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Foreword

This text is an expanded version of informal notes prepared by the first author
for a minicourse of eight hours, reviewing the links between hypoelliptic tech-
niques and the spectral theory of Schrodinger type operators. These lectures
were given at Rennes for the workshop “Equations cinétiques, hypoellipticité
et Laplacien de Witten” organized in February 2003 by the second author.
Their content has been substantially completed after the workshop by the two
authors with the aim of showing applications to the Fokker-Planck operator in
continuation of the work by Hérau-Nier. Among other things it will be shown
how the Witten Laplacian occurs as the natural elliptic model for the hypoel-
liptic drift diffusion operator involved in the kinetic Fokker-Planck equation.
While presenting the analysis of these two operators and improving recent
results, this book presents a review of known techniques in the following top-
ics : hypoellipticity of polynomial of vector fields and its global counterpart,
global Weyl-Hérmander pseudo-differential calculus, spectral theory of non
self-adjoint operators, semi-classical analysis of Schrodinger type operators,
Witten complexes and Morse inequalities.

The authors take the opportunity to thank J.-M. Bony, who permits
them to reproduce its very recent unpublished results, and also M. Derridj,
M. Hairer, F. Hérau, J. Johnsen, M. Klein, M. Ledoux, N. Lerner, J.M. Lion,
H.M. Maire, O. Matte, J. Moeller, A. Morame, J. Nourrigat, C.A. Pillet,
L. Rey-Bellet, D. Robert, J. Sjostrand and C. Villani for former collabora-
tions or discussions on the subjects treated in this text. The first author would
like to thank the Mittag-Leffler institute and the Ludwig Maximilian Univer-
sitdt (Munich) where part of these notes were prepared and acknowledges
the support of the European Union through the THP network of the EU No
HPRN-CT-2002-00277 and of the European Science foundation (programme
SPECT). The second author visited the Mittag-Leffler institute in september
2002 and acknowledges the support of the french “ACI-jeunes chercheurs :
Systemes hors-équilibres quantiques et classiques”, of the Région Bretagne, of
Université de Rennes 1 and of Rennes-Métropole for the organization of the
workshop “CinHypWit : Equations cinétiques, Hypoellipticité et Laplaciens
de Witten” held in Rennes 24/02/03-28,/02/03.
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1

Introduction

This text presents applications and new issues for hypoelliptic techniques
initially developed for the regularity analysis of partial differential operators.
The main motivation comes from the theory of kinetic equation and statistical
physics. We will focus on the Fokker-Planck (Kramers) operator:

v n v n
K—v-aw—(axV(x))-av—Av+4—2—X0—AU+4—2, (1.1)

and the Witten Laplacian

1 h
Ay = —h2A+ VO - AP, (1.2)

where )

B(z,v) = ”2 + V()
is a classical hamiltonian on Rit‘v and
Xo=v-0; — (0,V(x)) -0y

is the corresponding hamiltonian vector field.
The aim of this text is threefold:

1. exhibit the strong relationship between these two operators,

2. review the known techniques initially devoted to the analysis of hypoel-
liptic differential operators and show how they can become extremely
efficient in this new framework,

3. present, complete or simplify the existing recent results concerned with
the two operators (1.1) and (1.2).

At the mathematical level the analysis of these two operators leads to ex-
plore or revisit various topics, namely: hypoellipticity of polynomials of vector
fields and its global counterpart, global Weyl-Hormander pseudo-differential
calculus, spectral theory of non self-adjoint operators, semi-classical analysis
of Schrodinger type operators, Witten complexes and Morse inequalities. The

B. Helffer and F. Nier: LNM 1862, pp. 1-9, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



2 1 Introduction

point of view chosen in this text is, instead of considering more complex phys-
ical models, to focus on these two operators and to push as far as possible the
analysis. In doing so, new results are obtained and some new questions arise
about the existing mathematical tools.

0)
We will prove that (e 7#£);>( and (e s )i>0 are well defined contraction
semigroups on L?(R?", dz dv) for any V € C*(R?). Meanwhile the Maxwellian

- {e‘”’z”") it "% e L2(R2m)
0

M(x,v
else ,

is the (unique up to normalization) equilibrium for K and Ag)/)zz

— A0 3=
KM = AJ),M =0.

Two questions arise from statistical physics or the theory of kinetic equations:
Question 1:

Is there an exponential return to the equilibrium ? By this, we mean the
existence of 7 > 0 such that:

e Pu—cuM|| < e ™ |ul , Yu € L*(R*),

where P = K or P = A;O/)Z and ¢, (in the case M # 0) is the scalar product
in L2(R?") of u and M/||M]||.

Question 2:

Is it possible to get quantitative estimates of the rate 7 7

For P = Ag)/)Q which is essentially self-adjoint it is reduced to the es-
timate of its first nonzero eigenvalue. Several recent articles, like [DesVi],
[EckPiRe-Be|, [EckHail], [EckHai2], [HerNi], [Re-BeThl], [Re-BeTh2],
[Re-BeTh3], [Tal], [Ta2] and [Vil], analyzed this problem for operators sim-
ilar to K, with various approaches going from pure probabilistic analysis to
pure partial differential equation (PDE) techniques and to spectral theory.
The point of view developed here is PDE oriented and will strongly use hy-
poelliptic techniques together with the the spectral theory for non self-adjoint
operators.

Note that a related and preliminary result in this “spectral gap” approach
concerns the compactness of the resolvent. One of the results which establish
the strong relationship between K and Ag)/)Z says:

Theorem 1.1.
The implication

(1+K)™' compact) = ((1 + Ag))Yl compact) (1.3)
holds under the only assumption V € C*>(R™)!.

! Indeed the C* regularity is not the crucial point here and the most important
fact is that nothing is assumed about the behaviour at infinity.
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In [HerNi] the reverse implication was proved for quite general elliptic poten-
tials, satisfying for some u > 1,

109V ()| < Co(x)? 1ol and C~H@)2 <1+ |V (z)| < C%(z)?+

Among other things in the present text, we will explore as deeply as possible
the validity of the following conjecture:

Conjecture 1.2.
The Fokker-Planck operator (1.1) has a compact resolvent if and only if the
Witten Laplacian on 0-forms (1.2) has a compact resolvent.

Hypoelliptic techniques enter at this level twice:

1. in the proof of the equivalence when it is possible;
2. in order to get effective criteria for the compactness of (1 4+ Ag)/)z)

In this direction, the present text provides a (non complete) review of various
techniques due to Hérmander [Horl], Kohn [Ko|, Helffer-Mohamed [HelMo],
Helffer-Nourrigat [HelNol, HelNo2, HelNo3, HelNo4], while emphasizing new
applications of rather old results devoted to subellipticity of systems by Maire
[Mail, Mai2], Treves [Tr2] and Nourrigat [Nol]. Among those works, one can
distinguish at least two methods for the treatment of the hypoellipticity, one
referred to as Kohn’s method which is not optimal but flexible enough to
permit several variants and another one which is based on the idea initiated
by Rothschild-Stein [RoSt] and developed by Helffer-Nourrigat to approximate
the operators by left invariant operators on nilpotent Lie groups.

By writing
2

) (0) vt
Agjy = Ay @1dy +1d, ® (=Ay + | = )
and 1 1
0 2
AD)y==Aa+ , IVV] - [ AV(2),

which can also be expressed in the form

n

AY), = ZL L; :Z 2LV 4i[X, Y],
=1
with L; = X; + Y, X; = 0,,, Y; = J,0,,V(z), the conditions on V() which
ensure the compactness of (1+ Aqﬁ/2) !

nilpotent techniques.
Although it is possible to write K as a non commutative polynomial of 9,

can be analyzed very accurately with

0z, V(x), Oy;, vj, the relationship between K and A( b2 is more clearly exhib-
ited after writing

K =Xo+0b=Xo+ Y bib

Jj=1



4 1 Introduction

which looks like a “type 2 Hoérmander’s operators”, Xg + Z;—;l sz if one
replaces the vector field Y; by the annihilation operators

bj:avj+”2j yforj=1,...,n,

associated with the harmonic oscillator hamiltonian

7}2 n

b*b = —A, - .
+ 4 2
We will follow and improve the variant of the Kohn’s method used by Hérau-
Nier in [HerNi] which was partly inspired by former works of Eckmann-Pillet-
Rey-Bellet [EckPiRe-Be|, Eckmann-Hairer [EckHail]. Precisely our results

will require one of the two following assumptions after setting

h(z) = \/1 +|VV(2)]?.

Assumption 1.3.
The potential V() belongs to C°(R™) and satisfies:

Va e N, |a| > 1,3C, s.t. Vo € R", |05V (z)| < Coh(z), (1.4)

AM, C>1, stVeeR", hz) <C (@), (1.5)
and the coercivity condition
M, C>1, st.VeeR", C 1 {x)™ < h(x). (1.6)

Assumption 1.4.
The potential V(x) belongs to C*(R™) and satisfies (1.4) (1.5) with the co-
ercivity condition (1.6) replaced by the existence of po > 0 and C' > 0 such
that:

Vo € R", |[Vh(z)| < Ch(z) (z)". (1.7)

Theorem 1.5.
If the potential V € C>°(R™) verifies Assumption 1.3 or Assumption 1.4, then
there exists a constant C' > 0 such that

Vu € S(R2M), HA1/4UH2 < (IKulP + ul) . (1.8)
with A = (1+ AY),)

Corollary 1.6.

If the potential V- € C*°(R™) satisfies Assumption 1.8 then the operator K has
a compact resolvent.

If the potential V € C=(R™) satisfies Assumption 1.4, then K has a compact

resolvent if (and only if) the Witten Laplacian Ag?/g has a compact resolvent.
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After the proof of these results, we show by analyzing the example of a
quadratic potential V' that the exponent 1/4 is not optimal. We also address
the question whether nilpotent algebra method can be applied directly to the
operator K and explain why a naive application of Helffer-Nourrigat results
in [HelNo3] does not work. We emphasize that the hypoelliptic estimate (1.8)
is not only used for the question of the compactness of (1 + K)~!. Indeed a
variant of it permits to give a meaning to the contour integral

1
et = / e Pz - K) tdz,
2 Jos,
for t > 0, although we cannot say more on the numerical range of K, than
{{u,Ku), ue D(K)} c {z€C, Rez >0} .

This last point is crucial in the quantitative analysis of the rate of return to
the equilibrium.

We will not reproduce the complete quantitative analysis of [HerNi] which
provides upper and lower bounds of the rate of return to the equilibrium for

Y0 mf mf3
@0, - (o 0) - (a4 ")
in terms of the friction coefficient -y, the particle mass m and the inverse
temperature 5. These bounds are expressed, up to some explicit algebraic
factor in (g, m, 3), in terms of the first non zero eigenvalue of the semiclassical
Witten Laplacian

1
Kyomp =v-0p — m

Ay p=—hA, + i YV (2)]* — ;LAV(x) with h = 7L .

The latter part of this text gives an account of the semiclassical analysis of
this Witten Laplacian. We will recall the relationship with Morse inequalities
according to Witten [Wi], after introducing the whole Witten complex and the

corresponding deformed Hodge Laplacians A;’j ,)L on all p-forms. After recalling
some basic tools in semiclassical analysis, we recall the more accurate results
of Helffer-Sjostrand [HelSj1, HelSj4] stating that the O(h%/?) eigenvalues of
these Witten Laplacians are actually O(e~ % ) and that the restriction of the
Witten complex, to suitable finite dimensional spectral spaces, leads by a lim-
iting procedure to the orientation complex which was introduced in topology.
Finally, we will discuss and propose some improvements about the accurate
asymptotics of those exponentially small eigenvalues given, by Bovier-Eckhoftf-
Gayrard-Klein in [BovGayK]|, [BovEckGayKll] and [BovEckGayKl2]. This
last result will at the end be combined with the comparison inequalities of

[HerNi] for the rates of trend to the equilibrium between K., ,, g and A&ﬁ)/)z, W

(h=p67").

Here is an example of quantitative results which can be obtained.
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Proposition 1.7.
Assume that the potential V is a C> Morse function with

two local minima Ul(o) and UQ(O), such that V(Ul(o)) < V(UQ(O)),
one critical point with index 1 UM,
V(z) = |z|? for x| > C.

Then for fixed any fized vo > 0 and m > 0, the rate T(vo, m, 3) satisfies

(1)y_ (0)
1iﬁrgi£feﬁ(v(Ul) YU 1y, m, ) > 0,
(VO VWN) 10 )
and limsup T < oo

At the level of the methods, there is no strict separation between the quali-
tative and the quantitative analysis. This is especially true for the maximal
estimates obtained for operators on nilpotent Lie algebra: the existence of
uniform estimates can indeed lead by a kind of addition of variable procedure
standard in physics to semi-classical estimates.

In order to help the reader who is not necessarily specialist in all the

techniques, we now give a rather precise description of the contents of the
book, chapter by chapter. We mention in particular the possibilities for the
reader to omit some part at the first reading.

In Chapter 2, we present the Hormander condition for a family of vec-
tor fields and the proof given by J. Kohn of the subellipticity of the
Hormander’s operators » . X jz and Xo + E:XJ2 Although it is a rather
standard material, we thought that it was useful to give the details be-
cause many other proofs will be modelled on this first one. The use of the
pseudo-differential theory is minimal in this chapter, and appears essen-
tially only for operators of the form A® := ¢(x)(1 — A)*x(x), composed
with partial differential operators. We give all the details for the brackets
arguments but do not recall how the hypoellipticity can be derived from
these subelliptic estimates.

In Chapter 3, we recall some basic criteria for the compactness of the re-
solvent of the Schrédinger operator following a paper of Helffer-Mohamed.
Again, this is rather standard material but we show how to use the Kohn’s
argument in the context of global problems. The bracket’s technique is
used here in order to prove that the form domain of the Schrédinger op-
erator is compactly embedded in L?. This is simply obtained by showing
the continuous imbedding of the form domain in a weighted L? space. We
have not resisted to the pleasure to present the connected problem of the
magnetic bottles.
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In Chapter 4, we recall some elements of the Weyl-Hormander calcu-
lus. The main aim is to construct the analog of the A° appearing in
Kohn’s proof in a very large context. Because we wanted here to extend
as much as possible the previous work of Hérau-Nier in [HerNi], we were
naturally led to introduce a rather general class of pseudo-differential op-
erators adapted to this problem. The reader can at the first reading omit
this chapter and just take the main result as a fact. The existence of this
family (A®)ser of pseudo-differential operators when A is a globally elliptic
or globally quasi-elliptic operator (whose simplest example is the square
root of the harmonic oscillator) is rather old (See for example the work
by D. Robert in the seventies). Here the Beals criterion in the framework
of Weyl-Hérmander calculus allows to consider once and for all possibly
degenerate cases. We close the discussion by presenting new results of J.-
M. Bony about the geodesic temperance.

Chapter 5 is the first key chapter. We first show that our Fokker-Planck
operators are maximally accretive by extending a self-adjointness crite-
rion of Simader. This result seems to be new. We then analyze various
properties of the Fokker-Planck operator. The main point is the analy-
sis of the compactness of the resolvent. Developing an approach initiated
by Hérau-Nier and implementing the family A° analyzed in the previous
chapter, the proof is a tricky mixture between Kohn’s proof of subelliptic-
ity, Helffer-Mohamed’s proof for the compactness of the resolvent of the
Schrodinger operator and of the algebraic structure of the Fokker-Planck
operator. The link with a Witten Laplacian is emphasized and this leads to
propose a natural necessary and sufficient condition for the compactness
of the resolvent of the Fokker-Planck operator which is partially left open.
This disproves also that only an Héormander’s type global condition is suf-
ficient. We also analyze carefully the so called quadratic model, recalling
on one hand the explicit computations presented in the book by Risken
and showing on the other hand how “microlocal analysis” can be used for
improving Kohn’s type estimates.

Chapter 6 shows how the previous hypoelliptic estimates permit to control
the decay of the semi-group attached to the Fokker-Planck operator. The
reader will find here the main motivation coming from the Kinetic theory.
Again, we meet, when trying to be more quantitative, the question of
estimating carefully the behavior of the lowest non zero eigenvalue of a
canonical Witten Laplacian.

Chapter 7 is devoted to a short description (without proofs) of the char-
acterization of the hypoellipticity for homogeneous operators on nilpotent
groups. The main result is a conjecture of Rockland which was proved in
the late 70’s by Helffer-Nourrigat. The reason for including this presenta-
tion in the book is two fold. First the hypoellipticity plays an important
role in the analysis of the Fokker-Planck operator and the Witten Lapla-
cian with degenerate ellipticity. Secondly, we consider maximal estimates
and the proof of Helffer-Nourrigat was actually establishing as a technical
tool a lot of spectral estimates for operators with polynomial coefficients.
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Chapter 8 develops the relationship between the nilpotent analysis and the
more general analysis of maximal hypoellipticity of polynomial of vector
fields. The breakthrough was the paper by Rothschild-Stein which opened
the possibility to establish and prove good criteria of maximal hypoellip-
ticity. We very briefly present some ideas of the results obtained in this
spirit by Helffer-Nourrigat and Nourrigat during the eightie’s.

Chapter 9 is a first try to apply nilpotent techniques directly to the Fokker-
Planck operator. We present the main difficulties and discuss various pos-
sible approaches. As an application of these ideas we obtain a first result
containing the quadratic Fokker-Planck model, which is far from proving
the general conjecture, but leads to optimal estimates.

Chapter 10 presents how the nilpotent techniques work for particular sys-
tems. Instead of looking at the Witten Laplacian, it is better to look at
the system corresponding to the first distorted differential of the Witten
complex. The analysis of the microlocal maximal hypoellipticity or of the
microlocal subellipticity of these systems of complex vector fields, which
was done in the eighties mainly motivated by the Oy-problem in complex
analysis, gives as byproducts new results for the compactness of the resol-
vent and for the semi-classical regime. Following a former lecture note of
Nourrigat, our presentation (without proof) of the basic results in microlo-
cal analysis can be understood independently of the nilpotent language.
Chapter 11 is continuing the investigation of the Witten Laplacian on R™.
After recalling its general properties and its relationship with statistical
mechanics (this point is detailed in Chapter 12), we present recent criteria
for the compactness of its resolvent obtained by the authors and discuss
many examples. New results are presented in connection with the subel-
lipticity of some tangential system of vector fields.

With Chapter 12, we start the presentation of the semi-classical analysis.
The chapter is mainly devoted to the analysis of the so called harmonic
approximation and we give a flavour of what is going on for large dimension
systems which appear naturally in statistical physics.

Chapter 13 enters more deeply in the analysis of the tunneling effect.
Because there are already pedagogical books on the subject, we choose to
select some of the important ideas and limit ourselves to the treatment of
the first model of the theory: the double well problem.

Chapter 14 starts the analysis of the Witten Laplacian in the semi-classical
regime. We recall how E. Witten uses the harmonic approximation tech-
nique for suitable Laplacians on p-forms attached to a distorted complex
of the de Rham complex in order to give an analytic proof of the Morse
inequalities.

Chapter 15 is again a key chapter. We now would like to analyze exponen-
tially small effects. We recall (in a sometimes sketchy way) the main steps
of the so called Witten-Helffer-Sjostrand’s proof that the Betti numbers
are also the cohomology numbers of the orientation complex.
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Chapter 16 explores how this approach permits to understand and partially
recover some recent results by Bovier-Gayrard-Klein. We also present the
recent results obtained in collaboration with M. Klein. We close the chapter
by an application to the splitting for the Witten Laplacian on functions.
Chapter 17 is devoted to the presentation of the result obtained by Hérau-
Nier for the rate of decay for the semi-group associated to the Fokker-
Planck operators which was one of the main motivations of the whole
study.

The last chapter gives additional information on quite recent results ob-
tained or announced in the last year.



2

Kohn’s Proof of the Hypoellipticity
of the Hormander Operators

2.1 Vector Fields and Hormander Condition

We consider p C*° real vector fields (X1, --,X,) in a open set {2 of R™. If
X and Y are two vector fields, the bracket of X and Y, denoted by [X,Y] or
(ad X) Y, is defined by

(X, Y]f = XY [)=Y(X[).

We note that [X,Y] is a new vector field. We are interested in the case when
the Hormander condition [Horl] is satisfied.

Definition 2.1. Héormander Condition

We say that the Hormander condition is satisfied at xo, if there exists r(xg) >
1 such that the vector space generated by the iterated brackets (ad X)*X} at
xo with |af < r(xg) — 1 is R™.

When r(z9) = 1, we say that the system is elliptic and this imposes of
course p > n. Let us give typical examples.

Heisenberg algebra:

n=3,p=2,r=2,

X1 zax,ngxé)z—&—ay R (21)
(X1, Xo] =0, .
Grushin’s operator:
n=2,r=2,
X1 :830, ngxay,
(X1, X2 =0, .

B. Helffer and F. Nier: LNM 1862, pp. 11-18, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Nilpotent group Gy:

n=4,r=3,

Xlzﬁr, XQZ ;x28t+x32+3y,
[Xl,XQ] :x8t+8z,

(X1, [X1,X2]] =0, .

We say that the vector fields X; satisfy the Hormander condition of rank
r in an open set (2 if 7y, (20) < 7, for all z € 2.

2.2 Main Results in Hypoellipticity

We first start by recalling the basic definition of hypoellipticity introduced by
L. Schwartz:

Definition 2.2.

A differential operator with C*° coefficients in an open set {2 is hypoelliptic
in 2, if, for any w C 2, any u € D'(2), such that Pu € C*(w), belongs to
C®(w).

This terminology was motivated by the fact that the elliptic operators have
this property and that in the fifties a very natural question was to give a char-
acterization of the hypoellipticity for the operators with constant coefficients.
Once this was settled, the second challenge was to understand the hypoellip-
ticity of non necessarily elliptic operators with variable coefficients and the
next theorem was probably one of the first general results in this direction.

Theorem 2.3.
If the vector fields (X;) (j = 1,...,p) satisfy the Hormander condition for
some r in {2, then the operator:

L=Y X7, (2.2)

which will be called “‘type 1 Hormander’s operator”, is hypoelliptic in (2 .

This result is due to L. Hérmander [Horl].

Remark 2.4.

The Hérmander condition is a necessary condition for getting hypoellipticity
in the case when the X;’s have analytic coefficients. The proof (due to Derrid;
[Der]) is based on Nagano s Theorem. In the C'*° case, the hypoelliptic oper-

dw ;2 dd;) in R? shows that the Hormander condition (which

is not satisfied when x = 0) is not in general necessary.

ator — — exp —
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Theorem 2.5.
If the Hérmander condition is satisfied for some r in §2, then, for any compact
subset K C 2, there exists Cx such that

lul[3 < O | Y 1Xgull +lullg |, Vu € C5°(2), with suppu C K,
J
(2.3)
where ||u||s is the Sobolev norm corresponding to H*.

Remark 2.6.

One can actually show (see for example [BoCaNo]) that the validity of the
inequality (2.3) (also called subelliptic estimates) implies the Hérmander con-
dition of rank r.

Remark 2.7.

Except for the case of operators with constant coefficients where the construc-
tion of a suitable fundamental solution can lead directly to the proof of the
hypoellipticity, one is usually obliged! to get the C* regularity by showing
that u € H (w) for any s. It is indeed standard that C*(w) = NserH}, . (w).
The proof of H?-regularity is obtained through the proof of a priori estimates
in Sobolev spaces fo regular functions. The subelliptic estimate above is the

starting point for getting a complete family of inequalities of the type

lull2, 0 < O [ DO NIXulls + ull? |, Vue C(2), with suppu C K,
J
(2.4)
for any s > 0.

Remark 2.8.

There exists a microlocal version of this inequality which is due to Bolley-
Camus-Nourrigat [BoCaNo]. We will give precise definitions later in Chap-
ter 10.

Remark 2.9.
Note that it is immediate to see that (2.3) implies the same inequality with
X replaced by X; + ¢; where the ¢;’s are C* functions.

We also have to consider “type 2 Hormander’s operators”, correspond-
ing to:

L=> X7+X, (2.5)
j=1

where the vector fields (X, X1, ...., Xp) satisfy the Hérmander condition. The
simplest example is the heat equation:

! Unless one constructs Parametrices
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—Agy,pn g 0,

A more typical case is the Kolmogorov operator [Kol]:
=07 + (20 + 9y) ,

which was the motivating example for the analysis of Hérmander [Horl]. As
seen in the introduction, the motivating models like (1.1) are actually of this

type.

2.3 Kohn’s Proof

This section will be devoted to Kohn’s proof [Ko] of some subelliptic esti-
mates. It is simpler than the initial proof of Hormander [Horl] and permits
other extensions. As a corollary, but this needs extrawork the existence of such
inequalities imply the hypoellipticity of the corresponding Héormander oper-
ator. These estimates are not optimal, in the sense that i in the left hand
side of (2.3) is replaced by the weaker 27". Finally, let us emphasize that we
are more interested in describing how the proof is going than in the result of
hypoellipticity which is nowadays rather standard.

We consider the operator (2.5). The starting point is to get

p
> IXull? < € (|Re(Lu | u)| + |[ullf) , Yu e C5o(V), (2.6)

j=1

where V' is an open set.
This inequality is immediate by integration by parts if one observes that

Xj* = —Xj + Cj (27)
for a C*° function c¢; and that:
2| Re (Xou | u)| = [(cou | u)| < Cllu][5 -

A Cauchy-Schwarz argument permits then to conclude.
We observe that this inequality of course implies:

p
S NXjull? < € (1(Lu | uw)] + [[ull3) (2.8)
j=1

and

p
D X jull> < € (||Lull + [ullf) - (2.9)
=1

Note that some information is lost in (2.9) in comparison with (2.6).
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There is a general proof establishing that the subelliptic estimates (2.3)
(or some weaker subelliptic estimate) joint with this inequality gives the hy-
poellipticity. The critical point in this part of the proof that we omit is the
control of commutators of L with pseudo-differential operators.

In the case Xy = 0 (the case Xy # 0 requires more attention), the two
inequalities (2.3) and (2.9) yield for some e > 0:

lull2 < C (I1Lullg + [lullF) - (2.10)

but this inequality alone is not enough for proving hypoellipticity.
We now concentrate on the proof of the above subelliptic estimates, written
in the form:
[lull2 < C ([|Lulfg + |lullf) , Yue C§o(V), (2.11)

where € > 0 and V is a fixed open set containing the point in the neighbor-
hood of which we want to show the hypoellipticity.

Although the general theory of pseudo-differential operators is not completely
necessary, let us briefly recall that the pseudo-differential operators are oper-
ators which are defined by v — Op (a)u with:

1
(2m)"

Here R*™ 3 (2,€) — a(z,€) is a C*°-symbol which admits as || — +o0o an
expansion in homogeneous terms with respect to the & variables:

(1(37,5) ~ Zam—j(x7£) )

Jj=0

Op (a)u(z) = /Rn expiz- & alx, &) a(g) dE . (2.12)

with

ap(z, AE) = Nag(z,€) , VA >0,VE e R™\ {0} .
The real number m is called the degree of the symbol (or of the corresponding
pseudo-differential operator). Actually we only need here the composition of
operators which are the multiplications by C* functions, the differentiations

and the family of convolution operators A%, s € R, where A® corresponds to
the symbol (€)® = (1 + [£]?)2. When s = 1, we simply write A.

The important point is that the composition of two pseudo-differential op-
erator of order my and mo is a pseudo-differential operator of order (mi +ms)
whose principal symbol is the product of the two principal symbols. Pseudo-
differential operators of order 0 form an algebra of bounded operators in
L(L*(R™)).

Now let P be the set of all pseudo-differential operators of order 0 such
that if P € P, then there exists € > 0 and C' > 0 such that:
1Pull2 < C (J|Lulfg + |ul3) , Yue C5o(V). (2.13)

This set satisfies the following properties:
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Property 2.10.
(P1) P is a left and right ideal in the set of all pseudo-differential operators
of order 0.

Property 2.11.
(P2) P is stable by taking the adjoint.

Property 2.12.
(P3) X;A ' ePforj=0,...,p.

Property 2.13.
(P4) If P € P then [X;,P]€ P for j=0,...,p.

Let us first observe that one can prove inductively starting from (P4)
that Xil...ip/l_l € P, with Xil---ip = [Xil, [XiQ, o [Xip,lyXi } .. H Let us for
example show that [X;, Xj]A~! belongs to P. We know that [X;, X;A7!] has
the property. But

(X, Xpe AT = [ X, XpJA™E + Xp[ X5, A7

Now
X[ X5, A7 = Xp ATHA[X;, A7)

and the operator A[X;, A7!] is a pseudo-differential operator of order 0. Using
(P1), we get that X, A~1(A[X;, A7) belongs to P.

Hence, using Hérmander condition of rank r, we deduce that P contains any
pseudo-differential operator of order 0. It remains to prove the properties (P;).

Proof of (P1)
It is a left ideal because pseudo-differential operators of order 0 are bounded
in any Sobolev space. It is a right ideal as well owing to the property (Ps).

Proof of (P)
It is enough to observe that if P is a pseudo-differential operator of order 0,
then

[AP*u||> = (PA**P*u | u) = ||A°Pul]> + ((PA**P* — P*A**P)u | u) .

We conclude by noticing that (PAsz* — P*Asz) is a pseudo-differential
operator of order —1 4+ 2¢ <0 if e < % .

Proof of (P3)
For j > 1, we have
1A Xjul[2 < O X ul? + [[ul?) |

if € < 1. One can then conclude that A_lXj € P. Now we observe that
XAt = —(A71X;)* +¢;A71 . We then use (P2) and we obtain X; 471 € P.
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The treatment of the case of X is a little more delicate.
We start from:
|| A7 Xou||? = (Xou | Tu) , (2.14)
2

where T is a pseudo-differential operator of order 0.
Then we write Xou = Lu — Zj iju, which leads to the estimate:

147 Xoul 3 < [(Lu | Tu)| + Y [(XFu | Tu)| - (2.15)
3>0

The first term of the right hand side is controlled. Let us show how the second
one is treated. We have:

(XFu | Tu)| = (X u | X;Tu)| < ClIXjull([|X;Tull + ||ul]) -
Then we observe that
X Tul| < (| Xul| + [[[X;, TIull) < C ([ X ul] + [|ul]) -

So we have shown that A= X belongs to P with € = % . Taking the adjoint
and observing that a pseudo-differential operator of strictly negative order
belongs to P we get the result.

Proof of (P4)
Let us start from a P such that (2.11) holds for some € > 0.

The case j > 0.
Now consider:

15, Plull§ = ([X;, Plu| A%°[X;, Plu)
= (X;Pu | T?u) — (PX;u | T®u) ,

where 7% is a pseudo-differental operator of order 24. It then follows that:

(PXju | T204)| <|(X;u | PPT?u)
< IXul? + ||P*T?u|p
< IXjull? + |7 Pull* + Cllull35_, -
Similarly, with (2.7):

(X Pu | T?u)| < [(Pu | X;T%u)| 4 C||Pul|2s||ullo
< C||Pullas|| X ullo + [(Pu | [Xj, Taslu)| + C||Pul|2s[ulfo -

It remains to observe that:
[(Pu | [X;, Toslu)| < C||Pul|2s][ul] -

Hence, the j’s, j > 0, are done by choosing § < min(}, §).
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The case j = 0.
It is a little more delicate. We write, with (2.7) and § < 1/2,

(XoPu | T?u)| < [(Pu | T?° Xqu)|
+C||Pul |35 + Cllul[3
<[(Pu | T Lu) [+ 3o |(Pu | T XZu)|
+O||Pull3s + Cllulls
< [|Lul[* + Zj>0 (X Pu | T X;u)
+C||Pul 35 + C1[ul[3 + C||Pul 25| | X ju]
< C (1Lull? + X250 1 Pul 5 + [1Pull3s + [Jull3) -

It remains to treat ||X;Pul|35. We claim that
X Pull35 < C (IILull§ + || Pull3s + [[ullf) - (2.16)
We have indeed

1X; Pull35 = ||42° X Pu|?
< C (00 |1X5 A% Pull? + || Pull3s) -

Then using (2.8), we get®:

S0 X A% Pul? < C (A% Pu | 42 Pu)| +||Pul B, + |1ul )
< O (|(IL, 42 Plu | 42 Pu)| + || Pul 3 + || Lul3 + [u]}3)
< O (S, 106u | QUPu| + || Pull3s + || Lullg +|1ul3)
< O (I1Pull3s + 1 Lull3 + l[ull3) -

This proves (2.16).
Taking 6 < min(¢, ;), the right hand side is controlled.
The treatment of the term |(PXou | T?%u)| is similar.

Remark 2.14.

If p = n, the operator }_, X7 + > Y7 + it Y [X;, Y] for |t| < 1 is also
hypoelliptic. The problem is that this is the case t = +1 which we would like
to understand better.

2 We cheat a little because we do not take care of the supports, but the pseudo-local
character of the pseudo-differential operators permits to circumvent this problem.
Here we recall that a linear operator P, which is defined on distributions, is
pseudolocal if ¥ P¢ can be defined by a C*° distribution kernel, when ¢ and
are C*° functions with disjoint compact supports. A differential linear operator
has evidently this property because 1 P¢ is identically 0.
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Compactness Criteria for the Resolvent
of Schrodinger Operators

3.1 Introduction

It is well known [ReSi] that a Schrédinger operator, defined on C§°(R?) by
—A+V, where V is semi-bounded from below on R¢ and in C>°(R?), admits
a unique selfadjoint extension on L2(R?), i. e. is essentially self-adjoint. It is
less known but still true that it is also the case under the weaker condition
that —A 4V is semi-bounded from below on C§° (see [Siml] or for example
[Hell1]), i.e. satisfying:

3C >0, Vue CCRY), (—A+V)u|u) > —Clul® .

If in addition the potential V(z) tends to +oo as |z| — oo, then the
Schrédinger operator has a compact resolvent. The form domain of the oper-
ator is indeed given by Dg = {u € H(R?) | /V + Ciu € L*(R%)} and it is
immediate to verify, by a precompactness characterization, that the injection
of Dg into L2(R?) is compact. Our aim here is to analyze some cases when
V' does not necessarily tend to oo.

The first well known example of such an operator which has nevertheless
a compact resolvent is the operator —A + z?23 in two dimension. One easy
proof is as follow. Although the potential V = 2223 is 0 along {x; = 0} or
{xa = 0}, the estimate for the one-dimensional rescaled harmonic oscillator
gives

1 1 1
—Atatey > (=07, +zywl) + ) (<07, +2123) > | (lwa] + [2]),

where this comparison is the comparison between symmetric operators on
C5°(R?).

This permits to show that the form domain of the Schrédinger operator is
included in the space {u € H'(R2) | |z|2u € L2(R2)}, which is compactly
embedded in L?(R?). Hence, the operator — A+ %23 has a compact resolvent.
This example can actually be treated by many approaches (see [Rob2], [Sim1],
[HelNo3] and [HelMo]).

B. Helffer and F. Nier: LNM 1862, pp. 19-26, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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3.2 About Witten Laplacians and Schrodinger Operators
Let us consider the Laplacian introduced in (1.2)
AV = A4 |V — AD .

For a C™ potential ® on R?, this Laplacian is first defined as the Friedrichs
extension associated with the form
0 _ 2
Vu € (R, (u | AY ) = [le™ " Voeul| o g -
Of course this is nothing but a specific Schrodinger operator and one can first

think that it is enough to apply the general criteria for Schrodinger operators.
Actually we look for criteria involving as directly as possible the function &.

This operator is called Witten Laplacian on O-forms because it is a restric-
tion of a more general Laplacian defined on all C*° forms, but it can also be
considered as a Laplacian associated to a Dirichlet form like in probability.
This Laplacian, which is positive by construction, is essentially self-adjoint on
C§°~which means admits a unique self-adjoint extension—(see for example!
[Hell1] and [Simal) and its self-adjoint closure has the domain

DAY = {u e L2(RY), ADy e L2(Rd)} .

Of course, it is easy to show that Ag) ) has a compact resolvent when
|V®(2)|? — Ad(x) — 400, as |z| — 400 . (3.1)

But this condition is not optimal ! A first improvement can indeed be obtained
through the following “ bracket argument”.
We start from the inequality:

(1X5ul? + al[Yiul[?) > £iva Y ([X;,Ylu|u), Yue CRRY), (3.2)
1 j=1

d d
j=

where X; = 1 Oy, and Y; = 0, 9P.

‘We observe also that .

> X, Y] =iA¢
j=1
and that

! We will present a similar argument in the analysis of the maximal accretivity of
the Fokker-Planck operator (Section 5.2). Let us simply recall that the point is
to show that I + A((;) has dense range in L?*(R%).
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d

j=1

By convex combination, we obtain:

(ADy | u) > / (1= IVP* + (Ve = 1)AD) [u(x)|* dz , Yu € C5°(RY) .

(3.3)
This gives:
APulu) = (1= ve) [(a+VaITeP - 20)u@Pde,  (34)
for any € €]0, 1].
So we have obtained the following proposition (see [BoDaHel|, [Hell1]).
Proposition 3.1.
Let us assume that there exists t €]0,2[ such that
tIVe(z)|* — Ad(x) — +oo, as |z| — +oo . (3.5)

Then the Witten Laplacian Ag)) has a compact resolvent.

One should notice that, for the function
R? 3 (w1, 22) = D1, 20) = 2325 + (2 +23) ,

where € > 0, the corresponding potential V' = \V¢|2—A¢ goesto —oo as 1 —

400 and x2 = 0. Meanwhile the operator AgJ ) is positive by construction and
we shall show in Theorem 11.10 that it has a compact resolvent if (and only
if) e >0.

Remark 3.2.
One can also find criteria taking into account higher derivatives of . See
[BoDaHel] and Chapter 10.

Proposition 3.3.

If Agj) has a compact resolvent then the operator Sg = —A+ |V®|? has also
a compact resolvent.

Proof.
This follows immediately from the comparison:

0< AP <28, (3.6)

between symmetric operators on C5°(R?) and from the essential self-adjoint-
ness of these operators.
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3.3 Compact Resolvent and Magnetic Bottles

Here we follow the proof of Helffer-Mohamed [HelMo], actually inspired by
Kohn’s proof presented in Section 2.3. We will analyze the problem for the
family of operators:

n

Py =Y (Da; — A;(x))* + > Vil2)* . (3.7)
=1

j=1

Here the magnetic potential A(x) = (A1 (z), Az (x),--- , Ap(z)) is supposed to
be C* and the electric potential V(z) = >, V;(z)? is such that V; € C*.
Under these conditions, the operator is essentially self-adjoint on C§°(R"™).
We note also that it has the form:

n-+p

n p
Pa=3 X2 -3 a3
j=1 j=1 (=1

with
Xj:(Da;j_Aj(x))7j:17-o-7n7 Y-(:va,€:1,...7p.

In particular, the magnetic field is recovered by observing that

Bjk = E[Xj,Xk] :@Ak —8kAj s for ],k = 1,...,71.
We start with two trivial easy cases.

First we consider the case when V' — +o0. In this case, it is well known that
the operator has a compact resolvent.(see the argument below).

On the opposite, we assume that V' = 0 and consider the case when n = 2
and when V' = 0. We assume moreover that B(z) = Bjs > 0. Then one

immediately observe the following inequality:
/B(x)IU(w)Ide < [[Xvul* + || Xoul* = (Pau | u) - (3.8)

Under the condition that lim,_,~, B(z) = 400, this implies that the operator
has a compact resolvent .

FEzxample 3.4.
Al(xl,zg) = IQI% , AQ(Il,,Ig) = —IlIg .

Indeed it is sufficient to show that the form domain of the operator D(ga)
which is defined by:

D(qa) ={u€ L*(R"), Xjue L*(R"), forj=1,....,n+p}. (3.9)

is contained in the weighted L?-space,
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L2R") = {ue S'(R") | p2u € L*(R")}, (3.10)

for some positive continuous function x +— p(x) tending to co as |z| — 0.
In order to treat more general situations, we introduce the quantities:

mg(z) =3 ST 102Vl + > Y 109Bj(a)] - (3.11)
¢ |al=g J<k lal=¢—1

It is easy to reinterpret this quantity in terms of commutators of the X;’s.
When g = 0, the convention is that

mo(x) = 3" |Vi(a)] (3.12)
l

Let us also introduce

m’(z) =1+ mg(x) . (3.13)
q=0

Then the criterion is

Theorem 3.5.
Let us assume that there exists r and a constant C such that

mey1(z) <Cm'(x), Ve e R, (3.14)

and
m'(z) — 400, as|z] — +o0. (3.15)

Then Pa(h) has a compact resolvent.

Remark 3.6.
It is shown in [Mef], that one can get the same result as in Theorem 3.5 under
the weaker assumption that

My (x) < Cm'(z)1+° (3.16)

where § = 2T+1173 (r > 1). This result is optimal for » = 1 according to a coun-
terexample by A. Iwatsuka [Iw]. He gives indeed an example of a Schrodinger
operator which has a non compact resolvent and such that 3, , [VBji(z)|
has the same order as ;. |Bj<k|?.

Other generalizations are given in [She] (Corollary 0.11) (see also references
therein and [KonShu] for a quite recent contribution including other refer-
ences).

One can for example replace Y y ij by V' and the conditions on the m;’s can
be reformulated in terms of the variation of V and B in suitable balls. In
particular A. ITwatsuka [Iw] showed that a necessary condition is:

/ V(z)+ Z Bji(z)? | dv — +o0 as |x| — 400, (3.17)
B(z,1) j<k

where B(x,1) is the ball of radius 1 centered at z.
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Remark 3.7.

If p = n, the operator Y7 | X7 + >0 | V7 + it > [X;, Y], for [t| < 1, has
also a compact resolvent under the conditions of Theorem 3.5. The problem
is that this is the case ¢ = +1 which appears in the analysis of the Witten
Laplacian.

Before entering into the core of the proof, we observe that we can replace
m” (z) by an equivalent C* function ¥ (x) which has the property that there
exist constants C, and C > 0 such that:

! <m"(z) <
Dz (2)] < CaW() .
Indeed, it suffices to replace quantities like S |ug| by (3 |ug]?)?/?, in the
definition (3.11) of my,. Tne second condition is a consequence of (3.14).
In the same spirit as in Kohn'’s proof, let us introduce for all s > 0

Definition 3.8.
We denote by M? the space of C*° functions T such that there exists Cs such
that:

[~ Tw|]? < Cs ((Pau | u) + |[u]|?) , Yu € C3°(R™) . (3.19)
‘We observe that
Vie M*', (3.20)
and we will show the
Lemma 3.9. )
[(X;, Xkl e M2, Vjik=1,...,n. (3.21)

Another claim is contained in the

Lemma 3.10.
If T is in M* and |09T| < Co¥ then [ Xy, T) € M2, when || =1 or |a] = 2.

Assuming these two lemmas, then it is clear that
w(x)e M* .
Lemma 3.10 and (3.20) lead to
0oV, e M2
and we deduce from Lemmas 3.9 and 3.10:
9B € a2 (e
x ] :

The proof of Theorem 3.5 then becomes easy.



3.3 Compact Resolvent and Magnetic Bottles 25

Proof of Lemma 3.9
We start from the identity (and observing that X} = Xj):

192 [ X, XeJul? = (X; X5 — X Xj)u | 071X, Xi]u)
= (Xyu | X071 X5, XyJu)
—(Xju | Xp @ HX;, Xy Ju)
= (Xju | U [ Xy, X;] Xpu)
—(Xku | W‘l[Xk,Xj]ka
(X ju | [Xn, O [ X, Xj]Ju)
—(Xpu | [ X5, 0 [ Xk, Xj]Ju) -

If we observe that ¥~1[X}, X;] and [Xg, ¥~ [X}, X;]] are bounded (look at
the definition of ¥), we obtain:

1
1972 (X, XiJul® < O ([ Xuul® + |1 Xjul|* + [[ul?) -

This ends the proof of the lemma.
Proof of Lemma 3.10
Let T € M?. For each k, we can write:

&=+ 5 [ X, Tlul|? = (@~ 45(X, T — TXp)u | U1 [Xp, T)u)

= (TS X, Tu | [ Xy, T)u)
— (T X | UL [ X, Tu)

— (T Ty | UL[X, T) X o)
—(Xpu | U7Xy, T 15T )
+(Tu | [Xy, 02 [ X, T]Ju)

= (T Ty | U X,, T) X )
—(Xpu | U7X, T 1+5T )
(TS Ty | WS (X, U2 (X, T u)

‘We now observe, according to the assumptions of the lemma and the properties
of W, that U1=5[ Xy, W=2+s[ X}, T|] and ¥~1[ Xy, T] are bounded.
So finally we get:

@2 (X, Tlul [ < € (||~ T2 + | Xpul* + [Jul|?) .
This ends the proof of the lemma.

Remark 3.11.

Helffer-Mohamed describe also in [HelMo] the essential spectrum when the
compactness criterion of the resolvent is not satisfied.

We mention also the negative answer to the problem of finding magnetic
bottles for the Dirac operator due to Helffer-Nourrigat-Wang [HeNoWa] (see
the book by B. Thaller [Tha] on this question). It is indeed “essentially”
(the proof is under additional technical conditions) shown that, in the two
dimensional case, the resolvent of the Dirac operator 2521 0;(De, — Aj(x))
is never compact. Here the o; are two by two self-adjoint matrices such that
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O’% :U% =1, 0109 = —0907 .

The standard choice is

01 0 —i
7= (Vo) = (19)

We also observe that the square of this operator is diagonal and that the
diagonal corresponds to the so called Pauli operators

S (Ds, - Ay(2))? £ Bla) .

j=1
These operators have the structure observed in Remark 3.7, with t = +1.

Remark 3.12.

As it can for example be seen in [HelNo3], similar problems occur in the theory
of the 0-Neumann Laplacian and more specifically for the [0, operator. We
refer to the quite recent papers by Fu-Straube [FuSt] and Christ-Fu [ChFu]
for a presentation of the theory initiated by J. Kohn [Ko] and for a complete
list of references.



4
Global Pseudo-differential Calculus

This chapter is a review, in a specific case, of basic properties of pseudo-
differential operators. Our motivation was the construction of a chain of
powers of positive “elliptic” operators which could replace the chain
(1 — A)* (s € R) appearing in Kohn’s proof of hypoellipticity. Because this
leads, independently of —but motivated by— this application, to interesting
questions about the Weyl-Hérmander calculus, we have added new results on
this calculus, with the kind help of J.M. Bony. In a first reading, the reader
which is not a specialist in microlocal analysis can skip part of these techniques
and proceeds by admitting the result of Theorem 4.8. Note that similar results
were obtained under stronger assumptions in the seventies (see the comments
at the end of the chapter). The main properties of these pseudo-differential
operators will be recalled in Section 4.2.

4.1 The Weyl-Hormander Pseudo-differential Calculus

We just give in this section, a small account on the so-called Weyl-Hormander
calculus. It is in some sense the most sophisticated and the most powerful
version of the pseudo-differential calculus!, whose first version was presented
around (2.12) in Section 2.3.

In Rgflc (this will be applied later with d = 2n, z = (x,v) and { = (§,7)) we
consider the class of C*° functions which satisfy

Va,3 €N 30,5 > 0,V(z,¢) € R*?,

0200 a(z,)| < Ca (2,0,

for some m € R.
The function ¥ is a fixed C* function bounded from below by 1, with other
properties specified below. By introducing the metric

! resulting of the efforts of many mathematicians mainly in the period 70-85, in-
cluding R. Beals and L. Hormander,

B. Helffer and F. Nier: LNM 1862, pp. 2742, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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d¢?

g:d22+w2,

the above condition writes \Tl ‘Tra(z,Q)| < Cy;9™(z,¢) for any finite se-
quence of vector fields (7});=1,... s such that g(T;) < 1 uniformly. This class
of symbols is usually denoted by S(¥™,g) and we shall write shortly Sj'.
This space of symbols Sj' endowed with the seminorms

029 a(2,¢)|,

jalygp = sup  sup WA Q) keN

lo+B|<k (z,0)ER

is a Fréchet space.

For any symbol in S’ (R??), the pseudo-differential operator " (z, D) is an
operator from S(R?) into &'(R?) whose Schwartz kernel (that is distribution
kernel) is defined by the oscillatory integral:

W(Z,Dz)(z,z’) _ (2711-)(1 /Rd ei(z—zl)'ca (Z —; i ,C) d¢ . (41)

This is known as the Weyl quantization of the symbol a and other quantiza-
tions, as we have seen in Section 2.1 (see (2.12)) are possible

1

a(t)(z,Dz)(z,z/) = (2m)

/ e Ca((1— 1)z +2',¢) d¢, telo,1],
Rd

(4.2)
where ¢ = 0 corresponds to the standard pseudo-differential calculus and
t = 1 to the adjoint calculus. The Weyl quantization corresponds to the case
t = 1/2 and has the following nice property.

Proposition 4.1.
The operator aVV(z, D) is symmetric? on S(R?), when a is real.

Its central role in the theory, is due to the fact that it exhibits the fundamental
relationship between quantization and the symplectic structure of R?? = T*R¢
endowed with its canonical symplectic form

d
o= d¢ Ndz, => (G2 - %¢ (4.3)
j=1 Jj=1

Here and in the sequel, the capital character Z denotes the pair (z,¢) in R?.
The dual metric with respect to the symplectic form o is given here by

2 This means:

(@" (2, D) | ) p2gay = (u | a" (2, D2)v) 2 ey, Yu,v € S(RY) .
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g% = W?dz* +d¢* .

The condition ¥ > 1 ensures that the metric is compatible with the uncer-
tainty principle, which takes here the form:

9<97. (4.4)

We now assume that the function ¥ satisfies uniformly for some constants
cp>1,co>0and v >0:

_ +1
|z — 2| < ;' ¥ (z,¢) <
4.
-dl=ateeof T eee) =9 42
and .
Lp(z, ¢) 2 2 n2\"
< — — . .
(¢(2/7C/)) =6 (1 +¥(2,)" |z = 2" + ¢~ ) (4.6)
Then the metric g satisfies the Hormander slowness condition:
™\ 1
Z—-7"Y<(Cp) = | su 92 ) < 4.7
(922 - 7) < ) <T;§3 (%) =&, (1.7

for some uniform constant C; < 1, and the Hérmander temperance condi-
tion:

+1
gz(T) o AV
(;1;13 . (T)) <Cy(1+g2(Z2-2")" (4.8)

for some uniform constants Co > 0 and N > 0.
It is possible to check that the temperance is equivalent to the symmetric
temperance introduced in [BoLe] and used in [BonChe] and [NaNi].

4.2 Basic Properties

We now give the consequences of these properties, which can be found in
[Hor2]-Chap XVIII after noticing the value of the gain for our specific calculus:

(i 95O _
2= (p) =70

4.2.1 Composition

For any m € R and any a € Sy’ the operator a"(z,D,) acts continuously
on S(R?) and on &'(R%). Thus two pseudo-differential operators can be com-
posed as operators in £(S(R?)) or in £(S’'(R?)). The natural question is then
whether the product is also a pseudo-differential operator. This is the topic
of the next subsection.
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4.2.2 The Algebra U,,cr Op ST’

If a € S™(R*) and b € ™ (RY), then " (z,D.) o bW (2, D.) = ¢V (2, D.)
with ¢ € ng"'m/. The symbol c is denoted by af"V b and we have the expansion:

atVb(Z) = (e%U<DZwDZz>a(Zl)b(Z2)) s (4.9)
1 (i0(Dyg,,Dg,))’

_ 3 e ZJ%! 2)) aZ(Z)| (4.10)
=0 1=Z2=

+/1 (1—9)J_1e;90(Dzl7D22) i (Dyz,,Dz,) JG(Z )0(Zs) (4.11)
o (J—=1) 9T\ 2 H 2 O PAASy

a(Z1)b(Z2)

g, FRAaD@) @12)

J—1 ¢ J

_ Z (;U(DZNDZ?,))
where R is a continuous bilinear operator from S7 x S into S$+m/_‘] (i.e.
any seminorm of Rj(a,b) is controlled by some bilinear expression of a finite
number of seminorms of a and b).

Let Op Sy’ denote the set of pseudo-differential operators, the main con-
sequences of the previous relations can be summarized by:
Proposition 4.2.
The space Up,cr Op Sy’ s an algebra with

Op Sy o Op Sy C Op Stm (4.13)

and

[op S opsSy'| c opsmm L, (4.14)

Note also that the principal symbols (symbol modulo lower order terms?) of
a(z,D,) o bW (2,D,) and i[a" (2, D.),b" (2, D.)] respectively equal ab and
the Poisson bracket {a,b} = 22:1 0¢,00;,b — 0, a0, b.

4.2.3 Equivalence of Quantizations

Since our metric g is splitted, gz(t., —t¢) = gz(t.,tc), all the quantizations
are equivalent at the principal symbol level. More precisely, for any a € Sy’
and for any ¢,¢" € [0,1], there exists a unique symbol a;, € Sy such that
aitt,)(z, D.) = a"(z,D,). They satisfy

& (=it —t')D. D)’
ary = efi(tft/)Dz,DCa _ Z ¢

| a+ Ry (a),
i=0 J:

where Ry, ; is a continuous operator from Sj into Sy ”. Hence in any
quantization the symbol of the formal adjoint of al(z, Dz) is a up to lower
order terms.

3 Here the case @ = 1 is not excluded and “lower order” may mean “same order”.
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4.2.4 L?*(R%)-Continuity

The following theorem is an extension of the celebrated Calderon-Vaillancourt
Theorem giving the L2-continuity of pseudo-differential operator of order 0:

Theorem 4.3.

Op Sy € L(L*(RY)). (4.15)

According to the previous remark, this holds for any quantization.

4.2.5 Compact Pseudo-differential Operators

Proposition 4.4.

If the function ¥ satisfies lim(, )0 ¥(2,() = +o00 then, for any ¢ > 0,
Op S, © is continuously embedded in the space K(L?(R?)) of compact operators
in L?(R%).

4.3 Fully Elliptic Operators
and Beals Type Characterization

A pseudo-differential operator a"V(z, D,) € Op Si is said to be fully elliptic
if its symbol satisfies
a(,0 = C™ (2,C) | (4.16)

for some C' > 0, while it is said elliptic if the inequality holds up to some
remainder R € Sg“‘;, 0 > 0. Any fully elliptic operator admits at any order
a left and right parametrix. We can first write

atWal=1-r, withr € S;l ,

and then §"-multiply on the right with 1 + 71 in order to get 1 — 7o, with
ro €Sy 2 at the right-hand side, and so on. The left parametrix at arbitrary
order is obtained similarly.

In [BonChe], J.M. Bony and J.Y. Chemin introduced in a wide generality
Sobolev spaces attached to the Weyl-Hérmander calculus and gave a version
of the Beals criterion (some other details and improvements where given by
J.M. Bony [Bonl] in his graduate course at Ecole Polytechnique in 1997-1998).
In our case, the results of [BonChe] provide a Sobolev scale of Hilbert spaces
Hy , indexed by s € R, such that

SRY c Hy c Hy c 8'(RY), for s > s,
Vs,meR,Vae Sy, a"(z,D,) e L(Hy: Hy ™) ,
HY = L*(RY) and (Hy) = H,*.
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In our case, the metric is diagonal in a fixed basis (see [NaNi] for a detailed
version of Remark 5.6 of [BonChe]) and an operator A : S(RY) — S'(R?)
belongs to Op Sy’ if and only if it satisfies the estimates

< Ca,ﬂ 5

d a B
Vo, € N, 3Cu 5 > 0, HadzadDZAHL(H;;H;m“Ql) <
for some s € R.

Moreover the maps a — Hadgad %ZAH (with A = a"(2,D,))

L(Hé’;H;ferlal)
define, for (o, 3) € N% x N | a set of seminorms which is equivalent to the set
of semi-norms a — (\a|k SZL)IC on Sy'. We now apply these results in some
' €N

specific case. Our aim is to check that arbitrary real powers of a positive elliptic
pseudo-differential operator are pseudo-differential operators. Although some
statements sound like standard results, these results have to be checked for
general ¥ (see the comments in Section 4.5 below).

Proposition 4.5.
a) Let A=a"(z,D.) be a fully elliptic operator in Op Si,

la| > C~ o™ .

If the operator A : Hy® — H;*™ ™ is invertible for some so € R, then it is an
isomorphism from Hy, onto Hy ™ for any s € R.

b) Let A=a"(2,D,) € OpSy, m >0, be a symmetric (the symbol a is real
valued) elliptic operator,

la| >C7'o™ + R,

with R € Sy~°, § > 0. Then the operator (A, D(A) = HJ) is self-adjoint
on L*(R?) and the Sobolev scale (Hj), p coincides with the Sobolev scale
associated with the self-adjoint operator (A, D(A) = Hy").

Moreover, if A > cold, then for any s € R the norms u — HUHHg, and u —

HAS/muHL2 are equivalent.

Proof of a).

First note that A* with symbol a satisfies the same properties as A with sg
replaced by —sg+m . The result is proved if A := A considered as an operator
from Hy into Hy ™ has a closed range, Ker(A,) = {0} and Ker (A}) = 0.
This is a consequence of elliptic regularity. For any s € R, A € Op 5§’ implies

Vu € Hy, || Aullygyn < Cllully, -
Conversely, since A admits a left parametrix B at any order, i.e.
3B; €0pS,™,BjA=1d+ Ry, with R; € OpS,”,

the estimate
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Ivll e < 1B Au = Byl < C A0y + ull gy

holds for any v € Hy, (take J > m). Hence the operator A, : Hy, — Hy ™
has a closed range.
If u € Hy satisfies A;u = 0, there are two cases:

1. s > S0-
Then u € Hy® belongs to Ker (A) and we have u=0.
2. s<sg-

Using again the left parametrix with J large enough, we get
0=BjAu=u+ Rjyu,

which implies that ©w = —Rju belongs to H;" . Therefore u = 0.

Similarly the same properties for A* lead to Ker (A%) = {0} and A defines
an isomorphism from H, onto Hy~ ™ for any s € R.

Proof of b).

Notice first that an elliptic real valued symbol a can be made fully elliptic by
adding ity with tgp € R and |¢g| large enough. Hence, it suffices to check that
for to € R, |to| large enough, itg + A : Hp* — L?*(R?) is invertible and then to
apply the results of a). The identity (4.10) shows that the remainder R;(a,b)
depends only on the J* derivatives of the symbols a and b and leads to

1 1 1
. w . . . —1
=1
(Zt0+a)ﬁ (it0+a> +2i {Zto-l-a, it0+a}+R2(lto+a, (Zto-l-a) )
= 1+ Ry(a, (ito +a)™ 1), (4.17)

where R is continuous from S x S5 to S%. The seminorms of the
symbol (itg + a)~! in S, ™*? are of order |to\_2/m and the right-hand side
1 + Ra(a, (to + a)~t) is invertible in £(L2(R?)) for |to| large enough. Hence
(ito + A) : H* — L?(R%) admits a right inverse. A left inverse is constructed
similarly for |to| large enough and (A4, D(A) = H}') is self-adjoint. The equal-
ity of the two Sobolev scales and the equivalence of the norms are consequences
of a). |

Remark 4.6.
An example of such an operator A is tg + a(z, D,) with a > 0, a € Sy, elliptic
and the constant ¢y > 0 large enough.

Proposition 4.7.

Let A € Op Sy, m > 0, be elliptic and satisfy A > cold. Then for any fized
A& a(A), (A=X)"1 belongs to Op Sy ™ . Moreover, the seminorms of (t4+A4) "
in Op Sy™ are bounded uniformly with respect to t > 0.
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By Proposition 4.5, (4, D(A) = H}") is self-adjoint and for any fixed s € R the
norms HUHH; and ’AS/muHL2 are equivalent. We shall use the Beals criterion

in the form

Vo, B € N%,3C, 5 > 0, HAl+la\/mad “ad? (A —4)7! Hc(m) < Capa .

The relation

0=ad%d?} ((A-X)(A-N"1)
= Y capan [ad o=iad (A - A)} o [ad “ad % (A— )"
(a1,81)<(e,3)

makes sense, if one considers the factors ad $'ad %12 (A —XN)7! as continu-
ous operators from S(R?) to S’(RY) because the pseudo-differential factors
ad 7 *ad %:ﬂl (A — \) are continuous in &' (R%).
The result is derived by induction from this relation in the form
ad Sad%z (A—X)"1
S o [tz ) e -]
(e1,81)<(e,8)

with:

A(A-=N"teL(r?),
Alel/m lad = tad M Al amt el e £(r2)

and Altleal/m {adglad’%z (A— )\)_1] € L(L?) for (a1, 31) < (o, B) .

Here (a1, 61) < (o, 8) means {1 < o, 01 < 3, and aq + (1 < o + 8}
When A = —t the uniform estimates of the seminorms of (A+¢)~* € Op S;™
are a consequence of

|AA+n)7 <1.

4.4 Powers of Positive Elliptic Operators
We conclude this chapter with a result about powers of positive elliptic oper-
ators.

Theorem 4.8.
Let A € OpSy, m > 1, be a positive operator, A > cold, co > 0, with
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A=ad"(2,D,),a>C W™ -R RE€ Sg_‘;, 6 > 0. Then for any real s € R,
A® belongs to Op Sy'® and there exists a constant to > 0 such that for all
seR

A* —[(to+a)]" € Op St . (4.18)

For a constant ¢ty > 0 large enough, the ellipticity assumption implies that
to+ A =tg+a"(z,D,) is fully elliptic:

to+a>Crlwm™ 01 >0.
The identity (4.17) gives for any ¢ > 0
(t+to+A)o[(t+to+a) Y =1+ By,

where the seminorms of B;; in Op Sy ! are bilinearly controlled by the semi-
norms of A € Op Sy and the seminorms of (¢ + ¢y 4+ a)™* € S, ™", These
seminorms of (¢ +to +a)~! in Sy, """ are of order O((t)~'/™). Moreover the
seminorms of (¢ + ¢y + A)~' € Op S;™ are uniformly bounded according to
Proposition 4.7. Hence we get

VE>0,(t+to+A) " = [(t+to+a) ]V =B, €0pS,™ ",

with all the seminorms of E; in Op S, ™ ' bounded by <t>_1/m .
The first resolvent identity gives, for any ¢ > 0,

(t+A) P =(t+to+ A +to(t+ A+t + AT
With ¢ = 0, this leads to
Al = [(to + a)il}w + Eoy + toAil(to + A)71 .

Since A~! and (to+A) ™! belong to Op S, with m > 1 and E, € Op S;mfl,
the pseudo-differential calculus gives

Vp € Z, AP — [(to + a)P]"V € OpSyP~" .

Let us consider now the case of non integer exponents r € R. Indeed the
pseudo-differential calculus reduces the problem to

Vrel, A" —[(to+a) ] € OpSp !,
for some open interval I of R. We will use the formula (see for example [Yos])

_ sin(7r)

A" = /Oo dt t"(t+ A)~, r € (—1,0). (4.19)

0 0
We iterate the first resolvent formula:

(t+A) = (t+to+A) " ot +to+ A) 2+t + A) "t 4+t + A)72
=1+ +6).
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Term (1):
The identity

(t+to+A) P =[t+to+a) YV + E, (4.20)
will be used as it is, but it also implies that all the seminorms of (t+to+A)~*
in Op S~™+1 are bounded by (¢)~*/™.
Term (2):
The equality (4.10) gives

(t+to+a) "W (t+to+a) ™" = (t+to+a) >+ Ro((t+to+a) " (t+to+a)™"),

where the seminorms of Ro((t+to+a)™!, (t+to+a)~t) in S, >™ and therefore
in S, ™! are controlled by the seminorm of (o +¢ +a)~! in S;™*. With
(4.20), this yields

(t+to+A)2=[t+to+a) ¥V + E'(t), (4.21)

with all the seminorms of E’(t) in Op S~™~! bounded by <t>_1/m .
Term (3):
The operator (¢ + A)~! and (¢ +to+ A)~! are uniformly bounded in Op S

while all the seminorms of (£+to+A)~" in Op S; "+ are bounded by (£) /™.
With m > 1 again, the seminorms of the term (3) in Op S, "' are bounded

by ()™
The three above estimates lead to
t+ AP =[t+to+a) MV +[(t+to+a) YV + E' (1),

with all the seminorms of E”(t) in OpSy™ ' bounded by <t>71/m. With
r € (—1,—14 1/m), the integral

—+oo
/ dt t"E"(t)
0

converges in Op S;m_l, while we have

_sin(mr) / dt t"(t+to +a)"! = (to +a)" (4.22)
7T 0
and
_sinfar) / dt t"(t+to+a)"t =—r(to+a)""" . (4.23)
7T 0

We have proved

(t+ A)" = [(to + a)"|"V —rto[(to +a)" |V + F,., for F, € OpS;m*1 ,
=[(to +a)" |V +F., for F. € OpS;™ ",

and for allr € I = (—=1,—-1+4+1/m). |
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4.5 Comments

i) The condition m > 1 is necessary for —tg = A — (to + a)"' cannot belong

to Op Sy 'ifm < 1.

ii) Several formulas for the functional calculus are available in order to prove

iii)

iv)

that powers of pseudo-differential operators are pseudo-differential op-
erators, or more generally in order to estimate commutators with pow-
ers of some self-adjoint or sectorial operators. For sectorial operators A,
one can use contour integrals involving the exponential (see [Yos]). For
self-adjoint operators which are not semi-bounded (like the Dirac opera-
tor), one can use the Dynkin-Helffer-Sjostrand formula (see [HelSj6], [Ni2]
or Davies [Dav2]) for defining the functional calculus and recognize the
pseudo-differential character of the function of the operator. For a positive
operator any version of (4.19) works.

The analysis of powers of operators in connection with the pseudo-
differential operators now has a long history. It goes back at least to the
work of R. Seeley in [See] for operators on a compact manifold and was
generalized in the same spirit for operators on R by D. Robert in [Rob].
Let us explain the difference with their strategy and their result. First
notice that our result is valid with ¥ = 1 (then Theorem 4.8 says noth-
ing but A* € Op SY because there is no notion of principal symbol) and
all intermediate cases where ¥ grows partially to co. In [See] and [Rob]
there is a clear asymptotics with notions of principal symbols and asymp-
totic expansion up to operators of order —oo. It is not the present case.
More generally there are two strategies to attack the pseudo-differential
properties of an operator provided by functional analysis:

1. If the pseudo-differential calculus contains a clear asymptotics (high
frequencies, semiclassical asymptotics, spatial weights) then one can
follow the usual approach by studying recursively all the terms of some
asymptotic expansion;

2. Use the Beals criterion in the framework of global pseudo-differential
calculus. This criterion introduced by Beals in [Bel][Be2][Be3] was
clarified by Bony and Chemin in [BonChe] after the introduction of
the biconfinement inequalities in [BoLe].

In [Bonl], J.M. Bony gave another version of the Beals criterion under the
assumption g° = A\2g and ¢ geodesically temperate . Under this addi-
tional assumption and with this new criterion, it is possible to prove that
the inverse of an invertible operator in £(L?(R?)) is a pseudo-differential
operator, without any ellipticity assumption. With the help of Dynkin-
Helffer-Sjostrand formula [Davl] it is then possible to study the functions
of self-adjoint pseudo-differential operators with this more direct version of
the Beals criterion. For general metrics, it is not known whether the tem-
perance implies the geodesic temperance (the other implication is true).
We shall come back to this point in Section 4.7 where we reproduce a
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remark communicated to us by J.M. Bony after reading the first version
of this text.

v) The analysis of globally elliptic or globally hypoelliptic operators has also
a long story. In addition to the previous references, let us also mention
Tulovskii-Shubin [TuSh], Robert [Rob], Helffer [Hel0], Mohamed [Moh)]
and more recently [Glo3] and [BoBuRo] (and references therein).

vi) The global pseudo-differential calculus was recently used for Witten Lapla-
cians in [Iwas] in connection with the Hodge-Kodaira theory.

4.6 Other Types of Pseudo-differential Calculus

For conciseness and clarity, we did not present the pseudo-differential calculus
in its full generality. However the general theory applies in many different
situations. Often the main difficulty for a specific application is reduced to
finding the right metric. Many works have already been done in this spirit
and when one studies compactness properties of resolvent, the basic example
is associated with the metric:

(L+ 2 + ¢~ (dz? + d¢?) .

We refer the reader to [HelO] for a detailed presentation of this calculus. There
the class of symbols, which satisfy

|02 ca(z, Q)] < Cq (z,Q)mPlel

was denoted by I')", 0 < p < 1, and the Sobolev scale associated to this

calculus is the one given by the harmonic oscillator A + |z|* . Unfortunately,
this classical example cannot be applied to the analysis of the Fokker-Planck
operator, except in the case when the potential is (almost) quadratic. We
will use it in a paragraph devoted to the quadratic case and we will need
the additional standard comparison with the anti-Wick calculus (sometimes
called Wick-calculus by some authors, see [Shu], [BeSh], [Hel0] and [Ler]).

As discussed in Shubin [Shu] or in [Hel0], one get