
Zhiping Lu · Yunying Qu
Shubo Qiao

Geodesy
Introduction to Geodetic Datum and 
Geodetic Systems



Geodesy



ThiS is a FM Blank Page



Zhiping Lu • Yunying Qu • Shubo Qiao

Geodesy

Introduction to Geodetic Datum
and Geodetic Systems



Zhiping Lu
Yunying Qu
Shubo Qiao
Department of Geodesy
Institute of Surveying and Mapping
Information Engineering University
Zhengzhou
Henan
People’s Republic of China

ISBN 978-3-642-41244-8 ISBN 978-3-642-41245-5 (eBook)
DOI 10.1007/978-3-642-41245-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014939507

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Content Summary

This book systematically and comprehensively discusses and explains the funda-

mental issues in geomatics and in surveying and mapping, such as geodetic datums

and geodetic control networks, geoid and height systems, reference ellipsoid and

geodetic coordinate systems, Gauss and UTM conformal projections, plane coor-

dinate systems, and the establishment of geodetic coordinate systems. It also deals

with various relevant geodetic data collection techniques.

The book can be used as a general textbook for undergraduates majoring in

geomatics and in surveying and mapping in higher education institutions. For the

technicians who are engaged in geomatic and surveying engineering, this book is

strongly recommended as a basic and useful reference guide.
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Preface

Geodetic datums and geodetic systems play an important role in surveying and

mapping engineering. Geodetic datums refer to the reference surfaces, reference

points, and their relevant parameters in surveying and mapping, including coordi-

nate datums, vertical datums, sounding datums, and gravity datums. They are the

reference surfaces or points against which measurements are made and they provide

the basis for establishing geodetic systems. Geodetic systems are the extension of

different types of datums realized through establishment of the nationwide geodetic

control networks, which include the geodetic coordinate system, plane coordinate

system, height system, and gravimetric system.

Geodetic datums and geodetic systems, as the common foundation for every

subject of geomatics and surveying and mapping, are regarded as the main topic of

this book. The book is designed to be used either as a reference for teaching or for

learning subjects related to geodesy, surveying engineering, or geomatics. Some

specific parts are written to fill literature blanks in the related area. For instance, we

have extended the terms of traditional formulae with computer algebra systems to

meet the accuracy of modern geodesy and have described modern geodetic coor-

dinate systems and so on. The framework and structure of this book are formed

through decades of teaching practice. The contents are systematic and the chapters

proceed in an orderly and gradual way.

In writing this book, the authors put effort into building a new textbook system,

attempting to avoid piecing together bits of knowledge from different courses. Due

to the rapid and continuous developments in the field, it was necessary to be

selective and to give more weight to some topics than to others. The material

selected is particularly well suited to university-level students in line with

twenty-first century education and the training requirements for a basic knowledge

of geodesy. Therefore, in this textbook particular importance has been given to the

fundamentals and to applications. It is a textbook that integrates classical materials

with modern developments in geodesy, and balances practical applications and pure

theoretical treatments by additionally highlighting some important and cutting-

edge research issues in the field. Therefore, students who intend to pursue further

studies in the field of surveying engineering should also find it helpful.
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The book consists of seven chapters, a bibliography, an index, and a list of

abbreviations. Summaries of the individual chapters are listed below.

Chapter 1 provides an overview of the discipline’s objectives, roles, classifica-

tions, history, and trends in the development of geodesy.

Chapter 2 introduces the methods and principles of geodetic data collection

techniques such as terrestrial triangulateration, height measurement, space geodetic

surveying, and physical geodetic surveying.

Chapter 3 discusses the concept of geodetic datums and the methods, principles,

and plans for establishing horizontal and vertical control networks, satellite geo-

detic control networks, and gravity control networks.

Chapter 4 deals with the basic concepts of the theory of the Earth’s gravity field,

discusses the definition of height systems, and establishes the relationship of

transformation between different height types.

Chapter 5 discusses the reference ellipsoid, its relevant mathematical properties,

methods for reducing the elements of terrestrial triangulation and trilateration to a

reference ellipsoid, and establishes the models to transform mutually between the

geodetic coordinate system, geodetic polar coordinates, and geodetic Cartesian

coordinate system.

Chapter 6 is devoted to the methods and models of Gauss conformal projection

and the Universal Transverse Mercator (UTM) conformal projection and estab-

lishes the relationship between the geodetic coordinates on the ellipsoid and the

coordinates on the projection plane as well as the methods for coordinate trans-

formations. The projection of geodetic networks from the ellipsoid onto a plane is

also discussed so that they can be computed in the projected plane coordinate

system.

Chapter 7 considers the principles of establishing classical and modern geodetic

coordinate systems, establishes the transformation models between different coor-

dinate systems, and provides an overview of the geodetic coordinate systems in

China and throughout the world.

This book has been revised and extended by Zhiping Lu and Yunying Qu based

on the first edition of the book, which was published in the Chinese language in

2006. In writing and adapting the original Chinese edition, Zhiping Lu wrote

Chaps. 1, 4–7; Shubo Qiao and Jianjun Zhang wrote Chaps. 2 and 3. The numerical

examples and illustrations in the book were designed and constructed by Shubo

Qiao, Zhiping Lu, and Yupu Wang. English teachers Yali Zhang, Wen Zhang, and

Yanxia Li helped with parts of the translation of the manuscript. Ph.D. candidates

Zhengsheng Chen and Lingyong Huang and graduate students Yupu Wang, Hao

Lu, and Kai Xie helped sort out part of the manuscript, read the manuscript, and

offered some suggestions for revision.

The three reviewers of this book are Prof. h.c. Dr. Guochang Xu of the German

Research Center for Geosciences (GFZ), Potsdam; Dr. Timmen Ludger of the

University of Hannover; and Prof. Dr. Jörg Reinking of Jade University, Olden-

burg. Dr. Timmen Ludger also mailed and presented two books for our reference. A

grammatical check and correction of English language has been performed by John

Kirby from Springer, Heidelberg.
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Chapter 1

Introduction

Geodesy is a subdiscipline of geomatics and surveying and mapping as well as

geoscience. It plays a pivotal role in construction of the national economy geosci-

ence research, and in the process of social informatization. Advancement of modern

science and technology has allowed geodesy to undergo an epoch-making trans-

formation, to break the temporal and spatial limitations of traditional classical

geodesy, and to enter a new stage of development of modern geodesy, primarily

of space geodesy.

This chapter briefly introduces the disciplinary objectives, applications, history,

and trends in the development of geodesy.

1.1 Objectives and Classifications of Geodesy

1.1.1 Objectives of Geodesy

According to the classical definition given by F.R. Helmert in 1880, geodesy is the

“science of the measurement and mapping of the Earth’s surface.” This definition

has to this day retained its validity; it includes the determination of the Earth’s

external gravity field as well as the surface of the ocean floor. With this definition,

which has to be extended to include temporal variations of the Earth and its gravity

field, geodesy may be included in the geosciences and also in the engineering

sciences (Torge and Müller 2012; Helmert 1880).

The objectives of geodesy, generated from and partially supplementing

Helmert’s definition, can be described comprehensively as, first, to determine

accurately the positions of points on the Earth’s surface and their variations and,

second, to study the gravity field of the Earth, the shape and size of the Earth, and

the geodynamic phenomena. The former is generally considered the practical

objective of geodesy and the latter the scientific objective. These two objectives

are closely correlated.

Z. Lu et al., Geodesy, DOI 10.1007/978-3-642-41245-5_1,
© Springer-Verlag Berlin Heidelberg 2014
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To our knowledge, geodesy is both a foundational and an applied discipline. As

an applied discipline, geodesy, in the subject catalogue of some countries like

China, is a subbranch of geomatics and surveying and mapping. Geomatics and

surveying and mapping mainly study all forms of the Earth’s surface; therefore the

shape and size of the Earth and its gravity field are studied and measured, and a

unified coordinate system should be established to show the exact geometric

positions of an arbitrary point on the Earth’s surface. Hence, geodetic measure-

ments usually need to be carried out before topographic mapping. On the other

hand, as a foundational discipline, geodesy, in the subject catalogue of some

countries like China, is a subbranch of geophysics. Geophysics is primarily

concerned with the Earth’s movement, state, components, acting force, and all

kinds of physical processes. Hence, geodesy provides instant, dynamic, and quan-

titative spatial geometric and physical information with high accuracy and resolu-

tion, which serves as an important means of studying geodynamic phenomena such

as the Earth’s rotation, movement of the Earth’s crust, and changes of sea surface,

and is used for prediction of geological disasters.

1.1.2 Classifications of Geodesy

According to the scope of the geospace studied, geodesy can be classified into

ellipsoidal geodesy (i.e., theoretical geodesy, higher surveying), geodetic control

survey, marine geodesy, and engineering geodesy (i.e., plane surveying). Ellipsoi-

dal geodesy studies the body of the Earth as a whole, determines the shape of the

Earth and its external gravity field, and establishes the geodetic reference system.

Geodetic control survey measures the coordinates and heights of a sufficient

number of surface points within one or several countries in an appropriately chosen

reference system and establishes a unified national geodetic network to meet the

needs of topographic mapping and engineering construction. Marine geodesy

establishes a geodetic control network on the Earth’s surface covered by oceans

to realize positioning on the sea surface and underwater and to measure the marine

gravity field, sea surface topography, and marine geoid. Engineering geodesy

determines the details on the Earth’s surface regionally in a small area and usually

refers to the horizontal plane for measurement. Ellipsoidal geodesy, geodetic

control survey, marine geodesy, and engineering geodesy are closely related to

one another. National geodetic control survey and marine geodesy need the geo-

detic constants and reference datums determined by global geodetic surveying in

order to reduce the observational results taking into consideration the effect of the

Earth’s curvature and the gravity field. The results obtained from the national

geodetic control survey and marine geodesy provide ellipsoidal geodesy with

information of geometric and physical measurements of the Earth’s surface. Engi-

neering geodesy has to be connected with the national geodetic control network to

bring its results into the national unified coordinate system.
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According to the spatial–temporal attributes of the Earth that are being studied,

geodesy can be classified into geometric geodesy, physical geodesy, dynamic

geodesy, and integrated geodesy. Geometric geodesy adopts geometric methods

to study the shape and size of the Earth. It projects the terrestrial geodetic control

network onto the regular reference ellipsoid as the basis for calculating the geo-

metric positions of surface points. Physical geodesy is concerned with the external

gravity field of the Earth globally or regionally. It establishes the theory of the

Earth’s shape by physical methods and deals with the geoidal undulation relative to

the Earth ellipsoid using measured data of gravity. Dynamic geodesy studies the

regional and global movement of the Earth and makes physical interpretations by

accurately measuring the time-varying positions of surface points and the gravity

field of the Earth. Integrated geodesy combines geometric and physical space and

deals with all geometric and physical observed quantities of geodesy in a uniform

mathematical model within the spatial–temporal reference system.

According to the technical means of carrying out the fundamental tasks, geodesy

can be divided into terrestrial geodesy (conventional geodesy, i.e., astro-geodesy),

space geodesy (satellite geodesy), and inertial geodesy. Terrestrial geodesy uses

optoelectronic instruments to carry out short-distance (usually shorter than 50 km)

terrestrial geometric survey (triangulateration, leveling, and astronomic surveying)

and gravity measurement to determine the horizontal positions and heights of

surface points and calculate the local gravity field parameters indirectly. By

observing extraterrestrial objects (artificial Earth satellites, quasar radio sources,

etc.), space geodesy realizes the positioning of surface points, including the relative

positioning and the absolute positioning, which is relative to the center of the Earth.

It uses the satellite gravity technique to obtain information on the global gravity

field. Inertial geodesy applies the principle of inertia of a moving object in mechan-

ics to carry out the relative positioning of surface points and measure the gravity

field parameters.

A modern geodetic technology system centered on space geodesy has already

been formed that can provide more accurate and abundant geodetic data than the

classical system. It has not only expanded the application area of geodesy in socio-

economic development but also improved its status as a basic discipline in

geoscience.

1.2 Applications of Geodesy

1.2.1 Applications of Geodesy in Topographic Mapping,
Engineering Construction, and Transportation

The important functions of geodetic control network in topographic mapping are

primarily:

1.2 Applications of Geodesy 3



1. To control error accumulation in mapping. Errors are inevitable in mapping, for

instance, they arise when we depict a line of direction or measure a certain

distance. They are hardly noticeable in small areas, but would gradually prop-

agate and accumulate in mapping of large areas, greatly deviating the topo-

graphic positions and features on a map. If a geodetic network is used as the

basis for mapping control, errors can be constrained between adjacent control

points to avoid accumulation and propagation so as to ensure mapping accuracy.

2. To unify coordinate systems. National basic topographic maps are generally

mapped subdivisionally by different departments at different stages in different

places. Because the coordinate system of points in the geodetic control network

is unified nationwide with homogeneous accuracy, missing or overlapping layers

do not occur in mapping, ensuring a perfectly fine splice of adjacent map sheets

to form an integrated map.

3. To resolve conflict between an ellipsoid surface and a plane. A map is flat, but

the Earth is approximately like a rotating ellipsoid with a non-developable

curved surface that would crumple or split if forced to flatten, indicating that

one cannot directly map the features from an ellipsoid surface onto a plane.

However, the positions of geodetic control points on an ellipsoid can be

projected onto a plane via certain mathematical methods. Mapping on the

plane can therefore be controlled according to these point positions on the plane.

In this case, geodetic control points with certain densification have to be

established first for topographic mapping. Traditional geodetic surveying has

lower efficiency, consumes more time, and requires a greater workforce and a

huge investment. With the fast-paced development of the economy, the demands

for various kinds of medium- and large-scale maps are increasing rapidly, meaning

that quick and precise positioning and rapid mapping techniques are needed to

provide a guaranteed product. Modern Global Navigation Satellite Systems

(GNSS), such as a Global Positioning System (GPS), can locate the position of a

point within 5–10 min (compared with several hours to days using traditional

methods) with centimeter-level accuracy. GPS allows rapid large-scale mapping

when used for aerial photography and surface auto-mapping systems.

In engineering construction, the important roles of geodesy are:

1. To build a mapping control network for large-scale topographic mapping at the

project design stage. Designers design buildings and plan districts on large-scale

topographic maps. Geodesy serves to establish the mapping control network as

the basis for mapping control.

2. To build a construction control network during project construction. A construc-

tion survey is mainly used to set out the designed buildings on a map and make

sure that they are built in the intended locations. With different projects, the

concrete tasks of construction surveys differ. For example, the major task of a

tunnel construction survey is to ensure that the tunnel dug from reciprocal

directions runs through in accordance with the specified accuracy. During

layout, the direction and distance of the installed instruments are both calculated
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on the basis of the control network, and thus the construction control network has

to be established beforehand with the required accuracy.

3. To build a special control network for observing deformation with the purpose of

monitoring deformation of buildings during the operation stage after completion

of the project. A change in the original state of the Earth’s surface during project

construction, together with the weight of buildings, would cause inhomogeneous

changes in the ground base and its surrounding strata. Besides, the building itself

and its foundation will also deform due to changes in the ground base. Such

deformation, once exceeding a certain limit, would affect the normal use of the

building or even jeopardize its safety. In some cities (such as Shanghai and

Tianjin in China) overexploitation of underground water could cause land

subsidence in downtown areas on a large scale and bring about damage. There-

fore, during the operational phase after completion of the construction, defor-

mation needs to be monitored for these buildings or downtown. In this case, a

control network for deformation observation with high accuracy has to be

established.

With regard to transportation, geodetic surveying and positioning technology

has provided important guarantees for improving traffic efficiency and decreasing

traffic accidents.

The requirements of transportation for quantity, category, quality, and real-time

positioning information are dependent on the level of development of social

production, economy, science, and technology. The navigation and positioning

level of ancient transportation means is from several kilometers to tens of kilome-

ters whereas that of today’s air and ocean transportation is from several meters to

tens of meters. Modern GPS equipment can provide real-time positioning with

decimeter-level or even centimeter-level accuracy, which is highly significant for

large airports with frequent take-offs and landings. Currently, the number of

automobiles in the world is increasing rapidly. According to statistics, traffic

accidents in recent years are mostly due to drivers’ failure to quickly determine

the positions of and distances between automobiles and to their lack of quick-

response capability while passing obstacles. At present, automotive GPS auto-

positioning display and response systems are applied extensively, which will

effectively reduce traffic accidents caused by automobiles. Such installations are

also needed for inland navigation in narrow channels and ports to avoid ship

collision accidents. Satellite navigation and positioning ability with high efficiency

and accuracy enables traffic accidents to be greatly reduced and transportation

efficiency to be highly improved.

1.2.2 Applications of Geodesy in Space Technology

The launching, guidance, tracking, remote controlling, and return of spacecraft

need two basic types of support from geodesy: one is a precise geodetic coordinate
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system and accurate positions of surface points (e.g., the launch point and tracking

station) in this system; the other is a precise global gravity field model and accurate

gravity field parameters (gravity acceleration, the deflection of the vertical, etc.) of

the surface points.

A geodetic coordinate system is used to describe a spacecraft’s movement

relative to the Earth, which is realized by a certain number of datum points with

known precise geocentric coordinates distributed on the Earth’s surface. Its estab-

lishment includes determination of the orientation of its coordinate axes and a

normal Earth ellipsoid defined by four fundamental parameters (a, J2, ω, and
GM) (see Sect. 4.2.1). The space tracking, telemetering, and command (TT&C)

network, composed of a TT&C station (including a TT&C ship) in the space

project, is adopted to determine the moving state (orbit and attitude) and working

state of the spacecraft. It controls and adjusts the moving state of the spacecraft,

builds their normal state, and manages aircraft under their moving state over a long

term. The precise position of the TT&C station in the geodetic coordinate system is

accurately determined by geodetic methods while the position of the spacecraft is

solved from the given station coordinates of the TT&C through measuring the

radial distance, range rate, azimuthal angle, and the like between the TT&C station

and the spacecraft during operation.

The gravity field model provides prior constraint on the gravity field for analysis,

description, and design of all mechanical behavior of moving objects on the Earth’s

surface and in outer space. Precise satellite orbit determination relies on the level of

accuracy of the known expansion coefficients of the disturbing gravity potential in

its dynamic equation of orbital motion. The lower order Earth gravity field model

can ensure the accuracy of the orbit determination of a low Earth orbit (LEO)-

satellite at the decimeter level. Space microgravity, a marginal discipline, emerged

with advancement of interplanetary exploration technology. It is concerned primar-

ily with the microgravity effect of tested objects on the spacecraft and is based

chiefly on the high precision Earth gravity field model.

1.2.3 Applications of Geodesy in Geoscience Research

The components, movement, and development of the Earth system are observed

and revealed by different branches of geoscience from different aspects using

different methods. Geodesy places special emphasis on the study of the Earth’s

geometric (spatial) characteristics and fundamental physical characteristics (the

gravity field) and describes their changes. Plate tectonics was developed in the

late 1950s and early 1960s and has led the revolutionary progress of geosciences,

which is significant for establishing the scientific view of “mobilism” in geoscience.

The progress of modern geodesy and the introduction of space geodesy are essential

in fostering geoscience development because geodesy enables extensive acquisition

of information about the Earth’s movement and allows the fundamental status of

geodesy to be strengthened more profoundly. Modern geodetic techniques have
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been powerful in support of the research of mobilism and can provide more

abundant and accurate information for current research in the geosciences. The

contributions of modern geodesy are chiefly:

1. It provides not only precise geodetic information for the study of plate move-

ment and crustal deformation but also provides new methods for establishing

accurate kinematic models of recent plate movement and crustal deformation.

Very long baseline interferometry (VLBI), satellite laser ranging (SLR), and

GPS are able to measure the precise and relative velocity of plates with an

approximate speed of 1 mm/year so as to calculate directly the Euler vector of

the relative plate movement from actual data. In the past 20 years, a massive

amount of data on plate movement has been obtained using geodetic techniques;

the correctness of the modern plate movement model NUVEL-1 derived from

geophysical and geological data has been tested and observational models have

been established. At present, geodesy is determining global, regional, and local

crustal movements with unprecedented space–time resolution, according to

which the stress–strain model inside the plates can be established to test the

truthfulness of the rigid plate hypothesis, to deduce the deformation inside the

plates, and to provide the basis for the explanation of faulting, seismicity, and

other tectonic processes. Some geology and structures cannot be explained

currently by plate tectonics, which awaits further improvement. Geodesy will

presumably make new contribution to this.

2. The variations in polar motion and the Earth’s rotation velocity are linked to

information about the Earth’s structure and diverse geodynamic processes. The

precision of the Earth’s rotation parameters determined by space geodesy has

been the most effective tool in extracting and differentiating such information.

Based on certain models (circle structure hypothesis, elasticity and viscoelastic-

ity hypothesis of the Earth’s mantle and core, etc.) of the Earth’s structure, the

corresponding rotation equations can be established to study the precession,

nutation, and polar motion of the Earth’s three axes (axis of rotation, axis of

figure, and axis of angular momentum); the model of the Earth’s structure can be

verified and modified by comparing the observed values and the values of

theoretical inference. One example of this is the correction proposed by VLBI

observed data to the nutation series IAU1980, which impelled restudy of the

Earth model. Polar motion includes the free motion (Chandler wobble) deter-

mined by the Earth’s elasticity that lasts for 410–440 days, the superimposed

forced oscillation lasting for a year, the minor swing lasting nearly a day, and the

low-amplitude swing that lasts for a long period of 25–30 years. The factors

causing these wobbles in different periods are a central subject of modern

geophysics and involve a series of very important issues such as the exchange

of angular momentum between the solid Earth, the atmosphere, the sea, and

Earth’s core; tidal friction and dissipation; the change in rotation angular

momentum caused by seasonal climate variations; the viscoelastic core–mantle

structure; nuclear magnetic fluid dynamics (geomagnetic dynamo); and core–

mantle electromagnetic coupling. The motivating factor for the length of day
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(LOD) is considered to be approximately consistent with that for the wobble of

polar motion. There are still many aspects and arguments about the aforemen-

tioned issues in geophysics. Modern geodesy has established and implemented

many programs around the world for monitoring the Earth’s rotation and accu-

mulated a massive amount of observed data. Combined with more information

on geophysics, meteorology, and oceanography, it is possible to gain a new

understanding of the above-mentioned issues about the Earth’s structure and

dynamics or even make breakthroughs by precise analysis.

3. A more refined gravity field will be provided through a series of satellite gravity

survey programs and a larger scale survey of land and marine gravity. This

geodetic finding will provide important data for analyzing and understanding the

Earth’s structure and dynamics.

4. Applied space geodetic techniques (particularly satellite ocean altimetry) could

monitor changes in the sea surface with high accuracy and determine the sea

surface topography and its changes. Such information can be used to study

meteorological and oceanographic issues like global warming, atmospheric

and oceanic circulations, etc.

As a dynamic system, the Earth witnesses extremely complex dynamic pro-

cesses. With its unique theoretical system and survey methods, geodesy provides

quantitative and qualitative data concerning dynamic processes on all kinds of

spatial and temporal scales and reveals the essence of dynamic processes in

combination with other relevant disciplines of geosciences.

1.2.4 Applications of Geodesy in Resource Development,
Environmental Monitoring, and Protection

Resource exploitation, especially energy development, is a pressing issue for

today’s rapid economic growth. Topographic maps of various scales and precise

gravity data are indispensable basic data for the exploration of both land and marine

resources. For instance, in the early 1980s, the Doppler satellite network established

in Tsaidam Basin, northwest China, and the gravity survey there provided precise

geodetic data for the exploration and development of the oil field. Geodesy is

especially important for the exploration and development of undersea continental

shelf oil–gas fields. The satellite radar altimetry data combined with gravity surveys

by offshore ships and leveling between coastal tide stations can provide the marine

geoid, sea surface topography, and a gravity anomaly map with high precision and

resolution in offshore areas. The application of radio-positioning on the sea surface,

particularly the GPS marine positioning together with the sonar subsea positioning,

can establish the three-dimensional (3-D) marine geodetic control network and

draw subsea large-scale topographic maps. The marine geodetic data coupled with

marine geophysical data such as marine geomagnetic surveys and drilling rock

specimen sampling enable estimation of the conformation and reserves of oil and
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gas under the sea. The data can also provide a basis for accurate determination of oil

well positions, maritime and underwater fieldwork, positioning (or restoration) of

drilling platforms, distribution of subsea pipes, and installation or callback of

underwater detectors. The real-time, rapid, and accurate characteristics of satellite

positioning techniques can provide the necessary guarantee for dynamic informa-

tion management, production, command, and decision-making, and safe and stable

operation in resource exploration and exploitation. Geodesy runs through the whole

process of resource development from exploration to exploitation. State-of-the-art

geodetic techniques are crucially important for exploration and development of

mineral resources, particularly energy resources from the oceans.

Global warming and marine and air pollution are global environmental concerns

in today’s world. Developing countries still have regional environmental deterio-

ration problems, such as water-induced soil erosion, desertification caused by

ecological imbalance as the forest cover shrinks and grasslands degrade, large

amounts of dust in the Earth’s atmosphere, frequent acid rain in industrial cities

caused by the excessively high proportion of coal used as energy source, large areas

of water pollution resulting from failure to control the discharge of industrial waste,

and so on. Environmental deterioration not only endangers human living conditions

and quality of life, but also seriously restricts economic development. The influence

of global warming has attracted the attention of scientists worldwide. One case in

point is that global warming has been listed as an important issue for discussion in

the 1992 UN Conference on Environment and Development (UNCED). The green-

house effect could make polar ice sheets melt, sea water density decrease, and sea

levels rise on a global scale. This, if combined with the estimated global mean sea

level rise rate of 3.1 � 0.4 mm/year as observed by satellite altimetry, could cause

environmental changes such as shoreline erosion, land decrease, and seawater-

induced soil basification, which will, over time, greatly endanger the living condi-

tions of coastal residents. Many coastal areas and islands might be inundated by

seawater. The strategy is to take this seriously and to monitor precisely this process

and control its human causes (e.g., reduce the amount of carbon dioxide emissions,

prohibit deforestation, etc.). The most effective means of monitoring this global

change is space geodetic surveying and the most important method is to use GNSS

tide gauges and process the data with reference to the International Global Navi-

gation Satellite System Service (IGS), so as to analyze sea level changes in the

precise geodetic coordinate system according to long-term observational results.

The recently implemented satellite gravity gradiometry programs, the Gravity Field

and Steady-State Ocean Circulation Explorer (GOCE), are able to monitor the

gravity change caused by melting of glaciers and ice sheets. Another important

tool for measuring the ice is CryoSat-2’s specially-designed all-weather microwave

radar altimeter, which is capable of detecting changes in ice thickness to within

1 cm. Such data can help predict the effect of the melting polar ice on ocean

circulation models, sea levels, and the global climate.

Countries worldwide have realized that environmental protection countermea-

sures have to be taken along with development of the economy. Environmental

issues are a global concern. The increasing shrinkage of the Amazon rainforest in
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Brazil and the tropical rainforests in Southeast Asia, the African primary forest

destruction, and the spread of desertification in some areas all adversely influence

the global climate and could trigger inundation and drought disasters. Therefore, a

global environment monitoring system needs to be established and each country

should have a sound monitoring system. The main measures are to develop remote

sensing satellites, to establish a dynamic geographic information system (GIS), and

periodically to make accurate and quantitative assessments of environmental

changes. Development of such a monitoring system needs the support of geodesy:

the launch of near-Earth satellites requires precise Earth gravity field models, the

launch and tracking stations need accurate geocentric coordinates, and the estab-

lishment of GIS requires information about positions of points and controls.

Geodesy serves indirectly in this system but is still vitally important and

indispensable.

1.2.5 Applications of Geodesy in Disaster Prevention,
Resistance, and Mitigation

Natural disasters, especially earthquakes, floods, and severe tropical storms, usually

bring huge damage and loss to human beings. According to the statistics of Ministry

of Land and Resources of the People’s Republic of China, the average financial

losses caused merely by geological disasters in China have amounted to about 4300

million US dollars each year since 2008 and, in years with frequent disasters, the

loss caused by all kinds of natural disasters can reach one-sixth of the Chinese

national gross domestic product (GDP). Therefore, countries worldwide set great

store on preventing and fighting disasters. At present, excluding tropical storms

(which can by and large be forecast accurately), it is still hard to predict massive

earthquakes successfully, which reflects the inadequacy of man’s knowledge of the

science of the Earth. There is still a long way to go to improve our ability to prevent

and mitigate natural disasters, which is an important mission of the geosciences,

including geodesy.

Modern geodetic techniques, especially space geodesy, will be increasingly

crucial in research on the monitoring and forecasting of earthquakes. Most earth-

quakes are distributed along the plate subduction zones and active intra-plate fault

zones. According to historical statistics of earthquakes, the seismic activity of a

seismic zone has a certain statistical periodicity. Geological evidence on prehistoric

earthquakes in the plate subduction zones of the northwest Pacific Ocean has

already been recognized, and the results of geodetic studies on crustal strains are

in accordance with the accumulation of elastic strain in the period between two

earthquakes, which supports the view of the Earth’s recurrence period whose

physical ground is the elastic rebound theory. This theory also serves as the basis

for using the geodetic method to monitor crustal strains in a seismic zone over a

long period to provide information for the medium- and short-term forecast of
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earthquakes. Geodesy can monitor the whole process of the preseismic, coseismic,

and postseismic strain accumulation and release and it is possible to establish the

mode of earthquake precursors, combining this with geophysical observational

results from the borehole strain meter, station extensometer, creepmeter, etc. For

example, the successful short-term prediction of the 1975 Haicheng (Liaoning

Province, China) earthquake used obvious short-term earthquake precursors. The

earthquake is related to global plate movements, so when the relative velocity

obviously deviates from the mean velocity, indicating that the strain accumulation

at the borders of plates is above average, an earthquake would probably occur.

Some countries such as the USA and Japan have established dense geodetic

deformation monitoring systems, including GPS, VLBI, and SLR stations on

seismic zones; for example, the USA has distributed GPS automatic monitoring

networks on the San Andreas Fault Zone. Of course, earthquake prediction is

extremely complex. We are almost sure that there will never be a precise earth-

quake forecast. We might know that an earthquake is due to occur, but no infor-

mation about date and time, position of the epicenter, depth of the hypocenter, or

any other important data will be predictable within the next 100 years.

Geodesy is equally important in preventing other kinds of geological disasters,

for instance, the monitoring of landslide and mudflow. In 1986, the Rockfall and

Landslide Research Institute of Hubei Province, China Three Gorges University

accurately predicted a destructive landslide near the Xintan Area of the Yangtze

River through geodetic monitoring, successfully preventing casualties and greatly

reducing the financial losses to residents.

El Niño can cause disastrous climatic changes of long duration. The anomalies

of sea temperature distribution and ocean circulation cause an abnormal change in

atmospheric mass distribution through the interaction between ocean and atmo-

sphere, which has generated floods in some places and drought in others. Due to the

exchange of angular momentum, the change in atmospheric mass distribution

causes a change in the Earth’s angular momentum and influences the Earth’s

rotational velocity. When the 1982–1983 El Niño occurred, the Earth’s rotation

slowed down. With the VLBI and SLR techniques used today, the changes in the

Earth’s rotational velocity can be accurately measured, which enables prediction of

El Niño several years (say 3 years) ahead.

Disasters happen in the world every year—plane crashes, shipwrecks, traffic

accidents, people missing in severe environments, and so on. How to conduct

timely and effective rescue becomes people’s primary concern. In the past, wireless

SOS distress signals were used to seek help, but often the exact position of the site

could not be determined so the speed of rescue would be affected. Now, a satellite

rescue system has already been established internationally and uses GPS rapid

positioning and satellite communication technology to allow international rescue

organizations to locate the site rapidly and organize rescue activities in time.
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1.3 Brief History and Trends in the Development

of Geodesy

1.3.1 Brief History of Geodesy

Geodesy has been gradually formed and developed as man’s knowledge of the

Earth has increased (Vanicek and Krakiwsky 1986; Jiang 1992; Torge and Müller

2012).

Embryonic Stage

Before the seventeenth century, geodesy was still in its embryonic state. In the third

century B.C., Eratosthenes from Alexandria first used the relationship between the

length S and the corresponding central angle γ of arc AB of the circumference and

the circle’s radius R in geometry to estimate the length of the Earth’s radius (see

Fig. 1.1). Since the two endpoints A and B of arc AB are approximately on the same

meridian, the survey later developed into meridional arc measurement on this basis.

In 724 AD, under the guidance of Zhang Sui (monk Yixing), Nan Gongyue in China

Tang Dynasty first measured a meridian arc of about 300 km in the present Henan

Province. Other countries also did similar work one after another. However, due to

the rough techniques and the primitive measuring tools, although presumably the

most precise tools available in former times, the accuracy yielded was rather low.

This can only be seen as man’s initial attempt to measure the size of the Earth.

Formation of Geodesy

There was a great breakthrough in man’s understanding of the shape of the Earth in

the seventeenth century. After Isaac Newton’s formulation of the law of universal

gravitation in 1687, C. Huygens from The Netherlands, basing his findings on the

law that the gravity value on the Earth’s surface increases from the equator to the

two poles, claimed in hisDiscours de la cause de la pesanteur in 1690 that the Earth
is an oblate spheroid flattened at the poles. In 1743, A.C. Clairaut from France

published Théorie de la figure de la Terre and proposed the Clairaut theorem, which

adopted the gravimetric method to determine the shape of the Earth. The research of

Huygens and Clairaut laid the theoretical foundation for study of the shape of the

Earth from a physical point of view.

In addition, W. Snell from The Netherlands initiated triangulation at the begin-

ning of the seventeenth century. This method enabled distance measurement

between two points on the Earth’s surface several hundreds of kilometers or even

much farther apart, solving the problem of directly measuring the arc length on the

Earth’s surface. Later, invention of the telescope, micrometer, level gauge, and
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other measuring instruments greatly improved the accuracy and laid technical

foundations for the development of geodesy. So, we can claim that geodesy was

established in the late seventeenth century.

Development of Arc Measurement

From 1683 to 1718, G.D. Cassini and J. Cassini from France measured the arc

length of a 8�200 arc of the meridian across Paris by triangulation and deduced the

semimajor axis and the flattening of the Earth ellipsoid from the lengths of its two

arcs and the astronomical latitude measured at the two endpoints of each arc. Since

the observation of the astronomical latitude did not reach the required accuracy and

the two arcs were similar, they obtained a negative value for the Earth’s flattening;

namely, that the Earth is an ellipsoid elongated at the poles, which was the opposite

of the deduction by Huygens based on the laws of mechanics. To clarify this doubt,

in 1735 the French Academy of Sciences sent two survey teams to Lapland

(situated on the border of Sweden and Finland) with a high latitude and Peru near

the equator for meridional arc measurements. Their work finished in 1744 and the

survey results from these two places certified that the higher the latitude, the longer

the meridional arc per degree; namely, that the Earth is an ellipsoid flattened at the

poles. Since that time, the physical assertion of the shape of the Earth is strongly

supported by the results of arc measurement.

Another famous arc measurement was made by J.B.J. Delambre from 1792 to

1798, during which he measured the new meridional arc of 9�400 in France. From

the data of this new arc and the meridional arc measured in Peru from 1735 to 1744,

he deduced the length of a quadrant of the meridian and took one ten-millionth of it

as the length unit named as one meter (1 m); this was the origin of metric system.

From the eighteenth century, to meet the needs of precise mapping, some other

European countries started arc measurement and developed the layout method from

along the meridional direction to the crisscrossed triangulation chains or triangula-

tion networks. This work is no longer called arc measurement but astro-geodetic

surveying.

In order to draw the Complete Atlas of the Empire (Huangyu Quantu), a large-

scale astro-geodetic survey was conducted during Kangxi’s reign in China’s Qing

Dynasty (1708–1718). The survey also proved that the meridional arc per degree at
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Fig. 1.1 Determination of

the Earth’s radius
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higher latitudes is longer than that at lower latitudes. Kangxi also decided to

determine the length of “Li” by setting the meridional arc length per degree as

200 Li.

Development of Geometric Geodesy

From the nineteenth century, many countries had started national astro-geodetic

surveying, aimed at determining the size of the Earth ellipsoid, and, more impor-

tantly, providing accurate geometric positions of numerous surface points for

national topographic mapping. To serve this purpose, a series of theoretical and

technical problems had to be solved, which promoted the development of geometric

geodesy. First, in order to test the abundant observational data from astro-geodetic

surveying and eliminate their contradictions, on the basis of which to determine the

most reliable result and assess observation accuracy, A.M. Legendre from France

first published the theory of the least squares method in 1806. In fact, early in 1794,

the German mathematician and geodesist C.F. Gauss had already used this theory to

derive the asteroid orbit. Later, Gauss dealt with astro-geodetic survey results by the

method of least squares and improved the method considerably, bringing about the

adjustment of the observation method that is widely used in geodesy today and will

be used in the future. Second, both the solution of a spheroidal triangle and the

deduction of geodetic coordinates have to be done on the ellipsoid surface. Gauss

proposed the solution to spheroidal triangles in his Theorema Egregium in 1828.

Many scholars have worked out various formulae regarding deduction of geodetic

coordinates. Gauss also published the conformal projection from the ellipsoid onto

the plane in 1822 (which is why we call it the “Gauss conformal projection”). This

is the best method to convert the geodetic coordinates into plane coordinates and is

still extensively applied today. In addition, in order to use the results from astro-

geodetic surveying to calculate the semimajor axis and the flattening of the Earth

ellipsoid, F.R. Helmert from Germany proposed a method for solving the fittest

ellipsoid parameters for the geoid of the survey area under the condition that the

sum of squares of the vertical deflection of all astronomical points is the least in an

astro-geodetic network. This method was later called the “area method.”

Development of Physical Geodesy

Since Clairaut published Théorie de la figure de la Terre in 1743, the most

important development in physical geodesy has been the Stokes theorem developed

in 1849 by Sir. G.G. Stokes from the UK. According to this theorem, the shape of

the geoid can be studied by terrestrial gravimetric results. However, the theorem

first required reduction of the ground gravimetric results to the geoid, which was

rather challenging. In spite of that, Stokes’ theorem still promoted research on the

geoid shape. About 100 years later in 1945, Mikhail Sergeevich Molodensky

(Михаил Сергеевич Молоденский) from the former Soviet Union advanced
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the Molodensky theorem, which enabled rigorous calculation of the distance

between surface points and the reference ellipsoid (i.e., geodetic height) directly

from terrestrial gravimetric results without any reduction. It is significant that the

theorem allows direct and rigorous calculation of geodetic heights of the surface

points by avoiding the geoid, which cannot be calculated rigorously in theory.

Using geodetic heights, the observed values on the Earth’s surface can be accu-

rately reduced to the ellipsoid, which enables processing of astro-geodetic survey-

ing data to avoid errors caused by inaccurate reduction. With the Molodensky

theorem, the method of astro-gravimetric leveling and the normal height system

emerged and were widely adopted by many countries.

Development of Satellite Geodesy

Up to the middle of the twentieth century, geometric geodesy and physical geodesy

were well developed. However, measurements of the shape of the Earth and the

Earth’s gravity field were not satisfactory because astro-geodetic surveying can

only be conducted on land, not across the oceans. There was only a limited amount

of data from gravity surveys in areas like oceans, high mountains, and deserts. It

was not until the launch of the first artificial satellite in 1957 that satellite geodesy

began to emerge and geodesy developed into a brand new technique.

Not long after the emergence of artificial satellites, the satellite method was used

to measure the flattening of the Earth ellipsoid precisely. More than a decade later,

the measuring precision of the semimajor axis of the Earth ellipsoid reached �5 m,

the coefficient of the spherical harmonics expansion of the Earth’s gravity field was

reliably deduced to the order of 36, and the global geodetic coordinate system had

been established through satellite tracking stations. Modern GPS positioning tech-

niques enable high-accuracy measurement of the geocentric coordinates of any

surface point in the world geodetic coordinate system based on the precisely

measured elements of satellite orbit. The use of the satellite radar altimetry tech-

nique to measure geoid undulation of the seawater has also yielded good results.

The technique of satellite gravimetry is developing and also has great potential.

Development of Dynamic Geodesy

The Earth’s crust is not still; it moves slightly and slowly due to lunisolar attraction,

tectogenesis, and so on. Without precise surveying methods, such movement cannot

be measured accurately. The VLBI technique was born in 1967. At the two ends of

the baseline, which was thousands of kilometers long, radio-receiving antennae

were established to receive synchronous signals from extragalactic quasar radio

sources. By interferometry, the three baseline vector components of this baseline in

the inertial coordinate system could be computed with centimeter-level accuracy.

Quasar radio sources are extremely far away from the Earth and so have almost no

angular motion relative to the Earth. Thus, from the given positions of some quasar
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radio sources, it was possible to establish an extremely stable and therefore inertial

space reference coordinate system. From long-term and repeated observations at

short intervals, variations in the three baseline vector components could be com-

puted and the polar motion, variations in the speed of the Earth’s rotation, plate

movement, and vertical crustal movement could be derived accordingly. Hence, the

VLBI technique is an effective way to study the dynamic state of the Earth. In

combination with the SLR technique and observations of the Earth’s tide, dynamic

geodesy emerged and provided strong support for geodynamics. With the matura-

tion of GPS technology, since the 1980s GPS surveying has already become the

chief method of dynamic geodesy.

1.3.2 Trends in the Development of Geodesy

Three hundred years have passed since the establishment of geodesy, and there

have been considerable achievements in studies on the shape of the Earth, the

Earth’s gravity field, the measurement of surface point positions, and so on. The

current trends in the development of geodesy are as outlined below. Exhaustive

information about the trends of development is available in the literature (Schwarz

2000; Altamimi et al. 2011; Xu 2010; Xu 2012; Flechtner et al. 2010; Sideris 2009;

Mertikas 2010; Drewes 2009; Pail et al. 2011; Plag and Pearlman 2009).

Modern Geodesy as Represented by Space Geodesy

The rapid development of modern technology, especially the development of laser,

microelectronics, artificial satellites, extragalactic radio source interferometry,

computers, and high-accuracy atomic frequency standard techniques, has given

rise to an important breakthrough in geodesy and resulted in space geodesy with

artificial satellites (signal) and extragalactic radio sources (signal) as the objects of

observation. Such a breakthrough has enabled a relative accuracy of 10� 6 to 10� 9

of the distance and point position determination on a global arbitrary space scale

and allowed determination of the 3-D position of a surface point with high effi-

ciency within a few minutes or hours. This has radically broken the spatial–

temporal limitation of classical geodesy. With the advent of quantum gravimeters

and superconductor gravimeters, the ground gravity meter has also reached the

microgal level (1 μGal ¼ 10� 8m/s2), or even much higher accuracy. The satellite

gravity technique involved in space geodesy can obtain gravity field information on

a global scale, including the oceans. The breakthrough in technology has allowed

the discipline to undergo an epoch-making revolutionary transformation and

develop into a new stage of modern geodesy, as represented by space geodesy.

The transformations are primarily:
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1. Separated one-dimensional (vertical) and two-dimensional (horizontal) geodetic

measurements have been developed into three- and four-dimensional measure-

ments, which include time variables.

2. Measurement of the geometric and gravity field elements on the Earth’s surface

under the hypothesis of a static and rigid Earth has been developed into the

observation of dynamic variations of the nonrigid (elastic and rheological) Earth.

3. Regional (relative) geodetic measurement in the local reference coordinate

system has been developed into global (absolute) geodetic measurement in the

unified geocentric coordinate system.

4. Measurement accuracy has been increased by two to three orders of magnitude.

These transformations have greatly expanded the research area of geodesy and

have formed modern geodesy as opposed to classical geodesy.

Developing Towards Basic Research Areas in the Geosciences

The potential of development of modern geodetic techniques indicates the possi-

bility of better monitoring of the Earth’s movement and changes in its shape and

potential field with sufficient accuracy on any spatial–temporal scale. The changes

in the Earth’s geometric and physical state are the result of its dynamic process

under the effect of both internal and external forces. Geodesy serves not only to

monitor and depict all kinds of geodynamic phenomena but also, more importantly,

to explain their mechanism of occurrence and to predict their evolutionary pro-

cesses. This is geodetic inversion, which includes the geophysical inversion of the

crustal movement and changes in the Earth’s rotation and gravity field. In other

words, it means to infer, in reverse, the Earth’s internal structural state, the source of

forces, and the parameters of dynamic processes from the geodetic observational

data of temporal variations. This intersectant research area between geodesy and its

related geosciences has formed a new branch, dynamic geodesy. This is currently

the most active interdisciplinary subfield of geodesy, whose development relies on

the development of space geodesy and physical geodesy and is also closely related

to the development of relevant geosciences. Dynamic geodesy is relatively inde-

pendent, and its theoretical system and methods are still under establishment.

Modern geodesy is developing mainly towards and into the geosciences. Its

basic tasks are:

1. To establish and maintain the inertial and terrestrial reference systems with high

accuracy; to build and maintain regional and global 3-D geodetic networks,

including the submarine geodetic network; to monitor in the long term the time-

varying changes of these networks on a certain time scale; and to provide

geodetic positioning and research of geodynamic phenomena with a highly

precise terrestrial reference frame and a network of surface reference points.

2. To monitor and explain various kinds of geodynamic phenomena, including

crustal movement, the Earth’s rotational changes, the Earth’s tide, sea surface

topography, and the variations in sea level.
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3. To measure the shape of the Earth and the fine structure of the Earth’s external

gravity field and its time-varying changes, and to interpret the observational

results from a geophysical point of view.

These assignments will be accomplished along with development of relevant

geosciences with the support of modern science and technology. Geodesy will be

one of the frontier subjects in promoting the development of the geosciences.

Space Geodesy Will Dominate Future Developments in the Discipline

The dominant position of space geodesy in the future development of geodesy has

already been determined by its wide application prospects and enormous potential.

In terms of conventional mapping and general engineering control, GPS positioning

techniques have basically replaced terrestrial measurement techniques using

devices like theodolites and rangefinders. The former demonstrates superiority to

the latter in accuracy, fieldwork efficiency, saving of workforce, and financial

resources. In terms of the scientific objective of geodesy, the monitoring and

research of various kinds of geodynamic and geophysical phenomena and processes

will be the major assignments. These require geodetic techniques to realize this

scientific objective on both the space and time scales; namely, to reach a sufficiently

high spatial and temporal sampling rate. On the space scale, the objective is the

ability to position on a regional and global scale more accurately and to determine

the global gravity field with higher accuracy and resolution. On the time scale, the

objective is the ability to monitor from crustal deformation by sudden earthquakes

to long-term slow movements of plates; and, in populated seismic zones with

intense tectonic movements, the ability to monitor successively and automatically.

The monitoring accuracy for displacement is required to reach 10� 8 to 10� 9

(equivalent to �1 mm); the measurement of gravity anomaly is required to reach

an accuracy of 1–3 mGal (1 mGal ¼ 10�5 m/s2) with a resolution of less than

30 km. Concerning the current situation of science and technology, these require-

ments are only practicable with the vigorous development of space geodesy,

primarily satellite geodesy.

The space geodetic techniques currently applied or developed mainly comprise

the following: satellite positioning systems such as GPS, SLR, satellite altimetry,

radio source VLBI, satellite gradiometry, and satellite–satellite tracking

measurement.

Satellite Navigation and Positioning Techniques Have Expanded

the Application Area of Geodesy

GPS techniques can provide static and dynamic objects with reasonably priced,

highly efficient, continuous, and precise positioning and illustration of the state of

motion. As an extensively applied technique, GPS has greatly extended the
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application area of geodesy, except for application in the discipline of geodesy itself

and the relevant geosciences. GPS positioning devices will become a necessity for

people’s socioeconomic activities and daily life in the information era.

Study of the Earth’s Gravity Field Is Dedicated to Developing Satellite

and Aerial Gravity Exploration Techniques and to Making a High

Resolution Recovery of the Gravity Field of the Earth

In the last 30 years, the study of the Earth’s gravity field has witnessed important

progress such as the creation of satellite gravity technology and the emergence of

absolute and relative gravimeters with microgal-level (1 μGal ¼ 10� 8 m/s2)

accuracy.

In the entire framework of modern geodesy focusing on the study of basic

geosciences, physical geodesy has closely integrated with space geodesy and

constitutes the nucleus of geodesy, together dominating the development of the

discipline. The level of refinement of the Earth’s gravity field structure will be one

of the major indicators of the future development of geodesy.

The development of gravity measurement will be dedicated to differentiating the

shortwave spectrum of the gravity field and monitoring the temporal variations in

the gravity field. The development of satellite gravity techniques will enable

measurement of a global gravity field with an accuracy of 1–2 mGal and a

resolution of 50 km. The accuracy of the latest fifth generation absolute gravimeter

reaches �1 to �2 μGal; the accuracy of the superconducting (relative) gravimeter

has reached 0.1 μGal. The accuracies of aerial gravity measurement and inertial

gravity measurement are somewhere between �1 and �6 mGal, and are effective

techniques for distinguishing the shortwave gravity field with a resolution of less

than 50 km. Thanks to the development of gravimetry techniques, it has already

become possible to monitor the temporal changes in the gravity field to provide new

important data for the study of geodynamics.

Review and Study Questions

1. What are the technical and scientific objectives of geodesy?

2. What roles does geodesy play in topographic mapping?

3. Briefly summarize the history and trends of development of geodesy.

4. Analyze advantages of space geodesy compared with classical geodesy.
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Chapter 2

Geodetic Data Collection Techniques

In order to accomplish the disciplinary tasks of geodesy, various geodetic data need

to be collected extensively. This chapter briefly introduces the methods and prin-

ciples of the data collection techniques that are commonly used in geodetic survey,

such as terrestrial triangulateration, height measurement, space geodetic surveying,

physical geodetic surveying, and so on.

2.1 Terrestrial Triangulateration

2.1.1 Angle Measurement

In establishing national geodetic control networks, it is often necessary to carry out

horizontal and vertical angle measurements. The theodolite is an instrument for

measuring angles with specific observational methods.

Horizontal and Vertical Angles

Horizontal Angle

In Fig. 2.1, A, P1, and P2 are three geodetic control points on the Earth’s surface. Let

A be the point of observation and P1 and P2 be the target points. Through point A,
draw a plumb line AV (the direction of gravity) and a plane M, which is perpen-

dicular to AV. The plane M is called the horizontal plane through point A.
The line of intersection Aq1 between the horizontal plane M and the vertical

plane containing the line of sight (line of collimation) formed by the plumb line AV
and the line of sight AP1 is called the projection of AP1 on the horizontal plane,

which is usually called the horizontal line (horizontal) of AP1. Similarly, Aq2 is the
horizontal of AP2. The angle β between Aq1 and Aq2 is known as the horizontal

Z. Lu et al., Geodesy, DOI 10.1007/978-3-642-41245-5_2,
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angle to P1 and P2 from A. The horizontal angle is measured clockwise in the

horizontal plane from 0� to 360�.

Vertical Angle

The angle between the line of sight AP1 and its horizontal Aq1 is called the vertical

angle to the sighted point P1 from A, denoted by α1. Likewise, the angle between the
line of sight AP2 and its horizontal line Aq2 is referred to as the vertical angle to the
sighted point P2 from A. Therefore, a vertical angle is the angle between the line of

sight, which is the collimation axis of the telescope, and its corresponding horizon-

tal, which includes the angle of elevation and angle of depression.

A vertical angle is measured in the vertical plane from 0� to �90�, positive
above the horizontal (see Fig. 2.1, α1) and negative below (see Fig. 2.1, α2).

The angles Z1 and Z2 between the plumb line AV and the lines of sight AP1 and

AP2 are called the zenith distances from point A to the sighted points P1 and P2.

As illustrated in Fig. 2.1, the sum of the vertical angle and the zenith distance of

a target is 90�, namely

αþ Z ¼ 90�: ð2:1Þ

According to this relation, the vertical angle and the zenith distance can easily be

converted one to the other.

Fig. 2.1 Horizontal and

vertical angles
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The Theodolite

There are many types of theodolite, from the classical optical theodolite to the

modern electronic theodolite. Theodolites are classified into J07, J1, J2, and J6 in

China according to their precision. “J” is the initial letter of Chinese Pinyin (Jing

Wei Yi) for theodolites and the subscript indicates their accuracy for angle mea-

surement (mean square error). J07 and J1 are of high accuracy and are used for the

first- and second-order national control surveys, while J2 is of medium-level

accuracy for third- and fourth-order surveys (see, e.g., Xu et al. 1991).

A theodolite consists of the principal components shown in Fig. 2.2. These

components are related as follows:

1. The vertical axis must be perpendicular to the axis of the plate bubble. When the

plate bubble is centered, the vertical axis coincides with the plumb line.

2. The vertical axis must be at right angles to the horizontal circle and pass through

its center. When the vertical axis is perpendicular, the horizontal circle is parallel

to the horizontal plane through the point of observation and the angle measured

in such cases will be the true horizontal angle.

3. The horizontal and vertical axes must be perpendicular and the collimation axis

must be at right angles to the horizontal axis. So, when the vertical axis is

perpendicular and the telescope is elevated or depressed, the plane formed by the

collimation axis will be the vertical plane of sighting.

Fig. 2.2 Basic structure of

a theodolite
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4. The horizontal axis must be perpendicular to the vertical circle and pass through

its center. When the vertical axis is perpendicular and the horizontal axis is

horizontal, the vertical circle is parallel to the vertical plane of sighting passing

through the point of observation and the angle measured in such cases will be the

true vertical angle.

5. Once the vertical circle index bubble is centered, the index for reading the vertical

circle must be horizontal or vertical. Thus, the angle between the index of the

reading scale and the collimation axis of the telescope will be the vertical angle.

The major parts of a theodolite are structured according to the relationships

mentioned above. It is generally required that the relationship between three axes

(the vertical and horizontal axes and the collimation axis) and between two circles

(horizontal and vertical circles) be free of errors, which is crucially important.

Unlike the optical theodolite, the electronic theodolite provides a visual digital

display of the circle readings instead of having to view through a reading eyepiece.

It is therefore also called an electronic digital theodolite. The electronic theodolite

is composed of optical mechanical devices, electronic sensor, microprocessor, etc.

The configuration of its shafting, telescope, and clamp (tangent) screw are identical

to that of the optical theodolite. The difference is that the electronic sensor is used to

replace the index of the reading scale in the ordinary theodolite. Following the

method of analog-to-digital conversion, it first receives electrical signals from the

circle and then converts these electrical signals into angles and displays them on the

monitor. Generally, there are kinematic and static angle measurements according to

the rotation of the circle, and there are circular encoders and circular raster scales

for angle measurements according to the different ways of circle graduating.

Detailed principles are not discussed further here.

Methods for Observing Horizontal Angles

The Direction Method and the Closing the Horizon Method

For each set of observations, all directions at the station should be observed to get

the angles. As shown in Fig. 2.3, the directions that need to be observed at station

O are OA, OB, . . . and ON. Let OA be the starting direction (also referred to as zero

direction). First, point A is sighted facing left and the reading is recorded. Then the

alidade is rotated clockwise and the points observed in order from A to N and the

readings noted, as one half of the full set of observations. Then the telescope is

turned to face right, the alidade rotated anticlockwise, and the observations repeated

facing right. The horizontal angles are then recorded again in reverse order from

N to A as the other half of the full set. At this stage, one set of angles has been

completed. Such a method is known as the direction method.

While using the direction method, before completing the direct-mode or reverse-

mode readings, zero direction A will be measured again (called back-to-zero or

being zeroed). Given the fact that each half of the whole set will combine and close

up to the starting direction as a full circle, it is referred to as closing the horizon
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method. The purpose is for an additional check to see if any variations in the

tribrach of the instrument have appeared during the direct or reverse mode of

observations. The direction method and closing the horizon method are basically

alike, and can be collectively called the direction method. When the number of the

observed directions is equal to or less than three, the time consumed by one set of

angle observations is quite short, and the direction method can be adopted

(non-back-to-zero or not being zeroed); when the number of directions is greater

than three (multiple angles), the closing the horizon method should be employed.

As to closing the horizon, whether the selection of zero direction is appropriate

or not will exert some influence on both the accuracy and time of observation at the

station. Therefore, the zero direction should be the one with appropriate length,

good intervisibility, and clear target image.

Currently, the direction method is primarily used in angle measurement where

lower precision is acceptable. Using the direction method, one obtains the values of

all directions at a station. The value of the chosen zero direction is equal to zero.

The angle between directions is the difference between the two directions.

Method of Angle Measurement in All Combinations (Schreiber’s Method

of Observation)

The direction method is simple and requires less effort in observation. However, the

sides of the national higher-level control networks are of greater length, and the

different target images cannot all maintain good quality at the same time. More-

over, the time consumed in one set of observations is rather long. It is therefore hard

to achieve results with significantly greater accuracy. To overcome these deficien-

cies, the method of angle measurement in all combinations can be used. The major

characteristic of this method is that it only measures the angle between two

directions each time. In so doing, it is possible to overcome the difficulty in

maintaining the clarity and stability of various target images simultaneously.

Meanwhile, it also helps shorten the time used in one set of observations and

makes it possible to achieve awesome results with higher accuracy, making it the

preferred method for accurately measuring horizontal angles.

Each time, two directions are selected out of all the directions to be observed at

the station and these are combined to form single angles; this is called the angle in

Fig. 2.3 The direction

method
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all combinations, for example, if four directions need to be observed at the station,

six single angles can be formed: (1.2), (1.3), (1.4), (2.3), (2.4) and (3.4) (cf. Fig. 2.4).

If the number of directions at the station is n, then the number of angles in all

combinations is given by:

K ¼ 1

2
n n� 1ð Þ: ð2:2Þ

For each set of observations, only a single angle is observed and the observation

set for each combination angle is the same. The characteristic for such observation

is that the alidade is rotated in the same direction for both direct-mode and reverse-

mode reading. This is intended to better eliminate the errors due to backlash as the

alidade rotates. However, for the entire observation and each set of observations for

every single angle, the alidade should be rotated clockwise in a half set and

counterclockwise in the other half so as to reduce other errors better. During each

time period of observation this is achieved by either changing the rotational

direction of the alidade when half of the set is completed or changing the rotational

direction of the alidade in between the sets of observation alternately.

The above covers the direction method and angle measurement in all combina-

tions. The key advantage of the direction method lies in its simple observation

procedures and in the fact that less effort is required for operation. However, when

there are multiple angles at the station, it will be hard to obtain clear target images in

all directions. On top of that, the time consumed in a full set of observations is longer,

which may make it more likely to be affected by external conditions, so difficulties

may arise in achieving results with high accuracy. These are the disadvantages of the

direction method. The method of angle measurement in all combinations has certain

advantages, i.e., each single angle can be observed with a flexibly selected clear target

for each set of observations, the time for observation is quite short, and the impact of

external conditions on the observations is relatively small. However, the procedures

for observation are relatively complicated; the combinations of single angles increase

rapidly as the directions at the station increase and thus measurements require much

more effort to perform. These are the drawbacks of such a method. Generally, the

direction method is more applicable to angle observation with lower accuracy,

whereas the method of angle measurement in all combinations is quite suitable for

angle observation with higher accuracy.

Fig. 2.4 Method of angle

measurement in all

combinations
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The measurement of vertical angles requires little for observation and accuracy.

What needs to be done is to observe the target using the crosshairs of the telescope

during the direct-and-reverse modes of readings, which constitutes a complete set

of observations. The vertical angle can be computed accordingly.

2.1.2 Distance Measurement

For hundreds of years, graduated tapes (measuring ropes, tape measures, and steel

tapes) have been used to measure distance by means of direct comparison. The

major flaw of such a method, however, is that it is easily subjected to the influence

of topographic conditions along the survey lines. To obtain distance measurement

with higher accuracy, one has to invest large amounts of human and material

resources to choose and arrange the survey routes, which can be complicated and

costly. Moreover, such distance measurement cannot be carried out if there are

rivers, lakes, hillocks, or ravines along the survey lines.

With the progress of science and technology, in the 1940s a new type of distance

measuring instrument came into being—the optical-electro distance measuring

instrument, which was also the earliest type of electromagnetic distance measuring

(EDM) device. Later, microwave, laser, and infrared EDM instruments emerged

one after another. Even today, the total station electronic tacheometer that inte-

grates angle and distance measurements is still available. It has created a new era of

using EDM to replace the direct comparison method using graduated tapes and the

indirect method using the optical tacheometer.

Principles of Electromagnetic Distance Measuring

In Fig. 2.5 an electromagnetic wave transmitted from a rangefinder placed at point

A travels to the reflector at point B and back to point A, received by the rangefinder.
Thus, the round-trip travel time t2D of the electromagnetic wave between points

A and B can be measured by the rangefinder. The distance (D) can be calculated

according to the following formula:

D ¼ 1

2
Vt2D, ð2:3Þ

where V is the velocity of propagation of the electromagnetic wave in the atmo-

sphere, c is the velocity of the electromagnetic wave in vacuum, and n is the index

of refraction (refractive index) for the electromagnetic wave:

V ¼ c

n
: ð2:4Þ

2.1 Terrestrial Triangulateration 27



The value of the index of refraction n is dependent on the wavelength λ of the

electromagnetic wave and the meteorological elements of the atmosphere. The

relationship between n and the air temperature t, the barometric pressure p, and
the humidity e is expressed as (Duan 1996):

n ¼ f λ; t; p; eð Þ: ð2:5Þ

Knowing the wavelength of the electromagnetic wave and the temperature,

pressure, and humidity of the atmosphere, the value of the refractive index n can

be computed according to (2.5).

To sum up, the principle of EDM is to use instruments to measure directly or

indirectly the round-trip travel time t2D of the electromagnetic wave along the

distance D and to measure the temperature t, the pressure p, and the humidity e at
the same time to compute the distance according to the above formula.

It is clear that we can directly measure the distance between two points at the

endpoint using the EDM method. Distances under any topographic conditions can

be measured provided that the measurement range is reached and no obstacles

interrupt the line of sight between the two points. Distances between mountains,

rivers, and even planets for instance, using satellite laser rangefinder can also be

measured directly, which can greatly reduce observation time.

Basic Methods of Electromagnetic Distance Measurement

There are three basic methods of EDM:

1. Method of Distance Measurement by Pulse (Pulse Method)

The distance D to the target is attainable if we directly measure the travel time

t between the transmitted pulse (dominant wave) and the reflected pulse (echo)

from the target. With this, the distance can be obtained with a measurement

performed only once, the measurement range varying from several kilometers to

hundreds of thousands of kilometers. The precision generally reaches centimeter

levels. Such a pulse method is chiefly used for measurements of low accuracy or

Fig. 2.5 Principles of EDM
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long distances, such as the front line tactical reconnaissance and distance

measurements from Earth to the Moon and from Earth’s surface to artificial

satellites.

2. Method of Distance Measurement by Phase (Phase Difference Method)

We can directly measure the phase difference between the transmitted signal

and the echo to get the travel time. The measuring accuracy of such a method is

better than the millimeter level and its measurement range is within dozens of

kilometers. It is commonly used in precision distance measurement on the

ground.

3. Method of Distance Measurement by Interference (Interferometric Method)

This method adopts the physical principle of optical interference for precise

distance measurement with higher accuracy than that of distance measurement

by phase. Its precision generally reaches micrometer levels. It is normally used

for calibrating distance measuring instruments and for precise short-distance

measurement.

Classification of Electromagnetic Distance Measuring Instruments

EDM instruments can be classified into the following three categories according to

the band of their carrier waves:

1. Microwave EDM Instrument

The carrier wavelength ranges from 8 mm to10 cm in the microwave band.

2. Laser EDM Instrument

The carrier is usually red visible light of 0.6328 μm wavelength and it is

stimulated emission of radiation (i.e., laser emission).

3. Infrared EDM Instrument

The carrier wavelength usually ranges from 0.75 to 0.95 μm and it is stimu-

lated emission of radiation (i.e., laser emission) or spontaneous radiation (fluo-

rescent light).

Generally, electromagnetic distance measurements involve distance measure-

ments with radio waves and with light waves. Measuring distance using radio

waves refers to microwave distance measurement. Light wave distance measure-

ment includes two categories, one being visible light distance measurement and the

other infrared distance measurement.

Visible light wave distance measuring devices can be categorized into two types.

At the early stage of development, the instrument was based on spontaneous

emission with an incandescent lamp or mercury lamp as its light source. In later

models, a red laser (λ ¼ 0.6328 μm) is stimulated by emission of radiation and the

light source is generally a He-Ne-gas laser, as summarized below.
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EDM instrument visible light 
distance 
measuring 
instrument

radio waves rangefinder 
(microwave distance 
measuring instrument)

light wave 
rangefinder
(geodimeter)

geodimeter (light source: 
incandescent lamp or 
mercury lamp)

infrared 
EDM 
instrument

laser distance measuring 
instrument (light source: 
laser)

laser infrared EDM 
instrument

light infrared EDM 
instrument

2.1.3 Astronomical Measurement

Astronomical observation is a technique utilized to determine the position of a point

on the Earth’s surface (astronomical longitude and astronomical latitude) and the

astronomical azimuth by observing celestial bodies (especially stars). Astronomical

observation is an ancient technology dating back to the era when human culture first

took shape. To figure out direction and determine time and season, the sundial and

gnomon were invented successively and Polaris was used for determining North.

Definition of Astronomical Coordinate System

In astronomical observation, the astronomical longitude, latitude, and azimuth of a

surface point obtained with reference to its plumb line and the geoid are the

representations of the surface point in the astronomical coordinate system.

As shown in Fig. 2.6, NS is the Earth’s axis; the two points N and S, where the
Earth’s axis intersects the Earth, are the North Pole and South Pole, respectively;

O is the geocenter; the plane OWG0P0E through the geocenter perpendicular to the

spin axis is the Earth’s equatorial plane; P is a point on the Earth’s surface; PK0 is
the plumb line direction of point P; the plane that contains the plumb line of point

P is called the vertical plane of point P, in which the vertical plane N0PP0S0K0

parallel to the Earth’s axis is called the astronomical meridian plane; NGG0S is the

initial astronomical meridian plane, also referred to as the astronomical meridian

plane (see e.g., Xia and Huang 1995).

Astronomical Longitude

The astronomical longitude of a point P on the Earth’s surface is the angle between

the initial astronomical meridian plane and the local astronomical meridian plane of
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this point, denoted by λ. It is measured eastward or westward from the initial

meridian and ranges from 0� to 180�; proceeding eastward is referred to as east

longitude and westward is west longitude. East longitude is positive and west

longitude is negative.

Astronomical Latitude

The astronomical latitude of a surface point P is the angle between the Earth’s

equatorial plane and the plumb line of this point, denoted by φ. It is measured

northward or southward from the equator to the poles and ranges from 0� to 90�;
proceeding northward is referred to as north latitude and southward is south

latitude. North latitude is positive and south latitude is negative.

Astronomical Azimuth

Let P be the point of observation and Q the target point, then the vertical plane that

contains point Q and the plumb line of point P is the plane of sighting of direction

PQ. Therefore, the astronomical azimuth of direction PQ is the angle between the

astronomical meridian plane of point P and the vertical plane of pointQ, denoted by
α. Its value is in the horizontal plane of the point of observation, measured from due

north of the meridian clockwise from 0� to 360�.
Initial meridian is the intersection of the plane containing the meridian of

0� longitude with the Earth’s surface. It is internationally agreed. In 1884, the

International Meridian Conference decided to adopt the meridian passing through

the Observatory at Greenwich, England (Airy Transit Circle) as the initial meridian,

known also as the prime meridian or zero meridian.

Fig. 2.6 Geoid and

astronomical coordinate

system

2.1 Terrestrial Triangulateration 31



Methods for Astronomical Observation

Traditional Methods for Astronomical Observation

Currently, astronomical observation usually adopts the traditional methods, mainly

to determine time by receiving time signals emitted from the observatory and to

record time by a chronometer. The instruments used in observations are primarily a

Wild T4 theodolite and a 60� astrolabe, and the methods extensively applied are as

follows:

1. The Wild T4 theodolite allows determination of the first-order astronomical

latitude by applying Talcott’s method.

2. The Wild T4 theodolite allows determination of the errors of a timepiece (time

corrections) by the method of equal altitudes of two stars, one east and the other

west of the meridian (Zinger’s method), in order to determine the first-order

astronomical longitude.

3. The hour angle of Polaris is applied for determining the astronomical azimuth.

4. A 60� astrolabe (composed of T3 and 60� prisms) allows simultaneous determi-

nation of the astronomical longitude and latitude of the second, third, and higher

orders using the method of equal altitudes of multiple stars.

New Methods for Astronomical Measurement

The new methods primarily employ the GPS OEM (Original Equipment

Manufacturer) board with time transfer service to receive satellite signals. Elec-

tronic theodolites are adopted for observation instead of optical theodolites; porta-

ble computers with advanced programming are used to replace the chronometer and

timepiece for time comparison and timekeeping; and the autonomous recording and

calculation of the observational data are also enabled. The currently adopted

methods are as follows:

1. Use the method of observing multiple stars at approximately equal altitudes to

determine the first- and second-order astronomical longitude and latitude

simultaneously.

2. Carry out repeated observation using the method of hour angle of Polaris to

determine the first- and second-order astronomical azimuth.
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2.2 Height Measurement

2.2.1 Leveling

Principle of Leveling

Leveling is a method used for accurate determination of height difference between

two points. The basic principle of leveling is that a precisely graduated staff is held

vertically over the two points whose height difference is to be determined and then

the scale readings are made with the horizontal line of sight. The difference

between the two readings will be the height difference between the two points.

As shown in Fig. 2.7, A and B are two surface points with unknown height

difference. Leveling rods (leveling staffs) R1 and R2 are held vertically on each

point while a level is placed at point S1 in between these two points. From the

horizontal line of sight, a reading of the rod R1 is made as “a” (known as the

backsight reading) and that of the rod R2 is “b” (known as the foresight reading).

Then the height difference hAB between A and B is:

hAB ¼ a� b: ð2:6Þ

The height difference is positive when a > b and negative when a < b.
Knowing the height HA of point A, we can obtain the height of point B following

HB ¼ HA + hAB. To determine the height HP of an arbitrary point P, one needs to
move the level to S2 and the rod R1 to point C after the height difference between

A and B is determined. Then, the height difference hBC between points B and C can

be obtained. Likewise, the difference in height between A and P is

hAP ¼ hAB + hBC + � � �.
The height of point P is:

HP ¼ HA þ hAP: ð2:7Þ

Such a method of transferring heights is referred to as geometric leveling.

Level and Leveling Rod

It can be seen from the principle of leveling that the leveling instrument should be

developed to set up a horizontal line of sight. Therefore, the level should have a

telescope capable of creating a line of sight (collimation axis) and a component that

can direct the line of sight to the horizontal direction (a bubble is one of the simplest

kinds). To make the line of sight horizontal and rotate horizontally, foot screws and

a vertical axis are also necessary. Integrating these components as shown in Fig. 2.8

will constitute the simplest level. These principal components should satisfy the

following conditions:
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1. The line of sight is parallel to the axis of the bubble (level) tube.

2. The axis of the level tube is perpendicular to the vertical axis.

In this case, when the instrument is leveled with the bubble tube, the line of sight

will be horizontal in all directions.

Precision dictates whether the leveling instrument can be classified as a precise

leveling instrument or an ordinary leveling instrument. A precise leveling instru-

ment is chiefly used in high-precision height measurement as in national first- and

second-order leveling and precise engineering surveying. An ordinary leveling

instrument is used in general engineering construction and topographic surveys.

The major difference between these two types is that the precise leveling instrument

has a built-in optical micrometer for accurate readings.

The leveling rod is an important leveling instrument that can be used to deter-

mine the difference in height between points.

A precise leveling rod has a 26 mm-wide and 1 mm-thick Invar strip placed in

the grooves of the wooden part of the rod, with one end fixed to the base plate and

the other to the metal frame at the top of the rod by a spring. Graduations of the rod

are painted to fill the grooves cut in a scribed rule and the graduation lines are

painted on the wooden part of the rod. The rod is approximately 3.1 m in total

length.

The rod can be graduated at intervals of 10 mm or 5 mm, according to the

measurement range of the level micrometer. Graduations are painted in two col-

umns on the left and right sides of the rod.

The rod holder loop is also configured to both the back sides of the leveling rod

to help hold it. The rod stand or stake is installed to keep the rod steady and upright.

Fig. 2.7 Principle of

leveling

Fig. 2.8 Structure of the

level
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Electronic Levels

The first electronic level was invented in March 1990 as a brand-new leveling

instrument that integrated electronic technology, encoding, image processing, and

computer technologies, and marked the direction for development of leveling

instruments. Today, several corporations throughout the world are manufacturing

electronic leveling instruments such as the DNA03 and DNA10 of Leica

Microsystems, DiNi10 and DiNi20 of Carl Zeiss, and DL-101 and DL-102 of

Topcon.

Different to the optical level, the rod face of the electronic level is graduated

with a bar code and there also is an inbuilt digital image recognition and processing

system. Using digital image processing technology, the image of the bar code can

be processed and compared through a telescope, which enables the naked eye of the

observer to be replaced by the array detectors (sensors). Observations (including

clamping and reading) can therefore be completed automatically. In surveying

operations, the leveling instrument needs to be only roughly leveled, the line of

sight is automatically made horizontal by the compensator, the leveling rod is

sighted, and the focus is adjusted. In such a case, by pressing the “measure” button,

the reading of the rod and the distance between the rod and leveling instrument will

be displayed on the monitor.

2.2.2 Trigonometric Leveling

Trigonometric leveling is a method for determining the difference in height

between two ground control points by using the distance and vertical angle

observed between the two points and then transferring the heights of ground control

points. Compared with geometric leveling, trigonometric leveling is much simpler

and more flexible. It is independent of terrain conditions and enables faster transfer

of heights. The flaw in trigonometric leveling, however, is its slightly lower

accuracy in determining heights. If controlled by leveling with sufficient density,

trigonometric leveling can therefore not only ensure the accuracy of ground control

point measurement but also overcome terrain constraints and improve work effi-

ciency (see, e.g., Kong and Mei 2002).

Basic Principle of Trigonometric Leveling

As shown in Fig. 2.9, A and B are two points on the Earth’s surface and their heights

are H1 and H2, respectively. The vertical angle from A to B is α12, S0 is the

horizontal distance between the two points, i1 is the height of the instrument (HI),

and a2 is the height of the target (HT) of point B. The difference in height between

A and B will be:
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h12 ¼ H2 � H1 ¼ S0 tan α12 þ i1 � a2: ð2:8Þ

If the measured slope distance is d, the height difference is:

h12 ¼ d sin α12 þ i1 � a2, ð2:9Þ

which is the basic formula for computing the height difference using trigonometric

leveling. Given the height of point A, that of point B becomes:

H2 ¼ H1 þ h12: ð2:10Þ

EDM Height Traversing

Electromagnetic distance measurement (EDM) height traversing is also called

precise trigonometric leveling. With the development of the electronic tachymeter,

accuracies of angle and distance measurements have been greatly improved. The

accuracy of distance measurement reaches over 1/100,000 and that of angle mea-

surement can amount to 0. 500, which provides favorable conditions for precise

trigonometric leveling. At present, third- and fourth-order leveling can be

completely replaced by EDM height traversing and, accordingly, in China specifi-

cations have been made by the departments concerned. Replacing leveling with

EDM height traversing has proved to be notably economical in mountainous and

hilly regions.

The methods of height traversing include reciprocal, leap-frog, and unidirec-

tional. For the reciprocal method, the instrument is set up at each station to conduct

reciprocal trigonometric leveling. The leap-frog method involves setting up an

instrument midway between two targets. The targets remain at a particular change

point. Observations are carried out in a pointwise manner. The targets should be

set alternately and an even number of setups is used. This method is similar to

leveling, except for using an oblique instead of a horizontal line of sight. The

unidirectional method is based on the first and second methods, which is to observe

twice with different heights of instrument at one station or to observe twice the two

targets at each station. Tailor-made sighting vanes are used as the targets for all

three methods described above.

Fig. 2.9 Principle of

trigonometric leveling
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2.3 Space Geodetic Surveying

2.3.1 GPS Surveying

Overview of GPS

Authorized to start in November 1973 by the US Department of Defense, GPS is a

second-generation American satellite-based navigation system. It is accessible by

the armed forces and cost 1,000 million dollars. It became fully operational in 1994

as the third greatest project after the Apollo lunar spacecraft and space shuttle. In

surveying, navigation, guidance, precision positioning, dynamic surveying, time

transferring, velocity measurement, and so on, GPS is convenient to use, easily

operational in observation, precise in positioning, and beneficial economically. It

has displayed its powerful functions and unparalleled superiority (Xu 2001).

The entire GPS consists of the space segment, the ground control segment, and

the user segment.

Structure of GPS

The Space Segment

As shown in Fig. 2.10, the space segment is composed of 24 GPS operational

satellites which form the GPS satellite constellation. Of these, 21 are navigation and

positioning satellites and 3 are spares. These 24 satellites orbit around the Earth in

six orbits at an inclination angle of 55�. Except at the two poles, theoretically more

than four satellites can always be in view anywhere on the Earth’s surface at any

time. Orbiting at an altitude of about 20,000 km, each satellite makes one complete

orbit every 12 sidereal hours. Every operational GPS satellite can transmit signals

for navigation and positioning, which are then utilized by GPS users.

The Control Segment

The control segment is a monitoring system composed of several tracking stations

around the globe. These tracking stations are categorized into master control

stations, monitor stations, and up-link stations based on their functions. There is

one master control station, which is located in Falcon Air Force Base in Colorado,

America. Based on the observational data of GPS from every monitor station, it

calculates the correction parameters of ephemeris and clocks of the satellites and

uploads these data to the satellites through up-link stations. Meanwhile, it takes

control of and gives instructions to the satellites. When one operational satellite

goes wrong, it will dispatch a spare to replace the invalidated one. Additionally, the

master control station also possesses the functions of monitor stations. There are

five monitor stations. Apart from the master control station, the other four are
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located in Hawaii, Ascension Island, Diego Garcia, and Kwajalein. They are

designed to receive signals from the satellites and monitor the satellite working

status. The three up-link stations are located at Ascension Island, Diego Garcia, and

Kwajalein. These stations upload to the satellites the correction parameters of

ephemeris and clocks of the satellites computed by the master control station.

The User Segment

The user segment consists of the GPS receivers, the data processing software, and

corresponding auxiliary equipment for users, etc. It is intended to receive signals

sent by GPS satellites and to use these signals for navigation, positioning, and so on.

Signals From GPS Satellites

GPS satellites transmit carrier signals for civilian use at three frequencies:

1,575.42 MHz (L1 carrier wave), 1,227.60 MHz (L2 carrier wave), and

1,176.45 MHz (L5 carrier wave). Their wavelengths are 19.03, 24.42, and

25.48 cm, respectively. Many signals, chiefly the C/A, P, and D codes, are modu-

lated on carrier waves L1, L2, and L5.

The C/A code, also known as coarse acquisition ranging code, is a pseudo-

random noise code (PRN code) with a frequency of 1.023 MHz, The total code

period contains 1,023 chips and lasts 1 ms. Different satellites can be distinguished

by their PRN names because each satellite differs in its C/A code.

The P code, known as precision ranging code, is a PRN code at a frequency of

10.23 MHz.

Fig. 2.10 GPS satellite

constellation
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The D code, known as the navigation message, at 50 bits per second, carries the

position of satellites, status information, etc.

GPS Positioning Services

GPS offers two positioning services: the Precise Positioning Service (PPS) and the

Standard Positioning Service (SPS).

PPS. Authorized users of the PPS, including the US military, certain US

government agencies, and civil users specifically approved by the US government,

need cryptographic equipment and special receivers. The positioning accuracy of

PPS is several meters and the time accuracy reaches 40 ns.

SPS. For common civilian users, the US Government provides the SPS to take

control of positioning accuracy. Users worldwide use the SPS without charge or

restrictions. In the initial stages of GPS system implementation, SPS accuracy was

intentionally degraded by the US Department of Defense by the use of so-called

selective availability (SA). Under the effect of SA, the positioning accuracy of SPS

is degraded to approximately 100 m and the time service accuracy is about 340 ns.

In May 2000, the USA announced it was discontinuing the use of SA. At present,

SPS provides a positioning accuracy of approximately 10 m and a time service

accuracy of about 100 ns.

GPS Coordinate System and Time System

World Geodetic System 1984 (WGS84)

For a worldwide unified geodetic coordinate system, the US Defense Mapping

Agency (DMA) has provided WGS60 since the 1960s and later developed the

improved WGS66 and WGS72. WGS84, currently used by GPS, is a more accurate

global geodetic coordinate system.

The coordinate origin of WGS84 is at the Earth’s center of mass. Its Z-axis is the
direction of the Conventional Terrestrial Pole (CTP), as defined by BIH1984.0. The

X-axis points to the intersection of the zero meridian plane defined by the

BIH1984.0 and the plane of the CTP’s equator. The Y-axis constitutes a right-

handed coordinate system.

The coordinates of GPS single point positioning and the baseline vector in

relative positioning solution belong to the WGS84 geodetic coordinate system on

which the GPS satellite ephemeris is based. However, practical measurement

results often belong to a national or local coordinate system. In real applications,

one needs to solve the transformation parameters in order to transform coordinates.
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GPS Time System

GPS has a dedicated time system for precision navigation and positioning. The GPS

time system, abbreviated as GPST, is provided by atomic clocks in GPS monitoring

stations.

GPST belongs to the atomic time system. It has the same interval unit of one SI

second as TAI (International Atomic Time), but a different point of origin from

TAI, so there is an integer-second offset of 19 s in any instant of time between

GPST and TAI, such that TAI � GPST¼19 s. GPST was consistent with UTC

(Coordinated Universal Time) at 0 h on January 6, 1980. Over time there is an offset

of integral multiples of 1 s.

Features and Functions of GPS

With the employment of high-orbiting ranging systems, GPS defines its basic

observed quantity as the distance between stations and the satellites. There are

two main GPS measurement strategies for obtaining the observed quantity. One is

the pseudo-range measurement, which measures the propagation time taken for the

pseudo-random code to travel from the satellite to the user’s receiver. The other is

the carrier phase measurement, which records the phase difference between the

carrier signals from the GPS satellites with Doppler frequency shift and the

reference carrier signals produced by receivers. Pseudo-range measurement has

the highest speed in positioning whereas carrier phase measurement has the highest

precision in positioning. The three-dimensional position of a receiver can be

deduced through the simultaneous pseudo-range or phase measurements of four

or more satellites.

With the appearance of GPS, electronic navigation technology has entered a

brilliant period. Compared with other navigation systems, GPS is mainly distin-

guished by the following (see Xu et al. 1998):

Continuous Global Coverage. Since there are enough GPS satellites in a reason-

able distribution, at least four satellites can theoretically be observed continuously

and synchronously from any point on the globe, which guarantees all-weather

global continuous navigation and positioning in real-time.

Multifunction and High Precision. GPS can provide three-dimensional position,

velocity, and time information continuously with high precision for all kinds of

users.

High Speed in Real-Time Positioning. One-time positioning and velocity mea-

surement of GPS receivers can be done within 1 s or even less, which is especially

important for high dynamic users.

Remarkable Anti-interference Capacity and Adequate Confidentiality.

Because of the employment of pseudo-noise spread spectrum technology in GPS,

the signals from GPS satellites have remarkable anti-interference capacity and

sufficient confidentiality.
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GPS technology has developed into a new multidomain (land, marine, aero-

space), multipurpose (in-transit navigation, precise positioning, precise timing,

satellite orbit determination, disaster monitoring, resource survey, construction,

municipal planning, marine development, traffic control, etc.), multimodel (geode-

sic type, timing-based, hand-held, integrated, vehicle-borne, ship-borne, airborne,

satellite-borne, missile-borne, etc.), high-tech international industry. GPS has been

widely applied in aerospace, fishing, guided tours, and agricultural production. It is

said that “the applications of GPS are only restricted by human imagination.”

GPS Measurement and Positioning Methods

GPS positioning methods are diverse. Users can use different positioning methods

that are appropriate for their different purposes. GPS positioning methods can be

classified according to different criteria as follows (see e.g., Liu et al. 1996):

According to Observed Values Adopted by Positioning

Pseudo-Range Positioning. The observed values adopted in the pseudo-range

positioning are GPS pseudo-ranges, which can be a C/A code pseudo-range or a

P code pseudo-range. This positioning method has the advantages of simple data

processing, a low demand for positioning conditions, no integer ambiguity, and an

easier realization of real-time location. The disadvantage is the low accuracy of

observed values. The accuracy of the C/A code pseudo-range observations is

generally 3 m and that of the P code pseudo-range observations is about 30 cm,

which results in low accuracy of positioning results.

Carrier Phase Positioning. The observations adopted in the carrier phase

positioning are GPS carrier phase observations; namely, L1 carrier, L2 carrier, or

a linear combination of these. The advantage of carrier phase positioning is the high

accuracy of observations, with a tolerance of better than 2 mm; however, it is

complicated in data processing and has integer ambiguity.

According to Modes of Positioning

Absolute Positioning. Absolute positioning, also known as precise point position-

ing (PPP), is a positioning model in which one receiver is used. The absolute

coordinates of the receiver antenna are determined in this mode. The mode is

simple in operation, so it can be used in stand-alone operation. It is generally

used for navigation and other applications of low accuracy.

Relative Positioning. Relative positioning, also known as differential position-

ing, employs more than two receivers to observe simultaneously in order to

determine the mutual relationship between positions of the receiver antennae.
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According to the Time Used for Obtaining the Results of Positioning

Real-Time Positioning. Real-time positioning, based on the observational data of

the receiver, calculates the position of the receiver antenna in real time.

Non-Real-Time Positioning. Non-real-time positioning, also known as post-

processed positioning, determines the position of the receiver antenna through the

post-processing of the data received by the receiver.

According to the Receiver’s State of Motion During Positioning

Kinematic Positioning. So-called kinematic positioning means that the position of

the receiver antenna is changing with the time in GPS positioning. That is to say, in

data processing, the position of the receiver antenna is seen to be variable over time.

Static Positioning. So-called static positioning is where the position of the

receiver antenna in the whole process of observation remains the same. That is,

in data processing, the position of the receiver antenna does not vary with the time.

In a survey, static positioning is generally used for precise positioning. The specific

observation model is to carry out static synchronous observations by multiple

receivers at different stations for several minutes, hours, or days.

GPS Receiver

Navigation Receiver

GPS pseudo-range navigation is the most basic GPS service mode. GPS navigation

uses the observation of distance (i.e., pseudo-range observations containing errors)

to more than four satellites to determine the position of the receiver. Navigation-

based GPS receivers (different from the phase measurement-based ones) generally

carry out the pseudo-range and Doppler measurements only by C/A code or P code.

They can receive navigation messages and calculate the position and velocity of the

antenna in real time. Except for American military and authorized users, users can

generally only use C/A code. As the most widely used receivers at present, they can

be used in military and civil navigation, providing positioning with a medium

degree of accuracy, and time transfer of relatively high precision.

Although GPS navigation receivers vary in type, their functions and operations

are similar. The work process of a common navigation receiver is as follows:

1. Power on.

2. Wait for satellite searching. The receiver searches automatically for satellites

that can be observed in the sky and locks onto the target, which will take a period

of time varying from seconds to minutes according to the different types of

receivers.
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3. Display the positioning results. As soon as the receiver locks onto four (or more

than four) satellites, it will begin the positioning and display the results. Position

and velocity are generally displayed. The receiver constantly updates position-

ing and velocity results based on the selected data update rate.

Phase Measurement Receiver

Since the carrier wave is much shorter in wavelength than the pseudo-random code,

in the case of the same resolution the observation accuracy of the carrier phase is

much higher than that of the code phase. For example, the wavelength of the carrier

L1 is 19 cm, so the error of the corresponding distance observations is about 2 mm,

whereas for the carrier L2 the corresponding error is about 2.3 mm. The carrier

phase measurement is the most accurate method nowadays and many companies

have produced GPS phase measurement receivers of different types. The

MacrometerV-1000 produced by the American company Litton Aero Service is a

single frequency (L1) phase measurement receiver and is the earliest manufactured

for commercial use.

2.3.2 Satellite Laser Ranging

Satellite Laser Ranging (SLR), rising in the mid-1960s, is a new space geodetic

technique that determines the distance between laser station and a satellite using the

laser ranger to trace and observe the satellites installed with laser reflectors. To

begin with, SLR employed the BE-C satellite. Then, in 1976 NASA launched a

laser geodynamic satellite LAGEOS-1; in 1992 America cooperated with Italy and

launched the satellite LAGEOS-2 to expand the observation range of SLR on the

Earth. Meanwhile, France, the former Soviet Union, Japan, and Germany succes-

sively launched their SLR satellites. During its development over more than

40 years, the SLR system has improved from 1 m to the present 1 cm in distance

accuracy. It is now one of the main technical means of precise satellite positioning

as well as the most precise among the current various space observation technol-

ogies in terms of data sampling rate and absolute positioning. It not only plays a

decisive role in establishing and maintaining the Global Geocentric Coordinate

System (GGCS) but has also led to great achievements in the field surveying of

modern plate motion, improvements in the Earth gravity model and geocentric

gravitational constant, and the accurate measurement of Earth’s rotation parameters

(ERP), etc. (see e.g., Ye and Huang 2000).
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Principles of Satellite Laser Ranging

SLR is a physical distance-measuring method, using the laser as its light source and

the time of flight of the optical pulse for measurements. Its main features are:

1. The output power of the laser can reach orders of magnitude of 109 W and its

optical energy density per unit area can be greater than that of the surface of the

sun. Thus, the effective distance of the laser can reach the artificial Earth

satellites tens of thousands of kilometers away, or even the lunar surface.

2. The laser spectrum is very sharp and has a halfwave width of about 5�, which
benefits from adopting a narrow-band filter to eliminate sky background noise in

a receiving optical system and to improve signal-to-noise ratio in observation.

3. The divergence angle of light beam output by the laser is very small, at about

1 mas. Through the optical system alignment, the divergence angle can be

further compressed. Therefore, the light energy can still be concentrated within

a very small scope far away.

4. The laser burst of a pulsed laser can reach a very small order of magnitude in

width. Because the pulse width is one of the main factors in determining ranging

accuracy, the laser ranging can be very accurate.

Due to the aforementioned characteristics of the laser, it is possible to realize

long-distance laser ranging. There are three methods of laser ranging: the pulse

method, phase method, and interference method. The pulse method is usually

applied in SLR. Its basic principle is very simple: laser pulse signals are sent

from a laser ranger placed at the observation station to a laser satellite equipped

with a back-reflecting prism and go back to the receiving system of the rangefinder

after being reflected by the tested satellite. If the time difference Δt between the

sending and receiving of these laser pulse signals is measured, we can get the

distance ρ between the satellite and the station according to the formula:

ρ ¼ 1

2
cΔt, ð2:11Þ

where c is the velocity of light. Suppose the equation of motion of satellites in the

Earth-Centered Inertial (ECI) Coordinate System is:

_X ¼ F X;Pd; tð Þ, X t0ð Þ ¼ X0, ð2:12Þ

where X is the satellite’s state vector at an instant of time t; X ¼ (r, r0)
T or X ¼ σ,

σ being the six Keplerian elements; X0 is the satellite’s state vector at initial time t0;
and Pd is the physical parameter to be estimated. Then the solution of (2.12) can be

expressed as:

X ¼ Q X0,Pd,
dt

� �
: ð2:13Þ

Suppose ΘO is the satellite’s observed quantity (i.e., the distance between the

satellite and the Earth); its corresponding theoretical value ΘC can then be defined as:
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ΘC ¼ Θ X;Rð Þ, R ¼ PNSR0: ð2:14Þ

where R andR0 represent the position vectors of the station expressed in the inertial

system and in the Earth-fixed coordinate system, respectively, and P,N, and S stand

for precession of the equinoxes matrix, the nutation matrix, and the rotation matrix

of the Earth (see Vermeille 2002).

The above is the general principle of satellite dynamic geodesy. In practice, we

should, based on different situations, purposes, and demands, select appropriate

parameters as the adjusted quantities and keep the theoretical values of other

parameters unchanged. Whichever dynamic geodesy is chosen, the satellite orbit

is generally needed as the adjusted quantity, i.e., they all have a process of orbit

determination and measurement.

SLR System

The SLR system consists of two main segments, a laser ranger on the ground and a

laser satellite in space. The hardware devices of the ranger include seven parts:

laser, telescope, electro-optical head, pulse position measurement system, time and

frequency system, servo system, and computer; see Fig. 2.11 for an outline of the

structure.

The working principle of the satellite laser ranging system is as follows:

The light pulse generated by the laser is led through the guiding optical path into

the transmitter-telescope, which then emits the light beam to the target laser

satellite after collimation. A small segment taken from the emitted light beam

forms two electric pulses through the dominant wave sampling circuit. One is

called the dominant wave pulse, which, as the enabling signal, is used to initiate

the laser flight time interval counter. The other pulse is the electrical pulse, used to

sample the clock and record the time of the laser emission. The laser pulse reflected

by the satellite to the ground is received by the receiving telescope. Low-light

detection equipment, which detects the reflected light, is set on the focus of the

receiving telescope. The light is converted into electrical signals that are then

amplified and reshaped into an echo pulse, which, as the stopping signal, stops

the counter. In this way, the counter records the time interval Δt ¼ τ � T between

the dominant wave and the echo pulse (shown in Fig. 2.11), where Δt is the round-
trip flight time of the laser between the station and the satellite.

The telescope of the ranger has three functions; namely, emitting, receiving the

laser, and targeting satellites. We can design it as three independent telescopes or

one telescope with three functions. Its time and frequency system has two func-

tions: one is to provide a stable frequency source for counters, lasers, computers,

and other devices (the stability of counters’ frequency should be better than 10�10);

the other is to record the time for laser emission. The accuracy of time recording for
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the rangefinder with centimeter-level accuracy is 1 μs, and good quartz or rubidium
clocks can meet the above requirements.

The laser ranger can only make an observation of satellites with dedicated

reflectors. The laser reaching the satellite should return in the same direction as

that of the laser emission. Such a reflector is also called a retroreflector, which is

mainly composed of glass prisms. To achieve the accuracy required, the reflector

must be carefully designed for the geometric shape and orbital altitude of dedicated

satellites. To adjust the energy balance between the emitting laser and the receiving

photons, the reflector should be big enough to reflect enough energy. In most cases,

several single reflectors with 2–4 cm diameter set in a certain array can acquire the

necessary energy. We should pay close attention to the alignment and adjustment of

a single reflector lest the signal overlap causes a pulse distortion. The reflector is a

passive device, easy to install on a satellite as an attachment. Therefore, many

satellites are equipped with laser reflector arrays. Satellites LAGEOS-1 (in 1976)

and LAGEOS-2 (in 1992) launched by NASA, and satellites Etalon-1 (in January

Fig. 2.11 Structure of the

SLR system
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1989) and Etalon-2 (in May 1989) launched by Russia (the former Soviet Union),

and others are dedicated laser ranging satellites for the applied research of

geodynamics and geodesy. Satellites are especially suitable for geodetic research

and observation because of their high and stable orbits, small area-to-mass ratio,

symmetrical spherical shape, long accumulation time for observational data, etc.

Figure 2.12 shows the shape of such satellites. They are spherical with a diameter of

60 cm, installed with 426 laser reflectors on their surfaces. They are still used for the

common geodetic observation of SLR nowadays and have, among others, provided

much data for establishment of the terrestrial reference frame and determination of

the Earth rotation parameters. SLR has become one of the main techniques for

satellite orbit determination because of its high precision distance measurement

ability. Many reconnaissance satellites, meteorological satellites, Earth resources

satellites, and oceanic satellites have all been equipped with laser reflectors so as to

carry out more precise measurement and control of satellites by means of the SLR

technique.

2.3.3 Very Long Baseline Interferometry

Very long baseline interferometry (VLBI) came into development in the late 1960s

and is a radio interferometric observation technique that can combine two radio

telescopes thousands of kilometers apart into a radio interferometry system with

very high resolution. Since the line between the two telescopes is known as the

baseline, VLBI is called very long baseline interferometry. Its resolution has now

been improved to (the magnitude of) 0.1 mas with extension of the baseline.

Because of the super-high resolution of VLBI, it has been widely applied in

many fields like astronomy, geophysics, geodesy, and space technology for appli-

cations such as radio astronomy, accurate determination of the Earth’s rotation

parameters, crustal deformation detection, exploration of deep space and the

ionosphere, etc.

Principles of Geodetic VLBI

Celestial bodies observed by VLBI are extragalactic radio sources, which are

usually in deep space 100 million light years from Earth. When the electromagnetic

wave radiated from the celestial bodies reaches the Earth’s surface, its propagation

distance is much further than that of the baseline in VLBI, so at this moment the

movement of the wave front can be assumed to be parallel propagation and the

wave is called a plane wave. On account of the different distances between the two

antennae and a certain radio source, we get a distance difference L. Therefore, the
time span of the radio signal from the same wave front to either antenna will be

different, resulting as a time delay τg. According to the geometric relationship

shown in Fig. 2.13 we get:

2.3 Space Geodetic Surveying 47



L ¼ c � τg, ð2:15Þ

where c is the velocity of light in vacuum. Suppose B
!

is the baseline vector from

antenna 1 to antenna 2 and K
!
is the direction of the electrical source observed; then

we get:

τg ¼ � 1

c
B
! � K!

� �
: ð2:16Þ

Due to the movement of the Earth, the direction of vector K
*

relative to the

baseline vector B
*
will change. Suppose τg is a time function, then we can denote its

time derivative as the delay rate _τg, namely:

_τg ¼ � 1

c

∂
∂t

B
! � K!

� �
: ð2:17Þ

The observed values of VLBI in geodesy are mainly the delay and the delay rate.

Fig. 2.12 Satellite

LAGEOS. Source: NASA

Fig. 2.13 Geometric

principle of VLBI
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B
*

and K
*

in (2.16) and (2.17) must be expressed in the same coordinate system.

However, the direction of the radio source is usually represented by the right

ascension and the declination (α, δ) in the celestial coordinate system, and the

baseline vector is defined as a vector b
!
¼ ΔX,ΔY,ΔZð Þ in the terrestrial coordinate

system. As a result, in practical calculation, must be converted to a vector in the

celestial coordinate system (see Dennis and Petit 2004):

B
! ¼ PNSWb

!
, ð2:18Þ

where P, N, S, W stand for the rotation matrixes of precession, nutation, Earth’s

diurnal rotation, and Earth’s polar motion, respectively.

For simplification, the influence of precession, nutation, and polar motion is not

taken into account when discussing the principles of VLBI. Thus, (2.18) can be

expressed as:

B
! ¼ Rz �θg

� �
b
!
¼

ΔX cos θg � ΔY sin θg
ΔX sin θg � ΔY cos θg

ΔZ

0
@

1
A: ð2:19Þ

Substitute (2.19) into (2.16) and (2.17) to obtain:

τ ¼ � 1

c
ΔX cos δ cos θg � α

� �� ΔY cos δ sin θg � α
� �þ ΔZ sin δ

� �
, ð2:20Þ

_τ ¼ � 1

c
ΔXωg cos δ sin θg � α

� �þ ΔY cos δ cos θg � α
� �� �

, ð2:21Þ

where θg is Greenwich local sidereal time and ωg represents the Earth’s rotation

speed.

The two equations above are the principle formulae for solving geodetic param-

eters by the use of the observed quantities of VLBI delay and delay rate. Through

analysis of the formulae we know that the solution of VLBI parameters has the

following characteristics:

1. VLBI delay and delay rate are pure geometric observed values that do not

contain information about the Earth’s gravitational field. Therefore, the acqui-

sition of these observed values is not affected by the Earth’s gravitational field.

2. VLBI, as a relative measurement technology, can only determine the relative

position between two antennae, that is, the baseline vector; it cannot get the

geocentric coordinates of each antenna. Thus, for determining the geocentric

coordinates of the VLBI station we usually make observations through both

VLBI and SLR in one station at the same time. Using the geocentric coordinates

obtained by SLR as the datum, we can calculate the geocentric coordinates of

other VLBI observations.
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3. Because of its direct relation with the alteration of the Earth’s rotation θg, the
right ascension α of the radio source cannot be calculated independently from

the observed quantities of the delay and the delay rate. As a result, VLBI alone

cannot determine the origin of the right ascension of the radio source reference

system and other technologies are required to do so.

4. The observed quantity of the delay rate does not contain the effect of the baseline

component ΔZ, which cannot be calculated just by the observation of the delay

rate. Besides, adding the data of delay rate to that of delay will not reduce the

level of radio sources, which are to be observed to solve all the unknown

parameters. In data processing and parameter solution, the delay rate is adopted

only as a supplementary observation while the observed quantity of the delay is

decisive.

The VLBI System

The VLBI system, as shown in Fig. 2.14, contains antennae, receivers, local

oscillators, samplers, recording devices, related processors, and other units. The

following is a brief introduction of the process of data collection of VLBI.

1. First, two antennae in the system receive the radio signal emitted by the observed

radio source on the focus points of the antennae’s paraboloid. Then, the feed

source transfers the collected electromagnetic wave into high-frequency current

and sends it to the receiver. The accuracy of VLBI observation (time delay, time

delay rate) with regard to celestial and geodetic observation is directly propor-

tional to the signal-to-noise ratio (SNR) of the system, and the SNR is directly

proportional to the antenna aperture. Due to the weak signals from extragalactic

radio sources, the VLBI antenna aperture is often over 20 m to obtain

enough SNR.

2. The receiver’s main function is to amplify this signal into a radio-frequency

signal by using a high frequency amplifier and then convert it to an intermediate-

frequency signal with a certain bandwidth through a mixer. In mixing, the mixer

requires a local oscillating (LO) signal, which is provided by the station’s local

oscillator.

3. The intermediate-frequency (IF) signal from the receiver reaches the data

recording terminal device, which nowadays employs an MK3 system or

upgraded MK4 and MK5 systems. The MK3 recording system mainly contains

two IF distributors, 14 video converters, a format cell data collection system, a

magnetic tape recorder, and a computer that takes control of the data collection

system and the recorder. The IF signal from the receiver is sent to the IF

distributors and then to these 14 video converters, which convert the signals in

different IF frequency ranges into video signals (also named Base Band) at 0–

2 MHz that can be recorded by the magnetic tape recorder. The video signal

output by the video converters is sent to the format cell. The main function of the

format cell is to digitalize the 0–2 MHz video signals through one-bit sampling;

then a format encoder supplies the precise receiving time for each datum and
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encodes these data by rewriting signals and necessary information in a special

format. Next, the formatted data are recorded on dedicated tapes in specialized

format by the magnetic tape recorder. It should be noted that these 14 frequency

converters have 14 independent LO signals, which will result in phase drift. So,

phase calibration is required. A phase calibration system consists of a pulse

generator, which transmit an impulse and inject it into the signals every micro-

second. This pulse injection point is defined as the reference point of the delay.

4. Finally, the observed data recorded by the magnetic tape recorder are sent to the

related processors. The processors playback the data and input them to the

correlators of corresponding channels to carry out cross-correlation computa-

tions and acquire the related function value, i.e., the interferometric fringe. After

that the computer uses its software system to obtain the required observed value

of the time delay and the time delay rate by fringe fitting computation.

The Technique of Space VLBI

To improve the resolution of VLBI, the concept of space VLBI was proposed in

1970 and the establishment of the space VLBI system was also considered. By

1980, space VLBI became more mature in theory and technical realization. In 1997,

the first space VLBI satellite (VSOP) in human history was successfully launched

in Japan. Although space VLBI was proposed for astrophysics research, conceptu-

ally it has more advantages over ground-based VLBI for application in fields like

geodesy. Therefore, it will become a more effective geodetic observation

technology.

In light of the VLBI principle, there are no differences between space and

ground-based VLBI. A space VLBI station can be seen as a component of a

Fig. 2.14 VLBI system
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ground-based VLBI net extending into space. It has the same function as a ground

antenna, i.e., to receive signals from a radio source. Then, the required observa-

tional data for scientific research can be acquired through correlation processing of

the signals received by both the space VLBI station and the ground antenna.

However, space VBLI is different to ground-based VLBI in technical realization

since the former places the antenna in space. The system of space VLBI is shown in

Fig. 2.15.

Space VLBI is mainly distinguished by:

1. The phase of the space station’s local oscillator is locked onto the hydrogen

frequency standard of the ground tracking station. This frequency standard is

sent to the space station from the tracking station through a radio channel

(upwards).

2. The radio signal and other data received by the space station are sent back to the

ground tracking station through a radio channel (downwards).

3. The space station must be equipped with highly precise systems for the attitude

adjustment of antennae and for orbit control and detection.

4. The space station produces its own source of energy from received solar energy.

5. A ground support system of global coverage that can maintain uninterrupted

communication with the space station is required.

The most significant technical advantage of the application of space VLBI to

geodesy is to turn the geometric measurement of ground-based VLBI into dynamic

measurement. It has been mentioned that the measurement completed by forming a

baseline between two ground VLBI observations is a geometric one from the

perspective of geodesy. Such measurement alone can only determine the relative

position of the two stations but not their geocentric coordinates. Since the orbit of

the space VLBI is described in a geocentric coordinate system and its movement is

affected by various geodynamic factors, when adopting space VLBI a dynamic

Fig. 2.15 Space VLBI

system
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measurement system can be formed by making a baseline between the space and

ground stations so as to determine directly the geocentric coordinates of the ground-

based station. Because all the VLBI antennae around the world take part in the

space VLBI observation, a complete terrestrial reference system can be established

independently using space VLBI technology itself. A VLBI station can not only be

an observed object for various artificial satellite tracking stations on the ground, it

can also be a space station in the orbit of artificial satellites to observe extragalactic

radio sources directly. Thus, the direct connection and unification of the artificial

satellite dynamic reference system and the radio source reference system can be

realized. In addition, by means of space VLBI, an agreement can be made in VLBI

about conversion between the Conventional Terrestrial Reference System (CTRS)

and the Conventional Celestial Reference System (CCRS) to obtain a unified

celestial and terrestrial reference system (i.e., a unified rotation and scale system

with a commonly defined origin). Such unification of coordinate systems is of great

significance for research in geodesy and other related fields.

2.3.4 Satellite Altimetry

In the 1980s, satellite altimetry (SA) appeared along with the application and

development of computer technology, space technology, satellite telemetry, and

remote sensing technology. SA employs microwave radar altimeters installed in

satellites, radiometers, synthetic aperture radar, and other equipment to measure in

real time the distance from a satellite to the ocean’s surface, the effective wave

height, and the backscattering coefficients, and to carry out research in geodesy,

geophysics, and oceanography through data processing and analysis.

SA data can determine the marine geoid and solve the gravity anomaly of the

ocean to compensate for the data gap in gravity measurement of marine areas.

Therefore, SA plays an important role in establishing an Earth gravity field model

with high accuracy and high resolution. The US Federal Geodetic Control Sub-

committee (FGCS) noted that what the ocean altimetry satellite Seasat does within

3 months would take 200 years and cost 2 billion US dollars if done by marine

gravimetry. Besides, SA data can also be used in oceanographic studies such as the

measurement of the width, boundary, and velocity of ocean currents; tidal fluctu-

ations; sea surface topography; and mean sea level changes.

The Basics

In SA, a microwave radar altimeter mounted on a satellite (the carrier) transmits

microwave signals to the ocean’s surface. This radar impulse reaches the ocean’s

surface and then returns to the radar altimeter by reflection. According to echo

theory, we can obtain three observed quantities after the return of the radar pulse,

including:
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1. The round-trip time of the radar pulse going from the satellite to the ocean’s

surface and back to the satellite: the measured value of satellite altitude.

2. The waveform of an echo signal, which contains an ascending front, a flat top,

and a decay area.

3. The amplitude of an echo signal, that is, the automatic gain control value of the

signal. Based on the analysis of the waveform, structure, and round-trip time of

the echo signal, we can obtain information like sea level altitude, sea level tilt,

ocean currents, effective wave height, sea surface backscattering coefficients,

and wind field (see Leuliette et al. 2004).

In satellite altimetry, the satellite is seen as a mobile platform on which a radar

altimeter transmits a microwave pulse to the Earth’s surface and receives the signal

reflected back. Suppose that the altitude of the satellite is and the propagation

velocity of the signal is c; we can then use Δt, the round-trip time of the radar signal

observed, to calculate:

a ¼ c
Δt
2
: ð2:22Þ

Because of water’s good reflective properties, this method is particularly suitable

for marine areas. The radiation of radar signals can instantaneously cover an

annular region with a radius of thousands of kilometers on the sea surface (often

referred to as the signal footprint). The size of the annular region is related to the

spatial resolution of the incident microwave beam. So, the observed value is an

elevation to the average instantaneous sea level. Its difference from the geoid height

is H. Assume that the satellite altitude with respect to the reference ellipsoid is h,
which can be derived from the satellite orbit in the geocentric reference system

through calculation. If neglecting additional corrections, we can simplify the basic

satellite altimetry equation to:

h ¼ N þ H þ a: ð2:23Þ

Figure 2.16 shows that the radar altimeter can be adopted to scan the sea surface

directly so as to scan the marine geoid approximately. Therefore, satellite altimetry

is an effective method for directly drawing a geoid map. It is important that it can

detect a very large marine area in a rather short time and make out a detailed sea

level expression with a very high spatial–temporal resolution. H means a distur-

bance (noise) in establishing the geoid, but is an observed signal for the research of

ocean dynamics. From the extensive analysis of H, we can obtain an important

understanding of the structure of the ocean floor and seabed features.
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Satellite Altimeter and Its Operational Principle

A satellite altimeter is a satellite-borne microwave radar that usually consists of a

transmitter, a receiver, a timing system, and a data collection system. It is generally

13.9 GHz in the emission frequency with 2 kW in transmitting power and works at

an altitude of 800 km. Its radar antenna is parabolic with a diameter of 0.6–1 m. To

guarantee at the same time the accuracy of measurement, the resolution, altitude,

and other indices, the radar pulses transmitted must have a comparatively large

time–frequency bandwidth. Thus, the satellite altimeter employs the pulse com-

pression technique to transmit and receive pulses. The compressed pulses can be of

nanoseconds (10�9 s) in width, which means that the pulse compression technique

has solved a big problem in radio theory in that the width of pulses in the time

domain and frequency domain cannot be enlarged simultaneously. The product of

the width of pulses in the time and frequency domains is referred to as the

compression ratio.

The operational principle of a satellite altimeter is as follows: The transmitter

sends modulated compressed pulses to the Earth’s surface with a certain pulse

repetition frequency (PRF) through its antenna; after the reflection by the ocean’s

surface, the pulses return and are received by the receiver, which measures the time

difference between the transmitted pulse and the received pulse. According to this

time difference and the reflected waveform, we can determine the distance from the

satellite to the ocean’s surface. The width of the radar beam transmitted by the

satellite is approximately 1�; as a result, when the radar beam reaches the ocean’s

surface, the radius of the signal track is about 3–5 km. Therefore, the distance

measured by the altimeter is equal to the average distance from the satellite to the

circular area with the radius of 3–5 km. On this basis, instrument adjustment, sea

state correction, tropospheric refraction correction, ionospheric effect correction,

and correction for periodic effects of the sea surface, etc. have to be taken into

account.

Fig. 2.16 Rationale of

satellite altimetry
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The Observed Quantity in Altimetry and Error Analysis

Equation (2.23) is a simplified observation equation of the altimeter, which needs to

be refined in practical application. The geometric relationship in SA shown in

Fig. 2.17 yields:

h ¼ N þ H þ ΔH þ aþ d, ð2:24Þ

where h is the ellipsoidal height of the altimeter satellite based on orbit computa-

tions, is the geoid height, H is the sea surface topography, ΔH is caused by the

instantaneous tidal effect, and a is the altimeter measurement.

H þ ΔH ¼ H in (2.23). The quantity a is observed by the altimeter and requires

atmospheric correction, which should be referred to the satellite’s center of mass.

The difference between the geoid and the mean sea level is called the sea surface

topography, which can reach 1–2 m. The mean sea level is defined as a stationary

sea surface not changing with time. The difference between the sea surface and the

geoid is caused by differences in seawater salinity and temperature, a wide range of

pressure differences, strong tidal currents, etc. For a resolution of better than 2 m, it

is no longer valid to use mean sea level as a close approximation to the geoid.

Besides, there are difficulties in connecting up the height systems obtained by a

variety of tidal observational stations.

Errors and corrections of altimetric observations are categorized into three types;

namely, the difference between the actual and the calculated orbit (the orbital

error), the effects on signal propagation path, and the difference between the

instantaneous sea surface and the geoid.

The orbital error mainly results from the accuracy of the Earth gravity model

used in orbit calculation, errors in the tracking stations’ coordinates, errors or

limitations in the tracking systems, and errors in the model used for orbit

Fig. 2.17 Geometric

relationship in satellite

altimetry
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calculation. The most important impact generally comes from the Earth’s gravity

field. Since each satellite is only particularly sensitive to one certain subset of

spherical harmonic coefficients, it is an effective method to develop a particular

gravity model for the observed quantity of a particular satellite. For instance, use of

the gravity model GEM10 in the altimetry satellite GEOS-3 improves the accuracy

of the satellite’s orbit from 10 m to 1–2 m. The tracking system is the second

important factor to affect orbit accuracy. To acquire a high-precision orbit, orbit

determination using on-board GPS is required, and the accuracy of the coordinates

has reached several centimeters. Even so, the remaining orbit error is still much

greater than the altimeter’s accuracy. Consequently, we have to improve the orbit

determination models, adopt some non-dynamic methods, etc.

The effects on the signal path can be categorized into instrumental errors and

propagation errors. The major instrument effects include the distance between the

phase center of the radar antenna and the satellite’s center of mass, the propagation

delay in the electronic circuit of the altimeter, and the timing error in the measure-

ment system. In the manufacture of altimeters, these effects can be reduced to a

minimum and can be estimated. All the effects of instrumental errors should be

determined and kept under control when calibrating an altimeter in the test area

with measured accuracy. The signal propagation error caused by ionospheric

refraction is about 5–20 cm and depends on the ionization intensity, whose effects

can be corrected by dual frequency. The effect of tropospheric refraction is about

2.3 m. Since only the observed quantity in the vertical direction is adopted, the

effect can be well corrected by a proper atmospheric refraction model to reach an

accuracy of several centimeters. Propagation errors also include the impact of

actual sea conditions on the reflected signals.

The discrepancy between the instantaneous sea surface and the geoid can be

divided into a time-invariant part H and a time-dependent part ΔH. Before deter-

mining the mean sea level using the altimetry observed quantity, the time-

dependent component should be corrected. The wave-induced sea level change,

which has been smoothed out in the altimeter’s observation, can be negligible.

Therefore, the correction contributor to be considered is mainly the sea level change

induced by tides and changing atmospheric pressure fields.

The resolution and accuracy of the sea surface height measured directly from

satellite altimetry can reach 5 km and 5 cm, respectively. However, under the effect

of the sea surface topography, the tides, and errors in the environmental correction

model, the accuracy of the sea geoid can rarely be better than �10 cm.
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2.4 Gravimetry

2.4.1 Absolute Gravimetry

Absolute gravimetry (absolute gravity measurement) is a technique utilized to

determine the gravity value (actually, gravitational acceleration) at a defined

geometric point. There are two methods for absolute gravity measurement, one

using a reversible pendulum, and the other by means of the free-fall motion of

bodies. The second method of measurement has been the dominant method since

the 1960s and will be discussed here.

Free-fall motion refers to the accelerated linear motion of a body along the

plumb line under the action of gravity only. According to mechanics, if the gravity

acceleration g in the course of motion along the plumb line is assumed constant

(no gravity changes with height), then the equation of motion is:

l ¼ l0 þ V0tþ 1

2
gt2, ð2:25Þ

where V0 and l0 denote the initial velocity of the falling body and the distance from
the origin O, respectively, at the computational time t ¼ 0, and l is the distance of
the falling body from the origin O after a period of time t, cf. Fig. 2.18.

Two methods can be used to determine the gravity value by means of the free-

fall motion of bodies: the free-fall method and the symmetrical rise-and-fall method

(abbreviated as the rise-and-fall method). Their principles are discussed below.

Free-Fall Method

In (2.25), to avoid determining V0 and l0, it is necessary to measure from at least

three positions. Assume at time t1, t2, and t3 that the distances of the falling body

from the point O are l1, l2, and l3, respectively, as illustrated in Fig. 2.19, where the
transverse axis indicates time and the ordinate axis indicates distance. With refer-

ence to (2.25), for each time period there will be a corresponding equation of

motion which gives:
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Fig. 2.18 Free-fall motion

of an object

Fig. 2.19 Gravity

determination by the free-

fall method
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l1 ¼ l0 þ V0t1 þ 1

2
gt21,

l2 ¼ l0 þ V0t2 þ 1

2
gt22, and

l3 ¼ l0 þ V0t3 þ 1

2
gt23:

Subtracting the first equation from the second and third equations, respectively,

the results are as follows:

L1 ¼ V0T1 þ 1

2
gT1 t1 þ t2ð Þ

L2 ¼ V0T2 þ 1

2
gT2 t1 þ t3ð Þ

9>>>=
>>>;
, ð2:26Þ

where L1 ¼ l2 � l1 and L2 ¼ l3 � l1 are the distances from the first position to the

second and third positions, respectively. T1 ¼ t2 � t1 and T2 ¼ t3 � t1 are the

times taken by the falling body in its motion from the first position to the second

and third positions. To eliminate V0, the two equations in (2.26) are divided by T1
and T2, respectively, and the two results thus achieved subtracted from each other,

which reads as:

L1
T1

� L2
T2

¼ 1

2
g t2 � t3ð Þ:

Since t2 � t3 ¼ T1 � T2, the formula of g can finally be written as:

g ¼ 2

T2 � T1

L2
T2

� L1
T1

� 	
: ð2:27Þ

Thus it can be seen that to determine gravity using the free-fall method requires

knowledge of the distances L1 and L2 traveled by the falling body within the time

periods T1 and T2.

Rise-and-Fall Method

In this method, an object is thrown vertically upward and then allowed to fall freely.

To obtain the gravitational acceleration g, it is necessary to label two positions S1
and S2 in its course of motion. The time intervals T1 and T2 of the falling body past

each position are determined, cf. Fig. 2.20. The transverse axis indicates time and

the ordinate axis indicates the vertical position of the falling body. LetH1 andH2 be

60 2 Geodetic Data Collection Techniques



the distances from the two measuring positions to the peak of its motion. According

to (2.25), where l0 ¼ 0, V0 ¼ 0, we will obtain:

H1 ¼ 1

2
g

T1

2

� 	2

,

and

H2 ¼ 1

2
g

T2

2

� 	2

:

H is taken to denote the distance between the two positions, and hence yields:

H ¼ H1 � H2 ¼ 1

2
g

T1

2

� 	2

� T2

2

� 	2
" #

:

After rearrangement, the equation for g becomes:

g ¼ 8H

T2
1 � T2

2

: ð2:28Þ

Thus, it can be seen that to determine gravity using the rise-and-fall method

requires the determination of time intervals T1 and T2 of the object passing two

positions with a distance of H during its rise and fall.

Fig. 2.20 Gravity

determination by the rise-

and-fall method
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2.4.2 Relative Gravimetry

Relative gravimetry is a technique used to determine the gravity difference between

two points, and then to obtain the gravity value of each point in a pointwise manner

through at least one point of known gravity value.

The static method of relative gravimetry is to use a kind of force (such as the

spring force) to work against the force of gravity that is acting on the object and

balance the gravitational pull. By changing gravity, the location of the equilibrium

position (location of the spring) is also changed. As long as the change of the

equilibrium position (the amplitude of the spring) is determined, the variation in

gravity can be calculated (according to Hooke’s Law). The gravity difference

between the two locations is thus obtained (Lu 1996).

Currently, the most frequently used gravimeter is called the spring gravimeter, in

which the spring force is used to balance gravity. Examples are the quartz spring

gravimeter ZSM series manufactured by Beijing Geological Instrument Factory and

the (LCR) metal spring gravimeter by LaCoste and Romberg in the USA. Both of

these spring gravimeters incorporate a spring mass system, optical system, mechan-

ical device for measurement, instrument panel, and insulated case. The range of

gravity difference measured by ZSM is 80 � 10�5 m/s2 to 120 � 10�5 m/s2and the

precision of measurement is between 0.1 � 10�5 m/s2 and 0.3 � 10�5 m/s2 The

LCR gravimeter can also be classified as Model G and Model D. The range of direct

measurement of the Model G is up to 7,000 � 10�5 m/s2 It can be utilized for

relative gravity measurement on a worldwide scale and its measurement precision

amounts to �20 � 10�8 m/s2 The range of direct measurement of Model D is only

200 � 10�5 m/s2 It is widely used in regional gravity surveys and its precision of

measurement is slightly higher than that of Model G.

2.4.3 Airborne Gravimetry

Airborne gravimetry is a method employed to determine the near-Earth gravita-

tional acceleration using an integrated airborne gravity remote sensing system,

which consists of an aircraft as carrier, airborne gravimeter, GPS, altimeter, and

attitude determination devices, etc. (Fig. 2.21). It can operate in areas where

terrestrial gravity measurement is hard to conduct such as deserts, ice sheets,

marshlands, and primeval forests. It can acquire information on the gravity field

at a fast pace, with high precision, on a large scale, and with even distribution.

Compared to the classical technique of terrestrial gravity measurement, it is entirely

different in terms of measuring instrument, motion carrier, measuring technique,

methods of data collection, as well as theory of data reduction, etc. Airborne gravity

measurement has fully demonstrated the integrated application of modern technol-

ogies in the field of geodetic survey. It is of vital significance to geodesy, geophys-

ics, oceanography, resources exploration, and space science.

62 2 Geodetic Data Collection Techniques



An airborne gravity measurement test was first conducted in 1958. The precision

of navigation was rather low and the 10 mGal accuracy in the vertical disturbing

accelerations of the aircraft was difficult to maintain, so until the late 1970s the

technology of airborne gravimetry had virtually been in a state of stagnation. The

advent of GPS, particularly implementation of the centimeter-level kinematic

differential GPS, enabled the separation of gravitational effects with a precision

of a few milligals. There are two main categories in airborne gravimetry; namely,

scalar gravimetry and vector gravimetry. Scalar gravimetry can only determine the

acceleration due to gravity, whereas vector gravimetry can measure both gravity

anomalies and deflection of the vertical. Currently, the technology of airborne

vector gravimetry is still undergoing research and development and is being used

in some routine operations.

Fundamentals of Airborne Gravimetry

The basic principle of airborne gravimetry is to use the airborne gravimeter on the

aircraft to determine the gravitational variations of the flight profile relative to the

surface reference gravity point and compute the non-gravitational accelerations and

corrections to disturbance. Through filtering and data processing, the results can be

obtained and then, in the downward continuation approach, the gravity value at a

Fig. 2.21 Airborne gravity

measurement
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surface point can be obtained. Airborne gravimetry is relative gravity measurement,

i.e., prior to taking off, the aircraft is connected to a surface point of known gravity.

Its basic data model is:

Δgh ¼ gb þ δg� Aυ � AE � Ah þ 0:3086H � γ0, ð2:29Þ

where Δgh is the gravity anomaly at a point in space at a height H, gb is the gravity
value at the ground gravity reference station, δg is the gravitational variation

relative to gb observed by the airborne gravimeter, Aυ is the vertical acceleration

correction of the aircraft, AE is the Eötvös correction, Ah is the inclination correction

to the horizontal acceleration, γ0 denotes the normal gravity value (referred to in

Sect. 4.1) evaluated on the geometric surface of the reference ellipsoid, and

0.3086H is the spatial correction of normal gravity.

The vertical disturbing acceleration for aircraft Aυ is mainly induced by the

vertical motion of the aircraft and the self-excited vibration in the body of the

aircraft. This self-excited vibration is chiefly in the high-frequency bandwidth and

can be removed by means of a low-pass filtering technique and high-damping of the

gravimeter’s sensing element. Vertical motion of the aircraft can be corrected by

determining the flight altitude in progression with an appropriate computation

method. It is fairly easy to measure changes in flight altitude relative to sea level,

i.e., to measure directly the changes in distance from the aircraft to the sea surface

using an altimeter. However, over land surfaces, what the altimeter measures are

the changes in altitude from the aircraft to the ground; therefore, in order to obtain

changes in the flight altitude, measurements of changes in the topographic surface

of the predetermined flight course are also needed at the same time

To our knowledge, gravity is the resultant of the universal gravitation of the

Earth’s masses and the centrifugal force due to the Earth’s rotation. When measur-

ing gravity on a moving platform, the centrifugal force will change due to the

resultant force of the carrier’s velocity and the rotation velocity of the Earth, and

this change is known as the Eötvös correction (AE). The computational formula is

written as:

AE ¼ 1þ H

R

� 	
2ωV sinA cosφþ V2

R

� 	
, ð2:30Þ

where H denotes the flight altitude, R is the average radius of the Earth, V is the

velocity of the carrier, A indicates the azimuth of the motion, ω is the angular

velocity of the Earth’s rotation, and φ is the geocentric latitude at a measuring point.

When determining gravity, the gravimeter and the level surface should be

strictly parallel to each other. For airborne gravity measurement, if the platform

of the gravimeter is not strictly parallel to the level surface, it will not only affect the

gravitational acceleration but also exert influence on the vertical component of the

horizontal acceleration. This effect is called inclination correction to the horizontal

acceleration. Assuming that g is the actual gravity value, gt is the value measured by

the gravimeter, θ is the inclination between the platform surface and the level
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surface, and Ae denotes horizontal acceleration, the inclination correction to the

horizontal acceleration (Ah) can be expressed as:

Ah ¼ g cos θ � 1ð Þ þ Ae sin θ: ð2:31Þ

In the above equation, when Ae ¼ 500 mGal, θ � 3. 40, Ab is less than 1 mGal.

Since the horizontal precision of the gyro platform is better than 0. 20, this correc-
tion is generally neglected and the corresponding error is less than 0.05 mGal.

System of Airborne Gravimetry

The airborne gravimetry system is the product of a combination of modern tech-

nologies like gravity sensing, satellite positioning, inertia and precision altimetry,

etc. It mainly consists of five systems:

1. Gravity Sensor System. This mainly comprises the airborne gravimeter and the

platform. The airborne gravimeter should have enough dynamic range and be

able to provide information, like the large, short-time accelerations while the

aircraft is taking off and landing, so as to facilitate the computation of correc-

tions to the gravity disturbance.

2. Dynamic Positioning System. The major role of this system is to guarantee the

optimal real-time navigation by using GPS, to provide data of initial orbit and

precise location, and to compute accelerations in relation to the motion of the

carriers. It is feasible to use merely pseudo-range measurement in real-time

navigation. However, in order to obtain the precise flight path, it is necessary to

integrate the utilization of pseudo-range measurement, phase measurement, and

Doppler measurement to observe data.

3. Attitude Sensor System. The flight attitude of the aircraft is usually referred to as

“pitch, roll, and yaw” and is determined by inertia measuring instruments.

Because of the disadvantages that inertia measuring instruments are highly

expensive, suffer from high drift, and are hard to maintain, in recent years

GPS attitude measuring instruments with high precision, zero drift, and low

price have come into use.

4. Altitude Sensor System. The major function of this system is to provide data on

height for computing the Eötvös correction. The correction is applied to reduce

the airborne gravity anomaly to the Earth’s surface using microwave altimeter,

radar altimeter, pressure altimeter, or GPS survey.

5. Data Collection and Processing System. This includes airborne data collection

devices and ground data processing devices. The airborne devices are used to

record the input data from the subsystems of the gravity sensor, navigation

positioning, attitude sensor, and altitude sensor in synchronization. Each set of

recorded data should have a unified accurate time scale to facilitate computation

and processing for the ground devices.
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2.4.4 Satellite Gravimetry

The features of satellite gravimetry chiefly include the ground tracking satellite,

satellite-to-satellite tracking (SST), satellite gravity gradiometry (SGG), and satel-

lite altimetry (SA) (see, e.g., Torge and Müller 2012). SA has been described in

Sect. 2.3.

Determining the Earth’s Gravity Field by Means of a Ground Tracking

Satellite

The Earth’s gravity field can be determined by means of a ground tracking satellite,

using techniques such as satellite laser ranging (SLR), Doppler orbitography and

radiopositioning integrated by satellite (DORIS), and precise range and range-rate

equipment (PRARE).

The observed quantities involved with use of a ground tracking satellite include

primarily the direction, range, range rate, and phase from the ground tracking

station to the satellite being tracked. The geometric and physical functional rela-

tionships between the satellite orbit and the ground tracking station can be

established on the basis of these observational data. Since the satellite orbit is the

implicit function of the perturbation factors of the Earth’s gravity field, the gravity

field of the Earth can be computed.

Determining the Earth’s Gravity Field by Means of Satellite-to-Satellite

Tracking

The technologies of SST can be sorted into two modes: high–low satellite-to-

satellite tracking (SST-hl) and low–low satellite-to-satellite tracking (SST-ll).

SST-hl utilizes the space-borne GPS receiver and the GPS satellite constellation

(altitude about 21,000 km) on the low Earth orbit satellite (LEO, altitude 400 km),

forms the high–low satellite space tracking network, and estimates the three-

dimensional location, velocity, and acceleration of the low Earth orbit satellite,

namely the first derivative of gravitational potential (GPFD). SST-ll employs two

identical satellites in the same orbit with an inter-satellite distance of 200–400 km,

measures precisely the relative motion of the two satellites or the changes of inter-

satellite distance by using a microwave interferometer, and determines the coeffi-

cients of the Earth’s gravity field based on the rate of change of the inter-satellite

distance (see Nin et al. 2006).

Germany’s CHAMP (Challenging Mini-Satellite Payload for Geophysical

Research and Application) employs the SST-hl tracking mode, as illustrated in

Fig. 2.22. CHAMP was successfully launched into an orbit of 418–470 km altitude

in July, 2000 on a 5-year mission. One of the scientific missions of CHAMP was to

66 2 Geodetic Data Collection Techniques



determine the medium- and long-wavelength static part and the temporal variations

of the gravity field.

GRACE (Gravity Recovery and Climate Experiment) is a joint project of the

USA and Germany. It employs the combination of two tracking modes: SST-hl and

SST-ll, as shown in Fig. 2.23. The GRACE satellite was successfully launched into

orbit in March, 2002 on a 5-year mission. One of the scientific missions of GRACE

was to determine precisely the medium- and long-wavelength static part of the

gravity field and to analyze and determine the variations in the Earth’s gravity field

every 2–4 weeks (see Klees et al. 2008).

Determining the Gravitational Acceleration Differences in the Earth’s

Gravity Field by Satellite Gravity Gradiometry

Satellite gravity gradiometry (SGG) allows determination of the differences in

gravitational acceleration in three mutually orthogonal directions by using the

differential accelerometer on one or more fixed baselines (about 70 cm) inside

the satellite. The signals observed indicate gradients of the gravitational accelera-

tion component, i.e., the second derivative of the gravitational potential.

Non-gravitational accelerations (e.g., air resistance), in the same way, exert some

effects on all the accelerometers inside the satellite, and the difference can be

removed perfectly when differentiating. One of the missions of SGG is to detect

the Earth’s gravity field and its variations with higher temporal and spatial

resolution.

The European Space Agency (ESA) launched a third gravity satellite in March,

2009, the GOCE (Gravity and Ocean Circular Exploration) with SGG mode

(Fig. 2.24) (see Bouman et al. 2004).

Fig. 2.22 Schematic

diagram of SST-hl

tracking mode
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Review and Study Questions

1. Briefly discuss the instruments employed and the observational quantities for

different geodetic data collection techniques.

2. Briefly explain the concepts of horizontal and vertical angles and introduce the

methods used for measuring horizontal angles.

3. Illustrate the concepts of astronomical longitude, astronomical latitude, and

astronomical azimuth.

4. Briefly describe the basic principles of and methods for electromagnetic distance

measurement (EDM).

5. Briefly discuss the methods for GPS measurements.

Fig. 2.23 Schematic

diagram of SST-ll

tracking mode

Fig. 2.24 Schematic

diagram of SGG mode
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6. What are the basic principles for determining marine geoid height using satellite

altimetry?

7. Explain the measuring principles of the VLBI technique.

8. How many categories can satellite gravimetry be classified into and what are

they?

9. Explain the advantages of space geodetic techniques with respect to the classical

geodetic survey.
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Chapter 3

Geodetic Datum and Geodetic Control

Networks

To measure terrain, surface features, position coordinates, heights, and gravity

values at points on the Earth’s surface, there need to be corresponding reference

points or surfaces (also known as datum points or surfaces), namely geodetic

datums, to which surveying and mapping results are referred. Geodetic datums

consist chiefly of coordinate datums (including classical horizontal datums and

three-dimensional coordinate datums), vertical datums, sounding datums, as well as

gravity datums. Geodetic datums provide initial data for all kinds of surveying and

mapping work and serve as the foundation for determining the geometric shape and

spatial–temporal distribution of geospatial information. Again, it is geodetic

datums that are referred to when the spatial positions of geographical features in

the real world are expressed in the data space. The missions of constructing

geodetic datums include determining and defining the coordinate system, height

system, and gravity reference system, and establishing and maintaining the coor-

dinate framework (horizontal and satellite geodetic control networks), elevation

framework (vertical control network), and gravimetric framework (gravity control

network).

Classical horizontal and vertical datums are realized by classical geodetic

methods. Due to their limited controlling area, these two datums can only be used

as regional datums and are usually applicable countrywide. The three-dimensional

coordinate datums and gravity datums can be used as both global and regional

datums. The datums are represented by the position coordinates, heights, and

gravity values at a series of control points. To be specific, the datums are realized

through establishing different geodetic control networks, i.e., the extensions of

horizontal and vertical datums, three-dimensional coordinate datums, and gravity

datums are realized by the horizontal and vertical control networks, satellite

geodetic control networks, and gravity control networks, respectively.

The horizontal coordinates and heights of points on the Earth’s surface deter-

mined by classical geodetic techniques refer to different datums. For instance,

methods such as triangulation and traversing can only obtain the two-dimensional

horizontal coordinates (x, y) or (L, B) of the surface point, whereas height H of the

point can only be obtained by leveling or trigonometric leveling. Because the

Z. Lu et al., Geodesy, DOI 10.1007/978-3-642-41245-5_3,
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principles and methods for determining the horizontal coordinates and heights are

fundamentally different, we cannot use the same datums in determination. Con-

ventionally, the establishment of geodetic control networks, as a consequence,

separates the horizontal from the vertical control network. The horizontal control

network determines the horizontal datum for a surface point whereas the vertical

control network determines the vertical datum for a surface point. Such control

networks established through two suites of systems are also called a “2 + 1”

network, which is still widely used in operations. In modern geodetic survey, the

horizontal control network is often established by GPS methods.

This chapter mainly discusses geodetic datums and the methods, principles, and

plans for establishing geodetic control networks.

3.1 The Horizontal Datum and Horizontal Control

Networks

The horizontal datum is realized by horizontal coordinates of a series of geodetic

control points, usually through establishing horizontal control networks. It serves as

the basis for determining the horizontal coordinates of points on the Earth’s surface.

3.1.1 Geodetic Origin and the Horizontal Datum

Geodetic Origin

The geodetic origin is the initial or starting point for computing geodetic coordi-

nates in the national horizontal control network. It is chosen as an appropriate but

arbitrary point in the national geodetic network. Geodetic reference data are

obtained by determining with high precision the astronomic longitude and latitude

of the geodetic origin and the astronomical azimuth from there to another point;

and finding the geodetic longitude, latitude, and height of the geodetic origin and

the geodetic azimuth from there to another point according to the principle of

ellipsoid orientation. The reference ellipsoid and ellipsoid orientation will be

discussed in Chap. 7.

The geodetic origin of China Beijing Geodetic Coordinate System 1954 is

located at the Pulkovo Astronomical Observatory of the former Soviet Union. In

the 1970s, China decided to build its own independent geodetic coordinate system.

After field survey and comprehensive analysis, the geodetic origin of P.R. China

was at last established in Shijisi Village, Yongle Township, Jingyang County,

Shaanxi Province, with the coordinate longitude of E 108�55025.0000and latitude

N 34�32027.0000, and it was completed in 1978 (see Chen 2003). China’s geodetic

origin consists of the survey mark at the center, the instrument platform, the main
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building, and the projection platform. The instrument platform was set in the

observation room on the top floor of the seven-storey building which is 26 m

above the ground. The top of the building is a semicircular dome made of fiber-

reinforced plastic (FRP) and automatically controlled by electric power for celestial

observation (cf. Fig. 3.1). The survey mark at the center of the geodetic origin is set

in the basement center of the main building, which is made of red agate with a

diameter of 10 cm, and is delicate and durable (Fig. 3.2).

The Horizontal Datum

The horizontal datum provides the basis for establishing the national geodetic

coordinate system and for calculating the geodetic coordinates of each point in

the national horizontal control network. It includes a set of initial data, i.e., the

geodetic longitude and latitude of the initial point and the geodetic azimuth from

the initial point to its adjacent point in the national geodetic control network. (The

initial point is the geodetic origin in classical geodetic survey.)

The extension of the horizontal datum is realized by the horizontal control

network formed by a series of control points. Coordinates of the control points

are computed from the geodetic origin and obtained by classical geodetic methods

such as traversing, triangulation, and so on. In modern geodetic survey, the hori-

zontal datum is usually realized by 3-D datum obtained from the GPS method

(cf. Sect. 3.3).

Fig. 3.1 Outside

appearance of China’s

geodetic origin.

Source: SBSM
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3.1.2 Methods of Establishing a Horizontal Control Network

Traversing

A series of geodetic control points P1, P2, P3. . ., each intervisible with its adjacent

points, are chosen to form a system of broken lines called a traverse, as shown in

Fig. 3.3. The distances between nearby traverse points and the angles at all traverse

points are measured and reduced to a plane. Assume D12, D23, . . . are the lengths of
the traverse lines in the plane, and βi is the horizontal angle at each traverse point;

knowing the plane coordinates (x1, y1) of point P1 and the grid bearing (grid

azimuth) T10 of P1P0, the grid bearing of each traverse leg can be obtained starting

from T10, namely:

T12 ¼ T10 þ β1,
T23 ¼ T12 þ 180

� þ β2:
. . .

According to these bearings and lengths of the traverse lines, the coordinates of

other traverse points can be obtained from the coordinates of point P1:

P2 :
x2 ¼ x1 þ D12 � cos T12,

y2 ¼ y1 þ D12 � sinT12:
P3 : x3 ¼ x2 þ D23 � cos T23 ,

y3 ¼ y2 þ D23 � sin T23 :
� � �

This is the fundamental principle of establishing the horizontal control network

by traversing.

Fig. 3.2 Geodetic origin

mark of China’s classical

geodetic control network.

Source: SBSM
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Triangulation

A series of points P1, P2, P3. . ., each point intervisible with its adjacent points, are

chosen and connected in the form of a triangulation network, as shown in Fig. 3.4.

Determine the length of P1P2 and its azimuth as the initial length and azimuth of the

network, respectively; observe the angles in each triangle and reduce these lengths

and angles to a plane. Assume the given coordinates of point P1 are (X1, Y1), the
length and grid bearing of P1P2 are D12 and T12, respectively, and the observed

angles are Ai, Bi, and Ci. The lengths and grid bearings of each side can be obtained

from P1P2:

D13 ¼ D12

sinB1

sinA1

, T13 ¼ T12 þ C1:

D14 ¼ D13

sinB2

sinA2

, T14 ¼ T13 þ C2:

. . .

The coordinates of points in the entire network can be obtained according to

these side lengths and azimuths, namely:

x3 ¼ x1 þ Δx13 ¼ x1 þ D13 cos T13,

y3 ¼ y1 þ Δy13 ¼ y1 þ D13 sin T13:
. . .

This is the fundamental principle of establishing the horizontal control network

by triangulation.

Trilateration and Combination of Triangulation and Trilateration

Establishing the horizontal control network using trilateration is almost the same as

when using triangulation. The difference is that while using trilateration we only

measure the side lengths of the triangle in the network. The interior angles are

obtained through computation. If some or all lengths are also measured apart from

Fig. 3.3 Traversing
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measuring the angles, it will be called the method of combined triangulation and

trilateration or triangulateration.

3.1.3 Principles of Establishing a National Horizontal
Control Network

A national horizontal control network is a fundamental construction project. We

therefore need to proceed from the real situations of a nation, properly handle the

relationship between quality, quantity, time, and expenditure according to theory

and the real experience of network establishment, and work out specific principles

as the basis for designing and establishing the geodetic control networks.

Network Establishment and Control Based on Hierarchical Orders

A national horizontal control network can be established based either on a single

order or several different orders. The single-order control network can serve

directly as the basis for mapping control and is usually established in countries

with smaller territories to ensure more homogeneous accuracy throughout the

network and facilitate adjustment computations. Countries with vast territories

often adopt the method of establishing networks from higher to lower orders.

They usually first build a nationwide primary control network with higher accuracy

and lower density as a consistent control framework, and then continue to densify

the control network in a piecemeal fashion according to the needs of different areas.

The side lengths of control networks become shorter and the accuracies get lower as

the order changes from higher to lower. Using such a method to establish other

triangulation networks successively in different areas within one consistent coor-

dinate system can not only satisfy the desired accuracy but also achieve the

effective results at a faster pace and lower cost.

Fig. 3.4 Triangulation
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The national horizontal control network in China is classified into four orders.

The first-order triangulation chain with high accuracy and low density crisscrosses

the whole country to form the key network of the unified coordinate system. Then,

the second-, third-, and fourth-order horizontal control networks are established in a

piecemeal manner according to actual needs. Special requirements are with respect

to the following factors.

Sufficient Accuracy

Apart from being the control framework of the national unified coordinates, the

first- and second-order networks, in the process of establishing the national hori-

zontal control network, have to meet the requirements for mapping of the basic

scale topographic maps and the development of modern technology, such as space

technology, precise engineering, earthquake monitoring, and geodynamics,

whereas the third- and fourth-order horizontal control networks are used chiefly

for a higher-level control of the topographic mapping control points and to satisfy

the needs of fundamental engineering construction. Control points of various

orders, therefore, must cater for the actual demands. For example, the accuracy of

the first- and second-order control points should meet the needs of a 1:50,000 scale

topographic map, while that of the third- and fourth-order control points should

meet the needs of topographic mapping at a scale of 1:10,000.

Necessary Density

Density of the control points in the control network means that there is usually one

single point every several square kilometers on average. It can also be expressed by

the average side length of midpoints in the control network. The shorter the side

length, the denser the geodetic points will be. The controlling areaQ of each point is

expressed by the average side length S, namely:

Q ¼ S2,
and

S ¼ ffiffiffiffi
Q

p
,

ð3:1Þ

which is the relationship between the side length and the controlling area.

The density of the points is required to be different according to different

mapping scales and methods. On average, three or four geodetic points are gener-

ally required to densify control points for each map sheet. For different engineering

projects, however, the desired density of points will presumably be different and

should be determined according to real situations.
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Unified Specifications and Standards

China has a relatively large territory, so it costs a great deal of manpower, material,

and financial resources to build the national control network, which has to be

accomplished with the concerted efforts of many departments and agencies. Once

established, some parts of the geodetic network still need to be reinforced,

upgraded, and improved according to the needs of different sectors. To avoid

redundancy and waste of resources and to encourage sharing of benefits, the work

plan for network establishment and the specific operational standards should be

unified so that the accuracies of the results obtained by different surveying and

mapping institutions and the specifications of design meet the requirements and

such results will become an integral unity as a component of the national control

network. Issues like the overall plan, the anticipated target of precision, datum

selection, and so on should be in compliance with the technical standards. In

addition, such issues as specific implementation plans, instrument utilization,

operation methods, tolerance restrictions, and project checking and acceptance

should also be provided in the specifications.

3.1.4 Plans for Establishing a National Control Network

The China national horizontal control network built in the 1950s used primarily the

method of triangulation, but traversing was also employed in harsh areas. Below is

an overview of the establishment of the triangulation chains of various orders.

First-Order Triangulation Chain

The first-order triangulation chain is a national primary network, used to build a

precise framework of a unified coordinate system throughout the country to control

the establishment of the second- and lower-order triangulation networks and pro-

vide data for studying the size and shape of the Earth and geodynamics. Mapping

control is not the direct objective—accuracy has more importance in this case.

The first-order triangulation chain runs along the meridian and the parallel as

shown in Fig. 3.5. The triangulation chain between the intersections is called the

chain section; the circle formed by the east–west and north–south chain sections is

called the chain loop; many chain loops form the chain system. The chain section is

approximately 200 km long and is usually formed by single triangles and may also

include some geodetic quadrilaterals or mid-point polygons. The average side

length of triangles in the chain ranges from 20 to 25 km, any arbitrary angle of

triangles is not less than 40�, and the distance angles of the geodetic quadrilaterals

or mid-point polygons should be greater than 30�. Computed by the triangle
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closure, the mean square error of angle observation should not be greater than

� 0. 700.
The initial side length at the crossing of the chain sections should be determined

with a relative accuracy of no less than 1/350,000. The astronomical longitude,

latitude, and azimuth are measured at the two endpoints of the initial side and the

former two are also measured at a point in the center of the chain. The determined

mean square error of the astronomical longitude, latitude, and azimuth should be

less than �0.300, �0.300, and �0.500, respectively. All points with measured astro-

nomical longitude and latitude will provide data for computation of the deflection

of vertical. As astronomical surveying is involved in the plans for network estab-

lishment, the national horizontal control network is also called the astro-geodetic

network.

Second-Order Triangulation Network

Set within the area circled by the first-order triangulation chain loop, the second-

order network is the overall basis for densification of the third- and fourth-order

networks, as shown in Fig. 3.6. The average side length of the second-order network

is 13 km and the density of such a network basically satisfies the needs of the

1:50,000 scale mapping. The second-order network, together with the first-order

chain, belongs to the national high-order network. Hence, accuracy should be the

primary concern whereas density is secondary. The mean square error of angle

observation computed through the triangle closure should be less than �100. An
initial side and azimuth are to be determined at the center of the network. For larger

chain loops, the initial azimuth should be measured as well. Angles of triangles in

the network should be no less than 30�. The second-order network on either side of
the first-order triangulation chain should be connected with the first-order chain to

form a continuous triangulation network.

Fig. 3.5 First-order

triangulation chain with

astronomical points
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Third- and Fourth-Order Triangulation Networks (Points)

National third- and fourth-order triangulation networks (points) can be further

densified on the basis of the second-order network, as illustrated in Figs. 3.7 and

3.8. They are foundational to the mapping control survey and their density should

accord with the mapping scale. The average side length of the third-order triangu-

lation network is 8 km and the controlling area of each point is roughly 50 km2,

which can basically meet the needs of 1:25,000 scale mapping. The average side

length of the fourth-order network is 4 km and the controlling area of each point is

around 20 km2, which can meet the needs of 1:10,000 and 1:50,000 scale mapping.

At each point of the third- and fourth-order networks there will be stations set for

observation. The mean square error of angle observation computed through triangle

closure should be less than �1.800 and �2.500 for the third- and fourth-order

networks, respectively.

Traverse Control Network

Although traversing is not as effective as triangulation in controlling area, checking

conditions, and constraining error propagation of azimuths, it still has distinct

advantages that allow the network to be established in a flexible manner. Mean-

while, the survey can easily be carried out and terrain obstacles are more likely to be

overcome. In the early 1960s, the first- and second-order control networks were

sparsely established by traversing in most areas of the Tibetan Plateau. Traversing

has become increasingly widely used with the prevalence of total stations and the

Fig. 3.6 Second-order

continuous network
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constant advances in electromagnetic distance measuring (EDM) instruments to

improve their accuracy, increase the measurement range, and lighten their weight.

Traversing priorities are in densifying lower-order control networks and in

replacing the third- and fourth-order triangulation networks to control large-scale

mapping. Traversing is again a preferred method for connection survey in the

military battlefield.

Fig. 3.7 Network

densifying through point

inserting

Fig. 3.8 Network

densifying through

sub-network inserting
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The establishment principle of traversing is fundamentally the same as that of

triangulation and can also be classified into four orders. The accuracies required for

the measured distances and angles of various-order traverses should generally

accord with the accuracies obtained from computations by the triangulation chain

of the corresponding order.

The first-order traverse usually runs along the main traffic routes and criss-

crosses into larger traverse loops; several traverse loops constitute the traverse

network. Figure 3.9 shows a schematic diagram of the traverse layout. The first-

order traverse network should be properly connected with its adjacent triangulation

chain to form an integral geodetic control network. The circumference of the first-

order traverse loop is usually around 1,000–2,000 km. The second-order traverse is

set within the first-order traverse loop (triangulation chain) with its two ends closed

at the first-order traverse points (or triangulation chain), in the form of a connecting

line. Simultaneously, mutually intersecting traverse loops are also formed between

the second-order traverses, which constitute a network. The circumference of the

second-order traverse loop is usually 500–1,000 km or so. The lengths of the first-

and second-order traverse legs vary from 10 km to 30 km. To control the azimuth

errors of the traverse legs and reduce the lateral errors of traverses, the astronomical

longitude, latitude, and azimuth at the two ending points of each traverse leg should

be measured in order to determine the initial azimuth of this traverse leg at a

distance interval of 100–150 km from the first- and second-order traverses, where

the first- and second-order traverses meet the first- and second-order triangulation

chains and where the first- and second-order traverses intersect, so that the initial

azimuth of this line in question can be obtained. Traverse is not as durable as a

triangulation networks and the error propagation in calculating azimuths accumu-

lates fast; the intervals of the initial azimuth should therefore be small. The traverse

controlled by azimuths at the two ends is called the traverse section, which should

be laid straight. Traverse section that generally runs along the same direction in the

traverse network between two intersections is called a traverse segment. The

propagation of errors in azimuth increases with the increasing of number of sides.

Therefore, the legs of each traverse section in the first- and second-order traverses

should be no more than seven.

The third- and fourth-order traverses are densified based on the first- and second-

order traverse networks (triangulation chains), which are closed on a second known

point, called the connecting traverse. The total length of such a single connecting

traverse should be less than 200 km and 150 km for the third- and fourth-order

networks, respectively. When several such connecting traverses are established, it

would be preferable that these traverses constitute a network to reinforce the

traverse’s structure. The lengths of the third- and fourth-order traverse legs can

be determined according to the performance of the side and angle measuring

instruments and the density required for geodetic points. Generally, the lengths of

the third-order traverse legs range from 7 to 20 km, while those of the fourth-order

range from 4 to 15 km. A traverse leg with greater length is preferred in fieldwork.
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Overview of China’s Astro-Geodetic Network

The first-order triangulation chain together with the second-order network in China

is called the astro-geodetic network, which started to be built in 1951 and was

completed in 1971. The entire length of the first-order triangulation chain is roughly

80,000 km, including over 400 chain segments that have formed more than

100 chain loops and a total of over 5,000 first-order triangulation points (trig

points); cf. Fig. 3.10. The overall adjustment of the astro-geodetic network was

completed in 1982. Such an astro-geodetic network consists of the first-order

triangulation chain, second-order network, some third-order network, as well as

traverses. There are nearly 50,000 control points, 467 initial sides, and 916 initial

azimuths. Approximately 300,000 error equations and more than 150,000 normal

equations are formed. The adjustment shows that the mean square error of the point

farthest away from the geodetic origin is �0.8 m and mostly the relative accuracy

of adjacent points is less than 1/200,000.

3.1.5 Establishment of a Horizontal Control Network

Establishment of the horizontal control network includes technical design, recon-

naissance for site selection, erection of survey marks, monument setting, distance

Fig. 3.9 Traverse network
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measurement, angular measurement, adjustment computations, etc. (see SBSM

2004). Our discussions will focus on the first four aspects.

Requirements for the Position of Control Points

The position of horizontal control points should satisfy the following requirements

for either technical design or reconnaissance for control point selection:

1. The side lengths, angles, and graphical structures formed between control points

should completely conform to the requirements in the corresponding technical

standards.

2. The control points should be marked where the sites can be extended easily and

lower-order points are conveniently densified.

3. The position should be selected where the survey mark can be well preserved

over time and it will be safe and convenient to erect the monument and to

observe it. Therefore, the position should be selected in high land with solid soil

and a fine drainage system, and should be a suitable distance away from

highways, railways, high-voltage wires, and other buildings.

4. The line of sight should avoid slopes or coastlines of lakes and rivers to ensure a

clear and stable image of the observation target and to reduce the effects of

horizontal refraction in order to improve the accuracy of observation. The line of
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Fig. 3.10 China astro-geodetic network: curves indicate the first-order triangulation chain; blank
areas in the curved quadrangles indicate the second-order triangulation network
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sight should go beyond or deviate from obstacles by a certain distance which, for

first- and second-order, respectively, should be no less than 4 m and 2 m in

mountainous areas while no less than 6 m and 4 m in plain areas.

Technical Design

Data Collection

Data relevant to the survey areas should be collected before planning, including

maps of various scales, aerial photo maps, traffic maps and meteorological infor-

mation, existing results of geodetic points, natural and social geographical envi-

ronments of the survey areas, transportation and material supplies, and so on. These

data should be analyzed and studied as the basis and reference for the technical

design.

Drawing Up Designs

Drawing up designs is a key aspect in technical design that deserves careful

consideration in order to facilitate site selection. Fieldwork will otherwise be

difficult.

Drawing up designs usually follows the steps and methods listed below:

1. Splicing the 1/50,000 or 1/100,000 scale topographic maps of the survey area

and marking the already established triangulation chains, GPS networks, tra-

verse networks, and leveling lines on the map.

2. Extending outward from the points of known control in a pointwise manner

according to the requirements for positions of control points while considering

creating the best figure possible. The points are laid out from higher to lower

orders, from points of known control to unknown control, and from the interior

to exterior in a pointwise fashion.

3. Drawing up the leveling connection lines according to the density requirements

for the zero elevation surface provided in the corresponding technical standards;

Trying to utilize the old network points already existing and to propose the plans

for a connection survey.

4. Ensuring intervisibility during the site selection. Several alternative plans should

be drawn up for the uncertain positions of points or directions.

Reconnaissance for Site Selection

The task of reconnaissance for site selection is to put the designs on the map into

practice. The most appropriate site available should be selected according to

requirements for the position of control points.
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Erection of Survey Marks and Monument Setting

Erection of Survey Marks

National triangulation points or traverse points are way apart from each other and

invisible in general conditions; geodetic survey marks are therefore needed to show

the specific position of the point as the target. Geodetic survey marks are usually

classified into ordinary survey marks and tower structures. The former is only used

as the target point with a height of 4.3 m and 6.3 m, while towers are chiefly used to

elevate the instrument and position of the target point when two adjacent points are

not intervisible.

Monument Setting

The survey mark is a permanent mark of the control point position. Field observa-

tion is referred to the center of the mark, and the plane coordinates and height of the

point obtained will be the position of the survey mark center. If the mark is

destroyed or displaced, the surveying results and position coordinates will be

meaningless. Hence, when the monument is set, one should firmly abide by the

principle of “quality first.” Meanwhile, the monument should be stable to ensure

permanence.

A monument can be classified as that of the first- and second-order triangulation

(traverse) points or that of the third- and fourth-order triangulation (traverse) points.

A monument is generally filled with concrete chiseled from granite, bluestone, or

other hard stones with identical specifications. Monuments consist of disks and

pillars, both with a mark sunken into the center of their top surfaces. The survey

mark can be made of metal or vitreous enamel. There are many types of monu-

ments, which are different in terms of the different orders and places of

monumentation under the principle of ensuring their stability and permanence.

Generally, a monument of first- and second-order points is composed of pillars

and upper and lower disks, as shown in Fig. 3.11, while that of third- and fourth-

order points is composed of pillars and one disk.

Completion of the technical design and erection of survey marks and monuments

marks the position of each control point in the horizontal control network on the

Earth’s surface. However, extensive distance and angle measurements, as well as

adjustment computations, still need to be made before the coordinates of the control

points can be determined.
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3.2 The Vertical Datum and Vertical Control Networks

A vertical datum (height datum) is realized by a vertical control network that

provides the basis for determining the height of a point on the Earth’s surface.

The vertical control network is also known as the leveling network, which is

established using leveling as the primary method, supplemented by trigonometric

leveling. Leveling can be classified into four orders: the first- and second-order

leveling is known as precise leveling, and the third- and fourth-order leveling is

referred to as ordinary leveling. Correspondingly, the vertical control network can

also be divided into four orders.

3.2.1 The Vertical Datum and Leveling Origin

A vertical datum provides the reference surface relative to which heights are

measured. All leveling heights in the national unified vertical control network are

calculated and determined with respect to the vertical datum, which consists of a

zero elevation surface and a permanent leveling origin. Theoretically, the geoid is

usually used as the reference surface for heights, yet practically the mean sea level

(MSL) determined by averaging the level of water at a tide gauge over time is often

used as the level surface to which heights are referred. Overwhelmingly, the

majorities of countries and areas worldwide have chosen the MSL to be the

reference surface as this average position actually exists, is very stable, and can

be determined precisely. Another benefit is that the global MSL also approximates

to the physical surface of the Earth.

Fig. 3.11 Monumentation of the first- and second-order trig points
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To determine the MSL, a tidal station will usually be established at the coast

where it will be appropriate to record sea levels over time. The sea level changes

due to changing external conditions and factors from inside the Earth, particularly

the variations in positions of the Moon and the Sun. Such variations are periodic

and the long period is the astronomical tide cycle, which spans approximately

18.61 years. Statistics have shown that the long periodic average sea level is by

and large invariable and can be considered as the MSL for a particular area. From

analysis of long-term sea level data we can see that there has been a several

centimeter increase in global mean sea level each year, resulting from the rising

temperature over the last 100 years. Two main factors have contributed to observed

sea level rises. The first is thermal expansion of ocean water. The second is the

contribution of land-based ice due to increased melting of glaciers and ice sheets.

Therefore, corrections need to be applied to the vertical datum because of the long-

term changes in mean sea level.

As the level surface to which heights are referred, MSL is often defined as zero

height for a local area, also known as the zero point. To mark the position of the

reference surface for heights (zero point) with clarity and stability, one also needs to

establish a permanent benchmark and connect it to the MSL by precise leveling as

the reference point for height measurements in a national or local control network.

Such a benchmark is known as the leveling origin.

China’s leveling origin is located at Qingdao Observatory Hill. One origin and

five subordinate points constitute the leveling origin network. The subordinate

points are used to monitor stability of the origin and to secure precision of the

leveling connection. The leveling origin is established in a stone house to ensure its

security. The inside of the house is built of granite from Mount Lao. At the center

and four corners of the rooftop are five stone columns. The stone columns are

exquisite and unique, chiseled and carved with delicate touches. The stone house

covers an area of 7.8 m2. Outside the stone house are very high double stockade

fences and, inside, the doors are locked fast with threefold locks. The architecture is

of Russian style and was built in 1954 (cf. Fig. 3.12). The interior wall is inlaid with

a black marble stele on which the inscription “Leveling Origin of People’s Republic

of China” is engraved. Within the house there is a dry well roughly 2 m deep. At the

bottom of the well is a priceless yellow agate as big as a fist. On the agate identifier

is a double-layered cap made of brass and stone. A little red dot on the agate is the

mark of the leveling origin (Fig. 3.13).

In China, the Huanghai (Yellow Sea) MSL obtained from the tidal station at the

west end of pier No. 1 in Qingdao Large Port is taken as the reference surface from

which heights are measured. The tidal station is geographically located at

120�1804000 east longitude and 36�0501500 north latitude. Inside, there is a tide-

gauge well with a diameter of 1 m at a depth of 10 m. Three inlet tubes 60 cm in

diameter have direct contact with the open sea. The tide gauge originally used was

the German-made float automatic tide gauge and the tidal records began in 1900. It

was destroyed during World War II. In 1947, the tide gauge was renewed and

resumed work. After the founding of P.R. China the building was renovated and the

facilities upgraded. The instruments currently in use are the HCJ1 tide gauges (also
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known as Valdai), the US imported SUTRON9000 automatic water gauges, and the

SCA6-1 acoustic water level meter produced by the Research Institute of Technol-

ogy, State Oceanic Administration. The water levels are observed three times a day

at 07:45–08:00, 13:45–14:00, and 19:45–20:00. The tidal records obtained over

years are measured and analyzed rigorously to calculate the sea level at the Qingdao

tide gauge station. It is 2.429 m, which is considered the national vertical datum.

In 1959, China promulgated the Guidelines for Geodetic Surveying in People’s
Republic of China prescribing that “the height of the national benchmark is

calculated relative to the leveling origin at Qingdao. According to the result

computed in 1956, the height of the origin was designated 72.289 m above the

Huanghai mean sea level.” This reference surface is generally called the “Huanghai

Mean Sea Level 1956.”

Fig. 3.12 Outside

appearance of the leveling

origin in China.

Source: SBSM

Fig. 3.13 Surface of the

leveling origin mark in

China. Source: SBSM
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The data used to calculate the “Huanghai Mean Sea Level 1956” was obtained

from tidal observations between 1950 and 1956. As the time span was rather short,

the result was far from satisfactory. In May 1987, China implemented the “National

Height Datum 1985.” This new datum used the tidal observations from 1952 to

1979 at Qingdao tidal station, and the Huanghai MSL was obtained by averaging

heights of the sea levels in this area. The height of the leveling origin is 72.2604 m

by precise leveling connection, differing from the Huanghai Mean Sea Level 1956

by 0.0289 m (cf. Fig. 3.14).

3.2.2 The Sounding Datum

Concept of the Sounding Datum

In the domain of marine surveying and mapping, the concepts of depths and the

sounding datum are needed for describing seafloor surface features and carrying out

corresponding bathymetric surveys. Depth is the sounding value obtained through

bathymetric surveys of oceans and coastal sea waters starting from the sea surface

at the time of measurement (i.e., instantaneous sea surface). Due to such effects as

tides, sea waves, sea currents, and so on, the instantaneous sea surface height is

subject to temporal variations. Hence, the instantaneous water depth obtained at the

same sounding point at a different time also varies. Therefore, a fixed water surface

should be specified as the reference surface for depth measurement. All the sound-

ings measured at different times should be reduced to this reference surface, which

is known as the sounding datum.

The sounding datum is the datum to which depths on the charts and tide heights

are referred, and is also known as the chart datum. It is reckoned through long-term

tidal observations and chosen data models in designated sea waters, with the local

Fig. 3.14 Relations

between different height

datums and the leveling

origin in China
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MSL connected to the unified national height system. The location of the chart

datum is typically selected at a vertical distance L below the local multiyear MSL

(Fig. 3.15). The sounding datum should be determined by taking both the naviga-

tional safety and the rate of waterway utilization into account. Hence, it should be

situated below the MSL and is approximately the tidal surface of the lowest water

level. Countries worldwide have applied different formulae to calculate L based on

the tidal regimes of the various waters, and there are hence a variety of chart datum

choices, such as the theoretical lowest tide (TLT), lowest astronomical tide (LAT),

mean lower low water (MLLW), lowest low water (LLW), mean lower low water

springs (MLLWS), Indian spring low water (ISLW), mean low water (MLW), mean

low water springs (MLWS), equatorial springs low water (ESLW), etc.

The tidal data of major ports are indicated on the chart, so it is possible to

calculate the depth of water at a given point and a given time by adding the charted

depth to the height of the tide at a particular moment found in the tide tables. When

the chart datum is not compatible with the tidal datum, corrections also need to be

applied.

The Sounding Datum Adopted by China

Prior to 1956, China adopted the lower low water as the chart datum. After 1956,

the theoretically lowest tide level determined by Vladimirsky (abbreviated as the

theoretical lowest tide) was taken as the chart datum.

3.2.3 Plans for Establishing China’s National Vertical
Control Network and Its Precision

The principles of establishing the national horizontal and vertical control networks

are analogous. Vertical control networks are established based on four orders from

higher to lower and from global to local, following the methods of stepwise control

and densification. The leveling lines of different orders are generally required to be

Fig. 3.15 The sounding or

chart datum
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in the form of closed loops, or close to leveling lines of a higher order in the form of

loops to curb the accumulation of systematic errors and facilitate densification of

the leveling lines of a lower order of accuracy.

The first-order leveling network is the backbone of the national vertical control

network and the primary basis for relevant scientific research. Hence, the first-order

leveling lines should be established along the traffic routes with gentle slopes in

geologically stable areas in order to satisfy the needs of high-precision leveling.

The leveling lines should be in the form of loops, and the loop circumferences in

plain and hilly areas are of 1,000–1,500 km and about 2,000 km in mountainous

areas. This density fits reasonably well for a country with as vast a territory as

China.

The second-order leveling network is the overall basis of the national vertical

control network. It should be established along railroads, highways, and rivers and

should form loops. The loop circumferences are generally specified to be 500–

750 km. In flat terrain, the loop circumferences can be decreased according to the

needs of construction and increased in mountainous regions or harsh areas, taking

into consideration the actual situations prevailing in each place.

Third- and fourth-order level networks provide the necessary vertical control

points directly for topographic mapping and engineering construction. The third-

order leveling lines are closed loops or annexed leveling lines densified within the

higher-order leveling network with a loop circumference designated to be no more

than 300 km. The fourth-order leveling lines generally form the annexed leveling

lines, which start from and finish on higher-level benchmarks. The lengths of the

annexed leveling lines are assigned to be no more than 80 km.

The precision in leveling of different orders is represented by MΔ, the random

mean square error for 1-km leveling, andMw, the total mean square error of altitude

difference. Their tolerances are as given in Table 3.1.

By the end of 1984, the field operations of the national first-order leveling

network, which covered the whole mainland and Hainan Island of China, had

been completed. Figure 3.16 shows the establishment of this leveling network.

The China’s national first-order leveling network has 100 leveling loops and

289 leveling lines in total. The total length of the leveling line is 93,360.8 km. The

overall adjustment was completed at the end of 1986. The “National Height Datum

1985” was adopted and the Qingdao leveling origin was defined as the reference

point for heights, belonging to the normal height system. Precision in actual

measurement are as detailed in Table 3.2.

Overall, repeated leveling measurements of China’s national leveling networks

were carried out over the years 1991 to 1997, concerned primarily with the original

first-order leveling network. Specific leveling routes and nodal points were

readjusted except for the spur lines. The total length of the re-leveled lines was

approximately 94,000 km with 99 loops and 273 leveling lines. The precision

targets after adjustment were that the random mean square error of altitude differ-

ence for 1 km was MΔ � � 0.45 mm and the total mean square error of altitude

difference for 1 km according to closing errors of 99 loops was Mw � � 1.0 mm.
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3.2.4 Leveling Route Design, Benchmark Site Selection,
and Monumentation

Design

Technical design signifies to draw up work plans for establishing the most reason-

ably perfect leveling networks or leveling routes on small-scale maps according to

the task requirements and conditions of the survey area. Thus, knowing the survey

area thoroughly and collecting relevant data (like the topographic map of the survey

area, previous leveling results, etc.) will be necessary before design starts. The

leveling lines should be established along the traffic routes with gentle slopes to

which benchmarks can be conveniently leveled. To decrease the chances of being

Table 3.1 Precision (MΔ, in millimeters) of China’s national leveling

Leveling order First order Second order Third order Fourth order

Tolerance of MΔ �0.45 �1.0 �3.0 5.0

Tolerance of Mw �1.0 �2.0 �6.0 10.0
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Fig. 3.16 China’s national first-order leveling network

Table 3.2 Precision of leveling lines

Actually measured precision (mm) <�0.3 �0.3 to �0.5 > � 0.51

Number of leveling lines 2 285 2
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accidently disturbed, the leveling lines should be well away from the cities, railway

stations, or other built-up areas, and be free from terrain obstacles like rivers, lakes,

or valleys. It should be noted that when the intended leveling routes coincide with

the old leveling lines, the old benchmarks should be made the best use of, if

possible. New benchmarks should otherwise be set and connected to the old

benchmarks.

Site Selection

After drawing up designs, reconnaissance surveys should be carried out to select

routes and identify the site of benchmarks. The purpose of reconnaissance and route

selection is to enable the design to accord with actual situations and to determine

the viable leveling routes and benchmark sites. Considerations for selecting the

benchmark sites include stability, security, long-term preservation, and accessibil-

ity. The benchmark sites should not be selected in areas vulnerable to floods, in soft

soils, low-lying regions, or in places subject to fault movements. Locations where a

benchmark cannot be found or be conveniently leveled to should also be avoided.

Monumentation

Benchmarks and identifiers will be used to mark the benchmark sites determined by

reconnaissance survey over a long time to meet the needs of leveling connection.

Benchmarks can be sorted into three categories according to their purposes: fun-

damental benchmarks, ordinary benchmarks, and benchmarks in bedrock. Their

uses and underlying characteristics will be discussed separately below.

The fundamental benchmark serves to secure precise leveling results over a long

time, in support of connection to the newly established benchmarks or for checks

and renewals of elevations of previously established benchmarks. Primary bench-

marks are established on the first- and second-order leveling lines, placed at

intervals of 20–30 km and at approximately 60-km intervals in harsh desert areas.

The ordinary benchmark serves to provide an elevation reference for topo-

graphic and other engineering surveys directly. They are established on leveling

lines of various orders at intervals of 4–8 km in general.

The benchmark in bedrock is a permanent benchmark directly anchored to the

outcrop and is the primary basis for studying vertical crustal and surface motions. In

general cases, the benchmark spacing on the first-order leveling lines is specified at

500 km. The number of benchmarks in megacities or near seismic zones can be

increased to meet the requirements of scientific research.

Figures 3.17 and 3.18 show the specific forms, specifications, and installations of

the primary and ordinary benchmarks.

After the leveling route design, benchmark site selection, and monumentation,

we can obtain the height of the benchmark on the Earth’s surface by the method of

leveling.
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Apart from leveling as the primary method for establishing vertical control

networks, one can also employ trigonometric leveling and GPS measurement to

obtain the height of a surface point. The latter two methods prove to be faster for

establishing networks. The major flaw, however, lies in their lower accuracy

compared to precise leveling.

3.3 The Three-Dimensional Coordinate Datum

and Satellite Geodetic Control Networks

Similar to classical horizontal and vertical control networks, the satellite geodetic

control network also consists of a series of geodetic control points on the Earth’s

surface in the form of a network. The difference lies in that through establishing a

satellite geodetic control network, one can directly obtain the three-dimensional

coordinates of control points, indicating realization of the three-dimensional geo-

detic datum. Therefore, the techniques used to establish control networks should be

Fig. 3.17 Fundamental

benchmark

Fig. 3.18 Ordinary

benchmark
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space geodetic techniques, such as GNSS, VLBI, SLR, and DORIS, that can

provide three-dimensional coordinates, rather than classical geodetic methods

(i.e., triangulation, traversing, leveling, etc.), which cannot achieve such results.

3.3.1 The Three-Dimensional Coordinate Datum

In traditional geodetic surveys, horizontal and vertical coordinates are referred to

different datums, which are inconsistent with each other, generating many problems

in practical use. For example, research on geodynamic issues such as satellite and

aircraft technology, the Earth’s rotation, and plate movement must refer to the

three-dimensional datum. Space geodetic techniques can realize the three-

dimensional geodetic datum by determining or calculating the three-dimensional

coordinates of surface points.

Global Three-Dimensional Coordinate Datum

The development of space geodetic techniques such as GNSS, VLBI, SLR, and

DORIS has created conditions for establishing a global three-dimensional datum,

which is realized by connecting the above-mentioned space geodetic stations

distributed worldwide together into a corresponding global network. Each space

technique is organized, coordinated, and managed by its corresponding interna-

tional agency such as IGS, IVS (International VLBI Service for Geodesy and

Astrometry), ILRS (International Laser Ranging Service), IDS (International

DORIS Service), and so on. After the combined adjustment of the geodetic net-

works realized by each single space geodetic technique, a comprehensive three-

dimensional datum, i.e., the International Terrestrial Reference Frame (ITRF) is

formed.

Global IGS Network

In 1991, IAG decided to establish a global IGS observation network (originally

known as the “International GPS Service” and changed into “International GNSS

Service” in March, 2005). During the period from June to September, 1992, IAG

implemented the first campaign for connection. Taking this opportunity, China held

a nationwide “China 1992 GPS campaign” which was a cooperative endeavor

involving many organizations. Major cities such as Shanghai, Wuhan, Taibei,

Kunming, Xi’an, and Urumchi all participated in the IGS observation network.

China’s involvement in the global IGS cooperation aims to determine the high-

precision geocentric coordinates nationwide and establish a new generation geo-

centric reference frame, as well as its transformation parameters with the national

coordinate system. In addition, it also intends to determine the baseline vector
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between stations with a relative accuracy of better than 10�8 order of magnitude

and to establish the skeleton of a national high-precision satellite geodetic network.

This work has laid the foundation for studies concerning crustal movement and

geodynamics.

Being a global GNSS continuously operating station and an integrated service

system, IGS provides users around the world for free with various GPS and Global

Orbit Navigation Satellite System (GLONASS) information, such as satellite pre-

cise ephemeris, rapid ephemeris, broadcast ephemeris, velocities and coordinates of

IGS stations, satellite signals received by IGS stations, and the Earth’s rotation rate,

etc. It has supported numerous scientific programs in geodesy and geodynamics,

which include ionosphere, meteorology, reference framework, crustal movement,

precision time-transfer, high-resolution calculation of the Earth’s rotation rate and

changes, and so on.

Base stations contributing to IGS are found all over the world and include more

than 380 observation stations that belong to over 100 research institutions, univer-

sities, and governmental organizations in different countries. With the assistance of

IAG, a coordination committee was set up by the agencies that have established the

stations and the government departments of different countries, within which a

board of directors was also formed. Authorized by IGS, this board of directors

manages several Data and Analysis Centers and is in charge of providing services,

launching products, and organizing international collaborative research projects. Its

services and products include:

1. GPS satellite ephemeris service. Its products include broadcast, rapid, and final

precise ephemerides with a precision of 25 cm, 5 cm, and better than 5 cm,

respectively, and with a delay of 0 h, 17 h, and 13 days, respectively. GLONASS

only provides the final ephemeris with a precision of about 30 cm.

2. Service of receiver clock error for GPS satellites and continuously operating

reference systems (CORS). Its products are broadcast, rapid, and final clock

errors with a precision of 5 ns, 0.2 ns, and 0.1 ns, respectively, and with a time

delay of 0 h, 17 h, and 13 days, respectively.

3. Service of the coordinates (including the corresponding framework and epoch)

and movement velocity of the continuously operating stations (tracking sta-

tions). Its products contain the horizontal and vertical positions and movement

velocities of the station. The horizontal and vertical positions are at a precision

of 3 mm and 6 mm, respectively, with corresponding yearly movement veloc-

ities of 2 mm per annum and 3 mm per annum.

4. The Earth rotation parameters service. Its products are rapid and final polar

motion, short-term nutation, LOD (length of day) changes, etc. The accuracy of

the final daily polar coordinates published by IGS is � 0.1 milliarcseconds and

the corresponding accuracy of the rapid product is � 0.2 milliarcseconds.

5. Atmospheric parameters service. Its products are final tropospheric parameters,

with the accuracy of zenith delay of 4 mm, issued delay�4 weeks. It will further

provide the electron density distribution parameters of the ionospheric grid.
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The IGS network is the world’s largest satellite geodetic control network, and its

stations are distributed throughout the world as shown in Fig. 3.19. Apart from IGS,

the IVS, ILRS, and IDS together have realized the International Terrestrial Refer-

ence Frame (ITRF) so as to realize the global three-dimensional geodetic datum.

Global ILRS Network

Presently there are more than 50 SLR stations all over the world and their distri-

bution is shown in Fig. 3.20. To organize international connection and enhance

cooperation, the International Laser Ranging System (ILRS) was established in

November 1998 based on the original SLR Specialized Committee through recon-

sideration and reelection. Its central bureau was in GSFC (Goddard Space Flight

Center) of NASA (National Aeronautics and Space Administration). The ILRS

network is divided into four (several) subnets, which are introduced below.

NASA Network

In the late 1970s there appeared five stations such as MOBLAS (Mobile Laser

Ranging System) stations, McDonald Observatory, Hawaii Haleakala station, etc.

In the 1980s, four small mobile stations, TLRS 1–4, were added. Now, there are

nine sets of equipment distributed in the continental USA, South Pacific (Tahiti),

South America (Arequipa in Peru, TLRS 3), and Australia (Yarragadee). These

stations, all equipped with the third-generation system, employ the active/passive

mode-locked Nd:YAG (neodymium-doped yttrium aluminum garnet) laser pro-

duced by Quantel International (now known as Continuum). The pulse energy is

100–140 mJ (532 nm), the pulse width is 200 ps, and the repetition frequency

is 4–5 Hz. As for the aperture of the telescope, MOBLAS is 76 cm and TLRS is

Fig. 3.19 Distribution of IGS stations. Source: IGS
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25–30 cm. The electro-optic receiver utilizes a microchannel plate photomultiplier

tube (MCP-PMT), receiving by multiphoton. The single-shot ranging precision

with the LAGEOS satellites is 1–1.5 cm, of which MOBLAS has a high precision

of 7–8 mm because of its strong echo, ranking top in the world. TLRS-2, with its

small energy of 10 mJ and poor signal-to-noise ratio, has a less accurate single-shot

ranging precision of 2 cm. Since the 1990s, small mobile stations have almost come

to stagnation due to lack of funds. To make full use of the existing equipment,

NASA redistributed five of the MOBLAS stations. In 1998, one was moved to

Tahiti, an island in the South Pacific. Then in 2000, another one was moved to

Hartebeesthoeck in South Africa.

The NASA network has retained its leading position in SLR throughout the

world and has advanced technologies and high accurate ranging. Its number of

observations represents about half of those of over 50 global stations that run

normally.

EUROLAS

European Laser Consortium (EUROLAS), set up in 1989, now consists of 18 sta-

tions, of which the most important are Herstmonceux in Britain, Graz in Austria,

Grasse in France, Wettzell and Potsdam in Germany, Zimmerwald in Switzerland,

and Matera in Italy. Because the weather conditions in Europe are not as favorable

as in America and Australia, the number of observations in European stations is

comparatively smaller. However, the Herstmonceux station has a larger number of

observations due to its better system stability. Equipment in the Graz station in

Austria is very advanced, so the single-shot ranging accuracy of LAGEOS is 8 mm,

ranking first in Europe. The weather conditions in the Grasse station are favorable,

so the number of observations is accordingly greater. With a longer history and

more advanced equipment, Wettzell station now possesses a set of large-scale

Fig. 3.20 Distribution of SLR stations around the world. Source: ILRS
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integrated measurement devices, Transportable Integrated Geodetic Observatory

(TIGO), which includes various measurement methods such as SLR, VLBI, GPS,

and PRARE, and instruments like gravimeters, seismometers, meteorological

instruments, and so on. The SLR system in Wettzell uses the most advanced

diode-laser-pumped Ti sapphire laser and is able to undertake dual-wavelength

ranging. The Matera station recently installed a highly advanced SLR system with a

telescope aperture of 1.5 m and the same ranging accuracy as that of NASA.

WPLTN

The West Pacific SLR Network (WPLTN) was set up in 1994. Its members include

China, Japan, Australia, Russia, and Saudi Arabia, with 15 stations altogether.

There are two stations in Australia. One was the Orroral station of the Australian

Surveying and Land Information Group (AUSLIG), located in Canberra and

opened in the 1970s. Both its quantity and quality of observations ranked within

the world’s top five. It was closed in November 1998 and replaced by a new SLR

system made by Electro Optic Systems (EOS) for AUSLIG. This new system was

installed in Mount Stromlo, not far from the former station. It uses the advanced

continuously diode-laser-pumped mode-locked oscillator from the Nd:YAG laser

and a regenerative amplifier with pulse width of 25 ps. Their numbers of observa-

tions, ranging accuracy, and system stability currently all rank within the world’s

top three. It has been experimenting with unmanned automatic observation and has

yielded initial results unprecedented in the world. The equipment in Yarragadee in

the west of Australia is MOBLAS 5 of NASA, which has been turned over to

AUSLIG. The weather conditions at this station are quite good so its number of

observations is often among the world’s top two.

The four SLR systems in Keystone, Japan, belong to the Communications

Research Laboratory (CRL) and were made by EOS in Australia. They specialize

in monitoring crustal deformation around Tokyo. The whole set of systems was

highly advanced when it was put into use in 1996–1997. In 1999 it had realized a

relatively stable ranging during the day with an accuracy of 1–1.5 cm. Unfortu-

nately, these four stations no longer run normally due to lack of funds. The

Simosato station of the Hydrographic Office of Japan is an old one that is still

making regular observations.

Russia has more SLR stations, two of which are Komsomolsk and Maidanak

(now belonging to Uzbekistan) and often participate in international cooperation.

Their single ranging accuracy is about 4–6 cm. The number of observations per

station per year is around 400–600 laps. In addition, two or three new stations have

been successfully developed. With good performance, they will be used for regular

observations.

The Chinese SLR Network comprises five fixed and two mobile stations (the

equipment of some stations is shown in Fig. 3.21).

During 1971–1972, the North China Research Institute of Electro-optics

(NCRIEO, in collaboration with Beijing Observatory) and Shanghai Observatory

(working together with Shanghai Institute of Optics and Fine Machines) undertook
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SLR experiments for the first time in China. The first generation system adopted the

Q-switched ruby laser, with a single ranging accuracy of 1–2 m. In 1980, for the

first time Shanghai Observatory employed devices using Q-switched Nd:YAG

lasers in the satellite ranging. The use of a constant fraction discriminator and a

high precision event timer improved the ranging accuracy to 20–30 cm. In 1983, the

second generation SLR system, which was organized by the Chinese Academy of

Sciences (CAS) and completed under the coordination of several research institu-

tions, was put into use in Shanghai Observatory. It detected the LAGEOS satellite

8,000 km away with a single-shot ranging accuracy of 15 cm. It also participated in

the international Earth rotation connection survey of MERIT.

Changchun station of the CAS SLR network officially participated in interna-

tional cooperation in 1992. In August 1997, the SLR system was improved consid-

erably so that its single-shot ranging accuracy was improved from 5 cm to 1–2 cm

and the quantity and quality of observations were both improved significantly. Its

number of observations reached about 2,600 laps per year, ranking within the

world’s top ten. Beijing SLR station belongs to the State Bureau of Surveying

andMapping of China (SBSM) and has taken part in international cooperation since

1994. It has been upgraded since 1999 and now its ranging accuracy reaches 1–2 cm

with observation data of 1,500 laps per year. Wuhan SLR station, jointly

established by the CAS Institute of Geodesy and Geophysics (IGG) and Institute

of Earthquake Science, China Earthquake Administration (CEA), began to join in

Shanghai Station

Mobile Station

Beijing Station

Fig. 3.21 Stations of the Chinese SLR network: Shanghai, Beijing, and a mobile station
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international cooperation in 1988. Because it was originally located in an urban area

with harsh weather conditions, the observational data were modest. In 2000, the

station was moved to the suburbs and thereby the conditions for observation were

greatly improved. The CAS Yunnan Observatory began taking part in international

cooperation in 1998. Now its ranging accuracy is about 3 cm. With a telescope

aperture of 1.2 m, this system possesses strong ranging capacity and powerful laser

energy and may possibly become a lunar ranging station in the future.

The two SLR mobile stations were both developed by the China Institute of

Earthquake Science. One of them belongs to China Xi’an Research Institute of

Surveying and Mapping and the other to the Institute of Earthquake Science. These

two mobile stations are mainly used to monitor crustal movement in China.

The Chinese SLR Network was established in 1989 and was composed of the

above-mentioned stations. It is now administrated by the CAS Shanghai Observa-

tory, which is responsible for organizing and coordinating observations, unifying

observation standards, and updating technologies in a collaborative manner. Shang-

hai Observatory is the SLR regional data center and data analysis center with the

purpose of archiving domestic SLR data, making assessments of observations, and

publishing a weekly assessment report on global observations. Meanwhile, it makes

use of domestic and international SLR data to carry out research in the application

of astro-geodynamics and geodetics.

Global IVS Network

VLBI observation is a kind of multistation network observation, which requires

extensive international cooperation. To enable effective worldwide cooperation in

VLBI observations and technological development, an international VLBI organi-

zation, IVS (International VLBI Service for Geodesy and Astrometry), was

established. It serves to cooperate and organize the application of global VLBI in

astrometry and geodynamics, enhance international cooperation in VLBI observa-

tions, data processing, and technological development, and provide services. IVS

coordinates various kinds of activities in support of VLBI techniques. Its objectives

are, first, to support research and observations in geodesy, geophysics, and astrom-

etry; second, to promote studies and developments in VLBI techniques in astrom-

etry and geodesy; and third, to allow communication between groups of users of

various VLBI products and integrate VLBI techniques into the Global Earth

Observation System. In China, both the Shanghai Sheshan station and the Urumqi

Nanshan station are IVS stations. The IVS stations are distributed all over the

world, as shown in Fig. 3.22. With regard to the different objectives of observation,

the IVS Network can be divided into the following subnets and organizations:

European VLBI Network

This was the VLBI organization initially established by European countries. Since

1994, the Chinese VLBI stations in Shanghai and Urumqi have joined this
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organization. It has therefore become a Euro-Asian VLBI Network. European

VLBI Network (EVN) provides observations on astrophysics and some astrometry

projects as well as international cooperation in the development of VLBI

techniques.

Asia-Pacific Telescope

This consists of VLBI organizations or observatories in the Asia-Pacific region and

organizes astronomical and geodynamic VLBI observations as well as academic

communications aperiodically every year.

Continuous Observation of the Rotation of Earth

This is a NASA project, managed by NASA’s Goddard Space Flight Center

(GSFC). Most VLBI stations with the capacity to carry out astrometry or geodetic

surveying around the world have been involved in this project, whose scientific

purposes are to measure continuously the Earth’s rotation parameters with high

precision and to provide highly precise data for the establishment and maintenance

of the celestial and terrestrial reference systems, as well as the observation of

modern plate movement.
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Fig. 3.22 Distribution of IVS network stations throughout the world. Source: IVS
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VLBI Space Observatory Program

This is a space VLBI project held by the Institute of Space and Astronautical

Science (ISAS) under the Japanese Ministry of Education, Science and Culture. It

emits via an antenna of 8 m equivalent aperture to the Earth satellite orbit, forming a

space VLBI station with an apogee of over 20,000 km. Most of the ground VLBI

stations in the world have been involved in the space–ground VLBI observation of

this project which has therefore become a global VLBI collaborative project.

VLBI Deep Space Exploration and China’s VLBI Network

In recent years, as mankind’s need for deep space exploration grows, there has

appeared more concern over the role and significance of using VLBI to track and

position man-made satellites and space objects. Europe and other countries like the

USA and Japan have gradually established their own space VLBI networks and

constantly update them. They have obtained satisfactory results in application by

the VLBI network’s tracking of space objects. The USA has successfully applied

VLBI techniques to many space exploration projects (e.g., Apollo 16, Pioneer,

Voyager, Galileo, etc.) due to its dominant position in space and its mature

development regarding the application of VLBI techniques in space exploration.

Its positioning accuracy has also been improved from 10 milliarcseconds at the

beginning to better than 1 milliarcsecond in the 1990s. Japan’s planned lunar

exploration project (SELENE Project) will also adopt the VLBI technique and it

has already carried out the relevant applied research.

China’s VLBI began to develop in the late 1970s. In 1979, a proposal was

officially raised on the establishment of China’s VLBI and VLBI station system,

including Shanghai station, Urumqi station, and Kunming station, and one relevant

processing center. A 25-m radio antenna was also authorized to be built in Shang-

hai. The Sheshan station in Shanghai was completed and underwent test operation

in November 1987. In April 1988, it began to carry out many international VLBI

connection projects in astro-geodynamics, for instance, Sino-Japan collaborative

observation, Sino-German cooperation program in VLBI geodesy, VLBI observa-

tions of the American (NASA) CDP (Crustal Dynamics Project), DOSE (Dynamics

of Solid Earth), CORE (Continuous Observations of the Rotation of the Earth)

programs, and APSG (Asia-Pacific Space Geodynamics) VLBI observations.

In October 1994, the Nanshan station in Urumqi was completed, allowing

China’s VLBI technique to be further developed. By the end of 1998, a VLBI

mobile station with a 3-m aperture antenna, mainly set in Kunming, Yunnan, was

put into test operation. The same year, the Shanghai Sheshan VLBI station was

involved in the differential VLBI observations for positioning of the Mars Global

Surveyor organized by NASA and yielded great results. In 1999, both the Sheshan

and the Nanshan stations became the base stations of the CORE program. In 2003,

these two VLBI stations succeeded in tracking and observing the launch process of
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equatorial satellites in the Geospace Double Star Exploration Program (DSP) using

the VLBI technique and obtaining high quality observational data.

In January 2004, the China National Space Administration declared that the

Chinese Lunar Exploration Program (CLEP), or “Chang’e” project, was officially

initiated, which meant that China’s deep space exploration has entered an opera-

tional phase. In the Chang’e project, China’s Unified S-Band Tracking

Telemetering and Control (USB TT&C) system and CAS VLBI measurement

system jointly monitored the orbits. Therefore, two VLBI fixed stations—one

with a 40-m antenna in Kunming and the other with a 50-m antenna in Beijing—

were formed on the basis of the Chinese former VLBI Network. Meanwhile, the

functions of the former VLBI stations in Shanghai (with a 25-m antenna) and

Urumqi (with a 25-m antenna) were transformed and extended. A rapid real-time

data delivery channel between VLBI stations and related processing centers, real-

time processors, and related processing centers were established as well. Now the

Chinese VLBI Network has become a real-time observation network with four fixed

stations and one relevant processing center (as shown in Fig. 3.23).

Due to cost-prohibitive equipment of the VLBI, SLR, and DORIS techniques,

and the difficulties in setting observation stations, the stations realizing these

techniques throughout the world are rather few in number and are mostly unevenly

distributed. In consequence, it is difficult for them to be connected into an effective

control network within certain areas. In practice they can only form a three-

dimensional control network worldwide to realize the global three-dimensional

datum by participating in the global connection survey through international coop-

eration. Comparatively speaking, the GNSS technique is characterized by conve-

nient and rapid measurement and convenient station establishment. Therefore,

GNSS is most often used in the establishment of regional three-dimensional control

networks.

China’s Three-Dimensional Coordinate Datum: High-Precision GPS

Geodetic Control Network

For regional three-dimensional datum, one method is to establish a nationwide

high-precision GPS network according to the needs of national construction and

certain scientific research. Instances are China’s high-precision A- and B-order

GPS networks, the first- and second-order nationwide GPS networks, and the

Crustal Movement Observation Network of China intended for earthquake predic-

tion and plate motion research, etc.

A- and B-Order National GPS Networks

The A-order national GPS network was distributed by the SBSM, CEA and some

other agencies in combination with the international IGS92 campaign in 1992. The

entire network consists of 30 points distributed evenly in China’s mainland with an
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average side length of about 650 km. In 1996, the repetition measurement of the

A-order network was carried out by the SBSM. After overall adjustment of the

entire network, the geocentric coordinate accuracy is better than 0.1 m, and the

relative accuracy between points is better than 2 � 10�8 in the horizontal direction

and better than 7 � 10�8 in the vertical direction.

The B-order network was distributed by the SBSM between 1991 and 1995. The

number of points, together with those of the A-order network, adds up to 818. It is a

continuous network with points of higher density in the east, a combination of a

continuous network and a closed loop with points of moderate density in the center,

and a closed loop and traverse lines with points of lower density in the west. Of all

the points of the B-order network, 60 % coincide with China’s first- and second-

order benchmarks while the rest are under leveling connection. The repeatability

accuracy between points of the B-order network is better than 4 � 10�7 in the

horizontal direction and better than 8 � 10�7 in the vertical direction. The distri-

bution of A- and B-order national GPS network stations is shown in Fig. 3.24. The

coordinate framework adopted in the adjustment of A- and B-order networks is

ITRF93 at the epoch of 1996.365.

First- and Second-Order Nationwide GPS Networks

To meet the requirements of military surveying and mapping and national con-

struction, from 1991 to 1997, PLA Surveying and Mapping Bureau of the General
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106 3 Geodetic Datum and Geodetic Control Networks



Staff Headquarters (SMBGSH) established high-precision GPS networks, includ-

ing first- and second-order networks, which are called the first- and second-order

nationwide GPS networks. Their scale and accuracy are about the same as that of A-

and B-order national GPS networks. The distribution of their points is shown in

Fig. 3.25. The complete networks consist of 553 points evenly distributed through-

out China’s mainland (except for Taiwan province) and in China’s sea areas

including the major reefs of Nansha Islands. The first-order network has 44 points

with an average side length of 680 km and the observations were carried out

between May 1991 and April 1992. The second-order network is divided into six

survey areas (reefs in the South China Sea, Northeast, Northwest, and Southeast

survey areas, North and East China survey areas, and the survey area of Qinghai-

Tibet, Yunnan, Guizhou, and Sichuan) and the observations were carried out from

1992 to 1997. The second-order network is distributed on the basis of the first-order

network with an average side length of 165 km. The points of both the first- and

second-order networks are under leveling connection survey and are made to

coincide with the national astro-geodetic network points. After adjustment compu-

tations, the accuracy of the first-order network is about 3 � 10�8, and that of the

second-order network is about 1 � 10�7. The coordinate framework adopted in the

adjustment of the A- and B-order networks is ITRF96 at the epoch of 1997.0.
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Crustal Movement Observation Network of China

The Crustal Movement Observation Network of China (CMONOC) was

established from 1998 to 2002 by CEA, SMBGSH, and CAS (cf. Fig. 3.26). It is

a monitoring network with earthquake prediction as its primary purpose. Its stations

are mainly distributed on China’s large plates and around its seismically active

areas. CMONOC contains the datum network stations, the basic network stations,

and the regional network stations, 1,222 stations in total. Among them, the average

distance between datum stations (the continuous year-round observation GPS

stations) is 700 km while that between basic stations (the periodic repetition

observation stations) is 350 km. The datum and basic networks are mainly distrib-

uted on the larger plates in China. The regional network points are irregular

repetition observation points, with spacing ranging from dozens to hundreds of

kilometers. They are unevenly distributed across the country, more densely in areas

with active crustal movement. The overview of CMONOC is shown in Table 3.3.

The coordinate framework adopted in the adjustment is ITRF97 at the epoch of

2000.0.

China’s National GPS Control Network 2000

Large-scale GPS networks, such as the established A- and B-order national GPS

networks, the national first- and second-order nationwide GPS networks, and
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CMONOC, have become the basic framework of China’s modern geodetic survey

and basic surveying and mapping, playing an increasingly prominent role in

national economic development. The unique high precision of these networks

helps improve and reinforce China’s traditional astro-geodetic networks, thereby

overcoming the disadvantages of the traditional astro-geodetic networks as having

inhomogenous accuracy and possible larger systematic errors that traditional mea-

surement methods cannot easily avoid. However, resulting from inconsistencies in

the principles and purposes of network design, the observation guidelines, time of

implementation, measuring instruments and standards, and methods of data
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Table 3.3 Overview of Crustal Movement Observation Network of China

Datum network Basic network Regional network

Number of points 25 56 1,000

Distribution Domestic plates Domestic plates Active areas of crustal

movement

Observation Continuous

observation

Periodic repetition

observation

Irregular repetition

observation

Horizontal accuracy (mm) – 2.5 1.8

Vertical accuracy (mm) – 4.8 4.9

Accuracy of annual change in

baselines (mm)

1.3 – –

Precision of orbit determination

(m)

0.5 – –
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processing, there are differences in the datum and system between large-scale GPS

networks. This has led to great difficulties in the practical application and made it

difficult for GPS networks to work effectively as a whole.

To make full use of China’s large-scale GPS networks, one must first eliminate

the incompatibility of different networks and establish a unified systematic datum

and a uniform, durable, and highly precise national GPS geodetic control network

so as to establish a unified national geocentric coordinate system, improve accuracy

of the geoid, and provide a better service for national economy, national defense

construction, and geoscience studies. Hence, a unified adjustment to all the above-

mentioned GPS networks was carried out by SMBGSH, SBSM, and CEA. After

connection and data processing, the unified GPS network was named the “National

GPS Control Network 2000” (Yang et al. 2009). The whole network has 2,609

stations, which can meet the requirements of modern measurement techniques for

geocentric coordinates and lay a solid foundation for establishing China’s new

generation geocentric coordinate system (China Geodetic Coordinate System 2000)

(see Chen et al. 2007a, b).

Continuously Operating Reference System

The Continuously Operating Reference System (CORS) is a major technique for

establishing regional three-dimensional geodetic datums. Thanks to the rapid

development of satellite positioning technology, information technology, and net-

work technology, CORS networks have appeared all over the world, including

global large-scale networks and regional small-scale networks. The classical hor-

izontal datum is defined and extended by the geodetic origin and horizontal control

network. Similarly, the three-dimensional coordinate datum is defined and

extended by CORS and GPS networks.

Basic Components of CORS

As the datum of the three-dimensional control network, CORS is the product of

sophisticated new technologies, such as satellite positioning technology, computer

network technology, digital communication technology, and so on. It is composed

of a datum station network, data processing center, data transmission system,

positioning and navigation data broadcast system, and user application system.

Every datum station is connected to the monitoring and analysis center through the

data transmission system, constituting a special purpose network.

The datum station network, made up of datum stations distributed evenly within

a certain scope, is used to collect observational data from GPS satellites, transmit

them to the data processing center, and provide services for monitoring the system

integrity.

The data processing center, as the control center of the system, is used to receive

data from every datum station and form multiple datum stations’ differential
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positioning data for users through data processing. Then, the data files formed with

a certain format are distributed to users. The data processing center is the essential

part of CORS as well as the key to realizing high-precision real-time dynamic

positioning. After a continuous around-the-clock solution of the whole modeling

within an area based on real-time observational data collected by every datum

station, the center automatically generates a virtual reference station (including the

coordinates of datum stations and GPS observations) corresponding to the mobile

station and provides various users who are in need of measurement and navigation

with code phase/carrier phase differential correction information in a universal

common format via the existing data communication networks and wireless data

broadcast systems so as to calculate the exact real-time position of mobile stations.

The data transmission system, where data from every datum station are trans-

mitted to the monitoring and analysis center through fiber lines. The system

comprises hardware devices for data transmission and software control module.

The data broadcast system broadcasts positioning and navigation data to users in

the form of mobile networks, UHF radio, Internet, etc.

The user application system consists of a user information receiving system, a

network-based RTK (real-time, kinematic) positioning system, a fast and post-

processing precision positioning system, an autonomous navigation system, posi-

tioning monitoring system, and so on. According to different application accura-

cies, the user service subsystem ranges from millimeter-level, centimeter-level,

decimeter-level, to meter-level whereas, according to different user applications, it

can be categorized into surveying and mapping and engineering users (centimeter-

and decimeter-level), vehicle navigation and positioning users (meter-level), high-

precision users (post-processing), and meteorology users.

CORS is not only a kinematic and continuous positioning reference frame but

also an important technical means for rapid and high-precision acquisition of spatial

data and geographic features. CORS is more often applied in small areas, for

instance, a city, to provide three-dimensional datum. Within an area, it provides

highly precise, reliable, and real-time positioning information to a large number of

users simultaneously and unifies the surveying and mapping data in the city. For

example, the application of CORS in cities will exert a profound and lasting

influence on the collection of modern urban geographic information and the

application system. Not only can it establish and maintain a reference frame of

the surveying and mapping in cities, it can also provide automatically all-weather

real-time spatial and temporal information of high-precision, serving as the basis of

regional planning, management, and decision-making. It can also provide differ-

ential positioning information and develop new applications of transportation

navigation; again it enables high-precision, high-spatial-and-temporal-resolution,

all-weather, near-real-time, and continuous variable sequences in precipitable water

vapor, which will gradually form a regional severe weather monitoring and fore-

casting system. CORS can also be used in the high-precision time synchronization

in communication and power systems and will provide the services of monitoring

and predicting land subsidence, geological disasters, and earthquakes and will study

the temporal and spatial evolution of natural disasters.
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CORS Networks in the World

Currently, CORS systems have been established or are being established in many

developed countries worldwide. Here are some typical examples.

CORS Network in the USA

American CORS is in the charge of the National Geodetic Survey (NGS). It initially

consisted of 137 GPS reference stations, such as the NGS tracking network, the

United States Coast Guard (USCG) differential network, the WAAS (Wide Area

Augmentation System) of the US Federal Aviation Administration (FAA), and the

tracking network of the USA Corps of Engineers (USACE).

At present there are more than 2000 continuously operating GPS stations in the

continental USA. They cover America completely (including Alaska) and consti-

tute a new generation of American national kinematic reference system. All the

reference stations in this system are equipped with full-wave double-frequency

GPS receivers and ground rings antennae. Every day they unload the data of the day

and record them in RINEX format of 1 s, 5 s, 15 s, and 30 s. This system offers

reference station coordinates and data from GPS satellite tracking stations to users

throughout the world, including Americans themselves, by means of the Internet. It

also provides other services like geoid and coordinate system transformation. Users

can observe any place in America with a GPS receiver, and can unload data from

reference stations via the Internet to obtain post-processed precise positioning.

NGS can offer users corresponding GPS carrier phase and code distance (within

the period of time users required) of CORS stations (more than three) adjacent to

unknown GPS points through networks to support users’ GPS near-real-time or

post-processed positioning. Using networks, the NGS can also provide GPS posi-

tioning calculation services called Online Position User Service (OPUS), which

will be completed within several hours of users offering the observational data of

the unknown points.

Moreover, NGS networks can also provide its users with North American Datum

1983 (NAD83), the coordinates of ITRF and the displacement speed and meteoro-

logical data of its corresponding stations. NGS can also provide IGS precise and

broadcast GPS ephemerides as well as the coordinates and displacement rate of IGS

permanent continuously operating GPS stations all over the world. At present, the

relative point position accuracies of the endpoints of the 26–300-km baseline

calculated in America using CORS can reach 1.0 cm in the horizontal direction

and 3.7 cm in the vertical direction, both with a 95 % confidence measure. The

above case happens when users’ observation at baseline endpoints lasts at least 4 h.

If the observation time increases to 12 h, although the horizontal accuracy remains

almost the same, the vertical relative accuracy can be improved to 2 cm.

Meanwhile, NGS also enables the transformation from NAD83 ellipsoidal

heights to NAVD88 (the North American Vertical Datum of 1988) orthometric

heights. It has primarily adopted the American geoid digital model to transform,

and the error is�2.5 cm. In addition, GPS manufacturers usually only provide users
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with the ARP (antenna reference point), which refers to the distance between the

antenna pedestal and the antenna phase center when the GPS receiver receives L1

channel. Due to the difference in the GPS signal’s direction of entrance and

surrounding electronic field, the ARP positions will change with the electronic

materials used by different GPS antennae manufacturers. Therefore, in order to

improve the vertical positioning accuracy, NGS provides users with measured data

concerning changes in antenna phase centers of various instruments for users’

reference.

EUREF Permanent Network

Based on permanent satellite datum station networks established by European

countries and some organizations (academic groups and universities), the EUREF

Permanent Network (EPN) was established by the Regional Reference Frame

Sub-Commission for Europe (EUREF) of the International Association of Geodesy

(IAG) as a cooperative regional network of continuously operating stations. It is

now composed of 122 permanent datum stations, among which 42 are IGS datum

stations. Its working process is as follows: several permanent datum stations of

different countries or organizations form subnets with their own operation centers;

several operation centers constitute regional data centers whose data are gathered in

the European regional center, which then transmits the product data back to IGS

data centers, regional data centers, and various users.

At present, the assignment for EPN is to maintain the European Spatial Regional

Reference Framework. The main service is to provide weekly computational results

of the station coordinates throughout the network, the analysis of existing problems

with their relative accuracy, and the analysis of time series weekly solutions. EPN

also provides the original observed values of various stations to meet the require-

ments of precise positioning for different organizations in Europe. Apart from being

the national spatial reference framework, CORS in European countries like

Germany, Britain, and Switzerland still provides post-processed and real-time

precise positioning based on differential and real-time kinematic (RTK) techniques.

COGRS System in the UK

The UK National Network of Continuously Operating GPS Reference Stations

(COGRS) is similar to the above-mentioned CORS in terms of function and

objectives. However, according to the situation in Britain, this COGRS system

also monitors the relative and absolute changes in the sea level surrounding the

British Isles. The UK COGRS is under the administration of its Ordnance Survey,

Environment Agency, Meteorological Office, Ministry of Agriculture, and National

Oceanography Centre. There are now nearly 60 GPS continuously operating active

(reference) stations and over 900 GPS passive stations (points). At present, the UK

Ordnance Survey has set up a GPS online service center, enabling transmission,

supply, archiving, processing, and analysis of data from all GPS active and passive

stations. This center also provides an online service of coordinate transformation.
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SAPOS Network in Germany

The SAPOS (German Satellite Positioning Service) network consists of over

100 permanent GPS tracking stations. It provides four different levels of services:

meter-level real-time differential GPS (precision, 1–3 m); centimeter-level real-

time differential GPS (precision, 1–5 cm); near-real-time positioning (precision,

1 cm); and high-precision geodetic positioning (precision, better than 1 cm).

Other European countries with even a relatively small territory such as Finland

and Switzerland have also established permanent GPS tracking networks with

functions similar to the above-mentioned networks. As the datum for national

geographic information systems, these tracking networks provide the scientific

data for GPS differential positioning, navigation, geodynamics, and atmosphere.

COSMOS in Japan

COSMOS is the acronym for Continuously Operational Strain Monitoring System

with GPS.

In Asia, Japan has established an integrated service system, namely the GPS

Earth Observation Network System (GeoNet), which consists of almost 1,200

continuously operating GPS stations between which the average distance is about

30 km. This kind of grid, set up by the Japan Geographical Survey Institute, is an

important national infrastructure for Japan. It mainly serves to carry out crustal

monitoring and earthquake prediction, to form a high-precision kinematic national

geodetic control network, to meet the needs of mapping and GIS data collection and

updating, and to provide a service for departments of meteorology and atmosphere

to carry out studies on GPS atmospherics.

CORS Networks in China

With the advancement of information technology, the rapid development of com-

puter networks and communication technology, and the actualization of

e-government, e-commerce, digital city, digital provinces, and digital Earth, there

is a need for various real-time geospatial data to be collected. Therefore, it becomes

more urgent and necessary for China to develop CORS networks. In recent years,

different domestic industries have successively established some specialized con-

tinuously operating satellite positioning networks. Currently, to satisfy the needs

for information for national economic development, a large number of cities,

provinces, and industries are planning to establish similar continuously operating

network systems. A boom in building CORS networks is coming.

The first CORS in China was established in Shenzhen (known as SZCORS) and

has already started its all-round measurement. Some provinces and cities in China,

such as Guangdong, Jiangsu, Beijing, Tianjin, Shanghai, Guangzhou, Dongguan,

Chengdu, Wuhan, Kunming, and Chongqing, have initially established or are

establishing similar provincial and municipal CORS .
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At present, these high-precision GPS networks can be used as the basic geodetic

control network for China. Datum stations of continuous operation in the Crustal

Movement Observation Network can provide synchronous observation data for

GPS measurements. With these stations as the initial points, GPS measurements

will be more conveniently and efficiently carried out.

3.3.2 Establishment of Satellite Geodetic Control Networks

A scientific technological design of three-dimensional control networks is required

in order to obtain reliable observation results. Typically, three-dimensional control

networks such as VLBI and SLR are established worldwide by international

organizations based on need. Thus, the process of establishment is rather compli-

cated and time consuming. The so-called satellite geodetic control network usually

refers to the three-dimensional control network in engineering applications; to be

specific, the GPS control network. This section continues with an overview of the

principles and technical design for establishing GPS control networks.

Principles for Establishment of GPS Control Networks

Establishment Based on Hierarchical Orders

Setting GPS network into different orders is conductive to stage-wise establishment

according to the immediate needs and long-term development of survey areas.

Moreover, this principle enables the network structure to combine the long and

short sides. Compared to the Short-Side GPS Control Network, the network

established in such a way can reduce the accumulation of errors at its edge and

allows data processing and results checking of GPS networks to be carried out

easily in a piecemeal fashion.

For instance, we can first use GPS to establish a nationwide high-precision

backbone control network with low density (A- and B-order networks or first-

and second-order networks) and then further densify the network using GPS or

conventional methods based on the survey areas needed. In further densification,

with the help of GPS technology it is unnecessary to establish an overall geodetic

network in advance. Instead, one can establish and use the network at any time

according to the accuracy required by users. We can obtain directly the known

points from hundreds of kilometers away by GPS measurement, which not only

saves a lot of manpower and material resources but also fulfills the practical needs.

3.3 The Three-Dimensional Coordinate Datum and Satellite Geodetic Control Networks 115



Density

Different task requirements and service targets have different requirements for

establishing the GPS network. For example, the national super-network (AA-order)

datum points are mainly used to provide national datums for orbit determination,

precise ephemeris calculations, and large-scale ground deformation monitoring,

with an average distance of hundreds of kilometers. The network required by a

general engineering survey with an average side length of several kilometers or

even shorter (within hundreds of meters) should cater for the needs of mapping

densification and engineering survey. Taking the above factors into account, a rule

for the distance between two adjacent points in GPS networks is made dependent on

various needs: the average distance between adjacent points in GPS at all orders

should meet the requirements of the data in Table 3.4; the shortest distance between

adjacent points can be 1/3 to 1/2 of the average distance while the longest is 2–3

times. Under special circumstances, depending on the network’s task and target, the

distance between some points can require specific rules for the distribution of GPS

stations.

Accuracy

In the design of GPS networks, the order and accuracy standard should be designed

based on the size of survey areas and the use of the networks. The accuracy standard

of general GPS measurement is commonly expressed by the mean square error of

the distance between adjacent points in the networks as follows:

σ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b � dð Þ2

q
, ð3:2Þ

where σ is the mean square error of distance (mm), a is the constant error (mm), b is
the coefficient of the ratio error, and d is the distance between adjacent points (km).

The national “GPS survey specifications” classify GPS measurement into six

orders, namely AA, A, B, C, D, E (as shown in Table 3.4). The Table lists the

distances between points and their accuracy indicators in GPS networks of different

orders (SBSM 2009).

Technical Design of GPS Control Networks

Design of GPS Control Network Datum

The design of the GPS control network datum is fundamental to the implementation

of GPS measurement. It aims to find the best possible solution in terms of accuracy,

reliability, and economic efficiency of the network. With GPS measurement we can

obtain the GPS baseline vector between surface points, which belongs to the three-
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dimensional coordinate system of WGS84 or ITRF. Practical engineering applica-

tions require national coordinate systems like Beijing Coordinate System 1954,

Xi’an Coordinate System 1980, China Geodetic Coordinate System 2000, or

another independent local coordinate system. Therefore, in the technical design,

the coordinate system and the initial data of the GPS network have to be specified,

which means making clear the datum adopted by the GPS network.

The GPS network datum consists of position datum, azimuth datum, and scale

datum. Position datum is usually determined by the coordinates of known initial

points. Azimuth datum can be determined by the value of the known starting

azimuth or the azimuth of the GPS baseline vector. Scale datum can be determined

by the side of the electromagnetic wave distance measurement on the Earth’s

surface, by the distance between two initial points, or by the distance of the GPS

baseline vectors. So, the design of the GPS network datum is essentially the issue of

determining the position datum of the network.

Point Selection

Since GPS observation stations do not require intervisibility with each other, the

selection of points is much simpler than for conventional measurements. The choice

of GPS points has a significant influence on the smooth operation of GPS observa-

tions and the acquisition of reliable results. As a result, we should collect and fully

understand the geographical conditions of the survey areas and the distribution and

maintenance of existing control points based on the purpose of measurement and

the requirements of coverage, accuracy, and density of the survey areas so as to

properly choose the positions of the GPS points. The following principles should be

followed in the selection of GPS point positions:

1. It should be convenient to install antennae and GPS receivers around the point.

The point should be located where the view is not obstructed and the elevation

angle of the surrounding obstacles is less than 15�.
2. The point should be far away from high-power radio emission sources and high-

voltage wires to avoid interference from magnetic fields close to the signal.

3. In order to weaken multipath effects, there should be no objects that strongly

reflect or absorb electromagnetic waves around the point.

4. To improve operational efficiency, the point should be located where transpor-

tation is convenient.

Table 3.4 Accuracy and density of GPS control networks

Item

Order

AA A B C D E

Constant error a (mm) �3 �5 �8 �10 �10 �10

Ratio error coefficient b (ppm) �0.01 �0.1 �1 �5 �10 �20

Average distance between adjacent points (km) 1,000 300 70 15 ~ 10 10 ~ 5 5 ~ 0.2
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5. Points should be selected taking into account the convenience of using other

measurement techniques for connection and extension.

6. The point should be located in solid soil or, better, an outcrop of rock in order to

be better preserved.

7. The integrity and stability of the survey mark should be checked before using old

points.

Additionally, other conditions such as the nearby communication facilities and

power supplies should also be considered for the connections between points and

the electricity for equipment.

Marking the Position of the GPS Control Point

For long-term preservation, the GPS control point should usually be located on the

survey mark (monument) with an identifier in the center to mark the point precisely.

Both the survey mark and the identifier should be stable and firm. The mark can be

sunk into the ground or built into an observation stake or a stake with forced

centering devices. For the structure, type, and methods of construction of survey

marks, please refer to Sect. 3.1 and related technical standards.

Measurement Operations of GPS Control Networks

GPS measurement includes field observations and indoor data processing work.

The former consists of installation of antennae, observation operations, and record-

ing of field observation results whereas the latter consists of data extraction from

instruments, baseline solution, and adjustment calculations of three-dimensional

GPS control networks, etc. Below is an overview of field observations. For the

extraction of observation data and the indoor work of data processing, please refer

to annexed instructions and other relevant data.

Installation of Antennae

The precise installation of antennae is one of the prerequisites for precise position-

ing and should satisfy the following conditions:

1. Normally, the antenna should be installed in the vertical direction of the mark

center on a tripod, directly centered. Only in exceptional cases can eccentric

observations be allowed, where the centering elements should be precisely

determined by analytical methods.

2. When installing an antenna on the platform of the tower, in order to avoid

interference to signals, the top of the tower should be removed and the mark

center be projected onto the platform. Then the antenna can be placed according

to the projection point.
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3. When there is an ordinary tower at the point and the distance between observa-

tion stations is less than 10 km, an antenna is allowed to be installed upon the

tower, but the time of observation should be extended.

4. The pointer of the antenna should be directed to the true north. The effect of local

magnetic declination should be considered and the orientation error should be no

more than �5�.
5. The level bubble at the bottom of the antenna must be centered.

6. While installing an antenna in thunderstorm weather, the bottom of the antenna

must be grounded to avoid lightning strikes. In a thunderstorm, observation

operations should be stopped and the antenna removed.

After installation of the antenna, its height should be measured both before and

after each time interval of observation. The difference between the results of the

two measurements should be less than 3 mm. The average can be determined as the

final height of the antenna. If the difference is larger than the tolerance, we should

identify the causes, put forward suggestions, and note down the observation

records.

The antenna height refers to the height from the average antenna phase center to

the surface of the central mark of the observation station, which can be divided into

two parts. One part covers the height from the phase center to the bottom of the

antenna (i.e., the antenna reference point, ARP), which is a constant provided by

manufacturers; the other part covers the height from the ARP to the surface of the

central mark of the observation station, which should be measured by users on the

spot. The specific measurement methods can be categorized into direct measure-

ment and slant range measurement, according to the methods and types of antenna

installation. Please refer to the receiver user manual for details. The final value of

the antenna height is the sum of the heights of the parts.

Observational Operations

Observational operations are mainly aimed at capturing, tracking, receiving, and

processing GPS satellite signals to obtain the required data on positioning and

observations.

The operation of GPS receivers is highly automated. Its specific methods and

procedures of operation vary with the types and operating modes of receivers.

Detailed information is included in the attached operation manuals. During opera-

tion, observers only need to follow the instructions in the operation manual.

Generally, the following aspects should be noted:

1. Observers at each receiver should work within the regulated observation time to

ensure the realization of simultaneous observation of the same group of

satellites.

2. After correct connection of the external power supply, the cable and antenna are

confirmed, and the power can be switched on; when the receiver is in the right

preset state it can be started.
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3. When the data on the receiver’s panel display is normal, observers can begin the

self-test and input control information for observation stations and intervals of

observation time.

4. When the receiver begins to record data, the observer should use function keys

and selection menus to check information on observation stations, number of

received satellites, satellite catalog number, channel SNR (signal-to-noise ratio),

phase measurement residuals, results and changes in real-time positioning,

records of storage media, etc.

5. During the period of observation, the receiver should not be turned off and

restarted. The antenna height and limits of the elevation angle of satellites should

not be changed. Observers are supposed to prevent vibration and especially

displacement of the receiving devices. The antenna or signals should not be

touched or obstructed.

6. When all the operation projects are confirmed to have been completed as

required, the station can be moved.

7. In long-distance GPS measurements at higher levels, meteorological elements

should be measured as required.

Observational Records

Observational records are automatically formed by GPS receivers onto storage

media, which include carrier phase observations, pseudo-range observations,

corresponding GPS time, parameters of GPS satellite ephemeris, clock offset

parameters, and initial information of observation stations such as name, catalogue

number, time intervals, approximate coordinates, antenna height, and so on. The

information on observation stations is generally first input by observers into the

receivers or recorded manually in measurement handbooks.

3.4 The Gravity Datum and Gravity Control Networks

To obtain the value of gravity quickly, we usually adopt relative gravity measure-

ment. As a consequence, there must be some reference points with known gravity

values that belong to a unified system. The point with known absolute gravity value

is referred to as the gravity base station (gravity reference station), and the gravity

value at the base station is known as the gravity reference value. The gravity datum

is derived from a network formed by a series of gravity base stations. Just like the

three-dimensional coordinate control network and horizontal and vertical control

networks, the establishment of the gravity control network is also a basic project of

constructing geodetic datums. Establishing high-precision gravity networks plays a

prominent role in determining and refining the gravity field of the Earth and the

geoid. This section is dedicated to the introduction of gravity datum, gravity basic

networks, and establishment of gravity networks in China.
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3.4.1 The Gravity Datum

Nowadays, the gravity datum of a network still requires a relatively small number

of gravity reference stations to define the absolute datum level as well as the scale of

the gravity net. Stations with known absolute gravity values serve as the reference

points for relative gravimetry when determining the gravity difference between two

stations. Such a reference point is also known as the gravity origin. The reference

points acknowledged by the international surveying organizations are called the

international gravity datum. Countries will do their utmost to correlate with the

international gravity datum while determining gravity so as to test the accuracy of

gravity measurements and to ensure that the surveying results stay unified. Univer-

sally recognized gravity datums include the Vienna Gravity System 1900, Potsdam

Gravity System 1909, International Gravity Standardization Net 1971 (IGSN71),

and International Absolute Gravity Base Station Network 1987 (IAGBN). These

four gravity datums are briefly described below.

In 1900, the conference of IAG was held in Paris, at which the Vienna Gravity

System was adopted, i.e., using the gravity value observed at Vienna Observatory,

Austria as the datum. Its value for g is (981.290 � 0.01) � 10�2 m/s2. This value

was determined by Oppolzer in 1884 using absolute gravity measurement based on

the reversible pendulum.

In 1909, the conference of IAG was held in London, at which the Vienna Gravity

System was superseded by the Potsdam Gravity System. The Vienna gravity datum

was replaced by the gravity value in the Pendulum Hall of the German Potsdam

Geodetic Institute. The value of g is (981.274 � 0.003) � 10�2 m/s2, which had

been determined by Kuhnen and Furtwangler in 1898–1906 based on reversible

pendulum measurements. The Potsdam Gravity System was the most widely

applied. Almost all countries worldwide adopted the Potsdam gravity datum,

which has been in use for 60 years.

With advances in technology, new requirements for accuracy in gravity mea-

surements have constantly been raised. Since 1930, some countries have begun to

research and develop the absolute gravimeter and carry out absolute gravimetry

measurements. The number of absolute gravity stations has been growing through-

out the world. The new absolute gravity stations have been connected to the

Potsdam gravity datum using the relative gravimeter and the results have indicated

a relatively large systematic error in the Potsdam gravity value of approximately

12 � 10�5 m/s2 to 16 � 10�5 m/s2. In 1967, IAG decided to add to the the Potsdam

gravity system a correction of �14 � 10�5 m/s2. During 1968 and 1969 a new

absolute gravity measurement was made using the reversible pendulum at the

Potsdam gravity origin, whose precision was up to �0.3 � 10�5 m/s2, improved

by one order of magnitude. The result of the observed quantity differed by �13.9

� 10�5 m/s2from the original gravity value.

At the 15th General Assembly of the International Union of Geodesy and

Geophysics (IUGG), Moscow, 1971, a resolution was passed to replace the Pots-

dam datum with the IGSN71 as the new international gravimetric datum.
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IGSN71 is the worldwide gravity datum. It encompasses 1854 gravity stations,

ten of which are absolute gravity stations determined by three types of absolute

gravimeters. It has over 25,200 measurement points for the use of relative gravi-

meters, among which more than 1,200 points are for pendulum measurement, and

the rest use gravimeters. After overall adjustment of the observational results,

gravity values of 1,854 stations, scale factors of 96 gravimeters, and zero drift

rates of 26 instruments (pendulum meters and gravimeters) are obtained. The

gravity value precision of each point after adjustment is �0.1 � 10�5 m/s2.

Every point can be referred to as the initial point for gravity measurement; thus

the multistation datum has put an end to the era of single-station datum (computed

from a single origin of gravity).

As high-precision timing and ranging technology progressed, in the 1970s some

countries successfully developed instruments to determine absolute gravity by the

use of free-falling bodies. The accuracy of gravity measurement has been consid-

erably improved. Many countries have initiated the establishment of their own

gravity control networks rather than use the datum of IGSN71 as the initial point for

gravity determination, and thus this gravity standard network has lost its control in

reality. The precision of several microgals (1 μGal ¼ 10�8 m/s2) has played a

significant role in studying changes in the global gravity field. In addition, all

absolute gravimeters suffer from certain systematic errors. Therefore, it is still

imperative that the absolute gravity datums worldwide be unified.

After research and preparation over some time since the establishment of

IGSN71, the plan for establishing IAGBN was proposed in 1982. At the 18th

General Assembly of the IUGG 1983, the establishment of the IAGBN was decided

upon to replace the IGSN71 with a very precise set of gravity stations. The primary

objective of IAGBN is for long-term monitoring of the temporal gravity variations.

It also serves as the gravimetric datum and provides conditions for gravimeter

calibration. IAG has established a special study group and set strict requirements

for the selection of absolute gravity stations. These established stations will

undergo repeated observation at fairly regular intervals of time. IAGBN consists

of two categories of stations, A and B. Stations of category A are selected based on

the site selection criteria and the work plans. There are 36 such stations including

one in Antarctica. Stations of category B are established for historical reasons or for

the dream fulfillment of some countries. At the 19th General Assemble of IUGG, a

resolution was passed to propose the initiation of the establishment of IAGBN. The

majority of stations have been observed one or more times, but various circum-

stances have prevented the full implementation of the program at present. There are

now two IAGBN stations of category A in China, located in Beijing and Nanning.

Table 3.5 provides an overview of international gravity datums.
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3.4.2 Basic Gravimetric Networks in China

In the late nineteenth century, foreigners conducted gravity measurements by

means of a resilient pendulum in Shanghai and the southwest of China. In the

1930s, gravity measurement was carried out also using a resilient pendulum by the

Physics Research Institute, Beiping Research Academy. Thereafter, Shanghai

Petroleum Bureau determined several gravity points by means of a gravimeter in

the vicinity of Shanghai. Up until the founding of P.R. China, the number of gravity

points determined was only about 200, with accuracy of 5 � 10�5 m/s2 to

10 � 10�5 m/s2. These points were distributed in very limited areas, and no basic

gravimetric networks were established then. After the founding of P.R. China, three

generations of basic gravimetric networks were established in succession, i.e.,

China Gravity Basic Network 1957, China Gravity Basic Network 1985, and the

National Basic Gravity Network 2000 as the third-generation gravity network in

China.

China Gravity Basic Network 1957

During 1956 and 1957, in order to meet the needs of height anomalies and vertical

deflections in data processing of the national astro-geodetic control network, China

and the former Soviet Union jointly established the first-generation basic gravity

network in China. No absolute gravity measurement was conducted then. Gravity

values of the reference stations were measured by aerial survey from Moscow via

Irkutsk, Almaty, and Chita base stations. Nine relative gravimeters were tied to the

Beijing Airport in the west suburb for observation. Prior to this, the airborne gravity

surveying group of the former Soviet Union had been conducting tie point obser-

vations between Potsdam and Moscow. The gravity station at Beijing Airport in the

west suburb is the first gravity origin in China. It belongs to the Potsdam Gravity

System, with an accuracy of �0.51 � 10�5 m/s2relative to the Potsdam interna-

tional gravity datum. Meanwhile, 21 gravimetric basic points and 82 first-order

gravity stations were established throughout China. The accuracy of tie point

observations at the gravimetric basic points was �0.15 � 10�5 m/s2, and the

accuracy of the first-order station was �0.25 � 10�5 m/s2. After adjustment of

Table 3.5 Overview of international gravity datums

Name

Time of initial

measurements

Time of

application

Precision

(�10�5 m/s2)

Vienna Gravity System 1884 1900–1908 �10

Potsdam Gravity System 1898–1904 1909–1971 �3

International Gravity Standardization

Net 1971

1950–1970 1971–1983 �0.1

International Absolute Gravity Base

Station Network

Established since

1983

– �0.01
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these stations, the China Gravity Basic Network 1957 (abbreviated as CGBN57)

took its shape. The error of its base station relative to the Beijing gravity datum was

no more than �0.32 � 10�5 m/s2, and the error of the first-order stations was no

more than �0.40 � 10�5 m/s2. The datum of this network has been introduced

from three base stations of the former Soviet Union and belongs to the Potsdam

Gravity System.

Nearly three decades since the establishment of the CGBN57, the departments

concerned have measured tens of thousands of gravity stations of different orders.

These gravity points are crucially important in national economic construction and

national defense building.

In the early 1970s, the Chinese Academy of Metrology successfully developed

the free-fall absolute gravimeter and initiated the first absolute gravity determina-

tion in China. Connected to the Beijing gravity origin, the observation proved that

the original value was 13.5 � 10�5 m/s2 too high. Therefore, in operations, once

the Potsdam Gravity System is adopted, the correction of �13.5 � 10�5 m/

s2should be applied with no exceptions. Some departments add �14.0 � 10�5 m/

s2 to the gravity value of the Potsdam Gravity System according to the resolution of

relevant international organizations.

China Gravity Basic Network 1985

The major problem of CGBN57 lies in that it has no absolute gravity station

(generally known as a reference point or datum). Passing through many places,

the gravity system was tied to Potsdam. At that time, the accuracy of the relative

gravimeter was rather low. The Potsdam Gravity System was superseded by

IGSN71 but China did not adopt this new system. Therefore, establishing a

second-generation national basic gravimetric network was indispensable.

In 1981, China and Italy jointly measured 11 absolute gravity stations in China

involving the use of free-fall absolute gravimeters from the Italian Institute of

Metrology in accordance with the Sino-Italian Agreement on Scientific and Tech-

nological Cooperation. Under the organization of the State Bureau of Surveying

and Mapping (SBSM), and with the participation of the Department of Geology and

Mineral Resources, Department of Petroleum Resources, China Seismological

Bureau (CSB), State Bureau of Metrology, Surveying and Mapping Bureau of the

General Staff Headquarters of the Chinese People’s Liberation Army (SMBGSH),

Institute of Geodesy and Geophysics affiliated to Chinese Academy of Sciences

(CAS), and some other departments, a connection survey of the national gravimet-

ric basic network was conducted between 1983 and 1984. The overall surveying fell

into two stages, employed nine gravimeters of LCR-G model, and was conducted in

accordance with the “National Gravimetric Basic Network Field Operation Regu-

lations (for Trial Implementation).” In terms of a relative connection survey, there

should be at least four results from two instruments for each survey line and the

mean square error of the average value should be no greater than�15 � 10�5 m/s2.

Meanwhile, six LCR-G model gravimeters were employed to conduct the
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international connection survey in Beijing, Shanghai, Paris, Tokyo, Kyoto, and

Hong Kong. This has made possible the interconnection between the China national

basic gravity networks and the international absolute gravity base station, IGSN71

station, as well as the international gravity tie points of the Japan Pacific Rim.

Adjustment was made in 1985 by the Chinese Academy of Surveying and

Mapping, affiliated to the SBSM. The known base stations were Beijing, Shanghai,

Qingdao, Fuzhou, Nanning, and Kunming. Considering the uneven distribution of

these six base stations, the largest range of gravity only accounting for 65 % of the

gravity range of the whole network, another five gravity points were used as the

known points—Paris, Tokyo A, Tokyo B, Kyoto, and Hong Kong. The number of

known gravity points was 11 in total. During adjustment, the observational values

involved the conversion of recorded data from instruments and the corrections of

instrument height, solid Earth tide, and atmospheric pressure. It was conducted by

means of indirect adjustment of unequal weight. The China Gravity Basic Network

1985 (CGBN85) consists of 6 datum points, 46 basic points, and 5 points derived

from the basic points. It has not only improved the graphical structure and offered

external precision criteria, but also made the CGBN85 and IGSN71 closely

interconnected, and brought the gravity system of CGBN85 into the system of

IGSN71.

After overall adjustment, the mean square error of weight unit of the CGBN85

was �15 � 10�8 m/s2. The mean square error of the gravity value of the point

(internal consistency) was�8 � 10�8 m/s2 to�13 � 10�8 m/s2. After checking the

external consistency, the gravity values were found to be subject to some systematic

effects. Therefore, the accuracy of the gravity values of the CGBN85 has been

estimated to be somewhere between 20 � 10�8 m/s2and �30 � 10�8 m/s2.

CGBN85 is the second national gravity control network in China, including a

basic network and a first-order network. Its gravity datum has been jointly defined

by the observed values obtained using many domestic absolute gravimeters and the

known international gravity system. It must be pointed out that some of the datum

values of the international gravity points are the observed values of absolute

gravity, some are from the IGSN71 system, and some are the tie-in observations

of the Japan Pacific Rim. Now we can see with hindsight that the gravity datum of

this jointly defined CGBN85 was not defined independently by the absolute gravity

points in China. It can only be described as something combined or synthetic.

China Gravity Basic Network 2000

The accuracy of the CGBN85, as opposed to the CGBN57, was improved by one

order of magnitude, eliminating the error of the Potsdam System and increasing the

density of basic points. China’s basic gravity control network has played a crucially

important role in various fields like surveying and mapping, geology, seismology,

petroleum, and national defense since its implementation over a decade ago.

However, with the passage of time, the economy has seen rapid growth, often

making the basic points of the CGBN85 awkward or impossible to use. A survey
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indicated that over two thirds of the CGBN85 gravimetric basic points cannot be

used. Meanwhile, subjected to the constraints of the facilities and technologies at

that time, CGBN85 has suffered from low accuracy of observation because of the

absolute gravity station, uneven distribution of point position, and unreasonable

graphical structure. All have proved that CGBN85 can no longer bring into full play

the role of the national gravity datum.

China has introduced the FG5 absolute gravimeter with precision up to

3–5 � 10�8 m/s2, which demonstrates a higher level of accuracy at the reference

point of the Crustal Movement Observation Network of China (CMONOC). It

provides the technical means for China to establish independently the new gener-

ation gravity datums of a higher order of accuracy. In addition, concerning the

changes in gravity datums worldwide, it was decided that an international absolute

gravity base station network is to be established. CGNB85, however, still belongs to

the IGSN71 gravity system. All the above have necessitated establishing a new

generation national basic gravity network (i.e., the China Gravity Basic Network

2000, abbreviated as CGBN2000).

In 1998, initiated by the China SBSM, with the participation of the SMBGSH

and CSB, the joint establishment of CGBN2000 was started. With almost 3 years of

arduous effort, the CGBN2000 was eventually established successfully in 2002.

This network consists of 147 points, of which 21 are datum points (absolute

gravimetric points) and 126 are basic points (relative gravimetric points). There

are also 112 derived points and 66 ground tie points in cities. The points are

distributed as shown in Fig. 3.27.

The targets of precision of the CGBN2000 after adjustment are: the mean square

error of a gravity point in the basic network is �7.35 � 10�8 m/s2, where the mean

square error of a datum point with absolute gravity measurement is�2.3 � 10�8 m/s2;

the mean square error of a basic point is �6.6 � 10�8 m/s2 and that of a derived

point is �8.7 � 10�8 m/s2. The mean square error of the 64 gravity points at the

national station for gravimeter calibration is �3.4 � 10�8 m/s2 and the mean

square error of the 66 gravity points in the CGBN85 and the CMONOC and other

networks connected to the CGBN2000 is �9.5 � 10�8 m/s2

CGBN2000 comprises the datum points, basic points, derived points, and long

and short baselines that are connected to the existing CGBN85. The network

configuration is reasonable, taking into full consideration the needs of national

basic construction, national defense construction, as well as disaster prevention and

mitigation. It has a full range of various and complete functions and is also

rationally and scientifically designed. This network boasts high precision and

covers a large territory with a reasonably large number of points. The point

positions also attend to China’s actual situation. The quota of the points is appro-

priate, and these points are fundamentally evenly distributed. This network has

absorbed advanced technologies at home and abroad and has adopted modern

operational methods. It employs a rigorous theoretical approach to data processing,

highly developed techniques, reliable adjustment results, and fairly credible preci-

sion. Compared to the CGBN85, this network has achieved a quality leap and
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reached a world-leading level. The next section gives an overview of the establish-

ment of China’s gravity network (see Table 3.6).

3.4.3 Establishment of China’s National Gravity Networks

Absolute gravimetry primarily allows the determination of gravity for a small

quantity of gravity base stations because the measuring equipment is bulky and

costly. As a fundamental approach to gravimetric survey, relative gravity measure-

ments are widely applied for the determination of gravity values on the Earth’s

surface. The discussion here is centered on the plans and methods for establishing

gravity networks based on relative gravity measurements.

Fundamental Principles for Establishing China’s National Gravity

Networks

1. The national gravity network should cover all the provinces, autonomous

regions, municipalities directly under the central government, the South China

Sea, and Hong Kong and Macao Special Administrative Regions.

2. The absolute gravity stations in the net should be evenly distributed.
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Fig. 3.27 Point distribution of China Gravity Basic Network 2000
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3. Establishment of the gravity stations should give consideration not only to the

needs of economic growth but also to the needs of national defense building and

protection against and mitigation of earthquake disasters.

4. The network structure of the connection lines should be optimally designed.

5. The newly established gravity network stations should be connected to the old

stations as well as the basic network of the crustal movement observation

network of China (Fig. 3.26).

China has successively established the CGBN57, CGBN85, and CGBN2000

based on the above principles. Our discussions below will focus only on the plans

for establishing regional gravity networks.

Plans for Establishing China National Gravity Networks

Gravimetry can be classified into two categories based on the purpose and accuracy

of gravity measurements, i.e., “gravity control measurement” and “densifying

gravity measurement.” The former serves to establish control networks that include

basic gravity points, first-order gravity points, and second-order gravity points. The

latter, on the other hand, is conducted based on the gravity control point fulfilling

the needs of the special tasks of various units and departments. Methods of

connection survey and instruments used in gravity measurement vary with gravi-

metric order. This will be discussed further.

National gravity control networks should be established first before conducting

gravity measurements in a country or region to obtain detailed gravity field data. A

control network provides starting data for gravity measurements in areas of interest

and helps with control of gravimetric error accumulation. As stated previously,

China has successively established the CGBN57, CGBN85, and CGBN2000, which

have offered the initial datum to perform nationwide relative gravity measurements.

China has a vast territory, so the very few gravity control points of the CGBN2000

are apparently insufficient. It is hence necessary to extend further the first-order

gravity network on the basis of the CGBN2000.

A first-order gravity point begins at a basic gravity point of known control in

CGBN2000, the multi-line being connected pointwise to several unknown points

Table 3.6 Overview of China gravity networks

Name

Number of points

Measurement precision

(10� 8ms� 2)

System

Datum

point

Basic

point

I-order

point

Datum

point

Basic

point

CGBN57 21 82 �150 Potsdam system

CGBN85 6 46 �10 �20 IGSN71

CGBN2000 21 126 �5 �10 Absolute gravity

system
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and terminating (closing) either at a second basic point, forming a connecting line

(see Fig. 3.28), or at the same starting point, forming a closed loop (Fig. 3.29).

The point spacing of the first-order gravity network is approximately 300 km

along the primary traffic routes. The number of line segments of the closed loop

must not exceed five. The mean square error of the gravity difference between the

line segments connected to each other must not exceed�25 � 10�8 m/s2. The first-

order gravity points are required to be determined by LCR-G gravity meters or

other precise gravimeters of equivalent quality. The constants and parameters of the

instruments must be calibrated between the national basic gravity points or at the

national-level stations for gravimeter calibration.

The second-order gravity point is a further extension of the basic network and

the first-order gravity network. Its primary goal is to provide effective control for

densifying gravity measurement. Hence, the establishment technique and density of

the second-order gravity point can be determined according to the need for densi-

fying gravity measurement. It is required that the higher-order gravity points and

their derived points be used as initial points, established in the form of a closed loop

or a connecting line. The line segments must generally not exceed five, but in harsh

areas the number can reach eight. It is also acceptable to start from first-order

gravity points and higher to develop second-order points in spur lines of one or two

segments.

Gravity points in the densification network are established according to the

different needs and complexity of the gravity field of the surveying area. The

densification points are characterized by great density, small point-spacing, and

fairly low-level accuracy. Therefore, gravimeters of any models installed at present

can be adopted. The requirements can be readily satisfied using two instruments

carried by automobiles to observe a survey line.

Determining the coordinates and heights of gravity points is an essential part of

relative gravity measurements because the accuracy of coordinates and heights will

directly affect the accuracy of gravity anomalies at gravity points. The mean square

Fig. 3.28 Connecting line

of gravity measurement

Fig. 3.29 Closed loop of

gravity measurement
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error of height of the gravity point, as regulated, is not to exceed�2 m, whereas that

of the coordinate is determined on a case-by-case basis. For the actually measured

coordinate, its mean square error should not exceed �5 m. For the gravity points in

the 10 � 10 and 50 � 50 grids, the mean square error is not to exceed�10 m, and not

to exceed �100 m for the gravity control points and gravity points in grids greater

than 50 � 50.
If the gravity points coincide with geodetic control points and national bench-

marks of different orders, then their coordinates and heights can be used directly.

Otherwise, the coordinates and heights should be measured with GPS, traversing,

leveling, or trigonometric height traversing.

For further and more exhaustive information on the specific implementation

methods and process of gravity network establishment, please refer to the relevant

literature on the subject.

Review and Study Questions

1. What is geodetic datum and how many datums does it consist of?

2. How many types of geodetic control networks are there? Briefly describe the

methods for establishing each type of geodetic control network.

3. What are the principles of establishing the national horizontal control networks

and the national leveling networks?

4. Into how many orders can the national horizontal control networks be classified?

Outline the specifications (mean square error of angle observation, relative mean

square error of side length, and average side length) for establishing the national

horizontal control networks of different orders.

5. What are the specifications (constant error, ratio error) for establishing the

national GPS networks of different orders?

6. Explain the concepts of zero elevation surface and leveling origin.

7. Describe the overview of development of the international gravity datum.

8. Briefly describe the plans for establishing the national gravity network.
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Chapter 4

The Geoid and Different Height Systems

Theory of the Earth’s shape (theory of the Earth’s gravity field) provides the basis

for determining the geodetic datums. The shape of the Earth can be defined in a

number of ways. The true shape of the Earth is generally perceived as the natural

surface of the Earth, i.e., the continental surface and idealized equilibrium sea and

lake surfaces. Geodetic field operations are conducted on this surface. The mission

of geodesy, however, does not involve acquisition of successive expressions of the

Earth’s surface, which should be the research domain of disciplines like cartogra-

phy, aerial or space photogrammetry, and topography. The shape of the Earth in

geodesy refers to the figure abstracted mathematically or physically from the true

shape of the Earth, including the geoid, reference ellipsoid, and normal ellipsoid.

The geoid can be understood as the physical shape of the Earth. A reference

ellipsoid can be interpreted as the mathematical shape of the Earth, and a normal

ellipsoid is the mathematical and physical shape of the Earth. The reference

ellipsoid or normal ellipsoid is a close approximation of the geoid. Therefore, the

shape of the Earth studied in geodesy primarily refers to the shape of the geoid. The

geoid also serves as a reference surface for height determination of a given point on

the Earth’s surface. Since the geoid is the level (equipotential) surface of the Earth’s

gravity field, processing of leveling data should take into account the properties of

the theory of the Earth’s gravity field. The different vertical datums or reference

lines chosen will constitute different height systems.

This chapter deals with the basic concepts of the theory of the Earth’s gravity

field, discusses the definition of height system, and establishes the relations of

transformation between different height systems.

Z. Lu et al., Geodesy, DOI 10.1007/978-3-642-41245-5_4,
© Springer-Verlag Berlin Heidelberg 2014
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4.1 Gravity Potential of the Earth and Geoid

4.1.1 Gravity and Gravity Potential

In light of Newton’s law of universal gravitation, any two bodies in the universe,

possessing mass, exert gravitational attraction on each other, which will thus create

a gravitational field around the point mass. F
!

is used to represent this attractive

force. The force F
!
is directly proportional to the product of their masses m and m0

and inversely proportional to the square of the distance r between them, and can be

expressed as:

F
! ¼ �Gmm

0

r2
r
!

r
, ð4:1Þ

where G is the scale factor, referred to as the gravitational constant, which can be

obtained through experiment. Its value is 6.67428 � 10� 11 m3kg� 1s� 2 (Pent and

Luzum 2010). The direction of r
!

is from the attracting mass toward the attracted

mass (Fig. 4.1).

In geodesy, the particle of mass m is referred to as the attracting mass, while the

other particle of mass m0 is the attracted mass, the mass of which is used as a unit,

i.e., m0 ¼ 1. Thus:

F
! ¼ �Gm

r2
r
!

r
: ð4:2Þ

The Earth can be regarded as a body constituted by infinite number of continuous

point masses. The attraction that the Earth has exerted on the unit point massF
!
is the

integral:

F
! ¼ �G

ð
Earth

1

r2
r
!

r
dm, ð4:3Þ

where dm is the differential mass element of the Earth and r
!
represents the position

vector between dm and the attracted mass, which is a variable of integration; the

integral area is the total mass of the Earth. The direction of the gravitational

attraction is toward the center of the Earth.

Due to the rotation of the Earth, every point on the Earth experiences an inertial

centrifugal force P
!
:
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P
! ¼ m

0 � �ω
! � ω

! � ρ
!� �� �

, ð4:4Þ

where ρ
!

denotes the vertical distance vector between the unit point mass and the

spin axis of the Earth and ω
!

represents the angular velocity vector of the Earth

rotation, which can be determined precisely using astronomical methods. Its value

is ω ¼ 7.292115 � 10� 5rad/s. P
!

is perpendicular to the axis of rotation and is

directed against the spin axis (Fig. 4.2).

The force of gravity of the Earth g
!

is the resultant of the gravitational force

acting upon a unit point mass and the centrifugal force of the Earth, namely:

g
! ¼ F

! þ P
!
: ð4:5Þ

Since the weight of a body is the product of its mass and the acceleration due to

gravity, for one unit point mass the force of gravity acting upon it is equal to the

value of its gravity acceleration. Therefore, in geodesy, the concepts of gravity

force and gravity acceleration are always used interchangeably. When we say “to

determine the force of gravity at a given point” we virtually mean to determine the

gravity acceleration at this given point, and the magnitude of the force of gravity at

a given point is actually the magnitude of its gravity acceleration. The gravity

acceleration is measured in centimeters per second squared (cm/s2), known as gal

(after Galileo; symbol Gal) in geodesy. One thousandth of a gal is 1 mGal, and one

thousandth of 1 mGal is 1 μGal, as follows:

1Gal ¼ 1, 000mGal ¼ 1, 000, 000μGal,
1mGal ¼ 10�5 m=s2:

It is inconvenient to study the gravity vector directly. For any conservative

gravity vector, there exists a so-called potential function such that the gradient of

the function is the gravity vector. The partial derivatives of this function with

Fig. 4.1 The attracting

mass m and the attracted

mass m0
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respect to each coordinate axis are the gravity components along the coordinate

axes. Therefore, we will use potential function in our discussion instead of gravity

vector. Gravitational force, centrifugal force, and gravity force all have their

corresponding potential functions.

The function of gravitational potential is a numeric function with respect to the

variables of coordinate axes x, y, and z. Its partial derivatives with respect to the

three coordinate axes correspond to the components Fx, Fy, Fz of the gravitational

force F
!
in these three directions respectively, namely:

∂V
∂x

¼ Fx

∂V
∂y

¼ Fy

∂V
∂z

¼ Fz

9>>>>>>>>>=
>>>>>>>>>;
: ð4:6Þ

The gravitational potential function at an exterior point of the body can be

derived from a point mass gravitational potential function, which will be discussed

first.

As shown in Fig. 4.1, m is the mass of the gravitationally attracting body at the

point (0,0,0); m0 is the attracted mass at the point (x, y, z); the distance r between
them is given by:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
:

Take a numeric function

Fig. 4.2 Centrifugal force

P
!
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V x;y;zð Þ ¼ Gm

r
: ð4:7Þ

Apparently,

∂V
∂x

¼ Gm
∂
∂x

1

r

0
@

1
A ¼ �Gm

r2
x

r

∂V
∂y

¼ Gm
∂
∂y

1

r

0
@

1
A ¼ �Gm

r2
y

r

∂V
∂z

¼ Gm
∂
∂z

1

r

0
@

1
A ¼ �Gm

r2
z

r

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: ð4:8Þ

Comparing (4.8) with (4.2), it can be seen that (4.8) gives the components of the

gravitational forceF
!
along the three coordinate axes. This indicates that the numeric

function V in (4.8) is the gravitational potential function of a point mass.

It can be shown that the partial derivative of the potential function with respect to

an arbitrary direction is the force component in the same direction. For instance, the

partial derivative of (4.7) with respect to the direction r is:

∂V
∂r

¼ �Gm

r2
,

which has the length of the universal gravitational value and is similar to the

universal gravity value.

In order to clarify further the physical meaning of V, in Fig. 4.1, assume that the

unit point mass m0 moves from point B1 (distance r1) to point B2 (distance r2); then
the work (energy transfer) done by the gravitational force is:

A ¼
ðB2
B1

�Gm

r2
dr ¼ Gm

r

�B2
B1

¼ Gm

r2
� Gm

r1
,

where dr denotes the displacement in the direction of the force. The above equation

indicates that the potential difference between the two points is the energy needed

to move the point mass from the point of lower potential to that of higher potential.

If the potential value at point B1 is zero, then the potential of a point equals the

energy needed to move the point mass from B1 to this point.

Particle systems consist of a large number of point masses, and the gravitational

potential is the sum of the gravitational potentials of the masses m1, m2 � � � mn in

(4.7):
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V ¼ Gm1

r1
þ Gm2

r2
þ � � � þ Gmn

rn
¼ G

Xn
i¼1

mi

ri
ð4:9Þ

The mass is continuously distributed within the body, and hence it only requires

conversion of the sum of (4.9) to an integral to obtain the formula for gravitational

potential of the body:

V ¼ G

ð
M

dm

r
, ð4:10Þ

where dm denotes the differential mass element at the point (ξ, η, ζ); it is a variable

of an integral (see Fig. 4.3); r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� ξð Þ2 þ y� ηð Þ2 þ z� ζð Þ2

q
is the distance

from dm to the attracted mass and the total mass of the integral area is M.

The centrifugal force or acceleration is given by:

P ¼ ω2ρ, ð4:11Þ

where ω denotes the angular velocity of Earth rotation and ρ represents the vertical
distance from the point being studied to the axis of rotation (see Fig. 4.2). Assume

that the spin axis coincides with the z-axis of the rectangular coordinate system;

then for the point (x, y, z):

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
:

Inserting ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
into (4.11):

P ¼ ω2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2ð Þ

p
:

Obviously its potential function is:

Q ¼ ω2

2
x2 þ y2
� �

: ð4:12Þ

The force of gravity is the resultant of the gravitational force and the centrifugal

force, and thus the gravity potentialW is equal to the sum of gravitational potential

V and the centrifugal potential Q, namely:

W ¼ V þ Q: ð4:13Þ

Hence the formula for gravity potential is expressed as:
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W ¼ G

ð
M

dm

r
þ ω2

2
x2 þ y2
� �

: ð4:14Þ

4.1.2 Earth Gravity Field Model

It can be proved that the gravitational potential of a body at an exterior point, given

by (4.10), that is:

V ¼ G

ð
dm

r
,

satisfies the differential equation:

∂2
V

∂x2
þ ∂2

V

∂y2
þ ∂2

V

∂z2
¼ 0: ð4:15Þ

Equation (4.15) is the well-known Laplace equation. The function that satisfies

the Laplace equation is termed the harmonic function (Torge and Müller 2012) or

the spherical harmonics.

In the spherical coordinate system as illustrated in Fig. 4.4, the relation between

the rectangular coordinates (x, y, z) and the spherical coordinates (ρ, θ, λ) of point
P is given by:

x ¼ ρ sin θ cos λ,
y ¼ ρ sin θ sin λ,
z ¼ ρ cos θ,

8<
:

where θ is the spherical colatitude. The Laplace equation (4.15) can be represented

by the spherical variables (derivation omitted), as:

Fig. 4.3 Gravitational

potential of the body with

mass M
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ρ2
∂2

V

∂ρ2
þ 2ρ

∂V
∂ρ

þ ∂2
V

∂θ2
þ cot θ

∂V
∂θ

þ 1

sin 2θ

∂2
V

∂λ2
¼ 0: ð4:16Þ

Solution of the above Laplace equation (derivation omitted) is the harmonic

function in the spherical coordinates, which can be represented as (Hofmann and

Moritz 2005; Torge 1989):

V ρ; θ; λð Þ ¼
X1
n¼0

1

ρnþ1

Xn
k¼0

ank cos kλþ bnk sin kλð ÞPnk cos θð Þ: ð4:17Þ

Equation (4.17) is a series expansion, which indicates that the Earth’s gravita-

tional potential at an exterior point can be described by an infinite series. (ρ, θ, λ)
are the spherical coordinates of the exterior point of the Earth and ank and bnk are the
coefficients of the Earth’s gravity field, which can be determined by the observed

values. Therefore, the gravitational potential problem can be regarded as the

problem of study of the coefficient of the gravitational potential. Pnk(cos θ) repre-
sents the associated Legendre polynomials (also known as the associated Legendre

functions of the first kind), n is degree, and k is order. The expressions of the

associated Legendre polynomials are given by:

Fig. 4.4 Spherical

coordinates and rectangular

coordinates
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P0 cos θð Þ ¼ 1

P1 cos θð Þ ¼ cos θ
P11 cos θð Þ ¼ sin θ

P2 cos θð Þ ¼ 3

4
cos 2θ þ 1

4

P21 cos θð Þ ¼ 3 cos θ sin θ

P22 cos θð Þ ¼ � 3

2
cos 2θ þ 3

2

⋮

The Pn0(cos θ) in the above equation is simplified as Pn(cos θ). Pn(cos θ) is an
nth-degree polynomial of cos θ, called the Legendre polynomial. The two poly-

nomials P0(cos θ) ¼ 1 and P1(cos θ) ¼ cos θ allow the higher degree polynomials

to be generated using the recursion formula below:

n� k þ 1ð ÞPnþ1,k

�
cos θ

� ¼ �
2nþ 1

�
cos θPnk

�
cos θ

�� �
nþ k

�
Pn�1,k

�
cos θ

�
Pnn cos θð Þ ¼ �

1� cos 2θ
�1
2�
2n� 1

�
Pn�1,n�1

�
cos θ

�
:

Coefficients ank and bnk are related to the mass distribution and shape of the

Earth, derived to obtain (Lu 1996):

an0 ¼ G

ð
Earth

ρn
1Pn cos θ1ð Þdm,

ank ¼ 2
n� kð Þ!
nþ kð Þ!G

ð
Earth

ρn
1Pnk cos θ1ð Þ cos kλ1dm,

bnk ¼ 2
n� kð Þ!
nþ kð Þ!G

ð
Earth

ρn
1Pnk cos θ1ð Þ sin kλ1dm,

8>>>>>>>>><
>>>>>>>>>:

ð4:18Þ

where (ρ1, θ1, λ1) denote the coordinates of dm (Fig. 4.5). From the above equation,

the meaning of the series expansion coefficients in the spherical harmonics of the

potential of the Earth’s gravitational field can obviously be further analyzed. It is

commonly the first several terms of an infinite series that play a predominant role.

The meaning of several coefficients in low-degree terms will be discussed below.

The zero-degree term has only one coefficient, a00. Since ρ01 ¼ 1, P0(cos θ)
¼ 1, it follows from (4.18) that:

a00 ¼ GM,

where M denotes the total mass of the Earth, which corresponds to the potential of

the gravitational field generated by a homogeneous sphere of the Earth with its

center at the coordinate origin.
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The first-degree term has three coefficients, i.e., a10, a11, and b11. For P1(cos

θ1) ¼ cos θ1, and P11(cos θ1) ¼ sin θ1, it follows from (4.18) along with expres-

sions of the spherical coordinates and the rectangular coordinates that:

a10 ¼ G

ð
Earth

ρ1 cos θ1dm ¼ G

ð
Earth

z1dm,

a11 ¼ G

ð
Earth

ρ1 sin θ1 cos λ1dm ¼ G

ð
Earth

x1dm,

b11 ¼ G

ð
Earth

ρ1 sin θ1 sin λ1dm ¼ G

ð
Earth

y1dm:

Assume the Cartesian coordinates of the Earth’s center of mass are x0, y0, z0; in
the light of physics, its follows that:ð

Earth

x1dm

M
¼ x0,

ð
Earth

y1dm

M

¼ y0,

ð
Earth

z1dm

M
¼ z0

Hence the three coefficients of the first-degree term are:

a10 ¼ fMz0, a11 ¼ fMx0, b11 ¼ fMy0

It is thus clear that the first-degree terms are related to the center-of-mass

coordinates of the Earth. If we place the origin of the coordinate system at the

Earth’s center of mass, then the numerical values of these terms are zero.

The second-degree term has five coefficients, i.e., a20, a21, a22, b21, b22. Inte-
grating (4.18) gives:

Fig. 4.5 Integral area is the

entire Earth
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a20 ¼ G � Aþ B

2
� C

� 	
, a22 ¼ G � B� A

4

� 	
,

where A, B, and C indicate the moments of inertia of the Earth with respect to the

X-axis, Y-axis, and Z-axis, respectively, namely:

A ¼
ð

Earth

y21 þ z21
� �

dm, B ¼
ð

Earth

x21 þ z21
� �

dm, C ¼
ð

Earth

x21 þ y21
� �

dm:

The other three coefficients are:

a21 ¼ G

ð
Earth

z1x1dm, b21 ¼ G

ð
Earth

y1z1dm, b22 ¼ 1

2
G

ð
Earth

x1y1dm:

The above three integrals are the products of inertia about the X-axis, Y-axis, and
Z-axis. Therefore, the second-degree term is dependent on the moments of inertia

and products of inertia of the Earth with respect to the coordinate axes.

The coefficients of the terms of the third degree or higher are rather complex and

are not discussed here.

Substituting the above nine coefficients into (4.17), putting the origin of the

coordinate system at the Earth’s center of mass, and making the coordinate axes

coincide with the Earth’s principal axis of inertia, the coefficients of the first-degree

terms, a21, b21, and b22 in the second-degree terms are all zero, and then the

expansion of the Earth’s gravitational potential is:

V ρ;θ;λð Þ ¼ GM

ρ
þ G

ρ3

 Aþ B

2
� C

0
@

1
A� 3

2
cos 2θ � 1

2

�þ 3 B� Að Þ
4

cos 2λ sin 2θ
�þ

þ
X1
n¼3

1

ρnþ1

Xn
k¼0

ank cos kλþ bnk sin kλð ÞPnk cos θð Þ :

In practice, the spherical harmonics expansion of the gravitational potential of

the Earth is written as:

V p;θ;λð Þ ¼
GM

ρ

"
1�

X1
n¼2

a

ρ

� 	n

JnPn cos θð Þ þ
X1
n¼2

Xn
k¼1

a

ρ

� 	n

Jnk cos kλþ Snk sin kλ
� �

Pnk cos θð Þ
#
, ð4:19Þ

where a denotes the semimajor axis of the Earth ellipsoid andPnk cos θð Þ is the fully
normalized associated Legendre polynomials, which differ from the associated

Legendre polynomials only by a constant factor:
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Pnk cos θð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2nþ 1ð Þ n� kð Þ!

nþ kð Þ!

s
Pnk cos θð Þ k > 0ð Þ :

Since the values of the associated Legendre polynomials differ very much from

each other when the degrees of the polynomials vary considerably, such as

P21(cos 58
�) ¼ 1.3482, and P88(cos 58

�) ¼ 542279, the results of the high-

degree polynomials computed using recursion formulae may lead to relatively

large accumulative errors, whereas P21 cos 58�ð Þ ¼ 1:7405, and

P88 cos 58�ð Þ ¼ 0:6913. Jn, Jnk, Snk are the normalized coefficients. Comparing

(4.19) with (4.17), we can obtain:

Jn ¼ � an0
GMan

Jnk ¼ ank
GMan

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ kð Þ!
2 2nþ 1ð Þ n� kð Þ!

vuut

Snk ¼ bnk
GMan

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ kð Þ!
2 2nþ 1ð Þ n� kð Þ!

vuut

Adopting this set of coefficients, the differences between the values of the

polynomials changing along with n and k (degree and order) are slight, making it

convenient to use. The coefficient that is independent of longitude in (4.19) is called

the coefficient of zonal harmonics, while the coefficient that is longitude dependent

is called the coefficient of tesseral harmonics.

As the potential of the gravity field W is the sum of the potential of the

gravitational field V (4.19) and that of the centrifugal field Q (4.12), the mathemat-

ical expression of W is referred to as the Earth gravity field model.

4.1.3 Level Surface and the Geoid

We know that every point P on the Earth will be acted upon by the inertial

centrifugal force P
!

and the Earth’s gravitational force F
!

(Fig. 4.6). The resultant

of these two forces G
!
for a unit mass is called gravity. The action line of gravity is

referred to as the plumb line. The direction of the force of gravity is the direction of

the plumb line. Given the inhomogeneous distribution of matter within the Earth

and the undulating form of the Earth’s surface, the changes in the direction of the

plumb line at each point are irregular and the plumb line is far from a straight line.

When a fluid is in a state of equilibrium, everywhere on its surface is normal to

the direction of gravity, otherwise the liquid will flow. We call this the equilibrium

surface of the liquid level surface. Gravity exists everywhere on the Earth and in
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space, so points at different heights will result in different level surfaces. The level

surface is a physical reality because it is a surface of constant geopotential, i.e., no

work is done in moving a mass along a frictionless level surface. The level surface

is also known as the equipotential surface of gravity. The vertical at each point on

the level surface is orthogonal to the plane.

When angles are measured using theodolites, or height differences are deter-

mined using leveling instruments, the instruments should all be leveled. While

observing the horizontal angle, the bubble in the spirit level of the theodolite should

rest in the middle. Thus, by centering the bubble, the line of sight is made

horizontal. The vertical axis of the instrument coincides with the direction of the

plumb line. The horizontal plane measured by the horizontal circle is a plane

tangent to the level surface. Therefore, the horizontal angles actually observed

are the angles on level surfaces at different heights. Likewise, the height difference

determined using leveling methods is the distance along the plumb line between

level surfaces. The astronomical longitude and latitude as well as astronomical

azimuth also refer to the level surface and plumb line. Thus, the level surface and

plumb line are the reference surface and the datum line for field operations using

theodolites, leveling instruments, and such optical measuring instruments.

There are many equipotential surfaces. We define one of them as the geoid.

The geoid is the equipotential surface, which approximately coincides with the

mean sea level (MSL) in the ocean and its extension under the continents. Oceans

cover about 71 % of the Earth’s surface, and the average elevation of continents is

about 800 m above MSL, about one eight-thousandth of the Earth’s radius, which

means that the geoidal body closely approximates the natural surface of the Earth.

As a result, it is natural to employ the geoid as a representation of the Earth. The

geoid also serves as a reference surface for height determination of a given point on

the Earth’s surface while studying the shape of the Earth’s surface. Meanwhile, the

geoid is also employed as the reference surface for reduction of the astronomical

longitude, latitude, azimuth, and the values of gravity.

Fig. 4.6 Direction of the

plumb line
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The geoid is an irregular curved surface. The magnitude and direction of the

gravitational force differ from point to point due to the terrain undulations and

inhomogeneous distribution of mass inside the Earth, which will also cause irreg-

ular direction changes of the plumb line at different points. Hence, this geoid,

everywhere perpendicular to the direction of the plumb line, is correspondingly an

irregular curved surface with slight undulations. Therefore, the geoid is a physical

rather than a mathematical surface.

With the in-depth studies of oceanography, people have realized that the MSL

and the geoid are different concepts. The MSL is not the level (equipotential)

surface, for many factors can exert influence on the oceans such as temperature

and pressure variations, salinity, winds, currents, rotation of the Earth, etc. Mean-

while, the MSL measured using tide gauges in different countries or areas also

varies. If a certain equipotential surface is chosen as the standard sea level, then

separation between MSL and the standard sea level is referred to as the sea surface

topography or sea surface slope. The rise and fall is about 1–2 m on a global scale.

For the eastern sea area of China, the sea surface slope has high elevation in the

south and low elevation in the north. The height difference is approximately 60 cm.

It is imprecise to define the MSL as the geoid, for the MSL is not an equipotential

surface. Therefore it is recommended that the geoid be defined as an equipotential

surface passing through the point to which heights are referred (zero level).

Based on the properties of potential function, we can conclude that the derivative

of gravity potential W with respect to an arbitrary direction s is equal to the

component g of gravity gs in the same direction, namely:

dW

ds
¼ gs ¼ g cos g; sð Þ ð4:20Þ

In the case that the direction s is perpendicular to that of gravity, cos(g, s) ¼ 0,

then:

dW

ds
¼ 0:

The integration yields:

W x;y;zð Þ ¼ constant: ð4:21Þ

Assigning a fixed value to the constant on the right-hand side of the equation will

yield an equation of the curved surface. It is referred to as the equipotential surface

given that the gravity potential value is equal everywhere on this surface. In the

meantime, the direction of gravity at any point intersects the surface. The surface is

in an equilibrium state, i.e., the level surface (also the equipotential surface or

constant geopotential surface) of gravity. The geoid is the level surface passing

through the reference point for heights.

Some properties of the level surface can be further studied by applying the

concept of gravity potential.
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In (4.20), if s is directed against the direction of gravity g, denoted by h, in this

case, cos(g, h) ¼ � 1, yields:

dW

dh
¼ �g,

also written as:

dh ¼ � dW

g
, ð4:22Þ

where dW represents the potential difference of two infinitely close level surfaces,

and dh is the vertical distance between the two level surfaces. Equation (4.22)

indicates that the distance between level surfaces is inversely proportional to

gravity.

Because g varies everywhere on a level surface, the level surfaces are

non-parallel. Figure 4.7 is a general description of the level surface. In the mean-

time, the value of g is finite and dh cannot possibly be zero, so the level surfaces do
not intersect. However, within a small area the gravity value does not change much,

and the two level surfaces can be considered parallel; for instance, the two level

surfaces at each point, where the leveling rods are held, are considered parallel to

each other in leveling. Hence, the distance observed between the level surfaces is

considered to be the height difference between the two points.

4.2 Earth Ellipsoid and Normal Ellipsoid

4.2.1 Earth Ellipsoid

The geoid is an irregular surface that approximates the shape of the Earth. Its

undulations are mainly generated by the inhomogeneous distribution of mass within

the Earth’s crust. Given the fact that the mass of the Earth’s crust is only one sixty-

Fig. 4.7 Level surface
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fifth of the total mass of the Earth, this irregularity is very small. As a consequence,

the geoid closely approximates a regular figure in general. Geodetic observations

since the eighteenth century have demonstrated that this regular shape is an oblate

ellipsoid of rotation with a bulge at the equator and flattening at the North and South

Poles.

A rotational ellipsoid is a geometric figure obtained by rotating an ellipse around

its minor axis. Figure 4.8 is an ellipsoid centered at the origin O rotating around its

NS axis.

In geodesy, the ellipsoid of rotation that represents the Earth’s shape and size is

referred to as the Earth ellipsoid, shortened to ellipsoid. The Earth ellipsoid is

specified by four parameters: the semimajor axis a and flattening f that represent
geometric properties of the Earth; the total mass M of the ellipsoid, which repre-

sents the physical properties of the Earth; and the angular velocity ω of the ellipsoid

rotating around its minor axis.

Before the 1950s, the geometric parameters of the Earth ellipsoid a and f were
computed using data from astronomical, geodetic, and gravimetric observations in

particular regions. Results were of low precision and could only represent the

geometric figure of some particular regions on the Earth. Since the 1960s, the

four geometric and physical parameters of the Earth ellipsoid have been calculated

using data from global terrestrial geodetic measurements and satellite geodetic

surveys with an increase in precision of two orders of magnitude compared with

that prior to the 1950s. One case in point is Ellipsoid GRS80 (Moritz 2000); the

difference of a is less than 2 m and the relative mean squared errors of f and GM are

�3 � 10�6 and �2 � 10�7, respectively (G is gravitational constant, M is total

mass of the Earth). Table 4.1 gives the ellipsoid parameters used in China. The

Beijing Geodetic Coordinate System 1954 adopted the Krassowski Ellipsoid, the

Xi’an Geodetic Coordinate System 1980 adopted the Ellipsoid GRS 75, and the

China Geodetic Coordinate System 2000 (CGCS2000) basically adopted the Ellip-

soid GRS80 (GM value of the Ellipsoid GRS80 is defined more precisely). The

parameters adopted by the two international geodetic coordinate systems WGS84

(World Geodetic System 1984) and the ITRF (International Terrestrial Reference

Frame; see Chap. 7) are the WGS84 Ellipsoid and the GRS 80 Ellipsoid,

respectively.

On the Earth ellipsoid, the plane that contains the rotation axis (minor axis) of

the reference ellipsoid is called the geodetic meridian plane. The geodetic meridian

is the intersection of the plane containing the rotation axis with the surface of the

ellipsoid. The plane through the center of the ellipsoid and perpendicular to the axis

of rotation is the Earth’s equatorial plane. The equator is the intersection of the

equatorial plane with the ellipsoid. A parallel circle (parallel line) is an intersection

of the plane parallel to the equator with the ellipsoid, also termed circle of latitude.

The northernmost point N of the spin axis on the Earth is the North Pole, lying

diametrically opposite the South Pole, S.
The Earth’s gravity field and its level surface become rather complex given the

irregular shape of the Earth and the uneven distribution of mass. To facilitate the

study of gravity and the gravity field, the Earth ellipsoid is introduced, which is
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called the normal ellipsoid. Due to the irregularity of the actual Earth’s shape, a

regular surface should be chosen as the reference surface on which geodetic

observations and computations are performed. The Earth ellipsoid introduced

hereby is called the reference ellipsoid (see Sect. 5.2).

4.2.2 Normal Ellipsoid and Normal Gravity

The normal ellipsoid is an imaginary rotational ellipsoid with regular shape and

homogeneous mass distribution that satisfies certain conditions. It is the regular

shape of the geoid and is used to represent the ideal body of the Earth. The gravity

field generated by the normal ellipsoid is termed the normal gravity field.

Corresponding gravity, gravity potential, and level surface are called normal

gravity, normal gravity potential, and the spheropotential surface (spherop), respec-

tively. The normal ellipsoid is artificially chosen. The normal gravity potential on

the normal ellipsoid is specified as being constant, and its value is equal to the

gravity potential W0 on the geoid (Fig. 4.7).

Fig. 4.8 Earth ellipsoid

Table 4.1 Earth ellipsoid parameters (semimajor axis a, flattening f, gravitational constant �
total mass GM, and angular velocity ω)

Name of the

ellipsoid Year a (m) f
GM (�1014

m3/s2)

ω (�10�5

rad/s)

Krassowski

Ellipsoid

1940 6,378,245 1/298.3 – –

GRS75 1975 6,378,140 1/298.257 3.986005 7.292115

GRS80 1980 6,378,137 1/298.257222101 3.986005 7.292115

WGS84 1996 6,378,137 1/298.257223563 3.986004418 7.292115

CGCS2000 2008 6,378,137 1/298.257222101 3.986004418 7.292115
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The normal gravity field is a close approximation to the actual Earth’s gravity

field. In order to narrow down the difference between the two, we select the normal

ellipsoid in accordance with the requirements below:

1. The spin axis of the normal ellipsoid coincides with the Earth’s axis of rotation,

and with equivalent angular velocity.

2. The center of the normal ellipsoid is at the Earth’s center of mass. The coordi-

nate axis coincides with the Earth’s principal axis of inertia.

3. The total mass of the normal ellipsoid is equal to that of the actual Earth.

4. The sum of squares of the deviations of the geoid from the normal ellipsoid is the

least.

The normal ellipsoid is defined by these four basic parameters: semimajor axis

of the ellipsoid a, flattening f, total massM of the ellipsoid, and the angular velocity

ω of the ellipsoid rotating about the minor axis. The former two parameters specify

the geometric shape of the ellipsoid and the latter two identify the physical

properties of the ellipsoid.

The normal ellipsoid is regular, so obviously its gravitational potential is inde-

pendent of λ and is only a function of ρ and θ in (4.17). The gravitational potential

of the normal ellipsoid is symmetric with respect to the equator. Find the cosine of θ
and 180 � θ for the two points that are symmetric to the equator with opposite

signs. Therefore, in the spherical harmonics series expansion of the Earth’s grav-

itational potential, there are only even zonal harmonics. Hence, the gravitational

potential V of the normal ellipsoid at an exterior point can be obtained from (4.19),

given by:

V ρ;θð Þ ¼ GM

ρ
1�

X1
n¼1

J2n
a

ρ

� 	2n

P2n cos θð Þ
" #

: ð4:23Þ

Equation (4.23) can be determined because J2n is the constant coefficient related
to the normal ellipsoid parameters.

Normal gravity can be obtained from the derivative of the normal gravity

potential due to their relations. With deviations omitted, the formula for normal

gravity value γ0 on the normal ellipsoid is simplified as:

γ0 ¼ γa 1þ β sin 2B� β1 sin
22B

� �
, ð4:24Þ

where γa is the value of gravity at the equator, B is the geodetic latitude of the

computation point, and coefficients β, β1, and equatorial gravity γa are given by:
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γa ¼
GM

ab
1� 3

2
m� 3

7
mf � 125

294
mf 2

0
@

1
A,

β ¼ �f þ 5

2
m� 17

14
mf þ 15

4
m2,

β1 ¼ � 1

8
f 2 þ 5

8
mf ,

8>>>>>>>>><
>>>>>>>>>:

where m ¼ ω2a2b

GM
, b denotes the semiminor axis of the ellipsoid.

For the normal gravity γ0 (unit: m/s2)on the ellipsoid surface of CGCS2000

(cf. Table 4.1), when the permissible error is less than 0.1 � 10�5 m/s2, (4.24)

yields:

γ0 ¼ 9:7803253349 1þ 0:00530244 sin 2B� 0:00000582 sin 22B
� �

:

The precise formula is:

γ0 ¼ γe
�
1þ 0:005279042982 sin 2Bþ 0:000023271800 sin 4Bþ 0:000000126218 sin 6B

þ0:000000000730 sin 8Bþ 0:000000000004 sin 10B
�
:

The error in this equation is 0.001 � 10�8 m/s2.

At the point where the height above the normal ellipsoid is H, the normal gravity

value γ is approximately:

γ ¼ γ0 � 0:3086H: ð4:25Þ

This means that when the height increases by 1 m, the normal gravity will

decrease by 0.3 mGal (0.3 � 10�5 m/s2).

The normal gravity γ at any arbitrary exterior point on the CGCS2000 ellipsoid

can be computed using the series:

γ ¼ γ0 � 3:08338788871� 10�6 þ 4:429743963� 10�9 cos 2B� 1:9964614� 10�11 cos 4B
� �

H

þ �
7:2442777999� 10�13 þ 2:116062� 10�15 cos 2B� 3:34306 � 10�17 cos 4B

� 1:908� 10�19 cos 6B� 4:86� 10�22 cos 8B
�
H2

� �
1:51124922 � 10�19 þ 1:148624 � 10�21 cos 2B

þ 1:4975 � 10�23 cos 4Bþ 1:66 � 10�25 cos 6B
�
H3

þ 2:95239 � 10�26 þ 4:167 � 10�28 cos 2B
� �

H4,

where γ0 is measured in meters per second squared, and H is measured in meters.

This formula is applied to calculate the error of normal gravity. When H amounts to

20 km, the error is less than 0.1 � 10�8 m/s2; when H is up to 70 km, the error is

less than 1 � 10�8 m/s2.
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There will inevitably be two gravity values that correspond to the gravity field of

the actual Earth and that of the normal ellipsoid, namely the true value of gravity

g and normal gravity value γ, the difference in value between g and γ, i.e., g � γ is
the gravity anomaly.

4.2.3 Disturbing Potential

After introducing the normal ellipsoid, there exist two values of gravity potential

for any arbitrary points on the Earth: the true (measured) potential W of the real

Earth and the normal gravity potential U. There is a difference in value between the
two potentials. Subtracting the normal gravity potential from the true potentialW of

the real Earth, the result is defined as T, the disturbing potential. Namely:

T ¼ W � U,

or

W ¼ U þ T, ð4:26Þ

which means that the Earth’s gravity potential is equal to the sum of the normal

gravity potential and the disturbing potential.

It follows from (4.13) that:

T ¼ VE � VN þ QE � QN:

The subscript E is for the actual Earth, and the subscript N for the normal

ellipsoid. When the normal ellipsoid is chosen, its axis of rotation is made coinci-

dent with the spin axis of the actual Earth and with equal angular velocity; thus

QE ¼ QN. It follows that:

T ¼ VE � VN: ð4:27Þ

That is to say, the disturbing potential can be interpreted as the difference in

gravitational potential caused by the differences in mass distribution between the

Earth and the normal ellipsoid. The mass difference between the Earth and the

normal ellipsoid is called the disturbing mass (where the mass refers to the mass

difference of each point rather than the difference in total mass). Consequently, the

disturbing potential is the gravitational potential of the body constituted by the

disturbing masses. The gravitational potential of a body can be expressed as a

spherical harmonics series.

From (4.27) we can see that the disturbing potential can be obtained by

subtracting the normal gravitational potential from the Earth’s gravitational poten-

tial. Equation (4.19) describing the Earth’s gravitational potential is obtained under
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the conditions that the origin of coordinates is at the Earth’s mass center; the

coordinate axis coincides with the Earth’s three principal axes of inertia. Equation

(4.23) of the normal gravitational potential, on the other hand, is valid when the

coordinate origin is at the center of the ellipsoid; one coordinate axis coincides with

the axis of rotation of the normal ellipsoid. When the normal ellipsoid is selected,

its center is made at the Earth’s mass center, the coordinate axis is made coincident

with the Earth’s principal axis of inertia, the Earth’s axis of rotation coincides with

the spin axis of the normal ellipsoid, and the total mass of the normal ellipsoid is

equal to that of the Earth. Hence, the disturbing potential T is:

T ¼ �GM

ρ

X1
n¼2

a

ρ

� 	nXn
k¼0

a
0
nkcoskλþ bnk sin kλ

� �
Pnk cos θð Þ, ð4:28Þ

where a
0
nk is the difference in the expansion coefficients between the Earth’s

gravitational potential and the normal gravitational potential.

4.3 Height Systems

4.3.1 Requirements for Selecting Height Systems

The height of a point on the Earth’s surface can be determined by leveling,

trigonometric leveling, and GPS measurement. Whichever method is used, a

reference surface (zero-elevation surface) and reference line (the line along which

the height is measured) will be involved. The height of a point on the Earth’s

surface is geometrically defined as the distance from the point along the reference

line to the reference surface. Different reference lines or reference surfaces for

heights will constitute different height systems. Obviously, the height of the same

Earth’s surface point in different height systems also varies.

For the height system to be chosen, the following requirements need to be

fulfilled:

1. To represent the position of a point, the height of the point is required to be

unambiguous and independent of the leveling path.

2. In practice, when converted to the adopted height system, the corrections to the

measured height differences for points in a limited area should be very small so

that they can possibly be ignored while dealing with low-order leveling data.

3. From the geometric problem-solving perspective, the ellipsoidal height is the

sum of the measured height and the geoid height; thus it requires that the adopted

height system should make the method for determining the difference between

the geoid and the reference ellipsoid (normal ellipsoid) sufficiently rigorous and

convenient, as well as practical.
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4. From the physical problem-solving perspective, the chosen height system is also

required to ensure that the height of each point on the same level surface be

equivalent as much as possible. This is because the leveling data is actually used

to determine the physical problem of the relative position of the Earth’s natural

surface and the level surface of the real gravity field, which is essential in

avoiding the “water runs uphill” phenomenon in engineering application.

Requirements 2 and 4 are in fact contradictory. Therefore, in practice, choosing

the most appropriate height system requires compromise according to the different

requirements of the application.

4.3.2 Non-uniqueness of Leveled Height

The principle of leveling is based on the fact that level surfaces are parallel to each

other. In relatively small areas, the level surfaces on which the fore and back rod are

placed are viewed as parallel to each other. The measured distance between the two

level surfaces is the height difference between the two points. It is known that level

surfaces are not generally parallel. When the leveling lines are of greater lengths in

larger measured areas, the level surfaces cannot be considered as parallel, meaning

that the influence of non-parallel level surfaces on leveled heights must be

considered.

As shown in Fig. 4.9, suppose that the connecting surface between points O, E,
and C is the geoid (reference surface for heights); then the observed height of point

B can be derived by summing the measured height differences Δh1, Δh2, . . .along
the leveling line OAB at each station:

HB
M ¼ Δh1 þ Δh2 þ � � � ¼

X
OAB

Δh:

The subscript M indicates measured height.

The height of point B can also be calculated by summing the leveled height

differences Δh0
1, Δh

0
2, � � � along leveling line ONB:

H
0 B
M ¼ Δh

0
1 þ Δh

0
2 þ � � � ¼

X
ONB

Δh
0

Due to the unparallel nature of level surfaces, the corresponding height differ-

ences Δhi and Δh0
i are not equal; thus H

B
M and H0B

M are not equal either.

In Fig. 4.9, OABNO is a closed leveling loop, and obviously:
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X
OAB

Δh 6¼
X
BNO

Δh
0
,

X
OAB

Δhþ
X
BNO

Δh
0 ¼ w 6¼ 0: ð4:29Þ

So, similarly to errorless leveling, the error of closure of leveling loops w still

cannot be zero. Such closing error of leveling loops caused by unparallel level

surfaces is called theoretical misclosure.

The height of a point should be single-valued and be independent of the leveling

routes. So, in dealing with leveling results, the properties of the theory of the

Earth’s shape must be taken into consideration; the height system must be defined

reasonably and corrections applied. These corrections should be very small so that

they could be neglected in dealing with low-order leveling results.

4.3.3 Orthometric Height

Referenced to the geoid, the orthometric height (Ho) is the length between the geoid

(reference surface) and a point on the Earth’s surface measured along the plumb

line. As shown in Fig. 4.9, the height differences between each level surface

measured from point B along the plumb line is expressed by ΔH, then HB
O, the

orthometric height of point B is:

HB
O ¼ ΔH1 þ ΔH2 þ � � � ¼

X
CB

ΔH ¼
ð
CB

dH: ð4:30Þ

Since the level surface is an equipotential surface, the potential energy differ-

ence between two infinite close level surfaces in Fig. 4.9 is given by:

Fig. 4.9 Effects of

non-parallel level surface

on leveling
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gdh ¼ gBdH

dH ¼ g

gB
dh, ð4:31Þ

where g is the gravity at dh along the leveling line and gB is the gravity at dH along

the plumb line from point B. Substituting (4.31) into (4.30), we have:

HB
O ¼

ð
CB

dH ¼
ð

OAB

g

gB
dh: ð4:32Þ

The gravity along the plumb line, gB, varies with depth. Let their average be gBm;
then:

HB
O ¼ 1

gB
m

ð
OAB

gdh, ð4:33Þ

where gBm is a certain value relative to a certain surface point.
Ð
gdh, independent of

the leveling path, is the potential energy difference between the level surface

passing through point B and the geoid. So, the orthometric height is a unique

value. However, since gBm is the average gravity at depth and we cannot know for

sure the subsurface mass density distribution, gBm therefore can neither be measured

nor precisely calculated. Thus, the orthometric height of a point can only be

approximately evaluated.

4.3.4 Normal Height

The reason why orthometric height cannot be precisely obtained lies in that gBm of

point B cannot be measured accurately. Replacing gBm in (4.33) with the normal

gravity γBm, one can get the normal height that belongs to another height system,

denoted by HN, namely:

HB
N ¼ 1

γ Bm

ð
OAB

gdh, ð4:34Þ

where g can be measured through gravimetry along the leveling line, dh can be

measured by leveling, and γBm can be calculated by the normal gravity formulae

(4.24) and (4.25). Thus, we can get a precise normal height whose value is unique,

without varying with the changes in leveling routes. The concept of normal heights

was formulated by the Russian geodesist M.S. Molodensky in 1945. In China, the

normal height system is adopted as the unified system for computing the height of a

point on the Earth’s surface.
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If the normal height of each surface point is HN, measuring HN downward along

the plumb line (the normal gravity line in fact) results in the corresponding points of

each surface point. A continuous curved surface as the reference surface for normal

heights can be formed by connecting these corresponding points. It is also called the

quasi-geoid because of its close approximation to the geoid. Therefore, the

so-called normal height system is the height system with the quasi-geoid as its

reference surface. The normal height of a surface point is the distance from this

point to the quasi-geoid along the plumb line (the normal gravity line).

As an auxiliary surface for calculation, the quasi-geoid approximates, but does

not equal, the geoid. It has no strict geometric or physical meanings.

The difference between the quasi-geoid and the geoid (i.e., the difference

between the orthometric height and the normal height) is associated with the height

of a point and the mass distribution inside the Earth. Neglecting the sea surface

topography, at mean sea level the observed height difference dh ¼ 0, so HN ¼ HO

¼ 0; that is, the quasi-geoid coincides with the geoid on the oceans. So, the height

origin as the reference surface for heights is applicable to both the quasi-geoid and

the geoid. In plain areas, the difference between the quasi-geoid and the geoid is a

few centimeters whereas in mountainous regions it can reach values of about 3 m.

In real applications, using (4.34) to calculate the normal height is not convenient.

Considering that the actually measured gravity value is made up of two compo-

nents, the normal gravity γ and the gravity anomaly (g � γ), the corresponding

normal height can be calculated by adding the observed height difference for each

segment of leveling and the correction to non-parallel spheropotential surfaces and

the gravity anomaly correction. Omitting derivations, the result is:

HB
N ¼

ð
OAB

dhþ 1

γ Bm

ð
OAB

γ0 � γ B0
� �

dhþ 1

γ Bm

ð
OAB

g� γð Þdh: ð4:35Þ

where the meanings of each term on the right side of the equation are as follows:

The first term is the leveled height difference.

In the second term, γ0 is the normal gravity of each point along the leveling line

OAB. Since the spheropotential surfaces are also not parallel and vary with latitude,

γ0 6¼ γB0 , this term is called the correction to the non-parallel spheropotential

surface.

In the third term, (g � γ) is the gravity anomaly, resulting from the inconsis-

tency between the spheropotential surface (spherops) and the geopotential surface

(geops).

4.3.5 Dynamic Height

A level surface is equipotential, on which the gravity potential of each point is

equal, but the orthometric height and normal height of each point can be different.

Assume that point A and point B are on the same level surface, then:
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ð
OA

gdh ¼
ð
OB

gdh: ð4:36Þ

because

gA
m 6¼ gB

m ,

γ Am 6¼ γ Bm:

Thus it can be seen from (4.33) and (4.34) that:

HA
O 6¼ HB

O ,

HA
N 6¼ HB

N :

This would cause inconvenience to the design and construction of large-scale

water conservancy projects. A new height system is therefore needed to make “the

height of each point on the same level surface equal.” Hence, a dynamic height

system is usually adopted in a water conservancy project. The dynamic height (HD)

of point B is:

HB
D ¼ 1

γ B45

ð
gdh: ð4:37Þ

The above equation shows that the dynamic height is obtained by replacing γm in

(4.34) with γ45, the normal gravity at latitude 45�. Points on the same level surface

have the same dynamic height. So the dynamic height system is a system where the

dynamic height of each point is represented by the normal height (HN) of the point

at 45� latitude.
“Local dynamic height system” is adopted by some authorities to bring the

dynamic height over an area closer to the normal height in the same area, that is:

HLD ¼ 1

γφm

ð
gdh, ð4:38Þ

where γφm is the normal gravity value at mean latitude φm of the survey area.

The dynamic height and the normal height of a surface point can be easily

interconverted. From (4.34) and (4.36), we have:

γ BmH
B
N ¼ γ B45H

B
D ,

HB
N ¼ HB

D � γ Bm � γ B45
γ Bm

HB
D: ð4:39Þ
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4.3.6 Geopotential Number

The height of a point on the Earth’s surface is represented by the difference between

the potential of the geoid W0 and that of the equipotential surface passing through

this point W, also known as the geopotential number, namely:

C ¼ W0 �W ¼
ð
OAB

gdh, ð4:40Þ

where OAB is the level line (see Fig. 4.9), dh is the difference in height measured

during each setup of leveling, and g is the mean value of gravity along the leveling

lines. With the geoid as the reference surface, geopotential numbers are not

measured in meters but in potential differences kGal m (105 cm2/s2). On the same

level surface, the geopotential number of every point is equal and its value can be

obtained by multiplying dh by the mean value of gravity (g) for the setup. The

leveling results expressed by geopotential numbers can be conveniently converted

to the orthometric height, normal height, and the dynamic height.

The orthometric, normal, and dynamic height systems all have their respective

advantages and disadvantages. The coexistence of them not only makes the height

systems non-unified, but also increases the difficulty in combined processing of the

leveling data. Obviously, all three height systems have one part in common, the

geopotential number
Ð
gdh, which is the potential energy that the elevation point

possesses from the location of the point to the geoid. Its relationship with the three

heights is simple and clear; thus, the leveling data can be processed using

geopotential numbers with a unified height.

Although the geopotential number does not have the dimension of a length, it

can be considered as a natural measure for height.

4.3.7 Geodetic Height

Geodetic height (ellipsoidal height) refers to the reference ellipsoid, measured

along the ellipsoidal normal (see Sect. 5.2). In modern geodesy, the reference

ellipsoid surface can be seen as the normal ellipsoid surface because the reference

ellipsoid is consistent with the normal ellipsoid. The distance from a surface point

to the reference ellipsoid along the ellipsoidal normal is defined as the geodetic

height of this point.

As shown in Fig. 4.10, point P is a point on the Earth’s surface. Its projection

onto the ellipsoid along the ellipsoidal normal is P0, and the distance PP0 is the

geodetic height H.
The geodetic height or geodetic height difference between two points on the

Earth’s surface can be obtained by satellite positioning survey or trigonometric

leveling. Given the geodetic height of one point, that of the other can be easily
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calculated. The leveled height, with corrections applied, can be converted to the

geodetic height.

4.4 Relationship and Transformation Between Different

Height Systems

4.4.1 Relationship Between Orthometric Height, Normal
Height, and Geodetic Height

From the previous discussion, we know that the same surface point has at least five

different values of height due to different reference surfaces for heights. In other

words, height is relative to a reference surface. Its precision depends on the

precision of both the observed quantity and the reference surface used. The rela-

tionship between different reference surfaces for heights will now be described.

The Earth’s surface points project on the ellipsoid in two ways: the Helmert’s

projection and Pizzett’s projection, as shown in Fig. 4.11.

According to Helmert’s projection, a point P on the Earth’s surface is directly

projected onto the ellipsoid along the normal (P0P ¼ H ). In Pizzett’s projection,

the same point P is projected along the plumb line onto the geoid (P0P ¼ HO). The

point on the geoid is then projected once again along the normal to the ellipsoid

(P0
0P0 ¼ N ).

As is known, the geoid and the reference ellipsoid surface are usually neither

coincident with nor parallel to each other, so there is an angle μ between the plumb

line and the normal, called the deflection of the vertical. Using these two different

projection methods will achieve different results, although the difference is quite

Fig. 4.10 Geodetic height
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slight. Suppose μ¼6000, H ¼ 1,000 m (in most cases, the values are much smaller

than the values given here), then the difference between H and HO + N is only

0.1 mm. The distance of P0P
0
0 is merely 30 cm, whose effect on the geodetic

longitude and latitude is only 0.0100, far less than the 0.300 error of the astronomical

measurement (the astronomical longitude and latitude corresponds to points on the

geoid). Therefore, difference between these two projection methods can be ignored

in practical cases.

The geodetic height of a point on the Earth’s surface can be obtained directly

using GPS measurement, and the relationship between the surface point and its

corresponding point projected onto the ellipsoid is established by the Helmert’s

projection. However, in classical geodetic survey, the ellipsoidal height is not

directly measured, but calculated using orthometric height (or normal height)

with corrections applied. Therefore, using Pizzett’s projection to determine the

corresponding relationship between a surface point and its projection point on the

ellipsoid surface is theoretically rigorous. However, in practice, since the difference

between Helmert’s and Pizzett’s projections can be ignored and Helmert’s projec-

tion avoids double projection, first to the geoid and then to the ellipsoid, which is

more convenient in application, Helmert’s projection is adopted in classical geo-

detic computations.

So, as shown in Fig. 4.11, the geodetic height can be calculated according to:

H ¼ HO þ N, ð4:41Þ

where HO is the orthometric height and N is the distance from the geoid to the

reference ellipsoid, called the geoid height (geoid undulation or geoid separation).

China adopts the normal height system and the geodetic height can be calculated

according to:

Fig. 4.11 Helmert’s

projection (P–P0) and

Pitzzetti’s projection

(P–P0–P0
0)
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H ¼ HN þ ζ, ð4:42Þ

where HN is the normal height and ζ is the distance from the quasi-geoid to the

reference ellipsoid, called the height anomaly.

Figure 4.12 illustrates the relationship between the reference ellipsoid, the geoid,

and the quasi-geoid and their corresponding geodetic height, orthometric height,

and normal height.

4.4.2 Determination of Height Anomaly or Geoid Height

As pointed out previously, the geodetic height of a surface point consists of the

normal height and the height anomaly. Given the geodetic height and the normal

height of a point, the height anomaly can be computed from the difference between

the two, namely:

ζ ¼ H � HN: ð4:43Þ

Using GPS measurements, the geodetic longitude L and latitude B and the

geodetic height H of a surface point can be determined precisely. If leveling is

also carried out on the GPS point (this point is called the GPS-leveling point), then

the normal height HN of this point can be calculated and the height anomaly of this

point can be determined by (4.43).

By setting a few GPS-leveling points in a certain region, several discrete ζ values
of this region can be determined, and thus the quasi-geoid of this region can be fitted

through a mathematical method (i.e., deducing the height anomaly of an unknown

point). Such a method for deducing the height anomaly is called the GPS leveling

method. A variety of mathematical methods are used in GPS leveling, such as the

polynomial fitting method, polyhedral function fitting, the moving surface method,

the weighted average method, the collocation method, etc. In real applications, GPS

leveling and gravity data are usually used for a combined solution. Here, we will

only present the basics of GPS leveling rather than provide a thorough review of the

Fig. 4.12 Reference

ellipsoid, geoid, and quasi-

geoid
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good and bad points of each method. Polynomial fitting will be used to explain the

basics of GPS leveling because it is readily understandable.

If the quadratic polynomial is used as the fitting model of the height anomaly,

then the height anomaly of this region ζ can be expressed by:

ζ ¼ α0 þ α1ΔLþ α2ΔBþ α3ΔL2 þ α4ΔLΔBþ α5ΔB2, ð4:44Þ

where ΔL ¼ L � L0 and ΔB ¼ B � B0 are the differences between the geodetic

longitude and latitude L, B of the point to be calculated and L0, B0 of a known point

in this region; αi(i ¼ 0 � � � 5) is the undetermined coefficient. Suppose the number

of GPS-leveling points in this region is n, meaning that ςi(i ¼ 1 � � � n, n � 6) is

already known; then n equations can be formed by (4.44). Let:

α
! ¼

α0

α1

α2

α3

α4

α5

0
BBBBBBBB@

1
CCCCCCCCA

X ¼

1 ΔL1 ΔB1 ΔL21 ΔL1ΔB1 ΔB2
1

1 ΔL2 ΔB2 ΔL22 ΔL2ΔB2 ΔB2
2

1 ΔL3 ΔB3 ΔL23 ΔL3ΔB3 ΔB2
3

1 ΔL4 ΔB4 ΔL24 ΔL4ΔB4 ΔB2
4

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 ΔLn ΔBn ΔL2n ΔLnΔBn ΔB2

n

0
BBBBBBBB@

1
CCCCCCCCA

ζ
!
¼

ζ1
ζ2
ζ3
ζ4
⋮

ζn

0
BBBBBBBB@

1
CCCCCCCCA
:

ð4:45Þ

Then the least square solution of the undetermined coefficient vector α
!
is:

α
! ¼ XTPX

� ��1
XTPζ

!
, ð4:46Þ

where P is the weight matrix. If the known data are considered as mutually

independent, then the principal diagonal element of P is the weight of

ςi(i ¼ 1 � � � n).
After the determination of the undetermined coefficient, the value of ζ of the

unknown point can be calculated according to L, B of this point by (4.44).

This method can also be used to determine the geoid height N by replacing HN

with the orthometric height HO of the GPS-leveling point and ζ with N in (4.43).

At present, centimeter-level or even higher-level precision can be achieved in

determining the height anomaly by the method of GPS leveling combined with

gravity data.

From the above, it is known that GPS leveling can determine the geoid directly

on land. On the ocean, the geoid can be deduced directly by satellite altimetry (see

Chap. 2). The shape of the geoid can be deduced directly now, whereas it could only

be obtained by gravity field in the period of classical geodetic survey.

The separation of geoid from ellipsoid N (geoid height) and the height anomaly ζ
can also be determined based on the Earth gravity field model. Put more directly,

the location of the geoid is related to the gravity potential, whereas the location of
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the ellipsoid is related to the normal gravity potential; thus N or ζ can be determined

by the disturbing potential T. With derivations omitted, the formula is given by:

N ¼ T0

γ0
, ð4:47Þ

where T0 is the disturbing potential on the geoid and γ0 is the normal gravity value

on the normal ellipsoid. Similarly, we have:

ζ ¼ Tp

γm
, ð4:48Þ

where Tp is the disturbing potential at the Earth’s surface and γm is the integral mean

of the normal gravity along line segment P0P (see Fig. 4.12).

4.4.3 Grid Models of Height Anomaly or Geoid Height

The grid model of height anomaly is a discrete numerical representation of height

anomaly within a certain range. It is an aggregation of height anomaly values of all

the equidistant grid points within this range, stored in the database in the form of

graticule data structure. This structure divides the geographical area covered by the

database into regular trapezoid grids based on longitude and latitude lines (see

Fig. 4.13) and uses the grid area or the vertical and horizontal intersection of grid

lines as the node to store the corresponding height anomaly values at the intersec-

tion or the average height anomaly values within the grid area.

For example, dividing a 1:1,000,000 map sheet into 240 � 360 equidistant

trapezoid grids based on directions in which the longitude and latitude lines run

according to a 10 � 10 field range, each grid can be numbered as 00001–86400,

from left to right by rows and from top to bottom by columns (similar to the

international subdividing method).

A multilevel grid structure can be used in grid models. Grids at different levels

have different distance intervals. The smaller the grid, the more precise the contin-

uous height anomaly can be. For example, we can divide the database building area

into different regions according to the known data distribution, and different

regions use grids with different distance intervals.

To establish the grid model of height anomaly over an area is to divide this area

into equidistant regular grid cells according to the longitude and latitude lines, and

then calculate the height anomaly of each grid node using a certain method

according to the known height anomaly within the area (e.g., GPS-leveling points).

When using a height anomaly grid model, one first needs to identify the grid cell

in which the point lies and then use bilinear interpolation according to the height

anomaly of the four grid intersections to calculate the height anomaly of the point.
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Normal height is needed in topographic mapping and engineering construction.

Traditional leveling is labor-consuming and inefficient, whereas GPS leveling can

provide the ellipsoidal height. The grid model of height anomaly should be known

while using GPS measurements to replace leveling, and then the ellipsoidal height

can be converted into the normal height. At present, leveling has gradually been

replaced by GPS measurements in height connection surveys for aerial photogra-

phy, project completion surveys, pipeline surveys, etc. Therefore, the establishment

and refinement of the grid model of height anomalies have obvious economic

benefits.

The grid model of geoid height is established in the same way as that of the

height anomaly.

Review and Study Questions

1. Derive the formula for the gravitation of a body of mass.

2. What is the potential function of force?

3. Prove that the gravitational potential of a mass point is V x;y;zð Þ ¼ fm

r
and write

down the integral formula for the gravitational potential of the Earth.

4. Prove that the centrifugal potential is Q ¼ ω2

2
x2 þ y2ð Þ.

5. What is harmonic function? Write down the general form of the gravitational

potential of the Earth.

6. Explain the physical meaning of zero and first-degree terms of the gravitational

potential coefficient.

7. What roles do level surface and plumb line play in field survey?

8. What is the geoid and its role in geodetic survey?

9. Explain the concepts of normal ellipsoid, normal gravity, spheropotential

surface, and gravity anomaly.

10. Explain the reason for the existence of the theoretical misclosure of leveling

loops.

11. Explain with formulae the concepts of orthometric heights and normal heights.

Fig. 4.13 Grids based on

longitude and latitude lines
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Chapter 5

Reference Ellipsoid and the Geodetic

Coordinate System

The shape of the Earth approximates a regular ellipsoid, which can therefore be

used to represent the mathematical shape of the geoid. One can also establish a one-

to-one correspondence between the points on the Earth’s surface and the points on

the ellipsoid that is used as the reference surface. Based on some relevant mathe-

matical properties of the ellipsoid, this chapter discusses the methods for reducing

the elements of terrestrial triangulation and trilateration to a reference ellipsoid and

establishes the models to transform mutually between the geodetic coordinate

system, geodesic polar coordinate system, and geodetic Cartesian coordinate sys-

tem (geodetic spatial rectangular coordinate system).

5.1 Fundamentals of Spherical Trigonometry

5.1.1 Spherical Triangle

A spherical triangle is a closed figure formed on the surface of a sphere that is

bounded by three arcs of great circles. The great circle is defined to be the

intersection of a sphere with a plane containing the center of the sphere

(Fig. 5.1). The three arcs of great circles are called the sides of the spherical

triangle, denoted by lowercase letters a, b, and c. The spherical angles formed by

the arcs of great circles are called the angles of the spherical triangle, denoted by the

uppercase letters A, B, and C.
A trihedron O-ABC is formed by connecting the vertices of the spherical triangle

ABC with the center of the sphere O (Fig. 5.1). The radian measure of a central

angle of a circle is equivalent to the length of the arc the angle subtends, which

yields:

Z. Lu et al., Geodesy, DOI 10.1007/978-3-642-41245-5_5,
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a ¼ ∠BOC, b ¼ ∠AOC, c ¼ ∠AOB:

Given are:

A ¼ ∠TAT
0
,B ¼ ∠EBE

0
,C ¼ ∠FCF

0
:

Hence, the arc length of any side of the spherical triangle equals its subtended

face angle of the trihedral angle; the angles of the spherical triangle are equal to the

corresponding dihedral angles of the trihedral angle.

5.1.2 Spherical Excess

Spherical excess is the amount by which the sum of the angles of a spherical

triangle exceeds the sum of the angles of a plane triangle, denoted by ε, namely:

ε ¼ Aþ Bþ C� 180�: ð5:1Þ

The computational formula of ε is given by:

ε ¼ S

R2
, ð5:2Þ

where S denotes the area of the spherical triangle and R is the radius of the sphere.

Fig. 5.1 Spherical triangle
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5.1.3 Formulae for Spherical Trigonometry

The formulae for spherical trigonometry are defined as the formulae applied to

obtain the unknown parts based on the given elements (sides, angles) of a spherical

triangle.

Sine Formula

In the spherical triangle ABC illustrated in Fig. 5.2, the length of the sphere radius is

unity and we have:

sin a

sinA
¼ sin b

sinB
¼ sin c

sinC
, ð5:3Þ

which means that in any spherical triangle, the sines of the sides are proportional to

the sines of their opposite angles), proved as follows.

Figure 5.2 is the trihedron O-ABC, a line BD is drawn perpendicular to the plane

OAC through point B. Then, through point D draw DE and DF perpendicular to OA
and OC. Join BE and BF; one obtains four right-angled plane triangles OBE, OBF,
BDE, and BDF. Meanwhile:

∠BOC ¼ a,∠AOC ¼ b,∠AOB ¼ c,∠BED ¼ A,∠BFD ¼ C:

It is given that:

sin c

sinC
¼

BE
OB
BD
BF

¼ BE � BF
OB � BD , and

Fig. 5.2 Derivations of the

sine formula
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sin a

sinA
¼

BF
OB
BD
BE

¼ BE � BF
OB � BD :

Hence:

sin a

sinA
¼ sin c

sinC
:

Similar results hold for the other sides and angles:

sin a

sinA
¼ sin b

sinB
:

Combining these two series gives the sine formula.

Other Formulae

Other commonly used formulae are provided below without derivations (see, e.g.,

Casey 2005).

The law of cosines for sides is:

cos a ¼ cos b cos cþ sin b sin c cosA ð5:4Þ

The law of cosines for angles is:

cosA ¼ � cosB cosCþ sinB sinC cos a ð5:5Þ

The laws of sines and cosines is:

sin a cosB ¼ sin c cos b� cos c sin b cosA
sin a cosC ¼ sin b cos c� cos b sin c cosA
sinA cos b ¼ sinC cosBþ cosC sinB cos a
sinA cos c ¼ sinB cosCþ cosB sinC cos a

9>>=
>>; ð5:6Þ

The laws of cotangents is:

cot a sin c ¼ cos c cosBþ sinB cotA
cot a sin b ¼ cos b cosCþ sinC cotA
cotA sinC ¼ � cosC cos bþ sin b cot a
cotA sinB ¼ � cosB cos cþ sin c cot a

9>>=
>>; ð5:7Þ
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The law of tangents is:

tan 1
2
Aþ Bð Þ

tan 1
2
A� Bð Þ ¼

tan 1
2
aþ bð Þ

tan 1
2
a� bð Þ : ð5:8Þ

Napier’s Rules for Right-Angled Spherical Triangles

Let one angle of a spherical triangle ABC be 90�, then the cosine of this right angle

is 0 and the sine is 1. Substituting into the above formulae, one can obtain the

relations between sides and angles of a right-angled spherical triangle. To facilitate

memorization, Napier presented some rules.

Except for the right angle C, there are five elements of a spherical triangle ABC
arranged in the form of a circle. Keep the two elements adjacent to the right angle

C and replace all elements non-adjacent to the right angle C by their complement to

90� (hypotenuse c and angles A and B; see Fig. 5.3). Then Napier’s rules hold that

the sine of any element in the circle is equal to:

1. The product of the tangents of the adjacent two elements

2. The product of the cosines of the opposite two elements

Take the angle 90� � c for example; its adjacent elements are 90� � A and

90� � B, and its opposite elements are a and b. Hence:

sin 90� � cð Þ ¼ tan 90� � Að Þ tan 90� � Bð Þ and

sin 90� � cð Þ ¼ cos a cos b:

Namely:

cos c ¼ cotA � cotB, and
cos c ¼ cos a � cos b:

Fig. 5.3 Napier’s rules for

right-angled spherical

triangles

5.1 Fundamentals of Spherical Trigonometry 169

http://en.wikipedia.org/wiki/Tangent#Tangent
http://en.wikipedia.org/wiki/Cosine#Cosine


5.2 Reference Ellipsoid

5.2.1 Reference Surface for Geodetic Surveying
Computations

Section 4.2 introduced the concept of the Earth ellipsoid. It can also be used as the

reference surface for geodetic surveying computations, which is called the refer-

ence ellipsoid.

Because of the irregularity of the actual shape of the Earth, a regular curved

surface should be selected as the reference surface for the performance of geodetic

computations. Conventional terrestrial surveys can only determine directions, dis-

tances, and astronomical azimuths between points on the Earth’s surface, whereas

to obtain coordinates of the horizontal control points, a series of computations need

to be carried out and a reference surface upon which computations are performed is

therefore needed.

The reference surface that fits for the geodetic surveying computations should

satisfy the following three conditions:

1. The reference surface should be a curved surface that approximates the physical

shape of the Earth, so that the corrections for reduction of the terrestrial

observations are small.

2. The curved surface should be a mathematical surface on which computations are

easily performed so as to assure the possibility of calculating coordinates

through observational quantities.

3. The positions of the curved surface relative to the geoid should be fixed so as to

establish the one-to-one correspondence between the points on the Earth’s

surface and those on the reference surface.

We know that an oblate ellipsoid of rotation approximates the geoid with a bulge

at the equator and flattening at the North and South Poles. In fact, precise observa-

tions have shown that the North Pole bulges out by 16 m and the South Pole is

depressed by approximately 16 m when the geoid is compared with a properly

defined ellipsoid (cf. Fig. 5.4). The Earth is thus claimed to be “pear-shaped,” which

is somewhat exaggerated. This slight difference, however, compared to the differ-

ence of 21.4 km between the Earth’s equatorial radius and the polar radius is

insignificant.

The intersection line between the geoid and the equatorial plane is not a perfect

circle, but more closely approximates an ellipsoid. The major axis of the ellipsoid

on the equator is at 15� west longitude. The difference between the semimajor axis

(equatorial radius) and the semiminor axis (polar radius) is 69.5 m. The equatorial

flattening is 1:91,827, which is approximately one three-hundredth of the polar

flattening (cf. Fig. 5.5).

As a result, the “pear-shaped” sphere or the triaxial ellipsoid is a mathematical

surface that is an approximation to the true shape of the Earth. However, it will be
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complicated and inconvenient to perform geodetic surveying computations on this

pear-shaped surface. On the other hand, the rotational ellipsoid on which compu-

tations are performed provides a tradeoff between computational precision and

simplicity and convenience in calculations. Therefore, the ellipsoid of rotation is

always chosen as the preferred reference surface for geodetic computations.

When a set of ellipsoidal parameters or an Earth ellipsoid is selected, its location

relative to the geoid should be determined, namely to complete the orientation of

the ellipsoid. Therefore, the corresponding relationship between the Earth’s surface

and the ellipsoid can be established to reduce the observations from the terrestrial

geodetic control network to the ellipsoid.

The reference ellipsoid is the Earth ellipsoid with defined parameters and

orientation. The terrestrial observations in the geodetic control network need to

be reduced to the reference ellipsoid and computations are to be performed on this

Fig. 5.4 Intersection line

between the geoid and the

meridian plane (L ¼ 90�)

Fig. 5.5 Intersection line

between the geoid and the

equatorial plane
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surface. Hence, the reference ellipsoid becomes the reference surface for surveying

computations. The points from the physical surface of the Earth are projected

directly onto the ellipsoid along the ellipsoidal normal. As a result, the ellipsoidal

normal becomes the datum line for surveying computations.

The reference ellipsoid has defined the geodetic coordinate system (cf. Sect. 5.3).

If two countries or one country at different periods of time have adopted different

reference ellipsoids, i.e., different geodetic coordinate systems, then one coordinate

system needs to be transformed to another in order to make use of each other’s

results.

The reference ellipsoid is a mathematically defined surface that approximates

the physical shape of the Earth. As the reference surface for surveying computa-

tions, the reference ellipsoid has played prominent roles in surveying and mapping,

as follows:

1. The reference ellipsoid is used as the reference surface for the determination of

the horizontal coordinates (geodetic longitude and latitude) and the geodetic

height of a point on the Earth’s surface.

2. The reference ellipsoid is the reference surface to describe the shape of the

geoid. The vertical distance from the geoid to the reference ellipsoid is called

geoid undulation. The angle between the plumb line and the surface normal to

the reference ellipsoid at a given point is the deflection of the vertical. The geoid

undulation and deflection of the vertical reflect the distance between the two

surfaces and the deviation of the geoid from the ellipsoid, and also characterize

the shape of the geoid.

3. The reference ellipsoid also serves as the reference surface for map projection,

where the reference ellipsoid is used to represent the Earth when discussing the

correlations between two mathematically defined surfaces.

To study global geodetic problems, there needs to be a reference ellipsoid that

best fits the geoid throughout the entire Earth, that is, a general Earth ellipsoid. Its

center must coincide with the center of the Earth. If the study is conducted both

geometrically and physically, then the general Earth ellipsoid can be defined as the

normal ellipsoid that best represents the shape of the geoid.

The normal ellipsoid is the reference surface for studying the Earth’s gravity

field in physical geodesy. The reference ellipsoid, on the other hand, is the reference

surface for studying geodetic computations in geometric geodesy. Practically, due

to the same mathematical properties between the normal ellipsoid and the reference

ellipsoid, the normal ellipsoid can be used as both the physical and mathematical

reference surface in geodesy.

Modern geodesy has realized the geocentric orientation of the reference ellipsoid

and has made the reference ellipsoid correspond to the normal ellipsoid. The

orientation of the reference ellipsoid established by the classical geodetic tech-

niques can only approximate the geoid of its home country or region, not the

geocentric orientation. Therefore, the reference ellipsoid and normal ellipsoid

were initially two different concepts.
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5.2.2 Geometric Parameters of the Reference Ellipsoid
and Their Correlations

The six commonly used geometric parameters in the Earth ellipsoid are as follows:

Semimajor axis a
Semiminor axis b

Polar radius of curvature c ¼ a2

b

Flattening f ¼ a� b

a

First eccentricity e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

a

Second eccentricity e
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

b

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð5:9Þ

Out of the six parameters, given a single length parameter and another arbitrary

parameter, the size and shape of the ellipsoid will be defined. In geodesy, a and f are
customarily used to represent the geometric shape of the Earth ellipsoid.

Beijing Geodetic Coordinate System 1954 of China adopted the Krassowski

Ellipsoid (see Table 4.1). Its parameters are as follows:

a ¼ 6,378,245.0000 m

b ¼ 6,356,863.0188 m

c ¼ 6,399,698.9018 m

f ¼ 1/298.3 ¼ 0.00335232986926

e2 ¼ 0.00669342162297

e02 ¼ 0.00673852541468

Xi’an Geodetic Coordinate System 1980 of China adopted the Geodetic Refer-

ence System 1975 (GRS75) reference ellipsoid recommended by International

Union of Geodesy and Geophysics (IUGG) in 1975, also referred to as the

IUGG-1975 Ellipsoid. Its geometric parameters are:

a ¼ 6,378,140.0000 m

b ¼ 6,356,755.2882 m

c ¼ 6,399,596.6520 m

f ¼ 1/298.257 ¼ 0.00335281317790

e2 ¼ 0.00669438499959

e02 ¼ 0.00673950181947

China Geodetic Coordinate System 2000 (CGCS2000) basically adopted the

Geodetic Reference System 1980 (GRS80) recommended by IUGG in 1980 [GM
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value of the Ellipsoid GRS80 is defined more precisely (see Nin et al. 2006)], and

also referred to as the IUGG-1980 Ellipsoid. Its geometric parameters are:

a ¼ 6,378,137.0000 m

b ¼ 6,356,752.3141 m

c ¼ 6,399,593.6259 m

f ¼ 1/298.257222101

e2 ¼ 0.00669438002290

e02 ¼ 0.00673949677547

By estimation, the values commonly used are:

a � b � c � 6,400 km

f � 1/300

e2 � e02 � 0.007 � 1/150

a, b, c, f, e, and e´ are the six geometric parameters often used in the Earth

ellipsoid. To make it simpler to write and convenient to calculate, one can also

introduce the auxiliary functions:

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin 2B

p

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e02

cos 2B
p

)
, ð5:10Þ

where B denotes the geodetic latitude, W is the first auxiliary function, and V is the

second. Both are elliptic functions.

It is quite easy to obtain the relationship between the parameters from the

definition of each parameter.

Relationship Between a and b

It follows from (5.9) that:

b2

a2
¼ 1� e2,

a2

b2
¼ 1þ e

02
, ð5:11Þ

b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
, a ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e02

q
: ð5:12Þ

Relationship Between e and e0

From (5.11) it can be found that:

1� e2
� �

1þ e
02

� �
¼ 1

and hence:
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1� e2 ¼ 1

1þ e02 , 1þ e
02 ¼ 1

1� e2
,

e2 ¼ e
02

1þ e02 , e
02 ¼ e2

1� e2
,

e ¼ e
0 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p

, e
0 ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e02

p
:

ð5:13Þ

Relationship Between a and c

It follows from (5.9) and (5.11) that:

a ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
, c ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e02

q
: ð5:14Þ

Relationship Between f and e

From (5.9) and (5.11) one also obtains:

f ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
, e2 ¼ 2f � f 2: ð5:15Þ

Relationship Between W and V

From (5.10) one gets:

W2 ¼ 1� e2 sin 2B ¼ 1� e
02

1þ e02 1� cos 2B
� � ¼ 1þ e

02
cos 2B

1þ e02 ¼ V2

1þ e02 :

Hence:

W ¼ V
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
, and V ¼ W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e02

q
: ð5:16Þ

The above parameters, signs, and basic expressions of relationship will always

be used hereafter in the derivations of formulae.
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5.3 Relationship Between the Geodetic Coordinate System

and the Geodetic Spatial Rectangular Coordinate

System

5.3.1 Definitions of the Geodetic Coordinate System
and the Geodetic Spatial Rectangular Coordinate
System

The Geodetic Coordinate System is used to describe the geometric position of a

point on the Earth’s surface expressed by the geodetic longitude (L ), geodetic
latitude (B), and geodetic height (H ).

As illustrated in Fig. 5.6, the geodetic longitude of point P0 is the dihedral angle

formed between the geodetic meridian plane NP0S of an arbitrarily chosen point P0

and the initial geodetic meridian plane NGS (meridian through the GreenwichMean

Observatory), denoted by L (initial letter of the German word L€ange). Point P0 is

the projection of P on the ellipsoid along the surface normal. The geodetic longi-

tude of point P is equal to that of its projection on the ellipsoid P0. Longitudes can

either be counted from the initial meridian plane eastward, ranging from 0� to 360�,
or be measured eastward or westward from the Prime Meridian at Greenwich,

ranging from 0� to 180� east or west, known as east longitude and west longitude,

respectively. East longitudes are given positive values and west longitudes are

given negative values in geodesy. Obviously, all points on the same meridian

have the same longitude.

The geodetic latitude of point P is the angle formed from the equatorial plane to

the ellipsoidal normal PKp, denoted by B (initial letter of the German word Breite).
The geodetic latitude of point P is equal to that of its projection on the ellipsoid P0.

Geodetic latitudes are measured southward or northward from the equator to poles,

positively towards the north and negatively towards the south, ranging from 0� to
90�, known as south latitude and north latitude, respectively. Apparently, all points
on the same parallel have the same latitude.

The geodetic height at a point P on the Earths’ surface is the distance from the

reference ellipsoid to the point in a direction normal to the ellipsoid, denoted by

H (the distance H between P and P0 in Fig. 5.6). Geodetic heights are measured

from the ellipsoid, which are reckoned positive outward and negative inward.

The geodetic longitude L, geodetic latitude B, and geodetic height H constitute a

three-dimensional geodetic coordinate system. These three coordinate values can

uniquely specify the position of a point on the Earth’s surface. If the point is on the

surface of the ellipsoid, obviously H ¼ 0, therefore, the position of a point on the

ellipsoid can be uniquely determined by means of geodetic longitude L and geo-

detic latitude B, which is a two-dimensional geodetic coordinate system.

The direction of a curve on the ellipsoid is represented by the geodetic azimuth,

which is the angle between the geodetic meridian and the geodetic line to the object
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observed, measured clockwise from the north meridian, ranging from 0� to 360�.
This angle is denoted by A.

In Fig. 5.6, the origin of the geodetic spatial rectangular coordinate system

(geodetic Cartesian coordinate system) is situated at the center O of the ellipsoid,

and the line of intersection between the initial geodetic meridian and the equatorial

plane is the X-axis. The Y-axis is perpendicular to the X-axis on the equatorial plane.
The Z-axis is the spin axis of the ellipsoid, and the right-handed coordinate system

O-XYZ is thus formed. The position of point P is represented by X, Y, and Z.
Definitions of geodetic and astronomical coordinate systems (cf. Sect. 2.1.3) are

similar, although also different:

1. They have different reference surfaces and datum lines. The geodetic coordinate

system uses the reference ellipsoid as its reference surface. Its datum line is the

ellipsoidal normal, whereas the reference surface and datum line for the astro-

nomical coordinate system are the geoid and the plumb line.

2. Geodetic coordinates are defined mathematically, whereas astronomical coordi-

nates have physical meaning, influenced by the irregularity of the plumb line.

3. λ and φ are determined by theodolites directly, whereas L and B are calculated

from observed quantities at some given point, including directions, distances,

coordinate differences, etc.

5.3.2 Expressions of the Ellipsoidal Normal Length

As shown in Fig. 5.7, we establish a rectangular plane coordinate system, with axes

x, y, and z, within a meridian plane or ellipse. Draw the normal PKP through point P,
and the angle between the normal PKP and the x-axis is B. Through point P draw a

line TP tangent to the meridian, and the angle between the tangent line TP and the

Fig. 5.6 Geodetic

coordinate system and

geodetic spatial rectangular

coordinate system
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x-axis is 90� + B. The slope of the tangent at P is equal to the first-order derivative

of the curve at this point, and we have:

dz

dx
¼ tan 90o þ Bð Þ ¼ � cotB: ð5:17Þ

So, the connection between x, z, and B can be found. Taking the derivative of the

equation of meridian and substituting the above equation, the expressions of the two

coordinate systems can be obtained.

The elliptic equation is:

x2

a2
þ z2

b2
¼ 1:

Taking the derivative with respect to x gives:

2x

a2
þ 2z

b2
� dz
dx

¼ 0,

or

y ¼ � b2

a2
x
dz
dx

:

With (5.17) and b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
, one obtains:

Fig. 5.7 The relationship

between x, z, and B
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z ¼ x 1� e2
� �

tanB:

Substituting the above equation into the elliptic equation, one obtains the

parametric equations in terms of parameter B, as follows:

x ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin 2B

p cosB ¼ a

W
cosB

z ¼ a 1� e2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin 2B

p sinB ¼ a 1� e2ð Þ
W

sinB

9>>>>=
>>>>;
:

In the above equations, W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin 2B

p
is introduced.

Let PKP ¼ N; from Fig. 5.7, we have:

x ¼ PKP cosB ¼ N cosB
z ¼ PQ sinB

�
:

Comparing the above two equations yields:

PKP ¼ N ¼ a

W

PQ ¼ N 1� e2ð Þ
QKP ¼ PKP � PQ ¼ Ne2

9>>=
>>;: ð5:18Þ

5.3.3 Transformation Between Geodetic and Cartesian
Coordinates

As shown in Fig. 5.8, in the right triangle PKpP3, KpP3 ¼ (N + H)cosB, and
OP2 ¼ KpP3, according to (5.18). Hence, in the right triangle OP1P2:

X ¼ OP2 cos L ¼ N þ Hð Þ cosB cos L,

Y ¼ OP2 sin L ¼ N þ Hð Þ cosB sin L:

In the right triangle PQP2:

PQ ¼ N 1� e2
� �þ H:

Hence:

Z ¼ PP2 ¼ PQ sinB ¼ N 1� e2
� �þ H

� �
sinB:

The formulae to compute geodetic Cartesian coordinates using geodetic coordi-

nates are given by:
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X ¼ N þ Hð Þ cosB cos L
Y ¼ N þ Hð Þ cosB sin L
Z ¼ �

N 1� e2ð Þ þ H
�
sinB

9=
;: ð5:19Þ

The formulae used to calculate L, B, and H with X, Y, and Z is to be

discussed here.

The first two equations in (5.19) divided by each other give:

tan L ¼ Y

X
,

then

L ¼ tan �1 Y

X
: ð5:20Þ

Take out the meridian containing point P in Fig. 5.8, expressed by Fig. 5.9.

Obviously, in Fig. 5.9, OKP ¼ Ne2 sin B, in the right triangle PKPP3, and we have:

tanB ¼ Z þ N � e2 sinBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p :

Substituting N ¼ a
W into the above equation and dividing the numerator and

denominator by cos B yields:

tanB ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p Z þ ae2 tanBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan 2B� e2 tan 2B

p
� 	

: ð5:21Þ

B is unknown on the both sides of (5.21). Thus, tanB has to be computed by

iterations. Set the initial value tanB0 of iteration on the right side:

Fig. 5.8 The relationship

between (L,B,H) and (X,Y, Z)
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tanB0 ¼ Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p :

The tanB on the left side (tanB1) can be computed. Set tanB ¼ tanB1; the

iterations can be repeated until the difference between the two values of B is less

than 0.000100 or the difference between the adjacent values of tan B is less than

5 � 10� 10.

From Fig. 5.9, in the right triangle PKpP3, it is apparent that:

cosB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
N þ H

:

Hence, we get:

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
cosB

� N: ð5:22Þ

Equations (5.20), (5.21), and (5.22) are the expressions for computing L, B, and
H with X, Y, and Z.

Such transformation can be easily understood. The problem is that (5.21) needs

iteration. There are many closed formulae for transformation between L, B, H, and
X, Y, Z (see Featherstone and Claessens 2008; Vermeille 2004).

An example of transformation between L, B, H and X, Y, Z is shown in Table 5.1.

Fig. 5.9 The meridian that

contains point P
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5.4 Normal Section and Geodesic

5.4.1 Radius of Curvature of a Normal
Section in an Arbitrary Direction

A plane containing the normal to the ellipsoid is called the normal section plane

(Fig. 5.10). A normal section is created by intersecting the normal section plane

with the surface of the ellipsoid, such as the meridian. An oblique section, on the

other hand, is the intersection of the ellipsoid with any other plane that does not

contain the surface normal, such as the parallel.

The normal section plays a vital role in geodetic computations. Observations of

horizontal directions are usually referred to the direction of the plumb line, so if the

plumb line coincides with the normal or coincides with the normal after corrections

are applied, then the intersection of the ellipsoid with the vertical plane will be the

normal section. In order to carry out geodetic computations on the surface of the

ellipsoid, the properties of a normal section must be understood, and the radius of

curvature of the normal section is one of the important concerns. At every point on

the ellipsoid, infinitely many normal sections pass. In general, the radius of curva-

ture varies with the direction of the normal sections. We will first derive the formula

for radius of curvature of the normal section in an arbitrary direction, followed by

that in special directions.

Table 5.1 Transformation between geodetic (L, B, H) and Cartesian (X, Y, Z) coordinates

L, B, H ! X, Y, Z

Known data Ellipsoidal parameters Computational results (m)

L ¼ 77�11022.33300 Krassowski Ellipsoid X ¼ 1,178,143.5316

B ¼ 33�44055.66600 Y ¼ 5,181,238.3896

H ¼ 5,555.660 m Z ¼ 3,526,461.5382

GRS75 Ellipsoid X ¼ 1,178,124.3290

Y ¼ 5,181,153.9404

Z ¼ 3,526,400.6434

GRS80 Ellipsoid X ¼ 1,178,123.7744

Y ¼ 5,181,151.5015

Z ¼ 3,526,399.0011

X, Y, Z ! L, B, H

Known data (m) Ellipsoidal parameters Computational results

X ¼ 1,177,888.777 Krassowski Ellipsoid L ¼ 77� 090 27.204900

Y ¼ 5,166,777.888 B ¼ 33� 570 18.748400

Z ¼ 3,544,555.666 H ¼ 3,878.5341 m

GRS75 Ellipsoid L ¼ 77� 090 27.204900

B ¼ 33� 570 18.830300

H ¼ 3,984.3839 m

GRS80 Ellipsoid L ¼ 77� 090 27.204900

B ¼ 33� 570 18.829600

H ¼ 3,987.3758 m

182 5 Reference Ellipsoid and the Geodetic Coordinate System



Overview

The intersection of a plane containing the normal to the ellipsoid with the ellipsoid

surface will form the normal section. To solve simultaneous equations where one is

the equation of an ellipsoid and the other is the equation of normal section plane

will give the equation of the normal section, which is a plane curve. The radius of

curvature of the normal section can be obtained according to the formula for radius

of curvature of the plane curve.

In Fig. 5.10 we establish the Cartesian coordinate system O-XYZ with the origin

at the center O of the ellipsoid. In this coordinate system, the equation of the

ellipsoid is given by:

X2

a2
þ Y2

a2
þ Z2

b2
¼ 1: ð5:23Þ

Let P be a point on the ellipsoid. The curvature of the normal section at any point

of the parallel passing through P on the rotational ellipsoid is the same in the same

direction. In order to simplify derivations of formulae, let P be on the initial

meridian plane. PK is the normal passing through point P and P1PP2 is the normal

section passing through P in an arbitrary direction. Given the geodetic azimuth A,
the equation of P1PP2 has to be found.

Because the normal section plane P1PP2 is intersecting the coordinate plane

O-XYZ, one can imagine the complexity of its equations, making it inconvenient to

solve the equation of the normal section. In the meantime, the normal section is

represented by the space curve, so we cannot mechanically apply the formula for

radius of curvature of a plane curve. To simplify the equation of the normal section

plane, one needs to establish a new coordinate system. The curvature of a curve is a

measure of how “curved” a curve is and it is independent of the choice of coordinate

systems. In the newly established coordinate system, let a certain coordinate plane

coincide with this normal section plane. Meanwhile, in order to compute the radius

of curvature, assume that the origin of the newly established coordinate system

P-xyz coincides with P, the z-axis coincides with the normal at point P, and the

Fig. 5.10 Normal section

in an arbitrary direction and

the coordinate system

5.4 Normal Section and Geodesic 183



x-axis coincides with the tangent line at point P. Together with the y-axis, the right-
handed coordinate system is constituted (see Fig. 5.10). Obviously, in the new

coordinate system, the equation of the normal section plane is y ¼ 0. Put the

equation of the normal section plane together with the equation of the ellipsoid to

form simultaneous equations. The solutions to the simultaneous equations cannot

be found unless the equation of the ellipsoid in the new coordinate system is

obtained. In this case, the equation of the normal section will easily be solved,

and the radius of curvature of the normal section can also be obtained.

To conclude, derivations of the formulae can be broken down into the following

three steps:

1. Find the equation of the ellipsoid in the coordinate system P-xyz.
2. Find the equation of the normal section in any arbitrary direction.

3. Find the radius of curvature of the normal section in an arbitrary direction.

In formula derivations we need the formula for the coordinate transformation by

rotating the systems and the formula for the radius of curvature of a plane curve, as

given below.

We transform the right-handed Cartesian coordinate system by rotating the

coordinate system through a counterclockwise angle θz about the Z-axis (θz is

positive) according to right-hand rule; then:

X
Y
Z

2
4

3
5
new

¼
cos θz sin θz 0

� sin θz cos θz 0

0 0 1

2
4

3
5 X

Y
Z

2
4

3
5
old

¼ RZ θzð Þ
X
Y
Z

2
4

3
5
old

:

RZ is the rotation matrix. By the same token, we can obtain the transformation

formulae of the coordinate system by rotating it about the X-axis and the Y-axis, and
the rotation matrixes RX and RY are given by:

RX θxð Þ ¼
1 0 0

0 cos θx sin θx
0 � sin θx cos θx

2
4

3
5,

RY θy
� � ¼ cos θy 0 � sin θy

0 1 0

sin θy 0 cos θy

2
4

3
5,

The rotation matrix satisfies the orthogonality condition (orthogonal matrix).

According to higher mathematics, the formula for the radius of curvature at point

x0 on the plane curve y ¼ f(x) can be written as:
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Rx0 ¼
1þ dy

dx

� 	2

x0

" #3
2

d2y

dx2

� 	
x0

:

Derivations of the Formula

Transformation Between Coordinate Systems P-xyz and O-XYZ

The equation of the ellipsoid in the coordinate system P-xyz cannot be computed

unless the relationship of transformation between the coordinate systems O-XYZ
and P-xyz is determined. As shown in Fig. 5.10, let P be a point on the initial

meridian (the coordinate plane XOZ); PK is the normal passing through P, PK ¼ N,
PQ ¼ N(1 � e2), and the coordinate values of point P can be obtained from

Fig. 5.10:

X
Y
Z

2
4

3
5 ¼

N cosB
0

N 1� e2ð Þ sinB

2
4

3
5:

As shown in Fig. 5.10, in order to make point P coincide with point O, the origin
of the coordinate system P should be translated to the point O. To make the

coordinate plane xPz coincide with the meridian, the coordinate system should be

rotated with a negative angle A around the z-axis. Similarly, for the z-axis, which is
directed towards the normal, parallel to the minor axis of the ellipsoid, the coordi-

nate system should be rotated by an angle of 90� + B about the y-axis. P-xyz is

thereby transformed into O-XYZ, given by:

X
Y
Z

2
4

3
5 ¼ Ry 90

� þ B
� �

Rz �Að Þ
x
y
z

2
4

3
5þ

N cosB
0

N 1� e2ð Þ sinB

2
4

3
5

¼
� sinB cosA sinB sinA � cosB

sinA cosA 0

cosB cosA � cosB sinA � sinB

2
4

3
5 x

y
y

2
4

3
5

þ
N cosB

0

N 1� e2ð Þ sinB

2
4

3
5: ð5:24Þ

Namely:
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X ¼ � x cosA� y sinAð Þ sinB� z cosBþ N cosB
Y ¼ x sinAþ y cosA
Z ¼ x cosA� y sinAð Þ cosB� z sinBþ N

�
1� e2

�
sinB

9=
;: ð5:25Þ

Equation of the Ellipsoid in the Coordinate System P-xyz

Substituting (5.25) into (5.23) produces the equation of the ellipsoid in the coordi-

nate system P-xyz.
To simplify the substitution, the (5.23) is rewritten in another form. Multiply

both sides of the equation by a2; with a2

b2
¼ 1þ e

02
and a2 ¼ N2W2 ¼ N2(1 � e2

sin2B), the equation of the ellipsoid in O-XYZ can be alternatively expressed as:

X2 þ Y2 þ Z2 þ e
02
Z2 � N2 1� e2 sin 2B

� � ¼ 0: ð5:26Þ

Substituting (5.25) into the above equation, upon rearrangement, one obtains the

equation of the ellipsoid in P-xyz:

x2 þ y2 þ z2 � 2Nzþ e
02

x cosA� y sinAð Þ cosB� z sinB½ �2 ¼ 0: ð5:27Þ

Equation of the Normal Section in an Arbitrary Direction

In the coordinate system P-xyz, the normal section plane in any arbitrary direction

coincides with the coordinate plane of xPz; thus the equation of an arbitrary normal

section plane is given by:

y ¼ 0:

Substituting y ¼ 0 into (5.27) produces the equation of the normal section in any

arbitrary direction:

x2 þ z2 � 2Nzþ e
02

x cosA cosB� z sinBð Þ2 ¼ 0: ð5:28Þ

Radius of Curvature of the Normal Section in an Arbitrary Direction

Equation (5.28) shows that the normal section in an arbitrary direction is a plane

curve. Its equation can be expressed as z ¼ f(x). Applying the formula for the radius

of curvature of the plane curve produces:
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RA ¼
1þ dz

dx

� �2
P

h i3
2

d2z

dx2

� 	
P

:

Since P is the coordinate origin, the z-axis and the x-axis are the normal and

tangent to the normal section, respectively; obviously:

xP ¼ zP ¼ 0

dz

dx

0
@

1
A

P

¼ 0

9>=
>; : ð5:29Þ

Hence, the radius can be expressed as:

RA ¼ 1

d
2z

dx2

� �
P

:

It is obvious that solving RA is made easier due to the establishment of the new

coordinate system P-xyz. Here,
d2z

dx2

� 	
P

is the curvature of the normal section in an

arbitrary direction at point P. Taking the derivative with respect to x in (5.28)

repeatedly, and with (5.29), we obtain:

2� 2N
d2z

dx2

� 	
P

þ 2e
02
cos 2B cos 2A ¼ 0:

Namely:

d2z

dx2

� 	
P

¼ 1þ e
02
cos 2B cos 2A

N
:

Hence, the formula for the radius of curvature of the normal section in an

arbitrary direction is expressed as:

RA ¼ N

1þ e02
cos 2B cos 2A

: ð5:30Þ

This formula indicates that RA is not only dependent on the latitude B of a given

point but also on the azimuth A of the normal section. However, it is independent of

the longitude L of the point. The point P is assumed on the initial meridian while

deriving the formula. It is applicable everywhere in the world. Given the location of

the point, its latitude Bwill be known. At this point, bothN and cosB are the specified

constants. In this case, RA varies only with the azimuth A of the normal section.
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5.4.2 Radius of Curvature of the Meridian, Radius
of Curvature in the Prime Vertical, and Mean Radius
of Curvature

Among the normal sections in all directions at point P on the ellipsoid, there exist

two normal sections in special directions (cf. Fig. 5.11). One is the normal section

with an azimuth of 0� (or 180�), i.e., the meridian. The other is the normal section

with an azimuth of 90� (or 270�), i.e. the prime vertical. The radii of curvature in the

meridian and the prime vertical are very frequently used in geodetic surveying

computations.

Radius of Curvature in the Prime Vertical

Substituting A ¼ 90� into (5.30) yields:

R90 ¼ N:

We assumed PKp ¼ N in Fig. 5.11, because we know that the radius of curvature

in the prime vertical is also defined as the normal to the ellipsoid terminating at the

minor axis.

From (5.10) and (5.18) and with a ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
, W ¼ V

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
, we get:

N ¼ a

W
¼ c

V
: ð5:31Þ

SinceW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin 2B

p
, andV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e02

cos 2B
p

, it is obvious that N (radius

of curvature) is a function of B (latitude) and increases with the increasing absolute

value of B. The law of its changes is shown in Table 5.2.

Table 5.2 also indicates that when a point P on the ellipsoid moves from the

equator along the meridian to the North Pole, the endpoint K of the radius of

curvature in the prime vertical also moves relative to it. As shown in Figs. 5.12

Fig. 5.11 Meridian and the

prime vertical

188 5 Reference Ellipsoid and the Geodetic Coordinate System



and 5.13, its trace is marked by a straight line OKN connecting the center of the

ellipsoid O on the minor axis with the point KN under it.

Radius of Curvature of the Meridian

Substituting A ¼ 0o into (5.31) gives:

R0 ¼ M ¼ N

1þ e02 cos 2B
¼ N

V2
,

And with (5.31) and V2 ¼ W2

1� e2
, we obtain:

M ¼ a 1� e2ð Þ
W3

¼ c

V3
: ð5:32Þ

Similarly to N, M is also a function of B and increases with the increasing

absolute value of latitude B. The law of its changes is detailed in Table 5.3.

Tables 5.2 and 5.3 show that c is the radius of curvature of the normal section at

the pole. On the surface of the ellipsoid, the normal sections that pass through the

poles are meridians. Hence, the polar radius of curvature c coincides with the

meridional radius of curvature at the poles.

Table 5.3 also indicates that when a point P on the ellipsoid moves from the

equator along the meridian to the North Pole, the endpoint K0 of the meridional

radius of curvature also moves relative to it. As shown in Fig. 5.13, its trajectory is

marked by an asteroid K’0 K’KN close to the center of the ellipsoid.

In (5.30), when A ¼ 0� (or 180�), the value of RA is smallest; when A ¼ 90�

(or 270�), the value of RA is largest. Hence, N and M are the maximum and

minimum of RA, which means that N is always greater than M except at the poles.

When A starts from due North 0� and increases eastward to 90�, RA shifts

progressively fromM to N; when A starts from due East 90� and increases eastward
to 180�, RA shifts gradually from N toM. Therefore the radius of curvature RA in any

Table 5.2 The law of changes in the radius of curvature in the prime vertical (N ) with latitude (B)

B N Note

B ¼ 0º

N0 ¼
a

cffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e0 2

p
8><
>:

At the equator, the prime vertical coincides with the equator.

N is the equatorial radius of curvature

0º < B < 90º a < N < c N increases with the increasing latitude, its value ranging

from a to c

B ¼ 90º

N90 ¼
affiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p

c

8<
:

At the poles, the prime vertical and the meridian coincide

with each other. N is the polar radius of curvature
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arbitrary direction varies with the azimuth A with a cycle of 180�. Meanwhile, in

(5.30), the only term related to the direction is cos2A and therefore the radii of

curvature RA at a given point in the direction of A, (180� � A), (180� + A),
(360� � A) are the same. Hence, RA changes over a cycle period of 180� and is

symmetrical with respect to the meridian and the prime vertical.

Fig. 5.12 Endpoint trace of

N

Fig. 5.13 Endpoint trace of

M

Table 5.3 The law of changes in the radius of curvature of the meridian (M ) with latitude (B)

B M Note

B ¼ 0º

M0 ¼
a 1� e2ð Þ

c

1þ e02
� �3

2

8>><
>>:

At the equator, M is less than the equatorial radius a

0º < B < 90º a(1 � e2) < M < c M increases with the increasing latitude, its value ranging

from a(1 � e2) to c

B ¼ 90º

M90 ¼
affiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p

c

8<
:

At the poles,M coincides with the polar radius of curvature

c
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Mean Radius of Curvature

The value of the mean radius of curvature, RA, varies with direction, making the

surveying computations difficult. Therefore, in practice the ellipsoid within a

certain range will be considered as a sphere with an appropriate radius to meet

the desired precision based on practical problems. It is reasonable to take the

spherical radius as the mean radius of curvature RA (averaging over all directions).

The average of the radii of curvature of the normal sections in all directions at a

point on the ellipsoid is the mean radius of curvature at this point, denoted by R.
To facilitate derivations, rearrange (5.30) as follows:

RA ¼ N

1þ e02
cos 2A cos 2B

¼ N

sin 2Aþ cos 2Aþ e02
cos 2A cos 2B

¼ MN

M sin 2AþM 1þ e02
cos 2B

� �
cos 2A

¼ MN

N cos 2AþM sin 2A
:

ð5:33Þ

Since the variations in RA with A are symmetrical with respect to the meridian

and the prime vertical, one needs simply to find the average of RA in one quadrant.

The average of the continuous function y ¼ f(x) on the closed interval [a, b] is:

yaverage ¼
1

b� a

ð b

a

f xð Þdx:

Hence, the average of RA is:

R ¼ 1
π
2
� 0

ðπ
2

0

MN

N cos 2AþM sin 2A
dA ¼ 2

π

ðπ
2

0

ffiffiffiffiffiffiffiffi
MN

p ffiffiffi
M
N

q
dA

cos 2A

1þ
ffiffiffi
M
N

q
tanA

� �2
:

Set t ¼
ffiffiffi
M
N

q
tanA ; thus dt ¼

ffiffiffi
M
N

q
dA

cos 2A. The above equation upon substitution

gives:

R ¼ 2

π

ffiffiffiffiffiffiffiffi
MN

p ð1

0

dt

1þ t2
¼

ffiffiffiffiffiffiffiffi
MN

p
: ð5:34Þ

This equation shows that the mean radius of curvature at a point on the ellipsoid

equals the geometric mean of the radii of curvature in the meridian and the prime

vertical at this point.

Substituting the expressions of M (5.32) and N (5.31) into (5.34) gives the

formula for computing R:
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R ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

W2
¼ c

V2
: ð5:35Þ

M, N, and R at a point on the ellipsoid are all measured inward along the normal

at this point to the surface. Their lengths are generally different from each other.

Comparing (5.31), (5.32), and (5.35), one can obtain their relations as:

N > R > M 0 � B < 90oð Þ :

When the point is at the poles, we have:

N90 ¼ R90 ¼ M90 ¼ c B ¼ 90oð Þ:

Hence, c is the radius of curvature at the poles.

5.4.3 Length of a Meridian Arc and Length of a Parallel Arc

When geodetic computations are performed on the surface of the ellipsoid, such as

computation of the Gauss projection, the formulae for the length of a meridian arc

and the length of a parallel arc are needed. Derivations of the formulae are thereby

given next.

Formula for Length of a Meridian Arc

As shown in Fig. 5.14, let P1 and P2 be two points along the meridian at latitudes B1

and B2, respectively; compute the meridian arc length X between the two points P1

and P2.

If the meridian is a circular arc, the length of the arc is the product of the radian

measure of the central angle subtended by the arc times the radius of the circle.

However, the meridian is an elliptical arc. Its arc length must be calculated using

integration. Take a short arc segment on the meridian, i.e., the arc element (differ-

ential of arc) PP0 ¼ dX. The central angle subtended by the arc (difference in

latitude) is denoted by dB. Let the point P be at the latitude B, and the latitude of

point P0 will be B + dB. Let the meridional radius of curvature at the point P beM,

and arc element dX can be considered the circular arc of radius M; thus:

dX ¼ MdB: ð5:36Þ

To compute the arc length X between P1 and P2 is to find the integral of dX
between B1 and B2, namely:
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X ¼
ðB1

B2

dX ¼
ðB1

B2

MdB,

with (5.32) we have:

X ¼ a 1� e2
� �ðB2

B1

1� e2 sin 2B
� ��3

2dB: ð5:37Þ

This function is an elliptic integral, which cannot be integrated directly; one

needs to apply the binomial theorem:

1� xð Þn ¼ 1� n

1!
xþ n n� 1ð Þ

2!
x2 � n n� 1ð Þ n� 2ð Þ

3!
x3 þ � � � x < 1ð Þ:

Expanding the function into a series:

1� e2 sin 2B
� ��3

2 ¼ 1þ 3

2
e2 sin 2Bþ 15

8
e4 sin 4Bþ 35

16
e6 sin 6Bþ � � �:

To simplify the integration process, one needs to change the power function of

sine (sinnB) into the multiple-angle function of cosine (cosnB), namely:

Fig. 5.14 Length of a

meridian arc
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sin 2B ¼ 1

2
� 1

2
cos 2B,

sin 4B ¼ 3

8
� 1

2
cos 2Bþ 1

8
cos 4B,

sin 6B ¼ 5

16
� 15

32
cos 2Bþ 3

16
cos 4B� 1

32
cos 6B,

� � �

Hence, it follows that:

1� e2 sin 2Bð Þ
� 3

2 ¼ 1þ 3

4
e2 � 3

4
e2 cos 2Bþ 45

64
e4 � 15

16
e4 cos 2B

þ 15

64
e4 cos 4Bþ 175

256
e6 � 525

512
e6 cos 2Bþ 105

256
e6 cos 4B� 35

512
e6 cos 6B

þ� � � � � � � � �
¼ A

0 � B
0
cos 2Bþ C

0
cos 4B� D

0
cos 6Bþ E

0
cos 8B� F

0
cos 10B,

ð5:38Þ

where the coefficients in the equation are:

A
0 ¼ 1þ 3

4
e2 þ 45

64
e4 þ 175

256
e6 þ 11025

16384
e8 þ 43659

65536
e10� � �

B
0 ¼ 3

4
e2 þ 15

16
e4 þ 525

512
e6 þ 2205

2048
e8 þ 72765

65536
e10� � �

C
0 ¼ 15

64
e4 þ 105

256
e6 þ 2205

4096
e8 þ 10395

16384
e10� � �

D
0 ¼ 35

512
e6 þ 315

2048
e8 þ 31185

131072
e10� � �

E
0 ¼ 315

16384
e8 þ 3465

65536
e10 . . .

F
0 ¼ 639

131072
e10 . . .

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

:

These coefficients are all constants for the defined ellipsoid.

Substituting (5.38) into (5.37), integration yields:
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X¼ a 1� e2ð Þ
A0 B2�B1

ρ
�B

0

2

�
sin2B2� sin2B1

�þC
0

4

�
sin4B2� sin4B1

�

�D
0

6
sin6B2� sin6B1ð ÞþE

0

8

�
sin8B2� sin8B1

�� F
0

10

�
sin10B2� sin10B1

�þ �� ��
ð5:39Þ

This is the general formula for the meridian arc length. In the ensuing terms like

sin8B and sin10B, the greatest value of the term sin8B is only 0.0003 m. Thus,

whether to leave it out is determined by the desired accuracy of computations.

In practical use, the formula for the meridian arc length from the equator to the

point at latitude B is usually applied. In this case, inserting B ¼ 0, B2 ¼ B into

(5.39) yields:

X¼ a 1� e2
� �

A
0 B

ρ
�B

0

2
sin2BþC

0

4
sin4B�D

0

6
sin6BþE

0

8
sin8B� F

0

10
sin10Bþ�� �

" #

ð5:40Þ

The formula (5.40) gives the meridian arc length from the equator to a given

point along the meridian.

Substituting the defining parameters of the Krassowski Ellipsoid adopted by the

Beijing Geodetic Coordinate System 1954 into the above equation yields:

X ¼ 111134:8611B
� � 16036:4803 sin 2Bþ 16:8281 sin 4B

� 0:0220 sin 6Bþ � � � ð5:41Þ

Likewise, for the GRS75 Ellipsoid adopted by the Xi’an Goedetic Coordinate

System 1980, we have:

X ¼ 111133:0047B
� � 16038:5282 sin 2Bþ 16:8326 sin 4B

� 0:0220 sin 6Bþ � � � ð5:42Þ

For the GRS 80 Ellipsoid adopted by CGCS2000, we get:

X¼ 111132:95254700B
� � 16038:508741268sin2B þ 16:832613326622sin4B

�0:021984374201268sin6Bþ3:1141625291648�10�5 sin8B:

ð5:43Þ

Bo in (5.41), (5.42), and (5.43) denotes the geodetic latitude in degrees. X is

measured in meters. If the length of the meridian arc X is known, and then the

corresponding geodetic latitude B can be solved by the iteration method.

If we put B ¼ π

2
, placed in (5.43) the length of a quadrant of the meridian Q is

10,001,965 m.

5.4 Normal Section and Geodesic 195



That is, the length of a quadrant of a meridian is approximately 10,000 km, and

then the circumference of the Earth is approximately 40,000 km. The length of a

“meter” was originally defined as a ten-millionth of this length. In 1793, this length

became the standard in France. However, it was later found that the first prototype

meter bar was short by a fifth of a millimeter because of miscalculation of the

flattening of the Earth. The polar circumference of the Earth is therefore shown to

be about 8,000 m more than 40 million meters.

When the arc length is short (e.g., X < 45 km, calculations are accurate to

0.001 m), the meridian can be considered a circular arc. The radius of the circle

is the meridional radius of curvature Mm at the mean latitude Bm ¼ 1
2
B1 þ B2ð Þ of

the arc. The central angle equals the difference in latitude between the two

endpoints, namely ΔB ¼ B2 � B1. Its computational formula is given by:

X ¼ Mm
ΔB
ρ

,

with ρ00 ¼ 206264.8062471000, or ρo ¼ 57.29577951308o.

Formula for Length of a Parallel Arc

A parallel (circle of latitude) is a circle, so the arc length along a parallel is the

length of the circular arc of its subtended angle at the center (difference in

longitude).

In Fig. 5.15, let P1 and P2 be two points on the parallel. Their latitude is B,
difference in longitude is l, the radius of the parallel is r, and P1K ¼ N is the radius

of curvature in the prime vertical; we have:

r ¼ N cosB: ð5:44Þ

Hence, the formula for the length of a parallel arc can be written as:

S ¼ r
l

ρ
¼ N cosB

l

ρ
: ð5:45Þ

Variations in the Unit Meridian and Parallel Arc Lengths with Latitude

The formulae for the arc elements of the meridian and the parallel are given by:

dX ¼ MdB
dS ¼ rdL

�
:

The meridian radius of curvatureM increases gradually with increasing latitude,

whereas the radius of the parallel r decreases sharply with increasing latitude.

Hence, the meridian arc length of the unit latitude difference increases slowly
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with increasing latitude, short in the south and long in the north. The parallel arc

length of the unit longitude difference decreases sharply with increasing latitude,

long in the south and short in the north, as depicted in Fig. 5.16.

Table 5.4 lists the arc lengths at different latitudes for a quantitative grasp of the

meridian and parallel arc lengths.

Table 5.4 outlines the variations in lengths of a meridian arc and a parallel arc

with latitude. The length of 1� of latitude averages 110 km; 10 (one minute) of

latitude covers approximately 1.8 km and 100 (one second) is about 30 m. The length

of a parallel arc is almost equivalent to the length of the meridian arc near the

equator, but they increasingly diverge from each other with increasing latitude.

M and R are more or less the same. In some approximate calculations, the Earth

can be considered as a sphere. The relationships between the arc length on the

sphere and its subtended angle at the center are as follows:

1� arc length � 110 km

10 arc length � 1.8 km

100 arc length � 30 m

and

1 km � 3000 arc length
1 m � 0.0300 arc length
1 cm � 0.000300 arc length

We know that 1 nautical mile ¼ 1.852 km, which corresponds approximately to

the value of a minute of arc along a meridian. In fact, the nautical mile was defined

as the average length along the meridian arc represented by one minute of latitude.

Fig. 5.15 Length of a

parallel arc
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Area of the Trapezoidal Map Sheet

We will next discuss the formula for calculating the area of the trapezoidal map

sheet as an application instance of the formulae for lengths of the meridian and

parallel arcs.

Topographic maps are bounded by lines of latitude and longitude, which means

that the surface of the ellipsoid is divided up into a series of map sheets according to

certain differences in longitude and latitude. As shown in Fig. 5.17, BA and CD are

lines of longitude, and BC and AD are lines of latitude. The coordinates of point

A are (B1, L1) and the coordinates of point C are (B2, L2). An area element dP within

the trapezoidal map sheet (quadrilateral), and with sides rdl and MdB has:

dP ¼ MN cosBdBdL:

Hence, with MN ¼ b2

1� e2 sin 2Bð Þ2, obtained from (5.35) and (5.12), the area

P of the quadrilateral ABCD is:

Fig. 5.16 Variations in

meridian and parallel arc

lengths

Table 5.4 Variations in meridian and parallel arc lengths with latitude B (GRS80 Ellipsoid)

B

Length of a meridian arc (m) Length of a parallel arc (m)

ΔB ¼ 1º ΔB ¼ 10 ΔB ¼ 100 l ¼ 1º l ¼ 10 l ¼ 100

0� 110,574 1,842.91 30.715 111 321 1,855.36 30.923

15� 110,653 1,844.15 30.736 107 552 1,792.54 29.876

30� 110,861 1,847.54 30.792 96 488 1,608.13 26.802

45� 111,141 1,852.20 30.870 78 848 1,341.14 21.902

60� 111,421 1,856.87 30.948 55 801 930.02 15.500

75� 111,623 1,860.30 31.005 28 902 481.71 8.028

90� 111,694 1,861.57 31.026 0.000 0.000 0.000
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P ¼
ðL2
L1

ðB2

B1

MN cosBdBdL ¼lb2
ðB2

B1

cosB

1� e2 sin 2Bð Þ2 dB, ð5:46Þ

where l ¼ L2 � L1. Expanding the above function according to binomial theorem

and integrating gives:

P¼ l�

90�
πb2



A0 sin

1

2
B2�B1ð ÞcosBm�B0 sin

3

2

�
B2�B1

�
cos3Bm

þC0 sin
5

2
B2�B1ð Þcos5Bm�D0 sin

7

2

�
B2�B1

�
cos7BmþE0 sin

9

2

�
B2�B1

�
cos9Bm

�
:

ð5:47Þ

In the equation, Bm¼ 1
2
B1þB2ð Þ. The coefficients are:

A
0 ¼ 1þ 1

2
e2 þ 3

8
e4 þ 5

16
e6 þ 35

128
e8

B
0 ¼ 1

6
e2 þ 3

16
e4 þ 3

16
e6 þ 35

192
e8

C
0 ¼ 3

80
e4 þ 1

16
e6 þ 5

64
e8

D
0 ¼ 1

112
e6 þ 5

156
e8

E
0 ¼ 5

2304
e8

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

:

Fig. 5.17 Trapezoidal map

sheet
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Assume a trapezoidal map sheet at 1:1,000,000 scale, the difference in the south

and north bounding latitude is B2 � B1 ¼ 4� and the difference in the east and west
bounding longitude is l ¼ 6�; substituting into the above equation yields the area of
this trapezoid:

P¼ πb2

15



A

0
sin2∘ cosBm�B

0
sin6∘ cos3BmþC

0
sin10∘ cos5Bm�D

0
sin14� cos7Bm

þE
0
sin18∘ cos9Bm

�
:

In (5.47), if we put l ¼ 360�, B1 ¼ 0�, B2 ¼ 90�, and multiply by 2, one obtains

the formula for total surface area of the ellipsoid:

Σ ¼ 4πb2 A
0 þ B

0 þ C
0 þ D

0 þ E
0 þ � � �� � �
 �

¼ 4πb2 1þ 2

3
e2 þ 3

5
e4 þ 4

7
e6 þ 5

9
e8 þ � � �� � �

2
4

3
5 :

ð5:48Þ

The total area of GRS80 Ellipsoid is approximately 510,065,597 km2. It thus

follows that the total surface area of the Earth is about 5.1 � 108 km2.

5.4.4 Reciprocal Normal Sections

Let us first consider the normal sections formed by reciprocal observations from

two points on the surface of the ellipsoid. As shown in Fig. 5.18, A and B are two

points on the surface of the ellipsoid. Their normals to the ellipsoid AKa and BKb

and the corresponding plumb lines are assumed to be coincident at the two points. If

A and B are the observation points, then the vertical plane will be the normal section

plane. The instrument is set up at A and then aimed at point B defining the normal

section by marking a point a; that is, AaB. The normal section AaB from point A to

B is formed by the intersection of a plane containing the normal at point A and that

passes through point B (the vertical plane AKaB) with the surface of the ellipsoid.

Similarly, the instrument set up at B and A is sighted defining the normal section

marking a point b; that is, BbA. The normal section BbA from point B to A is formed

by the intersection of the sighting plane BKbA with the surface of the ellipsoid. The

normal sections originating at points A and B, and terminating at B and A, respec-
tively, namely AaB and BbA, generally do not coincide. They are termed the

reciprocal normal sections between points A and B.
We can imagine that if the surface normals at two points A and B are in the same

plane, then the two vertical planes at one point and passing through the other point

in the reciprocal observations coincide. Only one normal section is formed. Other-

wise, the two vertical planes do not coincide and at any of the points there are two
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normal sections. It can be seen that the reciprocal normal sections occur just

because the normals at points A and B are not in the same plane.

Note that for the two points A and B on the surface of the ellipsoid with different

longitudes and latitudes, the normal AKa at the point A will not lie in the same plane

as the normal BKb at the point B.
As we know, if the normals AKa and BKb lie in the same plane, the two straight

lines are either parallel to or intersecting each other. As shown in Fig. 5.18, A and

B are not on the same meridian and thus have different longitudes. Generally, the

angles that the normals make with the minor axis vary, so the two normals are not

parallel to each other. Because the minor axis is the line of intersection of two

meridian planes, if the normals on the two meridian planes intersect each other, the

point of intersection will be at the minor axis.

Let the latitudes of the two points be B1 and B2; then the normals AKa and BKb

intersect the equatorial plane at pointQ1 andQ2, and from the Fig. 5.18 one obtains:

Fig. 5.18 Reciprocal

normal section
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OKa ¼ Q1Ka sinB1

OKb ¼ Q2Kb sinB2
:

With the length of the normal on the lower side of the equator QK ¼ Ne2, we
have:

OKa ¼ N1e
2 sinB1

OKb ¼ N2e
2 sinB2

�
:

From the above equations, if B1 6¼ B2, then OKa 6¼ OKb, so Ka and Kb do not

coincide, which indicates that AKa and BKb do not lie in the same plane. When both

points A and B are situated on the same meridian or on the same parallel, the normal

section and reverse normal section will be coincident, which is a special case.

The above equations also show that when B2 > B1, then OKb > OKa. Fig-

ure 5.18 indicates that Ka is above Kb. The two normal section planes AKaB and

BKbA intersect at the chord AB. The normal sections AaB and BbA are created by

intersecting the planes containing the normals to the ellipsoid (normal section

planes) with the surface of the ellipsoid. BbA is on the upper side, while AaB is

on the lower side. It follows that the normal section from the point with higher

latitude to the point with lower latitude is on the upper side, whereas that from the

point with lower latitude to the point with higher latitude is on the lower side. We

term AaB the normal section of point A, while BbA is the reverse normal section of

A. According to the above law, we can draw the relationship of position between the

normal section and reverse normal section from point A to B in different quadrants,

as illustrated in Fig. 5.19.

Reciprocal normal sections usually do not coincide, except for the two cases

where the two points are situated on the same meridian or at the same latitude. The

angle Δ of the normal section and the reverse normal section between two points

(Fig. 5.20) can be up to 0.00400 when their distance apart S is 25 km or even a few

hundredths of a second when S ¼ 50 km (directly proportional to the square of the

distance) in first-order triangulation. It must be taken into account in computation of

first-order triangulation.

The existence of reciprocal normal sections brings inconvenience for geodetic

computations. Let A, B, and C be three points on the surface of the ellipsoid. Their

longitudes are LC > LB > LA, and latitudes BB > BC > BA. In reciprocal triangular

observations, the case in Fig. 5.20 will occur where the three angles A, B, C formed

by the normal sections cannot constitute a triangle, which is to say, the reciprocal

normal sections have caused fracture of the geometric figure.

Obviously we cannot base our computations on a fractured figure but instead

choose a unique curve between the two points to replace the reciprocal normal

sections. There are many kinds of single curves between two points on the ellipsoid.

However, the curve between the two points should be unique and possess distinct

geometric properties (such as the shortest line between two points on the ellipsoid),
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making it convenient to perform survey computations on the surface of the

ellipsoid.

Fig. 5.19 Positions of

reciprocal normal sections

Fig. 5.20 Figure formed by

reciprocal normal sections
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5.4.5 The Geodesic

Definition of the Geodesic

The geodesic is defined as a curve on which the adjacent two arc elements of each

point lie in the same normal section plane of this point. We can use Fig. 5.21 to

make this definition clear. Let AB be a geodesic on the surface, P be an arbitrary

point on the geodesic, dS1 and dS2 be the adjacent arc elements of point P, and PK
be the normal to the surface at point P. dS1 and dS2 are both arc elements, i.e., the

points P1 and P2 are infinitely close to point P, so we can use chords PP1 and PP2 to

substitute dS1 and dS2. Consequently, dS1 lies in the normal section plane PKP1 and

dS2 lies in the normal section plane PKP2. According to the definition of geodesic,

the above two normal section planes will be in the same normal section plane at

point P. To put it another way, the infinitely near points, P1, and P2 are all in the

same normal section plane at point P. If every point on the same curve shares this

property, then this curve will be the geodesic.

The geodesic can also be defined as a curve on a surface where at each point of

the curve the principal normal of the curve coincides with the normal to the surface

of the ellipsoid at this point. It is quite convenient to determine whether a curve on

the surface of the ellipsoid is a geodesic according to this definition. We will

elaborate on this below.

For space curves, the line perpendicular to the tangent line to a curve at the point

is called the normal to the curve at that point. Thus, the space curve at a given point

has a bunch of normals. The aggregation of the normals forms a plane called the

normal plane. The principal normal to a curve at a point is a special normal on the

normal plane that points towards the concave side of the curve. This definition is

consistent with the previous one since taking an arbitrary arc element means that the

concave side of the curve at this point, namely the principal normal to the curve at

this point, is determined. Moreover, the normal section is determined by the normal

to the surface. The arc element is required to lie in the normal section, and then the

principal normal to a curve coincides with the normal to the surface.

Properties of the Geodesic

The Geodesic Is the Line of Shortest Distance Between Two Points

on the Ellipsoid

In Fig. 5.21, with the projection of the adjacent two arc elements of point P on the

geodesic orthogonally onto a plane tangent to the ellipsoid at this point, one obtains

P
0
1PP

0
2. Since the three points are on the same normal section plane, P

0
1PP

0
2 is a

straight-line element. The shortest path between two points on any plane is a

straight line. The orthogonal projection of the adjacent two arc elements of any

point on the geodesic are the straight-line elements. Hence, the geodesic is the
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shortest route between two points. However, the projection of the arc element of

other curves like the arc element of an oblique curve onto the tangent plane will be a

curve element without fail. The parallel is an oblique curve. In Fig. 5.22,

PP1 andPP2 are the two adjacent arc elements of point P on the parallel. Its

orthographic projection onto the tangent plane T at point P is the curve element

P
0
1PP

0
2.

The Geodesic Is the Connection of the Arc Elements of Numerous Normal

Sections

The adjacent two arc elements of a point on the geodesic are on the same normal

section plane, and hence they can be considered the arc elements of two normal

sections with their orientations 180� apart at this point. Therefore, the geodesic is

the connection of the arc elements of these normal sections at each point. If we draw

a straight-line traverse on the ellipsoid, as shown in Fig. 5.23, and let the deflection

angle be 180�, then the sides are so short that the normal section and reverse normal

section coincide with each other. As shown in Fig. 5.23, ab and ba coincide and

become ab. This short-side straight-line traverse is the geodesic.
The normal sections on the ellipsoid are not geodesics except for the meridian

and equator. Note that the normal section is a curve lying in a plane that contains the

normal at one point and passes through the other point, whereas the geodesic is any

normal section that passes through every point along the curve.

The Geodesic Is a Curve of Double Curvature on the Surface of the Ellipsoid

Geodesics are on the surface of the ellipsoid. The bending of the ellipsoid causes the

longitudinal bending of geodesics, which is represented by the curvature at each

point. Since each point along the geodesic has a different longitude and latitude, the

Fig. 5.21 Definition of

geodesic (two sides of the

two triangles in the middle

of the figure, left-side dS1
and right-side dS2)
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normals to the surface at each point do not intersect, and normal section planes do

not coincide. Thus, lateral bending of geodesics arises, which is represented by the

torsion at each point (see Fig. 5.24). Therefore, the geodesics on the ellipsoid are

curves with both curvature and torsion except for the meridian and equator.

If an elastic band is stretched between two points on an absolutely smooth

ellipsoid, then this tightly stretched rubber band is the geodesic between two points.

The direction of the compressive stress exerted by the rubber band on the ellipsoid

at each point is the principal normal to the curve. The direction of the anchorage

force provided by the ellipsoid at this point is the normal to the surface. When the

rubber band goes slack, the principal normal to the curve coincides with the normal

to the surface. Therefore, due to the existence of elasticity, the rubber band will

always represent the shortest path between two points.

The Geodesic Lies Between Two Reciprocal Normal Sections

In general, on the surface of the ellipsoid, the geodesic lies between two reciprocal

normal sections and is close to the direct normal section. In addition, it divides the

angle between the reciprocal normal sections at a ratio of approximately 2 to

1, i.e. μ : γ ¼ 2 : 1, as shown in Fig. 5.25. The value of γ can range from 0.00100

to 0.00200 in first-order triangulation when S is around 35 km. Corrections need to be

Fig. 5.22 Orthographic

projection of the arc

element on a parallel

Fig. 5.23 Traversing the

geodesic
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taken into consideration in computation (called correction from normal section to

geodesic). The difference in length between the normal section and the geodesic is

slight. If the geodetic latitude at a given point B ¼ 0�, the geodetic azimuth of the

side A ¼ 45�, and the length of the side S ¼ 100 km, then the difference in the

length between the normal section and the geodesic ΔS ¼ 0.000001 mm, which can

be shown to be negligible in practical cases.

On the meridian and equator, the geodesic coincides with the reciprocal normal

sections and both the geodesic and the reciprocal normal sections coincide with the

meridian and the equator. On the parallel circle, although the normal section and the

reverse normal section coincide, the geodesic, the normal sections, and the parallel

do not coincide.

Differential Equations of the Geodesic

Differential equations of geodesics are the differential expressions of the relation-

ships between the geodesic distance, geodetic longitude, latitude, and azimuth.

As shown in Fig. 5.26, let P be an arbitrary point on the geodesic. Its longitude is

L, latitude is B, and geodetic azimuth is A. Let PP1 be the arc element of the

geodesic dS. From point P to point P1, its longitude changes into L+dL, latitude is
B+dB, and azimuth is A+dA.

From Fig. 5.26, the arc element of the meridian P0P1 ¼ MdB, and the arc

element of the parallel PP0 ¼ rdL ¼ N cos BdL. PP0P1 is a right ellipsoidal trian-

gle. Since it is infinitesimal, the right ellipsoidal triangle can be considered a right-

angled plane triangle. Hence, one obtains:

Fig. 5.24 The shape of

geodesics
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MdB ¼ dS cosA:

We see that:

dB ¼ cosA

M
dS, ð5:49Þ

and rdL ¼ dS sin A.

So dL ¼ sinA

r
dS ¼ sinA

N
secBdS: ð5:50Þ

Fig. 5.25 Positional

relationship of geodesic and

reciprocal normal sections

Fig. 5.26 Differential

relationships of geodesics
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The above two differential equations are obtained under the condition that the

triangle is infinitesimal. It applies to any curves on the surface of the ellipsoid, of

course including geodesics. However, it is not exclusively applicable to geodesics.

In order to derive the differential equations exclusive to geodesics, the definition of

geodesics should be taken into consideration.

In Fig. 5.26, PP1 is the arc element of point P1 on the geodesic. Let P1P2 be

another arc element adjacent to P1. In accordance with the definition of geodesics,

PP1 and P1P2 are on the same normal section plane at point P1. Hence, PP1P2 is the

arc element of the normal section at point P1. Its orthogonal projection onto the

tangent plane at point P1 is a straight-line element.

We draw a tangent plane to a surface at point P1, and a line tangent to the

meridian through P1 and P. Because P and P1 are infinitely near points, the two

tangent lines can be considered to meet at point T on the extension of the minor axis.

The plane defined by P1T and PT can also be considered the tangent plane to the

surface at point P1. Hence, the arc element of the geodesic PP1P2 can be considered

a straight line on the tangent plane. ∠ TP1P2 ¼ A + dA. It is an exterior angle of

the plane triangle TPP1. One can obtain:

Aþ dA ¼ Aþ∠P1TP, with dA ¼ ∠P1TP:

Since dS is the arc element, P0 is infinitely close to P1; then, P
0 can be considered

on the plane tangent to the surface at point P1. Hence, with the minor sector TPP0,
one obtains:

dA ¼ rdL

PT
¼ N cosBdL

PT
:

It follows from the right triangle KPPT that PT ¼ N cot B, and substitution into

the above equation yields:

dA ¼ sinBdL:

Inserting (5.50) into the above equation gives:

dA ¼ sinA

N
tanBdS: ð5:51Þ

Equations (5.49), (5.50), and (5.51) are generally referred to as the three

differential equations of geodesics. They are the precondition for computing geo-

detic coordinates on the surface of the ellipsoid. If an increment is employed to

replace the differential, one can obtain the formulae for approximately computing

the differences in geodetic latitude, longitude, and azimuth as follows:
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ΔB ¼ S

M
cosA

ΔL ¼ S

N
sinA secB

ΔA ¼ S

N
sinA tanB

9>>>>>>>>=
>>>>>>>>;
: ð5:52Þ

Clairaut’s Equation for the Geodesic

Integrating the differential equations of geodesics gives Clairaut’s equation. It

provides the basis for solving the geodetic problems over long distance.

From (5.51) we can get:

dA ¼ sinA sinB

N cosB
dS,

with (5.49), dS ¼ M
cosA dB, we obtain:

dA ¼ sinA

cosA
�M sinBdB

N cosB
,

where, as shown in Fig. 5.27, P is a point on the surface of the ellipsoid, PP0 is the
arc element of the meridian, and PP0 ¼MdB. The difference in the radius of the

parallel at point P and P0 is dr. When P0 moves to P, the latitude increases and the

radius of parallel decreases. Let PP0P00 be a small right-angled plane triangle; we

get:

M sinBdB ¼ �dr,

with r ¼ N cos B, substituting into the above equation gives:

dA ¼ � sinA

cosA
� dr
r
:

We obtain:

r cosAdAþ sinAdr ¼ 0,

cotAdA ¼ � dr

r
:

After integration, it can be rewritten as:
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r sinA ¼ C: ð5:53Þ

This is known as Clairaut’s equation for the geodesic (e.g., as described in

Thomas and Featherstone 2005), which shows that the product of the radius of

the parallel and the sine of the geodesic azimuth at any point along the geodesic is a

constant.

5.4.6 Solution of Ellipsoidal Triangles

After establishing the corresponding relationships between the Earth’s surface and

the surface of the ellipsoid, the terrestrial control network will become the control

network formed by geodesics on the ellipsoid. The unobserved sides and angles of

the control network must be computed using ellipsoidal triangles. Since the curva-

tures at each point on the ellipsoid are different, it is rather complicated to solve

triangles on the ellipsoid. However, the flattening of the Earth ellipsoid is very

small, and the ellipsoidal triangle formed by the three sides in the geodetic control

network is usually quite small; therefore, it may be possible to solve the ellipsoidal

triangle as a spherical triangle. Research has shown that when the sides of the

triangle are less than 200 km, it is completely viable to approximate the ellipsoidal

triangle as a spherical triangle, and the spherical radius is the mean radius of

curvature at the mean latitude of the three vertices of the ellipsoidal triangle.

(The sides of the spherical triangle are equal in length to the corresponding sides

of the ellipsoidal triangle, while the difference in the corresponding angles of the

two triangles is less than 0.00100.)
The sine formula below is applied to solve the spherical triangle:

Fig. 5.27 Computation of

dr using meridian arc

element
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sin a
R

sinA
¼ sin b

R

sinB
¼ sin c

R

sinC
:

The lengths of sides in the above equation are expressed by angles. The formula

can only be applied if the known lengths of sides are divided by the spherical radius

to get the angle at the center of the sphere. The calculated lengths of sides that are

expressed in degrees should be converted to lengths again because in practical cases

the sides are always represented by lengths. It often appears inconvenient to

convert. In the meantime, there also exist some round-off errors in computation

that will adversely influence the accuracy of computation.

We will attempt to find a simpler way to solve the triangle. Here, Legendre’s

theorem is a simple and convenient way to solve the spherical triangle. The

Legendre method, in nature, is to solve the spherical triangle as the plane triangle

that has the same corresponding sides as the spherical triangle. The spherical angles

are required to make some simple changes.

As shown in Fig. 5.28, let A0B0C0 be a spherical triangle, a, b, and c are its three
sides, and ε00 denotes the spherical excess. We draw a planar triangle A1B1C1 with

the same side lengths of a,b, and c. When the side lengths are not long, the three

internal angles in the two triangles can be proved to have the following relations:

A1 ¼ A0 � ε
00
=3

B1 ¼ B0 � ε
00
=3

C1 ¼ C0 � ε
00
=3

9=
;, ð5:54Þ

where ε
00 ¼ Δ

R2 ρ
00
, Δ is the area of the plane triangle, and R denotes the radius of the

sphere.

The above equation is Legendre’s theorem to solve spherical triangles. It shows

that one-third of the spherical excess of the given spherical triangle A0B0C0

subtracted from each angle of the triangle gives the plane triangle A1B1C1 whose

sides are equal in length to the corresponding sides of the spherical triangle. The

side lengths computed according to the formulae for the plane triangle will be the

side lengths of the spherical triangle.
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5.5 Relationship Between Terrestrial Elements

of Triangulateration and the Corresponding Ellipsoidal

Elements

5.5.1 Significance of and Requirements for Reduction
of Terrestrial Triangulateration Elements
to the Ellipsoid

Conventional geodesy determines the horizontal coordinates L and B of an Earth’s

surface point and the height of a point above the Earth’s surface as two separate

issues. In order to find L and B of a surface point, one needs to project the geodetic

control network actually established on the physical surface of the Earth to the

reference ellipsoid adopted, i.e., to reduce the geodetic observations to the reference

ellipsoid (see, e.g., Torge and Müller 2012). That is to say, the sides measured on

the physical surface of the Earth between points must be reduced to the geodesic arc

length on the surface of the reference ellipsoid and the observed values of horizon-

tal directions and astronomical azimuths should be reduced to the geodesic direc-

tions and geodetic azimuths (Fig. 5.29). Then, all the calculations concerning the

geodetic control network will be carried out on the surface of the ellipsoid as a

two-dimensional problem. After adjustment computations, one will find the longi-

tude L and latitude B, which can be transformed into the plane coordinates x, y by
applying the specified mathematical relations. Adjustment computations of the

large-scale astro-geodetic network are usually completed as such.

For small-scale geodetic control networks, it will be inconvenient to carry out

adjustment computations on the ellipsoid since the mathematical properties of the

ellipsoid is far more complicated than that of the plane. Hence, again we can project

the elements of the geodetic control network on the surface of the ellipsoid onto the

plane and then carry out computations on the planar surface, (see Chap. 6).

Fig. 5.28 The spherical triangle (a) and plane triangle (b) whose corresponding sides are equal in

length
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Reduction of the elements on the Earth’s surface to the surface of the ellipsoid

means that appropriate corrections are applied to the terrestrial observation ele-

ments. In this case, the terrestrial observation elements will be transformed into the

corresponding elements on the ellipsoid, making geodetic computations on the

ellipsoid possible. The degree of accuracy of reductions should not jeopardize the

accuracy of field observations.

There are three fundamental requirements for reducing the elements of terrestrial

triangulateration to the ellipsoid surface.

1. The ellipsoidal normal is referred to as the reference line. The direction of the

plumb line at the observation point usually does not coincide with the

corresponding normal to the ellipsoid. The angle between the plumb line and

the line normal to the ellipsoid at the same point is called deflection of the

vertical. The ellipsoidal normal is made the datum, which means that the values

observed referring to the plumb line will be converted to the values that are

referred to the ellipsoidal normal. In this case, the effect of deflection of the

vertical will be removed.

2. The ellipsoid is taken as the reference surface. We project the point from the

physical surface of the Earth onto the ellipsoid along the ellipsoidal normal and

reduce the observed values at a certain height above the Earth’s surface to those

on the surface of the ellipsoid. In this case, the effect of the ellipsoidal height will

be eliminated.

3. The geodesic is taken as the connection between two points on the ellipsoid.

Reduce the observed values in the direction of the normal section to the observed

values in the direction of the geodesic, and the effect of the normal section-

geodesic separation will be removed.

Through the above reductions, the terrestrial triangulateration network will be

reduced to the ellipsoid, as shown in Fig. 5.30. It thus follows that the reduction

essentially achieves transformations between elements on the Earth’s surface and

elements on the surface of the ellipsoid.

Fig. 5.29 Diagram for solving horizontal coordinates using observed values
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Reductions of terrestrial triangulateration elements to the ellipsoid include the

reductions of horizontal directions, observed zenith distances, terrestrial distances,

as well as the reductions of the astronomical azimuths, etc. In addition, computa-

tions of the deflection of the vertical, as an essential element in reduction, are also

one of the concerns in this section.

It should be noted that, although GPS surveying techniques can directly deter-

mine the geodetic coordinates of the position of a point, in applications where

directions, distances, or azimuths on different reference surfaces are needed, we

should still perform the corresponding calculations as shown in Fig. 5.29.

5.5.2 Reduction of Horizontal Directions to the Ellipsoid

Reducing horizontal directions to the ellipsoid requires correction for deflection of

the vertical, correction for skew normals, and correction from normal section to

geodesic. These three corrections are customarily known as the “three corrections

for horizontal directions”.

Correction for Deflection of the Vertical

The Earth’s surface point is projected onto the ellipsoid along the ellipsoidal

normal. The direction of the plumb line at the observation point does not coincide

with the corresponding ellipsoidal normal, which will exert effects on the values of

Fig. 5.30 Reduction of

terrestrial control network

to ellipsoid
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observed directions. This effect is termed the correction for deflection of the

vertical, denoted by δ1.
This correction serves to solve the problem of relations between spatial angles.

One effective means of solving such a problem is to create an auxiliary sphere and

to denote the spatial angles by the arc length of the auxiliary sphere; namely, to

reduce the spatial angles to angles on the spherical surface. Then, the problem can

be solved by employing the methods of solving spherical triangles.

As shown in Fig. 5.31, we create an auxiliary sphere with the observation point

A as the center. Then we draw a normal passing through point A that intersects the

auxiliary sphere at Z, which is called the geodetic zenith; the plumb line passes

through A, which intersects the auxiliary sphere at Z1, which is called the astro-

nomical zenith. The deflection of the vertical μ is the angle between the ellipsoidal

normal and the plumb line at the point. We draw a line through point A parallel to

the minor axis of the ellipsoid, intersecting the auxiliary sphere at P, known as the

north pole of the auxiliary sphere. ZPθ is the meridian on the auxiliary sphere,

which is the line of intersection between the ellipsoidal meridian plane and the

auxiliary sphere.M is the projection of the terrestrial target pointm on the surface of

the ellipsoid. With the north pole and the meridian introduced, the azimuth in the

Am direction can be expressed on the auxiliary sphere since spatial angles do not

change by translating a straight line or plane. The deflection of the vertical μ on the

auxiliary sphere is a short arc length, so it can be decomposed into two perpendic-

ular components ξ and η, which are known as the components of the deflection of

the vertical μ in the meridian and in the prime vertical, respectively, as seen in

Fig. 5.31:

ξ ¼ μ cos θ, η ¼ μ sin θ:

From Fig. 5.31, if M lies in the vertical plane ZZ1O, whether the observed

directions are referred to the ellipsoidal normal or the plumb line, the vertical

plane is the same. In this instance, there will be no vertical deflection correction.

Hence, we refer to AO as the reference direction (zero direction of the circle). In

Fig. 5.31, if measured with respect to the plumb line AZ1, the circle reading at the

target point m will be OR1; measured with respect to the normal AZ, the circle

reading at the target point m will be OR. Hence, the effect of the deflection of the

vertical on the horizontal directions will be δ1 ¼ (R � R1).

R1MR is a right spherical triangle. By applying the law of sines, we have:

sin R1Rð Þ ¼ sin �δ1ð Þ ¼ sin 90� z1ð Þ sin q,

where z1 is the observed zenith distance in the M direction. Applying the sine

theorem to the triangle MZZ1 we get:
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sin q ¼ sin μ
sinR

sin z1
:

Substituting this equation into the above equation results in:

sin �δ1ð Þ ¼ cos z1 sin μ
sinR

sin z1
:

Since both δ and μ are small quantities, we can write:

�δ1 ¼ μ sinR cot z1,

with R ¼ A � θ (A denotes the geodetic azimuth from point A to point m); then:

�δ1 ¼ μ sin A� θð Þ cot z1
¼ μ sinA cos θ � cosA sin θð Þ cot z1:

Given ξ ¼ μ cos θ, η ¼ μ sin θ, we obtain:

δ1 ¼ � ξ sinA� η cosAð Þ cot z1
¼ � ξ sinA� η cosAð Þ tan α1, ð5:55Þ

where α1 is the vertical angle between the line of sight and the horizontal. It can be

seen that the correction for deflection of the vertical is primarily concerned with the

deflection of the vertical at the observation point and the zenith distance (vertical

angle) at the target point.

In Fig. 5.31 the horizontal circles perpendicular to the plumb line and the

ellipsoidal normal do not coincide, and the angle between them is μ. However,
they are considered to coincide because μ is a small quantity and its effect on the

horizontal circle reading can be neglected.

Fig. 5.31 Correction for

the deflection of the vertical
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In general, μ can range from a few seconds to over 1000. The vertical angle is very
close to 0� in the first- and second-order triangulation. In plain areas, the vertical

angle is usually about	300, and in mountainous areas, it can presumably amount to

	3�. Hence, the value of δ1 is usually a few tenths of a second. Corrections for

deflection of the vertical need to be applied to the first- and second-order triangu-

lations. If the deflection of the vertical and the vertical angle are both quite large,

correction for deflection of the vertical should be taken into consideration even in

the third- or fourth-order triangulations.

On the following occasions, correction for deflection of the vertical equals zero:

1. The plumb line coincides with the ellipsoidal normal, i.e., μ ¼ 0, then δ1 ¼ 0

2. The target point is in the plane ZZ1O, i.e., A ¼ θ, then δ1 ¼ 0

3. The target point is in the horizontal plane, i.e., Z1 ¼ 90o, then δ1 ¼ 0

Correction for Skew Normals

After the correction δ1 is applied, the direction value will be the direction of the

normal section Ab0 in Fig. 5.32. Here, the height of the observation point A has no

effect on the value of horizontal directions. To simplify, we set A on the ellipsoid. In

accordance with the requirements for reductions, the projection of the target point

B on the surface of the ellipsoid should be b rather than b0. Hence, the angular

difference between these two normal sections Ab0 and Ab is δ2, known as the skew

normal correction. Obviously, this correction is due entirely to the effect of the

height of the target point B on the reduced direction value.

In Fig. 5.32, the ellipsoidal triangle Abb0 is considered a plane triangle. By

applying the sine theorem, it gives:

δ2 ¼ bb
0 sinA1

S
ρ

00
:

This serves to show that bb0 needs to be computed first in order to obtain δ2. In
the triangles Bbb0 and BRKa, we see that:

bb
0 ¼ H2θ,

θ ¼ KaR

BR
� KaR

N2

:

The “2” denotes the corresponding value at point B and the subscript “1” in the

following equations denotes the corresponding value at point A. From Fig. 5.32:

KaR ¼ KaKb cosB2,

and
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KaKb ¼ OKb � OKa ¼ N2e
2 sinB2 � N1e

2 sinB1 � N2e
2 sinB2 � sinB1ð Þ,

With the differential equation of geodesics B2 � B1 þ S � cosA1

M1

, one obtains:

KaKb ¼ N2e
2 cosB1

S cosA1

M1

:

Inserting back into the above equation and rearranging gives:

δ2 ¼ e2H2ρ
00

2M2

cos 2B2 sin 2A1, ð5:56Þ

where B2 and M2 are the geodetic latitude and meridian radius of curvature of the

target point, A1 is the geodetic azimuth of the observed direction, and H2 is the

height of the target (actual target point in observation) relative to the ellipsoid,

consisting of three parts:

H2 ¼ H2N þ ζ2 þ a2,

where H2N is the normal height of the monument center of target point, ζ2 is the

Fig. 5.32 Correction for

skew normals
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height anomaly of the target point, and a2 is the height of the structure at the target
point.

It follows from (5.56) that the correction for skew normals is dependent primar-

ily on the height of the target point.

Let B2 ¼ 45�, A1 ¼ 45�, and ρ00/M2 ¼ 1/30; when H2 ¼ 200 m, δ2 ¼ 0.0100;
when H2 ¼ 1,000 m, δ2 ¼ 0.0500. It can be seen that correction for the skew

normals should be taken into consideration in the first- and second-order triangu-

lation and in the third- and fourth-order triangulation at high altitudes.

On the following occasions, the correction for skew normals is zero:

1. The target point is on the ellipsoid, i.e., H2 ¼ 0; then δ2 ¼ 0

2. The target point and the observation point are at the same longitude or latitude, i.

e., A1 ¼ 0�, 90�, 180�, 270�, then δ2 ¼ 0

Correction from Normal Section to Geodesic

Connections between two points on the ellipsoid are referred to the geodesic.

Therefore, in Fig. 5.32 the normal section direction Ab should be converted to the

corresponding geodesic direction, known as the normal section to geodesic correc-

tion, denoted by δ3 (as illustrated in Fig. 5.33).

The formula for correction from normal section to geodesic is:

δ
00
3 ¼ � e2S2ρ

00

12N2
1

cos 2B1 sin 2A1: ð5:57Þ

Obviously, the correction from normal section to geodesic is chiefly concerned

with the distance from the place of observation to the target point.

Set B1 ¼ 45�, A1 ¼ 45�; when S ¼ 30 km, δ3 ¼ � 0.00100; when S ¼ 60 km,

δ3 ¼ � 0.00500. This serves to show that correction from normal section to geodesic

should generally be applied to the first-order triangulation. However, second- or

lower order triangulation can be carried out irrespective of this correction.

When A1 ¼ 0�, 90�, 180�, and 270�, δ3 ¼ 0, i.e., points A and B are on the same

meridian or approximately on the same parallel, and the correction from normal

section to geodesic is zero.

Computation of the Three Corrections for Horizontal Directions

The three corrections for horizontal directions are theoretical problems in classical

geodesy, indicating the relations between angles on the Earth’s surface and on the

ellipsoid. This is still of practical significance in modern geodesy, such as the

reduction of the triangulateration in an engineering control network. While setting

up the azimuth survey monument at the space TT&C (tracking, telemetering, and

command) stations, one needs to convert the difference in geodetic azimuths
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measured by GPS to the angles with respect to the plumb line and convert the

direction of the center of the station mark to the direction of the target point.

In real operations, it is regulated that the reduction is accurate to 0.00100 in the

first-order triangulation, 0.0100 in the second-order triangulation, and 0.100 in the

third- and fourth-order triangulations. Hence, not all three corrections for horizontal

directions need to be computed for triangulation in all order types. They are based

on the magnitude of the numerical values of each correction and the requirements

for the decimal place. This is summarized in Table 5.5.

Sample computations of the three corrections for horizontal directions are as

follows:

1. Computational Formulae

δ1
00 ¼ � ξ

00
sinA1 � η

00
cosA1

� �
tan α

δ2
00 ¼ e2H2ρ

00

2M2

cos 2B2 sin 2A1

δ3
00 ¼ � e2S2ρ

00

12N2
1

cos 2B1 sin 2A1

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e02

cos 2B
p

N ¼ c

V

M ¼ N

V2

Σδ ¼ δ1 þ δ2 þ δ3

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

ð5:58Þ

2. Example

In Fig. 5.34 is a schematic view of the triangulation network formed by Wang

Village, Zhang Village, Long Mountain, and Gao Mountain. The known data;

and the values of observed directions in the computations of three corrections for

horizontal directions are given in Tables 5.6 and 5.7) (Krassowski Ellipsoid,

Beijing Coordinate System 1954 adopted)

Fig. 5.33 Correction from

normal section to geodesic
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5.5.3 Reduction of the Observed Zenith Distance

Zenith distance is needed for calculating the ellipsoidal height differences between

two neighboring points on the Earth’s surface by means of trigonometric leveling.

When we observe at a triangulation point with respect to the plumb line, we get the

astronomical zenith distance z1. When the height difference is computed on the

ellipsoid referring to the ellipsoidal normal, the geodetic zenith distance z is used.
There are discrepancies between these two zenith distances due to the effect of the

deflection of the vertical, hence reduction is needed. Let z–z1 ¼ ε, then:

z ¼ z1 þ ε, ð5:59Þ

where ε is known as the correction for deflection of the vertical of the observed

zenith distance. Below are derivations of the expression of ε.

Table 5.5 Computation of the three corrections for horizontal directions

Three

corrections Meaning of reduction

Primary

quantities

in

relations

General

numerical

value (00)
First-

order

Second–

order

Third- and

fourth-order

δ1 Reduction of the

observed direction

value to the ellip-

soidal normal

ξ, η 0.05–0.1 Applied Applied Handle with

discretion

δ2 Reduction of the

observed direction

value to the normal

section direction

on the ellipsoid

H2 0.01–0.7 Applied Applied Handle with

discretion

δ3 Reduction of the nor-

mal section direc-

tion value to the

geodesic direction

S 0.001–0.007 Applied Not applied Not applied

Fig. 5.34 Schematic view

of triangulation network

222 5 Reference Ellipsoid and the Geodetic Coordinate System



T
a
b
le

5
.6

D
at
as
h
ee
t
fo
r
th
e
ex
am

p
le

tr
ia
n
g
u
la
ti
o
n
n
et
w
o
rk

O
b
se
rv
at
io
n

p
o
in
t

N
o
rm

al
h
ei
g
h
t

o
f
th
e
ta
rg
et

p
o
in
t
H
N
+
a

H
ei
g
h
t

an
o
m
al
y

ζ

D
efl
ec
ti
o
n
o
f

th
e
v
er
ti
ca
l

G
eo
d
et
ic

la
ti
tu
d
e
B

D
ir
ec
ti
o
n

V
al
u
e
o
f
th
e
o
b
se
rv
ed

d
ir
ec
ti
o
n
re
d
u
ce
d
to

th
e

ce
n
te
r
o
f
th
e
su
rv
ey

m
ar
k

S
id
e

le
n
g
th

S
G
eo
d
et
ic

az
im

u
th

A

V
er
ti
ca
l

an
g
le

9
0
-z

ξ
η

(m
)

(m
)

(00
)

(00
)

(º
,
0 )

(º
,
0 ,

00 )
(k
m
)

(º
,
0 )

(0 ,
00 )

G
ao

M
o
u
n
ta
in

3
,5
7
9
.8

+
2
6
.6

+
5
.5

�2
.5

3
2
,
3
1

L
o
n
g M
o
u
n
ta
in

0
,
0
0
,
0
0
.0
0

3
0
.7

1
2
8
,
1
7

�1
6
,
5
1

Z
h
an
g

V
il
la
g
e

4
0
,
4
3
,
5
3
.3
4

2
2
.0

1
6
9
,
0
1

+
2
3
,
0
2

W
an
g

V
il
la
g
e

1
0
2
,
3
6
,
1
1
.4
5

3
8
.1

2
3
0
,
5
3

+
2
3
,
0
2

L
o
n
g
M
o
u
n
ta
in

3
,4
9
4
.9

+
2
9
.1

+
7
.6

�1
.6

3
2
,
2
0

Z
h
an
g

V
il
la
g
e

0
,
0
0
,
0
0
.0
0

2
0
.1

2
6
2
,
4
2

+
4
0
,
5
4

G
ao

M
o
u
n
ta
in

4
5
,
4
3
,
1
7
.9
9

3
0
.7

3
0
8
,
2
5

+
0
2
,
0
4

Z
h
an
g
V
il
la
g
e

3
,7
5
9
.2

+
2
9
.3

+
6
.8

�1
.7

3
2
,
1
9

W
an
g

V
il
la
g
e

0
,
0
0
,
0
0
.0
0

3
3
.8

2
6
5
,
5
8

+
1
9
,
5
4

G
ao

M
o
u
n
ta
in

8
3
,
0
4
,
0
5
.1
6

2
2
.0

3
4
9
,
0
2

�3
3
,
0
0

L
o
n
g M
o
u
n
ta
in

1
7
6
,
3
6
,
5
4
.6
3

2
0
.1

8
2
,
3
5

�4
9
,
5
1

W
an
g
V
il
la
g
e

3
,9
3
1
.7

+
2
9
.2

+
6
.2

�1
.9

3
2
,
1
7

G
ao

M
o
u
n
ta
in

0
,
0
0
,
0
0
.0
0

3
8
.1

5
0
,
2
6

�4
0
,
5
4

Z
h
an
g

V
il
la
g
e

3
5
,
0
3
,
3
7
.4
5

3
3
.8

8
5
,
3
0

�2
5
,
0
6

5.5 Relationship Between Terrestrial Elements of Triangulateration and the. . . 223



T
a
b
le

5
.7

R
ed
u
ct
io
n
o
f
v
al
u
es

o
f
th
e
o
b
se
rv
ed

d
ir
ec
ti
o
n
s
to

th
e
el
li
p
so
id

O
b
se
rv
at
io
n

p
o
in
t

D
ir
ec
ti
o
n

V
al
u
e
o
f
th
e
o
b
se
rv
ed

d
ir
ec
ti
o
n
re
d
u
ce
d
to

ce
n
te
r
o
f
th
e
su
rv
ey

m
ar
k

T
h
re
e
co
rr
ec
ti
o
n
s
fo
r
h
o
ri
zo
n
ta
l
d
ir
ec
ti
o
n
s

Σδ
R
o
u
n
d
ed

to
ze
ro

D
ir
ec
ti
o
n
v
al
u
e

o
n
th
e
el
li
p
so
id

L
0

δ 1
δ 2

δ 3

(º
,
0 ,

00 )
(00
)

(00
)

(00
)

(00
)

(00
)

(º
,
0 ,

00 )
G
ao

M
o
u
n
ta
in

L
o
n
g
M
o
u
n
ta
in

0
,
0
0
,
0
0
.0
0

+
0
.0
1
4

�0
.2
6
6

+
0
.0
0
2

�0
.2
5
0

0
.0
0
0

0
,
0
0
,
0
0
.0
0

Z
h
an
g
V
il
la
g
e

4
0
,
4
3
,
5
3
.3
4

+
0
.0
0
9

�0
.1
1
0

0
.0
0
0

�0
.1
0
0

+
0
.1
5
0

4
0
,
4
3
,
5
3
.4
9

W
an
g
V
il
la
g
e

1
0
2
,
3
6
,
1
1
.4
5

+
0
.0
3
9

+
0
.3
0
1

�0
.0
0
3

+
0
.3
3
7

+
0
.5
8
7

1
0
2
,
3
6
,
1
2
.0
4

L
o
n
g
V
il
la
g
e

Z
h
an
g
V
il
la
g
e

0
,
0
0
,
0
0
.0
0

+
0
.0
9
2

+
0
.0
7
4

0
.0
0
0

+
0
.1
6
6

0
.0
0
0

0
,
0
0
,
0
0
.0
0

G
ao

M
o
u
n
ta
in

4
5
,
4
3
,
1
7
.9
9

+
0
.0
0
3

�0
.2
7
1

+
0
.0
0
2

�0
.2
6
7

�0
.4
3
3

4
5
,
4
3
,
1
7
.5
6

Z
h
an
g
V
il
la
g
e

W
an
g
V
il
la
g
e

0
,
0
0
,
0
0
.0
0

+
0
.0
3
8

+
0
.0
4
3

0
.0
0
0

+
0
.0
8
1

0
.0
0
0

0
,
0
0
,
0
0
.0
0

G
ao

M
o
u
n
ta
in

8
3
,
0
4
,
0
5
.1
6

+
0
.0
0
4

�0
.1
0
4

0
.0
0
0

-0
.1
0
0

�0
.1
8
1

8
3
,
0
4
,
0
4
.9
8

L
o
n
g
M
o
u
n
ta
in

1
7
6
,
3
6
,
5
4
.6
3

+
0
.1
0
1

+
0
.0
7
0

0
.0
0
0

+
0
.1
7
1

+
0
.0
9
0

1
7
6
,
3
6
,
5
4
.7
2

W
an
g
V
il
la
g
e

G
ao

M
o
u
n
ta
in

0
,
0
0
,
0
0
.0
0

+
0
.0
7
1

+
0
.2
7
4

�0
.0
0
3

+
0
.3
4
2

0
.0
0
0

0
,
0
0
,
0
0
.0
0

Z
h
an
g
V
il
la
g
e

3
5
,
0
3
,
3
7
.4
5

+
0
.0
4
6

+
0
.0
4
6

0
.0
0
0

+
0
.0
9
2

�0
.2
5
0

3
5
,
0
3
,
3
7
.2
0

224 5 Reference Ellipsoid and the Geodetic Coordinate System



We take out the spherical triangle ZZ1M in Fig. 5.31 (see Fig. 5.35) and draw a

line Z1Z
00 perpendicular to ZM. Since q is a small quantity, ZZ00 ¼ ε. Also in

ΔZZ1Z00, we see that:
ε ¼ u cos(A�θ)
¼ u cos θ cos A þ u sin θ sin A
¼ ξ cos A þ η sin A

Hence:

z ¼ z1 þ ξ cosAþ η sinA: ð5:60Þ

This is the reduction formula of the observed zenith distance, where ξ. and η are
the components of deflection of the vertical in the meridian and in the prime vertical

at the observation point, respectively. A denotes the geodetic azimuth of the

observed direction.

5.5.4 Reduction of the Observed Slope Distance
to the Ellipsoid

The length observed using the rangefinder is known as the slope distance between

two points on the Earth’s surface. Reducing the slope distance to the ellipsoid,

namely converting the slope distance D to the geodesic distance S (Fig. 5.36), is

termed the reduction of the slope distance.

We will now derive the formula for the reduction of the slope distance over short

distances. Two approximations are made: first, Ka and Kb are considered to coin-

cide; and second, geodesic S is considered an arc of a great circle. Hence, the

reduction in Fig. 5.36 becomes finding the solution of the plane triangle in Fig. 5.37.

Fig. 5.35 Derivations of ε
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Taking into consideration the error terms created by the above two approximations,

we can derive the formula for reduction of the slope distance over long distances.

In Fig. 5.37:

S ¼ RAσ: ð5:61Þ

Applying the law of cosines to σ gives:

D2 ¼ RA þ H1ð Þ2 þ RA þ H2ð Þ2 � 2 RA þ H1ð Þ RA þ H2ð Þ cos σ: ð5:62Þ

With the above two equations, the slope distance reduction can be programmed

and completed. These two equations can be further rearranged.

With cos σ ¼ 1� 2 sin 2 σ

2
, (5.62) can be rewritten as:

Fig. 5.36 Reduction of

slope distance
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D2 ¼ H2 � H1ð Þ2 þ 4R2
A 1þ H1

RA

� 	
1þ H2

RA

� 	
sin 2 σ

2
:

Setting the chord length d ¼ 2RA sin
σ
2
and ΔH ¼ H2 � H1, and substituting

gives:

D2 ¼ ΔH2 þ 1þ H1

RA

� 	
1þ H2

RA

� 	
d2:

Hence, S ¼ RAσ ¼ 2RA sin
�1 d

2RA
:

Expanding the above arcsine function based on Taylor series and rearranging

produces:

S ¼ d þ d3

24RA
2
, ð5:63Þ

where

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 � ΔH2

1þ H1

RA

� �
1þ H2

RA

� �
vuut ¼ RA �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � ΔH2

RA þ H1ð Þ RA þ H2ð Þ

s
:

In practical cases, the precise reduction formula will be applied as:

Fig. 5.37 Approximate

relations for reduction of the

slope distance
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S ¼ D
0
RA

RA þ Hm
þ D3

24RA
2
þ 1:25� 10�16HmD

2 sin 2BcosA, ð5:64Þ

where

D
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � H2 � H1ð Þ2

q
,Hm ¼ 1

2
H1 þ H2ð Þ,N ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e02
cos 2B

p ,

RA¼ N

1þ e02
cos 2B cos 2A

,

D is the known slope distance, accurate to 0.001 m; H1 and H2 are the ellipsoidal

heights at the two end points of the observed distance, accurate to 0.001 m; B is the

geodetic latitude of the origin point of the observed distance, accurate to zero

decimal place; A is the geodetic azimuth of the observed distance, accurate to

zero decimal place; and S is the geodesic distance on the ellipsoid that the slope

distance being reduced to, accurate to 0.001 m. For an example of computation see

Table 5.8.

5.5.5 Relationship Between Astronomical Longitude
and Latitude and Geodetic Longitude and Latitude
(Formula for Deflection of the Vertical)

The two components of the deflection of the vertical, ξ and η, are the two required

quantities for reducing the terrestrial observation elements to the ellipsoid.

According to the definition of astronomical longitude and latitude, λ and φ deter-

mine the direction of the plumb line at a given point while L and B determine the

direction of the ellipsoidal normal at this point. Thus, ξ and η can be defined by the

four parameters λ, φ, L, and B.
Given the fact that the geodetic latitude B is the angle between the equatorial

plane and the line that is normal to the reference ellipsoid, the angle between the

ellipsoidal normal and the minor axis of the ellipsoid is 90� � B; namely, in

Fig. 5.31, PZ ¼ 90� � B. Similarly, PZ1 ¼ 90� � φ. PZ is the geodetic meridian

plane and PZ1 is the astronomical meridian plane; hence, the angle between the two

meridian planes is λ � L. It is also known that PZ0 ¼ 90� � B � ξ. For all the
quantities above, see Fig. 5.38.

Table 5.8 Computation for

reduction of the slope

distance (GRS80 Ellipsoid)

Elements Example 1 Example 2

D 5,432.321 m 9,876.543 m

H1 826.93 m 4,254.23 m

H2 837.65 m 4,876.47 m

B 36�420 32�120

A 63�470 120�240

S 5,431.600 m 9,849.871 m
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Here are two preconditions: (1) The minor axis of the ellipsoid is specified

parallel to the Earth’s rotational axis, translating the two axes to point A in Fig. 5.31,

and they will intersect the auxiliary sphere at P; (2) Initial geodetic meridian plane

and astronomical meridian plane are parallel, so the angle between the planes of the

geodetic and astronomical meridians on the auxiliary sphere will be λ � L.
In Fig. 5.38, solving the spherical triangle Z1Z

0P by Napier’s rules gives:

cos λ� Lð Þ ¼ tan 90∘ � B� ξð Þ tanφ,
sin η ¼ sin λ� Lð Þ cosφ,

where both (λ–L) and η are small quantities. Putting sin(λ � L) ¼ λ � L, cos
(λ � L) ¼ 1, sin η ¼ η, and substituting into the above equation yields:

ξ ¼ φ� B

η ¼ λ� Lð Þ cosφ
�
: ð5:65Þ

These are the formulae for the deflection of the vertical.

Given the astronomical longitude and latitude as well as geodetic longitude and

latitude at a certain point, the components of the deflection of the vertical, ξ and η, at
this point can be computed using the astronomical and geodetic coordinates.

Therefore, it is also known as the astro-geodetic deflection of the vertical.

The astro-geodetic network formed by first-order triangulation chains (traverse)

in China will determine the astronomical longitude and latitude at certain distance

intervals, intended to compute deflection of the vertical to serve the needs of

Fig. 5.38 Derivation of the

formula for the deflection of

the vertical
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reducing the observed direction, as well as other applications . The deflection of the

vertical can also be obtained using the gravimetric data, known as the gravimetric

deflection of the vertical (also referred to as absolute deflection of the vertical). It is

defined relative to the normal ellipsoid. The astro-geodetic deflection of the vertical

(also known as relative deflection of the vertical) is defined relative to the reference

ellipsoid. As with the normal ellipsoid, the reference ellipsoid in modern geodesy

adopts the geocentric orientation. Hence, the distinctions between the absolute

deflection of the vertical and the relative deflection of the vertical no longer exist.

It is known that the reduction of the observed directions requires the deflection of

the vertical at every geodetic point. Nevertheless, in practical cases it is impossible

to carry out an astronomical survey at every single geodetic point. Hence, we may

take the following measures to solve the problem. When there is a lack of gravi-

metric data, a linear interpolation approach can be employed based on the known

values of deflections of the vertical at some point. Of course, this is not very

realistic in reality. In mountainous areas, deflections of the vertical will have

large nonlinear changes. Such nonlinear deflections will exist even in plane areas

due to the non-homogeneous distribution of mass inside the Earth. Hence, the data

obtained from linear interpolation are not accurate and even display quite large

discrepancies. Gravity data are needed to achieve the required accuracy of the astro-

geodetic deflection of the vertical. They can be utilized to obtain gravimetric

deflection of the vertical that can be converted to the astro-geodetic deflection of

the vertical. Therefore, determining the deflection of the vertical at a given surface

point involves combinations of the astronomical, geodetic, and gravimetric data.

Analogous to the grid model of height anomaly (Sect. 4.4), we can establish the

grid of deflection of the vertical in a certain area, including the grid model of the

component of deflections of the vertical in the meridian and in the prime vertical,

respectively. A grid model of the deflection of the vertical is the discretized

numerical representation of the vertical deflection components within a certain

range, and is an aggregation of the values of vertical deflection components of all

the uniformly spaced grid points within this range, stored in the database in the form

of grid data structure. In mobile missile warfare, one needs to know the vertical

deflection at any point within the mobile area. As a result, before war, the grid

model of deflections of the vertical in the mobile area needs to be established.

It follows from (5.65) that:

B ¼ φ� ξ
L ¼ λ� η secφ

�
: ð5:66Þ

The above is the relational expression between astronomical longitude and

latitude and geodetic longitude and latitude. From the expression, theoretically,

given the astronomical longitude and latitude of a point and deflection of the

vertical of this point, one can obtain the geodetic longitude and latitude of the

point, yet the accuracy of L and B obtained by this method is quite low and is

therefore not used in practical cases. We can make the following analyses. The

mean square observational errors of astronomical longitude and latitude are mλ ¼
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	 0.02s ¼ 	 0. 300 and mφ ¼ 	 0. 300, corresponding to a terrestrial distance of

	9 m, and the mean square error of the point is	9m� ffiffiffi
2

p ¼ 	12:6m. Correcting

the deflection of the vertical to within 	100 with gravimetric data, the mean square

error of the point becomes 	1
00 � ffiffiffi

2
p ¼ 	1:4

00
, corresponding to a distance of

	42 m. Taking the two aspects into consideration, the effect is 	44 m.

5.5.6 Relationship Between Astronomical Azimuth
and Geodetic Azimuth (Laplace Azimuth Formula)

One of the applications of an astronomical survey is to determine geodetic azimuths

in order to define the orientation of the control network and control the accumula-

tion of azimuth errors. Hence, the observed astronomical azimuth should be

reduced to the geodetic azimuth.

From Fig. 5.31, the astronomical azimuth of the AM direction is:

α ¼ θ1 þ R1:

The geodetic azimuth of the AM direction is:

A ¼ θ þ R:

The two equations subtracted from each other give:

α� A ¼ θ1 � θð Þ þ R1 � Rð Þ,

where R1 � R is the correction for deflection of the vertical of the observed

direction, namely (5.55)

To obtain the expression of θ1 � θ, in Pθθ1 in Fig. 5.31, applying Napier’s rules
in the right-angled spherical triangle gives:

sinφ ¼ tan θ1 � θð Þ tan 90∘ � λ� Lð Þð Þ ¼ θ1 � θð Þ cot λ� Lð Þ

Hence, we get:

θ1 � θ ¼ λ� Lð Þ sinφ,

and

A ¼ α� λ� Lð Þ sinφ� ξ sinA� η cosAð Þ cot z1:

The last term at the right-hand side of the above equation is known as the term of

correction for the deflection of the vertical. In general, its value is only a few

hundredths of a second or even less. In the first-order astronomical survey, the mean
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square observational error of astronomical azimuth is 	 0.5 ’ ’, so the effect of the

vertical deflection is far less than the observational error of astronomical azimuth,

which can be neglected. Inserting:

A ¼ α� λ� Lð Þ sinφ, ð5:67Þ

into (5.65), the above equation can be written as:

A ¼ α� η tanφ: ð5:68Þ

Equations (5.67) and (5.68) are formulae for the reduction of the astronomical

azimuth, known as the Laplace azimuth formula. The geodetic azimuth reduced by

this formula is known as the Laplace azimuth, also referred to as the initial geodetic

azimuth.

Applying the law of error propagation to (5.67) yields:

mA
2 ¼ mα

2 þ sin 2φ � mλ
2 þ sin 2φ � mL

2 þ λ� L

ρ

� 	2

� cos 2φ � mφ
2:

The last two terms in the above equation are small quantities, and neglecting

them gives:

mA
2 ¼ mα

2 þ sin 2φ � mλ
2:

With φ ¼ 30
�
, and substituting mα ¼ 	 0. 500 and mλ ¼ 	 0. 300 into the above

equation, yields mA ¼ 	 0. 600. In this case, the accuracy of Laplace azimuth is

approximately 	 0. 600.
In the geodetic control network, the geodetic azimuth of each point is obtained

through pointwise calculations, which can be affected by the accumulation of angle

observation errors. For instance, the single chain of triangles provides one route of

16 sides through which computations are carried out. The orientation error of each

side is 	 0. 500. Then, the azimuth error of the last side is 	0:5
00 ffiffiffiffiffi

16
p ¼ 	2:0

00
. The

mean square error of the Laplace azimuth is approximately 	 0. 600. Apparently,
the method can achieve a higher accuracy than the pointwise calculation.

Hence, in the classical geodetic control network, an astronomical survey is

carried out at certain distance intervals to compute the Laplace azimuth. This can

help to control the accumulation of azimuth errors in the geodetic network.
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5.6 Relationship Between the Geodetic Coordinate System

and the Geodesic Polar Coordinate System

5.6.1 Geodesic Polar Coordinate Systems and the Solution
of Geodetic Problems

A geodesic polar coordinate system is established on the surface of the ellipsoid.

The position of a point on the ellipsoid is represented by the geodesic distance S and
geodetic azimuth A from the polar point to this point of interest, as shown in

Fig. 5.39. Let P1 be the polar point on the ellipsoid, the meridian P1N that passes

through P1 be the polar axis, the geodesic distance S that connects P1 and P (to be

computed) be the polar radius, and the geodetic azimuth A of the geodesic at point

P1 be the polar angle; then the location of point P on the ellipsoid is expressed by (S,
A).

The geodesic polar coordinate system is used to show the relative horizontal

positions between two points on the ellipsoid, often applied in the case where

solution of relative positions is needed for long-distance weapon launching or

navigation.

Calculations of geodetic coordinates of an unknown point on the ellipsoid based

on the observed angles and distances using geodetic surveying or calculations of the

geodesic distance and geodetic azimuth between two points based on their geodetic

coordinates are known as solutions of geodetic problems, calculations of geodetic

coordinates, or calculations of geodetic positions. The solutions of geodetic prob-

lems include both direct and inverse solutions.

In Fig. 5.40, given the geodetic coordinates (L1,B1) of point P1, the geodesic

distance S from point P1 to P2, and the geodetic azimuth A1 from P1 to P2, the direct

solution of the geodetic problem provides the geodetic coordinates (L2,B2) of point

P2 and the reverse azimuth A2 of the geodesic at point P2. Given the geodetic

coordinates (L1,B1) and (L2,B2) of P1 and P2, the inverse solution of the geodetic

problem is required to find the forward and reverse azimuths A1, A2 and the

geodesic distance S of P1 and P2. From the definition of the geodesic polar

coordinates, (S, A1) and (S, A2) are the geodesic polar coordinates of points P2

and P1, respectively. Hence, the solution of geodetic problems is the interconver-

sion between the geodetic coordinates and geodesic polar coordinates.

The solution of geodetic problems can be applied in many ways. It can be used to

calculate the geodetic coordinates on the ellipsoid in geodetic surveying (as shown

in Fig. 5.29). Apart from that, with the advancement of modern spatial technology,

aviation, and navigation, the solution of geodetic problems (particularly the inverse

solution of geodetic problems) is playing a more prominent role. These different

applications and requirements also generate different methods and formulae for the

solution of geodetic problems.

Computing geodetic coordinates on the ellipsoid is far more complicated than

computing coordinates on the plane due to the significantly more complex
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mathematical properties of the ellipsoid than the plane. Because of this complexity,

there are various formulae, dozens at present, for solving geodetic problems. Based

on distance, the formulae can generally be categorized into short-distance (within

400 km), mid-distance (400–1,600 km), and long-distance (1,000–20,000 km).

Based on accuracy, they can be sorted into precise formulae and approximate

formulae.

Theoretically, the formulae for solutions of geodetic problems are mostly based

on the three differential equations of geodesics, although their forms and methods

of derivations vary. For solution of long-distance geodetic problems, Clairaut’s

equation for geodesics should also be applied. The formulae for solutions can

basically be classified into the following three categories in light of the methods

for solution.

1. Based on the geodesic on the ellipsoid and its three differential equations, we

expand the differences in geodetic longitude l, geodetic latitude b, and geodetic

azimuth a of the two endpoints of the geodesic into the ascending power series of

Fig. 5.39 Geodesic polar

coordinate system

Fig. 5.40 Solution of

geodetic problems
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the geodesic distance S. The features of this type of formulae are that the

accuracy of solution is distance-dependent, and the longer the distance the

slower the rates of convergence. Converge may not even occur, so finding

solutions would be impossible. Hence, this approach is better applicable to

short distances.

2. We take an auxiliary sphere, convert the ellipsoidal elements to the spherical

surface, solve the problem by applying the formula for spherical triangles on a

spherical surface, and then reduce the computed results back to the ellipsoid.

Because the difference between the ellipsoid and spheroid is only a very small

flattening, the expressions for transformation of the corresponding elements

between the ellipsoidal surface and the spherical surface only involve the

ascending power series of the small quantities e2 (eccentricity squared) or e02.
The Bessel’s formula studied in this section can represent this type of formula.

Such formulae are independent of distance and can be applied to the solution of

geodetic problems over any distances.

3. Take advantage of numerical integration and solve the direct and inverse

geodetic problems on the ellipsoid. In general, the solutions are composed of a

strict solution for the sphere plus a correction to the ellipsoid, determined by

numerical integration. By employing numerical integration, routines that are

usually available in current computer software like MATLAB, the problems of

classical geodesy are easily solved to the desired accuracy (Sjöberg et al. 2012).

The accuracy of solutions of geodetic problems depends on different practical

matters. Take the adjustment of the astro-geodetic network for instance. The

relative mean square error of the side lengths in the first-order triangulation chain
mS

S ¼ 1 : 200000 and the accuracy of azimuth mA ¼ 	 1. 000, i.e., mA

ρ � 1 : 200000:

We set S ¼ 20 km and let the coordinate components be the same as the longitu-

dinal and lateral errors, namely:

mx ¼ my ¼ 	0:1 m:

After considering the adjustment of the first-order triangulation chain, the

accuracy of the point positioning can be slightly improved. Putting mx ¼ my

¼ 0.09 m, if expressed by geodetic coordinates, when B ¼ 45�, we obtain:

mB ¼ mx

M
ρ

00 ¼ 	0:003
00
,

mL ¼ my

N cosB
ρ

00 ¼ 	0:004
00
:

When deciding accuracy requirements for the solution formulae, one should

generally adhere to the following principle: it has to be ensured that the computa-

tional errors introduced by the formulae do not have any further effect on the real

accuracy of the field observations and adjusted values. In accordance with this

principle, considering the possible accumulation of errors in the pointwise
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calculation of geodetic coordinates along the first-order triangulation chain, the

geodetic longitude and latitude should be accurate to 0.000100.
In the first-order triangulation, the final result of the azimuth is accurate to 0.0100.

Hence, in solutions of geodetic problems the geodetic azimuth is accurate to 0.00100.
The above discussions of computational accuracy are mainly concerned with the

adjustment of astro-geodetic networks and the calculation of coordinates of the

first-order geodetic points. When applied in other situations, the accuracy of

computation should be determined by the applications. For instance, in navigation

application, the geodetic longitude, latitude, and azimuth can be accurate to 0.100,
and the distance needs to be accurate only to 10 m.

To understand the rationale for solving geodetic problems, we must first provide

the method for point-by-point integration for the direct solution of geodetic

problems.

We divide the length of P1P2 (the interval between P1 and P2) in Fig. 5.40 into

n sections. The differences in longitude, latitude, and azimuth between the two

endpoints of each small section are dL, dB, and dA, respectively, satisfying the

conditions of differential equations of geodesics. Hence, the direct solution is given

by:

L2 � L1 ¼
ðL2
L1

dL ¼
ð S

0

sinA

N
secBdS �

Xn
i¼1

sinAi

Ni
secBiΔSi

B2 � B1 ¼
ðB2

B1

dB ¼
ð S

0

cosA

M
dS �

Xn
i¼1

cosAi

Mi
ΔSi

A2 � A1 	 180 ¼
ðA2	180

A1

dA ¼
ð S

0

sinA

N
tanBdS �

Xn
i¼1

sinAi

Ni
tanBiΔSi

9>>>>>>>>>=
>>>>>>>>>;
:

ð5:69Þ

Repeated computations of the above equations will solve the short-distance

direct geodetic problems and also enable a high degree of accuracy. The above

equations have shown that as n increases, so does the accuracy of the computations .

5.6.2 Series Expansions of the Solution of the Geodetic
Problem

In Fig. 5.40, at the given point P1 (L1,B1), when the geodesic azimuth A1 is

determined, the geodetic longitude, latitude, and azimuth of an arbitrary point on

the geodesic are the functions of the geodesic distance S, namely:

236 5 Reference Ellipsoid and the Geodetic Coordinate System



L ¼ L Sð Þ,B ¼ B Sð Þ,A ¼ A Sð Þ:

Obviously, the above function can be differentiated repeatedly. Expanding the

above function at point P1 based on Maclaurin series results in:

l ¼ L2 � L1 ¼ dL

dS

0
@

1
A

1

Sþ d2L

dS2

0
@

1
A

1

S2

2
þ d3L

dS3

0
@

1
A

1

S3

6
þ � � �,

b ¼ B2 � B1 ¼ dB

dS

0
@

1
A

1

Sþ d2B

dS2

0
@

1
A

1

S2

2
þ d3B

dS3

0
@

1
A

1

S3

6
þ � � �,

a ¼ A2 
 180∘ � A1 ¼ dA

dS

0
@

1
A

1

Sþ d2A

dS2

0
@

1
A

1

S2

2
þ d3A

dS3

0
@

1
A

1

S3

6
þ � � �:

ð5:70Þ

where the subscript “1” denotes the value when the derivatives of various orders

take S ¼ 0 (i.e., the value at point P1; B ¼ B1, A ¼ A1). It can thus be seen that

finding the derivatives of different orders in the equations is the key to obtain the

expansions of l, b, and a. Here, three first-order derivatives will form a differential

equation of the geodesic. With N ¼ c
V
,M ¼ c

V3
, one obtains:

dL

dS
¼ V

c
secB sinA,

dB

dS
¼ V3

c
cosA,

dA

dS
¼ V

c
tanB sinA:

Taking repeated derivatives of the above equations results in the derivatives of

various orders in (5.70); hence, one will get the power series in geodesic distance

S expanded from the differences in longitude l, latitude b, and azimuth a, generally
known as the Legendre series.

Legendre series converge more slowly. However, if l, b, and a are expanded into
the power series in S at the midpoint of the geodesic PS/2 instead of the end point of

the geodesic P1, then the convergence rate of the series will increase considerably.

Expanding the difference in geodetic longitude at midpoint PS/2 based on the Taylor

series yields:
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L2 � LS=2 ¼ dL

dS

0
@

1
A

S=2

S

2

0
@

1
Aþ 1

2

d2L

dS2

0
@

1
A

S=2

S

2

0
@

1
A

2

þ

1

6

d3L

dS3

0
@

1
A

S=2

S

2

0
@

1
A

3

þ 1

24

d4L

dS4

0
@

1
A

S=2

S

2

0
@

1
A

4

þ � � �,

L1 � LS=2 ¼ dL

dS

0
@

1
A

S=2

� S

2

0
@

1
Aþ 1

2

d2L

dS2

0
@

1
A

S=2

� S

2

0
@

1
A

2

þ

1

6

d3L

dS3

0
@

1
A

S=2

� S

2

0
@

1
A

3

þ 1

24

d4L

dS4

0
@

1
A

S=2

� S

2

0
@

1
A

4

þ � � �:

Subtracting the above two equations from each other gives:

l ¼ L2 � L1 ¼ dL

dS

� 	
S=2

Sþ 1

24

d3L

dS3

� 	
S=2

S3 þ � � �:

In like manner, we can obtain the formulae for differences in geodetic latitude

and azimuth. Combining them with the above expression yields:

l ¼ L2 � L1 ¼ dL

dS

0
@

1
A

S
2

Sþ 1

24

d3L

dS3

0
@

1
A

S
2

S3 þ � � �

b ¼ B2 � B1 ¼ dB

dS

0
@

1
A

S
2

Sþ 1

24

d3B

dS3

0
@

1
A

S
2

S3 þ � � �

a ¼ A2 � A1 
 180o ¼ dA

dS

0
@

1
A

S
2

Sþ 1

24

d3A

dS3

0
@

1
A

S
2

S3 þ � � �

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

: ð5:71Þ

where the subscript S/2 indicates that the derivatives of various orders in the bracket
will be taken according to the geodetic latitude BS/2 and geodetic azimuth AS/2 at the

midpoint of the geodesic PS/2. In (5.71), although only two terms are listed, the

accuracy actually reaches S4 terms. Thus, it converges more rapidly than the

Legendre series. In (5.71), the geodetic latitude BS/2 and geodetic azimuth AS/2

are actually unknown, so the equation cannot be solved directly, and we need to

convert the derivatives of the equation. Assume that:
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Bm ¼ 1

2
B1 þ B2ð Þ

Am ¼ 1

2
A1 þ A2 
 180oð Þ

9>>>=
>>>;
:

Apparently, Bm 6¼ BS/2, Am 6¼ AS/2, for the very small flattening of the ellipsoid,

although the difference between them is not large. We can then derive the estimat-

ing equation of Bm � BS/2, Am � AS/2 so as to convert the derivatives based on

BS/2, AS/2 to the derivatives based on Bm, Am, derivations omitted. B2 and A2 are the

unknowns in the solution of direct geodetic problems, so the exact values of Bm and

Am are unknown and need to be obtained using a successive approximation.

Equation (5.71) is the formula for a direct solution of the geodetic problem,

based on which one can derive the corresponding formula for an inverse solution of

the geodetic problem. These formulae are improvements of the Legendre series and

are applicable to the solution of short-distance geodetic problems, known as the

Gauss mid-latitude formula (see, e.g., Krakiwsky and Thomson 1974).

5.6.3 Bessel’s Formula for the Solution of the Geodetic
Problem

Overview

The series expansion of the solution of the geodetic problem is to express the

differences in geodetic longitude, latitude, and azimuth as a function of the geode-

sic distance S. It is evident that to achieve the desired accuracy, the longer the

distance, the more complex the formula structure becomes and may even become

unsolvable. Hence, such a formula is not suitable for solving long-distance geodetic

problems.

From the spherical trigonometry, we are clear that the formulae for spherical

triangles are all expressed by the trigonometric function of angles, where the

accuracy of solving spherical triangles is independent of the spherical distance. In

addition, the flattening of the Earth ellipsoid is very small, and when the ellipsoidal

elements (longitude, latitude, side length, and azimuth) are converted into the

corresponding elements on the spherical surface and represented by angles, the

corresponding corrections expressed by angles will be quite small and independent

of distances. Hence, the general approach to solving the long-distance geodetic

problem is to use a spherical surface as a bridge, which means to establish relations

of projection between the ellipsoidal elements and the corresponding spherical

elements under certain projection conditions, to establish the precise relations

between the elements on the spherical surface using the formula for spherical
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triangles, and eventually to transform the spherical elements computed back into

the ellipsoidal elements.

Clearly, the key issue is to establish the corresponding relationship between the

ellipsoidal elements and the spherical elements. From Fig. 5.40, the corresponding

ellipsoidal and spherical elements should include the six elements

B1, B2, A1, A2, l, S.

Reduced Latitude

When the elements on the ellipsoidal surface are converted into the corresponding

elements on the spherical surface, we may obtain different formulae for solutions of

the geodetic problem over long distances due to different options for the projection

conditions or different methods of integration. This section will discuss the repre-

sentative formula, i.e., the formula for the solution of the geodetic problem over

long distances put forward by Bessel in 1825 (see, e.g., Krakiwsky and Thomson

1974). Our discussion first considers reduced latitude and the transformation

between the reduced latitude and the geodetic latitude.

As shown in Fig. 5.41, NPSN represents a meridian ellipse. Create an auxiliary

circle with its center at the center of the ellipse O, and the equatorial radius a as its

radius. Extend the ordinate line P0P of point P to intersect the circle at P". Join P00O;
then ∠ P00OP0 is known as the reduced latitude of point P, denoted by u.

Apparently, for any point P on the meridian ellipse there will be a reduced

latitude u corresponding to it. The relations of transformation between the reduced

latitude and geodetic latitude are derived as follows:

We establish a right-angled plane coordinate system XOY in Fig. 5.41, and the

coordinates of P are given by:

X ¼ a

W
cosB

Y ¼ a

W
1� e2
� �

sinB ¼ b

W

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sinB

9>>>=
>>>;
: ð5:72Þ

It is known from Fig. 5.41 that X ¼ acosu, substituting X into the elliptical

equation
x2

a2
þ y2

b2
¼ 1 results in Y, hence:

X ¼ a cos u
Y ¼ b sin u

�
: ð5:73Þ

Comparing (5.72) and (5.73) yields:
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cos u ¼ 1

W
cosB

sin u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

W
sinB

9>>>>=
>>>>;
: ð5:74Þ

Introducing W ¼ V
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
, we get:

cos u ¼ 1

V
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p cosB

sin u ¼ 1

V
sinB

9>>>=
>>>;
: ð5:75Þ

Dividing the two equations in (5.74) or (5.75) by each other results in:

tan u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
tanB: ð5:76Þ

Equation (5.76) is the formula for transformation between the reduced latitude

u and geodetic latitude B. It follows from (5.76) that the reduced latitude u and

geodetic latitude B of the same point have a specified corresponding relationship.

Generally, geodetic latitude is greater than the reduced latitude.

Taking the derivative of (5.76) results in the differential relations between u and
B as follows:

Fig. 5.41 Reduced latitude u
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du

cos 2u
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

cos 2B
dB,

With (5.75), one obtains:

dB

du
¼ V2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
: ð5:77Þ

Underlying Principle of Bessel’s Solution of the Geodetic Problem

Bessel’s formula for the solution of the geodetic problem is first to create an

auxiliary sphere with its center at the center of the ellipsoid and the radius of any

length (the problem of spherical triangles is independent of the length of radius) and

then to solve according to the three steps below:

1. Project the ellipsoidal elements onto the spherical surface according to certain

conditions

2. Solve the geodetic problem on the spherical surface

3. Convert the spherical elements obtained into the corresponding ellipsoidal

elements based on the relations of projection

The three conditions of projection for Bessel’s solution of the geodetic problem

are as follows:

1. The spherical latitude of the point on the spheroid after projection is equal to the

reduced latitude of the corresponding point on the ellipsoid

2. Projection of the geodesic between two points on the ellipsoid onto the auxiliary

sphere is a great circle

3. The numerical value of the geodetic azimuth A1 remains unchanged after

projection

In Fig. 5.42, after the auxiliary sphere is created and the projection is done

according to the three conditions above, there is a geodetic polar triangle NP1P2 on

the ellipsoid, and a specified polar triangle N0P
0
1P

0
2 will, correspondingly, be on the

spherical surface, where N0P
0
1 ¼ 90o � u1, N

0P
0
2 ¼ 90o � u2, σ is the great circle,

and ∠ N0P
0
1P

0
2 ¼ A1. Let the forward azimuth of the geodesic P1P2 at the point P2

be A2
0 and the forward azimuth of the great circle P

0
1P

0
2 at the point P2

0 be α20.
Applying the sine theorem to the spherical triangle N0P

0
1P

0
2 results in:

cos u1 sinA1 ¼ cos u2 sin α
0
2: ð5:78Þ

According to Clairaut’s equation for geodesics, r sin A ¼ C, and with (5.73)

r ¼ x ¼ a cos u, one obtains:
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cos u sinA1 ¼ C:

Then we see that:

cos u1 sinA1 ¼ cos u2 sinA
0
2: ð5:79Þ

Comparing (5.78) and (5.79), we have:

α
0
2 ¼ A

0
2: ð5:80Þ

The above equation shows that, in Bessel’s solution of geodetic problems, the

azimuth of this geodesic remains the same after projection.

Four elements (u1, u2, A1, and A2) of the six corresponding elements on the

ellipsoid and the spherical surface have so far been determined, and the rest are not

yet known, including the relationship between λ and l, and between σ and S. Hence,
the expressions for the meridian arc elements and the parallel arc elements on the

ellipsoid and the auxiliary sphere according to the differential equations of geo-

desics can be written on the ellipsoid as:

dS cosA ¼ MdB
dS sinA ¼ N cosBdl

�
, ð5:81Þ

and on the auxiliary sphere as:

dσ cosA ¼ du
dσ sinA ¼ cos udλ

�
, ð5:82Þ

where dσ is measured by angle unit.

It follows from the above two sets of formulae that:

Fig. 5.42 Relationship between ellipsoidal (a) and spherical (b) projections
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dS

dσ
¼ M

dB

du
,

dS

dσ
¼ N

cosB

cos u

dl

dλ
:

WithM ¼ a 1� e2ð Þ
W3

¼ a

V3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p , N ¼ a
W , and (5.77) and (5.74), one obtains:

dS ¼ a

V
dσ, ð5:83Þ

dl ¼ 1

V
dλ: ð5:84Þ

With cos u ¼ 1

V
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p cosB,

and from:

V2 ¼ 1þ e
02
cos 2B ¼ 1þ e

02
cos 2uV2 1� e2

� � ¼ 1þ e2V2 cos 2u,

with

V ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 cos 2u

p

substituted into (5.83)and (5.84) we obtain:

dS ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 cos 2u

p
dσ, ð5:85Þ

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 cos 2u

p
dλ: ð5:86Þ

Equations (5.85) and (5.86) are the differential equations that define the rela-

tionship between the side length and longitude difference on the ellipsoid and the

corresponding side length and longitude difference on the auxiliary sphere. They

are known as the Bessel’s differential equation. The relations between S and σ and

between l and λ can be obtained by solving this set of differential equations.

Applying different integration methods will result in different formulae, which

distinguishes Bessel’s formula for the solution of the geodetic problem from

many other formulae for solving the problem over long distances.

Bessel’s formula applies to any distances because its integration is not in the

power series of the side length, longitude, or latitude (differences of longitude or

latitude), but in the power series of the eccentricity squared e2 (or e02).
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Solution of Bessel’s Differential Equation

The Relationship Between S and σ

Integrating (5.85) gives the relationship between S and σ. In order to find the

integral, we shall first convert u into a function of σ as shown in Fig. 5.43. We

extend the arc of the great circle P1
0P2

0 to intersect the equator of the auxiliary

sphere at point P0
0. The azimuth of P1

0P2
0 at the point P0

0 is m, and the arc of the

great circle P0
0P1

0 ¼ M. Obviously, when point P1
0and the arc of the great circle

P1
0P2

0 are given, the values of m and M are also defined. So, the purpose of

extending the arc of the great circle P1
0P2

0 is to find the spherical triangle that is

relevant to the spherical quadrangle in order to apply the formula for spherical

triangles to find the solution.

We assume that P0 is a moving point along the arc P1
0P2

0. When P0 moves, the

distance σ between P0 and P1
0 and the spherical latitude u of point P0 also change

accordingly; hence, the relationship between u and σ can be established.

Considering P2
0 as the moving point P0, from the right-angled spherical triangle

P
0
0Q2P

0
2, one obtains:

sin u ¼ cosm sin M þ σð Þ

or

cos 2u ¼ 1� cos 2m sin 2 M þ σð Þ: ð5:87Þ

Substituting the above equation into (5.85) gives:

dS ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 þ e2 cos 2m sin 2 M þ σð Þ

p
dσ

¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

1� e2
cos 2m sin 2 M þ σð Þ

s
dσ

¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e02

cos 2m sin 2 M þ σð Þ
q

dσ,

which can be written as:

dS ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2 sin 2 M þ σð Þ

q
dσ, ð5:88Þ

where k2 ¼ e02cos2m.
In order to find the integral of (5.88), we expand the integrand into a series of σ

as follows:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2 sin 2 M þ σð Þ

q
¼ 1þ 1

2
k2 sin 2 M þ σð Þ � 1

8
k4 sin 4 M þ σð Þ þ � � �,

With

sin 2 M þ σð Þ ¼ 1

2
� 1

2
cos 2 M þ σð Þ,

sin 4 M þ σð Þ ¼ 3

8
� 1

2
cos 2

�
M þ σ

�þ 1

8
cos 4

�
M þ σ

�
,

⋮

and hence:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2 sin 2 M þ σð Þ

q
¼ 1þ k2

4
� 3

64
k4 þ � � �

� 	

þ � k2

4
þ k4

16
þ � � �

� 	
cos 2 M þ σð Þ � k4

64
cos 4 M þ σð Þ

þ � � �:

Substituting the above equation into (5.88) and integrating, with

ð σ

0

cos 2 M þ σð Þdσ ¼ 1

2
sin 2 M þ σð Þ � sin 2M½ � ¼ sin σ cos 2M þ σð Þ,

ð σ

0

cos 4 M þ σð Þdσ ¼ 1

2
sin 2σ cos 4M þ 2σð Þ,

one gets

Fig. 5.43 The relationship

between u and σ
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S¼b 1þk2

4
� 3

64
k4

� 	
σ� k2

4
� k4

16

� 	
sinσcos 2Mþσð Þ

�
� k4

128
sin2σcos 4Mþ2σð Þ



,

or

S ¼ b Aσ � B sin σ cos 2M þ σð Þ � C sin 2σ cos 4M þ 2σð Þ½ �, ð5:89Þ

where

A ¼ 1þ k2

4
� 3

64
k4

B ¼ k2

4
� k4

16

C ¼ k4

128

9>>>>>>>>>=
>>>>>>>>>;
:

The expressions for calculating σ from a given S can also be obtained from

(5.89), as:

σ
00 ¼ αSþ β sin σ cos 2M þ σð Þ þ γ sin 2σ cos 4M þ 2σð Þ, ð5:90Þ

where

α ¼ ρ
00

bA
¼ ρ

00

b
1� k2

4
þ 7k4

64

0
@

1
A

β ¼ Bρ
00

A
¼ ρ

00 k2

4
� k4

8

0
@

1
A

γ ¼ Cρ
00

A
¼ ρ

00 k4

128

0
@

1
A

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

:

The m in k and theM in (5.89) and (5.90) can be determined by the right triangle

P
0
0Q1P

0
1 according to the expressions:

tanM ¼ tan u1
cosA1

tanm ¼ tanA1 cosM
sinm ¼ cos u1 sinA1

9>>=
>>;: ð5:91Þ
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The Relationship Between l and λ

Integrating (5.86) gives the relationship between l and λ. As stated above, u has

been converted into the function of σ, so if dσ is used to represent dλ, the differential
equation (5.86) can be solved.

It follows from (5.82) that:

dλ ¼ sinA

cos u
dσ:

Also, let P2
0 be a moving point P0; from the right triangle P0

0Q2P2
0 we have:

sinA ¼ sinm

cos u
,

and we obtain:

dλ ¼ sinm

cos 2u
dσ:

Substituting the above equation into (5.86) yields:

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 cos 2u

p sinm

cos 2u
dσ:

In order to find the integral, we expand the above equation into the series of u,
hence:

dl ¼ 1� e2

2
cos 2u� e4

8
cos 4uþ � � �

� 	
sinm

cos 2u
dσ

¼ dλ� sinm
e2

2
þ e4

8
cos 2uþ � � �

� 	
dσ:

Substituting (5.87) into the above equation gives:

dl ¼ dλ� sinm
e2

2
þ e4

8
� e4

8
cos 2m sin 2 M þ σð Þ þ � � �

2
4

3
5dσ

¼ dλ� sinm
e2

2
þ e4

8
� e4

16
cos 2mþ e4

16
cos 2m cos 2 M þ σð Þ þ � � �

2
4

3
5dσ:

Integrating the above equation (accurate to the term of e4) results in:
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l ¼ λ� sinm
e2

2
þ e4

8
� e4

16
cos 2m

� 	
σ þ e4

16
cos 2m sin σ cos 2M þ σð Þ

� 

,

Or

l
00 ¼ λ

00 � sinm α
0
σ

00 þ β
0
sin σ cos 2M þ σð Þ

h i
, ð5:92Þ

Where

α
0 ¼ 1

2
þ e2

8
� k

02

16

0
@

1
Ae2

β
0 ¼ e2

16
k
02
ρ

00

k
02 ¼ e2 cos 2m

9>>>>>>>=
>>>>>>>;
:

Equations (5.89) or (5.90) and (5.92) are the formulae for projections of the side

lengths and longitude differences in the Bessel’s solution of geodetic problems.

These expressions are expanded in the power series of e02 and e2, not in the power

series of S. The accuracy of the solution is related to the expanded terms rather than

the distance. The formulae can be applied to the solution of the geodetic problem

over any distances (particularly long distances). The main deficiency of Bessel’s

formula is that, while computing σ given S and computing λ given l, iteration is

needed and the auxiliary quantities m and M should also be calculated beforehand.

5.6.4 Computations of Bessel’s Direct Solution
of the Geodetic Problem

Steps for Solution

Project the Ellipsoidal Elements onto a Spherical Surface

1. Given B1, find u1:

tan u1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
tanB1: ð5:93Þ

2. Calculate the auxiliary quantities m and M:
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sinm ¼ cos u1 sinA1

tanM ¼ tan u1
cosA1

9=
;: ð5:94Þ

3. Convert S into σ:

σ ¼ αSþ β sin σ cos 2M þ σð Þ þ γ sin 2σ cos 4M þ 2σð Þ: ð5:95Þ

The right-hand side of the above equation has the quantity σ that needs to be

computed, hence iteration is needed.

The first-time approximation takes:

σ0 ¼ αS:

The approximation of i times is:

σi ¼ αSþ β sin σi�1 cos 2M þ σi�1ð Þ þ γ sin 2σi�1 cos 4M þ 2σi�1ð Þ,

until the required accuracy is satisfied. For instance, if we want ΔS < 0.3 m, then

we need |σi � σi � 1| < 0.0100 (i.e., 2.8 � 10�6); if we want ΔS < 0.03 m, then we

need |σi � σi � 1| < 0.00100 (i.e., 2.8 � 10�7).

For precise solutions, α, β, and γ are calculated according to the expressions

below:

α ¼ ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e02

p
a

1� k2

4
þ 7k4

64
� 15k6

256

0
@

1
A

β ¼ ρ
k2

4
� k4

8
þ 37k6

512

0
@

1
A

γ ¼ ρ
k4

128
� k6

128

0
@

1
A

k2 ¼ e
02
cos 2m

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

:

For approximate solutions in meters, the above equations are accurate to the

term of k4, while for approximate solutions in hectometers, the γ term can also be

neglected.
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Solution of Spherical Triangles

1. Find A2

Since A2 ¼ A0
2 + 180�, from the right-angled spherical triangle P

0
0Q2P

0
2, one

obtains:

tanA2 ¼ tanA
0
2 ¼

tanm

cos M þ σð Þ : ð5:96Þ

2. Find u2
Again from the right-angled spherical triangle P

0
0Q2P

0
2, we have:

tan u2 ¼ cosA
0
2 tan M þ σð Þ ¼ � cosA2 tan M þ σð Þ: ð5:97Þ

3. Compute λ

From the right-angled spherical triangles P
0
0Q1P

0
1 and P

0
0Q2P

0
2, we get:

tan λ1 ¼ sinm tanM ¼ sin u1 tanA1

tan λ2 ¼ sinm tan M þ σð Þ ¼ sin u2 tanA2

λ ¼ λ2 � λ1

9=
;: ð5:98Þ

So far, the three unknowns A2, u2, and λ on the spherical surface have all been
obtained.

Project Elements from the Spherical Surface onto the Ellipsoidal Surface

1. Given u2, find B2:

tanB2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e02

q
tan u2: ð5:99Þ

2. Convert λ into l and find L2:

l ¼ λ� sinm α
0
σ þ β

0
sin σ cos 2M þ σð Þ þ γ

0
sin 2σ cos 4M þ 2σð Þ

h i
, ð5:100Þ

where
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α
0 ¼ e2

2
þ e4

8
þ e6

16

0
@

1
A� e2

16
1þ e2
� �

k
02 þ 3

128
e2k

04

β
0 ¼ ρ

e2

16
1þ e2
� �

k
02 � e2

32
k
04

2
4

3
5

γ
0 ¼ ρ

e2

256
k
04

k
02 ¼ e2 cos 2m

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

,

The maximum value of γ0 is 0.000200; hence, the γ0 term in (5.100) is generally

negligible.

For the approximate solutions in meters, α’ and β’ can be calculated according
to (5.92); for the approximate solutions in hectometers, one can calculate

according to equations that leave out the term of k’2:

α
0 ¼ 1

2
þ e2

8

� 	
e2:

Finally, one obtains:

L2 ¼ L1 þ l ð5:101Þ

Determination of the Quadrant

With the above formulae, m, M, λ1, λ2, and A2 are calculated using trigonometric

functions. Therefore, it is still necessary to discuss the determination of their

quadrants.

To determine quadrants for these quantities easily, we draw Figs. 5.44, 5.45,

5.46, and 5.47, which denote the quadrants in which m, M, λ1, λ2, and A2 lie when

point P1
0 is in the northern hemisphere, i.e., u1 is positive, and A1 lies in quadrants I,

II, III, and IV. In each figure, P2 is assumed to have three positions, denoted by P
0
2,

P
0 0
2, and P

0 0 0
2 , respectively. Correspondingly, λ2 lies in three different quadrants. In

the figures, the great circle intersects the equator at P0
0 and P0

00, and dashed lines

denote the back side of the sphere. Figure 5.44 demonstrates that A1 is in quadrant I,

and here m, M, and λ1 are all in quadrant I. At points P
0
2, λ2 and A2

0 are both in the

quadrant I; at points P
0 0
2, λ2 and A0

2 are both in quadrant II; at points P
0 0 0
2 , λ2 lies in

quadrant III while A2
0 lies in quadrant II. Since A2 ¼ A0

2 	 180�, A2 lies in

quadrant III or quadrant IV. Similarly, we can also explain the situations in

Figs. 5.45, 5.46, and 5.47.

Fig. 5.44 shows that λ2 and (M + σ) are in the same quadrant. The quadrant of A2

can be determined by the sign of tan A2: when tan A2 is positive, A2 lies in quadrant
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III; when tan A2 is negative, A2 lies in quadrant IV. The above conclusion also

applies to the condition where A1 lies in quadrant II (Fig. 5.45).

However, when A1 lies in quadrants III and IV (Figs. 5.46 and 5.47), λ2 is in the

same quadrant as 360∘ � (M + σ). When tan A2 is positive, A2 is in quadrant I;

when tan A2 is negative, A2 is in quadrant II.

From the above four figures, it is not difficult to obtain the quadrant table of m,
M, λ1, λ2, and A2 when u1 is positive (in the northern hemisphere); see Table 5.9.

When u1 is negative (in the southern hemisphere), we obtain another table, which is

omitted here.

Fig. 5.44 A1 lies in quadrant I (m, M, and λ1 are all in quadrant I, λ2 and M + σ are in the same

quadrant, A2 is in quadrant IV or III). Dashed line indicates the back side of the sphere

Fig. 5.45 A1 lies in quadrant II (m in quadrant I, M and λ1 in quadrant II, λ2 and M + σ are in the

same quadrant, A2 is in quadrant IV or III). Dashed line indicates the back side of the sphere
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Fig. 5.46 A1 lies in quadrant III (m in quadrant IV,M in quadrant II, and λ1 lies in quadrant III, λ2
and 360º � (M + σ) are in the same quadrant, and A2 lies in quadrant I or II).Dashed line indicates
the back side of the sphere

Fig. 5.47 A1 lies in quadrant IV (m in quadrant IV,M in quadrant I, λ1 lies in quadrant IV, λ2 and
360º � (M + σ) are in the same quadrant, and A2 lies in quadrant II or I). Dashed line indicates the
back side of the sphere

Table 5.9 Determination of the quadrant of the azimuths (A1 and A2), longitudes (λ1 and λ1), and
auxiliary quantities (m and M ) in the solution of the geodetic problem (u1 > 0)

A1 m M λ1 λ2 A2

I I I I Same quadrant with (M + σ) tan A2 positive, in quadrant III

tan A2 negative, in quadrant IVII I II II

III IV II III Same quadrant with 360o � (M + σ) tan A2 positive, in quadrant I

tan A2 negative, in quadrant IIIV IV I IV
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Example

The solutions of long-distance geodetic problems are vital and useful in navigation

and long-distance missile launching. We hereby provide the block diagram and

instance of computation for approximate solutions in meters. Likewise, we can also

program the block diagram for approximate solutions in hectometers and produce

precise solutions (precise solutions or approximate solutions in hectometers)

according to the formulae.

Block Diagram

The block diagram of computation for the solution of the direct geodetic problem is

shown in Fig. 5.48.

Computations

A sample computation for the solution of the direct geodetic problem is provided in

Table 5.10.

5.6.5 Computations of Bessel’s Inverse Solution
of the Geodetic Problem

Steps for Solution

Project the Ellipsoidal Elements onto the Spherical Surface

1. Given B, find u
u can be obtained from:

tan u1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
tanB1

tan u2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
tanB2

�
: ð5:102Þ

2. Given l, find λ
In the inverse solution, given the longitude difference l on the ellipsoid, the

corresponding longitude difference λ on the spherical surface is still unknown.

To compute λ given l, from (5.92), obviously we first need to calculate σ, m, and
M since all of them are involved in the reckoning of the correction terms. The

accuracy required is not high and generally approximations made twice will be

satisfactory.
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Fig. 5.48 Block diagram of the solution of direct geodetic problem (Y denotes yes, N denotes no)
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Applying the cosine theorem to the triangle P
0
1P

0
2N

0 in Fig. 5.43 gives (l is used
to approximately replace λ, and hence the σ obtained is an estimated value σ0):

cos σ0 ¼ sin u1 sin u2 þ cos u1 cos u2 cos l: ð5:103Þ

From triangles P
0
1P

0
2Q1 and P

0
1P

0
2N

0, one obtains:

sinm0 ¼ cos u1 sinA1 ¼ cos u1 cos u2
sin l

sin σ0
: ð5:104Þ

The approximate estimated value m0 of m is hereby obtained.

With (5.92), we take the approximate correction for λ:

Δλ ¼ λ� l � α
0
σ0 sinm0 ¼ 0:003351σ0 sinm0: ð5:105Þ

Hence, we have:

λ0 ¼ lþ Δλ:

Taking (5.103) and differentiating σ and l results in:

� sin σ0Δσ ¼ � cos u1 cos u2 sin λ0Δλ,

Or

Δσ ¼ cos u1 cos u2
sin λ0
sin σ0

Δλ ¼ sinm0Δλ: ð5:106Þ

Hence, the result is:

σ1 ¼ σ0 þ Δσ:

Substituting λ0 and σ1 into (5.104) produces:

Table 5.10 Sample computation for the direct solution of the geodetic problem

Given data Ellipsoidal parameters Computational results

L1 ¼ 90� 000 00.1100 Krassowski Ellipsoid L2 ¼ 215� 590 04.33300

B1 ¼ 35� 000 00.2200 B2 ¼ �30� 290 20.96400

A1 ¼100� 000 00.3300 A2 ¼290� 320 53.38900

S ¼15 000 000.2 m GRS75 Ellipsoid L2 ¼ 215� 590 13.05900

B2 ¼ �30� 290 23.86700

A2 ¼ 290� 320 48.83300

GRS80 Ellipsoid L2 ¼ 215� 590 13.30600

B2 ¼ �30� 290 23.94700

A2 ¼ 290� 320 48.70800
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sinm ¼ cos u1 cos u2
sin λ0
sin σ1

: ð5:107Þ

In addition, applying the cotangent theorem to the triangle P
0
1P

0
2N

0, replacing λ
with λ0 gives:

cotAo
1 ¼ tan u2 cos u1cscλ0 � sin u1 cot λ0

tanAo
1 ¼ sin λ0

cos u1 tan u2 � sin u1 cos λ0

9=
;: ð5:108Þ

In this way the estimated value Ao
1 of A1 is obtained.

In the right triangle P
0
1P

0
2Q1, we have:

cotM ¼ sinm cotA1
�

sin u1

tanM ¼ sin u1
sinm

tanA1
�

9>>>=
>>>;
: ð5:109Þ

Hence, the estimated value of M is obtained.

We calculate m according to (5.107) and compute α0 and β0 according to

(5.100) and (5.92); the required accuracy is the same as for the direct solution.

Finally, we calculate the longitude difference on the spheroid using the

expression:

λ ¼ lþ sinm α
0
σ þ β

0
sin σ cos 2M þ σð Þ

h i
: ð5:110Þ

Solution of Spherical Triangles

1. Find σ
As shown in Fig. 5.43, applying the cosine law to the spherical triangle

P
0
1P

0
2N

0 gives:

cos σ ¼ sin u1 sin u2 þ cos u1 cos u2 cos λ: ð5:111Þ

2. Find A1 and A2

As shown in Fig. 5.43, applying the cotangent law to the spherical triangle

P
0
1P

0
2N

0 gives:
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cotA1 ¼ tan u2 cos u1cscλ� sin u1 cot λ

tanA1 ¼ sin λ

cos u1 tan u2 � sin u1 cos λ

9=
;, ð5:112Þ

cotA2 ¼ sin u2 cot λ� tan u1 cos u2cscλ

tanA2 ¼ sin λ

sin u2 cos λ� tan u1 cos u2

9=
;: ð5:113Þ

Convert the Spherical Elements into Ellipsoidal Elements

1. Geodetic azimuths A1 and A2 remain unconverted.

2. Convert σ into S

S is given by:

S ¼ 1

α
σ � β sin σ cos 2M þ σð Þ � γ sin 2σ cos 4M þ 2σð Þ½ �, ð5:114Þ

where α, β, and γ are calculated according to the precise solution formula. The

accuracy required is the same as in the direct solution.

Determination of the Quadrant

In computation we also need to determine the quadrants of A1 and A2. No more

details will be given here; see Table 5.9.

Example

Block Diagram

The block diagram of computation for the solution of the inverse geodetic problem

is given in Fig. 5.49.

Computations

Table 5.11 provides a sample computation for the solution of the inverse geodetic

problem.
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Fig. 5.49 Block diagram of the inverse solution of the geodetic problem (where Y denotes Yes, N

denotes No)
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Review and Study Questions

1. Why do we choose a reference ellipsoid as the reference surface on which

geodetic surveying computations are performed? What are the requirements for

the reference surface selected for geodetic computations?

2. Explain the concepts of the Earth ellipsoid and the reference ellipsoid.

3. Given the flattening α and eccentricity e, can we define the shape and size of the
reference ellipsoid and why?

4. What is the difference between astronomical longitude and latitude and the

geodetic longitude and latitude?

5. Construct a sketch to derive the formulae for transformations between L, B,
H and X, Y, Z.

6. Construct and derive the formulae for transformations between the geocentric

coordinate system O-XYZ and the topocentric coordinate system P-xyz (list the
formulae that include rotation matrices and translation vectors will do).

7. Which point on the ellipsoid has an RA independent of directions? Please

illustrate.

8. Write out a set of formulae for the radius of curvature of the meridian, the

radius of curvature in the prime vertical, and the mean radius of curvature,

using V, c and W, a, and specify the relationship between the values of their

results.

9. Analyze the laws of changes of the meridional radius of curvature and radius of

curvature in the prime vertical with the changes of latitude (trajectory of the

center of curvature when 0 � B � 90�).
10. Construct and derive the integral of the meridian arc length.

11. Construct and derive the formula for the length of a parallel arc.

12. Why does the length of the meridian arc of the unit difference in latitude in the

northern hemisphere turn out to be longer in the north and shorter in the south?

Why is the arc length along a parallel of the unit difference in longitude shorter

in the north and longer in the south?

Table 5.11 Sample computation for the inverse solution of the geodetic problem

Given data Ellipsoidal parameters Computational results

L1 ¼ 90� 000 00.1100 Krassowski Ellipsoid S ¼ 15 000 000.330 m

B1 ¼ 35� 000 00.2200 A1 ¼ 100� 000 00. 32100

L2 ¼ 215� 590 04.3400 A2 ¼ 290� 320 53. 39200

B2 ¼ �30� 290 20.9600 GRS75 Ellipsoid S ¼ 14 999 751.047 m

A1 ¼ 100� 000 00. 22800

A2 ¼ 290� 320 53. 32900

GRS80 Ellipsoid S ¼ 14 999 744.004 m

A1 ¼ 100� 000 00. 22900

A2 ¼ 290� 320 53. 32900
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13. In astro-geodetic surveying, the mean square errors of the astronomical deter-

minations of latitude and longitude are respectively 	0.300 and 	0.02 s (equiv-

alent to 	0.300). So if B ¼ 45�, what are the arc lengths along an ellipsoidal

meridian and along a parallel and what are these mean square errors equivalent

to?

14. Why can we transform the solution of ellipsoidal triangles to the solution of

plane triangles? Please explain Legendre’s theorem by which ellipsoidal tri-

angles are solved.

15. What are the reasons for the formation of reciprocal normal sections? Please

describe the rules of position of the normal section and the reverse normal

section. Under what condition do the reciprocal normal sections between two

points on the ellipsoid coincide?

16. What is the geodesic? Please describe the relationship between positions on the

geodesic and reciprocal normal sections.

17. Which normal sections on the ellipsoid are geodesics? Are parallel and prime

vertical geodesics?

18. Derive the differential equations for geodesics.

19. Derive Clairaut’s equation for geodesics and illustrate the meaning of this

equation.

20. Given the formula for correction of the vertical deflection:

δ1 ¼ R� R1 ¼ � ξ sinA� η cosAð Þ cot z1,

mark out the quantities δ1, ξ, η, A, and Z1 on the auxiliary sphere.

21. Construct and explain the meaning of skew normal correction.

22. Draw a diagram of correction for skew normals with the azimuth values of

sides lying in the I, II, III, and IV quadrants, respectively and specify the sign of

the correction for skew normals δ2.
23. Explain the meaning of correction from normal section to geodesic.

24. Account for the meaning of reduction of the observed zenith distance.

25. What are the data that should be given to calculate the three corrections, i.e.,

correction for deflection of the vertical, correction for skew normals, and

correction from normal section to geodesic? Under what conditions do the

three corrections equal zero, respectively.

26. Account for the basic process of slope distance reduction.

27. Derive the approximate formula for the reduction of slope distance:

S ¼ RAσ,

where σ is given by D2 ¼ (RA + H1)
2 + (RA + H2)

2 � 2(RA + H1)(RA + H2)

cos σ.
28. What is gravimetric deflection of the vertical and astro-geodetic deflection of

the vertical? What are the two factors that affect the value of deflection of the

vertical?
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29. Write out the formula for deflection of the vertical. What are the double-

parallel conditions for the validity of this formula?

30. Explain the meaning of astronomical azimuth reduction.

31. What is the function of Laplace azimuth in the triangulateration network?

32. Explain the concepts of solutions of the direct and inverse geodetic problems.

33. Explain the basic principles of the point-by-point integration for solutions of

direct geodetic problems.

34. Explain the steps and projection conditions of Bessel’s solution of geodetic

problems.

35. Derive the relationship between the reduced latitude and the geodetic latitude.

36. Prove that in Bessel’s solution of the geodetic problem, the azimuth of a

geodesic remains unchanged after projection.
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Chapter 6

Gauss and UTM Conformal Projections

and the Plane Rectangular Coordinate

System

In Chap. 5 we established the relationship between geodetic elements on the Earth’s

surface and those on the ellipsoid. This chapter further establishes the

corresponding relationship between geodetic elements on the ellipsoid and those

on the plane. We will discuss the corresponding relationship between geodetic

coordinates, geodesic direction, geodesic distance, and geodetic azimuth, and their

corresponding counterparts on the plane. Such corresponding relationship is real-

ized through mathematical projection methods, of which there are many. This

chapter, however, is primarily concerned with the two conformal (orthomorphic)

projections used in geodetic survey, i.e., the Gauss projection and the Universal

Transverse Mercator (UTM) projection and establishes the projection relationship

between the geodetic coordinate system and plane coordinate system, as well as the

relationship between the geodetic control network on the ellipsoid and that on the

plane.

6.1 Overview of Projection

6.1.1 Aims of Projection

The reference ellipsoid is the datum for geodetic computations (of geodetic coor-

dinates, geodetic azimuth, and geodesic distance, etc.) and for study of the shape

and size of the Earth (computations of vertical deflection and height anomaly).

Geodetic coordinates on the ellipsoid are the fundamentals for geodetic survey. One

of the roles of geodetic survey is to determine the coordinates of surface points to

control topographic mapping. Maps are flat, so the coordinates of geodetic points

used to control mapping have to be plane coordinates, otherwise they will be

unrelated, for one belongs to the plane system and the other the ellipsoid system.

Establishing the corresponding relationship between geodetic coordinates and

plane coordinates therefore becomes necessary, which is called projection. Within

Z. Lu et al., Geodesy, DOI 10.1007/978-3-642-41245-5_6,
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a small area, the Earth’s surface can be considered a plane, but for a large area it is

subject to distortion if represented as a plane. Projection is essentially to establish

functional models to allocate such distortions in a reasonable way.

In addition, from Bessel’s formula for the solution of the geodetic problem in

Chap. 5, we know that, although the ellipsoid is a mathematical surface, geodetic

computations carried out on it are complicated. If elements on the ellipsoid are

reduced to a plane, geodetic computations will become much simpler. For instance,

coordinates of points on a plane can be solved according to simple formulae in

plane trigonometry.

Thus, projection from the ellipsoid surface onto a plane is used to control

topographic mapping and to simplify survey computations. The specialized disci-

pline concerning problems of projection is called map projection. In geodetic

survey, the projection of a geodetic control network is also studied in addition to

the projection of coordinates for positions of points.

6.1.2 Definition of Projection

Projection means establishing a one-to-one correspondence between the geodetic

elements on the ellipsoid and the corresponding elements on the plane according to

certain mathematical rules. The former includes geodetic coordinates, geodesic

direction, distance of geodesic line, geodetic azimuth, etc. Once the relationship

between the coordinates of point positions is specified, the corresponding relation-

ship between other elements will be determined as well; hence, the key to deter-

mining the projection relationship is to determine the projection relationship

between the coordinates of point positions.

The “certain mathematical rules” mentioned can be expressed by the following

equations:

x ¼ F1 B; Lð Þ
y ¼ F2 B; Lð Þ

�
ð6:1Þ

where (B, L ) are the geodetic coordinates of a point on the ellipsoid, and (x, y) are
the rectangular coordinates of this point after being projected onto the plane. It is

obvious that (6.1) is single-valued, finite, and continuous.

Equation (6.1) expresses the analytical projection relationship between points on

the ellipsoid and their corresponding points on the projection plane, without any

geometrical meaning. Different projections actually determine the functional forms

of F1 and F2 in the formulae according to their specified conditions. The Gauss

projection (and the UTM projection) has its own particular conditions. Once F1 and

F2 are determined, the geodetic coordinates of every point on the ellipsoid and the

rectangular coordinates of their respective corresponding points can be determined

accordingly.

266 6 Gauss and UTM Conformal Projections and the Plane Rectangular Coordinate System

http://dx.doi.org/10.1007/978-3-642-41245-5_5


How can F1 and F2 be determined? Projection problems have different solutions

based on different demands. We turn these demands into certain mathematical

conditions and allow them to be expressed in the projection formula to get the

specific mathematical relationship. Next we will discuss the requirements of pro-

jections for controlling mapping.

6.1.3 Conformal Projection and Conformality

Projection means the planar representation of quantities on the ellipsoid, which will

inevitably create distortions. A projection distortion refers to the alteration of angle,

distance, or area after projection. Cones and cylinders are developable surfaces, on

which quantities will not be distorted if represented on a plane. An ellipsoid and a

sphere are undevelopable surfaces that crumple or fold when unrolled and flattened

by force. Projection distortions are no doubt unfavorable, but they can be allocated

and controlled reasonably by determining F1 and F2 in (6.1).

There are three kinds of projection distortions, i.e., angle distortion, distance

distortion, and area distortion. They can be controlled according to specific needs.

A distortion of some kind can be zero, such as when the projection is equiangular,

equivalent (equal-area), or equidistant; distortions of all kinds can also coexist but

have to be kept within a proper degree. It is obviously impossible to eliminate all

distortions at the same time since the ellipsoid is an undevelopable surface and a

projection will invariably introduce distortions.

For large-scale mapping, if figures on a map can be maintained conformable to

the original on the ellipsoid within a certain area, i.e., angles remain undistorted

after projection, then on such maps terrains and land features will be completely

conformable to the real features, which will bring great convenience in use. A

projection in which all angles at any point are preserved is known as the equiangular

or conformal projection.

As shown in Fig. 6.1, a small midpoint polygon OABCDE on the ellipsoid is

conformally projected onto the plane as O0A0B0C0D0E0. Each line segment on the

ellipsoid in Fig. 6.1 is a differential line segment (called an arc element), which is

considered a straight line and remains the same after being projected onto the plane.

According to the definition of conformal projection, the internal angles of every

triangle are not altered after projection. Triangles are correctly represented after

conformal projection, so their corresponding sides are proportional, thus:

O0A0

OA
¼ O0B0

OB
¼ O0C0

OC
¼ O0D0

OD
¼ O0E0

OE
¼ m ¼ constant

where m is the scale factor. Consequently, for certain points in conformal projec-

tion, the scale factor m is independent of direction. However, this property of

conformal projection is conditional and is only valid within a small area. It is

impossible that a map projection can be achieved in which large areas are rendered
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with true shape, i.e., that the ellipsoid can be unfolded or unrolled onto the plane

without distortions. Hence, within a large area, the scale factor m varies from point

to point, i.e., m is dependent on the position of points. To sum up, the conformality

of conformal projection is that, in conformal projection, the scale factor m is

independent of direction but dependent on the position of points.

Map projections are of many kinds. Taking into account the nature of distortions,

apart from the aforementioned conformal projection, there are also equidistant

projections (the distances between any arbitrary two points on the ellipsoid remain

unchanged after projection onto the plane) and equivalent projections (the area on

the ellipsoid is preserved after projection onto the plane).

Conformality is the unique property that differentiates the conformal projection

from other projections. The general conditions for a conformal projection are based

on this property.

6.2 General Condition for Conformal Projection

6.2.1 Overview

Conformal projection is one kind of map projection, and the Gauss projection and

UTM projection are two kinds of conformal projection. Therefore, the conformal

projection needs to be studied prior to study concerning the Gauss projection or

UTM projection. The task of this section is to derive the general condition for

conformal projection, in combination with the particular conditions for Gauss and

UTM projections; the formula for the Gauss projection or UTM projection will then

be derived.

To derive the general condition for the conformal projection, we have to grasp its

unique property that differs it other projections, i.e., in conformal projection the

Fig. 6.1 A figure correctly represented by conformal projection
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scale factor is independent of direction. This is the fundamental idea in deducing

the general condition for conformal projection. The specific steps are:

1. Based on definition of the scale factor:

m ¼ ds

dS
,

where ds is the arc element on the projection plane and dS is the arc element on

the ellipsoid; write down its specific expression.

2. We deduce the general condition for conformal projection according to the fact

that the scale factor m is independent of the azimuth A.

6.2.2 Expression of Scale Factor

In Fig. 6.2, the left part of the diagram is the ellipsoid surface and the right part is

the projection plane. We establish the Cartesian coordinate system on the projection

plane with o as the origin, the x-axis as the vertical axis, and the y-axis as the

horizontal axis. The coordinate system so defined is a left-hand system, while in

most cases the plane analytical system is displayed as the right-hand system,

because the azimuth defined in geodesy is the angle measured clockwise from the

north direction (which is the same as the angle defined in the left-hand system). In

many books, the plane coordinates are expressed as a distance in meters to the east,

referred to as the “Easting,” and a distance in meters to the north, referred to as the

“Northing” (FGDC 2001; NIMA 1989, 1990; Maling 1992; DeMers 2005; Galati

2006).

There are two infinitely near points P and P1 on the ellipsoid surface, which are

projected as P0 and P1
0. Their coordinates are shown in Fig. 6.2. dS is the geodesic

arc element with an azimuth A and the projected arc element on the plane is ds. We

draw the meridian and parallel through points P and P1, respectively, from the

differential triangle PP1P2 according to the differential formulae for the arc lengths

of the meridian and parallel, and the expression of the arc element dS on the

ellipsoid can be written as:

dS2 ¼ M2dB2 þ r2dL2 ¼ r2
M2

r2
dBð Þ2 þ dLð Þ2

� �
, ð6:2Þ

where the curvature radii M and r are functions of the latitude B. To simplify the

derivation process of the formula, let:

dq ¼ M

r
dB, ð6:3Þ

then (6.2) can be simplified as:
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dS2 ¼ r2 dqð Þ2 þ dLð Þ2
h i

: ð6:4Þ

From (6.3) we know that q is merely the function of B, which can be called

isometric latitude. The relational expression between the geodetic latitude B and

isometric latitude q can be determined according to:

q ¼
ð
M

r
dB,

which means that, given a geodetic latitude, one corresponding isometric latitude

can be obtained accordingly. Isometric latitude, however, is meaningless in prac-

tical use. There is no reason to calculate the isometric latitude and it is introduced

here only for the convenience of formula derivation.

The arc element ds on the projection plane can be written directly according to

the formula for an arc element on the plane curve:

ds2 ¼ dxð Þ2 þ dyð Þ2: ð6:5Þ

Then we have:

m2 ¼ ds

dS

� �2

¼ dxð Þ2 þ dyð Þ2

r2 dqð Þ2 þ dLð Þ2
h i : ð6:6Þ

The deduction of a conformal condition has to be based on the fact that the scale

factor m is independent of the azimuth A. Thus, the azimuth has to be introduced in

(6.6) to change the above formula. We know that projection means to determine

Fig. 6.2 Scale factor m ¼ ds
dS for (a) an ellipsoid surface and (b) a projection plane
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specifically the functions F1 and F2 of (6.1), i.e., to establish the functional

relationship between the plane coordinates (x, y) and the geodetic coordinates

(L, B). Since the geodetic latitude B is related to q, the projection problem is to

establish the functional relationship between (x, y) and (L, q). The geodetic longi-
tude L of a point is referenced to the initial geodetic meridian. If another meridian

L0 is instead referred to rather than the initial geodetic meridian, then L should be

transformed into the longitude difference l, where l ¼ L � L0, and dl ¼ dL.
Therefore, establishing the relationship between (x, y) and (L, q) will be changed

into that between (x, y) and (l, q). We assume their relationship is:

x ¼ f 1 q; lð Þ
y ¼ f 2 q; lð Þ

�
: ð6:7Þ

The total differential of the above equation gives:

dx ¼ ∂x
∂q

dqþ ∂x
∂l

dl

dy ¼ ∂y
∂q

dqþ ∂y
∂l

dl

9>>>>=
>>>>;
:

Substituting the above equations into (6.5) yields:

ds2¼ ∂x
∂q

dqþ∂x
∂l

dl

2
4

3
5
2

þ ∂y
∂q

dqþ∂y
∂l

dl

2
4

3
5
2

¼
"

∂x
∂q

0
@

1
A

2

þ ∂y
∂q

0
@

1
A

2#�
dq

	2þ2

"
∂x
∂q

∂x
∂l

þ∂y
∂q

∂y
∂l

#
dq�dlþ

"
∂x
∂l

0
@

1
A

2

þ ∂y
∂l

0
@

1
A

2#�
dl
	
2:

With

E ¼ ∂x
∂q

0
@

1
A

2

þ ∂y
∂q

0
@

1
A

2

F ¼ ∂x
∂q

∂x
∂l

þ ∂y
∂q

∂y
∂l

G ¼ ∂x
∂l

0
@

1
A

2

þ ∂y
∂l

0
@

1
A

2

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

, ð6:8Þ

we obtain:
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ds2 ¼ E dqð Þ2 þ 2F dqð Þ dlð Þ þ G dlð Þ2: ð6:9Þ

Substituting the above equation into (6.6) produces:

m2 ¼ E dqð Þ2 þ 2F dqð Þ dlð Þ þ G dlð Þ2

r2 dqð Þ2 þ dlð Þ2
h i : ð6:10Þ

Equation (6.10) does not include the direction-dependent elements. To introduce

the condition that “scale factor m is independent of azimuth A”, we need to further

convert (6.10).

From Fig. 6.2, we have:

tan 90∘ � Að Þ ¼ P1P2

PP2

¼ MdB

rdl
¼ dq

dl
,

and consequently:

dl ¼ tanAdq: ð6:11Þ

Inserting the above equation into (6.10) gives:

m2 ¼ E dqð Þ2 þ 2F tanA dqð Þ2 þ G tan 2A dqð Þ2

r2 dqð Þ2 þ tan 2A dqð Þ2
h i ¼ Eþ 2F tanAþ G tan 2A

r2 sec 2A

¼ E cos 2Aþ 2F sinA cosAþ G sin 2A

r2
: ð6:12Þ

6.2.3 General Condition for Conformal Projection

To enable m to be independent of A in (6.12), we must satisfy the conditions that:

F ¼ 0, E ¼ G.

Inserting (6.8) gives:

∂x
∂q

� ∂x
∂l

þ ∂y
∂q

� ∂y
∂l

¼ 0

∂x
∂q

0
@

1
A

2

þ ∂y
∂q

0
@

1
A

2

¼ ∂x
∂l

0
@

1
A

2

þ ∂y
∂l

0
@

1
A

2

9>>>>>=
>>>>>;
: ð6:13Þ

From the first equation in (6.13), we have:
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∂x
∂l

¼ �
∂y
∂q

∂y
∂l

∂x
∂q

:

Substituting into the second equation of (6.13) produces:

∂x
∂q

� �2

þ ∂y
∂q

� �2

¼
∂y
∂l

� �2

∂x
∂q

� �2

∂x
∂q

� �2

þ ∂y
∂q

� �2
" #

:

Removing the common term from both sides of the equation gives:

∂x
∂q

� �2

¼ ∂y
∂l

� �2

:

We evaluate the above equation and extract only the positive arguments to

ensure that both the shape and the position are conformal after projection. Inserting

into the first equation in (6.13) produces:

∂x
∂q

¼ ∂y
∂l

∂x
∂l

¼ �∂y
∂q

9>>>>=
>>>>;
: ð6:14Þ

This is the general condition for the conformal projection from the ellipsoid onto

the plane, which was derived by the French mathematician A.L. Cauchy and the

German mathematician B. Riemann, and is therefore known as the Cauchy–Rie-

mann differential equation.

The Cauchy–Riemann differential equation is the sufficient and necessary con-

dition for a conformal projection. Likewise, the general condition for a conformal

projection from the plane to the ellipsoid can be derived:

∂q
∂x

¼ ∂l
∂y

∂l
∂x

¼ �∂q
∂y

9>>>>=
>>>>;
: ð6:15Þ

Also, after satisfying F¼ 0 and E¼G, the formula for the scale factor (6.12) of a

conformal projection from the ellipsoid onto the plane can be simplified to:
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m2 ¼ E

r2
¼

∂x
∂q

0
@

1
A

2

þ ∂y
∂q

0
@

1
A

2

r2
,

or m2 ¼ G

r2
¼

∂x
∂l

0
@

1
A

2

þ ∂y
∂l

0
@

1
A

2

r2
:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð6:16Þ

These two formulae are equivalent, only of different form. We can choose either

of these two formulae based on convenience for derivations. These formulae will be

used to study the scale factor of the Gauss projection.

6.3 Fundamentals of the Gauss Projection

6.3.1 History and Development of the Gauss Projection

Gauss projection is the abbreviation for Gauss–Krüger projection, also known as

the transverse cylindrical conformal projection, which is one of the conformal

mappings of the Earth ellipsoid onto a plane. The Gauss projection was first

credited to Carl Friedrich Gauss, a German mathematician, physicist, astronomer,

and geodesist. During the period 1820–1830, when Gauss dealt with the triangula-

tion results in Hannover, Germany, he used the ellipsoidal transverse Mercator

projection that had a constant scale along the central meridian, which was a subject

of his own investigations. However, he did not publish or release the results. The

concluding formula for such a projection was found in the letters he wrote to his

friends.

This projection was adapted by Oskar Schreiber in his book Theory of Projection
Methods of Hannover Land Surveying (Theorie der Projektionsmethode der
hannoverschen Landsvermessung) published in 1866 (Schreiber 1866) and thus

brought the theory of the Gauss projection to the attention of the public.

A more detailed elaboration on the theory of Gauss projection and the practical

formulae was provided by the German geodesist Louis Krüger in his Conformal
Mapping of the Earth Ellipsoid to the Plane (Konforme Abbildung des
Erdellipsoids in der Ebene) published in 1912 (Krüger 1912). Krüger thoroughly

studied and complemented the Gauss projection in this book, which enabled such a

projection to be widely used in many countries. This projection was therefore called

the Gauss–Krüger projection, more usually known as the Gauss projection.

To apply the Gauss projection conveniently, the German scholar Boaga in 1919

suggested adoption of projection zones 3� wide. Each zone is assigned a false
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y-coordinate of 500,000 m and the ordinates are also numbered. The division of

projection zones starts from Greenwich.

The Gauss projection has received much attention and study from geodesists

across the world, among which the investigations done by the Bulgarian geodesist

Vladimir K. Khristov is the most representative. His two works The Gauss-Kr€uger
Coordinates on the Ellipsoid (Die Gauss-Kr€uger’schen Koordinaten auf dem
Ellipsoid) published in 1943 and The Gaussian and Geographical Coordinates on
the Krassowski Ellipsoid (Die Gaussschen und geographischen Koordinaten auf
dem Ellipsoid von Krassowski) published in 1955 enriched and developed Gauss

projection in both theory and practice (Hristow 1943, 1955).

6.3.2 Conditions for Gauss Projection

In Fig. 6.3a we imagine an elliptical cylinder wrapped around the Earth ellipsoid

tangential to a meridian on the ellipsoidal surface (which is called the central

meridian or axial meridian). In addition, the central axis of the elliptic cylinder

passes through the center of the ellipsoid. The ellipsoidal elements within a certain

degree of longitude on either side of the central meridian are projected onto the

elliptic cylindrical surface according to the three conditions given below. The

cylindrical surface is then developed along the generating line passing through

the north and south poles of the ellipsoid. The projection plane obtained is known as

the Gauss projection plane, on which the central meridian and equator are projected

as straight lines. The point of intersection of the projected central meridian and

equator is taken as the coordinate origin O. The central meridian is labeled as the x-
axis (north direction) of the projection, while the y-axis (east direction) is the

mapping of the equator. Hence, the Gauss plane rectangular coordinate system is

established; cf. Fig. 6.3b.

The three conditions for the Gauss projection are:

1. The projection is conformal.

2. The central meridian is projected as a straight line.

3. The length of the central meridian remains unchanged after projection.

The first condition is the general condition for conformal projection, while the

latter two are the particular conditions of the Gauss projection itself. We use

mathematical relations to express the three conditions:

1.
∂x
∂q

¼ ∂y
∂l

,
∂x
∂l

¼ �∂y
∂q

;

2. When l ¼ 0, y ¼ 0

3. When l ¼ 0, x ¼ X (X denotes the length of the meridian arc from the equator)

In terms of solving differential equations, condition 1 can only find the general

solutions of the equation. To find the particular solutions of the differential equa-

tion, one also needs to plug in the initial conditions, i.e. conditions 2 and 3. How to
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determine the projection formula (6.1) according to these three conditions for Gauss

projection will be discussed in Sect. 6.4.

6.3.3 Zone-Dividing of the Gauss Projection

Reasons for Zone Division

In the Gauss projection, except for the central meridian, any other line segments

will be distorted after projection and the distortion increases with the distance from

the central meridian. Such distortion of distance is harmful and should be kept

within small limits to reduce its effect on mapping and map application. The most

effective way to limit the distortion of distance is by “zone-dividing” projection. To

be specific, the globe is divided into narrow zones along meridians that are all of

equal degrees width in longitude (e.g., 6� or 3� wide in longitude). Each zone is

projected separately to get several different projection zones. The meridian at the

center of each zone is called the central meridian, which is projected as the ordinate

axis. Hence, the central meridian is also known as the axial meridian. The meridian

used to divide the projection zones (at the edge of a projection zone) is called the

dividing meridian.

Because a zone division limits the projection area to within a narrow area of the

two sides of the central meridian, the distance distortion is effectively restricted.

Evidently, within a certain area, zones become narrower as the number of zones

increases, and the distortion of distances will correspondingly become smaller. In

terms of limiting distortions of distance, the more zones divided, the better.

After the zone-dividing projection, each projection zone has unique coordinate

axes and coordinate system origins. Thus, a mutually independent Gauss plane

coordinate system has formed and points on the two sides of the dividing meridian

belong to two different coordinate systems. In productive operations, the areas of

Fig. 6.3 Geometric description of the Gauss projection (a) elliptical cylinder being tangential to

the ellipsoid and (b) developed plane of the elliptic cylinder
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interest usually cross between different zones and have to be transformed into the

same coordinate system, so a transformation of coordinates between different

projection zones is necessary (called the transformation between adjacent zones).

Considering this, the area of interest should not be divided into too many zones.

When dividing an area into zones, both of the above-mentioned aspects should

be taken into account. There are two methods of zone division; namely, that of the

zones 6� wide (each zone is 6� of longitude in width) and that of the zones 3� wide
(each zone is 3� of longitude in width). The former can be used for medium- and

small-scale mapping and the latter for large-scale mapping. The plane rectangular

coordinates of the geodetic points should be computed within the zones 6� wide

according to the Gauss projection. In areas with 1:10,000 or much larger scale

mapping, the plane rectangular coordinates in the 3� zones should also be

computed.

Methods of Zone Division

Figure 6.4 depicts the Gauss projection in zones 6� wide. Starting from 0∘ meridian

eastward, each zone is 6� of longitude in width, numbered 1 to 60. The central

meridians in each zone are of longitudes 3∘, 9∘, . . ., up to 357∘. We assume that the

zone is numbered n, and the central meridian is of longitude L0, hence:

L0 ¼ n � 6∘ � 3∘

n ¼ L0 þ 3∘ð Þ
6

9=
;: ð6:17Þ

Given the geodetic longitude L of a certain point, the zone number of this point

for a projection in zones of 6� width can be computed according to:

n ¼ L

6
take integer quotientð Þ þ 1 if there is a remainderð Þ:

The 3� zones are divided based on the 6� zones. The central meridians in even-

numbered zones coincide with those in the zones 6� wide. The central meridians in

odd-numbered zones coincide with the zone-dividing meridians in the zones 6�

wide. The specific zone dividing starts from the meridian of east longitude 1.5�

eastward; each zone is 3� of longitude in width, numbered 1 to 120 as shown in

Fig. 6.4. Setting the zone number to n0, the longitudes of the central meridians in

each zone are:

L0 ¼ 3∘n0

n0 ¼ L0=3

�
ð6:18Þ

Given the geodetic longitude L of a point, the zone number of this point for a

projection in zones of 3� width can be computed according to:
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n0 ¼ L� 1:5

3
take integer quotientð Þ þ 1:

Overlap Between Projection Zones

After a zone-dividing projection, the rectangular coordinate systems in the adjacent

zones are mutually independent. To carry out control network adjustment across

zones, to plot or use topographic maps across the zone boundaries, to show the

control points outside the mapping area (situated in the neighboring projection

zones), etc., the neighboring projection zones have to be overlapped to a certain

degree, as shown in Fig. 6.5.

The so-called overlap between projection zones means that the control points

within a certain area have the coordinate values of two adjacent zones. Thus, on the

topographic maps in this area there are two sets of kilometer grids (the grid of the

coordinate system in its own zone and that in the adjacent zone).

For the overlap of projection zones, China has the following regulations: A

30-min longitude overlap is allowed between zones from west to east (equivalent to

the longitude width of a 1:100,000 map); and a 15-min longitude overlap is allowed

between zones from east to west (corresponding to the longitude width of a

1:50,000 map). Namely, each projection zone extends 300 to the east and 150 to
the west; thus, an overlap of 450 in longitude is formed near the dividing meridian,

as shown in Fig. 6.5.

6.3.4 Natural Coordinates and False (Biased) Coordinates

In the northern hemisphere, after zone-dividing projection, all x-values of Gauss
coordinates are positive and y can have both positive and negative values. To avoid
a negative value of y, 500,000 m is assigned to it, which corresponds to a false or

biased y-coordinate of 500,000 m. Hence, the coordinate values of y are all positive.
Also, each zone is projected separately and forms a mutually independent plane

rectangular coordinate system. The same coordinate value (x, y) in each zone will

have a point corresponding to it, which is likely to cause confusion about the

Fig. 6.4 Zone division of the Gauss projection
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position of a point. To describe the zones in which a point lies, a zone number is

designated before the y value (assigned 500,000 m). The coordinates formed in such

way are called false coordinates, denoted by yfalse. To show the results, the points

are all expressed by the false coordinates, whereas in real applications, the zone

number should be eliminated and the 500,000 m value subtracted. The recovered

values are called the natural coordinates of this point. The relationship between

natural coordinates and false coordinates is shown in Fig. 6.6.

For instance, in 6� zone 19, the natural coordinates of points A and B are:

A :
x ¼ 4 485 076:81 m

y ¼ �2 578:86 m

�
B :

x ¼ 4 485 076:81 m

y ¼ 2 578:86 m

�

and their false coordinates are:

A :
x ¼ 4 485 076:81 m

yfalse ¼ 19 497 421:14 m

�
B :

x ¼ 4 485 076:81 m

yfalse ¼ 19 502 578:86 m

�

6.4 Direct and Inverse Solutions of the Gauss Projection

and Transformation Between Adjacent Zones

6.4.1 Formula for Direct Solution of the Gauss Projection

Derivations of the Formula

The formula for the direct solution of the Gauss projection is the formula used to

compute the Gauss plane rectangular coordinates (x, y), given the geodetic coordi-

nates (L, B) or (l, q) of a point, as shown in Fig. 6.7.

The projection equation from the ellipsoid to the plane is generally expressed as:

Fig. 6.5 Overlap between

projection zones
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x ¼ f 1 l; qð Þ
y ¼ f 2 l; qð Þ

�
: ð6:19Þ

The Gauss projection has three conditions, from which we can derive the

formula for a direct solution of the Gauss projection.

A Gauss projection is carried out along the narrow strips within a certain

longitude east and west of the central meridian. In each projection area, the

difference l between the longitude of an arbitrary point and that of the central

Fig. 6.6 (a) Natural coordinates and (b) false coordinates (biased by 500,000 m)

Fig. 6.7 Direct solution of the Gauss projection
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meridian is quite small, generally within 0–3.5�. Besides, the arc value l
ρ is a small

quantity, so we can expand (6.19) at point (0, q) according to a Taylor series

expansion of binary functions. In this case, the increments of the independent

variable of an arbitrary point (l, q) relative to the expansion point (0, q) are l and
0, respectively, i.e., the increment of q relative to the expansion point is 0. Hence,

the partial derivative with respect to q and the term that includes mixed partial

derivatives with respect to q are all 0. The x series is expanded as:

x ¼ f 1 0; qð Þ þ ∂f 1
∂l








0;qð Þ

lþ 1

2!

∂2
f 1

∂l2








0;qð Þ

l2 þ 1

3!

∂3
f 1

∂l3








0;qð Þ

l3 þ 1

4!

∂4
f 1

∂l4








0;qð Þ

l4 þ . . .

¼ m0 þ m1lþ m2l
2 þ m3l

3 þ m4l
4 þ . . . ,

which is the power series of the difference in longitude l. The value of each

partial derivative at point (0, q) no longer includes the variable l. Hence mi(i ¼ 0,

1, 2, 3, 4,....) is the function of isometric latitude q; m0 ¼ f1(0, q) indicates the

x coordinate of the point (0, q) on the central meridian. From the third condition for

the Gauss projection (when l ¼ 0, x ¼ X), one can get m0 ¼ X.
By the same token, we have:

y ¼ f 2 0; qð Þ þ ∂f 2
∂l








0;qð Þ

lþ 1

2!

∂2
f 2

∂l2








0;qð Þ

l2 þ 1

3!

∂3
f 2

∂l3








0;qð Þ

l3 þ 1

4!

∂4
f 2

∂l4








0;qð Þ

l4 þ . . .

¼ n0 þ n1lþ n2l
2 þ n3l

3 þ n4l
4 þ . . . ,

which is the power series of the difference in longitude l. ni(i ¼ 0, 1, 2, 3, 4,....) is

the function of isometric latitude q; n0 ¼ f2(0, q) indicates the y coordinate of the
point (0, q) on the central meridian. According to the second condition for Gauss

projection (when l ¼ 0, y ¼ 0), we have n0 ¼ 0.

Equation (6.19) has been expanded into the power series of the longitude

difference l:

x ¼ X þ m1lþ m2l
2 þ m3l

3 þ m4l
4 þ . . .

y ¼ n1lþ n2l
2 þ n3l

3 þ n4l
4 þ . . .

�
, ð6:20Þ

where m1, m2, . . ., n1, n2, . . . are undetermined coefficients. They are the functions

of the isometric latitude q (or geodetic latitude B). To apply the first condition for

Gauss projection, taking the partial derivative of (6.20) yields:
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∂x
∂q

¼ dX

dq
þ l

dm1

dq
þ l2

dm2

dq
þ l3

dm3

dq
þ l4

dm4

dq
þ . . .

∂x
∂l

¼ m1 þ 2m2lþ 3m3l
2 þ 4m4l

3 þ . . .

∂y
∂q

¼ l
dn1
dq

þ l2
dn2
dq

þ l3
dn3
dq

þ l4
dn4
dq

þ . . .

∂y
∂l

¼ n1 þ 2n2lþ 3n3l
2 þ 4n4l

3 þ . . .

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

: ð6:21Þ

Inserting the first condition for Gauss projection, namely the general condition

for conformal projection ∂x
∂q ¼ ∂y

∂l and
∂x
∂l ¼ � ∂y

∂q, gives:

dX

dq
þ l

dm1

dq
þ l2

dm2

dq
þ l3

dm3

dq
þ l4

dm4

dq
þ . . . ¼ n1 þ 2n2lþ 3n3l

2 þ 4n4l
3 þ . . . ,

m1 þ 2m2lþ 3m3l
2 þ 4m4l

3 þ . . . ¼ �l
dn1
dq

� l2
dn2
dq

� l3
dn3
dq

� l4
dn4
dq

þ . . .

To make the right sides of the above two equations equal, the necessary and

sufficient condition is that the coefficients of the same powers of l are equal. Hence:

m1 ¼ n2 ¼ m3 ¼ n4 ¼ � � � ¼ 0

n1 ¼ dX

dq

m2 ¼ � 1

2

dn1
dq

n3 ¼ 1

3

dm2

dq

m4 ¼ � 1

4

dn3
dq

n5 ¼ 1

5

dm4

dq

⋮

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

: ð6:22Þ

Since n0 ¼ m1 ¼ n2 ¼ m3 ¼ n4 ¼ � � � ¼ 0, (6.20) can be simplified as:

x ¼ X þ m2l
2 þ m4l

4 þ . . .
y ¼ n1lþ n3l

3 þ n5l
5 þ . . .

�
: ð6:23Þ

It can be seen from the above equation that the projections on the east and west

sides of the central meridian are symmetrical about the central meridian.
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To determine the coefficients of n1, m2, n3, m4, n5, . . . it is necessary to find the

derivative
dX

dq
. It follows from the differential formula for meridian arc length

dX ¼ MdB and (6.3)
dB

dq
¼ r

M
that:

n1 ¼ dX

dq
¼ dX

dB

dB

dq
¼ r:

Hence, it follows that:

n1 ¼ r ¼ N cosB ¼ c

V
cosB: ð6:24Þ

We obtain
dn1
dq

by:

dn1
dq

¼ dr

dq
¼ dr

dB

dB

dq
¼ d

dB

c

V
cosB

� � dB

dq
¼ � c

V2

dV

dB
cosB� c

V
sinB

� �
dB

dq
,

with

dV

dB
¼ d

dB
1þ e02 cos 2B
� 	12 ¼ 1

2

�
1þ e02 cos 2B

	� 1
2 d

dB

�
e02 cos 2B

	

¼ 1

V
e02 cosB � sinBð Þ ¼ � 1

V
e02 cos 2B

sinB

cosB
:

Some of the formulae in this chapter are quite long, so to simplify writing and

improve readability, we have intentionally introduce some symbols as follows:

η ¼ e0 cosB
t ¼ tanB

�
:

Hence, with:

dV

dB
¼ � 1

V
η2t,

we get:
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dn1
dq

¼ � c

V2
� 1

V
η2t

0
@

1
A cosB� c

V
sinB

2
4

3
5
c

V
cosB

c

V3

¼ c

V3
sinB η2 � V2

� 	2
4

3
5V2 cosB ¼ � c

V3
sinB

2
4

3
5V2 cosB

¼ � c

V
sinB cosB ¼ �N sinB cosB:

Inserting into the third equation in (6.22) gives:

m2 ¼ N

2
sinB cosB: ð6:25Þ

Taking derivatives in turn from m2, and substituting correspondingly into (6.22),

we get n3, m4, n5 . . . as:

n3 ¼ N

6
cos 3B 1� t2 þ η2

� 	
m4 ¼ N

24
sinB cos 3B 5� t2 þ 9η2

� 	
n5 ¼ N

120
cos 5B 5� 18t2 þ t4

� 	
⋮

9>>>>>>>>>>=
>>>>>>>>>>;
: ð6:26Þ

Substituting (6.24), (6.25), and (6.26) into (6.23) and neglecting terms like η2l5

and l6 or higher orders, produces the formula for the direct solution of the Gauss

projection:

x ¼ Xþ N

2ρ002
sinB cosBl002 þ N

24ρ004
sinB cos 3B 5� t2 þ 9η2

� 	
l004

y ¼ N

ρ00
cosBl00 þ N

6ρ003
cos 3B 1� t2 þ η2

� 	
l003 þ N

120ρ005
cos 5B

�
5� 18t2 þ t4

	
l005

9>>>=
>>>;
,

ð6:27Þ

where ρ00 ¼ 206264.8062500. l00 (unit: second) is the difference between the longi-

tude of point P on the ellipsoid and that of the central meridian. l is positive when
point P is east of the central meridian, and negative when P is west of the central

meridian. B is the geodetic latitude of P. X is the length of the meridian arc from the

equator to point of latitude B. Given the geodetic coordinates (L, B) of point P (the
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longitude of the central meridian L0 is given, and l ¼ L � L0 can be computed), the

Gauss plane coordinates (x, y) of P can be calculated according to (6.27).

The functional relationship between (x, y) and (L, B) expressed in (6.27) has

determined the specific form of f1 and f2 in (6.19).

When l < 3.5∘, the computation according to (6.34) is accurate to 0.1 m. If the

desired accuracy is 0.001 m, the series in (6.27) can be further expanded. The

process is not shown here. The computational formula is directly given as:

x ¼ X þ N

2ρ002
sinB cosB � l002 þ N

24ρ004
sinB cos 3B 5� t2 þ 9η2 þ 4η4

� 	
l004

þ N

720ρ006
sinB cos 5B 61� 58t2 þ t4

� 	
l
00
6

y ¼ N

ρ00 cosBl
00 þ N

6ρ003
cos 3B 1� t2 þ η2

� 	
l003 þ N

120ρ005
cos 5B

�
5� 18t2

þt4 þ 14η2 � 58η2t2
	
l005

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

:

ð6:28Þ

For the most accurate formulae and for new methods, some literature is

recommended for further reading (Karney 2011; Kawase 2011; Kawase 2012;

Deakin, et al. 2011).

Formula Analysis

Analyzing (6.27), one can get the shapes of the meridians and parallels on the

ellipsoid after the projection (cf. Fig. 6.8).

Projections of the Central Meridian and Equator

When B¼ 0, x¼ 0, and y changes with l, it indicates that the equator is projected as
a straight line, i.e., the abscissa axis. When l ¼ 0, y ¼ 0, x ¼ X it indicates that the

central meridian is also projected as a straight line, i.e., the ordinate axis. There are

no distortions in the projection. The point of intersection of the projected central

meridian and equator is the origin of the plane coordinate system.

Meridian Projection

Setting l as constant, we can get the parameter equation of curves of the projected

meridians in terms of parameter B. When the value of B increases, x increases while
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y decreases; when B is negative, sin(�B) ¼ �sinB and cos(�B) ¼ cosB; thus the
opposite sign of value x equals the value of y. Hence, the projected meridians curve

towards the central meridian and converge towards the poles. The meridian pro-

jections are also symmetrical with respect to the central meridian and equator.

Parallel Projection

Here, B ¼ constant and x and y vary only with l. When the value of l increases, that
of x and y also increases; when l is negative, the value of x is the same while the

value of y has an opposite sign because x is the even power function of l and y is the
odd power function of l. So, the parallels are projected as curves that are symmet-

rical in relation to the x-axis and bending towards the poles.

Symmetry of the Meridian and Parallel Projections

To sum up, the meridians and parallels on the ellipsoid symmetrical about the

central meridian and equator are projected as curves symmetrical with respect to the

x-axis and y-axis.

Fig. 6.8 Shapes of the

meridian and parallel

projections
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Projection of an Arbitrary Geodesic

Arbitrary geodesics are projected as curves that are concave towards the central

meridian and poles.

Distortion of Projection

It can be seen from Fig. 6.8 that the projected meridians appear more curved and

distorted the further away they are from the central meridian. Thus, distortion

increases further away from the central meridian.

Practical Formulae

This section provides the practical formula for the direct solution of the Gauss

Projection, which is suitable for computations based on computer programming.

Parameters relevant to the Krassowski Ellipsoid, GRS75 Ellipsoid, and GRS80

Ellipsoid, respectively, are also provided for practical use.

Formulae for the Direct Solution of the Gauss Projection (Accurate to 0.001m)

In (6.28), we set m ¼ cosB � l∘ � π

180∘
to obtain:

x ¼ X þ Nt
1

2
m2 þ 1

24
5� t2 þ 9η2 þ 4η4
� 	

m4 þ 1

720
61� 58t2 þ t4
� 	

m6

2
4

3
5

y ¼ N mþ 1

6
1� t2 þ η2
� 	

m3 þ 1

120
5� 18t2 þ t4 þ 14η2 � 58η2t2
� 	

m5

2
4

3
5

9>>>>>>=
>>>>>>;
,

ð6:29Þ

where the meridian arc with length X is computed according to (5.41) if the

Krassowski Ellipsoid is adopted; if the GRS75 or GRS80 Ellipsoid is adopted,

X is computed according to (5.42) or (5.43), respectively. Computations continue to

the eighth-power term in (5.41), (5.42), or (5.43).

Formulae for the Direct Solution of the Gauss Projection (Accurate to 0.1 m)

In (6.27), we set m ¼ cosB � l∘ � π

180∘
to obtain:
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x ¼ X þ Nt
1

2
m2 þ 1

24
5� t2 þ 9η2 þ 4η4
� 	

m4

2
4

3
5

y ¼ N mþ 1

6
1� t2 þ η2
� 	

m3 þ 1

120
5� 18t2 þ t4
� 	

m5

2
4

3
5

9>>>>>>=
>>>>>>;
, ð6:30Þ

where the meridian arc with length X is computed also according to (5.41), (5.42),

and (5.43), respectively, according to different ellipsoidal parameters. Computa-

tions continuing to the sixth-power term will be sufficient.

Example

Relevant parameters used in the practical formulae for the Krassowski, Ellipsoid,

GRS75 Ellipsoid, and GRS80 Ellipsoid are given in Sect. 5.2.2.

We take the computer programmed computation of (6.29) as an example;

cf. Table 6.1.

6.4.2 Formula for Inverse Solution of the Gauss Projection

Derivations of the Formula

As Fig. 6.9 shows, the formulae for the inverse solution of the Gauss projection are

those used to compute the geodetic coordinates (L, B) or the corresponding (l, q)
with given Gauss plane coordinates (x, y) of point P.

The equation of projection from plane to ellipsoid is:

q ¼ f 01 x; yð Þ
l ¼ f 02 x; yð Þ

�
: ð6:31Þ

Analogous to the derivations of the formulae for the direct solution of the Gauss

projection, we expand the equation of projection (6.31) from the plane onto the

ellipsoid into the power series and determine the specific forms of the projection

function f 01 and f 02 using the method of undetermined coefficients according to the

three conditions for Gauss projection. Therefore, the formulae for the inverse

solution of the Gauss projection will be derived.

The value of y at point P is small compared to the radius of the ellipsoid. So, the

function in (6.31) can be expanded into the power series of y. The expansion point is
the point F (x, 0), which is the foot of the perpendicular from point P to the central

meridian, also known as the foot point. The latitude of this point is called the
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footprint latitude and is denoted by Bf, whose corresponding isometric latitude is qf.
The meridian arc length from the equator to Bf is Xf; namely, the ordinate of point

F is x ¼ Xf, and the value of Bf can be obtained reversely from Xf according to the

formula for meridian arc length.

According to the symmetry property of the Gauss projection and the second

condition for the projection, the series can be directly written according to (6.23):

Table 6.1 Direct solution of the Gauss projection: sample computation

Given data

Ellipsoidal

parameters

Computational results (m)

6� zones 3� zones
B ¼ 40� 580 32.3300

L ¼ 100� 100

20.1100

Krassowski Ellipsoid x ¼ 4,538,610.951 x ¼ 4,538,610.951

y ¼ 98,666.625 y ¼ 98,666.625

yfalse ¼ 17, 598, 666.625 yfalse ¼ 33, 598, 666.625

GRS75 Ellipsoid x ¼ 4,538,532.847 x ¼ 4,538,532.847

y ¼ 98,665.022 y ¼ 98,665.022

yfalse ¼ 17, 598, 665.022 yfalse ¼ 33, 598, 665.022

GRS80 Ellipsoid x ¼ 4,538,530.729 x ¼ 4,538,530.729

y ¼ 98,664.975 y ¼ 98,664.975

yfalse ¼ 17 598 664.975 yfalse ¼ 33, 598 664.975

B ¼ 35� 260 40.3800

L ¼ 115� 080

51.2200

Krassowski Ellipsoid x ¼ 3,925,560.035 x ¼ 3,924,588.054

y ¼ �168,198.578 y ¼ 104,193.075

yfalse ¼ 20, 331, 801.422 yfalse ¼ 38, 604, 193.075

GRS75 Ellipsoid x ¼ 3,925,492.277 x ¼ 3,924,520.313

y ¼ �168,195.836 y ¼ 104,191.377

yfalse ¼ 20, 331, 804.164 yfalse ¼ 38, 604, 191.377

GRS80 Ellipsoid x ¼ 3,925,490.447 x ¼ 3,924,518.483

y ¼ �168,195.757 y ¼ 104,191.328

yfalse ¼ 20, 331, 804.243 yfalse ¼ 38, 604, 191.328

Fig. 6.9 Inverse solution of

Gauss projection
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q ¼ m0
0 þ m0

2y
2 þ m0

4y
4 þ � � �

l ¼ n01yþ n03y
3 þ n05y

5 þ � � �
�
: ð6:32Þ

Taking the partial derivative of (6.32) based on the first condition for the Gauss

projection yields:

∂q
∂x

¼ dm0
0

dx
þ y2

dm0
2

dx
þ y4

dm0
4

dx
þ � � �

∂q
∂y

¼ 2m0
2yþ 4m0

4y
3 þ � � �

∂l
∂x

¼ y
dn01
dx

þ y3
dn03
dx

þ y5
dn05
dx

þ � � �

∂l
∂y

¼ n01 þ 3n03y
2 þ 5n05y

4 þ � � �

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

: ð6:33Þ

Inserting the general condition for conformal projection gives

dm0
0

dx
þ y2

dm0
2

dx
þ y4

dm0
4

dx
þ � � � ¼ n01 þ 3n03y

2 þ 5n05y
4 þ � � �

y
dn01
dx

þ y3
dn03
dx

þ y5
dn05
dx

þ � � � ¼ �2m0
2y� 4m0

4y
3 � � � �

The above equation must satisfy the condition that the coefficients of the same

powers of y are equal in order to be valid; hence:

n01 ¼
dm0

0

dx

m0
2 ¼ � 1

2

dn01
dx

n03 ¼
1

3

dm0
2

dx

m0
4 ¼ � 1

4

dn03
dx

n05 ¼
1

5

dm0
4

dx

⋮

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

: ð6:34Þ

To obtain the above derivative, m0
0 needs to be determined first. According to the

third condition for the Gauss projection, with y ¼ 0, x ¼ Xf. In such a case, we
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assume that the isometric latitude corresponding to Xf is qf, and it follows from the

first equation in (6.32) that:

q ¼ m0
0 ¼ qf ð6:35Þ

Inserting into (6.34) results in:

n01 ¼
dqf
dx

¼ dq

dx

� �
f

¼ dq

dB

dB

dX

� �
f

¼ M

N cosB

1

M

� �
f

¼ 1

Nf cosBf

¼ secBf

Nf
, ð6:36Þ

where x is written as X, which is valid only when y ¼ 0, i.e., q ¼ qf. Hence, while
taking derivatives, when x is alternatively written as X, the subscript f will be used
outside the brackets of the derivatives.

Taking derivatives in turn and inserting into (6.34) produces m0
2, n

0
3, m

0
4, and

m0
5, etc.:

m0
2 ¼ � tf secBf

2Nf
2

n03 ¼ � secBf

6Nf
3

1þ 2tf
2 þ ηf

2
� 	

m0
4 ¼

tf secBf

24Nf
4

5þ 6tf
2 þ ηf

2
� 	

n05 ¼
secBf

120Nf
5

5þ 28tf
2 þ 24tf

4
� 	

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

: ð6:37Þ

Substituting (6.35), (6.36), and (6.37) into (6.32) yields:

q ¼ qf �
tf secBf

2Nf
2

y2 þ tf secBf

24Nf
4

5þ 6tf
2 þ ηf

2
� 	

y4

l ¼ secBf

Nf
y� secBf

6Nf
3

1þ 2tf
2 þ ηf

2
� 	

y3 þ secBf

120Nf
5

�
5þ 28tf

2 þ 24tf
4
	
y5

9>>>=
>>>;
:

ð6:38Þ

The above steps and methods for derivations are the same as those for the direct

solution. Nevertheless, at this moment, we only get the isometric latitude q. To
obtain the geodetic latitude B, we need to further convert the first equation in (6.38).

As mentioned before, the geodetic latitude and isometric latitude are related.

Assume that their functional relationship is:
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B ¼ F qð Þ: ð6:39Þ

Similarly, we have:

Bf ¼ F qf
� 	

: ð6:40Þ

We expand B ¼ F qð Þ ¼ F qf þ q� qf
� 	

, and according to the Taylor series we

obtain:

B ¼ F qf
� 	þ dB

dq

� �
f

q� qf
� 	þ 1

2!

d2B

dq2

� �
f

q� qf
� 	2 þ . . . ð6:41Þ

It follows from (6.3) that:

dB

dq

0
@

1
A

f

¼ r

M

0
@

1
A

f

¼ N cosB

M

0
@

1
A

f

¼ Vf
2 cosBf

d2B

dq2

0
@

1
A

f

¼ � cosBf sinBf 1þ 4ηf
2

� 	

9>>>>>>>=
>>>>>>>;
: ð6:42Þ

Inserting (6.40) and (6.42) into (6.41) gives:

B ¼ Bf þ Vf
2 cosBf q� qf

� 	� 1

2
cosBf sinBf 1þ 4ηf

2
� 	

q� qf
� 	2

: ð6:43Þ

According to the first equation in (6.38), we get:

q� qf
� 	 ¼ � tf secBf

2N2
f

y2 þ t secBf

24N4
f

5þ 6t2f þ η2f

� �
y4

q� qf
� 	2 ¼ t2f sec

2Bf

4N4
f

y4

9>>>>=
>>>>;
: ð6:44Þ

Inserting again into (6.43) and rearranging yields:

B ¼ Bf � tf
2MfNf

y2 þ tf

24MfN
3
f

5þ 3t2f þ η2f � 9η2f t
2
f

� �
y4: ð6:45Þ

Combining (6.45) with the second equation in (6.38), the formula for the inverse

solution of the Gauss projection can be obtained as follows:
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Bf �B
� 	¼ tf

2MfNf
y2-

tf

24MfN
3
f

5þ3t2f þη2f �9η2f t
2
f

� �
y4

l¼ 1

Nf cosBf
y� 1

6N3
f cosBf

1þ2t2f þ η2f

� �
y3þ 1

120N5
f cosBf

5þ28t2f þ24t4f

� �
y5

9>>>=
>>>;
:

ð6:46Þ

When l < 3.5∘, the accuracy of the computation according to (6.46) is 0.0100. If
the desired accuracy is 0.000100, the series in (6.46) can be further expanded:

Bf � B
� 	 ¼ tf

2MfNf
y2 � tf

24MfN
3
f

5þ 3t2f þ η2f � 9η2f t
2
f

� �
y4

þ tf

720MfN
5
f

61þ 90t2f þ 45t4f

� �
y6

l ¼ 1

Nf cosBf
y� 1

6N3
f cosBf

1þ 2t2f þ η2f

� �
y3

þ 1

120N5
f cosBf

5þ 28t2f þ 244f þ 6η2f þ 8η2f t
2
f

� �
y5

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

: ð6:47Þ

L and B can finally be obtained according to:

L ¼ L0 þ l
B ¼ Bf � Bf � B

� 	�: ð6:48Þ

Practical Formulae

Formulae for the Inverse Solution of the Gauss Projection (Accurate

to 0.000100; The Results Are Measured in Degrees)

From (6.47), we have:

B∘ ¼ B∘
f �

1

2
V2
f tf

y

Nf

0
@

1
A

2

� 1

12
5þ 3t2f þ η2f � 9η2f t

2
f

� � y

Nf

0
@

1
A

42
4

þ 1

360
61þ 90t2f þ 45t4f

� � y

Nf

0
@

1
A

63
5 180

π

l∘ ¼ 1

cosBf

y

Nf

0
@

1
A� 1

6
1þ 2t2f þ η2f

� � y

Nf

0
@

1
A

32
4

þ 1

120
5þ 28t2f þ 24t4f þ 6η2f þ 8η2f t

2
f

� � y

Nf

0
@

1
A

53
5 180

π

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

, ð6:49Þ
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where Bf is the footprint latitude; namely, the corresponding geodetic latitude with

x ¼ X (the length of the meridian arc from the equator, where X corresponds to Xf).

Footprint latitude Bf can be obtained by iteration. Equation (5.41) that corresponds

to the Krassowski Ellipsoid is taken as an example to illustrate.

Given X, to compute Bf reversely, when iteration starts, the initial value is set:

B
1ð Þ
f ¼ X=111134:8611: ð6:50Þ

The ensuing iterative procedure follows:

B
iþ1ð Þ
f ¼ X � F B

ið Þ
f

� �� �
=111134:8611, ð6:51Þ

F B
ið Þ
f

� �
¼ �

�
32005:7799 sinB

ið Þ
f þ 133:9238 sin 3B

ið Þ
f þ 0:6973 sin 5B

ið Þ
f

þ0:0039 sin 7B
ið Þ
f

�
cosB

ið Þ
f : ð6:52Þ

Iterations are repeated until jBf
(i + 1) � B

iÞ
f j < 1 � 10� 8, to ensure that Bf is

accurate to 0.000100. Normally, iterating five times will achieve the desired accu-

racy. It should be noted that in programming computation, Bf obtained using the

iteration formula is measured in “degrees,” whereas in iterative calculations, Bf in

the trigonometric function is measured in “radians,” so one needs to convert in

iterative procedures.

Similarly, for GRS75 or GRS80 Ellipsoids, given X to compute Bf reservedly,

one can iterate using (5.42) and (5.43), respectively.

Formulae for the Inverse Solution of the Gauss Projection (Accurate to 0.0100;
The Results Are Measured in Degrees)

It follows from (6.46) that:

B∘¼B∘
f �

1

2
V2
f tf

y

Nf

0
@

1
A

2

� 1

12
5þ3t2f þη2f �9η2f t

2
f

� � y

Nf

0
@

1
A

42
4

3
5180

π

l∘¼ 1

cosBf

y

Nf

0
@

1
A�1

6
1þ2t2f þη2f

� � y

Nf

0
@

1
A

3

þ 1

120
5þ28t2f þ24t4f

� � y

Nf

0
@

1
A

53
5180

π

2
4

9>>>>>>>=
>>>>>>>;
,

ð6:53Þ

where Bf can be obtained by iteration. The method is as stated above. The number of

decimal places can be reduced taking into consideration the circumstances.

294 6 Gauss and UTM Conformal Projections and the Plane Rectangular Coordinate System



To carry out computations, we use computer programming based on the methods

and formulae above. The results of the sample computation are shown in Table 6.2,

(assume that the central meridian in the 6� zone 20 is chosen as the central meridian

in both 6� and 3� zones).

6.4.3 Transformation of Gauss Plane Coordinates Between
Adjacent Zones

The Basics

To constrain distance distortions of the Gauss projection, the area of interest should

be divided into zones along the meridians. The result of such a zone-dividing

projection is that the unified coordinate system on the ellipsoid is divided into

separate plane rectangular coordinate system in each zone. Hence, the points in

adjacent zones belong to two coordinate systems; if transformed into the same

coordinate system, the Gauss coordinates in one zone should be transformed into

the coordinates in the neighboring zone, which is known as the Gauss coordinate

transformation between adjacent zones.

In applications, transformation between adjacent zones is needed on the follow-

ing occasions:

1. When geodetic control networks cross between different projection zones,

coordinates of the adjacent zone should, partially or totally, be transformed

into the same zone before adjustment computations are carried out.

Table 6.2 Inverse solution of the Gauss projection: sample computation

Given data (m) Ellipsoidal parameters

Computational results

6� zones 3� zones
x ¼ 3,354,874.257 Krassowski Ellipsoid B ¼ 30� 180 46.9200 B ¼ 30� 180 46.9200

y ¼ 386.564 L ¼ 117� 000 14.4700 L ¼ 60� 000 14.4700

yfalse ¼ 20, 500, 386.564 GRS75 Ellipsoid B ¼ 30� 180 48.8000 B ¼ 30� 180 48.8000

L ¼ 117� 000 14.4700 L ¼ 60� 000 14.4700

GRS80 Ellipsoid B ¼ 30� 180 48.8500 B ¼ 30� 180 48.8500

L ¼ 117� 000 14.4700 L ¼ 60� 000 14.4700

x ¼ 532 548.378 Krassowski Ellipsoid B ¼ 4� 480 57.6200 B ¼ 4� 480 57.6200

y ¼ �209.135 L ¼ 116� 590 53.2100 L ¼ 59� 590 53.2100

yfalse ¼ 20 499 790.865 GRS75 Ellipsoid B ¼ 4� 480 57.9200 B ¼ 4� 480 57.9200

L ¼ 116� 590 53.2100 L ¼ 59� 590 53.2100

GRS80 Ellipsoid B ¼ 4� 480 57.9300 B ¼ 4� 480 57.9300

L ¼ 116� 590 53.2100 L ¼ 59� 590 53.2100

6.4 Direct and Inverse Solutions of the Gauss Projection and Transformation. . . 295



2. While mapping in projection zone boundaries, the control points in adjacent

zones are usually needed, which should be transformed into the same zone

accordingly.

3. Zones 3� wide are needed for large-scale mapping (1:10,000 or larger-scale).

However, the national control points usually only have the coordinates of the 6�

zones. Hence, a transformation is also needed between the 6� zones and the 3�

zones.

After deriving the formulae for direct and inverse solutions of the Gauss

projection, transformation between adjacent zones will be easy. First, we compute

the geodetic coordinates (L, B) of a point given the Gauss plane coordinates (x, y) of
this point in zone I according to the formula for inverse solution of the Gauss

projection. Then, we compute the Gauss plane coordinates (x, y)II of this point in
zone II based on the longitude of the central meridian (L0)II in this zone according to
the formula for direct solution of Gauss projection. The process can be expressed

as:

x; yð ÞI 



















!L0ð Þ
I

inverse solution of the Gauss

projection

L;Bð Þ 



















!L0ð Þ
II

direct solution of the Gauss

projection

x; yð ÞII

Coordinate Transformation Between Zones with 3� Width and Zones

with 6� Width

We know that the central meridian of 3� zones, in even-numbered zones, coincide

with central meridian of the zones 6� wide, and in odd-numbered zones coincide

with the zone-dividing meridian of the 6� zones. Hence, the coordinate transfor-

mation between the zones 3� and 6� wide has also to be considered in two different
situations.

When the Central Meridian of the 3� Zone Coincides With That

of the 6� Zone

In Fig. 6.10, the central meridian of the 3� zone 41 and that of the 6� zone

21 coincide, for both of which the longitude 123∘ is chosen as the central meridian.

The difference between central meridians causes the coordinate system in each

projection zone to be different. If the central meridians in the projection zones are

coincident, then their coordinate systems will be the same. Given the coordinates of

point P1 in the 3� zone 41 to compute its coordinates in the 6� zone 21, no

transformation is needed and vice versa.
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When the Central Meridian of the 3� Wide Zone Coincides With the Zone-

Dividing Meridian of the 6� Wide Zone

In Fig. 6.10, the central meridian of the 3� zone 42 is coincident with the dividing

meridian between zones 21 and 22 of the 6� zone. Their coordinate systems are

different. Given the coordinates of point P2 in the 3� zone 42 to compute its

coordinates in the 6� zone 21, one can compute the coordinates of point P2 in the

3� zone 41 according to the method of transformation between adjacent zones, and

then its coordinates in 6� zone 21 can be obtained. The method used to transform

coordinates of 6� zone into those of 3� zone is the same and will not be

repeated here.

Example

Sample computations are provided in Table 6.3.

Fig. 6.10 Coordinate

transformation between

zones of 3� and 6� width
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6.5 Elements of the Geodetic Control Network Reduced

to the Gauss Plane

6.5.1 Reduction of the Geodetic Control Network
on the Ellipsoid to the Gauss Plane

According to the method for “reducing terrestrial observation elements to the

ellipsoid” introduced in Chap. 5, we can reduce the elements of field observations

(the horizontal direction, zenith distance, terrestrial distance, and astronomical

azimuth, etc.) to the ellipsoid and then solve geodetic problems. Hence, the

geodetic control network constituted by points on the Earth’s surface can be

reduced to the control network formed by geodetic points on the ellipsoid. How-

ever, the practical attempt to solve geodetic problems on the surface of the Earth

ellipsoid has been proved remarkably complex. In addition, the control network on

the ellipsoid cannot provide direct control for topographic mapping. In order to

meet the needs of controlling topographic mapping and simplifying computations

of the control network, we need to employ the method of Gauss projection to reduce

the geodetic network constituted by geodesics on the ellipsoid to the geodetic

network connected by straight lines on the plane. The computations entailed by

the process of reduction are hereby presented specifically.

First, a few concepts are introduced below.

True North and Grid North

The so-called true north of a point refers to the direction of the northern end of the

true meridian (geodetic meridian) which passes through the point, namely the

direction towards the Earth’s geographic North Pole. Grid north is the direction

of the northern end of a straight line which passes through a point in the Gauss plane

parallel to the vertical axis (northern direction of the north–south grid lines).

True Bearing and Grid Bearing (Azimuth)

True bearing is the angle between the true meridian and the geodesic, i.e., the

geodetic azimuth. Grid bearing is the angle between the direction of the true north

and that of a straight line on a plane. It is measured as positive clockwise from the

grid north.
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Grid Convergence (Meridian Convergence)

The angular difference between grid north and true north is known as the grid

convergence, denoted by γ. The grid convergence is measured from the projected

meridian to the vertical grid lines, positive in the clockwise direction and negative

in the anticlockwise direction.

In Fig. 6.11 we assume that a geodetic network P1P2P3P4 . . . is on the ellipsoid.
The geodetic coordinates of the initial point P1 is (L1, B1). Length of the initial side

P1P2 (geodesic distance) is S1.2. The initial geodetic azimuth is A1.2. The observed

values are those of the directions of each side of the triangulation network. After

Gauss projection, the central meridian ON is projected as the axis of ordinates, i.e.,

the x-axis. The equator OE is projected as the axis of abscissas, i.e., the y-axis. The
geodetic network P1P2P3P4 . . . is projected as P1

0P2
0P3

0P4
0. . . on the plane.

According to the direct solution of the Gauss projection, all meridians, parallels,

and geodesics are projected as curves except the central meridian and equator.

Hence, the sides of the triangle formed by connecting geodesics on the ellipsoid are

projected as the corresponding curves (expressed by dashed lines in Fig. 6.11). The

meridian P1N that passes through P1 is P1
0N0 after projection, namely the direction

of true north. A line P1
0L drawn through P1

0 parallel to the x-axis is the direction of
grid north.

As a Gauss projection is conformal, the angles of a triangle on the ellipsoid will

remain unchanged after being projected. Therefore, the angles constituted by the

dashed lines on the Gauss plane are equal to the corresponding angles on the

ellipsoid. The geodesics generally appear as curves rather than straight lines in

the projection (i.e., the dashed lines in Fig. 6.11). To satisfy the needs of compu-

tations on the plane, one first needs to replace curves with chords that connect

different points (represented by solid lines in Fig. 6.11). It is therefore necessary to

Fig. 6.11 Gauss projection of geodetic network from a spherical surface (a) to a plane (b).Dashed
lines indicate projection of the sides of the triangles
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apply certain corrections to every direction, transforming the curves into the

corresponding straight lines, and then to reduce the known elements in the geodetic

network to the plane and convert the geodetic coordinates of the initial point to the

plane coordinates. We compute the plane coordinates of other geodetic points, e.g.,

the plane coordinates of P2
0 (Fig. 6.11b), with:

x2 ¼ x1 þ D12 � cos T12

y2 ¼ y1 þ D12 � sin T12

�
,

One also needs to determine all the side lengths and grid azimuths of the plane

triangle, such as D12 and T12, etc.
From the above analysis, we can see that the reduction of the geodetic network

on the ellipsoid to the Gauss plane consists of the following computations.

Direct Solution of the Gauss Projection

We reduce the geodetic coordinates (L1, B1) of the initial point P1 to the Gauss

plane rectangular coordinates (x1, y1) of the corresponding projection point P1
0.

This is known as the direct solution of the Gauss projection.

Arc-to-Chord Correction

We convert the interior angles of the ellipsoidal triangle to that of the plane triangle

formed by the corresponding straight lines. Actually, we convert the direction of the

curve projected from a geodesic to the direction of its chord, and we obtain the

angular difference between the projected curve and the chord, which is known as

the arc-to-chord correction or curvature correction or direction correction, denoted

by δ12, δ13, and so on.

Distance Correction

We reduce the geodesic distance S1.2 of the initial side P1P2 on the ellipsoid to the

length of chord D1.2 of the corresponding projected side P1
0P2

0 on the plane, where

the correction applied is called the correction of distance, denoted by ΔS.

Computation of Grid Convergence

We convert the geodetic azimuth A1.2 of the initial side on the ellipsoid to the plane

grid azimuth T1.2 of the corresponding projected side P1
0P2

0, which is known as the
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computation of grid azimuth, realized by reckoning the grid convergence γ and the

arc-to-chord correction δ of this point.
After the above computations, the curved triangle on a plane constituted by

curved lines will be transformed into the plane triangle formed by straight lines. As

a result, the solution of a triangle and computation of plane coordinates can both be

performed using the formulae for a plane triangle, which can greatly simplify

geodetic computations.

Hence, to reduce the geodetic network on the ellipsoid to the plane, one needs to

carry out computations such as coordinate transformation, arc-to-chord correction,

correction of distance, computation of grid convergence and grid bearing, etc.

Coordinate transformation is one of the direct and inverse solutions of the Gauss

projection, which were introduced in previous sections. Next, our discussions will

focus on other computations.

6.5.2 Arc-to-Chord Correction

The correction applied to compensate for the distortion of a straight line when a

geodesic between two points on the ellipsoid is reduced to the chord between

corresponding projection points on the plane is called the arc-to-chord correction,

denoted by δij. As the Gauss projection is conformal, the direction of the geodesic

remains unchanged after being projected. Hence, the arc-to-chord correction can

also be interpreted as a process of converting the curve projected from a geodesic to

the chord between the corresponding two points, i.e., the angle between the

projected curve and the chord. Such an angle exists owing to distortions of the

geodesic curves after being projected. Its magnitude depends on the curvature of the

curve, which is therefore also referred to as the curvature correction. It can be seen

that the need for arc-to-chord correction is caused by the fact that, on the plane, the

curves are projected as straight lines, rather than by the distortion of projection.

The accuracy and form of the formulae for the arc-to-chord correction in the

Gauss projection vary with the order of computation. Typically, precise formulae

are applied to the first-order correction, relatively precise formulae are applied to

the second-order net, and for the third- and fourth-order calculations we use the

approximate formulae.

Approximation Formula for Arc-to-Chord Correction

As shown in Fig. 6.12a, the ellipsoid is approximated as a sphere, and the geodesic

P1P2 will be the great circle (orthodrome) on the spherical surface. We draw two

great circles AP1 and BP2 passing through points P1 and P2 perpendicular to the

central meridian, and both of them intersect the equator at point E. ABP2P1

constitutes a spherical quadrangle. In Fig. 6.12b the geodesic P1P2 is projected as

the curve P1
0P2

0. As Gauss projection is conformal, the great circles AP1 and BP2
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appear as straight lines A0P1
0 and B0P2

0 in the projection. They are both perpendicular
to the x-axis (for point E is projected to an infinite distance). A0B0P2

0P1
0 constitutes a

plane-curved quadrangle, where the side P0
1P

0
2 is a curved line.

Let the spherical excess of the spherical quadrangle be ε and the angles between

the projected geodesic P1
0P2

0 and its chord P0
1P

0
2 be δ1.2 and δ2.1. For the projection

being conformal, the angle relationship is:

360∘ þ ε ¼ 360∘ þ δ1:2 þ δ2:1 ð6:54Þ

Let δ1.2 ¼ δ2.1 ¼ δ; then one obtains:

δ ¼ ε

2
,

where ε ¼ P
R2 and P is the area of the spherical quadrangle. Since the numerical

value of ε is very small, P can be replaced by the area of the plane quadrangle. We

assume that the plane coordinates of P0
1 and P0

2 are (x1, y1) and (x2, y2); thus:

P ¼ 1

2
y1 þ y2ð Þ x2 � x1ð Þ ¼ ym x2 � x1ð Þ,

and

δ ¼ ym
2R2

m

x2 � x1ð Þ, ð6:55Þ

where Rm is the mean radius of curvature at the mid-latitude Bm of the two end

points P1 and P2.

The above derivations only result in the absolute values of the arc-to-chord

correction. However, in practical cases, as the position and direction of geodesics

vary, the value of δ can be either positive or negative. To enable the corrections to

appear in the form of the algebraic sum, make the δ obtained be the correction

Fig. 6.12 Approximate derivations of the arc-to-chord correction for the Gauss projection from a

spherical surface (a) to a plane (b)
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applied to the observed direction. Note that the sign of δ should be taken into

account. For instance, in Fig. 6.12b, as the values of observed directions increase in

the clockwise direction, when converting the geodesic P1P2 to its equivalent chord

P0
1P

0
2 , the sign of the arc-to-chord correction δ12 is negative. Similarly, when

converting P2P1 to P0
2P

0
1 , the sign of the arc-to-chord correction δ12 becomes

positive. Represented by seconds, the approximation formula for the arc-to-chord

correction is:

δ
00
1:2 ¼ � ρ00ym

2R2
m

x2 � x1ð Þ

δ
00
2:1 ¼

ρ00ym
2R2

m

x2 � x1ð Þ

9>>>>=
>>>>;
: ð6:56Þ

This formula has an accuracy of better than 0.100 and is typically applied to

computations of the third-order triangulation or lower.

It can be seen from (6.56) that the value of an arc-to-chord correction is likely to

become larger the further away the side is from the central meridian. Some numeric

values of the arc-to-chord correction calculated according to (6.56) are listed in

Table 6.4.

In Table 6.4, (x2�x1) roughly corresponds to the side length of the geodetic

network and ym is approximately the distance of the side from the central meridian.

It becomes obvious that the arc-to-chord corrections are not negligible for tri-

angulations of various orders.

Precise Formula for Arc-to-Chord Correction

In much of the literature, the approximate formulae are used as differential equa-

tions to derive the relatively precise formulae. The new coordinate systems and

formulae for radii of curvature are introduced to establish the second-order differ-

ential equation, and then the solution is found by solving the differential equation.

The derivation is rather long-winded and therefore will not be discussed in

detail here.

Table 6.4 Datasheet for the arc-to-chord correction (δ
0 0
12, in seconds) for different side lengths

(x2�x1) and distances (ym) of the side from the central meridian

ym (km)

x2�x1 (km)

0 4 8 12 16 20 24 28 32 36 40

100 0.0 1.0 2.0 3.0 4.0 5.1 6.1 7.1 8.1 9.1 10.1

200 0.0 2.0 4.1 6.1 8.1 10.1 12.2 14.2 16.2 18.3 20.3

300 0.0 3.0 6.1 9.1 12.2 15.2 18.2 21.3 24.3 27.4 30.4
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The relatively precise formulae for the arc-to-chord correction are:

δ
00
1:2 ¼ � ρ00

6Rm
2
x2 � x1ð Þ 2y1 þ y2ð Þ

δ
00
2:1 ¼

ρ00

6Rm
2
x2 � x1ð Þ 2y2 þ y1ð Þ

9>>>>=
>>>>;
: ð6:57Þ

The average side-length of China’s second-order triangulation network is 13 km.

When ym is less than 250 km, the above equations are accurate to 0.01 " and are

typically used in computations of second-order triangulation. When ym is greater

than 250 km, we should apply the precise formulae for arc-to-chord correction in

(6.58):

δ
00
1:2 ¼ � ρ00

6Rm
2
x2 � x1ð Þ 2y1 þ y2 �

ym
3

Rm
2

0
@

1
A� ρ00ηm2tm

R3
m

y2 � y1ð Þym2

δ
00
2:1 ¼

ρ00

6Rm
2
x2 � x1ð Þ 2y2 þ y1 �

ym
3

Rm
2

0
@

1
Aþ ρ00ηm2tm

R3
m

y2 � y1ð Þym2

9>>>>>>=
>>>>>>;
: ð6:58Þ

The above formulae are accurate to 0.00100 and are applicable to computations of

the first-order triangulation.

Accuracy of Coordinates Required in Computations of Arc-to-Chord

Correction

To calculate the arc-to-chord correction, we should first obtain the plane coordi-

nates of a point. Paradoxically, knowing precisely the plane coordinates of a point

also requires that the arc-to-chord correction be computed first. The way to resolve

this contradiction is to apply the iterative computing method. As computations of

different orders require different degrees of accuracy, the number of iterations is

also different. Here we will analyze the accuracy of coordinates required.

Taking the total differential of (6.56) gives:

Δδ00 ¼ ρ00

2Rm
2
ym � Δ x2 � x1ð Þ þ x2 � x1ð Þ � Δy½ �:

We set Δ(x2 � x1) ¼ Δy ¼ ΔP, to obtain:

Δδ00 ¼ ρ00

2Rm
2
� ΔP � �ym þ x2 � x1ð Þ:
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Rearranging gives:

ΔP ¼ 2Rm
2

ρ00
Δδ00

ym þ x2 � x1ð Þ :

In the third-order triangulation we require that Δδ00 ¼ 0. 100. With y ¼ 350 km

and x2 � x1 ¼ 10 km we get ΔP � 0.1 km. It follows that the approximate

coordinates should be accurate to 0.1 km to meet the desired accuracy in compu-

tations of the third-order arc-to-chord correction. Likewise, for the first- and

second-order arc-to-chord correction, the plane coordinates should be accurate to

10 m and 1 m, respectively. For many third-order triangulations, the desired

accuracy of approximate coordinates is not high and thus iterative computation is

not necessary.

Formula for Checking the Computation of Arc-to-Chord Correction

The sum of the measures of the interior angles of an ellipsoidal triangle is 180∘ + ε,
and that of the triangle formed by curves remains unchanged after the ellipsoidal

triangle is conformally projected onto a plane. As shown in Fig. 6.13, the curved

triangle A0B0C0 is the projection of the ellipsoidal triangle ABC onto the Gauss

plane. Let the angular correction of each angle be δA, δB, δC, which are equal to the
differences in the arc-to-chord correction between the two neighboring sides,

namely:

δA ¼ δAC � δAB
δB ¼ δBA � δBC
δC ¼ δCB � δCA

9=
;: ð6:59Þ

Fig. 6.13 Arc-to-chord

correction checking
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The interior angles of an ellipsoidal triangle add up to 180∘ + ε. After angular
corrections are applied, the ellipsoidal triangle becomes a triangle formed by

straight line sides with the sum of interior angles 180∘, namely:

180∘ þ εþ δA þ δB þ δCð Þ ¼ 180∘:

Then the spherical excess is:

ε ¼ � δA þ δB þ δCð Þ ð6:60Þ

The above expression shows that the spherical excess of each triangle is equal to

the sum of the angular corrections of the interior angles of this plane triangle, of

opposite signs. Equation (6.60) can be used to check the correctness of the arc-to-

chord correction and computations of the spherical excess.

Practical Formulae

The formulae accurate to 0.00100 are:

δ
00
1:2 ¼ � ρ00

6Rm
2

x2 � x1ð Þ 2y1 þ y2 �
ym

3

Rm
2

0
@

1
Aþ 6ηm

2tm
Rm

y2 � y1ð Þym2

2
4

3
5

δ
00
2:1 ¼ �δ001:2 þ ρ00

6Rm
2
x2 � x1ð Þ y2 � y1ð Þ

9>>>>>=
>>>>>;
: ð6:61Þ

For instance, given that x1 ¼ 3602547.8 m, y1 ¼ 298960.0 m, x2 ¼ 3584223.0 m,

y2 ¼ 323655.4 m and Bm ¼ 32∘25.50, the results give δ001.2 ¼ + 14.29400, and

δ2.100 ¼ � 14.67800.

We check: P
δ¼ δ1þδ2þ δ3

¼ 16:430}�14:294}ð Þþ �14:678}�2:577}ð Þþ �2:523}þ16:519}ð Þ¼�1:123
00
,

and ε ¼ + 1.12300.
The two results have the same absolute value, indicating that the computation is

correct, as shown in Fig. 6.14. Owing to the round-off errors, there would presum-

ably be a difference of 0.001 "–0.002 " between them. After being proved errorless,

the value of difference can be assigned to the large angle.

6.5 Elements of the Geodetic Control Network Reduced to the Gauss Plane 307



6.5.3 Correction of Distance

The Gauss projection is conformal with no angular distortion. However, the pro-

jection distorts distances everywhere except along the central meridian. The dis-

tance correction of the Gauss projection is dependent on the distortion of distance.

Previously, we provided the definitions of the scale and distance distortion. Below

are the derivations of the specific mathematical expressions for the scale so that the

laws and effects of distance distortion and the ways to limit such distortions can be

studied. The formula for the distance distortion will be derived after that.

Formula for Scale Factor

It has been previously stated that the ratio of the arc element at a point on the

projection plane ds to the corresponding arc element on the ellipsoid dS is known as

the scale factor at this point, namely m ¼ ds

dS
. For conformal projections, the scale

factor at any point is independent of direction. Hence, any arbitrary directions can

be selected when the formula for the scale factor is derived. In (6.16) we provided

the formulae for scale factors along two special directions, where the first expres-

sion is that along the meridian (l ¼ constant) and the second along the parallel

(q ¼ constant). In conjunction with the formula for the direct solution of the Gauss

projection, it is reasonably convenient to take the partial derivative with respect to l.
Therefore, it is simpler to use the second expression in (6.16) for deriving the

formula for the scale factor, namely:

Fig. 6.14 Example of arc-

to-chord correction

checking
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m2 ¼ G

r2
¼

∂x
∂l

� �2

þ ∂y
∂l

� �2

N2 cos 2B
: ð6:62Þ

Using the Geodetic Coordinates (B, l ) to Derive the Formula for m

We take the partial derivative with respect to l by applying the formula for the direct

solution of the Gauss projection (6.28) to get:

∂x
∂l

¼ NsinBcosBlþN

6
sinBcos3B 5� t2þ9η2þ4η4

� 	
l3

þ N

120
sinBcos5B

�
61�58t2þ t4

	
l5

∂y
∂l

¼ N cosBþN

2
cos3B 1� t2þη2

� 	
l2

þ N

24
cos5B

�
5�18t2þ t4þ14η2�58η2t2

	
l4

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

: ð6:63Þ

In (6.63), we divide the obtained ∂x
∂l and

∂y
∂l (with the terms containing l5 and η2l3

left out) by N cos B; then the square is:

∂x
∂l

0
@

1
A

2

N2 cos 2B
¼ l2 sin 2Bþ l4

3
sin 2B cos 2B 5� t2

� 	

∂y
∂l

0
@

1
A

2

N2 cos 2B
¼ 1þ l2

2
cos 2B 1� t2 þ η2

� 	þ l4

24
cos 4B 5� 18t2 þ t4

� 	2
4

3
5
2

¼ 1þ l2 cos 2B 1� t2 þ η2ð Þ þ l4

4
cos 4B 1� t2

� 	2 þ l4

12
cos 4B 5� 18t2 þ t4

� 	

¼ 1þ l2 cos 2B 1� t2 þ η2ð Þ þ l4

3
cos 4B 2� 6t2 þ t4

� 	
:
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Substituting into (6.62) yields:

m2 ¼ 1þ l2 cos 2B 1� t2 þ η2ð Þ þ l2 sin 2Bþ l4

3
cos 4B 2� 6t2 þ t4

� 	

þ l4

3
sin 2B cos 2B 5� t2

� 	

¼ 1þ l2 cos 2B 1þ η2ð Þ þ l4

3
cos 4B 2� t2

� 	

m ¼ 1þ l2 cos 2B 1þ η2ð Þ þ l4

3
cos 4B 2� t2ð Þ

� �1=2
:

The above is the approximate formula used to compute the scale factor m from

given geodetic coordinates (B, l ). If one more terms in the equation are allowed for

in-formula derivations, we will then be able to achieve a formula for the scale

m with a higher level of accuracy. Expanding the above equation according to the

binomial theorem 1þ xð Þ1=2 ¼ 1þ 1
2
x� 1

8
x2 þ . . . gives:

m ¼ 1þ 1

2
l2 cos 2B 1þ η2

� 	þ l4

3
cos 4B 2� t2

� 	2
4

3
5� l2

8
cos 2B 1þ η2

� 	� �2

¼ 1þ l2

2
cos 2B 1þ η2

� 	þ l4

6
cos 4B 2� t2

� 	� l4

8
cos 4B

¼ 1þ l2

2
cos 2B 1þ η2

� 	þ l4

24
cos 4B 5� 4t2

� 	
:

If l is measured in seconds, then we have:

m ¼ 1þ l002

2ρ002
cos 2B 1þ η2

� 	þ l004

24ρ004
cos 4B 5� 4t2

� 	
, ð6:64Þ

which is the formula for the scale factor expressed by geodetic coordinates.

To Derive m Given Gauss Plane Coordinates (x, y)

According to the second equation in (6.28), and leaving out the m5 term, we obtain:

y ¼ N cosBlþ N

6
cos 3B 1� t2 þ η2

� 	
l3 ¼ Nl cosB 1þ l2

6
cos 2B 1� t2 þ η2

� 	� �
:

310 6 Gauss and UTM Conformal Projections and the Plane Rectangular Coordinate System



Rearranging gives:

l cosB ¼ y

N
1þ l2

6
cos 2B 1� t2 þ η2

� 	� ��1

¼ y

N
1� l2

6
cos 2B 1� t2 þ η2

� 	� �
:

We replace l cos B on the right-hand side of the above equation with y
N, which

gives:

l00

ρ00
cosB ¼ y

N
� y3

6N3
1� t2 þ η2
� 	

,

l002

ρ002
cos 2B ¼ y2

N2
� y4

3N4
1� t2 þ η2
� 	

,

and

l004

ρ004
cos 4B ¼ y4

N4
:

Substituting into (6.64), one obtains:

m ¼ 1þ 1

2

y2

N2
� y4

3N4
1� t2 þ η2
� 	� �

1þ η2
� 	þ y4

24N4
5� 4t2
� 	

:

It follows that:

m ¼ 1þ y2

2N2
1þ η2
� 	þ y4

24N4
: ð6:65Þ

With 1
R2 ¼ V2

N2 ¼ 1
N2 1þ η2ð Þ, substituting into the above equation and replacing

N4 with R4, we get the formula for the scale factor expressed by the Gauss plane

coordinates:

m ¼ 1þ y2

2R2
þ y4

24R4
: ð6:66Þ

Table 6.5 provides some approximate values for the scale factor.

Distortion Properties

Subtracting 1 from the point scale factor, i.e., (m � 1) results in the distortion of

distance at this point. Equation (6.66) shows that the point scale factor m depends

only on position, not on direction (which agrees with the conditions for the
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conformal projection). With y ¼ 0, m ¼ 1, i.e., the central meridian remains

unchanged in length after the projection (which is consistent with the conditions

for the Gauss projection). In the case of y 6¼ 0, with its value being either positive or

negative, m is invariably greater than 1, which means that the differential line

segments away from the central meridian are all stretched after the projection. The

distortion of distance (m � 1) increases proportionally with y2. For any arbitrary

meridian, the distance distortion increases with distance from the standard parallels.

Again, for any arbitrary meridian except for the central meridian, the distortion of

distance is maximal at the equator, i.e., the lower the latitude, the more significant

the distortion of distance.

The distortion of distance is harmful, but it actually exists. We cannot violate

this law to eliminate the distortion. Therefore, in practical cases we can only impose

appropriate limitations on distance distortion, making its effect on mapping and

application of maps insignificant. The way to limit such a distortion is the zone-

dividing projection.

As mentioned earlier, the projection zones in China primarily consist of 6� zones
and 3� zones. The national basic maps at scales ranging from 1:25,000 to 1:100,000

use the zones 6� of longitude in width, and the topographic maps at scales of

1:10,000 or larger use the zones that are 3� of longitude wide. It is often the case that
the distortion of distance is fairly significant in lower-latitude regions, so at north

latitude 20o and further south in the south of China this effect in mapping and

map application should be considered. For instance, it can be seen from (6.66) that

m� 1 ¼ y2

2R2
; so, in areas at the north latitude 20o, close to the dividing meridian of

6� zones, the distortion of distance m � 1 can amount to
1

820
, which is quite large

and cannot be neglected for the 1:25,000 or 1:50,000 scale maps. For example, in

such a case, the side length of 10 km is subject to a distance distortion of 12.2 m. On

the 1:25,000 scale map, such distortion is approximately 0.5 mm. Generally, the

point position error on the map (i.e., mapping error) is allowed to be less than 0.2

mm. Such effects in mapping and map application must be taken into consideration.

For the 3� wide zone, in areas at latitude 20∘ or further south, the distance

distortion of the 3� zone boundary reaches 1/3,300. Such a distortion still cannot be

Table 6.5 Numerical values for the scale factor (m) for different distances ( y) of the point from
the central meridian at different latitudes (B) (GRS80 Ellipsoid)

y (km) B ¼ 0� B ¼ 10� B ¼ 20� B ¼ 30� B ¼ 40�

50 1.000030936 1.000030923 1.000030887 1.000030832 1.000030764

100 1.000123745 1.000123695 1.000123550 1.000123328 1.000123057

200 1.000495011 1.000494810 1.000494231 1.000493344 1.000492258

300 1.001113890 1.001113437 1.001112134 1.001110139 1.001107694

350 1.001516230 1.001515613 1.001513839 – –

y (km) B ¼ 50� B ¼ 60� B ¼ 70� B ¼ 80� B ¼ 90�

50 1.000030692 1.000030624 1.000030569 1.000030533 1.000030520

100 1.000122768 1.000122497 1.000122277 1.000122133 –

200 1.000491103 1.000490019 – – –
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overlooked for mapping and the use of maps at a scale of 1:5,000 or larger, and the

corresponding corrections, is therefore necessary. One can also use either the 1.5�

zone or an urban independent Gauss rectangular coordinate system (i.e., select the

meridian passing through the center of a city as the central meridian) to allow the

distortion of distance to satisfy the mapping needs.

Formula for Distance Correction

Derivations of Formula

In Fig. 6.15 we assume that S is the geodesic distance between two points P1 and P2

on the ellipsoid, s is the length of the projected curve between the corresponding

points P0
1 and P0

2 projected on the Gauss plane, and D is the chord length between

the two points P0
1 and P0

2 on the projected curve.

The correction added while converting the geodesic distance S to the plane chord
D is known as the distance correction, denoted by ΔS.

Generally, the scale factor in a Gauss projection is invariably greater than

1, hence it follows that:

S < s > D

We are aiming to obtain the relationship between S and D. In the process of

deduction, we will first approach the relationship between S and s, and then that

between s and D. Finally, we will derive the formula for computing the distance

correction ΔS.

Fig. 6.15 Distance

correction in converting

geodesic distance S (left) to
s and D on the Gauss plane

(right)
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From the definition of the scale factor, we have:

ds ¼ mdS:

Integrating produces:

s ¼
ðP2

P1

mdS ¼
ð S

0

mdS: ð6:67Þ

In practice, sometimes the integrals of some functions are hard to obtain, and in

such cases we can approximate a definite integral according to the desired compu-

tational accuracy. In (6.67), m changes with the position of the point. When the

projection area is not large, this change is slow. For instance, when y¼ 300 km, and

the difference in latitude between points P1 and P2 reaches 1�, the difference in

scale between the two points is less than 4 � 10� 7. Therefore, by approximating

integrals, we can obtain satisfactory accuracy. Now, we shall find the solution of

(6.67) according to Simpson’s rule for numerical integration.

Simpson’s rule for approximate integration uses parabolic arcs to replace the area

bounded by curve y ¼ f(x) over an interval [x1, x2] so as to find the definite integral.
This parabola passes through three points, i.e., y1 ¼ f(x1), y2 ¼ f(x2), y0 ¼ f(x0),

with x0 ¼ x1 þ x2
2

, dividing the interval [x1, x2] into two subintervals. It is easy to

obtain the definite integral of the parabola on the interval [x1, x2], which is

x2 � x1ð Þ
6

y1 þ 4y0 þ y2ð Þ. Taking the definite integral of this parabola as the approx-
imation to the integral of f(x), we have:

ðx2
x1

f xð Þdx ¼ x2 � x1ð Þ
6

y1 þ 4y0 þ y2ð Þ:

1P¢

2P¢Fig. 6.16 Relationship

between s and D
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This is Simpson’s rule for the approximate integration.

According to Simpson’s rule for integration, we divide the interval of integration

in (6.67) into two subintervals of equal width S
2
; then:

s ¼ S

6
m1 þ 4mm þ m2ð Þ, ð6:68Þ

where m1 and m2 are the scale factors at points P1 and P2, respectively. mm is the

scale factor at the midpoint of the geodesic.

Now we will derive the relationship between s and D. As shown in Fig. 6.16,

P1
0P2

0 is the projected curve of geodesic P1P2, approximating a circular arc, where

O is the center of the circular arc, F is the midpoint, and δ is the curvature

correction. Hence ∠ P1
0OF is also δ. The relationship is given by:

sin δ ¼ D=2

R
¼ D

2R
, R ¼ s

2δ
:

It follows from the above two equations that:

D ¼ s sin δ

δ
,

and sin δ ¼ δ� δ3

3!
þ δ5

5!
� δ7

7!
þ � � �,

with δ ¼ 30 " ¼ 0.00015 rad, s ¼ 40 km, and
δ2

3!
s ¼ 0:15 mm, the required side

lengths of the first-order triangulation are defined to maintain an accuracy to

millimeter level, so this term and higher-order terms can all be neglected. As a

result, in computations, one can consider:

D ¼ s: ð6:69Þ

We replace s in (6.68) with D to get:

D ¼ S

6
m1 þ 4mm þ m2ð Þ: ð6:70Þ

Again, according to (6.66), we have:

m1 ¼ 1þ y1
2

2R1
2
þ y1

4

24R1
4

mm ¼ 1þ ym
2

2Rm
2
þ ym

4

24Rm
4

m2 ¼ 1þ y2
2

2R2
2
þ y2

4

24R2
4
:
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Inserting into (6.70) and replacing 1
R1

2 and
1
R2

2 with
1

Rm
2 produces:

D ¼ S

6
6þ y1

2

2Rm
2
þ 4

ym
2

2Rm
2
þ y2

2

2Rm
2
þ y1

4

24Rm
4
þ 4

ym
4

24Rm
4
þ y2

4

24Rm
4

� �
:

We set

ym ¼ y1 þ y2
2

,
Δy
2

¼ y2 � y1
2

to obtain

y1 ¼ ym � Δy
2

, y2 ¼ ym þ Δy
2

and y1
2 þ y2

2 ¼ 2ym
2 þ Δy2

2
:

Since the term containing y4 is minute, and hence replaced by ym
4 ¼ y1

4 þ y2
4

2
,

one obtains:

D ¼ S 1þ ym
2

2Rm
2
þ Δy2

24Rm
2
þ ym

4

24Rm
4

� �
, ð6:71Þ

and the resulting equation:

ΔS ¼ D� S ¼ S
ym

2

2Rm
2
þ Δy2

24Rm
2
þ ym

4

24Rm
4

� �
: ð6:72Þ

The above is the formula for the distance correction of the Gauss projection.

When S < 70 km and ym < 350 km, the equation has an accuracy of 0.001 m, or

better. Therefore, this formula is applicable to computations of the first-order

triangulation.

For the second-order triangulation (accurate to 0.01 m), we can leave out the last

term in the above equation, namely:

ΔS ¼ D� S ¼ S
ym

2

2Rm
2
þ Δy2

24Rm
2

� �
: ð6:73Þ

For the third-order triangulation (accurate to 0.1 m), one has only to consider the

first term:

ΔS ¼ D� S ¼ ym
2

2Rm
2
S: ð6:74Þ
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Thus, it can be seen that with y ¼ 0 and ΔS ¼ 0, the distance correction on the

central meridian is zero. In the case of y 6¼ 0 and ΔS > 0, we see that the distance

correction is always a positive value, increasing with the distance from the central

meridian. When ym ¼ 300 km, S ¼ 5 km, and Rm ¼ 6, 400 km, we can get ΔS
¼ 6 m after the distance correction. Obviously, the distance correction is

non-negligible in computations of all orders.

Also, if converting the planar chord-length D to the geodesic distance S, we
have:

S ¼ D� ΔS ð6:75Þ

Accuracy of Coordinates Required in the Computation of Distance

Correction

To calculate the distance correction one needs to know the plane coordinates of a

point. As the value of the distance correction is not large, it does not require too

high a level of coordinate accuracy. To know the approximations of coordinates is

sufficient; we will analyze the desired degree of accuracy for coordinates.

From (6.74), we get:

Δ D� Sð Þ ¼ 2ym
2Rm

2
SΔy

and

Δy ¼ Rm
2

ymS
Δ D� Sð Þ:

With ym ¼ 350 km, S ¼ 50 km, and Rm ¼ 6, 400 km, and for the first-order

triangulation, let Δ(D � S) ¼ 0.001 m; we obtain Δy ¼ 2.34 m. In the meantime,

for the second- and third-order triangulations, Δy is 23.4 m and 234 m, respectively.

Hence, the coordinates with an accuracy of 1 m and 10 m would satisfy the first-,

second-, and third-order triangulations. In a large number of computations, to avoid

accumulative errors of coordinates, the coordinates are always accurate to 0.1 m,

1 m, and 10 m. Based on the analyses above, such an accuracy of coordinates can

also satisfy the computation requirements for the arc-to-chord correction of the

same order.
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Practical Formula

Equation (6.71) is the practical formula that yields an accuracy of 0.001 m:

D ¼ S 1þ 1

2

ym
Rm

� �2

þ 1

24

Δy
Rm

� �2

þ 1

24

ym
Rm

� �4
" #

, ð6:76Þ

where Rm ¼ c

1þ e02 cos 2Bm
; see (5.35). If Bm is unknown, we can put

X ¼ 1
2
x1 þ x2ð Þ and calculate Bm according to the formula for computing latitude

from the meridian arc length.

For instance, given y1 ¼ 269759.6 m, y2 ¼ 297219.7 m, Bm ¼ 31 � 270, and
S ¼ 34862.820 m, one obtains D ¼ 34,897.394 m.

Alternatively, given x1 ¼ 3496205.1 m, y1 ¼ 269759.6 m, x2 ¼ 3474669.9 m,

y2 ¼ 297219.7 m, and S ¼ 34862.820 m, one gets D ¼ 34,897.394 m.

6.5.4 Grid Convergence

Grid convergence is needed in determining the grid azimuth. We will hereby derive

the formula for computing the grid convergence.

On the Gauss projection plane, as shown in Fig. 6.17, the angle between the

projected meridian P0N0 passing through point P0 (the curve with l ¼ constant) and

the vertical grid line P0L is referred to as the Gauss plane grid convergence. Because

the Gauss projection is a conformal projection, the projected meridian and parallel

Fig. 6.17 Grid

convergence
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(i.e., P0N0 and P0E0) are still perpendicular to each other. Hence, the angular

difference between P0E0 and the horizontal grid line P0R is also the grid conver-

gence γ. The grid convergence is used to convert the geodetic azimuth and grid

azimuth, and vice versa. It can be calculated given either the geodetic coordinates

(L, B) or grid coordinates (x, y). The derivations of their formulae are provided

below.

To Compute γ Given Geodetic Coordinates (L, B)

From Fig. 6.17, on the projected parallel P0, according to the geometric meaning of

first-order derivative, we get:

tan γ ¼ dx

dy
:

Taking the total differential of x ¼ f1(q, l ), y ¼ f2(q, l ) yields:

dx ¼ ∂x
∂q

dqþ ∂x
∂l

dl,

dy ¼ ∂y
∂q

dqþ ∂y
∂l

dl:

On the parallel curve P0E0, B is constant, and therefore in this case dq¼ 0. Hence,

we have:

dx ¼ ∂x
∂l

dl

dy ¼ ∂y
∂l

dl

9>>>>=
>>>>;
,

so

tan γ ¼
∂x
∂l
∂y
∂l

: ð6:77Þ

From (6.63) we have obtained the partial derivatives of x and y with respect to l.
Inserting into the above equation and rearranging produces:
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tan γ ¼ sinB � lþ 1

3
sinB cos 2B 1þ t2 þ 3η2 þ 2η4

� 	
l3

þ 1

15
sinB cos 4B 2þ 4t2 þ 2t4

� 	
l5:

With tan γ ¼ x

and γ ¼ tan �1x ¼ x� 1
3
x3 þ 1

5
x5 þ � � � ¼ tan γ � 1

3
tan 3γ þ 1

5
tan 5γ þ � � �

the result is:

γ00 ¼ l00 sinB 1þ l002 cos 2B
3ρ002

1þ 3η2 þ 2η4
� 	þ l004 cos 4B

15ρ004
2� t2
� 	" #

: ð6:78Þ

Equation (6.78) is the formula for computing the grid convergence γ from

geodetic coordinates (L, B). It can thus be seen that:

1. When l ¼ 0, γ ¼ 0 and when B ¼ 0, γ ¼ 0, i.e., the grid convergence is zero on

both the central meridian and the equator.

2. Grid convergence γ is the odd function of l. l and γ are both considered to be

positive when point P is east of the central meridian, and negative when P is west

of the central meridian.

3. When the latitude B is constant, the value of γ increases with the increasing

difference in longitude between the central meridian and point P.
4. When l is constant, the value of γ increases as latitude increases towards the

poles. γ becomes greatest at the poles.

Equation (6.78) can be accurate to 0.00100 when l � 3.5o. wWhen l � 2 �, the
term that contains l5 is less than 0.00100 and can be neglected.

To Compute γ Given Plane Coordinates (x, y)

The formula for computing the grid convergence from given plane coordinates x,
y can be obtained by making changes to (6.78), in which we replace l by Cartesian

coordinates and B by Bf. We will derive the formula to the term that contains y3.
B is replaced by Bf through expanding sinB using the Taylor series:

sinB ¼ sin Bf � Bf � B
� 	� � ¼ sinBf � cosBf Bf � B

� 	� � � �,

where (Bf � B) is obtained by taking the principal terms in the first expression of

(6.46):

Bf � B
� 	 ¼ tf

2MfNf
y2 ¼ tf

2N2
f

y2 1þ η2f

� �
:
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Substituting gives:

sinB ¼ cosBf tf � tf

2N2
f

y2 1þ η2f

� �
� � � �

" #
: ð6:79Þ

In the same way, we get:

cosB ¼ cos Bf � Bf � B
� 	� � ¼ cosBf þ sinBf Bf � B

� 	� � � �

¼ cosBf þ sinBf
tf

2MfNf
y2 ¼ cosBf 1þ tf

2

2MfNf
y2

2
4

3
5: ð6:80Þ

We replace l with Cartesian coordinates, and apply the second expression in

(6.46) to get:

l00 cosBf ¼ ρ00

Nf
y� ρ00

6N3
f

y3 1þ 2t2f þ η2f

� �
þ � � �

l00 cos 2Bf ¼ ρ002

N2
f

y2 � � � �

9>>>>=
>>>>;
: ð6:81Þ

Inserting (6.79), (6.80), and (6.81) into (6.78), and neglecting the terms

containing l3η4 or higher powers yields:

γ00 ¼ ρ00

Nf
y� ρ00

6N3
f

y3 1þ2t2f þη2f

� �2
4

3
5 � tf � tf

2N2
f

y2 1þη2f

� �2
4

3
5 � 1þ 1

3Nf
2
y2 1þ3η2f

� �2
4

3
5

¼ρ00y
Nf

tf �ρ00y3

6N3
f

tf 1þ2t2f þη2f

� �
�ρ00y3

2N3
f

tf
�
1þη2f

	þρ00y3

3N3
f

tf
�
1þ3η2f

	
:

Finally one obtains:

γ
00 ¼ ρ00y

Nf
tf � ρ00y3

3N3
f

tf 1þ t2f � η2f

� �
, ð6:82Þ

or, if calculated to terms containing y5, then:

γ00 ¼ ρ00y
Nf

tf � ρ00y3

3N3
f

tf 1þ t2f � η2f

� �
þ ρ00y5

15N5
f

tf 2þ 5t2f þ 3t4f

� �
: ð6:83Þ

γ can achieve an accuracy of 100 if calculated from (6.82) and 0.00100 from (6.83).

The subscript f indicates that the result is obtained from the footprint latitude, which

is similar to the meaning it carries in the formula for the inverse solution of the

Gauss projection.
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Practical Formula

Equations (6.78) and (6.83) can both be used as practical formulae for computer

programming to achieve an accuracy of 0.00100. The value of Bf needed to calculate

(6.83) can be obtained through iteration or from the direct formula based on x ¼ X.
To reach an accuracy of 0.000100 we can expand the series in (6.83), and the result is
as follows:

γ00 ¼ ρ00y
Nf

tf � ρ00y3

3N3
f

tf 1þ t2f � 5η2f

� �
þ ρ00y5

15N5
f

tf 2þ 5t2f þ 3t4f þ 2η2f þ η2f t
2
f

� �
:

For instance, given L ¼ 113�50026.26800 and B ¼ 31�33022.29300, according to

(6.78) one gets γ ¼ +1�29014.99200. Again, given x ¼ 3,496,205.167 m and y ¼
269,759.797 m, one obtains from (6.83) that γ ¼ +1�29014.99200.

6.5.5 Computation of Grid Bearing

As shown in Fig. 6.18, the angle between the curve P1
0N0 and the straight line P1

0L
is the grid convergence γ1 of point P1

0. The angular difference between P1
0L and the

chord P
0
1P

0
2 is the grid azimuth T1.2 of P1

0 in the direction of P1
0P2

0. As the Gauss

projection is conformal, the angle between P1
0N0 and the projected curve P

0
1P

0
2

_

(dashed line in Fig. 6.18) on the plane is equivalent to the angle between P1N and

P1P2 on the ellipsoid, which is the geodetic azimuth A1.2. From Fig. 6.18, we have

T1:2 ¼ A1:2 � γ1 � δ1:2j j:

The sign of the arc-to-chord correction δ1.2 in Fig. 6.18 is negative. T1.2 can

therefore be calculated from A1.2 by applying the formula:

Fig. 6.18 Computation of

grid bearing T1.2. The
dashed line indicates the
projected curve
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T1:2 ¼ A1:2 � γ1 þ δ1:2 ð6:84Þ

When converting the triangulation network on the ellipsoid to the Gauss plane,

the grid azimuth on the initial side should be calculated according to (6.84). The

geodetic azimuth A1.2, according to Laplace’s azimuth formula (5.67), can be

obtained through the actually measured astronomical azimuth α1.2, namely:

A1:2 ¼ α1:2 � λ1 � L1ð Þ sinφ1:

Combining the above two equations, we get:

T1:2 ¼ α1:2 � λ1 � L1ð Þ sinφ1 � γ1 þ δ1:2, ð6:85Þ

which is the formula for computing the grid azimuth from the astronomical

azimuth. In (6.85), λ1 and L1 are the astronomical longitude and geodetic longitude

of P1, and γ1 is the grid convergence of P1.

6.6 Universal Transverse Mercator Projection

6.6.1 Definition of UTM Projection

The Gauss projection is also called Transverse Mercator (TM) projection. Geomet-

rically, it can be approximately perceived to be a transverse cylindrical conformal

projection.

The Universal Transverse Mercator (UTM) projection can be understood geo-

metrically as an equiangular transverse secant cylindrical projection. The UTM

system divides the surface of the Earth (considered as a sphere) between 80�S
latitude and 84�N latitude, as shown in Fig. 6.19. The cylindrical projection

intersects the Earth at two lines (approximate to two meridians). No distortion

occurs anywhere that the projection surface intersects with the Earth’s surface. The

scale factor along the central meridian is less than 1.

central m
eridian

Fig. 6.19 Geometric

description of the UTM

projection
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Conditions for the UTM projection are:

1. The projection is conformal

2. The central meridian is projected as a straight line

3. The central meridian and all distances have a scale factor of 0.9996 after

projection

The scale factor along the central meridian is 0.9996 rather than 1, which is a

reduction of 0.0004. For distances that are not close to the central meridian, the

UTM has an advantage over the Gauss projection in reducing the amount of

distance distortion and satisfies the needs of topographic maps.

Analogous to the Gauss projection, the UTM system divides the regions north of

84�N and south of 80�S into 60 longitudinal zones of 6�. These zones are numbered

1 through 60, starting at longitude 180�, and proceeding eastward (Beijing is in

zone 50). To avoid negative coordinates for positions located west of the central

meridian, the central meridian has been given a false y-coordinate of 500,000 m. A

false x-coordinate of 10,000,000 m is allocated to the equator in the southern

hemisphere.

6.6.2 Computational Formula for UTM Projection

UTM and Gauss projections are essentially the same. The previous two conditions

for the UTM projection correspond to those for Gauss projection. The only differ-

ence between them lies in that for the UTM projection, the central meridian has a

scale factor of 0.9996, rather than 1.0. It can be seen that UTM and Gauss pro-

jections are related by a similarity transformation, based on which, one can write

out the formula for computing the UTM projection according to relevant formulae

for the Gauss projection:

1. For the direct solution of the UTM projection, one can reckon the Gauss plane

coordinates (xGauss, yGauss) using the formulae for the direct solution of the

Gauss projection and obtain the UTM plane coordinates (xUTM, yUTM) according
to the formulae below:

xUTM ¼ 0:9996xGauss
yUTM ¼ 0:9996yGauss:

ð6:86Þ

2. For the inverse solution of the UTM projection, we can compute the

corresponding (xGauss, yGauss) given the (xUTM, yUTM) using the formulae below:

xGauss ¼ xUTM=0:9996
yGauss ¼ yUTM=0:9996:

ð6:87Þ

Then, apply the formulae for the inverse solution of the Gauss projection to

calculate (L, B).
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3. The formula for arc-to-chord correction of the UTM projection agrees with that

of Gauss projection. Conversions like (6.87) are not needed because the arc-to-

chord correction is the correction applied to compensate for distortion of straight

lines when projected, which is fundamentally independent of projection method.

4. The relationship between the scale factor mUTM of the UTM projection and

mGauss of the Gauss projection is:

mUTM ¼ 0:9996mGauss: ð6:88Þ

5. To compute the distance correction of the UTM projection, first we transform the

coordinates according to (6.87) and calculate the Gauss plane distance DGauss

according to the formula for distance corrections in the Gauss projection; then,

we reckon the UTM plane distance based on the formula

DUTM ¼ 0:9996DGauss: ð6:89Þ

6. The formula for meridian convergence on the UTM plane completely corre-

sponds to that on the Gauss plane.

The distance distortion of the UTM projection can be analyzed using (6.88).

Table 6.6 presents the distortion of distances given the different longitudes and

latitudes.

Table 6.6 shows that the distortion of distance along the central meridian is

�0.00040, namely, the central meridian has a scale factor of 0.9996. This allows the

greatest distortion of distance at B ¼ 0o, l ¼ 3o to be smaller than 0.001. The two

secant lines (about 	180 km away from the central meridian on the equator, i.e., at

about 	1�400) have no distortion of distances. Distances become more distorted

away from these two secant lines. The distance distortion will have a negative value

inside the two secants and a positive value outside.

Table 6.6 Numerical values

of the distance distortion for

different longitudes (l ) and
latitudes (B)

B l ¼ 0� l ¼ 1� l ¼ 2� l ¼ 3�

90� �0.00040 �0.00040 �0.00040 �0.00040

80� �0.00040 �0.00040 �0.00038 �0.00036

70� �0.00040 �0.00038 �0.00033 �0.00024

60� �0.00040 �0.00036 �0.00025 �0.00006

50� �0.00040 �0.00034 �0.00015 +0.00017

40� �0.00040 �0.00031 �0.00004 +0.00041

30� �0.00040 �0.00028 +0.00006 +0.00063

20� �0.00040 �0.00027 +0.00014 +0.00081

10� �0.00040 �0.00026 +0.00019 +0.00094

0� �0.00040 �0.00025 +0.00021 +0.00098
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Review and Study Questions

1. Why are geodetic elements on the ellipsoid projected onto a plane?

2. What is the conformality of conformal projection? Please demonstrate.

3. Write out the Cauchy–Riemann differential equation for conformal projection

from the ellipsoid onto the plane and from the plane onto the ellipsoid, and give

the relationship between isometric latitude and geodetic latitude.

4. What is zone division and how can an area of interest be divided into zones?

5. What are the three conditions for the Gauss projection and how does one

express these conditions with formulae?

6. Draw a geometric figure to explain the expansion point of the direct and inverse

solutions of Gauss projection, and explain the term “footprint latitude.”

7. Illustrate the basics of the transformation between adjacent zones and how to

transform coordinates between 3� zones and 6� zones.
8. What is involved in the reduction of a horizontal geodetic control network to

the Gauss plane?

9. Derive the approximate formula for arc-to-chord correction with an accuracy of

0.1 m.

10. Derive the formula for checking arc-to-chord correction.

11. Analyze the distortion property of the Gauss projection according to the

formula for distance distortion m� 1 ¼ y2

2R2 þ y4

24R4.

12. Analyze the signs of the two corrected values when reducing the terrestrial

observed distance to the plane.

13. Analyze the desired accuracy for coordinates in computations of distance

correction and arc-to-chord correction of the first-order triangulateration con-

trol network (let R ¼ 6,400 km, y and Δx ¼ 300 km, and S ¼ 50 km).

14. Draw a geometric figure to derive the relational expression for computing the

grid convergence:

tan γ ¼
∂x
∂l
∂y
∂l

:

15. Explain the concepts of the Universal Transverse Mercator (UTM) projection.
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Chapter 7

Establishment of Geodetic Coordinate

Systems

To describe the state of an object, we have to make clear what it is referenced to. In

the context of geodetic surveying, other than choosing a reference, one still needs to

carry out spatial positioning and orientation and specify the unit of measurement

(such as time scale, spatial scale, etc.). Therefore, it is necessary to establish a

terrestrial reference coordinate system (also known as reference system or coordi-

nate system, which are interpreted as synonyms here). Mathematically, it is unrea-

sonable to judge the merits and demerits of a coordinate system. Nevertheless, from

a physical and functional perspective, we should choose the proper reference

system, taking into account the operability and convenience of the issues being

studied.

This chapter discusses the principles for establishing classical and modern

geodetic coordinate systems, establishes the transformation models between differ-

ent coordinate systems, and provides an overview of the geodetic coordinate

systems in China and throughout the world.

7.1 Euler Angles in Geodetic Coordinate Systems

7.1.1 Vector Analysis in Coordinate Transformations

In Fig. 7.1, two spatial Cartesian coordinate systems are introduced, O-XYZ and

O-X0Y0Z. Our discussion involves only the coordinate transformations under rota-

tion, so their origins are assumed to be coincident. The direction angles of the

coordinate axes OX0, OY0, and OZ0 of O-X0Y0Z0 with respect to the axes OX, OY, OZ
of the coordinate systemO-XYZ are α1, β1, γ1; α2, β2, γ2; and α3, β3, γ3, respectively.

Let~r denote the radius vector of a point M in space in relation to the coordinate

system O-XYZ and~r 0 represent the radius vector of the same point in space relative

to the system O ‐X0Y0Z0; then it is obvious that:

Z. Lu et al., Geodesy, DOI 10.1007/978-3-642-41245-5_7,
© Springer-Verlag Berlin Heidelberg 2014
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~r 0 ¼~r

By applying the expression of their components, the above equation becomes:

X
0~i 0 þ Y

0~j 0 þ Z
0~k 0 ¼ X~i þ Y~j þ Z~k , ð7:1Þ

where~i 0, ~j 0, and~k 0 are the basic unit vectors of O ‐X0Y0Z0, while~i ,~j , and~k are the

basic unit vectors of O ‐XYZ; X0, Y0, Z0 and X, Y, Z are the components of~r and~r 0,
respectively.

Taking the dot product (scalar product) of both sides of (7.1) with~i 0 and then

with~j 0 and ~k 0, respectively, yields:

X
0 ¼ X~i 0 �~i þ Y~i 0 �~j þ Z~i 0 �~k ,

Y
0 ¼ X~j 0 �~i þ Y~j 0 �~j þ Z~j 0 �~k ,

and

Z
0 ¼ X~k 0 �~i þ Y~k 0 �~j þ Z~k 0 �~k :

From the definition of the dot product of two vectors, we have:

~i 0 �~i ¼ cos ~i 0;~i
� � ¼ cos α1,

~i 0 �~j ¼ cos ~i 0;~j
� � ¼ cos β1,

~i 0 �~k ¼ cos ~i 0;~k
� �

¼ cos γ1,

⋮
~k 0 �~k ¼ cos ~k 0;~k

� �
¼ cos γ3:

Hence, the above equation can be rewritten as:

Fig. 7.1 Direction angles
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X
0

Y
0

Z
0

0
@

1
A ¼

cos α1 cos β1 cos γ1
cos α2 cos β2 cos γ2
cos α3 cos β3 cos γ3

0
@

1
A X

Y
Z

0
@

1
A, ð7:2Þ

where the coefficients are termed the transformation coefficients. The first, second,

and third row of the coefficient matrix are the respective coordinates of~i 0,~j 0, and~k 0

in O ‐XYZ, and ~i 0 �~i 0 ¼ 1, ~j 0 �~j 0 ¼ 1, ~k 0 �~k 0 ¼ 1, ~i 0 �~j 0 ¼ 0, ~i 0 �~k 0 ¼ 0, and

~j 0 �~k 0 ¼ 0. Hence, the nine direction angles in (7.2) should satisfy the six relational

expressions below:

cos 2α1 þ cos 2β1 þ cos 2γ1 ¼ 1

cos 2α2 þ cos 2β2 þ cos 2γ2 ¼ 1

cos 2α3 þ cos 2β3 þ cos 2γ3 ¼ 1

cos α1 cos α2 þ cos β1 cos β2 þ cos γ1 cos γ2 ¼ 0

cos α2 cos α3 þ cos β2 cos β3 þ cos γ2 cos γ3 ¼ 0

cos α3 cos α1 þ cos β3 cos β1 þ cos γ3 cos γ1 ¼ 0

9>>>>>>=
>>>>>>;
: ð7:3Þ

Theoretically, only three direction angles out of the nine are independent,

meaning that one can employ any three arbitrary independent direction angles to

represent the remaining six. When studying the positioning and orientation of the

ellipsoid as well as the transformation between different coordinate systems, we are

more concerned with the angles between the corresponding coordinate axes. There-

fore, we have chosen α1 (the angle between the two X-axes), β2 (the angle between
the two Y-axes), and γ3 (the angle between the two Z-axes). Of these, β2 and γ3 are
our top concerns. Since the Z and Z0 axes coincide with their respective minor axis

of the ellipsoid, γ3 then denotes the angle between the minor axes of two ellipsoids

that are non-parallel to each other. ZOX and Z0OX0 are their respective planes of

initial geodetic meridian. Hence, β2 represents the angle between two planes of

initial geodetic meridian that are not parallel to each other.

7.1.2 Coordinate Transformations in Terms of Euler Angles
as Rotation Parameters

The formulae are long-winded if α1, β2, and γ3 are chosen as the independent

direction angles. Thus, we opt for another three mutually independent parameters to

represent the direction angles. These three parameters are the angles produced by

three successive rotations about the coordinate axis, defined as the Euler angles (see

e.g., Grewal et al. 2001). Euler angles are different from the angles between the

corresponding axes of two Cartesian coordinate systems, but an analytical relation-

ship can be established between them. The Euler angles in the geodetic coordinate

system are also referred to as rotation parameters.
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Euler angles are usually described as shown in Fig. 7.2. Assign εX, εY, and εZ as
Euler angles, and the rotations of the coordinate system are as follows:

First, rotate OX0 to OX� and correspondingly OY0 to OY� around the OZ0 axis by
the rotation angle of εZ. Then rotate OZ0 to OZ� around the OY� axis, and corre-

spondingly OX� to OX, and the rotation angle is εY. Finally, rotate OZ� to axis OZ
around the OX axis; OY� is correspondingly rotated to OY, and the angle of rotation
is εX.

Hence, we can write:

X
Y
Z

2
4

3
5 ¼ RX εXð ÞRY εYð ÞRZ εZð Þ

X
0

Y
0

Z
0

2
4

3
5, ð7:4Þ

where RX(εX), RY(εY), and RZ(εZ) are the rotation matrices, and the expressions are

given by:

RX εXð Þ ¼
1 0 0

0 cos εX sin εX
0 � sin εX cos εX

2
4

3
5

RY εYð Þ ¼
cos εY 0 � sin εY
0 1 0

sin εY 0 cos εY

2
4

3
5

RZ εZð Þ ¼
cos εZ sin εZ 0

� sin εZ cos εZ 0

0 0 1

2
4

3
5

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: ð7:5Þ

Substituting (7.5) into (7.4) yields:

Fig. 7.2 Euler angles
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X
Y
Z

2
4

3
5¼ cosεYcosεZ

�cosεXsinεZþsinεXsinεYcosεZ
sinεXsinεZþcosεXsinεYcosεZ

cosεYsinεZ
cosεXcosεZþsinεXsinεYsinεZ
�sinεXcosεZþcosεXsinεYsinεZ

�sinεY
sinεXcosεY
cosεXcosεY

2
4

3
5 X

0

Y
0

Z
0

2
4

3
5

ð7:6Þ

When εX, εY, and εZ are very small, we neglect the second-order small quantities

to obtain:

cos εX � cos εY � cos εZ � 1

sin εX � εX, sin εY � εY , sin εZ � εZ
sin εX sin εY � sin εY sin εZ � sin εZ sin εX � 0

9=
;:

Then (7.6) can be written as:

X
Y
Z

2
4

3
5 ¼

1 εZ �εY
�εZ 1 εX
εY �εX 1

2
4

3
5 X

0

Y
0

Z
0

2
4

3
5, ð7:7Þ

where the coefficient matrix is also called the differential rotation matrix. Compar-

ing (7.2) and (7.6) gives:

cos γ3 ¼ cos εX cos εY
cos β2 ¼ cos εX cos εZ þ sin εX sin εY sin εZ
cos α1 ¼ cos εY cos εZ

9=
;: ð7:8Þ

Omitting the small terms higher than third order created by mutual multiplica-

tion of εX, εY, and εZ in (7.8) produces:

γ3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2X þ ε2Y

p
β2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2X þ ε2Z

p
α1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2Y þ ε2Z

p
9=
;: ð7:9Þ

Equation (7.7) shows that by neglecting the small quantities of the second-order,

the rotation matrices are commutative.

The three rotation angles εZ, εY, and εX are called the yaw, pitch, and roll,

respectively, in describing the vehicle’s attitude and are used to represent the

precession, rotation (spin), and nutation, respectively while studying the rotation

of rigid bodies.
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7.1.3 Generalized Formulae for Deflection of the Vertical
and Laplace Azimuth

In Sect. 5.5, on condition that the minor axis of the ellipsoid is parallel to the Earth’s

rotational axis and the planes of the initial geodetic and astronomical meridians are

parallel to each other, we derived the formulae for the deflection of the vertical and

the Laplace azimuth, as follows:

ξ ¼ φ� B
η ¼ λ� Lð Þ cosφ

�
,

and

A ¼ α� λ� Lð Þ sinφ ¼ α� η tanφ:

When the minor axis of the ellipsoid is non-parallel to the Earth’s rotational axis

at a certain epoch and the initial geodetic meridian plane is non-parallel to the initial

astronomical meridian plane, Euler angles εX, εY, and εZ arise. In this case, the

corresponding correction terms should be applied to the above formulae.

Here, we provide the formulae for the deflection of the vertical and Laplace

azimuth when Euler angles εX, εY, and εZ exist (without derivation):

ξ ¼ φ� Bþ sin λεX � cos λεY
η ¼ λ� Lð Þ cosφ� cos λ sinφεX � sin λ sinφεY þ cosφεZ

�
, ð7:10Þ

A ¼ α� η tanφ� εY sin λþ εX cos λð Þ secφ, ð7:11Þ

where (7.10) is the generalized formula for the deflection of the vertical and (7.11)

is the that for the Laplace azimuth.

7.2 Transformation Between Different Geodetic

Coordinate Systems

7.2.1 Transformation Between Different Geodetic Cartesian
Coordinate Systems

Different geodetic coordinate systems arise because the data, models, parameters,

and data processing methods employed in the establishment of geodetic coordinate

system are different. In practice, as often as not, we have to solve the problem of

unification between different coordinate systems.
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In Fig. 7.3, Onew—Xnew Ynew Znew and Oold—Xold Yold Zold are two geodetic

Cartesian coordinate systems (geodetic spatial rectangular coordinate systems).

Their coordinate origins do not coincide, i.e., there are three translation parameters,

ΔX0,ΔY0,ΔZ0, denoting the components of the old coordinate origin with respect

to the new coordinate origin along the three coordinate axes. The coordinate axes of

the two systems are mutually non-parallel, generally less than 100 for classical

geodetic coordinate systems, meaning that Euler angles εx, εy, εz exist (known

also as the three rotation parameters). Apparently, these two systems can be made

coincident under translation and rotation. According to (7.7), we get:

X
Y
Z

2
4

3
5
new

¼
ΔX0

ΔY0

ΔZ0

2
4

3
5þ

1 εZ �εY
�εZ 1 εX
εY �εX 1

2
4

3
5 X

Y
Z

2
4

3
5
old

: ð7:12Þ

For various reasons, there will also be a difference in scale while establishing the

two systems. Assume that Snew and Sold are the measurements of the same distance

in space in the new and old coordinate systems; then we can define

Δm ¼ Snew � Sold
Sold

¼ m� 1

as the scale factor of the two coordinate systems. Here, Δm is homogeneous and is

independent of the point position and direction. Hence, the old coordinates can be

improved in accordance with the scale of the new coordinate system, as

X¼Xold+ΔmXold, Y¼ Yold+ΔmYold and Z¼ Zold+ΔmZold.
In (7.12), considering the effect of the scale factor means improving the (X,Y,

Z )Told in accordance with the above relations, namely:

X
Y
Z

2
4

3
5
new

¼
ΔX0

ΔY0

ΔZ0

2
4

3
5þ

1 εZ �εY
�εZ 1 εX
εY �εX 1

2
4

3
5 Xold þ ΔmXold

Yold þ ΔmYold

Zold þ ΔmZold

2
4

3
5:

Disregarding the second-order small quantities and rearranging gives:

X
Y
Z

2
4

3
5
new

¼ 1þΔmð Þ
X
Y
Z

2
4

3
5
old

þ
0 εZ �εY

�εZ 0 εX
εY �εX 0

2
4

3
5 X

Y
Z

2
4

3
5
old

þ
ΔX0

ΔY0

ΔZ0

2
4

3
5, ð7:13Þ

which is called the Bursa–Wolf transformation model (or, simply, Bursa model; see

Thomson 1976) with seven transformation parameters ΔX0,ΔY0,ΔZ0, εX, εY, εZ,
and Δm. The linear equation in terms of these parameters is:
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X
Y
Z

2
4

3
5
new

�
X
Y
Z

2
4

3
5
old

¼
1 0 0 0 �Zold Yold Xold

0 1 0 Zold 0 � Xold Yold

0 0 1� Yold Xold 0 Zold

2
4

3
5

ΔX0

ΔY0

ΔZ0

εX
εY
εZ
Δm

2
666666664

3
777777775
:

ð7:14Þ

In (7.13), if εX¼ εY¼ εZ¼ 0 and Δm¼ 0, then it is called the three-parameter

formula, indicating that the scales of the two geodetic Cartesian coordinate systems

are consistent and the corresponding coordinate axes are mutually parallel. Like-

wise, in (7.13), by leaving out certain parameters, we can obtain the four-parameter,

five-parameter, and six-parameter transformation formulae.

In order to obtain the seven transformation parameters in (7.14), at least three

points with two sets of coordinates, both the old and the new (known as common

points) are needed. The transformation parameters will be solved according to the

principle of adjustment.

Actually, the accuracy of the common point coordinates and other factors such

as the number and geometric distribution of the common points all exert an

influence on the solution of transformation parameters. Thus, in practical cases,

we have to choose a certain number of common points with relatively high accuracy

and with even distribution and wide coverage.

After carrying out adjustment computations of the difference between the new

and old coordinates as the observed quantity in (7.14), we will obtain the correction

to the observed quantity. This shows that the new coordinates transformed from the

old coordinates of the common points according to (7.14) are not completely

Fig. 7.3 Transformations

between geodetic Cartesian

coordinate systems
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equivalent to the values of the given new coordinates. In practice, however, the

coordinate values of the given points are often required to be constant and unchang-

ing. In order to settle this issue, the transformed value of the common points can be

corrected to the known values and one can deal with the transformed values of the

non-common points, e.g., calculate the correction to the transformed values of the

non-common points using the weighted average according to the formula below:

V
0 ¼

Xn
1

pivi

Xn
1

pi

,

where n denotes the number of the common points. The weight of the ith common

point can be defined by the distance (Si) between the non-common point and the

common point. We can set pi ¼ 1
Si

2, vi is the correction to the coordinate value of the

ith common point, namely vi¼ given value� transformed value, and the coordinate
of the common point adopts the given value. This is only one method for an

interpolation of the residuals, which is not a similar transformation since the

transformed network of identical points might lose its shape.

7.2.2 Transformation Between Different Geodetic
Coordinate Systems

As indicated above, the transformation formulae for different geodetic Cartesian

coordinate systems generally involve seven parameters: three translations, three

rotations, and one scaling. For the transformation between different geodetic

coordinate systems, two additional transformation parameters are needed, namely

the different Earth ellipsoid parameters corresponding to the two types of geodetic

coordinate systems. The transformation formula for different geodetic coordinate

systems is also referred to as the geodetic coordinate differential formula or

ellipsoid transformation differential formula. When inclusive of the rotation and

scale parameters, it is called the generalized differential formula for geodetic

coordinates or generalized differential formula for ellipsoid transformation.

Given that the relationship between the geodetic Cartesian coordinates and the

geodetic coordinates of a given point in space is:

X
Y
Z

2
4

3
5 ¼

N þ Hð Þ cosB cos L
N þ Hð Þ cosB sin L�
N 1� e2ð Þ þ H

	
sinB

2
4

3
5,
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we can see that X, Y, and Z are the functions of L, B, H, a, and f (or e2). When these

variables are differentiated respectively as dL, dB, dH, da, and df, by taking the total
differential of dX, dY, and dZ, one gets:

dX
dY
dZ

2
4

3
5 ¼ J

dL
dB
dH

2
4

3
5þ A

da
df


 �
, ð7:15Þ

with

J ¼

∂X
∂L

∂X
∂B

∂X
∂H

∂Y
∂L

∂Y
∂B

∂Y
∂H

∂Z
∂L

∂Z
∂B

∂Z
∂H

2
6666666664

3
7777777775

¼
� N þ Hð Þ cosB sin L � M þ Hð Þ sinB cos L cosB cos L
N þ Hð Þ cosB cos L � M þ Hð Þ sinB sin L cosB sin L

0 M þ Hð Þ cosB sinB

2
4

3
5,

This is called a Jacobian matrix. For the solution to its inverse matrix, readers

can refer to the literature (e.g., Zhu 1986).

In addition:

A ¼

∂X
∂a

∂X
∂f

∂Y
∂a

∂Y
∂f

∂Z
∂a

∂Z
∂f

2
6666666664

3
7777777775
¼

N

a
cosB cos L

M

1� f
cosB cos L sin 2B

N

a
cosB sin L

M

1� f
cosB sin L sin 2B

N

a
1� e2
� �

sinB � M

1� f
sinB 1þ cos 2B� e2 sin 2B

� �

2
666666664

3
777777775
:

It follows from (7.15) that:

dL
dB
dH

2
4

3
5 ¼ J�1

dX
dY
dZ

2
4

3
5� J�1A

da
df


 �
, ð7:16Þ

where
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dX
dY
dZ

2
4

3
5 ¼

X
Y
Z

2
4

3
5
new

�
X
Y
Z

2
4

3
5
old

,

and

dL
dB
dH

2
4

3
5 ¼

L
B
H

2
4

3
5
new

�
L
B
H

2
4

3
5
old

:

In order to derive the inverse matrix J� 1, we decompose J into the product of

two matrices:

J ¼ SH, ð7:17Þ

with

S ¼
� sin L � sinB cos L cosB cos L
cos L � sinB sin L cosB sin L
0 cosB sinB

2
4

3
5,

and

H ¼
N þ Hð Þ cosB 0 0

0 M þ H 0

0 0 1

2
4

3
5:

According to the invertible matrix theorem, we get:

J�1 ¼ H�1S�1: ð7:18Þ

H is the diagonal matrix and its inverse matrix is:

H�1 ¼

1

N þ Hð Þ cosB 0 0

0
1

M þ H
1

0 0 1

2
666664

3
777775: ð7:19Þ

S is an orthogonal matrix; hence, we have:
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S�1 ¼ ST ¼
� sin L cos L 0

� sinB cos L � sinB sin L cosB
cosB cos L cosBsibL sinB

2
4

3
5: ð7:20Þ

Substituting (7.19) and (7.20) into (7.18) yields:

J�1 ¼

� sin L

N þ Hð Þ cosB
cos L

N þ Hð Þ cosB 0

� sinB cos L

M þ H
� sinB sin L

M þ H

cosB

M þ H

cosB cos L cosB sin L sinB

2
666664

3
777775: ð7:21Þ

We insert the Bursa–Wolf model (7.13) into (7.16) to get:

dL
dB
dH

2
4

3
5 ¼ J�1

ΔX0

ΔY0

ΔZ0

2
4

3
5þ J�1QBþ J�1mB� J�1A

da
df


 �
, ð7:22Þ

with

Q ¼
0 εZ �εY

�εZ 0 εX
εY �εX 0

2
4

3
5,

and

B ¼
X
Y
Z

2
4

3
5
old

¼

N þ Hð Þ cosB cos L

N þ Hð Þ cosB sin L

N 1� e2ð Þ þ H
h i

sinB

2
666664

3
777775:

In the above equation, L, B, and H are the old geodetic coordinates and the

subscripts “old” are all omitted. Rearranging the above equation gives:
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dL
dB
dH

2
4

3
5 ¼

� sin L

N þ Hð Þ cosB ρ
00 cos L

N þ Hð Þ cosB ρ
00

0

� sinB cos L

M þ H
ρ

00 � sinB sin L

M þ H
ρ

00 cosB

M þ H
ρ

00

cosB cos L cosB sin L sinB

2
66666664

3
77777775

ΔX0

ΔY0

ΔZ0

2
4

3
5

þ

tanB cos L tanB sinL �1

� sin L cos L 0

�Ne2 sinB cosB sin L

ρ}

Ne2 sinB cosB cos L

ρ}
0

2
6666664

3
7777775

εX
0 0

εY
0 0

εZ
0 0

2
4

3
5

þ

0

� N

M
e2 sinB cosBρ

00

N 1� e2 sin 2Bð Þ

2
66664

3
77775Δm

þ

0 0

N

M þ Hð Þa e
2 sinB cosBρ

00 M 2� e2 sin 2Bð Þ
M þ Hð Þ 1� fð Þ sinB cosBρ

00

�N

a
1� e2 sin 2B
� � M

1� f
1� e2 sin 2B
� �

sin 2B

2
66666664

3
77777775

da
df


 �
,

ð7:23Þ

where dL and dB are measured in arcseconds. Equation (7.23) is the generalized

differential formula for geodetic coordinates concerning the seven parameters and

changes in the size of the ellipsoid. It should be noted from the formula that da, df,
ΔZ0, and Δm have no effect on the geodetic longitude (i.e., dL¼ 0 here). The

geodetic latitude and ellipsoidal height are independent of εZ. Disregarding the

effect of the rotation and scale parameters, equation (7.23) is the general differential

formula for geodetic coordinates.

7.2.3 Grid Model of Coordinate Transformation

Analogous to a grid model of deflections of the vertical and height anomalies, we

can also establish the grid model of coordinate transformation. By making use of

the coordinate values of the two geodetic coordinate systems on the common points
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and certain mathematical models (e.g., the least curvature principle, least squares

collation, polynomial regression, and Bursa–Wolf model, etc.), we can compute the

differences between the longitude and latitude coordinates of the grid nodes at

certain distance intervals and establish the coordinate transformation grid model.

Then, all we need to do is use the quantities of coordinate transformation of the four

neighboring grid nodes of the points awaiting transformation to compute the

quantities of coordinate transformation based on the bilinear interpolation formula

(see Fig. 7.4). This approach is generally applied to the high accuracy transforma-

tion between the sheet lines of a topographic map and the square grids.

7.3 Classical Methods for Ellipsoid Orientation

7.3.1 Geodetic Origin Data and Ellipsoid Orientation

In classical geodesy, the ellipsoid orientation is meant to establish the geodetic

coordinate system, i.e., to determine, under certain conditions, the position of the

Earth ellipsoid with defined elements relative to the geoid, so as to obtain the

reference surface and the geodetic origin data for geodetic computations.

Ellipsoid orientation means: (1) to determine the position of the center of an

ellipsoid (abbreviated as positioning) and (2) to determine the direction of the

coordinate axes of the Cartesian coordinate system with its origin at the center of

the ellipsoid, i.e., to determine the pointing direction of the minor axis of an

ellipsoid and the plane of the initial geodetic meridian (abbreviated as orientation).

The origin (initial point) from which the geodetic coordinates of points in the

national horizontal geodetic control network are calculated is called the geodetic

Fig. 7.4 Principle for grid coordinate transformation
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origin. The geodetic coordinates of the origin L0,B0,H0 and its geodetic azimuth A0

with reference to a certain direction are called the geodetic origin data, which are

the coordinate datum for classical geodetic survey.

The ellipsoid orientation is closely related to the determination of the geodetic

origin data. To position and orient the ellipsoid is to determine the geodetic origin

data, and once the geodetic origin data are determined, the positioning and orien-

tation of the ellipsoid will be completed. As shown in Fig. 7.5, L0,B0 of the geodetic

origin P define the normal to the ellipsoid passing through this point, but the

ellipsoid can still rotate and translate about the surface normal, which will not be

completely fixed unless H0 and A0 are determined.

Mathematically, however, we determine the position and orientation; any set of

L0, B0, H0, and A0 will enable us to define the relationship between the ellipsoid and

the geoid, yet such a relationship not appropriate. The reference ellipsoid is a

mathematical figure of the geoid and we should attempt to make it better approx-

imate the regional geoid. This is the only way that the observed elements reduced to

the ellipsoid can be practically significant. Meanwhile, the deflection of the vertical

and the initial geodetic azimuth will also be conveniently solved. Hence, the

positioning and orientation of the ellipsoid are required to satisfy the following

conditions:

1. The minor axis of the ellipsoid is parallel to the Earth’s rotation axis

2. The planes of the initial geodetic and astronomical meridians are parallel to each

other

3. The ellipsoid surface best fits the geoid in an area of interest

Fig. 7.5 Geodetic origin

data and ellipsoid

orientation
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The following analytical expressions can be used to illustrate these three

conditions:

1. εX ¼ 0, εY¼ 0

2. εZ¼ 0 (based on εX¼ 0)

3. ∑N2¼minimum

where εX, εY, εZ are the Euler angles and N is the geoid undulation.

With the above three conditions, if the first two conditions are satisfied (abbre-

viated as “double parallel”), the ellipsoid will be an approximation of the true shape

of the Earth. The simplest formulae for the deflection of the vertical and the Laplace

azimuth can be formed as:

ξ ¼ φ� B
η ¼ λ� Lð Þ cosφ

�
, ð7:24Þ

A ¼ α� λ� Lð Þ sinϕ: ð7:25Þ

The third condition can ensure that the ellipsoid closely approximates the geoid,

so the corrections applied to the reduction of observed quantities are fairly small

and will better agree with the real quantities.

For the ellipsoid orientation, we can allow the defined L0, B0, H0, and A0 to

satisfy these three conditions by employing the following methods.

Equations (7.24) and (7.25) are obtained under the condition of “double paral-

lel,” and L0,B0,A0 defined by these two equations are:

L0 ¼ λ0 � η0 secφ0

B0 ¼ φ0 � ξ0
A0 ¼ α0 � η0 tanφ0

H0 ¼ HOrthometric0 þ N0

9>>=
>>;: ð7:26Þ

If the defined geodetic origin data satisfy (7.26), it will meet the condition of

“double parallel”, i.e., the conditions 1 and 2 for determining the position and

orientation. Equations (7.24) and (7.25) are the forms when (7.10) and (7.11) take

εX¼ εY¼ εZ¼ 0. Here, εX, εY, εZ determine the orientation of the ellipsoid, which

are called the orientation parameters of the reference ellipsoid.

In (7.26), λ0,φ0, α0, and Horthometric0 can be obtained by astronomical survey and

leveling, and ξ0, η0,N0 are deflections of the vertical and geoid undulation (geoid–

ellipsoid separation) at the geodetic origin.

How to make the defined L0,B0,H0,A0 fulfill condition 3 of positioning and

orientation is a matter of choice of the ξ0, η0,N0. The role of ξ0, η0,N0 is quite

similar to that of ΔX0,ΔY0,ΔZ0 in the Bursa–Wolf model (from (7.28), neglecting

342 7 Establishment of Geodetic Coordinate Systems



εX, εY, εZ, and so on, ξ0, η0,N0 can be defined by ΔX0,ΔY0,ΔZ0). These determine

the position of the ellipsoidal center and are thereby called the positioning param-

eters of the reference ellipsoid.

Based on the different approaches for obtaining ξ0, η0,N0, we can classify the

orientation methods into single astronomical position datum orientation and

astronomical–geodetic orientation. When a datum is oriented by a single astronom-

ical point, we simply take ξ0¼ 0, η0¼ 0,N0¼ 0.

The above equations have shown that, at the geodetic origin, the direction of the

normal to the ellipsoid coincides with that of the plumb line and the ellipsoid is

tangent to the geoid. It follows from (7.26) that:

L0 ¼ λ0,B0 ¼ φ0,A0 ¼ α0,H0 ¼ Horthometric0:

It can be seen that the single astronomical position datum orientation, in nature,

is to consider the astronomical longitude, latitude, and azimuth measured at the

geodetic origin as the geodetic longitude, latitude, and geodetic azimuth. The

orthometric height (or normal height) of the geodetic origin is considered the

geodetic height. Using this method it is difficult to make the ellipsoid fit the

geoid within a large area (see, e.g., DMA 1984). Hence, after basically completing

the national astro-geodetic survey, we tend to reorient by making use of the

observational results on the condition that ∑N2¼minimum. This is the

astronomical–geodetic orientation.

The ellipsoid can be positioned and oriented by the method of astronomical–

geodetic orientation, which provides arc measurement equations at multiple astro-

geodetic points and obtains ξ0, η0, and N0 by adjustment computations.

7.3.2 Arc Measurement Equation

Arc measurements can be categorized as ancient, neoteric, and modern.

In ancient societies, when people started realizing that the Earth is a sphere, they

could then technically estimate the shape and size of the Earth by the length of an

arc between two points and the measurement of difference in latitude at the two

points. This was arc measurement in early times.

The first documented measurement of the size of the Earth was by the Hellenic

scholar Eratosthenes (276–194 BC). He estimated that the radius of the Earth was

6,844 km. Since no field observations were carried out, this could not be considered

an actual arc measurement. The first country to carry out an actual arc measurement

was China. In 724 AD (Kaiyuan 12 years, Tang Dynasty), presided over by the

Chinese astronomer Yixing (birth name Zhang Sui), the imperial astronomer Nan
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Gongyue measured the distances between Huaxian, Junyi (now Kaifeng), Fugou,

and Shangcai. He also measured the altitude of the North Pole in these four places

and the shadow cast by the sun at midday on the summer solstice. He concluded that

the length of 1� of meridian arc was 351 Li and 80 Bu (by Tang measurement, 1 Li

equals 300 Bu). Since 1 Tang Li is equivalent to 1,500 Tang Chi, and 1 Tang Chi is

equal to 24.75 cm, we find that 1�of arc length is 130.38 km. The ancient astron-

omers set a circumference of 365.25�, and it was converted to 360�, so 1�of arc
length was calculated to be 132.28 km. This value, although 21 km larger than the

given arc length of 1� being equal to 111 km, is extraordinary considering the level

of technology back then (Xiong 1985).

Since Newton first claimed that the Earth’s shape was an ellipsoid and Snell

proposed the method of triangulation, the early eighteenth century ushered in a new

era of arc measurements. The concept of arc measurements has been extended to

determining the two elements of the Earth ellipsoid, i.e., the semimajor axis a and

the flattening f. Since the early 1800s, surveyors from different countries have been

engaged in a great number of arc measurements and have calculated many results

for the Earth ellipsoid. It can be seen from the formula for meridian arc length in

Chap. 5 that the meridian arc length is the function of a and e2 (or f ). Based on the

surveying results of many segments of the meridian arc on the Earth, we can find the

solution of a and f (or e2) by means of the least squares method. The currently used

arc measurement equation is derived from (7.23). In practice, the new ellipsoidal

elements are obtained using astronomical, geodetic, gravimetric, and satellite

surveying data based on the original old ellipsoid. As a result, the calculation of

the new ellipsoid elements is actually a process of successive approximation. Let

the elements of the old ellipsoid be aold and fold, and the elements of the new

ellipsoid be anew¼ aold+ da, fnew¼ fold+ df. The problem now becomes to find da
and df.

It can be written from the formula for the deflection of the vertical that:

ηnew
ξnew
Nnew

2
4

3
5 ¼

λ� Lnewð Þ cosBnew

φ� Bnew

Nnew

2
4

3
5

¼
λ� Loldð Þ cosBold

φ� Bold

Nold

2
4

3
5þ

�dL cosBold

�dB
dN

2
4

3
5, ð7:27Þ

where dN¼ dH. Substituting (7.23) into the above equation yields:

344 7 Establishment of Geodetic Coordinate Systems

http://dx.doi.org/10.1007/978-3-642-41245-5_5


η
ξ
N

2
4

3
5
new

¼

sinL

NþHð Þ � cosL

NþHð Þ 0

sinBcosL

MþH

sinB sinL

MþH
� cosB

MþH

cosB cosL cosB sinL sinB

2
66666664

3
77777775
old

ΔX0

ΔY0

ΔZ0

2
4

3
5

þ
� sinB cosL � sinB sinL cosB

sinL � cosL 0

�Ne2 sinBcosB sinL Ne2 sinBcosB cosL 0

2
4

3
5
old

εX
εY
εZ

2
4

3
5

þ
0

N

M
e2 sinBcosB

N 1� e2 sin 2Bð Þ

2
664

3
775Δm

þ

0
0

� N

MþHð Þae
2 sinBcosB �M 2� e2 sin 2Bð Þ

MþHð Þ 1� fð Þ sinB cosB

�N

a
1� e2 sin 2B
� � M

1� f
1� e2 sin 2B
� �

sin 2B

2
6666666664

3
7777777775
old

da
df


 �

þ

λ� Loldð ÞcosBold

φ�Bold

Nold

2
6664

3
7775:

ð7:28Þ

The above is the generalized arc measurement equation, where the unknowns are

ΔX0,ΔY0,ΔZ0, εX, εY, εZ,Δm, da, and df. In practical cases, the values of εX, εY, εZ,
and Δm are always left out according to conditions 1 and 2 of the ellipsoid

orientation. The new ellipsoidal elements, positioning, and orientation values can

be calculated using the above equation.

Such equations of arc measurement as (7.28) can be written at every astro-

geodetic point of the astro-geodetic network. Solving the equations based on:X
ξnew

2 þ ηnew
2

� � ¼ minimum, ð7:29Þ

or
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X
Nnew

2 ¼ minimum, ð7:30Þ

one can obtain the ellipsoidal elements that will be a best fit for an area of interest

such as anew¼ aold + da, fnew¼ fold + df, and the positioning elements of the new

ellipsoid ΔX0,ΔY0,ΔZ0. Substituting the solution back into (7.28) will produce the

values of ξnew, ηnew, and Nnew at any arbitrary astro-geodetic point, certainly includ-

ing ξ0, η0, and N0 at the geodetic origin.

Since ξ, η, and N are correlated, theoretically (7.29) is equivalent to (7.30).

However, it can be seen from (7.28) that, by changing the ellipsoidal elements,

the value of η remains unchanged, which indicates that the variations in deflections

of the vertical with the ellipsoidal elements are insignificant. Therefore, solving the

arc measurement equation according to the conditions in (7.29) will yield a result of

lower accuracy. Besides, considering that the change of N is milder than that of ξ, η,
the effect of the local anomalies will be comparatively less. Thus, in practice, we

usually allow ∑N2
new ¼minimum. When adopting the normal height system, cor-

respondingly, the condition of ∑ ζnew
2¼minimum should be satisfied.

We have to point out that a nation, although with vast territory, is still confined to

a small proportion of land with respect to the whole Earth. Hence, the ellipsoidal

elements obtained by solving the arc measurement equations based on the survey-

ing data from one country are often dramatically different from those based on data

worldwide. One point is that the semimajor axis and flattening of the Earth ellipsoid

based merely on China’s astro-geodetic data were posited as approximately

6,378,670 m and 1:292.0, respectively. Therefore, in the establishment of the

Xi’an Geodetic Coordinate System 1980 of China, these two parameters of the

size of the Earth ellipsoid were left out. The a and f values adopted were those

recommended at IUGG1975. In this case, solving the arc measurement equation

becomes a matter of determining the position and orientation of the ellipsoid.

Hence, the astronomical-geodetic orientation means providing the arc measure-

ment equations at the original astro-geodetic point, which can be written as:

Nnew ¼ cosBold cos LoldΔX0 þ cosBold sin LoldΔY0 þ sinBoldΔZ0

�Nold

aold
1� e2old sin

2Bold

� �
Δaþ Mold

1� f old

�
1� e2old sin

2Bold

�
sin 2BoldΔf þ Nold:

ð7:31Þ

Based on ∑N2
new ¼minimum, we calculate the difference in position between

the old and new ellipsoid centers ΔX0,ΔY0,ΔZ0, and substitute them into the

following equation:
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η
ξ
N

2
4

3
5
new

¼

sinL

NþHð Þ � cosL

NþHð Þ 0

sinBcosL

MþHð Þ
sinB sinL

MþHð Þ � cosB

MþHð Þ

cosBcosL cosB sinL sinB

2
666666664

3
777777775
old

ΔX0

ΔY0

ΔZ0

2
4

3
5

þ

0 0

� N

MþHð Þae
2 sinBcosB �M 2� e2 sin 2Bð Þ

MþHð Þ 1� fð Þ sinBcosB

�N

a
1� e2 sin 2B
� � M

1� f
1� e2 sin 2B
� �

sin 2B

2
666666664

3
777777775
old

Δa
Δf


 �

þ

λ�Loldð ÞcosBold

φ�Bold

Nold

2
6664

3
7775,

This gives ξ,η, andN at each astro-geodetic point, including at the geodetic

origin, and eventually provides the new geodetic origin data.

The result of the astro-geodetic orientation indicates that, at the geodetic origin,

the direction of the normal to the ellipsoid does not coincide with that of the plumb

line, and the ellipsoid is no longer a tangent to the geoid. However, the ellipsoid

surface is the best fit to the geoid over an area of interest.

When determining the ellipsoid orientation in an area (non-global) of interest

based on ∑N2¼minimum, the ellipsoid center will not coincide with the Earth’s

center of mass. Thus, we get a local orientation or non-geocentric orientation. The

established coordinate system is called the local coordinate system or

non-geocentric coordinate system.

Differing from the above neoteric methods for arc measurement, the concepts of

arc measurement in modern times have greatly expanded. Integrating the gravity

and spatial geodetic surveying data worldwide, the arc measurement in modern

times studies the Earth from both geometric and physical perspectives, including

the geometric shape and size of the Earth ellipsoid as well as the gravity field of the

Earth.

Another four fundamental parameters are used to describe the Earth,

a (semimajor axis of the ellipsoid), GM (the product of gravitational constant and

the mass of the Earth), J2 (second-order zonal harmonic coefficient of the Earth’s

gravity field), ω (angular velocity of the Earth’s rotation), and a series of geometric

and physical constants derived from these as well as the Earth gravity field model.
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7.3.3 Significance of the Classical Method of Ellipsoid
Orientation in Understanding the Principle
of Establishing a Modern Geodetic Coordinate System

The principle of fixing the coordinate system to the Earth passing through surface

points P and M in Fig. 7.5 is based on the precondition that the Earth is assumed to

be rigid. The Earth is actually a non-rigid body, in fact it is a complex viscoelastic

body. As a result, the surface points are subject to constant changes, which include

both regular changes like the solid Earth tide and irregular changes like various

unpredictable deformations. Hence, the coordinate systems cannot be accurately

determined only from points P and M. Such indetermination can be improved by

increasing the number of surface points used to define the coordinate system and by

long-term repeated observations. The coordinates of these surface points should

certainly not contradict each other; for example, the distance between points is

subject to objective constraints. Then, we can use relative measuring techniques

like GPS or VLBI to determine the distance between points.

It is thus clear that the chosen coordinate system fixed to the Earth is realized by

determining the coordinates of a set of surface points (datum points). Alternatively,

we might say that a self-consistent set of station coordinates contains

(or determines) the coordinate system. These points are the VLBI, SLR, and GPS

points. The fundamental principle of establishing a modern geodetic coordinate

system is given above.

7.4 Conventional Terrestrial Reference System

7.4.1 The Geocentric Coordinate System and Its Application

A coordinate system with its origin at the center of mass of the Earth is called a

geocentric coordinate system. Likewise, a coordinate system with its origin at the

geometric center of the reference ellipsoid based on classical surveying techniques

is called a non-geocentric coordinate system (also referred to as the local coordinate

system). Identical with the local coordinate system, the geocentric coordinate

system can also be categorized into geocentric geodetic coordinate system and

geocentric geodetic Cartesian coordinate system. In modern geodesy, a geocentric

coordinate system is usually referred to as a terrestrial reference system (TRS). The

pointing direction of the coordinate axes of the TRS changes under the effect of the

Earth’s polar motion, which will present obstacles in practical use. Consequently,

as early as 1967, the International Astronomical Union (IAU) and the International

Association of Geodesy (IAG) recommended that the 1900–1905 mean latitude of

the five International Latitude System stations be used as the datum point. The

position of the mean pole corresponds to the mean position of the rotation axis over
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the above period, which is called the Conventional International Origin (CIO). The

corresponding Earth equatorial plane is referred to as the mean equatorial plane or

conventional equatorial plane. In practice, CIO is commonly used as the Conven-

tional Terrestrial Pole (CTP) up to the present time. The TRS that refers to the CTP

is called the Conventional Terrestrial Reference System (CTRS). The TRS

corresponding to the instantaneous pole at true-of-date is called the Instantaneous

Terrestrial Reference System (see Moritz and Mueller 1987).

When being applied to the plotting of topographic maps and engineering on a

regional basis, the geocentric coordinate system is not immediately required.

However, in applications involving cross-regional surveying and mapping projects,

integration as well as studies on space technologies, geodynamics, and the gravity

field of the Earth that involve physical factors, the geocentric coordinate system

plays a critically important role as described below.

Application Demands in Geodynamics, Physical Geodesy, and Space

Technology

Following the 1960s, as an interdisciplinary subject, geodynamics has gradually

drawn the attention of geodetic scholars. People have realized that almost all

geodynamic phenomena, like crustal movement, material migration, tidal variation,

and Earth rotation, can be monitored by applying space geodetic technologies.

Therefore, geodesy has become one of the most fundamental methods for studying

the geodynamic phenomena of the Earth. Broadly speaking, to carry out systematic

studies on geodynamics, a fairly stable reference system should be established first.

Otherwise, data observation will not be homogeneous. Hence, defining and realiz-

ing a reference system that is suitable for the purpose of geodynamic study becomes

crucial.

Differing from the local coordinate system established in static geodesy,

dynamic geodesy considers the Earth as a non-rigid, deformable body. Conse-

quently, there arises the important issue of where to put the origin of the reference

system within the Earth to maintain its stability. If the Earth is considered as a

system of particles with the inside resultant force being zero, then, according to the

dynamics of a system of particles, the Earth moves in a certain fixed orbit acted

upon by the resultant external force of other celestial bodies. The law of motion of

the Earth’s particles completely corresponds to the hypothesis that all the mass of

the Earth is concentrated in the center of mass. Therefore, however the mass inside

the Earth migrates or how the shape of the Earth deforms, the Earth’s center of mass

moves along a fixed orbit. The significance of such an inference is that although the

position of a point on the Earth’s surface is changing at any moment, the position of

the Earth’s center of mass is “fixed” when observed from the outer space. Hence,

with respect to the study of geodynamics, the ideal position of the origin of the

reference system should be at the Earth’s center of mass.

In physical geodesy, we need to choose a normal ellipsoid that best fits the geoid

on a global basis, and its geometric center should coincide with the Earth’s mass
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center. Meanwhile, the gravity field needs to be represented using a reference

system whose origin is at the center of the Earth (see Sect. 4.1).

The geocentric coordinate system plays a significant role in space technology.

When artificial Earth satellites are orbiting the Earth, their orbital plane passes

through the Earth’s center of mass. As a result, the coordinate system of choice for

orbital calculations is the geocentric system. Of course, tracking and observation of

the satellites will also be in the coordinate system with the origin at the Earth’s

center of mass, otherwise their orbits will probably not be calculated accurately and

tracking will be adversely influenced.

Application Demands in Surveying and Mapping Engineering

In surveying and mapping engineering, the demand of the customers for surveying

and mapping products has undergone dramatic changes. People have realized that

using geocentric datum can simplify application of the integrated geographic

information (an interface switch is not needed) and can enable the geographic

information to integrate “seamlessly” in terms of category, space, and time. The

detailed interpretations are as follows:

The Demand for Integrated Application in Navigation and Construction

Layout

Currently and in the foreseeable future, maps (including spatial database) are

mostly utilized in association with the application of satellite navigation, such as

vehicle-carried navigation systems, dynamic command and management, and so

on. Using the geocentric datum as the mathematical basis for maps enables direct

orientation of the space navigation results on the map platform using technologies

like GPS. This differs from the traditional application demand whereby people are

merely concerned with finding the relative position instead of the absolute position

using maps; for instance, determining the position and orientation referenced to

isolated features or residents. Naturally, users do not have a demand for geocentric

datum. As well as the integration of various kinds of geographical information, the

geographical information of different areas and at different times referenced to the

same datum can be directly superimposed on each other, and thus an additional

interface switch can be avoided.

Similarly, in engineering construction, GPS is employed in the course of actual

measurements such as during construction layout. Hence, if the project design is

referred to the geocentric coordinate system, the transformations of coordinate

systems will be avoided.
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The Demand for Holistic Geographical Information in the Spatial Domain

The Earth is the all and the one. Social and technological advancement will break

the traditional pattern of applying geographical information only within national

boundaries, and instead will spread it all over the geospace. Referring to the

geocentric datum is fundamental for the realization of such a transformation.

The geocentric datum is the precondition for ensuring a “seamless” splice

between nautical charts and topographic maps. The International Hydrographic

Bureau (IHB) has adopted the WGS84 (this system has been consistent with the

ITRF since 1994) as the datum for nautical charts. The practical significance of

unifying the datum of nautical charts in all countries using a geocentric datum is

evident in navigation. If the datum of topographic maps agrees with that of the

nautical charts, it will be favorable for inshore ships and aerial navigation. Other-

wise, additional external transformations will be needed between the navigation

system and map platform as well as between the nautical charts and

topographic maps.

The implementation of the transnational and intercontinental Geographic Infor-

mation System (GIS) and global mapping programs launched by international

organizations should refer to the geocentric system. High dynamic geodetic tech-

nologies can determine the instantaneous geocentric coordinates of the remote

sensing platform, which indicates that the remote sensing information directly

refer to the geocentric datum.

The Demand for Holistic Geographical Information in the Time Domain

The temporal database requires the reference datum to be maintained for a long

time. The non-geocentric coordinate system is static whereas the geocentric datum

can work long-term. In GIS, historical, current, and future information should refer

to the same datum, which requires the datum system to be continuous in the time

domain. The kinematic geocentric reference frame can simulate the position drift

generated by the tectonic plates. Although involved in the application of cartogra-

phy, this effect can be discounted within two to three decades, yet once it is taken

into consideration the geocentric datum can ensure system continuity.

Furthermore, high-precision data of the control points in the digital age have all

been stored in the spatial database. However, the precision of the control points on

the manual analog maps are subject to the accuracy of plotting. This is to say that

the digital maps will not negatively affect the use of high-precision datum.

The differential GPS technique has brought into reality the calculate-and-use

facility of the control point. The geocentric system is referred to as the datum and is

required to be continuous in time sequence, i.e., the points measured at different

time periods should belong to the same system.
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The Demand for Development of Geodetic Technology

GPS and some other analogous satellite positioning systems have pervaded or will

pervade every aspect of human society. GPS employs the geocentric coordinate

system, which requires geodetic measurement and its products to utilize its

corresponding coordinate systems.

The dynamism of precise geodetic measurements requires that it be necessary to

refer to the high-precision geocentric coordinate system with physical significance.

7.4.2 Definitions of the CTRS and the Conventional
Terrestrial Reference Frame

Earth’s Polar Origin and the Origin of Longitude

The Earth’s pole is the intersection of the Earth’s spin axis with the crust. The

movement of the Earth’s rotation axis with respect to its crust causes temporal

variations in the position of the Earth’s pole on the Earth’s surface, which is called

the polar motion of the Earth (shortened to polar motion). The time-varying spin

axis of the Earth is the instantaneous axis, and the corresponding pole is called the

instantaneous pole.

The movement of the instantaneous poles on the Earth’s surface is contained

within a small area, so we can use a plane tangent to the Earth’s surface through the

center of the pole to replace the Earth’s surface within this area. Usually, a plane

rectangular coordinate system will be established on this plane to determine the

instantaneous position of the pole, so this coordinate system is called the polar

coordinate system. We take the tangent point as the origin, denoted by P0. This

point is the mean position of the instantaneous pole during some time period (mean

pole) and is defined as the Earth polar origin (cf. Fig. 7.6). Customarily, we take the

direction of the Greenwich meridian passing through P0 to represent the positive

direction of the x-axis. The direction of the meridian 90� west of Greenwich

represents the positive direction of the y-axis. Hence, the coordinates of the

instantaneous pole P can be expressed by the rectangular coordinates (xp, yp).
Based on the polar motion matrix A¼RY(�xp)RX(�yp) (cf. Fig. 7.2, yp and xp are

the Euler angles εx, εy), we establish the relationship between the CTRS and the

Instantaneous Terrestrial Reference System as:

X
Y
Z
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1
A

CTRS

¼ A
X
Y
Z

0
@

1
A

ITRS

ð7:32Þ

The organizations involved in determining polar motions have always included

the International Latitude Service (ILS), the International Polar Motion Service
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(IPMS), and the Bureau International De L’Heure (BIH). Since the 1970s, with the

births of new technologies like Satellite Laser Ranging (SLR), Lunar Laser Rang-

ing (LLR), Very Long Baseline Interferometry (VLBI), and the Global Positioning

System (GPS), the traditional method of determining polar motion, optical astrom-

etry, has been replaced by the state-of-the-art method of space geodesy. Hence,

international organizations have decided to adopt the technologically advanced

International Earth Rotation and Reference Systems Service (IERS) instead of

organizations like IPMS and BIH.

For several decades, various polar systems have been created with gradually

more in-depth studies on polar motion. At the 32nd symposium of the IAU in

collaboration with IUGG, held in Stresa, Italy, 1968, the 1900–1905 mean latitude

of the five International Latitude System stations was recommended to be the

reference to define the position of the mean pole. This position of the mean pole

relative to the 1900–1905 mean pole of the epoch (1903.0) is called the Conven-

tional International Origin (CIO). ILS, IPMS, BIH, and other such organizations

have successively used different optical instruments and mathematical processing

approaches in an attempt to maintain this polar origin, so there are different CIO

systems. The BIH systems to which CIO is subordinated include BIH1968.0,

BIH1979.0, and BIH1984.0, etc.

At present, the CIO system is maintained by the IERS. It provides users with data

on the instantaneous pole through solution and regular publications based on the

data obtained from the global observation stations; Fig. 7.7 illustrates the motion

path of the instantaneous pole relative to the CIO from 1 July 2010 to 1 July 2013.

Unlike the geodetic latitude, where the equator is a natural origin, there is no

natural starting point for the geodetic longitude. The standard reference meridian

adopted to determine the geodetic longitude and universal time is called the initial

meridian. The origin of longitude is defined by where the initial meridian and the

equator intersect.

In 1884, astronomical delegates met at the international conference held in

Washington to decide the meridian (line of longitude) that runs through the

Observatory at Greenwich in southeast London, England as the initial meridian.

Fig. 7.6 Polar coordinate

system
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The point at which the prime meridian and the equator intersect is designated as the

origin of longitude worldwide for longitude determination. Since 1957, a number of

observatories with good long-term stability have been used internationally to

maintain the longitude origin. Averaging the origin of longitude reversely obtained

from the original observatory longitude values adopted gives the mean observatory

longitude origin. After the CIO was defined as the Earth’s polar origin in 1968, the

meridian that passes through the CIO and the mean observatory longitude origin is

called the initial meridian. The 0� longitude defined by various new technologies is

made, as far as possible, coincident with the initial meridian, yet there still tends to

be an error of less than 100.

Reference System and Coordinate System

To describe the state of an object, such as determining the position of a particle, or

describing the law of motion of a particle or body of mass (the Earth or a satellite), a

reference system must be selected, without which discussions about laws of motion

make no sense.

A coordinate system differs from a reference system in that it is always used to

describe the mathematical representation and attaches more importance to the

mathematical meaning, whereas a reference system is more concerned about the

reference rather than the mathematical representation, and physical meaning is

highlighted. For instance, establish an Earth-fixed reference system with its origin

at the Earth’s center of mass (terrestrial reference system). In this reference system

Fig. 7.7 The motion

trajectory of the

instantaneous pole relative

to CIO from 1 July 2010 to

1 July 2013. Source: IERS
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we can use Cartesian, spherical, or other coordinate systems to describe the laws of

motion of a particle or a particle system. The origins of these coordinate systems are

all at the geocenter and they are mutually static. Hence, the laws of motion of the

particles described are completely identical and are independent of the choice of

coordinates. Therefore, one reference system includes many coordinate systems

that are essentially the same, such as geodetic Cartesian coordinates (X, Y, Z ),
geodetic coordinates (L, B, H ), and Gauss plane coordinates (x, y), which are called
equivalent or homogenous coordinate systems. Any arbitrary selection of these

coordinates will exert no effect on the description of objective laws.

In geodesy, if a coordinate system is chosen, it suggests that the reference system

is also selected. However, if a reference system is selected, any arbitrary coordinate

system under this reference system is readily accessible. It is helpful to distinguish

between the reference system and coordinate system at the conceptual level. When

the established system is applied in surveying and mapping engineering to allow the

geometric representation of the terrain, it is appropriate to call such a system the

coordinate system. When applied in a context such as deformation monitoring or

aerospace tests, with physical meaning involved, it will be more appropriate to call

it a reference system. In practice, the reference system and coordinate system are

often interchangeable with each other.

Ideal Terrestrial Reference System

The TRS is the reference system fixed to the Earth in some assured manner. If the

Earth were an ideal rigid body, then any triaxial coordinate system fixed to the Earth

could be well suited. The choice of the TRS merely depends on the user-

friendliness. However, the Earth is really a deformable body, and there is a relative

motion of parts of the crust with respect to each other. Hence, getting the coordinate

system fixed to the Earth in an ideal way has become a matter of vital importance.

The bodily movement (such as polar motion) and the partial movement (like

crustal deformation) of the Earth are superimposed upon each other in an observa-

tion. We can use an Earth-fixed reference system to separate them. The reference

system should be defined by the following theoretical conception: the crust only

deforms with respect to the reference system without rotation or translation as a

whole, while the inertia reference system only entails bodily movement of the Earth

such as revolution and self-rotation. This theoretical concept can be described by

the following Tisserand condition:ð
c

~vdm ¼ 0, and

ð
c

~x �~vdm ¼ 0,

where ~x and~v are the position and velocity of a mass unit of the Earth dm with

respect to the defined reference system. The domain of integration c is the entire

Earth. The first part of the condition indicates the zero linear momentum of the

Earth relative to the defined reference system and null translation of the Earth; the
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second part of the condition shows that the angular momentum of the Earth with

respect to the defined reference system is zero, indicating null rotation of the Earth.

The reference system is defined in such a way that it separates the bodily and partial

movement of the Earth, which is called the ideal TRS. If such a reference system

can be realized, we will be justified in believing that the movement of the observed

station described in this reference system belongs to the motion of the observed

station itself.

In practical applications, the Tisserand condition is approximately realized by

the no-net-rotation (NNR) condition.

Conventional Terrestrial Reference System

In order actually to establish the TRS, we have to choose some physical datum (like

origin, scale, and orientation that involve physical meaning). The choice of the

physical datum, however, is rather inadequate and arbitrary. A convention needs to

be created in order to unify the datum. Hence, the terminology “convention” is used

to describe this specific choice (see Pent and Luzum 2010), which is what the CTRS

is all about.

The definition of the CTRS comprises:

1. Origin: the origin is at the geocenter, which is defined as the center of mass of the

whole Earth, including oceans and atmosphere

2. Scale: the International System of Units (SI) meter is used for its unit of length,

defined in a local Earth frame in the meaning of a relativistic theory of gravitation

3. Orientation: the orientation is consistent with that of the BIH system at 1984.0

4. Time evolution of the orientation: no residual global rotation is created with

regards to the crust

Conventional Terrestrial Reference Frame

The reference frame is a realization of the reference system. Once the CTRS is

chosen, it should be made accessible to all kinds of users. Hence, the system will be

represented by a number of points on the Earth’s surface. A globally-distributed set

of 3D Cartesian coordinates infers the location of an origin, the orientation of an

orthogonal set of Cartesian coordinate axes, and a scale parameter. In this sense, the

Conventional Terrestrial Reference Frame (CTRF) is defined as a set of physical

points with precisely determined coordinates in a specific coordinate system as a

realization of the reference system. As a result, the well-known “geodetic control

network” belongs to the concept of the reference frame.

The establishment of the terrestrial reference frame on the deformable Earth can

be realized by transforming parameters and changing coordinates of the stations.

The time-varying station coordinates will be determined repeatedly by the interna-

tional service agency. All the global systematic errors can be reduced to scale,

translation, or rotation errors and fall under the seven transformation parameters.
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Therefore, under the constraint of the Tisser and condition, the transformation

parameters calculated and published by the international service agency define

the frame of the realized system.

7.4.3 Establishment and Maintenance of the CTRF

To go from definition to realization of a TRS, the following need to be attained:

1. Give the theoretical definition and define the conventions of the TRS

(as described in Sect. 7.4.2).

2. Establish observation sites on the Earth’s surface and carry out space geodetic

measurements.

3. Process the observed data using the internationally recommended set of models

and constants according to the conventions of the CTRS and solve the station

coordinates of each observation site at a certain epoch; namely, establish

the CTRF.

4. Analyze and deal with various kinds of deformation factors that influence the

stability of the surface observation sites, and establish corresponding time-

variant models to maintain stability of the CTRF.

To determine the position of the Earth’s center of mass, let us first assume that

the Earth is a rigid body. We can determine the distance between n points (n� 3) on

the Earth’s surface and the Earth’s mass center using satellite dynamic techniques

like SLR, followed by determination of the distances between these points by

measuring techniques like GPS, VLBI, etc. Thus, we can determine the position

of the geocenter through geometric constraint conditions. Nevertheless, the Earth is

not a rigid body, it is a complicated viscoelastic body. Consequently, these points

are changing all the time. The changes include both regular changes like the solid

Earth tide and irregular changes like unpredictable deformations. The precise

position of the Earth’s center of mass is yet not determined and such indetermina-

tion can be improved through repeated observations over a long period. It is not

difficult to understand that the accuracy of the position of the geocenter relative to

the sites obtained using the method of least squares depends not only on the

measuring precision, but also on the number of sites and the graphic structure.

The pointing direction of the coordinate axis of the TRS is related to the spin axis

of the Earth. First, we have to clarify that the Earth’s instantaneous axis of rotation

is bound to pass through the Earth’s center of mass. Otherwise, the center of mass

will undoubtedly rotate around the instantaneous axis of rotation, which clashes

with the kinetics of particles. Due to polar motion, the path of instantaneous axis of

rotation forms an approximately circular conical surface, with its apex at the Earth’s

center of mass. Let the mean rotation axis (i.e., the axis of symmetry of the circular

conical surface) be the Z-axis. The X-axis lies within the Greenwich Observatory’s

meridian plane. Then, choose the Y-axis, making O-XYZ a right-handed Cartesian

coordinate system. In this case, we have established the geocentric reference
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system. In practice the three axial directions of the reference system are determined

by the Earth Rotation Parameters (ERP) provided by BIH or IERS.

The terrestrial reference frame (TRF) can be established and maintained by SLR

techniques alone. Due to factors like variant models adopted, different numbers of

sites, and different amounts of data used in the solution, the reference frames

established by different SLR networks also differ to some degree.

The orientation and scale of the reference coordinate system can be determined

precisely using the VLBI technique, yet this technique cannot determine the origin.

Hence SLR is always used to determine a certain station coordinate as the initial

point; for instance, the VLBI network uses the American Westford station as the

initial point. Likewise, the reference systems established by different VLBI net-

works also differ from each other to some extent.

GPS and other technologies can also establish a TRF according to their own

technological characteristics.

The International Terrestrial Reference Frame (ITRF) can be established by

carrying out a combined adjustment between the above global SLR, VLBI, GPS

networks, and other spatial geodetic networks.

The equation of the combined adjustment is:
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where δX δY δZ½ �T is the deformation displacement of the observation station,

X Y Z½ �Tobs is the station coordinate vector corrected for translations (ΔX0,

ΔY0,ΔZ0), rotations (ε0X, ε0Y , ε0Z), and scale correction (Δm0) of the observed coor-

dinates X0 Y0 Z0
� 	T

defined in the terrestrial reference frame with respect to the

observational techniques “O” (such as SLR, VLBI, GPS, etc.), namely:
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Equations (7.33) and (7.34) are the observation equations used to realize CTRF.

The unknown parameters in the equations are X Y Z½ �TCTRF and δX δY δZ½ �T ,
which define the CTRF. ΔX0,ΔY0,ΔZ0, ε0X, ε0Y , ε0Z, and Δm0 represent the relation-

ship between CTRF and the terrestrial reference frame relative to the observation

techniques “0”.

ITRF is an example of CTRF. In practical applications there will usually be

specific requirements of origin, scale, and orientation for the newly

established ITRF.

According to the definition of CTRS, the coordinate origin of ITRF is situated at

the center of mass of the whole Earth. As a dynamic technique, SLR can determine
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the Earth’s center of mass with fairly high precision. Thus, the coordinate origin of

ITRF can be determined by this technique, i.e., it can let the translation parameter of

a certain SLR network or the weighted sum of the translation parameters of several

SLR networks involved in the adjustment be zero.

The scale of ITRF, by definition, is that of the local Earth frame within the

meaning of a relativistic theory of gravitation. In practice, the scale is defined by

physical parameters like the speed of light c, the gravitational constant of the Earth
GM, and a certain model of relativistic correction adopted in data processing by the

analysis centers. If the above values and models are different, the scale of each

network will also be different. Currently, most analysis centers have adopted the

values recommended by IERS, so the difference in scale between various networks

is insignificant. The new ITRF scale is usually the scale of a certain network or the

weighted mean of the scales of several networks.

As to the orientation of ITRF, the orientation parameters are usually considered

to have known values.

The realization of ITRF of the present time, such as ITRF2000, ITRF2005, and

ITRF2008, in terms of their input data, mathematical models, solution parameters,

and solution methods is far more complex than that of earlier ITRFs. The underly-

ing concepts, however, are very much alike. To understand better the methods of

realizing the origin, scale, and orientation, we present here the establishment of the

early ITRF91 (which applied GPS data for the first time) as an example to illustrate

the process of ITRF realization.

Table 7.1 lists all the 16 networks involved in the establishment of ITRF91. The

serial numbers 1–5 are the VLBI networks, 6–12 are SLR networks, 13–15 are LLR

networks, and 16 is a GPS network. ITRF91 was eventually established by carrying

out combined adjustment of all the data (see Boucher et al. 1992).

In combined adjustment, the reference system is defined as: the origin of the

reference system as determined by SLR, the scale as determined by SLR coincident

with VLBI, and the orientation, which is consistent with ITRF90.

The methods for realizing this reference system by combined adjustment are:

1. The transformation parameters of SSC (CSR) 92L01 network (Table 7.1, serial

No. 6) are all assigned to be zero, i.e., an adjustment in the reference system is

carried out to make the origin, scale, and orientation consistent with SSC (CSR).

This result is defined as the ITRF91A. Apparently, the origin and scale of

ITRF91A have satisfied the definition of ITRF91, but not the orientation.

2. The seven transformation parameters of ITRF91A and ITRF90 are solved to

obtain the orientation correction parameters (cf. Table 7.2).

3. Both the translation parameters and scale factors of SSC (CSR) are set to zero

and the rotation angles are R1, R2, and R3 as shown in Table 7.2 (cf. Table 7.1

serial No. 6). The transformation parameters obtained after the combined adjust-

ment of all the data can be seen in Table 7.2.

For the datum definition adopted by ITRFyy (where yy is the annual series of this
frame, denoting the last year whose data were used in the realization of the frame) at

different dates, see Table 7.3 (Boucher et al. 1999, 2004; Altamimi et al. 2001,
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2002a, b, 2007, 2011). It can be seen from the table that the origin and scale of ITRF

have been defined by the average of the chosen SLR, GPS, and VLBI solutions

since BTS87 (where BTS is the reference system established by BIH). The orien-

tation of ITRF was aligned to the BIH EOP (Earth Orientation Parameter) series,

while the orientation of ITRF93 was aligned to the IERS EOP series. For the

orientation time evolution, no global velocity field was estimated prior to

ITRF90, so the AMO-2 plate motion model was recommended. Starting with

ITRF91, the orientation time evolution satisfies the NNR condition with respect

to (represented by “wrt” in Table 7.3) the previous ITRF series or the

NNR-NUVEL1, NNR-NUVEL1A plate motion models. However, the orientation

time evolution of ITRF93 was aligned to the IERS EOP series.

CTRF is four-dimensional or dynamic. Its dynamic feature lies in that CTRF is

composed of coordinates and velocities at a reference epoch. Temporal variation

(dynamism) is the innate property of CTRF. On the one hand, the plate motion,

crustal deformation, and geodynamic factors as such will cause the instantaneous

position of the point on the surface of the solid Earth to change constantly, and the

station coordinates and station velocities should be provided. On the other hand, the

new observational data are continually updated and new observation sites are ever

Table 7.1 The networks in the combined adjustment of ITRF91 and their transformation param-

eters (translation parameters ΔX0, ΔY0, ΔZ0, Euler angles ε0X, ε0Y , ε0Z , and scale factor Δm0)

No. Network

ΔX0

(cm)

ΔY0

(cm)

ΔZ0

(cm)

Δm0

(10�8)

εX
0

(0.00100)
εY

0

(0.00100)
εZ

0

(0.00100)
1 SSC(GSFC)92R03 0.3 �1.2 �2.8 �0.05 1.1 1.2 �2.5

2 SSC(NOAA)92R01 2.1 0.4 �2.2 0.08 4.6 9.9 �0.2

3 SSC(USNO)92R01 1.9 �4.4 0.8 �0.42 �0.4 �0.2 �0.2

4 SSC(NAOMZ)92R01 3.3 �2.9 �4.8 0.06 �1.3 �1.0 �0.5

5 SSC(JPL)92R01 �1.9 1.1 �1.7 �0.50 2.5 1.1 0.7

6 SSC(CSR)92L01 0.0 0.0 0.0 0.00 �0.4 0.4 �0.9

7 SSC(GSFC)92L01 �2.9 �1.4 0.3 0.31 �0.3 5.7 �7.3

8 SSC(DGFII)92L01 0.7 �3.0 0.0 �0.37 �284.4 �44.5 5.7

9 SSC(DUT)92L01 0.1 0.6 �3.8 �0.65 0.8 1.7 �4.6

10 SSC(GFZ)92L01 �0.1 �0.2 3.0 0.06 0.1 0.1 �0.2

11 SSC(GAOUA)92L01 �1.4 0.4 �7.2 �0.52 0.3 0.4 �1.4

12 SSC(NAL)92L01 0.4 �0.6 �3.5 0.08 1.0 1.6 0.6

13 SSC(UTXMO)92M01 �0.1 �3.5 17.6 �3.20 �6.5 0.8 38.5

14 SSC(JPL)92M01 �6.5 �1.2 4.7 �1.97 �1.0 1.4 �44.7

15 SSC(SHA)92M01 �6.8 �0.5 1.9 �2.75 �0.3 0.1 3.2

16 SSC(JPL)01P01 �6.7 14.8 �17.0 �0.14 �0.4 �0.7 61.5

Table 7.2 Transformation parameters (translation parameters ΔX0,ΔY0,ΔZ0, Euler angles

εx, εy, εz, and scale factor Δm) between ITRF91A and ITRF90

ΔX (cm) ΔY (cm) ΔZ (cm) Δm (10�8) εX (0.00100) εY (0.00100) εZ (0.00100)
�0.1 0.4 1.5 �0.02 �0.4 0.4 �0.9
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increasing. Hence, new computational results of coordinates and velocities are

regularly published.

The maintenance of CTRF, namely the retention of its dynamic features, pri-

marily depends on the velocity field in actual measurement; for instance, the GPS

Continuously Operating Reference System (CORS) network has a large amount of

continuous observational data, which can be used to compute the station velocities

and to provide observational data for maintenance of the TRF.

7.4.4 International Terrestrial Reference Frame and The
World Geodetic System 1984

ITRF

The Establishment of ITRF

The International Terrestrial Reference Frame (ITRF) is a realization of the Inter-

national Terrestrial Reference System (ITRS). The definition of ITRS is coincident

with that of CTRS. The ITRF was established through a set of station coordinates

(SSC) and station velocities derived from observations using space geodetic

Table 7.3 Datum definition adopted by ITRFyy

ITRF

solutions Origin Scale Orientation

Time evolution of the

orientation

ITRF0 BTS87 BTS87 BIH EOP –

ITRF88 ITRF0 ITRF0 ITRF0 Recommended

AMO-2

ITRF89 SLR[SSC(CSR)] SLR[SSC(CSR)] ITRF88 Recommended

AMO-2

ITRF90 SLR[SSC(CSR)] SLR[SSC(CSR)] ITRF89 Recommended

AMO-2

ITRF91 SLR[SSC(CSR)] SLR[SSC(CSR)] ITRF90 NNR wrt

NNR-NUVEL1

ITRF92 SLR[SSC(CSR)] SLR[SSC(CSR)] ITRF91 NNR wrt

NNR-NUVEL1A

ITRF93 SLR SLR IERS EOP IERS EOP series

ITRF94 SLR+GPS SLR+GPS+VLBI ITRF92 NNR wrt

NNR-NUVEL1A

ITRF96 SLR+GPS SLR+GPS+VLBI ITRF94 NNR wrt ITRF94

ITRF97 SLR+GPS SLR+GPS+VLBI ITRF96 NNR wrt ITRF96

ITRF2000 SLR (origin rate def-

inition included)

SLR+VLBI (scale rate

definition included)

ITRF97 NNR wrt

NNR-NUVEL1A

ITRF2005 SLR VLBI ITRF2000 NNR wrt ITRF2000

ITRF2008 SLR VLBI + SLR ITRF2005 NNR wrt ITRF2005
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techniques such as VLBI, SLR, LLR, GPS (since 1991), and DORIS (since 1994;

Doppler orbitography and radio-positioning integrated by satellite). IERS regularly

provides annual IERF solutions, which are published in the IERS annual reports.

The available ITRF solutions include ITRF0, ITRF88, ITRF89, ITRF90, ITRF91,

ITRF92, ITRF93, ITRF94, ITRF96, ITRF97, ITRF2000, ITRF2005, and

ITRF2008. The basic steps to compute ITRF are as follows:

First, each individual SSC solution provided by the analysis centers is reduced to

a reference epoch t0 using their respective station velocity models; then, the method

of combined adjustment yields ITRF station coordinates and seven transformation

parameters for each SSC with respect to combined solutions of ITRF. The veloc-

ities of ITRF stations can be calculated by two methods: one is similar to calculat-

ing station coordinates except that its model is deduced from a coordinate

transformation formula; the other is obtained by differentiating coordinates at two

different epochs.

To represent the ITRF station coordinates by geodetic coordinates, IERS

recommended the fundamental geodetic constants of the universal GRS (Geodetic

Reference System). The currently adopted GRS80 was recommended by

IUGG1979 and its ellipsoid parameters (see Table 4.1).

ITRF and IGS

With the establishment of the International Global Navigation Satellite System

Service (IGS), ITRF and GPS are more closely interrelated (Altamimi and

Collilieux 2009). IGS is in close collaboration with ITRF. On the one hand, ITRF

provides IGS with an absolute long-term datum; IGS, on the other hand, provides

global GPS observation data and helps to improve ITRF solutions.

Assuming that the reference epoch of a GPS campaign is Tc, we are allowed to

make use of the observational data and precise ephemeris of this campaign to

calculate the station coordinates. We might encounter two kinds of precise ephem-

eris; one is based on theWGS84 coordinate system while the other is based on ITRF

(such as IGS precise ephemeris). The station coordinates obtained by using the

precise ephemeris with different coordinates will end up in different coordinate

systems.

When using the IGS precise ephemeris (whose reference frame is assumed to be

ITRFyy), we should adopt the coordinates of given points in the ITRFyy reference
frame (at reference epoch T0), and reduce the coordinates from T0 to the epoch of

observation Tc based on the velocities of the given points in ITRFyy. If necessary,
we can impose constraints on the reduced coordinates of the given points and, in

this case, the coordinates of the unknown points obtained belong to the ITRF

reference frame adopted by the IGS precise ephemeris.
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Roles of ITRF in the Establishment and Maintenance of a Regional Geodetic

Coordinate System

A geocentric coordinate system, by definition, is unique. However, different

methods and data used in the realization will result in different geocentric coordi-

nate systems. Since the geocenter of ITRF is highly precise, globally distributed,

and considerably authoritative, other geocentric systems are also aligned to it. For

instance, the WGS84 has been refined many times and the European reference

frame has been incorporated into ITRF. ITRF station coordinates are strongly

constrained by countries worldwide while processing their own GPS data, so as

to make the national coordinate system approximate or pertain to the ITRF.

At present, the accuracy of ITRF station positions is at a level better than 1 cm

and that of the station velocities is better than 3 mm per annum. We take these

points as the initial stations and use GPS relative positioning to carry out GPS

observations in the area of interest. After data processing, we will obtain the high-

precision station coordinates in this area, which means that the geocentric coordi-

nate system based on the technique of GPS has been established in this region of

interest.

ITRF is crucially important in the establishment and maintenance of regional

coordinate systems.

First, the precise IGS ephemeris and Earth orientation parameters (EOP) are

used in establishing regional coordinate systems, and the reference frame of the IGS

precise ephemeris belongs to the ITRF.

Second, the initial stations used in the establishment of regional coordinate

systems are ITRF stations. In calculation, these stations are mostly tightly

constrained. In this sense, the established coordinate system will be made well

aligned to the ITRF. Therefore, the regional coordinate systems established in

recent years have all made clear that their coordinate systems agree with ITRF.

For instance, the European reference frame is fixed to a stable part of the Eurasian

Plate and is coincident with ITRF at the reference epoch of 1989.0.

Although ITRF stations are chosen as the initial stations in the establishment of

all regional geocentric coordinate systems, the approaches for selection are dra-

matically different, either by strongly constraining ITRF stations within and sur-

rounding the area of interest (like the South American reference frame SIRGAS), or

by constraining ITRF stations fixed to the stable part of different plates (such as the

European reference frame). If different initial stations are chosen, the reference

systems established will be different and such differences are often systematic.

WGS84

Since the 1960s, in order to establish an internationally unified geodetic coordinate

system, the former American Defense Mapping Agency (DMA) established the

WGS60, followed by the updated WGS66 and WGS72. In the mid-1980s the

WGS84 coordinate system was established, which was a CTRS. Meanwhile,
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WGS84 also includes the reference ellipsoid, fundamental constants, an Earth

gravity field model, and a global geoid model (see NIMA 2000; NGA 2002).

The WGS84 reference frame was realized by a globally distributed set of

monitoring stations. To establish the WGS84 reference system that agreed with

ITRF, the USA refinedWGS84 three times in 1994, 1996, and 2001, respectively. A

refinement to theWGS84 in 2001 included data from 49 IGS stations and the station

coordinate set has been given the designation WGS84 (G1150) at the epoch 2001.0.

It was aligned to ITRF2000 with an accuracy of 1 cm in any coordinate component.

Hence, for most applications that require an accuracy of less than centimeter level,

WGS84 can be considered the same reference frame as ITRF.

For the four fundamental constants of the WGS84 Ellipsoid see Table 4.1.

7.5 Geodetic Coordinate Systems in China

7.5.1 Beijing Coordinate System 1954

The Beijing Geodetic Coordinate System 1954 (abbreviated as BJS54) is virtually

the extension of the former Soviet Union Pulkovo Coordinate System 1942 in

China. Thus, the latter will be discussed first.

Prior to 1946, the former Soviet Union adopted the Pulkovo Coordinate System

1932. Its geodetic origin was located in the center of the Great Round Hall at the

Pulkovo Astronomical Observatory. It used the Bessel ellipsoidal parameters,

oriented by a single astronomical position, only the initial geodetic azimuth was

obtained through adjustment by using 45 Laplace’s azimuths in the astro-geodetic

network.

Such a coordinate system was not suitable for the former Soviet Union. First, the

semimajor axis of the Bessel ellipsoid was too small, with an error of approximately

800 m. Second, the positioning and orientation of the reference ellipsoid was not

well suited. In the Far East regions, the deviation of the geoid from the reference

ellipsoid was up to 410 m. Therefore, the Pulkovo Coordinate System 1942 was

established based on the Pulkovo Coordinate System 1932, but using parameters of

the Krassowski Ellipsoid. The geodetic origin was still at Pulkovo, but the astro-

geodetic orientation was performed this time.

During the 1950s, in the early phase of the establishment of an astro-geodetic

network in China, to accelerate the cause of surveying and mapping and fully

develop mapping, we were in desperate need of a geodetic coordinate system.

Thus in 1954, with the advice and support provided by the parties concerned, and

considering the historical condition at that time, the Surveying andMapping Bureau

of the General Staff Headquarters of the Chinese People’s Liberation Army

(SMBGSH) connected the first-order triangulation chains in China with the first-

order chains in the Far East of the former Soviet Union. Using the former Soviet

Union 1942 Pulkovo coordinates at the shared part of two baseline networks in
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Huma and Jilalin and two triangulation points in Suifen River District as the initial

data, and carrying out an adjustment of the first-order triangulation chains in

northeast and east China, the coordinate system achieved by this transfer compu-

tation was designated as the Beijing Coordinate System 1954. So, it follows that the

BJS54 is the extension in China of the Pulkovo Coordinate System 1942 of the

former Soviet Union. However, this extension is slightly different from the Pulkovo

Coordinate System 1942 in the strict sense; for instance, the height anomaly was

estimated by astro-geodetic leveling in China based on the re-adjusted geoid in

former Soviet Union 1955 as the initial value. The geodetic height is referenced to

the Huanghai mean sea level obtained at the Qingdao tidal station, China, in 1956.

Highlights of BJS54 are summarized as follows:

1. It is a local coordinate system.

2. It has adopted the Krassowski Ellipsoid parameters (see Table 4.1).

3. It employs astro-geodetic orientation. η0 and ξ0 are obtained from 900 points

(in the former Soviet Union) according toP900
1

η� ηg

� �2

þ ξ� ξg
� �2
 �

¼ minimum, where ηg and ξg are the components

of the gravimetric deflection of the vertical obtained by the gravity method. The

geoid separation (geoid undulation) of the geodetic origin N0 is obtained from

43 points (selected evenly in the former Soviet Union astro-geodetic network)

based on
P43
1

N2 ¼ minimum.

4. No Euler angles exist: εX¼ εY¼ εZ¼ 0.

5. The geodetic origin is located at Pulkovo in the former Soviet Union.

6. The height anomaly is estimated by astro-geodetic leveling in China, based on

the re-adjusted geoid in former Soviet Union 1955 as the initial value.

7. The results of geodetic points are achieved by local adjustments after the

establishment of BJS54.

The Beijing coordinate system 1954 had a tremendous impact on surveying

and mapping. One hundred and fifty thousand national geodetic points and

thousands of military control points, artillery survey control points, and mapping

control points are all calculated based on this coordinate system. The surveying

and mapping results, documents, and data based on BJS54 have been applied in

many fields of economic construction and national defense building. In partic-

ular, the mission of preparing 1:50,000 scale and 1:100,000 scale topographic

maps plotted using BJS54 is almost accomplished. The 1:10,000 scale topo-

graphic maps are also nearly completed.

The deficiencies and problems of BJS54 are as follows:

1. The Krassowski Ellipsoid parameters are different from the modern accurately

defined ellipsoidal parameters, with its semimajor axis being approximately

108 m longer (compared to GRS80).

2. It involves only two ellipsoidal parameters with geometric properties (a, f ) and
cannot fulfill the needs of the four fundamental parameters (semimajor axis a,
Earth gravity field second-order zonal harmonic coefficient J2, geocentric
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gravitational constant GM, and angular velocity of the Earth rotation ω) used to

describe the Earth ellipsoid in both theoretical studies and practical applications.

3. The Krassowski Ellipsoid is adopted in geodetic surveying and computation,

whereas in gravity data processing, the formula for normal gravity derived by

Helmert in 1901–1909 is adopted:

γ0 ¼ 978030 1þ 0:005302 sin 2φ� 0:000007 sin 22φ
� �

:

Hence, we cannot incorporate the two geometric parameters a and f of the
Krassowski Ellipsoid with the physical parameters γe¼ 978030 mGal, and

β¼ 0.005302 of Helmert’s formula for normal gravity, used as the unified

parameters for both geometric and physical geodesy.

4. The reference ellipsoid surface corresponding to BJS54 has a systematic slope

from west to east relative to the geoid in China. In eastern regions the height

anomaly can reach +65 m, and the nationwide average is 29 m (cf. Fig. 7.8).

5. It has ill-defined orientation. The pointing direction of the minor axis of the

ellipsoid is neither the universally adopted CIO nor the polar origin JYD1968.0 in

China. The plane of the initial geodetic meridian is not parallel to the Greenwich

Mean Astronomical Meridian defined by the BIH. This is inconvenient and can

cause errors in coordinate transformations.

6. Compared to the Xi’an Coordinate System 1980 in China, BJS54 has carried out

a local rather than an integrated adjustment. The former, on the other hand, uses

integrated adjustments and thus boasts higher accuracy than BJS54. The results

of geodetic points provided stepwise by local adjustments will inevitably lead to

some contradictions or unjustified situations.

7. The coordinate system is not established by China alone, and the geodetic origin

is not in Beijing. So the “Beijing coordinate system” is more superficial than

real, which may easily cause misperceptions. Its definition is neither simple nor

clear enough.

We should certainly note that these problems arose for historical reasons

which, for a country just starting to establish an astro-geodetic network, was

very hard to avoid.

7.5.2 China’s National Geodetic Coordinate System 1980
(Xi’an Coordinate System 1980)

Long before the early 1960s, when the national astro-geodetic survey began to take

shape, experts and scholars had started to embark on research by making use of the

astro-geodetic survey data to calculate the ellipsoid parameters that better approx-

imate the geoid in China. This attempt to tackle the deficiencies and problems of

BJS54 reaped some early results.

In April 1978, the “Symposium of National Astro-Geodetic Network Integrated

Adjustment” was held in Xi’an, China. Experts and scholars devoted a full
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discussion and study to the issue of establishing a new geodetic coordinate system

in China, holding that BJS54 had some technical shortcomings. Establishing

China’s own brand-new geodetic coordinate system was imperative and timely.

In the conference summary, the following principles were defined concerning the

issue of establishing China’s geodetic coordinate system:

1. The integrated adjustments of the national astro-geodetic network will be carried

out on a new surface of a reference ellipsoid. Thus, a new geodetic coordinate

system should first be established, which was named the National Geodetic

Coordinate System 1980 (later in practical use it is always referred to as the

Xi’an Coordinate System 1980, abbreviated as XAS80).

2. The geodetic origin of the coordinate system is located at the center of China,

close to Xi’an. The exact place is in Yongle township, Jingyang county, Shaanxi

province.

3. The Earth ellipsoid parameters recommended by the IUGG in 1975 integrated

the latest data throughout the world. The XAS80 has adopted four basic param-

eters (a, J2,GM, and ω), and has calculated the Earth’s flattening, normal gravity

value at the equator, and coefficients of the normal gravity formula based on the

four parameters.

4. The minor axis of the ellipsoid XAS80 is defined parallel to the direction from

the Earth’s center of mass to the polar origin JYD1968.0, and the initial geodetic
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meridian plane should be parallel to the Greenwich Mean Astronomical

Meridian.

5. The reference ellipsoid is oriented to minimize the sum of the squared height

anomalies within China.

6. Taking into consideration the different needs of classical geodetic surveys and

space geodetic surveys, and basing our decisions on the principle of “indepen-

dence and self-setting, secure and easy access”, we have established two sets of

coordinate systems, respectively; namely, the XAS80 and the geocentric coor-

dinate system. The former belongs to the local coordinate system according to

the conditions for determining orientation. We have to maintain its long-term

stability for the use of various departments throughout the country. The latter,

based on the XAS80, has transformed the coordinate transformation parameters

accurately obtained to the geocentric coordinates to satisfy the needs of devel-

oping long-distance weapons and space technologies. The geocentric coordinate

transformation parameters can be refined with the incessant progress of survey-

ing and mapping technologies and by comprehensive utilization of the ever-

increasing astronomical, geodetic, gravimetric, and satellite geodetic

survey data.

After the conference, the departments concerned established China’s National

Geodetic Coordinate System 1980 in line with the above principles.

XAS80 was established based on the BJS54. In terms of principles for its

establishment, see Sect. 7.3.

The arc measurement equation used is (7.31). Due to the adoption of the normal

height system, we therefore replace N with ζ, and replace ΔfwithΔe2, which gives:

ζ1980 ¼ cosB1954 cos L1954ΔX0 þ cosB1954 sinL1954ΔY0 þ sinB1954ΔZ0

�W1954Δaþ 1

2
N1954 sin

2B1954Δe2 þ ζ1954: ð7:35Þ

We have adopted the ellipsoidal parameters recommended by IUGG1975, and

thus Δa¼ aIUGG1975� aKrassovsky and Δe2¼ e2IUGG1975� e2Krassovsky are both

known values.

The method for solving ζ1954 is as follows: We form 21 loops throughout the

country using the results of 1,167 astronomical points and approximately 150,000

gravity points along the astro-gravimetric leveling lines, short-side astronomical

leveling lines, and astronomical leveling lines, with isostatic corrections applied.

We carry out an unequal-weighted adjustment to obtain differences in height

anomalies along different leveling lines. We take ζ at the origin as the initial

value to calculate one by one, and produce the national height anomaly map ζ1954.
We select 922 points evenly nationwide at a 1� � 1� interval and form an arc

measurement equation like (7.35). According to Σ922
1 ζ21980 ¼ minimum, solve the

orientation elements ΔX0, ΔY0, and ΔZ0, and then substitute them into (7.28) to

produce the values of η0(1980), ξ0(1980), and ζ0(1980) at the geodetic origin. According
to (7.26), based on the astronomical longitude λ0, latitude φ0, and azimuth α0 from
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the origin point to another point and the normal height Hnormal0 at the geodetic

origin, we can obtain L0(1980), B0(1980), A0(1980), and H0(1980) as the geodetic origin

data of the XAS80.

XAS80 has adopted JYD1968.0 instead of CIO as the origin of the polar coordi-

nate (where JYD is the acronym of Chinese Pinyin Ji Yuan Dian, meaning polar

origin). This polar coordinate system was established in 1977 by the Polar Motion

Collaboration Group in China through analysis and study of the long-term and

periodic components of the Earth’s pole using the latitude survey data from the

optical instruments of 36 sites abroad over the years 1949–1977. Participants of the

Collaboration Group include the Department of Astronomy, Nanjing University,

Shanghai Astronomical Observatory, Shaanxi Astronomical Observatory,

Wuchang Time Observatory, and Tianjin Latitude Observation. The system has

been maintained by Tianjin Latitude Observation using follow-up latitude survey

data from basically the same sites and instruments, and the same methods for

mathematical data processing.

We have to acknowledge that the precision of JYD1968.0 is fairly high in terms of

determining a polar system by means of optical techniques. The system is also quite

stable. Its internal accuracy is equivalent to the CIO of BIH, but the average

deviation of the external consistency is less than 0. 0200 compared with BIH

and IPMS.

Although JYD1968.0 is used in XAS80 in China, there have always been disputes

over its employment in Chinese activities in the fields of astronomy and geodesy. In

particular, with the improvements in space geodetic techniques, the traditional

optical astrometric methods have been replaced by new techniques. The JYD

system is a polar system maintained by optical means, and thus it cannot fit in

with the needs of establishing a high-precision reference system in modern society.

In addition, JYD is not a truly independent polar system and the optical latitude

survey data in overseas countries are on the brink of exhaustion. Consequently, this

system can barely be maintained. Changing the polar origin to make it consistent

with the international system is therefore inevitable.

We also have to make clear that the ellipsoid is oriented to minimize the sum of

the squared height anomalies within China by the XAS80 based on the ellipsoidal

parameters recommended by IUGG1975, which means that only the three

unknowns ΔX0, ΔY0, and ΔZ0 in (7.35) have to be solved. If the ellipsoidal

parameters are not fixed in advance, finding solutions based on (7.35) will result

in ΔX0, ΔY0, ΔZ0, Δa, and Δe2, i.e., five parameters. It is evident that such an

orientation can allow the ellipsoid surface to be a closer fit to the geoid (or quasi-

geoid) in China. As indicated by several computational results over the period

1964–1977, the value of a ranges from 6,378,666 to 6,378,685 m and that of f from
1:291.6 to 1:292.2. It can be seen from the above that the semimajor axis of the

calculated ellipsoid based on the regional geoid in China is 500 m longer than that

of the obtained ellipsoid based on a global geoid at present. Their denominators of
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flattening differ from each other by approximately 6 units due to the complex

terrain environment in China. As a result, the ellipsoid parameters based on China’s

regional geoid have not been adopted in the XAS80.

Highlights of the XAS80 can be summarized as:

1. It is a local coordinate system.

2. It has adopted four ellipsoidal parameters, including both geometric parameters

and physical parameters. The numerical values are those recommended at the

16th general assembly of IUGG held in 1975 (see Table 4.1).

3. It employs astro-geodetic positioning and orientation. We select 922 points

evenly throughout the country at a 1o� 1o interval and form an arc measurement

equation; the values of ξ0, η0, and ζ0 solved at the geodetic origin are

ξ0¼� 1. 900, η0¼� 1. 600, and ζ0¼� 14.0 m.

4. It has a well-defined orientation. The minor axis of the Earth ellipsoid is defined

as parallel to the direction from the Earth’s center of mass to the polar origin

JYD1968.0, and the planes of the initial geodetic and astronomical meridians are

parallel to each other in China; εX¼ εY¼ εZ¼ 0.

5. The origin is located at Yongle township, a small town 60 km north of Xi’an,

Jingyang county, Shaanxi province, in the central area of China, where the

precisions of estimated coordinates are relatively homogenous. It can be abbre-

viated as the Xi’an origin. The estimated values of geodetic longitude and

latitude are L0¼ 108o550, B0¼ 34o320.
6. The coordinates of nearly 50,000 stations are obtained by an integrated adjust-

ment of the nationwide astro-geodetic networks after the establishment of the

XAS80.

The XAS80 demonstrates a marked superiority over BJS54. For example, it is in

complete conformity with the principles for establishing a classical local coordinate

system and can be easily accounted for; the number of the Earth ellipsoid param-

eters and the magnitude of values are more reliable and accurate; the pointing

direction of the coordinate axes is clearly specified; the ellipsoid surface fits the

geoid fairly well; and the nationwide mean value of geoid undulations drops from

29 m of BJS54 to 10 m, the maximum value appearing in the southwest of Tibet.

For most of the areas in the whole nation the geoid undulation is within 15 m

(cf. Fig. 7.9).

In addition, the observational data are reduced rigorously and nationwide unified

integrated adjustment is carried out. Thus, the effects caused by the local adjust-

ment and unsuitable network control have been removed, and the accuracy of the

adjusted coordinates has been improved.

The changes in ellipsoidal parameters and orientation will inevitably cause

variations in geodetic coordinates. Admittedly, the positions of sheet lines will

also undergo changes, the degree of which will vary with the point positions. In

areas east of 102� east longitude in China, the maximum change is approximately

80 m, with an average of about 60 m. If the positions of sheet lines change, there
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will be seams on the newly drawn topographic maps due to imperfect splicing. For

instance, a change of 80 m will be 1.6 mm on a topographic map at the scale of

1:50,000. The changes in the positions of grid lines are dependent on the changes in

geodetic coordinates. The additional effects of the variations in the projected plane

coordinates caused by changes in the ellipsoidal parameters are also included. For

example, when the geodetic longitude is 116� and geodetic latitude is 46�, the
changing values of the grid lines in the x- and y-directions are 46 m and 55 m,

respectively. The changes on the 1:50,000 scale topographic maps are 0.9 mm and

1.1 mm, respectively. The biggest problems generated by implementation of the

XAS80 are the changes in positions of the map sheet lines and the grid lines, which

have made it troublesome while splicing together the topographic maps based on

the old and new geodetic coordinate systems.

7.5.3 Beijing Coordinate System 1954 (New)

The scientific nature, rigor, and advancement of the XAS80 at that time were

acknowledged unanimously by everyone, while the results provided by BJS54

were based on local adjustments, manifesting many drawbacks that made it inap-

propriate for further use. If BJS54 were replaced by XAS80 as the plotting

coordinate system (particularly topographic maps at scales larger than 1:50,000),
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Fig. 7.9 China’s mainland geoid, National Geodetic Coordinate System 1980
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there would be a great volume of work to connect the old and new coordinate

systems. Therefore, implementing a new map coordinate system not only involves

its scientific worth and accuracy but also its practicability, feasibility, economic

returns, and social benefits. We should not only take into consideration the history

of surveying and mapping over the past three decades and its status quo, but also its

development in the days and years to come.

The new BJS54 emerged in such a context. The results offered by this coordinate

system are obtained based on the XAS80 by transforming the GRS75 Ellipsoid into

the Krassowski Ellipsoid and then translating and transforming along the three

spatial axes. Hence, its coordinates have not only embodied the superiority of the

integrated adjustments, i.e., its accuracy is the same as that of the XAS80, but have

also overcome the deficiencies of local adjustment of the original BJS54. In

addition, the new BJS54 employs the same ellipsoidal parameters as the old

BJS54, and the orientation of the new BJS54 also approximates that of the old

BJS54; thus its coordinate values do not differ much from those of the old BJS54

obtained from local adjustment. According to statistics, as for the projected plane

coordinates, the coordinate difference between the new and old BJS54 is within 5 m

in 80 % of the area of China. Those with a coordinate difference of greater than 5 m

are primarily in the northeast and those greater than 10 m are only in a few fringe

areas, with the maximum difference being 12.9 m. The difference along the vertical

x-axis ranges from �6.5 to +7.8 m, and the difference along the horizontal y-axis
ranges from �12.9 to +9.0 m. Such differences are still within the scope of the

differences between the provisional coordinates and the adjusted coordinates,

reflected on the 1:50,000 scale topographic maps, and most of them are less than

0.1 mm. In this sense, the splicing between the old and new maps will be almost

seamless. Hence, the new map not only employs the high-precision integrated

adjustment but also brings clear economic benefits because no particular treatment

needs to be carried out in order to connect together the old and new maps.

Especially in the military system, maps that can show a larger area are mostly at

a scale smaller than 1:50,000. Using this new BJS54 as the map coordinate system

has some distinct advantages in terms of updating maps, offering fast combat

support and making it convenient for officers and men to use the maps.

The relationships between the BJS54, XAS80 and the new BJS54 are depicted

vividly in Fig. 7.10.

In Fig. 7.10, O1980�X1980Y1980Z1980, Onew1954�Xnew1954Ynew1954Znew1954, and
O1954�X1954Y1954Z1954 are the spatial rectangular coordinate systems with respect

to the XAS80, the new BJS54, and the old BJS54, respectively. The direction of the

Z1954-axis is not specified. It is defined as non-parallel to the direction from the

Earth’s center of mass to the polar origin JYD1968.0. The Krassowski Ellipsoid

parameters are adopted and the size of the ellipsoid is not drawn in order to keep the

map clear. The coordinate systems of the Onew1954�Xnew1954Ynew1954Znew1954 and
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O1980�X1980Y1980Z1980 are parallel to each other. The direction of their Z-axis is
parallel to the direction from the Earth’s center of mass to the polar origin JYD1968.0

and the X-axis is situated in the plane of the initial geodetic meridian.

It can be seen from Fig. 7.10 that the new BJS54 is a local coordinate system

obtained from translating XAS80 in space and replacing the GRS75 Ellipsoid

parameters with the Krassowski Ellipsoid parameters. Its translations have the

same values as the positioning parameters ΔX0, ΔY0, and ΔZ0 (with positive or

negative signs) solved according to (7.35) in XAS80, but of opposite sign.

Hence, the formulae for transformations between the two Cartesian coordinate

systems are:

Xnew1954 ¼ X1980 � ΔXo

Ynew1954 ¼ Y1980 � ΔYo

Znew1954 ¼ Z1980 � ΔZo

9=
;, ð7:36Þ

and the formulae for transformations between the two local coordinate systems are:

Lnew1954 ¼ L1980 � dL
Bnew1954 ¼ B1980 � dB
Hnew1954 ¼ H1980 � dH

9=
;, ð7:37Þ

where

Fig. 7.10 Relationships between three local coordinate systems in China
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We have to point out that, while calculating the orientation elementsΔX0,ΔY0,Δ
Z0 based on Σ922

1 ξ21980 ¼minimal solution according to (7.35), the Euler angles

generated by the inconsistency of the axis directions between XAS80 and BJS54

are not taken into consideration. Consequently, the values of ΔX0, ΔY0, and ΔZ0, in
the strict sense, are not the three components of the rectangular coordinates between

the ellipsoidal centers O1980 and O1954 of the above two geodetic coordinate

systems. Hence, when the values of ΔX0, ΔY0, and ΔZ0 of the opposite signs are

transformed into the new BJS54, the ellipsoidal center is Onew1954 instead of O1954,

namely the ellipsoidal center of the new BJS54 does not coincide with that of the

BJS54. The difference i, however, very slight.

The geodetic origin of the XAS80 is located in Xi’an. The integrated adjustment

of the nationwide geodetic networks has been carried out based on the geodetic

origin data. In addition, the coordinates in the system of the new BJS54 have been

transformed from the XAS80, and thus the origin of the new BJS54 still remains the

Xi’an origin. However, the geodetic origin data of the two local coordinate systems

are different, which can be calculated according to (7.38). The result shows that

their geodetic longitudes differ from each other by�2.1900, while geodetic latitudes
differ by 0.3900.

Highlights of the new BJS54 can be summarized as follows:

1. It is a local coordinate system.

2. It has adopted the Krassowski Ellipsoid parameters (see Table 4.1).

3. It employs the astro-geodetic orientation. The ellipsoidal center approximates

very well that of the BJS54, but they are not coincident with each other.

4. It has well-defined orientation. The minor axis of the Earth ellipsoid is defined as

parallel to the direction from the Earth’s center of mass to the polar origin

JYD1968.0, and the planes of the initial geodetic and astronomical meridians

are parallel to each other in China, thus εX¼ εY¼ εZ¼ 0.
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5. The origin is located at Yongle township, Jingyang county, Shaanxi province but

with different geodetic origin data from the XAS80.

6. Coordinates obtained are transformed from the XAS80 after the integrated

adjustment. The precision of the coordinates is exactly the same as for the

XAS80.

7. Used as a plotting coordinate system, for maps at a scale smaller than 1:50,000,

the new and old maps splice (the break of edge-matching between the new and

old maps) together almost seamlessly.

The advantages of the new BJS54 lie in the fact that it has overcome the low

accuracy of the adjusted coordinates of the old BJS54 from the local adjustments,

and the newly drawn topographic maps based on the new BJS54 and the old

topographic maps splice together well. Generally, for maps at a scale smaller

than 1:50,000, there will be no apparent seams. However, for large-scale maps of

1:25,000 or 1:10,000, seams will arise during splicing. In terms of demand for

production and scientific development, digital products will replace the simulation

products. Hence, the new BJS54 has not been practically used in the field of analog

mapping.

7.5.4 Geocentric Coordinate System 1978

The geocentric coordinate system 1978 was obtained by transforming the BJS54

based on DX-1 coordinate transformation parameters.

DX-1 has only three translation parameters, i.e., ΔX0,ΔY0,ΔZ0. The transfor-

mation parameters of DX-1 were defined and established in some relevant confer-

ences in November 1978. At that time, satellite geodetic techniques were still in

their infancy, so the geocentric coordinates could not be observed directly. DX-1

has been established by employing five methods, as identified below:

1. Astro-gravimetric method

2. Global astro-geodetic geoid undulations

3. Difference between astro-geodetic and gravimetric geoid undulations

4. Using Doppler receivers like MX-702A to determine the transit navigation

satellite system (TRANSIT System) to establish geocentric coordinates

5. Using Doppler receivers like CMA-722B to determine the transit navigation

satellite system (TRANSIT System) to establish geocentric coordinates

The translation parameters can be obtained by any one of the above methods

alone. If different weights are assigned to these five methods, respectively, taking

the weighted mean will produce the three translation parameters of the DX-1, ΔX0,

ΔY0, and ΔZ0.
The three translation parameters ΔX0, ΔY0, and ΔZ0 denote the displacements of

the center position of the BJS54 reference ellipsoid deviating from the geocenter,

namely the three coordinate components of the center of the BJS54 in the
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geocentric coordinate system. The obtained system based on this set of parameters

is named the Geocentric Coordinate System 1978.

Based on the DX-1 transformation parameters, we can transform the geodetic

Cartesian coordinates in BJS54 into geocentric Cartesian coordinates in the Geo-

centric Coordinate System 1978:

X
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Z

2
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5
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¼
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Z
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2
4

3
5
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: ð7:39Þ

DX-1 excludes rotation and scale parameters. It was only a preliminary result to

meet the urgent needs of space technologies back then. Shortcomings were

unavoidable in the course of its establishment. For instance, the materials and

data used in calculations were limited and inaccurate, and the data processing

methods were not optimal. Hence, the direction of the coordinate axis of the

geocentric coordinates obtained by DX-1 transformation parameters is not clearly

defined. It is estimated that the mean square error of the coordinate component of

the Geocentric Coordinate System 1978 is approximately 	10 m.

7.5.5 Geocentric Coordinate System 1988

Since 1979, some departments have done plenty of work in developing space

geodetic techniques. For instance, China established a Doppler network with

37 points across the country in 1980; another dynamic satellite geodetic network

was established in 1982, so geocentric coordinates with high precision were

obtained. In the meantime, an integrated adjustment of the nationwide astronomical

geodetic network was carried out, by which the geodetic coordinates of nearly

50,000 stations were determined. The height anomalies nationwide have been

obtained with quite high precision by means of the astro-gravimetric leveling. All

kinds of geocentric coordinate systems are continually updated internationally, and

some quite new data have appeared. All have created conditions for China to refine

its geocentric coordinate transformation parameters.

After years of preparation, some departments concerned established the DX-2

steering group for integrated data processing in May 1987. Eventually, by the end

of 1988, the geocentric coordinate transformation parameters of DX-2 were

completed.

The transformation parameters of DX-2 are obtained by integrating three

methods for establishing geocentric coordinate parameters:

1. Geocentric coordinates obtained by using an MX-1502 Doppler receiver to the

track transit satellite system (TRANSIT System) (Doppler network with

37 points nationwide)
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2. Geocentric coordinates obtained by dynamic satellite geodesy (seven points

nationwide)

3. Global astro-geodetic geoid undulations (referenced to the XAS80)

DX-2 consists of seven transformation parameters. The XAS80 coordinates and

the new BJS54 coordinates can both be transformed into geocentric coordinates

based on DX-2 transformation parameters, and the corresponding system is called

the Geocentric Coordinate System 1988. Thus, DX-2 has two sets of transformation

parameters, i.e., DX-2new1954 and DX-21980; the geocentric coordinates obtained are

completely coincident.

The origin of the Geocentric Coordinate System 1988 is the Earth’s center of

mass. The Z-axis is directed towards the CIO (BIH1968); the X-axis is directed

towards the international zero-longitude (BIH1968); the Y-axis, Z-axis, and X-axis
constitute a right-handed coordinate system. The unit of length is the meter. If

represented by geodetic coordinates, the ellipsoidal parameters are those of GRS75,

as shown in Table 4.1.

When the Cartesian coordinates in XAS80 or in the new BJX54 are transformed

into the coordinates in the Geocentric Coordinate System 1988, the formulae for

computation are:

XD ¼ X 1þ mð Þ þ Y � ε00
Z=ρ

00 � Z � ε00
X=ρ

00 þ ΔX0

YD ¼ Y 1þ mð Þ � X � ε00
Z=ρ

00 þ Z � ε00
X=ρ

00 þ ΔY0

ZD ¼ Z 1þ mð Þ þ X � ε00
Y=ρ

00 � Y � ε00
X=ρ

00 þ ΔZ0

9=
;, ð7:40Þ

where XD, YD, and ZD denote the coordinates in the Geocentric Coordinate System

1988, and X,Y, and Z represent the coordinates in XAS80 or in the new BJS54,

respectively. Their corresponding transformation parameters are DX-21980 or

DX-2new1954.

It is estimated that the mean square error of each component of the geocentric

coordinate obtained from DX-2 is better than 	5 m.

7.5.6 China Geodetic Coordinate System 2000

Since the 1980s, under the concerted efforts of the Chinese State Bureau of

Surveying and Mapping (SBSM), the Surveying and Mapping Bureau of the

General Staff Headquarters (SMBGSH), China Seismological Bureau (CSB), Chi-

nese Academy of Sciences (CAS), and some other units, China has established in

succession first- and second-order nationwide GPS networks, order A and B

national GPS networks, GPS continuously operating reference station (CORS)

networks, and Crustal Movement Observational Network of China (CMONOC).

A large-scale combined adjustment between terrestrial and spatial networks has

been carried out. These achievements have marked the mature technological
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conditions for China to construct its own new geocentric coordinate frames (see

Wei 2003; Ning 2002).

Definition of the CGCS2000

The new generation national geodetic coordinate system in China is the China

Geodetic Coordinate System 2000, abbreviated as CGCS2000 (see Chen 2008;

Yang 2009). Its definition is consistent with that of the CTRS, namely:

1. Origin: coincides with the center of mass of the whole Earth including oceans

and atmosphere

2. Orientation: initially given by the BIH orientation at 1984.0

3. Time evolution (of the orientation): to create no residual global rotation relative

to the crust

4. Unit of length: the international standard meter, defined in a local Earth frame in

the meaning of a relativistic theory of gravitation

The reference epoch of CGCS2000 is at 2000.0.

The reference ellipsoid of CGCS2000 is the CGCS2000 Reference Ellipsoid,

whose defined parameters are shown in Table 4.1. The normal ellipsoid is consis-

tent with the reference ellipsoid.

Several points need to be addressed:

1. Of the four constants of the CGCS2000 Reference Ellipsoid, three constants are

coincident with GRS80, namely a, f, and ω. GM is the value recommended by

IERS, and most of the other geocentric ellipsoids in the world are the same.

2. There is a slight difference between the values a and f of CGCS2000 and the

higher-precision values recommended by IERS (a¼ 6, 378, 136.6 m,

1/f¼ 298.25642), but this will have no effect on applications.

3. The CGCS2000 Reference Ellipsoid differs slightly from WGS84 only in the

flattening f (which generated 1 mm error of the terrestrial coordinates at the

equator). These two ellipsoids can therefore be considered practically coincident

with each other.

Realization of the CGCS2000

The CGCS2000 is realized by estimates of the station coordinates and velocities at

three levels.

Level 1: Continuously Operating Reference System (CORS). These constitute

the fundamental frame of CGCS2000 with an accuracy of a few millimeters in

coordinates and 1 mm per annum in velocity. The CORS also provide coordinate

datum for static and dynamic positioning and navigation.

GPS CORS are permanent ground-based observation stations that are

designed to provide long-term and continuous tracking and receiving of GPS
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satellite signals. They provide users of different kinds with different needs and at

different levels automatically with verified GPS observational data (carrier

phrase, pseudorange), all kinds of corrections, GPS status messages and other

GPS-relevant services, and programs in real-time by using data communications

and internet technologies. Currently, the CGCS2000 is maintained by 260 CORS

stations and its coordinate accuracy is at the level of a millimeter.

Level 2: GPS geodetic control network (see Yang et al. 2009). This consists of all

the nationwide GPS networks including orders A and B national GPS networks,

the first- and second-order nationwide GPS networks, the Crustal Movement

Observation Network of China, and all the other GPS networks that monitor

crustal deformations except CORS. Its three-dimensional geocentric coordinates

are at centimeter-level accuracy, and velocity precision is 2–3 mm per annum.

The order A and order B GPS networks were observed by the SBSM between

1991 and 1997. The order A network consists of 30 principal points and

22 auxiliary points. The order B network comprises 818 points. The order A

and B network adjustments are referred to ITRF93 at the epoch of 1996.365. The

geocentric coordinates of the points after adjustment have an accuracy of 10�7

order of magnitude.

The first- and second-order national GPS networks were both observed by

SMBGSH in China over the years 1991–1997. The first-order network consists

of 44 points and the second-order network of 534 points. The first- and second-

order network adjustments are referred to ITRF96 at the epoch of 1997.0. The

geocentric coordinates of the points after adjustment have an accuracy of 10�8

order of magnitude.

The Crustal Movement Observation Network of China was jointly observed

by the CSB in collaboration with SMBGSH, CAS, and SBSM in China from

1998 to 2002. It includes datum networks, basic networks, and local networks.

There are 29 datum points, 56 basic points, and 1,000 local points. The network

adjustment is referred to ITRF96 at the epoch of 1998.680. The geocentric

coordinates of the points after adjustment are with a general accuracy of better

than 10�8 order of magnitude.

The GPS geodetic networks together with CORS constitute the CGCS2000

frame.

Level 3: The astro-geodetic network (see Yang et al. 2005). This consists of

approximately 50,000 astro-geodetic points after the combined adjustment

between terrestrial and spatial networks. The error of the geodetic longitude

and latitude is within 0.3 m and the error of the geodetic height does not exceed

0.5 m.

GPS geodetic networks in China are at lower density than astro-geodetic

networks, only approximately one-twentieth of the latter. Hence, the

low-density 3D geocentric coordinate reference frame offered by GPS geodetic

networks cannot fully realize the 3D geocentric coordinate reference system for

engineering purposes. Combined adjustments between the national astro-

geodetic networks and GPS geodetic control networks were carried out in

China by the SBSM and SMBGSH, respectively. The high-precision geocentric
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coordinates of 48,919 first- and second-order astro-geodetic points were

obtained with an average accuracy of position of 	0.11 m, which bettered the

precision and current situation of the national astro-geodetic networks and

improved the density and distribution of the CGCS2000 reference frame.

Difference Between CGCS2000 and ITRF

By definition, CGCS2000 and ITRF belong to the same coordinate system. The

coordinates of CGCS2000 are determined by GPS relative positioning techniques,

while the datum station coordinates are in the ITRF reference frame. Hence,

CGCS2000 and ITRF belong to the same reference frame. With proper observa-

tions and reasonable calculations, we can strive to keep CGCS2000 consistent with

ITRF within 2 cm. Hence, CGCS2000 is the Chinese equivalent to ITRF but of a

higher density. The difference between CGCS2000 and ITRF is negligible when the

accuracy is at the level of a centimeter.

Difference Between CGCS2000 and the Current Local Coordinate

System

Different Methods for Ellipsoid Orientation

A local coordinate system is designed to establish the ellipsoid that best fits the

geoid over the local area by means of an astro-geodetic orientation, whose origin

deviates considerably from the geocenter (approximately 200 m). Taking XAS80 as

an example, its reference ellipsoid fits the geoid well on a national basis. Two

isolines of zero height anomalies pass through the east and west of China. The

height anomalies in most areas are within 20 m. The effect of the height anomalies

on distance is smaller than 1/300,000. CGCS2000 is a geocentric coordinate

system, which is realized by modern geodetic techniques based on the techniques

employed in the establishment of a terrestrial reference frame. The center of the

ellipsoid defined by CGCS2000 is coincident with the Earth’s center of mass.

Meanwhile, the ellipsoid also most closely fits the geoid on a global basis. The

ellipsoids that are global “best fits” to the geoid may not necessarily be local “best

fits” to the geoid.

Different Realization Techniques

The local coordinate system is established by classical geodetic techniques,

whereas CGCS2000 is established by space geodetic techniques.

380 7 Establishment of Geodetic Coordinate Systems



Different Coordinate System Dimensions

The local coordinate system is a 2D coordinate system, whereas CGCS2000 is a 3D

coordinate system.

Different Coordinate System Origins

The origin of the local coordinate system deviates considerably from the Earth’s

center of mass, whereas the origin of CGCS2000 is coincident with the Earth’s

center of mass.

Different Precisions of Realization

The local coordinate system lacks high-precision external control, so the long-

distance precision is quite low. The accuracy of CGCS2000 has increased tenfold

compared to that of the current ellipsoid centric coordinate system. Its relative

precision can be up to 10�7–10�8.

Impact and Countermeasures of Implementing CGCS2000

The geodetic coordinate system is fundamental to the all surveying and mapping

work. The change or a replacement of a coordinate system involves a many aspects,

but the most immediate consequences will be regarding utilization of the surveying

and mapping data, results, and products under the old coordinate system. This

mainly touches upon the following aspects:

1. Results of geodetic points under the old coordinate system (approximately over

200,000 points)

2. Topographic maps, nautical charts, aerocharts, and cadastral maps under the old

coordinate system

3. Results of urban independent coordinate systems (including coordinates of the

control points and topographic maps)

4. The established geographical spatial data infrastructure and geographic infor-

mation system

5. Gravity anomalies, height anomalies, and deflections of the vertical of other

ellipsoids

6. Surveying and mapping results for special applications

For issues concerning the transitional applications of geodetic results and map-

ping products, the following technical countermeasures need to be taken:

1. We carry out a combined adjustment between terrestrial and spatial networks

and incorporate the geodetic points of various-order networks into the reference
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system of CGCS2000. The geodetic points for which a combined adjustment

cannot be carried out should be corrected to CGCS2000 by precise coordinate

transformations.

2. We obtain precisely the transformation parameters from BJS54, XAS80, and

urban independent coordinate systems to CGCS2000 and compile corresponding

coordinate transformation software dedicated to public use. The accuracy indi-

cators of the coordinate transformation can be sorted into the following three

categories: for low-precision transformation in common navigation applications,

the mean square error of each coordinate component is in the range of 5–10 m;

for medium precision transformation as a 3D coordinate similarity transforma-

tion, the mean square error of each coordinate component is in the range of 0.5–

5 m; for high-precision transformation in sheet lines of topographic maps and

coordinate grid transformations, the mean square error of each coordinate

component should not exceed 0.5 m.

3. The printed paper topographic maps in the old coordinate system can be

corrected to the CGCS2000 by replotting the neat lines and grid lines. Compu-

tation shows that, while changing the coordinate system for the maps at scales

larger than 1:1,000,000, the changing value in the geographical location of the

points on the maps will exceed the mapping accuracy, and the maps should be

replotted. However, when the distance and azimuth shift between any pair of

points on a map at any scale are within the mapping accuracy, the changes can be

neglected. Hence, for the correction of existing paper maps, all that needs to be

done is to translate the sheet lines and the square grids of each map.

4. For digital topographic maps, we transform the coordinates of all the map layers

and map elements using software, followed by cutting and clipping over again.

5. The gravity anomaly that is referenced to other ellipsoids can be transformed to

the gravity anomaly referred to the CGCS2000 ellipsoid using software based on

the normal gravity formula. Likewise, the height anomalies and deflections of

the vertical that are referenced to other ellipsoids can also be converted to that

referred to CGCS2000.

It is perfectly viable to ensure a smooth transition from the old to the new

coordinate system through a well-conceived plan and well-arranged implemen-

tation by using the existing technologies available in China. The CGCS2000 was

put into effect on July 1st, 2008 in China. With regards to the transformation and

connection between CGCS2000 and the existing national geodetic coordinate

systems (referring to BJS54 and XAS80), the transition period is regulated to

take 8–10 years according to the correlative provisions.

Review and Study Questions

1. Draw a geometric figure to explain the concept of Euler angles.

2. By referring to the “double-parallel conditions” (i.e., the minor axis of the

ellipsoid is parallel to the Earth’s rotation axis, and the planes of the initial
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geodetic and astronomical meridians are parallel to each other), explain the

geometric meaning of β2, γ3, and provide the relationship between β2, γ3, and
Euler angles.

3. Draw a geometric figure to derive the Bursa–Wolf model for transformations

between different geodetic Cartesian coordinate systems.

4. Explain how to solve the transformation parameters of different geodetic Car-

tesian coordinate systems using the Bursa–Wolf model.

5. What is the geodetic origin data and what is its relation to the ellipsoid

orientation?

6. What are the conditions of the ellipsoid orientation and how could these condi-

tions be satisfied?

7. Explain the concepts of a single astronomical position datum orientation and the

astronomical–geodetic orientation.

8. Account for the following concepts: the Earth’s polar origin, the origin of

longitude, the polar coordinate system, the ideal TRS, the CTRS, and the

conventional terrestrial reference frame.

9. Illustrate the datum definition adopted by ITRFyy (where yy is the annual series
of this frame) at different dates.
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