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Preface

The MAF2006 Conference, organized at the University of Salerno, represents the

prosecution of the first edition, held in 2004 also at the Campus of Fisciano, and

was developed on the basis of cooperation between mathematicians and statisticians

working in insurance and finance fields.

The idea arises from the belief that the interdisciplinary approach can improve

research on these topics, and the proof of this is that interest in this guideline has

evolved and been re-enforced.

The Conference aims at providing state of the art research in development, im-

plementation and real word applications of statistical and mathematical models in

actuarial and finance sciences, as well as for discussion of problems of national and

international interest.

These considerations imply the strengthening of the involved methods and tech-

niques towards the purpose, shared by an increasing part of the scientific commu-

nity, of the integration between mathematics and statistics applied in finance and

insurance fields.

The Conference was open to both academic and non-academic communities from

universities, insurance companies and banks, and it was specifically designed to con-

tribute to fostering the cooperation between practitioners and theoreticians in the

field.

About 100 researchers attended the Conference and a total of 9 contributed ses-

sions and 4 organized sessions, containing more than 50 communications, were

accepted for presentation. The extended abstracts are available on http://www.

labeconomia.unisa.it/maf2006/. Two prestigious keynote lecturers, delivered

by prof. Giovanni Barone Adesi (University of Lugano) on GARCH Options in In-

complete Markets and by prof. Michael Wolf (University of Zurich) on Multiple

Testing Based on Generalized Error Rates with an Application to Hedge Fund Eval-

uation, increased the scientific value of the meeting.

The collection published here gathers some of the papers presented at the confer-

ence MAF2006 and successively worked out to this aim. They cover a wide variety

of subjects:
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• Mathematical Models for Insurance

Insurance Portfolio Risk Analysis, Solvency, Longevity Risk, Actuarial models,

Management in Insurance Business, Stochastic models in Insurance.

• Statistical Methods for Finance

Analysis of High Frequency Data, Data Mining, Nonparametric methods for the

analysis of financial time series, Forecasting from Dynamic Phenomena, Artifi-

cial Neural Network, Multivariate Methods for the Analysis of Financial Mar-

kets.

• Mathematical Tools in Finance

Stock Market Risk and Selection, Mathematical Models for Derivatives, Stochas-

tic Models for Finance, Stochastic Optimization.

The papers follow in alphabetical order from the first author.

The quality of the papers is due to the authors and, in the name of the scientific

and organizing committee of the conference MAF2006, we truly thank them all.

Moreover we thank the Faculty of Economics and the Department of Economics

and Statistics of the University of Salerno for the opportunity they gave us to go

ahead with this idea. We would like to express our gratitude to the members of the

Scientific and Organizing Committee and to all the people who contributed to the

success of the event. We are grateful for the kind effort in particular of the sponsors:

Amases, Ambasciata di Svizzera a Roma, Associazione Costruttori Edili Salernitani,

for making the meeting more comfortable and pleasant.

Finally, we truly thank the Department of Applied Mathematics and the Depart-

ment of Statistics of the University of Venice for the strong cooperation in this ini-

tiative and for the involvement in organizing and hosting the next edition of the Con-

ference, to be held in 2008 in Venice.

Fisciano, August 2007 Cira Perna and Marilena Sibillo
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Least Squares Predictors for Threshold Models:

Properties and Forecast Evaluation

Alessandra Amendola, Marcella Niglio and Cosimo Vitale

Summary. The forecasts generation from models that belong to the threshold class is dis-

cussed. The main problems that arise when forecasts have to be computed from these models

are presented and, in particular, least squares, plug-in and combined predictors are pointed

out. The performance of the proposed predictors are investigated using simulated and empiri-

cal examples that give evidence in favor of the forecasts combination.

Key words: Threshold models; Forecasts generation; Forecast combination.

1 Introduction

Since their introduction at the end of the ’70’s, threshold models have been widely

applied to study economic and financial time series.

The interest arisen from this class of models is even testified by the relevant num-

ber of variants proposed in literature with respect to the original one introduced in

[Ton78]. Among them, in the present paper we give attention to the so-called Self Ex-

citing Threshold Autoregressive Moving Average (SETARMA) models proposed in

[Ton83], and recently revised in [ANVss], that are a direct generalization of the lin-

ear ARMA structure ([BJ76]). The original form, with k-regimes, of the SETARMA

model of order (k; p1, . . . , pk; q1, . . . , qk) takes form

X t = φ
(i)
0 +

pi∑

j=1

φ
(i)
j X t− j +

qi∑

j=0

θ
(i)
j et− j with et ∼ W N(0, σ 2), (1)

conditional on the threshold value X t−d ∈ Ri , where Ri = [ri−1, ri ] forms a parti-

tion of the real line such that −∞ = r0 < r1 < r2 < . . . < rk = +∞, ri are the

threshold values, d is the threshold delay, pi and qi are non-negative integers.

The revised form of model (1) proposed in [ANVss], can be given as:

X t =
k∑

i=1

[φ
(i)
0 + φ(i)pi

(B)X
(i)
t + θ (i)qi

(B)e
(i)
t ]I (X t−d ∈ Ri ), (2)

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance

c© Springer 2008, Milan



2 A. Amendola, M. Niglio and C. Vitale

where B is the backshift operator, the two polynomials φ
(i)
pi
(B) =

pi∑
j=1

φ
(i)
j B j and

θ
(i)
qi (B) = 1−

qi∑
w=1

θ
(i)
w Bw have no roots in common within each regime, e

(i)
t = σ 2

i et ,

{et } are i.i.d. random variables, with E[et ] = 0 and E[e2
t ] = 1, for i = 1, . . . , k and

I (·) is an indicator function.

The main variants that can be appreciated in model (2) are related to: the variance

of the error component (that is left to change between the two regimes); the delayed

values of X t in the autoregressive part of both regimes (where the notation X
(i)
t

means that X t has been generated from regime i).

[ANVss] show that, under the assumption of strictly stationarity and ergodicity

of the process X t , model (2), with k = 2, can be alternatively written as

X t =

⎡
⎣c

(1)
0 +

∞∑

j=0

ψ
(1)
j B j e

(1)
t

⎤
⎦ It−d +

⎡
⎣c

(2)
0 +

∞∑

j=0

ψ
(2)
j B j e

(2)
t

⎤
⎦ (1 − It−d), (3)

with

• It−d =
{

1 if X t−d ≥ r1

0 otherwise,

• c
(i)
0 = φ

(i)
0 /(1 − φ

(i)
pi
(B)) = φ

(i)
0 /(1 −

∑pi

j=1 φ
(i)
j )., i = 1, 2,

• θ
(i)
qi
(B)

φ
(i)
pi
(B)

=
∑∞

j=0 ψ
(i)
j B j ,

with ψ
(i)
j =

∑ j−1
s=0 φ

(i)
s ψ

(i)
j−s − θ

(i)
j , ψ0 = 1 and

∑∞
j=0 |ψ (i)

j | < ∞, for i = 1, 2.

Starting from model (2), with k = 2, and from the alternative form (3), exact multi-

step forecasts have been derived. In particular in Section 2, the best multi-step pre-

dictor, in terms of minimum mean square error, for this class of models is presented.

Different aspects which affect its generation are highlighted further distinguishing

among least squares and plug-in predictors. Taking advantage of these results, the

two predictors are properly combined in a scheme based on their variance. In Sec-

tion 3 an application to two stock markets index returns shows the performance of

the proposed predictors when the forecast of the time series level is of interest.

2 The SETARMA Predictors

Given the time series X1, . . . , X t and the lead time h, it is well known that the best

predictor of X t+h, obtained from the minimization of the mean square errors fore-

cast, is the conditional expectation E[X t+h|�t ] = X t(h), where�t = {X1, . . . , X t}.
In other words, the least squares predictor is obtained from:

min
X t (h)

E[X t+h − X t(h)]
2,

with X t+h − X t(h) = et (h) the forecast error.
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When a SETARMA model is involved, the least squares forecast X t(h) depends

on the threshold variable, which controls the switching among regimes, and the

threshold delay, which has relevant implications on the predictor form and on its

distribution. More precisely, when h ≤ d , the predictor X t (h) is derived simply

following the results of the linear time series analysis ([BJ76]). Its form is

X t(h) = X
(1)
t (h)It+h−d + X

(2)
t (h)(1 − It+h−d),

where X
(i)
t (h) is the ARMA predictor in regime i.

Using the SETARMA representation (3), X t(h) can even be written

X t(h) =
2∑

i=1

⎡
⎣c

(i)
0 +

∞∑

j=h

ψ
(i)
j e

(i)
t+h− j

⎤
⎦ I (X t+h−d ∈ Ri ),

where E(e
(i)
t+h− j |�t) = 0, for j = 1, ..., h − 1, with R1 = [r,+∞] and R2 =

(−∞, r).

On the contrary, when h > d , the estimation of the threshold variable implies

some difficulties. In fact, when the lead time h is greater than the threshold delay d ,

X t+h−d /∈ �t and so It+h−d becomes a Bernoulli random variable

ih−d =
{

1 with P(X t+h−d ≥ r|�t )

0 with P(X t+h−d < r|�t )
for h = d + 1, d + 2, . . . , (4)

where P(X t+h−d ≥ r|�t ) = E[ih−d |�t ] = p(h−d).

The least square predictor in this case becomes

X t(h) = X
(2)
t (h) + p(h−d) ·

(
X
(1)
t (h) − X

(2)
t (h)

)
, (5)

which can even be written

X t(h) = c
(2)
0 +

∞∑

j=h

ψ
(2)
j e

(1)
t+h− j +

⎡
⎣c

(1)
0 − c

(2)
0 +

∞∑

j=h

(
ψ
(1)
j −ψ

(2)
j

)
e
(2)
t+h− j

⎤
⎦ p(h−d).

(6)

The prediction error et (h) is

et (h) = e
(2)
t (h)+ It+h−d [e

(1)
t (h)−e

(2)
t (h)]+[It+h−d − p(h−d)]·[X

(1)
t (h)−X

(2)
t (h)],

(7)

where e
(i)
t (h) =

h−1∑
j=0

ψ
(i)
j e

(i)
t+h− j and X

(i)
t (h) =

∞∑
j=h

ψ
(i)
j e

(i)
t+h− j are the forecast

errorsand the predictions generated from regime i respectively (i = 1, 2).

The predictor (6) is unbiased for X t+h as shown in the following proposition.
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Proposition 1. The least square predictor (6) of the strictly stationary and ergodic

SETARMA model (2), with k = 2 and known coefficients, is an unbiased estimator

for X t+h , that is

E[X t(h)] = X t+h h = d + 1, . . . . (8)

Proof. The unbiasedness of X t(h) can be equivalently demonstrated showing that

the prediction error et (h) has E[et (h)] = 0.

Given et (h) in (7), it can even be written as

et (h) =
h−1∑

j=0

ψ
(2)
j e

(2)
t+h− j + It+h−d

⎡
⎣

h−1∑

j=0

ψ
(1)
j e

(1)
t+h− j −

h−1∑

j=0

ψ
(2)
j e

(2)
t+h− j

⎤
⎦ +

+(It+h−d − ph−d)

⎛
⎝

∞∑

j=h

ψ
(1)
j e

(1)
t+h− j −

∞∑

j=h

ψ
(2)
j e

(2)
t+h− j

⎞
⎠ . (9)

Observing that, for h > d , It+h−d is a random variable with distribution (4) and with

E(ih−d) = P(X t+h−d ≥ r|�t ) = p(h−d), the expected value of (9) is

E[et (h)] =
h−1∑

j=0

ψ
(2)
j E[e

(2)
t+h− j ] + p(h−d)

⎡
⎣

⎛
⎝

h−1∑

j=0

ψ
(1)
j E[e

(1)
t+h− j ]−

+
h−1∑

j=0

ψ
(2)
j E[e

(2)
t+h− j ]

⎞
⎠ |It+h−d

⎤
⎦ = 0,

which implies that E[X t(h)] = E[X t+h + et (h)] = X t+h . ⊓⊔

The variance of the prediction error et (h) is

σ 2
e (h) = σ 2

2,e(h) + p[σ 2
1,e(h) − σ 2

2,e(h)] + [p + p2
(h−d) − 2p · p(h−d)]

×[σ 2
1,X (h) + σ 2

2,X (h) − 2σ12,X (h)]. (10)

where σ 2
i,X (h) = σ 2

i

∞∑
j=h

(
ψ
(i)
j

)2
, for i = 1, 2, σ12,X (h) = σ1σ2

∞∑
j=h

ψ
(1)
j ψ

(2)
j is the

forecast covariance and p is the unconditional expected value of It+h−d.

2.1 Plug-in forecasts

When h > d the generation of multi step-ahead predictions can be even accom-

plished using a different strategy frequently used in empirical framework. If the

forecasts are generated treating the values predicted at the previous steps as true

values, the conditional set �t grows with the lead time so becoming �t (h − d) =
{X1, . . . , X t , X t(1), . . . , X t(h − d)}.
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This allows the generation of forecasts conditional to �t (h − d)

X t (h) = E[X t+h|�t (h − d)] h = d + 1, d + 2, . . . , (11)

where the predictions X t(1), . . . , X t(h − d) belong to the conditional set �t (h − d).

The indicator function It+h−d becomes:

it (h − d) = [It+h−d|�t (h − d)] =
{

1 if X t(h − d) ≥ r

0 if X t(h − d) < r,
(12)

with the value of it (h − d) related to the forecasts generated at the previous steps.

The predictor (11), called plug-in and denoted X P I
t (h) in order to distinguish it

from the least square predictor (6) (denoted X L S
t (h)), is given as:

X P I
t (h) = E[X t+h|�t (h − d)] = X

(2)
t (h)+ it (h − d)

(
X
(1)
t (h) − X

(2)
t (h)

)
, (13)

with forecast error

eP I
t (h) = e

(2)
t (h) + It+h−d[e

(1)
t (h) − e

(2)
t (h)] + [It+h−d − it (h − d)] · [X

(1)
t (h) − X

(2)
t (h)],

(14)

where X
(i)
t (h) and e

(i)
t (h) are defined in the previous section.

It is interesting to note that the predictor (13) is still an unbiased estimator for

X t+h.

Proposition 2. The plug-in predictor X P I
t (h) generated from the strictly stationary

and ergodic model (2), with k = 2 and known coefficients, is unbiased for X t+h, so

E[X P I
t (h)] = X t+h .

Proof. The proof follows the same steps of proposition 2. Starting from:

eP I
t (h) = X t+h − X P I

t (h), (15)

the prediction error eP I
t (h) is

eP I
t (h) =

h−1∑

j=0

ψ
(2)
j e

(2)
t+h− j + It+h−d

⎡
⎣

h−1∑

j=0

ψ
(1)
j e

(1)
t+h− j −

h−1∑

j=0

ψ
(2)
j e

(2)
t+h− j

⎤
⎦ +

+(It+h−d − it (h − d))

⎛
⎝

∞∑

j=h

ψ
(1)
j e

(1)
t+h− j −

∞∑

j=h

ψ
(2)
j e

(2)
t+h− j

⎞
⎠ ,
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with unconditional expected value

E[eP I
t (h)] =

h−1∑

j=0

ψ
(2)
j E[e

(2)
t+h− j ] + p(h−d)

⎡
⎣

⎛
⎝

h−1∑

j=0

ψ
(1)
j E[e

(1)
t+h− j]+

−
h−1∑

j=0

ψ
(2)
j E[e

(2)
t+h− j]

⎞
⎠ |It+h−d

⎤
⎦ + p(h−d)

⎡
⎣

⎛
⎝

∞∑

j=h

ψ
(1)
j E[e

(1)
t+h− j ]+

−
∞∑

j=h

ψ
(2)
j E[e

(2)
t+h− j ]

⎞
⎠ |It+h−d

⎤
⎦ − it (h − d)

⎛
⎝

∞∑

j=h

ψ
(1)
j E[e

(1)
t+h− j ]+

−
∞∑

j=h

ψ
(2)
j E[e

(2)
t+h− j ]

⎞
⎠ = 0.

This implies that the expectation of (15) is

E[X t+h − X P I
t (h)] = 0,

and so X t+h = E[X P I
t (h)]. ⊓⊔

The variance of the prediction error (14) is instead given as

σ 2
P I,e(h) = σ 2

2,e(h) + p[σ 2
1,e(h) − σ 2

2,e(h)] + [p + it (h − d)− 2p · it (h − d)]

×[σ 2
1,X (h) + σ 2

2,X (h) − 2σ12,X (h)], (16)

that, even in this case, is related to the variance of the forecast errors and of the

predictors generated from the two regimes.

2.2 Forecasts combination

When two or more predictors are involved, it is advisable to find a criterion which

allows their comparison and that gives a measure of their forecast performance. If

the selected criterion is the mean square forecast error (MSFE), the comparison of

the plug-in and least squares predictors, in the linear context, shows that

E[(X t+h − X P I
t (h))2 |�t ] ≥ E[(X t+h − X L S

t (h))2|�t ],

and, according to the results of proposition 3.4 in [FY03], it is equivalent to state that

σ 2
P I,e(h) > σ 2

L S,e(h), hence leading to the preference of the least square predictor.

This result is not always true when non-linearity is involved. In particular, given

the forecast variances (10) and (16), it can be shown that

σ 2
L S,e(h)

σ 2
P I,e(h)

≥ 1 if X t(h − d) ≥ r

σ 2
L S,e(h)

σ 2
P I,e(h)

≤ 1 if X t(h − d) < r, (17)
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Table 1. Forecast accuracy, measured in terms of RMSE=h−1
∑h

i=1 e2
t (i), of the Least

Squares, Plug-In and Combined predictors generated for Xt+h , with h = 3, . . . , 10 (the more

accurate forecasts are in bold).

RMSE(×10−2)

h LS PI C

3 1.50229 1.53834 1.47044

4 1.35510 1.41816 1.36402

5 1.44576 1.55597 1.50165

6 1.37401 1.41586 1.37884

7 1.44292 1.49025 1.43057

8 1.40578 1.45710 1.39949

9 1.43602 1.45639 1.41948

10 1.42430 1.44203 1.39602

so highlighting that the ratio between the variances (and the related forecast perfor-

mances) of the least squares and plug-in forecast errors changes with respect to the

regime involved from the threshold variable.

To take advantage of the result of (17), the unbiased predictors (6) and (13) can

be combined as follows:

X C
t (h) = it (h − d)X P I

t (h) + [1 − it (h − d)]X L S
t (h)]

= X L S
t (h) + it (h − d)

[
X P I

t (h) − X L S
t (h)

]
, (18)

with it (h − d) in (12). It is trivial to show that X C
t (h) is an unbiased forecast for

X t+h, when c
(1)
0 = c

(2)
0 , and the variance of the forecast error eC

t (h) is such that:

σ 2
C,e(h) = min{σ 2

L S,e(h), σ
2
P I,e(h)}. (19)

Remark 1. The combination (18) can be seen as selection of the “best” predictor (in

term of MSFE) conditional to the augmented set �t (h − d).

The forecast accuracy of X C
t (h) has been compared with X L S

t (h) and X P I
t (h) in

the following simulated example.

Example 1. Given the SETARMA(2; 1,1; 1,1) model

X t =
{

0.8X t−1 + e
(1)
t − 0.54e

(1)
t−1 X t−2 ≥ 0

−0.68X t−1 + e
(2)
t + 0.36e

(2)
t−1 X t−2 < 0,

with σ1 = 0.5 and σ2 = 1, multi-step ahead forecasts, with h = 3, . . . , 10 have been

generated using the three predictors X L S
t (h), X P I

t (h) and X C
t (h), whose forecast

accuracy, evaluated through the Root Mean Square Errors (RMSE), is compared in

Table 1.

The results clearly show that, as h increases, the forecast combination outper-

forms the other two competitors, so affirming the advantage obtained from the com-

bination when h grows.
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Fig. 1. Dow-Jones and FTSE 100 log-returns from January 1, 2002 to June 30, 2006.

3 Empirical Results and Analysis

In order to evaluate the theoretical results presented and the forecast accuracy of the

Least Squares (LS), Plug-in (PI) and Combined (C) predictors in empirical context,

they are applied to generate ex-post forecasts from daily Dow-Jones (DJ) and FTSE

100 (FTSE) stock index log-returns from January 1, 2002 to June 30, 2006. The log-

returns of the two series are plotted in Fig. 1, where in the first part of both series, an

increasing variability can be appreciated.

The SETARMA models fitted to these time series have been selected according

to the minimum AIC, after fixing the threshold value at zero (to treat differently

positive and negative returns) and leaving out the last 10 observations to generate

forecasts. The estimated models are:

Dow-Jones: X t =
{

0.00055 + e
(1)
t − 0.13678e

(1)
t−1 X t−3 ≥ 0

−0.00040 + e
(2)
t X t−3 < 0

FTSE 100: X t =
{

0.00029 + e
(1)
t X t−2 ≥ 0

−0.00010 + 0.11636X t−3 + e
(2)
t X t−2 < 0,

from which h = 10 step ahead forecasts have been generated using the three predic-

tors presented.

Their accuracy has been compared, in terms of RMSE, in Table 2 where in both

time series, the combination outperforms the remaining two forecasts.
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Table 2. RMSE(×10−2

LS PI C

Dow-Jones 0.86475 0.86189 0.86021

FTSE 100 0.74898 0.74271 0.74223

This confirms the results obtained in the simulated example 1, but with the no

negligible detail that now the model parameters are estimated, and so estimation

errors affect the forecast accuracy.

Starting from the theoretical results presented, more complex procedures of forecasts

combination can be defined. In fact, as remarked in Section 2.2, the proposed com-

bination can be intended as a “predictor selection”. This can be refined for example

using combination schemes based on proper weighted means of predictors.
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Estimating Portfolio Conditional Returns Distribution

Through Style Analysis Models∗

Laura Attardi and Domenico Vistocco

Summary. Style analysis models aim to decompose the performance of a financial portfolio

with respect to a set known indexes. Quantile regression offers a different point of view on

the style analysis problem as it allows the extraction of information at different parts of the

portfolio returns distribution. Moreover, the quantile regression results are useful in order to

estimate the portfolio conditional returns distribution.

Key words: Style analysis; Quantile regression, Portfolio conditional returns distribution.

1 Introduction

The aim of this paper is to investigate how to exploit the information provided by

quantile regression models (for different values of conditional quantiles) in order

to enrich the classical results carried by the least squares style analysis model. The

quantile regression approach allows an indepth investigation of the impact of as-

set class exposure on portfolio conditional returns distribution. Moreover, portfolio

conditional returns distribution can be estimated by exploiting quantile regression

estimates. In this way, inferences on portfolio returns can be conducted in a semi-

parametric framework, without the need to assume the usual conditions that are used

in common practice.

The paper is organized as follows. In Section 2 we briefly introduce the style

analysis problem. An illustrative portfolio is described in Section 2.1: it is used to

show the least squares approach and the quantile regression approach (Section 2.2)

to style analysis. The quantile regression results are then used to estimate portfolio

conditional returns distribution. Some concluding remarks follow in Section 3.

∗ All computation and graphics were done in the R language (www.r-project.org) [R07] using

the basic packages and the additional mgcv [WOO06] and quantreg packages [KOE07].

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance

c© Springer 2008, Milan
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2 Style Analysis

The style analysis model decomposes the portfolio performance with respect to a set

of known indexes (constituents). The constituents are typically selected to represent

the different asset classes in which the portfolio invests. The model estimates the

quotas of such indexes in the portfolio, with the aim of separating out their share to

return.

The classical model is based on a least squares constrained regression model

[SHA92][SHA98]. Let us denote by rport the vector of portfolio returns along time

and rconst the matrix containing the returns along time of the ith portfolio constituent

on the ith column (i = 1, . . . , n). Data are observed on T subsequent time periods.

The style analysis model regresses portfolio returns on the returns of the n con-

stituents:

rport = rconst wconst + e

subject to: wconst ≥ 0, 1T wconst = 1.

The vector e denotes the tracking error of the portfolio. The two constraints allow

the coefficients to be exhaustive and non-negative, allowing them to be interpreted in

terms of compositional data.

2.1 An illustrative portfolio

In order to illustrate how to exploit the information provided by least squares (LS)

and quantile regression (QR) models, an application on a bond portfolio follows.

The portfolio has been obtained as a combination of G7 Merril Lynch indexes: they

consist of indexes tracking the performance of the oustanding public local currency

debt of G7 sovereign issuers. In particular, they refer to Canadian, French, German,

Italian, Japanese, UK and US sovereign bonds issued in their respective domestic

markets [MER06]. The time series (T = 209 observations) was quoted in Euro.

Weekly data were used from 7 April 2001 to 23 February 2005, using the Wednesday

observation as common practice in financial data analysis.

Table 1. Summary statistics for the portfolio.

portfolio constituents weights

returns CAN FRA GER ITA JAP UK USA

min -0.0258 0.0788 0.0834 0.0316 0.1111 0.0524 0.0159 0.1333

Q1 -0.0061 0.1267 0.1032 0.0412 0.1425 0.0882 0.0209 0.1957

median -0.0007 0.1578 0.1376 0.0537 0.1652 0.1149 0.0287 0.3310

mean -0.0004 0.1565 0.1329 0.0755 0.1717 0.1238 0.0478 0.2919

Q3 0.0046 0.1961 0.1563 0.1147 0.2079 0.1478 0.0813 0.3543

max 0.0374 0.2644 0.1829 0.2004 0.2444 0.3120 0.1429 0.4251

σ 0.0100 0.0483 0.0282 0.0446 0.0346 0.0507 0.0341 0.0865
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Fig. 1. A simulated bond portfolio: a returns along time, and b constituent quotas along time.

Portfolio constituent weights along time have been obtained using a classic op-

timization procedure [ELT95], so mimicking a typical active portfolio. Summary

statistics for the obtained portfolio are contained in Table 1. The first column table

refers to portfolio returns while the others contain summary indicators for constituent

weights. Fig. 1a shows the portfolio returns while the constituent quotas in compos-

ing the portfolio are depicted in Fig. 1b.

2.2 The least squares model and the quantile regression model

The use of LS model focuses on the conditional expectation of portfolio returns

distribution, as the LS model can be formulated as follows:

E(rport | rconst ) = rconst wconst

with constraints: wconst ≥ 0, 1T wconst = 1.

Estimated compositions are then interpretable in terms of sensitivity of portfolio

expected returns to constituent returns. In the classical regression context, thew
consti
t

coefficient represents the impact of a change in the returns of the ith constituent on

the portfolio expected returns, holding the values of the other constituent returns

constant. Using the LS model, portfolio style is then determined estimating the style

exposure influence on expected returns. Fig. 2 depicts least squares results for the

bond portfolio. Fig. 2a shows the real portfolio composition at time T compared with

the estimated composition. Although the estimated LS coefficients are in common

practice interpreted as composition at the last time, it is worthwhile stressing that they

reflect the average effect along the period, according to the regression framework.

This is evident from Fig. 2b where estimated LS coefficients are compared to average

portfolio composition.
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Fig. 2. Style analysis coefficients compared: a to the real portfolio composition at time T , and

b to the average portfolio composition.

Exploiting quantile regression [KOE05], a more detailed comparison of finan-

cial portfolios is obtainable as quantile regression coefficients are interpretable in

terms of sensitivity of portfolio conditional quantiles returns to constituent returns

[BAS01]. The quantile regression (QR) model for a given conditional quantile θ fol-

lows:

Qθ (r
port | rconst ) = rconst wconst (θ)

with constraints: wconst (θ) ≥ 0, 1T wconst (θ) = 1, ∀θ,where θ (0 < θ < 1) denotes

the particular quantile of interest [ATT06].

In a similar way, as for the LS model, the w
consti
t (θ) coefficient of the QR model

can be interpreted as the rate of change of the θ th conditional quantile of the port-

folio returns distribution for a one unit change in the ith constituent returns holding

the values of X j, j �=i constant. The use of QR then offers a more complete view of

relationships among portfolio returns and constituent returns.

Table 2 collects results of LS model and of QR models for a set of selected

quantiles (θ = {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.99}): the seven portfolio

constituents are in rows while the columns refer to the different models, the last

column being the difference between maximum and minimum value for each row.

Besides the LS coefficients, QR coefficients provide information on the different

level of turnover in the portfolio constituents along time.

The obtained results can be graphically inspected. The graphical representations

allow a better appreciation of the different impact of the sectors composing the port-

folio on the total return. Fig. 3 displays, with respect to the seven sectors, the QR

estimates for the analyzed portfolio. The different conditional quantiles are repre-

sented on the X axis while the coefficient values are on the Y axis, the solid line

with filled dots representing the point estimates for 99 distinct conditional quantiles

(θ = {0.01, 0.02, . . . , 0.98, 0.99}). From the figure, it is evident that there is a differ-
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Fig. 3. Quantiles style analysis coefficients for the seven different sectors.

ent pattern for CAN, GER and UK sectors from one side and for ITA and USA on the

other side. The first show a decreasing effect (lower quantiles correspond to upper

estimates and vice versa) while the others show an increasing effect (lower quantiles

correspond to lower estimates and upper quantiles correspond to upper estimates).

Finally FRA and JAP sectors show a different behaviour with respect to the net ef-

fect of the correspondent returns on portfolio conditional quantile returns. Moreover,

exploiting the conditional quantile estimates shown in Fig. 3, it is straightforward to

estimate the portfolio conditional returns distribution as follows:

r̂
port
θ = rconst ŵconst (θ), for 0 < θ < 1.

Table 2. LS and QR estimates for the analyzed portfolio.

portfolio LS Q(0.05) Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90) Q(0.95) max - min

CAN 14.50% 16.09% 15.63% 14.84% 13.44% 12.34% 11.35% 11.04% 5.05%

FRA 12.02% 13.66% 13.62% 13.20% 13.57% 12.14% 12.27% 12.26% 1.64%

GER 6.57% 7.99% 7.69% 6.75% 5.12% 5.37% 4.54% 4.39% 3.60%

ITA 20.69% 17.01% 17.34% 18.11% 21.37% 23.71% 25.27% 25.54% 8.53%

JAP 14.16% 11.95% 11.92% 12.07% 11.76% 12.13% 12.49% 12.69% 2.40%

UK 1.89% 4.60% 4.73% 4.45% 2.40% 1.63% 0.30% 0.00% 4.73%

USA 30.16% 28.71% 29.07% 30.57% 32.34% 32.69% 33.78% 34.08% 5.37%

100% 100% 100% 100% 100% 100% 100% 100%
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Fig. 4. Portfolio conditional returns distribution conditioning using as covariate values (a) the

last constituent returns, and (b) with a 70% growth in CAN returns.

The obtained distribution is strictly dependent on the values used for the co-variates.

It is then possible to use different potential scenarios in order to evaluate the effect on

the portfolio conditional returns distribution, carrying out a what-if analysis. Fig. 4a

depicts the estimated portfolio conditional returns distribution obtained using the

constituent returns at time T as co-variate values while Fig. 4b was obtained using

the last available constituent returns but supposing a 70% growth in CAN returns. In

this way it is possible to evaluate how the entire shape of the conditional density of

the response changes with different values of the conditioning co-variates, without

confining oneself to the classical regression assumption that the co-variates affect

only the location of the response distribution, but not its scale or shape.

3 Concluding Remarks

Style analysis models allow information to be obtained on the impact of exposure

choices on portfolio returns. The classical least squares model estimates the style

exposure influence on portfolio expected returns. The quantile regression approach

allows the extraction of information at places other than the expected value, provid-

ing information on the influence of exposure choices on the entire conditional returns

distribution. Therefore, quantile regression can be used as a complement to standard

analysis, allowing discrimination among portfolios that would be otherwise judged

equivalent using only conditional expectation. Furthermore, through quantile regres-

sion estimates it is possible to obtain information on the portfolio conditional returns

distribution. It can be estimated starting from a hypothesis on constituent returns (e.g.

last available returns) or by supposing different scenarios in order to compare the re-

sulting distributions. Further investigation to make the best use of quantile regression

potential for style analysis should concern the simulation of a more numerous set of

portfolios. Moreover, the method should be tested on portfolio investing in different

asset classes.
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A Full Monte Carlo Approach to the Valuation

of the Surrender Option Embedded in Life Insurance

Contracts∗

Anna Rita Bacinello

Summary. In this paper we extend the Least Squares Monte Carlo approach proposed by

Longstaff and Schwartz for the valuation of American-style contingent-claims to the case of

life insurance contracts. These contracts, in fact, often embed an American-style option, called

surrender option, that entitles its owner to terminate early the contract and receive a cash

amount, called surrender value. The additional complication arising in life insurance policies

with respect to purely financial American contracts is that there is not a fixed date within

which the option can be exercised, since its “maturity” is driven by mortality factors. This

complication has been handled by very few papers, often at the cost of excessively simplified

valuation frameworks. The aim of this contribution, that is not a specific valuation model but a

methodological approach, is to allow a full exploitation of the flexibility inborn in Monte Carlo

and quasi-Monte Carlo methods in order to deal with more realistic valuation frameworks.

Key words: Surrender option; Least Squares Monte Carlo approach.

1 Introduction

The surrender option embedded in several types of life insurance contracts gives the

policyholder the right to terminate early the contract, before its natural termination

(that is typically death or maturity), and to receive a cash amount, called surrender

value. It is a non-standard knock-out American put option written on the residual

contract, with exercise price given by the surrender value. The knock-out feature is

implied by the fact that this option can be exercised only if the insured is still alive,

hence it expires in case of death (“knock-out event”). The additional complication

arising in life insurance policies with respect to standard American options is that

there is not a fixed date within which the option can be exercised, since its “maturity”

is driven by mortality factors. Moreover, the value of the residual contract depends

both on mortality and on financial uncertainty and, even if pooling arguments can be

∗ Financial support from Cofinanziamento MIUR on ‘Valutazioni nelle assicurazioni vita e

nel settore previdenziale: metodologie attuariali, economiche e finanziarie” is gratefully
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applied in order to hedge the mortality risk, it is not possible, in the valuation, to keep

these two sources of uncertainty separate because there is a continuous interaction

between them.

The literature concerning the valuation of the surrender option in a contingent-

claims framework is not very abundant, and most of the papers on this subject deal

with purely financial contracts, without mortality risk, applying to them the results

on American options. There are very few exceptions that deal with actual life in-

surance contracts, characterized by both financial and mortality risk. However, the

complexity of the problem involved in this case often forces the assumption of ex-

cessively simplified valuation frameworks (deterministic interest rates, deterministic

volatility for reference portfolios, deterministic mortality trends).

The valuation approaches to tackle the problem can be essentially classified in

three categories:

1. Binomial/multinomial trees (see [Bac03a, Bac03b, Bac05, Van03a, Van03b]).

2. Partial Differential Equations with free boundaries (see [SX05]).

3. Monte Carlo simulation (see [AC03, BDF06]).

In particular, the papers [AC03] and [BDF06] combine the Least Squares Monte

Carlo approach (LSM henceforth) proposed by [LS01] for the valuation of purely-

financial American-style contingent-claims with the approach proposed by [Bac03a]

and [Bac03b] to manage the mortality risk in the valuation of the surrender option.

They follow the LSM approach only to handle the financial uncertainty (stochastic

interest rates, stochastic evolution of reference portfolios), but resort to “analytic”

tools for the mortality one. Then the two sources of uncertainty are not treated in

the same way and the stochastic time of death does not enter either the simulation

process or the definition of the stochastic discounted cash-flow of the contract.

This paper extends instead the LSM approach to the case of life insurance con-

tracts in a very natural way, according to which the mortality uncertainty is treated

exactly as the financial one and is part of the whole LSM mechanism. The aim of this

contribution, that is not a specific valuation model but a methodological approach, is

to allow a full exploitation of the flexibility inborn in Monte Carlo and quasi-Monte

Carlo methods, in order to deal with very realistic valuation frameworks including

for example stochastic interest rates, stochastic volatility, jumps, stochastic mortality

trends, etc.

The paper is structured such that in Section 2 we present our notation and

assumptions, in Section 3 we describe the valuation approach and in Section 4 we

discuss the numerical accuracy of its results. Finally, Section 5 concludes the paper.

2 Notation and Assumptions

Consider an endowment policy issued at time t0 and maturing at time tN or, alterna-

tively, a whole-life assurance policy issued at time t0. In both cases, assume that the

policy is paid by a single premium at issuance, denoted by U . Assume moreover that

the endowment policy can be surrendered at the discrete dates t1, t2, . . . , tN−1 before
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maturity, if the insured is still alive. Similarly, the whole-life assurance policy can be

surrendered at the discrete dates tn, n = 1, 2, . . ., belonging to a given set and before

death of the insured. In the case of death between times tn−1 and tn, n = 1, 2, . . ., the

benefit is assumed to be paid at the end of the interval, that is at time tn . Of course,

if we consider an endowment policy and the insured is still alive at maturity tN , the

benefit is paid at maturity.

Observe that, to avoid adverse selection, the surrender option is usually offered

only when a life insurance contract provides benefits with certainty (even if their

amount and/or the time at which they are due are uncertain). That is why we limit

ourselves to consider these two types of contracts, where the benefit is due with

certainty, soon or later.

Assume that the contract under scrutiny is a unit-linked or a participating policy

characterized, as usual, by a rather high level of financial risk. The benefit and the

surrender value can then be linked to the value or to the performance of a reference

portfolio, with possible minimum guarantees, or upper bounds. Here it is not impor-

tant to specify their structure. We only denote by Ftn , n = 0, 1, 2, . . ., the value of

the reference portfolio at time tn and by Rtn , n = 1, 2, . . ., the surrender value paid

in the case of surrender at time tn . The “payoff” of the contract is then given by the

benefit, at death or maturity, or the surrender value, in the case of surrender.

3 The Valuation Approach

In this section we describe our valuation approach. This approach concerns the whole

contract, including the surrender option. Its output is the fair value of the contract at

time 0, that is also the fair single premium to require for it. Note that with a drastic

simplification, that we briefly describe at the end of the section, the same procedure

provides the single premium for the corresponding European version of the contract,

that is without the surrender option. If one is interested in valuating separately this

option, the simplest way to do it is to compute the difference between the time 0

value of the whole contract and that of its European version.

The valuation procedure can be schematized in the following steps.

Step 1. Generate a certain number, say H , of (independent) simulated values of the

remaining lifetime of the insured. Then, with reference to the h-th iteration (h =
1, 2, . . . , H ):

– let T (h) denote the simulated time at which the benefit would be due if the sur-

render option were never exercised;

– produce a simulated path of the stochastic term-structure of spot interest rates for

any possible maturity up to time T (h);

– produce a simulated path of the reference portfolio at times t1, t2, . . . , T (h).

Remarks: All simulations must be performed under a risk-neutral measure Q, taking

into account all possible dependencies. For instance, a path for the volatility of zero-

coupon bond prices and of the reference portfolio has also to be simulated if these
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volatilities are assumed to be stochastic. Moreover, if we assume a diffusion process

to describe the value of the reference portfolio, its drift under the risk-neutral mea-

sure is given by the instantaneous spot rate, and so on. Similarly, if future mortality

trends are assumed to be stochastic, the simulation of the remaining lifetime of the

insured requires the prior simulation of all variables on which it depends, such as the

instantaneous force of mortality.

Step 2. Let tmax = max
{

T (h) : h = 1, 2, . . . , H
}
. Then, with reference to all itera-

tions (h) such that T (h) = tmax , determine the “final” payoff of the contract, given

by the simulated benefit at death or maturity, and denote it by P
(h)
tmax

.

Remark: If we are dealing with an endowment policy, it is very likely that tmax = tN .

Step 3. Let n = max − 1,max − 2, . . . , 1.

– With reference to all iterations (h) such that T (h) = tn , let P
(h)
tn

be given by the

corresponding simulated benefit.

– With reference to all iterations (h) such that T (h) > tn , use the Least Squares

method to estimate

E
Q
tn

⎡
⎣ ∑

j : tn<t j≤T

Pt j v
(
tn, t j

)
⎤
⎦ ,

where E
Q
tn

denotes expectation, under the (chosen) risk-neutral measure Q, con-

ditioned to the information available up to time tn and to the event that the con-

tract is still in force at this time (i.e., insured still alive and contract not sur-

rendered yet). T denotes the stochastic date at which the benefit would be due,

Pt j denotes the stochastic future payoff of the contract at time t j and v
(
tn, t j

)

denotes the stochastic discount factor from t j to tn at the riskless rate.

Then, denoting by f
(h)

tn the estimated conditional expectation, compare it with

the corresponding simulated surrender value R
(h)
tn

:

if R
(h)
tn

≤ f
(h)

tn
, let P

(h)
tn

= 0 and do not change the future payoffs P
(h)
t j

, j > n;

if R
(h)
tn

> f
(h)

tn
, let P

(h)
tn

= R
(h)
tn

and P
(h)
t j

= 0 for any j > n.

Remarks: This step requires a choice of the basis functions whose linear combination

defines the regression function, as well as all relevant variables (e.g., the current value

of the reference portfolio, the current spot rate, the current force of mortality, . . . ,

and their past values if the model assumed is not Markovian). Note that, inside the

Q-expectation, we have the sum of all future payoffs. There is actually one and only

one non-zero future payoff, because at any time t j Pt j can be expressed as the benefit,

at death or maturity, or as the surrender value, multiplied for an indicator function

that is equal to 1 only once, when the benefit or the surrender value is paid. The data

used in the regression are given by the simulated discounted payoffs in all iterations

(k) such that T (k) > tn , i.e. by
∑

j : tn<t j≤T (k)

P
(k)
t j

v (k)
(
tn, t j

)
,
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where v (k) denotes the simulated discount factor at the riskless rate in the k-th iter-

ation. As happens for the corresponding random variable, P
(k)
t j

≥ 0 for any j > n

and there exists a unique j such that P
(k)
t j

> 0. Finally, we observe that in [LS01],

with reference to a Bermudan-style put option, the authors recommend limiting the

application of the regression step only to the simulated paths in which the option is

in-the-money. Here, instead, we have to consider all paths because, first of all, we are

valuing the whole contract and not simply the surrender option and, secondly, it is

not possible to establish if this option is in-the-money since its underlying variable,

the value of the residual contract, is not observable but could only be estimated by

means of the same procedure under execution.

Step 4. The fair value of the whole contract at time 0, and hence the fair single

premium, is given by

U = 1

H

H∑

h=1

∑

j : t0<t j≤T (h)

P
(h)
t j

v (h)
(
t0, t j

)
.

Remark: The premium for the corresponding European version of the contract can

be simply computed as the average, over all iterations (h), of the simulated benefit

paid at time T (h) discounted up to time t0.

4 Tests of Accuracy

The numerical accuracy of the method here proposed has been verified with reference

to the valuation framework assumed in [Bac05]. This is a very simple framework, in

which there is a single state-variable given by the value of the reference portfolio,

that follows the binomial model by [CRR79]. However, this is the only one in which

we have exact analytic results to compare with those produced by the Monte Carlo

approach: that is why we have chosen it to check the accuracy of this approach.

We recall that the contract analyzed in [Bac05] is an equity-linked endowment

policy. In particular, given a constant length � for each time interval
[
tn−1, tn

]
, let

t0 = 0 and tn = n�, n = 1, 2, . . . , N . Then, conditionally to the current level

of the reference portfolio at time tn−1, given by Ftn−1 , its level at time tn can take

only two possible values, respectively given by Ftn−1u and Ftn−1 d , with (risk-neutral)

probabilities q = (exp(r�) − d) /(u − d) and 1 − q = (u − exp(r�)) /(u − d),

where r denotes the instantaneous riskless rate on an annual basis (deterministic and

constant), u = exp(σ
√
�), d = 1/u, and σ represents the volatility of the reference

portfolio, once again on an annual basis.

We have done a very large amount of numerical experiments, following different

approaches to produce the simulated path of the reference portfolio, with different

sets of parameters and by using both pseudo-random numbers and multidimensional

low-discrepancy sequences. As basis functions we have employed either powers or

Laguerre polynomials.
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Observe that in each iteration (h), once the stochastic date T at which the ben-

efit is due has been simulated, the simulated path of the reference portfolio can be

generated

• Forwards, from time t1 to T (h), by using the conditional distribution above re-

called.

• Backwards, by simulating first the value of the reference portfolio at time T (h)

from a binomial distribution, and after its values between times T (h) and t1 from

the corresponding conditional distributions. To this end we recall that, given

T (h) = j�, j = 1, 2, . . . , N , the possible values of FT (h) are F0ui d j−i , i =
0, 1, . . . , j , with (binomial) risk-neutral probability

(
j
i

)
q i(1 − q) j−i . Given in-

stead the level at time tn of the reference portfolio, Fn� = F0ui dn−i , n =
2, 3, . . . , N and i = 0, 1, . . . , n, its level at time tn−1 can take only two pos-

sible values, that are Fn�/u and Fn�/d , with probabilities i/n and 1− i/n. Note

that if i = 0 or i = n, it actually takes only one value, given respectively by

Fn�/d and Fn�/u, and hence in these cases no simulations are required.

In particular, the accuracy of the results obtained by following these two different

approaches has turned out to be

• The same, when pseudo-random numbers are employed.

• Better backwards than forwards, when using low-discrepancy sequences (and for

some sequences, e.g. the Halton one, very much better).

However, since Monte Carlo methods have a very low convergence speed compared

with quasi-Monte Carlo, and hence require a larger number of iterations in order to

achieve the desired precision, it is better to use the backward approach also here.

In fact, this approach does not require a record of all the entire simulated paths of

the state-variable, but only of its last simulated values, so that the spared allocated

memory can be used in order to increase the number of iterations.

In Table 1 we show the results of some numerical examples. In all of them we

have fixed tN = 10 years, � = 1/12, so that the length of each time interval is one

month and the relevant dates are tn = n/12, n = 0, 1, 2, . . . , 120. The insured is

assumed to be 40 years old at time 0, and the mortality probabilities used to simulate

his or her residual lifetime are extracted from the life table of the Italian Statistics for

Female Mortality in 2001, with values corresponding to non-integer ages computed

by linear interpolation. The initial value of the reference portfolio, F0, is set equal

to 1. Both the benefit paid at time t (death or maturity) and the surrender value Rt are

assumed to be given by max {Ft , F0 exp(gt)}, so that g represents an instantaneous

minimum interest rate guaranteed. We have chosen a constant and a certain number

of Laguerre polynomials as basis functions. This number has been fixed in such

a way as to maximize the accuracy of the results, within a maximum of 13. The

number of iterations H , instead, has been fixed in such a way that the premium

for the corresponding European version of the contract computed by means of the

simplified valuation procedure described at the end of the previous section coincides

with the exact premium analytically computed (at least until the 4th decimal digit).
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Table 1. Numerical examples.

r g σ number of number of estimated exact error

iterations H Lag. pol. premium U premium

0.03 0.00 0.15 100,000 9 1.0976 1.0976 0.0000

0.03 0.00 0.25 100,000 10 1.1971 1.1969 0.0002

0.03 0.00 0.35 1,000,000 13 1.2945 1.2956 −0.0011

0.03 0.02 0.15 100,000 11 1.1465 1.1464 0.0001

0.03 0.02 0.25 100,000 10 1.2604 1.2603 0.0001

0.03 0.02 0.35 1,000,000 13 1.3652 1.3674 −0.0022

0.05 0.00 0.15 100,000 9 1.0698 1.0700 −0.0002

0.05 0.00 0.25 100,000 9 1.1555 1.1555 0.0000

0.05 0.00 0.35 1,000,000 13 1.2444 1.2449 −0.0005

0.05 0.02 0.15 100,000 9 1.0975 1.0977 −0.0002

0.05 0.02 0.25 100,000 8 1.1964 1.1972 −0.0008

0.05 0.02 0.35 1,000,000 13 1.2938 1.2955 −0.0017

0.05 0.04 0.15 100,000 7 1.1458 1.1460 −0.0002

0.05 0.04 0.25 100,000 7 1.2599 1.2598 0.0001

0.05 0.04 0.35 1,000,000 13 1.3635 1.3673 −0.0038

In this way the error inborn in the Monte Carlo method is quite negligible and the

residual error is mainly due to the regression. Finally, these results are obtained by

using the multidimensional Weyl low-discrepancy sequence, that behaves very well

despite being the simplest one.

Finally a few comments about our findings. First of all note that, as expected,

the number of iterations required to achieve the desired precision for the European

version of the contract increases with the volatility of the reference portfolio. In par-

ticular, to produce the numerical results of Table 1 we have carried out 100, 000 iter-

ations when the volatility parameter σ equals 0.15 or 0.25, and 1, 000, 000 iterations

when σ = 0.35. The average absolute error is equal to 18.6 basis points (bp) when

the volatility is high, to 2.4 bp when it is medium and only to 1.4 bp when it is low.

Moreover, the number of Laguerre polynomials required to optimize the regression

procedure is equal to 9 (on average) when the volatility parameter σ equals 0.15 or

0.25, and always to the maximum number here fixed, 13, when σ = 0.35. This indi-

cates that, in case of high volatility, it would be better to further increase the number

of iterations and/or the number of basis functions. To summarize, we can conclude

that the results obtained are in general very good, and therefore the methodological

approach here proposed seems to be suitable for application to more realistic valua-

tion frameworks, with stochastic interest rates, stochastic volatility, jumps, stochastic

mortality trends, etc.
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5 Summary and Conclusions

In this paper we have proposed a method to extend the Longstaff-Schwartz Least

Squares Monte Carlo approach to the case of life insurance contracts embedding a

surrender option. We have then applied it to a very simple framework, in which there

are exact analytic solutions, in order to verify its accuracy. The accuracy tests indicate

that this method performs very well, especially for low or medium-volatile reference

portfolios, and hence the next step is to apply it to more sophisticated frameworks,

even if there is no way to compare the results obtained with exact ones.
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Spatial Aggregation in Scenario Tree Reduction

Diana Barro, Elio Canestrelli and Pierangelo Ciurlia

Summary. The solution of a multistage stochastic programming problem needs a suitable

representation of uncertainty which may be obtained through a satisfactory scenario tree con-

struction. There is a trade-off between the level of accuracy in the description of the stochastic

component and the computational tractability of the resulting scenario-based problem. In or-

der to face such a trade-off which plays a crucial role in the determination of the optimal

solution, we discuss methods that allow progressive reductions of a given scenario tree by

means of spatial aggregation. In this process it is important to take into account the choice of

proper aggregation criteria in order to try to preserve all the relevant information.

Key words: Stochastic Programming; Scenario tree reduction; Spatial Aggregation.

JEL Classification Numbers: C15, C61, C63. MathSci Classification Numbers: 65C05, 65K05.

1 Introduction

One possible way to cope with uncertainty in multi-period stochastic optimization

problems is to use scenarios to describe future evolutions for the variables of inter-

est. The introduction of a scenario tree structure to describe uncertainty allows the

transformation of a stochastic programming problem into a deterministic equivalent

optimization problem.

Although the resulting scenario based problem represents an approximation of

the original stochastic problem, it may still be difficult to solve directly due to its

large dimensions. To deal with this difficulty we can resort to either proper opti-

mization methods, which exploit the structure of the problem (see among others

[BC05a, BC05b]), or aggregation techniques which reduce the dimensions of the

original scenario tree.

The construction of a scenario tree is a complex task which requires not only

the modelling of the random data and the estimation of the underlying stochastic

processes, but also the choice of proper discretization, approximation or sampling

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance
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techniques. We focus on the problem of the choice of methods by which a previously

generated scenario tree may be optimally reduced to a desired dimension.

Given a scenario tree and its initial probability distribution, our aim is to deter-

mine an optimal sequence of reduced trees and probability distributions such that

some properties of probability metrics are satisfied. In more detail we are interested

in selecting a subset of the original scenario set with a distribution probability which

is the closest to the initial one in order to preserve as much of the information content

as possible.

The paper is organized as follows. In Section 2 we give a brief overview of the

literature on the scenario tree reduction. In Section 3 we present and discuss a new

reduction algorithm which introduce two relevant improvements with respect to the

method originally proposed in [GKHR03]. Section 4 concludes.

2 Scenario Tree Reduction Using Aggregation Methods

Several recent contributions to the literature address the problem of how to suitably

reduce the scenario tree which models the uncertainty in stochastic programs, both

from a theoretical point of view (see for example [DGKR03, HR03]) and from a

practical one (see for example [GKHR03, K98]).

The optimal reduction problem is strictly related to both the process of scenario

tree generation (see [DCW00, P01]), and the analysis of stability properties of opti-

mal solution for stochastic programming problems (see [D90, HRS05, RR02, S00,

S94]).

In order to progressively reduce the initial size of a scenario tree we can apply

different strategies based on either spatial aggregation or time aggregation, as well

as on several combinations of them.

Time aggregation is obtained by reducing the number of decision stages in the

problem. A typical example is given by the multi-period two-stage decision problem

which represents a convenient form used to recast multi-stage stochastic programs.

In this problem the planning horizon refers to a generic time horizon T while there

are only two decision stages; i.e., there is no correspondence between time periods

and decision stages. Spatial aggregation consists of a reduction of the scenario tree

by deleting scenarios, i.e., by decreasing the number of realizations for the random

quantities. These two strategies can be jointly applied to obtain a substantial reduc-

tion in the original scenario tree. In [K98] an application of time and state aggrega-

tions to built arbitrage-free scenario trees is presented.

In this paper we concentrate on a scenario reduction method based on a particular

class of probability metrics. This method allows us to obtain a subset of scenarios of

prescribed cardinality or accuracy, from the original scenario tree.
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3 A Spatial Aggregation Method for Scenario Tree Reduction

The reduction in the dimension of the scenario tree, used to describe the random

data in a stochastic programming problem, is often required in order to be able to

solve numerically the resulting optimization problem. In this contribution we focus

on a spatial reduction approach proposed by [GKHR03] which is based on the use of

probability metrics.

We consider a given scenario tree which describes or even approximates the

stochastic component of the problem and we purpose to reduce the dimension of

the tree trying to preserve all the relevant information for the optimization problem.

We denote with P the original probability distribution on the scenario tree and

with Q the probability distribution on the reduced tree. We assume that both P and

Q are discrete probability measures with finitely many realizations (scenarios). In

more detail we denote with ξi and pi = P({ξi }), i = 1, . . . , N , the scenarios and

their probabilities in the original tree and with ξ j and q j = Q({ξ j }), j = 1, . . . , M ,

with M < N , the scenarios and their probabilities in the reduced tree.

The optimal scenario reduction problem aims to find the best discrete approx-

imating probability measure Q∗ having a prescribed number M of scenarios. The

optimality is defined with respect to a measure µc of the distance between the two

discrete distributions.

According to the notation used in [DGKR03] the reduction problem is defined as

min

⎧
⎨
⎩µc

⎛
⎝

N∑

i=1

piδ(ξi ),

M∑

j=1

q jδ(ξ j )

⎞
⎠

⎫
⎬
⎭ (1)

M∑

j=1

q j = 1 (2)

q j ≥ 0 ∀ j = 1, . . . , M (3)

where µc(·) denotes a proper distance measure among the scenarios and δ(·) is

the Dirac function. For a discussion on the selection of the distance function see

[DGKR03, RR02].

Other constraints may be added to problem (1)-(3) in order to ensure desired

properties of the probability distribution Q such as moment matching conditions

(see for example [HW01]).

Problem (1)-(3) is very difficult to solve for general probability measures P and

Q and functionsµc. Nevertheless if the original probability measure and the approx-

imating one are both discrete with a finite number of scenarios, and if the chosen

probability metric belongs to the Kantorovich (or transportation) family of metrics,

the problem becomes more tractable, see [DGKR03, RR02].



30 D. Barro, E. Canestrelli and P. Ciurlia

In more detail, in the following we consider the Kantorivich functional defined as

µ̂c(P, Q) := min
ηi j

⎧
⎨
⎩

N∑

i=1

M∑

j=1

cT (ξi , ξ j)ηi j

⎫
⎬
⎭ (4)

N∑

i=1

ηi j = q j ∀ j (5)

M∑

j=1

ηi j = pi ∀i (6)

ηi j ≥ 0 ∀i, j , (7)

where ct (·) measures the distance among two scenarios ξi and ξ j and is defined as

cT (ξi , ξ j ) :=
T∑

t=1

|ξi,t − ξ j,t | , (8)

with | · | a suitable norm in Rn .

Given that the original probability measure P and the approximating one Q are

discrete with finitely many scenarios, the Kantorovich distance represents the opti-

mal value of a linear transportation problem where the transport metric measures the

cost of moving a scenario ξi , or a set of scenarios, of the original tree to the nearest

scenario in the new reduced tree.

Moreover, the choice of a probability metric in the Kantorovich family of metrics

allows some stability results to be obtained on the optimal values and solutions of

the stochastic programs related to the scenario trees. For a more detailed discussion

on this topics we refer, for example, to [RR02, DGKR03].

In [GKHR03] the authors propose two heuristics to solve the optimal reduction

problem. The first aims at selecting the scenarios that will be deleted (backward

procedure), while the second one selects the scenarios that will be maintained. In the

following, we briefly present the main idea of the first approach and we propose two

major improvements in order to overcome some drawbacks of the original approach.

Let J = {1, . . . , N} \ {1, . . . , M} be the set of the indexes of deleted scenarios.

For a fixed J , the minimal distance can be computed explicitly, see [DGKR03], and

is given by ∑

i∈J

pi · min
j /∈J

cT (ξi , ξ j) . (9)

The probability q j∗ of the surviving scenarios ξi ; j ∈ {1, . . . , M}, is computed

according to the following optimal redistribution rule:

q j∗ = p j +
∑

i∈J

pi ∀ j /∈ J , (10)
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in which the surviving scenario is endowed with the original probability and the

probabilities of the deleted scenarios which are close to it according to the chosen

metric. For a more detailed discussion on these results see [DGKR03].

In the reduction algorithm proposed by [GKHR03], only the information on the

probability of the deleted scenarios survives, through an optimal redistribution rule,

while the information related to the values in the deleted nodes disappears.

Starting from the method described in [GKHR03], in this contribution we pro-

pose an aggregation algorithm in which we keep trace not only of the probabilities

of the deleted scenarios, but also of the values of the deleted nodes. In this way we

reduce the amount of information which is lost at each step of the reduction process.

Moreover, in order to account not only for the distance among the probability distri-

butions but also between filtrations, we consider a reduction which operates only on

portions of the original tree thus allowing to preserve the filtration structure.

The proposed algorithm works for a generic scenario tree built to describe the be-

havior of random data in a multistage stochastic programming problem. This means

that there are no restrictions on the size or structure of the tree that has to be reduced.

We focus on the optimal reduction problem defined as the choice of the less

significant scenario, i.e. the scenario that can be deleted with the minimum loss of

information. This choice allows us to monitor the reduction process more efficiently.

Other approaches can be used, for example, the optimal number of scenarios to be

deleted can be computed at each step of the algorithm, see [HR03].

According to the previously used notation, let {ξ t }T
t=1 be n-dimensional stochas-

tic process with parameter set {1, . . . , T } and ξ i , ξ j denote scenarios.

Moreover, to describe the tree structure we denote with kt = Kt−1 + 1, . . . , Kt ,

for t = 1, . . . , T and with K0 = 0 and K1 = 1, the indexes of nodes at time t , and

with S = KT − KT−1 the number of scenarios in the original event tree, i.e., the set

of scenarios is � := {1, . . . , s, . . . , S}. Let D(kt ), for t = 1, . . . , T , be the index

set of scenarios having kt as ancestor node at time t , i.e., D(kt ) ⊆ �, and π
kt+1,s

kt,s

be the probability of transition from node kt at time t to its descending node kt+1 at

time t + 1 for scenario s, i.e., π
kt+1,s

kt,s
≥ 0, ∀ kt , t = 1, . . . , T − 1. The probability

of each scenario is given by ps :=
∏T−1

t=1 π
kt+1,s

kt,s
, for s = 1, . . . , S. Let J denote

the index set of deleted scenarios and cT

(
ξ i, ξ j

)
distance between scenarios

{
ξ i

t

}T

t=1

and
{
ξ

j
t

}T

t=1
, with i, j ∈ D(kt ).

The information structure in the original tree is fully described by a sequence{
Pt

}T

t=1
of partitions of the sample space �, with Pt =

{
D(Kt−1 + 1), . . . ,

D(kt ), . . . ,D(Kt )
}

and satisfying the property that each D(kt ) ∈ Pt is equal to

the union of some elements in Pt+1, ∀ t , t = 1, . . . , T − 1.
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The optimal reduction problem can be described as follows. For each discrete-

time horizon {t, . . . , T }, with t = T − 1, T − 2, . . . , 1, we calculate

min
kt ∈ {Kt−1+1, ..., Kt }

⎧
⎪⎨
⎪⎩

min
i ∈D(kt )\J

⎡
⎢⎣pi · min

j �= i
j ∈ D(kt )\J

cT

(
ξ i , ξ j

)
⎤
⎥⎦

⎫
⎪⎬
⎪⎭
, (11)

where

cT

(
ξ i , ξ j

)
:=

T∑

τ=1

∣∣ ξ i
τ − ξ j

τ

∣∣ (12)

and | · | denotes some norm on Rn , i.e., cT (·, ·) measures the distance between a pair

of scenarios on the whole time horizon {1, . . . , T }.
If the minimum is attained at k∗

t , then the scenario i∗ is deleted and

j ∗ ∈ arg min
j �= i∗

cT

(
ξ i∗ξ j

)
, (13)

is the aggregating scenario, with i∗, j ∗ ∈ D(k∗
t ).

The optimal redistribution rule for the probabilities is defined, according to the

results in [GKHR03], as follows:

π̃
kτ+1 , j∗

kτ, j∗
= π

kτ+1, j∗
kτ, j∗

+ π
kτ+1, i∗
kτ, i∗

, (14)

for τ = t, . . . , T − 1.

Beside the aggregation on the probabilities, we introduce the following aggrega-

tion step to take into account the values of the deleted scenario

ξ̃
j∗

τ+1 =
π

kτ+1, j∗
kτ, j∗

ξ
j∗

τ+1 + π
kτ+1, i∗
kτ, i∗

ξ i∗
τ+1

π
kτ+1, j∗
kτ, j∗

+ π
kτ+1, i∗
kτ, i∗

, (15)

i.e., the values of the aggregating scenario is computed as a weighted average of the

values of the original scenario and the deleted one, where the weights are given by

the corresponding probabilities.

In the following we describe in more detail the algorithm proposed for the opti-

mal reduction problem.
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Algorithm 1 Optimal reduction algorithm

Require: A previously generated event tree with S scenarios

Ensure: At each iteration a scenario i∗ ∈ D(k∗
t ) is deleted

1: for t = T − 1 to 1 do

2: while Card(D(kt )) = 1, ∀kt , do

3: Calculate the distances of scenarios pairs for each element of partition Pt

ci j := cT (ξ
i , ξ j ), i, j ∈ D(kt ) \ J, ∀D(kt ) ∈ Pt

4: Sort the records in matrix form

c(kt ) :=
[
ci j ; i, j ∈ D(kt ) \ J

]
, kt = Kt−1 + 1, . . . , Kt

5: for all kt do

6: Calculate

c
kt

ii := min
j �= i

j ∈ D(kt )\J

ci j , i ∈ D(kt )

and

z
kt

i := pi c
kt

ii , i ∈ D(kt )

7: Choose

ĩ(kt ) ∈ arg min
i∈D(kt )

z
kt

i

8: end for

9: Sort the records in matrix form

Z(t) :=
[
z
kt

ĩ (kt )
; kt = Kt−1 + 1, . . . , Kt

]

10: Choose

k∗
t ∈ arg min

kt ∈{Kt−1+1, ..., Kt }
Z(t)

Set

J := {i∗}

where

i∗ := ĩ(k∗
t )

11: end while

12: end for
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4 Concluding Remarks

In this contribution we briefly discuss the problem of optimal scenario tree reduction

for multistage stochastic programming problems and we propose two major improve-

ments to a backward reduction algorithm proposed by [GKHR03]. Our modified al-

gorithm allows us to take into account not only the transition probabilities but also

the values of the deleted scenarios and to aggregate them in an optimal way. More-

over, it is designed to handle general tree structure since it preserve the information

structure of the tree.
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[D90] Dupačová, J.: Stability and sensitivity analysis for stochastic programming. An-

nals of Operations Research, 27, 21–38 (1990)
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Scaling Laws in Stock Markets. An Analysis of Prices

and Volumes

Sergio Bianchi and Augusto Pianese

Summary. The scaling behaviour of both log-price and volume is analyzed for three stock

indexes. The traditional approach, mainly consisting of the evaluation of particular moments

such as variance or higher absolute moments, is replaced by a new technique which allows the

estimation of the self-similarity parameter on the whole empirical distribution designed by any

time horizon. In this way, the method we propose attaches its own scaling parameter to any

two given time lags, so defining a scaling surface whose properties give information about the

nature of the analyzed process. We conclude that, for the log-price process, self-similarity is

rejected with a frequency much larger than that assumed by the confidence interval and, when

not rejected, the scaling parameter heavily changes with the considered pair of time horizons.

Opposite evidence is provided for the volumes, characterized by (generally low) self-similarity

parameters which are somewhat uniform with respect to the pairs of time horizons.

Key words: Scaling; Self-similarity; Stock indexes.

1 Introduction

Since the pioneering work by [MAN63], the scaling properties of financial returns

have become the subject of a growing number of contributions for both theoreti-

cal and practical reasons. From a theoretical viewpoint, scaling invariance implies

the absence of preferred investment time horizons and the consequent universality

and parsimony of the model; practical advantages concern the possibility of build-

ing models stable under aggregation, analytically simple and governed by a small

number of parameters. Empirical evidence of multi-scaling in finance is provided

by [MDO90], [CL93], [FLL94], [SSL00], [VA98], [KL01] and [GX03] for the FX

markets; by [DAD05], [GPA99], [AI02], [BER01], [ONA04] and [YMH05] for the

stock markets and by [AMS98] and [MDB00] for the future markets. Scaling anal-

ysis has also been employed to probe the different degree of market development

(see e.g. [DIM06]). More recently, volatility scaling has become the focus of several

works following the Basel Accords, which have reaffirmed the square–root–of–time

rule (correct only under self-similarity with parameter 1/2) as a proxy for estimat-

ing volatility on different time horizons see [MEN04], [DZ04] and, ante litteram,

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance

c© Springer 2008, Milan
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[DHI97] for an analysis of the drawbacks of this rule of thumb. Using different tech-

niques, basically two types of scaling behaviours are studied: the scaling of some

volatility measures (typically variance or absolute moments of the returns) as a func-

tion of the time interval and, once this has been fixed, the scaling of the tails of the

distribution of returns as a function of the size of the variation [DGM01]. To char-

acterize the scaling properties of financial markets, empirical tests generally use the

rescaled range analysis (introduced by [HUR51] and modified by [LO91]), the multi-

affine analysis [PBH94], the more recent Detrended Fluctuation Analysis [PBH94],

the ARFIMA estimation by exact maximum likelihood, the moving average-like

analysis methods and the Average Wavelet Coefficient Method (see, e.g. [GSW01]).

In this paper we analyze the scaling behaviour of prices and volumes for three stock

indexes representative of the U.S. (Dow-Jones Industrial Average), Europe (Footsie

100) and Asia (Hang Seng). The interest towards the traded volumes is suggested by

the Multifractal Model of Asset Returns (MMAR) which, introduced by [CF02], is

the focus of a wide debate.

The basic idea beyond the MMAR is to compound a Brownian motion (even-

tually a fractional one) with a multifractal trading time, defined as the cumulative

distribution function of a self-similar multifractal measure which deforms the physi-

cal time in order to take into account the different number of transactions per unit of

time. According to this model, we expect to find self-similarity in the traded volume.

Our analysis is performed using for the very first time a new class of estimators of the

self-similarity parameter introduced by [BA04]. The method, which is distribution-

based but distribution-free, provides a very robust and immediate representation of

the scaling relation between time horizons.

2 Self Similarity and Scaling

2.1 Theoretical background

Let us shortly recall the basic definition of (strong) self-similarity which will be

useful later.

Definition 1. The continuous time, real-valued process {X (t), t ∈ T }, with X (0) =
0, is self-similar with index H0 > 0 (concisely, H0-ss) if, for any a ∈ R+ and

any integer k such that t1, . . . , tk ∈ T , the following equality holds for its finite-

dimensional distributions

{X (at1), X (at2), . . . , X (atk)} d= {aH0 X (t1), aH0 X (t2), . . . , aH0 X (tk)}. (1)

Equality (1) implies

E(|X (t)|q) = t H0qE(|X (1)|q), (2)

which allows the testing of self-similarity by the scaling of the sample (absolute) mo-

ments of X (t). With respect to the definition of self-similarity, this approach leads
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to weaker conclusions because the reverse implication (from (2) to (1)) is not nec-

essarily true. The problem is addressed by [BA04], who reformulates relation (1) in

an equivalent way by introducing a proper metric on the space of the rescaled proba-

bility distribution functions (pdf’s) as follows. Let A be any bounded subset of R+,

a = min (A) and A = max(A) < ∞, for any a ∈ A, consider the k-dimensional

distribution
 of the a-lagged process X (at). Equality (1) becomes


X(a)(x) = 
aH0X(1) (x) , (3)

where X(a) = (X (at1), . . . , X (atk)) and x = (x1, . . . , xk) ∈ Rk . Introducing the

variable H , for a self-similar process, it follows that


a−HX(a)(x) = Pr
(
a−H X (at1) < x1, . . . , a−H X (atk) < xk

)
=by H0-ss=

= Pr
(
aH0−H X (t1) < x1, . . . , aH0−H X (tk) < xk

)
= 
aH0−H

X(1)(x) =

= Pr
(
X (t1) < aH−H0x1, . . . , X (tk) < aH−H0xk

)
= 
X(1)(a

H−H0x).

(4)

Denoted by ρ the distance function induced by the sup-norm ‖·‖∞ on the space

�H of the k-dimensional pdf’s of {a−H X (at)} with respect to the setA, the diameter

of the metric space (�H , ρ)

δk(�H ) = sup
x∈Rk

sup
ai ,a j ∈A

∣∣∣
a−H
i X(ai)

(x) − 

a−H

j X(a j )
(x)

∣∣∣ (5)

measures the discrepancy among the distributions of the rescaled process. If self-

similarity holds, then for any H �= H0
1, by (4), one can trivially notice that being 


a distribution

sup
ai ,a j ∈A

∣∣∣
a−H
i X(ai )

(x) −

a−H

j X(a j )
(x)

∣∣∣ =
∣∣
a−HX(a)(x) −
A−HX(A)(x)

∣∣ (6)

and equation (5) reduces itself to the well known statistics of Kolmogorov-Smirnov,

enriching the self-similarity analysis with an inferential support.

For a truly H0-ss process, (5) has been proven to be non-increasing for H < H0

and non-decreasing for H > H0; combining this result with the uniqueness of the

self-similarity index ([LAM62]), H0 is estimated as

H0 = arg min
H∈(0,1)

sup
x∈Rk

∣∣
a−HX(a)(x) −
A−HX(A)(x)
∣∣ ,

provided that δk(�H0) is not significant once the confidence interval has been fixed.

1 For a H0-ss process, when H = H0, it is trivial to check that

sup
ai ,a j ∈A

∣∣∣∣
a−H
i X(ai)

(x)− 

a−H

j X(a j )
(x)

∣∣∣∣ collapses to zero, whatever ai and a j .
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2.2 Scaling surfaces

Since for a self-similar process from (3), it follows that


a−H0X(a)(x) = 
b−H0X(b) (x) ,

where a and b denote any two time horizons, the diameter (5) can be calculated with

respect to any pair of lags a < b and the more general self-similarity parameter can

be written as

H0(a, b) = arg min
H∈(0,1)

sup
x∈Rk

∣∣
b−HX(b)(x) − 
a−HX(a)(x)
∣∣ . (7)

The last relation represents a useful form for testing the scaling properties of a

time series by means of the pairwise comparisons of the time horizons (a, b). From a

geometrical viewpoint, the idea consists of associating at each pair (a, b)with a < b

for a, b ∈ A the third coordinate given by the estimated self-similarity parameter

H0(a, b) whenever the null hypothesis of the Kolmogorov-Smirnov test (identity of

the rescaled distributions 
b−HX(b)(x) and 
a−HX(a)(x)) is not rejected at a given

p-level.

In an equivalent way, we can see the result in the form of a strictly lower triangu-

lar matrix displaying the maximum horizons on the rows, and the minimum horizons

on the columns, whose elements are the parameters H0’s.

Basically, in our approach the definition of self-similarity is not required to hold

for any time horizon; we will be satisfied to determine which (if any) parameter H0

minimizes the distance (7) to such an extent to be statistically negligible. There-

fore, once set A has been fixed, analysis of the shape of the surface drawn by points

(a, b, H0) will provide information about the nature of the time series: a H0-high

plane will indicate that the process is truly H0-ss (relatively to set A); on the con-

trary, a jagged surface is expected to be generated by a multi-scaling process. As

an example, Fig. 1 reproduces the scaling surface of the increments of a standard

Brownian motion, which are known to be self-similar with parameter 1
2
. Indeed, the

surface is regular and 1
2
-high.

3 Empirical Application

3.1 Dataset and methodology

The methodology described above has been applied to the three main stock indexes

summarized in Table 1. The different sizes of the number of observations is due to

the availability of the traded volumes.

For each time series the daily log-price variations have been calculated and con-

sidered as input for the scaling analysis. The lags a and b have been taken in the set

of time horizons A = {1, 2, . . . , 125}, corresponding to about six months of trad-

ing days, and the null hypothesis has been tested for α = 0.05 and α = 0.01. The

scaling surfaces are obtained by filtering only those estimated H0’s for which the

corresponding diameter (7) is below the critical value of the Smirnov statistics.
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Fig. 1. Scaling surface of an sBm.

Table 1. Analyzed dataset.

Index # obs Starting day Ending day

Dow-Jones Ind. Av. 5,000 11/04/86 08/29/06

Footsie 100 944 12/03/02 08/29/06

Hang Seng 1,225 09/19/02 08/29/06

3.2 Discussion of result

Fig. 2, 3 and 4, displaying the XY projection of the scaling surfaces, summarize the

results of our analysis applied to returns (panels (a)’s) and volumes (panels (b)’s) of

the three stock indexes. The holes of the scaling surfaces denote that the values of

the corresponding diameter (7) exceed the critical threshold, given the confidence

level α. The results, similar among the three indexes, are strongly different in terms

of returns and volumes and deserve a separate discussion.

Price: for all three time series, self-similarity is rejected with a frequency much

larger than that assumed by the confidence interval. Moreover, when not rejected, the

parameter H0 heavily changes with the considered pair of time horizons in almost all

the range (0, 1). Some small areas where the parameter seems to be more stable can

be distinguished. This behaviour is typical of multifractal processes, characterized

by a plethora of scaling exponents.

Volume: unlike the log-price variations, self-similarity is rejected with a frequency

which is only slightly larger than that assumed by the confidence interval and, what

looks relevant, when not rejected, the parameter H0 is somewhat constant with re-

spect to the considered pair of time horizons with generally very low values. This

result looks strongly consistent with the recently proposed Multifractal Model of As-

set Returns (MMAR), which assumes a multifractal self-similar measure to model

the number of shares traded per unit of physical time. The constancy we observe in
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Fig. 2a Fig. 2b

Fig. 3a Fig. 3b

Fig. 4a Fig. 4b

the self-similarity parameter with respect to the pairwise comparisons of the time

horizons is coherent with what the MMAR should produce.

4 Conclusion and Further Developments

Applying for the very first time a new technique for estimating the self-similarity

parameter, evidence has been provided that the scaling behaviour of three major fi-
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nancial indexes is much more complex than the one stated by the traditional the-

ory. More precisely, completely different rules seem to be followed by prices and

volumes. The former are governed by a number of scaling exponents without any

apparent substantial regularity while the scaling exponents of the latter look some-

what regular and almost constant with very low values. These findings agree with the

MMAR and prove themselves very useful in a variety of situations. For example, the

values H0(a, b)′s can be used to improve the estimation of the annualized volatility,

usually calculated by means of the well known (and wrong when applied to actual

financial data) square–root–of–time rule. The improvement can be easily obtained

by substituting the constant exponent H0 = 1/2 with the parameter H0(1, b), where

b represents the time horizon the volatility is ”annualized” for. This issue deserves

further analysis because of its relevance for risk management.
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Bounds for Concave Distortion Risk Measures for

Sums of Risks∗

Antonella Campana and Paola Ferretti

Summary. In this paper we consider the problem of studying the gap between bounds of risk

measures of sums of non-independent random variables. Owing to the choice of the context of

where to set the problem, namely that of distortion risk measures, we first deduce an explicit

formula for the risk measure of a discrete risk by referring to its writing as sum of layers.

Then, we examine the case of sums of discrete risks with identical distribution. Upper and

lower bounds for risk measures of sums of risks are presented in the case of concave distortion

functions. Finally, the attention is devoted to the analysis of the gap between risk measures of

upper and lower bounds, with the aim of optimizing it.

Key words: Distortion risk measures; Discrete risks; Concave risk measures; Upper and

lower bounds; Gap between bounds.

M.S.C. classification: 62H20; 60E15.

J.E.L. classification: D810.

1 Introduction

Recently in actuarial literature, the study of the impact of dependence among risks

has become a major and flourishing topic: even if in traditional risk theory, individual

risks have usually been assumed to be independent, this assumption is very conve-

nient for tractability but it is not generally realistic. Think for example of the aggre-

gate claim amount in which any random variable represents the individual claim size

of an insurer’s risk portfolio. When the risk is represented by residential dwellings

exposed to danger of an earthquake in a given location or by adjoining buildings in

fire insurance, it is unrealistic to state that individual risks are not correlated, because

they are subject to the same claim causing mechanism. Several notions of depen-

dence were introduced in the literature to model the fact that larger values of one of

the components of a multivariate risk tend to be associated with larger values of the

others. In financial or actuarial situations one often encounters random variables of
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the type

S =
n∑

i=1

X i

where the terms X i are not mutually independent and the multivariate distribution

function of the random vector X = (X1, X2, . . . , Xn) is not completely specified

but one only knows the marginal distribution functions of the risks. To be able to

make decisions, in such cases it may be helpful to determine approximations for the

distribution of S, namely upper and lower bounds for risk measures of the sum of

risks S in such a way that it is possible to consider a riskiest portfolio and a safest

portfolio, where riskiness and safety are both evaluated in terms of risk measures.

With the aim of studying the gap between the riskiest and the safest portfolio,

the present contribution addresses the analysis to a particular class of risk measures,

namely that of distortion risk measures introduced by Wang [W96]. In this class,

the risk measure of a non-negative real valued random variable X is written in the

following way:

Wg(X) =
∫ ∞

0

g(HX (x))dx ,

where the distortion function g is defined as a non-decreasing function g : [0, 1] →
[0, 1] such that g(0) = 0 and g(1) = 1.

Given the choice of this context, it is possible to write an explicit formula for the

risk measure of a discrete risk by referring to its writing as sum of layers (Campana

and Ferretti [CF05]). Starting from this result, the attention is therefore devoted to

the study of bounds of sums of risks in the case of discrete identically distributed

random variables. Now the key role is played by the choice of the framework where

to set the study: by referring to concave distortion risk measures, in fact, it is pos-

sible to characterize the riskiest portfolio where the multivariate distribution refers

to mutually comonotonic risks and the safest portfolio where the multivariate distri-

bution is that of mutually exclusive risks. Again, starting from the representation of

risks as sums of layers, it is possible to derive explicit formulas for risk measures of

upper and lower bounds of sums of risks. The attention is then devoted to the study

of the difference between risk measures of upper and lower bounds, with the aim of

obtaining some information on random variables for which the gap is maximum or

minimum.

The paper is organized as follows. In Section 2, we first review some basic set-

tings for describing the problem of measuring a risk and we recall some definitions

and preliminary results in the field of distortion risk measures. We then propose the

study of the case of a discrete risk with finitely many mass points in such a way that

it is possible to give an explicit formula for its distortion risk measure. Section 3 is

devoted to the problem of detecting upper and lower bounds for sums of not mu-

tually independent risks. We present the study of the case of sums of discrete and

identically distributed risks in order to obtain upper and lower bounds for concave

distortion measures of aggregate claims of the portfolio. Then in Section 4 the at-

tention is focused on the problem of characterizing risks for which the gap between
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bounds of risk measures is maximum or minimum. Some concluding remarks in

Section 5 end the paper.

2 The Class of Distortion Risk Measures

As it is well known, an insurance risk is defined as a non-negative real-valued random

variable X defined on some probability space.

Here we consider a set Ŵ of risks with bounded support [0, c]. For each risk

X ∈ Ŵ we denote by HX its tail function, i.e. HX (x) = Pr[X > x], for all x ≥ 0.

A risk measure is defined as a mapping from the set of random variables, namely

losses or payments, to the set of real numbers. In actuarial science common risk

measures are premium principles; other risk measures are used for determining pro-

visions and capital requirements of an insurer in order to avoid insolvency (see for

example Dhaene et al. [DVTGKV04]).

In this paper we consider the distortion risk measure introduced by Wang [W96]:

Wg(X) =
∫ ∞

0

g(HX (x))dx , (1)

where the distortion function g is defined as a non-decreasing function g : [0, 1] →
[0, 1] such that g(0) = 0 and g(1) = 1. As it is well known, the quantile risk measure

and the Tail Value-at-Risk are examples of risk measures belonging to this class. In

the particular case of a power g function, i.e. g(x) = x1/ρ , ρ ≥ 1, the corresponding

risk measure is the PH-transform risk measure proposed by Wang [W95].

Distortion risk measures satisfy the following properties (see Wang [W96] and

Dhaene et al. [DVTGKV04]):

P1. Additivity for comonotonic risks

Wg(S
c) =

n∑

i=1

Wg(X i ) , (2)

where Sc is the sum of the components of the random vector Xc with the same

marginal distributions of X and with the comonotonic dependence structure.

P2. Positive homogeneity

Wg(a X) = a Wg(X) for any non-negative constant a; (3)

P3. Translation invariance

Wg(X + b) = Wg(X) + b for any constant b; (4)

P4. Monotonicity

Wg(X) ≤ Wg(Y ) (5)

for any two random variables X and Y where X ≤ Y with probability 1.



46 A. Campana and P. Ferretti

2.1 Discrete risks with finitely many mass points

In the particular case of a discrete risk X ∈ Ŵ with finitely many mass points it is

possible to deduce an explicit formula of the distortion risk measure Wg(X) of X .

The key point relies on the fact that each risk X ∈ Ŵ can be written as sum of layers

that are pairwise mutually comonotonic risks.

Let X ∈ Ŵ be a discrete risk with finitely many mass points: then, there exist a

positive integer m, a finite sequence {x j }, ( j = 0, · · · ,m), 0 ≡ x0 < x1 < . . . <

xm ≡ c and a finite sequence {p j }, ( j = 0, · · · ,m − 1), 1 ≥ p0 > p1 > p2 > . . . >

pm−1 > 0 such that the tail function HX of X is so defined

HX (x) =
m−1∑

j=0

p j I(x j ≤x<x j+1), x ≥ 0, (6)

where I(x j ≤x<x j+1) is the indicator function of the set {x : x j ≤ x < x j+1}. Then

X =
m−1∑

j=0

L(x j , x j+1), (7)

where a layer at (x j , x j+1) of X is defined as the loss from an excess-of-loss cover,

namely

L(x j , x j+1) =

⎧
⎨
⎩

0 0 ≤ X ≤ x j

X − x j x j < X < x j+1

x j+1 − x j X ≥ x j+1

(8)

and the tail function of the layer L(x j , x j+1) is given by

HL(x j ,x j+1 )(x) =
{

p j 0 ≤ x < x j+1 − x j

0 x ≥ x j+1 − x j
. (9)

If we consider a Bernoulli random variable Bp j such that Pr[Bp j = 1] = p j =
1− Pr[Bp j = 0] then L(x j , x j+1) is a two-points distributed random variable which

satisfies the equality in distribution L(x j , x j+1)
d= (x j − x j+1) Bp j .

Additivity for comonotonic risks and positive homogeneity of distorted risk mea-

sures Wg ensure that

Wg(X) =
m−1∑

j=0

Wg(L(x j , x j+1)) =
m−1∑

j=0

(x j+1 − x j ) g(p j).

In this way for any discrete risk X ∈ Ŵ for which representation (6) holds and any

distortion function g, we can assert that

Wg(X) =
m−1∑

j=0

(x j+1 − x j ) g(p j ). (10)



Bounds for Concave Distortion Risk Measures for Sums of Risks 47

3 The Class of Concave Distortion Risk Measures

In the particular case of a concave distortion measure, the related distortion risk

measure satisfying properties P1-P4 is also sub-additive and it preserves stop-loss

order. As it is well known, examples of concave distortion risk measures are the Tail

Value-at-Risk and the PH-transform risk measure, whereas quantile risk measure is

not a concave risk measure.

In the previous section we deduced an explicit formula for the distortion risk

measure Wg(X) when a discrete risk X ∈ Ŵ with finitely many mass points is con-

sidered. This result may be used to obtain upper and lower bounds for sums of dis-

crete and identically distributed risks with common tail function given by (6) when

we consider the following framework where to set the study: the Fréchet space con-

sisting of all n-dimensional random vectors X possessing (HX1 , HX2, . . . , HXn) as

marginal tail functions, for which the condition
∑n

i=1 HX i (0) ≤ 1 is fulfilled and

the distortion function g is assumed to be concave.

3.1 Upper bound for sums of discrete and identically distributed risks

Let X be a random vector with discrete and identically distributed risks X i ∈ Ŵ.

The least attractive random vector with given marginal distribution functions has the

comonotonic joint distribution (see e.g. Dhaene et. al. [DDGKV02a] and Kaas et al.

[KDG00]), namely

Wg(S) ≤ Wg(S
c).

Now we want to give an explicit formula for Wg(S
c). Let the common tail function

of X i be written as

HX i (x) =
m−1∑

j=0

pj I(x j ≤x<x j+1), x ≥ 0, (11)

where m is a positive integer and 1 ≥ p0 > p1 > p2 > . . . > pm−1 > 0, 0 ≡ x0 <
x1 < . . . < xm ≡ c. Then

Sc d= n X1,

and by subadditivity of the concave risk measure Wg it follows that

Wg(S) ≤ Wg(S
c) =

m−1∑

j=0

(x j+1 − x j) n g(p j ).

Namely, under representation (11) the riskiest portfolio Sc exhibits the following risk

measure
m−1∑

j=0

(x j+1 − x j ) n g(p j). (12)
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3.2 Lower bound for sums of discrete and identically distributed risks

As in the previous subsection, let X be a random vector with discrete and identically

distributed risks X i ∈ Ŵ. In the Fréchet space consisting of all n-dimensional random

vectors X possessing (HX1 , HX2, . . . , HXn) as marginal tail functions, for which the

condition
∑n

i=1 HX i (0) ≤ 1 is fulfilled, the safest random vector is given by (see

Dhaene et Denuit, [DD99]) the vector Xe = (X e
1, X e

2, . . . , X e
n) where the compo-

nents are said to be mutually exclusive because Pr[X e
i > 0, X e

j > 0] = 0 for all

i �= j . Let Se denote the sum of mutually exclusive risks X e
1, X e

2, . . . , X e
n . In order

to have an explicit formula for Wg(S
e), note that its tail function is given by

HSe(x) =
n∑

i=1

HX i (x), for all x ≥ 0. (13)

Owing to the fact that the common tail function of X i is written as (11) where np0 ≤
1, the tail function of the sum Se of mutually exclusive risks becomes

HSe(x) = n

m−1∑

j=0

p j I(x j ≤x<x j+1), for all x ≥ 0. (14)

Note that Se can be written as a sum of layers

Se =
m−1∑

j=0

L̃(x j , x j+1),

where L̃(x j , x j+1) is a two-points distribution with L̃(x j , x j+1)
d= Bn p j . By consi-

dering a concave distortion risk measure, it is

Wg(S) ≥ Wg(S
e) =

m−1∑

j=0

(x j+1 − x j) g(n p j ). (15)

In other words, under hypothesis (11) where np0 ≤ 1, the safest portfolio Se

exhibits the following risk measure

m−1∑

j=0

(x j+1 − x j ) g(n p j). (16)

4 Optimal Gap Between Bounds of Risk Measures

In the previous section lower and upper bounds for sums of discrete and identically

distributed risks X i ∈ Ŵ have been obtained. Attention now is devoted to the study

of the difference between risk measures of upper and lower bounds, with the aim of
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obtaining some information on random variables for which the gap is maximum or

minimum. Starting from formulations (16) and (12) exhibiting bounds for aggregate

claims S of the portfolio X, we face the problem of studying the difference between

bounds in order to minimize and maximize it. The problem in p j ( j = 1, · · · ,m−1)
and x j ( j = 1, · · · ,m) is then

max /min

m−1∑

j=0

(x j+1 − x j )[ng(p j) − g(np j )], (17)

where

x0 ≡ 0; x j < x j+1; xm ≡ c;
0 < pm−1 < · · · < p0 ≤ 1

n
; n > 1;

g : [0, 1] → [0, 1]; g(0) = 0; g(1) = 1; g is non-decreasing and concave.

Note that the optimization problem is related to the maximization/minimization

of the gap between upper and lower bounds for risk measures, namely to the maxi-

mization/minimization of the difference Wg(S
c) − Wg(S

e).

Let φn(p j ) be equal to ng(p j)− g(np j ): since g is concave and g(0) = 0, φn is

non-negative; in particular φn(0) = 0. Moreover, non-negativity and concavity of g

imply that φn is non-decreasing. After setting � j = x j+1 − x j the problem becomes

max /min

m−1∑

j=0

� j φn(p j ), (18)

where

� j > 0;
∑m−1

j=0 � j = c;
0 < pm−1 < · · · < p0 ≤ 1

n
; n > 1;

φn : [0, 1
n
] → R; φn(0) = 0; φn(

1
n
) = ng( 1

n
) − 1 ≥ 0; φn is non-decreasing.

Note that the feasible set is not closed, so at any first step a relaxed problem with

closed constraints will be faced.

4.1 The problem of minimizing the gap

The problem of minimizing the difference Wg(S
c) − Wg(S

e) may be faced both in

terms of p j both in terms of � j .

a) Solution with respect to the p j s.

At a first step the hypothesis that the constraints for the p js admit equality is

assumed (namely we consider the closure of the feasible set); by monotonicity

of φn it follows that p j = 0; moreover, if there exists 0 < ǫ < 1
n

such that

φn(ǫ) = 0 then all the p js could be set in the interval (0, ǫ] and a solution would

exist also in the original open set.



50 A. Campana and P. Ferretti

b) Solution with respect to the � j s.

Starting from the case that the constraints for the � j s admit equality (the closure

of the feasible set is assumed), by non-decreasing monotonicity of φn it follows

that the minimum is when �m−1 = c and all the other � j are set equal to 0 (that

is x0 = x1 = · · · = xm−1 = 0 and xm = c). In the particular case of a constant

function φn in the interval [pm−1, p0], the problem would admit interior minima

given by any feasible choice of the � j s.

4.2 The problem of maximizing the gap

The problem of maximizing the difference Wg(S
c)− Wg(S

e) exhibits the following

solutions in terms of p j and in terms of � j .

a) Solution with respect to the pjs.

By referring to the case of closed feasible set (that is the constraints for the p j s

admit equality) the optimal solution is given by p j = 1
n
; if, moreover, there exists

0 < ǫ < 1
n

such that φn is constant in the interval [ 1
n

− ǫ, 1
n
], then all the p j s

could be set in that interval and a solution would exist also in the original open

set.

b) Solution with respect to the � j s.

Under the relaxed hypothesis of equality constraints on � j s, the maximum is

when �0 = c and all the other � j s are set equal to 0 (that is x0 = 0 and

x1 = · · · = xm = c). Note that if φn were constant in the interval [pm−1, p0] the

problem would admit interior maxima: any feasible choice of the� j s is solution.

5 Concluding Remarks

In this paper we face the problem of studying the gap between bounds for risk mea-

sures of sums of discrete and identically distributed risks. Starting from the repre-

sentation of risks as sums of layers, explicit formulas for risk measures of upper

and lower bounds of sums of risks are obtained in the particular case of concave

distortion risk measures. A maximization/minimization problem related to the maxi-

mization/minimization of the gap between risk measures of upper and lower bounds

is solved with respect to information characterizing the random vector X.
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Characterization of Convex Premium Principles

Marta Cardin and Graziella Pacelli

Summary. In actuarial literature the properties of risk measures or insurance premium prin-

ciples have been extensively studied. We propose a characterization of a particular class of

coherent risk measures defined in [Art99]. The considered premium principles are obtained

by expansion of TVaR measures, consequently they look very interesting in insurance pricing

where TVaR measures are frequently used to value tail risks.

Key words: Risk measures; Premium principles; Choquet measures; Distortion function;

TVaR.

1 Introduction

Premium principles are the most important risk measures in actuarial sciences and

frequently the insurers are also interested in measuring the upper tails of distribu-

tion functions [Wan97]. There are different methods that actuaries use to develop

premium principles [Den05].

In this paper we propose an axiomatic approach based on a minimal set of prop-

erties which characterizes an insurance premium principle as a Choquet integral with

respect to a distorted probability. As it is well known, distortion risk measures are in-

troduced in the actuarial literature by Wang [Wan96] and are related to the coherent

risk measures. Two particular examples of Wang risk measures are given by Vα and

T V a Rα , (Value at Risk at level α and Tail Value at Risk at level α respectively). The

distortion function giving rise to the Vα is not concave, so that Vα is not a coherent

measure, while the distortion function giving rise to the T V a Rα , is concave so that

T V a Rα is a coherent measure T V a Rα [Den05]. The importance in actuarial science

and in finance of T V a Rα , as a measure of the upper tail of a distribution function is

well known and we refer to [Den05].

In this paper we consider a rather general set of risks and for the premium prin-

ciples we ask some natural assumptions, (A1) – (A4). We obtain for all the premium

principles of this class, an integral representation by a non-additive convex measure

and then an integral representation by concave distortion functions so that the con-

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance
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sidered premium principles are a convex combination of coherent risk measures as

T V a Rα , α ∈ [0, 1].

The paper is organized as follows. In Section 2 we provide some necessary pre-

liminaries and we introduce the properties that characterize the premium principles

considered in this paper. In Section 3 we recall some basic facts of Choquet expected

utility and we introduce a modified version of Greco Theorem [Gre82]. In Section 4

we present distortion risk measures. Finally in Section 5 we obtain the integral repre-

sentation result premium principles and the characterization as convex combination

of T V a Rα, α ∈ [0, 1].

2 Insurance Premium Principles

In actuarial applications a risk is represented by a non-negative random variable. We

consider an insurance contract in a specified time period [0, T ]. Let � be the state

space and F the event σ -field at the time T . Let P be a probability measure on F .

We consider an insurance contract described by a non-negative random variable X ,

X : � → R where X (ω) represents its payoff at time T if state ω occurs. We denote

by FX the distribution function of X and by SX the survival function.

Frequently an insurance contract provides a franchise, and it is then interesting

to consider the values ω such that X (ω) > a: in this case the contract pays for

X (ω) > a and nothing else. It is then useful to consider the random variable

(X − a)+ = max(X (ω) − a, 0). (1)

Consider a set, L of non-negative random variables with the following property:

i) a X, (X − a)+, (X − (X − a)+) ∈ L ∀X ∈ L , and a ∈ [0,+∞).

We observe that such a set L is not necessarily a vector space.

We denote the insurance prices of the contracts of L by a functional H , where

H : L → R̃ (2)

and R̃ is the extended real line. We consider some properties that it is reasonable to

assume for an insurance functional price H :

(P1) H (X) ≥ 0 for all X ∈ L .

(P2) If c ∈ [0,+∞) then H (c) = c.

(P3) H (X) ≤ supω∈� X (ω) for all X ∈ L .

(P4) H (a X + b) = a H (X) + b for all X ∈ L such that a X + b ∈ L with a, b ∈
[0,+∞).
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(P5) If X (ω) ≤ Y (ω) for all ω ∈ � for X, Y ∈ L then H (X) ≤ H (Y ).

(P6) H (X + Y ) ≤ H (X) + H (Y ) for all X, Y ∈ L such that X + Y ∈ L .

We observe that the properties (P4) and (P6) imply the following property:

(P7) H (a X + (1 − a)Y ) ≤ a H (X)+ (1 − a)H (Y ) for all X, Y ∈ L and a ∈ [0, 1]

such that a X + (1 − a)Y ∈ L .

The last property is the convexity property and it means that diversification does not

increase the total risk. In the insurance context this property allows the pooling of

risk effects.

Now we present some assumptions which are frequently in the applications.

(A1) H (X) = H (X − (X − a)+) + H ((X − a)+) for all X ∈ L and a ∈ [0,+∞).

This condition splits a risk X into two comonotonic parts (see for example [Den94]),

and permits the identification of the part of the premium charged for the risk with the

reinsurance premium charged by the reinsurer.

(A2) If E(X − a)+ ≤ E(Y − a)+ for all a ∈ [0,+∞) then H (X) ≤ H (Y ) for all

X, Y ∈ L .

In other words the functional price H respects the stop-loss order. Remember that

stop-loss order considers the weight in the tail of distributions; when other charac-

teristics are equals, stop-loss order selects the risk with less heavy tails [Wir99].

(A3) The price, H (X), of the insurance contract X depends only on its distribution

FX .

Frequently, this hypothesis is assumed in literature, see for example [Wan97] and

[Kus01]. The hypothesis (A3) states that it is not the particular scenario that deter-

mines the price of a risk, but the probability distribution of X assigns the price to X .

So risks with identical distributions have the same price.

Finally, we present a continuity property that is used in characterizing certain pre-

mium principles.

(A4) limn→+∞ H (X − (X − n)+) = H (X) for all X, Y ∈ L .
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3 Choquet Pricing of Insurance Risks

The development of premium functionals based on the Choquet integration theory

has gained considerable interest in recent years when there is ambiguity on the loss

distribution or when there is correlation between the individual risks in the case. In

fact the traditional pricing functionals may be inadequate to determine the premiums

that cover the risk.

Capacities are set functions defined on 2� to real values which generalize the

notion of probability distribution. Formally, a capacity is a normalized monotone

function, for the definition and properties see for example [Den94] and [Den05].

As is well known, the Choquet integral has been extensively applied in the con-

text of decision under uncertainty and in risk applications.

Definition 1. Let υ be a capacity υ : 2� → R+ and X a random non-negative

variable defined on (�,F), then the Choquet integral of X respect to υ is defined as

∫

�
Xdυ =

∫ +∞

0

υ{ω : X (ω) > x}dx . (3)

We now give the representation theorem for the functional H which satisfies some

properties of the list above. This result is a new version of the well known Greco

theorem (see [Gre82]), and our new assumptions match perfectly with an actuarial

point of view.

Theorem 1. Let L be a set of non-negative random variables such that L has prop-

erty i) and we suppose that I� ∈ L where I� is the indicator function of �. We

consider a premium principle H : L → R̃ such that:

a) H (I�) < +∞,

b) H satisfies the hypotheses (P5), (A1) and (A4).

Then there exists a capacity υ : 2� → R+ such that for all X ∈ L

H (X) =
∫

�
Xdυ =

∫ +∞

0

υ{ω : X (ω) > x}dx . (4)

Proof: By the Representation Theorem and Proposition 1.2 of [Gre82] there exists

a capacity υ such that H (X) =
∫
� Xdυ.

The following result considers the convex capacities.

Corollary 1. Let L be a set of non-negative random variables such that L has prop-

erty i). Let H be a premium principle that satisfies the hypotheses of Theorem 1, and

verifies the property (P6), then there exists a convex capacity in (4).
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Proof: The thesis follows, in fact, that it is well known that υ is convex if and only

if H is subadditive [Wan98].

Remark. We observe that:

i) From Theorem 1 follows the property (P1) and (P3) for H .

ii) The property (P4) for b = 0 is also according to Theorem 1. From Theorem 1

we have property (P2), then (P4) follows for every b, and then (P7) follows as

well.

4 Distortion Risk Measures

In this section we report some well known risk measures and present the distortion

functions measure for some of them. Distortion premium principles have been ex-

tensively studied in the past several years, see for example [Wan98], [Wir99] and

[Wu03].

If X is a random variable, the quantile reserve at 100αth percentile or Value at

Risk is

Vα(X) = inf{x ∈ R | FX (x) ≥ α} α ∈ (0, 1). (5)

A single quantile risk measure of a fixed level α does not give information about the

thickness of the upper tail of the distribution function of X , so that other measures

are considered.

In particular we consider the Tail Value at Risk at level α, T V a Rα(X), is defined as:

T V a Rα(X) = 1

(1 − α)

∫ 1

α
Vα(X)dα α ∈ (0, 1). (6)

It is known, that given a non-negative random variable X , for any increasing function

f , with f (0) = 0 and f (1) = 1, we can define a premium principle

H (X) =
∫ +∞

0

(1 − f (FX (t))dt =
∫ +∞

0

g(SX (t))dt =
∫

�
Xdυ, (7)

where g is a distortion function, g(x)= 1 − f (1 − x) and υ = goP.

Remark. All distortion premium principles have the properties (P1), (P2), (P3) and

(P4). If g is concave ( f convex), then H also satisfies the property (P6) and (P7)

follows.

It is well known that the quantile Value at Risk, (5), is a distorted risk measure,

while TailVar is a convex distorted risk measure. In fact, T V a Rα can be obtained by

(7) where f is the function defined as follows:

f (u) =
{

0 u < α,
(u−α)
(1−α)

u ≥ α.
(8)
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5 Representation of a Class of Premium Functionals

Now we provide a characterization of the class of continuous increasing and convex

functions.

Proposition 1. If f is a continuous increasing convex function, defined on [0, 1] then

there exists a probability measure µ on [0, 1] such that

f (x) =
∫ 1

0

(x − α)+
(1 − α)

dµ(α) (9)

for α ∈ [0, 1].

Proof: Given f, a continuous increasing convex function with f (0) = 0, there then

exists a non-negative measure ν on [0, 1] such that

f (x) =
∫ x

0

(x − α)dν(α). (10)

We can write

f (x) =
∫ 1

0

(x − α)+dν(α). (11)

Then, a probability measure µ on [0, 1] exists, such that

f (x) =
∫ 1

0

(x − α)+
(1 − α)

dµ(α), α ∈ [0, 1]. (12)

Theorem 2. Let L be a set of non-negative random variables such that L has prop-

erty i). We suppose that I� ∈ L where I� is the indicator function of� and IX>a ∈ L

for any X ∈ L and any a > 0. We consider a premium principle H : L → R̃ such

that:

a) H (I�) < +∞,

b) H satisfies the hypotheses (A1) – (A4).

Then there exists a probability measure m on [0, 1] such that:

H (X) =
∫ 1

0

T V a Rα(X)dm(α). (13)

Proof: From Theorem 1 we can conclude that there exists a capacity, such that for

all X ∈ L ,

H (X) =
∫

�

Xdυ. (14)

Since H is the comonotonic additive (see [Den94]), and H verifies (A2), then H is

sub-additive, i.e. H has the property (P6) ([Wan98]). It follows from Corollary 1,
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that the capacity υ in (14) is convex. Since IX>a ∈ L for any X ∈ L and any a > 0,

from Corollary 3.1 of [Wu03] it follows that a convex increasing function exists,

f : [0, 1] → [0, 1] with f (0) = 0 and f (1) = 1 i.e. f such that

H (X) =
∫ +∞

0

(1 − f (FX (t))dt . (15)

From Proposition 1, it follows that a probability measure m(α) exists such that f can

be represented

f (x) =
∫ 1

0

(x − α)+
(1 − α)

dm(α) (16)

for α ∈ [0, 1], and f (1) = 1.

Then, interchanging the integrals for the Fubini Theorem for every X ∈ L :

H (X) =
∫ +∞

0

(1 − f (FX (t))dt =
∫ +∞

0

[1 −
∫ 1

0

(FX (t)− α)+
(1 − α)

dm(α)]dt =

=
∫ +∞

0

dt

∫ 1

0

[1 − (FX (t)− α)+
(1 − α)

]dm(α) =

=
∫ 1

0

dm(α)

∫ +∞

0

dt [1 − (FX (t) − α)+
(1 − α)

] =

=
∫ 1

0

dm(α)T V a Rα . (17)

The results obtained for the class of insurance functional prices seem interesting,

both because the class of functionals is determined from few natural properties and

these functional prices follow closely linked together to a well known risk measure

as T V a Rα , α ∈ [0, 1]. Moreover, we point out that the most important properties for

a functional price follow easily from the obtained representation.
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FFT, Extreme Value Theory and Simulation to Model

Non-Life Insurance Claims Dependences

Rocco Roberto Cerchiara

Summary. This paper shows an example of integrated use of three different approaches (Ex-

treme Value Theory (EVT), two-dimensional Fast Fourier Transform (FFT) and Monte Carlo

simulation) to model non-life insurance company aggregate losses, taking into account the

need for Internal Risk Model development in the light of Solvency II European project. In

particular EVT permits the definition of the truncation point between small and large claims.

Two-dimensional FFT is used to model not only aggregate losses, but dependence between

its basic components too. Finally, Monte Carlo simulation describes large claims behaviour.

Collective Risk Model has been developed using Matlab software.

Key words: Non-life insurance; Aggregate losses; Risk theory; Two-dimensional fast Fourier

transform; Extreme value theory; Simulation.

1 Introduction

Homer and Clark (see [HC04]) has shown a case study for a non-life insurance company

which has developed the solvency assessment model, based on simulation and the Collective

Risk Theory approach, with the goal of calculating the aggregate losses probability distribu-

tion. The model made the assumption that small and large aggregate losses are independent.

Very small and large losses were simulated separately and the results were combined. Typ-

ically this assumption is not true. This paper shows an example, based on [HC04] results,

of the integrated use of three different approaches, where EVT permits the definition of the

truncation point between small and large claims. Two-dimensional FFT allows modelling not

only of aggregate losses, but dependence between its basic components too, and Monte Carlo

simulation describes large claims behaviour. The model works in an efficient way preserving

dependence structure. In the next section, total aggregate loss expected value produced from

small and large claims, E[XSmall,Large], will be calculated using both the example shown

in [HC04] and the Danish Fire Insurance Database, used in [Cer06], in relation to the period

1980-2002, where amounts are expressed in DK1. Calculation algorithms have been devel-

oped using Matlab.

1 The Danish Fire Insurance Database was obtained from Mette Rytgaard

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance

c© Springer 2008, Milan



62 R.R. Cerchiara

2 An Example of EVT, FFT and Simulation Application

In Collective Risk Model (see [DPP94] and [KPW98]), the aggregate loss random variable X

in one year is:

X =
k∑

i=1

Zi , (1)

where typically, k is a claim number random variable, independent of claim size random vari-

ables Zi (i.i.d.).

Using the Danish Fire Database and EVT, a possible threshold is 10×106 (see [Cer06] and

also [EKM97], where only 1980–1993 has been considered). This truncation point separates

small and large claims.

Consider a claim size distribution Z with 6 points (0, 2 × 106, 4 × 106, 6 × 106, 8 × 106,

10 × 106) and the following probabilities: 0.0%, 43.8%, 24.6%, 13.8%, 7.8%, 10.0% (note

that FFT is applicable for discrete random variable Z and X). It is important to remember that

this paper is a brief example, but for the real data considered, Z would need to be expanded to

a greater number of points. This probability distribution can be represented using the bivariate

matrix MZ (see [HC04] for more details), which permits the application of two-dimensional

FFT. In particular, the first column of Table 1 shows ZSmall probability distribution with

exclusion of the truncation point 10 × 106, defined before with EVT. In cell (0,1) there is the

probability that claim size is above 10 × 106 (10%).

This representation gives an important example of how two-dimensional FFT is flexible,

because it can work on variables measured in different ways (number and amount). If there is

dependence between small and large claims, and one claim frequency is used to generate total

claim number, then covariance of both groups aggregate loss random variables, XSmall and

XLarge (see [HC04]), is:

Cov(X Small , X Large) = p · E
[

Z Small
]

× (1 − p) · E
[

Z Large
]

·
(
σ 2

k − E [k]
)

(2)

where p is the probability of having a small claim (see [Wan98] for an interesting comparation

of Copule and FFT to model dependences). If claim number k follows Binomial Negative

distribution, the previous formula is positive; if k has Poisson distribution then covariance is

zero. In this paper, under dependence assumption, Binomial Negative distribution is used for k

with mean = 10 and variance = 20 (hypothesis; while for the real data considered, the overall

frequency is much higher, it will, however, be continued with this simplified assumption for

clarity).

Table 1. Bivariate Matrix MZ of small claim size ZSmall and large claim number kLarge.

kLarge

ZSmall 0 1 2 3 4 5

0,000,000 0.000 0.100 0.000 0.000 0.000 0.000

2,000,000 0.438 0.000 0.000 0.000 0.000 0.000

4,000,000 0.246 0.000 0.000 0.000 0.000 0.000

6,000,000 0.138 0.000 0.000 0.000 0.000 0.000

8.000,000 0.078 0.000 0.000 0.000 0.000 0.000

10,000,000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 2. Bivariate Distribution of X Small and kLarge .

kLarge

(%) Pr(XSmall )

XSmall 0 1 2 3 4 5 6 %

0,000,000 0.37 0.15 0.03 0.01 0.00 0.00 0.00 0.6

2,000,000 0.57 0.25 0.07 0.02 0.00 0.00 0.00 0.9

4,000,000 0.74 0.36 0.09 0.03 0.00 0.00 0.00 1.2

6,000,000 0.91 0.50 0.14 0.04 0.00 0.00 0.00 1.6

8,000,000 1.19 0.65 0.20 0.06 0.01 0.00 0.00 2.1

10,000,000 1.44 0.83 0.28 0.08 0.01 0.00 0.00 2.6

12,000,000 1.71 1.03 0.36 0.10 0.02 0.00 0.00 3.2

14,000,000 1.87 1.23 0.45 0.13 0.03 0.00 0.00 3.7

16,000,000 2.10 1.42 0.54 0.16 0.03 0.01 0.00 4.3

18,000,000 2.23 1.78 0.62 0.19 0.04 0.01 0.00 4.9

20,000,000 2.41 1.82 0.70 0.21 0.05 0.01 0.00 5.2

22,000,000 2.46 1.83 0.77 0.24 0.06 0.01 0.00 5.4

24,000,000 2.55 1.90 0.82 0.26 0.06 0.01 0.00 5.6

26,000,000 2.44 1.94 0.86 0.28 0.07 0.02 0.00 5.6

28,000,000 2.39 1.95 0.88 0.30 0.08 0.02 0.00 5.6

30,000,000 2.31 1.93 0.89 0.31 0.08 0.02 0.00 5.5

32,000,000 2.21 1.87 0.89 0.31 0.08 0.02 0.00 5.4

34,000,000 2.09 1.80 0.87 0.31 0.09 0.02 0.00 5.2

36,000,000 1.95 1.71 0.84 0.31 0.09 0.02 0.00 4.9

38,000,000 1.81 1.61 0.81 0.30 0.09 0.02 0.01 4.6

40,000,000 1.70 1.7 0.76 0.29 0.08 0.02 0.01 4.4

42,000,000 1.66 1.55 0.72 0.28 0.08 0.02 0.01 4.3

44,000,000 1.40 1.26 0.66 0.26 0.08 0.02 0.00 3.7

46,000,000 1.32 1.20 0.61 0.25 0.08 0.02 0.00 3.5

48,000,000 1.16 1.04 0.56 0.23 0.07 0.02 0.00 3.1

50,000,000 1.03 0.93 0.50 0.21 0.07 0.02 0.00 2.8

Total 100.0

Bivariate aggregate distribution will be:

MX = I F FT (P G F(F FT (MZ ))) and P G F = (2 − t)−10 (3)

where PGF is Probability Generation Function of Binomial Negative distribution, FFT is two-

dimensional Fast Fourier Transform procedure and IFFT is two-dimensional Inverse FFT (see

[HC04], [KPW98] and [Wan98]).

Matrix MX (see Table 2) gives bivariate distribution of large claim number, kLarge ,

and small claim aggregate loss, XSmall (discretized with 26 points). Marginal distribution

of XSmall is obtained as the sum of probabilities of each row.
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Table 3. Rescaling of Table 2.

kLarge

(%) Row Total

XSmall 0 1 2 3 4 5 6 %

0,000,000 64.7 26.2 5.2 1.6 0.8 0.8 0.8 100.00

2,000,000 62.4 27.4 7.2 1.6 0.4 0.4 0.4 100.00

4,000,000 60.3 29.3 7.3 2.0 0.3 0.3 0.3 100.00

6,000,000 57.0 31.3 8.8 2.2 0.2 0.2 0.2 100.00

8,000,000 56.3 30.8 9.5 2.6 0.5 0.2 0.2 100.00

10,000,000 54.5 31.4 10.6 2.8 0.4 0.1 0.1 100.00

12,000,000 53.1 32.0 11.2 2.9 0.6 0.1 0.1 100.00

14,000,000 50.4 33.1 12.1 3.4 0.8 0.1 0.1 100.00

16,000,000 49.3 33.3 12.7 3.6 0.7 0.3 0.1 100.00

18,000,000 45.8 36.5 12.7 3.8 0.8 0.3 0.1 100.00

20,000,000 46.3 35.0 13.5 3.9 1.0 0.3 0.1 100.00

22,000,000 45.8 34.1 14.3 4.4 1.1 0.3 0.1 100.00

24,000,000 45.5 33.9 14.6 4.6 1.1 0.3 0.1 100.00

26,000,000 43.5 34.6 15.3 4.9 1.2 0.3 0.1 100.00

28,000,000 42.5 34.7 15.7 5.2 1.4 0.4 0.1 100.00

30,000,000 41.7 34.8 16.1 5.5 1.4 0.4 0.1 100.00

32,000,000 41.1 34.7 16.5 5.7 1.5 0.4 0.1 100.00

34,000,000 40.3 34.7 16.8 5.9 1.8 0.4 0.1 100.00

36,000,000 39.6 34.7 17.1 6.2 1.9 0.5 0.1 100.00

38,000,000 39.0 34.7 17.4 6.4 1.9 0.5 0.1 100.00

40,000,000 38.4 35.5 17.2 6.4 1.8 0.5 0.1 100.00

42,000,000 38.5 35.9 16.7 6.4 1.9 0.5 0.1 100.00

44,000,000 38.0 34.2 17.9 6.9 2.2 0.6 0.1 100.00

46,000,000 37.9 34.5 17.5 7.1 2.2 0.6 0.1 100.00

48,000,000 37.5 33.7 18.2 7.4 2.4 0.6 0.2 100.00

50,000,000 37.3 33.8 18.1 7.4 2.5 0.7 0.2 100.00

E[XSmall] = 28.0 × 106. Next, conditional frequency distribution for large claims is ob-

tained, “rescaling” the matrix MX , where each value is divided by the corresponding row total

value.

Table 3 shows clearly dependence between small and large claims, observing that in each

row there are probabilities to have ki = 0, 1, 2, . . . , 6 large claims. For example, in the col-

umn where ki = 0, probabilities decrease for increasing values of XSmall , because if XSmall

increases, the probability of having no large claims has to decrease.

Using the previous matrix it is possible to calculate the expected value of large claim

number:

E[kLarge ] =
26∑

j=1

7∑

i=1

ki · Pr
{

kLarge = ki/X Small = x j

}
= 0.871. (4)
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Next, with 200,000 simulations for ZLarge using Generalized Pareto Distribution, with

parameters ξ = 0.5 and β = 8.8 (see [Cer06]):

E[Z Large ] = 276.3 × 106. (5)

Finally, expected value of total aggregate loss is:

E[X Small,Large ] = E[X Small ] + E[kLarge ] · E[Z Large ] = 268.8 × 106. (6)

3 Conclusions

Solvency assessment model procedure is more efficient than the initial independence case and

it is based on the following steps:

a) Defining truncation point with EVT.

b) Using two-dimensional FFT to calculate marginal distribution of XSmall .

c) Calculating the expected value of XSmall using the previous marginal distribution.

d) Calculating the expected value of large claim number E[kLarge] using conditional distri-

bution to XSmall distribution.

e) Simulating large claim size in order to obtain E[ZLarge].

Dependence structure has also been preserved.

This example gives a simplified case study of integration between EVT, FFT and simula-

tions for bivariate random variables which could be interesting for the Internal Risk Models

definition under the Solvency II European insurance project.
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Dynamics of Financial Time Series in an

Inhomogeneous Aggregation Framework

Roy Cerqueti and Giulia Rotundo

Summary. In this paper we provide a microeconomic model to investigate the long term

memory of financial time series of one share. In the framework we propose, each trader se-

lects a volume of shares to trade and a strategy. Strategies differ for the proportion of funda-

mentalist/chartist evaluation of price. The share price is determined by the aggregate price.

The analyses of volume distribution give an insight of imitative structure among traders. The

main property of this model is the functional relation between its parameters at the micro and

macro level. This allows an immediate calibration of the model to the long memory degree of

the time series under examination, therefore opening the way to understanding the emergence

of stylized facts of the market through opinion aggregation.

Key words: Long memory; Financial time series; Fundamentalist agents; Chartist agents.

1 Introduction

Long term memory in financial data has been studied through several papers. Wide

sets of analyses are available in the literature on time series of stock market indices,

shares prices, price increments, volatility, returns, as well as several functions of

returns (absolute returns, squared returns, powered returns). The analyses of long

term memory can be refined considering different time scales as well as considering

moving windows with different lenghts. The former have evidenced the multifractal

structure, validating the efficient market hypothesis at long enough time scales [Be,

MS and SSL]. The latter report a wide range of the self similarity parameters [BPS,

BP and R]. Deviations from the gaussian case can be addressed at the microeconomic

level to the lack of efficiency in markets, and to self-reinforcing imitative behaviour,

as it also happens during large financial crashes due to endogenous causes [R].

We aim to provide a mathematically tractable financial market model that can

give an insight into the market microstructure that captures some characteristics

of financial time series. In our model, agents decide their trading price choos-

ing from a set of price forecasts based on mixed chartist/fundamentalist strategy

[FHK]. Agents will switch from one price to the other varying the volume to trade

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance

c© Springer 2008, Milan
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at the forecasted price. The distribution of the parameter that regulates the mix-

ture chartist/fundamentalist forecasts reports the confidence of investors on each ap-

proach. We differ from [FHK] in that we don’t introduce a performance index on a

strategy.

Traders are not pure price takers: agents’ opinions contribute to the market price

in accordance with price and volume distribution. The distribution of volumes size

evidences the occurrence of imitative behavior, and the spreading of the confidence

of traders on “gurus”. Aggregation and spreading of opinions give an insight into

social interactions. Models that allow for opinion formation are mostly based on ran-

dom interaction among agents, and they were refined considering constraints on so-

cial contact, as an example modeled through scale free networks. It has already been

shown that the relevant number of social contacts in financial markets is very low,

being between 3 and 4 [RB, AIV and VID], opening the way to lattice-based models.

We will discuss at a general level the case of random interactions of agents, and then

its consequences on aggregation and disaggregation of opinions on some strategies.

We are not aiming at exploring the bid/ask spread: our price is just considered as the

market price given by the mean of agents’ prices. The proposed theoretical approach

allows numerical calibration procedures to be avoided.

The paper is organized as follows. The first part of Section 2 describes the model,

while Sections 2.1 and 2.2 are devoted to the study of such a model, in the case of

independence and dependence, respectively. Section 3 concludes.

2 Market Price Dynamics

Consider N investors trading in the market, and assume that ωi,t is the size of the

order placed on the market by agent i at time t . This choice allows the modeling

of individual traders as well as funds managers, that select the trading strategy on

behalf of their customers. In the present analysis we consider investors who receive

information from two different sources: observation of the macroeconomic funda-

mentals and adjustment of the forecast performed at the previous time. Other market

characteristics, like the presence of a market maker, are not considered here, and

they will be studied elsewhere. Let us define with Pi,t the forecast of the market

price performed by the investor i at time t . Each of them relies on a proportion of

fundamentalist P
f

i,t and of a chartist Pc
i,t forecast. We can write

Pi,t = (1 − βi )P
f

i,t + βi Pc
i,t , (1)

where βi is sampled by a random variable β with compact support equal to [0, 1],

i.e. βi ∼ β ∈ D[0, 1], for each i = 1, . . . , N .

Parameter βi in (1) regulates the proportion of fundamentalist/chartist in each

agent forecast. The closer βi is to 0, the more the confidence is in the return to fun-

damentals. The closer βi is to 1, the more the next price is estimated to be the actual

price. The shape of the distribution used for sampling βi gives relevant information

on the overall behavior of agents.
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In the fundamentalist analysis the value of the market fundamentals is known, and so

the investor has complete information on the risky asset (the inverstor understands

over or under estimation of price). Given the market price Pt we have the following

fundamentalist forecast relation:

P
f

i,t = ν(P̃i,t−1 − Pt−1), (2)

where ν ∈ R and P̃i,t is a series of fundamentals observed with a stochastic error

from the agent i at time t , i.e.

P̃i,t = P̄i,t + αi,t ,

with αi,t = ζi Pt and ζi sampled by a real random variable ζ with finite expected

value ζ̄ and independent of β. The fundamental variables P̄i,t can be described by

the following random walk:

P̄i,t = P̄i,t−1 + ǫt , ǫt ∼ N(0, σ 2
ǫ ).

Thus

P
f

i,t = ν P̄i,t−1 + ν(ζi − 1)Pt−1. (3)

The chartist forecast at time t is limited to an adjustment of the forecast made by

the investor at the previous time. The adjustment factor related to the i-th agent

is a random variable γi . We assume that γi are i.i.d, with support in the interval

(1 − δ, 1 + δ), with δ ∈ [0, 1]. Moreover, we suppose that

E[γi ] = γ̄ , i = 1, . . . , N ,

and γi are independent of ζi and βi . Then we can write

Pc
i,t = γi Pi,t−1. (4)

We assume that the aggregate size of the order placed by the agents at a fixed time t

depends uniquely on t . We denote it as ω̃t , and we have

ω̃t =
N∑

i=1

ωi,t .

We assume that such aggregate size is uniformly bounded. Therefore, two thresholds

exist, ω and ω, such that for each t > 0, ω < ω̃t < ω.

Market price is given by the weighted mean of trading prices associated with the

agents. The weights are given by the size of the order. We do not consider here the

bid-ask spread or mechanisms related to the limit order book, these are left to future

studies. In summary, we can write

Pt =
N∑

i=1

ωi,t Pi,t . (5)

Then, by (1), (3) and (5)

Pt =
N∑

i=1

ωi,t

[
ν(1 − βi )P̄i,t−1 + ν(1 − βi )(ζi − 1)Pt−1 + γiβi Pi,t−1

]
. (6)
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2.1 Model property: the case of independence

The aim of this section is to describe the memory property of the financial time series

Pt , in the case of absence of relations between the strategy βi , adopted by the agent

i, and the weight ωi,t of the agent i at time t .

The following result holds.

Theorem 1. Given i = 1, . . . , N, let βi be a sample drawn from a random variable

β such that

E[βk] ∼ O(c)k−1−p + o(k−1−p) as k → +∞. (7)

Moreover, given i = 1, . . . , N, let ζi be a sample drawn from a random variable ζ .

Let us assume that β and ζ are mutually independent.

Furthermore, suppose that q > 0 exists such that

(E[γi ])
k−1 = γ̄ k−1 ∼ k−q , as k → +∞.

Then, for N → +∞ and q + p ∈ [−1
2
, 1

2
], we have that Pt has long memory with

Hurst exponent given by H = p + q + 1
2
.

Proof. Let L be the time-difference operator such that L Pi,t = Pi,t−1.

By definition of Pi,t , we have

(1 − γiβi L)Pi,t = ν(1 − βi )P̄i,t−1 + ν(1 − βi )(ζi − 1)Pt−1, (8)

and then

Pi,t = ν(1 − βi )

1 − γiβi L
P̄i,t−1 + ν(1 − βi )(ζi − 1)

1 − γiβi L
Pt−1. (9)

By the definition of Pt and (9), we have

Pt =
N∑

i=1

ωi,t

[ ν(1 − βi )

1 − γiβi L
P̄i,t−1 + ν(1 − βi )(ζi − 1)

1 − γiβi L
Pt−1

]
. (10)

Setting the limit as N → ∞ and by the definition of P̄, a series expansion gives

Pt = ν

∞∑

k=1

ω̃t Pt−k

∫

R

∫

R

(ζ − 1)(1 − β)βk−1 γ̄ k−1d F(ζ, β). (11)

Since, by hypothesis, β and ζ are mutually independent, with distributions F1 and

F2 respectively, we have

Pt = ν

∞∑

k=1

ω̃t Pt−k γ̄
k−1

∫

R

∫

R

(ζ − 1)(1 − β)βk−1d F1(ζ )d F2(β) =

= ν

∞∑

k=1

ω̃t Pt−k γ̄
k−1

∫

R

(ζ − 1)d F1(ζ )

∫ 1

0

(1 − β)βk−1d F2(β) =
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= ν(ζ̄ − 1)

∞∑

k=1

ω̃t Pt−kγ̄
k−1(Mk−1 − Mk),

where Mk is the k-th moment of a random variable satisfying the condition (7). Since

ω

∞∑

k=1

Pt−k(Mk−1 − Mk) <

∞∑

k=1

ω̃t Pt−k(Mk−1 − Mk) < ω

∞∑

k=1

Pt−k(Mk−1 − Mk)

and

Mk−1 − Mk ∼ k−p−1, (12)

then, by the hypothesis on the γi ’s, we desume

γ̄ k−1(Mk−1 − Mk) ∼ k−q−p−1. (13)

Therefore we have a long memory model I (d) with d = p + q + 1 and thus Hurst

exponent H = p + q + 1
2

([DG1996a], [DG1996b], [G], [GY9] and [E]).

Remark 1. We can use the Beta distribution B(p, q) for defining the random variable

β. In fact, if X is a random variable such that X ∼ B(p, q), with p, q > 0, then X

satisfies the relation stated in (7).

Remark 2. In the particular case γi = 1, for each i = 1, . . . , N , the long term mem-

ory is allowed uniquely for persistence processes. In this case it results q = 0 and,

since p > 0 by definition, Theorem 1 assures that H ∈ (1
2
, 1].

Remark 3. Structural changes drive a change of the Hurst’s parameter of the time

series, and thus the degree of memory of the process. In fact, if the chartist calibrat-

ing parameter γi or the proportionality factor between chartist and fundamentalist,

βi , vary structurally, then the distribution parameters p and q of the related random

variables change as well. Therefore, H varies, since it depends on q and p. Further-

more, a drastic change can destroy the stationarity property of the time series. In fact,

in order to obtain such stationarity property for Pt , we need that p+q ∈ [−1/2, 1/2],

and modifications of q and/or p must not exceed the range.

Remark 4. The parameters q and p could be calibrated in order to obtain a persistent,

anti-persistent or uncorrelated time series.

2.2 Model property: introducing the dependence structure

This section aims to describe the long-run equilibriumproperties of financial time se-

ries, in the case in which the weights of the investors can drive the forecasts’ strate-

gies. The approach we propose allows consideration of the presence of imitative

behaviors among the agents. The phenomena of the herding investors is a regular-

ity of financial markets. Since the empirical evidence of crises of the markets, the

interests of a wide part of economists have been focused on the analysis of the finan-

cial systems fragility. A part of the literature emphasized the relationship between
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financial crises and weak fundamentals of the economy ([AG], [BER] and [CPR]).

A possible explanation of the reasons for the fact that asset prices do not reflect the

fundamentals, can be found in the spreading of information among investors, and in

the consequent decision to follow a common behavior.

We model the dependence structure allowing the size of the order to change the

proportion between fundamentalist and chartist forecasts.

Then, for each weight ωi,t , we consider a function

fωi,t : D[0, 1] → D[0, 1] such that fωi,t (β) = β̃, ∀ i, t . (14)

Analogously to the previous section, we formalize a result on the long-run equilib-

rium properties of the time series Pt in this setting.

Theorem 2. Given i = 1, . . . , N, let βi be a sampling drawn from a random variable

β ∈ D[0, 1].

Fixed ωi,t , let fωi,t be a random variable transformation defined as in (14) such that

E[{ fωi,t (β)}k ] = E[β̃k] ∼ O(c)k−1− p̃ + o(k−1− p̃) as k → +∞. (15)

Moreover, given i = 1, . . . , N, let ζi be a sample drawn from a random variable ζ ,

where β̃ and ζ are mutually independent.

Furthermore, suppose that q > 0 exists such that

(E[γi ])
k−1 = γ̄ k−1 ∼ k−q , as k → +∞.

Then, for N → +∞ and q + p̃ ∈ [−1
2
, 1

2
], we have that Pt has long memory with

Hurst exponent given by H = p̃ + q + 1
2
.

Proof. The proof is similar to the one given for Theorem 1.

Remark 5. Remark 1 guarantees that the fωi,t can transform X ∼ B(p, q) in

fωi,t (X) ∼ B( p̃, q̃). Therefore, the changing of the strategy used by the investors,

driven by the weights ω’s, can be attained by calibrating the parameters of a Beta

distribution.

We use the B(p, q) distribution because of its statistical properties and of the

several different shapes that it can assume depending on its parameter values. In

the particular case p = 1, q = 1 is the uniform distribution. If βi is sampled in

accordance with a uniform distribution, then there is no prevailing preference on the

strategy, and also between either chartist or fundamentalist approach. If βi is sampled

in accordance with a random variable β, β ∼ B(p, p), p > 1, then this means that

the agents opinion agree on mixture parameter values close to the mean of β. If the

distribution is U -shaped, this means that there are two more agreeable strategies.

3 Conclusions

This paper has shown how to consider the weight of a market trader in a micro-

economic model that allows the theoretical statement of the degree of long memory
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in data. Since H = 1/2 is taken into account in the theoretical model, the long-run

equilibrium properties of uncorrelated processes represents a particular case. There-

fore, the model encompasses a wide range of processes. This approach allows the

avoidance of time-expensive numerical calibration and allows the use of the model

also for explaining the weight distribution on high-frequency trading. A further anal-

yses has been carried out on a more detailed correspondence between the group size

and the trader strategy, in both cases of dependence and independence.

A bayesian statistic approach, to develop the analysis of the dependence structure

between size and strategies, can be used. We leave this topic to future research.
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A Liability Adequacy Test for Mathematical

Provision∗

Rosa Cocozza, Emilia Di Lorenzo, Abina Orlando and Marilena Sibillo

Summary. This paper deals with the application of the Value at Risk of the mathematical

provision within a fair valuation context. Through the VaR calculation, the estimate of an

appropriate contingency reserve is connected to the predicted worst case additional cost, at a

specific confidence level, projected over a fixed accounting period. The numerical complexity

is approached by means of a simulation methodology, particularly suitable also in the case of

a large number of risk factors.

Key words: Value at Risk; Life insurance; Quantile Reserve; Solvency, Fair Value.

1 Liability Adequacy Test and Contingency Reserve

The International Financial Reporting Standard 4 (IFRS4) for insurance contracts re-

quires a liability adequacy test, whose essentials are given in IFRS4.15, which states:

an insurer shall assess at each reporting date whether its recognized insurance lia-

bilities are adequate, using current estimates of future cash flow under its insurance

contracts. If that assessment shows that the carrying amount of its insurance liabil-

ities (less related deferred acquisition costs and related intangible assets [. . . ]) is

inadequate in the light of the estimated future cash flows, the entire deficiency shall

be recognized in profit or loss.

As a consequence, an insurer has to check the adequacy of the “recognized

amount” with the “net carrying amount”. According to the Basis for Conclusion

(BC100), the comparison is made at the level of a portfolio of contracts that are sub-

ject to broadly similar risks and managed together as a portfolio. Since the IFRS4

is a stepping stone to a wider revision of insurance reporting topics, it is beyond

its scope to create a detailed accounting regime for an insurance contract; therefore,

among other issues relating to liability adequacy, it does not specify whether or how

the cash flows are discounted to reflect the time value of money or adjusted for risk

and uncertainty.

∗ Although the paper is the result of a common study, Section 1 is credited to R. Cocozza

and Sections 2 and 3 are credited to E. Di Lorenzo, A. Orlando and M. Sibillo

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance

c© Springer 2008, Milan
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The International Accounting Standard 37 (IAS37) states that the amount recog-

nized as a provision shall be the best estimate of the expenditure required to settle

the present obligation at the balance sheet date, where the specific best estimate is

the amount that an entity would rationally pay to settle the obligation at the balance

sheet date, or to transfer it to a third party at that time (IAS37.36), where best esti-

mates are determined by judgment of the management of the entity, supplemented

by experience of similar transactions and, in some cases, reports from independent

experts (IAS 37.35).

Combining the IFRS4 prescriptions with the fair value specifications and hierar-

chy, the fair value of an insurance liability results to be not only an “estimated value”

but a present value. Consistently, its fair value can be defined as the net present value

of the residual debt towards the policyholders evaluated at current interest rates and,

eventually, at current mortality rates. In one sense, this is marking to market; though

it is marking to model. This implies discounting the cash flow using the government

yield curve plus an appropriate spread. The spread should reflect an appropriate mar-

ket premium for risks other than interest rate risk, which could be the option adjusted

spread of the replicating portfolio if existent or a proxy for it. If there is an amend-

ment in the evaluation criteria from one reporting date to another (according to cur-

rent market yields and/or mortality rates) there is a possible change in the value of

the reserve according to the application of a more stringent or flexible criterion. This

may turn into a proper fair valuation risk (see [CDL]). The introduction of an ac-

counting policy involving re-measuring designated insurance liabilities consistently

in each period to reflect current market interest rates (and, if the insurer so elects,

other current estimates and assumptions) implies that the fair value of the mathemat-

ical provision is an “adjustable present value”. The variation of such evaluated price

gives rise to a fair valuation risk and opens the path to a quantification of contingency

provisions.

As far as the valuation is concerned, the definition of the net carrying amount

is a “current net present value”, whose result is subject to a yield curve and, if el-

igible, to a mortality table. Setting apart the question of mortality rates, the yield

curve normally changes during time and, consistently, modifies the corresponding

present value, giving rise to an assortment of future prices. Therefore, the net car-

rying amount can be defined as “the expected value of a distribution of provision

values, set by the yield curve shifts”, whose general calculation is given by Equa-

tion (1) (cf. Section 2). This is what IAS37 requires. Yet, if there is a distribution

of current values (spot prices), there is also a distribution of future values (forward

prices). This implies that the “selection” of a current value gives rise to an expected

future value, which is in turn connected to a distribution of values. If it is possible to

model the distributionof future values (cf. Section 2), at the end of each reporting pe-

riod it is possible to define not only the net current present value and its variance, but

also the corresponding expected future value and the variance of the future value dis-

tribution. This last information can be used to define the future expected value and,

through value-at-risk calculation, the predicted worst case additional cost at a specific

confidence level over the next accounting period (cf. Section 3). This last value can

be treated as a contingency reserve account, even in the form of a solvency reserve.
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2 A Solvency Perspective via the Quantile Reserve

In a fair valuation context, let us introduce two probability spaces (�,F ′, P ′) and

(�,F ′′, P ′′), whereF ′ andF ′′ are the σ -algebras containing, respectively, the finan-

cial events and the life duration events. Given the independence of the mortality fluc-

tuations on interest rate randomness, we denote by (�,F , P) the probability space

canonically generated by the preceding two.F contains information flow about both

mortality and financial history, represented by the filtration {Fk } ⊆ F(Fk = F ′
k ∪F ′′

k

with {F ′
k} ⊆ F ′ and {F ′′

k } ⊆ F ′′).
Assuming a frictionless market, with continuous trading, no restrictions on bor-

rowing or short-sales, the zero-bond and the stocks being both infinitely divisible,

the fair value of the reserve at time t of a portfolio of life insurance contracts (with

obvious meaning of the symbol Ft ) is given by

Vt = E

[∑

r>t

C Fr v(t, r)/Ft

]
, (1)

where v(t, r) is the present value at time t of one monetary unit due at time r, C Fr

is the net cash flow at time r, and E represents the expectation under the risk-neutral

probability measure, whose existence derives from well known results, based on the

completeness of the market.

With respect to the demographic risk context, given that the demographic valu-

ation is not supported by the hypotheses of completeness of the market, the current

valuation can be represented by means of the expectation consistently with the best

prediction of the demographic scenario. In a general perspective, a fair valuation

procedure involves the latest information on the two main factors bringing risk to the

business, interest rates and mortality (see [CDLOS]).

Equation (1) can be easily specialized in the case of a portfolio of different life

annuities with benefits payable at the beginning of each period. In this case we split

the portfolio into m homogeneous sub-portfolios characterized by common aspects,

that is age at issue, policy duration, payments, deferment period, etc.

Let us introduce the following notations:

n = maximum term for all contracts,

Si,r = number of survivors at time r of the insureds of the i-th group,

L i = constant annual benefit for each contract of the i-th group,

Pi,r = premium paid at time r for each contract of the i-th group,

Ti = deferment period (Ti = 0, 1, . . . ),

τi = premium payment period (0 ≤ τi < Ti ).

Hence (1) becomes

Vt = E

⎡
⎣

m∑

r=t+1

m∑

i=1

[
Si,r

(
L i 1(ni ≥r)∧(r≥Ti ) − Pi,r 1(ni ≥r)∧(r<τi )

)]
v(t, r)/Ft

⎤
⎦ , (2)
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where the indicator function 1(ni ≥r)∧(r≥Ti ) takes the value 1 if ni ≥ r and r ≥ Ti ,

otherwise 0, whilst the indicator function 1(ni ≥r)∧(r<τi ) takes the value 1 if ni ≥ r

and r < τi , otherwise 0.

Equation (2) is framed in a forward perspective, within a current valuation pro-

vided at the initial position 0. Analogously this formula can be re-interpreted in a

spot perspective, according to a year by year valuation, that is providing the current

value of the reserve at the end of the year, valued at the beginning of the year itself

(cf. [CDLOS]).

In a solvency assessment perspective, models involving the so-called quantile

reserve play a fundamental role because of their specific links to the Value-at-Risk.

Indicating by R(t) the financial position at time t , that is, in this case, the stochas-

tic mathematical provision of a portfolio of contracts, the quantile reserve at confi-

dence level α (0 < α < 1), is the value R∗
α(t) implicitly defined by the following

equation:

P{R(t) > R∗
α(t)} = 1 − α. (3)

Moreover, considering the time interval [t, t + h] and the financial positions at

its extremes, say r(t) and R(t + h) respectively, the potential periodic loss is defined

as (Teugels et al. 2002):

L = r(t) − R(t + h), (4)

therefore at confidence level α, the Value-at-Risk V a R(α) is given by:

P{L > V a R(α)} = 1 − α ⇔ V a R(α) = F−1(α), (5)

F being the cumulative distribution function of R(t).

3 A Simulative Application

In this section we propose a simulation procedure to quantify the V a R of two homo-

geneous portfolios of deferred life annuities. For the sake of simplicity, the valuation

of the financial instruments composing the ZCB portfolio will be made assuming a

term structure of interest rates based on a square root CIR process:

dri = −α(ri − µ)dt + σ
√

ri dWt ,

with α and σ positive constants, µ the long term mean and Wt a Wiener process.

Referring to the mortality scenario, in a fair valuation estimating framework, we

consider a marking-to-model system for the demographic quantities. We assume that

the best prediction for the time evolution of the surviving phenomenon is represented

by a fixed set of survival probabilities, estimated taking into account the improving

trend of mortality rates (best estimate).

For each portfolio, we simulate 100,000 values of the potential periodic loss L

defined in Section 2. The simulated {L( j )}), j = 1, 2, . . . , 100,000 can be treated

as a sample from a normal distribution (cf. [CDLOS]), which we use to estimate

the V a R. In Fig.1 and Table 1 we present the results obtained for a portfolio of
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Fig. 1. Histogram of L function at time T = 2. 1000 deferred life annuities. Age at issue 30.

CIR process α = 0.026, µ = 0.045, σ = 0.00052; initial value r0 = 0.0172 (Cocozza et al.,

2004). Mortality: Italian Male RG48.

1000 deferred 15-years temporary unitary life annuities (deferment period T = 5),

for policyholders aged 30 at issue. Periodic premiums are paid at the beginning of

each year of the deferment period. In particular, Fig. 1 shows the histogram and the

characteristic values of the Loss function simulated distribution.

Referring to (2) and (4) of Section 2, we compute the V a R at time t = 2, during

the deferment period. We frame the calculation within a spot perspective, according

to a year by year valuation.

Under the above hypothesis about survival and rates, in Fig. 2 and Table 2 we

present the results obtained for a portfolio of 1000 deferred 10-years temporary uni-

tary life annuities (deferment period T = 3), for policyholders aged 40 at issue,

considering the V a R at time t = 7.

Recalling (5), the two V a R tables supply the maximum future net carrying

amount of the final reserve within a set confidence interval. In the first case (Ta-

ble 1), the value is negative because it sets an expense since the reserve is in a grow-

ing phase, that is to say R(t +h) > r(t). In the second example (Table 2), the value is

positive because the reserve is in a decreasing phase, i.e. R(t +h) < r(t). These val-

ues are a probabilistic projection of future difference between initial and final reserve

and can be useful for the quantification of the contingency reserve.

Table 1. Value at risk T = 2. 1000 deferred life annuities. Age at issue 30.

Confidence level VaR

99% −2144.198

95% −2151.7156
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Fig. 2. Histogram of L function at time T = 7. 1000 deferred life annuities. Age at issue 40.

CIR process α = 0.026, µ = 0.045, σ = 0.00052; the initial value r0 = 0.0172 (Cocozza et

al., 2004). Mortality: Italian Male RG48.

Table 2. Value at risk T = 7. 1000 deferred life annuities. Age at issue 40.

Confidence level VaR

99% 1939.277

95% 1939.213
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Iterated Function Systems, Iterated Multifunction

Systems, and Applications∗

Cinzia Colapinto and Davide La Torre

Summary. In the first part of the paper we recall the theory of iterated function systems and

iterated multifunction systems. In the second part we show some applications in economics,

statistics and finance.

Key words: Iterated function systems; Iterated multifunction systems; Fractal approxima-

tions; Estimation; Stochastic processes.

1 Introduction

Iterated Function Systems (IFS) are a very nice way to formalize the notion of self-

similarity or scale invariance of some mathematical objects. Hutchinson ([Hu81])

and Barnsley and Demko ([Ba85, Ba89 and Ba97]) showed how systems of con-

tractive maps with associated probabilities can be used to construct fractal sets and

measures. Many models in decision theory, economics, finance, image processing

and statistics, involve these types of dynamic systems (see [Ia05, Ia051, Ia06, La06,

La061 and Vr99]). The extensions of IFS-type methods is an ongoing research pro-

gram on the construction of appropriate IFS-type operators, or generalized fractal

transforms (GFT), over various spaces, i.e., function spaces and distributions, vector-

valued measures, integral transforms, wavelet transforms, set valued functions and

set valued measures (see [Fo98, Fo981, Fo99, Hu81, Ku07, La061 and Me97). The

action of a generalized fractal transform T : X → X on an element u of the com-

plete metric space (X, d) can be summarized in the following steps. It produces a set

of N spatially-contracted copies of u and then modifies the values of these copies by

means of a suitable range-mapping. Finally, it recombines them using an appropriate

operator in order to get the element v ∈ X , v = T u. In all these cases, under ap-

propriate conditions, the fractal transform T is a contraction and thus Banach’s fixed

point theorem guarantees the existence of a unique fixed point ū = T ū. The inverse

∗ This work was written during a research visit to the Department of Applied Mathematics

of the University of Waterloo, Canada.
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c© Springer 2008, Milan
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problem is a key factor for applications: given T : X → X a point-to-point con-

traction mapping and a “target” element y ∈ X , we look for a contraction mapping

T with fixed point x̄ such that d(y, x̄) is as small as possible. In practical applica-

tions however, it is difficult to construct solutions for this problem and one relies on

the following simple consequence of Banach’s fixed point theorem, known as “col-

lage theorem”, which states that d(y, x̄) ≤ 1
1−c

d(y, T y) (c is the contractivity factor

of T ). Instead of trying to minimize the error d(y, x̄), one looks for a contraction

mapping T that minimizes the collage error d(y, T y).

Iterated Multifunction Systems (IMS) are a generalization of IFS, from a stan-

dard point-to-point contraction mapping to a set-valued operator. IMS operators T

are defined by the parallel action of a set of contractive multifunctions Ti . Under suit-

able conditions T is contractive, implying the existence of a fixed-point x̄ which is a

solutionof the fixed point inclusion x̄ ∈ T x̄ . The multifunction T satisfies the follow-

ing contractivity condition: there exists a c ∈ [0, 1) such that dh(T x, T y) ≤ cd(x, y)

for all x, y ∈ X , where dh denotes the Hausdorff metric between sets T x and T y.

From a Covier and Naylor theorem, if T is contractive in the above sense, then a

fixed point x̄ ∈ X exists such that x̄ ∈ T x̄ . Note that x̄ is not necessarily unique. The

set of fixed points of T , to be denoted as X T , play an important role in application. A

corollary of the Covier-Naylor theorem, based on projections onto sets, is a method

to construct solutions to the fixed point equation x ∈ T x , essentially by means of an

iterative method that converges to a point x ∈ X T . For IMS it is possible to show

two results that can be viewed as multifunction analogues of those that apply when T

is a contractive point-to-point mapping (in which case Banach’s fixed point theorem

applies), namely a continuity property of fixed point sets X T and a collage theorem

for multifunctions (see [Ku07]).

2 Iterated Function Systems (IFS)

Let d(x, y) be the Euclidean distance and H(X) denote the space of all com-

pact subsets of X and dh(A, B) the Hausdorff distance between A and B, that is

dh(A, B) = max{maxx∈A d ′(x, B),maxx∈B d ′(x, A)}, where d ′(x, A) is the usual

distance between the point x and the set A, i.e. d ′(x, A) = miny∈A d(x, y). We will

write h(A, B) = maxx∈A d ′(x, B). It is well known that the space (H(X), dh ) is a

complete metric space if X is complete. First of all we introduce the idea of an iter-

ated function system. (X, d) denotes a complete metric space, typically [0, 1]n. Let

w = {w1, · · · , wN } be a set of contraction maps wi : X → X , to be referred to as

an N -map IFS. Let ci ∈ [0, 1) denote the contraction factors of the wi and define

c = max1≤i≤N ci ∈ [0, 1). As before, we let H(X) denote the set of non-empty

compact subsets of X and h the Hausdorff metric. Associated with the IFS maps, wi

is a set-valued mapping w : H(X) → H(X) the action of which is defined to be

w(S) =
⋃N

i=1 wi(S), S ∈ H(X), where wi (S) := {wi(x), x ∈ S} is the image of

S under wi , i = 1, 2, · · · , N . It is a standard result that w is a contraction mapping

on (H(X), dh), that is dh(w(A), w(B)) ≤ cdh(A, B), A, B ∈ H(X). Consequently,

a unique set A ∈ H(X) exists, such that w(A) = A, the so-called attractor of the
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Fig. 1. Cantor set.

IFS. The equation A = w(A) obviously implies that A is self-tiling, i.e. A is a union

of (distorted) copies of itself. Moreover, for any S0 ∈ H(X), the sequence of sets

Sn ∈ H(X) defined by Sn+1 = w(Sn) converges in Hausdorff metric to A.

Example 1. X = [0, 1], N = 2: w1(x) = 1
3

x , w2(x) = 1
3

x + 2
3
. Then the attractor A

is the ternary Cantor set C on [0, 1] (see Fig. 1).

Example 2. Fig. 2 represents the Sierpinski gasket. This set is the attractor of the IFS

{w1, w2, w3} acting on R2, where wi(x) = 1
2
(x − Pi)+ Pi , i = 1, 2, 3 and the points

P1, P2 and P3 are the vertices of the outer triangle.

Let M(X) be the set of probability measures on B(X), the σ -algebra of Borel

subsets of X where (X, d) is a compact metric space. In the IFSs literature, the

following Monge-Kantorovich metric plays a crucial role

dM (µ, ν) = sup
f ∈Lip(X )

{∫

X

f dµ −
∫

X

f dν

}
, µ, ν ∈M(X) , (1)

where Lip(X) = { f : X → R, | f (x) − f (y)| ≤ d(x, y), x, y ∈ X } thus

(M(X), dM ) is a complete metric space (see [Hu81]). We denote by (w, p) an N -

maps contractive IFS on X with probabilities or simply an N -maps IFS, that is, a set

of N affine contraction maps w with associated probabilities p = (p1, p2, . . . , pN ),
pi ≥ 0, and

∑N
i=1 pi = 1. The IFS has a contractivity factor defined as c =

max1≤i≤N |bi | < 1. Consider the following (usually called Markov) operator M :

M(X) → M(X) defined as Mµ =
∑N

i=1 piµ ◦ w−1
i , µ ∈ M(X), where w−1

i

is the inverse function of wi and ◦ stands for the composition. In [Hu81] it was

shown that M is a contraction mapping on (M(X), dM ) i.e. for all µ, ν ∈ M(X),
dM(Mµ, Mν) ≤ cdM (µ, ν). Thus, a unique measure µ̄ ∈ M(X) exists, the invari-

ant measure of the IFS, such that Mµ̄ = µ̄ by Banach theorem.
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Fig. 2. Sierpinski gasket.

3 Iterated Multifunction Systems

As an extension of IFS, consider a set of Ti : X ⇒ X of multifunctions where

i ∈ 1 . . . n and Ti x ∈ H(X) for all i. We now construct the multifunction T : X ⇒

X where T x =
⋃

i Ti x . Suppose that the multifunctions Ti are contractions with

contractivity factor ci ∈ [0, 1), that is, dh(Ti x, Ti y) ≤ ci d(x, y). From the Covier-

Nadler theorem cited earlier, a point x̄ ∈ T x̄ exists. Now, given a compact set A ∈ H,

consider the image T (A) =
⋃

a∈A T a ∈ H(X). Since T : (X, d) → (H(X), dh )

is a continuous function, then T (A) is a compact subset of H(X). So we can build

a multifunction T ∗ : H(X) ⇒ H(X) defined by T ∗(A) = T (A) and consider

the Hausdorff distance on H(X), that is given two subsets A, B ⊂ H(X) we can

calculate

dhh(A, B) = max{sup
x∈A

inf
y∈B

dh(x, y), sup
x∈A

inf
y∈B

dh(x, y)}. (2)

We have that T ∗ : H(X) ⇒ H(X) and dhh(T
∗(A), T ∗(B)) ≤ cdh(A, B). Now,

given a point x ∈ X and a compact set A ⊂ X , we know that the function d(x, a)
has at least one minimum point ā when a ∈ A. We call ā the projection of the point

x on the set A and denote it as ā = πx A. Obviously ā is not unique but we choose

one of the minima. We now define the following projection function P associated

with a multifunction T defined as P(x) = πx (T x). We therefore have the following

result ([Ku07]).

Theorem 1. Let (X, d) be a complete metric space and Ti : X → H(X) be a finite

number of contractions with contractivity factors ci ∈ [0, 1). Let c = maxi ci . Then

1. For all compact A ⊂ X a compact subset Ā ⊂ X exists such that An+1 =
P(An ) → Ā when n → +∞.

2. Ā ⊂
⋃

i Ti (Ā).
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As in the previous section, letM(X) be the set of probability measures on B(X)

and consider the complete metric space (M(X), dM ). Given a set of multifunctions

Ti : X → X with associated probabilities pi , one can now consider generalized

Markov operators onM(X).

4 Applications

In this section we show some applications of IFS in economics, statistics and finance.

Example 3. (Random dynamical systems in economics) Many questions in eco-

nomics and finance lead to random discrete dynamical systems yt+1 = wi(yt ) where

the map wi is contractive and it is chosen in a given set with probability pi . Let

us consider, for instance, a macroeconomic system and suppose that the aggregate

demand Dt is equal to the income Yt , for all t ∈ N. In a closed economy in which

the government spending G is equal to 0, the aggregate demand is the sum of con-

sumptions Ct and investments It . The quantity of consumption Ct is a function of the

income of the previous year by a linear relation as Ct = αYt−1, where the stochas-

tic coefficient α can take values in a given set C = {α1, α2, . . . , αm} ⊂ (0, 1) with

probability pi ,
∑m

i=1 pi = 1. If the level of investments is constant, that is It = I0

(the initial investment level) for all t ∈ N, the stochastic growth model of the income

is described by the system of equations Yt+1 = αYt + I0 with P(α = αi) = pi ,

i = 1 . . .m. In this context, the inverse problem consists of finding the parameters

of the model (economical parameters) which allow fixed goals of economic policy

to be reached.

Example 4. (Fractal estimation of distribution and density functions) The fractal es-

timator of a distribution function F is thought as the fixed point of a contractive

operator T defined in terms of a vector of parameters p and a family of affine maps

W which can both depend on the sample (X1, X2, . . . , Xn). GivenW, the problem

consists of finding a vector p such that the fixed point of T is “sufficiently closed”

to F . Let X1, X2, . . . , Xn be an i.i.d. sample drawn from a random variable X with

unknown distribution function F with compact support [α, β]. The empirical distri-

bution function (e.d.f.) F̂n(x) = 1
n

∑n
i=1 χ(X i ≤ x) is a commonly used estimator

of the unknown distribution function F (here χ is the indicator function). Theoretical

results prove that a fractal estimator of F is asymptotically equivalent to the empiri-

cal distribution function (EDF) estimator. For well behaved distribution functions F

and for a particular family of so-called wavelet maps the IFS estimators can be dra-

matically better than the empirical distribution function in the presence of missing

data (see Figs. 3 and 4). The idea of inverse approach is to determine p by solv-

ing a constrained quadratic optimization problem built in terms of sample moments.

The nature of affine maps allow the Fourier transform of F to be easily derived and,

when available, an explicit formula for the density of F via anti Fourier transform.

In this way, givenW and p we have at the same time estimators for the distribution,

characteristic and density functions (for details, see [Ia05] and [Ia051]).
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Fig. 3. IFS approximations of distribution functions.

Fig. 4. IFS approximations of density functions.

Example 5. (Fractal approximations of stochastic processes) Let (�,F , p) be a

probability space and Ft be a sequence of σ algebras such that Ft ⊂ F . Let

X (w, t) : � × [0, 1] → R be a stochastic process, that is a sequence of random

variables Ft adapted (that is each variable X (w, t) is Ft measurable). Given w ∈ �

a trajectory of the process is the function X (w, t) : [0, 1] → R. For a fixed w ∈ �,

the trajectory v(t) = X (t, w) is an element of L2([0, 1]). Several methods are cur-

rently available to simulate paths of the Brownian motion. In particular, paths of the

BM can be simulated using the properties of the increments of the process like in

the Euler scheme, or as the limit of a random walk or via L2 decomposition like
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Fig. 5. IFS simulation of Brownian motion.

the Kac- Siegert/Karnounen-Loeve series. IFS operators can be used to simulate tra-

jectories. The resulting simulated trajectories are self-affine, continuous and fractal

by construction. This fact produces more realistic trajectories than other schemes

in the sense that their geometry is closer to the one of the true BM’s trajectories.

If X (w, t) is a trajectory of the stochastic process, the inverse approach consists of

finding the parameters of the IFSM such that X (w, t) is the solution of the equation

X (w, t) = T X (w, t) for e.g. w ∈ �. Fig. 5 shows how to approximate a classical

Brownian motion; also in this case the attractor works better than the Eulero scheme

for simulation (for details, see [Ia06]).
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Remarks on Insured Loan Valuations

Mariarosaria Coppola, Valeria D’Amato and Marilena Sibillo

Summary. The paper concerns the case of the insured loan based on an amortization schedule

at variable interest rates, hooked at opportune rate indexes. Using the cash flow structure as

a basis, the aim is the evaluation of the mathematical provision of a portfolio in a fair value

approach. In this environment, the complexity of the life insurance contract market leads to

practical valuation management focused on the choice of the most suitable mortality table

and discounting process. A numerical application is proposed, for comparing the reserve fair

values referred to two insured loans based on an amortization schedule, the first calculated at

a fixed rate and the second, the alternative offered in the market, at a variable rate.

Key words: Fair value; Insured loan; Amortization schedule; Cox-Ingersoll-Ross model;

Lee-Carter survival probabilities.

JEL Classification: G22, G28, G13

1 Introduction

The International Boards working in the life insurance business accounting field are

defining a proper risk assessment in the solvency tool. The pursued aim of putting

into effect at the same time the homogenization and the correct information about

the business of the different insurance companies, leads the reserve quantification to

a mark-to-market valuation of the insurance liabilities, in other words the fair value.

The financial risk, referred to the uncertainty due to movements of the evaluation in-

terest rates and the demographic risk, represented by the uncertainty both accidental

and systematic in the insured future lifetimes, are the two main risk sources affecting

such kind of portfolio evaluations. The paper concerns the insured loan, an insurance

product strictly connected to the common operation of a loan repaid by the financial

amortization method. The aim of the contract is to square the debt in the case of the

insured-borrower predecease.

The loan insurance industry is going through a period of deep evolution, framed

in the general increasing attention for guarantee instruments. In case of the borrower/

insured’s predecease, it can often happen that the banks are interested in providing

or requesting the insured loan, and/or the borrower himself wants to set the heirs free
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from his obligations.By ensuring that the loan is paid off in the case of the borrower’s

death, we can say that the insured loan contract, underwritten by the person asking

for a loan, is designed to give security to both the contractors.

From the strictly actuarial point of view, this is the framework of an n-year term

life insurance with decreasing insured sums.

Different kinds of loans are offered in the market, and most of them are repaid at

variable interest rates hooked at a rate index precisely defined in the contract.

In these basic contractual hypotheses, the paper presents a model for the fair val-

uation of the mathematical provision of an insured loan portfolio, taking into account

the two risk sources introduced above. As in [CDLS04, CDLS05 and CDAS06], the

approach we follow is the fair value calculation at current values, using the best esti-

mate of the current interest and mortality rates. An application is presented, framed

in the particular case of two loans repayable at a fixed or variable interest rate pro-

posed as “financially equivalent” in the market. The aim of the numerical example is

to analyze the different fair value behaviour, when the two equivalent amortization

schedules can be considered as fixed by the market itself at the evaluation time.

2 The Insured Loan Portfolio: Cash Flow Structure and Reserve

Fair Value

On the basis of a general amortization method at variable interest rates (described in

Section 3 in more detail), the insured loan contract with duration n binds the insurer

to repay the lender the obligations still due by the borrower, if one dies during the

contract duration; at time h (h = 1, 2, . . . n), they consist of the outstanding balance

(the residual debt) Dh−1 resulting at time h − 1 plus the interest on this sum for

the period h-1,h (cf. [CDAS06]). The value of the benefit payable at time h if the

insured-borrower aged x at issue dies during the h-th period and the probability of

this event are respectively:

Bh = Dh−1(1 + i∗h−1,h) and h−1/hqx , (1)

where i∗h−1,h represents the interest rate applicable in the considered period.

Let us suppose that an insured loan with duration n is issued on an insured aged

x , with premiums payable at the beginning of each period till the insured is alive or

up to m payments (1 ≤ m ≤ n), and benefit payable at the end of the period of the

insured’s death, if this event occurs before n.

Considering that the benefit is the sum of the outstanding balance at the begin-

ning of the period and the periodic interest due to that sum and indicating by kx

the curtate future lifetime of the insured, within a deterministic scenario and in the

case of anticipated premium payments, the flow at time h is given by the following

scheme:

Xh =

⎧
⎨
⎩

−/m Px,h+1 1 ≤ h ≤ m − 1 kx > h

0 m ≤ h ≤ n kx > h

Dh−1(1 + i∗h−1,h) 1 ≤ h ≤ n h − 1 ≤ kx ≤ h ,
(2)
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where X0 = −/m Px,1 and −/m Px,h+1 is the (h + 1)-th premium payable at the

beginning of the h-th year.

The above scheme relating to a single contract can be extended, still in a de-

terministic approach, to a portfolio of c homogeneous insured loans, each one with

duration n and issued on a borrower aged x .

Indicating by nh the number of survivors at time h, the generic cash flow con-

nected to the entire portfolio is given by:

f0 = −c/m Px,1 h = 0

fh = −/m Px,h+1nh + Dh−1(1 + i∗h−1,h)(nh−1 − nh) h = 1, 2, ...,m − 1

fh = Dh−1(1 + i∗h−1,h)(nh−1 − nh) h = m,m + 1, ..., n .

It can be seen that the schemes can be easily fit to the cases in which periodic premi-

ums and benefits are not due in the same instant and to the common case of a single

premium, and of course to the case of an amortization scheduled at a fixed interest

rate.

Introducing the stochastic hypotheses for mortality and financial events, let us

consider the probability space {�,ℑ, ℘} originated from the two probability spaces{
�,ℑ′, ℘′} and

{
�,ℑ′′, ℘′′}, referred respectively to the financial and the demo-

graphic information flow (cf. [CDLS05]). The filtration in t of ℑ is ℑt ⊆ ℑ, with

ℑt = ℑ′
t ∪ ℑ′′

t and
{
ℑ′

t

}
⊆ ℑ′,

{
ℑ′′

t

}
⊆ ℑ′′.

Under the usual hypotheses of the competitive market (cf. [BH06]), we indicate by:

• Ñh , the random variable representing the number of survivors at time h belonging

to the group of those, among the c initial insureds at time 0, are living at time t,

with t < h.

• v(t, h), the stochastic present value at time t of one monetary unit due at time h.

• L t , the stochastic loss in t (t < h) of the portfolio of the initial c contracts.

• Ft , the stochastic flow at time t.

• Kx,t , the random curtate future lifetime at time t of the insured aged x at issue.

Considering that the fair value of the mathematical provision is the net present value

of the residual debt toward the policyholders, calculated at current interest rates and

at current mortality rates, we obtain the following formula, in which Fh indicates the

stochastic flow referred to the time h:

E[L t/ℑt ] = E
[∑n

h=t+1[Ñh/m Px,h+1

+Dh−1(1 + i∗h−1,h)](Ñh−1 − Ñh)v(t, h)/ℑt

]

= E
[∑n

h=t+1 (Fhv(t, h)/ℑt )
]
.

(3)

Equation (3) is calculated according to a risk neutral valuation, in which the stochas-

tic loss at time t in its fair value form replicates the flow Fh at time h by a trading

strategy of units of Zero Coupon Bonds issued at time t and maturing at time h.

The expected value (3) is considered under the hypotheses of the existence of an

opportune risk neutral probability measure in a complete market. The question of the

incompleteness of the insurance product market, due to the demographic component,
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is a crucial question in fair value insurance product assessment; the tool is much dis-

cussed in the scientific research environment and is fronted in several papers. For

example, in [BH06] the question is solved by proposing a risk neutral probability

expected value obtained using the most suitable probability measure for the demo-

graphic component, setting the market complete in relation to both the systematic

and unsystematic mortality risks.

In this general statement, we will proceed in the calculations supposing that the

variables Kx,t are independent and identically distributed, the random variables Fh

and v(t, h) are independent and identically distributed conditioning on the interest

process, and the two risk sources Kx,t and v(t, h) are independent. Equation (3) can

be expressed as follows:

E[L t/ℑt ] = ct px

{[
/m Px,h+1 E (v(t, h)/ℑt ) h px+t

+h−1/hqx+t Dh−1E
(
(1 + i∗h−1,h)v(t, h)/ℑt

)]}
.

(4)

3 The Application to a Case of Equivalent Products

Introduction

The aim of this section is to compare the different behaviour of the mathematical

reserve fair value of two products offered as alternatives in the loan market at the

time of valuation t = 0, characterized by an amortization schedule at a fixed rate in

the first case and at a variable rate in the second. We will consider the circumstances

in which they are proposed alternatively as the realization of the financial equivalence

condition of the two products at time 0, so that, for the sake of this application, the

two amortization schedules can be considered as defined by the market itself. In

this order of ideas, we will consider both the amortization schedules as fixed at the

time of valuation; from the financial risk point of view, this means we will focus our

attention on the volatility of the valuation interest rates.

The two cases are referred to a portfolio of c = 1000 homogeneous insured

loan policies, issued to a unitary capital, repayable in n = 20 half-years. As al-

ready stated, at the end of the period in which the borrower/insured dies, if this event

happens before n, the insurer pays to the lender the outstanding balance existing at

the beginning of the period plus the (fixed or variable) interest on this sum for the

same period, in this way extinguishing the borrower’s obligations. The amortization

schemes that the market expresses as equivalent financial operations are at the fixed

rate 4.25% and at a variable rate linked to the half-yearly Euribor rate as reference

index. The payments are due at the end of 20 half-years beginning from t = 0. As

commonly used, the two cases count the payment of a single premium paid at the

contract issue time.

The numerical procedure for the Euribor rate estimation

Estimation of the future Euribor interest rates (as well as the evolution in time we

will consider next, referring to fair evaluation rates) suffers the long duration of these
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scenarios. The necessity of quantifying imposes the choice of the best estimation tool

and to this aim several methods can be applied, such as items in the historical series

analysis fields or information taken in the money market, using available prices of

cash today’s Libor rates, future and interest rate swap with respect to the different

duration of the forecasting.

In this paper, in order to give an example, we have analyzed the Euribor rate

historical series from January 1, 2006 to September 22, 2006, data available on

www.euribor.org, website controlled by the FBE-European Banking Federation.

The rates refer to 0, 1, 2, 3, 4, 5, 6 months (0 means a very short term, in our case 1

week) and are daily registered. Supposing the loan issued on January 2, 2006, follow-

ing [Ben01] we work on cross sections successively calculated over the data related

to each half-year and proceed with a 3rd degree polynomial regression over them; in

this way we begin to obtain the first regression equation for the first data set and con-

sequently calculating the estimation of the oscillations the data set will undergo in the

next period. This method furnishes a good approximation of the term structure of the

considered rates, as is asserted in [Ben01]. For example, the following are the cross

section rates related to June 1, 2006 over which the polynomial regression is done:

Table 1. The cross section rates related to June 1, 2006.

months 0 1 2 3 4 5 6

rates 2.621% 2.821% 2.901% 2.944% 3.022% 3.084% 3.126%

This recursive method, followed for each half-year, allows the rate referred till

the last half-year to be obtained, the second one of 2016.

In Table 2 the Euribor estimated rates for the half-years considered in the exam-

ple are reported.

Table 2. The Euribor estimated rates for the half-years.

Half Rates Half Rates

years years

1 2.64% 11 5.07%

2 3.13% 12 5.35%

3 3.16% 13 5.63%

4 3.43% 14 5.91%

5 3.71% 15 6.19%

6 3.99% 16 6.47%

7 4.27% 17 6.75%

8 4.23% 18 7.03%

9 4.51% 19 7.31%

10 4.79% 20 7.59%
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The amortization scheme at variable interest rates

The refund is settled starting from a theoretical amortization schedule with constant

periodic payment amounts, obtained using an opportune interest rate: as in [VDP93],

we fix this rate in the average of the estimated half-yearly Euribor rates. This theo-

retical amortization scheme furnishes the principal repaid amounts the borrower will

correspond to the lender at the end of the future n periods. Besides these under-

takings, the borrower has to correspond the interest paid amounts, calculated each

period at the periodical Euribor interest rate existing in the market at the beginning

of the period itself. On the contrary of the theoretical scheme, in the effective one,

the entire periodical payment amounts are variable, their value being connected to

the Euribor rate trend.

Fair valuation hypotheses

On the basis of the amortization scheme calculated in according with what is above

described, the evaluation of the reserve fair value follows by means of (3). The

evolution in time of the evaluation stochastic rates usable for the financial instru-

ments constituting the Zero Coupon Bond replicating portfolio, is described by

the Cox-Ingersoll- Ross square root model, represented by the following SDE:

drt = −k(rt −γ )dt +σ
√

rt d Bt in which k and σ are positive constants, g is the long

term mean and Bt a Brownian motion. As in [CDFDLS05], we assign the following

values to the parameters: r0 = 0.0172, g = 0.0452, s = 0.0052.

The survival probabilities used in the application are deduced by the Lee-Carter

model. This law is considered as a good description of the survival phenomenon,

being able to correct itself year by year, capturing the changes in the trend due in

particular to the longevity phenomenon. Moreover, as shown in [DF05], this model

furnishes a very good representation of the survival phenomenon in intervals of 8-10

years and so is particularly appropriate in the case of the considered portfolio.

The probabilities have been obtained by means of the tables of the parameters

referred to the considered period, as calculated in [CDFDLS05].

Results

In Fig. 1 the comparison between the reserve fair value of the insured loan portfolio

in the two cases of the above amortization schemes at fixed and variable interest rates

are reported. The example is referred to the fixed rate 4.25%, alternatively offered

in the market for loan of 20 half-year periods with interest rates variable with the

Euribor rates. The graphical result shows the decisive influence of the relationship

between the Euribor term structure and the fixed rate. As can be seen from Table 1,

after the 3rd year, the fixed rate starts to be less than the Euribor rates: this com-

ponent appears to be orienting in determining the two different behaviours and the

intersection between them.
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Fig. 1. A comparison between the reserve fair value in the two cases of amortization schemes

at fixed and variable interest rates.

4 Conclusions

In this paper, the fair valuation of the reserve in the case of a portfolio of insured

loans is presented, considering the case of a basic amortization scheme scheduled at

variable interest rates. A practical example of application is reported, with the aim of

comparing the different behaviour of the current values of the portfolio reserve when

the amortization scheme is at fixed or variable interest rate. The application refers to

products offered in the market as alternative between them and the reserve is valued

at the moment in which the contracts are issued. As the two schemes proposed are

“equivalent”, the aim is to refer the comparison to products financially equivalent at

the time of valuation and as a consequence the two amortization schemes are con-

sidered entirely fixed in t = 0. Further development of the item will be developed

in two directions: the reserve fair valuation considered in a stochastic framework

for the amortization interest repaid and the extension of the same approach to other

fields, as for example to the cases in which the insurance contract is referred to the

borrower default probabilities, linking the insurer obligations to events not referred

exclusively to human life.
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Exploring the Copula Approach for the Analysis

of Financial Durations

Giovanni De Luca, Giorgia Rivieccio and Paola Zuccolotto

Summary. The object of the paper is to compare of two approaches for the analysis of fi-

nancial durations. The first is the parametric approach (Autoregressive Conditional Duration

model) implemented using the exponential, the Weibull, the Burr and the Pareto density func-

tions. The second makes use of bivariate and trivariate copula functions.

Key words: Financial duration; Autoregressive conditional duration; Copula function.

1 Introduction

The seminal work of [ER98] has opened the interest in ultra-high frequency financial

data, also known as tick-by-tick data. They are irregularly spaced time series which

enable the researcher to investigate the process of transactions of a financial asset

traded on a financial market. The Autoregressive Conditional Duration (ACD) model

is now a consolidated statistical tool to describe the time between the occurrence of

two market events.

In their pioneering work, [ER98] made use of exponential and Weibull random

variable for the durations. Many authors tried to extend the analysis relying on more

elaborated densities, such as the Pareto or the Burr.

In this paper we would like to compare the traditional parametric approach with a

semi-parametric approach based on the copula function. In particular, we will make

comparisons using bivariate and trivariate copulas.

The paper is structured as follows. In Section 2 the ACD framework is presented.

Section 3 briefly reviews the concept of copula function. In Section 4 data analysis

is carried out, and Section 5 concludes.

2 ACD Models

The class of ACD models is aimed at modelling the durations between two market

events, such as price changes or bid-ask spreads. Let X i be the duration between two

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance
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observations at times ti−1 and ti . [ER98] proposed the ACD(q, p) model

X i = φ(ti)�iǫi

�i = ω +
∑q

j=1 α j xi− j +
∑p

j=1 β j�i− j ,
(1)

where φ(ti) is a deterministic daily seasonal component and xi = X i/φ(ti) is the

seasonally adjusted duration at time ti . In addition ω > 0, α j , β j ≥ 0 and
∑

j α j +∑
j β j < 1 in order to ensure, respectively, the positivity of the conditional expected

duration and the stationarity of the process.

Assuming ǫi identically and independently distributed with E(ǫi ) = 1, it is easy

to see that E(xi |Fi−1) = �i , where Fi−1 is the information at time ti−1. As a result,

�i can be interpreted as the i-th expected (deseasonalized) duration conditionally on

the information at time ti−1.

When q = p = 1 the popular ACD(1,1) model is obtained. It is a parsimonious

model which adequately fits durations in most cases. Model (1) becomes

xi = �iǫi

�i = ω + αxi−1 + β�i−1.

In order to estimate the model using parametric methods, a distributional assump-

tion on ǫi is needed. The traditional hypotheses, the exponential and the Weibull

(EACD and WACD, [ER98]), rely on the theory of point processes, supporting the

whole apparatus of ACD models. Nonetheless, in the literature more refined pro-

posals are present such as, for example, the Pareto (PACD, [DZ03]) and the Burr

(BACD, [GM00]) which can be viewed, respectively, as infinite mixtures of expo-

nential and Weibull distributions. The use of mixtures of distributions is thought to

take into account the heterogeneity of traders in the market ([DZ03]) and some re-

cent contributions propose models allowing for a regime-switching behavior of the

mixing distribution ([DZ06]).

Given a vector x of T observed durations, the parameters of the ACD model

and those characterizing the distribution can be collected in the vector η and jointly

estimated via ML using the following log-likelihood functions, respectively for the

EACD, WACD, PACD, BACD model:

l(η; x) = −
T∑

i=1

{
log�i + xi

�i

}
,

l(η; x) =
T∑

i=1

⎧
⎪⎨
⎪⎩

log
γ

xi
+ γ

⎡
⎣log

xiŴ
(
1 + 1

γ

)

�i

⎤
⎦ −

⎡
⎣

xiŴ
(
1 + 1

γ

)

�i

⎤
⎦
γ
⎫
⎪⎬
⎪⎭
,



Exploring the Copula Approach for the Analysis of Financial Durations 101

l(η; x) =
T∑

i=1

[
(θ + 1) log θ1 + log

θ + 1

�i

− log

(
θ + xi

�i

)θ+2
]

and

l(η; x) =
T∑

i=1

{
log κ − log(c�i )

κ + log xκ−1
i − log

[
1 + σ 2

(
xi

c�i

)κ] 1

σ2 +1
}
,

where

c =

(
σ 2

)1+ 1
κ Ŵ

(
1 + 1

σ 2

)

Ŵ
(
1 + 1

κ

)
Ŵ

(
1
σ 2 − 1

κ

) .

3 Copula Functions

A copula is a multivariate distribution function H of random variables X1, . . . , Xn

with standard uniform marginal distributions F1, . . . , Fn defined on the unit n-cube

[0, 1]n with the following properties:

1. The range of the copula C(u1, . . . , un) is the unit interval [0, 1].

2. C(u1 , . . . , un) = 0 if any ui = 0 for i = 1, 2, . . . , n.

3. C(1, . . . , 1, ui , 1, . . . , 1) = ui for i = 1, 2, . . . , n and for all ui ∈ [0, 1].

Fi = P(X i ≤ xi ) = ui is uniform in [0, 1] for all i = 1, 2, . . . , n.

One of the most important copula based theorem is the Sklar’s theorem, which

justifies the role of copula as a dependence function. Let H be a joint distribution

function with marginal distribution functions F1, . . . , Fn , then a copula function C

exists such that:

C(u1, . . . , un) = H (x1, . . . , xn).

Therefore, the joint distribution is split into two components: the unconditional

marginal distributions and the dependence structure given by the copula. The cop-

ula tool allows the whole dependence structure that characterizes the relationships

among the variables to be described. For this reason, the copula function has recently

become a very significant quantitative technique to handle many financial time series

analyses characterized by a remarkable temporal dependence.

The advantage of the copula method consists of modelling the duration pro-

cess with a semiparametric approach where the copula is parameterized and controls

the dependence structure, while the unconditional marginal distributions are left un-

specified so that it is possible to choose between all kinds of marginal distributions

([Jo97 and Ne99]).

In the literature there are two main families of copulas, the elliptical copulas

which are copula functions of elliptical distributions and the Archimedean ones,
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based on the definition of a generator function 
(t) : t ∈ R+, continuous, decreas-

ing, convex and such that 
(1) = 0. The Archimedean copula function is defined

as

C(u1, . . . , un) = 
−1 (
(u1) + . . . +
(un)) ,

with
−1(·) completely monotonic on [0,∞]. For a detailed description, see [Ne99].

In this work, we have adopted two Archimedean copulas: the Clayton and the

Frank.

For the Clayton copula, the generator 
α(t) is given by
(
t−α − 1

)
with α ∈

[−1, 0) ∪ (0,+∞) when n = 2 and strictly positive for n ≥ 3. The copula function

is

CC (u1, . . . , un) =
(

n∑

i=1

u−α
i − n + 1

)−1/α

.

The generator of the Frank copula is


α(t) = − log
exp (−αt)− 1

exp (−α) − 1
,

and the expression of the copula function is

CF (u1, . . . , un) = − 1

α
log

(
1 +

∏n
i=1 (exp (−αui )− 1)

(exp (−α) − 1)n−1

)
.

The range of the parameter α is equal to (−∞, 0)∪ (0,+∞) in the bivariate case

and strictly positive in the multivariate case.

The estimation of the parameter α can be carried out through the canonical maxi-

mum likelihood method, a two-steps procedure without assumptions on the paramet-

ric form for the marginals. In the first, the sample data (x1i , . . . , xni )
T
i=1 are trans-

formed into uniform variates (û1i , . . . , ûni )
T
i=1 using the empirical distribution func-

tions as estimates of the marginal distribution functions. In the second, the copula

parameter α is evaluated via maximum likelihood,

α̂ = arg max

T∑

i=1

log c(û1i , . . . , ûni ; α) ,

where c(û1i , . . . , ûni ; α) is the copula density, that is n-th derivative of the copula

function with respect to the marginals, depending on the parameter α.

4 Data Analysis

The empirical analysis has focused on duration data of the transactions involving

a price change in the Italian stock Comit in the month of February 2000. The to-

tal number of obervations is 8221. We removed the daily seasonal component after

estimating it using a cubic spline with nodes set at each hour.
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Table 1. Estimate (standard error) of the exponential and Weibull ACD models.

Parameter Exponential Weibull

ω 0.0019 (0.0007) 0.0018 (0.0007)

α 0.0317 (0.0036) 0.0317 (0.0037)

β 0.9667 (0.0038) 0.9667 (0.0040)

γ − 0.9576 (0.0081)

Diagnostics on residuals

LB(20) (p-value) 0.1071 0.1065

Residuals mean 1.0003 1.0012

Mean of the assumed distribution 1 1

Residuals variance 1.2321 1.2346

Variance of the assumed distribution 1 1.0911

Table 2. Estimate (standard error) of the Pareto and Burr ACD models.

Parameter Pareto Burr

ω 0.0016 (0.0007) 0.0016 (0.0007)

α 0.0321 (0.0039) 0.0322 (0.0039)

β 0.9665 (0.0041) 0.9666 (0.0041)

θ 9.7711 (1.4021) −
κ − 1.0457 (0.0152)

σ 2 − 0.1443 (0.0218)

Diagnostics on residuals

LB(20) (p-value) 0.1140 0.1157

Residuals mean 1.0001 0.9990

Mean of the assumed distribution 1 1

Residuals variance 1.2330 1.2305

Variance of the assumed distribution 1.2280 1.2640

For the parametric approach, we estimated by maximum likelihood the EACD,

WACD, PACD, BACD models (p = q = 1), that is under the assumptions of ex-

ponential, Weibull, Pareto and Burr distributed innovations (Tables 1 and 2). As ex-

pected, the estimates of the ACD parameters do not significantly differ from one

model to the other, and the Ljung-Box (LB) statistics for the hypothesis of uncor-

related residuals are always satisfactory. However, the parameters of the Pareto and

the Burr distributions are highly significant, which is the first evidence recommend-

ing the use of PACD and BACD models. In addition, the averages of the residuals

ǫ̂i = xi/�̂i are always strictly close to one, but the variance is far from unity and

more coherent with the mixture of distributionmodels (PACD and BACD). The para-

metric approach seems to ensure a good fit to data, expecially when more refined dis-



104 G. De Luca, G. Rivieccio and P. Zuccolotto

tributional assumptions are used as will be clearly confirmed later, with the analysis

of the density forecasts.

On the other hand, the semiparametric approach (see [SN05]) was carried out

using the Clayton and Frank copulas for the dependence between xi and xi−1 (n = 2)

and then among xi , xi−1 and xi−2 (n = 3). The estimates of the models are shown

in Table 3.

In order to compare the two approaches we use the density forecast evaluation as

outlined in [BG04]. The probability integral transforms of the one-step-ahead fore-

casts of the durations are independently and uniformly distributed in [0, 1] if the

model is correctly specified.

For an n-dimensional copula function, the probability integral transform is given

by the conditional copula, obtained as

C(un |u1, . . . , un−1) = ∂n−1C(u1 , . . . , un)/∂u1 . . . ∂un−1

∂n−1C(u1 , . . . , un−1)/∂u1 . . . ∂un−1

.

The eight histograms of the in-sample one-step-ahead forecasts are reported in

Figs. 1 and 2. In particular the copula functions appear to have a better performance.

The Kolmogorov-Smironv statistics for the hypothesis of uniformity (Table 4) con-

firm the graphical evidence.

Table 3. Estimate (standard error) of the copula functions.

Model Parameter α

Biv. Clayton 0.1325 (0.0141)

Biv. Frank 0.8582 (0.0667)

Triv. Clayton 0.1217 (0.0088)

Triv. Frank 0.7400 (0.0419)

Table 4. Kolmogorov-Smirnov statistics.

Model KS statistics Model KS statistics

Exponential 0.028 Biv. Clayton 0.006

Weibull 0.016 Biv. Frank 0.005

Pareto 0.009 Triv. Clayton 0.006

Burr 0.009 Triv. Frank 0.006
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Fig. 1. Histogram of one-step-ahead forecasts for exponential (top left), Weibull (top right),

Pareto (bottom left) and Burr (bottom right).

0 0.2 0.4 0.6 0.8 1
0

0.20

0.40

0.60

0.80

1.00

0 0.2 0.4 0.6 0.8 1
0

0.20

0.40

0.60

0.80

1.00

0 0.2 0.4 0.6 0.8 1
0

0.20

0.40

0.60

0.80

1.00

0 0.2 0.4 0.6 0.8 1
0

0.20

0.40

0.60

0.80

1.00

Fig. 2. Histogram of one-step-ahead forecasts for bivariate Clayton copula (top left), bivariate

Frank copula (top right), trivariate Clayton copula (bottom left) and trivariate Frank copula

(bottom right).
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5 Concluding Remarks

In this paper two different methods for the modelling of financial durations deriving

from tick-by-tick datasets are compared. On one hand we examined a traditional,

parametric approach based on ACD models and on the other hand a semiparametric

one based on the copula function. The results of an application to real data showed

some interesting points. For the analyzed dataset, both the parametric and the semi-

parametric approach provide good in-sample results, but the copula functions exhibit

a small superiority. Secondly, while in the context of ACD models there is no doubt

about the (well known) supremacy of BACD and PACD models on the traditional

EACD and WACD, it is not clear if the Clayton should be preferred to the Frank

copula or if the bivariate approach performs better than the trivariate one. A deeper

investigation into this is encouraged, in order to verify both the out-of-sample per-

formance of the two approaches and the differences among the copula specifications.
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Analysis of Economic Fluctuations: A Contribution

from Chaos Theory∗

Marisa Faggini

Summary. The nature of business cycles is a central and conflicting question in macroeco-

nomics. We would like to stress, however, the importance of chaos, in the context of business

cycle theories. In fact, those who believe in i.i.d. disturbances simply state that fluctuations are

determined by exogenous factors. Chaos supporters, on the other hand, disagree with a linear

world and believe that the source of fluctuations is endogenous to the economic system. The

aim of paper is to highlight the power of chaos theory to analyze business cycles.

Key words: P10; H3; E6.

1 Introduction

Most economic indicators have elements of a continuing wave-like movement and

are partially erratic, serially correlated and more than one periodicity has been iden-

tified in their behaviour in addition to long growth trends (Chen 1988). How to

identify these movements is a central and conflicting debate in macroeconomics

that arises around two opposite approaches: the exogenous-shocks-equilibrium, the

endogenous-cycles-disequilibrium. For exogenous-shocks-equilibrium the fluctua-

tions are deviations from a steady growth path determined by exogenous “shocks”

like fiscal and monetary policy changes, and changes in technology. Stochastic ex-

ogenous disturbances are superimposed upon (usually linear) deterministic models

to produce the stochastic appearance of actual economic time series (Prokhorov

2001). In many cases, however, those approaches fail to provide an economic ex-

planation for the serial correlation of error terms and of the exact meaning of the

exogenous shocks. According to endogenous-cycles-disequilibrium, deviations from

growth trends are consequences of endogenous shocks coming from imperfections

of the market. In this sense, endogenous cycles are represented by deterministic os-

cillators including harmonic cycle and limit cycle (Samuelson 1939, Hicks 1950 and

Goodwin 1951). Nevertheless, the real economic time-series do not show the kind

of regularity and symmetry that is predicted by those models. Irregular frequencies
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and different amplitudes are the real feature of economic fluctuations that do not

show clear convergence or steady oscillations. This contrast with reality pushed the

economists to use non-linear approaches to analyse business cycle models. They are

well suited for examining macroeconomic fluctuations and business cycle research

because they are powerful tools able to capture stylized facts observed in many fi-

nancial and economic time series like asymmetries, jumps and time irreversibility,

and to model any oscillating phenomenon. The most exciting feature of non-linear

systems is their ability to display chaotic dynamics. Models of deterministic chaos

are a subcategory of non-linear models characterized by the conjunction of local

instability, giving rise to sensitivity to initial conditions, with global stability that

effectively restricts the long-term dynamic to attractor’s orbits. For this, chaotic phe-

nomena, notwithstanding their seemingly random time paths, are representations of

long-term steady states of the dynamic system. Chaos theory could explain the ir-

regularity of economical fluctuation using simple non-linearities and may become

more common as economists increasingly familiarize themselves with non-linear

techniques of mathematical and statistical analysis from physics. There are some

differences, however, between physics and other hard sciences, in which these tech-

niques are largely used, and economics (Faggini 2006b). In some cases topological

and not metric instruments must be used. There are important policy reasons to un-

derstand the impact of non-linearities and chaos in social systems. First of all, it is

possible to have a more realistic description of economic phenomena, and the control

of chaotic systems can actually be easier than the control of linear ones, because it

might take only a small push to engender a big change in the system. In other words,

small, low-cost policy changes could have a large impact on overall social welfare.

Therefore, the aim of the paper is, starting from a description of results of traditional

approaches to business cycles, to highlight how the chaos theory could contribute to

improve the description of economic phenomena fluctuations and why this approach

was discharged in favour of the non-linear stochastic approach.

2 Non-linear Deterministic Systems. Is Economy a Chaotic

System?

Medio (1992) defines a deterministic system as “one containing no exogenous

stochastic variables.” Knowledge of all a system’s equations and the links between

them will lead to accurate prediction in a system (Kutcha 2004). While the determin-

istic approach assumption is that random behaviour observed in economics time se-

ries is the result of non-stochastic process, the stochastic approach assumption states

that the structure of the underlying process, either linear or non-linear, is subjected

to random shocks. The importance of classifying a time series as deterministic or

stochastic cannot be overemphasized, because for example in finance, it represents

the difference between evidence for or against the market efficiency hypothesis (Pe-

ters 1991). Deterministic and stochastic systems can be linear and non-linear. A lin-

ear deterministic model for business cycle was first proposed by Samuelson (1939),

which generated damped or explosive cycles. Non-linearities in deterministic models
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were introduced in terms of limit cycles to explain the self-sustained wavelike move-

ment in economics (Hick 1950 and Goodwin 1951). Linear stochastic models, in

particular the class of ARMA models, have been a practical tool for economic analy-

sis and forecasting, nevertheless this class has a number of serious shortcomings for

studying economic fluctuations (Potter 1995). Liner autoregressive or ARMA mod-

els are only capable of generating realizations with symmetrical cyclical fluctuations

and are not capable of accommodating large shocks, shifting trends and structural

changes. The theory leading to linear models of business cycles has to be given

up as inadequate so that non-linear models are needed to describe the asymmetric

fluctuations. Empirical evidence for non-linearities in economic time series fluctu-

ations is reported in Hsieh 1991, Potter 1995 and Brooks 2001. ARCH processes

are non-linear stochastic models that show no autocorrelation, have a mean zero, a

constant unconditional variance, and most importantly, they have non-constant vari-

ances conditional on the past. These techniques allowed detecting in data dynamics

otherwise obscured by systematic noise, time varying volatility, and non-stationary

trends opening to the analysis of financial and macroeconomic time series. Bera and

Higgins (1993) remarked that “a major contribution of the ARCH literature is the

finding that apparent changes in the volatility of economic time series may be pre-

dictable and result from a specific type of non-linear dependence rather than ex-

ogenous structural changes in variables.” The results of research in economic and

financial data is the evidence of widespread stochastic non-linearity, even though the

main effects seem to be exhibited in the variances of the respective distributions.

Nevertheless some researchers2 (Brock et al. 1991, Frank and Stengos 1988), have

indicated that generalized ARCH models still leave some evidence of non-linearities

in the data. However, what that non-linearity is and how it should be modelled is

still an open question. In contrast to ARCH models, chaos represents the stochas-

tic behavior generated by non-linear deterministic systems (Tsonis 1992 and Medio

1992). In fact, many non-linear deterministic systems exhibit a behavior so irregular

that most standard randomness tests are unable to distinguish between them and pure

white noise. Such non-linear dynamical models characterized (a) by the intrinsically

generated stochasticity and (b) by high sensitivity to initial conditions and parameter

values, are the subject matter of chaos theory. The seeming irregularity of business

cycles using chaos theory, has been employed in Day R.H., (1994), Dechert W.D.,

(1996), Goodwin R., (1990), Hommes C.H., (1991), Lorenz H.W., (1993) and Puu T.,

(1997). Moreover, tests for chaos and non-linearity in data were developed. The use

of these techniques to test the presence of chaos in time series shows that data quan-

tity and data quality are crucial in applying them. All researchers applying them

filtered their data by either linear or non-linear models (Frank and Stengos 1989,

Blank 1991, Cromwell and Labys 1993 and Yang and Brorsen 1992, 1993), in most

cases by ARCH-type models, then, conducted the chaos analysis on the residuals.

The open question is whether chaotic properties of the process are invariant to such

2 Lorenz (1989), Ashley et al. (1986), Ramsey et al. (1990), Granger (1991), Ramsey and

Rothman (1996), Lee et al. (1993), Bollerslev et al. (1990), Barnett et al. (1993), Rothman

(1994), and Le Baron (1994)
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transformations. The simulations have proven that linear and non-linear filters will

distort potential chaotic structures (Chen 1993 and Wei and Leuthold 1998). Current

tests used to detect non-linear structure often fail to find evidence of non-linearity

in aggregated data, even if the data are generated by a non-linear process and don’t

distinguishbetween non-linearity or chaos in the economic data (Barnett 2003). Data

quantity and data quality in economics are a significant obstacle to chaotic-economic

theory, and one of the main reasons why the literature has not reached a consensus on

the existence of chaotic dynamics in data (Faggini 2005, 2006a). The consequence

of this is resumed in Granger and Terasvirta (1992): “Deterministic (chaotic) models

are of little relevance in economics and so we will consider only stochastic models”.

The question was amplified by Jaditz and Sayers (1993), who reviewed a wide vari-

ety of research to conclude that there was no evidence for chaos, but that was not to

deny the indication of non-linear dynamics of some sort. Therefore, in order to facil-

itate the testing of deterministic chaos and to improve our understanding of modern

economies, it is worthwhile developing numerical algorithms that work with mod-

erate data sets and are robust against noise. The topological approach provides the

basis for a new way to test time series data for chaotic behaviour (Mindlin et 1990).

In fact, it has been successfully applied in sciences to detect chaos in experimental

data, and it is particularly applicable to economic and financial data since it works

well on relatively small data sets, is robust against noise, and preserves time-ordering

information (Faggini 2005, 2006b). This methodology makes it possible to reveal

correlation in the data that is not possible to detect in the original time series. It does

not require either assumptions on the stationarity of time series or the underlying

equations of motions. It seems especially useful for cases in which there is modest

data availability and it can efficiently compare to classical approaches for analyzing

chaotic data, especially in its ability to detect bifurcation (Faggini 2005, 2006b). Re-

currence Analysis is particularly suitable to investigate the economic time series that

are characterized by noise and lack of data and are an output of high dimensional

systems. Proving that the data is chaotic would prove there is a deterministic under-

lying system generating the data. The proof would be a giant step toward clarifying

the “nature” of the economy. Chaotic non-linear systems can endogenize shocks. If

the economy is chaotic, then we can create a complete and closed model. This de-

velopment would aid significantly short run forecasting and control. Detecting chaos

in economic data is the first condition to apply a chaotic control to phenomena that

generate them. In fact, chaos theory offers attractive possibilities for control strate-

gies (Faggini 2006a) and this point seems particularly relevant for the insights of

economic policies. Using sensitivity to initial conditions to move from given orbits

to other orbits of attractors means to choose different behaviour of the systems, that

is, different trade-off of economic policy. Moreover, the employment of an instru-

ment of control in terms of resources in order to achieve a specific goal of economic

policy will be smaller if compared to the use of traditional techniques of control.
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3 Conclusion

The failure to find convincing evidence for chaos in economic time series redirected

efforts from modeling non-linearity from conditional mean, chaotic systems, toward

conditional variance, ARCH-type models (Prokov 2001). Predicting volatility has

become the new challenge of non-linear economics. Nevertheless, some researchers

have indicated that generalized ARCH models still leave some evidence of unex-

plained non-linearities in the data. This could suggest redirecting the time series

analysis toward chaotic approach as some problems encountered using chaos tests

could be overcome. New techniques for the analysis of short time series like eco-

nomics, so to distinguish stochastic fluctuations from purely deterministic chaotic

data, have been developed. The discovery of deterministic chaos changes our view

of erratic behaviour of economic fluctuations. Therefore, the salient feature of ap-

plying chaotic control is the strong “energy saving”, that is resources, to perform

economic policy goals. If the system is non-chaotic, the effect of an input on the

output is proportional to the latter. Vice versa, when the system is chaotic, the re-

lationship between input and output is made exponential by the sensitivity to initial

conditions. We can obtain a relatively large improvement in system performance by

using small controls. Resource saving and choosing from different trade-offs of eco-

nomic policies (many orbits) could be significant motivations to use chaotic models

in the economic analysis. To use these models we need to discover chaos in the data,

and we have demonstrated that VRA is a useful tool for doing this (Faggini 2005,

2006).
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Generalized Influence Functions and Robustness

Analysis

Matteo Fini and Davide La Torre

Summary. The notion of influence function was introduced by Hampel and it plays a crucial

role for important applications in robustness analysis. It is defined by the derivative of a statis-

tic at an underlying distribution and it describes the effect of an infinitesimal contamination

at point x on the estimate we are considering. We propose a new approach which can be used

whenever the derivative doesn’t exist. We extend the definition of influence function to non-

smooth functionals using a notion of generalized derivative. We also prove a generalized von

Mises expansion.

Key words: Robustness analysis; Influence function; Gross-error sensitivity; Prohorov dis-

tance; Qualitative robustness; Non-smooth analysis.

1 Introduction

The idea of influence function, recently proposed by Hampel in 1974, can be consid-

ered a crucial notion for the important role it plays in robustness and stability analysis

(Hampel, Ronchetti, Rousseeuw and Stahel, 1986). The robustness analysis using in-

fluence functions is strongly based on the existence of the derivative of a functional

and this opened the way to the use of different concepts of derivatives ([Ha74]). Es-

sentially, three types of generalized derivative are usually used for robustness anal-

ysis: Gateaux, compact and Frechet derivatives. Fernholz (1995) presents an inter-

esting discussion on mathematical treatment of these concepts from a statistical per-

spective. Gateaux derivative is a very important concept in robustness analysis, it can

be computed for many estimators and test statistics and can be used to introduce new

robust statistical procedures ([Cl86]). On the other hand, the notion of Frechet differ-

entiability is a stronger concept which implies the existence of Gateaux derivative.

It guarantees the asymptotic normality of the corresponding statistic ([Be93] and

[Cl86]) and is used to get stability properties under small deviations of the model.

In Clarke (1986) some results which imply Frechet differentiability for a large class

of estimators are shown. Frechet differentiability is also essential in other fields in

statistics (for example the bootstrap).
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The aim of this work is to propose a new approach which can be used when

Gateaux derivative doesn’t exist. In this paper we introduce a generalized defini-

tion of influence function and we prove a generalized Von Mises theorem. This new

definition of influence function is based on a notion of first order generalized deriva-

tive. We consider the definition of generalized Dini directional derivative for scalar

and vector functionals; this type of derivative is built by taking the set of all cluster

points of sequences of particular incremental ratios. The notion of influence function

is strictly connected to the robustness issue. In stability analysis a classical definition

is the concept of qualitative robustness which is based on the notion of Prohorov

distance ([Pr56]). The richest quantitative robustness information is provided by the

influence function. It describes the effect of an infinitesimal contamination at point

x on the estimate and it can be used to analyze the relative influence of individual

observations.

The paper is structured as follows. In the second and third sections we recall the

notion of qualitative robustness, the classical definition of influence function and a

notion of measure which is used in the definition of B-robustness. In the fourth sec-

tion we will recall some mathematical tools which will be useful for the extensions

of the fifth section.

2 Prohorov Distance and Qualitative Robustness

Let X be a separable complete metric space, B a Borel σ -algebra and d a distance.

For ǫ > 0 and A ⊂ X we define Aǫ = {x ∈ X : d (x, A) < ǫ} with d (x, A) =
infz∈A d (x, z). Let F and G be two measures on the measure space (X, B) and

let π (F,G) = inf {ǫ > 0 : F (A) < G (Aǫ )+ ǫ, ∀A ∈ B}. The Prohorov distance

between F and G is defined by π (F,G) = max{π (F,G) , π (G, F)}. Using this

notion of distance, Hampel introduced the definition of qualitative robustness.

Definition 1. Let Tn be a sequence of estimator and F a distribution function. We

say that Tn is qualitative robust in F if, for all ǫ > 0, there exists δ > 0 such that,

for all E F ∈ F (X) and for all n, we have

π (F, E F) < δ ⇒ π (L DF (Tn) , L DE F (Tn)) < ǫ,

where L DF (Tn) is the distribution law of T under F and L DE F (Tn) is the distri-

bution law of T under E F.

3 Influence Function and B-robustness

Let T be a statistics of the real parameter θ ∈ �, where � ⊂ R is an open and

convex set of real numbers. In other words, T is a functional of the i.i.d. sample

(X1, X2, . . . Xn), where (�,F , p) is a probability space and X i : � → X is a set

of random variables, X i ∼ F(·, θ). Instead of relying on this data, we could use the
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distribution of the random variables. We will now see what happens to an estimator

when we change the distribution of the data slightly. The importance of IF lies here,

in its heuristic interpretation.

IF describes the infinitesimal behavior of the asymptotic value and so measures the

asymptotic bias caused by contamination in the observations. So, let G now be some

distribution in dom(T ). The question is, what happens when the data doesn’t follow

the model F exactly but another, slightly different, say G? What we need is a notion

of derivative of T in the direction G − F . In order to introduce this notion, consider

T as functional on the space of distribution functions and let dom (T ) be the domain,

that is the non-empty convex subset F (X) of the set of all probability measures built

on X . We will write T : F(X) → R.

Definition 2. A functional T , defined on a probability measure, is differentiable at F

in the direction G − F if there exists the following limit

T ′(F; G − F) = lim
t→0

T ((1 − t) F + t G) − T (F)

t
. (1)

Definition 3. Let T be a differentiable functional at F in the direction G − F. We

say that it is compactly differentiable if there exists a real function r : X → R such

that, for all G (with G ∈ dom (T )) we have

T ′(F; G − F) =
∫

r (x) dG (x) . (2)

Now replacing G with the Dirac’s Delta as a probability measure, we get the follow-

ing definition.

Definition 4. Given a functional T : F(X) → R the influence function IF at a point

x ∈ X is defined as

I F (x; T, F) = lim
t↓0

T ((1 − t) F + tδx)− T (F)

t
, (3)

in such x ∈ X where the limit exists.

Considering Taylor expansion of T in F , we get

T (G) = T (F) + T ′
F (G − F) + reminder

= T (F) +
∫

I F (x; T, F) d (G − F) (x) + reminder. (4)

Now let G = Fn , where Fn is the empirical distribution function. Computing this

we get

T (Fn) = T (F) +
∫

r(x)d (Fn − F) (x) + reminder (Fn − F)

= T (F) +
∫

r(x)d Fn (x) + reminder (Fn − F) ,
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since
∫

r(x)d F (x) = 0. This expression is called ”von Mises expansion” of T in F .

The linear term is described by the expression
∫

r(x)d Fn (x) = 1
n

∑n
i=1 r (X i) and

so the previous Taylor expansion can be rewritten as

√
n (T (Fn) − T (F)) = 1√

n

n∑

i=1

r (X i) +
√

n reminder (Fn − F) . (5)

The following theorem can be found in [Fe95].

Theorem 1. Suppose 0 < Er2 (X) = σ 2 < ∞ and
√

n reminder (Fn − F)
P→ 0.

Then
√

n (T (Fn) − T (F))
D→ N

(
0, σ 2

)
when n → ∞.

In literature, this is called von Mises method. What are the properties for a ”good”

influence function? The influence function describes the effect on T performed by an

infinitesimal perturbation of the data at point x . From the robustness point of view,

Hampel introduced some important summary values of the IF:

• Rejection point

ρ∗ = inf
r>0

{r : I F(x; T, F) = 0, |x | > r} . (6)

• Gross-error sensitivity

γ ∗ (T, F) = sup
x

|I F(x; T, F)| . (7)

• Local-shift sensitivity

λ∗(T, F) = sup
(x,y)∈X×X,x �=y

∣∣∣∣
I F(y, T, F) − I F(x, T, F)

y − x

∣∣∣∣ . (8)

The gross-error sensitivity measures the worst influence that a small amount of

contamination of fixed size can have on the estimator T . The local-shift sensitivity,

which looks a lot like a lipschitz constant, represents the effect of shifting an observa-

tion slightly from x to a closed point y. The desirable properties of an influence func-

tion are: small gross-error sensitivity, small local-shift sensitivity and finite rejection

point. Using this definition of influence function, in literature many definitions of

stability have been proposed. The following recalls the notion of B-robustness.

Definition 5. We say that T is B-robust if γ ∗ (T, F) < ∞.

Example 1. Let X ∼ N (0, 1) be a random variable, θ an unknown parameter, F(x)

be a distribution function of X . Let Fθ (x) = F (x − θ) and let θ̃ be the real value

of the parameter to be estimated. Let X =
∫

x F (x) dx be the estimator T we are

considering. The influence function is given by

I F
(
x; X , F

)
= lim

t↓0

∫
u [(1 − t) F (x) + tδx] du −

∫
u F (x) du

t
(9)

= lim
t↓0

(1 − t)
∫

u F (x) du + t
∫

uδxdu − θ̃

t
= x − θ̃ . (10)
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The value of gross-error sensitivity is

γ ∗ (T, F) = sup
x:I F (x;T,F )

|I F(x; T, F)| = sup
x

∣∣x − θ̃
∣∣ = ∞ ,

so the mean is not a B-robust estimator. The local-shift sensitivity is

λ ∗ (T, F) = sup
x �=y:∃I F (x;T,F ),I F (y;T,F )

|I F (y; T, F)− I F (x; T, F)|
|y − x | = 1 ,

while the rejection point is

ρ ∗ (T, F) = inf {r > 0 : I F (x; T, F) = 0, ∀ |x | > r} = ∞ .

4 Generalized Derivatives for Scalar and Vector Functions

All definitions and notions in previous section are based on the notion of differentia-

bility. The existence of such a notion of derivative is not always guaranteed and so it

is natural to ask what happens if this limit doesn’t exist. We will extend the definition

of influence function using the notion of first order Dini generalized derivative; we

will use a generalized mean value theorem and Taylor expansion in order to prove a

generalized von Mises expansion. We consider the case of function f : Rn → Rm

since introducing a notion of generalized directional derivative of T at point x in the

direction d , one can regard φ(t) = T (x + td). A function f : Rn → Rm is said to be

locally lipschitz at x0 if a constant K f exists such that ‖ f (x)− f (y)‖ ≤ K f ‖x − y‖,

for all x, y ∈ U (x0).

Definition 6. Let f : Rn → R be a given function and x0 ∈ Rn . For such a function,

the definition of upper Dini generalized derivative f
′
D at x0 in the direction u ∈ Rn is

f ′
D (x0; u) = lim sup

t↓0

f (x0 + tu)− f (x0)

t
. (11)

In an analogous way, one can define a lower derivative. The following result states a

generalized mean value theorem for f ([Di81]).

Lemma 1. Let f : Rn → R be a locally lipschitz function, then ∀a, b ∈ Rn ,

∃α ∈ [a, b] such that

f (b) − f (a) ≤ f ′
D(α; b − a) . (12)

These results can be extended to vector functions.

Definition 7. Let f : Rn → Rm be a given function and x0 ∈ Rn . For such a func-

tion, the definition of upper Dini generalized derivative f ′
D at x0 in the direction

u ∈ Rn is

f ′
D (x0; u) =

{
l = lim

n→+∞
f (x0 + tnu) − f (x0)

tn
, tn ↓ 0

}
. (13)
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Obviously this set is non-empty when locally lipschitz functions are considered.

In fact, if f is locally lipschitz at x0 then f ′(x0; d) is a non-empty compact sub-

set of Rm . If f (x) = ( f1(x), . . . , fm (x)) then from the previous definition it

is not difficult to prove that f ′
D (x0; u) ⊂ ( f1)

′
D (x0; u) × . . . ( fm )

′
D (x0; u). We

now show that this inclusion can be strict. Let us consider the function f (x) =
(x sin(x−1), x cos(x−1)) for which we have f ′

D (0; 1) ⊂
{
d ∈ R2 : ‖d‖ = 1

}
while(

f ′
1

)
D
(0; 1) =

(
f ′
1

)
D
(0; 1) = [−1, 1]. The following result can be found in [La04].

Theorem 2. Let f : Rn → Rm be a locally Lipschitz vector function. Then the

following generalized mean value theorem holds

0 ∈ f (b)− f (a) − clconv
{

f ′
D (x; b − a) : x ∈ [a, b]

}
. (14)

5 Generalized Influence Functions and Generalized B-robustness

We now introduce two definitions of generalized influence functions (for scalar and

vector functionals) based on the notions of generalized derivatives that we have con-

sidered in the previous section.

5.1 Scalar case

The following definition states a notion of generalized influence function when scalar

functionals are considered.

Definition 8. A functional T , defined on a probability measure, is upper compactly

differentiable on the measure F if there exists a real function r+ : X → R such that,

for all G (with G ∈ dom (T )) we have

T
′
D(F,G− F) = lim sup

t↓0

T ((1 − t) F + t G)− T (F)

t
=

∫

X

r+ (x) dG (x) . (15)

T is lower compactly differentiable on the measure F if there exists a real function

r− : X → R such that, for all G (with G ∈ dom (T )) we have

T ′
D(F,G − F) = lim inf

t↓0

T ((1 − t) F + t G)− T (F)

t
=

∫

X

r− (x) dG (x) . (16)

Definition 9. Given a functional T : F(X) → R the generalized upper influence

function I F+ at a point x ∈ X is defined as

I F+ (x; T, F) = lim sup
t↓0

T ((1 − t) F + tδx) − T (F)

t
, (17)

while the generalized lower influence function I F− at a point x ∈ X is defined as

I F− (x; T, F) = lim inf
t↓0

T ((1 − t) F + tδx) − T (F)

t
. (18)
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Now replacing I F with the Dirac’s Delta as probability measure, we obtain

I F+ (x; T, F) = r+(x) and I F−(x; T, F) = r−(x). It is trivial to prove that

I F−(x; T, F) ≤ I F+(x; T, F). If F̃ =
(
1 − t̃

)
G + t̃ F using a generalized mean

value theorem, we get T (G)− T (F) ≤ T
′
D(F̃,G − F). Now it is possible to prove

the following theorem which states a generalized von Mises expansion for I F+.

Theorem 3. Let F → T
′
D(F,G − F) be upper semicontinuous, then ∀ǫ > 0, there

exists δ > 0 such that ∀G ∈ U (F, δ) and we have

T (G) − T (F) ≤
∫

X

I F+ (x; T, F) dG (x) + ǫ . (19)

5.2 Vector case

We can now extend the notion of influence function to vector non-smooth function-

als. This notion requires the definition of multifunction. A multifunction F : X ⇒ Y

is a function from X to the power set 2Y . If F(x) is closed, compact or convex, we

say that F is a closed, compact or convex value, respectively. A function f : X → Y

is a selection of F if f (x) ∈ F(x) for all x ∈ X . In the following, we consider the

notion of integral of a multifunction in Aumann sense, that is

∫
F(x)dµ(x) =

{∫
f (x)dµ(x), f (x) ∈ F(x), ∀x ∈ X

}
.

Definition 10. A vector functional T , defined on a probability measure, is compactly

differentiable on the measure F if there exists a multifunction r (x) : X → 2R
m

such

that

T ′
D(F,G − F) = lim

tn↓0

T (1 − tn)G + tn F) − T (F)

tn
=

∫

X

r(x)dG(x) . (20)

Definition 11. Given a functional T : F(X) → Rm the generalized influence func-

tion GI F at a point x ∈ X is defined as

GI F (x; T, F) =
{

l ∈ Rm : l = lim
tn↓0

T (1 − tn)F + tnδx )− T (F)

tn

}
. (21)

If G = δx then we get GI F(x) = r(x). Using a generalized mean value theorem we

get

T (G)− T (F) ∈ cl conv
{
T ′

D(F̃ ,G − F), F̃ =
(
1 − t̃

)
F + t̃ G, t̃ ∈ (0, 1)

}
. (22)

The following result states a generalized von Mises expansion.

Theorem 4. Let F → T ′
D(F,G − F) be upper semicontinuous. Then for all ǫ > 0

there exists δ > 0 such that ∀G ∈ U (F, δ) and we have that

T (G) − T (F) ∈
∫

X

GI F (x; T, F) dx + ǫB (0, 1) . (23)
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The previous definitions of generalized influence functions can be used to extend the

notion of B-robustness.

Definition 12. Let T : F(X) → R be a scalar non-smooth functional. We say that T

is generalized B-robust if supx∈X I F+ (x; T, F) < +∞. If T is a vector non-smooth

functional, T is said to be generalized B-robust if the set
⋃

x∈X GI F (x; T, F) is

compact.
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Neural Networks for Bandwidth Selection

in Non-Parametric Derivative Estimation

Francesco Giordano and Maria Lucia Parrella

Summary. In this paper we consider the problem of bandwidth selection in local polynomial

estimation of derivative functions. We use a dependent data context, and analyze time series

which are realizations of strictly stationary processes. We consider the estimation of the first

derivative of the conditional mean function for a non-linear autoregressive model. First of

all, we emphasize the role assumed by the smoothing parameter, by showing how the choice

of the bandwidth is crucial for the consistency of the non-parametric estimation procedure,

through an example on simulated data. We then use a new approach for the selection of such

a parameter, based on the neural network technique. Such alternative method presents several

advantages with respect to the traditional approach used so far.

Key words: Bandwidth selection; Dependent data; Local polynomial estimators; Neural net-

works.

1 Introduction

Let {X t ; t = 1, . . . , n} be a realization of length n from a real valued stationary

stochastic process, {X t; t ∈ N}. We consider the following autoregressive model

X t = m (X t−1) + εt , (1)

where the errors {εt } are i.i.d. with mean equal to 0 and variance σ 2 ∈ (0,+∞).
Model (1) is useful to model non-linear structures commonly encountered in finan-

cial and econometric time series ([Tjo94]). Also useful in economics and finance is

the estimation of derivative functions: for example, option pricing, delta hedging,

sensitivity analysis and optimization problems etc. Sometimes the parametric form

of such derivative functions is unknown, unless we make some strong assumptions.

It is useful, therefore, to have a non-parametric tool to estimate the derivatives.

The conditional mean function m (·) is supposed to have a continuous third order

derivative on R. Moreover, lim|x|→∞
m(x)

x = c, |c| < 1. The error terms εt have

continuous and positive density function.

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance

c© Springer 2008, Milan
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The models in (1) have a markovian representation. Under the abovementioned

conditions, the process {X t } is geometrically ergodic and exponentially α-mixing

([FKMN02, Dou94)]).

The easiest way to estimate non-parametrically the function m(x) and its deriva-

tives is by using Local Polynomial estimators. Such estimators have good theoreti-

cally properties, as shown by [FG96]. Nevertheless, they are subject to the correct

preliminary choice of a smoothing parameter, the bandwidth of the kernel func-

tion, which in fact may compromise considerably their performance. As a result,

the fundamental reason for using these non-parametric tools, i.e. robustness against

a parametric mis-specification, vanishes completely. In this paper we highlight this

problem by showing empirically the difficulties in selecting the correct bandwidth,

through an example on simulated data. Then we describe and use a new method for

the selection of such parameter which is based on the neural network technique. Such

method has been proposed and analyzed in a different paper, and here we refer to the

results reported therein ([GP06]). The proposed method presents several advantages

with respect to the traditional approach, as will be summarized later on in this paper.

2 Local Polynomials for Non-parametric Derivative Estimation

For simplicity, let us consider the local polynomial estimator of the first derivative

function m′(x), for x ∈ R. We consider the local quadratic estimator, which is usu-

ally used for the estimation of the first derivative of a function. There are theoretical

reasons for using such particular kind of local polynomial estimator (see, for exam-

ple, [FG96]). This estimator is given by solving the following minimization problem

arg min
β0,β1,β2

n∑

t=2

⎛
⎝X t −

2∑

j=0

β j (x) (X t−1 − x) j

⎞
⎠

2

K

(
X t−1 − x

hn

)
,

with respect to β0(x), β1(x) and β2(x). Note that m̂h (x) ≡ β̂0(x), m̂′
h(x) ≡ β̂1(x)

and m′′
h(x) ≡ 2β̂2(x). The function K (u), called the kernel function, is a density

function definite on the compact support [−1, 1]. This function is influenced by the

smoothing parameter hn , which is called the bandwidth of the kernel function. It is

clear that hn represents a scale parameter for the weigth function K (·), so it deter-

mines the amount of local averaging and the smoothness of the estimated function.

A bandwidth hn of order O(n−1/7) = Cnn−1/7 is required in order to obtain the

consistency and the asymptotic normality of the estimator m′
h(x), where Cn is a pos-

itive constant ([MF97]). It is of prime importance that the value of Cn is correctly

identified, since even a small variation of the bandwidth may affect the results of the

estimation. For example,

• A value of hn that is too large may cause an estimation which is remarkably

biased and therefore unreliable.

• A value of hn that is too small may cause a substantial increase in the variance

of the estimations and therefore the estimator tends to be inefficient.
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• Uncorrect values of hn may cause confidence intervals which are too large and/or

completely misleading. This also reflects on the hypothesis tests which are built

on such kind of estimators.

Finally, the optimal choice of the smoothing parameter must be made by taking into

account the opposite need of controlling bias and variance of the estimations. This is

not such a trivial thing to do, so it is useful to have an automatic selection procedure

which takes into account this trade-off. Much research has been done on data driven

bandwidth selection methods.

3 The Selection of the Smoothing Parameter

The methods proposed so far in the literature for the selection of the optimal band-

width may be divided into two broad categories: cross-validation methods and plug-

in methods. Both of them are based on the application of some optimality criteria,

generally the minimization of an appropriate measure of the estimation error. Some

references on this topic, for a dependent data context, are [HarVie92, RupAlt95, Ha-

lAlt95, Har96, Ops97, KimCox97, MasFan97, Sko00 and FraAlt04].

Each one of these approaches has its own particular strengths and weaknesses.

Nevertheless, they have been compared by several authors, which show evidence of

a substantial superiority of plug-in procedures over cross-validation ones. Their con-

clusions are based on real data examples, simulation studies and asymptotic theory

(see for example, [Loa99, RSW95, PT92, HSJM91 and Chi91]).

In a parallel work ([GP06 and GP06b]), we propose a new plug-in method for the

selection of hn based on the use of the neural network technique. Here we apply this

method to the problem of estimating the derivative function m′(x). Let us consider

the following quantity

M̃ I S E(h) =
∫ {

Bias2
[
m̂′

h (x)
]
+ Var

[
m̂′

h(x)
]}

w(x; τ ) fX (x)dx, (2)

where m̂′
h(x) is the local quadratic estimator of the function m′(x), fX (x) is the

density of X t , while the weight function w(x; τ ) is taken as the density of a normal

distribution with mean equal to zero and variance equal to the variance of the process

{X t}. (2) represents a modified version of the mean integrated square error, and so

represents a global measure of the estimation error. [MF97] gives the asymptotic

bias and the variance of the estimator m̂′
h(x). These can be used to find the global

asymptotical optimal bandwidth by minimizing (2):

h AM I S E =
(

9σ 2V1

2B2
1 R(m′′′)

)1/7

n−1/7, (3)

where R(m′′′) =
∫

[m′′′(x)]2w(x; τ ) fX (x)dx . The quantities B1 and V1 are known

because they depend only on the kernel function (which is known). On the other
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hand, the quantities σ 2 and R(m′′′) are unknown and they must be estimated in some

way. Given the ergodicity of the process, we propose the following two estimators

R̂N N (m
′′′) = 1

n − 1

n∑

t=2

[
g′′′ (X t−1; η̂

)]2
w(X t−1; τ̂ ); σ̂ 2

N N = 1

n − 1

n∑

t=2

ε̂2
t . (4)

Here τ̂ = n−1
∑
(X t −µ)2 , ε̂t = X t − g

(
X t−1; η̂

)
, g

(
x; η̂

)
and g′′′ (x; η̂

)
represent

respectively the neural network estimation of m(x) and of its third derivative m′′′(x).
Let us indicate with ĥN N the proposed estimator of the bandwidth, given by plugging

into (3) the estimation obtained in (4).

The peculiarity of our approach lies in the fact that it does not require the selec-

tion of a preliminary pilot bandwidth, contrary to with the traditional plug-in meth-

ods. Plug-in methods are generally implemented as a two stage procedure, where the

first stage concerns the selection of a pilot bandwidth h̃n , which is then used in the

second stage to obtain a local polynomial fit of the unknown functionals in (3). In the

first stage, the estimation of higher order derivatives is required for the selection of

the optimal pilot bandwidth. The main drawback of classic plug-in methods is that

they depend heavily on arbitrary specification of such pilot bandwidths, and they fail

when this specification is wrong. On the other hand, our method is a one stage proce-

dure, because it does not require the estimation of higher order derivatives. However,

it is necessary to identify the number of nodes of the hidden layer, for the estimation

of the neural network function. This is an integer parameter which plays the same

role as the pilot bandwidth, but its selection is simpler, since it is an integer value of

order of some units and not a real value such as the pilot bandwidth. Moreover, there

have been proposed in the literature several automatic procedures for the optimal

selection of such parameter.

The proposed bandwidth selection procedure may be improved in several di-

rections, and currently this work is in progress. For example, this method gives an

estimate of the global optimal bandwidth, that is a bandwidth which is constant over

the support of the function. Global bandwidths, however, can lead to undersmooth-

ing or oversmoothing, since they are not sensitive to local curvature changes. Finally,

also as an immediate solution to this problem, our method may be implemented as a

preliminary bandwidth selector, in a pilot stage of a more refined procedure.

4 An Experiment on Simulated Data

In this section we draw an experiment on simulated data, in order to show empirically

the influence that the bandwidth has on the result of the local polynomial estimation,

and the difficulties that statistics practitioners have to face to select the correct value

of such parameter. Let us consider the following two autoregressive models of order

one

X t = 0.8X t−1 + εt (5)

X t = (0.6 + 0.6e−X 2
t−1)X t−1 + εt . (6)
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Fig. 1. Top row: time plots of two realizations of length 300 from models (5) and (6). Bottom

row: the scatter plots of (Xt , Xt−1) for the two time series, together with the conditional mean

function (dashed line) and the first derivative of the conditional mean function (solid line).

The first is a linear auroregressive model, while the second is an exponential autore-

gressive model. It is evident that the conditional mean function of model (5) is equal

to m(x) = 0.8x , and so it is linear, while the conditional mean function of model (6)

is equal to m(x) = (0.6 + 1.5e−x2
)x , and so it is non-linear.

Fig. 1 shows the time plots and the scatter plots of two realizations of length

300, respectively from model (5) and model (6). As we can see, the two realizations

are similar concerning the range of the values and the length of the series. For each

realization, we also report the conditional mean function (dashed line) and its first

derivative function (solid line). The non-linearity of model (6) appears evident from

the behaviour of the first derivative function, more than from the behaviour of the

conditional mean function itself.

In practice, one of the main problems faced by the statistics practitioner is the

selection of the correct bandwidth. In many cases, it is more difficult to implement

an automatic procedure for the selection of such parameter of the estimator than to

implement the estimator itself. As a consequence, the selection of the bandwidth is

often done by rule of thumb, basing on the practical experience of the analyst, and

taking into account the range and the length of the series. This may be misleading,

as we will see next.
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Fig. 2. From top to bottom: Local quadratic estimation of the first derivative of the conditional

mean function, for increasing values of the bandwidth h (dashed line). The plots on the left

are relative to model (5), while the plots on the right are relative to model (6). In each plot, the

true derivative function is represented (solid line).



Neural Networks for Bandwidth Selection in Non-Parametric Derivative Estimation 127

5
1
0

1
5

2
0

2
5

3
0

AR(1)

0
1

2
3

4

EXPAR(1)

Fig. 3. Box-plots of the estimations of the optimal bandwidth ĥ N N obtained with our neural

network based procedure, for the 200 replications of length 300 of models (5) and (6). For

model (6), the horizontal line indicates the true value of the asymptotical optimal bandwidth

h AM I S E .

Fig. 2 reports the results of an experiment drawn on the two simulated series.

The plots on the left hand side concern the linear model AR, while the plots on

the right hand side are relative to the non-linear model EXPAR. In each plot, the

dashed line is the local quadratic estimation of the first derivative of the conditional

mean function. From top to bottom, we consider increasing values of the bandwidth

hn = (1, 2, 3, 6). The solid line represents the real derivative function. It is evi-

dent that the value of hn has a crucial influence on the results of the estimation. For

model AR, little values of hn give an estimated function which appears to be irreg-

ular and. rather distant from the true function (constant), whereas big values of the

bandwidth give a good estimation of such first derivative. It is quite the opposite for

model EXPAR, for which big values of hn give an estimated function which appears

(erroneously) constant, whereas little values of the bandwidth cause an estimated

function which seems rough but nearer to the true function (apart from some bound-

ary effects). This shows that the value of the optimal bandwidth does not depend

only on the length and variability of the time series but also (obviously) on some

other unknown characteristics, such as the higher order derivatives of the unknown

function. It follows that the correct choice of bandwidth is quite difficult, but it is

fundamental in order to obtain reliable results from the non-parametric estimation.

The following table reports the results from a simulation study that was carried

out in order to test empirically the performance of the neural network bandwidth

selection procedure. The first column of the table reports the true values for the op-

timal global bandwidth, denoted with h AM I S E , which has been derived by Monte

Carlo simulations. In the other columns of the table there are the quartiles of the dis-

tribution of the estimated values of the optimal bandwidth, obtained by considering

200 replications of each model.

h AM I S E Quartiles of ĥN N

AR(1) ∞ Q1 = 2.708 Q2 = 3.895 Q3 = 9.827

EXPAR(1) 0.642 Q1 = 0.535 Q2 = 0.627 Q3 = 0.787
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As we can see, the neural network bandwidth selector ĥN N generates estimates

that are satisfactorily near to the value h AM I S E , for both models (5) and (6). The

median of the bandwidth estimates is close to the true value of the parameter. For

model (5), it is easy to show that this value is infinity. As shown in the table, this

situation reflects the estimated values of such optimal bandwidth. The results given

in the table are represented graphically by the box-plots in Fig. 3.
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Comparing Mortality Trends via Lee-Carter Method

in the Framework of Multidimensional Data Analysis

Giuseppe Giordano, Maria Russolillo and Steven Haberman

Summary. In the framework of demographic processes, different approaches can be iden-

tified. According to their aims, these approaches can be differentiated in extrapolative and

structural methods. The first focus on the homogeneity of trends in order to obtain projection.

The second are based on structural models relating demographic variables to other kinds of

variables (geographical, social, economical, etc.). Nowadays, this distinction is not so clear

and the joint use of explorative and explanatory approaches is increasing. In this paper, we

focus on the extrapolative features of the Lee-Carter model (1992) and propose a reading of

such method in the framework of the Multidimensional Data Analysis. Our aim is to propose

a data analysis strategy exploiting the analytical and geometrical properties of the Lee-Carter

method.

Key words: Biplot; Lee-Carter methodology; Mortality forecasting; PCA; SVD.

1 Introduction and Basic Notations

One of the most important techniques to model and forecast mortality is the Lee-

Carter model [LC92]. It represents an extrapolative method based on a multiplicative

two-factor model used with time series analysis in forecasting.

The model fitting can be addressed from both an algebraic and a statistical point

of view. The common tool is the Singular Value Decomposition (SV D). The model

used for mortality data is:

ln
(
mx,t

)
= αx + βx kt + ǫx,t , (1)

which denotes the log of a time series of age-specific death rates mx,t as the sum of an

age-specific component αx , that is independent of time and another component that

is the product of a time-varying parameter kt , reflecting the general level of mortality,

and an age-specific component βx , that represents how, rapidly or slowly, mortality

at each age varies when the general level of mortality changes. The ǫx,t denotes the

error term which undertakes the common hypothesis of the Normal distribution.

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance

c© Springer 2008, Milan
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The Lee-Carter (LC) method normalizes the estimated parameters by specifying∑
t kt = 0 and

∑
x βx = 1 . In other specifications, the method can be identified by

different constraints, i.e.:
∑

x β
2
x = 1 [GK06].

The demographic literature gives emphasis mainly to the analytical role of the

SV D as an estimation method. So far, little attention has been given to the descriptive

features of such decomposition. In this paper we exploit both the analytical and de-

scriptive features of the SV D in the light of factorial techniques used as explorative

data analysis. In particular, we refer to the Principal Component Analysis (PCA)

[Jo02] as a factor reduction method with its particular graphical representation and

geometrical interpretation. This method allows a major insight into the demographic

data structure and provides several theoretical tools to interpret the underpinning

model.

The present paper is organized as follows. The Lee-Carter model in the frame-

work of multidimensional data analysis is introduced in Section 2. The geometric and

graphical interpretation of the LC Model is presented in Section 2.1. The last section

contains an application to compare Italian mortality rates, divided by age-group and

by gender, in the period 1950–2000.

2 The Lee-Carter Model in the Framework of Multidimensional

Data Analysis

We can state the LC model (1) referring to the mean centered log-mortality rates:

m̃x,t = ln
(
mx,t

)
− αx = βx kt + ǫx,t ; x = 1, . . . , X ; t = 1, . . . , T . (2)

The mean centered log-mortality rates, m̃x,t , can be arranged in the (T × X)

matrix M̃,

M̃ =

⎛
⎜⎜⎜⎝

1 2 . . . X

1 m̃1,1 m̃1,2 ... m̃1,X

2 m̃2,1 m̃2,2 ... m̃2,X

...
...

... m̃t ,x

...

T m̃T,1 m̃T,2 ... m̃T,X

⎞
⎟⎟⎟⎠. (3)

The singular value decomposition of the matrix M̃ can be written as the product

of three matrices which have geometric and statistical interpretation. In particular,

the SV D model is stated as follows:

M̃T×X = ST×hVh×hD′
h×X h ≤ min {T, X } , (4)

where h is the rank of M̃ and V is a diagonal matrix of the positive singular values

of M̃. The matrices S and D′ hold the left and right singular vectors forming an

orthogonal basis, respectively, for the rows and the columns of the matrix M̃. From

a statistical point of view, the SV D leads to the Principal Component Analysis. This

factorial technique has several properties which give a statistical meaning to the LC

model components.
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Given the matrix M̃, the PCA aims at defining new variables (factors) as lin-

ear combination of the original columns of such a matrix. This method consists of

solving the following characteristic equation:

M̃
′
M̃u j = λ ju j j = 1, . . . , h, (5)

where u j is the j th eigenvector associated to the j th eigenvalue λ j . We stress that λ j

is equal to the squared singular value v j and the eigenvectors u j correspond to the

right singular vectors d ′ forming the rows of the matrix D (see (4)). Henceforth, the

SV D model can be written as:

M̃ =
p∑

j=1

v j s j d ′
j +

h∑

j=p+1

v j s j d
′
j ; 1 ≤ p ≤ h; h ≤ min {T, X } , (6)

where the second summation on the right hand side of equation (6) is the error term

which reflects the residual information not captured by the first p components of the

SV D approximation.

In equation (7) the correspondence of the models (2) and (6) arises by defining

β
< j>
x = v j d j ; k

< j>
t = s j , where < j> refers to the j th element in the SV D. We also

highlight the role of the first component in the decomposition and denote with E the

matrix of the residual terms.

M̃ = v1s1d ′
1 +

h∑

j=2

v j s j d
′
j = k<1>

t β
′<1>
x + E . (7)

Empirically, in the estimation phase of the LC model, it is adequate to choose

just the first component [Le00]. Nevertheless, some authors have extended the LC

model to go beyond the first component [RH03]. From an exploratory point of view,

it is possible to verify if a relevant structure in the residual component E exists. In

PC A the following index of Explained Inertia (E I ) is usually considered:

E I =
∑p≤h

j=1 λ j

∑h
j=1 λ j

· 100, (8)

where h is the rank of M̃, and p is set to 1 in the LC model. If the first p eigenvalues

account for the most part of the total variability, the residual term is trivial; hence,

the index E I provides empirical and theoretical support for the choice of the value

of p to be considered in the model fitting.

2.1 Geometrical and graphical interpretation of the Lee-Carter model

The SV D approximation allows a graphical representation in a reduced subspace of

both rows and columns of the matrix M̃. The geometric reading of such represen-

tation is carried out according to the Biplot graphical display [Ga71]. The biplot is
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a low-dimensional display of a rectangular data matrix. The columns and rows are

represented respectively by the column-point coordinates (9) representing the age-

groups and by the row-point coordinates (10) representing the years:

ϕ j = v j d j =
√
λu j = β

< j>
x (9)

ψ j = M̃d j = M̃u j = k
< j>
t . (10)

The age-group coordinates are shown by drawing a vector from the origin. The

coordinates of each point are given by the correlation between the corresponding

age-groups and the principal components. The first principal component can be seen

as a size variable. It is mainly correlated with those age-groups which give the main

contribution to the global inertia since they differentiate from the average trend. Age-

groups with similar trends will be represented by vector-points leading to the same

direction. The opportunity to represent both row and column coordinates in the same

space allows a joint reading of the relationship between age-groups and years. In

almost the same way, the position of the years is baricentric with respect to the origin.

The year-points close to the origin represent the “average years”: moving towards

the right (left) side we can find year-points experimenting a mortality greater (lower)

than the average.

The main advantage of our approach is the opportunity to show graphically the

relationship within the estimated time varying parameters k, within the age-group

coefficients β and between these two sets. Furthermore, we are able to describe the

meaningful components of the SV D and explore the information lost in the resid-

ual term. Indeed, looking at the components beyond the first one, we could check

the pattern of the residuals in order to diagnose some discrepancies from the basic

hypotheses.

3 An Application to Italian Mortality Rates in the Period

1950–2000

In order to give an in depth illustration of our procedure, we carry out an application

by using death rates for the Italian population, supplied by the Human Mortality

Database1 and divided by gender. Death rates consist of death counts divided by the

exposure-to-risk. These are estimates of the population exposed to the risk of death

measured in terms of person-years.

We consider two data matrices, for males and females, holding the mean cen-

tered log-mortality rates. The rows represent 51 years and the columns 21 age-

groups:{0, 1 − 4, 5 − 9, . . . , 95 − 99}. The data can be interpreted as follows: a pos-

itive value for each year and each age group indicates a mortality greater than the

average value of the correspondent age group. As we can see from Figs. 1 and 2,

there is a decreasing trend in each age group, both for males and females. Moreover,

1 Data available on the web site: www.mortality.org
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Fig. 1. The mean centered log-mortality rates: Males.

Fig. 2. The mean centered log-mortality rates: Females.

we can observe that the year 1973 represents the transition from positive to negative

rates for almost all age groups.

The PCA of both our datasets allows us to estimate and visualize the mortality

indices and the age specific components. Firstly, we consider the analysis for males.

As we can see from Table 1, the first eigenvalue shares the larger amount of

inertia (95.26%), showing that the residual part is trivial. However, we also consider

the second component for descriptive purposes. The second component accounts for

3.28%. The factorial plan explains 98.54% of the total inertia (see Table 1). The same

analysis is carried out for females (see Table 2).

In this group we can observe a stronger structure compared to the males. From

Table 2, we can see the high percentage (96.98%) of the first component and the very

marginal role of the successive ones. As in the previous analysis, we consider the

second component with an explorative aim. The factor loadings on the first axis are
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Table 1. The first three eigenvalues: Males.

Number Eigenvalues Percentage Cumulated Percentage

1 3.24 95.26 95.26

2 0.11 3.28 98.54

3 0.02 0.49 99.03

Table 2. The first three eigenvalues: Females.

Number Eigenvalues Percentage Cumulated Percentage

1 3.75 96.98 96.98

2 0.08 2.07 99.05

3 0.01 0.33 99.37

higher for the age groups from 0 to 14, decreasing as the age increases. On the second

axis, we notice the small value recorder for all age groups. However, age group zero

seems to be related with the positive side of the second component, meanwhile age

groups 1–4, 25–29 and 30–34 are related to the negative one. As far as the variable-

factor correlation is concerned, the leading role of the first component, once more,

is highlighted. From the results of the two analyses we can explore the relationship

between age groups (see Table 3).

For each age-group we consider the factor loadings and the correlation with the

factorial axes. On the first factorial axis, the larger contribution is given by age groups

{0, 1–4, 5–9, . . . , 95–99}. To stress the significance of the first component in the LC

model, we notice the very low values of the factor loading on the second axis. Similar

results are given by the variable-factor correlations.

By interpreting the results in the framework of multidimensional data analysis,

besides the traditional interpretation of the LC components, we can graphically show

the relationship between the estimated time varying parameter k’s, within the age-

group coefficient β’s and between these two sets. The comparison is enhanced by the

graphical display of the first principal plan obtained for male and female datasets.

A thorough description of the previously mentioned relationship can be seen in

the biplot representation in Figs. 3 and 4. In such a map, each year is represented as a

Fig. 3. The first components of the PCA decomposition: Males.
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Table 3. Factor loadings of β for the first two components: Males and females.

Males Females

Age Group Axis 1 Axis 2 Axis 1 Axis 2

0 0.82 0.04 0.81 0.10

1-4 0.82 0.04 0.93 0.10

5-9 0.90 -0.14 0.61 -0.02

10-14 0.61 0.00 0.48 -0.01

15-19 0.45 0.01 0.37 -0.04

20-24 0.21 0.02 0.42 -0.06

25-29 0.16 -0.05 0.42 -0.10

30-34 0.17 -0.12 0.39 -0.09

35-39 0.18 -0.14 0.37 -0.03

40-44 0.22 -0.05 0.33 0.02

45-49 0.25 0.04 0.29 0.04

50-54 0.25 0.08 0.28 0.05

55-59 0.23 0.09 0.27 0.05

60-64 0.20 0.09 0.29 0.06

65-69 0.16 0.08 0.30 0.05

70-74 0.14 0.08 0.31 0.06

75-79 0.13 0.07 0.29 0.07

80-84 0.14 0.06 0.25 0.07

85-89 0.14 0.04 0.20 0.06

90-94 0.14 0.03 0.14 0.05

95-99 0.12 0.02 0.11 0.04

Fig. 4. The first components of the PCA decomposition: Females.

point, whereas the age groups are represented as vectors. The factorial map, provided

by the first two components, shows how the first component is basically a factor of

trend. Indeed, the year-points lay out from left to right, ranging from the year 2000

to the year 1950, in almost a linear way. Furthermore, the second component has

a marginal role in this dynamic. It characterizes a diversification of the mortality

indices due to the effect of specific age groups. In particular, on the upper side of the

second axis, the eldest age groups are located. On the opposite side of the second

factorial axis, we find the central age groups 30–34, 35–39. For males, the choice of

just the first component seems to be well supported from the actual data.
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Decision Making in Financial Markets

Through Multivariate Ordering Procedure∗

Luca Grilli and Massimo Alfonso Russo

Summary. One of the main problems in managing multidimensional data for decision mak-

ing is that it is impossible to define a complete ordering on multidimensional Euclidean spaces.

In order to solve this problem, the scientific community has devolped more and more sofisti-

cated tecniques belonging to the wide framework of Multivariate Statistics. Recently some

authors [DR04] have proposed an ordering procedure in which the “meaningful direction” is

the “worst-best”. The aim of this paper is to extend this approach considering that, especially

in financial applications, variables are quantified using different scales and, as we will show,

this can lead to undesired results. As a matter of fact, we show that, without an appropriate

rescaling, variables with a large range of variation (rv) are “overweighted” with respect to

variables with a small one.

Key words: Multivariate data; Ordering procedures; Normalization; Financial markets.

1 Introduction

A decision maker is usually asked to make decisions faced with many alternatives

on the basis of multivariate data. An agent in a financial market faces this problem in

decision making and in fact has to determine the portfolio of assets and for each asset

has a certain number of different variables to take into due account. Furthermore, the

agent has the need to assign each variable an (equal or different) importance accord-

ing to the tasks. The problem is that, in general, the reality is multidimensional, and

it is not always possible to quantify phenomena through quantitative unidimensional

“indicator”.

The main problem in managing multidimensional data for decision making is

that it is not possible to define a complete ordering on multidimensional Euclidean
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spaces. As a result, the scientific community has devolped more and more sofisti-

cated techniques [CRZ99 and Sci98], besides the usual techniques of Multivariate

Statistics, in order to solve this important problem in many applications.

The idea underlying these proposals, is that geometry can help multivariate data

analysis; in fact data can be considered as a cloud of points in a multidimensional

Euclidean space with the main question being: is the interpretation of data on the

clouds of points possible?

In principle it seems difficult to answer since clouds of points come from data

tables and are not geometric objects; the construction is made on the basis of math-

ematical structures applied to data. The literature on this subject presents very in-

teresting results such as: Corrispondence Analysis, Principal Component Analysis,

Structured Data Analysis and Inductive Data Analysis (complete reference on the

subject in [LR04]).

In this paper we consider a different approach to the problem of decision making

with multivariate data which answers the following question: Is it possible to reduce

multidimensionality to unidimensionality? If this is the case, the problem of ordering

multivariate data is completly solved.

One way to answer this question is to find a “meaningful direction” in the data

cloud and to consider the projections of data in order to have unidimensional quanti-

ties.

In [DR04] the authors provide an ordering procedure, original with respect to

classical literature [Bar76], in which the “meaningful direction” is the “worst-best”.

This approach is very interesting since the “worst-best” direction is meaningful in

the sense of contained information.

The aim of this paper is to extend this approach considering a feature that is very

important in order to have results that are not dependent on the data set. The question

is that, especially in financial applications, data are obtained considering variables in

different scales and, as we will show, this can lead to results in which the rv of data

affects the ordering procedure. As a matter of fact, we demonstrate that, without an

appropriate rescaling2, data with a large rv are “overweighted” with respect to data

with a small one.

In particular, in financial applications, assets are represented by a certain number

of quantitative indicators that are often measured by different scales. For instance,

let us suppose that an investor, in order to select assets, takes into account only two

indicators: the market capitalization – CAP (in billions of euros) and EPS (in euros).

It is quite evident that a variation of a few units in the first variable does not have the

same importance as the same variation in the second variable, and this will affect the

ordering procedure as we will show with an application in the last section.

2 In the usual procedure of many statistical methods, his problem is solved through standard-

ization. This makes the variables homogeneous with respect to the mean and variance but

not in terms of rv.
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2 The Ordering Procedure

In ordering procedures in which projections are computed on the “worst-best” direc-

tion, the way in which the choice of the worst and best performances is made, say the

vectors xmin and xmax , is very important. This can be done in two different ways: the

first is to find the extreme performance ex-ante (on the basis of an expert knowledge)

and the second is to construct the extreme values through real data. If possible it is

better to use the first method to avoid problems rising from the presence of outliers.

In the framework of this paper, however, this choice is not crucial.

The main issue is to determine the direction (a vector with norm equal to one)

u on which the different values xi ∈ Rk and i = {1, . . . , n}, are projected and so

reduced to a single value. In this case:

u = xmax − xmin

‖ xmax − xmin ‖ , (1)

that is the “worst-best” direction. In order to consider the point xmin as the origin of

the axis, each vector xi is transformed into x̃i in the following way:

x̃i = xi − xmin. (2)

The projection of the vector x̃i on the vector u is the vector:

x∗
i = u · < x̃i , u >

‖ u ‖ = u· < x̃i , u >, (3)

where < ·, · > is the scalar product. The real number < x̃i , u > is the synthetic

univariate indicator used in the ordering procedure.

It is important to highlight that the k variables are considered with the same

weight and so each one should have the same importance in the performance of the

final score, that is considering a vector of weights p ∈ Rk with equal components.

The decision maker, depending on her tasks, can also consider the case in which

the vector of weights has different components according to the importance to be

assigned to each variable.

This approach, however, does not consider an important feature that is often

present in real data: the problem of data given in different scales. As a result, the

parameter with a large rv is overweighted in the final ranking, with respect to the pa-

rameter with a low rv [RS06]. A very simple way to confirm this feature is to com-

pute the correlation between the single variables and the final score derived from

them. In this case, the correlation is proportional to the range of variation of each

variable [RS05] and as a consequence, a vector of weights p∗ is used that is different

from the desired one that is p.

The previous undesired effect of different ranges of variation, even with homo-

geneous variability (for instance as a result of standardization), is absolutely not

statistically justifiable.

In the next section we propose a possible solution to this problem.
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3 The Problem of the Range of Variation

On the basis of the previous analysis it is evident that, without an appropriate trans-

formation of variables, the interpretation of results is strongly influenced. In order

to solve this problem, we propose a normalizing transformation of the data before

applying the ordering procedure defined by (1) (2) and (3).

In our case it is enough to use [Del95]3:

x̂i =
xi − xmin

i

xmax
i − xmin

i

. (4)

This normalization has two important consequences: the rv of parameters be-

comes the same for all data [0, 1] and the direction u has a fixed slope (in the two

dimensional case, it is exactly the diagonal of the [0, 1] × [0, 1] box).

Through this transformation we show that the real weights used in the computa-

tion (p∗) are exactly the desired ones (p). In fact, in the following theorem we show

that, in order to obtain results in which the vector p∗ = p, the slope of the direction

u must be fixed and the angle formed with the k axis must be constant.

Theorem 1. Let p∗ ∈ Rk be the vector used in the computation of the projections

and p ∈ Rk the vector of weights with equal components. Thus:

p∗ = p ⇐⇒ the angle αi formed by u and the axis i ∈ {1, . . . , k} is constant.

Proof. We recall that the ordering procedure is based on the projection of a vector

in the direction u, that is considering the scalar product < x̂i , u >. So, in this case,

the vector p∗ = u. As a consequence, in order to prove the theorem, it is enough

to show that u = p, that is ui = u j , ∀i, j ∈ {1, . . . , k}. Let us consider the vector

ei = (0, . . . , 1, . . . , 0) ∈ Rk for i ∈ {1, . . . , k}, the vector in the canonical basis of

Rn . It is clear that < ei , u >= ui =‖ u ‖ · ‖ ei ‖ cos αi = cos αi . Thus ui = u j

for i, j ∈ {1, . . . , k} ⇐⇒ αi = α j .

Theorem 1 shows that, in order to have parameters with the same weight, it is nec-

essary to apply the procedure of normalization proposed in this paper. In fact, in this

case, the slope of u is fixed and the angle formed with the axis is constant. It is pos-

sible with this approach to consider also the case in which parameters do not have

the same importance and so the weights are not constant. In this case, it is enough

to multiply each component of the vector u with the corresponding weight in the

vector p. In general, if the angle formed by the vector u and the axes i ∈ {1, . . . , k}
decreases, then the importance of that weight increases since the function cos x is

decreasing for x ∈ [0, π].

3 Certainly this is not the only available normalizing procedure, but others do not modify the

conclusions on the negative effect of the different rv of the variable to synthetize. The main

problem is the need to homogenize, in a suitable way, data before they are calculated.
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The problem of variables with different rv has an important application in the

case of financial data. In fact, in order to evaluate different assets, financial agents

have to carry out multidimensional ordering of data with parameters in very different

scales, and the results can be strictly influenced by this circumstance.

In the next section we will present an application of such a problem to financial

markets in order to avoid undesired effects in the evaluation process for decision

makers.

4 Application to Financial Markets

In this section we present an application of this procedure to decision making in

financial markets in the case in which, for example, the investor makes a decision

taking into account two different financial indicators for each asset: CAP (in billions

of euros) and EPS (in euros). Let us suppose that the decision maker gives each

variable the same importance.

Considering data from the Italian Stock Market, in particular from S&PMIB, we

consider 38 assets and data are updated to october 2006 (see Table 1).

Each asset is represented by a vector in a two dimensional space. In Fig. 1a, we

present the cloud of data, on the x axis we have the EPS value and on the y axis the

Table 1. Assets from S&PMIB Italian Stock Market.

Asset EPS CAP Asset EPS CAP

Aem 0.17 3.86 Italcementi 1.70 3.54

Autogrill 0.67 3.21 Lottomatica 1.31 4.47

Alleanza Ass. 0.53 7.81 Luxottica 1.13 10.65

Autostrade 1.26 13.39 Mediobanca 0.97 14.00

Alitalia 0.05 1.13 Mediolanum 0.36 4.24

Bca Intesa 0.44 31.19 Mondadori Ed. 0.51 1.89

Bca MPS 0.35 11.75 Mediaset 0.61 10.01

Bca PopIta 0.52 6.56 Pirelli 0.07 3.55

Bce Pop Ve/No 1.96 8.22 Seat PG 0.03 3.20

Bulgari 0.52 3.01 Parmalat 0.11 4.64

Capitalia 0.52 16.92 Bca PopMi 0.85 4.31

Enel 0.48 44.47 Ras Hold. 1.42 14.46

Eni 2.70 93.65 SanPaolo Imi 1.22 26.57

Gr. Ed. L’Espr 0.25 1.75 Saipem 1.05 7.60

Fiat 1.02 13.65 Snam ReteGas 0.24 7.47

Finmeccanica 1.25 7.51 Stmicroelettr. 0.84 12.50

Fondiaria SAI 2.90 4.64 Telecom 0.18 29.88

Fastweb 0.55 2.85 Terna 0.15 4.59

Generali 2.14 37.75 Unicredito 0.55 68.36
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Fig. 1. In a, data are plotted in the original scale and it is evident how the parameter CAP is

the most relevant. In b, due to the normalization procedure, the two variables are now in the

same rv and as a consequence they have the same importance.

CAP. The rv is very different for the two parameters, in particular for EPS rv = 2.85

while for CAP rv = 92.52. The points xmax and xmin are obtained considering the

maximum and minimum values of the coordinates in the data set respectively and so

xmax = (2.9, 93.65) and xmin = (0.05, 1.13).

We apply the technique described in the previous section by (1), (2), and (3) to

this data set calculating the projections on the vector u and considering the values

in this direction for the ordering procedure. Since the vector p has equal weights, it

is not necessary to modify the vector u, on the other hand, in the case in which the

decision maker uses different weights for the variables, it is enough to multiply each

component of the vector u with the corresponding weight.
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Table 2. We present the two ordering procedures. Rank1 is the ranking obtained using data in

original scale and Rank2 in the case of normalized data. The most relevant differences have

been underlined in bold type.

Assets Rank1 Rank2 Assets Rank1 Rank2

Aem 29 34 Gr. Ed. L’Espr. 37 32

Alitalia 38 38 Italcementi 30 9

Alleanza Ass. 18 23 Lottomatica 26 13

Autogrill 32 24 Luxottica 15 12

Autostrade 12 10 Mediaset 16 22

Bca Intesa 5 15 Mediobanca 10 16

Bca MPS 14 26 Mediolanum 28 30

Bca PopIta 22 25 Mondadori Ed. 36 29

Bca PopMi 27 21 Parmalat 24 35

Bce Pop Ve/No 17 5 Pirelli 31 36

Bulgari 34 28 Ras Hold. 9 7

Capitalia 8 20 Saipem 19 17

Enel 3 8 SanPaolo Imi 7 6

Eni 1 1 Seat PG 33 37

Fastweb 35 27 Snam ReteGas 21 31

Fiat 11 14 Stmicroelettr. 13 18

Finmeccanica 20 11 Telecom 6 19

Fondiaria SAI 23 3 Terna 25 33

Generali 4 2 Unicredito 2 4

In order to show how the ordering procedure is influenced by the rv in the original

data, we apply the modified ordering procedure proposed in this paper. In particular,

we now consider the preventive normalization (4) to homogenize data preserving the

original structure.

As shown in Fig. 1b, the data cloud has been considerably affected by the nor-

malization procedure. As a result, the two variables are now in the same rv and, as a

consequence of Theorem 1, it holds that p∗ = p.

In Table 2 we present the ordering procedure obtained through original data

(Rank1) and through normalized data (Rank2).

The results obtained show the importance of considering variables in the same rv

very clearly. The ordering procedure produces very different results in particular for

assets that have bad performance in CAP, that is the overweighted variable.

In the case of data in the original scale, in this simulation, the vector p∗ used in

the ordering procedure is very different from the desired one, in fact if we calculate

the slope of the vector u in the case of data in the original scale we have α1 = 88o

and α2 = 2o and so p∗ = (0.03, 0.97). As a result, the variable CAP has a weight of

about 97% with respect to the other variable. Instead, in our procedure α1 = α2 =
45o and so p∗ = p.
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Let us consider, for instance, the case of the asset called Fondiaria SAI, whose

EPS is equal to 2.9 (the maximum value) but its CAP is 4.6 (low). In the ordering

procedure with original data, its ranking is very bad (position 23). On the other hand,

applying the procedure proposed in this paper, the problem is resolved and the asset

Fondiaria SAI rises to position 3. In this example, there are many other assets which

are considerably affected by this feature. See for instance assets Bce Pop Ve/No,

Enel, Italcementi, Finmeccanica, Bca Intesa, Mondadori Ed. and Snam ReteGas.

One possible way to quantify this feature is considering the Spearman cogradu-

ation coefficient calculated on the two rankings. In this case, the result is ρ = 0.714

and it confirms how, at least for some assets, the differences in the two rankings are

considerable.

5 Conclusions

In this paper we have proposed a procedure for resolving the problem of defining

complete ordering on multidimensional Euclidean spaces. In particular, we consider

an ordering procedure in which data are projected in a “meaningful direction” in

order to switch from a multidimensional problem to an unidimensional one. We have

proposed a procedure in which results are not dependent on the scale of the data

set considered. We show that if data are obtained considering variables in different

scales, this can lead to results in which the rv of data affects the ordering procedure.

In particular, data with a large rv are “overweighted” with respect to data with a small

one. To resolve this problem we have proposed a normalizing procedure for the data

before applying the ordering procedure. As a result, the rv of parameters is the same

for all data, so the direction in which the projections are performed has a fixed slope.

We consider a real application of our proposal to decision making in financial

markets in the case in which the investor makes a decision taking into due account

two different financial indicators for each asset: CAP (in billions of euros) and EPS

(in euros). The results show the importance of using the procedure proposed in this

paper in order to obtain results that are consistent with the decision maker’s tasks.
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A Biometric Risks Analysis in Long Term

Care Insurance

Susanna Levantesi and Massimiliano Menzietti

Summary. This paper deals with problem of analyzing uncertainty arising from both mor-

tality and disability risks in Long Term Care (LTC) covers. To this purpose some projected

demographical scenarios are developed. A biometric risks analysis is performed at portfolio

level according to both loss function and risk reserve. The probabilistic structure adopted is

consistent with multiple state models, based on a time-continuous Markov chain.

Key words: Long Term Care Covers; Biometric risks; Demographical trends; Loss function;

Risk reserve.

1 Introduction

The purpose of LTC insurance is to offer protection against costs arising from future

deterioration in health. The most critical issues in defining LTC risk come from lack

of reliable experience data, uncertainty about future trends in mortality and disability

amongst the elderly, adverse selection and moral hazard.

This paper aims to analyze biometric risks deriving from disability and lifetime

duration. It is structured as follows. In Section 2, a multiple state model for LTC

covers is defined. Section 3 deals with the estimate of transition intensities necessary

for pricing and reserving, while Section 4 deals with the construction of a set of

projected demographical scenarios. Insurance benefits, premiums and reserves are

described in Section 5, while a biometric risk analysis according to loss function and

risk reserve is described in Section 6. Finally, some results are reported and discussed

in Section 7 as well as some concluding remarks.

2 Multiple State Model

LTC insurance is usually modelled according to a multiple state model (an extensive

description of such models can be found in [HP99]).

Let S(t) represent the random state occupied by the insured at time t , for any

t ≥ 0, where t represents the policy duration and 0 is the time of entry. The possible

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance

c© Springer 2008, Milan
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Fig. 1. A multiple state model for LTC insurance with one level of disability.

realizations of S(t) are: 1 = “active” (or healthy), 2 = “LTC disabled”, 3 = “dead”.

Note that only one level of disability is considered.

We assume S(0) = 1. Moreover, because of the usually chronic character of

disability, the possibility of recovery from the LTC state is disregarded; therefore

transition 2 → 1 is ignored.

The graph in Fig. 1 illustrates the states occupied by the policyholder in a time

instant and the possible direct transitions between states.

Let us assume that the stochastic process {S(t); t ≥ 0} is a time-continuous, time

inhomogeneous, three state Markov chain.

Let us define transition probabilities:

Pi j (t, u) = Pr {S(u) = j |S(t) = i } 0 ≤ t ≤ u, i, j ∈ {1, 2, 3} , (1)

and transition intensities:

µi j (t) = lim
u→t

Pi j (t, u)

u − t
t ≥ 0, i, j ∈ {1, 2, 3} , i �= j . (2)

According to the model depicted in Fig. 1, the following transition probabilities are

used in premium and reserve calculation:

P11(t, u) = exp

⎛
⎝-

u∫

t

µ12(s) + µ13(s) ds

⎞
⎠ (3)

P22(t, u) = exp

⎛
⎝-

u∫

t

µ23(s) ds

⎞
⎠ (4)

P12(t, u) =
u∫

t

P11(t, s) · µ12(s) · P22(s, u) ds (5)

P13(t, u) =
u∫

t

P11(t, s) ·µ13(s) + P12(t, s) · µ23(s)ds (6)

P23(t, u) =
u∫

t

P22(t, s) · µ23(s)ds . (7)
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3 Estimation of Transition Intensities

In Italy, LTC covers are recent products and insurance experience data about LTC

claims are still inadequate for pricing and reserving, hence population data collected

from Italian national source represent, at that moment, the best available data. Ital-

ian Life-Table (SIM 1999) and statistical data about people reporting disability (see

[Ist00]) have been used in numerical implementation.

Probabilities P11(t, u), P12(t, u) and P13(t, u) have been calculated for each in-

teger (t, u) starting from ISTAT data. Regarding LTC disabled mortality, we assume

that it is related to active mortality (since specific data are lacking, such hypothesis

seems quite reasonable):

P23(t, t + 1) = k(t) · P13(t, t + 1) , (8)

where the time-dependent factor values, k(t), come from experience data from an

important reinsurance company.

Let us consider x = 50 as age at policy issue. Results show that actives’ mortality

can be well approximated by the Weibull law, while transition intensitiesµ12(t) show

an exponential behaviour suggesting the use of the Gompertz law:

µ13(t) = β

α

(
x + t

α

)β−1

α, β > 0 , (9)

µ12(t) = η · eλ(x+t) η, λ > 0 , (10)

µ23(t) is expressed in terms of µ13(t) according to the time-dependent coefficient

K (t), well approximated by the function exp(c0 + c1t + c2t2):

µ23(t) = K (t)µ13(t) . (11)

4 Demographic Scenarios

When LTC annuity benefits are concerned, a key point in actuarial evaluations is

to measure the risk coming from the uncertainty in disability duration, i.e. the time

spent in LTC disabled state. To this purpose, it is necessary to make some assump-

tions about the link between mortality and disability. As regards to such link, three

main theories have been formulated: pandemic, equilibrium and compression theory

(for an overall review see [OP01]).

The uncertainty in future mortality and disability of the elderly suggests the need

to adopt different projected scenarios in benefit evaluation. Therefore, some reliable

scenarios have been defined according to these theories, including projection of both

mortality and disability. Such method of defining demographical scenarios has been

performed by Ferri and Olivieri [FO00].

Let us define the time expected to be spent in state j for a person in state i at

time t :

ēi j (t) =
∞∫

t

Pi j (t, u)du . (12)
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Table 1. Life expectancies at age 65.

Si p(Si ) e
Si

11
(0) e

Si

12
(0) e

Si

22
(0)

ē
Si
11(0)

ē
Si
1. (0)

ē
Si
11(0)

ē
SB
11 (0)

− 1
ē

Si
12(0)

ē
SB
12 (0)

− 1
ē

Si
1. (0)

ē
SB
1. (0)

− 1

SB − 14.6746 1.4253 5.8155 91.15% − − −
S1a 4% 17.0550 1.3247 7.1766 92.79% 16.22% −7.06% 14.16%

S1b 12% 15.9807 1.7599 7.1766 90.08% 8.90% 23.48% 10.19%

S1c 4% 15.0898 2.1151 7.1766 87.71% 2.83% 48.40% 6.86%

S2a 12% 17.7646 1.5553 8.1609 91.95% 21.06% 9.12% 20.00%

S2b 36% 16.5839 2.0560 8.1609 88.97% 13.01% 44.25% 15.78%

S2c 12% 15.6143 2.4618 8.1609 86.38% 6.40% 72.72% 12.27%

S3a 4% 18.4757 1.8270 9.2701 91.00% 25.90% 28.19% 26.11%

S3b 12% 17.1808 2.4022 9.2701 87.73% 17.08% 68.54% 21.63%

S3c 4% 16.1282 2.8651 9.2701 84.92% 9.91% 101.02% 17.97%

In order to evaluate the time spent in state 1 and 2 we calculate ē11(t), ē12(t) and

ē22(t). Since only one cohort of policyholders with same age at policy issue and

same year of entry has been considered, the calendar year has been omitted in the life

expectancy notation. Note that total life expectancy for a healthy person is expressed

as: ē1.(t) = ē11(t)+ ē12(t).

The theories mentioned above can be expressed in terms of life expectancies:

• Compression: ē1.(t) rises with time increase with a major contribution (in relative

terms) from ē11(t).

• Equilibrium: both ē11(t) and ē12(t) rise with time increase, at similar rates.

• Pandemic: ē1.(t) rises with time increase, with a major contribution (in relative

terms) from ē12(t).

The basic scenario, SB , defined according to ISTAT data, has been considered as a

starting point to construct projected scenarios. Projected mortality has been devel-

oped according to ISTAT projections (low, main and high hypothesis, see [Ist02]),

where total life expectancy increases anyhow. In order to represent compression,

equilibriumand pandemic theories, three different sets of parameters for µ12(t) have

been defined starting from the basic scenario. Combining mortality and disability

projections, nine scenarios have been obtained (see Table 1).

Risk analysis is performed in terms of both scenario and stochastic approach.

This latter approach considers each scenario, Si , as a possible result, according to a

given probability, p(Si ).

5 Benefits, Premiums, and Reserve

Because LTC covers are frequently offered as complementary with life insurance,

we consider an insurance policy which provides the following benefits:

1. A deferred annuity paid at an annual rate b1(t), when the insured is healthy.
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2. A deferred enhanced annuity paid at an annual rate b2(t) > b1(t), when the

insured is LTC disabled.

3. A lump sum benefit c3(t), if death occurs before the deferment period.

All benefits are supposed to be constant with time. Let n be the deferment period,

the actuarial value at time 0 of these benefits, !(0, ω) is given by the following:

!(0, ω) = b1 · P11(0, n)vna11(n, ω)+ b2[P11(0, n)a12(n, ω)

+P12(0, n)a22(n, ω)]v
n + c3[A113(0, n)+ A123(0, n)] ,

(13)

where: ai j (t, u) =
u−t−1∑

s=t
Pi j (t, s) · vs−t ∀i, j ∈ 1, 2,

and Ai jk (t, u) =
u−t−1∑

s=t
Pi j (t, s) · Pjk (s, s + 1) · vs+1−t ∀i, j ∈ 1, 2 and k = 3.

Reserve for active lives is defined as:

V1(t) =
{
!(t, ω)− π · a11(t, n) t < n

b1a11(t, ω) + b2a12(t, ω) t ≥ n ,
(14)

where π = !(0,ω)
a11(0,n)

represents the annual constant premium, paid if the insured is

active. Reserve for LTC disabled is given by:

V2(t) =
{

b2 · P22(t, n)vn−t a22(n, ω)+ c3 A223(t, n) t < n

b2 · a22(t, ω) t ≥ n .
(15)

Let α, β and γ be the premium loading for acquisition, premium earned and general

expenses, respectively. Gross premium is defined as:

πT = π

1 − α
a11(0,n)

− β − γ a11(0,ω)+a12(0,ω)
a11(0,n)

. (16)

6 Risk Analysis

In order to analyze risk arising from uncertainty in mortality and disability trends,

we firstly consider the loss function at portfolio level, L(t), defined as the difference

between the random present value of future benefits, Y (t), and the random present

value of future premiums, X (t).

Let IE be the event E indicator; Y (t) at time t = 0, 1, 2, . . . is given by:

Y (t) =
N(t)∑

j=1

⎡
⎣

n∑

h=t+1

vh−tc3 I{S j(h)=3} +
ω∑

h=n

vh−t
(

b1 I{S j(h)=1} + b2 I{S j(h)=2}
)
⎤
⎦ ,

(17)

where N (t) is the number of contracts in force at time t and S j(h) the state occupied

by the j -th policy at time h. X (t) at time t is:

X (t) =
N(t)∑

j=1

n∑

h=t

vh−tπ I{S j(h)=1} . (18)
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As risk measure at time t , we take into account the following risk index:

r(t) =
√

V ar[L(t)]

E[Y (t)]
. (19)

Now, as alternative risk measure we consider the risk reserve which involves ex-

penses, investment, and capital provision. According to a well known formula of

risk theory (see [DPP94]), the risk reserve at the end of year t is defined as:

U (t) = U (t − 1) + PT (t)+ J (t)− E (t)− B (t)−�V (t)+ K (t) , (20)

where PT (t) is the gross premiums income, J (t) the investment returns on assets,

E (t) the expenses, B(t) the outcome for benefits, �V (t) the increment in reserve

and K (t) the capital flows.

7 Portfolio Simulation Results

Let us consider one cohort of policyholders with the same age at policy issue, x = 50,

same year of entry (time 0), same benefit amounts and same risk class. Let us assume:

n = 15; ω = 60; b1 = 100; b2 = 200; c3 = 1000; α = 60%; β = 2%; γ = 8%.

In order to perform a biometric risks analysis, a deterministic financial structure is

adopted with i=3%.

In Table 2,
√

V ar [L(t)], E[Y (t)] and r(t) values at time 0 under both scenario

and stochastic approach are shown for the insurance policy designed. Risk analysis

is also performed for each single benefit considered according to scenario approach

(see Table 3).

Under scenario approach, results show high values of r(0) for term life insurance

and LTC, compared with life annuity. Note that “full” policy riskiness is less than its

components. Furthermore, the risk of mortality random fluctuations can be greatly

lowered by increasing the portfolio size for the diversification effect. On the other

hand, under stochastic approach, r(0) decreases more slowly compared to scenario

approach since the model incorporates the risk of systematic deviations.

Table 2. Results for the “full” policy.

Scenario approach Stochastic approach

N (0) E [Y (0)]
√

V ar[L(0)] r(0) E [Y (0)]
√

V ar[L(0)] r(0)

100 96, 955 3, 852 0.0397 97, 000 4, 689 0.0483

200 193, 905 5, 480 0.0282 194, 020 7, 510 0.0387

500 484, 758 8, 676 0.0179 484, 852 15, 948 0.0329

1000 969, 507 12, 000 0.0124 969, 228 28, 941 0.0298

5000 4, 847, 577 27, 458 0.0057 4, 847, 024 137, 033 0.0283
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Table 3. r(0) for each policy component - Scenario approach.

Life annuity LTC annuity Term life

N (0) b1 = b2; c3 = 0 b1 = c3 = 0 b1 = b2 = 0

100 0.0441 0.1956 0.3634

200 0.0308 0.1389 0.2547

500 0.0192 0.0880 0.1592

1000 0.0135 0.0605 0.1100

5000 0.0057 0.0275 0.0519

The risk analysis according to risk reserve is performed for stochastic approach

assuming that K (0) = 0 and U (0) = 0. Premiums are calculated according to cen-

tral scenario; if real scenario is different from the central one, we assume that the

insurance company adjusts reserves with a 5 year delay.

If we introduce a safety loading on demographical bases (a 10% reduction of

death probabilities, πT =106.53), risk reserve translates towards the top, reducing

portfolio riskiness (see Fig. 3).

Simulation results are reported in terms of ratio between risk reserve and re-

serve. Fig. 2 (left) shows results for a portfolio of 1,000 insureds, assuming no safety

Fig. 2. U(t)/V (t) for 1,000 and 10,000 insured, respectively.

Fig. 3. U(t)/V (t) for 1,000 insured (with safety loading).
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loading (πT =102.59): only three branches of trajectories instead of nine (i.e. the sce-

narios considered) are observable due to the strong weight of mortality with respect

to disability. By increasing the number of insured, the risk of random fluctuations

decreases (it is a pooling risk), while systematic deviations risk remains unchanged

(it is a non-pooling risk) (see Fig. 2 (right)). Our analysis shows high systematic

deviations risk in LTC cover, that can be partially reduced by combining LTC with

other insurance covers and including a safety loading. Nonetheless, in order to assure

solvency requirements, the insurance company should involve reinsurance strategies

and appropriate capital flows policy. These arguments will be the subject of future

works together with a financial risk analysis, assuming an ongoing concern approach.
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Clustering Financial Data for Mutual Fund

Management

Francesco Lisi and Marco Corazza

Summary. In this paper, an analysis of the performances of an active and quantitative fund

management strategy is presented. The strategy consists of working with a portfolio consti-

tuted by 30 equally-weighted stock assets selected from a basket of 397 stock assets belonging

to the Euro area. The asset allocation is performed in two phases: in the first phase, the 397

stock assets are split into 5 groups; in the second, 6 stock assets are selected from each of the

group. The analysis focuses: i) on the specification of quantitative approaches able to effect the

group formation; ii) on the definition of a profitable active and quantitative fund management

strategy; iii) on the quantitative investigation of the contribution individually provided by each

of the two phases to the total profitability of the fund management strategy.

Key words: Mutual fund management; Euro stoxx 50 index; Relative strength index; Cluster

analysis; Autocorrelation structure; GARCH models.

J.E.L. classification number: G11, C14.

M.S. classification number: 91B28, 91C20, 62M10.

1 Introduction

A mutual fund can be thought of as a kind of collective cash in which the savings of

a plurality of investors come together so that they are profitably invested in suitable

assets by an ad hoc established and regulated company.

The Italian-law mutual funds are required to quote a parameter, called bench-

mark, which indicates their risk-expected return profile. Usually, the benchmark is

given by a financial index. The comparison between the performances of a fund and

the performances of the related benchmark is a way of evaluating the fund manage-

ment.

In general, it is possible to classify fund management styles in (at least) two

ways: active versus passive management, and discretionary versus quantitative man-

agement. One speaks of active/passive management when the target of the fund man-

ager consists in exceeding/replicating the performances of the chosen benchmark. In

both these cases, the dynamic asset allocation process can be performed by resort-

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance

c© Springer 2008, Milan
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ing to the expertise of human managers (i.e. to the discretionary management), or to

quantitative methodologies (i.e. to the quantitative management).

In this paper, an analysis of the performances of an active and quantitative fund

management strategy is presented. The strategy starts from the practice, followed

by an Italian financial advice company, of working with a portfolio constituted by

30 equally-weighted stock assets selected from a basket of 397 traded in financial

markets of the Euro area.

The asset allocation is performed in two phases: first, the 397 stock assets are

split into 5 groups; then, from each group, 6 stock assets are selected.

Initially, group formation was carried out by a discretionary-based approach in

order to obtain homogeneous groups. In particular, this grouping was performed on

the basis of the belonging of stock assets to various economic sectors and on the basis

of the related growth prospects. The group formation is updated every six months.

The stock asset selection from each of the 5 groups is based on a variant of a well

known tool of technical analysis, called relative strength, given by

RSi,t = P∗
i,t

/
I ∗
t , i = 1, . . . , 397, t = 1, . . . , T,

where T is the number of the considered time periods, P∗
i,t = 100(Pi,t /Pi,0), with

Pi,t price of the i-th stock asset at time t , and I ∗
t = 100(It/I0), with It value of the

chosen benchmark at time t (in this case It is the Euro stoxx 50 financial index).

At first, the stock assets within each group are sorted in decreasing order with respect

to the value of the so-called relative strength index (RSI), given by

RS I j,t = M M
j
S,t

/
M M

j
L ,t , j = 1, . . . , Ng, g = 1, . . . , 5,

where Ng is the number of stock assets belonging to the g-th group, M M
j
S,t =

∑KS−1
s=0 RS j,t−s/KS and M M

j
L ,t =

∑KL−1
l=0 RS j,t−l/KL are, respectively, the

“short” and the “long” moving average of RS j,t , with KS < KB (see, for details,

[K05]).

Then, from each of the so-ordered groups, the first 6 stock assets are selected.

The purpose of this stock asset selection procedure is typical of the techni-

cal analysis, and consists of detecting those stock assets whose prices are recently

quickly increased with respect to the chosen benchmark.

The ordering of one of the six groups, and consequently the portfolio composi-

tion, is updated every week.

Within this operative framework, the analysis focuses:

• On the specification of approaches able to effect the group formation in a quan-

titative way instead of in a discretionary one.

• On the definition of an active and quantitative fund management strategy whose

performance are, on average, better than the ones of the chosen benchmark.

• On the quantitative investigation of the contribution individually provided by the

grouping phase and by the stock asset selection phases to the total profitability of

the fund management strategy.
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2 Clustering Financial Data

In order to reduce the subjectivity in the grouping phase, the discretionary-based ap-

proach is replaced with a quantitative one based on cluster analysis (see, for instance,

[M79]).

It is well known that cluster analysis aims to classify N statistical units, with

respect to P variables, in a small number of groups called clusters. In particular, the

clustering is carried out in such a way as to guarantee the highest “similarity” within

groups and the highest “dissimilarity” between groups.

The cluster analysis starts by considering the so-called data matrix X = [xi, j ],

with i = 1, . . . , N and j = 1, . . . , P, where xi, j is the value assumed by the j -

th variable for the i-th statistical unit. So, the data matrix contains all the relevant

information necessary for clustering.

In order to measure the similarity/dissimilarity between statistical units, a simi-

larity/dissimilarity measure is utilized. Usually, this is specified by a distance func-

tion d (·, ·): M2 → R+, whereM is the space of the modalities. This function allows

the determination of the so-called distance matrix D = [di, j ], with i, j = 1, . . . , N ,

where di, j is the distance between the i-th statistical unit and the j -th one.

Clustering algorithms applicable to matrix D can be of various kinds. In this

paper the Ward’s iterative aggregation method is utilized. In short, this method ag-

gregates at each iteration, those two clusters, among the existing ones, in correspon-

dence of which the increase of the deviance of the cluster in making is minimized

(see, for more details, [H01]).

Of course, in applying cluster analysis, the choices of the variables and the dis-

tance function are critical. In this paper, three variable/distance function proposals

are taken into account.

The first proposal follows the approach suggested in [G00]. It considers the pat-

terns of stock asset returns. In particular, it starts by considering the data matrix

X =
[
ri,t

]
, i = 1, . . . , 397, t = 1, . . . , T,

where ri,t is the logarithmic return of the i-th stock asset at time t . As far as d(·, ·)
concerns, the Euclidean metric is considered.

The second proposal focuses on the autocorrelation structures of the time series

of both stock asset returns and of their squares. The related data matrix is given by

X =
[
ρk(r i ) | φk(r i ) | ρk(r

2
i ) | φk(r

2
i )

]
, i = 1, . . . , 397, k = 1, . . . , 15,

where r i is the time series of the i-th stock asset returns, and ρk(·) and φk(·) are,

respectively, the global and the partial autocorrelation functions at lag k. Again, the

Euclidean metric is considered.

The third proposal refers to the volatility of the stock asset returns, and groups are

formed with respect to models describing the dynamics of the volatilities themselves.

In particular, for each time series r i , with i = 1, . . . , 397, a GARCH(1, 1) model

is fitted under the assumption that the related conditional volatility, i.e. σ 2
i,t , can be
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described as σ 2
i,t = ωi +αir

2
i,t−1+βiσ

2
i,t−1 (see [B86] for details). After these models

are fitted, the distance matrix D can be obtained – referring to parameters αi and βi –

by considering the distance di, j between GARCH models proposed in [O04], which

is, in its turn, a generalization of the metric for ARMA models proposed in [P90],

di, j =

√√√√
+∞∑

l=0

(
αiβ

l
i − α jβ

l
j

)2

= · · · =

=

√√√√ α2
i

1 − β2
i

+
α2

j

1 − β2
j

+ 2αiα j

1 − βiβ j
, i, j = 1, . . . , 397.

3 Applications

In this section, the three proposed strategies for fund management are applied and

compared, with a benchmark and with some randomized strategies.

To this end, the daily close prices of 397 stock assets belonging to markets of

the Euro area are considered from January 2002 to June 2005. The financial markets

involved are Austrian, Belgian, Dutch, Finnish, French, German, Italian, Portuguese

and Spanish. The stock assets belonging to the basket are those characterized in the

30 days before the basket formation by a mean trading volume of, at least, 1,500,000

Euro.

The performances of all the considered strategies and of the benchmark are eval-

uated out-of-sample along three semesters in succession (January 2004 to June 2004;

July 2004 to December 2004; January 2005 to June 2005). Moreover, the data related

to the previous 24 months of each semester are used to make the in-sample setting of

the strategies themselves.

As far as the measurement of performances is concerned, the following quantities

are taken into account: two profitability indicators, i.e. the period geometric return

(PGR) and the mean quarterly geometric return (M QGR), and two risk indicators,

i.e. the maximum percentage draw down (M P DD) and the mean pay-back time

(M P BT ).1 It is to note that the performances of all the considered strategies are

measured net of the costs of transaction, settlement, slippage etc. On the whole,

these costs are set equal to 0.3% of the invested capital.

As reference benchmark, a portfolio composed of the 397 considered stock as-

sets, all equally-weighted, is taken into account. This benchmark is preferred to the

Euro stoxx 50 index because during the period of interest, the former performed bet-

ter than the latter. Therefore, under the point of view of the comparison with the

results of the strategies, this choice is unfavorable for the investigation performed

1 In qualitative terms, the pay-back time indicates the length of time between the instant in

which a minimum of the profitability of a considered asset occurs, and the instant in which

the subsequent maximum of the same profitability occurs.
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Fig. 1. Out-of-sample behavior of PGR for strategies and benchmark.

here. Moreover, it is also to note that the performances of the chosen benchmark are

measured gross of the costs. So, this choice is once again unfavorable.

As first analysis, the three fund management strategies and the benchmark

are considered. In the grouping phase, these strategies utilize, respectively, the

proposal “patterns of returns/Euclidean metric” (S1), the proposal “autocorrela-

tion structures/Euclidean metric” (S2), and the proposal “GARCH volatility mod-

elling/distance between GARCH models” (S3). As far as the stock asset selection is

concerned, all the strategies use the RSI-based approach.

The best in-sample performance was achieved by strategy S3 in all the inves-

tigated periods. Fig. 1 shows, for all the strategies, the out-of-sample behaviors of

the related PGRs, which confirm the indications of the in-sample analysis. Table 1

shows that the values of the indicators PGR and M QGR related to the three strate-

gies are all greater than those of the benchmark (Mean). In particular:

• The values of both the indicators PGR and M QGR for strategy S3 are about

twice the corresponding indicators related to the benchmark.

• The more profitable strategy is S3, followed by S2, S1 and the benchmark.

With respect to the risk indicators, the value of the indicator M P DD related to

strategy S3 is the 37.55% greater than that of the corresponding indicator of the

benchmark, whereas the values of the indicators M P BT related to all strategies and

Table 1. Out-of-sample performance indicators.

Indicator Benchmark Strategy S1 Strategy S2 Strategy S3

P G R 39.33% 50.77% 81.54% 87.74%

M QG R 4.83% 6.13% 9.32% 9.47%

M P DD 8.07% 9.71% 11.03% 11.10%

M P BT 8.03 days 7.48 days 6.64 days 7.33 days
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Fig. 2. Out-of-sample behavior of the differences between the P G R of strategy S3 and the

P G R of strategy S R.

the benchmark are about the same. Synthetically, risk increases less proportionally

than return increases.

In the second analysis, the best of the previous strategies, i.e. S3, is considered

in order to determine the contribution provided by the grouping phase to the total

profitability of the strategy. To this end, strategy S3 is compared with a semi-random

strategy, named S R, in which the groups are determined completely at random. In-

stead, the selection phase is carried out for both the strategies by the same RSI-based

approach. Since strategies S3 and S R differ only in the group formation, and since

the random choice of the clusters is a way to “nullify” the effect of grouping, the

(possible) differences in the respective performances should be attributed only to the

way in which the clusters are determined. Moreover, in order to avoid any (possi-

ble) bias coming from the use of a single random grouping, the performances of

the strategy S R are determined as the mean performance coming from 100 random

clusterings.

Fig. 2 shows the out-of-sample behavior of the difference between the indicator

PGR related to strategy S3 and that related to the strategy S R. This difference is

almost always positive and has a maximum equal to 7.80%. In particular, its mean

value is equal to 2.20%, which can be considered the contribution to the total prof-

itability of the clustering phase of the “GARCH(1, 1) volatility modelling/distance

between GARCH models” approach.

Now, assuming the additivity of the contributions of each of the two phases to

the total profitability (in terms of PGR) of a fund management strategy, it is possi-

ble to determine the contribution provided by the stock asset selection phase by the

difference between the total profitability of the strategy itself and the contribution

of the grouping phase. Fig. 3 shows the out-of-sample behavior of this contribution.

Not surprisingly, this contribution (which coincides with the total profitability of the

strategy S R) is considerably greater than the contribution provided by the group for-

mation phase.
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Fig. 3. Out-of-sample behavior of indicators PRG.

An alternative way to look at the contribution provided by the stock asset se-

lection phase of strategy S3 consists of comparing it with a fully random strategy,

named S RR, in which both clustering and stock selection happen in a completely

random manner. The total profitability (in terms of PGR) of strategy S RR can be

considered as the “zero-level” of the performances.2 In fact, any positive but lower

than zero-level profitability has to be attributed only to the joint effect of chance

and of the market trend. Fig. 3 shows the out-of-sample behavior of the PGRs of

strategies S R and S RR, of the benchmark, and of the Euro stoxx 50 index. It shows:

• That strategy S R is more profitable than the other considered asset allocation

approaches.

• That the benchmark (Mean) performs better than strategy S RR, and that S RR

outperforms the Euro stoxx 50 index. This is likely to be due to a small-cap effect.

In fact, during the out-of-sample periods, small- and medium-capitalization firms

performed better than high-capitalization ones.

4 Concluding Remarks

In this paper some alternative strategies for mutual fund management are proposed,

compared among them, with a benchmark (Euro stoxx 50) and with some random-

ized stock asset selection procedures.

Results of these analyses (see Fig. 1 and Table 1) suggest that an active and

quantitative approach to fund management, instead of a passive and discretionary

ones, can systematically turn out profitable.

The results also suggest (see Fig. 3) that systematically choosing a financial in-

dex as benchmark could be misleading since its profitability may be positive only

2 Also the profitability of strategy S RR is determined as mean of the performances from 100

simulations.
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by chance. It leads to the proposal of using as benchmark, the best-performing one

chosen between a reference financial index and a fully-random strategy.
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Modeling Ultra-High-Frequency Data: The S&P 500

Index Future

Marco Minozzo and Silvia Centanni

Summary. In recent years, marked point processes have found a natural application in the

modeling of ultra-high-frequency financial data. The use of these processes does not require

the integration of the data which is usually needed by other modeling approaches. Two main

classes of marked point processes have so far been proposed to model financial data: the class

of the autoregressive conditional duration models of Engle and Russel and the broad class

of doubly stochastic Poisson processes with marks. In this paper, we show how to model an

ultra-high-frequency data set relative to the prices of the future on the S&P 500 index using a

particular class of doubly stochastic Poisson process. Our models allow a natural interpretation

of the underlying intensity in terms of news reaching the market and does not require the use

of ad hoc methods to treat the seasonalities. Filtering and estimation are carried out by Monte

Carlo expectation maximization and reversible jump Markov chain Monte Carlo algorithms.

Key words: Cox process; Marked point process; Monte Carlo expectation maximization; Re-

versible jump Markov chain Monte Carlo; Shot noise process; Tick by tick data.

1 Introduction

Recently, marked point processes (MPP) have found application in the modeling

of ultra-high-frequency (UHF) financial data. In UHF databases, for each market

event, such as a trade or a quote update by a market maker, the time at which it

took place, together with its characteristics, for instance, the price and volume of the

transaction, is recorded [GDD99]. Two main classes of models based on MPP have

so far been proposed for these data: the class of autoregressive conditional duration

(ACD) models [ER98] and the class based on doubly stochastic Poisson processes

(DSPP) with marks [RS00].

In this paper, we consider the modeling of an UHF data set relative to the prices of

the future on the Standard & Poor’s 500 (S&P 500) stock price index (SPU01) using

a class of marked DSPP in which the stochastic part of the intensity process has a shot

noise form [CI80]. In particular, we consider an intensity process, which is a given

function of a non-explosive MPP, with positive jumps that we characterize through

the distribution of jump times and sizes [CM06a and CM06b]. Such an intensity

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance
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process naturally calls for an interpretation in terms of the effect of economic news

on the market.

The problem of measuring the impact of economic news on asset prices and

volatility has been widely studied in the literature. For example, Pearce and Roley

[PR85] using a daily data set of the S&P 500 index, find that stock prices react

to unexpected macroeconomic news. On the other hand, Andersen and Bollerslev

[AB98] use data obtained by sampling every 5 minutes to investigate the effect

of economic news on foreign exchange rates. These last authors clearly show that

macroeconomic news can be linked to periods of high volatility, although they find

that these news have little lasting effects. Very recently, Peters [P06] models the 2

minute frequency prices of the future on the S&P 500 index with a diffusion with

piecewise constant volatility and gives a procedure for estimating the times at which

the volatility changes. Even in this work, a link between economic news and prices

is exploited. These and other works, however, avoid the problem of modeling UHF

data, so loosing the information incorporated in the times of market events.

The paper is organized as follows. In Section 2 we introduce our modeling frame-

work, and in Section 3 we analyze an UHF data set on the prices of the future on the

S&P 500 index.

2 DSPP with Generalized Shot Noise Intensity

Let us denote with Ti and Z i , i = 1, 2, . . ., the times and sizes of the ith log return

change, that is, Z i = ln(STi /STi−1), where St is the price in t of the future on the S&P

500 index. Then, for a filtered probability space (�,F , P, {Ft}t∈[0,T ]), we assume

(Ti , Z i)i=0,1,2,... , with T0 = 0 and Z0 = 0, be an MPP, and in particular a marked

DSPP with intensity process δ (Fig. 1 shows a simulated partial realization of an MPP

(Ti , Z i)i=0,1,2,...). We will assume that δt = a(t)+ bλt , where a(·) is an integrable

R+-valued deterministic function, b is a non-negative parameter, and the process λ

t
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Fig. 1. The beginning of a typical trajectory of a marked point process (Ti , Zi )i=0,1,2..., with

T0 = 0 and Z0 = 0. In our context, Ti and Zi represent the times and sizes of the i th log

return change of the future on the S&P 500 index.
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Fig. 2. Simulated trajectory (top) of the price process St = S0 exp(
∑Nt

i=1 Zi ), with starting

value S0 = 100, time horizon T = 2400 and where Nt = #{i ∈ N : Ti ≤ t} (here the price

is assumed constant until the next event), obtained by conditioning to a simulated trajectory

of the intensity process λ (bottom), assuming a model in the basic class with ν = 1/150,

k = 0.003 and γ = 45.89, and a(t) = 0 and b = 1.

has the form

λt =
N ′

t∑

j=0

X j e−k(t−τ j ), (1)

where (τ j , X j) j=0,1,2,..., with τ0 = 0, is another MPP with X j > 0, and where

N ′
t = #{ j ∈ N : τ j ≤ t}. For this latter MPP, we also assume that the conditional

distributions p(τ j |τ1, . . . , τ j−1) and p(X j |τ1, . . . , τ j , X1, . . . , X j−1) admit density.

A particularly simple specification belonging to our modeling framework is given

by the basic class described by Centanni and Minozzo [CM06 and CM06b] in which

the log return Z i are assumed to be independently distributed and the parameters of

the process λ are the mean inter-arrival time ν and the mean size of market perturba-

tions 1/γ . Fig. 2 shows a simulated realization of the intensity and the price process

under a model in the basic class where a(t) = 0 and b = 1.

A more complicated model, always belonging to our modeling framework, is the

following variation of a model by Barndorff-Nielsen and Shephard [BS01] in which

the intensity process is given by λ in (1), and where

i) τ1 is exponentially distributed with mean δ1; (τ j − τ j−1), j = 2, 3, . . ., are

conditionally distributed, given X j−1, as exponentials with means δ/X j−1;

ii) (X0 −1) is Poisson distributed with mean η0; (X j −1), j = 1, 2, . . ., are Poisson

distributed with mean η;
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iii) (Ti )i∈N are the event times of a marked DSPP with intensity λ;

and

iv) (Z i )i∈N are conditionally independently distributed as Gaussians with mean

µ(Ti − Ti−1) + α
∫ Ti

Ti−1
λt dt , and variance σ 2.

With respect to other modeling approaches, our modeling framework has some

advantages as well as some other good features. First of all, data do not need to

be sampled at fixed frequency, indeed, the inter-arrival time between price changes

gives us important information that is accounted for in the model. Secondly, the

form assumed by the intensity process allows a natural interpretation of the stochas-

tic changes of the process λ in terms of market perturbations caused by the arrival

of relevant news [KLP04]. When the j th item of news reaches the market, a sudden

increase X j in trading activity occurs, depending on the importance of the item, fol-

lowed by a progressive normalization. The random variable τ j represents the time of

the arrival of the j th item of news, whereas the parameter k expresses the speed of

absorption of the effect of the news by the market. Another good feature of our mod-

eling approach is the possibility to account for intra-day seasonal patterns through

the specification of the model, without the need to resort to ‘ad hoc’ methods. In-

deed, the function a(·) can be interpreted as the activity that the market would have

in absence of random perturbations. By adequately choosing a(·), it is possible to

model many of the stylized features characterizing intra-day price data [GDD99].

As far as inference is concerned, for models belonging to our class, likelihood

inference on the parameters can be performed by Monte Carlo expectation maxi-

mization (MCEM) algorithms [FM03]. Assuming that the distribution of Z i , τ j , X j

depends on a parameter vector θ , and by identifying trajectories λT
0 with vectors

(N ′
T , τ ,X) = (N ′

T , τ0, . . . , τN ′
T
, X0, . . . , X N ′

T
), the full likelihood can be written as

f (Z,T, N,X, τ, N ′; θ)
= f (Z|T, N,X, τ, N ′; θ) P(TN+1 >T |T,X, τ, N ′; θ) f (T|X, τ, N ′; θ) f (X, τ, N ′; θ).

Then, if the guess for θ at the rth iteration (r = 1, 2, . . . , R) is θ r , the MCEM

algorithm proceeds as follows:

S step draw Sr samples (X, τ , N ′)(s), s = 1, . . . , Sr , from the conditional distribu-

tion p(X, τ , N ′|Z,T, N; θr );

E step Qr (θ , θr ) = 1

Sr

Sr∑

s=1

ln f (Z,T, N ,X(s), τ (s), N ′(s); θ);

M step take as the new guess θr+1 the value of θ which maximizes Qr (θ , θr ).

By specifying specific values for Sr , r = 1, 2, . . . , R, we get particular versions

of the algorithm. For Sr = 1 we have the stochastic EM (StEM) algorithm. This

algorithm does not converge pointwise and estimates are given by some summary

statistic. For Sr large, the algorithm behaves similarly to the (deterministic) EM al-

gorithm, whereas for Sr increasing with r, we have a simulated annealing MCEM.
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Fig. 3. Prices of the future on the S&P 500 index from the 23rd to the 27th of July 2001 (the

last five trading days out of the 15 considered in the analysis). Overall, there were 39,889 price

changes in the three weeks considered (time is expressed in seconds).

For many marked DSPP with generalized shot noise intensity, the almost sure con-

vergence of the (simulated annealing) MCEM can be derived from the results of Fort

and Moulines [FM03] for curved exponential families.

The implementation of this algorithm crucially relies on the existence of an ef-

ficient sampler for the stochastic step in which we need to sample from the condi-

tional distribution p(X, τ , N ′|Z,T, N; θr ). Let us note that such a sampler provides

a Monte Carlo solution to the filtering (smoothing) problem. Details on how to build

a sampler based on the reversible jump Markov chain Monte Carlo (RJMCMC) are

given in [CM06b]. A sampler similar in spirit to ours has been studied by [RPD04].

3 The S&P 500 Index Future Data Set

We considered all price changes (39,889) from the 9th to the 27th of July 2001 (15

trading days). In Fig. 3 we report the last five days of the period considered (time is

expressed in seconds). The market was open from 8.30 in the morning to 15.15 in

the afternoon. The data set showed successive log returns not to be autocorrelated

and also not correlated with the waiting times Ti −Ti−1 . Moreover, the time between

successive price changes showed to be exponentially distributed. To account for the

intra-day seasonality in the data, every one of the 15 days considered (each day

corresponds to 405 minutes, for a total time horizon of T = 6,075 minutes) has been

sliced into 27 subintervals (15 minutes long). The number of changes of the price of

the S&P 500 index future within each of the 15 minutes intervals has been calculated.

The circles in Fig. 4 show, for the 27 intra-day intervals, the minimum number of

changes of the price of the future (in the corresponding interval) over the 15 days.

The solid line, obtained from the least square fit (of a second order polynomial) by

subtracting a constant equal to 1.2, can be assumed to provide the deterministic part

of the intensity process accounting for the intra-day seasonality. Thus, to model the
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Fig. 4. Detrending of the intra-day seasonality in the S&P 500 future data set. Every one of the

15 days considered (each day corresponding to 405 minutes, for a total of T = 6,075 minutes)

has been sliced into 27 intervals (15 minutes long). The number of changes of the price of the

S&P 500 index future within each of the 15 minute intervals has been calculated. The circles

in the graph report, for the 27 intra-day intervals, the minimum number of changes of the

price (in the corresponding interval) over the 15 days. The dotted line is the least square fit of

a second order polynomial. The solid line is obtained from the least square fit by subtracting

a constant value equal to 1.2, and is used as a deterministic ‘offset’ for the intensity process.

data we consider an intensity of the form, for t ≥ 0, a0 + a1t + a2t2 + λt , where

a0 = 6.7226, a1 = −0.0306 and a2 = 0.0001. Let us note that the chosen shape

for the deterministic part of the intensity is standard in UHF data analysis (see, for

instance, Fig. 4 of Rydberg and Shephard [RS00]).

As usual in financial applications where it is reasonable to assume a partial in-

formation setting in which market agents are restricted to observe only the history of

the stock price, we assume that past times and sizes of price changes of the S&P 500

index future have been observed, but not the intensity process. Under the assump-

tions of the basic class, estimates of the parameters θ = (k, γ, ν) were obtained

by implementing a StEM algorithm as in Centanni and Minozzo [CM06b]. Fig. 5

shows a run of 450 steps of the StEM algorithm (each step involving 6,000 updates

of an RJMCMC). Only the 6,000th sampled intensity is used in E and M steps of

the StEM. This is also used as the initial intensity in the RJMCMC at the subsequent

step of the StEM. Initial values for the StEM algorithm are k = 0.001, γ = 25 and

ν = 0.1. Point estimates of k, γ and ν are provided by the sample means over the last

150 steps of the StEM algorithm, and give k̂ = 0.006, γ̂ = 2.875 and ν̂ = 0.050.

The filtering (smoothing) of the intensity was performed by running an RJM-

CMC algorithm assuming the above estimates as the true parameter values. The top

graph in Fig. 6 shows the smoothing expectation E(λt |Z,T, N), t = 0, 5, 10, 15,

. . . , T = 6,075. After a “burn in” period of 10,000, the RJMCMC algorithm was
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Fig. 5. Estimation of the parameter θ with the StEM algorithm for the S&P 500 future data set.

Monitoring of k (top), γ (middle) and ν (bottom), assuming a model in the basic class with a

deterministic seasonality for the intensity, for a run of 450 steps of the StEM algorithm (each

step involving 6,000 RJMCMC updates). Initial values for the StEM algorithm are k = 0.001,

γ = 25 and ν = 0.1. Point estimates of k, γ and ν are provided by the sample means over the

last 150 steps of the StEM algorithm and give k̂ = 0.006, γ̂ = 2.875 and ν̂ = 0.050.
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Fig. 6. The top graph shows the filtering expectation E(λt |Z,T, N), t = 0, 5, 10, 15, . . . , T =
6,075, (time is expressed in minutes) under the model described in the text, assuming the

parameter values: k = 0.006, γ = 2.875, ν = 0.050. After a “burn in” period of 10,000, the

RJMCMC algorithm was run for other 10,000 updates, recording a trajectory every 2. The

bottom graph shows the total (smoothed) intensity comprehensive also of the deterministic

part given in Fig. 4.
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run for other 10,000 updates, recording a trajectory every 2. The bottom graph shows

the total (smoothed) intensity comprehensive also of the deterministic part shown in

Fig. 4. The peaks in the top graph show periods of unexpected high trading activity,

not accounted for by the intra-day seasonality, which may correspond to the arrival of

relevant news. The smoothed intensity can also be used in the numerical calculation

of quantities of interest in a number of financial problems, such as price forecasting.
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Simulating a Generalized Gaussian Noise with Shape

Parameter 1/2

Martina Nardon and Paolo Pianca

Summary. This contribution deals with Monte Carlo simulation of generalized Gaussian ran-

dom variables. Such a parametric family of distributions has been proposed for many applica-

tions in science and engineering to describe physical phenomena. Its use also seems interesting

in modeling economic and financial data. For low values of the shape parameter α, the distri-

bution presents heavy tails. In particular, α = 1/2 is considered and for such a value of the

shape parameter, different simulation methods are assessed.

Key words: Generalized Gaussian density; Heavy tails; Transformations of random vari-

ables; Monte Carlo simulation; Lambert W function.
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MathSci Classification Numbers: 33B99, 65C05, 65C10.

1 Introduction

The parametric family of generalized Gaussian densities has been used to model

successfully physical phenomena, and in engineering is used, for example, in the

area of signal processing (see [KN05]).

Some important classes of random variables belong to this family such as,

amongst others, the Gaussian distribution and the Laplacian distribution. Moreover,

for values of the shape parameter within a certain interval (which is of interest in

many practical situations), the moments of such distributions are all finite.

Obviously, in many applications, accurate and fast simulation of a stochastic pro-

cess of interest can play an important role. In this contribution, we analyze different

methods for generating deviates from a generalized Gaussian distribution.

In the special case of the shape parameter α = 1/2, we compare the efficiency of

four different simulation techniques. Numerical results highlight that the technique

based on the inverse cumulative distribution function written in terms of the Lambert

W function is the most efficient.

An outline of the paper is as follows. Section 2 presents some properties of the

generalized Gaussian density. In sections 3 and 4 simulation techniques for general-

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance
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ized Gaussian random variables are analyzed. In particular, α = 1/2 is considered.

Section 5 concludes.

2 The Generalized Gaussian Density

The probability density function of a generalized Gaussian random variable X , with

mean µ and variance σ 2, is defined as

fX (x; µ, σ, α) = α

2

A(α, σ)

Ŵ(1/α)
exp

{
− (A(α, σ) | x − µ | )α

}
x ∈ R , (1)

where

A(α, σ) = 1

σ

[
Ŵ(3/α)

Ŵ(1/α)

]1/2

(2)

and Ŵ(z) =
∫ +∞

0
t z−1e−t dt (z > 0) is the complete gamma function.

The generalized Gaussian distribution (GGD) is symmetric with respect to µ.

A(α, σ) is a scaling factor which defines the dispersion of the distribution, hence

it is a generalized measure of the variance. α > 0 is the shape parameter which

describes the exponential rate of decay: heavier tails correspond to smaller values

of α.

The generalized Gaussian family includes a variety of random variables. Some

well known classes of distributions are generated by a parametrization of the expo-

nential decay of the GGD. When α = 1, the GGD corresponds to a Laplacian, or

double exponential distribution. For α = 2 one has a Gaussian distribution. When

α → +∞ the GGD converges to a uniform distribution in (µ −
√

3σ, µ +
√

3σ),
while when α → 0+ we have an impulse probability function at x = µ.

All the odd central moments of distribution (1) are zero, E(X − µ)r = 0 (r =
1, 3, 5, . . .), and the even central moments are

E(X − µ)r =
[
σ 2Ŵ(1/α)

Ŵ(3/α)

]r/2
Ŵ((r + 1)/α)

Ŵ(1/α)
r = 2, 4, 6, . . . . (3)

With a straightforward standardization and some reductions from (1), we obtain

the following GGD with zero-mean and unit-variance

fX (x; α) = α

2

A(α)

Ŵ(1/α)
exp

{
− (A(α) | x | )α

}
, (4)

where A(α) = A(α, 1).

In the following, we confine our attention to generalized Gaussian random vari-

ables with density (4). For 0 < α < 2 the density (4) is suitable for modeling many

physical and financial processes with heavy tails. It is worth noting that, for GGD

with 0 < α < 2, all the moments are finite (this is not the case for other heavy-tailed

densities, e.g. stable densities).
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Fig. 1. Generalized Gaussian densities for different values of the parameter α, with µ = 0 and

σ = 1.

The kurtosis of density (4) is

K(α) = Ŵ(1/α)Ŵ(5/α)
[
Ŵ(3/α)

]2
. (5)

K(α) decreases with α; moreover, the following results hold: limα→0+ K(α) = +∞
and limα→+∞K(α) = 1.8 (see [DMGRD01]). Fig. 1 shows the generalized Gaus-

sian densities for different values of the parameter α, with zero mean and unit vari-

ance.

3 Simulating the Generalized Gaussian Distribution

Let FX (·) be the cumulative distribution function (cdf) of a random variable X and

F−1
X (·) be its inverse. It is well known that if F−1

X (·) can be directly evaluated, a

large number of realizations of X can be obtained as xi = F−1
X (ui ), where ui

(i = 1, 2, . . . , n) are random numbers uniform over (0, 1). If F−1
X has a closed

form expression, such a method can be applied efficiently. Unfortunately, this is not

always the case. Nevertheless, if FX (·) can be evaluated, it can still be possible to

simulate the random variable X by numerically inverting its cumulative distribution

function. When FX (·) has no closed form expression, numerical integration or other

approximation methods are required, at the expense of an increasing computational

amount. An alternative simulation method is based on techniques of transformation

of a random variable X for which a random number generator is available. A specific

technique will be described below for the GGD case.

Let X be a generalized Gaussian random variable with cumulative distribution

function

FX (x) =
∫ x

−∞

α

2

A(α)

Ŵ(1/α)
exp

{
− (A(α) | t | )α

}
dt , (6)

where A(α) has been defined above. Such a function can be written in closed form

only in a very few special cases.
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In order to generate values from a generalized Gaussian distribution with param-

eter α, the following three-step procedure can be used:

i) Simulate a gamma random variable Z ∼ Gamma(a, b), with parameters a =
α−1 and b = (A(α))α.

ii) First apply the transformation Y = Z 1/α.

iii) Finally, apply a transformation of the form

Y = | X | . (7)

Relationship (7) has two roots. The main problem is how to determine the prob-

ability for choosing one of such roots. It can be shown (see [MSH76]) that, as a

consequence of the symmetry of the GG distribution, one takes the roots with equal

probability. For each random observation y, a root is chosen (x = −y or x = y). To

this end, an auxiliary Bernoulli trial with probability p = 1/2 is performed.

We first encountered the problem of generating random variates from the gamma

distribution1. The process relies on the assumption that if Z is a Gamma(a, b) dis-

tributed random variable (with a and b as defined above), then by letting Y = Z 1/α

and considering the transformation (7), as a result, X has a GGD distribution with

parameter α.

In testing this three-step procedure, a number of large samples were generated

with various choices for the parameter α.

4 Simulating the Generalized Gaussian Distribution with α = 1/2

With regard to density (4), if we address the case α = 1/2 we obtain the GG density

fX (x) =
√

30

2
exp

{
−2

√
30 | x |1/2

}
(8)

and the cumulative distribution function

FX (x) =

⎧
⎪⎪⎨
⎪⎪⎩

1
2

exp
{
−2

√
30 (−x)1/2

} (
1 + 2

√
30 (−x)1/2

)
x ≤ 0

1 − exp
{
−2

√
30 x1/2

}
1
2

(
1 + 2

√
30 x1/2

)
x > 0 .

(9)

In order to generate variates from a GG distribution, we can apply the method

based on the transformation described in the previous section. Otherwise, realizations

of a random variable with cdf (9) can be obtained as x = F−1
X (u), where u are

random numbers from a uniform distribution on (0, 1). The function FX (·) can be

inverted using numerical techniques.

The inverse function of the cdf (9) can be expressed in terms of the so-called

Lambert W function. Based on such a result, a very fast and accurate simulation

procedure can be defined. The following subsection is devoted to the definition of

the Lambert W function and the description of its main properties.

1 In the numerical experiments we used the routine DRNGAM of the IMSL library for the

generation of deviates from a distribution Gamma(a,1).



Simulating a Generalized Gaussian Noise with Shape Parameter 1/2 177

4.1 The Lambert W function

The Lambert W function, also known as the Omega function, is implicitly specified

as the root of the equation

W (z)eW (z) = z . (10)

It is a multivalued function defined in general for z complex and assuming values

W (z) complex. If z is real and z < −1/e, then W (z) is multivalued complex. If

z ∈ R and −1/e ≤ z < 0, there are two possible real values of W (z): the branch

satisfying W (z) ≥ −1 is usually denoted by W0(z) and called the principal branch of

the W function, and the other branch satisfying W (z) ≤ −1 is denoted by W−1(z). If

z ∈ R and z ≥ 0, there is a single value for W (z) which also belongs to the principle

branch W0(z). The choice of solution branch usually depends on physical arguments

or boundary conditions2.

A high-precision evaluation of the Lambert W function is available in Maple and

Mathematica softwares. In particular, Maple computes the real values of W using

the third-order Halley’s method (see [A81]), giving rise to the following recursion

w j+1 = w j − w j ew j − z

(w j + 1) ew j − (w j+2)(w j e
w j −z)

2w j+2

j ≥ 0 . (11)

Analytical approximations of the W function are also available and can be used as

an initial guess in the iterative scheme (11) (see [CGHJK96] and [CBM02]).

In the numerical experiments carried out, we applied Halley’s method and as an

initial guess we adopted

w0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 + ρ − 1

3
ρ2 + 11

72
ρ3 − 43

540
ρ4 + 769

17 280
ρ5 − 221

8 505
ρ6 −1

e
≤ z < −0.333

−8.096 + 391.0025z − 47.4252z2 − 4877.633z3 − 5532.776z4

1 − 82.9423z + 433.8688z2 + 1515.306z3
−0.333 ≤ z ≤ −0.033

L1 − L2 + L2

L1

+ L2(−2 + L2)

2L2
1

+
L2(6 − 9L2 + 2L2

2)

6L3
1

+

+
L2(−12 + 36L − 2 − 22L2

2 + 3L3
2)

12L4
1

+ −0.033 < z < 0

+
L2(60 − 300L2 + 350L2

2 − 125L3
2 + 12L4

2)

60L5
1

(12)

where ρ = −
√

2(e z + 1), L1 = ln(−z), and L2 = ln[ln(−z)]. Formula (12) used as

a direct method to approximate the function W−1(z) for z ∈ [−1/e, 0) provides quite

accurate values. Indeed, the maximum relative error is below 10−4 (see [CBM02]).

4.2 Analytical inversion of GGD with α = 1/2

The aim here is to invert the cumulative distribution function (9) and prove that this

inverse can be expressed in terms of the Lambert W function. We first consider the

2 The paper [CGHJK96] reports the main properties and applications of such a function.
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cumulative distribution function for x ≤ 0. Setting y = −(−2
√

30x)1/2, we have

F = 1

2
(1 − y)ey (13)

i.e.

−2 F

e
= (1 − y)ey−1. (14)

Equation (14) leads to

y − 1 = W−1(−2F/e) (15)

and therefore

x = − 1

2
√

30
[1 + W−1(−2F/e)]2. (16)

The correct branch W−1 is identified from the boundary conditions (x = 0, F =
1/2) and (x → −∞, F → 1/2).

Similar arguments permit consideration of the case x ≥ 0. Thus, we have the

inverse cumulative distribution function

F−1(u) =

⎧
⎪⎨
⎪⎩

− 1

2
√

30

[
1 + W−1(−2u/e)

]2
0 < u ≤ 1/2

− 1

2
√

30

[
1 + W−1(−2(1 − u)/e)

]2
1/2 < u < 1 .

(17)

Equation (17) solves the problem of obtaining a large number of realizations of gen-

eralized Gaussian density with α = 1/2, provided we are able to compute the func-

tion W−1. Based on such results, a fast and fairly accurate simulation procedure can

be defined.

4.3 Numerical results

Realizations of a generalized Gaussian random variable with α = 1/2, generated

with the algorithm based on the inverse cumulative distribution function (17) and the

approximation of the Lambert W are shown in Fig. 2.

We have performed a Monte Carlo estimation of probability density (9) based

on 108 values, collected into bins of width �x = 0.05. Fig. 3 shows the simulated

-15
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0
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15

20

Fig. 2. Instances of GGD with parameter α = 1/2, µ = 0 and σ = 1 (N = 10 000).
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Fig. 3. Estimated and theoretical probability density functions of a generalized Gaussian ran-

dom variable with α = 1/2.

probability density function and the theoretical density (8). As can be seen in the

figure, the probability density function is well approximated by the empirical den-

sity. The Kolmogorov-Smirnov test yielded no evidence indicating that the simulated

observations were not generated from the GGD distribution.

Table 1 reports the estimated moments, based on the 106 simulations, of the GGD

and the computational time. The method based on the inverse cdf written in terms

of the Lambert W function and approximation (12) is very fast. The results of the

simulation based on the inverse cdf are not reported. Such a simulation method is

very inefficient with respect to the other techniques.

5 Conclusions

In this contribution, we investigated and compared different techniques for generat-

ing variates from a generalized Gaussian distribution. For α = 1/2 a fast and accu-

Table 1. Simulating the generalized Gaussian distribution with α = 1/2 (N = 106).

Simulation method Mean Variance Kurtosis cpu time (sec.)

K = 25.2

Lambert W &

approximation (12) −0.000101 0.999951 25.396091 1.97

Lambert W &

Halley’s algorithm −0.000101 0.999969 25.395066 4.10

Three-step

procedure −0.000077 1.000630 25.103438 10.77
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rate simulation procedure can be defined. A three-step procedure based on a gamma

transformation can also be successfully applied.

Generalized Gaussian distributions have been proposed in many applications in

science and in engineering. It seems interesting to investigate their possible applica-

tions in modeling economic and financial data. This is left for future research.
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Further Remarks on Risk Profiles for Life Insurance

Participating Policies

Albina Orlando and Massimiliano Politano

Summary. This paper deals with the calculation of suitable risk indicators for Life Insurance

policies in a Fair Value context. In particular, after determining the quantile reserve for Life

Insurance Participating Policies, the role of the term structure of mortality rates is analyzed in

risk determinations. Numerical results are investigated in order to determine not only suitable

risk indicators, but also the mortality risk impact in this context.

Key words: Participating Policies; Fair Pricing; Quantile Reserve; Mortality Risk.

1 Introduction

At the begin of 2004, the International Accounting Standard Boards (IASB) is-

sued the International Financial Reporting Standard 4 Insurance Contracts (IFRS

4), providing, for the first time, guidance on accounting and marking the first step

in the IASB’s project to achieve the convergence of widely varying insurance ac-

counting practices around the world. In particular, IFRS 4 permits the introduction

of an accounting policy consistently reflecting current interest rates and, if the in-

surer so elects, other current estimates and assumptions, giving rise to a potential re-

classification of some or all financial assets “at fair value” when an insurer changes

accounting policies for insurance liabilities. The IASB defines the Fair Value as “an

estimate of the price an entity would have realized if it had sold an asset, or paid

if it had been relieved a liability on the reporting date in an arm’s length exchange

motivated by normal business considerations”: therefore, the problem is posed of

determining the market value of insurance liabilities. In particular, the IASB allows

for the use of stochastic models in order to estimate future cash flow. In the actu-

arial perspective, the introduction of an accounting policy and a fair value system

implies that the mathematical reserve could be defined as the net present value to-

ward the policyholder evaluated at current interest rates and, eventually, at current

mortality rates. The paper is organized as follows: Section 2 gives a survey regarding

the application of the quantile reserve to actuarial liabilities. Section 3 develops the

mathematical framework for the fair valuation of the participating policy. Finally, in

Section 4, numerical evidence is offered.

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance
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2 The Quantile Reserve and the Actuarial Liabilities

The quantification of a liability fair value can be approached by introducing the repli-

cating portfolio, that is, a portfolio of financial instruments giving origin to a cash

flow matching the one underlying the liability itself. The fair valuation of insurance

liabilities, since considering cash flow depending on the human life, and so not trad-

ing in an existing market, can be considered existent in economic reality, as stated in

Buhlmann, and can be measured by means of a financial instrument portfolio. Within

this scenario, it is possible to introduce quantitative tools such as the quantile reserve.

Indicating by W (t) the financial position at time t , that is the stochastic mathemat-

ical reserve of a life insurance contract, the quantile reserve at confidence level α,

0 < α < 1, is expressed by the value W ∗(t) in the following equation

P
{

W (t) > W ∗(t)
}

= α .

As one can see, the quantile reserve is a threshold value in the sense that in the

(1 − α)100%, R(t) is smaller or equal to the quantile reserve.

3 The Mathematical Model

Let us consider an endowment policy issued at time 0 and maturing at time

ξ , with initial sum insured C0 . Moreover, let us define {rt ; t = 1, . . . , ξ } and

{µx+t ; t = 1, . . . , ξ } the random spot rate process and the mortality process respec-

tively, both of them measurable with respect to the filtrationsFr and Fµ. The above

mentioned processes are defined on a unique probability space (�,Fr,µ , P) such

that Fr,µ = Fr ∪ Fµ. For the revaluable endowment policy, we assume that, in the

case of single premium, at the end of the t -th year, if the contract is still in force, the

mathematical reserve is adjusted at a rate ρt defined as follows

ρt = max

{
ηSt − i

1 + i
, 0

}
t = 1, . . . , ξ . (1)

The parameter η, 0 ≤ η ≤ 1, denotes the constant participating level, and St

indicates the annual return of the reference portfolio. Equation (1) explains the fact

that the total interest rate credited to the mathematical reserve during the t -th year,

is the maximum between ηSt and i, where i is the minimum rate guaranteed to the

policyholder. Since we are dealing with a single premium contract, the bonus credited

to the mathematical reserve implies a proportional adjustment at the rate ρt also of

the sum insured. It is assumed that if the insured dies within the term of the contract,

the benefit increases by an additional last adjustment at the end of the year of death.

Denoting by Ct , t = 1, . . . , ξ , the benefit paid at time t if the insured dies be-

tween ages x +t −1, x +t or, in the case of survival, for t = ξ the following recursive

equation holds for benefits of successive years

Ct = Ct−1(1 + ρt ) t = 1, . . . , ξ .
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The iterative expression for them is instead

Ct = C0

t∏

j=1

(1 + ρ j ) t = 1, . . . , ξ ,

where we have indicated by φt the re-adjustment factor

φt =
t∏

j=1

(1 + ρ j) t = 1, . . . , ξ .

In this context, as the elimination of the policyholder can happen in the case of death

in the year t ∈ [0, ξ [. or in the case of survival t = ξ , the liability borne out by the

insurance company can be expressed in this manner

W L
0 =

ξ∑

t=0

Ct t−1/1Yx + Cξ ξ Jx , (2)

where t−1/1Yx =
{

e−�(t) if t − 1 < Tx ≤ t

0 otherwise
, ξ Jx =

{
0 if 0 < Tx ≤ ξ

e−�(t) Tx ≥ ξ
.

In the previous expression, Tx is a random variable which represents the remaining

lifetime of an insured aged x , �(t) =
∫ t

0 rudu is the accumulation function of the

spot rate.

3.1 Financial and mortality scenario

The valuation of the financial instruments involving the policy will be made assum-

ing a two factor diffusion process obtained by joining the Cox-Ingersoll-Ross (CIR)

model for the interest rate risk and a Black-Scholes (BS) model for the stock market

risk; the two sources of uncertainty are correlated. In general, interest rate dynamics

rt ; t = 1, 2, . . . and described by means of the diffusion process

d St = f r (rt , t)dt + lr (rt , t)d Z r
t , (3)

where f r (rt , t) is the drift of the process, lr (rt , t) is the diffusion coefficient and Z r
t

is a Standard Brownian Motion.

Clearly, on the fair pricing of our policy, it is very important to specify the ref-

erence portfolio dynamics. The diffusion process for these dynamics is given by the

stochastic differential equation

d St = f S(St , t)dt + gS(St , t)d Z S
t , (4)

where St denotes the price at time t of the reference portfolio and Z S
t is a Standard

Brownian Motion with the property Cov(d Z r
t , d Z S

t ) = ϕdt ϕ ∈ R.
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For the dynamics of the process {µx+t :t; t = 1, 2, . . .} , we propose a model based on

the Lee-Carter methodology. A widely used actuarial model for projecting mortality

rates is the reduction factor model for which

µy:t = µy:0RF(y, t) , (5)

subject to RF(y, 0) = 1 ∀y, where µy:0 is the mortality intensity of a person aged

y in the base year 0, µy:t is the mortality intensity for a person attaining age y in

the future year t , and the reduction factor is the ratio of the mortality intensity. It

is possible to target RF , in a Lee-Carter approach, µy:0 being completely specified.

Thus, µy:0 is estimated as µ̂y:0 =
∑

t
dy:t/

∑
t

ey:t where dy:t denotes the number of

deaths at age y and time t and indicates the matching person years of exposure to

the risk of death. Taking the logarithm of equation (3) we have logµy:t = logµy:0 +
log RF(y, t) s.c. log RF(y, 0) = 0. Defining αy = log(µy:0) and log {RF(y, t)} =
βykt the Lee-Carter structure is reproduced.

In fact the Lee-Carter model for death rates is given by ln(myt ) = αy +βy kt +ǫyt

where myt denotes the central mortality rates for age y at time t , αy describes the

shape of the age profile averaged over time, kt is an index of the general level of

mortality while βy describes the tendency of mortality at age y to change when the

general level of mortality kt changes. ǫyt denotes the error. In this framework, for our

purposes, with y = x + t , one can use the following model for the time evolution of

the hazard rate µx+t :t = µx+t :0eβx+t kt .

4 Numerical Proxies for the Quantile Reserve via Simulation

Procedures

4.1 The problem background

In this section we present a simulation procedure to calculate the quantile reserve,

providing a practical application of the mathematical and accounting tools presented

previously. In particular, we will quantify the two critical values of the quantile re-

serve W ∗
0.95(t) W ∗

0.99(t) . The calculation of the quantile reserve values requires the

knowledge of the distribution of W (t). To this aim, we use a Monte Carlo simulation

procedure which, as well known, is typically employed to model random processes

that are too complex to be solved by analytical methods.

As a first step, we develop the statement of the problem giving the mathemati-

cal relationship between the input and output variables. On the basis of the model

presented in Section 3, the output is given by the financial position of the insurer at

time t , W (t), and the input variables are given by the time of valuation t , the survival

probabilities and the term structure of interest rates. In this order of ideas, we assume

that the best prediction for the time evolution of the surviving phenomenon is repre-

sented by a varying fixed set of survival probabilities, opportunely estimated taking

into account the improving trend of mortality rates. As a consequence, in our appli-

cation, the first two inputs are deterministic while the random input is represented by



Further Remarks on Risk Profiles for Life Insurance Participating Policies 185

the model describing interest rate distribution which is essential in a fair valuation

context.

We refer to the following hypothesis: for the interest rates scenario we use a CIR

model specifying the drift function and the diffusion coefficient in formula (3) as

follows: f r (rt , t) = k(θ − rt ), lr (rt , t) = σr
√

rt where k is the mean reverting

coefficient, θ the long term period “normal” rate and σr the spot rate volatility. We

assume for the CIR process k = 0.0452, θ = 0.026 and σ = 0.00053 and the initial

value r0 = 0.0172. For the reference portfolio dynamics, we assume a BS type

model and referring to formula (4): f S(St , t) = µS St and gS(St , t) = σS St where

µS is the continuously compounded market rate, assumed to be deterministic and

constant, and σS is the constant volatility parameter. In our application µS = 0.03

and σS = 0.20 . For the mortality, we refer to three different scenarios:

a) The survival probabilities deduced by Italian data for the period 1947-1999 using

the Lee-Carter methodology.

b) The survival probabilities deduced by Italian Male Mortality called RG48.

c) The survival probabilities deduced by Italian Male Mortality called SIM92.

The example of application we propose is referred to a life insurance partici-

pating contract. In particular, we quantify, at the beginning of the contract, the two

critical values R∗
0.95(t) and R∗

0.99(t) of the reserve distribution.The output of the sim-

ulation procedure is a sample which gives N values for W (t), N being the number

of simulations. In order to perform the simulation procedure, it is necessary to obtain

the discrete time equation for the chosen SDE describing the evolution in time of the

interest rates. We choose the first order Euler’s approximation scheme, obtaining the

following sample path simulation equation:

rk�t = r(k−1)�t + α(µ − r(k−1)�t )+ σ
√

r(k−1)�t�t · ǫk k = 1, 2, . . . , T , (6)

where {ǫk ≈ N(0, 1)}.
This approximation scheme is characterized by an easy implementation and a

simple interpretation of the results. The discretized process we consider can be rep-

resented by the sequence {r�t , r2�t , . . . , rk�t } , where k is the number of time steps,

�t is a constant and T is the time horizon.

The following simulation procedure is carried out in order to gain a sample of N

values of W (t):

a) Generation of T pseudo-random values {ǫk ≈ N(0, 1)} .

b) Computation of one simulated path for the stochastic interest rate {rk�t } using

the T values obtained in step (a).

c) Computation of one value of the reserve on the basis of the previous results.

The simulation procedure will be repeated N times to gain N values for R(t). At

this point our purpose is to quantify the two critical values of the reserve distribution

W ∗
0.95(t) and W ∗

0.99(t) . As reported in the previous sections, since the reserve is a

liability, we are interested in the right hand tail of the distribution.
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Fig. 1. Empirical distribution of W(t).

4.2 Numerical results

The numerical example we propose refers to a portfolio life participating contract

issued to an individual aged 40 with time to maturity 20 years.

Table 1 confirms the asymptotic behavior of the empirical distribution of the

random variable R(t). Now, as we already recalled, the Glivenko-Cantelli theorem

is verified, in the sense that, as we can easily observe, R(t) approximates a normal

distribution. In particular, kurtosis has a value of about 3 and skewness has a value

of about 0. It is well known that a normal variable has a kurtosis of 3 and a skewness

equal to zero, therefore the obtained values can be considered acceptable. Moreover,

we have conducted the Jarque Bera test. As well known, the J-B is a statistic for

Table 1. W empirical distribution. N = 10000.

LC RG48 SIM92

M[W] 1153.047 1155.166 1149.773

Max 1178.297 1180.542 1174.329

Min 1128.005 1129.996 1125.409

Skewness −0.012903 −0.012904 −0.012915

Kurtosis 3.009453 3.009717 3.008749

JB 0.314699 0.316859 0.309875

Probability 0.854406 0.853483 0.856469
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Table 2. Initial quantile reserve values.

LC RG48 SIM92

W∗(0.05) 1163.829 1166.009 1160.239

W∗(0.01) 1168.116 1170.307 1164.439

testing whether the series is normally distributed. The J-B test is known to have very

good properties in testing for normality; it is easy to calculate and it is commonly

used in econometrics. In our case, as the probability is equal to about 0.85, we can

accept the null hypothesis of the normal distribution of R(t).
In Table 2, we have calculated the initial values of the quantile reserve at a confi-

dence level of 95% and 99%. As one can see, we obtain, in each mortality scenario,

values higher than expected. The difference between W* values and M[W] values

can be interpreted as an absolute index of the riskiness borne out by the insurer

due to the uncertainty regarding interest and mortality rates. Finally, concerning the

influence of the mortality factor, in our application, if we perform a comparison be-

tween the quantile reserve in each mortality scenario, one can see that the difference

between W ∗ and M[W] is quite stable, and the quantile values are quite similar.
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Classifying Italian Pension Funds via GARCH

Distance

Edoardo Otranto and Alessandro Trudda

Summary. The adoption of pension funds in the Italian social security policy has increased

the offer of several investment funds. Workers have to decide what kind of investment to

perform, the funds having a different composition and a subsequently different degree of risk.

In this paper we propose the use of a distance between GARCH models as a measure of

different structure of volatility of some funds, with the purpose of classifying a set of funds.

Furthermore we extend the idea of equivalence between ARMA models to the GARCH case

to verify the equality of the risk of each couple of funds. An application on thirteen Italian

funds and fund indices is performed.

Key words: Agglomerative algorithm; Cluster analysis; GARCH models; Pension funds;

Risk profile.

1 Introduction

The main aim of a pension fund is to raise workers’ savings and to invest them ac-

cording to an accurate policy of asset allocation, in order to give back the hoarded

capital as a life annuity. Therefore, the most important index pension fund refers

to the global asset return since it influences both periodic contributions and future

benefits. For this reason, the valuation of a pension fund is often related to the per-

formance rather than to the risk level of asset portfolio. According to [RF03], the

shortfalls of the USA pension after 2001 are not the consequence of a poor market

performance, but the inevitable result of actuarial and fiscal accounting practices. In

fact, in the long term, the expected asset growth must be higher for equities than

for bonds. [Bad03] takes an opposite position and argues that risky investment like

equity has no place in pension fund portfolios. Such a rule should be applied partic-

ularly for pension funds when they concern public and not complementary pension.

[McC06] discusses a “moral hazard hypothesis”; in particular underlining how pen-

sion funds assume “superfluous risk” looking for higher returns without an adequate

adjust for risk.

In Italy, the pension plans of private sector workers are run by private funds

controlled by the government. [Tru05] studies actuarial balances and dynamics for

Cira Perna, Marilena Sibillo (Eds.): Mathematical and Statistical Methods in Insurance and Finance

c© Springer 2008, Milan
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Italian independent consultant pension (ICP) plans. The analysis of each random

variable shows that a marginal increase of global asset return gives an important re-

duction of default probability. In his analysis, [Tru05] presents evidence that this kind

of fund belongs to the first pillar pensions group and they cannot be assimilated as

complementary pension fund random variables due to technical and social reasons.

Therefore, the global asset return analysis should refer to a risk benchmark rather

than a return benchmark, recognizing the maximum risk profile. The performance of

these ICP funds is variegated depending on their asset composition. Some of them

have only real or bond investment while others have a high stock market component.

The 2006 annual report on the condition of public and private Italian welfare Agency,

affirms that most of these funds are now shifting to higher risk level portfolios. The

Agency stresses the social rather than speculative function of such funds which valu-

ate the maximum risk profile in function of the liability for pension payments. On the

other hand, investors would like to choose from funds with similar behavior but dif-

ferent degrees of risk. For these reasons, an important task is to classify the different

funds with different degrees of risk with respect to the dynamics of their movements.

In statistical terms, we have to follow the evolution of the time series referring to

the single fund and to perform an appropriate cluster analysis. In this paper we use

an agglomerative algorithm proposed by [Otr04] based on the distance between two

time series following GARCH models ([Bol86]). This distance is an extension of the

well known distance between invertible ARMA models proposed by [Pic90]. The

logic of this approach in this framework is explained by the link existing between

volatility and investment risk. High volatility periods correspond to turmoil phases

in the dynamics of the time series studied; if we represent the conditional variance of

the series with GARCH models, the GARCH structure will reflect the behavior of the

volatility. In other words, similar GARCH models represent similar volatility behav-

ior and similar investment risks. If we base the analysis only on the dynamic parts of

the GARCH models (excluding the constant term), we can compare the series with

respect to their evolution; in other words, series with different risk (different degree

of volatility) can have similar dynamics. For this purpose we need a benchmark time

series; a logical choice could be a fund which potentially presents the most or the

least hazardous global asset risk profile.

The procedure we propose provides three products: 1) a classification of the funds

in clusters having similar dynamics; 2) the evaluation of the series having equal

risk in the same cluster; 3) the comparison of all the series, independently of the

corresponding cluster, to detect those having similar risk.

All the results are derived from a Wald type test.

In the next section we briefly recall the GARCH distance proposed by [Otr04]

and the agglomerative algorithm used; in Section 3 we show an example of classifi-

cation based on this methodology using a risk benchmark to mark a maximum risk

profile as suggested by [Tru05]. Some final remarks follow.
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2 Distance Between GARCH Models

Let us consider two time series following the models (t = 1, ..., T ):

y1,t = µ1 + ε1,t (1)

y2,t = µ2 + ε2,t ,

where ε1,t and ε2,t are disturbances with mean zero and time-varying variances. We

suppose that the conditional variances h1,t and h2,t follow two different and inde-

pendent GARCH(1,1) structures:1

V ar(y1,t |I1,t−1) = h1,t = γ1 + α1ε
2
1,t−1 + β1h1,t−1

V ar(y2,t |I2,t−1) = h2,t = γ2 + α2ε
2
2,t−1 + β2h2,t−1

, (2)

where I1,t and I2,t represent the information available at time t and γi > 0, 0 <

αi < 1, 0 < βi < 1, (αi + βi ) < 1 (i = 1, 2).

As well known, the squared disturbances in (2) follow ARMA(1,1) processes:

ε2
i,t = γi + (αi + βi ) ε

2
i,t−1 − βi

(
ε2

i,t−1 − hi,t−1

)
+

(
ε2

i,t − hi,t

)
, i = 1, 2, (3)

where ε2
i,t − hi,t are mean zero errors, uncorrelated with past information. The two

GARCH(1,1) models can be compared in terms of the distance measure proposed by

[Pic90]. In fact, substituting into (3) the errors with their ARMA(1,1) expression, we

obtain the AR(∞)representation:

ε2
i,t = γi

1 − βi

+ αi

∞∑

j=1

β
j−1

i ε2
i,t− j +

(
ε2

i,t − hi,t

)
. (4)

The general form of the [Pic90] distance is:

⎡
⎣

∞∑

j=1

(π1 j − π2 j )
2

⎤
⎦

1/2

, (5)

where π1 j and π2 j are the autoregressive coefficients of two AR processes. Using

(4), we can express the distance between two GARCH(1,1) models as ([Otr04]):

d =

⎡
⎣

∞∑

j=0

(
α1β

j
1 − α2β

j
2

)2

⎤
⎦

1/2

.

1 In our applications, we have noted that the G ARC H (1, 1) models fit the series analyzed,

so we explain the idea of distance only for this case. Note that [BCK92] underlines that the

GARCH(1,1) model fits excellently a wide range of financial data. For an extension to a

generical G ARC H (p, q) model, see [Otr04].
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Developing the expression in square brackets:

d =

⎡
⎣α2

1

∞∑

j=0

β
2 j
1 + α2

2

∞∑

j=0

β
2 j
2 − 2α1α2

∞∑

j=0

(β1β2)
j

⎤
⎦

1/2

= (6)

=
[

α2
1

1 − β2
1

+
α2

2

1 − β2
2

− 2α1α2

1 − β1β2

]1/2

.

Note that in the previous developments, the constant γi/(1−βi) was not considered;

in effect, it does not affect the dynamics of the volatility of the two series, expressed

by the autoregressive terms. This will be an important task when we use this distance

measure to classify the time series; in fact, we are measuring the similarity of the

dynamics of the volatility of two time series and not the similarity of their volatility.

The hypothesis of null distance can easily be tested noting that (6) is equal to

zero if and only if the following hypotheses are verified:

α1 = α2

β1 = β2.
(7)

These hypotheses are contemporaneously verified using the Wald statistic:

W = (A‡̂)′(A�̂A′)−1(A‡̂), (8)

where ‡̂ represents the maximum likelihood estimator of ‡ = (α1, β1, α2, β2)
′,

whereas A = [I2,−I2], where I2 is the 2 × 2 identity matrix. �̂ is the estimated

covariance matrix of ‡̂; estimating the GARCH models independently, �̂ is a block

diagonal matrix, with the [BW92] robust covariance matrix of the parameters of each

model in each block.

Statistic (8) follows the chi-square distribution with 2 degrees of freedom.

This distance can be used to cluster n time series in homogenous groups, having

similar GARCH structure. In other words, we insert the series with no significant

distance in the same cluster. For this purpose, an agglomerative algorithm could be

used; following [Otr04] it can be developed in the following steps:

1. Choose an initial benchmark series.

2. Insert into the group of the benchmark series, all the series with a distance not

significantly different from zero (using statistic (8)).

3. Select the series with the minimum distance from the benchmark significantly

different from zero; this series will be the new benchmark.

4. Insert in the second group, all the remaining series with a distance from the new

benchmark that is not significantly different from zero.

5. Repeat steps 3 and 4 until no series remain.

Note that the number of groups is not fixed a priori or chosen after the clustering, but

derives automatically from the algorithm.
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Clearly, to classify the series we need a starting point, in the sense that the result

will be different, changing the series adopted as the initial benchmark. For our pur-

poses, we choose the stock index fund having the highest potential risk or that with

minimum risk, formed by the Italian government Z.C. bond index.

As stated in the introduction, this classification does not refer to clusters contain-

ing series with similar risk, but series with similar dynamics. This idea is similar to

the concept of parallelism between ARMA models, introduced by [SW85]. In other

words, we are grouping series with a similar dynamic part and, as a consequence, a

similar predictability ([OT07]). To verify if the series have the same volatility (which

is equivalent to assuming that they have the same risk), we have to test the hypothesis

that the two GARCH models are the same. This idea corresponds to another concept

introduced by [SW85] for ARMA models, which is equivalence. We affirm that two

GARCH processes are equivalent if the following hypotheses are verified:

γ1 = γ2

α1 = α2 (9)

β1 = β2.

The test used to verify this hypothesis is again (8), in which we have only to

modify in an appropriate way the dimension of the matrices A and ".

3 A Classification of Funds

We consider thirteen time series from November 1995 to December 2000 (daily data;

1290 observations; sources: Independent Consultants Pension Funds (ICPF) balance

sheet, Complementary Pension Funds (CPF) balance sheet, and Supplements from

the Bank of Italy Statistical Bulletin) relative to some basis and complementary Ital-

ian pension funds and fund indices. The asset portfolio composition of these funds

is the following:

A = CPF with mixed (bond and stock funds) financial products.

B = Z.C. Italian government bonds index.

C = CPF with real estate investments, 10 year duration benchmark bonds and small

stock component.

D = ICPF with real estate and low year duration benchmark bonds.

E = ICPF with liquidity, properties and 30 year duration benchmark bonds.

F = CPF with 3 year duration benchmark bonds and small stock component.

G = ICPF with prevalence of investments in government bond funds.

H = Investment fund with interest rate indexation benchmark.

I = ICPF with prevalence of bond investments.

J = Italian stock funds index.

K = CPF with prevalence of bond fund investments.

L = Italian total funds index.



194 E. Otranto and A. Trudda

0 50 100 150 200 250 300 350
−0.1

−0.05

0

0.05

0.1

0.15
Fund B

0 50 100 150 200 250 300 350
−5

−4

−3

−2

−1

0

1

2

3

4
Fund K

Fig. 1. Returns of fund indices B and K .

We can note that the possibility of choice for investors is large, providing funds

with different degrees of risk. In practice, the choice varies from funds index B,

which shows a poor degree of volatility, because it invests mostly in properties, real

estate and bond funds, maintaining a minimum return with high tendency on stock

market investments, to fund index K , which has a total component on stock market

investments. In Fig. 1, the returns (the first differences of the logs of the series)

of the last 370 observations are compared, showing these characteristics. Note as

fund index B shows small returns prevalently positive, assuring a minimum gain to

the investor; fund index K has large positive and negative oscillations, denoting the

possibility of large gains but also large risks.

The investor’s choice will depend essentially on the inclination to the risk and

the historical behavior of the series. In other words, a good criterion of choice could

be to select the series which follow similar patterns and then to evaluate the level of

risk of the group selected.

The procedure we propose provides a classification of the funds based on their

dynamics; this is obtained by applying the algorithm proposed in the previous sec-

tion. Furthermore, we can detect, in the same group, if the series have a similar
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degree of risk; this is obtained using the hypothesis (9). For each time series we

have estimated a GARCH(1,1) model as (2).2 Assuming K , which is theoretically

the most risky index, as initial benchmark, we obtain the distance (6) from K shown

in Table 1.

Table 1. GARCH(1,1) distance of twelve funds from fund index K .

A B C D E F G H I J L M

0.013 0.167 0.093 0.131 0.217 0.064 0.122 0.156 0.111 0.114 0.091 0.016

Applying the agglomerative algorithm,3 we obtain the clusters shown in Table 2:

Table 2. Clusters obtained using fund index K as a benchmark.

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4

K A M F C J G D L H I B E

It is interesting to note that the same classification is obtained using the fund with the

lower risk profile as a benchmark, (fund index B). Shown in Table 3 are the distances

from it. Note that the distances from B are in general larger than the distances from

K (apart from E and I ), but this indicates only that these three series have a peculiar

behavior, different from all the others. In other words, this classification seems robust

enough and the series belonging to the same cluster would have similar dynamics.

Table 3. GARCH(1,1) distance of twelve funds from fund index B .

A C D E F G H I J K L M

0.176 0.257 0.293 0.096 0.226 0.283 0.318 0.083 0.276 0.167 0.235 0.156

Given this classification, we can verify the three hypotheses in (9). In practice, we

verify these hypotheses for each couple of series belonging to the same cluster (apart

from cluster 3 which contains only one series). The result is that only the couple F

and C, and the couple J and D can be considered to have the same volatility at a

nominal size of the test equal to 5%.

If the investors are interested only in detecting the funds with a similar risk,

we can verify the hypotheses (9) for each couple of series. Besides the two cases

belonging to the same cluster, we obtain that we do not reject the null hypothesis of

2 The estimation results are not shown to save space. They are available on request.
3 Test (8) is performed with a nominal size of 5%.
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equal risk also for the couple D and H , and the couple E and K . In particular, this

last result is interesting; in practice we obtain that fund E , constituted by liquidity,

properties and bonds, has the same risk as the most risky fund; at the same time, the

two funds follow different dynamics, with E which has an evolution similar to that

of the less risky fund index B. Cluster 4 is a clear demonstration that series with

similar dynamics can show a very different risk.

4 Concluding Remarks

The stock market deadline, after 2001, opened a discussion about the risk of structure

pension fund investment. Pension corporations often increase asset allocation risk to

obtain higher values of the expected global asset return. Many authors show evidence

that this is not a correct strategy, in particular for the first pillar case, because social

function prevails on the speculative function. Some tests on USA pension investment

provide evidence of a ”moral hazard” problem because accounting rules incentives

pension corporations to assume ”superfluous risk” without adequately adjusting for

risk. In Italy there are private institutions, controlled by government, that manage

the bases of pension plans independently of consultants. The 2006 annual report of

the welfare Government Agency disapproves of the tendency of these institutions to

shift to higher risk level portfolios and in some cases suggest a return to maintaining

a prudence profile. A large part of the analysis values the asset allocation strategies

in qualitative terms without an accurate analysis of global asset return dynamics.

In this paper we have introduced a statistical procedure to classify pension funds

in function of two different components of financial risk: the dynamics and the

volatility of global asset returns. Equal dynamics can be interpreted as equal pre-

dictability of the volatility, whereas equal volatility can be seen as similar risk level

associated with the returns on investment. The idea is that the GARCH structure of

the global asset return series incorporates both the components, so that we can use

the GARCH distance of [Otr04] to classify the funds and a set of Wald type tests to

verify the equal volatility of each couple of series.

The use of the distance implies the adoption of a benchmark series to start the

classification; in this paper we have used the fund index considered as the most risky

among the series available and one considered of minimum risk. Of course the choice

of the benchmark depends on the purpose of the analysis and could refer to a hypo-

thetical GARCH model. For example, we could choose to compare the series with

a hypothetical series with constant variance (α1 = 0 and β1 = 0 in (2)) or with a

hypothetical series without risk (in this case also γ1 = 0). In this case, the distance

measures how the series analyzed is different from a series without dynamics.
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The Analysis of Extreme Events – Some Forecasting

Approaches∗

Massimo Salzano

Summary. Policy makers often have to deal with extreme events. We consider the two main

approaches for the analysis of these events, statistical and physical statistics, which are usually

considered dichotomically. We quickly delineate both limits and advantages of their tools and

some new tentatives for overcoming the historical limits of the latter kind of approach. We

highlight that for dealing adequately with extreme events it seems necessary to make use of a

new kind of Decision Theory and new tools.

Key words: Extreme events; Extreme Value Theory (EVT); Self-organized Criticality (SOC).

1 Introduction

In many diverse areas of application, the extreme values of a process are of primary im-

portance. Large natural catastrophes, the failure of engineering structures, regional power

blackouts, traffic gridlock, disease and epidemics, etc. exhibit this type of characteristic. Pol-

icy makers often have to deal with extreme events (XE). Therefore, the tools that must be

used for their forecasting are of interest both for researchers and for practitioners. Intense

attention and efforts are devoted in the academic community, in government agencies, and

in the industries that are sensitive to or directly interested in these risks, to the understand-

ing, assessment, mitigation, and if possible, prediction of these events. Different types of XE

pose different challenges to decision making. Therefore, we have to differentiate between

two kind of events: Rapid (like earthquakes) or Creeping (like global warming)2. Accord-

ing to the literature, these sort of events could be both exogenously (closed systems3) or

endogenously originated (open systems)4. A number of different techniques can be justi-

fiably employed to analyze the extremes of one or more processes. We could make a dis-

∗ This research is supported by a grant from Miur-Firb RBAU01B49F/001
2 Stewart, Bostrom (2002).
3 Closed Systems (“in which all the components of the system are established independently

and are known to be correct”.); Open Systems (“in which all the components of the system

are not established independently or are not known to be correct”).
4 Pielke (2001).
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tinction between methods of statistical description vs. methods highlighting, their causes and

predictability. Whilst for the practitioner it suffices to apply some simple statistical descrip-

tion, or forecasting5, for the researcher and for the “policy maker” the emphasis must be on

the causes and predictability of patterns within crashes. Even if it is only the second kind

of systems which present “deep uncertainty”6, important decisions based on methods ad-

equate for the first kind are often clouded by inherent uncertainty, and in many instances,

efforts to reduce uncertainty have the opposite effect (Pielke 2001). Efforts to reduce uncer-

tainty can lead to discovery of the vast complexities associated with phenomena that evolve

slowly over long periods7. The different approaches are usually considered in a dichotomic

way. We will try to consider here the different hints they could offer to researchers. We be-

gin with a brief review of the classic statistical approach – EVT – and its limits, and then

we consider a different approach proposed on the basis of self-organized criticality (SOC).

We conclude by considering some implications of SOC for dealing with risk. Bankes (1993)

highlighted two kinds of quantitative model: a) A “consolidative” model, (i.e. a controlled

laboratory experiment; the weather forecast and engineering design models) that considers

the system as being closed. It aims to include all relevant facts in a single package and

use the resulting system as a proxy for the actual system. These kinds of models could be

particularly relevant to engineering decision making. b) An exploratory model that is one

in which all components of the system being modeled are not established independently (in-

terdependence) or are not known to be correct. In such a case, there is a “deep uncertainty”

and the model allows for experiments to investigate the consequences of various assumptions,

hypotheses, and uncertainties. . . . (Bankes 1993) They can: shed light on the existence of un-

expected properties, facilitate hypothesis generation and identify limiting, worst-case, or spe-

cial scenarios. The two kinds of quantitative model developed different kinds of approaches.

Mainly: a) Statistical Extreme Value Theory8and b) Extremes and Statistical Mechanics. For

the former, based on Gaussian or its derived distributions, XE are very improbable events re-

acting to exogenous causes, while for the latter, they depend on the internal structure of the

system. The self-organizing capacity of the system gives rise to a power law scaling called

Self-organized Criticality (SOC). A strong difference between the two approaches regards the

fact that the latter tries to explain more the mechanism at the base of their insurgence while

the former tends to forecast more9. The statistics of SOC being non-Gaussian. This is very

much work in progress, but seems to be a potentially fruitful line of research. The approach

is to build from the bottom up. These models tend to be viewed as “exotic” by statistic litera-

ture because of their unusual properties (e.g., infinite moments). An alternate view is based on

mathematical, statistical, and data-analytic arguments and suggests that scaling distributions

5 “Whilst for the practitioner it suffices to apply extreme value theory, a simple statistical

description, here the emphasis is on the causes and . . . ” Adventures on the edge of chaos –

www.iop.org/EJ/abstract/1469-7688/4/2/R01.
6 Bankes (1993).
7 Pielke (2001).
8 For a good survey of approaches regarding the risk of extremes see: Bier and al. (1999).
9 An example of the limits of the classical model can be found in Feigenbaum, J. (2003)

that says: “While the RBC model is useful for explaining the correlations between macro-

economic variables over the course of the business cycle, it does not address why these

variables fluctuate in the first place. The reason why these fluctuations are so mysterious

can be explained using statistical mechanics”.
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should be viewed as “more normal than Normal” as has been advocated by Mandelbrot and

others10.

2 Kinds of Approaches for the Analysis of Extreme Events

Many kinds of possible approaches are summarized in Bier and al. (1999). The most used

approach seems to be the Extreme Value Theory.

2.1 Statistical extreme value theory

Extreme Value Theory (EVT) is an established area in probability theory and mathematical

statistics. It deals with “extreme deviations from the median of probability distributions”11,

of finite time series provided by a very large collection of random observations, assumed to

be independent and identically distributed (i.i.d.), and tries to assess the type of probability

distributions generated by processes. Gumbel (1958) showed that for any well-behaved ini-

tial distribution (i.e., F(x) is continuous and has an inverse), only a few models are needed,

depending on whether you are interested in the maximum or the minimum, and also if the

observations have upper or lower boundaries. It is used for assessing risk for highly unusual

events. Two main variants exist according to which data is considered:

The basic theory approach

This approach12 considers all the data13. Its main tenet14 is that if (Xn)n ∈ N is a sequence

of i.i.d. real-valued random variables, and if the maximum Y n ≡ max(X1, . . . , Xn) suitably

“standardized”, has a limit distribution of n, then this distribution belongs to a generalized

extreme value distribution 15(Von Mises): Pγ (x) = exp

(
−

(
1 + γ x−m

σ x
)−1/γ
+

)
, x ∈ R.

From it we can obtain the standard three extreme value distributions: a) if a+ = max(0, a), so

that γ > 0 we obtain the Freéchet distribution; b) if γ < 0 we obtain the Weibull distribution,

and c) since (1 + 0 · x)−1/0 = e−x the value γ = 0 corresponds to the Gumbel distribution.

a) (Fréchet) PFr (x) =
{

0, x ≤ 0,

e−x−α
, α> 0, x > 0;

10 For some relevant results from probability theory and illustration of a powerful statistical

approach for deciding whether the variability associated with observed event sizes is con-

sistent with an underlying Gaussian-type (finite variance) or scaling-type (infinite variance)

distribution, see: Willinger and al.(2004).
11 For a simple survey, see: http://en.wikipedia.org/wiki/Extreme value theory
12 Burry K.V. (1975). For a review, see: Kotz; Nadarajah (1999) – I Chap.
13 This approach conforms to the first theorem in EVT; see: Fisher and Tippett (1928), and

Gnedenko (1943).
14 Albeverio and al.
15 Einmahl H.J., de Haan L., There are many distributions which do not belong to the three

mentioned domains of attraction. Nevertheless, most applied distributions (Pareto-like dis-

tributions (Cauchy), normal beta, arcsin, ...) do.
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b) (Gumbel) PGu (x) = e−e−x
, x ∈ R;

c) (Weibull) PWei (x) =
{

e−(−x)−α , α> 0, x≤ 0,
1, x > 0

;

where a+ = max(0, a), so that γ > 0 corresponds to the Fréchet distribution, γ < 0 cor-

responds to the Weibull distribution, and since (1 + 0 · x)−1/0 = e−x the value γ = 0

corresponds to the Gumbel distribution.

The parameter γ is called the extremum value index, and it provides important informa-

tion about the tail of the underlying distribution Pγ .t. Often, when there is time-variation in

the results (iid is violated), extremes are approached by “VaR which face time-variation in the

return distribution incorporate volatility updating by ARCH or exponential smoothing mod-

els”. In a more general approach it is possible to “allow for a time-varying conditional tail

index”16.This could be useful for dealing with Time-Varying Parameters (TVP)17.

Peak Over Threshold (POT) or tail-fitting approach

In this variant18 data is only considered when it surpasses a certain threshold u. The approach

has been strongly developed for the interest of the insurance business, where only losses (pay

outs) above a certain threshold are accessible19. One prescribes a high critical level u, and

then studies each occasion the level is exceeded by the time series (Xn), n ∈ N . When an

underlying distribution P belongs to the domain of max-attraction of a standard extreme value

distribution, the distribution of an exceed value, that is, the conditional distribution of the

height of Xk − u given Xk ≥ u , can be approximated up to a linear transformation by a

generalized Pareto distribution.

H (x) =
{

1−(1+γ x)
−1/γ
+ ,γ �= 0 ,

1−e−x ,γ �= 0 ,

Such an approach allows us to consider not only a single absolute maximum (extreme) but

to look at all “disadvantage” events, and even to consider them together with their respec-

tive heights. It is natural to suppose that, provided the threshold level u is high, the common

distribution of the exceed points, as rare events, can be approximated by a distribution of

a Poisson marked process. Many different questions could be considered in the EVT: Inde-

pendent/Dependent Data; Stochastic Processes, Random Fields; Probabilities of Large De-

viations; Exact Behaviour; Maxima and Excursions of Gaussian and Related Processes and

Fields; Relationship between Continuous and Discrete Time.

3 Self-Organized Criticality

This approach is an established area in statistical physics. An extraordinarily wide range of

physical and natural phenomena is power law distributed. The time series follow this kind of

16 For details see: Wagner (2003).
17 The basic EVT could be considered a particular case (the Time-Constant Parameter case)

of the more general TVP approach.
18 This variant is based on the second theorem in EVT; It was pionered by Pickands (1975),

Balkema and de Haan (1974).
19 See: Albeverio and Piterbarg (2006).
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distribution. This has been found in a myriad of fields.20 To explain this occurrence, Bak et

al. (1987) introduced the concept of ’Self-Organized Criticality’ (SOC), long-range spatio-

temporal correlations that are signatures of deterministic chaos. The power law distribution is:

N(s) ≈ s−τ where N is the number of observations at scale s and τ > 0 is a parameter21.

The tenet of this approach is that “events can and do happen on all scales, with no differ-

ent mechanism needed to explain the rare large events, than that which explains the smaller,

more common ones” (Bak, 1996)22. They can all be described as self-organizing systems that

develop similar patterns over many scales. This is the consequence of the possible occurrence

of coherent large-scale collective behaviours with a very rich structure, resulting from the

repeated non-linear interactions among its constituents. For this, they “are not amenable to

mathematical analytic descriptions and can be explored only by means of numerical experi-

ments”23, or simulations and often they are said to be computationally irreducible. In this case

the traditional Decision Theory could not be applied any more.24

4 Differences Between SOC and TVP Literatures

Important differences between SOC and TVP literatures25: Classical extreme value theory is

based on the assumption of i.i.d. observations that, vice versa, is typically violated. This is the

case, for example, for return observations in the finance context26.

The former exploits the data to find a distribution function whereas the latter generally

uses models only for generating statistical signatures independently from actual data series.

More importantly, the former literature is more forecast oriented whereas SOC considers

forecasting extreme events inherently infeasible, even if, there are now some trials concerning

forecasting, through the study of the characteristic changes of the system before the crises.

Very often SOC properties are, with a few special exceptions, known only from simulation

experiments while EVT literature is based on analytical proof.

Even if some authors model VaR-quantiles by an autoregressive conditional equation anal-

ogous to the way conditional variance is modeled in the prominent GARCH(1,1) setting,

by performing numerical simulations and theoretical modeling, Lillo and Mantegna (2004)

show that the non-linear behavior observed in real market crashes cannot be described by a

GARCH(1,1) model.

They also show that the time evolution of the Value at Risk observed just after a major

crash is described by a power-law function lacking a typical scale.

20 From earthquakes (Hainzl et al. 1999) to music (Voss and Clark 1978) passing through wars

(Roberts and Turcotte 1999), economics (Scheinkman and Woodford 1994) and forest fires

(Drossel and Schwable 1992); Dessai S.; Walter M. E. (2000).
21 Scott Moss (2002).
22 For an introductory survey and explanation of SOC see Buckanan M. (2000).
23 Sornette, D. (2002).
24 Bankes (2002).
25 Part of these ideas are taken from Scott Moss (2002) who discuss particularly TVP and

SOC.
26 Wagner N. (2003) concentrates on the issue of time-variation in the underlying return dis-

tribution.
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5 Forecasting and SOC – Why Markets Crash

There are many examples of forecasting based on SOC ideas. An example of this approach

could be Kaizoji who compares the statistical properties of index returns in a financial market,

working an ensemble of stock prices, before and just after a major market crash. He found that

the tail of the complementary cumulative distribution function of the ensemble of stock prices

in the high value range is well described by a power-law distribution, P (S > x) ≈ x−α , with

an exponent that moves in the range of 1.09 < α < 1.27. Furthermore, he found that as the

power-law exponents α approached unity, the internet bubble bursts. This suggests that Zipf’s

law for an ensemble of stock prices is a sign of bubble bursts.

If the system is a SOC, a different decision theory must be used. Following the Bankes

(2002) approach, other kinds of decision theory different from the traditional one based on

the optimality criterion could help to deal with the probability of extreme events, like that

proposed starting from the results obtained by new Agent Based Modeling27. An “ensemble

approach”28 to prediction and not a single specimen data approach could also be used.

6 Conclusion

As a result, our short survey suggests that: (i) the results of pure statistical models could be

erroneous when the system is a SOC; (ii) the forecasting limits of the SOC approach seem

to have been removed; (iii) it seems time to explore more at large, extreme event causes and

apply a different kind of decision theory.
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