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Chapter 1
Physical Geodesy and Its Boundary Value
Problems

Physical geodesy is the science of determining the “figure” of the Earth and its
external gravitational field.

The figure of the Earth is a rather fishy concept. For instance, one might believe
that this should be identified with the external surface of the masses contained in a
solid or liquid form in the body of the Earth. As we see in this definition we already
exclude the Earth atmosphere, the external surface of which is not well defined and
which bears a mass distribution rapidly and irregularly changing in time. Fortunately
its gravimetric signal is rather faint and the largest part of it can be predicted by simple
models, maybe nowadays defined by satellite observations (GRACE), and subtracted
from the observable quantities we will define in the sequel. We shall make use again,
later on, of this particular approach. Nevertheless the external surface of the solid
and liquid Earth is still by far too irregular and rapidly changing. Be it enough to
mention that on the solid Earth we have cities, vehicles, vegetation etc., while on the
ocean we have meters high waves and tides and so forth.

Even in a purely geometrical discipline, like photogrammetry, we soon arrive at
the concept of Digital Terrain Model where houses, vegetation (and moving objects)
are purposely suppressed. Let us mention here once again that the gravity signal of
such objects is mostly negligible, or it can be accounted for by more or less simple
models, for instance ocean tides. So we arrive at a first, provisory definition of Earth
surface “after some obvious smoothing, which is necessary to make it amenable to
mathematical treatment, and also after some averagingwith respect to time, since this
surface undergoes temporal variations ... because of tidal effects, etc.” ([1], Chap. 1,
Sect. 1.1).

Despite the above simplifications, the surface so defined is still too complicated
and subject to changes in time, for instance because of construction works or long-
lasting geological phenomena.

Historically, the need of finding some smoother and more stable surface has led
scientists to define it by means of the gravity field, which, as commented above,
suffers minor variations due to the perturbations reported as examples. The con-
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2 1 Physical Geodesy and Its Boundary Value Problems

cept, initially adopted by Gauss, was the geoid, namely a level surface of the grav-
ity potential that is suitably close to the oceanic surface, although the name was
adopted 50years later, on suggestion of Listing. This has created the historical link
between the determination of the figure of the Earth and of the Earth gravity field. The
determination of the geoid from gravity observations is the problem that G. Stokes
solved in 1849, after a linearization and in spherical approximation, by assuming that:
(a) all the masses above the geoid have been removed; (b) the value of the gravity
modulus is given directly on the geoid itself. This has urged one century of research
by geodesists, trying to find good ways for approximating the effect of the topo-
graphic masses on the observations and downward continuing the observed gravity
values from the actual topographic surface down to the geoid.

Unfortunately both these operations are either uncertain or mathematically non
well-posed.

The first because our knowledge of themass density inside topography (i.e., above
the geoid) is quite poor, and insufficient for the target of the 1cm accuracy which
is expected these days. In fact, most of the methods use a mean constant density of
2.67g/cm−3, which certainly does not represent accurately the geological reality.

The second because, even in free space, the downward continuation of a harmonic
function regular at infinity (or of its functionals) is always improperly posed,meaning
that only under suitable regularization, i.e., at the expense of a loss of resolution, one
can obtain reasonable results.

As such the Stokes approach to the main problem of physical geodesy, though
genial, is not satisfactory and one century later, with the work of Molodensky [1, 2],
we have found a formulation fully acceptable on a theoretical ground.

In fact the formulation of the so-called Molodensky problem, a free boundary,
oblique derivative boundary value problem for the Laplace equation in an external
domain, has primarily the function of setting up a theoretical frame which, once
properly analyzed for its mathematical properties, constitutes a sound reference for
the innumerable approximation methods used nowadays to find, globally or locally,
the figure of the Earth and its gravity field.

At this point, following and developing the thought of Molodensky, Krarup, and
others, we could arrive at our definition of figure of the Earth: this is any surface S
on which we can assume (after a limit process) to know both the value of the gravity
potential W and of its gradient modulus g to a pre-defined degree of accuracy;
in addition at the points of this surface the horizontal coordinates σ ≡ (λ, ϕ) are
assumed to be knownwhile the height of the surface, on a reference ellipsoid, h(σ ), is
one of the unknowns of the problem. The potential W , after subtracting its centrifugal
component that, when the z axis agrees with the rotation axis reads C = 1

2ω
2(x2 +

y2), has to be harmonic outside S and regular at infinity.
Here ω represents as usual the angular velocity of the Earth, supposed to be

directed along the z axis and to be constant in modulus.
So S has to wander either strictly out of the masses or at most to be inside by a

few meters, so that simple corrections can be applied to remove their effects.
In this respect a digital terrain model, i.e., the values h(σ ) roughly achieved for

instance by space methods, is an essential ancillary data set to interpolate on S all
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the pointwise observed gravity values. Also we assume here that over the ocean we
have already converted altimetric data into a gravity data set (see [3], Chap. 9), so
that the above definition applies to the full surface S.

Formally the problem can be stated as follows: given σP = (λP , ϕP) and W0(σP),

g0(σP) for any P ∈ S, find S ≡ {h = h(σP)} and W (σ, h) such that

⎧
⎪⎪⎨

⎪⎪⎩

(a) Δ{W − 1
2ω

2(x2 + y2)} = 0 in Ω ≡ {h > h(σ })
(b) W |h=h(σ ) = W0(σ ) on S
(c) |∇W ||h=h(σ ) = g0(σ ) on S
(d) W − 1

2ω
2(x2 + y2) → 0 for h → ∞

(1.1)

This is called the Scalar Non-Linear Molodensky Problem. For technical reasons,
due to the quasi-translation invariance of the problem [4], it is convenient to introduce
a more stringent asymptotic condition instead of (d), namely

(d’) W − 1

2
ω2(x2 + y2) ∼ μ

r
+ O

(
1

r3

)

r → ∞ (1.2)

introducing in parallel 3 more scalar unknowns in the boundary conditions
{A−1, A0, A1} in (b), namely putting

(b’) W |h=h(σ ) = W0(σ ) +
1∑

k=−1

Akψ1k(σ ) (1.3)

for suitable ψ1k(σ ) (see [3, 5], Sect. 15.2).
In (1.3), and in the sequel, we use the short hand notation μ = G M where G is

Newton’s constant and M is the mass of the Earth.
The problem (a), (b’), (c), (d’) has a unique unconditional solution in a band of

data W0(σ ), g0(σ ), close enough to the spherical configuration, in suitable Hölder
spaces [3, 5].

This problem has a linearized version, which is the one to which most of the
literature refers as theMolodensky Problem. This is traditionally done by introducing
the telluroid, S̃, as the surface described by the ellipsoidal heights h̃(σ ) obtained from
the equation

U (σ, h̃(σ )) = W0(σ ) = W (σ, h(σ )) , (1.4)

where U is the normal gravity potential [3]. The solution h̃(σP) of (1.4) is usually
called normal height of P . The unknown h(σ ) is then split according to

h(σ ) = h̃(σ ) + ζ(σ ) , (1.5)

with ζ(σ ) the height anomaly. This geometrical quantity, though, is related to the
anomalous potential,

T (σ, h) = W (σ, h) − U (σ, h) , (1.6)
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by the Bruns relation

ζ(σ ) = T (σ, h)

γ (σ, h)
(1.7)

with γ (σ, h) = |∇U (σ, h)|, the normal gravity modulus.
By further linearizing the observation equation of g0(σ ) = |∇g(σ, h(σ ))| one

arrives at the relation (see (A.23))

Δg0(σ ) = g0(σ ) − γ (σ, h̃(σ )) = −∂T

∂h
+

∂γ

∂h

γ
T

∣
∣
∣
∣
∣

S̃

. (1.8)

So, considering that T has to be harmonic outside S̃, because the non-harmonic
part of W and U cancel in their difference (1.5), we arrive at the following, oblique
derivative BVP: {∇T = 0 in Ω̃ ≡ {h ≥ h̃(σ )}

− ∂T
∂h + ∂γ

∂h
γ

T
∣
∣
∣

S̃
= Δg0(σ ) .

(1.9)

This has generally to be complemented with an asymptotic condition of the form

T ∼ δμ

r
+ O

(
1

r3

)

(1.10)

with δμ = G(M − M̃), M the actual mass of the Earth and M̃ the mass generating
the normal potential. If we assume that the two are identical, the regularity condition
(1.10) takes the form

T = O

(
1

r3

)

. (1.11)

We shall refer to (1.9) and (1.11) as the linearizedMolodensky problem in classical
form.Once solved, via Bruns relation (1.7) and the definition of height anomaly (1.5),
one can retrieve the Earth surface S, namely that surface on which W (σ ) and g(σ )

were given.
We shall analyze in more detail in the next Chapter the linearization procedure

trying to define precisely what is the band of linearization in which all linearized ver-
sions for the same non-linear problem are equivalent in the sense that the differences
between them are to be considered second order effects.

In this sense, after recalling the definition of the Molodensky and of the Helmert
approaches, we shall prove that, at the level of linearized BVP formulation, they are
totally equivalent. The rest is in fact an attempt of solving the respective BVP by the
so-called downward continuation method.
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Chapter 2
On the Linearization Band

In this chapter we will review the linearization process, following the general
approach of T. Krarup, as presented in his famous three letters on Molodensky’s
Problem (see [1]), but adapted to the case of the Scalar Molodensky Problem, as
introduced in Chap.1 and discussed also in [2], Sect. 2.3.

There are several reasons to do that:

(i) First of all, from a general theoretical point of view, we aim at clarifying that
in the linearization procedure, although the normal potential U and “some tel-
luroid”, {h = h̃(σ )}, are introduced as approximations respectively of the grav-
ity potential W and of the Earth surface {h = h(σ )}, so that the increments
T = W − U and ζ = h − h̃ can be considered as “first-order” infinitesimals,
such a hypothesis cannot be considered as acceptable, unless a suitable com-
patibility condition is introduced relating the orders of magnitude of the two
quantities.

(ii) Based on the above remark, once the order ofmagnitude of T and ζ are assessed,
the Molodensky BVP can be expanded up to second-order terms with the pur-
pose of verifying that they can be neglected for the level of accuracy we aim at.
This defines the linearization band.

(iii) Finally, we shall establish the principle of equivalence stating that all the prob-
lems formulated by linearization of the same scalar non-linear Molodensky
problem, with approximate reference potential and telluroid chosen in the lin-
earization band, are essentially equivalent, up to second order of magnitude
errors.

A similar problem has already been analyzed in literature (see [3]) with a strong
numerical apparatus, taking into account also the spatial behaviour of the gravityfield.
However, in the quoted paper the purpose was more to compare different formula-
tions of the GBVP, arriving at the conclusion that the scalar non-linear Molodensky
problem was the most natural and useful formulation for geodetic purposes. So we
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8 2 On the Linearization Band

build here in a sense on this conclusion. Our approach however is more elementary,
though sufficient to achieve the most important result of the chapter, namely the
definition of a “linearization band”.

Before we get started, let us comment on the meaning of what we will use as
“order of magnitude” for the different quantities, q, usually defined on the Earth
sphere, namely the projection of the Earth surface on the unit sphere.

One first rigorous definition could be the mean square value of the distribution of
q(σ ), namely

O(q) = σ(q) = { 1

4π

∫

q2(σ )dσ }1/2 (2.1)

(σ = (λ, ϕ) spherical coordinates) .

In (2.1) σ is used with two different meanings: to represent spherical coordinates,
but also to mean the r.m.s. of some quantity on the sphere. The two concepts however
should be clear by the context. The disadvantage of using this measure though, is that
the extreme value maxσ |q(σ )| is not easily related to σ(q), in particular considering
that every quantity has generally a different spectral signature when expressed in
terms of spherical harmonics ([2], Sect. 3.8). For instance the value of 3σ(q) is not
always a good guess of the maximum value of q. So, since in the present reasoning
we want to be on the safe side in evaluating the error we should try to find an index
more related to the maximum of q. For this purpose we shall use a value OM(q),
which is a very high value of q, only seldom met on the Earth globe and even more
rarely exceeded. For instance a 90% quantile. Generally we shall agree on a value
that at least satisfies the following relation

OM(q) ≤ max |q(σ )| ≤ 2OM(q) . (2.2)

To avoid ambiguity, in the rest of the Chapter we shall use the following table of
orders of magnitudes:

Table 2.1 Orders of
magnitude of various
geodetic quantities

Quantity q OM (q)

a, b, R 6 × 106 m

e2 150−1 = 6.7 10−3

W 6 × 109 Gal × m

γ, g 103 Gal
∂γ
∂r ,

∂g
∂r 0.3 Gal km−1

∂T
∂r , δg,Δg 0.1 Gal
∂2T
∂r2

6 × 10−4 Gal km−1

δ 3 × 10−4 rad

H 6 × 103 m
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where a, b are the semi-axes of the ellipsoid, R the mean Earth radius, e2 the square
of the first eccentricity, W, g are potential and gravity on the Earth surface, T is the
anomalous potential, δg,Δg are gravity disturbance and anomaly, δ is the deflection
of the vertical, H is the topographic height.

We shall use the symbol∼ to express that OM(q) attains a certain numerical value,
for instance γ ∼ 103 Gal. Noteworthy, with the figures of Table2.1, the following
relations hold

T ∼ 1.6 × 10−5W (2.3)

Δg ∼ 1 × 10−4γ (2.4)

T

γ
∼ 1.6 × 10−5 W

γ
∼ 102 m (2.5)

After these remarks let us go back to the linearization of the scalar Molodensky
problem. We introduce the approximate potential U and some telluroid S̃ = {h =
h̃(σ )}, with σ = (λ, ϕ) ellipsoidal coordinates, such that

W − U |S̃ = T |S̃ (2.6)

ζ(σ ) = h(σ ) − h̃(σ ) (2.7)

should be considered as first-order infinitesimals. Note that by taking U , the normal
potential, as an approximate solution for W , we will define a certain linearization
band, that however could change with a different approximate potential, typically
becoming narrower. Note also that with (2.6), OM(T ) is fixed by Table2.1 and (2.3).

The free-boundary relations to be linearized are

W0(σ ) = U (σ, h(σ )) + T (σ, h(σ )) (2.8)

g0(σ ) = |∇U (σ, h(σ )) + ∇T (σ, h(σ ))| = (2.9)

= |γ (σ, h(σ )) + ∇T (σ, h(σ ))| .

In order to appreciate the order of magnitude of the errors committed by substitut-
ing (2.8) and (2.9) with the linearized relations, we will push the Taylor development
to the second order. For the sake of conciseness we shall use the symbol q ′ to express
the vertical or radial derivative of q, according to the context.

Linearization of (2.8): we have

W0 = U (̃h + ζ ) + T (̃h + ζ ) = (2.10)

= U (̃h) + U ′(̃h)ζ + 1

2
U ′′(̃h)ζ 2+

+ T (̃h) + T ′(̃h)ζ + O3 .

We call geodetic anomaly of the potential W the quantity

DW = W0 − U (̃h) . (2.11)
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We also note that

U ′(̃h) ∼ −γ (̃h)

U ′′(̃h) ∼ −γ ′(̃h) ,

so that (2.10) can be reorganized as

DW = T (̃h) − γ (̃h)ζ − 1

2
γ ′(̃h)ζ 2 (2.12)

+T ′(̃h)ζ + O3

Now consider that in (2.12) we expect T, γ ζ to be the first-order terms, while
1
2γ

′ζ 2, T ′ζ should be the second-order terms, candidate to be neglected.
But this is true only if both T and γ ζ are of the same order of magnitude; since

OM(T ) is fixed, we must introduce then a compatibility condition stating that

γ ζ ∼ T , (2.13)

which, on account of (2.5), implies

ζ ∼ 102 m. (2.14)

Notice that (2.13) is not the Bruns relation (1.7), because in general h̃ doesn’t
need to be the Marussi telluroid defined by (1.4), i.e., by the condition DW = 0,
yet OM(ζ ) has to be 100m, i.e., the telluroid has to be in a band of 100–200m
from the Earth surface at most, if we want the linearization procedure to work. A
larger height anomaly might bring us to false conclusions. The fact that the Marussi
telluroid satisfies the compatibility condition is a lucky empirical fact that is verified
a posteriori, once the solution T has been found and not an a priori statement.

Given the above, we can pass to evaluate the second-order terms and decide
whether they are negligible or not. Before we do that, we must fix the order of
magnitude of the negligible errors, εw, in potential. We state the rule that εw is
negligible if

OM(εw) = 1 cm · γ = 10 Gal × m. (2.15)

In fact, by using the value in Table2.1, and (2.14), we have

1

γ
(
1

2
γ ′ζ 2) ∼ 1.5 mm (2.16)

Moreover,

T ′ζ
γ

∼ 1 cm. (2.17)

As we see, this term is still in our acceptable error range.

http://dx.doi.org/10.1007/978-3-319-46358-2_1
http://dx.doi.org/10.1007/978-3-319-46358-2_1
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Linearization of (2.9): before starting our computation, we recall the differential
formula, valid up to the second order,

|v + dv| = |v| + e · dv + 1

2|v|dv · (I − Pe)dv (2.18)

where

e = v
|v| , Pedv = e(e · dv) .

By applying (2.18) to (2.9), we get

g0 = γ (h) + e · ∇T (h) + 1

2

1

γ (h)
∇T · (I − Pe)∇T + O3 (2.19)

where all quantities are still evaluated at h. Note that in (2.19) one can write, with a
very good order of approximation,

e ∼= −ν , e · ∇T ∼= −T ′ ;

this is because the tangent to the normal field lines is equal to ν on the ellipsoid and
it varies very slowly with altitude, at least at topographic heights.

So we can write, developing to the second order,

g0 = γ (̃h) + γ ′(̃h)ζ + 1

2
γ ′′(̃h)ζ 2 + (2.20)

−T ′(̃h) − T ′′(̃h)ζ +
+1

2

1

γ (̃h)
∇T (̃h) · (I − Pe)∇T (̃h) + O3 .

Again we define the geodetic anomaly of g as

Dg = g0 − γ (̃h) , (2.21)

observing that Dg will coincide with the usual free air gravity anomalyΔg as soon as
h̃ is chosen as the height of the Marussi telluroid. We note as well that the last term,
being already a second-order term, can be directly evaluated at h̃. So, reorganizing
(2.20), we get

Dg = g0 − γ (̃h) = −T ′(̃h) + γ ′(̃h)ζ + (2.22)

+1

2
γ ′′(̃h)ζ 2 − T ′′ζ + 1

2γ (̃h)
|∇h T |2 + O3

where ∇h T is just the horizontal gradient of T . It is immediate to verify that T ′ and
γ ′ ζ are of the same order of magnitude, so we need to analyze second order terms.
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To verify whether the second-order terms are negligible we need to fix the order
of a negligible error in g. We fix such error εg at the level

εg ∼ 30µGal (2.23)

on the basis of the following simplistic reasoning. SinceΔg, with an order of magni-
tude of 100mGal, gives rise to a ζ of the order of 100m, we could expect that, if we
had an error with the same spectral shape as the signal and a mean square value of
10 µGal = 10−4 × 100mGal, the corresponding error in T/γ would be of the order
of 10−4100 m = 1 cm, which is compatible with our previous choice. This however,
as we shall see soon, is a severe restriction that we decide to relax at least by a factor
of 3. The justification of this choice is that we expect the errors we are going to
study (particularly the error related to T ) to have more energy in the higher degrees,
and since the operator that brings from Δg to T is a smoother, we would expect a
more favorable error propagation. Based on that and on the direct experience, we
will accept the threshold (2.23).

We now examine the three second-order terms in (2.22).
We have, in simple spherical approximation, i.e., with γ = G M

r

OM

(
1

2
γ ′′ζ 2

)

∼= OM

(

3γ

(
ζ

r

)2
)

∼= 8 · 10−4 mGal ,

which is indeed totally irrelevant.
Let us consider then OM(T ′′ζ ). The value of OM(T ′′) in Table2.1 is the 90%

quantile of T ′′ at zero level, according to a global model of the anomalous potential.
With this value one has

OM(T ′′ζ ) = 6 × 10−5 Gal = 60µGal.

With our definition (2.1) of OM this is still compliant with (2.23), although it is clear
that this term is mostly concerning us in the linearization procedure. As for the last
term of (2.3), recalling that

|∇h T |
γ

∼= δ ,

we have

OM

(
1

2

|∇h T |2
γ

)

= 1

2
OM(γ δ2) = 4.5 × 10−4 Gal = 45µGal.

Also for this term we are close to the maximum admissible value.
All in all one has the impression that by keeping only linear terms in (2.12)

and (2.20) it is difficult to guarantee that the overall committed error is 1cm as
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a maximum. More probably a few centimeters could be a more realistic figure.
However, in some cases our estimates are really pessimistic. In this sense we want to
elaborate a little more on the term T ′′ζ , not only because it is the one that seems to
have the largest impact if neglected, but also because its introduction into the BVP
would change its nature because of the second-order oblique derivative of T . To
reconduct such a term to a more favourable figure we will use the two well-known
relations, valid in spherical approximation,

T ′ = −2

r
T − Δg , (2.24)

Δg′ = −2

r
Δg . (2.25)

The relation (2.25) in particular gives an approximate vertical derivative of Δg in
free air ([2], Sect. 2.4), as it is correct in the present case because we do not take into
account the effects of the masses between S and S̃.

Combining the above relations, one finds

T ′′ = 2

r2
T − 2

r
T ′ − Δg′ =

= 2

r2
T +

(
4

r2
T + 2

r
Δg

)

+ 2

r
Δg =

= 6

r2
T + 4

r
Δg .

Accordingly, one can write

OM(T ′′ζ ) = 6OM

(
T

r

ζ

r

)

+ 4OM

(

Δg
ζ

r

)

=
= 1.6 × 10−6 Gal + 6.6 × 10−6 Gal = 8.2µGal .

As we see this estimate is almost one order of magnitude less than the one previ-
ously found.

With all the above discussions, we can finally say that, with an error of a few
centimeters in geoid in the worst case, we can substitute the boundary relation of the
non-linear Scalar Molodensky problem with the general linearized version

DW = T (̃h) − γ (̃h)ζ (2.26)

Dg = −T ′(̃h) + γ ′(̃h)ζ ; (2.27)

this estimate substantially agrees with the results of [3].
One has to recall that in the above boundary relations T ′ means ∂T

∂h and similarly
γ ′.

Solving (2.26) with respect to ζ , one gets the generalized Bruns relation



14 2 On the Linearization Band

ζ = T − DW

γ
(2.28)

and substituting into (2.27) one finds

− T ′ + γ ′

γ
T = Dg + γ ′

γ
DW , (2.29)

which has to hold on the telluroid S̃. All the above holds only if the compatibility
condition (2.14) is verified.

After some reflections, the above discussion leads to conclude that the following
equivalence principle holds:

two linearized formulations of the Molodensky problem

⎧
⎪⎨

⎪⎩

ΔT = O in Ω̃

−T ′ + γ ′
γ

T = Dg + γ ′
γ

DW on S̃

T ′ = O
(

1
r3

)
r → ∞

(2.30)

are equivalent if they can be transformed one into the other, with the respective boundary
relations given on telluroids that are in the same linearization band, in particular the two
telluroids should be different from one another by no more that 100–200m.

Notice that any linear problem

Ax = y

can be transformed into an equivalent one

Aξ = η

with ξ = x − x0 and y = y − Ax0. So, what gives rise to the equivalence of two
BVPS of the type (2.30) is in particular that the two telluroids are in the same
linearization band. It is interesting to note that the idea of using a “gravimetric”
telluroid, i.e., one for which Dg = 0, already considered by Krarup [1] and later on
by Sansò [4] formore theoretical reasons, is in fact at the boundary of the equivalence
to the classical Molodensky problem (1.9). In fact the condition Dg = 0 would lead
to pseudo-Bruns relation for ζG (see (2.22))

ζG = T ′

γ ′ ,

http://dx.doi.org/10.1007/978-3-319-46358-2_1
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such that

O(ζG) ∼= 100mGal

0.3 mGal m−1
∼= 300 m.

This is three times the order of magnitude of the Marussi height anomaly

ζM = T

γ
.

Even more absurd is the conclusions that one would get by putting directly

g0 − γ (̃h) + γ ′(̃h)

γ ′(̃h)
[W0 − U (̃h)] = 0 .

On the other hand the reason why such a relation cannot be used as a definition of
the telluroid is precisely that it takes us out of the linearization band.
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Chapter 3
On the Equivalent Linearized BVP’s
of Molodensky and Helmert

What is the Linearized Scalar Molodensky Problem has been clarified already in
Chap.1, so now it is time to look at the Helmert approach, but we will do it distin-
guishing sharply the BVP formulation, consequent upon the main idea of Helmert,
from the downward continuation procedure, which is not necessarily a consequence
of the above.

Helmert’s idea [1, 2] is that “the Earth topography can be replaced by an infini-
tesimal thin layer of an areal density equal to the product of real mean topographical
density and height. This condensation layer could be located anywhere on or beneath
the geoid” [3].

So the Helmert procedure is primarily to change our unknown, the potential W ,
and the data, namely W0(σ ), g0(σ ), by consistently subtracting the effect of the
attraction of topographic masses, with potential Vt (P), and adding back the effect
that wewould have from a single layer on the condensation surface with layer density
(see Fig. 3.1)

ν(σ ) =
∫ P(σ )

P0(σ )

ρ(σ, z)dz , (3.1)

where ρ(σ, z) is the usual 3Dmass density along the normal to the ellipsoid. We will
call the potential of this single layer density Vc(P).

Therefore, the Helmert potential correction amounts to change W (P) by the,
supposedly known, potential

δV H (P) = Vt (P) − Vc(P) , (3.2)

so that our new unknown is now

WH (P) = W (P) − δV H (P) . (3.3)

One important evaluation we take from literature, namely that (cf. [4]).

© The Author(s) 2017
F. Sansò and M.G. Sideris, Geodetic Boundary Value Problem:
the Equivalence between Molodensky’s and Helmert’s Solutions,
SpringerBriefs in Earth Sciences, DOI 10.1007/978-3-319-46358-2_3
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Fig. 3.1 Geometry of
Helmert’s correction

OM

(
δV H

γ

)

= 2 m (3.4)

Weconsider this as our empirical truth, thatwill be basic in our equivalence reasoning.
The literature has first of all considered the difficulty of using (3.1) because of the
uncertainty in the knowledge of ρ(σ, z). For instance in [4] it is considered that since
the whole effect of δV H is less than 2m in geoid, it should be enough to know the
averaged density along the column to an accuracy better than 0.5%. It is recognized
that this might be difficult in mountainous areas, while in flat areas a 5% error in ρ

could be ignored. Although a little simplistic, we accept for themoment the argument
and in fact we assume that ρ is constant, so that (3.1) becomes simply

ν(σP) = ρ[hP + DP ] (3.5)

where hP is the height of P above the ellipsoid, and DP is the depth of the compen-
sation surface C with respect to E : note that in principle DP could be either positive
or negative. Note also that (3.5) implicitly assumes the parallelism of vertical lines. A
more rigorous formula can be found in Heck [3], accounting at least for the spherical
convergence of the vertical.

Equation (3.5) however is worrying in that hP is in fact unknown, since in hP is
hidden the geoid undulation, NP0 , according to the well-known relation (e.g. see [5],
Sect. 2.4).

hP = HP + NP ,

with HP the orthometric height of P . Many authors believe that HP is a known
quantity, because

HP = W0 − WP

g

with g the mean gravity between S and the geoid along the vertical through P .
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That HP might be known at the 1cm accuracy level could be confuted again,
specially because of the lack of knowledge of ρ inside the masses (see the discussion
in [5], Sect. 2.4), however since we are working with a model of constant density,
we don’t dwell on this point. To bypass this difficulty Helmert invented the so-called
second condensation method, by choosing

DP = −NP ,

i.e.,

ν(P) = HPρ . (3.6)

This means that the geoid itself is chosen as the condensation surface. Since the
layer density is now known, we could think that the problem is solved, but this is
not the case, because the geometry is now unknown, since the topographic layer
{NP ≤ h ≤ NP + HP} is floating on the unknown geoid and taking the geometry
into account to compute δV H would change the nature of the linearized BVP.

Usually what is done is to flatten the geoid to a sphere, or even, as we will do
here, to a plane (see [3]). We perform the computation in planar approximation to
bound the order of magnitude of such a flattening error.

We choose an example of a plateau 1000m high, with the underlying geoid and
we map it to the flattened body as in Fig. 3.2.

For the second body the topographic potential can really be computed

V ′
t (P) = Gρ

∫

dSQ

∫ HQ

0

dz
√
s2PQ + (z − HP)2

, (3.7)

where sPQ is the horizontal distance between P and Q. While for the true body one
should have

(a) (b)

Fig. 3.2 a The topographic masses of the example, b the flattened body for which the potential can
be computed
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Vt (P) = Gρ

∫

dSQ

∫ HQ+NQ

NQ

dz
√
s2PQ + (z − H)2

, (3.8)

The difference between (3.8) and (3.5) is the flattening error F , and we would
like to find a bound for it. After some approximations one gets

F(P) = Vt (P) − V ′
t (P) ∼=

∼= Gρ

∫

dSQNQ

⎧
⎨

⎩

1

sPQ
− 1

√

s2PQ + H
2

⎫
⎬

⎭
.

Recalling our definition of OM( ), we can write

|F(P)| ≤ GρOM(N )

∫

dSQ

⎧
⎨

⎩

1

sPQ
− 1

√

s2PQ + H
2

⎫
⎬

⎭
= (3.9)

= 2πGρOM(N )

∫ +∞

0
ds · s

⎧
⎨

⎩

1

s
− 1

√

s2 + H
2

⎫
⎬

⎭
=

= 2πGρOM(N ) · H .

With OM(N ) = 102 m, H = 103 m we get

|F(P)|
γ

∼ 1 cm. (3.10)

Since the majorization is really very crude, we can convince ourselves that, apart
maybe from very high mountains, the flattening error is in fact negligible.

A very similar comment holds true for the other flattening error, due to a change
of the single layer deposited on the geoid G with respect to a similar single layer
deposited on the horizontal plane (Fig. 3.3).

Fig. 3.3 The flattening of
Helmert’s single layer
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The conclusion is that, with the above proviso, δV H (P) can be considered as
computable and known.

Now we put the attention on how to modify consistently the data. Naturally the
potential values W0(σ ) are changed into

WH
0 (σ ) = W0(σ ) − δV H

0 (σ ) ; (3.11)

here the index 0 stems from the fact that the quantities are known or computed on
the surface S at the point P , with horizontal coordinates σ .

When we turn the attention to g0(σ ), we find an obstacle in that g is a nonlinear
functional of W , and so, we have to write

g(P) = |∇W (P)| = |∇WH (P) + ∇δV H (P)| . (3.12)

However, in view of the small size of δV H , we are entitled to linearize (3.12),
putting

g(P) = gH (P) − nH · ∇δV H (P) (3.13)

where gH (P) = |∇WH (P)| and nH is the opposite of the direction of ∇WH (P).
Since nH is very close to n and to ν too, the normal of the ellipsoid, one can rewrite
(3.13) as

g(P) = gH (P) − ∂

∂h
δV H (P) . (3.14)

Taking P on S one can write, paralleling (3.11),

gH
0 (P) = g0(σ ) +

(
∂

∂h
δV H

)

(σ ) . (3.15)

Now, in order to repeat the same reasoning done in Chap.2 and to linearize our
problem with data WH

0 (σ ), gH
0 (σ ) and unknowns W (P), S, we need to define our

“Helmert” telluroid S̃H ,whatwedoby establishing themapping P ∈ S → P̃ H ∈ S̃H

according to

{
WH (hP) = U (̃hH

P )

σP = σP̃ H .
(3.16)

The second of (3.16) says that we use the ellipsoidal normal to create the mapping
(Fig. 3.4). The first of (3.16) is a strict analogous of the Marussi telluroid mapping,
only using WH (P) instead of W (P)

Let us recall that the height anomaly ζP is by definition

ζP = hP − h̃ P , (3.17)

http://dx.doi.org/10.1007/978-3-319-46358-2_2
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Fig. 3.4 Telluroid S̃ and
Helmert telluroid S̃H

so that

hP = h P̃ + ζP = h̃ P + ζP . (3.18)

Similarly we can define the Helmert height anomaly as

ζ H
P = hP − h̃H

P (3.19)

and note that, accordingly,

hP = h P̃H + ζ H
P = h̃H

P + ζ H
P . (3.20)

Combining (3.18) and (3.20) we see that

h̃H − h̃ = −(ζ H − ζ ) . (3.21)

Moreover, as by linearizing W (h) starting from U (̃h) we find the Bruns relation

ζP = T (̃h)

γ (̃h)
, (3.22)

by linearizing WH (h) starting from U (̃hH ), we obtain

ζ H
P = T H (̃hH )

γ (̃hH )
, (3.23)

where the Helmert anomalous potential T H is defined by the relation

WH (P) = U (P) + T H (P) , (3.24)
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On the other hand, by using our basic definition (3.3), we see that

WH (P) = W (P) − δV H (P) = U (P) + T (P) − δV H (P) . (3.25)

Comparing (3.25) with (3.24) we conclude that

T H (P) = T (P) − δV H (P) . (3.26)

Moreover, always from (3.25), we find

WH (h) = U (̃hH ) = W (h) − δV H (h) =
= U (̃h) − δV H (h);

by linearizing, this gives

U (̃hH ) −U (̃h) = −γ (̃hH − h̃) = −δV H

i.e.

h̃H − h̃ = δV H

γ
. (3.27)

Recalling (3.4), we find that S̃ and S̃H are separated by a small height, at most 2m,
and therefore according to our compatibility condition (2.14) we see that telluroid
and Helmert telluroid are in the same linearization band.

We note incidentally that (3.27), taking (3.21) into account, is consitent with what
we get by subtracting (3.22) from (3.23) and neglecting higher order terms, namely

δζ = ζ H − ζ = −δV H

γ
. (3.28)

It is time now to linearize the observation equation for gH
0 (σ ). Following the same

reasoning as in Chap.2 and using (3.23) we find on the Helmert telluroid S̃H ,

gH
0 − γ (̃hH ) = ΔgH

0 = −∂T H

∂h
+ γ ′

γ
T H . (3.29)

This is indeed the Helmert analogous of Molodensky’s linear problem (1.9). The
quantity ΔgH = gH − γ (̃hH ) is called the Helmert gravity anomaly.

It remains only to close the loop and show that solving the BVP (3.29) with
a regular harmonic function T H and computing T = T H + δV H we get in fact a
solution to (1.9).

To do that we first have to move (3.29), that holds on S̃H , to S̃. Since this implies
a vertical shift of at most 2m, we note that the right hand side of (3.29), that is

http://dx.doi.org/10.1007/978-3-319-46358-2_2
http://dx.doi.org/10.1007/978-3-319-46358-2_2
http://dx.doi.org/10.1007/978-3-319-46358-2_1
http://dx.doi.org/10.1007/978-3-319-46358-2_1
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proportional to the first-order infinitesimals T H , ∂T H

∂h , will not change significantly.
To this purpose one can review the arguments of Chap.2 on second-order terms, but
with a much smaller variations in h, since OM(ζ ) = 100 m, while OM(δζ ) = 2 m.

As for the left hand side, we note that gH
0 is observed/computed on S and as such

it is invariant. On the contrary we have, recalling (3.27)

γ (̃hH ) = γ (̃h + h̃H − h̃) ∼= γ (̃h) + γ ′ · (̃hh − h̃) =
= γ (̃h) + γ ′ δV

H

γ
. (3.30)

therefore the left hand side of (3.29), whenwemove from S̃H to S̃, changes according
to the relation

ΔgH = gH
0 − γ (̃hH ) =

= gH
0 − γ (̃h) − γ ′

γ
δV H .

But, recalling (3.15), we can write

ΔgH (̃hH ) = g0 − γ (̃h) + ∂

∂h
δV H − γ ′

γ
δV H (3.31)

= Δg(̃h) + ∂

∂h
δV H − γ ′

γ
δV H .

Substituting in (3.29) we finally get

Δg(̃h) = g0 − γ (̃h) = − ∂

∂h
(T H + δV H ) + γ ′

γ
(T H + δV H ) . (3.32)

As we see (3.32) is exactly the linearized scalar Molodensky BVP, as defined in
(1.9). As far as such a problem has a unique solution, as reported for instance in recent
literature ([5–7]), in suitable Sobolev spaces, we can conclude that T = T H + δV H

and the equivalence between Molodensky’s and Helmert’s approaches is proved.
One last word of caution is useful on the asymptotic behaviour of our solutions

when r → ∞.
We have consistently defined T and fixed our reference system in such a way that

T = O

(
1

r3

)

, r → ∞ .

This means that in the asymptotic development of T we have (see [5])

T00 = 0 , T1,m = 0 m = −1, 0, 1 . (3.33)

http://dx.doi.org/10.1007/978-3-319-46358-2_2
http://dx.doi.org/10.1007/978-3-319-46358-2_1
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The first part of (3.33) is related to the fact that the total mass generating T has
to be 0. The second part of (3.33) says that the origin of the coordinate system is
placed at the barycentre of those masses, or equivalently that the barycentre of the
actual and of the normal fields coincide.

As for the first condition, this is guaranteed by the condensation mechanism
which can conveniently be refined as in [3], when we want to take into account the
convergence of vertical lines. As for the second condition, it can always be imposed,
but then also ΔgH has to satisfy those conditions. Alternatively, one can introduce
three scalar unknowns used to annihilate the first-degree coefficients of ΔgH . This
is called the Hörmander trick also in recent Helmert literature [4, 8].

In any event, introducing a certain number of scalar unknowns to form a linear
combination of functions to be added to ΔgH in the BVP is a condition to obtain
existence and uniqueness of the solution of Molodensky’s problem, under not too
restrictive geometrical conditions on S̃, as shown, e.g., in [6]. As mentioned this is
important to prove that Molodensky’s and Helmert’s BVP’s are equivalent. So we
shall not dwell anymore on this point.
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Chapter 4
On the Equivalent BVPs of Stokes
and Helmert, and Their Relations
to the Molodensky BVP by Analytical
Continuation

As stated in the abstract, we will closely analyze the two different BVPs most often
presented in the literature, namely the HM and the HS problems, and then examine
the equivalence of their solutions. For this reason, this chapter is articulated in two
sections. To make the mathematical derivations easier to follow, especially because
equations and parameters refer to different surfaces or points along the vertical, we
introduce Fig. 4.1 which shows the boundary surfaces and heights for the Stokes and
Molodensky BVPs in their original and in their ‘Helmertized’ versions.

4.1 The Helmert Stokes BVP

We have already seen in Chap.3 that when the topography is condensed onto the
geoid and we work with the Helmert gravity and disturbing potentials (see Eqs. 3.25
and 3.26)

WH = U + T H = W − δV H , (4.1)

T H = T − δV H , (4.2)

where δV H is given by Eq. (3.2), the telluroid is changed to the Helmert telluroid or
co-telluroid S̃H , which is used in the HM BVP (see also Eq.3.29):

∇2T H = 0 outside S̃H

− ∂T H

∂h
+ γ ′

γ
T H = ΔgH = gH (h) − γ (h̃H ) on S̃H (4.3)
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Fig. 4.1 Boundary surfaces
for the Stokes and
Molodensky BVPs

Analogously, the geoid G is changed to the co-geoid GH , which will be the
boundary surface for the Stokes Helmert BVP. The solution of this BVP with given
Helmert gravity anomalies on the co-geoid will provide T H on GH or, by Bruns’s
equation, the co-geoidal undulation NH

NH = T H (Pc)

γ (Q0)
. (4.4)

The boundary condition onGH can be derived as follows. Starting from Eq. (4.1),
we obtain for point Pc

gH (Pc) = −∂WH

∂h

∣
∣
∣
∣
Pc

= −∂U

∂h

∣
∣
∣
∣
Pc

− ∂T H

∂h

∣
∣
∣
∣
Pc

= γ (Pc) − ∂T H

∂h

∣
∣
∣
∣
Pc

. (4.5)

We have made here the acceptable assumption that the derivatives along the ellip-
soidal normal and the plumb line are identical. Furthermore, just like in Chap.3,
we will also assume here that first-order Taylor series expansions are acceptable
approximations when moving vertically between the various boundary surfaces.

Expressing the value of normal gravity at Pc by the linear term of a Taylor series
around point Qo, and taking Eq. (4.4) into account, yields

γ (Pc) ∼= γ (Qo) + ∂γ

∂h

∣
∣
∣
∣
Qo

N H = γ (Qo) + γ ′
γ

∣
∣
∣
∣
Qo

T H (Pc). (4.6)

http://dx.doi.org/10.1007/978-3-319-46358-2_3
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We can now substitute Eq. (4.6) into Eq. (4.5) to obtain

gH (Pc) = γ (Qo) − ∂T H

∂h

∣
∣
∣
∣
Pc

+ γ ′

γ

∣
∣
∣
∣
Qo

T H (Pc). (4.7)

The above provides us with the Helmert gravity anomalies on the co-geoid

ΔgH = gH (Pc) − γ (Qo). (4.8)

Now the Helmert Stokes BVP can be defined analogously to the Helmert Molo-
densky BVP in Eqs. (4.3) as

∇2T H = 0 outside GH

− ∂T H

∂h
+ γ ′

γ
T H = ΔgH = gH (Pc) − γ (Qo) on GH (4.9)

The Helmert gravity value on the co-geoid can be derived from the gravity values
measured on the Earth’s surface by a Taylor expansion (again, keeping the linear
term only) around Pc as follows:

gH (Pc) ∼= gH (P) − ∂gH

∂h

∣
∣
∣
∣
Pc

(HP + δN ) = gH (P) − ∂gH

∂h

∣
∣
∣
∣
Pc

H̃P , (4.10)

where HP is the orthometric height of point P, H̃P is the “orthometric” height of P
measured from the co-geoid, and δN is the indirect effect on the geoid due to the
Helmert reduction, obtained by the Bruns equation as

δN = δV H (Pc)

γ (Qo)
. (4.11)

Writing the Helmert gravity in the gradient term of Eq. (4.10) as the sum of the
Helmert gravity disturbance (see Eq.4.5)

δgH (Pc) = gH (Pc) − γ (Pc) = −∂T H

∂h

∣
∣
∣
∣
Pc

(4.12)

and normal gravity γ (Pc), we obtain using Eq. (4.12)

gH (Pc) = gH (P) − ∂δgH

∂h

∣
∣
∣
∣
Pc

H̃P − ∂γ

∂h

∣
∣
∣
∣
Pc

H̃P

= gH (P) + ∂2T H

∂h2

∣
∣
∣
∣
Pc

H̃P − γ ′(HP + δN ) (4.13)
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and therefore the equation to compute the Helmert gravity on the co-geoid from the
measured gravity values is

gH (Pc) = g(P) + δV H

δh
(P) − γ ′HP − γ ′δNH + ∂2T H

∂h2

∣
∣
∣
∣
Pc

H̃P . (4.14)

It should be noted here that, perhaps more appropriately, it is possible to derive
at the same time the boundary condition in Eq. (4.9) with the Helmert gravity of
Eq. (4.14) in its right-hand-side. To do this, we start by taking the vertical gradient
of Eq. (4.2) and we obtain at point P

− ∂T H

∂h

∣
∣
∣
∣
P

= −∂T

∂h

∣
∣
∣
∣
P

+ ∂δV H

∂h

∣
∣
∣
∣
P

= g(P) − γ (P) + ∂δV H

∂h

∣
∣
∣
∣
P

. (4.15)

Expressing the values of normal gravity and the gradient of T by the linear term
of Taylor series around points Qo and Pc, respectively, yields

γ (P) ∼= γ (Qo) + ∂γ

∂h

∣
∣
∣
∣
Qo

(HP + NH + δN ) = γ (Qo) + γ ′(HP + NH + δN ),

(4.16)

− ∂T H

∂h

∣
∣
∣
∣
P

∼= − ∂T H

∂h

∣
∣
∣
∣
Pc

− ∂2T H

∂h2

∣
∣
∣
∣
Pc

H̃P . (4.17)

Substituting the above expressions into Eq. (4.15) we get

− ∂T H

∂h

∣
∣
∣
∣
Pc

= g(P) − γ (Qo) − γ ′(HP + NH + δN ) + ∂δV H

∂h

∣
∣
∣
∣
P

+ ∂2T H

∂h2

∣
∣
∣
∣
Pc

H̃P .

(4.18)
Finally, using NH from Eq. (4.4), and Eq. (4.18) becomes

− ∂T H

∂h

∣
∣
∣
∣
Pc

+ ∂γ

∂h

∣
∣
∣
∣
Qo

T H (Pc)

γ (Qo)
= − ∂T H

∂h

∣
∣
∣
∣
Pc

+ γ ′

γ
T H (Pc) = ΔgH = gH (Pc) − γ (Qo) =

= g(P) + ∂δV H

∂h

∣
∣
∣
∣
P

− γ ′HP − γ ′δN + ∂2T H

∂h2

∣
∣
∣
∣
Pc

H̃P − γ (Qo) (4.19)

which is exactly the boundary condition on the co-geoid.
In Eqs. (4.14) and (4.19)we recognize, besides themeasured gravity on the Earth’s

surface and the normal gravity on the ellipsoid, the free-air correction

F = − ∂γ

∂h

∣
∣
∣
∣
Qo

HP = −γ ′HP , (4.20)
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the topographic effect of Helmert’s reduction

At − Ac = −∂δV H

∂h

∣
∣
∣
∣
P

(4.21)

computed at point P on the surface, and the indirect effect on gravity

δΔg = − ∂γ

∂h

∣
∣
∣
∣
Qo

δN = −γ ′δN = −γ ′

γ
δV H (Pc) (4.22)

computed from δV H on the co-geoid. This term is typically at the sub-mGal level
and, even though the co-geoid is not known before the solution of the BVP, it can be
computed with sufficient accuracy using orthometric heights.

The computation of the term containing ∂2T H /∂h2 is more problematic, as it
requires the unknown ΔgH , T H or, equivalently, δgH on GH for its computation:

∂2T H

∂h2

∣
∣
∣
∣
Pc

H̃P = −∂δgH

∂h

∣
∣
∣
∣
Pc

H̃P = (−∂ΔgH

∂h
+ γ ′

γ

∂T H

∂h
)

∣
∣
∣
∣
Pc

H̃P . (4.23)

Recalling the linear Taylor series expansions for δgH , ΔgH and T H , we see that
(4.23) can be written as

∂2T H

∂h2

∣
∣
∣
∣
Pc

H̃P
∼= δgH (Pc) − δgH (P)

= ΔgH (Pc) − ΔgH (P) − γ ′

γ
[T H (Pc) − T H (P)] (4.24)

This development shows that this term represents the “analytical (downward) contin-
uation” of the Helmert gravity disturbance from the Earth’s surface to the co-geoid.
In addition, it illustrates the need for an iterative-type of solution, starting from val-
ues on the surface as the initial approximations. This has been studied by Vanicek
et al. [1] and is also discussed here in Chap.5. However, a different andmore rigorous
mathematical interpretation will be given in Chap. 6.

To close this section, we will now show that the boundary condition in Eq. (4.19)
for the HS BVP is equivalent to the boundary condition on the co-geoid for the
classical Stokes BVP. Using the following Taylor expansion around point Pc for the
term containing δV H

∂δV H

∂h

∣
∣
∣
∣
P

∼= ∂δV H

∂h

∣
∣
∣
∣
Pc

+ ∂2δV H

∂h2

∣
∣
∣
∣
Pc

H̃P (4.25)

and substituting into Eq. (4.19) using also Eq. (4.11), we obtain

http://dx.doi.org/10.1007/978-3-319-46358-2_5
http://dx.doi.org/10.1007/978-3-319-46358-2_6
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−∂T H

∂h

∣
∣
∣
∣
Pc

+ γ ′ T
H (Pc)

γ (Qo)
= g(P) + ∂δV H

∂h

∣
∣
∣
∣
Pc

+ ∂2δV H

∂h2

∣
∣
∣
∣
Pc

H̃P

− γ ′HP − γ ′ δV H

γ (Qo)
+ ∂2T H

∂h2

∣
∣
∣
∣
Pc

H̃P − γ (Qo) (4.26)

or

− ∂(T H + δV H )

∂h

∣
∣
∣
∣
Pc

+ γ ′ T
H (Pc) + δV H (Pc)

γ (Qo)

= g(P) − γ (Qo) − γ ′HP + ∂2(T H + δV H )

∂h2

∣
∣
∣
∣
Pc

H̃P (4.27)

Since

∂2(T H + δV H )

∂h2

∣
∣
∣
∣
Pc

H̃P = ∂2T

∂h2

∣
∣
∣
∣
Pc

H̃P
∼= ∂T

∂h

∣
∣
∣
∣
P

− ∂T

∂h

∣
∣
∣
∣
Pc

= −δg(P) + δg(Pc) = −g(P) + γ (P) + g(Pc) − γ (Pc) (4.28)

and
γ ′HP

∼= γ (P) − γ (Pc), (4.29)

we see that Eq. (4.27) reduces to

− ∂(T H + δV H )

∂h

∣
∣
∣
∣
Pc

+ γ ′

γ
(T H + δV H )

∣
∣
∣
∣
Pc

= Δg = g(Pc) − γ (Qo) on GH ,

(4.30)
which is exactly the boundary condition for the classical Stokes BVP on the co-geoid
since T H + δV H = T .

Remark. It can be easily seen that if the Helmert Stokes BVP is set on the geoid G
rather than the co-geoid GH , the boundary condition on G given in the following
Eq. (4.31) can easily be obtained by simply using in Eq. (4.19) Po in place of Pc and
HP in place of H̃P :

− ∂T H

∂h

∣
∣
∣
∣
Po

+ ∂γ

∂h

∣
∣
∣
∣
Qo

T H (Po)

γ (Qo)
= − ∂T H

∂h

∣
∣
∣
∣
Po

+ γ ′

γ
T H (Po) = ΔgH = gH (Po) − γ (Qo) =

= g(P) + ∂δV H

∂h

∣
∣
∣
∣
P

− γ ′HP − γ ′δN + ∂2T H

∂h2

∣
∣
∣
∣
Pc

HP − γ (Qo) (4.31)

This is, for example, the same as Eq. (24) in [7], who derived the boundary con-
dition of the Helmert Stokes problem directly on the geoid.
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4.2 Equivalent Solutions of the Linear Helmert
Molodensky and Helmert Stokes BVPs

As a first step, we will illustrate that the Helmert Stokes boundary values on the
co-geoid can be obtained from the surface Helmert Molodensky ones. By using
γ ′δN = γ ′(N − NH ) in the right-hand side of Eq. (4.19), we can rewrite it as follows:

ΔgH (Pc) = gH (Pc) − γ (Qo) =

= g(P) + ∂δV H

∂h

∣
∣
∣
∣
P

− γ ′(HP + N ) + γ ′NH + ∂2T H

∂h2

∣
∣
∣
∣
Pc

H̃P − γ (Qo) (4.32)

= gH (P) − γ (P) + γ ′NH + ∂2T H

∂h2

∣
∣
∣
∣
Pc

H̃P

Now with the Taylor approximation

γ (P) ∼= γ (Qc) + γ ′ζ H (4.33)

Eq. (4.32) becomes

ΔgH (Pc) = gH (Pc) − γ (Qo) =
= gH (P) − γ (Qc) + γ ′(NH − ζ H ) + ∂2T H

∂h2

∣
∣
∣
∣
Pc

H̃P

= gH (P) − γ (Qc) + ∂2T H

∂h2

∣
∣
∣
∣
Pc

H̃P + γ ′

γ
[T H (Pc) − T H (P)]

= gH (P) − γ (Qc) + ∂2T H

∂h2

∣
∣
∣
∣
Pc

H̃P + γ ′

γ

∂T H

∂h

∣
∣
∣
∣
Pc

H̃P (4.34)

= gH (P) − γ (Qc) + ∂

∂h
(
∂T H

∂h
− γ ′

γ
T H )

∣
∣
∣
∣
Pc

H̃P

Recognizing that gH (P) – γ (Qc) is the Helmert Molodensky gravity anomaly,
we can finally write

ΔgH (Pc) = ΔgH (P) − ∂ΔgH

∂h

∣
∣
∣
∣
Pc

H̃P . (4.35)

We have thus shown that Helmert Stokes anomalies can be obtained by Helmert
Molodensky anomalies by “analytical (downward) continuation”.
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We now present briefly the solution to the HMBVP problem by analytical contin-
uation to point level [2]. The surface Helmert anomalies in Eq. (4.3) are analytically
‘reduced’ from the Earth’s surface to the level surface through point P. Using only
the first Molodensky correction term g1 [2] for the Helmert anomalies yields the
anomalies at point level

ΔgH∗ ∼= ΔgH + gH
1 = ΔgH − ∂ΔgH

∂h

∣
∣
∣
∣
P

(H̃ − H̃P), (4.36)

where we have used (for convenience in the developments that follow) H̃ − H̃P

instead of H – HP or h – hP .
Then the solution for ζ H can be obtained by evaluating at point P Stokes’s integral

operator, denoted here for brevity as S{.}, to obtain T H and then ζ H by applying
Bruns’s equation:

ζ H (P) = 1

γ
S{ΔgH∗ } = 1

γ
S{ΔgH − ∂ΔgH

∂h

∣
∣
∣
∣
P

(H̃ − H̃P)}. (4.37)

Adding the correction δζ H (indirect effect on the telluroid) yields the height anomaly
at P:

ζ(P) = ζ H (P) + δζ(P) = 1

γ
S{ΔgH − ∂ΔgH

∂h

∣
∣
∣
∣
P

(H̃ − H̃P)} + δV H (P)

γ
(4.38)

Remark. It is easy to see that Eq. (4.37) consists of two components: the height
anomaly at the co-geoid by the “downward continuation” of the surface anomalies
to the co-geoid, and the upward continuation of the resulting height anomaly to point
level (see also [3]):

ζ H (P) = 1

γ
S{ΔgH − ∂ΔgH

∂h

∣
∣
∣
∣
P

H̃} + 1

γ
S{ ∂ΔgH

∂h

∣
∣
∣
∣
P

}H̃P)

= ζ H (Pc) + ∂ζ H

∂h

∣
∣
∣
∣
P

H̃P (4.39)

We recognize in the equation above that the first term in the right-hand side is

NH (Pc) = 1

γ
S{ΔgH − ∂ΔgH

∂h

∣
∣
∣
∣
P

H̃}. (4.40)

Thus the geoid can be computed from “downward continued” Helmert Molodensky
surface anomalies as follows:

N (Po) = NH (Pc) + δN (Pc) = 1

γ
S{ΔgH − ∂ΔgH

∂h

∣
∣
∣
∣
P

H̃} + δV H (Pc)

γ
. (4.41)
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We now write the solution for the HS BVP using the gravity anomalies in Eq. (4.19)
or, equivalently, in Eq. (4.35):

N (Po) = NH (Pc) + δN (Pc) = 1

γ
S{ΔgH − ∂ΔgH

∂h

∣
∣
∣
∣
Pc

H̃} + δV H (Pc)

γ
. (4.42)

We note that the “downward-continued” Helmert Molodensky solution of Eq. (4.41)
is formally equivalent to the Helmert Stokes solution of Eq. (4.42) but the gradient
of ΔgH needs to be computed at different surfaces, namely the Earth’s surface and
the co-geoid, respectively.

Remark. If the more usual case of continuation to the geoid instead of the co-geoid is
used, then the solution of the two ‘Helmertised’BVPswill still be given byEqs. (4.38)
and (4.41) but with Po in place of Pc and H , HP in place of H̃ , H̃P . In this case, we
will also show below that the ζ and N we derived are related through the Bouguer
anomaly of point P.

Using orthometric heights in Eqs. (4.38) and (4.41), and taking into account
Eq. (4.40), we can write

ζ(P) − N (Po) = ζ H (P) − NH (Po) + δζ(P) − δN (Po)

= ∂ζ H

∂h

∣
∣
∣
∣
P

HP + δV H (P) − δV H (Po)

γ

∼= −ΔgH

γ
HP + δV H (P) − δV H (Po)

γ

= −Δg − (At − Ac)

γ
HP + δV H (P) − δV H (Po)

γ
(4.43)

For the attractions and potentials of the topography and the condensed topography,
we will use the formulas given in [4] in planar approximation (see also [5]), specifi-
cally Eqs. (A.11) and (A.12) for δV H (P) and δV H (Po), respectively, where we will
keep only their first, most significant terms, and Eq. (A.14) for the difference in the
attraction At – Ac at P. Then the topographic effects are as follows:

δV H (P) ∼= πGρH 2
P , (4.44)

δV H (Po) ∼= −πGρH 2
P , (4.45)

At (P) = 2πGρHP − c(P), (4.46)

Ac(P) = 2πGρHP , (4.47)

whereG isNewton’s gravitational constant,ρ is the density of the topographicmasses
(considered constant) and c is the classical terrain correction. Using Eqs. (4.44)–
(4.48) into Eq. (4.43) and omitting the c term, we obtain
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ζ(P) − N (Po) ∼= −Δg + c

γ
HP + 2πGρH 2

P

γ

∼= −Δg − 2πGρHP

γ
HP = −ΔgB

γ
HP (4.48)

We have thus recovered the well-known expression that related the height anomalies
and the geoid undulations through the Bouguer anomalyΔgB (see also [6], Sect. 2.4):

ζ(P) − N (Po) = −ΔgB
γ

HP . (4.49)

Before closing this chapter, we summarize here the major findings:

• The HMBVP is equivalent to theMolodensky BVP, and the HS BVP is equivalent
to the Stokes BVP.

• The boundary values used in theHSBVPcan be obtained from the boundary values
of the HM BVP by the so-called “analytical downward continuation” process.

• The solutions of the two BVPs are also related by the same process, i.e., the HM
solution continued to the co-geoid is identical, in linear approximation, to the HS
solution.

• The solutions of both the HM BVP and the HS BVP can be obtained by starting
from the surface HM gravity anomalies ΔgH

Δg(P) = g(P) − γ (Q) + ∂δV H

∂h
(P) + γ ′

γ
δV H (P) (4.50)

• They require the direct effect of the Helmert reduction on gravity, δAH , on the
Earth’s surface, and the effect of the Helmert reduction on the potential, δV H ,
either on the Earth’s surface (HM BVP) or on the co-geoid (HS BVP).

• Both BVP solutions require the computation of the gradient of ΔgH . Although
this gradient can be computed with surface HM anomalies as follows

∂ΔgH

∂h
= −ΔgH

P

R
+ R2

2π

∫ ∫

σ

ΔgH − ΔgH
P

l2o
dσ, lo = 2Rsin

ψ

2
, (4.51)

its computation on the co-geoid requires an iterative process (successive approxima-
tions) as ΔgH on the co-geoid are not known before the BVP is solved.

This is the main difficulty with the “analytical (downward) continuation” process,
both from the theoretical and the computational point of view; see next chapter. The
change of boundary approach in Chap.7 will shed some new light into this problem.

http://dx.doi.org/10.1007/978-3-319-46358-2_7
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Chapter 5
The Downward Continuation Approach:
A Long-Lasting Misunderstanding
in Physical Geodesy

Up to now, we have proved the equivalence of Molodensky’s and Helmert’s
approaches in terms of BVP formulation and of their classical solutions by what
is termed the downward continuation method. Now we want to get a closer look at
this method, showing that it is not and it cannot be just a downward continuation.

Let us observe that solving a BVP for the exterior domain Ω̃ means finding
the anomalous potential T in Ω̃ and in particular on its boundary S̃ because from
T (σ, h̃(σ )), through the Bruns relation (1.7), one can derive the height anomaly ζ(σ )

and, subsequently, the shape of the Earth surface, namely h(σ ) = h̃(σ ) + ζ(σ ).
Naturally the knowledge of T in Ω̃ carries much more information, allowing us

to compute all of its functionals like gravity anomalies at points in space, deflections
of the vertical, gravity gradients, etc.; yet, obtaining T |S̃ is a primary goal of physical
geodesy.

However, even if linearized, the BVP is still very hard to solve numerically. The
reason lies in the extremely complicated structure of the boundary.

In fact, let us note that the oceanic surface is very smooth and its separation
from the Earth ellipsoid is of the order of 100 m, i.e., the ellipsoid itself is in the
linearization band and could be used as S̃ in oceanic areas.

On the contrary, in continental areas, amounting to about 1.7 × 108 km2, one has a
totally irregular surface. Even though the significant effect of the topographic masses
below the 1km resolution can be directly computed and subtracted from the data,
yet a 1 km resolution potential T , even restricted to S, requires 1.7 × 108 parameters
as a minimum. Apart from some experimental studies [1–3] in the sense of a direct
numerical solution of the BVP by the boundary elements method, the most widely
used potential model at present, namely the EGM08 global model (see [4]), has a
∼10km resolution and is described by some 4.6 × 106 parameters.

Even EGM08 could be computed only resorting to what is called the downward
continuation method, which is believed to shift the data from S̃ down to the ellipsoid
so that subsequent simpler least squares or numerical quadrature techniques can be
further applied (see [5]).

© The Author(s) 2017
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As we have seen, both lines of thought, Molodensky’s and Helmert’s, in their
evolution have resorted to the downward continuation concept as an intermediary
step to change the boundary and then apply some simpler analytical solution based
either on known systems of orthogonal functions (typically spherical harmonics) or
on simple integral kernels (e.g., Poisson, Stokes, Hotine, etc.).

At this point, two statements have to be clearly made:

(a) mathematically the downward continuation is a completely (exponentially)
unstable operation that cannot be performed numerically, unless we apply some
kind of stabilization, typical for instance of Tikhonov methods or stochastic
methods, like collocation;

(b) on the contrary, both approaches (Molodensky’s and Helmert’s) apply in some
sense the downward continuation in away that is capable of producing significant
numerical results, verified by practical observations.

The conclusion can only be that when we apply the downward continuation in
geodesy we automatically exploit some stabilization tool that protects the numerical
results from instability. In other words, it means that we are in reality solving a
different problem, which leads to a solution close to the correct one, or we solve a
problem, leaving some errors that are reduced to zero by convenient iterations.

The formalization of the above “true” problems solved in geodesy will be the
object of following chapters. Here we concentrate on understanding the properties
of the DC either through the masses or in free air, namely a space free of masses.
Indeed this item has been treated in geodetic and geophysical literature. See for
instance [6–8] and the references therein, as well as [9, 10] as examples of the
applied geophysical side. Here, however, we do not try to find a more clever way of
performing the DC; we rather want to study its elementary mathematical properties
to make clear that there is no way to avoid (i.e., eliminate) the instability of the
problem. In fact one can at most control it.

The first clear perception of the intrinsic instability of DC can be achieved by
looking at the simple formula representing a harmonic function in the complement
of a sphere.

Let the support of the masses generating a certain potential u, be contained into
the open sphere BR{r < R}, with boundary SR . Then (see [11], Sect. 3.4) it is well-
known that the following representation holds:

u(r, σ ) = μ

R

+∞∑

n=0

n∑

m=−n

unm

(
R

r

)n+1

Ynm(σ ) (5.1)

where μ = GM , M is the total mass generating u, σ = (λ, ϕ) are the spherical
longitude and latitude, {Ynm(σ )} is the set of fully normalized spherical harmonics,
with respect to the (real) scalar product in L2

σ , i.e.,

(u, v)L2
σ

= 1

4π

∫

u(σ )v(σ )dσ (5.2)
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and

dσ = cosϕdϕdλ .

With the above choice of constants, the spherical coefficients unm = unm(R) of u
are purely non-dimensional.

Now if we compute u(r, σ ) on an outer sphere SR+δR we see that

(u(R + δR, σ ),Ynm(σ )) = unm(R + δR) = unm(R)

(
R

R + δR

)n+1

. (5.3)

This means that if we identify functions in L2(SR) with functions in L2
σ , i.e., we pull

back u(R, σ ) as

u(σ ) = u(R, σ ) , (5.4)

and we do the same with functions in L2(SR+δR), i.e.

v(σ ) = v(R + δR, σ ) , (5.5)

we can consider the correspondence between u(R, σ ) and u(R + δR, σ ), namely
the upward continuation operator U defined by

Uu = U
∑

n,m

unmYn,m(σ ) =
∑

n,m

(
R

R + δR

)n+1

unmYnm(σ ) , (5.6)

as an operator acting from L2
σ into L2

σ . This operator is indeed symmetric (we could
also say self-adjoint, but we are working only with spaces of real functions) and its
eigenvalues and eigenfunctions are

U ∼
(

R

R + δR

)n+1

; {Ynm(σ ); m = −n, . . . , 0, . . . n} . (5.7)

This shows at once that, since
(

R
R+δR

)n+1 → 0 for n → ∞,U is a compact oper-
ator. Notice that no eigenvalue is equal to zero and so U is invertible: by definition
the inverse U−1 is the downward continuation operator

D = U−1 . (5.8)

But then D is an unbounded operator, meaning that:

(a) the domain of D is not the whole L2
σ . This is because {UL2

σ } is a strict subset of
L2

σ , densely contained in such a space;
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(b) there are sequences in L2
σ that tend to zero while their counterimage through D

tends to infinity: for example

un(σ ) =
(

R

R + δR

)(n+1)/2

Yn,0(σ ) ,

such that

‖ un ‖2L2
σ
=

(
R

R + δR

)n+1

→ 0 ,

while

vn(σ ) = Dun =
(
R + δR

R

)(n+1)/2

Yn,0(σ )

so that

‖ vn ‖2L2
σ
=

(
R + δR

R

)n+1

→ ∞ .

The geodetic relevance of these elementary statements is the following:
given any L2

σ function f on SR+δR it is not true that we can find its DC to SR , i.e.
it is not true that in general we can find a function harmonic down to SR of which
the given function is the trace on SR+δR . Indeed, we can find a sequence { fn} in L2

σ

of functions which on the contrary can be continued down to SR (which is basically
the Runge–Krarup theorem, see [11], Sect. 3.5) but while the convergence of fn to
f on SR+δR is granted, we expect that their image on SR will be not convergent and
possibly even divergent.

To be specific, we will examine the following example.
Let

f (r, σ ) =
∑

n,m

1

(1 + n2)

(
R + δR

r

)n+1

Ynm(σ ) ;

as it is clear f (R + δR, σ ) ∈ L2
σ , since

‖ f (R + δR, σ ) ‖2L2
σ
=

+∞∑

n=0

2n + 1

(1 + n2)2
< +∞ .

Now f (r, σ ) can be approximated by the finite sum function

fN (r, σ ) =
N∑

n,m=0

1

(1 + n2)

(
R + δR

r

)n+1

Ynm(σ )
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in such a way that

lim
N→∞ ‖ f (R + δR, σ ) − fN (R + δR, σ ) ‖2L2

σ
= 0 .

Note that each fN , for N fixed, as a finite sum of spherical harmonics, is regular on
any sphere outside the origin.

On the other hand, one has obviously

lim
N→∞ ‖ fN (R, σ ) ‖2L2

σ
= lim

N→∞

N∑

n=0

2n + 1

(1 + n2)2

(
R + δR

R

)2n+2

= ∞ .

Such elementary example is well present and formally understood in geodetic
literature; however, its relevance is sometimes overlooked for several reasons that
we try to examine:

(i) The example is deemed maybe too elementary because it involves only a spher-
ical geometry and not realistic surfaces. The observation is inconsistent since,
as proved in Appendix A, defining in general the upward continuation operator
U between two surfaces Se and Si (one external, the other internal) it turns out
that, though non self-adjoint, U is a compact invertible operator, with dense
image in L2(Se), so that its inverse D is unbounded, and the statements made
above hold unaltered.

(ii) Sometimes theDC procedure is believed to be a pointwise operation, performed
by a Taylor development from the upper point down to the internal surface. We
shall dwell in Chap. 7 on such a procedure and its correct interpretation in terms
of pseudo boundary value problems. However, we can comment already here
that if the Taylor point P is in the harmonicity domain, then u(P) is in fact a
real analytic function in a neighborhood of P , and therefore the Taylor series
is convergent. However, its use implies that we do know all its derivatives in P
and this is indeed an awfully improperly posed problem. Naturally truncating
the Taylor series is a powerful regularizer of this improperly posed problem,
however this leaves residuals between data and model and only iterations can
reduce them. The item of convergence of such iteration will be discussed later
on.

(iii) One could also claim that the successful numerical experience of global mod-
els, in particular of the EGM08 model with its high resolution of 10km on
ground, computed by reducing data to the ellipsoid, shows that DC can in any
way produce good results. The point, however, is that the DC for EGM08 is
performed by a local least-squares collocation procedure which is in fact a
regularized approach based on a statistical technique. Furthermore, at a very
high degree the model is a truncated series, namely an approximate solution
in a finite dimensional space, so that compact operators and their inverse can
become indeed manageable in a finite dimensional space. This is in fact one
of the most popular regularization procedures, offering good results when the

http://dx.doi.org/10.1007/978-3-319-46358-2_7
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truncation degree is wisely chosen on the basis of the resolution and accuracy
of the data.

(iv) Finally, one could claim that after all one can penetrate down the surface S into
the masses by using Bruns equation ([11], Sect. 2.3) or better its version for the
gravity anomaly

∂Δg

∂h
= −2C(h)Δg(h) + 4πGρ , (5.9)

coupled with the other well-known equation

∂

∂h

(
T

γ

)

= −Δg

γ
, (5.10)

as discussed in ([11], Sect. 2.4). Namely this seems to imply only the integration
of ordinary differential equations. However this is first of all false, because the
mean curvature C(h) of equipotential surfaces hides as a matter of fact the
horizontal Laplacian of W ([12], Sect. 2.3). But even assuming that there is a
constant C0

∼= 1
R , such that O(C − C0) ∼ 10−3C0 (see [11], formula (2.128)),

namely transforming (5.9) into

∂Δg

δh
= −2C0Δg + 4πGρ (5.11)

and assuming that (5.10) could be simplified to

∂T

∂h
= −Δg , (5.12)

one can see that the instability of DC is clearly displayed in (5.11). In fact the
negative sign of the constant coefficient 2C0, says thatΔg decays exponentially
going upward (dh > 0) and therefore it increases exponentially going down-
ward (dh < 0).
Considering that, with P the point on the surface S,

∣
∣
∣
∣
hP − h

R

∣
∣
∣
∣ ≤ 10−3

for topographic heights, one can express the solution of the two equations as
(see [11], Sect. 2.3)

Δg(h) = ΔgP [1 + 2C0(hP − h)] − 4πGρ(h p − h) (5.13)

T (h) = T (P) + ΔgP [(hP − h) + C0(hP − h)2] +
−2πGρ(hP − h)2 . (5.14)
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Again, in such equations the polynomial functional shape still keeps the insta-
bility character, although it is clear that each term is rather small in the topo-
graphic layer, apart form high mountains where T (h)−T (P)

γ
can amount to some

decimeters.

Before going to the conclusion, one remark is in order: (5.14) shows that if we
abandon the strict hypothesis that ρ is constant, but we assume for instance that,
specially in mountainous areas, it can have fluctuations up to 10%, we find that the
corresponding error in T (0)−T (P)

γ
due to the constant density model can amount up to

1cm at 1km height, 4 cm at 2km height and so forth. In other words, this errors is
small but not negligible in such areas.

Concluding the discussion of this Chapter we arrive at the following statement:
strictly speaking the DC of the anomalous potential T (P) below the Earth surface
S is mathematically impossible, being plagued by an exponential divergence with
depth. Yet the introduction of some a-priori information or the use of some suitable
mathematical trick (Tikhonov theory, collocation, etc.) can help in stabilizing the
solution, although the so derived potential is uncertain and unreliable at cm-level
between S and the geoid. Yet there is hope that the numerical solutions derived up to
now can be taken as consistent estimates in the sense that increasing the surface
information, with a continuous limit in mind, we might expect that our estimates
behave exactly as in the example presented at the beginning of the Chapter, namely
they converge to the correct solution from the surface S upward, while they have an
increasingly fuzzy behavior between S and the reference sphere S0.

The next two chapters are devoted to the study of possible interpretations of the
actual practice, showing that this can have a more sound mathematical basis.
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Chapter 6
The Change of Boundary Approach

In this chapter, we will try to show that what is called downward continuation is
in reality something different, namely an iterative solution based on the change of
boundary (CB) approach.

The concept has been illustrated first by Sansò [1] for the simple example of two
concentric spheres, for which the theory is rather clear. This will be presented and
further developed here, as well.

The general casewith an internal sphere and an external, general surface (telluroid)
is not yet completely proved, although on the basis of the analysis performed in the
Appendix A we could say, by a perturbative argument with a first order theory in the
topographic heights compared to the Earth radius, that the CB approach should be
valid too, at least for global models of finite maximum degree.

One further comment of historical nature is that what we shall do here is a formal-
ization of a method that has been in fact used numerically in building the first high
resolution global model, namely the model of Wentzel [2], with a maximum degree
up to 1800.

Since our problem is essentially of Dirichlet type, as defined in the previous
Chapter, we can focus the discussion of the CB approach for such a problem.

We do it first in the simplest form, which is basically illustrated by the scheme
in Fig. 6.2. We assume to have a star-shaped surface S̃ ≡ {r = R(σ )}, where R(σ ) is
for instance a Lipschitz function. Moreover, we define a sphere S0 totally internal to
S̃ ; S0 ≡ {r = R0} with R0 < minσ R(σ ) (see Fig. 5.1).

Note that a shift along a radius creates a bi-univocal correspondence between
three points (1, σ ), on the unit sphere, (R0, σ ) on S0, and (Rσ , σ ) on S̃, so that any
function on S̃ can be considered too as a function of σ only, i.e. it can be pulled back
to the unit sphere (Fig. 6.1).

© The Author(s) 2017
F. Sansò and M.G. Sideris, Geodetic Boundary Value Problem:
the Equivalence between Molodensky’s and Helmert’s Solutions,
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Fig. 6.1 Geometry of the
CB

The iterative procedure envisaged as Change of Boundary approach is as follows:

1. Start from f (σ ) on S̃.
2. Pull back f to S0, i.e., consider the same f (σ ) on S0, so the pull back operator in

this case is just the identity, I .
3. Solve the Dirichlet problem for S0 and f (σ ), namely apply the Poisson integral

to f (σ )

u1(r, σ ) = Π f .

4. Take the trace of u1 on S̃,

u1(σ ) ≡ Γ u1(r, σ ) ≡ u1(Rσ , σ ) .

5. Compute the residual, or error, r1(σ )

r1(σ ) = f (σ ) − u1(σ )

then iterate.

The procedure is represented in Fig. 6.2 where the sets S0 ≡ {r = R0},
Ω0 ≡ {r > R0}, S̃ ≡ {r = R0}, tell us where the functions in the columns are defined.

We shall call V the operator leading to u1(σ ) from f , as well as to u2(σ ) from r1
and so forth

V = Γ ΠPB , (6.1)
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Fig. 6.2 The iterative
scheme of the CB

whenPB = I as in the present case V = U, the upward continuation operator already
discussed in Chap. 5 and in the Appendix.

As we can see, the following iterative relations hold:

r� = (I − U)�f = (6.2)

= r�−1 − u� =
. . . . . . . . . . . .

= f −
(

�∑

k=1

uk

)

.

From (6.2) it follows that if we can prove that

lim
r→∞ r� = lim

�→∞(I − U)�f = 0 (6.3)

in L2
σ , then we also have

f (σ ) =
+∞∑

k=1

uk(σ ) , (6.4)

http://dx.doi.org/10.1007/978-3-319-46358-2_5
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the series being convergent in L2
σ , so that the corresponding harmonic series of the

uk(r, σ ) will also converge to the solution of the Dirichlet problem with f (σ ) as
boundary data, according to well-known theorems [3–5]. This is illustrated by the
following example.

Example 6.1 Assume S̃ is a sphere of radius R̃. In this case, the upward continuation
operator U is just

Ũf =
∑ (

R0

R̃

)n+1

fnmYnm(σ ) ,

so that I − Ũ is given by

(I − Ũ)f =
∑

[

I −
(
R0

R̃

)n+1
]

fnmYnm(σ ) .

We note that (I − Ũ) is selfadjoint with eigenvalues

[

I −
(
R0

R̃

)n+1
]

so that its

spectral radius is just 1 and therefore

‖ I − Ũ ‖L2
σ
= 1 .

On the other hand, ifwe restrict I − Ũ to the finite spaceL2
N , spanned by {Ynm ; n ≤

N}, we have
‖ I − Ũ ‖L2

N
= qON =

[

1 −
(
R0

R̃

)N+1
]

. (6.5)

Moreover, if we put, with obvious notation,

I − Ũ = (I − Ũ)N + RN (6.6)

we see that L2
N is invariant under (I − Ũ)N and the orthogonal complement of L2

N ,
i.e., (L2

N )⊥ is invariant underRN . Furthermore, (I − Ũ)N andRN commute and their
product is always zero:

(I − Ũ)NRN = RN (I − Ũ)N = 0 . (6.7)

We also observe that

‖ RN ‖= sup
N<n

[

1 −
(
R0

R̃

)n+1
]

= 1 . (6.8)
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Consequently we have

(I − U)� = (I − Ũ)�N + R�
N (6.9)

with
‖ (I − Ũ)�N ‖≤ q�

ON (6.10)

and
‖ R�

N ‖≤‖ RN ‖�= 1 . (6.11)

Now let f be any function in L2
σ , then, after fixing an arbitrary ε > 0, we can find N

such that

f = fN + rN , fN ∈ L2
N , rN ∈ RN

and

‖ fN ‖≤‖ f ‖ , ‖ rN ‖≤ ε .

Therefore, recalling (6.9) and (6.10)

(I − Ũ)�f = (I − Ũ)�N fN + R�
NrN (6.12)

and we have
‖ (I − Ũ)�f ‖≤ q�

ON ‖ f ‖ +ε . (6.13)

Taking the upper limit of (6.13) we get

lim
�→∞ ‖ (I − Ũ)�f ‖≤ ε ,

and, given the arbitrariness of ε, it has been proven that

lim
�→∞(I − Ũ)�f = 0 .

Unfortunately, the general case where S̃ is not a sphere, does not allow us to draw
such clear conclusions. However, the analysis reported in the Appendix A shows
the following interesting result. Let R0, S0 be as before and let S ≡ {r = Rσ } be our
surface such that (see Fig. 6.3)

R0 < R− = minRσ < MaxRσ = R+ ;

call Δ = R+ − R−, then, at least to the first order in Δ
R0
, one has (according to what

we have called the Sandwich conjecture (see (A.65))
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Fig. 6.3 The general
geometry of CB

‖ I − U ‖L2
N
≤

[

1 −
(
R0

R−

)N+1
]

< 1 . (6.14)

Naturally in this case the operator U

Uf =
∑ (

R0

Rσ

)n+1

fnmYnm(σ ) (6.15)

is not anymore selfadjoint, nor {Ynm(σ )} are its eigenfunctions. Consequently the
nice orthogonal decomposition (6.6) does not hold, nor the powers (I − U)� can be
expressed in an elementary way as in (6.12).

However, as observed at the end of Appendix A, if we restrict our analysis to L2
N ,

namely we restrict I − U changing it into PN (I − U)PN = PN − PNUPN , where PN

is the orthogonal projection onto L2
N , then (6.14) tells us exactly that PN (I − U)PN

is a contraction for any fixed N . This means that if we start with a global model at
maximum degreeN and at each step we project the result on L2

N , then the sequence of
the downward computed potentials uk(r, σ ) provides a convergent series (see (6.2)
and (6.3)). The result is not sharp and we cannot call it a theorem, however it seems
to provide a reasonable justification of the CB approach and of its convergency for
global models.

One might object however that in practice, before iterating, it is common to pull
back the values of f (σ ) from S̃ to S0, not just shifting them along the radius, but
rather by using a Taylor development up to some order.

We shall see, by continuing the Example 5.1 of the two spheres, that in fact such
operation is a booster of the convergency, in the sense that with the above pull back
operator the rate of convergence is higher.

http://dx.doi.org/10.1007/978-3-319-46358-2_5
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Fig. 6.4 The pull back from
(̃R, σ ) to (R, σ )

Example 6.2 We assume to be in the same situation as in Example 6.1.
However we define in this case a pull back operator PB, through the relation (see

also Fig. 6.4)

v(R0, σ ) = u(̃R, σ ) − δR
∂

∂r
u(̃R, σ ) + 1

2
δR2u′′(̃R, σ ) = PBu (6.16)

Naturally PB could be defined by a higher order Taylor formula, yet (6.16) is
sufficient to illustrate our point. In fact, note that if

u(̃R, σ ) =
∑ (

R̃

r

)n+1

unmYnm

then

PBu =
∑

[

1 + (n + 1)
δR

R̃
+ 1

2
(n + 1)(n + 2)

(
δR

R̃

)2
]

unmYnm(σ )

=
∑

bnunmYnm(σ )

where bn > 1.
Therefore the spectrum of the operator

V = U · PB ,

is now

λn(V ) ∼
(
R0

R̃

)n+1

bn

and so

λn(I − V ) ∼ 1 −
(
R0

R̃

)n+1

bn .
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Let us explicitly note here that we always have

bn <
1

(

1 − δR

R̃

) =
(
R̃

R0

)n+1

so that it is also

(
R0

R̃

)n+1

bn < 1 ;

therefore λn(I − V ) are always positive.
Accordingly, if we restrict I − U to L2

N , we have

‖ I − V ‖L2
N
= 1 −

(
R0

R̃

)N+1

bN < 1 −
(
R0

R̃

)N+1

=‖ I − U ‖L2
N

and the acceleration of (I − V )�L2
n
to zero is proved.

The conclusion of the Example is that the application of a PB operator of Taylor
type is useful to improve the performance of the CB approach. The same problem
should be studied for a general geometry.
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Chapter 7
The Pseudo-Boundary Value Problem
(ψ-BVP) Interpretation

There is a first interpretation of the method of “stabilized” downward continuation
that, at least up to the linear term, justifies its application. This has been proposed
in [1], and consists basically in solving a different problem that approximates the
given BVP with another one where boundary values of the unknown potential u
are combined with the vertical derivative of u but at points inside the harmonicity
domain, i.e., out of the boundary. For this reason such an interpretation could be
called an out of boundary or pseudoboundary value problem.

As explained hereafter we can limit ourselves to examine the Dirichlet BVP.
As a starting point, let us note that the actual geodetic BVP can be successfully

analyzed as a perturbation of the so-called simple Molodensky problem, which is
nothing but the spherical approximation of the above [2].

In such an approximation, one has

∂T

∂h
∼ ∂T

∂r
= T ′ ; γ ′

γ
∼ −2μ/r3

μ/r2
= −2

r
, (7.1)

so that the problem becomes

⎧
⎨

⎩

ΔT = 0 outside S̃
−T ′ − 2

r T = Δg + a
r2 + b·r

r4 on S̃
T = 0

(
1
r3

)
r → ∞

(7.2)

Note that the parameters (a,b) are introduced to compensate the loss of zero and
first order harmonics for T , implicit in the third equation of (7.2).

A significant step forward in the study of (7.2) has been accomplished by the
so-called Prague method of Krarup [3], in which it is observed that the potential

© The Author(s) 2017
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v = r
∂T

∂r
+ T (7.3)

has to be harmonic too, in the same domain where T is.
In this case in fact we can transform (7.2) into a Dirichlet problem, i.e.,

⎧
⎨

⎩

Δv = 0 outside S̃
v = −rΔg + a

r + b·r
r3 on S̃

v = O
(
1
r3

)
r → ∞ .

(7.4)

Furthermore, it is enough to call

u(r, σ ) = v(r, σ ) − a

r
− b · r

r3

to realize that u is just the regular solution of a Dirichlet problem, without any further
unknown parameters and special asymptotic conditions, i.e.,

{
Δu = 0 outside S̃
u = f (σ ) on S̃

(7.5)

( f = −rΔg) . (7.6)

In essence, the idea of theψ-BVP is that, instead of claiming that a known function
f (P), with P ∈ S is the value attained by u on S, we just say that at P0 the projection
of P on S0 ≡ {r = R0}, the value of u is approximately

u(P0) ∼= u(P) − h
∂

∂r
u(P) = f (P) − h

∂u(P)

∂r
, (7.7)

with h = r − R0 (see Fig. 7.1).
Indeed in doing so we implicitly assume that u(P) is harmonic down to S0, but

let us underline once more that this does not mean that we downward continue the
true potential, only that we approximate the true potential by another one harmonic
outside the Bjerhammer sphere S0, which is the solution of an approximate problem.

Fig. 7.1 Geometry of the
ψ-BVP
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This ψ-BVP then reads: find u, regular at infinity, such that

{
Δu = 0 in Ω0 ≡ (r > R0)

u(R0, σ ) + h(σ ) ∂
∂r u(R0 + h(σ ), σ ) = f (σ ) on S0

(7.8)

We seek a solution of (7.8) in the topology of harmonic functions with boundary
values in C(S0), i.e., continuous with the sup norm.

In fact (7.8) can be reduced to a simple integral equation for the boundary trace

u0(σ ) = u(R0, σ ) . (7.9)

Noting that one can write, with the help of the Poisson function (see Appendix A,
(A.31))

U (σ, σ ′) = 1

4π

R0[(R0 + hσ )2 − R2
0]

[(R0 + hσ )2 + R2
0 − 2R0(R0 + hσ ) cosψσσ ′ ]3/2 , (7.10)

the operator

hσ

∂

∂h
u(R0 + hσ , σ ) = K [u0] = (7.11)

=
∫

K (σ, σ ′)u0(σ ′)dσ ′ ,

has kernel K (see [4], Sect. 1.18),

K (σ, σ ′) =

= hσ R0
4π

[5R2
0(R0 + hσ ) − (R0 + hσ )3 − R0(R0 + hσ )2 cosψ − 3R3

0 cosψ]
[(R0 + hσ )2 + R2

0 − 2R0(R0 + hσ ) cosψ]5/2 . (7.12)

By using the operator K we can re-write the second equation of (7.8), simply as

u0 + K [u0] = f . (7.13)

If (7.13) has a solution, then u is just the solution of the Dirichlet problem with
boundary values u0(σ ).

The key point is that it is easy to show that (7.13) has one and only one solution
u0 ∈ C(S0), when f ∈ C(S0). This fact has determined the present unusual norm
choice. In fact, in this case one has, introducing polar coordinates (α, ψ) on the
sphere,

‖ K ‖ ≤ sup
σ

∫

dσ ′|K (σ, σ ′)| = (7.14)

= sup
σ

∫ 2π

0
dα

∫ π

0
|K (σ, σ ′)| sinψdψ
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Since for fixed σ, K (σ, σ ′) does not depend on α but only on ψ , namely

K (σ, σ ′) = K (σ, ψσσ ′) ,

we can write (7.14) as

‖ K ‖≤ sup
σ

2π
∫ π

0
|K (σ, ψ)|dψ ≡ qσ . (7.15)

Now it is just matter of a patient exercise of integration to prove that ‖ K ‖< 1,
so that K is a contraction operator and, as claimed before, (7.13) has one and only
one solution in C(S0).

To work out (7.15) it is convenient to introduce the notation

ησ = 1 + hσ

R0
, (7.16)

as well as the change of variable cosψ = t , to the effect that we have now to compute

q = η − 1

2

∫ 1

−1

|5η − η3 − (η2 + 3)t |
[1 + η2 − 2ηt]5/2 dt =

= η − 1

2

η2 + 3

(2η)5/2

∫ 1

−1

|a − t |
(b − t)5/2

dt (7.17)

where

a = 5η − η3

η2 + 3
, b = η2 + 1

2η
. (7.18)

We note that physical values of ησ are confined to the layer

1 ≤ η ≤ 1.0015 , (7.19)

but, as we shall see, supσ qσ < 1, at least for η ≤ 9. In any event, we will find our
inequality valid even for η = 1, meaning that for the present problem S can be partly
coinciding with S0. Without reproducing all the cumbersome calculations, let us
report that the final result is

qσ = (η2 + 3)3/2

3
√
3η2(η + 1)

. (7.20)

It is not difficult to verify that q, as a function of η, has a negative derivative into
the interval

1 ≤ η ≤ 9.6 ,
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meaning that, for the above values,

q[ησ ] ≤ q[1] = 0.7689 < 1 . (7.21)

Therefore supσ q[ησ ] ≤ 0.7689 and the operator K is a contraction, as claimed
before. We can summarize the result by the following theorem.

Theorem 7.1 For every f (σ ) in C(S0), the problem (7.8) has one and only one
solution with trace in C(S0).

At this point several comments are in order on the above result.

Remark 7.1 An identical approach can be applied in a Cartesian approximation,
according to which the sphere S0 goes into the plane h = 0. In this case, the relevant
kernel becomes

K (x, x′) = 1

2π

hρ2 − 2h3

[ρ2 + h2]5/2 , (7.22)

(ρ = |x − x′|), h = h(x),

and one can compute, with ρ2 = sh2,

q = 1

2π

∫

dα

∫ +∞

0

|hρ2 − 2h3|
[ρ2 + h2]5/2 ρdρ = (7.23)

= 1

2

∫ +∞

0

|s − 2|
[s + 1]5/2 ds = 4

3
√
3

= 0.7689 .

As we can see, the result is in fact identical to that in spherical geometry when
η ≡ 1.

Thismight not be surprising becausewhenwe let η → 1, keeping the point x fixed
on S0, we are looking at the limit sphere S0 from very close with a kernel having
surface integral equal to 1 and tending to a δS0(x) distribution, exactly as (7.22).

Remark 7.2 The result could be very stimulating if, continuing the Taylor develop-
ment to e.g. the second order, and defining the ψ-BVP

u(R0, σ ) + hσ

∂u

∂r
(R0 + hσ , σ ) − 1

2
h2σ

∂2u

∂r2
(R0 + hσ , σ ) = f (σ )

one would obtain a norm estimate q better than that of the first order. This unfortu-
nately is not the case. Repeating the calculus of q for the Cartesian case, one gets
q = 1.24 and the contraction property of the pseudoboundary operator is lost.

This is probably due to the rough approximations implied by (7.15), (7.23), where
the oscillations of the kernel K are killed by the modulus.

Maybe another topology would do better, yet for the moment we can only claim
that the ψ-BVP interpretation is capable of explaining only the linear term of the
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Taylor development, which by the way has the largest impact on the solution, but we
cannot claim that the present approach has a general significance.

Remark 7.3 It is interesting to observe that if, instead of taking the linearization
point P inside the domain of harmonicity of the sought solution, one would take the
same point P0 (see Fig. 7.1), or in other words if one tries to approximate the BVP
by the boundary relation

u(R0, σ ) + hσ

∂

∂r
u(R0, σ ) = f (σ ) (7.24)

one would be faced immediately with a contradiction, as explained for instance in
[5]. In fact, limiting oneself to the 2-sphere example so as to have hσ = h = const ,
one can express (7.24) in terms of spherical harmonics as

(1 − n + 1

R0
h)unm = fnm . (7.25)

Indeed, the solution of (7.25) for h equal to a fraction of R0 becomes unstable for
a degree corresponding to the inverse of such a fraction.
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Chapter 8
One Further Example, Some Remarks
and Conclusions

First we return to the elementary case of Example 6.1, putting some realistic numbers
into that rather abstract frame, in order to further appreciate the difference/analogy
between the Molodensky and the Helmert approaches.

Wewill interpret the first as a solution by theCBapproach and the second basically
the same, but after we have subtracted from the data the effects of condensed masses
coming form the density distribution between the two spheres.

Example 8.1 We assume to have a potential T on a sphere S̃ of radius R̃

T |S̃ =
∑

n>2

TnmYnm(σ ) . (8.1)

The potential T is generated by a mass distribution inside a sphere S0 of radius
R0 < R̃ plus a “topographic” mass distribution between S0 and S̃. We shall take

R0 = 6.371 km δR = R̃ − R0 = 1 km . (8.2)

We note that for a realistic model of topographic heights (cfr. [1]) we have the
spectrum of Fig. 8.1 in terms of full power degree variances σ 2

n (H)

The mean and the standard deviation of such heights are respectively

μ(H) ∼ 230 m , σ (H) ∼ 630 m (8.3)

The topographic layer, modelled with a constant density of ρc = 2.67 g/ cm−3,
generates an external potential t (r, σ ′).

We shall mimic this potential by introducing a mass distribution, depending only
on the horizontal coordinates,

R0 ≤ r ≤ R̃ , ρ(σ ) =
∑

ρnmYnm(σ ) (8.4)
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Fig. 8.1 Spectrum of
topographic heights
(continental heights only).
Units in m2

in such a way that its potential on S̃ is similar to what we expect to be t (R̃, σ ).
To accomplish this, we first put

{
t (R̃, σ ) = ∑

tnmYnm(σ )

tnm = 4πGρc R0q
n+1
0

Hnm
2n+1 ,

(8.5)

(q0 = R0

R̃
= 1 − 1.57 × 10−4) ,

corresponding to condensing the topographic masses to a single layer on S0 (see [2],
Sect. 4.3), and then we consider t (r, σ ) as our true model, from r = R̃ onwards.

If we think of t as generated by “topographic” masses with a lateral variation only
in the layer R0 ≤ r ≤ R̃ i.e.,

t (R̃, σp) = G
∫

dσQρ(σQ)

∫ R̃

R0

r2dr

�PQ
, (8.6)

we find the spectral relation

tnm = 4πGR̃2 (1 − qn+3
0 )

n + 3

ρnm

2n + 1
. (8.7)

By comparing (8.7) with (8.5), we find the direct relation between our model ρnm

and Hnm , namely

ρnm = ρc
n + 3

(1 − qn+3
0 )

qn+2
0

Hnm

R̃
. (8.8)

At this point it is important to make a spectral delimitation. In fact, consider that
we could write

T = TI + tM + t + tr (8.9)
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where TI is the potential generated by masses internal to S0, tM is the topographic
potential up to a low degreeM , e.g.M = 360, tr is the residual “topographic” potential
froma high degree L onward, e.g. L = 1440, andfinally t is the topographic potential
with spectrum between degrees M and L .

We want to determine T by CB or by first subtracting a condensed potential and
then applying CB. In this way the two approaches have indeed the same effect on TI

so we can disregard this component in the comparison. Furthermore, before we try
to compute any solution, we usually subtract a global model up to some degree M ;
this is the same in both approaches.

We assume that such a model has totally absorbed the tM component in (8.9).
Finally, considering tr we assume that this is basically due to the residual terrain
effect, which for L = 1440 is just the effect of the terrain between the actual surface,
whichmight be knownwith a 100m resolution, and an averaged topographic surface,
with a resolution of 14km, corresponding to degree 1440. Also, this component can
be computed and removed before processing. So our comparison will concentrate
on t , with its spectrum between degrees 360 and 1440.

In this spectral interval, the (true) degree variances of Hnm are well approximated
by the formula

σ 2
n (H) = Ke−αn , 360 ≤ n ≤ 1440 (8.10)

(K = 17.782 m2 , α = 1.56 × 10−3) ,

corresponding to a total power σ(H) ∼ 73 m. In any event (8.10) is considered to
be exact for our model. This spectrum can then be propagated to t through (8.5),
obtaining

σ 2
n (t) = A

e−εn

(2n + 1)
, 360 ≤ n ≤ 1440 , (8.11)

with

√
A = 4πGρc R0

√
K ∼=

∼= 25 × 103 Gal × m

ε = 2 log
1

q0
+ α ∼= 1.87 × 10−3 .

This corresponds roughly to a signal of ∼ 15cm in geoid and ∼ 7 mGal in δg.
The application of 1 cycle of CB to t (see Appendix A) then corresponds to a spectral
filter of the form

(I −U )t ∼ (1 − qn+1
0 )tnm . (8.12)

In our range of degrees, this filter is almost linear in n, with values going from
5,5% for n = 360 to 20% for n = 1440.
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Further cycles reduce residuals, at the level of S̃, by the same rate, i.e., by powers
of the filter (8.12).

As commented in Appendix A, the application of a Taylor development (see
Example 6.2) only speeds up this process.

Let us see now what happens with the Helmert approach. Here the signal t has to
be substituted by t − t c, where the condensed potential t c is given by

t c(R̃, σP) = G
∫

R2
0dσQρ(σQ)

δR

�PQ
(8.13)

(δR = R̃ − R0)

or, spectrally

t cnm = 4πGR0δR
ρnm

2n + 1
qn+1
0 . (8.14)

Substituting (8.7) in (8.14) we find

t cnm = tnm
δR

R0

(n + 3)qn+3
0

(1 − qn+3
0 )

. (8.15)

On account of the relation

δR

R0
= 1

q0
− 1 = 1 − q0

q0
,

(8.15) can be written as

t cnm = tnmq
n+1
0

q0(1 − q0)(n + 3)

(1 − qn+3
0 )

, (8.16)

implying also that

tnm − t cnm =
[

1 − q0(1 − q0)(n + 3)

(1 − qn+3
0 )

qn+1
0

]

tnm . (8.17)

It is enough now to evaluate the factor

Fn = q0(1 − q0)(n + 3)

(1 − qn+3
0 )

at the extremes of the spectrum of t , i.e.,

F360 = 1.029 F1440 = 1.117

http://dx.doi.org/10.1007/978-3-319-46358-2_6
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to realize that (8.17) is quite close to (1 − qn+1
0 )tnm that we already encountered in

(8.12) as the first step of CB. From here on, further iterations of CB correspond to a
multiplication by the filter (1 − qn+1

0 ) and so have the same rate of convergence for
all degrees.

The conclusion is that by starting from the Helmert potential and then applying
the downward continuation, namely an iterated CB, we basically obtain the same
sequence as for the direct application of CB, only starting already from the first
iteration.

Let us note that in the example we have assumed that ρ(σ) is perfectly known
before Helmert’s condensation, so that the advantage of skipping the first iteration
by applying Helmert’s approach could be attenuated by the imperfect knowledge
of ρ. Yet, despite the roughness of the arguments and the elementary set up of this
example, we came again to the same conclusion of a substantial equivalence of the
two methods.

Let us add here some comments on the original results obtained and highlighted
in the text:

(1) The concept of physical surface of the Earth has been made more precise, as the
basis of the so-called scalar GBVP.

(2) The linearization process has been reviewed along the lines of Krarup’s lesson,
although here a quantitative definition of the linearization band has been pur-
sued, providing an operative definition of the equivalent linearized GBVP’s. In
addition, a compatibility condition (namely (2.14)), has been introduced as nec-
essary for the definition of the linearization band, which was missing in Krarup’s
papers.

(3) The equivalence of Helmert’s and Molodensky’s approaches has been strictly
proved at the level of BVP definitions, in the sense commented at point 2 above.

(4) The use of the DC to solve a GBVP has been proven to be inconsistent, thus
showing that the good results obtained by numerical practice need to be explained
by a different theory. The iterated CB approach has been proposed as a sounder
interpretation. This is justified only by a first order perturbation theory and a
conjecture, without a rigorous proof.

Lastly, based on the material presented in the text, we can draw three main conclu-
sions.

Conclusion 1: on a theoretical ground it is not allowed to say that either Helmert’s
or Molodensky’s BVP is correct and the other wrong. Any further dispute on this
point is non-scientific.

Conclusion 2: to avoid wrong statements, the Downward Continuation should never
be invoked as a solution method without adding an adjective like “regularized”.

Conclusion 3: the iterated Change of Boundary method needs further mathematical
investigations for two reasons: to make rigorous the basis of our numerical geodetic
solutions, but also because it is interesting in itself since, to the knowledge of the
authors, it provides a novel approach to classical BVPs, at least for star-shaped
domains, not yet discussed in mathematical literature.

http://dx.doi.org/10.1007/978-3-319-46358-2_2
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Appendix A
On the Analysis of the Upward Continuation
Operator

The purpose of this Appendix is to study the properties of the upward continuation
operator U , particularly its spectral behaviour.

In the most general case, at least in this context, we defineU as follows: let Si and
Se be two star-shaped surfaces satisfying some regularity condition, e.g., the cone
condition (cf. [1]), and internal one to the other, as in Fig.A.1. Let us further define
a space of functions harmonic down to Si and square integrable on such a surface.

In this space, to every function u(P) = u(r, σ ), we can associate by taking traces
and pulling back to the unit sphere

ui (σ ) = u(Riσ , σ ) (A.1)

ue(σ ) = u(Reσ , σ ) . (A.2)

Since the pull back operators Si → {σ }, Se → {σ } are bounded and invertible,
as far as

O < const ≤ Riσ ≤ Reσ ≤ const < +∞ ,

and Riσ , Reσ are Lipschitz functions, as implied by the cone condition, in a slightly
restricted form, the norms in L2(Se), L2(Si ), L2

σ are all equivalent. So we expect
{u(Ri , σ )} to span the whole L2

σ .
Therefore we can define the operator U , with domain L2

σ , putting

ue(σ ) = Uui (σ ) ; (A.3)

so basically ue(σ ) is the trace on Se of the solution to the Dirichlet boundary value
problem, with ui (σ ) as boundary value on Si .

Remark A.1 It is important here and in what follows that we assume Si to be totally
internal to Se, namely

sup
σ

Riσ < inf
σ

Reσ . (A.4)
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Fig. A.1 The general set up
of the upward continuation

The case that Si and Se are partially coinciding could be relevant to physical
geodesy, but is out of the scope of the present work.

Given the above definition and calling G(P, Q) the Green function relative to the
surface Si and its exterior domain, it is obvious that outside Si we can write

u(P) = −1

4π

∫

Si

∂

∂nQ
G(P, Q)u(Q)d Si Q . (A.5)

Therefore if we take Q ∼ (Riσ ′, σ ′) ∈ Si , P ∼ (Reσ , σ ) ∈ Se and we observe that

d Si Q = R2
iσ ′ Jσ ′dσ ′ (A.6)

Jσ ′ = 1

nQ · er Q
≤ const ,

we find that the operator U is just an integral operator with kernel

U (σ, σ ′) = − 1

4π
GnQ [(Rσ , σ ), (Rσ ′ , σ ′)]R2

iσ ′ Jσ ′ , (A.7)

such that

ue(σ ) =
∫

U (σ, σ ′)ui (σ
′)dσ ′ . (A.8)

Thanks to thewell-known estimates on theGreen function (see [2, 3]) and keeping
in mind the Remark A.1, we see that U (σ, σ ′) is a continuous, and then bounded
function, implying that U is a compact integral operator L2

σ → L2
σ .
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At this point we could already apply a classical result by Schmidt (see [4],
n. 142) to get an explicit spectral representation ofU (σ, σ ′), also attributed to Picard
in geodetic literature (see [5]). However, we prefer here to derive this result from the
well-known spectral theorem for selfadjoint compact operators [6].

Proposition A.1 Let K be a selfadjoint compact operator on a Hilbert space H;
then there is a sequence of real numbers {λn}, such that

lim
n→∞ λn = 0 , (A.9)

and a sequence of functions {ϕn}, which is orthonormal and complete in H, such
that

Kϕn = λnϕn ; (A.10)

each eigenvalue λn �= 0 can have at most a finite multiplicity. In addition, one has

K =
+∞∑

n=1

λnϕn ⊗ ϕn , (A.11)

namely if K is an integral operator with kernel K (x, y), then

K (x, y) =
+∞∑

n=1

λnϕn(x)ϕn(y) . (A.12)

Remark A.2 The value λn = 0 can in general be an eigenvalue of K and its
eigenspace can be even infinite-dimensional, however this is not the case when we
know that K is an invertible operator.

We can apply the above proposition to the operator on L2
σ ⊗ L2

σ

A =
[
0 U T

U 0

]

. (A.13)

A few remark are in order here: ifU is bounded, thenU T defined on the whole space
is bounded too and has the same norm as U .

• If U is compact, U T is compact too. This is true in general, but it is obvious when
U T is an integral operator too, with kernel U (σ ′, σ ).

• If U is invertible, U T is invertible too.

Accordingly, we see that

• A is a bounded compact operator defined on the whole L2
σ ⊗ L2

σ .
• A is selfadjoint, since
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• A is invertible if U is invertible, on account of the explicit formula

A−1 =
∣
∣
∣
∣

O U−1

U T −1 O

∣
∣
∣
∣ . (A.14)

It is time now to establish the invertibility of U .

Proposition A.2 The operator U is invertible in L2(σ ).

Proof We have to show that

u0 ∈ L2
σ , Uu0 = 0 ⇒ u0 = 0 . (A.15)

But this is trivial, because if we call u(r, σ ) the solution of the Dirichlet problem
with boundary values u(Riσ , σ ) = u0(σ ), we see that, by (A.15),

u|Se
= u(Reσ , σ ) ≡ 0 .

Thenu ≡ 0outside Se and, by theunique continuationproperty of harmonic functions
(cfr. Miranda, [7]), u ≡ 0 in all of its harmonicity domain and so u0 = 0.

We can now apply Proposition A.1 and Remark A.2 to claim the existence of

eigenvalues {∧n}, with ∧n → 0, and eigenfunctions

{∣
∣
∣
∣
ϕn

ψn

∣
∣
∣
∣

}

which form an ONCS

(Ortho-Normal Complete System) in L2
σ ⊗ L2

σ , such that

U T ψn = ∧nϕn , (A.16)

Uϕn = ∧nψn . (A.17)

From (A.17), multiplying the first equation by U , the second by U T and then sub-
stituting the resulting formula, one gets

UU T ψn = ∧2
nψn

U T Uϕn = ∧2
nϕn . (A.18)

As eigenfunctions of two positive definite selfadjoint compact operators, we can
state that
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• {ϕn}, {ψn} are both orthogonal systems in L2
σ ;

• since

{∣
∣
∣
∣
ϕn

ψn

∣
∣
∣
∣

}

is complete L2
σ ⊗L2

σ , {ϕn}, {ψn} have to be each separately complete

in L2
σ .

• We see from (A.18) that {∧2
n}, {ϕn} are the set of eigenvalues and eigenfunctions

of U T U while {∧2
n}, {ψn} are the set of eigenvalues and eigenfunctions of UU T

and as such could be defined from the very beginning, imposing to both ϕn and
ψn to be normalized.

• Naturally, with the above normalization choice,

∧2
n =‖ U T ψn ‖2⇒‖ U T ‖2= sup

n
∧2

n (A.19)

∧2
n =‖ Uϕn ‖2⇒‖ U ‖2= sup

n
∧2

n (A.20)

and the two norms, as already stated, are equal to each other.

Another property of (A.17) is of interest for us. In fact, one immediately verifies
by substitution that the eigenvalues ∧n come in couples of opposite sign. Namely, if(

∧n,

∣
∣
∣
∣
ϕn

ψn

∣
∣
∣
∣

)

satisfy (A.17), then

(

−∧n,

∣
∣
∣
∣

ϕn

−ψn

∣
∣
∣
∣

)

satisfy too such equations.

Accordingly, we can organize the spectral representation by considering first the
∧n all positive and then adding the corresponding negative image.

We can therefore apply (A.12) to get

A = 1

2

{+∞∑

n=1

∧n

∣
∣
∣
∣
ϕn

ψn

∣
∣
∣
∣ ⊗ |ϕnψn| +

+∞∑

n=1

(−∧n)

∣
∣
∣
∣

ϕn

(−ψn)

∣
∣
∣
∣ ⊗ |ϕn(−ψn)|

}

= 1

2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

O 2
+∞∑

n=1

∧n ϕn ⊗ ψn

2
+∞∑

n=1

∧n ψn ⊗ ϕn O

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (A.21)

where the factor 1
2 is to re-normalize

∣
∣
∣
∣
ϕn

ψn

∣
∣
∣
∣ which has a squared norm equal to 2.

The relation (A.21) proves the following theorem.

Theorem A.1 The operator U has the spectral representation

U =
+∞∑

n=1

∧n ψn ⊗ ϕn , (A.22)
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namely U is an integral operator in L2
σ with kernel

U (σ, σ ′) =
+∞∑

n=1

∧n ψn(σ )ϕn(σ
′) , (A.23)

where

lim
h→∞ ∧n = 0 , (A.24)

and {ϕn(σ )}, {ψn(σ )} are two complete orthonormal systems in L2
σ .

This Theorem has an obvious Corollary which is relevant to our discussion.

Corollary A.1 The downward continuation operator

D = U−1

is an unbounded operator in L2
σ with spectral representation

D = U−1 =
+∞∑

n=1

∧−1
n ϕn ⊗ ψn . (A.25)

Proof The proof of (Corollary A.1) relies just on the fact that {ϕn} and {ψn} are
complete orthonormal systems, so that

DU =
+∞∑

j=1

∧−1
j ϕ j⊗ < ψ j ,

+∞∑

n=1

∧n ψn ⊗ ϕn >=

=
+∞∑

j,n=1

∧−1
j ∧nϕ j⊗ < ψ j , ψn > ϕn =

=
+∞∑

n=1

ϕn ⊗ ϕn = I .

That D is unbounded is seen from the fact that the sequence {ψn}, which is
bounded, is transformed by D to

Dψn = 1

∧n
ϕn

which is clearly unbounded, because of (A.24).

The problem whether the inverse D = U−1 could be computed and used in
approximate form, by first approximating U with a discrete matrix operation, Uα ,
and then inverting Uα , has been nicely analyzed in the book ([5], Sect. 8.6.1).
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Both numerical tests, over a limited area in the RockyMountains, and a theoretical
assessment with an example with 2 spheres, similar to what we discuss below, have
been conducted. The conclusion is that “the posedness of the discrete downward
continuation problem should be treated separately for each specific case. Making a
grid of topographical heights denser and denser there is a step size (depending on the
condition number of the discrete operator) which breaks down the stable behaviour
of the discrete downward continuation.”

Such a conclusion (a) describes appropriately a typical non well-posed problem,
(b) proves that the discretization is in fact one of a family of stabilization methods,
including the spectral truncation of series of spherical harmonics.

What is not discussed in the mentioned book is that by broadening the mesh of
the grid one gets indeed a more stable problem but at the same time one has a worse
approximation of the discrete to the continuous solution. The tradeoff between the
two effects is exactly the critical point of any regularization theory.

In any case, particularly simple and clarifying is the example, treated also in this
Appendix, where

Si = S0 = sphere with radius R0

Se = S = sphere with radius R > R0 .

In such a case, U0 has the explicit representation

U0(σ ) = 1

4π

+∞∑

n=0

n∑

m=−n

(
R0

R

)n+1

Ynm(σ )Ynm(σ ′) , (A.26)

which shows at once that in this example the eigenvalues are (2n + 1)-multiple

∧0nm =
(

R0

R

)n+1

= ∧0n, m = −n, . . . , n , (A.27)

and the eigenfunctions ψn, ϕn are given by

ψn(σ ) = ϕn(σ ) = Ynm(σ )√
4π

. (A.28)

Equation (A.26) is in fact symmetric, meaning that the operator U is selfadjoint.
Moreover, one has

‖ U ‖= sup∧0n = ∧00 = R0

R
< 1 , (A.29)

namely U is a contraction operator.
Finally, since ∧0n > 0, the operator U0 is positive definite.
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From now on, we shall restrict the analysis of the operator U to the case that

Si = S0 = sphere of radius R0 , (A.30)

while the external surface Se is still general, i.e., Se ≡ {r = Rσ ; inf Rσ > R0}.
Under this hypothesis, the shape of the kernel U (σ, σ ′) is still perfectly known to

be equal to the Poisson kernel, namely

U (σ, σ ′) = 1

4π

R0(R2
σ − R2

0)

	3σσ ′
, (A.31)

	σσ ′ = [R2
σ + R2

0 − 2Rσ R0 cosψσσ ′ ] 1
2 . (A.32)

Moreover, we shall take advantage of the well-known series representation of
(A.31), namely [7, 8]

U (σ, σ ′) = 1

4π

+∞∑

n=0

n∑

m=−n

(
R0

Rσ

)n+1

Ynm(σ )Ynm(σ ′) ; (A.33)

here it has to be strongly stressed that (A.33) is not the spectral representation (see
(A.22)) of the operator U , because the functions

{(
R0

Rσ

)n+1

Ynm(σ )

}

do not represent an orthogonal system in L2
σ .

As a matter of fact we could say that the rest of this Appendix is devoted to
inferring from (A.31), (A.33) the form of the spectrum {∧nm} of our operator U at
least to the first order in a perturbative form, where the perturbation parameter is just
the oscillation of the “topographic heights”

{
Δ = R+ − R−
R+ = supσ Rσ , R− = infσ Rσ .

(A.34)

To be specific, we shall put (see Fig.A.2)

Hσ = Rσ − R0 (A.35)

H− = R− − R0 > 0 , H+ = R+ − R0 = H− + Δ , (A.36)

and we shall assume that Δ, as well as H , are small with respect to R0. Here small
means of a relative order between 10−3 and 10−2.
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Fig. A.2 The geometry of
the surface S and of the
concentric spheres
(S0, S−, S+) with radius
R0 < R− < R+

Corresponding to Fig.A.2 we shall use the following notation:

{
U± ∼ U±(σ, σ ′) = 1

4π
R0(R2±−R2

0 )

	±(σ,σ ′)3

	±(σ, σ ′) = [R0 + R2± − 2R0R± cosψσσ ′ ] 1
2 ,

(A.37)

while we will call U the upward continuation to the surface S ≡ {r = Rσ }.
Now it is clear that if we fix S− and we squeeze the distance Δ between S+ and

S−, we will have

lim
Δ→0

u(R− + ΔHσ , σ ) = u(R−, σ ) . (A.38)

In fact the limit (A.38) holds true even uniformly in σ , since we are inside the
harmonicity domain, i.e., H− > 0, (see [9] Proposition 6.23).

However, since we want to be quantitative, we shall provide our own estimate of

‖ δU± ‖=‖ U − U± ‖ .

Before we go to the general case, however, it is convenient to develop the example
of two concentric spheres, namely putting Rσ = R+, because in this event we are
able to compute exactly the ‖ U+ −U− ‖, and this will suggest to us how to tune the
various parameters, particularly the value of H−, given that Δ ∼ 10−3R is fixed by
the actual physical reality of the Earth.

Example A.1 Assume that S = S+ (see Fig.A.2), i.e., that Rσ = R+. Then, for a u
harmonic outside S0,

U±u =
∑ (

R0

R±

)n+1

unmYnm(σ ) (A.39)
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so that

(U− − U+)u =
∑

[(
R0

R−

)n+1

−
(

R0

R+

)n+1
]

unmYnm(σ ) . (A.40)

Accordingly

‖ u− − u+ ‖2= 4π
∑

[(
R0

R−

)n+1

−
(

R0

R+

)n+1
]2

u2
nm (A.41)

and one has indeed, noting that
∫

u2dσ = 4π
∑

u2
nm ,

‖ U− − U+ ‖2= sup
n

[(
R0

R−

)n+1

−
(

R0

R+

)n+1
]2

. (A.42)

Since the term in the brackets is always positive, one has directly

‖ U− − U+ ‖= sup
n

[(
R0

R−

)n+1

−
(

R0

R+

)n+1
]

. (A.43)

The sup is achieved at

n + 1 = log log R+
R0

− log log R−
R0

log R+
R0

− log R−
R0

. (A.44)

Since

R−
R0

= 1 + H−
R0

,
R+
R0

= 1 + H−
R0

+ Δ

R0

and ε = Δ
R0

is fixed at 10−3, we find that n + 1 depends basically on the ration H−
R0
.

As an example one can compute the values of the following small table (TableA.1):
From this we see that by taking a deeper R0 (i.e., a larger H−) and leaving Δ

fixed, one gets a smaller norm of U− − U+.

Table A.1 ‖ U––U+ ‖ as function of H−/R0

H−/R0 5ε 10ε 20ε

n + 1 183 95 49

‖ U––U+ ‖ 0.066 0.035 0.017
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However, already at the level of

H− = 10Δ ∼= 60 km (i.e., R0 = 6311 km)

we find a not very deep surface, in the sense that H−
R0

∼ 10−2, and at the same time
Δ
H− ∼ 10−1. Moreover, in this case one has obviously

‖ U− ‖= R0

R−
= 0.99

while

‖ U− − U+ ‖∼= 3.505 · 10−2 ‖ U− ‖ (A.45)

so that U− − U+ can be reasonably considered as a perturbation of U−.

On the basis of the above example, wewill favour the choice H− = 10Δ ∼= 60 km
with the warning that this has no particular physical meaning but it is just a numerical
value fitting our needs for further analysis.

We are ready now for a slightly more general result.

Proposition A.3 Let us fix

H− = 10Δ (A.46)

as in the Example A.1, then

‖ δU− ‖≤ 3.5 · 10−2 (A.47)

and δU− can be considered as a first order perturbation of U−, which has norm close
to 1.

Proof We note that

|uσ − u−|2 =
∣
∣
∣
∣

∫ Rσ

R−
u′dr

∣
∣
∣
∣

2

≤ Δσ

∫ Rσ

R−
(u′)2dr ≤

≤ Δ

∫ R+

R−
(u′)2dr

and therefore, when u = ∑ ( R0
r

)n+1
unmYnm(σ ),
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∫

|uσ − u−|2dσ =‖ uσ − u− ‖2≤ (A.48)

≤ Δ

∫ R+

R−
dr

∫

dσ(u′)2 =

= Δ

R0
· 4π

∑

n,m

u2
nm

(n + 1)2

2n + 1

[(
R0

R−

)2n+1

−
(

R0

R+

)2n+1
]

≤ q4π
∑

u2
nm = q ‖ u ‖2 u2

nm

with

q =‖ δU− ‖2= sup
n

Δ

R0

(n + 1)2

2n + 1

[(
R0

R−

)2n+1

−
(

R0

R+

)2n+1
]

. (A.49)

If one sets

x = 2n + 1, ε = Δ

R0
= 10−3, α = H−

R0
= 10−2, β = H+

R0
= α + ε ,

one finds the sup of the function above again at n = 94, namely

q = 0.0012

and therefore

‖ δU− ‖≤ 3.464 × 10−2 . (A.50)

Closing the proof, one can remark that the above bound should be valid also for
‖ U+ − U− ‖. This is in fact the case, as we see by comparing (A.50) with (A.45),
although the fact that the two numbers are so close indicates that we have not lost
much in our inequality.

Remark A.3 An identical proof holds also for U+ − U , so that we can claim that
δU± can be both considered as perturbations of U±, respectively, and the inequality

‖ δU+ ‖≤ 0.035 ‖ U+ ‖ (A.51)

holds for chosen values of Δ and H−, also considering that ‖ U+ ‖∼= 1.

Given the above statement, we can proceed now to study the norm of the operator
I − U , which is of primary interest for the discussion in Chap.6.

We note first that I −U is not selfadjoint and therefore to study its norm we could
look at the spectral structure of the operator

K = (I − U T )(I − U ) , (A.52)

http://dx.doi.org/10.1007/978-3-319-46358-2_6
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knowing that, if kn are the eigenvalues of K , then

‖ I − U ‖= √
sup kn . (A.53)

Unfortunately we are not able to find kn directly. However, if we put

K± = (I − U T
± )(I − U±) ,

for which we already know (see (A.39)) that

kn± =
[

1 −
(

R0

R±

)n+1
]2

(A.54)

we can consider K as a perturbation of K± and at least compute the perturbation
δkn± at the first order in Δ (i.e., in δU ) by applying the well-known perturbative
theory of Kato (see also [10], Ch. 3). More precisely, we can put

K = K± + δK± + O(Δ2) , (A.55)

where, recalling that U T± = U±,

δK± = −[δU T
± (I − U±) + (I − U±)δU ] (A.56)

is an infinitesimal of the first order in Δ.

Remark A.4 We are here in the more complicated situation in which to any kn±
corresponds a 2n + 1 dimensional eigenspace of spherical harmonics of degree n.
Weknowhowever thatwhenweperturb K± by δU± weget exactly 2n+1 eigenvalues

knm = kn± + δknm± (A.57)

close to kn±, because the spherical symmetry that causes the multiplicity of kn± is
broken. Therefore the eigenfunctions Wnm(σ ) corresponding to knm might not be
close to any of the classical Ynm(σ ) to which we are used. Nevertheless, they are
close, to the first order in Δ, to some spherical harmonic of degree n, that we will
call again Ynm(σ ) since we will not need its specific form, but only that it belongs to
the eigenspace corresponding to kn±.

We can now prove the following proposition.

Proposition A.4 Let kn±, δknm±, Wnm(σ ), Ynm(σ ) be as in Remark A.4, then one
has

δknm+ ≤ 0 , δknm− ≥ 0 (A.58)
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respectively, implying that

kn+ + O(Δ2) < knm < kn− + O(Δ2) . (A.59)

Proof According to the well-known perturbation theory (see [11]), we find

δknm± =< Ynm, δK±, Ynm >= (A.60)

= − < Ynm, δU T
± (I − U±)Ynm > − < Ynm, (I − U±)δUYnm >=

= −2kn± < Ynm, δU±Ynm > .

On the other hand, one has

< Ynm, δU±Ynm >=
∑

mn

∫ [(
R0

Rσ

)n+1

−
(

R0

R±

)n+1
]

Y 2
nm(σ )dσ . (A.61)

But since

(
R0

Rσ

)n+1

−
(

R0

R−

)n+1

< 0 ,

(
R0

Rσ

)n+1

−
(

R0

R+

)n+1

> 0

and kn± > 0, (A.61) and (A.60) prove (A.59).

Up to here our reasoning has been rigorous. However, in order to derive useful
conclusions, we will make a conjecture, namely a statement that seems likely to be
true, although we do not have a strict proof.

The “Sandwich” conjecture: given that the terms O(Δ2) in (A.59) should be
small, we shall stipulate that the “Sandwich inequality”

[

1 −
(

R0

R+

)n+1
]2

= kn+ < knm < kn− =
[

1 −
(

R0

R−

)n+1
]2

(A.62)

holds true.
This conjecture has two consequences: the first is that

sup
n,m

knm = 1 (A.63)

but then, thanks to (A.53),

‖ I − U ‖= 1 , (A.64)

which is still not a useful result for the change of boundary theory.
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On the other hand, if we restrict all our analysis to the subspace L2
N of L2(σ ),

namely the linear space including all spherical harmonics up to a finite maximum
degree N , we get

‖ I − U ‖L2
N
≤

[

1 −
(

R0

R−

)N+1
]

< 1 (A.65)

and, at least in this restricted case, the operator I − U is a contraction. As a last
comment, let us underline that the above statement does not mean at all that (I −
U )	 PN , with PN the orthogonal projection on L2

N , tends to zero when 	 → ∞.
Rather, it means that [PN (I −U )PN ]	 → 0 when 	 → ∞. This means that, starting
from a function fN ∈ L2

N , when we compute the residuals (I − U ) fN , we have
further to re-project them on L2

N and then iterate. Fortunately, this is exactly what is
done in practice in the estimation of a global gravity model (see [12]).
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