V −inf V )(x, 0) (13.22)

and satisfies
φ(x) ∼ 1

2

(
x · Hess (V (0))

1
2x

)
+ O(|x|3) ,

and
∇φ(x) ∼ Hess (V (0))

1
2x + O(|x|2) ,

as x → 0 .
Thus, one can take φ as a C∞ function in any open set Ω such that each point
of Ω is connected to 0 by a unique minimal geodesic contained in Ω. We will
call these domains geodesically-starshape domains (with respect to 0).

Let us consider now the amplitude. Once φ is known, the equation (13.21)
leads after term by term identification to the inductive system of transport
equations, for j ≥ 0,

∇φ(x) · ∇aj + (Δφ(x) − E1)aj = Δaj−1 +
∑

k+�=j+1, k≥2

Eka� , (13.23)

where we set a−1 = 0.
Here are two problems to solve:
1) The constants Ej have to be determined for j ≥ 1;
2) The vector field ∇φ vanishes and the transport equations cannot be solved
by simply dressing5 the vector field.

The proof will be in two steps.

First one can solve recursively these equations modulo flat functions at
the level of formal series. This will lead to the determination of the Ej ’s and
of the Taylor expansions of the aj ’s, taking a0(0) = 1, aj(0) = 0 for j ≥ 1 as
initial conditions. Taking for example the first equation, which reads:

∇φ(x) · ∇a0 + (Δφ(x) − E1)a0 = 0 , (13.24)

we get as a necessary condition Δφ(0) = E1 , which is of course compatible
with what we found by the harmonic approximation.
5 i.e. by finding a change of variable such that in the new cordinates the vector

field becomes simply d
dx1

,
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Secondly we can solve the transport equation by integration along the
integral curves gt(x) (t ∈]−∞, 0]) of ∇φ having 0 as limiting point as t → −∞
on flat functions. We refer the reader to [HelSj1], [Hel4] or [DiSj] for details.

The transport equations are then solved recursively in the same way. We
observe that like for the solution of the eikonal equation, we can also solve
the transport equations, not only in a small neighborhood of 0, but also in
any neighborhood of 0 which is geodesically-starshape with respect to 0.

Once we have a formal series aj , we can take a realization a(x, h) by
a Borel procedure, which leads to the construction of a WKB solution. In
suitable open sets, one can first get through the spectral theorem that this
WKB solution gives (after renormalization) in geodesically-starshape open
sets a very good approximation of the one-well ground state:

||u1
h − uwkb

h ||H1(Ω) = O(h∞) .

Using simple Agmon’s type estimates6 , one can show that these estimates
propagate along the integral curves of ∇φ(x) which leads to

‖ exp
φ

h
(u1

h − uwkb
h )‖H1(Ω) = O(h∞) . (13.25)

Again we refer the reader to [HelSj1], [Hel4] or [DiSj] for the details.

13.7 Upper Bounds for the Splitting
Between the Two First Eigenvalues

The control of the decay of the eigenfunctions has also immediate conse-
quences on the splitting of eigenvalues. We shall first give a rough estimate,
with a proof which only works for the splitting between the two first eigen-
values of Sh. A more powerful technique will be presented in Section 13.8.

13.7.1 Rough Estimates

To understand what is needed, let us recall the following classical formula for
the splitting which is nothing else than a version of the minimax principle
applied to the orthogonal of R · u1,

λ2 − λ1 =

inf{
φ ; φ ∈ C∞

0 ,∫
φ(x)u1(x)2 dx = 0

}
[
(
∫

|h∇φ|2 u1(x)2 dx)/(
∫

|φ|2 u1(x)2 dx)
]
. (13.26)

6 For the specialist in microlocal analysis let us mention that these estimates are
strongly related to the proof of microlocal propagation of regularity for microhy-
perbolic operators [Sj1] and [Mar].
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Here u1 denotes the first normalized eigenfunction of the Schrödinger opera-
tor. The estimates about the splitting are then deduced from a good choice
of φ and from a precise information on the decay of u1 in suitable domains.

Let us now consider the double well situation. This means that the potential
v is symmetric:

v(−x) = v(x) ,

and has two non degenerate minima ±xc. We now choose a function φ in C∞
0

which satisfies
φ(x) = −φ(−x)

and
φ = 1

in a neighborhood of the critical point xc of V . We recall also that the first
eigenfunction is even

u1(x) = u1(−x) .

We have used here that the first eigenvalue is simple and that the first eigen-
function can be chosen strictly positive (Perron-Frobenius or Krein-Rutman
argument).
Hence we have ∫

φ(x)u1(x)2dx = 0 .

We observe also using the Agmon estimates (13.12) that u1 is exponentially
small (as h → 0) on the support of the functions (1 − φ2) and |∇φ|, so∫

φ(x)2u1(x)2 dx = 1 + O(exp−S

h
) ,

and that ∫
|∇φ(x)|2u1(x)2dx = O(exp−S

h
) ,

for some S > 0.
Coming back to the formula giving the splitting we obtain

λ2 − λ1 = O(exp−S

h
) . (13.27)

In the situation of a symmetric double well, we have consequently two eigen-
values whose difference is exponentially small.

Remark 13.5.
Considering more carefully the result concerning the decay of the first eigen-
function (see (13.12)), one can choose any S such that

0 < S < d(V −E)+(−xc, xc) := S−+ . (13.28)
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13.7.2 Towards More Precise Estimates

In some generic cases, one can actually give a more precise estimate for the
splitting in the form

λ2 − λ1 = h
1
2A(h)(exp−S−+

h
) , (13.29)

where S−+ is the Agmon distance between the two wells and A(h) is a non
zero function admitting an expansion of the type

A(h) ∼
+∞∑
j=0

ajh
j ,

with a0 �= 0 .
This will be explained in Section 13.8 through the computation of the so-called
interaction matrix.

13.7.3 Historical Remarks

The asymptotics (13.29) for the splitting was obtained in this form in [HelSj1]
and in a weaker form but sooner by Jona-Lasinio, Martinelli, and Scoppola
[JoMaSc81] and also by B. Simon [Sim2]. Independently a rather sketchy proof
was given by V.P. Maslov in 1984 [Mas84]. Actually there is a long history
on the subject. The rigorous study of the splitting, which was present very
soon after the beginning of the foundations of the Quantum Mechanics (see
Landau-Lifschitz) was motivated, as mentioned for example in the notes of
Reed-Simon [ReSi], by the problems posed by M. Kac [Kac]. In the case m = 1,
the first rigorous proof is given by E. Harrell in 1980 [Har], using the theory
of ordinary differential equations and by Combes-Duclos-Seiler [CoDuSe] at
the same time.
We just mention the “instantons” method as for example presented by Cole-
man [Cole] which did not lead to completely rigorous proofs untill recently.
We emphasize that the “difficult” part in the study of the splitting is to get
a lower bound.
For the specific operators that we have in mind in these notes, there is
also a lot of results obtained by probabilistic methods (see [HolKusStr],
[BovEckGayKl1, BovEckGayKl2] and [BovGayKl]). We will come back to
this point in Chapter 15.

13.8 Interaction Matrix
for the Symmetic Double Well Problem

Once the harmonic approximation is done, it is possible to construct an or-
thonormal basis of the spectral space attached to a given interval I(h) :=
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[inf V, inf V + Ch] (C avoiding some discrete values), each of the elements of
the basis being exponentially localized in one of the wells.
The computation of the matrix of the operator in this basis, using WKB
approximations, leads to the so-called “interaction matrix” (See Dimassi-
Sjöstrand [DiSj] or Helffer [Hel4]).

We consider the case with two wells, say U1 and U2. We assume that there
is a symmetry7 g in Rm, such that g2 = Id, gU1 = U2, and such that the
corresponding action on L2(Rm) defined by gu(x) = u(g−1x) commutes with
the Laplacian. In addition gV = V .
We now define reference one well problems by introducing:

M1 = R
m \B(U2, η) , M2 = R

m \B(U1, η) .

With this choice, we have gM1 = M2. The parameter η > 0 is free but can
always be chosen arbitrarily small. We denote by φj the corresponding ground
state of the Dirichlet realization of −h2Δ + V in Mj and corresponding to
the ground state energy λM1 = λM2 . According to our result on the decay
recalled in (13.12), these eigenfunctions decay like Õ(exp− d(x,Uj)

h ), where
Õ(f) roughly8 means exp ε

h · Oε(f) for all ε > 0 as h → 0. We can of course
keep the relation

gφ1 = φ2 .

Let us now introduce θj , which is equal to 1 on B(Uj ,
3
2η) and with support

in B(Uj , 2η). We introduce

χ1 = 1 − θ2 , χ2 = 1 − θ1 ,

and we can also keep the symmetry condition:

gχ1 = χ2 .

Our approximate eigenspace will be generated by

ψj = χjφj , (j = 1, 2) ,

which satisfies
Shψj = λMψj + rj ,

with
rj = h2(Δχj)φj + 2h2(∇χj) · (∇φj) .

We note that the “smallness” of rj can be immediately controlled using the
decay estimates (13.12) in B(Uj , 2η) \B(Uj ,

3
2η).

In order to construct an orthonormal basis of the eigenspace F correspond-
ing to the two lowest eigenvalues near λM , we first project our basis ψj which
was not far to be orthogonal and introduce:
7 Typically, we take g = −Id.
8 More precisely, for any ε > 0, one can choose above η > 0 such that...
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vj = ΠFψj .

The resolvent formula shows that vj − ψj can be made very small (at least
exp−S

h with S satisfying (13.28) by chosing η > 0 small enough). More pre-
cisely, we have the following comparison.

Lemma 13.6.

(vj − ψj)(x) = Õ(exp−δj(x)
h

) , (13.30)

in Rm \B(Ûj, 4η), where 1̂ = 2, 2̂ = 1 and

δj(x) = d(x, Ûj) + d(U1, U2) .

Proof
Our starting point is:

Sh,Mjψj = λMjψj + rj .

where
supp rj ⊂ B(Ûj, 2η) ,

and

rj = Õ(exp−d(x, Uj)
h

) .

We have vj − ΠFψj ∈ F⊥ and the spectral theorem gives already the
estimate

||vj − πFψj || = Õ(exp−d(U1, U2)
h

) .

For a suitable contour Γh in C containing the interval I(h) and remaining at
a suitable distance of the spectrum

d(Γh, σ(Sh)) ≥ 1
Cε

exp− ε

h
, ∀ε > 0 , (13.31)

we can write:

vj − ψj =
1
2π

∫
Γh

(λM − z)−1(Sh − z)−1rjdz .

We observe by referring to (13.13) that:

(Sh − z)−1rj = Õ(supy∈supp rj
exp− [d(x,y)+d(y,Uj)]

h )
= Õ(exp− δj(x)

h ) .

The separation assumption (13.31) permits to get the same property for vj −
ψj .
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Remark 13.7.
We notice that:

δj(x) ≥ d(x, Uj) ,

What we see here is that the improved estimate does not lead to improvements
near Ûj, where we have modified φj into ψj by introducing a cut-off function
but that the improvement is quite significative when keeping a large distance
(compare to η) with Ûj.
It is sometimes useful (for the treatment9 of “resonant wells”), to relax the
assumption by introducing the weaker property that there exists a > 0, such
that, for all ε > 0, there exists Cε > 0, such that:

d(Γh, σ(Sh)) ≥ 1
Cε

exp−a− ε

h
. (13.32)

In this case one has still an estimate by replacing δj by δj − a .

We then orthonormalize by the Gram-Schmidt procedure.

ej =
∑

k

(V − 1
2 )jkvk ,

with
Vij = 〈vi | vj〉 .

We note that
Vij − δij = O(exp−S

h
) .

At each step, we control the difference ej − ψj , which satisfies also (13.30).
The matrix we would like to analyze is then simply the two by two matrix

Mij = 〈(Sh − λM )ei | ej〉 .

The eigenvalues of this matrix measure the dispersion of the two eigenvalues
around λM .

We observe that symmetry considerations lead to:

M12 = M21 and M11 = M22 .

So the eigenvalues are easy to compute and corresponding eigenvectors are
1√
2
(1, 1) and 1√

2
(1, 1)(−1,+1). As soon as we have the main behavior of M12,

we can deduce that the eigenvalues are simple and that the splitting between
the two eigenvalues is given by 2|M12|.

9 A non-resonant well Uk (k 
= j) is a well for which the renormalized (after division
by h) lowest eigenvalue of the harmonic approximation at Uk is strictly above the
corresponding lowest eigenvalue at Uj .
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It remains to explain how one can compute M12. The analysis of the decay
permits to show that

M12 =
1
2

(〈r2 , ψ1〉 + 〈r1 , ψ2〉) + R12 , (13.33)

with
R12 = O(exp−2S

h
) , (13.34)

for a suitable choice of η > 0 small enough.
An integration by parts leads (observing that ∇χ1 ·∇χ2 ≡ 0 for our choice

of η) to the formula

M12 = h2

∫
χ1(φ2∇φ1 − φ1∇φ2)∇χ2 + R12 . (13.35)

A priori informations on the decay permit to restrict the integration in the
right hand side of (13.35) to the set {d(x, U1) + d(x, U2) ≤ d(U1, U2) + a} for
some a > 0.
A computation based on the Stokes Lemma gives then the existence of ε0 > 0
such that:

M12 = h2

∫
Γ

[φ2∂nφ1 − φ1∂nφ2]dνΓ + O(exp−S12 + ε0
h

) . (13.36)

Here S12 = d(U1, U2) and Γ is an open piece of hypersurface defined in the
neighborhood of the minimal geodesic geod(U1, U2) between the two points
U1 and U2, that we assume for simplification to be unique and ∂n denotes the
normal derivative to Γ , positively oriented from U1 to U2 .
The last step is to observe that in a neighborhhood of the intersection γ12

of Γ with geod(U1, U2), one can replace the function φj (or ψj) modulo
O(h∞) exp− d(x,Uj)

h by its WKB approximation h−n
4 aj(x, h) exp− d(x,Uj)

h .
This leads finally to

M12 = h1−n
2 exp− d(U1,U2)

h ×
× ∫

Γ
exp− (d(x,U1)+d(x,U2)−d(U1,U2))

h ×
× (a1(x, 0)a2(x, 0)(∂nd(x, U1) − (∂nd(x, U2)) + O(h)) dνΓ ,

(13.37)

where dνΓ is the induced measure on Γ .
With natural generic additional assumptions saying that the map

Γ � x �→ (d(x, U1) + d(x, U2) − d(U1, U2))

vanishes exactly at order 2 at γ12, this finally leads to Formula (13.29), after
use of the Laplace integral method.
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Semi-classical Analysis and Witten Laplacians:
Morse Inequalities

The aim of this chapter is to see how the technique of the harmonic approx-
imation permits to analyze roughly the smallest eigenvalues of the Witten
Laplacians. This will permit us to split between the eigenvalues of the Witten
Laplacians which are o(h) – and which will appear to be actually O(h

3
2 )–

and the others for which we will show that they do not belong to an interval
(−∞, ε0h] for some ε0 > 0.
This is an important step towards a finer analysis of exponentially small effects
and has already nice applications to the Morse theory that we recall briefly in
order to fix the framework. The material presented here is now standard. We
refer to the initial paper by E. Witten [Wi], the book by Cycon-Froese-Kirsch-
Simon [CFKS], the original article of Helffer-Sjöstrand [HelSj4], the book by
Helffer [Hel4] and the recent book by W. Zhang [ZH] which develops more the
topological aspects.

14.1 De Rham Complex

Let M be a compact C∞ Riemannian oriented n-dimensional manifold and
let f be a C∞ map from M into R. We shall say that f is a Morse function if
all its critical point are non degenerate. Let d be the differential on M and let
Λp(M) denote the space of the C∞ p-forms. We have a natural scalar product
Λp(M) and can take its completion for the associate norm in order to get an
Hilbert space ΛpL2(M) of L2-sections. The restriction of d to Λp is denoted
by d(p):

Λp(M) � ω �→ d(p)ω ∈ Λp+1(M) , (14.1)

and we denote by d(p)∗ the formal adjoint sending Λp+1(M) into Λp(M). d∗

is the differential operator on

Λ(M) = ⊕n
p=0Λ

p(M) , (14.2)

whose restriction to Λp(M) is d(p−1)∗ .
We observe that

B. Helffer and F. Nier: LNM 1862, pp. 163–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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d2 = 0 , (14.3)

which expresses the property that d is a complex (called the de Rham com-
plex).
It is possible to show that for any p, Im d(p−1) is a subspace of Ker d(p), with
finite codimension. This leads to the definition of the Betti numbers:

Definition 14.1.
For any p, we define bp as the codimension of Im d(p−1) in Kerd(p) .

We can then define the de Rham Laplacian by

ΔDR = (d + d∗)2 = dd∗ + d∗d , (14.4)

By restriction to the C∞ p-forms, we get the Laplace-Beltrami operator on
the p-forms:

Δ(p) = d(p)∗d(p) + d(p−1)d(p−1)∗ . (14.5)

This operator is an elliptic operator of order 2 and when M is compact is
essentially self-adjoint on Λp(M). The resolvent is compact and in particular
the kernel of Δ(p) has a finite dimension and one can show that the p-th Betti
number satisfies:

bp = dim Ker (Δ(p)) . (14.6)

The classical Hodge theory gives a natural bijection between Ker d(p)/ Im d(p−1)

and KerΔ(p).
If ω ∈ Ker d(p), we write ω = σ1 +σ⊥

1 with σ1 ∈ KerΔ(p) and σ⊥
1 is given

by
σ⊥

1 = d(p−1)σ2 ,

with
σ2 = d(p−1)∗(Δ(p))−1,′ω .

Here (Δ(p))−1,′ is defined as being equal to 0 on KerΔ(p) and to (Δ(p))−1 on
( KerΔ(p))⊥.

14.2 Useful Formulas

We recall some formulas which will be useful for introducing our Witten com-
plexes and the corresponding Laplacians. We follow the appendix of [HelSj4]
(See Arnold [Arn] Chapter 7) but everything is very standard. The reader can
also look in [CFKS] for a rather selfcontained presentation.
For a function u and a 1-form ω, we have:

du =
n∑

j=1

(∂xju)dxj ,

d∗ω(x0) = −
n∑

j=1

∂xjωj(x0) (in normal coordinates around x0).
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Then we can extend the definition to any form in order that the following
formula is satisfied, for any p-form ω and any q-form θ:

d(ω ∧ θ) = dω ∧ θ + (−1)pω ∧ dθ .

In particular, we have

d(
∑

j ajdx
j) =

∑
j(daj) ∧ dxj

=
∑

j,k(∂xk
aj)dxk ∧ dxj

=
∑

j<k(∂xjak − ∂xk
aj)dxj ∧ dxk .

When considering the Witten complex, we start from:

df = d + df∧ ,

and its formal Hilbertian adjoint:

d∗f = d∗ + ∇f�

For a vector field X , the operator ω �→ X�ω is also denoted by iX . It sends
the �-forms into the (�− 1)-forms. In particular we have

iX(ω) =< ω,X > , iX(du) = (Xu) .

Note that, if ω is a p-form and θ is a q-form, then

iX(ω ∧ θ) = (iXω) ∧ θ + (−1)pω ∧ (iXθ) .

A basic formula in differential geometry is:

LX = iX d + d iX , (14.7)

where LX is the Lie derivative along X .
On functions, we recall that we have simply LX u = Xu (the second term
vanishes). In general, the Lie derivative is usually defined by differentiation
along the flow Φt of X , by

Lω =
d

dt
(Φ∗

tω)/t=0 ,

but in our context we can take the right hand side of (14.7) as a definition.
We observe that

d LX = LX d = d iX d .

Note that
LX(ω ∧ θ) = (LXω) ∧ θ + ω ∧ (LXθ) .
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14.3 Computation of the Witten Laplacian
on Functions and 1-Forms

Let us show how the above calculus permit to give the expression of the Witten
Laplacian1. We have

Δf = (df + d∗f )2

= dfd
∗
f + d∗fdf

= dd∗ + d∗d + ∇f� df ∧ +df ∧ ∇f� + L∇f + L∗
∇f .

Computation of Mf .

Let us compute Mf := L∇f + L∗
∇f in simple cases.

On functions:
L∇fg = ∇f · ∇g .

The adjoint of L∇f is easily calculated by

L∗
∇fg = −∇f · ∇g − (Δf) g .

So
Mfg = −(Δf) g .

This last operator is a multiplication operator by −Δf .

On 1-forms (in R
n):

L∇f (
n∑

j=1

ajdxj) =
n∑

j=1

(L∇faj)dxj +
n∑

j=1

aj(L∇fdxj) .

So we have just to compute (L∇fdxj) using the fundamental formula.

LXdxj = dXj =
n∑

k=1

(∂kXj) dxk , (14.8)

that we apply with X = ∇f . This gives, for a 1-form Φdμ ,

L∇f (Φdμ) = (∇f∇Φ) dμ + ΦHess fdμ .

One can then compute the adjoint. We have to compute:

〈L∗
X(gdλ) | (φdμ)〉 = 〈(gdλ) | LX(φdμ)〉

We can then apply the previous formula.
1 For conciseness, these computations are presented in the case of R

n with the
euclidean metric. See the final remark for the more general case and [CFKS] for
details.
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〈L∗
X(gdλ) | (φdμ)〉 =< g | Xφ >L2 〈dλ | dμ〉 + 〈(gdλ) | φLX(dμ)〉

We first observe that, if X = ∇f ,

L∗
X(gdλ) = (L∗

Xg)dλ + gHess fdλ .

This leads to:

L∗
∇f (gdλ) = (−∇f∇g)dλ + g (Hess fdλ−Δfdλ) .

Then we find:
(L∇f + L∗

∇f ) = −(Δf) + 2(Hess f) .

The other computation is that, on 1-forms:

∇f� df ∧ +df ∧ ∇f � = |∇f |2

(because it is a linear local operator, it is enough to verify the formula for
ω = dxj).

So we get on 1-forms

Δ
(1)
f = dd∗ + d∗d + |∇f |2 ⊗ I + 2Hess f −Δf ⊗ I

= Δ(1) + |∇f |2 ⊗ I + 2Hess f −Δf ⊗ I

= Δ(0) ⊗ I + |∇f |2 ⊗ I + 2Hess f −Δf ⊗ I ,

and finally:
Δ

(1)
f = Δ

(0)
f ⊗ I + 2 Hess f . (14.9)

Remark 14.2.
The computation is more complicated on a manifold !! The Laplace-Beltrami
operator Δ(1) is no more equal to Δ(0) ⊗ I but to the sum B(1) +R(4), where
B(1) is the Bochner Laplacian on 1-forms and R(4) is the Ricci tensor. This
formula is valid for p-forms, Δ(p) = B(p) + R. In normal coordinates around
a point x0, this leads to the formula

Δ(p) = Δ(0) ⊗ Id + A(2)(x, ∂x) + R(4)(x) , (14.10)

where A(2) is a first order differential operator with vanishing principal part at
x0. We refer the reader for example to [CFKS]-Theorem 12.20 for the details.

14.4 The Morse Inequalities

When f is a Morse function on a compact manifold M , that is if all the critical
points of f are non degenerate, we can associate to each critical point Uj the
index �j corresponding to the number of (−) in the signature of the Hessian
of f at Uj . For example, the index is 0 if f has a non degenerate minimum at
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Uj and n if f has a non degenerate maximum at Uj.
For � = 0, . . . , n, we denote by:

C(�) = {j | Uj is of index �} . (14.11)

In this case, we shall sometimes write U
(�)
j in order to indicate the reference

to the index. We can then define:

m� = #C(�) . (14.12)

The so called weak Morse inequalities say:

Theorem 14.3.
Let f be a Morse function on a compact manifold M . Then with the above
notation (14.12) we have

m� ≥ b� , for � = 0, . . . , n . (14.13)

Another (more precise) way to formulate these inequalities is to say that there

exists a complex
◦
E of finite dimensional vector spaces:

0 → E0
u0

→E1 → · · ·Ek
uk

→Ek+1 → · · ·
un−1

→ En → 0 , (14.14)

with
dimRE

k = mk

and
dimRH

k(E) := dim ( Keruk/ Im uk−1) = bk .

This leads by elementary algebra to the Strong Morse Inequalities:

Theorem 14.4.
Under the assumptions of Theorem 14.3, we have, for any i such that
0 ≤ i ≤ n ,

bi − bi−1 + · · · + (−1)ib0 ≤ mi −mi−1 + · · · + (−1)im0 . (14.15)

Moreover we have:

bn − bn−1 + · · · + (−1)nb0 = mn −mn−1 + · · · + (−1)im0 . (14.16)

We refer the reader [Mil] or [Lau] for topological proofs of the Morse inequal-
ities.

Remark 14.5.
When M = R

n, one can have a similar result under the conditions that
|∇f | ≥ 1

C outside a ball of radius C and −Δf ≥ −C|∇f |2 .
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14.5 The Witten Complex

Following Witten [Wi], we would like to find such a complex of finite dimen-
sional vector spaces having the same cohomology as the de Rham complex.
For this purpose, we introduce a perturbation of the de Rham complex now
called the Witten complex depending on a parameter h > 0:

df,h = exp−f

h
(hd) exp

f

h
. (14.17)

It is clear that the new complex has the same Betti numbers as the de Rham
complex:

dim
(

Ker d(p)
f,h/ Im d

(p−1)
f,h

)
= bp . (14.18)

The Hodge theory works in this new context. In particular, one can introduce

Δf,h = (df,h + d∗f,h)2 , (14.19)

which gives by restriction on the p-forms Δ
(p)
f,h. For each h > 0 and any C∞

function f , Δ(p)
f,h has the same properties as Δ(p).

In particular, for an interval I(h), let us consider E(p)
f (I(h)) the eigenspace of

Δ
(p)
f,h associated to the eigenvalues belonging to the interval I(h).

From the Hodge theory we get:

bp = dim KerΔ(p)
f,h , (14.20)

and, if I(h) � 0, we have the trivial inclusion:

KerΔ(p)
f,h ⊂ E

(p)
f (I(h)) . (14.21)

We first take A > 0 and
IA(h) = [0, Ah

3
2 ] . (14.22)

As an immediate consequence, we get

bp ≤ dimE
(p)
f (IA(h)) , ∀A > 0 , ∀h > 0 . (14.23)

The proof of the weak Morse inequalities is now reduced to the proof that
there exist A > 0 and h > 0 such that:

dimE
(p)
f (IA(h)) = mp . (14.24)

The semi-classical analysis will permit to show that,

Proposition 14.6.
For any A > 0, there exists h0(A) such that ∀h ∈]0, h0(A)] such that (14.24)
is satisfied.
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Let us also observe (see (11.11)) that we have:

df,h ◦Δf,h = Δf,h ◦ df,h . (14.25)

This implies that for any interval I(h):

d
(p)
f,hE

(p)
f (I(h)) ⊂ E

(p+1)
f (I(h)) , (14.26)

and by taking the adjoint

d
(p),∗
f,h E

(p+1)
f (I(h)) ⊂ E

(p)
f (I(h)) , (14.27)

Then df,h reduced to the complex
◦
Ef (I(h)) defines a complex of finite dimen-

sional spaces whose Betti numbers are the same as for the de Rham complex.
As observed above this gives the strong Morse Inequalities if we can perform
the semi-classical analysis.

14.6 Rough Semi-classical Analysis
of the Witten Laplacian

As we have explained in the previous section, the proof of the Morse inequali-
ties is based on rough estimates on the bottom of the spectrum of the Witten
Laplacians modulo O(h

3
2 ). According to the semi-classical theory presented

in Chapter 12, we just have to use the harmonic approximation at each criti-
cal point of f . We observe indeed that on Rn with the euclidean metric each
Witten Laplacian Δ

(p)
f,h has the form

Δ
(p)
f,h = Δ

(0)
f,h ⊗ I + hV1,f,p , (14.28)

where x �→ V1,f,p(x) is matrix-valued. Here we have:

Δ
(0)
f,h = −h2Δ + |∇f |2 − hΔf . (14.29)

The Witten Laplacian on C∞ functions has the structure of a Schrödinger
operator, where the electric potential Vh has the form:

Vh(x) = V0(x) + hV1(x) , (14.30)

where the main term:
V0(x) = |∇f(x)|2 , (14.31)

admits as minima the critical points of f .

The Witten Laplacians on p-forms have the same structure. They can more
precisely be written as:
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Δ
(p)
f,h = −h2Δ(p) + |∇f |2 + h(L∇f + L∗

∇f ) , (14.32)

where the Laplace-Beltrami operator Δ(p) on p-forms equals B(p) + R(4) ac-
cording to Remark 14.2 and L∇f is the Lie derivative along ∇f .

Remark 14.7.
The terms h2A(2)(x, ∂x) and h2R(4)(x) coming from (14.10) only bring higher
order corrections to the harmonic approximation (see [CFKS] or [HelSj4]).

Harmonic approximation for the Witten Laplacian

We have already computed Mf := (L∇f + L∗
∇f ) for p = 0 and 1. More

generally, the computation of the matrix Mf at a critical point Uj of f gives:

Mf(Uj) = 2 dΓ p(Hess f(Uj)) − Tr (Hess f(Uj)) , (14.33)

where dΓ p(A) is the natural action2 of a symmetric matrix A ∈ L(E) on a
p-form in ΛpE.

Remark 14.8.
In the case of M = Rn, formula (14.33) is true at any point.

Note in particular that if λ1, · · · , λn are the eigenvalues of a symmetric matrix
B (with λ1 ≤ λ2 ≤ · · · ≤ λn) then the eigenvalues of dΓ p(B) are of the form
λi1 + · · · + λip with i1 < i2 < · · · < ip.

The ground state energy of the Harmonic oscillator approximating Δ
(p)
f,h

at the critical point Uj is given by:

μ1 :=
n∑

j=1

|λj | + 2(λ1 + λ2 + · · · + λp) −
n∑

j=1

λj ,

where the λj ’s (j = 1, . . . , n) denote the eigenvalues of Hess f(Uj), ordered in
increasing order:

λ1 ≤ λ2 ≤ · · · ≤ λn .

Let us analyze when this quantity vanishes.
When p = 0, it is clear that it vanishes if and only if all the eigenvalues are
strictly positive. This corresponds to the points of index 0. As a consequence,
the dimension of the eigenspace corresponding to the small eigenvalues of Δ(0)

f,h

(i.e. for eigenvalues lying in [0, ε0h] for some sufficiently small ε0 > 0 or for

2 This natural action is defined by recursion:

dΓ (1)(A) = A and dΓ (p)(A)(u1∧u(p−1)) = Au1∧u(p−1) + u1∧dΓ (p−1)(A)u(p−1) .
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eigenvalues in IA(h) = [0, Ah
3
2 [) is equal to the number of critical points with

index 0.
When p > 0, the quantity

μ1 =
p∑

j=1

(|λj | + λj) +
n∑

j=p+1

(|λj | − λj) ,

vanishes only when Hess f admits p negative eigenvalues and n − p positive
eigenvalues.
Therefore, the dimension of the eigenspace corresponding to the small eigen-
values of Δ(p)

f,h (i.e. for eigenvalues in [0, ε0h], for some sufficiently small ε0 > 0)
is equal to the number of points of index p.

We just finish this chapter by sketching what will be analyzed more deeply
in the next chapters.
The semi-classical analysis shows that the eigenvalues in IA(h) are actually
exponentially small. The corresponding eigenfunctions of Δ(0)

f,h are localized
near the points of index 0, that is near the set of local minima, with expo-
nential decay outside this set. Moreover one can find a basis of the eigenspace
corresponding to IA(h) where each element is localized in one and only one
critical point of index 0 (we label the elements of this basis by C(0)).
Indeed the starting point is to observe that χj exp− f

h where χj is a cut-off
function localizing near a local minimum Uj of f . The analysis of the Witten
Laplacian on the 1-forms shows that the eigenfunctions are localized near the
points of index 1 and one can also find a basis of the eigenspace E(1)

f (IA(h)) lo-
calized at the points of index 1. We can label the elements of this basis by C(1).

One way to understand this is to observe, as in Subsection 11.2.2, that if u
is an eigenvector for Δ(p)

f,h attached to some eigenvalue λ then df,h u is either

0 or a non zero eigenfunction of Δ(p+1)
f,h hence (if λ ∈ IA(h)) localized in the

union of the points of index 1. By combining this information with those on
the decay of the eigenfunctions, one can get that the eigenvalues of Δ(0)

f,h are
actually exponentially small.



15

Semi-classical Analysis and Witten Laplacians:
Tunneling Effects

This chapter is devoted to the brief presentation of the analysis of Helffer-
Sjöstrand [HelSj4] as initially inspired by Witten [Wi]. The hope was that
it would permit to recover the analysis proposed by Bovier-Gayrard-Klein
[BovGayKl] by a different approach. This is actually only partially true and
this will be discussed in the next chapter.

15.1 Morse Theory, Agmon Distance
and Orientation Complex

15.1.1 Morse Function and Agmon Distance

If f is a Morse function, we would like to analyze the relation between the
variation of f and the Agmon distance relative to V = |∇f |2.
The main points are the following:

Lemma 15.1.
For any x and y on the manifold M , we have:

|f(x) − f(y)| ≤ dV (x, y)

This is immediate by writing that for a path γ such that γ(0) = x and
γ(1) = y, one has

f(x) − f(y) =
∫ 1

0

∇f(γ(t)) · γ′(t) dt .

It is important to understand the cases when one has equality. This is
analyzed in the following lemma.

Lemma 15.2.
If x, y ∈ M and f(x) − f(y) = dV (x, y) then any minimal geodesic (for the
Agmon distance) from y to x is a generalized integral curve of ∇f (we have
to be careful at the critical points of f).

B. Helffer and F. Nier: LNM 1862, pp. 173–180, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



174 15 Semi-classical Analysis and Witten Laplacians: Tunneling Effects

Let us describe more explicitly what is a generalized integral curve. This is a
continuous curve in M , which, except at a finite number of critical points of f
(which could be end points), is an integral curve of ∇f . Between two critical
points x1 and x2 , one can find a parametrization of the curve

] −∞,+∞[� t �→ γ(t) ,

such that:

γ′(t) = ∇f(γ(t)) , lim
t→−∞ γ(t) = x1 , lim

t→+∞ γ(t) = x2 .

15.1.2 Generic Conditions on Morse Functions

Two generic assumptions (appearing also in the standard Morse theory) are
made on the Morse function f for the results obtained by Helffer-Sjöstrand
[HelSj4]. The first one is

Assumption 15.3.
If Uj and Uk are two critical points of f and if

d(Uj , Uk) = f(Uj) − f(Uk) ,

then
�j ≥ �k + 1 .

For example, if Uk is a local minimum we have �k = 0, and this will imply
�j ≥ 1.

At each point Uj of index �, one can associate the outgoing stable man-
ifold V +

j defined as the union of the trajectories of ∇f starting1 from Uj

and the incoming stable manifold V −
j defined as the union of the trajectories

of ∇f arriving2 at Uj. V +
j is of dimension n − � and V −

j is of dimension �.
The stable manifold theorem says that these two sets (outgoing and incom-
ing) are locally manifolds and that their tangent space at Uj are respectively
the positive and negative eigenspaces of Hess f(Uj). When � = 0, V −

j is empty.

The second generic assumption is

Assumption 15.4.
If U (�)

k is a critical point of index �, U (�+1)
j is a critical point of index � + 1

and if
d(U (�)

k , U
(�+1)
j ) = f(U (�+1)

j ) − f(U (�)
k ) ,

then there is only a finite number of minimal geodesics from U
(�)
k to U

(�+1)
j .

Moreover V +
k and V −

j intersect transversally along these minimal geodesics.

1 A trajectory “starting from Uj” is a curve γ s.t. γ′(t) = ∇f(γ(t)) and
limt→−∞ γ(t) = Uj ,

2 A trajectory “arriving at Uj” is a curve γ s.t. γ′(t) = ∇f(γ(t)) and
limt→+∞ γ(t) = Uj ,
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Under these assumptions, two cases appear for a given pair of critical
points of index � and � + 1:

Case 1: d(U (�)
k , U

(�+1)
j ) > f(U (�+1)

j ) − f(U (�)
k ) , (15.1)

and
Case 2: d(U (�)

k , U
(�+1)
j ) = f(U (�+1)

j ) − f(U (�)
k ) . (15.2)

In the second case, the minimal geodesics for the Agmon metric are generalized
integral curves of ∇f .

Remark 15.5.
As a consequence of the two previous assumptions, we observe that in Case 2,
no minimal geodesic could meet another critical point of f (cf [HelSj4], p. 177).

Remark 15.6.
It is observed in [ZH] (Chapter 5), that these conditions, which are also called
“Smale transversality conditions” in reference to [Sm2], are generic.

These assumptions, which will be useful when we will apply the Laplace
integral method for computing explicitly the main term, lead in case 2 to the
following property.

Property 15.7.
Between two critical points U

(�)
k and U

(�+1)
j satisfying (15.2), and for any

minimal geodesic γ between these two points the map

x �→ dV (U (�)
k , x) + dV (x, U (�+1)

j ) − dV (U (�)
k , U

(�+1)
j )

vanishes exactly at order 2 when restricted, at some point xγ of γ, to a
transversal hypersurface to γ.

15.1.3 Orientation Complex

Under these generic assumptions, one can define the orientation complex in
the following way. We assume that M is oriented. We choose at each critical
point an orientation of V +

k which gives automatically a natural orientation of
V −

k . Now, if γ is a minimal geodesic between U
(�)
k and U

(�+1)
j , and if we are in

Case (2) (cf Subsection 15.1.2), the generic condition says that V +
k and V −

j

intersect transversally along generalized integral curves of ∇f . We introduce
the index εγ by comparing at some point xγ of γ the orientation of (TxγV

+
k )⊥

and the orientation of the orthogonal of ∇f(xγ) in TxγV
−
j . (In the case when

(TxγV
+
k ) = {0}, we simply compare the orientation of ∇f and of TxγV

−
j .

We then define: {
β

(�)
jk =

∑
γ εγ in case 2 ,

β
(�)
jk = 0 in case 1 ,

(15.3)
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where the sum
∑

γ is over the minimal geodesics between U
(�)
k and U

(�+1)
j .

The orientation complex ∂ is defined as:

0 → C
m0

∂(0)

→ C
m1 → · · · → C

m


∂(�)

�→ C
m(
+1) → · · · → C

m(n−1)

∂(n−1)

→ C
mn → 0 ,
(15.4)

where in degree � the matrix is the matrix β
(�)
jk .

The main theorem in this direction is:

Theorem 15.8.
Under the assumptions (15.3) and (15.4), the Betti numbers are the same as
the cohomology numbers of the orientation complex ∂.

The existence of a semi-classical proof of this result was suggested by
Witten [Wi] and proved by [HelSj4]. According to [ZH], a topological proof
was previously given by F. Laudenbach (appendix in [BZ]). Other results
about the connected Bott inequalities are obtained (in the case of degenerate
critical points) in [HelSj5] (see also [Bi1] and [Hel5]).

15.2 Semi-classical Analysis of the Witten Laplacians

We follow here rather closely [HelSj4] but with additional remarks about the
particular case � = 0. Let us come back to the various steps of the analysis.

15.2.1 One Well Reference Problems

We denote by M
(�)
j the open set obtained by substracting balls of sufficiently

small radius η around the other points of index �, U (�)
k (k �= j):

M
(�)
j := M \ ∪k 	=jB(U (�)

k , η) .

Attached to each of these Dirichlet problems there is a ground state energy
μ

(�)
j (h) and a corresponding ground state φ

(�)
j with the following decay in the

H1(M (�)
j )-norm:

φ
(�)
j = Õ(exp−d(x, U (�)

j )
h

) . (15.5)

Here Õ(f) (for a non negative f) means Oε(f exp ε
h ) for any ε > 0. This means

that we loose multiplicatively Oε(exp ε
h) but for an arbitrarily small ε > 0.

This result is based on Agmon estimates. It is already not a trivial result, in
the sense that one uses that the wells of index different of � are non resonant
(see the discussion around (13.32) including the footnote). The proof given in
Section 13.4 would only have given the weaker estimate:
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φ
(�)
j = Õ(exp− d̂j(x)

h
) , (15.6)

with
d̂j(x) = d(x, |∇f |−1(0) ∩M

(�)
j ) .

In order to have a function defined globally, we introduce a cut-off function χj

with suppχj in M
(�)
j but equal to one in M \∪k 	=jB(U (�)

k , 2η). If we introduce

ψ
(�)
j = χjφ

(�)
j ,

these functions span a space which gives a good approximation of the
eigenspace corresponding to the small eigenvalues of Δ

(�)
f,h with some error

of order Õ
(
exp− 1

h minj 	=k d(U
(�)
j , U

(�)
k )

)
.

15.2.2 Improved Decay

Here are improvements established in [HelSj4] for the decay of df,hφ
(�)
j and

d∗f,hφ
(�)
j . They are obtained by combining the information on the decay of φ(�)

j

and the information on the decay of df,hφ
(�)
j as an eigenfunction (if not 0) of

the Witten Laplacian on the (�+ 1)-forms and of d∗f,hφ
(�)
j as an eigenfunction

(if not 0) of the Witten Laplacian on the (�− 1)-forms. We have indeed

df,hφ
(�)
j = Õ(exp−α�

j(x)
h

) , (15.7)

where
α�

j(x) = min
k∈C(
+1)∪C(
)\{j}

d(U (�)
j , Uk) + d(Uk, x) . (15.8)

Similarly, we get:

d∗f,hφ
(�)
j = Õ(exp−β�

j(x)
h

) , (15.9)

where
β�

j(x) = min
k∈C(
−1)∪C(
)\{j}

d(U (�)
j , Uk) + d(Uk, x) . (15.10)

As a corollary, we get

Lemma 15.9.
The first eigenvalue μ

(�)
j (h) satisfies

μ
(�)
j = Õ(exp−2c(�)j

h
) , (15.11)

with
c
(�)
j = min

k∈C(
−1)∪C(
)∪C(
+1)\{j}
d(U (�)

j , Uk) . (15.12)
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When � = 0, we get that c
(�)
j is the minimal distance between U

(0)
j and a

saddle point of index 1 .
This can be reobtained more easily by considering directly a cut-off func-

tion χ̃j and considering χ̃j exp− f
h .

15.2.3 An Adapted Basis

Once we have constructed the ψ(�)
j , one can then take their projection onto the

eigenspace F := E
(�)
f (IA(h)), attached to the eigenvalues in IA(h) = [0, Ah

3
2 [

and consider:
v
(�)
j = ΠFψ

(�)
j .

One can prove (see Lemma 13.6) that v(�)
j −ψ

(�)
j is exponentially small in L2.

Let us consider the matrix

Vjk := 〈v(�)
j | v(�)

k 〉 .

This matrix is exponentially close to the identity. Orthonormalizing by the
Gram-Schmidt procedure, that is considering

e
(�)
j =

m
∑
k=1

(V − 1
2 )jkv

(�)
k , for j = 1, . . . ,m� ,

leads to the orthonormal basis (e(�)
j ) of this eigenspace .

The analysis gives that, for the computations of the main term, it is enough
to work with the v

(�)
j modulo some controlled error and that

v
(�)
j − ψ

(�)
j = Õ(exp−δ

(�)
j (x)
h

), (15.13)

with
δ
(�)
j (x) = min

k∈C(
)\{j}

(
d(U (�)

j , U
(�)
k ) + d(U (�)

k , x)
)

. (15.14)

Here the reader should observe that the proof of Lemma 13.6 provides a
smaller δj(x) where the minimum would have been considered over all critical
points except U (�)

j .

15.2.4 WKB Approximation

We already discussed the existence of WKB solutions in Section 13.6. The
fact that we are working with systems does not lead to very difficult new
problems. In suitable3 domains one can consequently approximate v

(�)
j by a

3 geodesically starshape with respect to Uj
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WKB solution. When � = 0, the function exp− f(x)
h is after renormalization

around the local minima U
(0)
j the WKB approximation. For the point of index

1, we shall see that we only need the WKB approximation in a neighborhood
of the saddle points. This construction is done in [HelSj4].

As observed in [HelSj4], all this material does not give the way to analyze
directly the Witten Laplacian. It is better to first analyze the Witten complex
and then to come back to the Witten Laplacian.

15.3 Semi-classical Analysis of the Witten Complex

In the previous section, we have seen that there exists a basis of the space
E

(0)
f (IA(h)) indexed by C(0) and a basis of the space of E(1)

f (IA(h)) indexed
by C(1), consisting of exponentially localized elements and admitting good
WKB approximations. Moreover we have seen that d

(0)
f,h sends E

(0)
f (IA(h))

into E
(1)
f (IA(h)) and is represented in the above mentioned basis by a m1×m0

matrix.
This can actually be done at each degree and the computation of this matrix
(up to a well controlled remainder estimated by Helffer-Sjöstrand [HelSj4])
permits to recover as a limiting complex the so called orientation complex
(see for example [ZH] and Subsection 15.1.3). Here we will limit ourself to the
analysis on 0-forms.
We denote by

M = (Mjk){j=1,...,m1 , k=1,...m0}

the matrix of d(0)
f,h /E

(0)
f (IA(h))

in the above basis ofE(0)
f (IA(h)) and E

(1)
f (IA(h)).

The main term to compute is

Mjk = 〈e(1)
j | df,h e

(0)
k 〉 . (15.15)

We observe that:

Mjk = Ijk + O
(

exp− (d(U (1)
j , U

(0)
k ) + αjk)
h

)
, (15.16)

for some αjk > 0, with
Ijk = 〈v(1)

j | df,hv
(0)
k 〉 , (15.17)

which is easier to compute. We follow [HelSj4] but change a little the cut-off
function. This choice can be useful for other purpose.

We introduce a cut-off function χ̂j with the property that χj = 1 in a
neighborhood of U (1)

j say a ball of size ηj > 0 and with compact support in

B(U (1)
j , 2ηj). This ηj should be larger than the “cut-off” appearing previously

in the construction of ψ(0)
k . In [HelSj4], the cut-off was more or less at the
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middle between U
(1)
j and U

(0)
k . Here we prefer to use that we have a better

information on ψ
(0)
k .

We now show that this other choice does not modify the estimate of [HelSj4].
We first decompose Ijk as the sum

Ijk = I1
jk + I2

jk ,

with
I1
jk = 〈(1 − χ̂j)v

(1)
j | df,hv

(0)
k 〉 .

Using (15.5) and (15.7), we obtain that the term ((1−χ̂j)v
(1)
j · df,hv

(0)
k )(x)

(scalar product of two one-forms at x) which is integrated for giving I1
jk be-

haves like

Õ
(

exp− 1
h

(
d(x, U (1)

j ) + min
p∈C(0)∪C(1)\{k}

(d(Up, x) + d(Up, U
(0)
k )

))
.

Hence, by taking into account the information on the support of (1 − χ̂j), it
is of order O(exp− 1

h (d(U (1)
j , U

(0)
k ) + αj)) for αj > 0 .

Let us now treat the second term. We first rewrite:

I2
jk = 〈d∗f,hv

(1)
j | χ̂jv

(0)
k 〉 − h〈dχ̂j ∧ v

(0)
k | v(1)

j 〉 .
Using the estimates (15.5) and (15.9), the first term of I2

jk can be treated
similarly. So we finally get the following lemma.

Lemma 15.10.
There exists a constant αj > 0 such that

Ijk = −h〈dχ̂j ∧ v
(0)
k | v(1)

j 〉 + O
(

exp− 1
h

(d(U (1)
j , U

(0)
k ) + αj)

)
(15.18)

We are reduced to get a good knowledge of v(0)
k and v

(1)
j on the support

of dχ̂j which is contained in B(U (1)
j , 2ηj) \ B(U (1)

j , ηj). A further analysis
involving only Agmon estimates shows that we should also restrict the ap-
proximation to a neighborhood Vkj of the minimal geodesic between U

(1)
j and

U
(0)
k .

The new point (in the case � = 0) is that there v
(0)
k is well approximated

by ρk(h) exp− 1
h (f(x) − f(U (0)

k )), in Vkj ∩ {B(U (1)
j , 2ηj) \ B(U (1)

j , ηj)}. The
proof of this point can be done following the proof of the so-called “analytic
case” of Theorem 5.8 in [HelSj1].
According to our choice of χ̂j , we also need to know the WKB approximation
of v(1)

j in the ball B(U (1)
j , 2ηj). This construction, corresponding to an exten-

sion to systems of what we sketched in Section 13.6 and Subsection 15.2.4 is
given in [HelSj4]. Again the comparison between the WKB construction and
v
(1)
j is obtained by using the ”C∞” part of Theorem 5.8 in [HelSj1].



16

Accurate Asymptotics for the Exponentially
Small Eigenvalues of Δ

(0)
f,h

The aim of this chapter is to present the results obtained by Bovier-Gayrard-
Klein [BovGayKl] and recent generalizations which we have obtained in col-
laboration with M. Klein [HelKlNi]. After the description of the main results,
we will try to analyze how far we can go with the Helffer-Sjöstrand techniques.
This will lead us to give a relatively selfcontained proof in the case when f
has two local minima and one unique saddle point.

16.1 Assumptions and Labelling of Local Minima

The labelling of the local minima is essentially the one introduced by Bovier-
Gayrard-Klein [BovGayKl]. It is an important point of their probabilistic
approach and their intuition was based on the notion of exit times for the
stochastic dynamics. Their idea was to enumerate the local minima accord-
ing to the decreasing order of exit times. These authors work in the case of
Ω = Rn. The cases when M is a compact manifold or a bounded regular open
set are analyzed in [HelKlNi] and [HelNi2].
One key notion is the notion of non degenerate saddle point between two sets
A and B in Rn. First we define

Hf (A,B) = inf
ω;ω(0)∈A , ω(1)∈B

sup
t∈[0,1]

f(ω(t)) , (16.1)

where the infimum is over all continuous paths going from A to B .
We then say that z∗ = z∗(A,B) is a non degenerate saddle point between A
and B if:

•
f(z∗(A,B)) = Hf (A,B) ; (16.2)

• z∗(A,B) is a critical point of index 1 ;

B. Helffer and F. Nier: LNM 1862, pp. 181–188, 2005.
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• There exists a continuous path [0, 1] � t �→ ω(t) going from A to B and
t0 ∈]0, 1[ such that:

z∗(A,B) = ω(t0) and f(ω(t)) ≤ f(z∗(A,B)) , ∀t ∈ [0, 1] .

Note that z∗(A,B) is not uniquely defined and we call Z(A,B) the set of all
non degenerate saddle points between A and B. The next assumptions ensure
that for two disjoint sets A and B of local minima, Z(A,B) is not empty and
finite. In order to control the situation at ∞, We assume here that f ∈ C∞

and that there exists a compact K and a constant C0 > 0 such that:

|∇f | ≥ 1
C 0

, (16.3)

outside K and that:
|Δf | ≤ C0 < ∇f >2 . (16.4)

Then we assume that f is locally a Morse function. So there is only a finite
number of non degenerate critical points. We note that, under the assumptions
(16.3) and (16.4), and using Persson’s Theorem, the essential spectrum of Δ(0)

f,h

is bounded from below by 1
2C0

, for h small enough.
Up to now the assumptions leave open the possibility of having exp− f

h in the
kernel or not. In [BovGayKl], the assumption is that∫

{y: f(y)≥a}
exp(−f(y)

h
)dy ≤ C exp−a

h
,

for any a ∈ R . This assumption is removed in [HelKlNi] and [HelNi2]. Here,
we assume for simplicity:

f(x) ≥ 1
C
〈x〉 1

C . (16.5)

which in particularly implies that:

exp−f

h
∈ L2(Rn) .

We first start with m0 unlabelled local minima U
(0)
α , α ∈ A, #A = m0.

In order to give a more constructive presentation of the proper numbering of
local minima which is associated with the crucial assumption, we introduce the
following initial assumption which is slightly stronger than what is assumed
in [BovGayKl][HelKlNi][HelNi2].

Assumption 16.1.
The function f is a Morse C∞(Rn) function which satisfies (16.4) (16.5) and
the following property:
For any A′ ⊂ A, A′ �= A and any α ∈ A\A′, there is a unique non-degenerate
saddle point z∗(U (0)

α ,∪α′∈A′ U
(0)
α′ ).
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The local minima are then indexed according to following induction process
on k starting from k = m0:
By assuming that U (0)

m0 , . . . , U
(0)
k+1 are known, one sets

Ak =
{
α ∈ A,U (0)

α �∈
{
U (0)

m0
, . . . , U

(0)
k+1

}}
.

The local minimum U
(0)
k is then chosen as a minimizer of

f(z∗(U (0)
α , ∪

α′∈Ak\{α}
U

(0)
α′ )) − f(U (0)

α ) , α ∈ Ak . (16.6)

Remark 16.2.
In our case, once U

(0)
2 is known, only one local minimum U

(0)
1 is left and it

has to be a global minimum for f .

Here is the crucial assumption of [BovGayKl] which avoids to have exponen-
tially small eigenvalues with close asymptotics1 .

Assumption 16.3.
At each step of the previous induction process, the quantity (16.6) has a unique
minimizer (U (0)

k is uniquely defined).

Once the local minima are labelled, one can fix the critical points of index 1
which play an important role:

∀k ∈ {2, . . . ,m0} , U
(1)
j(k) = z∗(U (0)

k ,∪j∈{1,...,k−1}U
(0)
j ) . (16.7)

For k = 1 we set j(1) = 0 where U
(1)
0 does not denote a point of Rn (it can

be interpreted as U (1)
0 = ∞) with the convention f(U (1)

0 ) = +∞ .
Note that the assumption 16.3 implies that the quantities

f(U (1)
j(k)) − f(U (0)

k ), k ∈ {1, . . . ,m0} (16.8)

are strictly decreasing.

16.2 Main Result

The main result, we would like to discuss is:

Theorem 16.4.
If f satisfies the Assumptions 16.1 and 16.3 and if the local minima U

(0)
1 , · · · , U (0)

m0

are labelled according to the previous process with U
(1)
j(k) defined by (16.7) then

1 It will avoid the existence of two eigenvalues λ(h) and λ′(h), with corresponding
orthogonal eigenfunctions, such that limh→0 h log λ(h) = limh→0 h log λ′(h)
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there exists h0 > 0 , such that, for h ∈]0, h0] , the m0 (exponentially small)
lowest eigenvalues satisfy

λk(h) = h
π |λ̂1(U

(1)
j(k))|

√∣∣∣∣ det(Hess f(U
(0)
k ))

det(Hess f(U
(1)
j(k)))

∣∣∣∣
× exp− 2

h

(
f(U (1)

j(k)) − f(U (0)
k )

)
× (1 + rk(h)) ,

(16.9)

where λ̂1(U
(1)
j ) denotes the unique negative eigenvalue of the Hessian of f at

the saddle point U (1)
j and rk(h) = o(1) .

Remarks 16.5.

1. One has to give the interpretation of the formula for the first eigenvalue.
Then one knows λ1(h) = 0 and it is coherent with our convention

f(U (1)
j(1)) = +∞ , (16.10)

with any finite value for the other factors. One observes that U
(0)
1 corre-

sponds to a global minimum.
2. This theorem is proved with

rk(h) = O(h
1
2 | lnh|) ,

by Bovier-Gayrard-Klein [BovGayKl], with slightly weaker assumptions
and with

rk(h) ∼
∑
j≥1

rjkh
j ,

by Helffer-Klein-Nier [HelKlNi].
3. The probabilistic approach of [BovGayKl] permits a lower regularity for

f (f ∈ C3).
4. The approach in [HelKlNi] works for situations where the probabilistic

approach fails or presents additional difficulties:
• some cases when Ω = R

n and e−f(x)/h �∈ L2,
• Ω is a compact oriented Riemannian manifold.

5. The question of the splitting between 0 and the lowest non zero eigen-
value has been attacked before by other authors including for exam-
ple Holley-Kusuoka-Strook [HolKusStr], Miclo [Mi] and Bovier-Eckhoff-
Gayrard-Klein [BovEckGayKl1], [BovEckGayKl2].

16.3 Proof of Theorem 16.4 in the Case
of Two Local Minima

We note that the corresponding matrix of Δ(0)
f,h /E

(0)
f (IA(h))

is M∗ ◦M. This

matrix has 0 as an eigenvalue: the function exp− f
h is indeed in the kernel of
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Δ
(0)
f,h. One is reduced to the analysis of M∗ ◦ M and of its approximation.

At a first glance, a good knowledge of this matrix, as it results from [HelSj4],
seems to contain all the information. It is actually not the case !! In the case
when there is one global minimum and one other local minimum, which leads
to a 2 × 2 matrix, with 0 as eigenvalue, it is immediate to recover the second
one by taking the asymptotic expansion of the trace of this 2 × 2 matrix.
Nevertherless, when there are more than two local minima, one is only able to
compute the largest of these exponentially small eigenvalues lying in [0, Ah

3
2 [,

without adding additional information.
We now consider the case with to local minima. Hence we add the assumption
that f has two unequal minima U

(0)
1 and U

(0)
2 (U (0)

1 being the global minimum)
and one saddle point U (1) of index 1. We assume that the pairs (U (0)

1 , U (1))
and (U (0)

2 , U (1)) correspond to the case (2). In this case, we have:

d(U (0)
1 , U (1)) = f(U (1)) − f(U (0)

1 ) ,
d(U (0)

2 , U (1)) = f(U (1)) − f(U (0)
2 ) ,

d(U (0)
1 , U

(0)
2 ) = d(U (0)

1 , U (1)) + d(U (1), U
(0)
2 ) = 2f(U (1)) − f(U (0)

1 ) − f(U (0)
2 ) .

The matrix M is simply:
M = (β1, β2)

where the coefficients can be estimated by comparison with WKB construc-
tions:

βj = hνj aj(h) exp−(f(U (1)) − f(U (0)
j ))/h ,

where aj(h) has a complete expansion in powers of h. There is a more accurate
formula, which was important for the proof of Theorem 15.8 and which is given
in [HelSj4] (see (3.24) and (3.27) therein), that we recall now. If j is a point
of index � and k is a point of index � + 1, the formula is (in case 2)

Mjk = (
h

π
)

1
2 (
∑

εγ + O(h)) ΛjΛ
−1
k exp−(f(U (�+1)

k ) − f(U (�)
j ))/h , (16.11)

where at a critical point U (m)
p of index m

Λp =

(
|λ̂m+1| · · · |λ̂n|
|λ̂1| · · · |λ̂m|

) 1
4

, (16.12)

and the λ̂q’s (more precisely λ̂q(Up)) are the eigenvalues arranged in increasing
order, such that, in particular, λ̂q < 0 for q ≤ m and λ̂q > 0 for q > m, of
Hess f(U (m)

p ).
In case 1, one can only show that

Mjk = O(exp−d(U (�)
j , U

(�+1)
k )/h) . (16.13)
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(0)
f,h

In our particular case, we get, observing the uniqueness of the minimal
geodesic between the saddle point and the local minimum:

βj =
1√
π
h

1
2 (εj + O(h))

(
|λ̂1(U

(0)
j )| · · · |λ̂n(U (0)

j )|
) 1

4
(

|λ̂2(U
(1))|···|λ̂n(U(1))|
|λ̂1(U(1))|

)− 1
4

exp−(f(U (1)) − f(U (0)
j ))/h ,

(16.14)
with |εj | = 1.

Remark 16.6.
It could appear to be strange to see εj appearing in (16.14), but the choice of
the basis attached to the critical points of index 1 is not canonical, and related
to the choice of an orientation of the “positive spaces”. In any case, this is the
square of βj which will be relevant for the computation of the eigenvalues.

Remark 16.7.
Note that this result is improved in [HelSj4] (Theorem 6.1) by a better control
of O(h) in (16.14).

The matrix of the “reduced” Witten Laplacian is then:

M∗M =
(

β2
1 β1β2

β1β2 β2
2

)
.

We observe that the trace is given by:

TrM∗M = β2
1 + β2

2 ,

and that, as expected, 0 is an eigenvalue (compute the determinant!). The
non zero eigenvalue λ2 is given by:

λ2 = β2
1 + β2

2 .

We get consequently in this particular case a complete expansion of λ2 , whose
principal term is given by the principal term of β2

2 .
In this particular case, this confirms and completes the results of [BovGayKl].

The case of many saddle points (satisfying case 2) (say p saddle points of
index 1 and still two local minima) is treated in the same way. The computa-
tion of the trace gives now:

TrM∗M =
p∑

k=1

(M2
k1 + M2

k2) .

We note that 0 is no more an evident eigenvalue of M∗M . On the other hand
we know that exp− f

h is in the kernel of df and this induces relations. Written
in the adapted basis, we have a natural element (α1, α2) in the kernel of M.
This implies the relations:



16.4 Towards the General Case 187

Mk1Mk′2 = Mk′1Mk2 , ∀k, k′ . (16.15)

Let us show how to get an asymptotics of αj . The L2-renormalization of
exp− f

h leads to α exp− f
h with α given by the Laplace integral method. We

get then α1 ∼ 1. For α2, we have to compute the scalar product of α exp− f
h

with the renormalized α2χ2(x) exp− f−f(U
(0)
2 )

h .
Another way to understand the structure is to see from (16.14) that Mjk has
the structure δjδ

−1
k at the level of the principal symbol.

The main contribution will be given by the lowest saddle point U (1)
kmin

corre-

sponding to the smallest d(U (0)
2 , U

(1)
k ) = f(U (1)

k )− f(U (0)
2 ). So the main order

is exp−2 infk(f(U (1)
kmin

) − f(U (0)
2 ))/h.

More precisely, we have obtained for the second eigenvalue:

λ2(h)
= h

π (1 + O(h))(| det Hess f(U (0)
2 )|) 1

2 (| detHess f(U (1)
kmin

)|)− 1
2 |λ̂1(U

(1)
kmin

)|
× exp− 2

h (f(U (1)
kmin

) − f(U (0)
2 )) .

(16.16)
This proves in this particular case Theorem 16.4 with a complete expansion
of the prefactor. The method can be extended without particular problems
for the case of m0 > 2 local minima but will only lead to a an expansion
for the corresponding λm0 . In particular, we do not get the most important
information about the splitting when m0 > 2.

16.4 Towards the General Case

Let us describe some of the ideas involved in [HelKlNi]. As mentioned above
in the case m0 > 2 , one can always an accurate approximation for the highest
eigenvalue λm0(h) of M∗M , since λm0(h) = ‖M‖2 . By using the spectral
theorem, one can get an accurate information about the corresponding eigen-
vector as well. Nevertheless a standard orthonormalization process cannot be
used here because it brings error terms which are bigger than the other eigen-
values which we are looking for.
The solution which is proposed in [HelKlNi] relies on the fact that the eigen-
values of M∗M are the square of the singular values of M:

∀k ∈ {1, . . . ,m0} , λk(h) = μm0+1−k(M)2 .

Without specifying any basis, it reads

∀k ∈ {1, . . . ,m0} , λk(h) = μm0+1−k(β(0)
f,h)2 ,

where βf,h(0) is the restricted differential β(0)
f,h = d

(0)
f,h

∣∣
F (0) :
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(0)
f,h

β
(0)
f,h : 1[0,h3/2)(Δ

(0)
f,h) = F (0)

d
(0)
f,h

→ F (1) = 1[0,h3/2](Δ
(1)
f,h) .

The important property of the singular eigenvalues μj(β
(0)
f,h), which permits

to perform the induction comes from the Fan inequalities (see for example
[Sim3]):

μj(AB) ≤ μj(A) ‖B‖ ; μj(BA) ≤ ‖B‖μj(A) .

Actually, if B� , � = 0, 1, are linear applications B� : F (�) → F (�) such that
max

{‖B�‖ ,
∥∥B−1

�

∥∥} ≤ 1 + ρ then

∀j ∈ {1, . . . ,m0} ,
μj(B1β

(0)
f,hB0)

(1 + ρ)2
≤ μj(β

(0)
f,h) ≤ μj(B1β

(0)
f,hB0)(1 + ρ)2 .

This means that small changes of bases in F (0) and F (1) lead to a small rela-
tive error of ALL singular values.

The analysis starts by choosing quasimodes for Δ(0)
f,h and Δ

(1)
f,h , respectively

associated with every local minimum and every critical point with index 1.
According to the discussion in Section 15.3, the good quasimodes for Δ

(0)
f,h

simply take the form Chχ(x)e−
f(x)

h , where the cut-off function χ can be mod-
elled on the level sets of f . The quasimodes for Δ

(1)
f,h are given by a local

WKB approximation.
We refer the reader to [HelKlNi] for details.
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Application to the Fokker-Planck Equation

In [HerNi], it was proved that the rate of exponential return to equilibrium
for the equation{

∂tF + v · ∂xF − 1
m∂xV (x) · ∂vF − γ0

mβ

(
∂v − mβ

2 v
)
·
(
∂v + mβ

2 v
)
F = 0 ,

F (x, v, t = 0) = F0(x, v) ,

in L2(R2n) can be estimated quantitatively in terms of m, γ0, β. In the case
of low temperature β = 1

T → +∞, their result which holds for general non
necessarily Morse functions was not very accurate in the presence of more
than one local minimum in the potential V (x). This can be improved with
Theorem 16.4.

By assuming V ∈ S(〈x〉2μ, dx2

〈x〉2 ) and 〈∇V (x)〉 elliptic in the symbol class

S(〈x〉2μ−1, dx2

〈x〉2 ) , μ > 1/2 , (see [HerNi] and Chapter 5 for more general as-
sumptions), it is proved in [HerNi] that the exponential rate τ of exponential
return to to the equilibrium1 satisfies

min {1, ω1(Vβ)}
64(5 + 3γ0

√
mβ

μ−1
2μ + 3CVβ

)2
≤ τ ≤ cV

√
ω1(Vβ) log

[
Q(

√
mγ0, β, ω1(Vβ)

]
.

(17.1)
The quantities involved in these estimates are:

i) the potential Vβ given by Vβ(x) = βV (β−1/2μx) ,
ii) the first non zero eigenvalue ω1(Vβ) of the Witten Laplacian Δ

(0)
Vβ/2 ,

iii) the non negative constant CVβ
defined by

C2
Vβ

:= max
{

sup
x∈Rn

σ

[
(HessVβ)2 −

(
1
4
|∂xVβ |2 − 1

2
ΔVβ

)
Id
]
, 0
}

.

(17.2)

1 Note that in the derivation of quantitative estimates in [HerNi] the exponential
in time law, e−τt is corrected by some rational prefactor (t + t−1)N .

B. Helffer and F. Nier: LNM 1862, pp. 189–191, 2005.
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iv) the constant cV which is independent of the physical parameters m, γ0

and β ,
v) the rational function

(γ, β, ω) �→ Q(γ, β, ω) := (γ + γ−1)N0(β + β−1)N0(ω + ω−1)N0 ,

where N0 ∈ N is universal.

Note that, under the ellipticity assumption, one has the upper bound

CVβ
≤ c′V (1 + β

μ−1
μ ),

where c′V is independent of the physical parameters m, γ0 and β.

In order to apply Theorem 16.4, we also assume that:
V is a Morse function such that V (x) ≤ C−1〈x〉2μ and ∇V (x) �= 0 for |x| ≥ C.
The quantity ω1(Vβ) is the splitting associated with the Witten Laplacian

Δ
(0)
Vβ/2 = −Δx +

β2−2/μ

4

∣∣∣∇V (β−1/2μx)
∣∣∣2 − β−2/μ

2
ΔV (β−1/μx).

After a unitary transform the spectral analysis for β → ∞ is the one of the
semiclassical operator

h−2+1/μ

(
−h2Δ +

1
4
|∇V (x)|2 − 1

2
ΔV (x)

)
= h−2+1/μΔ

(0)
V/2,h ,

where h = 1
β is the semi-classical parameter.

We consider the case with two minima U
(0)
1 and U

(0)
2 and assume that U (0)

1

is the unique global minimum. We introduce

U (1) := z∗(U (0)
2 , U

(0)
1 ) .

According to Theorem 16.4 and its improvment (16.16), we obtain

ω1(Vβ) =
h−1+1/μ

2π
|λ̂1(U (1))|

√√√√∣∣∣∣∣det(HessV (U (0)
2 ))

det(HessV (U (1)))

∣∣∣∣∣
× exp− 1

h

(
V (U (1)) − V (U (0)

2 )
)
× (1 + O(h)) (17.3)

=
β1−1/μ

2π
|λ̂1(U (1))|

√√√√∣∣∣∣∣det(HessV (U (0)
2 ))

det(HessV (U (1)))

∣∣∣∣∣
× exp−β

(
V (U (1)) − V (U (0)

2 )
)
× (1 + O(β−1)) , (17.4)

where λ̂1(U (1)) denotes the unique negative eigenvalue of the Hessian of V
at the saddle point U (1). Hence in the low temperature regime, that is when
β ≥ βV , we get ω1(Vβ) ≤ 1 .
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Theorem 17.1.
Assume that V ∈ S(〈x〉2μ, dx2

〈x〉2 ) and that 〈∇V (x)〉 is elliptic in the symbol

class S(〈x〉2μ−1, dx2

〈x〉2 ) , μ > 1/2 . Assume additionally that it is a Morse func-
tion with two local minima and limx→∞ V (x) = +∞. Then the rate of return
to the equilibrium τ satisfies

β1−1/μρ(β)

64(5 + 3γ0
√
mβ

μ−1
2μ + 3CVβ

)2
≤ τ ≤ cV β

3/2−1/2μ
√
ρ(β) log

[
Q(

√
mγ0, β, 1)

]
,

for any β ≥ βV , where cV > 0 and βV > 0 only depend on V , the quantitity
ρ(β) is defined by

ω1(Vβ) = β1−1/μρ(β) , (17.5)

and CVβ
is defined by (17.2).

This result can be simplified if the potential is quadratic at infinity since in
this case μ = 1, hence β1−1/μ = 1, and

C2
Vβ

≤ κV (1 + OV (β−1/2))

with κV := max
x0, ∇V (x0)=0

σ

[
(HessV (x0))2 +

1
2
|ΔV (x0)|Id

]
.

Corollary 17.2.
If V is quadratic at infinity the previous lower and upper bounds lead to

ρ(β)(1 + OV (β−1/2))
64(5 + 3γ0

√
m + 3

√
κV )2

≤ τ ≤ cV β
√
ρ(β) log

[
Q(

√
mγ0, β, 1)

]
.
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Epilogue

Our aim in this text was not to give a definite treatment of the spectral and
regularity properties of Fokker-Planck operators or Witten Laplacians. We
tried instead to give an account of how the known techniques from partial dif-
ferential equations and spectral theory can be applied for their analysis, while
completing or referring to existing and sometimes recent results. We hope that
this synthetic text will help the researchers in Partial Differential Equations,
Probability theory or Mathematical Physics for further developments in this
field, which happened to be and is still very active.

During the publishing process of this text some new results have been
obtained. The accurate asymptotics of the exponentially small eigenvalues
presented in Chapter 16 have been proved in a quite general framework in
[HelKlNi] and [HelNi2]. An accurate description of the spectrum and pseu-
dospectrum of a semiclassical Fokker-Planck operator has been given by
Hérau-Sjöstrand-Stolk in [HerSjSt]. A work in preparation by F. Hérau deals
with the return to the equilibrium for some nonlinear Fokker-Planck equation
arising in kinetic theory.

When writing the final version of this text, we heared also about the
recent work of Bismut [Bi2, Bi3, Bi4, Bi5] (and even more recently about
his collaboration with Lebeau [Leb]). The so called “hypoelliptic Laplacian”
that he introduces in order to compute geometrical invariants and which acts
in the cotangent bundle (phase-space), looks like what we have called here
the Fokker-Planck operator with a partial diffusion only in the momentum
variable. The structures exhibited by Bismut bring a new point of view and
may suggest new questions in analysis.

Besides the mathematical questions that we addressed in this text, other
developments are possible towards more involved models: general drift-diffusion
operators, chains of anharmonic oscillators, other kinetic equations. Our point
of view was to restrict our attention to the simplest models which already ex-
hibit a very rich structure. For further information on related problems or
other issues, we refer the reader to [Ris], [EckHai1], [Re-BeTh3] or [Vi2].

B. Helffer and F. Nier: LNM 1862, p. 193, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Hörmander’s operator, 11, 74
type 1–, 12
type 2–, 13, 45, 73, 74, 93
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parametrix, 31–33
Pauli matrices, 87
Pauli operator, 26
Perron-Frobenius argument, 156
Poincaré inequality, 113–115, 117, 118,

121, 122
Poisson bracket, 30, 58
polyhomogeneous potential, 71, 117,

119
positive operator, 27, 64

powers of–, 32, 34, 37
principal

part, 71, 80, 109
symbol, 30, 37, 58, 187
type, 63
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