
Leora Morgenstern Petros Stefaneas
François Lévy Adam Wyner
Adrian Paschke (Eds.)

 123

LN
CS

 8
03

5

7th International Symposium, RuleML 2013
Seattle, WA, USA, July 2013
Proceedings

Theory, Practice,
and Applications
of Rules on the Web

Lecture Notes in Computer Science 8035
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Leora Morgenstern Petros Stefaneas
François Lévy Adam Wyner
Adrian Paschke (Eds.)

Theory, Practice,
and Applications
of Rules on the Web

7th International Symposium, RuleML 2013
Seattle, WA, USA, July 11-13, 2013
Proceedings

13

Volume Editors

Leora Morgenstern
SAIC / Leidos, Arlington, VA, USA
E-mail: leora.morgenstern@saic.com

Petros Stefaneas
National Technical University of Athens, Attiki, Greece
E-mail: petros@math.ntua.gr

François Lévy
Université Paris 13, Villetaneuse, France
E-mail: francois.levy@lipn.univ-paris13.fr

Adam Wyner
University of Aberdeen, Scotland, UK
E-mail: adam@wyner.info

Adrian Paschke
Freie Universität Berlin, Germany
E-mail: paschke@inf.fu-berlin.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39616-8 e-ISBN 978-3-642-39617-5
DOI 10.1007/978-3-642-39617-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013942664

CR Subject Classification (1998): I.2.4, H.3.5, I.2.6, D.2, I.2.11, H.4.1,
F.3.2, D.1.6, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

RuleML 2013, the 7th International Web Rule Symposium: Theory, Practice,
and Applications of Rules on the Web, served, as have all preceding RuleML
meetings, as the premier place for theoreticians and practitioners from a wide
range of areas of rule technologies to meet and exchange ideas. The aim of
RuleML 2013 was to build bridges between academia and industry in the field of
rules and semantic technology. By bringing together rule-system providers, par-
ticipants in rule standardization efforts, open source communities, practitioners,
and researchers, the RuleML symposium series stimulates cooperation and in-
teroperability between business and research. This annual symposium is the
flagship event of the Rule Markup and Modeling (RuleML) Initiative. RuleML
2013 (July 11–13, 2013) was collocated with AAAI 2013, the 27th Conference
on Artificial Intelligence, in Seattle, Washington.

The RuleML Initiative (http://ruleml.org) is a non-profit umbrella organi-
zation of several technical groups organized by representatives from academia,
industry, and national governments who are working on rule technology and its
applications. Its aim is to advance the study, research, and application of rules
in heterogeneous distributed environments such as the Web. RuleML maintains
effective links with other major international societies and acts as intermediary
between various specialized rule vendors, applications, industrial, and academic
research groups; it also maintains effective links with other major international
societies and standardization efforts, including W3C, OMG, OASIS, and ISO.

The RuleML Symposium series began as an annual series of workshops in
2002, and has been run as an annual international symposium since 2007.

The core technical program for Rule ML 2013 consisted of a main technical
conference Track, a special Human Language Technology Track focusing on busi-
ness and legal regulations, a Rule Challenge Track, and a Doctoral Consortium.

The main technical track included 12 papers on a variety of aspects of re-
search on rules, including rule-based approaches for spatial reasoning, answer-set
programming methods for solving the stable marriage problem, using rules for
complex event processing for gamification applications, and using defeasible rules
to formalize theories of belief, desire, intention, and obligation in order to choose
optimal goals. It also featured several keynote and invited talks from leaders in
our community: a keynote talk by Michael Grüninger on integrating ontologies
within repositories, a keynote talk by Lise Getoor on a framework for inte-
grating probabilistic and relational reasoning, and an invited talk by Benjamin
Grosof, describing his work on rapid text-based authoring of higher-order defea-
sible rules. In addition, this track included two tutorials, one on LegalRuleML,
a rule interchange language for legal domains standardized by OASIS, and one
on Brahms, a set of software tools, based on a theory of work practice and situ-

VI Preface

ated cognition, for developing and simulating multi-agent models of human and
machine behavior.

The Human Language Technology Track focused on methods for addressing
the knowledge acquisition bottleneck that arises when trying to convert the vast
amount of regulatory text on the Web, nearly all of which is written in natural
language, to the formal expression of such rules. Topics represented in this track
included the use of controlled languages, semi-formal languages that aim to
facilitate the expression of regulations by human experts in languages that are
both close to natural language and have relatively straightforward mappings
to formal representations; techniques for extracting semantic information from
legislative text; and mapping English onto fuzzy logic. This track included seven
talks and one tutorial on SBVR structured English.

The 7th International Rule Challenge Track highlighted the practical applica-
tion of rule-based systems. It served as a forum for presenting new ways of using
rule-based systems and reporting practical experiences about implementing these
systems. The focus was on benchmarks/evaluations, demos, case studies, use
cases, experience reports, best practice solutions (such as design patterns, refer-
ence architectures, and models), rule-based implementations/tools/applications,
demonstrations of engineering methods, implementations of rule standards (such
as RuleML, W3C RIF, ISO Common Logic, SBVR, PRR, and API4KB), indus-
trial standards for representing and exchanging rules and related information
(such as XBRL, MISMO, and Accord), and industrial problem statements. The
Rule Challenge Track also included an invited tutorial on using rules to han-
dle XML in government contexts such as NIEM, the United States National
Information Exchange Model.

This was the third year that RuleML held a Doctoral Consortium. Aimed at
attracting and promoting PhD research in this area, the Doctoral Consortium
offers students close contact and mentoring opportunities with leading experts
in the field, as well as the opportunity to present and discuss their ideas in a
dynamic and friendly setting.

This volume includes all papers from the main technical track, the top three
papers from the Human Language Technology Track, and abstracts of the keynote
and invited talks and tutorials. In two cases, for Benjamin Grosof’s invited pa-
per and for the LegalRuleML tutorial, extended abstracts are provided. Human
Language Technology Track papers that are not published in this volume, as
well as Rule Challenge papers and Doctoral Consortium papers, are published
as a CEUR Workshop Proceedings, at http://ceur-ws.org/. The five editors of
this volume comprise the two Program Chairs of the main technical track, Leora
Morgenstern and Petros Stefaneas, the two Program Chairs of the Human Lan-
guage Technology Track, François Lévy and Adam Wyner, and the Conference
Chair, Adrian Paschke. Note that the chairs of the Human Language Technology
track were not involved in the selection for this volume of any papers that they
authored.

We are pleased to announce the winner of the RuleML 2013 Best Paper
Award, “Computing the Stratified Semantics of Logic Programs over Big Data

Preface VII

Through Mass Parallelization” by Ilias Tachmazidis and Grigoris Antoniou. This
paper examines how logic programming techniques, particularly stratification,
can facilitate mass parallelization in order to handle vast quantities of data.

Special thanks are due to the excellent Program Committee for their hard
work in reviewing the submitted papers. Their criticism and very useful com-
ments and suggestions were instrumental in the high quality of the papers. We
thank the symposium authors for submitting solid contributions to research,
responding to the comments of the reviewers, and abiding by our production
schedule. We are grateful to the keynote and invited speakers for contributing
thought-provoking talks and providing research leadership for the RuleML com-
munity, and to the tutorial presenters for organizing and transmitting their deep
and broad knowledge of their areas of expertise.

We thank OASIS LegalXML for its financial support of RuleML 2013 and
acknowledge our various industrial, academic, and professional society partners
for technical and organizational support. We also thank the EasyChair confer-
ence management system for facilitating the paper submission and reviewing
process and both EasyChair and our publisher, Springer, for their support in
the preparation of this volume and the publication of the proceedings.

Finally, we gratefully acknowledge the assistance and support of Frank Olken,
who contributed so much to the organization of this symposium and helped
ensure its success.

May 2013 Leora Morgenstern
Petros Stefaneas

François Lévy
Adam Wyner

Adrian Paschke

Organization

Program Committee

Darko Anicic FZI Forschungszentrum Informatik, Germany
Martin Atzmueller University of Kassel, Germany
Costin Badica University of Craiova, Romania
Ebrahim Bagheri Ryerson University, Canada
Nick Bassiliades Aristotle University of Thessaloniki, Greece
Bernhard Bauer University of Augsburg, Germany
Antonis Bikakis University College London, UK
Pedro Bizarro University of Coimbra, Portugal
Luiz Olavo Bonino Da

Silva Santos University of Twente, The Netherlands
Johan Bos University of Groningen, The Netherlands
Lars Braubach University of Hamburg, Germany
Christoph Bussler Voxeo Labs, USA
Federico Chesani University of Bologna, Italy
Horatiu Cirstea Loria, France
Jack G. Conrad Thomson Reuters, Switzerland
Claudia D’Amato University of Bari, Italy
Célia Da Costa Pereira Université de Nice Sophia, Antipolis, France
Christian De Sainte Marie IBM, France
Juergen Dix Clausthal University of Technology, Germany
Schahram Dustdar TU Wien, Austria
Jenny Eriksson Lundström Uppsala University, Sweden
Vadim Ermolayev Zaporozhye National University, Ukraine
Luis Ferreira Pires University of Twente, The Netherlands
Michael Fink Vienna University of Technology, Austria
Paul Fodor Stony Brook University, USA
Enrico Francesconi ITTIG-CNR, Italy
Fred Freitas CIn-UFPE, Brazil
Norbert E. Fuchs University of Zurich, Switzerland
Aldo Gangemi University of Paris 13, France
Dragan Gasevic Athabasca University, Canada
Adrian Giurca BTU Cottbus, Germany
Guido Governatori NICTA, Australia
Matthias Grabmair University of Pittsburgh, USA
Christophe Gravier Université Jean Monnet, France
Giancarlo Guizzardi Federal University of Espirito Santo (UFES),

Brazil
Ioannis Hatzilygeroudis University of Patras, Greece

X Organization

Stijn Heymans SRI International, USA
Yuh-Jong Hu National Chengchi University, Taiwan
Minsu Jang Electronics & Telecommunications Research

Institute, South Korea
Tobias Kuhn Yale University, USA
Wolfgang Laun Thales Rail Signalling Solutions GesmbH,

Austria
Francois Levy University of Paris 13, France
Francesca Alessandra Lisi Università degli Studi di Bari “Aldo Moro”,

Italy
Emiliano Lorini IRIT, France
Yue Ma TU Dresden, Germany
Michael Maher University of New South Wales, Australia
Angelo Montanari University of Udine, Italy
Leora Morgenstern SAIC, USA
Grzegorz J. Nalepa AGH University of Science and Technology,

Poland
Adeline Nazarenko University of Paris 13, France
Monica Palmirani University of Bologna, Italy
Jose Ignacio Panach

Navarrete Universitat de València, Spain
Jeffrey Parsons Memorial University of Newfoundland, Canada
Adrian Paschke Freie Universität Berlin, Germany
Wim Peters University of Sheffield, UK
Giovanni Sartor European University Institute, Italy
Rolf Schwitter Macquarie University, Australia
Guy Sharon IBM, Israel
Davide Sottara DEIS, University of Bologna, Italy
Petros Stefaneas NTUA, Greece
Umberto Straccia ISTI-CNR, Italy
Terrance Swift CENTRIA, Universidade Nova de Lisboa,

Portugal
Daniela Tiscornia CNR-ITTIG, Italy
Wamberto Vasconcelos University of Aberdeen, UK
Giulia Venturi ILC-CNR, Italy
George Vouros University of Piraeus, Greece
Renata Wassermann University of Sao Paulo, Brazil
Radboud Winkels University of Amsterdam, The Netherlands
Adam Wyner University of Aberdeen, UK
Amal Zouaq Royal Military College of Canada

Organization XI

Additional Reviewers

Barros, Rafael
Kaczor, Krzysztof
Ribeiro, Ryan
Sciavicco, Guido
Venhuizen, Noortje

RuleML 2013 Organization

Organizing Committee

General Chair

Adrian Paschke Freie Universität Berlin, Germany

Program Chairs

Leora Morgenstern SAIC, USA
Petros Stefaneas National Technical University of Athens,

Greece

Local Organization Chair

Benjamin Grosof Benjamin Grosof and Associates, LLC, USA

Track Chairs, Special Track on Human Language Technology

François Lévy University of Paris North, France
Adam Wyner University of Aberdeen, UK

Rule Challenge Chairs

Darko Anicic FZI, Germany
Paul Fodor SUNY at Stony Brook, USA
Dumitru Roman SINTEF / University of Oslo, Norway
Adam Wyner University of Aberdeen, UK

Doctoral Consortium Chairs

Monica Palmirani Università di Bologna C.I.R.S.F.I.D., Italy
Davide Sottara Arizona State University, USA

Publicity Chairs

Robert Golan DBMind, USA
Dumitru Roman Sintef, Norway
Xing Wang Northeastern University Shenyang, China

Rule Responder Chairs

Adam Wyner University of Aberdeen, UK
Zhili Zhao Freie Universität Berlin, Germany

XIV RuleML 2013 Organization

Web Chair

Alexandru Todor Freie Universität Berlin, Germany

Sponsor

Media Partner

Table of Contents

Invited Talks

Probabilistic Soft Logic: A Scalable Approach for Markov Random
Fields over Continuous-Valued Variables (Abstract of Keynote Talk) . . . 1

Lise Getoor

Rapid Text-Based Authoring of Defeasible Higher-Order Logic
Formulas, via Textual Logic and Rulelog (Summary of Invited Talk) 2

Benjamin N. Grosof

Ontology Repositories Make a World of Difference
(Abstract of Keynote Talk) . 12

Michael Grüninger

Tutorials

LegalRuleML: From Metamodel to Use Cases (A Tutorial) 13
Tara Athan, Harold Boley, Guido Governatori, Monica Palmirani,
Adrian Paschke, and Adam Wyner

Formalization of Natural Language Regulations through SBVR
Structured English (Tutorial) . 19

François Lévy and Adeline Nazarenko

Multi-agent Activity Modeling with the Brahms Environment
(Abstract of Tutorial) . 34

Maarten Sierhuis

Rules and Policy Based Handling of XML in Government Contexts
Including NIEM (Abstract of Tutorial) . 36

David Webber

Technical Papers, Main Track

Reasoning over 2D and 3D Directional Relations in OWL: A Rule-Based
Approach . 37

Sotiris Batsakis

Grailog 1.0: Graph-Logic Visualization of Ontologies and Rules 52
Harold Boley

Modeling Stable Matching Problems with Answer Set Programming 68
Sofie De Clercq, Steven Schockaert, Martine De Cock, and Ann Nowé

XVI Table of Contents

A Fuzzy, Utility-Based Approach for Proactive Policy-Based
Management . 84

Christoph Frenzel, Henning Sanneck, and Bernhard Bauer

Picking Up the Best Goal: An Analytical Study in Defeasible Logic 99
Guido Governatori, Francesco Olivieri, Antonino Rotolo,
Simone Scannapieco, and Matteo Cristani

Computing Temporal Defeasible Logic . 114
Guido Governatori and Antonino Rotolo

Efficient Persistency Management in Complex Event Processing:
A Hybrid Approach for Gamification Systems . 129

Philipp Herzig, Bernhard Wolf, Svenja Brunstein, and
Alexander Schill

Ontology Patterns for Complex Activity Modelling 144
Georgios Meditskos, Stamatia Dasiopoulou, Vasiliki Efstathiou, and
Ioannis Kompatsiaris

A Rule-Based Contextual Reasoning Platform for Ambient Intelligence
Environments . 158

Assaad Moawad, Antonis Bikakis, Patrice Caire, Grégory Nain, and
Yves Le Traon

Extending an Object-Oriented RETE Network with Fine-Grained
Reactivity to Property Modifications . 173

Mark Proctor, Mario Fusco, and Davide Sottara

Computing the Stratified Semantics of Logic Programs over Big Data
through Mass Parallelization . 188

Ilias Tachmazidis and Grigoris Antoniou

Distributed ECA Rules for Data Management Policies 203
Hao Xu, Arcot Rajasekar, Reagan W. Moore, and Mike Wan

Technical Papers, Human Language Technology
Track: Translating between Human-Created
Regulations and Formal Rules

Semantic Relation Extraction from Legislative Text Using Generalized
Syntactic Dependencies and Support Vector Machines 218

Guido Boella, Luigi Di Caro, and Livio Robaldo

Table of Contents XVII

Interpreting Spatiotemporal Expressions from English to Fuzzy Logic . . . 226
William R. Murray, Philip Harrison, and Tomas Singliar

Combining Acquisition and Debugging of Business Rule Models 234
Adeline Nazarenko and François Lévy

Author Index . 249

Probabilistic Soft Logic: A Scalable Approach

for Markov Random Fields
over Continuous-Valued Variables

(Abstract of Keynote Talk)

Lise Getoor

Department of Computer Science
University of Maryland at College Park

College Park, MD 20740

Many problems in AI require dealing with both relational structure and uncer-
tainty. As a consequence, there is a growing need for tools that facilitate the de-
velopment of complex probabilistic models with relational structure. These tools
should combine high-level modeling languages with general purpose algorithms
for inference in the resulting probabilistic models or probabilistic programs. A
variety of such frameworks has been developed recently, based on ideas from
graphical models, relational logic, or programming languages. In this talk, I will
give an overview of our recent work on probabilistic soft logic (PSL), a frame-
work for collective, probabilistic reasoning in relational domains. PSL models
have been developed in a variety of domains, including collective classification,
entity resolution, ontology alignment, opinion diffusion, trust in social networks,
and modeling group dynamics.

A key distinguishing feature of PSL is its use of continuous-valued random
variables. These can either be interpreted as soft truth values in the interval
[0; 1] or as similarities. It uses first order logic rules to capture the dependency
structure of the domain, based on which it builds a joint probabilistic model over
all random variables. A PSL program defines a form of Markov random field
over continuous-valued random variables which is computationally tractable.
Inference in PSL corresponds to a convex optimization problem, which can be
solved significantly more efficiently than the corresponding discrete optimization.
Our recent results show that by using state-of-the-art optimization methods and
distributed implementations, we can solve problems over millions of variables in
minutes rather than days.

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, p. 1, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Rapid Text-Based Authoring of Defeasible

Higher-Order Logic Formulas,
via Textual Logic and Rulelog

(Summary of Invited Talk)

Benjamin N. Grosof

Benjamin Grosof & Associates, LLC, USA

Abstract. We present textual logic (TL), a novel approach that enables
rapid semi-automatic acquisition of rich logical knowledge from text. The
resulting axioms are expressed as defeasible higher-order logic formulas in
Rulelog, a novel extended form of declarative logic programs. A key ele-
ment of TL is textual terminology, a phrasal style of knowledge in which
words/word-senses are used directly as logical constants. Another key
element of TL is a method for rapid interactive disambiguation as part
of logic-based text interpretation. Existential quantifiers are frequently
required, and we describe Rulelog’s approach to making existential knowl-
edge be defeasible. We describe results from a pilot experiment that rep-
resented the knowledge from several thousand English sentences in the
domain of college-level cell biology, for purposes of question-answering.

1 Introduction and Requirements Analysis

1.1 Reducing the Cost of Authoring Rich Logical Knowledge

A key goal in the field of expressive knowledge representation and reasoning
(KRR) is to reduce the cost of authoring rich logical knowledge.

Rulelog is an expressive knowledge representation logic that is an extended form
of declarative logic programs (LP). Rulelog transforms into normal (unextended)
LP. Previous work on Rulelog, implemented in XSB [12,10], Flora-2 [3], SILK [9],
and Cyc [2], has developed novel methods that help improve scale-able evolution
and combination of such KB’s, and thus the cost of overall knowledge acquisition
(KA).Thesemethods enable: defeasibility, basedonargumentation theories (AT’s)
[11], i.e., AT-defeasibility; higher-order syntax, based on hilog [1] and other meta-
knowledge enabled by rule id’s, i.e., hidlog; bounded rationality restraint ; [6]; in-
teractive authoring, based on a rapid edit-test-inspect loop and incremental truth
maintenance; knowledge debugging, based on a graphical integrated development
environmentwith justification graphs and reasoning trace analysis; and knowledge
interchange, based on strong semantics and knowledge translations. Rulelog’s full
set of major features was first implemented in SILK [9]. A W3C RIF dialect based
on Rulelog is in draft [9], in cooperation also with RuleML [8].

In this work on Rulelog, we present another, more radical step that we have
developed in order to further reduce such cost: a method that enables text-based

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 2–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Rapid Text-Based Authoring of Defeasible Higher-Order Logic Formulas 3

authoring, based on a novel approach called textual logic (TL). We also present
a novel expressive feature of Rulelog: omniformity, which permits defeasible
existentials, and is used to support TL.

1.2 In Quest of a Dream

“In dreams lie responsibilities” — Delmore Schwartz.

“Classic knowledge-based AI [artificial intelligence] approaches to QA
[question-answering] try to logically prove an answer is correct from a
logical encoding of the question and all the domain knowledge required
to answer it. Such approaches are stymied by two problems: the pro-
hibitive time and manual effort required to acquire massive volumes of
knowledge and formally encode it as logical formulas accessible to com-
puter algorithms; and the difficulty of understanding natural language
questions well enough to exploit such formal encodings if available. Tech-
niques for dealing with huge amounts of natural language text, such as
Information Retrieval, suffer from nearly the opposite problem in that
they can always find documents or passages containing some keywords in
common with the query but lack the precision, depth, and understanding
necessary to deliver correct answers with accurate confidences.” — IBM
Watson FAQ.

What if was “cheap” to acquire massive volumes of knowledge formally encoded
as logical formulas?

What if it was “easy” to understand natural language questions well enough
to exploit such formal encodings?

A central dream for semantic technology is to make knowledge (K) and reason-
ing be deeper and cheaper — to overcome the famous “knowledge acquisition
bottleneck” of AI. That would enable creation of widely-authored, very large
knowledge bases (KB’s) that automatically answer sophisticated questions (Q’s)
and proactively supply info, about science, business, and government, with (col-
lectively) broad and deep comprehensiveness.

These KB’s would harness humanity’s accumulated storehouse of knowledge,
and be learned from communication and instruction, as well as from observation.
Such harnessing and learning is far more powerful than learning from individual
experience. Yet machine learning has not primarily focused on it, to date.

Achieving this dream could create huge amounts of social value. In the re-
mainder of this presentation, we discuss technical requirements in the context of
this dream.

1.3 Logical Expressiveness

Logical knowledge is desirable for several reasons. First, accuracy: it can pro-
vide high-precision of answers. Second, transparency: it can provide detailed
justifications/explanations. Third, sharability: particularly when semantic and

4 B.N. Grosof

semantic-web-friendly, it facilitates reusability and merging of larger KB’s, via
knowledge interchange.

Expressive richness of logical knowledge is desirable because it enables more
kinds of knowledge and reasoning, e.g., scientific, to be represented and au-
tomated. Richness is required to represent the logical substance of many text
statements, which involves: negation, modifiers, quantifiers (for-all, exists), im-
plication, and conjunction — all flexibly composed. Also, some text statements
are about other statements. Thus text requires expressiveness equivalent to that
of: first-order-logic (FOL) formula syntax, plus some meta expressiveness, espe-
cially higher-order syntax.

Another requirement for expressiveness is that the logic must be defeasible,
so that it can gracefully handle exceptions and change. Defeasibility is needed:
to represent the empirical character of knowledge; to aid the evolution and com-
bination of KB’s, i.e., to be socially scalable; and to represent causal processes
and “what-if’s” (hypotheticals, e.g., counterfactual). In other words, defeasibil-
ity is needed to represent change in knowledge and change in the world. Yet,
despite this expressive richness, inferencing in the logic must be computation-
ally scalable, and thus at least tractable (worst-case polynomial-time). SPARQL
and SQL databases are tractable, for example.1

Defeasibility of knowledge that is existentially quantified, in particular, is re-
quired expressively to support TL. Existentials appear in many naturally arising
text sentences that must be represented as defeasible, e.g., about biology. For
example, in the relatively simple sentence “Each eukaryotic cell has a visible
nucleus.”, the “a” before “nucleus” is an existential. Yet this statement has ex-
ceptions. Red blood cells are eukaryotic, yet lack nuclei. Eukaryotic cells lack
visible nuclei during anaphase, a step within the process of cell division.

1.4 Text-Based Authoring

Text-based authoring is desirable for several reasons. Natural language (NL) —
not logic — is the language of “business users”, for KA and also for QA. NL is
required for broad accessibility by the knowledgeable community of (potential)
contributors, in science and many similar areas. In particular, NL is much more
broadly accessible and familiar to subject matter experts (SMEs), as opposed to
knowledge engineers (KEs) trained in logic. Examples of SME’s include scien-
tists, business process owners, executives, lawyers, doctors, educators, engineers,
analysts, civil servants, merchants, soldiers, chefs, and members of many other
occupations. NL is required also for ordinary end users, e.g., students, citizens,
shoppers, salespersons, clerks, and patients — i.e., for the community of (poten-
tial) “consumers” of the knowledge in science and many similar areas. Even KE’s
usually find much easier to articulate and understand text than logic. Most of the
world’s knowledge is currently described in text, so working from text sources
is crucial. Economic scalability of KA thus requires authoring to be text-based,
rather than directly in strict logical syntax which requires KE skill.

1 i.e., for querying, when the number of distinct logical variables per query is bounded;
this is often described in terms of data complexity being tractable.

Rapid Text-Based Authoring of Defeasible Higher-Order Logic Formulas 5

Economic scalability requires not only that the authoring be accessible in
this regard, but also that it take a relatively low amount of effort per sentence.
This implies, first, that the encoding text should not be onerously restricted. Sec-
ond, there must be methods for rapid disambiguation with logical and semantic
precision.

Previous approaches to text-based KA of rich logical K have suffered from
major difficulties. One category of approaches permit the input text to be fairly
unrestricted NL. Next, we consider that category. Natural language processing
(NLP) technology has not yet been able (in general, i.e., reliably) to “go all
the way” in fully automatic text interpretation: much of the semantics is not
captured. Substantial further disambiguation is needed, for most sentences. Also,
the NLP field has been messy and unstandardized in regard to components and
forms of info. It has been weak architecturally in regard to flexibly composable,
reusable components. Thus fully automatic NLP has typically produced logical
K that is inaccurate (quite noisy), and/or shallow/partial (thus inoperational
for desirably effective QA). Fully automatic NLP has also tended to produce K
that is opaque, i.e., difficult to understand; often, one sees K that is in terms of
the parser’s innards. For KE author to finish the text interpretation, they tend
to need skills in not only logic, but also NLP as well, i.e., to be a “super” KE. In
consequence overall, it has been quite costly to do text-based KA of rich logical
K, and it has hardly been used practically, especially compared to the dream.

A second category of approaches compromises by only allowing “controlled”
NL, i.e., restricts the vocabulary, grammar, and/or phrases. This typically re-
quires much upfront phraseological work to define exactly what’s allowed. It also
requires the author to become familiar with the particular phraseology and its
restrictions. It still requires the author to have KE skills if the generated logic is
rich. In consequence overall, it has been still quite costly and not used practically
to nearly the extent envisioned in the dream.

2 Textual Logic

TL overall is a logic-based approach to both text interpretation and text genera-
tion, for both KA and question answering (QA). In TL: text is mapped to logic;
logic is mapped to text; and these mappings themselves are based on logic.

The spirit of TL has a “Gettysburg” principle: “logic for the text, of the text,
by the text”.2 “For the text” means for the sake of text, in that knowledge and
questions are input in text form, and answers and explanations are output in
text form. “Of the text” means that the content of the text is represented in
logic, and that the mappings in and out of text are represented in logic. “By the
text” means that once there is, sufficiently, logic for the text and of the text,
then logical knowledge can be specified by text and viewed as text.

2 “Gettysburg” here refers to Abraham Lincoln’s Gettysburg address (1863) in which
he said that the cause for which the Union soldiers died (in the great Civil War
battle of Gettysburg) was that “government of the people, by the people, and for
the people, shall not perish from the earth.

6 B.N. Grosof

A novel aspect of TL is textual terminology — a phrasal style of knowledge.
Words, and more generally word senses, are employed directly as logical con-
stants. Each constant is a hilog functor (i.e., a function or predicate). A textual
phrase corresponds (one-to-one) to a logical term; there is a natural style of
composition.

Another novel aspect of TL is that it leverages defeasibility. “The thing about
NL is that there’s a gazillion special cases.”3.

During TL text interpretation, authors (1.) articulate sentences in text, then
(2.) logically disambiguate those sentences, and (3.) generate logical axioms as
output. These three steps are, in general, interactive, i.e., semi-automatic. Multi-
ple authors may collaborate in these steps, for each sentence, including to divide
the labor, edit, and review/comment/rate.

Next we describe particulars for our TL work to date, which we call TL phase
1 (TL1), on text interpretation. The text is in English. The LinguistTM tool
from Automata, Inc. was employed, together with SILK. LinguistTM leverages
the ERG lexical ontology and associated PET parser, which are open source.
ERG has a large vocabulary and broad coverage. Disambiguation (step (2.)) is
highly interactive, via a novel GUI-based approach that enables users to dis-
ambiguate relatively rapidly. Disambiguation has several sub-steps in which an
author specifies additional information, as needed, about: (a.) the parse; (b.)
quantifier types and scopes; (c.) co-references; and (d.) word senses. Word sense,
so far, is limited in need/use/implementation. Logic generation (step (3.)) is
fully automatic, and outputs Rulelog axioms. One main axiom is generated for
each disambiguated (text) sentence. In addition, support axioms are generated
that represent auxiliary information, e.g., about paraphrases and types. The sup-
port axioms are used together with the main axioms for purposes of inferencing.
Other annotation axioms are generated, also, as part of comprehensively cap-
turing the info specified during disambiguation. Articulation (step (1.)) is fully
manual. The (text) encoding sentence it produces must meet two restrictions,
but those restrictions are not onerous for purposes of KA. The first restriction
on text is that the sentence be stand-alone, i.e., (nominal) co-reference is within
a sentence, not between sentences. The second restriction is that the text be
straightforward, i.e., it should minimize ellipsis (missing words), rhetoric, and
metaphor. In the articulation step, sentences may be drawn from a source text
and then reformulated. E.g., in our pilot TL KA experiment, sentences were
drawn from a first-year college-level biology textbook chapter on membranes.
Some textbook sentences were used verbatim, i.e., not changed during articu-
lation. However, other textbook sentences were not stand-alone straightforward
text, or were too long to be most productively disambiguated, thus were refor-
mulated during articulation to clarify or break them up into multiple (encoding)
sentences.

For example, a source sentence (with id ss72) is “Some transport proteins, called
channel proteins, function by having a hydrophilic channel that certain molecules
or atomic ions use as a tunnel through the membrane (see Figure 7.10a, left).”.

3 Peter E. Clark, private communication.

Rapid Text-Based Authoring of Defeasible Higher-Order Logic Formulas 7

The KE articulates a foreground encoding sentence (with id es2298) based on
ss72: “Channel proteins have a hydrophilic channel.”. Another KE disambiguates
es2298, producing a Rulelog axiom with formula

forall(?x5)^(channel(protein)(?x5) ==>

exist(?x8)^(have(?x5,?x8) and hydrophilic(channel)(?x8));

(here, shown in SILK’s human-consumption syntax). This axiom is defeasible
and includes meta-facts about its prioritization tag, author, creation-time, etc.
(not shown above).

TL1 also includes two text-oriented extensions within: the KRR/KA system
for Rulelog itself (both of these were implemented in SILK). The first is to em-
ploy simple text generation that is specified by KB’s (i.e., rules). The generated
text is displayed in the UI for KA and related tasks, notably for viewing justi-
fications [5]. The second is (a subset of) textic, a novel technique for fine-grain
mixing of text-style syntax with logic-style syntax. Textic is an extension of
the concrete (human-consumption) syntax of Rulelog’s KR language, that im-
proves readability and writeability. In textic, a word is typically treated as a
functor having arity 1, and a space is typically interpreted as a left parenthesis.
The textic expressive syntactic feature is defined by a deterministic (reduction)
transformation, similar in spirit to several other Rulelog features such as hilog,
defeasibility, head conjunction, and body disjunction.

3 Omniform Rules

Rulelog is a logical extension of declarative logic programs (LP) that has a
unique set of logical features including hidlog, AT-defeasibility, omniformity,
and restraint. Rulelog transforms into normal LP.

Next, we describe omniformity, which enables defeasible knowledge to be
existential.

An omniform rule (omni for short) permits a rule head and body each to be
any formula in first-order logic (FOL) syntax. I.e., each can be a formula com-
posed freely from the usual first-order logic (FOL) connectives (disjunction as
well as conjunction and (strong) negation) and quantifiers (existential as well as
universal). In addition, the head and body formulas each may employ hilog, and
thus be higher-order (HOL), rather than first-order, in their syntax. (Note that
hilog does impose a few non-onerous restrictions as compared to full higher-order
syntax, e.g., the head formula may not be simply a single variable.) Furthermore,
the body may employ negation-as-failure (naf) but (as usual in LP) only outside
the scope of strong negation (neg). For convenience, the usual FOL implication
and equivalence connectives are also permitted.

The semantics of the omniformity feature is defined via a transformation that
reduces any omniform rule to a set of one or more rules that are conjunctive. A
conjunctive rule is one whose head is a single literal, and whose body is a con-
junction of literals. (A literal is an atom preceded possibly by neg and/or naf ;
as usual in LP, naf must not appear within the scope of neg.) This omni trans-
formation OT generalizes three transformations previously employed in SILK:

8 B.N. Grosof

(head) omnidirectionality [4], Lloyd-Topor [7], and head conjunction splitting.
Splitting here means a rule (H1 and ... and Hn) : − B; is transformed into
a set of n rules: {Hi : − B ; | i = 1, ..., n}.

In OT , neg is first driven to be innermost. Then the head is put into tight
normal form (TNF), by pushing: exist inward past or; forall inward past and;
forall inward past or when the disjunct does not mention the forall’s quantified
variable; and exist inward past and when the conjunct does not mention that
exist’s quantified variable. Then, recursing top-down on the expression tree: ex-
istentials are skolemized; disjunctions are directionalized, cf. omni-directionality,
but generalized to non-literal expressions; and conjunctions are split. OT trans-
forms the body in a manner similar to Lloyd-Topor. TNF addresses a subtlety
that directionalizing should be done “before” skolemizing. TNF differs, in gen-
eral, from Skolem normal form (used in FOL resolution theorem proving).

We have also developed a new family of argumentation theories, called ATCO,
that improves the behavior of (AT-)defeasibility in combination with omnifor-
mity, particularly with existentials, as compared to previous AT’s.

4 Experiment: Case Study

We conducted a TL1 KA experiment during January-March 2013, that resulted
in a case study in the rapid acquisition of rich logical knowledge from one chapter
(on cell membranes) of a popular college-level biology textbook, with implica-
tions for biomedical education and research. A distributed team of collabora-
tors — knowledge engineers (KE’s) — started from effectively unconstrained
natural language text and disambiguated various aspects of English sentences,
semi-automatically translating text into defeasible higher-order logic formulas
expressed in Rulelog, an extended form of declarative logic programs and a
draft W3C RIF dialect, implemented in SILK. The distributed team’s workflow
authored and curated the knowledge base from the text into several thousand
Rulelog axioms targeting question answering by a Digital Aristotle as part of
Vulcan Inc.s Project Halo.

In this TL1 KA experiment, about 2,500 English encoding sentences were
axiomatized. These included hundreds of questions.

A number of questions, some of them sophisticated, answered successfully
using Rulelog inferencing (in SILK) on the axioms. However, due to resource
limitations of the study, only relatively limited tests of question-answering (QA)
were conducted. The focus of the experiment was on KA productivity, primarily,
and KA coverage, secondarily.

Encoding sentence length averaged 10 words and ranged up to 25 words. One
main defeasible axiom in Rulelog (SILK syntax) resulted from each sentence.
On average, each such main axiom transformed into over 5 rules in normal
(unextended) LP.

It took less than 10 minutes (of KE labor) on average per sentence to: author,
disambiguate, formalize, review, and revise a sentence.

Rapid Text-Based Authoring of Defeasible Higher-Order Logic Formulas 9

One should expect in future that more intensive QA testing, with attendant
debugging of knowledge, would tend to increase the amount of KE labor effort
on average per sentence.

On the other hand, one should expect in future that KA tooling and process
improvements would tend to decrease the amount of KE labor effort on average
per sentence.

Some book source sentences were also encoding sentences, i.e., were disam-
biguated verbatim from the book. More frequently, one book source sentence
was articulated into two or three encoding sentences before disambiguation, in
order to make them clearer and easier to disambiguate.

Collaboration resulted in an average of over 2 authors/editors/reviewers per
sentence. Collaborative review and revision of the sentences, their disambigua-
tion, and formalization, approximately doubled the average time per sentence.

The resulting axioms were typically more sophisticated than what skilled KE’s
typically produce when directly authoring into logical syntax.

The number of candidate parses (generated from the lexical ontology (ERG),
essentially) per sentence averaged over 30, and commonly ranged into the hun-
dreds. Disambiguation of the parse alone typically required a fraction of a minute.
Typically the correct parse was not the parse ranked best by statistical natural
language processing.

Expressive coverage was very good, due to Rulelog’s expressiveness: all sen-
tences encountered were representable. Terminological coverage was also very
good, due to the textual terminology aspect of the TL approach: little hand-
crafted logical ontology was required. Several hundred mostly domain-specific
lexical entries were added to the ERG. There were some small (less than a few
percent) shortfalls from implementation issues, in terminological coverage and
in reasoning (e.g., about numerics) related to expressive coverage.

5 Discussion

In the experiment, the KE labor cost for TL1 KA was very roughly USD $3–
4/word (actual word, not simply 5 characters). That implies a cost of very
roughly USD $500–1500/page (at roughly 175–350 words/page). That is in the
same ballpark as the cost of the labor to author the text itself, for many for-
mal text documents, e.g., college science textbooks and some kinds of business
documents. “Same ballpark” here means same order of magnitude.

The approach of Textual Logic plus Rulelog has major advantages for KA.

– Interactive disambiguation: relatively rapidly produces rich K with logical
and semantic precision, starting from effectively unconstrained text.

– Textual terminology: greatly reduces the need for KE labor to specify logical
ontology explicitly and to become familiar with it, since logical ontology in-
stead emerges naturally and automatically from the texts phrasings. Textual
terminology, and textic, also provide a bridge to work in text mining and
“textual entailment”.

10 B.N. Grosof

– Rulelog as rich target logic: can handle exceptions and change and, moreover,
is computationally tractable4, due to its defeasibility and restraint features,
respectively.

– Rulelog supports knowledge interchange (translation and integration) with:
both LP and FOL; all the major semantic tech/web standards (RDF(S),
SPARQL, OWL, RIF, CL, SBVR); Prolog, SQL, and production rules. (Al-
though for many of these, with restrictions.)

The approach appears to be significant progress on the famous “KA bottle-
neck” of AI. It provides “better, faster, cheaper” logical knowledge. That logical
knowledge is usable on a variety of KRR platforms.

It’s early days still in developing and pursuing this approach, so lots of future
work remains to do. One direction is tooling, e.g., to leverage inductive learning
to aid disambiguation. Another direction is more KA experiments, e.g.: to push
on QA; and to scale up.

A third direction is to try out the approach in various applications. In terms
of system architecture, this usage context will often call for specialized UI and
service interfaces from apps to TL. Rulelog KRR can make use of databases and
other service resources in the apps-relevant environment.

6 Summary

Rich logical knowledge is desirable for its accuracy, transparency, coverage depth,
and reusability. Economically scalable KA and QA of rich logical knowledge
require methods for: (1.) rapid disambiguation in text-based authoring; and (2.)
defeasibility plus tractability in the logical KRR. Textual Logic plus Rulelog is
a step forward in both regards. Future directions include more on tooling, more
ambitious experiments, and exploring applications.

Acknowledgements. This work was partly supported by Vulcan, Inc., as part
of the Halo Advanced Research (HalAR) project, which the author led and
which centered around the development of Rulelog and SILK. This presenta-
tion describes work done by the author jointly with Paul V. Haley (Automata,
Inc., USA), Carl Andersen (Raytheon BBN Technologies, USA), Brett Benyo
(Raytheon BBN Technologies, USA), Michael Kifer (Stony Brook University,
USA), and Paul Fodor (Stony Brook University, USA). Thanks to the entire
HalAR team for helpful discussions and supporting implementation. Thanks
also to the overall Project Halo team at Vulcan, Inc.

References

1. Chen, W., Kifer, M., Warren, D.: HiLog: A foundation for higher-order logic pro-
gramming. Journal of Logic Programming 15(3), 187–230 (1993)

2. Cyc: Cyc (2013) (project begun in approx. 1984), http://www.cyc.com

4 When radial restraint is utilized.

http://www.cyc.com

Rapid Text-Based Authoring of Defeasible Higher-Order Logic Formulas 11

3. Flora-2: Flora-2 (2013) (project begun in approx. 2000),
http://flora.sourceforge.net

4. Grosof, B., Andersen, C., Dean, M., Kifer, M.: Omni-directional Hyper Logic Pro-
grams in SILK and RIF. In: Proc. RuleML 2010, the 4th Intl. Web Rule Symp
(Demonstration and Poster) (2010)

5. Grosof, B., Burstein, M., Dean, M., Andersen, C., Benyo, B., Ferguson, W., In-
clezan, D., Shapiro, R.: A SILK Graphical UI for Defeasible Reasoning, with a
Biology Causal Process Example. In: Proc. RuleML 2010, the 4th Intl. Web Rule
Symp. (Demonstration and Poster) (2010)

6. Grosof, B., Swift, T.: Radial Restraint: A Semantically Clean Approach to Bounded
Rationality for Logic Programs. In: Proc. AAAI 2013, the 27th AAAI Conf. on
Artificial Intelligence (July 2013)

7. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1984)
8. RuleML: Rule Markup and Modeling Initiative (2013) (project begun in approx.

2000), http://www.ruleml.org
9. SILK: SILK: Semantic Inferencing on Large Knowledge (2013) (project begun in

2008), http://silk.semwebcentral.org
10. Swift, T., Warren, D.S.: XSB: Extending Prolog with Tabled Logic Programming.

TPLP 12, 157–187 (2012)
11. Wan, H., Grosof, B., Kifer, M., Fodor, P., Liang, S.: Logic Programming with

Defaults and Argumentation Theories. In: Hill, P.M., Warren, D.S. (eds.) ICLP
2009. LNCS, vol. 5649, pp. 432–448. Springer, Heidelberg (2009)

12. XSB: XSB (2013) (project begun in approx. 1993), http://xsb.sourceforge.net

http://flora.sourceforge.net
http://www.ruleml.org
http://silk.semwebcentral.org
http://xsb.sourceforge.net

Ontology Repositories Make

a World of Difference

(Abstract of Keynote Talk)

Michael Grüninger

Semantic Technologies Laboratory
Department of Mechanical & Industrial Engineering

University of Toronto
Toronto, Ontario M5S 3G8

Canada

Ontology repositories have been proposed as part of the infrastructure required
to support interoperability of ontology-based software systems through the
reusability and shareability of ontologies. More recently, this situation has be-
come even more complicated by the axiomatization of ontologies in different
logics and representation languages, such as OWL, SWRL, and Common Logic.
This talk will explore recent work on the integration of ontologies within reposito-
ries, and pose challenges for the design, evaluation, and application of ontologies
axiomatized using rules.

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, p. 12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

LegalRuleML: From Metamodel to Use Cases
(A Tutorial)

Tara Athan1, Harold Boley2, Guido Governatori3,
Monica Palmirani4, Adrian Paschke5, and Adam Wyner6

1 Athan Services, USA
taraathan@gmail.com

2 Faculty of Computer Science
University of New Brunswick, Canada
harold.boley@ruleml.org

3 NICTA, Australia
guido.governatori@nicta.com.au

4 CIRSFID
University of Bologna, Italy

monica.palmirani@unibo.it
5 Corporate Semantic Web

Freie Universitaet Berlin, Germany
paschke@inf.fu-berlin.de
6 Department of Computing Science

University of Aberdeen, UK
adam@wyner.info

1 Motivation and Background

Several XML-based standards have been proposed for describing rules (RuleML, RIF,
SWRL, SBVR, etc.), or specific dialects (RuleML family [1,2]). In 2009, the Legal
Knowledge Interchange Format (LKIF [4]) was proposed to extend rule languages to
account for the specifics of the legal domain and to manage legal resources. To fur-
ther develop the representation of the law in XML-based standards, the OASIS Legal-
RuleML TC held its first technical meeting on 19 January 2012 [9]. The objective of the
TC is to extend the RuleML family with features specific to the formalisation of norms,
guidelines, policies, and legal reasoning [3].

The work of the LegalRuleML Technical Committee has been focusing on four
specific needs:

1. To close the gap between natural language text description and semantic norm mod-
elling, in order to realise an integrated and self-contained representation of legal
resources that can be made available on the Web as XML representations [8].

2. To integrate technologies such as NLP and Information Extraction (IE) with Se-
mantic Web technologies such as graph representation and web-based ontologies
and rules.

3. To provide an expressive XML standard for modelling normative rules that is able
to satisfy the requirements of the legal domain. This enables use of a legal reasoning
level on top of the ontological layer in the W3C Semantic Web stack. This approach

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 13–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 T. Athan et al.

seeks also to fill the gap between regulative norms, guidelines, and business rules
in order to capture and model the processes in them and to make them usable for
the workflow and business layer [6,7].

4. To support the Linked Open Data approach to modelling with respect to the seman-
tics of raw legal data (acts, contracts, court files, judgements, etc.) and also the rules
together with their functionality and usage. Without rules, legal concepts constitute
just a taxonomy [10].

The LegalRuleML TC work has been addressing these four main goals and has pro-
vided means to semantically model norms, guidelines, judgements, and contracts. The
outcome is intended to define a standard (expressed with XML Schema Definition Lan-
guage (XSD) and Relax NG) that is able to represent the peculiarities of the legal nor-
mative rules easily and meaningfully.

2 Methodology of the Tutorial

This tutorial presents the principles of the LegalRuleML applied to the legal domain
and discuss why, how, and when LegalRuleML is well-suited for modelling norms. To
provide a framework of reference, we present a comprehensive list of requirements for
devising rule interchange languages that capture the peculiarities of legal rule modelling
in support of legal reasoning. The tutorial comprises syntactic, semantic, and pragmatic
foundations, a LegalRuleML primer, a comparison with related other approaches, as
well as use case examples from the legal domain.

3 LegalRuleML Model

A key tenet of LegalRuleML is that the concepts and features of the language should
provide a conceptually faithful representation of legal textual provisions and the norms
they encode. To this end the language captures the following functionalities and pecu-
liarities of the legal domain.

– qualification of norms: legal documents can contains different types of norms (con-
stitutive, technical, prescriptive, etc.). Some norms are intended to define the terms
used in the document, others to produce normative effects, and others to describe
legal procedures.

– defeasibility of rules; norms are often written in a way that they admit exceptions.
Defeasiblity allows for a natural representation of exceptions and permits terms to
be defined in an open textured fashion.

– deontic operators: the function of prescriptive rules is to describe the normative ef-
fects that they produce (e.g., obligations, permissions, prohibitions, . . .), the parties
related to them, and the conditions under which such effects are produced.

– temporal management of the rules and temporal expressions within the rules: norms
are affected over the time in their validity and efficacy. LegalRuleML is able to de-
fine temporal instants and intervals that can be used to build complex legal events
and situations (e.g. date of publication, interval of suspension, interval of efficacy

LegalRuleML: From Metamodel to Use Cases 15

but not applicability). These temporal parameters are called external temporal char-
acteristics of the norm, and thus permit the representation of the temporal informa-
tion of the rules. The temporal characteristics can be associated with different rules
or with a part of the rule.

– jurisdiction of norms: norms emanated from different authorities, different loca-
tions, and different times. Relative to such differences, norms can produce different
effects. To properly model such contextual dependence, LegalRuleML associates
rules with the jurisdictions where the rules hold.

– isomorphism between rules and natural language normative provisions: norms have
a lifecyle - they are created, enter into force, can be modified, and can be repealed.
Where the language of the provisions changes, so too must the corresponding for-
mal expression in LegalRuleML (isomorphism). LegalRuleML provides for this
isomorphism by maintaining a link between the units of natural language textual
provisions and the sets of rules.

– authorial tracking of the rules: rules constitute an interpretation of the textual pro-
visions and so of the norms. Accordingly, it is important to trace who is author of
the interpretation to establish a level of trust in a ruleset or to identify the context
in which a ruleset is suitable to be used.

4 Metamodel of the Rule Properties

The LegalRuleML syntax is modelled using a metamodel founded on RDF triples. This
permits us to serialize LegalRuleML XML into RDF assertions for Semantic Web in-
teroperability and Linked Open Data integration. The tutorial presents this aspect of
the design. Rules have properties expressed in separate blocks in a generic way. We
have provided a mechanism for defining an identifier of type xsd:ID for property val-
ues, which is used as the fragment identifier in an IRI that may be efficiently referenced
through a relative IRI or CURIE. This ”internal” IRI may act as an alias for exernal
IRIs, entities identified in external non-IRI identifier systems, and entities having no
external identifiers:

• <References> and <LegalSources> for referencing the textual provisions
that are modelled by the rules:

<lrml:LegalSource key="ref9"
sameAs="http://www.law.cornell.edu/wiki/lexcraft/
section_identifiers_lii"

/>

• <TimeInstants> and <TemporalCharateristics> for capturing the ex-
ternal temporal dimensions of the rules are represented. For example, here we show the
period for entering into force and the period of efficacy:

<lrml:TimeInstants>
<ruleml:Time key="t1">

<ruleml:Data xsi:type="xs:dateTime">

16 T. Athan et al.

2012-07-21T00:00:00Z
</ruleml:Data>

</ruleml:Time>
</lrml:TimeInstants>
<lrml:TemporalCharacteristics key="tblock1">

<lrml:TemporalCharacteristic key="nev1">
<lrml:forRuleStatus iri="lrmlv:Efficacious"/>
<lrml:hasStatusDevelopment iri="lrmlv:Starts"/>
<lrml:atTimeInstant keyref="#t1"/>

</lrml:TemporalCharacteristic>
</lrml:TemporalCharacteristics>

• <Agent> and <Authority> are two classes for defining the agent and the au-
thority of the rules in order to represent the provenance of the rules:

<lrml:Agents>
<lrml:Agent key="aut1"

sameAs="unibo:person.owl#m.palmirani"/>
</lrml:Agents>
<lrml:Authorities>

<lrml:Authority key="congress"
sameAs="unibo:organization.owl#congress">

<lrml:type iri="lrmlv:Legislature"/>
</lrml:Authority>

</lrml:Authorities>

• The <Context> block associates property values to rules (in the example to rule1)
and also adds other important metadata such as jurisdiction, role, and strength (defeasi-
ble, defeater, strict):

<lrml:Context key="ruleInfo1" hasCreationDate="#t8">
<lrml:appliesTemporalCharacteristics keyref="#tblock1"/>
<lrml:appliesStrength iri="lrmlv:Defeasible"/>
<lrml:appliesRole>

<lrml:Role iri="lrmlv:Author">
<lrml:filledBy keyref="#aut1"/>

</lrml:Role>
</lrml:appliesRole>
<lrml:appliesAuthority keyref="#congress"/>
<lrml:appliesJurisdiction keyref="jurisdictions:us"/>
<lrml:toStatement keyref="#rule1"/>

</lrml:Context>

This mechanism is flexible; it permits us to represent relationships with arity higher
than two (e.g. multiple authors, multiple textual sources), which guarantees multiple
interpretations over time of the same rule without redundancy. However, it is always
possible to transform them into an RDF triples serialization.

LegalRuleML: From Metamodel to Use Cases 17

5 LegalRuleML Skeleton

LegalRuleML may be composed using the following main blocks skeleton:

– declaration of the internal identifiers for property values in the top of the XML.
– association of the property values to the rules using <lrml:Association>.
– rules, both constitutive and prescriptive, are modelled in one <lrml:
Statements> block.

– facts are modelled inside of a second <lrml:Statements> block.

<lrml:LegalRuleML>
<lrml:References>

<lrml:Reference/>
</lrml:References>

<lrml:Context key="ruleInfo1-v2">
<lrml:Association>

<lrml:appliesSource
keyref="#sec2.1-list1-itm31-par1-v2"/>

<lrml:toTarget keyref="#rulebase-v2"/>
</lrml:Association>

</lrml:Context>

<lrml:Statements key="rulebase-v2">
<lrml:ConstitutiveStatement key="rule1a-v2">

<ruleml:if> ...</ruleml:if>
<ruleml:then>... </ruleml:then>

</lrml:ConstitutiveStatement>
</lrml:Statements>

<lrml:Statements key="facts-v1">
<lrml:FactualStatement key="fact1">

<ruleml:Atom key=":atom11">
<ruleml:Rel iri="#rel5"/>
<ruleml:Ind iri="#JohnDoe"/>

</ruleml:Atom>
</lrml:FactualStatement>

</lrml:Statements>
</lrml:LegalRuleML>

6 Tutorial Use Cases

The use of LegalRuleML is illustrated with some concrete application scenarios:

– in the eHealth domain, LegalRuleML can be used to model privacy issues and
security policies for managing document access according to the profile and the

18 T. Athan et al.

authorizations of the operator. By using LegalRuleML, it is possible to filter sensi-
tive data, according to the law/regulation, and to create particular views of the same
health record or document based on the role of the querying agent.

– in the open data domain, LegalRuleML could model the creative commons li-
cences of datasets to permit an automatic IPR compatibility check among differ-
ent datasets, in particular to evaluate if different datasets could be combined for
producing a commercial application.

– in patent law, LegalRuleML can model the judgments and the regulations in order
to support the industrial decisions.

References

1. Boley, H., Tabet, S., Wagner, G.: Design rationale for RuleML: A markup language for
Semantic Web rules. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L. (eds.) Proc.
SWWS 2001, The First Semantic Web Working Symposium, pp. 381–401 (2001)

2. Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: The Overarching Specification of Web
Rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403,
pp. 162–178. Springer, Heidelberg (2010)

3. Gordon, T.F., Governatori, G., Rotolo, A.: Rules and Norms: Requirements for Rule Inter-
change Languages in the Legal Domain. In: Governatori, G., Hall, J., Paschke, A. (eds.)
RuleML 2009. LNCS, vol. 5858, pp. 282–296. Springer, Heidelberg (2009)

4. Gordon, T.F.: Constructing Legal Arguments with Rules in the Legal Knowledge Interchange
Format (LKIF). In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.) Computable
Models of the Law. LNCS (LNAI), vol. 4884, pp. 162–184. Springer, Heidelberg (2008)

5. Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: OASIS Legal-
RuleML. In: Verheij, B. (ed.) Proceedings of 14th International Conference on Artificial
Intelligence and Law (ICAIL 2013). ACM (2013)

6. Governatori, G., Rotolo, A.: Changing legal systems: Legal abrogations and annulments in
defeasible logic. The Logic Journal of IGPL (2010)

7. Grosof, B.: Representing e-commerce rules via situated courteous logic programs in
RuleML. Electronic Commerce Research and Applications 3(1), 2–20 (2004)

8. Palmirani, M., Contissa, G., Rubino, R.: Fill the Gap in the Legal Knowledge Modelling. In:
Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 305–314.
Springer, Heidelberg (2009)

9. Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.: LegalRuleML:
XML-Based Rules and Norms. In: Olken, F., Palmirani, M., Sottara, D. (eds.) RuleML -
America 2011. LNCS, vol. 7018, pp. 298–312. Springer, Heidelberg (2011)

10. Sartor, G.: Legal reasoning: A cognitive approach to the law. In: Pattaro, E., Rottleuthner,
H., Shiner, R., Peczenik, A., Sartor, G. (eds.) A Treatise of Legal Philosophy and General
Jurisprudence, vol. 5. Springer (2005)

Formalization of Natural Language Regulations

through SBVR Structured English�

(Tutorial)

François Lévy and Adeline Nazarenko

Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, (UMR 7030)
F-93430, Villetaneuse, France

Abstract. This paper presents an original use of SBVR to help building
a set of business rules out of regulatory documents. The formalization
is analyzed as a three-step process, in which SBVR-SE stands in an
intermediate position between the Natural Language on the one hand
and the formal language on the other hand. The rules are extracted,
clarified and simplified at the general regulatory level (expert task) be-
fore being refined according to the business application (engineer task).
A methodology for these first two steps is described, with different op-
erations composing each step. It is illustrated with examples from the
literature and from the Ontorule use cases.

1 Introduction

Formalizing natural language (NL) regulations is becoming an important chal-
lenge for rule systems.

Much more data are available in an electronic form that, let us say, ten years
ago. Most governments have set up electronic legal repositories to make their
national laws and regulations available (e.g. THOMAS in the USA1, Legifrance
in France2, the Bundestag site in Germany3). This is also the case of international
institutions (see the European Community4 or the UNO5 websites). Smaller
organizations such as regions, cities, Länder also produce and publish their own
regulations. On the private organizations side, most companies have both public
regulations for their customers, and internal ones for their employees.

These rules are involved in applications that mainly concern the opening
of rights and the conformance of processes. It is crucial that the formal rules

� We thank to our partners in the ONTORULE project for the fruitful discussions, es-
pecially John Hall (Model Systems) for introducing us to the SBVR world, Christian
de Sainte Marie for Decision Logic, and Audi for the collaboration on their use case.
We are also grateful to American Airline who is the owner of one of our working
corpora.

1 http://thomas.loc.gov/home/abt_thom.html
2 http://www.legifrance.gouv.fr/
3 http://www.bundestag.de/
4 http://eur-lex.europa.eu
5 http://www.un.org/

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 19–33, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://thomas.loc.gov/home/abt_thom.html
http://www.legifrance.gouv.fr/
http://eur-lex.europa.eu

20 F. Lévy, A. Nazarenko

embedded in those applications be consistent with the published regulations.
Hence the need for extracting and building the formal rules from the NL ones.

This paper analyses this formalization process. It shows that it can be de-
composed into three main steps, in which SBVR Structured English (SBVR-SE)
plays an intermediate role between the natural and formal languages. Section 2
presents this challenging process that has been only partially addressed in the
state of the art and Section 3 shows that it can be decomposed into three steps.
Sections 4 and 5 describe the main operations that are involved in the first two
of these formalization steps.

2 Formalizing NL Regulations: A Challenging Task

2.1 The Translation Task

Rule acquisition is a critical bottleneck for the development of business rules
management systems (BRMS) as for most knowledge based systems. The prob-
lem is three fold for knowledge engineers. They have to identify all the constraints
and rule information that are relevant for the domain of the rule application to
develop. They have to specify how these constraints and rule must be handled:
some are directly implemented in the decision system; some belong to general
policy that apply to the system users but that are not formally expressed in the
rule base; some are plain recommendations whereas other are strict constraints;
they may concern the structure of the organization to model as well as its pro-
cedures and the behavior of actors. Once the relevant information is identified
and its enforcement value defined, the knowledge engineers still have to encode
this information in a way that is machine-understandable.

This acquisition process is a complex task to handle. Fortunately, in many
cases – especially in conformance applications –, the relevant rule information
is already encoded in policy documents (e.g. contracts, legal regulations, user
guides). In those cases, the elicitation work can be based on existing and vali-
dated sources instead of experts’ introspection and interviews.

However, extracting and translating NL regulations into formal rules remains
an open issue [4,13,9]. The translation of text fragments written in NL into formal
rules is difficult to automate, due to the reduced expressivity of formal languages
and to the complexity of NL discourse, which is redundant and verbose, often
elliptic and implicit, frequently ambiguous. Even the translation into SPARQL
of LN queries, which are much simpler than texts, is acknowledged as a complex
problem [24]. [8] considers a direct translation of legal texts based on a parsing
step, but it actually relies on a manual translation of abstract syntax trees in a
specific logical language.

2.2 The Problem of Uncommunicability

NL and formal rule languages stand on the opposite extremities of the formal-
ization continuum, which raises a problem of uncommunicability between the

Formalization of Natural Language Regulations 21

Fig. 1. Example of an SBVR-SE business rule (www.brcommunity.com)

actors. The lack of domain knowledge and the complexity of NL explain the
difficulty of writing the formal rules from scratch for the engineer. Working with
texts requires a certain familiarity with the domain and a thorough understand-
ing of source regulations. The expert describes the rules according to his/her
knowledge of the organization for which the rule system is being developed. The
engineer has a different point of view, more focused on the system and its op-
eration as such. The expert finds it difficult to read the rule base when it has
been written in formal language. This raises many problems, such as regarding
the authoring of the rules in conformance to the source documentation and their
updating.

Issues related to these deadlocks have been raised [4,13,9] and proposals have
been made to improve the actors collaboration. One of them consists in exploiting
a new language that acts as an intermediate between NL and formal languages.
Controlled languages (CL) have been proposed to play this role. They are more
precise, unambiguous, easier to understand – but also, less expressive – than
natural language.

2.3 The Complexity of Natural Language

Controlled languages are considered as an interesting substitute for NL, assum-
ing that they are readable for users and closer to formal languages than NL. In
the Business Rules domain, CLs are used in Oracle Policy Modeling Suite6, in
IBM SPARCLE policy workbench [5]. RuleSpeak [20] is a dedicated in use con-
trolled language, while Atempto Controlled English7 is more generalist. SBVR
(Semantics of Business Vocabulary and Rules) can be seen as a synthesis of sev-
eral efforts and as a standard independent of any specific natural language. It
has been accepted by the OMG (Object Management Group)8. We refer to the
English version of SBVR CL, namely SBVR Structured English (SBVR-SE).
SBVR relies on formulas (Figure 1) combining linguistic basic templates with
logical, modal or quantification operators.

6 www.oracle.com/technology/products/applications/policy-automation
7 http://attempto.ifi.uzh.ch/site/docs/
8 http://www.omg.org

www.oracle.com/technology/products/applications/policy-automation
http://attempto.ifi.uzh.ch/site/docs/
http://www.omg.org

22 F. Lévy, A. Nazarenko

However, the NL to CL translation is itself a complex task. Recently, [2] has
proposed NL2SBVR9, a tool to automatically translate NL into SBVR-SE, but
the reported experiments show that the complexity of the translation depends
on the complexity of the source sentences. Simple rule statements composed of
at most two clauses are translated with a 80% success rate but the translation
fails for complex ones.

Another way to handle the complexity of NL texts therefore consists in simpli-
fying them. Text simplification has long been studied. It is usually considered to
ease translation [22], to help human understanding (esp. in case of understand-
ing disorders [15]), to prepare text summarization [10,7], and in the context of
foreign language learning (see [6] for a general presentation). The notion of sim-
plicity actually depends on the target application. For instance, if a succession of
small sentences if preferable for foreign language learners, automatic translation
can process long sentences as soon as their internal structure is canonical.

Taking advantage of these works on controlled language and text simplifica-
tion, we propose to decompose the rule formalization into different steps and
to rely on SBVR-SE as an intermediate language that ease the transition from
natural to formal languages.

2.4 Organizing the Formalization Continuum

Several authors have considered degrees in the formalization process. [3] argues
that there is a ”continuum” between knowledge expressed in NL and formal
one. Considering controlled languages as intermediary stages in this continuum,
[23] points to two different views of controlled languages constituting steps in
the formalization: the naturalist one insists on simplicity, the formalist one on
eliminating ambiguity.

More focussed on the semantics of business rules, Decision Logic or Deci-
sion Modeling emphasizes the distinction between rules as specification of what
should be, and the operational view where rules state what to do10. Operational
rules take or help to take decisions, i.e. make rational choices between several
outcomes [21] expressed in the language by some decision words (e.g. “Estimate”,
“Determine”, “Assess”, “Calculate”, “Accept” [12]) and which follow the speci-
fications. Operational rules are related to SBVR through the vocabulary, and to
a Process Model, since branching points in this model need a decision [14].

Decision Logic has to see with a precise inventory of all the conditions which
can influence a decision, and with how a decision is reflected in the system. At the
moment, there is no clear and agreed formal view of decision in the BR domain,
but OMG is currently elaborating a Decision Modeling Notation (DMN) which
is a first step in that direction.

9 http://www.cs.bham.ac.uk/ isb855/nl2ocl/projects.html
10 Both terms have close but different meanings out of the business rules domain.

“Decision Modeling” is used in decision theory for a.k.o. simulation, where the goal
is to predict (long term) effects of a given decision. “Decision Logic” also deals
how decisions are made by individuals or groups in unforeseen conditions (e.g. in
emergency cases [16])

Formalization of Natural Language Regulations 23

3 Divide for Conquer

3.1 A Three-Step Process

The Division of Labor. We focus here on the modelization and formalization
of business rules. Some previous works [1] have shown that this tasks involves
two typical actors. Both acts as knowledge engineers but one is a domain expert
(the expert) and the other one is more system oriented (the engineer):

– The expert knows the domain of the target application, the organization in
which it is expected to take place and the available sources of information.
He/she has to identify what is the relevant information to take into account,
in the form of a draft rule base.

– The engineer focuses on the rule system, that may not model the whole
organization but only a part of it. He/she knows how the system works and
he/she can implement rules in an operational language.

Formalization Steps. Based on this analysis, we propose to decompose the
formalization of rules into three separate steps.

1. The first step produces CL out of NL. The transformation is made by an
expert who knows and understands the source texts. The task consists in
writing a new CL text that selects the rule information of the source text
that is relevant for the organization to model. The resulting text can be
considered as the specification of the rule base content.

2. The second step improves the specification text in CL. The transformation is
made by the engineer in interaction with the expert. The engineer interprets
the rules. He asks the expert to check and complete his/her understanding of
the rule base. They may further filter out the text produced in the first step
if it contains some rules that are not directly applicable by the rule system.

3. The last step aims at translating the specification text into formal language.
It requires a good knowledge of the target application and system.

3.2 SBVR, between Natural and Formal Languages

SBVR [18] is an OMG standard. It is not a language per se but a metamodel
designed for describing the business knowledge of complex organizations such as
enterprises, in a formal and detailed way. It enables to

– assist experts in the specification and definition of the semantic model
(semantic vocabulary and rules) of the domain;

– describe a business model in a precise, clear and unambiguous way;
– specify various linguistic structures that cover a larger number of languages,

even if it is mainly used for English;
– structure11 an organization business knowledge and business vocabularies;
– make the business rules accessible both to the experts and engineers, thus

improving their inter-communication.

11 http://www.omg.org/news/meetings/tc/mn/special-events/br/

24 F. Lévy, A. Nazarenko

The definition of business vocabulary is not dealt with here, our single focus is
on using SBVR as an intermediary language. Business rules are written with the
help of a controlled language, SBVR-SE, which makes use of a typed business
vocabulary (Fig. 1): business terms or concept names, named entities, phrases
which express fact types and facts linking concepts12, as well as a set of (English)
grammatical words (e.g. ’the’, ’that’, ’another’, ’a given’) used as operators.
SBVR offers several types of operators. The most often used are:

– Logical operators, such as negation (it is not the case that p), conjunction
(p and q), disjunction (p or q), implication(if p then q, q if p), equivalence
(p if and only if q).

– Modal operators, that modify the modal value of a fact from [contingently]
true to obligatory, possible or necessary. These operators are often inserted
in front of rules: ”It is obligatory that” and ”It is necessary that”, resp.
for operative and structural rules.

– Quantifiers: a, an, each (universal quantification), at least one (existential
quantification), at most one, exactly one.

In the formalization process, our expectation with respect to SBVR is twofold.
In the first step, it is used to faithfully translate source texts while reducing the
complexity of natural language. The output is a list of autonomous rule (see
Fig. 2) that can be further formalized independently of each other. In a second
step, it is used to reformulate the business rules so as to take the application
into account and to ease their formalization in the last step.

For instance, the textual rule 1 of the EU-Rent example can be first nor-
malized (Rule 213) and then turned into a decision rule (Rule 3). The last step
would translate this differently according to the rule language: production rules
and logic programming, for instance, have different technicalities to destroy and
create objects.

1. A rental has exactly one renter.
2. It is prohibited that the renter of a rental is changed.
3. If a renter asks to change the rental to a different renter, cancel the rental

and create a new one.

The first use of SBVR-SE concerns the expert task (from NL to CL) whereas the
second one consists in a CL to CL transformation, which refines the description
according to the end application. This last transformation usually requires a
negotiation between the expert and the engineer. We will see in Section 5 that
it mainly consists in eliminating the modal operators, as suggested in:

The implementation impact of the alethic necessity tag is that any
attempted change that would cause the model of the business domain

12 We do not take for granted, as SBVR-SE does, that facts and fact types are specifi-
cally referred to by verb phrases.

13 Of course, other readings can be proposed but the normalization process involves
some interpretation choices.

Formalization of Natural Language Regulations 25

to violate the constraint must be dealt with in a way that ensures the
constraint is still satisfied (e.g., reject the change, or take some compen-
satory action). [18, p102]

Fig. 2. Example of an autonomous SBVR rule

4 From Natural Language to SBVR Rules

The acquisition methodology relies on the progressive transformation of the
source text into a set of self-sufficient rules written in SBVR-SE controlled lan-
guage. This process relies on four main operations, which are often interlinked:
the lexical normalization of the source text, the extraction of the relevant text
fragments, the syntactic normalization of these fragments, some semantic trans-
formation for restoring contextual and implicit information. The result of that
process is a set of rules written in valid SBVR-SE.

4.1 Lexical Normalization and Annotation of the Source Text

The lexical normalization is often performed on the whole source text. It is a
critical step for the whole transformation process. An annotation is a meta-data
or label attached to a word, phrase, sentence or section of the source document.
A normalized vocabulary entry is associated to the annotated segment. In our
framework, first annotated segments are elements of the conceptual vocabulary
or keywords.

The conceptual vocabulary contains all the terms that have a specific meaning
in the domain of the source regulation. For the acquisition of rules, we suppose
that a domain ontology already exists, that fixes the conceptual elements to use
in the rules [17]. The conceptual vocabulary is composed of the set of terms
referring to the ontological concepts, individuals and roles. It can be encoded as
a SKOS thesaurus referring to a an OWL ontology [19] or as SKOS annotations
in the OWL ontology. The semantic annotation is the process that takes a text
and a lexicalized ontology as input and outputs the source text enriched with
annotations. It consists in localizing in the text all the mentions of the ontological
elements, whatever the form that these mentions may take, and annotating them
with a reference to the ontological element they refer to. Lexical normalization
consists in normalizing the lexicon of the source text since the various variants
of a term are all expected to be annotated with the same canonical form.

26 F. Lévy, A. Nazarenko

The keyword list contains all the ”linguistic symbols [or grammatical words]
used to construct statements – the words that can be combined with other des-
ignations [from the conceptual vocabulary] to form statements and definitions”
[11, p.238]. Keywords are easier to recognize in the documents since they belong
to closed class of words and their form is generally more stable.

The initial annotation process therefore produces a text in which the mentions
of the ontological elements and the SBVR-SE keywords are annotated. They are
colored according to SBVR rules: orange for keywords, green, blue and red re-
spectively for the words and phrases that refer to concepts, roles and individuals.
The underlying analogy is that concepts corresponds to ”noun concepts”, roles
to ”verb concepts” and individuals to ”individual concepts” in the SBVR termi-
nology, although we do not assume that there us a strict parallelism between the
part-of-speech categories (nouns vs. verbs) and the conceptual ones (concepts
vs. roles) as SBVR-SE does.

Since the annotation process does not cover the whole text, the resulting an-
notated text usually mixes black segments and some colored words and phrases.
It looks like an SBVR ”informal representation”, since ”not every word is anno-
tated (’tagged’) in accordance with a notation that can be mapped to SBVR”
[11, p.152]. It is nevertheless a precious input for the extraction, normalization
and transformation process that outputs a rule base specification.

4.2 Extraction of Rule Fragments from the Source Text

Once the text has been automatically annotated, the knowledge engineer has
to identify in the source document the fragments (sentences or sequence of sen-
tences) that convey rule information and to mark them as candidate rules that
probably need to be reformulated but are nevertheless relevant for the target
rule application.

Identifying these rule fragments in the source text is a complex task and the
initial annotation eases this work. The knowledge engineer can focus on the
passages that are most marked with annotation and extraction patterns can be
designed on the basis of remarkable configurations of keywords.

The selection of a fragment consists in the creation of a candidate rule, which
is identical at the beginning to the source fragment but which will be further
transformed.

4.3 Lexical and Syntactic Normalization of the Rule Fragments

The variability and polysemy of natural language makes it necessary to give a
canonical form to the initial statements. This normalization process concerns
both the lexicon and the syntax.

One part of the lexical normalization is carried out through the semantic
annotation process, since different words and phrases are annotated in the same
way if they are alternate labels of the same ontological entity. For instance, in
some contextsmember,members and participants can be considered as synonyms
and may all refer to the same concept.

Formalization of Natural Language Regulations 27

However, it often happens that some relevant mentions are missed by the
semantic annotator: the knowledge engineer has to identify new occurrences of
relevant ontological entities. Another problem comes from the polysemic words
which may not be properly handled by an automatic semantic annotator. In
some context, city hall does not refer to a building but to an organization or
even to the people involved in that organization. Advanced annotators which
take the context into account can take care of these disambiguation cases but
they are less performant than others.

Syntactic constructs also have to be simplified and normalized. A lot of syntac-
tic constructs are not supported by a controlled language like SBVR-SE because
they are ambiguous or difficult to understand. Some clauses must be reordered
within the sentences, enumerations must be split, complex sentences must be
simplified by erasing the irrelevant clauses, coordinations have to be decom-
posed. A single candidate rule may give way to two or more separate and simpler
candidate rules. Some rules must also be transformed to stick to the canonical
syntactic structure of the target language that is supposed to be unambiguous
and easy to understand.

For instance, the following sentences can be decomposed into several ones,
which makes the initial statement easier to understand and to exploit.

1. Neither accrued mileage, nor award tickets, nor upgrades are transferable
by the member upon death14.
Accrued mileage is not transferable by the member upon death. Award tickets
are not transferable by the member upon death. Upgrades are not transferable
by the member upon death.

2. The membership year, which is the period in which your elite benefits are
available, runs from March 1 through the last day of February of the following
year.
The membership year is a period. Member’s elite benefits are available in
the membership year. The membership year runs from March 1 through
the last day of February of the following year.

4.4 Semantic Transformation

Transformations at the semantic level are also often required to restore some
elements of context or implicit piece of information that condition the interpre-
tation of the rule. The semantic transformation does not preserve the apparent
meaning of the source fragment but aims at decontextualize it, providing context
independent formulations, fixing some possible ambiguities, deleting irrelevant
stylistic fragments.

For instance, in the UNO regulation n◦16 dealing with car manufacturers
quality tests, it often happens that a generic term like test is used in a sentence
where it is clear from the context that it has a specific meaning and actually
stands for e.g. micro-slip test, which refers to a specific type of tests. When the

14 This example has been extracted form the American Airlines terms and conditions.

28 F. Lévy, A. Nazarenko

rule statement is isolated from its context, the generic term must be replaced by
the more specific one so that the initial meaning is preserved.

More complex transformations involve the whole sentence. In the following
case, the knowledge engineer separated the extracted fragment into two different
SBVR rule statements and then made explicit the modality ”hidden” in the use
of a future tense.

1. No mileage credit will be awarded for canceled flights or if you are accom-
modated on another airline.

2. If a member is accommodated on another airline, then it is obligatory that
no mileage credit is attributed. If a flight is cancelled, then It is obligatory
that no mileage credit is attributed.

5 From Normalized Rules to Decision Rules

At the end of the normalization and simplification process, the output is SBVR-
conformant text. It is a set of business rule statements which are admittedly
formal in the sense of the SBVR standard:

Business rule expressions are classified as formal only if they are
expressed purely in terms of fact types in the pre-declared schema for
the business domain, as well as certain logical/mathematical operators,
quantifiers, etc. Formal statements of rules may be transformed into
logical formulations. [18, p.85]

However, the initial goal – having rule directly translatable into rules of an au-
tomated decision system – is still not reached. The problem comes from the
difference between the regulatory level ontology and the application specific on-
tology. A semantic gap lies between rules infering deontic modalities and rules
infering concrete actions. We consider two points. First, new entities are needed,
dedicated to represent the conditions of the decision. Second, a rule modal state-
ment has to be translated into decision terms.

Three examples from different domains are used to illustrate these points.

5.1 Introducing New Specialized Entities

Very often, deciding if the conditions are fulfilled needs to introduce new spe-
cialized entities. This is best illustrated through examples.

Example 1. The first example, bellow, is related to the UNO regulation n◦16.
Concerning the breaking load test after cold-conditioning (bl-cc test for short),
the regulation states the fragment 1. At the normalization level, it appears that
’When’ has a temporal value rather than a conditional one. It indicates a step of
the process (actually, the fourth step – previous ones being omitted for the sake of
brievity). ’And’ has also a temporal value. It introduces a next step. Naming the
steps is a facility for decomposing the rules (see version 2, duration considerations

Formalization of Natural Language Regulations 29

are provisionally left aside). Taking into account the delays also needs to give a
full status of entities. This leads to add two notions, load-duration and removal-
measure-delay (see version 3). More hidden is the fact that the greater the load
duration, the more severe is the obligation, so the delay is a minimum.

1. When the strap has been kept under load for 30 minutes in the same low-
temperature chamber, the mass shall be removed and the breaking load shall be
measured within 5 minutes after removal of the strap from the low-temperature
chamber.

2. Step 4 of bl-cc test is: the strap is kept under load in the low-temperature
chamber.
Step 5 of bl-cc test is: the mass is removed.
Step 6 of bl-cc test is: the breaking load is measured.

3. The load-duration is the time between the start of step 4 and of step 5.
It is obligatory that the load duration be greater than 30mn.
The removal-measure-delay is the time between the removal of the strap from
the cold-chamber after step 5 and the end of step 6.
It is obligatory that the removal-measure-delay be less than 5 mn.

Example 2. The second example comes from the EU-Rent case of [18]. EU-
Rent is a car renting company. The extracted fragment (version 1) is related
to branches but nothing is specified for the pick-up and return of cars from
and to branches. The knowledge engineer has introduced a specific rule, dealing
with the effective and specified drop-off locations (version 2). The obligation is
discussed in the following section but we can see here how the ontology is refined
to allow writing this version. The fact type “a car is returned to a branch” is
broken down into several fact types with the help of added domain vocabulary.
New vocabulary (in bold face) and fact types are gathered in fragment 3.

1. A Local area contains a number of Branches for Rental Car pick-up and
return. A rental booking specifies [. . .] the EU-Rent branch from which the
rental is to start. Optionally, the reservation may specify a one-way rental
(in which the car is returned to a branch different from the pick-up branch)

2. It is obligatory that the rental incurs a location penalty charge if the drop-off
location of a rental is not the EU-Rent site that is base for the return branch
of the rental.

3. A return branch has a base. The base of the return branch is an EU-Rent
site. A rental has a drop-off location. The drop-off location is the base
of the return branch.

5.2 Exhibiting Decision Variables

When transforming normalized rules into decision rules, the main point consists
in getting rid of the modal operators, while preserving as most as possible the
meaning of the source fragment in its context. A second operation therefore
consists in making explicit some variables related to the decision to take, which
often remains implicit.

30 F. Lévy, A. Nazarenko

Example 1. The first example is from Haley’s blog15, which describes the
formalization of the rules to qualify for the earned income credit (EIC). The
source text is a guide provided by the administration to the applicant. The first
extracted rule is the version 1 of the following example (slightly simplified for the
sake of brievity). The normalization (version 2) requires to restore a premise from
the context (the person is applying for EIC), clarify cardinalities (if you have
two children, you do not have one) and normalize the obligation. Haley points
that “must” is misleading here since the proposition under its scope is not an
obligation for the applicant, rather a condition of success. His re-statement of
the rule is merged in version 3. “Being qualified for the EIC” is a new concept.
It does not describe the specific data related to the applicant, as do the income
and the number of children. It states that the data are not conformant wrt. the
intended model. We call these variables decision variables.

1. If you have one qualifying child, your Adjusted Gross Income (AGI) must be
less than $29,666.

2. If a person applies for the EIC and this person has exactly one qualifying
child, then it is obligatory that this person’s AGI is less than $29,666.

3. If you apply for the EIC and you have exactly one qualifying child and your
AGI is more than $29,666, then you do not qualify for EIC.

Example 2. Let us return to the breaking load test after cold-conditioning
introduced in section 5.1. If the obligations stated in 1 are not fulfilled, no valid
conclusion can be drawn from the test. This is different from a failure, which is
the case when a valid breaking load is obtained with a value is under a given
threshold. It is of course not a success either. A decision variable (validity of the
bl-cc test) is introduced to account for that in version 2.

1. It is obligatory that the load duration be greater than 30mn.
It is obligatory that the removal-measure-delay be less than 5 mn.

2. If the load duration is less than 30mn, the bl-cc test is invalid.
If the removal-measure-delay is more than 5 mn, the bl-cc test is invalid.

Example 3. The EU-Rent case has a main obligation specified by the rental
booking (statement 1). It is again accounted with the help of a decision variable
(version 2).

1. It is obligatory that the pick-up location be the start branch of the rental.
It is obligatory that the drop-off location be the return branch of the rental.

2. If the drop-off location of the rental is not the base of the return branch of
this rental, then this rental is non-conformant-for-return.

The technique proposed here clearly separates two questions. The decision-
variables are used to reflect in the model that an obligation has not been fulfilled.

15 http://haleyai.com/wordpress/2008/03/28/harvesting-business-rules-from-

the-irs/

http://haleyai.com/wordpress/2008/03/28/harvesting-business-rules-from-the-irs/
http://haleyai.com/wordpress/2008/03/28/harvesting-business-rules-from-the-irs/

Formalization of Natural Language Regulations 31

In this case, they are introduced in the conclusion of rules, which conditions are
obtained from the first SBVR modeling step, from specialized modeling entities
and the (negated) first order content of the obligation. This raises a correlated
question regarding what to do when the obligation is actually violated. Sec-
tion 5.3 addresses this point.

5.3 Specifying Actions

Deciding what to do when a decision point has been reached involves more ap-
plication specific knowledge than the previous ones, because regulations remain
relatively application independent and do not examine things beyond the obli-
gation. Possible answers can be divided into three groups :

– Abandon, stop the process, do nothing;
– Retry the same process, after modifying one of the conditions;
– Use a remedial subprocess as a continuation after the decision point. The re-

medial process is often not mentioned by the regulation, and the application
specialist generally has a major role in its description.

The first group is illustrated by the EIC case, at least when the application is
to help the user to fill a statement of income and a EIC form. The resulting rule
could be 1. Of course, other actions are possible. Formally, the EIC case could
also yield to 2 and 3.

1. If you do not qualify for the EIC, then don’t fill the EIC form.
2. If you do not qualify for the EIC, then reduce your AGI [to $29,666].
3. If you do not qualify for the EIC, then apply for one more child.

The second group is illustrated by the UNO Regulation n◦16 case. The resulting
rule can be

If the bl-cc test is invalid, then the test must be started afresh with a new
strap.

The last group is illustrated by the EU-Rent case. The following rule is suggested
by the knowledge engineer. The process is neither abandoned, nor redone. The
drop-off is accepted as is, but the charge is increased.

If a rental is non-conformant-for-return, this rental incurs a location
penalty charge.

The above examples show that what remains to be done, once the rules are well-
formed SBVR-statement, is of a different nature from the normalization steps.
This is the reason why we argue that the knowledge engineer who normalizes
the source text and formalizes the resulting candidate rule should be different
actors. The first step is driven by the source text and a general idea of the
organization to model. The second one directly depends on how the candidate
rules must be operationalized, and which part of this operational semantics is
relevant for the rule system – for deciding, checking or warning. It makes sense
that these interpretations be made before implementation and remain accessible
to business people through SBVR.

32 F. Lévy, A. Nazarenko

6 Conclusion

In order to formalize NL regulations into production rules, we have argued for
a three steps process. We have focused here on the first two, which both rely
on a controlled language but reflect different tasks devoted to different actors.
The clarification of the regulation is under the responsibility of a general-level
expert. Its refinement also involves an engineer who knows how the rule system
works. We have argued that SBVR is convenient as a controlled language. It
allows expressing the new formulations while remaining understandable by busi-
ness people who want to remain in charge of the rule authoring. Then we have
described a methodology for acquiring rules from regulatory texts and trans-
forming them into production rules, providing different operations for each step.
The methodology is illustrated with examples from the literature and from the
Ontorule use cases. It shows the importance of SBVR and more generally
controlled languages as flexible intermediate languages at the border between
natural and formal languages.

References

1. Bajec, M., Krisper, M.: Issues and challenges in business rule-based information
systems development. In: ECIS (2005)

2. Bajwa, I.S., Lee, M.G., Bordbar, B.: Sbvr business rules generation from natural
language specification. In: AAAI Spring Symposium 2011 Artificial Intelligence 4
Business Agility, pp. 541–545, AAAI, San Francisco (2011),
www.aaai.org/ocs/index.php/SSS/SSS11/paper/download/2378/2918

3. Baumeister, J., Reutelshoefer, J., Puppe, F.: Engineering intelligent systems on the
knowledge formalization continuum. International Journal of Applied Mathematics
and Computer Science (AMCS) 21(1) (2011)

4. BRG: Defining business rules – what are they really? The Business Rules Group :
formerly, known as the GUIDE Business Rules Project - Final Report revision 1.3
(July, 2000)

5. Brodie, C., Karat, C.M., Karat, J.: An empirical study of natural language parsing
of privacy policy rules using the sparcle policy workbench. In: SOUPS 2006 (2006)

6. Chandrasekar, R., Doran, C., Srinivas, B.: Motivations and methods for text sim-
plification. In: Proceedings of the Sixteenth International Conference on Compu-
tational Linguistics (COLING 1996), pp. 1041–1044 (1996)

7. Chandrasekar, R., Srinivas, B.: Automatic induction of rules for text simplification
(1997)

8. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Reasoning about conditions and ex-
ceptions to laws in regulatory conformance checking. In: van der Meyden, R., van
der Torre, L. (eds.) DEON 2008. LNCS (LNAI), vol. 5076, pp. 110–124. Springer,
Heidelberg (2008), http://repository.upenn.edu/cis_papers/371

9. Dubauskaite, R., Vasilecas, O.: An open issues in business rules based informa-
tion system development. In: Innovative Infotechnologies for Science, Business and
Education, vol. 1 (2009)

10. Gasperin, C., Specia, L., Pereira, T.F., Aluisio, S.M.: Learning when to simplify
sentences for natural text simplification. In: ENIA 2009 (VII Encontro Nacional
de Inteligência Artificial) (2009)

www.aaai.org/ocs/index.php/SSS/SSS11/paper/download/2378/2918
http://repository.upenn.edu/cis_papers/371

Formalization of Natural Language Regulations 33

11. The Object Management Group: Semantics of business vocabulary and business
rules. Tech. rep., The Object Management Group (2008), http://www.omg.com/

12. von Halle, B., Goldberg, L.: The Decision Model: A Business Logic Framework
Linking Business and Technology. Taylor & Francis, LLC, Auerbach (2009)

13. Halle, B., Goldberg, L., Zackman, J.: Business Rule Revolution: Running Business
the Right Way. Happy About (2006), http://books.google.com/
books?id=I3mvAAAACAAJ

14. Linehan, M.H., de Sainte Marie, C.: The relationship of decision model and
notation (dmn) to sbvr and bpmn. Business Rules Journal 12(6) (June 2011),
http://www.BRCommunity.com/a2011/b597.html

15. Max, A.: Simplification interactive pour la production de textes adaptés aux per-
sonnes souffrant de troubles de la compréhension. In: Proceedings of TALN, Poster
Session (2005), http://www.limsi.fr/Individu/amax/recherche/
articles/Max-TALN05.pdf

16. Mendonça, D., Wallace, W.A.: Development of a decision logic to support group
improvisation: An application to emergency response. In: 35th Hawaii International
Conference on System Sciences (2002)

17. Nazarenko, A., Guissé, A., Lévy, F., Omrane, N., Szulman, S.: Integrating Writ-
ten Policies in Business Rule Management Systems. In: Bassiliades, N., Governa-
tori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 99–113.
Springer, Heidelberg (2011)

18. OMG: Sbvr (2008), http://www.omg.org/spec/SBVR/Current
19. Omrane, N., Nazarenko, A., Rosina, P., Szulman, S., Westphal, C.: Lexicalized on-

tology for a business rules management platform: An automotive use case. In:
Olken, F., Palmirani, M., Sottara, D. (eds.) RuleML - America 2011. LNCS,
vol. 7018, pp. 179–192. Springer, Heidelberg (2011)

20. Ross, R.G.: Principles of the Business Rule Approach, ch. 8-12. Addison-Wesley,
Boston (2003)

21. Ross, R.G.: Decision analysis using decision tables and business rules. Tech. rep.,
Business Rule Solutions (2010)

22. Siddharthan, A., Caius, G.: Syntactic simplification and text cohesion (2003)
23. Spreeuwenberg, S.: Rule authoring is a creative process. Business Rules Jour-

nal 10(9) (September 2009), http://www.BRCommunity.com/a2009/b497.html
24. Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.C.N., Gerber, D., Cimiano,

P.: Sparql template based question answering. In: 21st International World
Wide Web Conference, WWW 2012 (April 2012), http://data.semanticweb.org/
conference/www/2012/paper/1290

http://www.omg.com/
http://books.google.com/books?id=I3mvAAAACAAJ
http://books.google.com/books?id=I3mvAAAACAAJ
http://www.BRCommunity.com/a2011/b597.html
http://www.limsi.fr/Individu/amax/recherche/articles/Max-TALN05.pdf
http://www.limsi.fr/Individu/amax/recherche/articles/Max-TALN05.pdf
http://www.omg.org/spec/SBVR/Current
http://www.BRCommunity.com/a2009/b497.html
http://data.semanticweb.org/conference/www/2012/paper/1290
http://data.semanticweb.org/conference/www/2012/paper/1290

Multi-agent Activity Modeling

with the Brahms Environment

(Abstract of Tutorial)

Maarten Sierhuis

Nissan Research Center
Silicon Valley

There is increasing interest in developing “day in the life” models and simula-
tions of people’s behavior, the interaction between groups of people and systems,
as well as movement and interaction within the environment. Cognitive model-
ing tools (e.g. SOAR, ACT-R) focus on detailed modeling of individual cognitive
tasks at the sub-second level. In contrast, Brahms enables multi-agent activity
modeling, focusing on higher-abstraction behaviors at the second and longer
timeframe. Activity modeling enables modeling the behaviors of individuals and
groups (located and situated), how and where communication and synchroniza-
tion happens, and how people and machines work together to accomplish goals.
This tutorial will provide an overview of the Brahms multi- agent activity model-
ing language by considering a simple day in the life scenario, including hands-on
experience with Brahms.

Brahms includes an activity-oriented Belief-Desire-Intention (BDI) language,
a compiler and virtual machine for executing Brahms models, as well as an
Eclipse plug-in and a post-execution viewer of agent execution, communication
and interaction. Brahms enables the creation of multi-agent models that include
aspects of reasoning found in cognitive models, task execution, plus the impact
of interaction and geography, such as agent movement and physical changes in
the environment. Brahms is currently used to automate the work of a flight
controller in NASAs International Space Stations Mission Control Center (ISS
MCC). This system, called OCAMS, has been in production in the ISS MCC,
24x7, since July of 2008, and is based on a Brahms model of the work practices
of the flight controllers. OCAMS is a distributed Multi-Agent System.

Prerequisite knowledge: A useful background to have is some experience in
rule-based languages, agent architectures, especially belief-desire-intention ar-
chitectures and discrete-event simulation.

Bio

Dr. Maarten Sierhuis is founder and Chief Technology Officer of Ejenta and
Director of Nissan Research Center-Silicon Valley. Before this, he was the director
of the Knowledge, Language and Interaction area at Xerox Palo Alto Research
Center (PARC), and a Senior Scientist for over twelve years at NASA Ames
Research Center. He is co- inventor of the Brahms multi-agent language. He
is also a fellow with the Interactive Intelligence group at Delft University of

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 34–35, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Multi-agent Activity Modeling with the Brahms Environment 35

Technology in the Netherlands, where he taught graduate courses on multi-
agent and organizational modeling. He has a Ph.D. in AI and Cognitive Science
from the University of Amsterdam and an engineering degree in Informatics
from the University in The Hague, The Netherlands. He has presented many
invited lectures and tutorials on agent languages, agent-based simulation, and
multi-agent systems, and has published widely in these areas.

References

1. Clancey, W.J.: Simulating Activities: Relating Motives, Deliberation, and Attentive
Coordination. Cognitive Systems Research 3(3), 471–499 (2002)

2. Clancey, W.J., Sachs, P., Sierhuis, M., van Hoof, R.: Brahms: Simulating practice
for work systems design. International Journal on Human-Computer Studies 49,
831–865 (1998)

3. Sierhuis, M.: Modeling and Simulating Work Practice; Brahms: A multiagent mod-
eling and simulation language for work system analysis and design. Ph.D. thesis,
University of Amsterdam, SIKS Dissertation Series No. 2001-10, Amsterdam, The
Netherlands (2001)

4. Sierhuis, M., Clancey, W.J., van Hoof, R.J.J.: Brahms: A multiagent modeling en-
vironment for simulating work processes and practices. International Journal of
Simulation and Process Modelling 3(3), 134–152 (2007)

5. Sierhuis, M.: “It’s not just goals all the way down” – “It’s activities all the way
down”. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW
2006. LNCS (LNAI), vol. 4457, pp. 1–24. Springer, Heidelberg (2007)

6. Sierhuis, M., Clancey, W.J., van Hoof, R.J.J.: Brahms: An Agent-Oriented Lan-
guage for Work Practice Simulation and Multi-Agent Systems Development. In:
Bordini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.) Multi-Agent
Programming, 2nd edn. Springer (2009)

7. Sierhuis, M., Clancey, W.J., Seah, C.: Organization and Work System Design and
Engineering. In: Yilmaz, L., Oren, T. (eds.) Agent Directed Simulation. Wiley (2009)

8. Sierhuis, M., Jonker, C., van Riemsdijk, B., Hindriks, K., ELFallah-segfouchni, A.:
Towards Organization Aware Agent-based Simulation. International Journal of In-
telligent Control and Systems 14(1), 62–76 (2009)

Rules and Policy Based Handling of XML

in Government Contexts Including NIEM

(Abstract of Tutorial)

David Webber

Information Architect at Oracle,
Senior Member of the ACM

drrwebber@acm.org

Managing information privacy and access policies is a critical need and technical
challenge. Desired solutions should be both ubiquitous and syntax neutral, yet
at the same time incorporate a simple and lightweight approach that meets legal
policy requirements through the application of clear, consistent, and obvious
assertions.

Today we have low-level tools that developers know how to use for imple-
mentation, and we have legal documents created by lawyers, both of which may
address privacy and access concerns. However, there is a chasm between these
two extremes.

The solution we are introducing will:

– Enable business information analysts to apply and manage policy profiles;
– Provide a clear separation between content and policy artifacts;
– Allow reuse of policies across content instances;
– Provide a clear declarative-assertions-based method, founded on policy ap-

proaches developed by the business rules technologies community;
– Leverage open software standards and tools.

This talk reports on joint work with Daniela Florescu, Oracle.

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, p. 36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Reasoning over 2D and 3D Directional Relations
in OWL: A Rule-Based Approach

Sotiris Batsakis

Department of Electronic and Computer Engineering
Technical University of Crete (TUC)

Chania, Greece
batsakis@intelligence.tuc.gr

Abstract. Representation of spatial information for the Semantic Web often in-
volves qualitative defined information (i.e., information described using natu-
ral language terms such as “North”), since precise arithmetic descriptions using
coordinates and angles are not always available. A basic aspect of spatial infor-
mation is directional relations, thus embedding directional spatial relations into
ontologies along with their semantics and reasoning rules is an important practi-
cal issue. This work proposes a new representation for directional spatial infor-
mation in ontologies by means of OWL properties and reasoning rules in SWRL
embedded into the ontology. The proposed representation is based on the decom-
position of cone shaped directional relations (CSD-9) offering a more compact
representation and improved reasoning performance over existing approaches. A
3D representation is proposed as well and both 2D and 3D representations and
reasoning are evaluated.

1 Introduction

Ontologies are formal definitions of concepts their properties and their relations. They
form the basis of knowledge representation required for materializing the Semantic Web
vision. Semantic Web technologies are used for automating tasks handled manually by
users, tasks such as organizing a trip. Understanding the meaning of Web information
requires formal definitions of concepts and their properties, using the Semantic Web
Ontology definition language OWL. OWL provides the means for defining concepts,
their properties and their relations and allowing for reasoning over the definitions and
the assertions of specific individuals using reasoners such as Pellet. Furthermore, rea-
soning rules can be embedded into the ontology using the SWRL rule language.

Spatial information is an important aspect of represented objects in many application
areas. Spatial information in turn can be defined using quantitative (e.g. using coordi-
nates) and qualitative terms (i.e., using natural language expressions such as “East”).
Qualitative spatial terms have specific semantics which can be embedded into the on-
tology using reasoning rules. In previous work [1] such a representation is proposed for
both bi-dimensional (2D) spatial and temporal information in OWL.

Current work deals with the case of directional spatial information and proposes a
new representation for such information which is more compact then the representa-
tion used in [1]. Specifically, instead of asserting one directional relation between two

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 37–51, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

38 S. Batsakis

points, such as “North-West”, two relations are asserted (e.g., “North” and “West”).
The first relation represents the relative placement of points along the North-South axis
and the second along the East-West axis. Both relations correspond to cone shaped re-
gions in the plane and their definitions and semantics are introduced in the current work.
Reasoning is applied on each set of relations separately, achieving a decomposition of
cone-shaped directional relations. Using the proposed representation both the number
of required relations and the corresponding reasoning rules are significantly reduced
offering increased reasoning performance. Specifically the required number of OWL
axioms and SWRL rules for 2D representation have been reduced to 106, compared to
964 in [1].

The compactness of representation and the increased reasoning performance allows
for extension of the proposed representation for three-dimensional (3D) space. To the
best of author’s knowledge this work is the first that proposes the optimized represen-
tation based on the decomposition of directional relations, and also the first that deals
with 3D representation of directional relations in OWL ontologies.

Current work is organized as follows: related work in the field of spatial knowledge
representation is discussed in Section 2. The proposed representation is presented at
Section 3 and the corresponding reasoning mechanism at Section 4. The extension to
three-dimensional space is presented at Section 5 followed by evaluation in Section 6
and conclusions and issues for future work in Section 7.

2 Background and Related Work

Definition of ontologies for the Semantic Web is achieved using the Web Ontology
Language OWL1. The current W3C standard is the OWL 22 language, offering in-
creased expressiveness while retaining decidability of basic reasoning tasks. Reasoning
tasks are applied both on the concept and property definitions into the ontology (TBox)
and the assertions of individual objects and their relations (ABox). Reasoners include
among others Pellet3, Fact++4, RacerPro5, KAON26 and Hermit7. Reasoning rules can
be embedded into the ontology using SWRL8. To guarantee decidability, the rules are
restricted to DL-safe rules [4] that apply only on named individuals in the ontology
ABox. Horn Clauses (i.e., a disjunction of classes with at most one positive literal),
can be expressed using SWRL, since Horn clauses can be written as implications (i.e.,
¬A ∨ ¬B... ∨ C can be written as A ∧B ∧ ...⇒ C). The efficiency of reasoning over
Horn clauses using forward chaining algorithms is a reason for choosing this form of
rules. The antecedent (body) of the rule is a conjunction of clauses. Notice that, nei-
ther disjunction nor negation of clauses is supported in the body of rules. Also, the

1 http://www.w3.org/TR/owl-ref/
2 http://www.w3.org/TR/owl2-overview/
3 http://clarkparsia.com/pellet/
4 http://owl.man.ac.uk/factplusplus/
5 http://www.racer-systems.com/
6 http://kaon2.semanticweb.org/
7 http://hermit-reasoner.com/
8 http://www.w3.org/Submission/SWRL/

Reasoning over 2D and 3D Directional Relations in OWL: A Rule-Based Approach 39

consequence (head) of a rule is one positive clause. Neither negation nor disjunction
of clauses can appear as a consequence of a rule. These restrictions improve reasoning
performance but complicate qualitative spatial reasoning, since disjunctions of clauses
typically appear in the head of a spatial reasoning rule.

Qualitative spatial reasoning (i.e., inferring implied relations and detecting inconsis-
tencies in a set of asserted relations) typically corresponds to Constraint Satisfaction
problems which are NP , but tractable sets (i.e., solvable by polynomial algorithms) are
known to exist [3]. Formal spatial representations have been studied extensively within
the the Semantic Web community. Relations between spatial entities in ontologies can
be topological, directional or distance relations. Furthermore, spatial relations are dis-
tinguished into qualitative (i.e., relations described using lexical terms such as “South”)
and quantitative (i.e., relations described using numerical values such as “45 degrees
North”)..

A representation of topological relations using OWL class axioms has been proposed
in [6], but an alternative representation using object properties offered increased per-
formance [5]. Embedding spatial reasoning into the ontology by means of SWRL rules
applied on spatial object properties forms the basis of the SOWL model proposed at [1].
Based on the representation proposed at [1] the dedicated Pellet-Spatial reasoner [5] has
been extended for directional relations in the CHOROS system [7] (Pellet-Spatial sup-
ports only topological relations). CHOROS achieved improved performance over the
SOWL model but the spatial reasoner in not embedded into the ontology, thus requir-
ing specific software which must be properly adjusted whenever modifications into the
ontology occur. Furthermore, it does not offer support for 3D representation. SOWL on
the other hand offers greater flexibility since it can be used and modified freely using
only standard Semantic Web tools such as the Protégé editor and the Pellet reasoner9. In
this work an improved representation of directional spatial relations based on decom-
position of relations on each axis is proposed, analogously to the approach proposed for
temporal interval relations in [2].

3 Spatial Representation

Directional relations in this work are represented as object properties between OWL
objects representing points. For example if Point1 if North Of Point2 user as-
serts the binary relation Point1 North Point2, or equivalently North(Point1, Point2).
This approach is similar to the approach used in [1] for directional relations as part
of the SOWL model. In [1] between two points 9 different directional relations (CSD-
9 relations) can be defined, namely North (N), NorthEast (NE), East (E), SouthEast
(SE), South (S), SouthWest (SW), West (W), NorthWest (NW) and Identity, correspond-
ing to cone shaped regions (and the identity relation for identical points) in the two-
dimensional (2D) space presented in Figure 1. This set of relations, known as CSD-9,
is a special case of the modified star calculus presented in [8], when the lines separating
the cone-shaped areas belong to only one of these areas. In this case reasoning over
basic relations is decided by path consistency and it is tractable [8]. Also additional

9 SWRL spatial reasoning rules and CHOROS are available on the Web at:
http://www.intelligence.tuc.gr/prototypes.php

40 S. Batsakis

Fig. 1. Cone Shaped Directional Relations (CSD-9)

relations representing disjunctions of the above 9 relations are introduced in [1], since
these additional relations are required for implementing reasoning rules similar to the
rules proposed in Section 4. This leads to a complicated representation requiring 33
relations and 964 SWRL rules and OWL axioms [1].

Reducing the complexity of representation is necessary in order to improve perfor-
mance and to allow for efficient 3D representation and reasoning. A representation
based on projections on each axis and reasoning over the pairs of relations on these
one-dimensional spaces, instead of cone shaped regions in bi-dimensional space, has
been proposed as well in [1]. Note that this projection based representation has different
semantics than the cone-shaped representation, thus it can not be consider as an alter-
native to it. For example, using the projection based approach, if a point is located far
east relatively to another point and slightly north of it, following the projection based
approach relations East and North will hold at the horizontal and the vertical axis
respectively, thus and the NorthEast relation. Following the cone-shaped approach
only the relation East holds which is conceptually right according to the way humans
usually refer to directional relations.

In this work we follow the cone-shaped approach but relations are decomposed into
two sets of relations, one for the East-West axis (horizontal) and one for the North-South
axis (vertical) is case of 2D representation. Relations on each set are jointly exhaustive
and pairwise disjoint but for each pair of points two relations, one from each set can
hold. For example point A can be North and East of point B corresponding to the
North-East CSD-9 cone-shaped relation.

The basic relations on each set are: North, South, Equal-Vertical and Identical-
Vertical for the first set as presented in Figure 2 and East, West, Equal-Horizontal and
Identical-Horizontal for the second set presented in Figure 3. Lines separating the cone-
shaped regions belong to only one of the adjacent regions. By convention they belong to
the North and South relations in the set of Figure 2 and to the East and West areas
in in case of relations of Figure 3. Also relations Identical-Horizontal and Identical-
Vertical are sub-properties of the Identical property and also equivalent properties.
Furthermore the implementation of the reasoning mechanism from Section 4 requires
the definition of additional properties representing the disjunction of basic ones. These
relations are the Equal-North (representing the fact that a point is equal vertically or

Reasoning over 2D and 3D Directional Relations in OWL: A Rule-Based Approach 41

north of another) and Equal-South (representing the fact that a point is equal vertically
or south of another) in the first set. In the second set the additional relations are Equal-
East and Equal-West representing disjunction of equality with relations East and West
respectively. Notice that, in total 8 basic and 4 additional relations are required for rep-
resentation and reasoning in this work, compared to 9 basic and 33 total relations for
directly implementing 2D cone-shaped CSD-9 relations.

Fig. 2. North-South Relations

Fig. 3. East-West Relations

Additional OWL axioms required for the proposed representation; basic relations
on each set are pairwise disjoint e.g., North is disjoint with South. Also North is
inverse of South and East is inverse of West. Relations Identical-Horizontal and
Identical-Vertical are symmetric. Relations Equal-North, Equal-South are the inverse of

42 S. Batsakis

each other, and the same holds for relations Equal-East and Equal-West. Summarizing,
the proposed representation is conceptually equivalent to the cone-shaped representa-
tion of [1]. By decomposing the relations into two different sets the required number
of relations is reduced to 8 basic relations and 4 additional ones. Between each pair of
points, (in case of regions the points represent their centroid) two basic relations can
hold. Specifically, decomposition of CSD-9 relations into proposed relations is defined
as follows:

NCSD9(x, y) ≡ North(x, y) ∧ Equal–V ertical(x, y)

NECSD9(x, y) ≡ North(x, y) ∧ East(x, y)

ECSD9(x, y) ≡ Equal–Horizontal(x, y) ∧ East(x, y)

SECSD9(x, y) ≡ South(x, y) ∧East(x, y)

SCSD9(x, y) ≡ South(x, y) ∧Equal–V ertical(x, y)

SWCSD9(x, y) ≡ South(x, y) ∧West(x, y)

WCSD9(x, y) ≡ Equal–Horizontal(x, y) ∧West(x, y)

NWCSD9(x, y) ≡ North(x, y) ∧West(x, y)

IdentityCSD9(x, y) ≡ Identical–Horizontal(x, y) ∧ Identical–V ertical(x, y)

4 Spatial Reasoning

Reasoning is realized by introducing a set of SWRL10 rules operating on spatial
relations. Reasoners that support DL-safe rules such as Pellet11 can be used for in-
ference and consistency checking over directional relations. Defining compositions of
relations is a basic part of the spatial reasoning mechanism. Table 1 represents the result
of the composition of two directional relations of Figure 2 (relations North, South,
Equal-Horizontal and Identical-Horizontal, are denoted by “N”,“S”,“EqH”, “IdH”
respectively).

Table 1. Composition Table for North-South Directional Relations

Relations N S EqH IdH

N N N, S,EqH, IdH N,EqH N

S N,S,EqH, IdH S S,EqH S

EqH N,EqH S,EqH N,S,EqH, IdH EqH

IdH N S EqH IdH

Table 2 represents the result of the composition of two directional relation pairs of
Figure 3 (relations East, West, Equal-Vertical and Identical-Vertical, are denoted by
“E”,“W ”,“EqV ”, “IdV ” respectively).

10 http://www.w3.org/Submission/SWRL/
11 http://clarkparsia.com/pellet/

Reasoning over 2D and 3D Directional Relations in OWL: A Rule-Based Approach 43

Table 2. Composition Table for East-West Directional Relations

Relations E W EqV IdV

E E E,W,EqV, IdV E,EqV E

W E,W,EqV, IdV W W,EqV W

EqV E,EqV W,EqV E,W,EqV, IdV EqV

IdV E W EqV IdV

Composition Table can be interpreted as follows: if relationR1 holds between point2
and point1 and relation R2 holds between point3 and point2, then the entry of the Ta-
ble 1 corresponding to line R1 and column R2 denotes the possible relation(s) holding
between point3 and point1. For example if point2 is North of point1 and point3 is
Equal-Horizontal to point1 then point3 is North OR Equal-Horizontal to point1. En-
tries in the above composition tables are determined using the following observation:
composition of two relations corresponds to the addition of two vectors representing the
relative placement of point2 to point1 and point3 to point2 forming angles θ1 and θ2
respectively with the horizontal axis. The resulting vector represents the relative place-
ment of point3 to point1, i.e., the composition of two vectors, as illustrated in Figure 4.
When adding the two vectors the resulting vector forms an angle θ with the horizontal
axis such that θ1 ≤ θ ≤ θ2. Angle θ defines the directional relation between point1 and
point3. Using this observation it can be concluded for example that composing relations
North and Equal-Horizontal yields the disjunction of these two relations as a result.

Fig. 4. Composition Example

A series of compositions of relations may yield relations which are inconsistent with
existing ones (e.g., the above example will yield a contradiction if point3 south of point1
has been also asserted into the ontology). Consistency checking is achieved by ensuring
path consistency by applying formula:

∀x, y, k Rs(x, y) � Ri(x, y) ∩ (Rj(x, k) ◦Rk(k, y))

44 S. Batsakis

representing intersection of compositions of relations with existing relations (symbol ∩
denotes intersection, symbol ◦ denotes composition and Ri, Rj , Rk, Rs denote direc-
tional relations). The formula is applied until a fixed point is reached (i.e., the applica-
tion of the rules above does not yield new inferences) or until the empty set is reached,
implying that the ontology is inconsistent. Implementing path consistency formula re-
quires rules for both compositions and intersections of pairs of relations.

Compositions of relations R1, R2 yielding a unique relation R3 as a result are ex-
pressed in SWRL using rules of the form:

R1(x, y) ∧R2(y, z) � R3(x, z)

The following is an example of such a composition rule:

North(x, y) ∧North(y, z) � North(x, z)

Rules yielding a set of possible relations cannot be represented directly in SWRL since,
disjunctions of atomic formulas are not permitted as a rule head. Instead, disjunctions of
relations are represented using new relations whose compositions must also be defined
and asserted into the knowledge base. For example, the composition of relations North
and Equal-Horizontal (EqH) yields the disjunction of two possible relations (North and
Equal-Horizontal) as a result:

North(x, y) ∧ EqH(y, z)→ (North ∨ EqH)(x, z)

If the relation N EqH represents the disjunction of relations North and EqH, then the
composition of North and EqH can be represented using SWRL as follows:

North(x, y) ∧EqH(y, z)→ N EqH(x, z)

A set of rules defining the result of intersecting relations holding between two points
must also be defined in order to implement path consistency. These rules are of the
form:

R1(x, y) ∧R2(x, y) � R3(x, y)

where R3 can be the empty relation. For example, the intersection of relations North
and South yields the empty relation, and an inconsistency is detected:

North(x, y) ∧ South(x, y) � ⊥

Intersection of relations North and N EqH (representing the disjunction of North
and Equal-Horizontal yields relation North as a result:

North(x, y) ∧N EqH(x, y) � North(x, y)

Thus, path consistency is implemented by defining compositions and intersections of
relations using SWRL rules and OWL axioms for inverse relations as presented in
Section 3.

Another important issue for implementing path consistency is the identification of
the additional relations, such as the above mentioned N EqH relation, that represent

Reasoning over 2D and 3D Directional Relations in OWL: A Rule-Based Approach 45

disjunctions. Specifically the minimal set of relations required for defining compositions
and intersections of all relations that can be yielded when applying path consistency on
the basic relations of Figure 2 is identified. The identification of the additional relations
is required for the construction of the corresponding SWRL rules.

In this work the closure method [3] of Table 3 is applied for computing the minimal
relation sets containing the set of basic relations: starting with a set of relations, inter-
sections and compositions of relations are applied iteratively until no new relations are
yielded forming a set closed under composition, intersection and inverse. Since compo-
sitions and intersections are constant-time operations (i.e., a bounded number of table
lookup operations at the corresponding composition tables is required) the running time
of closure method is linear to the total number of relations of the identified set.

Applying the closure method over the set of basic North-South relations yields a set
containing 7 relations. These are the four basic relations of Figure 2 and the relations
NorthEqualHorizontal (denoted by N EqH), representing the disjunction of relations
North and EqualHorizontal, SouthEqualHorizontal (denoted by S EqH), represent-
ing the disjunction of relations South and EqualHorizontal, and N S EqH IdH or All
denoting the disjunction of all relations. Applying the closure method over the set of
basic South-West relations also yields a set containing 7 relations. These are the four
basic relations of Figure 3 and the relations EastEqualVertical (denoted by E EqV),
representing the disjunction of relations East and EqualVertical, WestEqualVertical
(denoted by W EqV), representing the disjunction of relations West and EqualVerti-
cal, and E W EqV IdV or All denoting the disjunction of all relations.

Table 3. Closure method

Input: Set S of tractable relations
Table C of compositions
WHILE S size changes

BEGIN
Compute C:Set of compositions of relations in S
S=S ∪ C
Compute I:set of intersections of relations in S
S= S ∪ I

END
RETURN S

A reduction to required relations and rules can be achieved by observing that the
disjunction of all basic relations when composed with other relations yields the same
relation, while intersections yield the other relation. Specifically, given that All repre-
sents the disjunction of all basic relations and, Rx is a relation in the supported set then
the following holds for every Rx:

All(x, y) ∧Rx(x, y)→ Rx(x, y)

All(x, y) ∧Rx(y, z)→ All(x, z)

Rx(x, y) ∧ All(y, z)→ All(x, z)

46 S. Batsakis

Since relation All always holds between two points, because it is the disjunction of all
possible relations, all rules involving this relation, both compositions and intersections,
do not add new relations into the ontology and they can be safely removed. Also, all
rules yielding the relation All as a result of the composition of two supported relations
Rx1, Rx2:

Rx1(x, y) ∧Rx2(y, z)→ All(x, z)

can be removed as well. Thus, since intersections yield existing relations and the fact
that the disjunction over all basic relations must hold between two points, all rules in-
volving the disjunction of all basic relations and consequently all rules yielding this
relation can be safely removed from the knowledge base. After applying this optimiza-
tion the required number of axioms for implementing path consistency over the set of
directional relations of Figure 2 or Figure 3 is reduced to 52, while the combined im-
plementation for relations of both Figure 2 and Figure 3 requires 106 axioms and rules,
compared to the 964 axioms and rules required for reasoning over the cone-shaped
directional relations of Figure 1 [1].

Reasoning over CSD-9 relations can be reduced to reasoning over the proposed 2D
relations. This can be proved by decomposing CSD-9 relations into pairs of correspond-
ing 2D relations, composing the resulting relations and checking if the resulting rela-
tions correspond to reasoning over CSD-9 relations using the composition table defined
in [1,8]. All possible CSD-9 compositions are checked in order to establish the equiva-
lence of the representations. Due to space limitations only a composition example will
be provided, but all possible 81 compositions of CSD-9 basic relations can be rede-
fined equivalently. For example the composition of CSD-9 relations N and NE yields
the disjunction of relations N and NE as a result [1]. Specifically:

NCSD9(x, y) ∧NECSD9(y, z)→ NCSD9(x, z) ∨NECSD9(x, z)

Using the proposed representation the composition of the above relations yields the
same result; The corresponding 2D representation as defined in section 3 yields the
compositions of relations North (N) and North (N) of Figure 2 and Equal-Vertical
(EqV), East(E) of Figure 3. Composing these relations using compositions of Table
1 and Table 2 yields the same relation as the direct composition of the CSD-9 relations.
Specifically:

NCSD9(x, y) ∧NECSD9(y, z) ≡ (N(x, y) ∧ EqV (x, y)) ∧ (N(y, z) ∧ E(y, z))
≡ (N(x, y)∧N(y, z))∧(EqV (x, y)∧E(y, z))⇒ N(x, z)∧(EqV (x, z)∨E(x, z))
≡ ((N(x, z)∧EqV (x, z))∨ (N(x, z)∧E(x, z)) ≡ NCSD9(x, z)∨NECSD9(x, z)

Thus, composing the CSD-9 North and NorthEast relations using the corresponding
2D representation of Section 3 is equivalent to the composition defined in [1,8]. This
equivalence also holds for intersections and inverses, thus the two representations are
equivalent. An example of inverse operator, applied on the CSD-9 North relation and
yielding the desired CSD-9 South relation using the equivalent 2D representation is
the following:

NCSD9(x, y) ≡ N(x, y) ∧ EqV (x, y) ≡ S(y, x) ∧ EqV (y, x) ≡ SCSD9(y, x)

Reasoning over 2D and 3D Directional Relations in OWL: A Rule-Based Approach 47

5 Three-Dimensional Representation and Reasoning

Representing points in three dimensional space is achieved by adding a third rela-
tion between two points (in addition to relations of Figure 3 and Figure 2). The ba-
sic relations on this additional set presented in Figure 5 are: Up, Down, Equal-Height
and Identical-Height. Relation Identical-Height and relations Identical-Horizontal and
Identical-Vertical are sub-properties of the Identical property and also equivalent prop-
erties. These relations correspond to cone-shaped regions on a plane that two points
belong, a plane that id perpendicular to the plane that 2D relations of section 3 are de-
fined. The implementation of the reasoning mechanism (as in the 2D case of Section
4) requires the definition of additional properties representing the disjunction of basic
ones. These relations which are detected using the closure method are the Equal-Up
(representing the fact that a point has equal height or is higher than another point) and
Equal-Down (representing the fact that a point has equal height or is lower than another
point). Combined with existing relations for the 2D representation a total of 8 basic and
6 additional relations are required for representation and reasoning for 3D space.

Fig. 5. Up-Down Relations

Table 4 represents the result of the composition of two directional relation pairs
of Figure 3 (relations Up, Down, Equal-Height and Identical-Height, are denoted by
“U”,“D”,“EqHe”, “IdHe” respectively).

Table 4. Composition Table for Up-Down Directional Relations

Relations U D EqHe IdHe

U U U,D,EqHe, IdHe U,EqHe U

D U,D,EqHe, IdHe D D,EqHe D

EqHe U,EqHe D,EqHe U,D,EqHe, IdHe EqHe

IdHe U D EqHe IdHe

Reasoning rules in SWRL implementing path consistency for 3D directional rela-
tions, have been defined as well. These rules are almost identical to the rules presented

48 S. Batsakis

in Section 4, but they apply on properties of Figure 5. Also relation Up is the inverse
of Down and Identical-Height and Equal-Height are symmetric. New relations, rules
and OWL axioms are combined with existing 2D representation requiring a total of 158
axioms and rules for 3D representation and reasoning. These are considerably fewer
than the 964 axioms and rules required for 2D representation using the relations of Fig-
ure 1. Three-dimensional representation using directly an extension of CSD-9 relations,
instead of their decomposition as proposed in the current work, will require thousands
of rules and axioms and it will be impractical.

6 Evaluation

In the following the proposed representation and reasoning mechanism is evaluated
both theoretically and experimentally.

6.1 Theoretical Evaluation

The required expressiveness of the proposed representation is within the limits of OWL
2 expressiveness. Reasoning is achieved by employing DL-safe rules expressed in SWRL
that apply on named individuals in the ontology ABox, thus retaining decidability. Fur-
thermore, since the proposed representation is equivalent to the CSD-9 representation,
reasoning using the polynomial time path consistency algorithm is sound and complete,
as in the case of CSD-9 relations.

Specifically, any point can be related with every other point with two basic direc-
tional relations (one of each set presented in Figures 2 and 3), because relations of each
set are mutually exclusive, between n points, at most 2n(n−1) relations can be asserted
(in case of 3D representation one additional relation belonging to the set presented in
Figure 5 can be also be asserted leading to an upper limit of 3n(n− 1)). Furthermore,
path consistency has O(n5) time worst case complexity (with n being the number of
points). In the most general case where disjunctive relations are supported in addition
to the basic ones, any point can be related with every other point by at most k relations,
where k is the size of the set of supported relations (containing four additional relations
for 2D and six for 3D besides the basic ones). Therefore, for n points, using O(k2)
rules, at most O(kn2) relations can be asserted into the knowledge base.

Applying the closure method over the proposed directional relations the total number
of relations required for 2D representation is 14 (or 12 if the disjunction of all relations
for each set are eliminated as proposed in Section 4) compared to 33 for the representa-
tion presented at [1]. The required number of axioms is 106 compared to 964 at [1]. In
case of 3D representation reasoning the required number of relations is 21 (or 18 after
applying the optimizations proposed in Section 4) and the number of required axioms
and rules is 158.

The O(n5) upper limit for path consistency running time referred to above is ob-
tained as follows: At most O(n2) relations can be added in the knowledge base. At
each such addition step, the reasoner selects 3 variables among n points which corre-
sponds to O(n3) possible different choices. Clearly, this upper bound is pessimistic,
since the overall number of steps may be lower than O(n2) because an inconsistency

Reasoning over 2D and 3D Directional Relations in OWL: A Rule-Based Approach 49

detection may terminate the reasoning process early, or the asserted relations may yield
a small number of inferences. Also, forward chaining rule execution engines employ
several optimizations (e.g., the Rete algorithm employed at the SWRL implementa-
tion of Pellet), thus the selection of appropriate variables usually involves fewer than
O(n3) trials. Nevertheless, since the end user may use any reasoner supporting SWRL,
a worst case selection of variables can be assumed in order to obtain an upper bound
for complexity. Nevertheless retaining control over the order of variable selection and
application of rules yields an O(n3) upper bound for path consistency [5].

6.2 Experimental Evaluation

Measuring the efficiency of the proposed reasoner requires a spatial ontology, thus a
data-set of 200 to 1000 points generated randomly was used for the experimental eval-
uation. Reasoning response times of the spatial reasoning rules are measured as the
average over 5 runs. Pellet 2.2.0 running as a plug-in of Protégé 4.2 was the reasoner
used in the experiments. All experiments run on a PC, with Intel Core 2 Duo CPU at
3.00 GHz, 4 GB RAM, and Windows 8.

Measurements illustrate that the proposed representation offers faster reasoning per-
formance. Measurements over 2D points (using the decomposition to North-South and
East-West relations) of Section 3 and 3D points of Section 5 are presented in Table 5.
They are compared to measurements over the CSD-9 representation of [1]. Since the
number of basic relations of CSD-9 relations is 9 (Figure 1) and because all possible
disjunctions appearing in the supported set must also be supported, the CSD-9 repre-
sentation is particularly involved. On the other hand, the CSD-9 representation requires
only one relation between points while the proposed 2D representation requires two re-
lations between points. Thus, the definition of n directional relations between n points,
requires n assertions in case of CSD-9 relations, 2n in case of the proposed 2D repre-
sentation and 3n in case of the proposed 3D representation. The reasoner will have to
handle 964, 106 and 158 rules and axioms for the CSD-9 and the proposed 2D and 3D
representations respectively.

In the following experiment, we measure the performance of reasoning in the cases of
both the proposed 2D and 3D representations and the CSD-9 based representation, and
their performance is discussed. In all cases, n random points and n random directional
relations between them were asserted (using 2n and 3n assertions in the proposed 2D
and 3D representations respectively), and reasoning times using Pellet are measured.
Measurements of the time required by each approach for producing all inferred relations
from a data set of random points are reported in Table 5. Each entry in the table is the
average over 5 runs of the reasoner corresponding to 5 random instantiations of the
ontology.

The evaluation indicated that the proposed 2D representation clearly outperforms the
CSD-9 based approach, although the number of asserted relations is twice that of the
CSD-9 approach. The proposed representation requires fewer rules and axioms (106)
applied on a largest set of relations (2n) compared to the CSD-9 approach which re-
quires n relation assertions and 964 OWL axioms and SWRL rules. The increased
performance allows for a practical 3D representation and reasoning mechanism with
performance equal to that of CSD-9 bi-dimensional representation.

50 S. Batsakis

Table 5. Average reasoning time for directional relations as a function of the number of points

Number of Reasoning Time (ms)
Points 2D 3D CSD-9

200 299.8 268.6 386.0
400 405.8 685.8 782.4
600 865.2 1099.0 1066.4
800 1053.6 1407.2 1396.4

1000 1526.2 2261.4 2380.2

Summarizing, reasoning over the proposed 2D representation is approximately 30%
faster over the CSD-9 based representation, due to the small number of axioms involved.
This allows for an efficient and compact 3D cone-shaped directional representation and
reasoning mechanism as well. This is the first such representation for 3D directional
relations for the Semantic Web.

7 Conclusions and Future Work

In this work a representation framework for handling directional spatial information in
ontologies is introduced. The proposed framework handles both, 2D and 3D informa-
tion using an inference procedure based on path consistency. The proposed represen-
tation based on decomposition of CSD-9 relations offers increased performance over
existing approaches [1]. Both the proposed and the existing representations are
presented and evaluated.

The proposed representation is fully compliant with existing Semantic Web stan-
dards and specifications which increases its applicability. Being compatible with W3C
specifications the proposed framework can be used in conjunction with existing editors,
reasoners and querying tools such as Protégé and Pellet without requiring specialized
additional software. Therefore, information can be easily distributed, shared and modi-
fied. Directions of future work include the development of real world applications based
on the proposed mechanism. Such applications will combine temporal and topologi-
cal spatial representations with the proposed directional representation and reasoning
mechanism.

Acknowledgement. Research leading to these results has received funding from the
European Community’s Seventh Framework Program (FP7/2007-2013) under grant
agreement No 296170 (Project PortDial).

References

1. Batsakis, S., Petrakis, E.G.M.: SOWL: A Framework for Handling Spatio-Temporal Infor-
mation in OWL 2.0. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 -
Europe. LNCS, vol. 6826, pp. 242–249. Springer, Heidelberg (2011)

Reasoning over 2D and 3D Directional Relations in OWL: A Rule-Based Approach 51

2. Batsakis, S., Stravoskoufos, K., Petrakis, E.G.M.: Temporal Reasoning for Supporting Tem-
poral Queries in OWL 2.0. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett,
R.J., Jain, L.C. (eds.) KES 2011, Part I. LNCS, vol. 6881, pp. 558–567. Springer, Heidelberg
(2011)

3. Renz, J., Nebel, B.: Qualitative Spatial Reasoning using Constraint Calculi. In: Handbook of
Spatial Logics, pp. 161–215. Springer, Netherlands (2007)

4. Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and Logic Programming Live To-
gether Happily Ever After? In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D.,
Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 501–514.
Springer, Heidelberg (2006)

5. Stocker, M., Sirin, E.: PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reasoning and Query
Engine. In: OWLED 2009. CEUR Workshop Proceedings, vol. 529, pp. 2–31 (2009)

6. Katz, Y., Grau, B.: Representing Qualitative Spatial Information in OWL-DL. In: Proc. of Int.
Workshop: OWL Experiences and Directions, Galway, Ireland (2005)

7. Christodoulou, G., Petrakis, E.G.M., Batsakis, S.: Qualitative Spatial Reasoning using Topo-
logical and Directional Information in OWL. In: Proc. of 24th International Conference on
Tools with Artificial Intelligence (ICTAI 2012), (November 7-9, 2012)

8. Renz, J., Mitra, D.: Qualitative Direction Calculi with Arbitrary Granularity. In: Zhang, C.,
Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 65–74.
Springer, Heidelberg (2004)

Grailog 1.0: Graph-Logic Visualization
of Ontologies and Rules

Harold Boley

National Research Council, Security and Disruptive Technologies
University of New Brunswick, Faculty of Computer Science

Fredericton, NB, Canada

Abstract. Directed labeled graphs (DLGs) provide a good starting
point for visual data & knowledge representation but cannot straight-
forwardly represent non-binary relationships, nested structures, and re-
lation descriptions. These advanced features require encoded constructs
with auxiliary nodes and relationships, which also need to be kept sep-
arate from straightforward constructs. Therefore, various extensions of
DLGs have been proposed for data & knowledge representation, includ-
ing n-ary relationships as directed labeled hyperarcs, graph partitionings
(possibly interfaced as complex nodes), and (hyper)arc labels used as
nodes of other (hyper)arcs. Ontologies and rules have used extended log-
ics for knowledge representation such as description logic, object/frame
logic, higher-order logic, and modal logic. The paper demonstrates how
data & knowledge representation with graphs and logics can be recon-
ciled, inspiring flexible name specification. It proceeds from simple to ex-
tended graphs for logics needed in AI and the Semantic Web. Along with
its visual introduction, each graph construct is mapped to its correspond-
ing symbolic logic construct. These graph-logic extensions constitute a
systematics defined by orthogonal axes, which has led to the Grailog 1.0
language aligned with the Web-rule industry standard RuleML 1.0.

1 Introduction

The visualization of data is useful in many areas, and needed for big data.
Visualization, applicable to the entire extraction pipeline, supports knowledge
discovery through data analytics.

This paper is about the graph visualization of data & knowledge for removing
the entry barrier to logic. It proposes to proceed from 1-dimensional symbol-
logic knowledge representation to 2-dimensional graph-logic representation in a
systematic 2D syntax. The developed Graph inscribed logic (Grailog) is mo-
tivated by uniform design, e.g. across: data and knowledge; ontologies and
rules; unary (e.g., class-like), binary, and n-ary relations; as well as atomic and
complex relations (e.g., classes). This will support humans in the loop across
knowledge elicitation, specification, validation, as well as reasoning. The graph
representation is amenable to graph transformation, (‘associative’) indexing and
parallel processing for the efficient implementation of specifications.

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 52–67, 2013.
© Her Majesty the Queen in Right of Canada 2013

Grailog 1.0: Ontologies and Rules 53

Grailog 1.0 is a standard for graph-logic knowledge built as a systematic
combination of visual graph constructs mapped to corresponding symbolic logic
constructs. Since its features are orthogonal (hence freely composable along the
mutually independent axes), it is easy to learn, e.g. for (business) analytics.
Grailog constitutes a generalized-graph framework providing a uniform expres-
sive 2D syntax for major (Semantic Web) logics. Users should be allowed to: pick
a Grailog subset as the target for each knowledge elicitation project; specify and
semantically validate the knowledge in this subset; get it translated to an equiv-
alent RuleML sublanguage for XML validation, transformation, and exchange;
and pose queries to a RuleML engine, via a Grailog interface to RuleML, or
through an alternate implementation of Grailog.

Grailog was designed according to the following principles:
– Graphs should ease human knowledge management by uniformly visualizing

1D notations, from (controlled) natural language to symbolic logic, via
orthogonal 2D constructs supporting (Frege’s principle of) compositionality

– They should be natural extensions (e.g., n-ary) of Directed Labeled Graphs
(DLGs), often used to represent simple semantic nets, i.e. of atomic ground
formulas in function-free dyadic predicate logic; e.g.: binary Datalog ground
facts, RDF triples, Open Graph (https://developers.facebook.com/docs/
opengraph), and Knowledge Graph (http://www.google.com/insidesearch/
features/search/knowledge.html)

– They should allow stepwise DLG refinements for expressive logics: descrip-
tion logic constructions, F-logic frames, PSOA RuleML [Bol11] terms, etc.

To realize these principles, and building on the earlier Directed Recursive La-
belnode Hypergraphs (DRLHs [Bol92]), Grailog 1.0’s standard 2D visualization
syntax is based on the orthogonal combination of three graph generalizations:

Directed hypergraphs: For n-ary relationships, relation-labeled directed
(binary) arcs should be generalized to (n-ary) directed hyperarcs, e.g. repre-
senting relational-database tuples (contrast: undirected hyperarcs [Ber73])

Recursive (hierarchical) graphs: For nested terms and formulas, modal log-
ics, and modularization, ‘flat’ graphs should be generalized to allow other
graphs as complex nodes to any level of nesting ‘depth’

Labelnode graphs: For allowing higher-order logics describing both instances
and relations (predicates), arc labels should also become usable as nodes

Grailog’s above fundamental generalizations will be explained in Sections 2, 3,
and 4. Sections 5, 6, and 7 will augment these for classes, description logic, and
Horn logic. The ‘psoa’ characteristics of slot and tuple hyperarcs centered on
Object IDentifier (OID) nodes as well as psoa rules will follow in Section 8.
All of these Grailog features will be mapped to symbolic logics including a 1D
presentation syntax as well as Hornlog RuleML [BPS10] and PSOA RuleML.

2 Directed Hyperarcs

In Grailog, a graph can have directed n-ary hyperarcs each diagrammed as an
arrow starting with a tail at the 1st node and ending with a head at the nth node,

54 H. Boley

like directed binary arcs (n=2) do, while cutting, in an ordered manner, through
any intermediate 2nd, . . ., (n-1)st nodes. These hyperarcs can be labeled like
binary arcs. The resulting hypergraph diagrams unambiguously distinguish the
hyperarcs of arrow crossings by following the trajectory of each arrow as done for
binary arcs, thus avoiding the need for a half-circle symbol for non-connecting
(hyper)arcs. Figs. 1-5 illustrate this by proceeding, as a normalization sequence,
from hyperarc crossings to node copies. All figures visually represents the sym-
bolic (controlled) English sentences “John shows Latin to Kate.
Mary teaches Latin to Paul.” They use layout variants of a directed hy-
pergraph consisting of two 3-ary hyperarcs, one for each sentence.

The connected nodes John, Latin, Kate, etc. are unique names denoting
different entities (implicit disequality). Section 3 will complement these with
node labels for non-unique names which may be (explicitly) equated.

Fig. 1 enlarges the only intermediate (2nd) node, Latin, to facilitate its shared,
‘crossing’ use by the Show- and Teach-labeled hyperarc arrows, which also helps
in (naive) DLG approximation and correlates with degree centrality.

Fig. 1. Distinguishing showing and teaching via hyperarcs crossing inside Latin node

Fig. 2 moves the hyperarc crossing out of the Latin node, making the hyper-
graph look more (DLG-)familiar. It keeps the DLG approximation for contrast.

Fig. 2. Distinguishing showing and teaching via hyperarcs crossing outside Latin node

Grailog 1.0: Ontologies and Rules 55

Fig. 3 disentangles the hyperarcs, illustrating that, graph-theoretically, the
hyperarc for, e.g., the ternary Show(John,Latin,Kate) can be seen as the path
composition of the arcs for the two binary Show(John,Latin) and to(Latin,Kate).
The DLG, diagrammed with swapped Kate and Paul nodes, would be able to
capture this if, e.g., different colors were used for the arcs on each path.

Fig. 3. Distinguishing showing and teaching via disentangled hyperarcs

Fig. 4 gives the correct (but verbose) DLG representation, highlighting the
advantages of directed n-ary hyperarcs for n>2: avoiding reification of n-ary
relationships and “structural links” [Woo07]. But Grailog also allows DLGs as a
special case, can reify labels as nodes (cf. Section 4), and visualizes OID-centered
frames with slots usable instead of positional relation arguments (cf. Section 8).

Fig. 4. Distinguishing showing and teaching also with DLG arcs

56 H. Boley

Fig. 5 splits the Latin node to facilitate the mapping of the hypergraph to
a symbolic logic representation with two atomic formulas (relationships) using
the 3-ary predicates Show and Teach. Both Latin occurrences remain one node
even after copying: Occurrences having the same unique name can be merged.

Fig. 5. Copying Latin node for correspondence to symbolic logic

In the RuleML family [BPS10] of logics, the conjunction of the Show and
Teach atomic formulas for assertions is reflected by a <Rulebase> containing
two <Atom>s. An alternate, special-purpose Order-Labeled Tree visualization
and the RuleML/XML serialization for such atomic ground facts are introduced
in the RuleML Primer (http://ruleml.org/papers/Primer).

3 Complex Nodes

In Grailog, a graph besides elementary nodes can have complex nodes each drawn
as an enclosing box containing another graph, which can again have complex
nodes etc., down to any level of nesting. Complex nodes constitute the nat-
ural construct for knowledge modularization and for (epistemic) modal logic
(cf. http://www.cs.unb.ca/~boley/talks/RuleMLGrailog.pdf). The (conjunctive,
disjunctive, . . .) contents of complex nodes is amenable to (And-/Or-/. . .)parallel
processing. There are different kinds of enclosing boxes which can be combined
along three orthogonal axes. For example, the explicit logical “∧” symbol in Fig.
5 of Section 2 can be reflected in Grailog by a box with a conjunctive line style.

The first axis distinguishes logical connectives using line styles solid vs.
dashed and, again orthogonally, linear vs. wavy. Figs. 6-8 illustrate this
connective axis with conjunction, negation (of one or more conjuncts), and dis-
junction. Here, the node labels WB, GE, JS, and VW (in the symbolic logic pre-
fixed with a vertical bar) are non-unique names for the individuals Warren
Buffett, General Electric, Joe Smallstock, and Volkswagen, respectively; e.g.,
Joe Smallstock’s node, labeled JS, could carry a second label, JoeS. Such la-
bels graph-theoretically and logically complement the nodes as unique names
of Section 2. Refining the global (Non-)Unique Name Assumption, Grailog
thus combines occurrence-specific Unique Name Specification (UNS) and

Grailog 1.0: Ontologies and Rules 57

Non-unique Name Specification (NNS) to flexible Name Specification
(xNS, with x = U or N).

Fig. 6 introduces the general case and an Invest example for a (solid+linear)
positive conjunction. While conjunction is implicit on the top-level of Grailog
graphs, enclosing boxes must be made explicit for embedded conjunctions. A
node like US$ 3·109 exemplifies UNS for string-like data, e.g. RDF literals [Bol01].

Fig. 6. General conjunction complex node with investment example

Fig. 7 shows a Nand, i.e. a (dashed+linear) negative conjunction, which can
be regarded as a shorthand for the nesting of a (dashed+linear) negation over
the complex node of a (solid+linear) conjunction.

Fig. 8 gives a (solid+wavy) positive disjunction. This could also be used inside
a negation to achieve a Nor, i.e. a (dashed+wavy) negative disjunction.

The second axis concerns the corners of boxes, which can be pointed vs.
snipped vs. rounded to, respectively, quote/copy vs. reify/instantiate vs. evalu-
ate contents. The rectoval complex nodes in Figs. 12 and 13 are pointed (inward)
to indicate that their contents is to be quoted (unchanged). The snipangle vari-
able nodes in Figs. 14 and 18 are snipped to indicate they should be instantiated
(dereferenced). The roundangle complex nodes in Figs. 6-8 are rounded to indi-
cate evaluation of their contents, as needed for queries (rather than assertions).

The third axis varies the rectangle-derived shapes of boxes, which can be
composed from sides that are straight vs. concave vs. convex for, respectively,
neutral vs. functional vs. relational contents. The nodes in Figs. 6-8 use
(function/relation-)neutral straight sides. Functional nodes use two or four con-
cave sides (cf. http://www.cs.unb.ca/~boley/talks/RuleMLGrailog.pdf). Rela-
tion applications use two convex sides, relations as in Figs. 12 and 13 use four.

58 H. Boley

Fig. 7. General Nand complex node with investment example

Fig. 8. General disjunction complex node with investment example

Grailog 1.0: Ontologies and Rules 59

Fig. 9 summarizes the Grailog systematics for the second and third axes of
corners and shapes, where all matrix cells are filled due to orthogonality.

Fig. 9. Node systematics for box corners and shapes from Rectangle to Roundoval

4 Labelnodes

In Grailog, a graph can have labelnodes which act as node-reified (hyper)arc
labels when diagrammed as a special 0th node starting a (hyper)arc arrow in
which this label-as-node is followed by the n regular nodes. A labeled (hyper)arc
as in Section 2 can thus be normalized by moving the predicate name from the
arrow-labeling position to the extended arrow’s 0th label-as-node position.

Fig. 10 introduces the general normalization of predicate labels on hyperarcs
to labelnodes starting hyperarcs and exemplifies this with the Invest hyperarc.

Once a first-order predicate is diagrammed as a labelnode, second-order pred-
icates can be applied to it. For example, the second-order predicate Inverse is
applicable to the labelnodes Invest and Accept, Inverse(Invest,Accept), so
that Accept(|GE,|WB,US$ 3·109) is inferable in such a higher-order logic.

5 Classes

Types or classes (sometimes also called ‘concepts’ or ‘categories’) are crucial
for modeling because the typing of an instance or its membership in a class

60 H. Boley

Fig. 10. General labelnode normalization with investment example

makes the instance amenable to classification also by higher levels of a taxonomy
(i.e., an ontology consisting only of a class/generalization tree/hierarchy or
DAG/heterarchy). Logically, such classes can be seen as predicates of arity n=1.
Hence the labelnode normal form of hyperarcs in Section 4 (with n=1) is a nat-
ural means for stating membership, where the label-as-node is the class and the
single argument node is the instance.

Fig. 11 introduces general typing and gives a Billionaire membership ex-
ample; the unary hyperarc can also be viewed as an arc with label HasInstance.

6 Description Logic Constructions

Description logic permits the (intensional) construction of classes from other
classes, without need for naming constructed classes. Constructions, complex
nodes in Grailog, may use Boolean constructors or class-property restrictions.

Fig. 12 introduces class intersection and shows the option of applying the
constructed class to an instance (exactly like for atomic classes in Section 5,
because of compositionality). It also gives an example of such a membership in
a class constructed by 3-way intersection. While most description logics make
the Non-unique Name Assumption, Grailog uses xNS, here UNS (cf. Section 3).

Class union and complement are analogous, where the three Boolean class
constructors vary in line styles exactly like the logical connectives in Section 3.

Fig. 13 introduces existential class-property restriction and shows its optional
application to an instance that has the same property, binrel. It also gives
an example of such a membership. The upper part is a kind of schema, where
the Top class becomes specialized to have a (multi-valued) attribute/property,
Substance, with at least one value typed by class Physical.

Grailog 1.0: Ontologies and Rules 61

Fig. 11. General typing with billionaire example

Fig. 12. General intersection with billionaire++ example used for typing

62 H. Boley

Fig. 13. General existential restriction with substance example used for typing

Universal class-property restriction is the dual of the existential one.
This Description Grailog for ontologies can benefit from, and contribute to,

Protégé visualization plug-ins for OWL ontologies such as Jambalaya/OntoGraf
and OWLViz. A preliminary Grailog case study in Cognitive Science was done,
via a course (https://www.ict.tuwien.ac.at/lva/Boley_LFCS/index.html), using
earlier versions of Grailog ontologies (related: [HSTC11]) and rules (cf. Section
7), to be updated for Grailog 1.0 and extended by frames (cf. Section 8).

7 Horn Logic Clauses

Horn logic permits the assertion of definite clauses (facts and rules). Section 2
has shown how an atomic formula (applying a predicate to n arguments) can
be asserted as a fact. A rule derives an atomic head formula from an atomic
or conjunctive body of such formulas. Horn Grailog specializes to function-free
(Datalog) Grailog. For an earlier hyperarc visualization of Datalog see [Bol01].

Fig. 14 introduces 2-conjunct Datalog rules and gives an Invest/Trust ex-
ample, where variables are distinguished via hatching. It says: “If WB invests
in some entity Y any amount A and JS trusts Y, then JS invests in
Y the amount US$ 5·103.” Generalization to m-premise rules is done with
the m-conjunct box shown in Fig. 6 of Section 3. While Horn logic programming
(e.g., Prolog) usually makes the global Unique Name Assumption, Grailog’s xNS
here becomes NNS for WB plus JS and UNS for US$ 5·103 (cf. Section 3).

Fig. 15 shows a RuleML/XML serialization of the example, proposing an
attribute unique with value "no" for NNS, and "yes" for UNS as the default.

Datalog can be easily extended to Horn logic by allowing function applications
(cf. Fig. 9 of Section 3), i.e. complex terms, as arguments to predicates.

Grailog 1.0: Ontologies and Rules 63

Fig. 14. 2-premise Datalog rule with investment-imitation example

Fig. 15. Datalog RuleML/XML for the investment-imitation example

64 H. Boley

While Fig. 14 uses hyperarc labels as a shorthand, Fig. 10 of Section 4
shows their labelnode normalization. Compositionality will then allow replacing,
e.g., Invest with a 3-ary description as a λ-construction from other predicates,
visualizing the Lambda definitions of Functional RuleML (http://ruleml.org/fun):
Invest = λ(X,Y,A) (Pay(X,Y,A)∧ ∃(E) (Expect(X,Y,E)∧ Benefit(E,X))).

8 Frames, Positional-Slotted Terms, and Psoa Rules

Frames of F-logic, W3C RIF, and PSOA RuleML, which can be regarded as
‘logical records’, associate slots with an OID-distinguished instance.

Fig. 16 introduces frames and gives a Philosopher sample fact whose OID
Socrates is associated with a Substance and a Teaching slot.

Fig. 16. General frame with philosopher example

Positional-slotted (psoa) terms [Bol11] can also associate tuples with an OID.
Note that both slots and tuples use a bullet at the beginning of the arrow to
distinguish their bullet-attached start node as playing the role of the OID.

Fig. 17 introduces single-tuple psoa terms and adds a lifetime tuple to the
two slots of the Philosopher sample fact.

Psoa rules [Bol11] can be defined over psoa terms using existential OID vari-
ables in rule heads, which lead to new OID constants in derived psoa (e.g., frame)
ground facts. PSOA RuleML provides such clauses via its PSOATransRun ref-
erence implementation (http://wiki.ruleml.org/index.php/PSOA_RuleML).

Fig. 18 adapts, from [Bol11], the psoa rule for deriving family frames based
on two relational facts, where the shorthand ?i is used for a head-existential
variable ?i: ?1#family(. . .) = Exists ?1 (?1#family(. . .)). The rule says:
“If ?Hu is married with ?Wi and ?Hu or ?Wi has kid ?Ch, then there
exists a family OID ?1 with husb ?Hu, wife ?Wi, and child ?Ch.”

Grailog 1.0: Ontologies and Rules 65

Fig. 17. Single-tuple psoa term with extended philosopher example

Fig. 18. Psoa family example with given relationships and rule

Fig. 19 shows the frame fact deduced from the relational facts by the psoa rule,
where o is a new OID constant. Family frames can thus be derived ‘on demand’.
Conversely, a rule as in Fig. 18 is inducible from Fig. 19-like facts via association
psoa-rule mining. A general psoa variant of the rule could keep the variables in
the husb and wife slots positional, as in the relational married fact, and use
only one (multi-valued) child slot: ?1#family(?Hu ?Wi child->?Ch) :-

66 H. Boley

Fig. 19. Ground facts (given: relational, derived: frame) modeling family semantics

9 Conclusions

This paper discusses Grailog 1.0, which incorporates feedback on earlier versions.
Grailog 1.0 introduces a novel box & arrow systematics using orthogonal features,
including flexible name specification (xNS). The paper’s focus is on intertranslat-
ing graphs with a symbolic-logic presentation syntax and RuleML/XML. Grailog
use cases range from cognition to technology to business. The processing of the
earlier Grailog-like DRLHs was studied in Lisp, FIT, and Relfun. This is now
aligned with the Web-rule industry standard RuleML. Grailog has been serving
as a vehicle for making central (description- and Horn-)logical notions of ontolo-
gies and rules accessible to newcomers to AI and the Semantic Web. The Grailog
Initiative (http://wiki.ruleml.org/index.php/Grailog) is exploring Grailog in Hy-
perGraphDB [Ior10], subsets, extensions, and use cases. E.g., box-boundary and
arrow thickness can uniformly indicate relevance, with a ‘tooltip’ showing its
(e.g., numerical) value, while an overt arrow label can indicate certainty.

The comparison of Grailog with other graph formalisms can build on DRLH
[Bol92] comparisons. For Conceptual Graphs (CGs) [CM09], interoperation may
be attempted, since a symbolic version of CGs, CGIF, was already compared with
RuleML (http://philebus.tamu.edu/pipermail/cl/2010-October/002179.html),
which acts as a symbolic version of Grailog. Since (model-theoretic) semantics
is usually associated with symbolic presentation syntax (e.g., [Bol11]), Grailog’s
semantics is reached via graph-to-symbolic mapping. It will be interesting to
apply semantic interpretations directly to Grailog graphs.

A Grailog tool library should be realized, e.g. for graph indexing and querying,
graph transformations (normal form, typing homomorphism, merge, etc.), and
advanced graph-theoretical operations (e.g., path tracing), exploiting possible
parallelism. A Grailog structure editor should be developed, e.g. supporting auto-
specialize of neutral application/operator boxes for functions or relations, and a
“highlight & visualize” for regions of large symbolic Grailog documents.

Grailog 1.0: Ontologies and Rules 67

Stereo displays allow us to further proceed from the 2-dimensional (planar)
Grailog 1.0 to a 3-dimensional (spatial) version, making Grailog data & knowl-
edge 3D-visitable and -tangible for human analysts. Bidirectional 1D-2D-3D
transitions between (zoomed) highlighted regions may themselves be visualized.

Acknowledgements. Thanks to Dietmar Dietrich for ICT invitations. Also, to
students of my course “Logical Foundations of Cognitive Science”, triggering early
Grailog development (https://www.ict.tuwien.ac.at/lva/Boley_LFCS/index
.html), and to students of “Semantic Web Techniques” for feedback on the Grailog
versions since 2008. In particular, I thank the 2012 class, where Grailog subsets
were implemented by Teams 1 and 8 (http://www.cs.unb.ca/~boley/cs6795swt/
fall2012projects.html). Many thanks go to the colleagues at the venues of earlier
Grailog presentations for Q & A discussions (http://www.cs.unb.ca/~boley/talks
/RuleMLGrailog.pdf). Thanks also to the RuleML Steering Committee for en-
couraging Grailog-RuleML co-development, and to Gen Zou, Borislav Iordanov,
and the RuleML 2013 reviewers for suggestions on this paper. I am grateful to
Duncan Stewart for the inspiring NRC SDTech environment. Finally, NSERC is
thanked for support through Discovery Grants.

References

[Ber73] Berge, C.: Graphs and Hypergraphs. North Holland (1973)
[Bol92] Boley, H.: Declarative Operations on Nets. In: Lehmann, F. (ed.) Semantic

Networks in Artificial Intelligence. Computers & Mathematics with Applica-
tions, vol. 23, pp. 601–637. Pergamon Press (1992)

[Bol01] Boley, H.: Relationships Between Logic Programming and RDF. In: Kowal-
czyk, R., Loke, S.W., Reed, N.E., Graham, G. (eds.) PRICAI 2000 Work-
shop Reader. LNCS (LNAI), vol. 2112, pp. 201–218. Springer, Heidelberg
(2001)

[Bol11] Boley, H.: A RIF-Style Semantics for RuleML-Integrated Positional-
Slotted, Object-Applicative Rules. In: Bassiliades, N., Governatori, G.,
Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 194–211.
Springer, Heidelberg (2011)

[BPS10] Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: The Overarching Specifi-
cation of Web Rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.)
RuleML 2010. LNCS, vol. 6403, pp. 162–178. Springer, Heidelberg (2010)

[CM09] Chein, M., Mugnier, M.-L.: Graph-Based Knowledge Representation.
Springer (2009)

[HSTC11] Howse, J., Stapleton, G., Taylor, K., Chapman, P.: Visualizing Ontologies:
A Case Study. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein,
A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS,
vol. 7031, pp. 257–272. Springer, Heidelberg (2011)

[Ior10] Iordanov, B.: HyperGraphDB: A Generalized Graph Database. In: Shen,
H.T., Pei, J., Özsu, M.T., Zou, L., Lu, J., Ling, T.-W., Yu, G., Zhuang,
Y., Shao, J. (eds.) WAIM 2010. LNCS, vol. 6185, pp. 25–36. Springer,
Heidelberg (2010)

[Woo07] Woods, W.A.: Meaning and Links. AI Magazine 28(4), 71–92 (2007)

Modeling Stable Matching Problems

with Answer Set Programming�

Sofie De Clercq1, Steven Schockaert2, Martine De Cock1, and Ann Nowé3

1 Dept. of Applied Math., CS & Stats, Ghent University, Ghent, Belgium
{SofieR.DeClercq,Martine.DeCock}@ugent.be

2 School of Computer Science & Informatics, Cardiff University, Cardiff, UK
S.Schockaert@cs.cardiff.ac.uk

3 Computational Modeling Lab, Vrije Universiteit Brussel, Brussels, Belgium
ANowe@vub.ac.be

Abstract. The Stable Marriage Problem (SMP) is a well-known match-
ing problem first introduced and solved by Gale and Shapley [7]. Several
variants and extensions to this problem have since been investigated to
cover a wider set of applications. Each time a new variant is considered,
however, a new algorithm needs to be developed and implemented. As
an alternative, in this paper we propose an encoding of the SMP using
Answer Set Programming (ASP). Our encoding can easily be extended
and adapted to the needs of specific applications. As an illustration we
show how stable matchings can be found when individuals may designate
unacceptable partners and ties between preferences are allowed. Subse-
quently, we show how our ASP based encoding naturally allows us to
select specific stable matchings which are optimal according to a given
criterion. Each time, we can rely on generic and efficient off-the-shelf
answer set solvers to find (optimal) stable matchings.

1 Introduction

The Stable Marriage Problem (SMP) is a matching problem first introduced and
solved by Gale and Shapley [7]. Starting from (i) a set of n men and n women,
(ii) for each man a ranking of the women as preferred partners, and (iii) for
each woman a ranking of the men as preferred partners, the SMP searches for
a set of n couples (marriages) such that there are no man and woman who are
in different marriages but both prefer each other to their actual partners. Such
a man and woman are called a blocking pair and a matching without blocking
pairs forms a stable set of marriages. Due to its practical relevance, countless
variants on the SMP have been investigated, making the problem assumptions
more applicable to a wider range of applications, such as kidney-exchange [12]
and the hospital-resident problem [18]. Recently Roth and Shapley won the
Nobel Prize for Economics for their theory of stable allocations and the practice
of market design, work that has directly resulted from an application of the SMP.

� This research was funded by a Research Foundation-Flanders project.

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 68–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Modeling SMP with ASP 69

In the literature, typically each time a new variant on the SMP is considered,
a new algorithm is developed (see e.g. [10,13,20]). In this paper, we propose to
use Answer Set Programming (ASP) as a general vehicle for modeling a large
class of extensions and variations of the SMP. We show how an ASP encoding al-
lows us to express in a natural way ties in the preferences of men and women, as
well as unacceptability constraints (where certain people prefer to remain single
over being coupled to undesirable partners). Furthermore, we illustrate how we
can use our ASP encoding to find stable matchings that are optimal according
to a certain criterion. Although the SMP has been widely investigated, and effi-
cient approximation or exact algorithms are available for several of its variants
(see e.g. [20]), to the best of our knowledge, our encoding offers the first ex-
act implementation to find sex-equal, minimum regret, egalitarian or maximum
cardinality stable sets for SMP instances with unacceptability and ties.

The paper is structured as follows. In Section 2 we give some background
about the SMP and ASP. We introduce our encoding of the SMP with ASP and
prove its correctness in the third section. In Section 4, we extend our encoding
enabling it to find optimal stable sets. We explore several notions of optimality
for stable matchings and show how optimal stable matchings can be found by
solving the corresponding disjunctive ASP program. Finally we draw our con-
clusions. This paper contains only sketches of the proofs; a version of the same
name, with additional examples and proofs, has been submitted on arXiv.org1.

2 Background

2.1 The Stable Marriage Problem

To solve the standard SMP, Gale and Shapley [7] constructed an iterative al-
gorithm —known as the Gale-Shapley algorithm, G-S algorithm or deferred-
acceptance algorithm— to compute a particular solution of an SMP instance.
The algorithm works as follows: in round 1 every man proposes to his first choice
of all women. A woman, when being proposed, then rejects all men but her first
choice among the subset of men who proposed to her. That first choice becomes
her temporary husband. In the next rounds, all rejected men propose to their
first choice of the subset of women by whom they were not rejected yet, re-
gardless of whether this woman already has a temporary husband. Each woman,
when being proposed, then rejects all men but her first choice among the subset
of men who just proposed to her and her temporary mate. This process contin-
ues until all women have a husband. This point, when everyone has a partner,
is always reached after a polynomial number of steps and the corresponding
set of marriages is stable [7]. It should be noted, however, that only one of the
potentially exponentially many stable matchings is found in this way. We for-
mally define the SMP and introduce two variants that will be considered in this
paper. We denote a set of men as M = {m1, . . . ,mn} and a set of women as
W = {w1, . . . , wp}, with n = p for the classical SMP. A set of marriages is a set
of man-woman pairs such that all men and women occur in just one pair.

1 arxiv.org/pdf/1302.7251.pdf

arxiv.org/pdf/1302.7251.pdf

70 S. De Clercq et al.

Definition 1 (Classical SMP). An instance of the classical SMP is a pair
(SM , SW), with SM = {σ1

M , . . . , σn
M} and SW = {σ1

W , . . . , σn
W } sets of permuta-

tions of the integers 1, . . . , n. The permutations σi
M and σi

W are the preferences
of man mi and woman wi respectively. If σ

i
M (j) = k, we say that woman wk is

the jth most preferred woman for man mi, and similarly for σi
W (j) = k. Man

m and woman w form a blocking pair in a set of marriages S if m prefers w to
his partner in S and w prefers m to her partner in S. A solution of an instance
is a stable set of marriages, i.e. a set of marriages without blocking pairs.

A first variant of the classical SMP allows men and women to point out unac-
ceptable partners by not including them in their preference list. The number of
men n can differ from the number of women p since men and women can remain
single. A set of marriages is a set of singles (i.e. persons paired to themselves)
and man-woman pairs such that all men and women occur in just one pair.

Definition 2 (SMP with unacceptability). An instance of the SMP with
unacceptability is a pair (SM , SW), SM = {σ1

M , . . . , σn
M}, and SW = {σ1

W , . . .,

σp
W }, with each σi

M a permutation of a subset of {1, . . . , p} and each σj
W a

permutation of a subset of {1, . . . , n}. If σi
M (j) = k, woman wk is the jth most

preferred woman for man mi, and similarly for σi
W (j) = k. If there is no l such

that σi
M (l) = j, woman wj is an unacceptable partner for man mi, and similarly

for no l such that σi
W (l) = j. A person x forms a blocking individual in a set of

marriages S if x prefers being single to being paired with his or her partner in
S. A solution of an instance is a stable set of marriages, i.e. a set of marriages
without blocking pairs or individuals.

The length of the permutation σi
M is denoted as |σi

M |. A stable matching for an
SMP instance with unacceptability always exists and can be found in polynomial
time [22] by a slightly modified G-S algorithm.

Example 1. Suppose M = {m1,m2,m3}, W = {w1, w2, w3, w4}, SM = {σ1
M =

(4, 1, 3), σ2
M = (3, 2), σ3

M = (1, 3)} and SW = {σ1
W = (1, 3), σ2

W = (2), σ3
W =

(3, 2), σ4
W = (2, 1)}. Hence woman w1 prefers man m1 to man m3 while man m2

is unacceptable. In this setting, there is exactly one stable set of marriages [22]:
{(m1, w4), (m2, w3), (m3, w1), (w2, w2)}. Thus woman w2 stays single.

The second variant of the SMP allows unacceptability and ties, i.e. the prefer-
ences do not have to be strict. For this variant there are several ways to define
stability, but we will use the notion of weak stability [11].

Definition 3 (SMP with unacceptability and ties). An instance of the
SMP with unacceptability and ties is a pair (SM , SW), SM = {σ1

M , . . . , σn
M} and

SW = {σ1
W , . . . , σp

W }. For every i ∈ {1, . . . , n}, σi
M is a list of disjoint subsets of

{1, . . . , p}. Symmetrically σi
W is a list of disjoint subsets of {1, . . . , n} for every

i ∈ {1, . . . , p}. We call σi
M and σi

W the preferences of man mi and woman wi

respectively. If k ∈ σi
M (j), woman wk is in man mi’s jth most preferred group

of women. All the women in that group are equally preferred by mi. The case
k ∈ σi

W (j) is similar. If there is no l such that j ∈ σi
M (l), woman wj is an

Modeling SMP with ASP 71

unacceptable partner for man mi, and similar for no l such that j ∈ σi
W (l). For

every k in the set2 σi
M (|σi

M |), man mi equally prefers staying single to being
paired to woman wk, and symmetrically for the preferences of a woman wi. This
is the only set in σi

M that might be empty, and similar for σi
W . Man m and

woman w form a blocking pair in a set of marriages S if m strictly prefers w
to his partner in S and w strictly prefers m to her partner in S. A blocking
individual in S is a person who stricly prefers being single to being paired to his
partner in S. A solution of an instance is a weakly stable set of marriages, i.e.
a set of marriages without blocking pairs or individuals.

A weakly stable matching always exists for an instance of the SMP with un-
acceptability and ties and it can be found in polynomial time by arbitrarily
breaking the ties [14]. However, as opposed to the previous variant, the num-
ber of matched persons is no longer constant for every stable set in this variant.
Note that the setting of Definition 3 generalizes the setting of Definition 2, which
generalizes the setting of Definition 1. We introduce the notations

acceptableiM = σi
M (1) ∪ σi

M (2) ∪ . . . ∪ σi
M (|σi

M | − 1)︸ ︷︷ ︸
= preferred i

M

∪ σi
M (|σi

M |)︸ ︷︷ ︸
= neutraliM

Furthermore unacceptableiM = {1, . . . , p} \ acceptableiM . We define the ordening
≤mi

M on {wj | j ∈ acceptableiM}∪{mi} as x ≤mi

M y iff mi prefers person x at least
as much as person y. The strict ordening <mi

M is defined in the obvious way and

analogous notations are used for σj
W .

Example 2. Suppose M = {m1, m2}, W = {w1, w2, w3, w4} and SM = {σ1
M

= ({1, 3}, {4}), σ2
M = ({2, 3}, {})}. Hence man m1 prefers women w1 and w3 to

woman w4. There is a tie between woman w1 and w3 as well as between woman
w4 and staying single. Woman w2 is unacceptable for man m1. Man m2 prefers
woman w2 and w3 to staying single, but finds w1 and w4 unacceptable. It holds
that w1 <m1

M m1, i.e. m1 prefers marrying w1 over staying single, acceptable1M =
{1, 3, 4}, preferred1

M = {1, 3}, neutral1M = {4} and unacceptable1M = {2}.

2.2 Answer Set Programming

Answer Set Programming or ASP is a form of declarative programming [2]. Its
transparence, elegance and ability to deal with ΣP

2 -complete problems make it an
attractive method for solving combinatorial search and optimization problems.
An ASP program is a finite collection of first-order rules

A1 ∨ . . . ∨ Ak ← B1, . . . , Bm, not C1, . . . , not Cn

with A1, . . . , Ak, B1, . . . , Bm, C1, . . . , Cn predicates. The semantics are defined
by the ground version of the program, consisting of all ground instantiations of
the rules w.r.t. the constants that appear in it (see e.g. [2] for a good overview).
This grounded program is a propositional ASP program. The building blocks of
these programs are atoms, literals and rules. The most elementary are atoms,

2 |σi
M | denotes the length of the list σi

M .

72 S. De Clercq et al.

which are propositional variables that can be true or false. A literal is an atom
or a negated atom. Beside strong negation, ASP uses a special kind of negation,
namely negation-as-failure (naf), denoted with ‘not’. For a literal a we call ‘not a’
the naf-literal associated with a. The extended literals consist of all literals and
their associated naf-literals. A disjunctive rule has the following form

a1 ∨ . . . ∨ ak ← b1, . . . , bm, not c1, . . . , not cn

where a1, . . . , ak, b1, . . . , bm, c1, . . . , cn are literals from a fixed set L, determined
by a fixed set A of atoms. We call a1 ∨ . . . ∨ ak the head of the rule while the
set of extended literals b1, . . . , bm, not c1, . . ., not cn is called the body. The rule
above intuitively encodes that a1, a2, . . . or ak is true when we have evidence
that b1, . . . , bm are true and we have no evidence that at least one of c1, . . . , cn
are true. When a rule has an empty body, we call it a fact ; when the head is
empty, we speak of a constraint. A rule without occurrences of not is called a
simple disjunctive rule. A simple disjunctive ASP program is a finite collection
of simple disjunctive rules and similarly a disjunctive ASP program P is a finite
collection of disjunctive rules. If each rule head consists of at most one literal,
we speak of a normal ASP program.

We define an interpretation I of a disjunctive ASP program P as a subset of
L. An interpretation I satisfies a simple disjunctive rule a1∨. . .∨ak ← b1, . . . , bm
when a1 ∈ I ∨ . . .∨ ak ∈ I or {b1, . . . , bm} �⊆ I. An interpretation which satisfies
all rules of a simple disjunctive program is called a model of that program. An
interpretation I is an answer set of a simple disjunctive program P iff it is a
minimal model of P , i.e. no strict subset of I is a model of P [9]. The reduct PI of
a disjunctive ASP program P w.r.t. an interpretation I is defined as the simple
disjunctive ASP program PI = {a1 ∨ . . . ∨ ak ← b1, . . . , bm | (a1 ∨ . . . ∨ ak ←
b1, . . . , bm, not c1, . . . , not cn) ∈ P , {c1, . . . , cn} ∩ I = ∅}. An interpretation I of
a disjunctive ASP program P is an answer set of P iff I is an answer set of PI .

Example 3. Let P be the ASP program with the following 4 rules:

man(john)←, person(john)←, person(fiona)←
woman(X) ∨ child(X)← person(X), notman(X)

The last rule is grounded to 2 rules in which X is resp. replaced by john and
by fiona. We check that the interpretation I = {man(john), woman(fiona),
person(john), person(fiona)} is an answer set of the ground version of P
by computing the reduct. The grounded rule with X = john is deleted since
man(john) is in I. The reduct PI is:

man(john)←, person(john)←, person(fiona)←
woman(fiona) ∨ child(fiona)← person(fiona)

The first 3 rules are facts, hence their heads will be in any answer set. The fourth
rule encodes that any person who is not a man, is a woman or child. It is clear
that I is a minimal model of this simple program, so I is an answer set of P . By
replacing woman(fiona) by child(fiona) in I, another answer set is obtained.

Modeling SMP with ASP 73

To automatically compute the answer sets of the programs in this paper,
we have used the ASP solver DLV3, due to its ability to handle predicates,
disjunction and numeric values (with some built-in aggregate functions). The
numeric values are only used for grounding.

3 Modeling the Stable Marriage Problem in ASP

In this section we model variations and generalizations of the SMP with ASP.
A few proposals of using nonmonotonic reasoning for modeling the SMP have
already been described in the literature. For instance in [19] a specific variant of
the SMP is mentioned (in which boys each know a subset of a set of girls and
want to be matched to a girl they know) and in [4] an abductive program is
used to find a stable set of marriages in which two fixed persons are paired, with
strict, complete preference lists. To the best of our knowledge, beyond a few spe-
cific examples, no comprehensive study has been made of using ASP or related
paradigms in this context. In particular, the generality of our ASP framework for
weakly stable sets of SMP instances with unacceptablity and/or ties is a signifi-
cant advantage. The expression accept(m,w) denotes that a manm and a woman
w accept each other as partners. The predicatemanpropose(m,w) expresses that
man m is willing to propose to woman w and analogously womanpropose(m,w)
expresses that woman w is willing to propose to man m. Inspired by the Gale-
Shapley algorithm, we look for an ASP formalisation to find the stable sets.

Definition 4 (ASP program induced by SMP with unacc. and ties).
The ASP program P induced by an instance ({σ1

M , . . . , σn
M}, {σ1

W , . . . , σp
W }) of

the classical SMP with unacceptability and ties is the program containing for
every i ∈ {1, . . . , n}, j ∈ {1, . . . , p} the following rules:

accept(mi, wj)← manpropose(mi, wj), womanpropose(mi, wj) (1)

accept(mi,mi)← {not accept(mi, wk) | k ∈ acceptableiM} (2)

accept(wj , wj)← {not accept(mk, wj) | k ∈ acceptablejW} (3)

and for every i ∈ {1, . . . , n}, j ∈ acceptableiM :

manpropose(mi, wj)← {not accept(mi, x) |x ≤mi

M wj and wj �= x} (4)

and for every j ∈ {1, . . . , p}, i ∈ acceptablejW :

womanpropose(mi, wj)← {not accept(x,wj) |x ≤wj

W mi and mi �= x} (5)

Intuitively (1) means that a man and woman accept each other as partners if
they propose to each other. Due to (2), a man accepts himself as a partner
(i.e. stays single) if no woman in his preference list is prepared to propose to
him. Rule (4) states that a man proposes to a woman if he is not paired to a
more or equally preferred woman. For j ∈ neutraliM the body of (4) contains
not accept(mi,mi).

3 Available from www.dlvsystems.com

www.dlvsystems.com

74 S. De Clercq et al.

Proposition 1. Let (SM , SW) be an instance of the SMP with unacceptability
and ties and let P be the corresponding ASP program. If I is an answer set of P,
then a weakly stable matching for (SM , SW) is given by {(x, y) | accept(x, y) ∈ I}.
Sketch of the Proof. Let (SM , SW) and P be as described in the proposition and
let I be an arbitrary answer set of P . We prove this proposition in 4 steps.

1. For every i ∈ {1, . . . , n}, j ∈ {1, . . . , p} it holds that accept(mi, wj) ∈ I

implies that j ∈ acceptableiM and i ∈ acceptablejW .
This can be proved by contradiction.

2. For every man mi there exists at most one woman wj s.t. accept(mi, wj) ∈ I
and for every woman wj there is at most one man mi s.t. accept(mi, wj) ∈ I.
Moreover, if accept(mi,mi) ∈ I then accept(mi, wj) /∈ I for any wj , and
likewise when accept(wj , wj) ∈ I then accept(mi, wj) /∈ I for any mi.
This can be proved by contradiction.

3. For every man mi exactly one of the following conditions is satisfied :
(a) there exists a woman wj such that accept(mi, wj) ∈ I,
(b) accept(mi,mi) ∈ I,
and similarly for every woman wi.
Unsatisfaction of the first condition implies satisfaction of the second.

4. The previous steps imply that I produces a set of marriages without block-
ing individuals. Weak stability also demands the absence of blocking pairs.
Suppose by contradiction that there is a blocking pair (mi, wj), implying
that there exist i �= i′ and j �= j′ such that accept(mi, wj′) ∈ I and
accept(mi′ , wj) ∈ I while wj <

mi

M wj′ and mi <
wj

W mi′ . The rules of the form
(1), the only ones with the literals accept(mi, wj′) and accept(mi′ , wj) in the
head, imply that literals manpropose(mi, wj′) and womanpropose(mi′ , wj)
should be in I. But since wj <

mi

M wj′ and because of the form of the rules (4)
there are fewer conditions to be fulfilled for manpropose(mi, wj) to be in I
than for manpropose(mi, wj′) to be in I. So manpropose(mi, wj) should be
in I as well. A similar reasoning implies that womanpropose(mi, wj) should
be in I. But now the rules of the form (1) imply that accept(mi, wj) should
be in I, contradicting step 2 since accept(mi, wj′) and accept(mi′ , wj) are
already in I.

Proposition 2. Let (SM , SW) be an instance of the SMP with unacceptability
and ties, and let P be the corresponding ASP program. If {(x1, y1), . . ., (xk, yk)}
is a weakly stable matching for (SM , SW) then P has the following answer set I:

{manpropose(xi, y) | i ∈ {1, . . . , k}, xi ∈M, y <xi

M yi)}
∪{womanpropose(x, yi) | i ∈ {1, . . . , k}, yi ∈W,x <yi

W xi}
∪{accept(xi, yi) | i ∈ {1, . . . , k}}
∪{manpropose(xi, yi) | i ∈ {1, . . . , k}, xi �= yi}
∪{womanpropose(xi, yi) | i ∈ {1, . . . , k}, xi �= yi}

Sketch of the Proof. One can verify that I is indeed an answer set of P by veri-
fying that I is a minimal model of the reduct PI .

Modeling SMP with ASP 75

In [18] it is shown that the decision problem ‘is the pair (m,w) stable?’ for a given
SMP instance with unacceptablity and ties is an NP-complete problem, even in
the absence of unacceptability. A pair (m,w) is stable if there exists a stable
set that contains (m,w). It is straightforward to see that we can reformulate
this decision problem as ‘does there exist an answer set of the induced normal
ASP program P which contains the literal accept(m,w)?’ (i.e. brave reasoning),
which is known to be an NP-complete problem [1]. So our model forms a suitable
framework for these kind of decision problems concerning the SMP.

4 Selecting Preferred Stable Sets

4.1 Notions of Optimality of Stable Sets

When several stable matchings can be found for an instance of the SMP, some
may be more interesting than others. The stable set found by the G-S algorithm
is M-optimal [22], i.e. every man likes this set at least as well as any other
stable set. Exchanging the roles of men and women in the G-S algorithm yields
a W-optimal stable set [7], optimal from the point of view of the women.

While some applications may require us to favour either the men or the
women, in others it makes more sense to treat both parties equally. To formalize
some commonly considered notions of fairness and optimality w.r.t. the SMP,
we define the cost cx(S) of a stable set S to an individual x, where cx(S) = k
if x has been matched with his or her kth preferred partner. More precisely, for
x = mi a man, we define cmi(S) = |{z : z <mi

M y}|+1 where y is the partner of x
in S; for x = wj a woman, cx is defined analogously. So in case of ties we assign
the same list position to equally preferred partners, as illustrated in Example 4.

Example 4. Let x = m1 be a man with preference list σ1
M = ({1}, {2, 3}, {4})

then w1 as partner of x in some set of marriages S would yield cx(S) = 1, w2

and w3 yield cx(S) = 2 and w4 yields cx(S) = 4. If m1 would be single in S,
then the cost cx(S) is 4, since m1 prefers women w1, w2 and w3 to being single,
but is indifferent between being paired to w4 or staying single.

Definition 5. For S a set of marriages,

– the sex-equalness cost is defined as csexeq(S) = |
∑

x∈M cx(S)−
∑

x∈W cx(S)|,
– the egalitarian cost is defined as cweight(S) =

∑
x∈M∪W cx(S),

– the regret cost is defined as cregret(S) = maxx∈M∪W cx(S), and
– the cardinality cost is defined as csingles(S) = |{z : (z, z) ∈ S}|.

S is a sex-equal stable set iff S is a stable set with minimal sex-equalness cost.
Similarly, S is an egalitarian (resp. minmum regret, maximum cardinality) stable
set iff S is a stable set with minimal egalitarian (resp. regret or cardinality) cost.

A sex-equal stable set assigns an equal importance to the preferences of the men
and women. An egalitarian stable set is a stable set in which the preferences of
every individual are considered to be equally important. In [23] the use of an
egalitarian stable set is proposed to optimally match virtual machines (VM) to

76 S. De Clercq et al.

servers in order to improve cloud computing by equalizing the importance of mi-
gration overhead in the data center network and VM migration performance. A
minimum regret stable set is optimal for the person who is worst off. A maximal
or minimal cardinality stable set is a stable set with resp. as few or as many
singles as possible. Examples of practical applications include an efficient kid-
ney exchange program [21] and the National Resident Matching Program4 [18].
Maximizing cardinality garantuees that as many donors as possible will get a
compatible donor and as many medical graduates as possible will get a position.

Table 1 presents an overview of known complexity results5 concerning find-
ing an optimal stable set. Typically the presence of ties leads to an increase of
complexity. Manlove et al. [17,18] proved that the problem of finding a maxi-
mum (or minimum) cardinality stable set for a given instance of the SMP with
unacceptability and ties is NP-hard. Using this result, the problem of finding an
egalitarian or minimum regret stable matching for a given SMP instance with
ties is proved to be NP-hard [18], even if the ties occur on one side only and
each tie is of length 2 (i.e. each set in a preference list has size at most 2). If
there are no ties, the problem of finding an egalitarian or minimum regret sta-
ble set is solvable in polynomial time [13,10]. Since all stable sets consist of n
couples in the classical SMP, the G-S algorithm trivially finds a maximum (or
minimum) cardinality [7]. For an SMP instance with unacceptability the number
of couples in a stable set is constant [8], so finding a maximum cardinality stable
set reduces to finding a stable set, which is known to be solvable in polynomial
time. Surprisingly, finding a sex-equal stable set for a classical SMP instance is
NP-hard [16], even if the preference lists are bound in length by 3 [20].

Table 1. Literature complexity results for finding an optimal stable set

sex-equal egalitarian min. regret max. card.

SMP NP-hard [16] P (O(n4) [13]) P (O(n2) [10]) P (O(n2) [7])
SMP + unacc NP-hard [20] P [8]
SMP + ties NP-hard [18] NP-hard [18]

SMP + {unacc,ties} NP-hard [17,18]

Between brackets we mention in Table 1 the complexity of an algorithm that
finds an optimal stable set if one exists, in function of the number of men n. To
the best of our knowledge, the only exact algorithm tackling an NP-hard problem
from Table 1 finds a sex-equal stable set for an SMP instance in which the strict
preference lists of men and/or women are bounded in length by a constant [20]. To
the best of our knowledge, no exact implementations exist to find an optimal stable
set for an SMP instance with ties, regardless of the presence of unacceptability and
regardless which notion of optimality from Table 1 is used. Our approach yields
an exact implementation of all problems mentioned in Table 1.

4 www.nrmp.org
5 Throughout this paper we assume that P �= NP.

www.nrmp.org

Modeling SMP with ASP 77

4.2 Finding Optimal Stable Sets Using Disjunctive ASP

As we discuss next, we can extend our ASP encoding of the SMP such that the
optimal stable sets correspond to the answer sets of an associated ASP program.
In particular, we use a saturation technique [5,1] to filter non-optimal answer
sets. Intuitively, the idea is to create a program with 3 components: (i) a first part
describing the solution candidates, (ii) a second part also describing the solution
candidates since comparison of solutions requires multiple solution candidates
within the same answer set whereas the first part in itself produces one solution
per answer set, (iii) a third part comparing the solutions described in the first
two parts and selecting the preferred solutions by saturation. It is known that
the presence of negation-as-failure can cause problems when applying saturation.
Therefore, we use a SAT encoding [15] of the ASP program in Definition 4 and
define a disjunctive naf-free ASP program in Definition 6 which selects particular
models of the SAT problem. This transformation can be found in our paper of
the same name on arXiv and the correctness of Lemma 1 follows from [6,15].

Definition 6 (Induced disj. naf-free ASP program). The disjunctive naf-
free ASP program Pdisj induced by an SMP instance (SM , SW) with unaccept-
ability and ties contains the following rules for i ∈ {1, . . . , n}, j ∈ {1, . . . , p}:

¬accept(mi, wj) ∨manpropose(mi, wj)←
¬accept(mi, wj) ∨ womanpropose(mi, wj)←

accept(mi, wj) ∨ ¬manpropose(mi, wj) ∨ ¬womanpropose(mi, wj)←
For every i ∈ {1, . . . , n}, l ∈ unacceptableiM, j ∈ acceptableiM , x ≤mi

M wj , x �= wj

Pdisj contains: ∨
k∈acceptableiM

accept(mi, wk) ∨ accept(mi,mi)←

¬accept(mi,mi) ∨ ¬accept(mi, wj)←
¬manpropose(mi, wj) ∨ ¬accept(mi, x)←∨

x≤mi
M wj ,x �=wj

accept(mi, x) ∨manpropose(mi, wj)←

¬manpropose(mi, wl)←
and symmetrical for j ∈ {1, . . . , p} and womanpropose.

Lemma 1. Let P be the normal ASP program from Definition 4 and Pdisj the
disjunctive ASP program from Definition 6. It holds that for any answer set I
of P there exists an answer set Idisj of Pdisj such that the atoms of I and Idisj
coincide. Conversely for any answer set Idisj of Pdisj there exists an answer set
I of P such that the atoms of I and Idisj coincide.

4.3 ASP Program to Select Optimal Solutions

Let (SM , SW) be an SMP instance with unacceptability and ties, with SM =
{σ1

M , . . . , σn
M} and SW = {σ1

W , . . . , σp
W }, and let Pnorm be the induced normal

78 S. De Clercq et al.

ASP program from Definition 4. Our technique for extending this program to a
program that can respectively optimize for the sex-equalness, egalitarian, mini-
mum regret and maximum cardinality criterion is in each case very similar. We
start by explaining it for the case of sex-equalness. Our first step is to add a
set of rules that compute the sex-equalness cost of a set of marriages. For every
man mi and every woman wj such that j ∈ σi

M (k) we use the following rule to
determine the cost for mi if wj would be his partner:

mancost(i, k)← accept(mi, wj) (6)

and similarly for every wj and every mi such that i ∈ σj
W (k):

womancost(j, k)← accept(mi, wj) (7)

We also use the following rules with i ranging from 1 to n and j from 1 to p:

mancost(i, |σi
M |)← accept(mi,mi) (8)

womancost(j, |σj
W |)← accept(wj , wj) (9)

manweight(Z)← #sum{B,A : mancost(A,B)} = Z,#int(Z) (10)

womanweight(Z)← #sum{B,A : womancost(A,B)} = Z,#int(Z) (11)

sexeq(Z)← manweight(X), womanweight(Y), Z = X − Y

sexeq(Z)← manweight(X), womanweight(Y), Z = Y −X (12)

Rules (8) and (9) state staying single leads to the highest cost. Rule (10) deter-
mines the sum of the male costs6 and similarly (11) determines the sum of the
female costs. According to Definition 5 the absolute difference of these values
yields the sex-equalness cost, as determined by rules (12). Since numeric vari-
ables are restricted to positive integers in DLV, we omit conditions as ‘X ≥ Y ’ or
‘X < Y ’. The program Pnorm extended with rules (6) – (12) is denoted Psexeq

ext .
We construct a program Psexeq , composed by subprograms, that selects optimal
solutions. Let P ′

disj be the disjunctive naf-free ASP program, induced by the
same SMP instance, in which a prime symbol is added to all literal names (e.g.
accept becomes accept′). Define a new program P ′sexeq

ext with all the rules of P ′
disj

in which every occurrence of ¬atom is changed into natom for every atom atom,
i.e. replace all negation symbols by a prefix ‘n’. For every occurring atom atom
in P ′sexeq

ext , add the following rule to exclude non-consistent solutions7:

sat← atom, natom (13)

Finally add rules (6) – (12) with prime symbols to the literal names to P ′sexeq
ext

but replace rule (10) by:

mansum(n,X)← mancost(n,X)

mansum(J, Z)← mansum(I,X),mancost(J, Y), Z = X + Y,#succ(J, I)

manweight(Z)← mansum(1, Z) (14)

6 #sum, #max, #int and #count are DLV aggregate functions. The ‘A’ mentioned as
variable in #sum indicates that a cost must be included for every person (otherwise
the cost is included only once when persons have the same cost).

7 For instance, sat ← accept′(m1, w1), naccept
′(m1, w1).

Modeling SMP with ASP 79

and analogously for (11) to avoid future cyclic dependencies of literals, involving
aggregate functions. We define the ASP program Psexeq as the union of Psexeq

ext ,
P ′sexeq
ext and Psat. The ASP program Psat contains the following rules to select

minimal solutions based on sex-equalness:

sat← sexeq(X), sexeq′(Y), X ≤ Y (15)

← not sat (16)

mancost′(X,Y)← sat,manargcost′1(X),manargcost′2(Y)

womancost′(X,Y)← sat, womanargcost′1(X), womanargcost′2(Y) (17)

manpropose′(X,Y)← sat,man(X), woman(Y)

womanpropose′(X,Y)← sat,man(X), woman(Y)

accept′(X,X)← sat,man(X)

accept′(X,X)← sat, woman(X)

accept′(X,Y)← sat,man(X), woman(Y) (18)

and analogous to (18) a set of rules with prefix ‘n’ for the head predicates.
Finally we add the facts8 manargcost′1(1..n) ←, manargcost′2(1..(p + 1)) ←,
womanargcost′1(1..p) ←, womanargcost′2(1..(n + 1)) ←, man(x) ← for every
man x and woman(x)← for every woman x to Psat. Intuitively the rules of Psat

express the key idea of saturation. First every answer set is forced to contain the
atom sat by rule (16). Then the rules (17) – (18) and the facts make sure that
any answer set should contain all possible literals with a prime symbol that occur
in Psexeq . Rule (15) will establish that only optimal solutions will correspond
to minimal models and thus lead to answer sets. For any non-optimal solution,
the corresponding interpretation containing sat will never be a minimal model
of the reduct. It is formally proved in Proposition 3 below that Psexeq produces
exactly the stable matchings with minimal sex-equalness cost.

Furthermore, only small adjustments to Psexeq are needed to create programs
Pweight, Pregret, and Psingles that resp. produce egalitarian, minimum regret and
maximum cardinality stable sets. Indeed, the ASP program Pweight can easily
be defined as Psexeq in which the predicates sexeq and sexeq′ are resp. replaced
by weight and weight′ and the rules (12) are replaced by (19), determining the
egalitarian cost of Definition 5 as the sum of the male and female costs:

weight(Z)← manweight(X), womanweight(Y), Z = X + Y (19)

Similarly the ASP program Pregret is defined as Psexeq in which the predicates
sexeq and sexeq′ are resp. replaced by regret and regret′ and rules (10) – (12)
are replaced by the following rules9:

manregret(Z)← #max{B : mancost(A,B)} = Z,#int(Z) (20)

womanregret(Z)← #max{B : womancost(A,B)} = Z,#int(Z) (21)

regret(X)← manregret(X), womanregret(Y), X > Y

8 The rule manargcost′1(1..n) ← is DLV-syntax for the n facts manargcost′1(1) ←
, . . . , manargcost′1(n) ←.

9 As in (14) we adjust (20)–(21) and (23), for which we refer to the arXiv-version.

80 S. De Clercq et al.

regret(Y)← manregret(X), womanregret(Y), X ≤ Y (22)

Rule (20) determines the regret cost but only for the men. Similarly (21) deter-
mines the regret cost for the women. The regret cost as defined in Definition 5
is the maximum of these two values, determined by the rules in (22).

Finally we define the ASP program Psingles as Psexeq in which the predicates
sexeq and sexeq′ are resp. replaced by singles and singles′. Furthermore we
replace rules (6) – (12) by (23), determining the number of singles:

singles(Z)← #count{B : accept(B,B)} = Z,#int(Z) (23)

Proposition 3. Let the criterion crit be an element of {sexeq, weight, regret,
singles}. For every answer set I of the program Pcrit induced by an SMP in-
stance with unacceptability and ties the set SI = {(m,w) | accept(m, w) ∈ I}
forms an optimal stable set of marriages w.r.t. criterion crit and the optimal
criterion value is given by the unique value vI for which crit(vI) ∈ I. Con-
versely for every optimal stable set S = {(x1, y1), . . . , (xk, yk)} with optimal cri-
terion value v there exists an answer set I of Pcrit such that {(x, y) | accept(x, y)
∈ I} = {(xi, yi) | i ∈ {1, . . . , k}} and v is the unique value for which crit(v) ∈ I.

Sketch of the Proof. Let (SM , SW) be an SMP instance with unacc. and ties.

Answer set ⇒ Optimal stable set Let I be an arbitrary answer set of Pcrit and

let SI be as in the proposition. It is clear that the only rules in Pcrit that influ-
ence the literals of the formmanpropose(., .), womanpropose(., .) and accept(., .)
are the rules in Pnorm. Hence any answer set I of Pcrit should contain an answer
set Inorm of Pnorm as a subset. Proposition 1 implies that Inorm corresponds to
a stable set SI = {(m,w) | accept(m,w) ∈ Inorm}. Moreover, the only literals
of the form manpropose(., .), womanpropose(., .) and accept(., .) in I are those
in Inorm, so SI = {(m,w) | accept(m,w) ∈ I}. If crit = sexeq, it is straight-
forward to see that the literals of the form accept(., .) in Inorm uniquely de-
termine which literals of the form mancost(., .), womancost(., .), manweight(.),
womanweight(.) and sexeq(.) should be in the answer set I. These literals do
not occur in rules of Pcrit besides those in Psexeq

ext . Notice that the rules which
do contain these literals will imply that there will be just one literal of the form
sexeq(.) in I, namely sexeq(v) with v the sex-equalness cost of SI . Analogous re-
sults can be derived for crit ∈ {weight, regret, singles}. It remains to be shown
that SI is an optimal stable set. Suppose by contradiction that SI is not optimal,
so there exists a stable set S∗ such that vI > v∗, with v∗ the criterion value of
S∗ to be minimized. We will prove that this implies that I cannot be an answer
set of Pcrit, contradicting our initial assumption.

Proposition 2 and Lemma 1 imply that there exists an interpretation I∗disj
of the ASP program Pdisj induced by (SM , SW) that corresponds to the stable
set S∗. Moreover this interpretation is consistent, i.e. it will not contain atom
and ¬atom for some atom atom. This implies that the interpretation I ′disj de-
fined as I∗disj in which ¬atom is replaced by natom for every atom atom will

falsify the body of the rules of the form (13) of P ′crit
ext . An analogous reasoning

as above yields that the literals of the form accept′(., .) in I ′disj uniquely deter-
mine which literals of the form mancost′(., .), womancost′(., .), mansum′(., .),

Modeling SMP with ASP 81

womansum′(., .), manweight′(.), womanweight′(.) and sexeq′(.) should be in
I ′disj for crit = sexeq and analogously for the other criteria. With those extra

literals added to I ′disj , I
′
disj satisfies all the rules of P ′crit

ext . Moreover, crit(v∗) is
the unique literal of the form crit(.) in I ′disj . Notice that I ′disj does not contain
the atom sat.

Define the interpretation J = Inorm ∪ I ′disj . From the previous argument it

follows that J will satisfy every rule of Pcrit
ext ∪P ′crit

ext since the predicates occurring
in both programs do not overlap. Moreover J contains crit(vI) and crit′(v∗) and
these are the only literals of the form crit(.) or crit′(.). Since vI > v∗ the rules
of the form (15) will be satisfied by J since their body is always false. Call J ′

the set J ∪ {a | (a ←) ∈ Psat}. Since J ′ does not contain sat, the rules of Psat

will all be satisfied by J ′, with exception of the rule ← not sat.
The rule of the form (16) implies that I as answer set of Pcrit should contain

sat. Now the set of rules (17) – (18) imply that I should also contain the lit-
erals mancost′(., .), womancost′(., .) and manpropose′(., .), womanpropose′(., .),
accept′(., .) with the corresponding literals prefixed by n for every possible argu-
ment stated by the facts in Psat. For crit = sexeq rules (14) in P ′crit

ext garantuee
that for all possible arguments mansum′(., .) and manweight′(.) should be in I
and analogously for womansum′(., .) and womanweight′(.). Together with rules
(12) this implies that I contains crit(.) for every possible argument and analo-
gously for the other criteria. So I ′disj ⊆ I. We already reasoned in the beginning
of the proof that Inorm ⊆ I holds so it follows that J ⊆ I. Since the literals of
J ′ \ J are stated as facts of Pcrit

ext , they should be in I, hence J ′ ⊆ I. Moreover
J ′ ⊂ I since sat ∈ I \ J ′.

We use the notation red(P , I) to denote the reduct of an ASP program P
w.r.t. an interpretation I. There is no rule in P ′crit

ext with negation-as-failure
in the body, hence red(P ′crit

ext , I) = red(P ′crit
ext , J ′) = P ′crit

ext . We already reasoned
that J ′ satifies all the rules of the latter. We also reasoned that I does not contain
any other literals of the form accept(., .) than those who are also in Inorm, and
by construction the same holds for J ′. Hence red(Pcrit

ext , I) = red(Pcrit
ext , J

′) and
by construction J ′ satisfies all the rules of this reduct. It is clear that red(Psat, I)
is Psat without the rule ← not sat, since sat ∈ I. Again we already argued that
J ′ satisfies red(Psat, I). Hence J ′ satisfies all the rules of red(Pcrit, I), implying
that I, which strictly contains J ′, cannot be an answer set of Pcrit since it is not
a minimal model of the negation-free ASP program red(Pcrit, I) [9].

Optimal stable set ⇒ Answer set This can be straightforwardly proved by writ-

ing down the interpretation which corresponds to S and checking that this is
an answer set of Pcrit. Because of the considerable number of predicates, we
refer the interested reader to the extended online paper of the same name on
arXiv.

If we delete from Psexeq the rules (11) – (12) and replace rule (15) by the rule
sat ← manweight(X),manweight′(Y), X ≤ Y , then we obtain the M-optimal
stable sets. Analogously we can obtain the W-optimal stable sets.

If a criterion is to be maximized, the symbol ≤ in rule (15) is simply replaced
by ≥. E.g. for crit = singles we will get minimum cardinality stable sets.

82 S. De Clercq et al.

5 Complexity and Future Work

The NP-complete decision problem ‘does there exist a stable set with cardinality
≥ k (resp. ≤ k) for an SMP instance with unacceptability and ties with k a
positive integer?’ [17,18] has practical importance, e.g. in the National Resident
Matching Program [18]. If we add a rule sat ← singles(X), X ≤ (n + p − 2k)

to the extended induced program Psingles
ext defined in Subsect. 4.3, then this

problem can be formulated as ‘does there exist an answer set of the normal ASP
program Psingles

ext which contains the literal sat?’ (i.e. brave reasoning), another
NP-complete problem [1]. So our model forms a suitable framework for these
kind of decision problems concerning optimality of stable sets in the SMP.

Notice that the complexity of this kind of decision problem and the one men-
tioned in the last paragraph of Subsect. 3 are a good indication how hard it is
to find an (optimal) stable set, as opposed to the problems ‘does there exist an
(optimal) stable set?’, which tell us how hard it is to know whether there exists
a solution but not necessarily how hard it is to find one.

Combining these problems leads to a new decision problem: ‘is the pair (m,w)
optimally stable for an instance of the SMP with unacceptability and ties?’. We
define an optimally stable pair as a pair (m,w) for which there exists an optimal
stable set in whichm and w are matched. As far as we know this problem has not
been studied yet, although it could be useful in practice, for instance if one wants
to find a maximum cardinality matching but also wants to prioritize some couple
or a person. Optimality is still desirable, because it ensures the others from not
being put too much at a disadvantage. For instance in the kidney exchange
problem, in which kidney patients with a willing but incompatible donor try to
interchange each other’s donors to get a transplant, this is a realistic situation: if
two patients with intercompatible donors urgently need a transplant, they should
get priority, but of course we still want to match as many patients to donors
as possible. Considering the complexity of the separate decision problems, the
combined problem might have a higher complexity, perhaps corresponding to the
ΣP

2 -complexity of our grounded disjunctive normal ASP program with aggregate
functions [1,3]. It should be noticed however that the addition of constraints
not necessarily increases complexity and a precise classification of complexity is
desirable.

6 Conclusion

We formalized and solved different variants of the SMP using ASP programs,
which can easily be adapted to yet other variants. Moreover we applied saturation
to compute optimal stable sets, with the advantage that these programs can
be handled with the efficient off-the-shelf ASP solver DLV. To the best of our
knowledge, our encoding offers the first exact implementation of finding sex-
equal, egalitarian, minimum regret, or maximum cardinality stable sets for an
instance of the SMP with unacceptability and ties. Hence, our general framework
allows us to tackle a class of problems and requires only small adaptions to easily
shift between them.

Modeling SMP with ASP 83

References

1. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, New York (2003)

2. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Communications of the ACM 54(12), 92–103 (2011)

3. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate functions
in disjunctive logic programming: Semantics, complexity, and implementation in
DLV. In: Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 847–852. M. Kaufmann (2003)

4. Dung, P.: An argumentation-theoretic foundation for logic programming. The Jour-
nal of Logic Programming 22(2), 151–177 (1995)

5. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Transactions on
Database Systems 22(3), 364–418 (1997)

6. Erdem, E., Lifschitz, V.: Tight logic programs. Theory and Practice of Logic Pro-
gramming 3, 499–518 (2003)

7. Gale, D., Shapley, L.: College admissions and the stability of marriage. The Amer-
ican Mathematical Monthly 69(1), 9–15 (1962)

8. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discr.
Appl. Math. 11, 223–232 (1985)

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070–1080 (1988)

10. Gusfield, D.: Three fast algorithms for four problems in stable marriage. SIAM J.
Comput. 16(1), 111–128 (1987)

11. Irving, R.: Stable marriage and indifference. Discr. Appl. Math. 48(3), 261–272
(1994)

12. Irving, R.: The cycle roommates problem: a hard case of kidney exchange. Inf.
Process. Lett. 103(1), 1–4 (2007)

13. Irving, R., Leather, P., Gusfield, D.: An efficient algorithm for the “optimal” stable
marriage. J. ACM 34(3), 532–543 (1987)

14. Iwama, K., Miyazaki, S.: A survey of the stable marriage problem and its variants.
In: Proc. of ICKS 2008, pp. 131–136. IEEE Computer Society (2008)

15. Janhunen, T.: Representing normal programs with clauses. In: Proc. of the 16th
European Conference on Artificial Intelligence, pp. 358–362. IOS Press (2004)

16. Kato, A.: Complexity of the sex-equal stable marriage problem. Japan Journal of
Industrial and Applied Mathematics (JJIAM) 10, 1–19 (1993)

17. Manlove, D.: Stable marriage with ties and unacceptable partners. Tech. rep., Uni-
versity of Glasgow, Department of Computing Science (1999)

18. Manlove, D., Irving, R., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of
stable marriage. Theoretical Computer Science 276(1-2), 261–279 (2002)

19. Marek, V., Nerode, A., Remmel, J.: A theory of nonmonotonic rule systems I. Ann.
Math. Artif. Intell. 1, 241–273 (1990)

20. McDermid, E., Irving, R.: Sex-equal stable matchings: Complexity and exact algo-
rithms. Algorithmica, 1–26 (2012)

21. Roth, A., Sömnez, T., Ünver, M.: Pairwise kidney exchange. J. Econ. The-
ory 125(2), 151–188 (2005)

22. Roth, A., Sotomayor, M.: Two-Sided Matching: A Study in Game-Theoretic Mod-
eling and Analysis. Cambridge University Press (1990)

23. Xu, H., Li, B.: Egalitarian stable matching for VM migration in cloud computing.
In: IEEE Computer Communication Workshop, pp. 631–636 (2011)

A Fuzzy, Utility-Based Approach

for Proactive Policy-Based Management

Christoph Frenzel1,2, Henning Sanneck2, and Bernhard Bauer1

1 Department of Computer Science, University of Augsburg, Augsburg, Germany
{frenzel,bauer}@informatik.uni-augsburg.de

2 Nokia Siemens Networks Research, Munich, Germany
henning.sanneck@nsn.com

Abstract. Policy-based Management with rules is a wide-spread ap-
proach for operations automation. However, the continuous pressure for
decreasing operational costs and increasing reliability of the systems lead
to new challenges. Unfortunately, current Policy-based Management Sys-
tems lack the ability to act proactively along operational objectives in
an autonomous manner in order to face these challenges. In this paper,
we present a Policy-based Management System based on a Fuzzy Logic
System that attempts to avoid problematic system states before they oc-
cur and that is guided by operator objectives expressed as utilities. Our
approach can be seen as an extension of current rule-based Policy-based
Management Systems, thus, requiring a reduced implementation effort.

Keywords: Policy-based Management, Proactive Management, Fuzzy
Logic, Utility Theory, Rational Decision Making.

1 Introduction

Policy-based Management (PBM) is the continuous process of configuring the
resources of a system such that the overall system performance satisfies the ob-
jectives of the operator. This process is controlled by a policy which encodes the
technical knowledge and the preferences of the operator, usually as a set of rules
like Event-Condition-Action (ECA) rules [3], [16]. This type of rule is triggered
by an event which leads to the evaluation of the condition and, depending on
the outcome, proposal of an action. The event is raised if the performance of the
system is unacceptable which is usually determined through sharp constraints
on Key Performance Indicators (KPIs). However, for an event there are usually
several possible ways to react, i.e., several actions can be taken. In order to avoid
these policy conflicts, human experts need to extend the rule conditions so that
the PBM system selects the best of the possible actions in a specific situation
based on the operator objectives and their technical experience [7]. As a result,
the complexity of the policy is increased because the technical knowledge and
operational objectives are mixed up.

In the future, the level of automation of PBM is required to be extended,
driven by the increasing need for cost-efficient and reliable operations, as well as

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 84–98, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Fuzzy, Utility-Based Approach for Proactive Policy-Based Management 85

the increasing complexity which prevents the understanding of the whole system
by the operator. This leads to new challenges that a Policy-based Management
System (PBMS) has to face. For instance, PBMSs are supposed to make more
complex decisions automatically. This requires policies which directly express
the operational objectives separately from the technical knowledge. This way,
a PBMS is enabled to autonomously act towards achieving the objectives [10].
Furthermore, PBMSs must act proactively in order to avoid problems instead of
reacting to problems that are already present. Hence, the sharp distinction be-
tween acceptable and unacceptable system states is not applicable anymore, and
needs to be substituted with a fuzzy system state characterization that allows
the system to react to gradually decreasing system performance. In summary,
PBMSs need to proactively control the system guided by operational objectives.

In this paper, we present an approach for proactive PBM in order to face
future challenges for PBM. Thereby, given the requirements for proactive PBM
(Sec. 2), we outline the expected system behavior (Sec. 3), and then present
the design of our solution (Sec. 4). The main idea behind the concept is to
separate technical knowledge, expressed in fuzzy rules, from operator objectives,
encoded in utilities, and utilize a fuzzy logic system in order to compute which
actions satisfy the objectives the most. The approach can be seen as an extension
of current rule-based PBMSs, thus, requiring a reduced initial implementation
effort. The advantages of our system can be shown by comparing it with classical
PBMSs (Sec. 5).

2 Problems of Classical PBM

It is assumed that the systems which are managed by a PBMS are composed
of several system resources which are running autonomously controlled by some
parameters. Driven by external or internal events, the operational state of the
system, which is determined by the values of a set of KPIs and the presence
of alarms that are produced by the system resources, can change. Thereby, the
system can also transition into problematic operational states, e.g., if many users
connect to a network at the same time, this can lead to an overload. In order to
handle these undesired states, a PBMS, depicted in Fig. 1, continuously monitors
the system using probes that identify unacceptable states, i.e., problems, and
raise events that indicate the nature of the detected problems. Thereby, the
distinction between acceptable and unacceptable states is sharp, usually defined
through constraints, e.g., a KPI k representing a ratio could have a constraint
requiring that k > 2%.

The decision making component evaluates the policy and proposes actions in
reaction to the events, thereby considering the operational context of the system.
The latter can be any information about the system, e.g., the current time or
Configuration Management (CM) data like the system topology. An action that
is proposed can be, e.g., the setting of new configuration parameter values of a
system resource or the call of some special system function that determines new
parameters and configures a system resource accordingly.

86 C. Frenzel, H. Sanneck, and B. Bauer

Policy-based
 Management System

Decision
Making

Monitoring &
Analysis

Events

Commands

Execution

Actions

SystemData

Policy

Fig. 1. The PBM process

Usually, the PBMS will propose several actions at the same time because, on
the one hand, there can be several rules triggered by one event and, on the other
hand, several events can be raised in parallel. A common challenge is that the
actions might be in conflict [13], [3], i.e., they are somehow mutually exclusive.
Policy designers try to detect these conflicts using sophisticated methods and
resolve them by adapting the rule. Thereby, they often add further conditions to
the rules which determine in which situations one action is preferred over another
one based on the operational objectives. As a consequence, the policy mixes up
both the technical knowledge about which action is a reasonable reaction for
an event in a specific situation, and the operator objectives which describe the
operator’s preferences for the actions in specific situations. However, since it is
not possible to detect and resolve all policy conflicts at design-time [13], there
is still the need for an on-line conflict resolution. Unfortunately, current systems
do not allow to encode complex operational objectives for this.

Figure 2 depicts an example from mobile networks management where a
PBMS can distinguish between four operational states given two KPIs, the
Dropped Call Rate (DCR) and the Call Setup Success Rate (CSSR). The DCR
indicates unacceptable reliability problems if the DCR is high, whereas the CSSR
indicates unacceptable availability problems if the CSSR is low. The two lines
show the thresholds that are defined for the KPIs separating the acceptable from
the unacceptable states. Specifically, Zone 1 is acceptable with respect to both
KPIs, Zone 2 is unacceptable regarding DCR but acceptable regarding CSSR,
Zone 3 is acceptable regarding DCR but unacceptable regarding CSSR, and
Zone 4 is unacceptable for both KPIs. In a classical PBMS, a probe would raise
an event as soon as an unacceptable state regarding a KPI is reached. Conse-
quently, in Zone 4 two events indicating the DCR problem and CSSR problem
would be triggered. Hence, the PBMS is required to perform some conflict res-
olution if the respective actions are in conflict.

The sharp thresholds in classical PBM do not allow to proactively react to
possibly upcoming events. One solution to this is to lower the thresholds and,
so, reduce the number of acceptable system states. In Fig. 2, this would mean
to shrink Zone 1 to the dashed rectangle. However, then the system cannot
distinguish between an event indicating a system state in Zone 1, i.e., a proactive

A Fuzzy, Utility-Based Approach for Proactive Policy-Based Management 87

Zone 2

Zone 4Zone 3Ca
ll

Se
tu

p
Su

cc
es

s
Ra

te

Dropped Call Rate

Availability Problem
Threshold

Re
lia

bi
lit

y
Pr

ob
le

m

Th
re

sh
ol

d

Zone 1

Fig. 2. Operational states for the KPIs DCR and CSSR

but not severe problem, and an event indicating a system state in Zone 2, i.e., a
severe problem. As a result, the PBMS might select non-optimal actions.

If the level of automation in PBM needs to increase in the future, a classical
PBMS as outlined in this section has two shortcomings:

– The sharp differentiation between acceptable and unacceptable operational
states solely allows a reactive behavior, i.e., the problem must occur before
the system can take countermeasures. However, it is desirable that the system
avoids problematic state by proactively performing some action.

– The mingling of technical knowledge and operational objectives makes the
maintenance of the policy costly. Both have different life cycles, i.e., the
technical knowledge usually changes less frequently than the operational
goals, thus, with every single change, the whole policy needs to be revised.

3 A Concept for Proactive PBM

In order to solve the issues with classical PBMSs, we model a utility-based rule
system as a specification for a fuzzy logic system.

A utility-based rule system allows the separation of technical knowledge and
operator objectives by expressing the former as rules, e.g., ECA rules, and the
latter as utilities [7]. Upon a raised event, the rules are evaluated and applicable
actions proposed, i.e., actions that treat the event from a purely technical point
of view. Since these actions might be in conflict, a conflict resolution utilizes the
utilities in order to calculate the value of each action based on the events an action
handles, the utility of the events’ treatment, and the severity of the events. Finally,
an action is selected for execution based on its value, i.e., usually the action with
the highest value. This can be seen as a kind of rational behavior [15].

A fuzzy logic system is a rule system that can perform logical inference with
fuzzy sets, i.e., it can fuzzify input values into fuzzy sets, apply fuzzy rules

88 C. Frenzel, H. Sanneck, and B. Bauer

on these sets, and defuzzify the resulting sets into sharp output values [12].
The general idea is to replace boolean predicates used in classical rule systems
with continuous memberships in the domain [0, 1] representing the degree to
which a predicate is true. Fuzzy logic systems provide a scientific and well-known
foundation for decision making in uncertain or inaccurate domains. There are
several implementations of fuzzy logic system available, e.g., jFuzzyLogic [5], and
also a standard syntax, called Fuzzy Control Language [9], that is used in this
paper.

The basic idea of combining a utility-based rule system and a fuzzy logic
system is to

– fuzzify the outputs of the monitoring probes into fuzzy event levels, i.e.,
each system state has a fuzzy membership to the set of unacceptable states
regarding each event in the interval [0, 1],

– model the technical knowledge as fuzzy rules and weight them with the
utilities, i.e., the preferences of the operator,

– utilize a fuzzy logic system to compute the value of each action, i.e., the
degree to which an action satisfies the operator’s preferences [7], and

– defuzzify the result such that conflicts between actions are resolved by se-
lecting the actions according to their value.

In order to outline the expected system behavior, consider Fig. 2 again. The
sharp constraints distinguishing acceptable and unacceptable states are substi-
tuted by fuzzy event levels, i.e., fuzzy memberships to the unacceptable zone
indicated by the events. Therefore, the Zone 1 is divided into two sub-zones:

– A zone indicating a perfect system state, i.e., a state where the system is
perfectly working and no problem is supposed to arise soon. In this zone,
depicted as the dashed rectangle, all fuzzy event levels are 0.

– A jeopardy zone [1], i.e., states where the system performance is still accept-
able but there is the danger of running into a faulty state. Therefore, the
system should react in order to avoid the unacceptable state. In this zone,
indicated by the gradient, at least one fuzzy event level is greater than 0.

Given the fuzzy event levels, the system selects the best action with respect to
the level of the events and the utility the action has to the operator, i.e., how
important the treatment of the problem is according to the operator goals.

4 Design of the Fuzzy PBMS with Utilities

The reasoning process of the fuzzy PBMS with utilities, depicted in Fig. 3, is
performed in three steps which are spread over the monitoring and analysis as
well as the decision making phase of the PBM process depicted in Fig. 1:

Fuzzification is performed by the monitoring probes in the monitoring and
analysis phase. Thereby, sharp thresholds for the decision to raise an event
are replaced by fuzzy membership functions defined by the system operator
in the event specification. As a result, the probes are raising fuzzy events,
i.e., events containing a fuzzy event level representing the membership.

A Fuzzy, Utility-Based Approach for Proactive Policy-Based Management 89

Fuzzy inference is performed as first step of the decision making phase. Based
on fuzzy events and fuzzy context information, the fuzzy rules are evaluated.
The rules, which are provided by the system administrator, define possible
actions in reaction to some event in a specific operational context. As a
result, this process provides the value of all actions based on the system
objectives which are provided as utilities by the operator.

Defuzzification is the second step of the decision making phase. The proposed
actions are analyzed for conflicts that are defined in the conflict specification
given by the administrator. The detected conflicts are resolved by selecting
actions for execution based on the value.

Policy

Monitoring & Analysis Decision Making

Fuzzyfication
Fuzzy

Inference
Defuzzification

Fuzzy
Events

Action
Values

Actions

Event Level Determination Value Computation Conflict Resolution

Event
Specification

Fuzzy
Context

Fuzzy Rules
Action

Specification Conflict
Specification

Objectives

Execution

Fig. 3. The reasoning process of the fuzzy PBMS with utilities

4.1 Fuzzification

The fuzzification extends the monitoring probes with the ability to annotate the
events with an event level in order to turn them into fuzzy events. This level has
the semantics of the degree to which the operator wants to handle the event in
order to avoid a possible negative system state in the future. The event levels
are computed by membership functions, e.g., sigmoid or linear functions, which
determine the membership degree of a system state to the fuzzy set raised for an
event. The membership functions form the event specification provided by the
operator. They are determined through an analysis of the system behavior, e.g.,
whether the system state changes rapidly, and the trade-off between the benefits
of reacting proactively and the efforts of executing potentially more actions.

The thresholds used by classical monitoring probes define two classes of system
states: the acceptable state and the unacceptable state. In fuzzy monitoring
probes, the membership functions define three classes of system states as shown
in Fig. 4: the acceptable state, the unacceptable state, and the jeopardy state
in between. In the concrete example, the PBMS should not react if the DCR is
below 1%, because the system works perfectly fine. This is indicated by an event
level of 0 and, so, the event would not be raised at all. Between a DCR of 1%
and 2% the event level linearly increases from 0 to 1. Hence, in this jeopardy

90 C. Frenzel, H. Sanneck, and B. Bauer

1

Re
lia

bi
lit

y
Pr

ob
le

m
Ev

en
t L

ev
el

Dropped Call Rate0

1% 2%

Acceptable
State

Jeopardy
State

Unacceptable
State

Fig. 4. The three classes of system states determined by fuzzy monitoring probes

state the handling of the problem becomes more and more urgent. Finally, at a
DCR of 2% and above, the system is in an unacceptable state. Hence, the event
level is 1 in this range. Note that a classical threshold would be a DCR of 2%.

4.2 Fuzzy Inference

The fuzzy inference is the core of the system and determines the value of the
actions as shown in Fig. 3. Besides the fuzzy events, it has four inputs:

– A fuzzy context that provides contextual information about the system.
– An action specification defining the actions the system can take.
– A set of operator objectives including their utilities.
– A set of fuzzy rules that define the possible reactions to a fuzzy event in a

specific context from a technical point of view.

Fuzzy Context. The operational context of the system contains information
about, e.g., the system topology, system configuration, current system status,
and current time and date. In principle, the context needs to provide all the
information that is necessary for evaluating the conditions of the fuzzy rules.

The context is fuzzified by using membership functions just like the events.
For instance, instead of representing the time with a concrete hour and minute,
it is possible to define fuzzy sets like daytime and nighttime. Note that the
membership functions can also define crisp sets.

Objectives. Utility theory [15] provides a framework to represent and reason
with complex objectives by using a single measure called utility. In other words,
the utility represents the degree to which an operational state satisfies the ob-
jectives, so, allowing to compare different states in order to make decisions. The
elicitation of utilities is a non-trivial process and an active field of research [6].

In the presented approach, each fuzzy rule has an assigned objective and each
of these objectives is mapped to a utility, i.e., a real value. The semantics of a
rule is that if the action of the rule is executed in response to the event under the
operational context determined by the rule, then it fulfills the assigned objective

A Fuzzy, Utility-Based Approach for Proactive Policy-Based Management 91

and produces the respective utility. Technically, the objectives and utilities are
a set of variables and their respective real values in the fuzzy logic system.

Although this approach allows a fine-granular rule–objective mapping, it is not
recommended to assign different objectives to every rule due to the costly utility
elicitation. An example for a reasonable objective assignment is the definition
along the events that can be raised. That means that there is an objective for
every event and the utility represents the importance of the event resolution.

Action Specification. The action specification defines the values of the output
variable of the fuzzy logic system, i.e., the representation of the possible actions.
Specifically, it defines the output variable action as well as a crisp singleton set,
i.e., a single value, for each action on that variable. Although singletons are not
common in fuzzy logic systems, it is a reasonable modeling approach since the
single values represent discrete actions on the continuous variable action. For
instance, consider the two actions Mobility Robustness Optimization (MRO)
and Mobility Load Balancing (MLB) that are treating a reliability problem and
an availability problem respectively. For each, a singleton set is created on the
variable action, e.g., MRO is linked to a singleton set with the value 1 and MLB is
linked to a singleton set with value 2. Note that, depending on the defuzzification
method, the values of the actions can represent preferences (cf. Sec. 4.3).

Fuzzy Rules. The fuzzy rules express the expected behavior of the PBMS
from a technical point of view. Hence, these rules should be designed based on
the technical knowledge of the rule designers without considering the operational
goals. Specifically, these rules can contain policy conflicts. We consider Mamdani-
style [12] fuzzy rules with the following general structure:

IF event IS raised AND condition THEN action IS singleton WITH objective

The form of the rules is aligned with the ECA rule pattern. It has three parts:

IF part or antecedent consists of two components which are connected by a
conjunction. First, the evaluation of a single event level, i.e., the membership
of event to the set raised. Second, a condition part which can be any fuzzy
logic formula over the operational context.

THEN part or consequent proposes a single action by setting the value of the
output variable action to a singleton set representing the proposed action.

WITH part weights the rule with the utility of the assigned objective.

Note that this general rule structure also allows to model complex technical
knowledge as well as operator objectives (cf. [7]). For instance, by extending
the WITH part to be the product of the objective’s utility and an effectiveness,
one can represent a confidence in the action, i.e., the likeliness that the action
will treat the event correctly and generate the utility. Furthermore, imagine
that actions have fixed costs: this can be modeled by creating rules which have
an empty antecedent, i.e., they are always triggered, and a cost instead of an
objective which is some negative number.

92 C. Frenzel, H. Sanneck, and B. Bauer

System operators working with PBMS are used to ECA rules and so, they
might be unfamiliar with fuzzy rules. Furthermore, the structure of the fuzzy
rules is inconvenient since it is driven by the technical capabilities of a fuzzy
logic system. However, a simple transformation is able to translate ECA rules
into fuzzy rules. Thereby, it is necessary to group the ECA rules into policy
groups [16] which model the objectives the rules are fulfilling.

Inference. A fuzzy logic system evaluates each fuzzy rule and calculates the
output membership of the proposed action, i.e., the expected utility . Thereby,
the fuzzy logic semantics is aligned with the ECA paradigm, i.e., AND, OR, and
NOT are interpreted as usual as minimum, maximum, and complement [12]. The
expected utility of a rule r, which proposes an action, is calculated as

Uexp(r) = Wact(r)U(r) (1)

with, Wact(r) being the rule activation, i.e., the combined fuzzy membership of
the antecedent, and U(r) being the utility of the objective of the rule.

After that, the expected utilities of the fuzzy rules must be combined in
order to compute the value of each action. This combination is defined by the
accumulation method in a fuzzy logic system. A common approach is to sum up
the utilities that an action produces, however, this requires mutual preferential
independence [15] between the objectives, i.e., the utility of an objective for an
action is independent of the expected utilities of the other objectives for that
action. This assumption is implied by the structure of the objectives and fuzzy
rules, specifically the direct rule–objective assignment. However, the expected
utilities cannot be simply summed up since several rules can propose the same
action with the same objective. Hence, the accumulation needs to distinguish
between rules assigned to the same objective and rules assigned to different
objectives as outlined by the following example.

Consider the fuzzy rules r1a and r1b that are both assigned to objective o1,
and rule r2 which is assigned to objective o2. All three rules are triggered by
the event e and propose the action a. In this setting, the expected utilities for
o1 from r1a and r1b should count once since, even though the action has been
proposed twice, it can satisfy o1 only once. However, the expected utilities for
o1 and o2 are summed up since the action satisfies both objectives in parallel.

Formally, the value V of a action a is defined as:

V (a) =
∑

ρ∈R(a)/∼
max({Uexp(r)|r ∈ ρ}) (2)

wherebyR(a)/ ∼ is the partition of the set of all rules proposing a with respect to
equal objectives. Hence, the value of an action is determined by, first, calculating
the maximum of the expected utilities for each set of rules that have the same
objective and, second, summing up these maxima.

Technically, the accumulation can be implemented by grouping the fuzzy rules
assigned to the same objective into one Fuzzy Control Language rule group.

A Fuzzy, Utility-Based Approach for Proactive Policy-Based Management 93

Action

Ex
pe

ct
ed

U

til
ity

Action

Ex
pe

ct
ed

U

til
ity

Rule Group 1 Rule Group 2

Action

Va
lu

e

Overall

Maximum SumMaximum

Fig. 5. The accumulation of the expected utilities to the value

Within a rule group, the expected utilities of the rules are accumulated by se-
lecting the highest one, whereas the combined expected utilities of different rule
groups are summed up as shown in Fig. 5. This functionality is not standard-
ized and, so, this usually requires an adaptation of the fuzzy logic system. Note
that this adaptation can be avoided if it can be ensured that no two rules that
propose the same action for the same objective are ever triggered together.

4.3 Defuzzification

All actions that have a value greater than 0 are seen as proposed for execution.
However, not all can be executed in parallel because there might be conflicts
between them which are modeled in the conflict specification shown in Fig. 3.
Hence, the defuzzification selects the best actions that can be executed based
on their values. The actual output of the defuzzification are real numbers which
represent values of the variable action. They can be translated into the actions
by using the action specification for the fuzzy inference.

In simple cases, all actions are in conflict, i.e., only one action can be selected
at a time. Then, the best action is the one with the highest value since it satisfies
the most severe and important objectives. It can be selected from the fuzzy
variable action using a standard defuzzify method which selects the singleton set
with the highest membership degree. Thereby, the operator can prioritize actions
in the action specification if there are ties. For instance, if ties are broken by
selecting the action with the smallest value of the variable action, the operator
should assign smaller variable values to the actions that are more preferred.

More sophisticated defuzzification methods can also determine a set of best
actions if the conflicts are more complex. Suppose that the conflict specification
is a set of pairs of actions that cannot be executed together. So, the defuzzifi-
cation needs to find a combination of actions the maximizes the overall value
produced by the selected actions. This assignment problem can be formulated
as a constraint optimization problem which can be solved with a constraint
optimizer.

94 C. Frenzel, H. Sanneck, and B. Bauer

5 Case Study

In the following case study, we show the application of the fuzzy PBMS with
utilities in mobile networks management and evaluate its performance using a
demonstrator system based on jFuzzyLogic [5].

5.1 Scenario

The scenario is a 3rd Generation Partnership Project (3GPP) Long Term Evo-
lution (LTE) network which is managed as a Self-Organizing Network (SON),
i.e., the network has self-configuration, self-optimization, and self-healing fea-
tures [8]. A SON is characterized by autonomous SON functions which contin-
uously monitor the network and trigger the execution of algorithms in order to
resolve detected problems. Thereby, the SON functions can influence each other,
e.g., via common configuration parameters (output of SON functions) or com-
monly influenced KPIs (as input to SON functions), which leads to conflicts.
These conflicts are detected and resolved by the SON coordination function.

The PBMS for the case study is a simplified SON coordination. The SON
functions can be seen as monitoring probes which trigger the execution of some
resolution action. Since the monitoring of the functions is quite radio specific, the
details of the fuzzification are not presented here. Instead, we concentrate on the
decision making component, i.e., the SON coordination, and consider the fuzzy
events as given. We assume that, in discrete time intervals, all raised fuzzy events
are passed to the SON coordination which determines suitable actions to resolve
the problems, analyzes their values with respect to the operator objectives, and
triggers the best action. Thereby, all actions are assumed to be mutually in
conflict in order to keep the case study simple.

5.2 System Model

Figure 6 depicts the technical knowledge that is encoded in the fuzzy rules for
the fuzzy logic system. There are five fuzzy events that can be raised and six
actions that can be triggered. The arrows between the events and actions outline
the rules of the system, i.e., for each event e and action a pair which is connected
by an arrow, there is a rule which proposes a if e is present. However, a rule
can also contain a context condition which is not depicted. For instance, the ar-
row between reliability problem and Remote Electrical Tilt (RET) optimization
represents the following fuzzy rule:

IF reliability problem IS raised AND ret available IS true
THEN action IS ret optimization WITH objective dcr

Note that the rule evaluates the context whether the RET feature is available.
The events in SON encode specific network problems and, so, we defined the
objectives with respect to the fuzzy events, i.e., there is an objective for each
event. The utilities of these objectives are normalized, i.e., each utility is in the
range [0, 1] and the sum of the utilities is 1.

The fuzzy PBMS with utilities is evaluated against two simpler PBMSs:

A Fuzzy, Utility-Based Approach for Proactive Policy-Based Management 95

Reliability Problem

Mobility Problem

Overload Problem

Availability Problem

Transmission Power Optimization

Remote Electrical Tilt Optimization

Mobility Robustness Optimization

Capacity Optimization

Mobility Load Balancing

Energy Savings OptimizationUnderload Problem

Events ActionsRules

Fig. 6. Events, actions, and fuzzy rules in the case study

Classical PBMS considers neither fuzzy event levels nor operator objectives.
Hence, the event fuzzification is actually a sharp threshold which is set to
the border between jeopardy state and good state. Furthermore, the utility
of all objectives is equal.

Fuzzy PBMS uses fuzzy events in order to take the severity of the events into
consideration. However, the utilities of all objectives are equal.

Fuzzy PBMS with utilities considers both fuzzy events and utilities.

Operators adopting the fuzzy PBMS with utilities will likely start with the
classical approach and introduce the fuzzy PBMS as an intermediate step. After
gaining some experience with the system, the operator will adapt the utilities to
meet the true objectives and, so, switch to the fuzzy PBMS with utilities.

5.3 Evaluation

The evaluation is performed by comparing the performance of the three PBMSs
regarding the average value of the actions they select. Several sets of operator
objectives, i.e., utilities, and problem situations, i.e., event levels and contexts,
are created randomly. Thereby, the probabilities for an event level of 0 or 1 is
0.25 each, whereas, the event levels in]0, 1[are uniformly probable. Finally, each
combination of operator objectives and problem situation is fed into the three
PBMSs and the values of the proposed actions with respect to the operator
objectives and the problem situation are recorded.

Figure 7 depicts the average value of the selected actions for 100 different ob-
jective sets, each evaluated with 1000 different problem situations. As expected,
the classical PBMS has the lowest average value since it utilizes the least in-
formation, i.e., it neglects the fuzzy event levels and utilities. As a result, this
system always picks the action which resolves most of the raised events. The
fuzzy PBMS performs better since it utilizes the event level information. Hence,
it neglects events with low levels, i.e., that are less important, and concentrates
on the events with high levels. In summary, this system picks the action with the

96 C. Frenzel, H. Sanneck, and B. Bauer

highest sum of the levels of the resolved events. However, the best performance
is shown by the fuzzy PBMS with utilities because it knows the objectives of
the operators and, so, concentrates on the events with high levels that are also
valuable to the operator. Actually, the fuzzy PBMS with utilities always selects
the optimal action in this scenario where the actions are mutually conflicting.

Classical PBMS Fuzzy PBMS Fuzzy, utility-based PBMS
Average Value 0,241 0,273 0,315

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Fig. 7. Average value produced by the three PBMSs

Although the ranking of the PBMSs is not surprising, it is interesting that
the fuzzy PBMS performs 13% better than the classical system and the fuzzy
PBMS with utilities performs 15% better than the fuzzy system. This signifi-
cant performance increase between these two evolutionary steps indicates that
a gradual adoption of the fuzzy PBMS with utilities is a reasonable approach.

6 Related Work

Using a fuzzy logic system for systems management is not a new idea. For
instance, Kousaridas and Nguengang [11] utilize two fuzzy logic systems in se-
quence: the first estimates the network state given low-level technical measure-
ments and the second proposes actions to be performed based on the fuzzy
network state. The fuzzy membership degree is used to compute a confidence
in the decision. However, the approach neither separates the operator objectives
from the technical knowledge nor considers values.

Fuzzy logic systems have also been used for multi-criteria decision making [14],
[2], [17], i.e., the evaluation of preferences for specific decision options with re-
spect to some objectives. Thereby, the system is given a fuzzy satisfaction value
for each action regarding each objective. Based on these values, the system selects
the best action using the Max-Min selector, i.e., it determines the minimal sat-
isfaction value regarding an objective for each action and selects the action with
the highest minimal value. Boutalis and Schmidt [4] present a nice application
for a fuzzy discrete event system in the domain of mobile robots. However, the
pessimistic multi-criteria decision making approach is not applicable for PBM:
usually no action is satisfying all objectives at once and, thus, the minimal
satisfaction value for all actions would be 0. Hence, we adopt a more decision
theoretic approach [15] which can be seen as a Sum-Max selector. Nevertheless,

A Fuzzy, Utility-Based Approach for Proactive Policy-Based Management 97

by changing the accumulation methods (cf. Sec. 4.2) appropriately, one can also
use the pessimistic Max-Min selector with our approach.

In [7], we have presented a PBM approach that considers uncertainty in the
inputs and operational goals. The Rational Policy System extends an ECA rule
system with probabilistic events and a dynamic action conflict resolution that is
based on the value of the actions. Hence, the approach makes a clear distinction
between technical knowledge, represented in ECA rules, and operator objectives,
encoded in utilities. However, there are some differences between the Rational
Policy System and the presented approach. First, the reasoning of the Rational
Policy System is hard coded in program code and, so, less flexible to adapt than
the fuzzy logic problem formulation of our approach, e.g., if an operator decides
to use the Max-Min selector. Second, in contrast to the Rational Policy System
which solely allows for probabilistic events, the fuzzy logic approach allows both
fuzzy events and fuzzy context information. Third, the semantics of probabilistic
events used in the Rational Policy System is different from fuzzy events.

Another approach for PBM with utilities and uncertainty is presented by
Bartolini et al. [1]. In order to keep the efforts for system modeling low, they
introduce a jeopardy system state for each KPI, i.e., a special acceptable state
in which the system soon runs into an unacceptable state with some probability.
The system selects the best action based on the system state, a specification of
the probabilistic action effects, and the operator objectives. However, modeling
the system behavior as probabilistic action effects instead of rules is a complex
mental process for policy designers who are used to rule-based PBMSs.

7 Conclusion

In this paper, we presented a fuzzy PBMS with utilities which enables proactive
PBM. It determines the best action in response to fuzzy event with respect to
operator objectives. Thereby, technical knowledge, expressed in fuzzy rules, and
operator objectives, encoded in the utilities, are separated to facilitate differ-
ent life-cycles of both information models. The focus has been on providing an
extension of classical PBM which requires little modeling effort.

In the future, it seems very promising to add a learning component to the
system which can estimate the effectiveness of the rules by observing the system
behavior. Furthermore, the system needs to avoid the recurring execution of
actions if they fail to work. This can be done by keeping a history of the executed
actions and avoid them.

References

1. Bartolini, C., Sallé, M., Trastour, D.: IT service management driven by business
objectives: an application to incident management. In: Proc. 10th IEEE/IFIP Net-
work Operations and Management Symposium (NOMS 2006), pp. 45–55. IEEE,
Vancouver (2006)

2. Bellman, R.E., Zadeh, L.A.: Decision-Making in a Fuzzy Environment. Tech. Rep.
NASA CR-1594, National Aeronautics and Space Administration (1970)

98 C. Frenzel, H. Sanneck, and B. Bauer

3. Boutaba, R., Aib, I.: Policy-based Management: A Historical Perspective. Journal
of Network and Systems Management 15(4), 447–480 (2007)

4. Boutalis, Y., Schmidt, K.: Multi-objective decision making using fuzzy discrete
event systems: A mobile robot example. In: Proc. 18th Mediterranean Conference
on Control and Automation (MED 2010), pp. 575–580. IEEE, Marrakech (2010)

5. Cingolani, P., Alcala-Fdez, J.: jFuzzyLogic: a robust and flexible Fuzzy-Logic in-
ference system language implementation. In: Proc. IEEE International Conference
on Fuzzy Systems (Fuzz 2012), pp. 1–8. IEEE, Brisbane (2012)

6. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: An overview.
Artificial Intelligence 175(7-8), 1037–1052 (2011)

7. Frenzel, C., Sanneck, H., Bauer, B.: Rational Policy System for Network Manage-
ment. In: Proc. International Symposium on Integrated Network Management (IM
2013). IEEE, Ghent (2013)

8. Hämäläinen, S., Sanneck, H., Sartori, C.: LTE Self-organizing Networks (SON):
Network Management Automation for Operational Efficiency. Wiley, Chichester
(2011)

9. International Electronical Commission (IEC): IEC 1131 - Programmable Con-
trollers: Part 7 - Fuzzy Control Programming (January 1997),
http://www.fuzzytech.com/binaries/ieccd1.pdf

10. Kephart, J., Walsh, W.: An artificial intelligence perspective on autonomic com-
puting policies. In: Proc. IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2004), pp. 3–12. IEEE, Yorktown Heights (2004)

11. Kousaridas, A., Nguengang, G.: Deliverable D2.3: Final Report on Self-
Management Artefacts. Tech. rep., Self-Management of Cognitive Future InterNET
Elements, Self-NET (2010)

12. Kruse, R., Gebhardt, J., Klawonn, F.: Foundations of Fuzzy Systems. Wiley, New
York (1994)

13. Lupu, E., Sloman, M.: Conflicts in policy-based distributed systems management.
IEEE Transactions on Software Engineering 25(6), 852–869 (1999)

14. O’Hagan, M.: A Fuzzy Decision Maker, http://www.fuzzysys.com/fdmtheor.pdf
15. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.

Prentice Hall, Upper Saddle River (2003)
16. Strassner, J.: Policy-Based Network Management: Solutions for the Next Genera-

tion. Morgan Kaufmann, Amsterdam (2004)
17. Zimmermann, H.J.: Fuzzy Programming and Linear Programming with Several

Objective Functions. Fuzzy Sets and Systems 1(1), 45–55 (1978)

http://www.fuzzytech.com/binaries/ieccd1.pdf
http://www.fuzzysys.com/fdmtheor.pdf

Picking Up the Best Goal
An Analytical Study in Defeasible Logic

Guido Governatori1,4, Francesco Olivieri1,2,4, Antonino Rotolo3,
Simone Scannapieco1,2,4, and Matteo Cristani2

1 NICTA, Queensland Research Laboratory, Australia
2 Department of Computer Science, University of Verona, Italy

3 CIRSFID and DSG, University of Bologna, Italy
4 Institute for Integrated and Intelligent Systems, Griffith University, Australia

Abstract. In this paper we analyse different notions of the concept of goal start-
ing from the idea of sequences of “alternative acceptable outcomes”. We study
the relationships between goals and concepts like agent’s beliefs, norms, and de-
sires, and we propose a formalisation using Defeasible Logic that will be able to
provide a computationally feasible approach. The resulting system captures vari-
ous nuances of the notion of goal against different normative domains, for which
the right decision is not only context-dependent, but it must be chosen from a
pool of alternatives as wide as possible.

1 Motivation and Basic Intuitions

The BDI architecture is a prominent approach to model rational agents [1–3]. BDI agents
are means-ends reasoners equipped with: (i.) Desires, Goals, Intentions (or Tasks); (ii.)
a description of the current state of the environment (Beliefs); (iii.) Actions. The key
tenet of this architecture is that the agent’s behaviour is the outcome of a rational balance
among different mental states. Previous seminal works on the BDI paradigm [2–4], or
implementing the BDI architecture in Defeasible Logic [5–7] have assumed that mental
states are primitive and independent from each other, even though some mutual influ-
ences are considered (e.g., intentions are seen as desires satisfied up to commitment).

We work here on a different perspective to provide a fresh and efficient rule-based
framework that considers goals, desires, and intentions as facets of the same
phenomenon (all of them being goal-like attitudes): the notion of outcome, which is
simply something an agent would like or is expected to achieve. An advantage of the
proposed framework is that it allows agents to compute different degrees of motiva-
tional attitudes, and degrees of commitment that take into account other factors, such as
beliefs and norms.

While different schemas for generating and filtering agents’ outcomes are possible,
we will restrict ourself to schemas where we adopt the following principles:

– When an agent faces alternative outcomes in a given context, it is natural to rank
them in a preference order;

– Beliefs prevail over conflicting motivational attitudes, thus avoiding various cases
of wishful thinking [8, 9];

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 99–113, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

100 G. Governatori et al.

– Norms and obligations are used to filter social motivational states (social intentions)
and compliant agents [9, 6];

– Goal-like attitudes can be derived via conversion using other mental states, such
as beliefs (e.g., believing that Madrid is in Spain may imply that the goal to go to
Madrid implies the goal to go to Spain) [6].

Consider the following example, Alice, during her holidays, plans to pay a visit to her
friend John, who lives close to her parents. The plan can be described by the sentence
I shall come over to John’s place to visit him on Monday, but if he is not home or the
visit is not possible, I am going to visit my parents. If this is not possible as well, I
shall take some rest at home. This idea can be easily implemented by building for each
alternative a sequence of other alternatives A1, . . . ,An that are preferred when the first
choice is no longer feasible. Normally, each set of alternatives is the result of a specific
context C. This scenario can be represented as C⇒ A1, . . . ,An which is closely related
of contrary-to-duty obligations [10], where a norm is represented by an Obligation rule
of the type:

r1 : drive car⇒O ¬damage� compensate� foreclosure.

Rule r1 states that, if an agent drives a car, she has the obligation not to cause any dam-
age to others; if this happens, she is obliged to compensate; if she fails to compensate,
there is an obligation of foreclosure. The previous setting can be rewritten as:

r2 : holiday⇒U visit friend� visit parents� stay home.

where r2 is a rule introducing the oUtcome mode. In both examples, the sequences
express a preference ordering among alternatives, which means that also stay home
and foreclosure, though not the best options, still correspond to acceptable situations.

Besides rules for outcomes and obligations, we also have rules for beliefs such as

r3 : friend away⇒B ¬visit friend

for which we assume there is no preference ordering, since they do not express expected
outcomes but simply describe how the world is.

These building blocks allow us to introduce different types of goal-like attitudes and
degrees of commitment to outcomes: desires, goals, intentions, and social intentions.

Desires as Acceptable Outcomes. Suppose an agent is equipped with the following
outcome rules expressing two preference orderings:

r : a1, . . . ,an ⇒U b1�·· ·� bm s : a′1, . . . ,a
′
n ⇒U b′1�·· ·� b′k

and that the situation described by a1, . . . ,an and a′1, . . . ,a
′
n are mutually compatible

but b1 and b′1 are not, namely b1 = ¬b′1. In this case b1, . . . ,bm,b′1, . . . ,b
′
k are anyway

all acceptable outcomes, including the incompatible outcomes b1 and b′1. Desires are
expected or acceptable outcomes, independently of whether they are compatible with
other expected or acceptable outcomes.

Picking Up the Best Goal 101

Goals as Preferred Outcomes. For rule r alone the preferred outcome is b1, and for
rule s alone it is b′1. But if both rules are applicable, then a state where both b1 and b′1
hold is not possible: the agent would not be rational if she considers both b1 and ¬b1

as her preferred outcomes. Hence, the agent has to decide if she prefers a state where
b1 holds to one where b′1 (i.e., ¬b1) holds, or vice versa. If the agent cannot make up
her mind, i.e., she has no way to decide which is the most suitable option for her, then
neither the chain of r nor that of s can produce preferred outcomes.

Suppose that the agent opts for the latter option; this can be done if the agent estab-
lishes that the second rule overrides the first one, i.e., s > r. Accordingly, the preferred
outcome is b′1 for the chain of outcomes defined by s, and b2 is the preferred outcome
of r. b2 is the second best alternative according to rule r: in fact b1 has been discarded
as an acceptable outcome given that s prevails over r.

Two Degrees of Commitment: Intentions and Social Intentions. The next issue is
to clarify which are the acceptable outcomes for an agent to commit to. Naturally, if the
agent values some outcomes more than others, she should strive for the best, i.e., for the
most preferred outcomes.

Let us start by considering the case where only rule r applies. Here, the agent should
commit to the outcome she values the most, i.e., b1. But what if the agent believes that
b1 cannot be achieved in the environment where she is currently situated in, or she
knows that ¬b1 holds? Committing to b1 would result in a waste of agent’s resources;
rationally, she should target the next best outcome, in this case b2. Suppose, now, that b2

is forbidden, and the agent is social (an agent is social if the agent would not knowingly
commit to anything that is forbidden [6]). Once again, in this situation the agent has to
lower her expectation and settle for b3, which is the next acceptable outcome.

To complete the analysis, consider the situation where both rules r and s apply and
the agent prefers s to r. As we have seen before, ¬b1 (b′1) and b2 are the preferred
outcomes based on the preference of the agent over the two rules. Assume that, this
time, the agent knows she cannot achieve ¬b1 (or equivalently, b1 holds). If the agent is
rational, she cannot commit to ¬b1. Thus, the best option for her is to commit to b′2 and
b1, where she is guaranteed to be successful. In this scenario, the best course of action
for the agent is where she commits herself to some outcomes that are not her preferred
ones, or even that she would consider not acceptable based only on her preferences, but
such that they influence her decision process given that they represent relevant external
factors (either her beliefs or the norms that apply to her).

The layout of the paper is as follows. Section 2 presents the new logical framework.
Section 3 describes the algorithms to prove that the logic has linear complexity. Sec-
tion 4 ends the paper with some conclusions and a discussion of related work.

2 Logic

Defeasible Logic (DL) [11] is a simple but flexible and efficient rule based non-
monotonic formalism. The strength of DL lays in the constructive proof theory, which
has an argumentation-like structure and allows us to draw meaningful conclusions from
(potentially) conflicting and incomplete knowledge bases. The framework provided by

102 G. Governatori et al.

the proof theory accounts for the possibility of extensions of the logic, in particular ex-
tensions with modal operators. Several extensions have been proposed, which resulted
in applications in the area of normative reasoning [12], modelling agents [6, 13, 7],
and business process compliance [14], as well as efficient implementations of the logic
(including the modal variants), able to handle very large knowledge bases [15–17].

2.1 Language

The main aim of this subsection is to establish an inference process to compute factual
knowledge, desires, intentions, goals and obligations from existing facts, primitive de-
sires, intentions, goals and unconditional obligations. As a first step, we introduce the
language adopted. Let PROP be a set of propositional atoms, MOD = {B,O,D,G, I,SI}
the set of modal operators1 and Lbl be a set of arbitrary labels. The set Lit = PROP∪
{¬p|p ∈ PROP} denotes the set of literals. The complementary of a literal q is denoted
by ∼q; if q is a positive literal p, then ∼q is ¬p, and if q is a negative literal ¬p then
∼q is p. The set of modal literals is ModLit = {�l,¬�l|l ∈ Lit,� ∈ {O,D,G, I,SI}}.
We assume that the “�” modal operator for belief B is the empty modal operator, thus a
modal literal Bl is equivalent to literal l. Accordingly, we state that the complementary
of B∼l as well as ¬Bl is ∼l.

We define a defeasible theory D as a structure (F,R,>), where (i.) F is a set of facts
or indisputable statements, (ii.) R contains three sets of rules: for beliefs, obligations,
and outcomes and (iii.) > ⊆ R×R is a superiority relation to determine the relative
strength of conflicting rules. Belief rules are used to relate the factual knowledge of an
agent (her vision of the environment), and defines the relationships between states of
the world. As such, provability for beliefs does not generate modal literals. Obligation
rules determine when and which obligations are in force. The conclusions generated by
obligation rules are modalised with obligation. Finally, outcome rules establish the pos-
sible outcomes of an agent depending on the particular context. Apart from obligation
rules, outcome rules are used to derive conclusions for all modes representing possible
types of outcomes: desires, goals, intentions, and social intentions.

Following ideas given in [10], rules can gain more expressiveness when a preference
operator � is used: an expression like a� b means that if a is possible, then a is the
first choice and b is the second one; if ¬a holds, then the first choice is not attainable
and b is the actual choice. This operator is used to build chains of preferences, called
�-expressions. The formation rules for �-expressions are: (i.) every literal is an �-
expression, (ii.) if A is an �-expression and b is a literal then A� b is an �-expression.
In addition we stipulate that� obeys to the following properties: (i.) a� (b� c)= (a�
b)� c (associativity); (ii.)

⊙n
i=1 ai = (

⊙k−1
i=1 ai)� (

⊙n
i=k+1 ai) where exists j such that

a j = ak and j < k (duplication and contraction on the right).�-expressions are given by
the agent designer, or obtained through construction rules based on the particular logic
[10].

In this paper we exploit the classical definition of defeasible rule in DL [11]. A
defeasible rule is an expression r : A(r)⇒� C(r), where

1 The reading of the modal operators is B for belief, O for obligation, D for desire, I for intention
and SI for social intention.

Picking Up the Best Goal 103

1. r ∈ Lbl is the name of the rule;
2. A(r) = {a1, . . . ,an} with ai ∈ Lit∪ModLit is the set of the premises (or the an-

tecedent) of the rule;
3. � ∈ {B,O,U} represents the mode of the rule (from now on, we omit the subscript

B in rules for beliefs, i.e.,⇒ is used as a shortcut for⇒B);
4. C(r) is the consequent (or head) of the rule, which is a single literal if �= B, or an
�-expression otherwise2.

We use the following abbreviations on sets of rules: R� (R�[q]) denotes all rules of
mode � (with consequent q), and R[q] =

⋃
�∈{B,O,U}R�[q]. R[q, i] denotes the set of

rules whose head is �n
j=1c j and ci = q, with 1≤ i≤ n.

Most of the terminology defined so far appears in [6], where an extension of DL
with modal operators is introduced to differentiate modal and factual rules. However,
labelling the rules of DL produces nothing more but a simple treatment of the modali-
ties, thus two interaction strategies between modal operators are analysed.

Rule Conversions. It is sometimes meaningful to use rules for a modality X as they
were for another modality Y , i.e., to convert one type of conclusions into a different
one. For example, if ‘a car industry has the purpose of assembling perfectly working
cars’ and ‘it is known that in every working car there is a working engine’, then ‘a car
industry has also the purpose of assembling working engines in every car produced’.
Formally, we define an asymmetric binary relation Convert⊆MOD×MOD such that
Convert(X ,Y) means ‘a rule of mode X can be used also to produce conclusions of
mode Y ’. This intuitively corresponds to the following logical schema:

Ya1, . . . ,Yan a1, . . . ,an ⇒X b
Y b

Convert(X ,Y).

In our framework obligations and goal-like attitudes cannot change what the agent be-
lieves or how she perceives the world, thus we only consider conversion with mode for
belief as the first element of the relation (i.e., Convert(B,X) with X ∈ {O,D,G, I,SI}).
Conflict-Detection/Resolution. It is crucial to identify criteria for detecting and solv-
ing conflicts between different modalities. Formally, we define an asymmetric binary
relation Conflict ⊆MOD×MOD such that Conflict(X ,Y) means ‘modes X and Y are
in conflict and mode X prevails over Y ’. Consider the following theory:

F = { sunny day, school day},
R = { r1 : Sunny day⇒U go outside, r2 : school day⇒O ¬go outside}.

Even if there is a sunny day, a responsible parent would not go outside and play with her
kid but will bring him to school; this behaviour is captured by Conflict(O,SI), which
means that the rule that forbids to go outside prevents the agent from obtaining the
(social) intention of going outside, and the parent will not derive the (social) intention.

In our framework, we consider conflicts between beliefs and intentions, beliefs and
social intentions, and obligations and social intentions. In other words, we have:

2 It is worth noting that modal literals can occur only in the antecedent of rules: the reason is
that the rules are used to derive modal conclusions and we do not conceptually need to iterate
modalities. The motivation of a single literal as a consequent for belief rules is dictated by the
intended reading of the belief rules, where these rules are used to describe the environment.

104 G. Governatori et al.

– Conflict(B, I), Conflict(B,SI) meaning that the agents are realistic (cf. [9]), and
– Conflict(O,SI) meaning that the agents are social (cf. [6]).

Observation 1. Convert and Conflict relations behave differently in our framework
than the usual deployed in the literature [6]. Typically, there is a bijective correspon-
dence between a mode and the type of rule “representing” it. For example, there are
rules with mode O to derive obligations, or rules with mode I to derive intentions. This
is not the case in our logic where outcome rules are used to derive conclusions for
all goal-like attitudes. Thus, we can have Conflict(O,SI) exhibiting the sociality of the
agent but not Conflict(O,U) since desires and obligation do not attack each other.

There are two applications of the superiority relation: the first considers rules of the
same mode; the latter compares rule of different mode. Given r ∈ RX and s ∈ RY , notice
that r > s iff r converts X into Y , or s converts Y into X , i.e., the superiority relation
is used when rules, each with a different mode, are used to produce complementary
conclusions of the same mode. Consider the following theory with Convert(B,G):

F = { go to Rome, parent anniversary,August},
R = { r1 : go to Rome⇒B go to Italy

r2 : parent anniversary⇒U go to Rome
r3 : August ⇒U ¬go to Italy},

>= { (r1,r3)}.
Typically, I have the goal not to go to Italy in August since the weather is too hot and it
is too crowded. However, it is my parents’ anniversary and they are going to celebrate it
this August in Rome, which is the capital of Italy. Nonetheless, I have the goal to go to
Italy for my parents’ wedding anniversary, since I am a good son. Here, the superiority
applies because we use r1 through a conversion from belief to goal.

2.2 Inferential Mechanism

A proof P of length n is a finite sequence P(1), . . . ,P(n) of tagged literals of the type
+∂X q and−∂X q, where X ∈MOD. The proof conditions below define the logical mean-
ing of such tagged literals. As a conventional notation, P(1..i) denotes the initial part
of the sequence P of length i. Given a defeasible theory D, +∂X q means that q is defea-
sibly provable in D with the mode X , and −∂X q that it has been proved in D that q is
not defeasibly provable in D with the mode X . As usual, we use D �±∂�l iff there is a
proof P in D such that P(n) =±∂�l for an index n.

In order to characterise the notions of provability for beliefs (±∂B), obligations
(±∂O), desires (±∂D), goals (±∂G), intentions (±∂I) and social intentions (±∂SI), it
is essential to define when a rule is applicable or discarded. To this end, the prelim-
inary notion of when a rule is body-applicable/discarded must be introduced, stating
that each literal in the body of the rule must be proved/rejected with the suitable mode.

Definition 1. Let P be a proof and � ∈ {O,D,G, I,SI}. A rule r ∈ R is body-applicable
(at step n+ 1) iff for all ai ∈ A(r):

1. if ai =�l then +∂�l ∈ P(1..n),

Picking Up the Best Goal 105

2. if ai = ¬�l then −∂�l ∈ P(1..n),
3. if ai = l ∈ Lit then +∂ l ∈ P(1..n).

A rule r ∈ R is body-discarded (at step n+ 1) iff there is ai ∈ A(r) such that

1. ai =�l and −∂�l ∈ P(1..n), or
2. ai = ¬�l and +∂�l ∈ P(1..n), or
3. ai = l ∈ Lit and −∂ l ∈ P(1..n).

As already stated, belief rules allow us to derive literals with different modes. The
applicability mechanism must take into account this constraint.

Definition 2. Let P be a proof. A rule r ∈ R is 1. Conv-applicable, 2. Conv-discarded
(at step n+ 1) for X iff

1. r ∈ RB, A(r) �= /0 and for all a ∈ A(r),+∂X a ∈ P(1..n);
2. r /∈ RB or A(r) = /0 or ∃a ∈ A(r),−∂X a ∈ P(1..n).

Let us consider the following theory

F = {a,b,Oc}, R = {r1 : a⇒O b, r2 : b,c⇒ d},

r1 is applicable, while r2 is not since c is not proved as a belief. Instead, r2 is Conv-
applicable in the condition for ±∂O, since Oc is a fact and r1 proves Ob.

The notion of applicability gives guidelines on how to consider the next element in
a given chain. Since a rule for belief cannot generate reparative chains but only single
literals, we can conclude that the applicability condition for belief collapses into body-
applicability. The same happens to desires, where we also consider the Convert relation.
For obligations, each element before the current one must be a violated obligation. A
literal is a candidate to be a goal only if none of the previous elements in the chain have
been proved as a goal. For intentions, the elements of the chain must pass the wishful
thinking filter, while social intentions are also constrained not to violate any norm.

Definition 3. Given a proof P, r ∈ R[q, i] is applicable (at index i and step n+ 1) for

1. B iff r ∈ RB and is body-applicable.
2. O iff either: (2.1.1) r∈RO and is body-applicable, (2.1.2)∀ck ∈C(r), k< i,+∂Ock ∈

P(1..n) and −∂ck ∈ P(1..n), or (2.2) r is Conv-applicable.
3. D iff either: (3.1) r ∈ RU and is body-applicable, or (3.2) Conv-applicable.
4. X, X ∈ {G, I,SI} iff either: (4.1.1) r ∈ RU and is body-applicable, (4.1.2) ∀ck ∈

C(r), k < i, +∂Y∼ck ∈ P(1..n) for some Y such that Conflict(Y,X) and −∂X ck ∈
P(1..n) or (4.2) r is Conv-applicable.
For G there are no conflicts; for I we have Conflict(B, I), and for SI we have
Conflict(B,SI) and Conflict(O,SI).

Conditions to establish that a rule is discarded correspond to the constructive failure to
prove that the same rule is applicable, and follow the principle of strong negation.3

3 The strong negation principle is closely related to the function that simplifies a formula by
moving all negations to an inner most position in the resulting formula, and replaces the posi-
tive tags with the respective negative tags, and the other way around [18, 7].

106 G. Governatori et al.

We can now describe the proof conditions for the various modal operators; we start
with those for desires:
+∂D: If P(n+ 1) = +∂Dq then
(1) Dq ∈ F or
(2) (2.1) ¬Dq �∈ F and

(2.2) ∃r ∈ R[q, i]: r is applicable for D and
(2.3) ∀s ∈ R[∼q, j] either

(2.3.1) s is discarded for D, or
(2.3.2) s �> r.

We say that a desire is each element in a chain of an outcome rule for which there
is no stronger argument for the opposite desire. The proof conditions for +∂X , with
X ∈ {B,O,G, I,SI} are as follows:

+∂X : If P(n+ 1) = +∂X q then
(1) Xq ∈ F or
(2) (2.1) ¬Y q �∈ F for Y = X or Convert(Y,X) and

(2.2) ∃r ∈ R[q, i]: r is applicable for X and
(2.3) ∀s ∈ RY [∼q, j] either

(2.3.1) s is discarded for Y , or
(2.3.2) ∃t ∈ RT [q,k]: t is applicable for T and either

(2.3.2.1) t > s if Y = T , Convert(Y,T), or Convert(T,Y); or
(2.3.2.2) Conflict(T,Y).

To show that a literal q is defeasibly provable with modality X we have two choices:
(1) modal literal Xq is a fact; or (2) we need to argue using the defeasible part of D.
In this case, we require that a complementary literal (of the same modality, or of a
conflictual modality) does not appear in the set of facts (2.1), and that there must be an
applicable rule for q for mode X (2.2). Moreover, each possible attack brought by a rule
s for ∼q has to be either discarded (3.1), or successfully counterattacked by another
stronger rule t for q (2.3.2). We recall that the superiority relation combines rules of the
same mode, rules with different modes that produce complementary conclusion of the
same mode through conversion (both considered in clause (2.3.2.1)), and conflictual
modalities (clause 2.3.2.2). Obviously, if � = B, then the proof conditions reduce to
those of classical defeasible logic [11].

Again, the negative counterparts (−∂D and −∂X) are derived by strong negation ap-
plied to conditions for +∂D and +∂X , respectively. As an example, consider the theory:

F = {¬b1,O¬b2,SIb4} R = {r : ⇒U b1� b2� b3� b4}.

Then r is trivially applicable for D and +∂Dbi holds, for 1≤ i≤ 4. Moreover, we have
+∂Gb1 and r is discarded for G after b1. Since +∂¬b1,−∂Ib1 holds (as well as−∂SIb1);
the rule is applicable for I and b2, and we are able to prove +∂Ib2, thus the rule becomes
discarded for I after b2. Given that O¬b2 is a fact, r is discarded for SI and b2 and−∂SIb2

is proved, which in turn makes the rule applicable for SI at b3, proving +∂SIb3. As we
have argued before, this would make the rule discarded for b4. Nevertheless, b4 is still
provable with mode SI (in this case because it is a fact, but in other theories there could
be more rules with b4 in their head).

Picking Up the Best Goal 107

The logic resulting enjoys properties describing the appropriate behaviour of the
modal operators.

Definition 4. A defeasible theory D = (F,R,>) is consistent iff > is acyclic and F does
not contain pairs of complementary (modal) literals, that is pairs like (i.) l and ∼l, (ii.)
�l and ¬�l, � ∈MOD, and (iii.) �l and �∼l, � ∈MOD\ {D}.
Proposition 1. Let D be a consistent modal defeasible theory. For any literal l, it is not
possible to have both

1. D �+∂�l and D � −∂�l with � ∈MOD;
2. D �+∂�l and D �+∂�∼l with � ∈MOD\ {D}.

Moreover, given � ∈MOD\ {D}, then:

3. if D �+∂�l, then D � −∂�∼l.

Proof. Omissis.

3 Algorithmic Results

We now present the algorithms apt to compute the extension of a finite defeasible the-
ory, i.e., with finite set of facts and rules, in order to bind the complexity of the logic
introduced in the previous sections. The algorithms are inspired by ideas of [19, 20].

For the sake of clarity, from now on � denotes a generic mode in MOD, � a generic
mode in MOD\ {B}, and � a fixed mode chosen in �. Moreover, we will treat literals
�l and l as synonyms whenever � = B. To accommodate the Convert relation to the
algorithms, we denote with RB,� the set of belief rules with non-empty body that can be
used for a conversion to mode �. Furthermore, for each literal l, l� is the set (initially
empty) such that ±� ∈ l� iff D � ±∂�l. Given a modal defeasible theory D, a set of
rules R, and a rule r ∈ R�[l], we expand > by incorporating the Conflict relation to
ease the computation. Then, we define: (i.) rsup = {s ∈ R : (s,r) ∈>} and rin f = {s ∈
R : (r,s) ∈>} for any r ∈ R; (ii.) HBD as the set of literals such that the literal or its
complement appears in D, where ‘appears’ means that it is a sub-formula of a modal
literal occurring in D; (iii.) the modal Herbrand Base of D as HB = {�l| � ∈MOD, l ∈
HBD}. Accordingly, the extension of a defeasible theory is defined as follows.

Definition 5. Given a modal defeasible theory D, the defeasible extension of D is de-
fined as E(D) = (+∂�,−∂�) where±∂� = {l ∈HBD : D�±∂�l} with �∈MOD. Two
defeasible theories D and D′ are equivalent whenever E(D) = E(D′).

The next definition extends the concept of complement presented in Section 2 for modal
literals and establishes the logical connection among proved and refuted literals.

Definition 6. The complement of a given modal literal l, denoted by l̃, is:

1. if l = Dm, then l̃ = {¬Dm};
2. if l =�m, then l̃ = {¬�m,�∼m}, with � ∈ {O,G, I,SI};
3. if l = ¬�m, then l̃ = {�m}.

Truncation and removal are two syntactical operations on the consequent of rules.

108 G. Governatori et al.

Definition 7. Let c1 = a1�·· ·� ai−1 and c2 = ai+1�·· ·� an be two (possibly empty)
�-expressions such that ai does not occur in them, and c = c1 � ai � c2 is an �-
expression. Let r be a rule with form A(r)⇒X c. We define the

– truncation of the consequent c at ai as A(r)⇒X c!ai = A(r)⇒X c1� ai;
– removal of ai from the consequent c as A(r)⇒X c� ai = A(r)⇒X c1� c2.

Given � ∈ MOD, the sets ±∂� denote the global sets of defeasible conclusions (i.e.,
the set of literals for which condition ±∂� holds), while ∂±� are the corresponding
temporary sets. Moreover, to simplify the calculus we do not operate on outcome rules:
for each rule r ∈ RU we create instead a new rule for all the other goal-like modes (resp.
rD, rG, rI, and rSI). Consequently, we will use expressions like “the intention rule” as a
shortcut for “the clone of outcome rule used to derive intentions”.

The idea of all algorithms is to use the operations of truncation and elimination in
order to obtain, step after step, a simpler but equivalent theory. Indeed, proving a literal
does not give just local information about the element itself, but reveals which rules will
be applicable, discarded, or reduced in their head or tail.

Observation 2. Assume that, at a given step, the algorithm proves l. At the next step,

1. the applicability of any rule r with l in its antecedent A(r) does not depend on l any
longer. Accordingly, we can safely remove l from A(r).

2. Any rule s where l̃ is in its antecedent A(s) is discarded. Consequently, any supe-
riority tuple involving this rule is now meaningless and can be removed from the
superiority relation as well.

3. We can shorten chains by exploiting conditions of Definition 3. For example, if
l = Om, we can truncate chains for obligations at ∼m and eliminate∼m.

Algorithm 1 DEFEASIBLEEXTENSION is the core algorithm to compute the extension
of a defeasible theory. The first part (lines 1–4) sets up the data structure needed for the
computation. Lines 5–8 handle facts as immediately provable literals. The main idea of
the algorithm is to check whether there are rules whose body is empty. Since defeasible
rules can have �-expressions as their head, the literal we are interested in is the first
element of the �-expression (loop for at lines 16–33 and if condition at line 17). Such
rules are clearly applicable and they can produce conclusions with the right modality.
However, before asserting that the first element of the conclusion is provable, we have
to check whether there are no rules for the complement (again with the appropriate
mode), otherwise such rules for the complement must be weaker than the applicable
rules. This information is stored in Rin f d inspired by the technique of [20]. If no rule
stronger than the current one exists, the complementary conclusion must be refuted by
condition (2.3) of −∂� (line 25). A straightforward consequence of D � −∂�l is that
literal l is also refutable in D with any modality conflicting with � (line 26). Notice
that this reasoning does not hold for desires: since we can have Dl and D∼l at the same
time, when �= D the algorithm invokes procedure 2 PROVED (line 23).

The next step is to check whether there exist rules for the complement of the lit-
eral with the same (or conflicting) mode. The rules for the complement should not be
defeated by an applicable rule, i.e., they should not be in Rin f d . If all these rules are
defeated by r (line 27), then conditions for deriving +∂� are satisfied. If a literal is

Picking Up the Best Goal 109

Algorithm 1 . DEFEASIBLEEXTENSION

1: +∂�,∂+
� ← /0; −∂�,∂−� ← /0

2: R← R∪{r� : A(r)⇒� C(r)|r ∈ RU}\RU, with � ∈ {D,G, I,SI}
3: RB,�← {r� : �a1, . . . ,�an ⇒� C(r)|r ∈ RB,A(r) �= /0,A(r)⊆ Lit,ai ∈ A(r)}
4: >←> ∪{(r�,s�)|r�,s� ∈ RB,�,r > s}∪{(r,s)|r ∈ R�,s ∈ R�∪RB,�,Conflict(�,�)}
5: for l ∈ F do
6: if l = �m then PROVED(m,�)
7: if l = ¬�m∧� �= D then REFUTED(m,�)
8: end for
9: +∂�←+∂� ∪∂+

� ; −∂�←−∂�∪∂−�
10: Rin f d ← /0
11: repeat
12: ∂+

� ← /0; ∂−� ← /0
13: for �l ∈ HB do
14: if R�[l]∪RB,� [l] = /0 then REFUTED(l,�)
15: end for
16: for r ∈ R�∪RB,� do
17: if A(r) = /0 then
18: rin f ←{r ∈ R : (r,s) ∈>,s ∈ R}; rsup ←{s ∈ R : (s,r) ∈>}
19: Rin f d ← Rin f d ∪ rin f
20: Let l be the first literal of C(r) in HB
21: if rsup = /0 then
22: if �=D then
23: PROVED(m,D)
24: else
25: REFUTED(∼l, �)
26: REFUTED(∼l,�) for � s.t. Conflict(�,�)
27: if R�[∼l]∪RB,� [∼l]∪R�[∼l]\Rin f d ⊆ rin f , for � s.t. Conflict(�,�) then
28: PROVED(m,�)
29: end if
30: end if
31: end if
32: end if
33: end for
34: ∂+

� ← ∂+
� \+∂�; ∂−� ← ∂−� \−∂�

35: +∂�←+∂� ∪∂+
� ; −∂�←−∂� ∪∂−�

36: until ∂+
� = /0 and ∂−� = /0

37: return (+∂�,−∂�)

assessed to be provable (with the appropriate modality) the algorithm calls procedure 2
PROVED, otherwise the procedure 3 REFUTED is invoked. The algorithm finally returns
the extension of the input theory when no modifications are done on sets ∂±� .

Algorithm 2 PROVED is invoked when literal l is proved with modality �. The com-
putation starts by updating the relative positive extension set for modality � and the
local information on literal l (line 2); �l is then removed from HB at line 3. Propo-
sition 1 Part 3. defines the modalities literal ∼l can be refuted with (if condition at
line 4). Lines 5 to 7 modifies the sets of rules R and RB,�, and the superiority relation
accordingly to ideas of Observation 2.

Depending on the modality � of l, we have to perform some specific operations on
chains (condition switch at lines 8–27). Entering into the detail of each case would be
redundant without giving more information than conditions of a rule being applicable or

110 G. Governatori et al.

Algorithm 2 . PROVED

1: procedure PROVED(l ∈ Lit,� ∈MOD)
2: ∂+

� ← ∂+
� ∪{l}; l� ← l� ∪{+�}

3: HB← HB\{�l}
4: if � �=D then REFUTED(∼l, �)
5: R←{r : A(r)\{�l,¬�∼l} ↪→C(r)| r ∈ R, A(r)∩ �̃l = /0}
6: RB,� ←{r : A(r)\{�l} ↪→C(r)|r ∈ RB,�, A(r)∩ �̃l = /0}
7: >←> \{(r,s),(s,r) ∈> | A(r)∩ �̃l �= /0}
8: switch (�)
9: case B:

10: RX ←{A(r)⇒X C(r)!l| r ∈ RX [l,n]} with X ∈ {O, I}
11: RX ←{A(r)⇒X C(r)�∼l| r ∈ RX [∼l,n]} with X ∈ {I,SI}
12: if +O ∈ ∼l� then RO← {A(r)⇒O C(r)�∼l| r ∈ RO[∼l,n]}
13: if −O ∈ ∼l� then RSI← {A(r)⇒SI C(r)!l| r ∈ RSI[l,n]}
14: case O:
15: RO←{A(r)⇒O C(r)!∼l�∼l| r ∈ RO[∼l,n]}
16: RSI ←{A(r)⇒SI C(r)�∼l| r ∈ RSI[∼l,n]}
17: if −B ∈ l� then RO←{A(r)⇒O C(r)� l| r ∈ RO[l,n]}
18: if −B ∈ ∼l� then RSI←{A(r)⇒SI C(r)!l| r ∈ RSI[l,n]}
19: case D:
20: if +D ∈ ∼l� then
21: RG←{A(r)⇒G C(r)!l� l| r ∈ RG[l,n]}
22: RG←{A(r)⇒G C(r)!∼l�∼l| r ∈ RG[∼l,n]}
23: end if
24: otherwise:
25: R� ←{A(r)⇒� C(r)!l| r ∈ R�[l,n]}
26: R� ←{A(r)⇒� C(r)�∼l| r ∈ R�[∼l,n]}
27: end switch
28: end procedure

discarded in Section 2. Therefore, we propose one significative example by considering
the scenario where l has been proved as a belief (case at lines 9–13). Here, chains
of obligation (resp. intention) rules can be truncated after l since are discarded for all
following elements (line 10). Analogously, condition (4.1.2) of Definition 3 allows us
to eliminate ∼l from intention and social intention rules (line 11). If +∂O∼l has been
already proved, then we eliminate ∼l since it represents a violated obligation. Vice
versa, if −∂O∼l is the case, then each element after l cannot be a social intention (resp.
if conditions at lines 12 and 13).

Algorithm 3 REFUTED performs all necessary operations in case literal l is refuted
with modality �. The initialisation steps at lines 2–6 follow the same schema exploited
at lines 2–7 of Algorithm 2 PROVED. Again, the operations to be performed on chains
vary according to the current mode � (switch at lines 7–19). For example, if � = B
(lines 8–11), then applicability condition (4.1.2) for ±∂I cannot be satisfied for any
literal after∼l in chains for intentions, and such chains can be truncated at∼l. Further-
more, if the algorithm has already proven +∂Ol, then l represents a violated obligation.
Thus, l can be removed from all chains for obligations. If instead −∂Ol holds, then the
elements after ∼l in chains for social intentions do not satisfy applicability condition
(4.1.2) of ±∂SI for∼l, and the algorithm removes them.

We conclude by showing the computational properties of the algorithms proposed.

Picking Up the Best Goal 111

Algorithm 3 . REFUTED

1: procedure REFUTED(l ∈ Lit,� ∈MOD)
2: ∂−� ← ∂−� ∪{l}; l� ← l� ∪{−�}
3: HB← HB\{�l}
4: R←{r : A(r)\{¬�l} ↪→C(r)| r ∈ R, �l �∈ A(r)}
5: RB,� ← RB,� \{r ∈ RB,� : �l ∈ A(r)}
6: >←> \{(r,s),(s,r) ∈> |�l ∈ A(r)}
7: switch (�)
8: case B:
9: RI←{A(r)⇒I C(r)!∼l|r ∈ RI[∼l,n]}

10: if +O ∈ l� then RO←{A(r)⇒O C(r)� l|r ∈ RO[l,n]}
11: if −O ∈ l� then RSI ←{A(r)⇒SI C(r)!∼l|r ∈ RSI[∼l,n]}
12: case O:
13: RO←{A(r)⇒O C(r)!l� l|r ∈ RO[l,n]}
14: if −B ∈ l� then RSI ←{A(r)⇒SI C(r)!∼l|r ∈ RSI[∼l,n]}
15: case D:
16: RX ←{A(r)⇒X C(r)� l|r ∈ RX [l,n]} with X ∈ {D,G}
17: otherwise:
18: R� ←{A(r)⇒� C(r)� l|r ∈ R�[l,n]}
19: end switch
20: end procedure

Theorem 1. Algorithm 1 DEFEASIBLEEXTENSION terminates and its computational
complexity is O(|R| ∗ |HB|).
Proof Sketch. Termination is ensured since at every iteration either no modification
occurs and line 36 ends the computation, or a literal is removed from HB. This set is
finite, since the sets of facts and rules are finite, thus the process eventually empties HB.
This bounds also the complexity to the number of rules and literals in HB, since each
modal literal is processed once, and every time we scan the set of rules.

Theorem 2. Algorithm 1 DEFEASIBLEEXTENSION is sound and complete.

Proof. Omissis. A similar result can be found in [21].

4 Conclusions and Related Work

This article provides a fresh characterisation for motivational states as the concepts
of desire, goal, intention, and social intention obtained through a deliberative process
based on various types of preferences among desired outcomes. In this sense, this con-
tribution has strong connections with [5–7] but presents significant improvements in
at least two respects. First, while in those works the agent deliberation is simply the
result of the derivation of mental states from precisely the corresponding rules of the
logic, here the proof theory is much more aligned with the BDI intuition, according to
which intentions and goals are the results of desire manipulation. This allowed us to
encode this idea within a logical language and a proof theory, by exploiting the differ-
ent interaction patterns between the basic mental states, as well as the derived ones. In
this perspective, our framework is significantly more expressive than the one in BOID
[9], which uses different rules to derive the corresponding mental states and proposes
simple criteria to solve conflicts between rule types.

112 G. Governatori et al.

Second, the framework proposes a rich language expressing two orthogonal concepts
of preference among motivational attitudes. One is encoded within� sequences, which
state reparative orders among homogeneous mental states or motivations, and which
are contextual. The second type of preference is encoded via the superiority relation
between rules which can work locally, as well as via the Conflict relation. The interplay
between these two preference mechanisms can help us to isolate different and complex
ways for deriving mental states, but the resulting logical machinery is still computation-
ally tractable.

Since the preferences allow us to determine what preferred outcomes can be chosen
by an agent (in a specific scenario) when previous goals in �-sequences are not (or
no longer) feasible, our logic in fact provides an abstract semantics for several types
of goal and intention reconsideration. Intention reconsideration was expected to play
a crucial role in the BDI paradigm [22, 2] since intentions obey the law of inertia and
resist retraction or revision, but they can be reconsidered when new relevant informa-
tion comes in [22]. Despite that, the problem of revising intentions in BDI frameworks
has received little attention. A very sophisticated exception is [23], where revisiting in-
tentions mainly depends on the dynamics of beliefs but the process is incorporated in
a very complex framework for reasoning about mental states. Recently, [24] discussed
how to revise the commitments to planned activities because of mutually conflicting in-
tentions, which interestingly has connections with our work. How to employ our logic
to give a semantics for intention reconsideration is not the main goal of the paper and
is left to future work.

Finally, we recall that our focus was on the deliberation aspects of an agent deter-
mining what are her mental states in a given moment. That is the case, our investigation
is orthogonal with respect to the works of [25–27].

Acknowledgements. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

References

1. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning.
Computational Intelligence 4, 349–355 (1988)

2. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intelli-
gence 42(2-3), 213–261 (1990)

3. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Allen,
J.F., Fikes, R., Sandewall, E. (eds.) KR, pp. 473–484. Kaufmann, M. (1991)

4. Rao, A.S., Georgeff, M.P.: Decision procedures for bdi logics. Journal of Logic and Compu-
tation 8(3), 293–342 (1998)

5. Dastani, M., Governatori, G., Rotolo, A., van der Torre, L.: Programming cognitive agents in
defeasible logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 621–636. Springer, Heidelberg (2005)

6. Governatori, G., Rotolo, A.: BIO logical agents: Norms, beliefs, intentions in defeasible
logic. Journal of Autonomous Agents and Multi-Agent Systems 17(1), 36–69 (2008)

Picking Up the Best Goal 113

7. Governatori, G., Padmanabhan, V., Rotolo, A., Sattar, A.: A defeasible logic for modelling
policy-based intentions and motivational attitudes. Logic Journal of the IGPL 17(3), 227–265
(2009)

8. Thomason, R.H.: Desires and defaults: A framework for planning with inferred goals. In:
Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) KR 2000. Morgan Kaufmann (2000)

9. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the BOID archi-
tecture. Cognitive Science Quarterly 2(3-4), 428–447 (2002)

10. Governatori, G., Rotolo, A.: Logic of violations: A Gentzen system for reasoning with
contrary-to-duty obligations. Australasian Journal of Logic 4, 193–215 (2006)

11. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Transactions on Computational Logic 2(2), 255–287 (2001)

12. Governatori, G.: Representing business contracts in RuleML. International Journal of Coop-
erative Information Systems 14(2-3), 181–216 (2005)

13. Kravari, K., Papatheodorou, C., Antoniou, G., Bassiliades, N.: Reasoning and proofing ser-
vices for semantic web agents. In: Walsh, T. (ed.) IJCAI 2011, pp. 2662–2667 (2011)

14. Governatori, G., Sadiq, S.: The journey to business process compliance. In: Handbook of
Research on BPM, pp. 426–454. IGI Global (2008)

15. Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall, J., Paschke,
A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer, Heidelberg (2009)

16. Bassiliades, N., Antoniou, G., Vlahavas, I.: A defeasible logic reasoner for the semantic web.
Int. J. Semantic Web Inf. Syst. 2(1), 1–41 (2006)

17. Tachmazidis, I., Antoniou, G., Flouris, G., Kotoulas, S., McCluskey, L.: Large-scale paral-
lel stratified defeasible reasoning. In: De Raedt, L., Bessière, C., Dubois, D., Doherty, P.,
Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.) ECAI 2012, pp. 738–743. IOS Press (2012)

18. Antoniou, G., Billington, D., Governatori, G., Maher, M.J., Rock, A.: A family of defeasible
reasoning logics and its implementation. In: ECAI 2000, pp. 459–463 (2000)

19. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory and Practice of
Logic Programming 1(6), 691–711 (2001)

20. Lam, H.-P., Governatori, G.: What Are the Necessity Rules in Defeasible Reasoning? In:
Delgrande, J., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 187–192. Springer,
Heidelberg (2011)

21. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and weak per-
missions in defeasible logic. CoRR abs/1212.0079 (2012)

22. Bratman, M.E.: Intentions, Plans and Practical Reason. Harvard University Press (1987)
23. van der Hoek, W., Jamroga, W., Wooldridge, M.: Towards a theory of intention revision.

Synthese 155(2), 265–290 (2007)
24. Shapiro, S., Sardina, S., Thangarajah, J., Cavedon, L., Padgham, L.: Revising conflicting

intention sets in BDI agents. In: AAMAS 2012, pp. 1081–1088. IFAAMS (2012)
25. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural goals in

intelligent agent systems. In: Fensel, D., Giunchiglia, F., McGuinness, D.L., Williams, M.
(eds.) KR 2002, pp. 470–481. Morgan Kaufmann (2002)

26. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Goal types in agent programming. In:
Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) AAMAS, pp. 1285–1287. ACM
(2006)

27. van Riemsdijk, M.B., Dastani, M., Meyer, J.J.C.: Goals in conflict: Semantic foundations
of goals in agent programming. Journal of Autonomous Agents and Multi-Agent Sys-
tems 18(3), 471–500 (2009)

Computing Temporal Defeasible Logic

Guido Governatori1 and Antonino Rotolo2

1 NICTA, Australia
2 CIRSFID and DSG, University of Bologna, Italy

Abstract. We investigate the complexity of temporal defeasible logic, and pro-
pose an efficient algorithm to compute the extension of any theory. The logic and
algorithm are discussed in regard to modeling deadlines and normative
retroactivity.

1 Introduction

Defeasible Logic (DL) [25,3] is historically the first of a family of approaches based on
the idea of logic programming without negation as failure. DL is a simple, efficient but
flexible non-monotonic formalism capable of dealing with many different intuitions of
non-monotonic reasoning [5]. The logic was designed to be easily implementable right
from the beginning, unlike most other approaches, and has a linear complexity [23].
Recent implementations include DR-Prolog [2], DELORES [22], DR-DEVICE [8] and
SPINdle [20].

DL proved to be modular and flexible. In particular, propositional DL has been re-
cently extended in two different directions.

In a first case, different types of modal operators (capturing notions such as directed
and undirected deontic statements, actions, beliefs, and intentions) have been embedded
within propositional DL [12,13]. The result was a number of logics having still linear
complexity and being able to model the deliberation of cognitive agents and their inter-
play with normative systems. Some implementations have been recently developed for
such logics [9,19,20].

DL has been also extended to capture temporal aspects of normative reasoning [17,14]
several specific phenomena, such as legal positions [17] and modifications [11,14], dead-
lines [10]. Although Temporal Defeasible Logic (TDL) proved to be sufficiently ex-
pressive for those purposes, and many variants of it have been proposed accordingly,
no systematic investigation on the proof-theoretic and computational properties of TDL
has been so far carried out. This paper is a first step in this direction. In particular, we
will present a conceptually expressive variant of TDL, which is computationally feasi-
ble. This variant is able to represent different types of deadlines and capture backward
causation and normative retroactivity. We will prove that it is always computationally
feasible to compute the complete set of consequences of any given TDL theory, thus
preserving the nice computational features of standard DL.

The layout of the paper is as follows. Section 2 describes the variant of TDL stud-
ied in the paper. Section 3 investigates the complexity of the logic, and proposes an
algorithm to compute the extension of any theory. Section 4 discusses the approach and
considers how to model retroactivity. A section on related work ends the paper.

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 114–128, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Computing Temporal Defeasible Logic 115

2 Temporal Defeasible Logic (TDL)

Consider a set P of atomic propositional literals. The language of TDL is based on the
concept of temporalised literal, which is an expression such as lt (or its negation, ¬lt),
where l is a literal and t is an element of a discrete totally ordered set T of instants of
time {t1, t2, . . .}: lt intuitively means that l holds at time t. Given a temporalised literal
l the complement∼l is ¬pt if l = pt , and pt if l = ¬pt .

A rule is an expression lbl:A ↪→x m, where lbl is a unique label of the rule, A is a (fi-
nite, possibly empty) set of temporalised literals, ↪→∈ {→,⇒,�}, m is a temporalised
literal and x is either π or τ signaling whether we have a persistent or transient rule.
Strict rules, marked by the arrow →, support indisputable conclusions whenever their
antecedents, too, are indisputable. Defeasible rules, marked by ⇒, can be defeated by
contrary evidence. Defeaters, marked by �, cannot lead to any conclusion but are used
to defeat some defeasible rules by producing evidence to the contrary. A persistent rule
is a rule whose conclusion holds at all instants of time after the conclusion has been de-
rived, unless interrupting events occur; a transient rule establishes its conclusion only
for a specific instant of time. Thus ex1: p5 ⇒π q6 means that if p holds at 5, then q de-
feasibly holds at time 6 and continues to hold after 6 until some event or fact overrides
it. The rule ex2: p5 ⇒τ q6 means that, if p holds at 5, then q defeasibly holds at time 6
but we do not know whether it will persist after 6.

Example 1. Let us consider two examples from the normative domain. Suppose Bob
buys today a car. If so, he will have the obligation to pay for that. Clearly, this obligation
holds today and will persist afterwards (until Bob pays for the car). Hence:

r1:Bob Cartoday ⇒π OBLPaytoday

Suppose now that Bob enters a Catholic church. As long as he is in the church, he is
obliged not speak loudly. In this case, the obligation does not persist, but only holds
insofar as Bob is in the church:

r2:Bob Churchx ⇒τ OBL¬Speak Loudlyx

We use some abbreviations. Given a rule r and a set R of rules, A(r) denotes the an-
tecedent of r while C(r) denotes its consequent; Rπ denotes the set of persistent rules
in R, Rτ the set of transient rules in R; R[ψ] is the subset of R of rules with consequent
ψ . Rs, Rsd and Rdft are respectively the set of strict rules, the set of strict and defeasible
rules, and the set of defeaters in R.

Note that we assume that persistent literals, once they are blocked at a certain time
t, no longer hold after t unless other applicable rules reinstate them. Indeed, this is the
usual rendering of the common sense law of inertia [28]. Accordingly, we assume that
defeaters are only transient: if a persistent defeasible conclusion is blocked at t by a
defeater, there is no need that such a defeater is still applicable after t.

Example 2. Consider again the rule:

r1:Bob Cartoday ⇒π OBLPaytoday

116 G. Governatori and A. Rotolo

If Bob pays, then he is no longer obliged to pay:

r3:Payx,OBLPayx �τ ¬OBLPayx+1

There is no reason here to say that this obligation to pay will sooner or later come back:
if this happens, it implies that something new has happened in the meantime that has
triggered again the obligation. Hence, there are good reasons to state that defeaters have
not to be persistent, at least in the domain of normative reasoning.

Remark 1. Impeding reasons work as depicted in the example above in many contexts
other than the normative domain: again, this is the usual rendering of the common sense
law of inertia mentioned above. However, there are examples where a reason r to block
the persistence of a literal l (for example, state of affairs) is effective with respect to
this literal only as long as r’s effect persists too: when such an r no longer applies, then
l comes back by inertia without any further positive reason. Consider the example of
Bob, a person who sleeps because he under the effect of of a drug. Bob is asleep as long
as the drug is active: when it is no longer active, Bob wakes up. Intuitively, a simple
way to model this scenario in TDL is as follows:

r4:¬Drug Activex ⇒π Awakex

r5:Drug Activey �z ¬Awakey

Should r5 be persistent or transient? If persistent, it would block the inertia of Awake
indefinitely, but this is not required: in this context, we can simply say that a precondi-
tion for Bob to be awake is that no drug is active on him. So we can capture the scenario
by stating that z = τ .

There are three kinds of features in TDL: facts, rules, and a superiority relation among
rules. Facts are indisputable statements, represented by temporalised literals. The supe-
riority relation (�) provides information about the relative strength of rules, i.e., about
which rules can overrule which other rules. A knowledge base that consists of these
items is called a TDL theory.

Definition 1. A TDL theory is a structure (F,R,�), where F is a finite set of facts, R is
a finite set of rules and � is an acyclic binary relation over R.

Given a rule r, rin f = {s:r � s} and rsup = {s:s� r}.
TDL adopts a constructive inference mechanism based on tagged conclusions. Proof

tags indicate the strength of conclusions. The strength depends on whether conclusions
are indisputable (the tag is Δ), namely obtained by using facts and strict rules, or they
are defeasible (the tag is ∂).

Provability is defined below grounded on the concept of a derivation (or proof) in a
TDL theory D.

Definition 2. Given a TDL theory D, a proof P from D is a finite sequence of tagged
temporalised literals such that:
1. Each tag is one of the following: +Δ , −Δ , +∂ , −∂ ;
2. The proof conditions Definite Provability and Defeasible Provability given below

are satisfied by the sequence P.

Computing Temporal Defeasible Logic 117

Given a proof P we use P(n) to denote the n-th element of the sequence, and P[1..n]
denotes the first n elements of P. The meaning of the proof tags is as follows:

– +Δ ptp : we have a definite derivation of p holding at time tp;
– −Δ ptp : we can show that it is not possible to have a definite derivation of p holding

at time tp;
– +∂ ptp : we have a defeasible derivation of p holding at time tp; in other terms p is

provable at time tp.
– −∂ ptp : we can show that it is not possible to have a defeasible derivation of p

holding at time tp; thus p is refuted at time tp.

Note that the inference conditions for negative proof tags (−Δ and−∂) are derived from
the inference conditions for the corresponding positive proof tags by applying the Prin-
ciple of Strong Negation introduced by [4]: the strong negation of a formula is closely
related to the function that simplifies it by moving all negations to an innermost position
in the resulting formula and replace the positive tags with the respective negative tags
and viceversa.

Definite Provability
If P(n+ 1) = +Δ ptp , then
1) ptp ∈ F ; or
2) ∃r ∈ Rx

s [p
t′p] such that

∀ata ∈ A(r): +Δata ∈ P[1..n].

If P(n+ 1) =−Δ ptp , then
1) ptp /∈ F; and
2) ∀r ∈ Rx

s [p
t′p],

∃ata ∈ A(r): −Δata ∈ P[1..n].
where:

(a) if x = π , then t ′p ≤ tp;
(b) if x = τ , then t ′p = tp.

If the rule used to derive p is transient (if x = τ), the above conditions are the standard
ones for definite proofs in DL, which are just monotonic derivations using forward
chaining. If the rule is persistent (x = π), p can be obtained at tp or, by persistence, at
any time t ′p before tp. Finally, notice that facts lead to strict conclusions, but are taken
not to be persistent. This condition can be relaxed or we could introduce persistent and
well as transient facts.

Defeasible Provability
If P(n+ 1) = +∂ ptp , then
1) +Δ ptp ∈ P[1..n] or
2) ∃r ∈ Rx

d [p
t′p] such that

1) −Δ∼pt∼p ∈ P[1..n] and
2) ∀ata ∈ A(r): +∂ata ∈ P[1..n], and
3) ∀s ∈ R[∼pt∼p] either

1) ∃btb ∈ A(s),−∂btb ∈ P[1..n] or
2) ∃w ∈ R[pt∼p] such that ∀ctc ∈ A(w):

+∂ctc ∈ P[1..n] and w� s.

If P(n+ 1) =−∂ ptp , then
1) −Δ ptp ∈ P[1..n] and
2) ∀r ∈ Rx

d[p
t′p] either

1) +Δ∼pt∼p ∈ P[1..n] or
2) ∀r ∈ Rx

d[p
t′p] or

3) ∃s ∈ R[∼pt∼p] such that
1) ∀btb ∈ A(s),+∂btb ∈ P[1..n] and
2) ∀w ∈ R[pt∼p] ∃ctc ∈ A(w):
−∂ctc ∈ P[1..n] or w �� s.

where

(1) if x = π , then t ′p ≤ t∼p ≤ tp;
(2) if x = τ , then t ′p = t∼p = tp.

118 G. Governatori and A. Rotolo

Defeasible derivations run in three phases. In the first phase we put forward a supported
reason (rule) for the conclusion we want to prove. Then in the second phase we consider
all possible (actual and not) reasons against the desired conclusion. Finally, in the last
phase, we have to rebut all the counterarguments. This can be done in two ways: we can
show that some of the premises of a counterargument do not obtain, or we can show
that the argument is weaker than an argument in favour of the conclusion. If x = τ , the
above conditions are essentially those for defeasible derivations in DL. If x = π , a proof
for p can be obtained by using a persistent rule which leads to p holding at tp or at any
time t ′p before tp. In addition, for every instant of time between t ′p and tp, p should not
be terminated. This requires that all possible attacks were not triggered (clause 2.3.1)
or are weaker than some reasons in favour of the persistence of p (clause 2.3.2).

As usual we write D�±#lt (#∈ {Δ ,∂}) if there is a derivation P for±#lt in D. Given
a rule r and a derivation P, we will say that r is applicable in P, or simply applicable
when the derivation is clear from the context, iff ∀at ∈ A(r),+∂at ∈ P[1..n] for some
n ∈ N.

Example 3. Consider the following theory, where t1 < t2 < t3 < t4:

(F = {at1 , bt3 , ct3 , dt4},
R = {r1: at1 ⇒π et1 , r2: bt3 ⇒π ¬et3 , r3: ct3 �τ et3 , r4: dt4 ⇒τ ¬et4},
�= {r3 � r2, r1 � r4})

At time t1, r1 is the only applicable rule; hence, we derive +∂et1 . At time t2 no rule is
applicable, and the only derivation permitted is the one of +∂et2 by persistence. At time
t3 both r2 and r3 are applicable, but r4 is not. If r2 prevailed, then it would terminate e.
However, it is rebutted by r3, so we derive +∂et3 . At time t4, rule r4 is applicable, thus
we derive +∂¬et4 and −∂et4 , which means that r4 terminates e. Even if r4 is weaker
than r1, the latter is not applicable at t4, thus it does not offer any support to maintain e.

Proposition 1. Let D be a TDL theory.
1. It is not possible that both D �+#pt and D � −#pt (for # ∈ {Δ ,∂});
2. if D �+∂ pt and D �+∂∼pt , then D �+Δ pt and D �+Δ∼pt .

The proof of Proposition 1 is a simple extension of the ones for Theorems 1 and 2 in [13]
and is omitted for space reasons. Proposition 1 shows the soundness of TDL: it is not
possible to derive a tagged conclusion and its opposite, and that we cannot defeasibly
prove both p and its complementary unless the definite part of the theory proves them;
this means that inconsistency can be derived only if the monotonic part of the theory is
inconsistent, and even in this case the logic does not collapse to the trivial extensions
(i.e., everything is provable).

Definition 3. Let HBD be the Herbrand Base for a TDL theory D. The extension of D
(denoted by ED) is the 4-tuple (Δ+,Δ−,∂+,∂−), where

∂+ = {pt |p ∈ HBD,D �+∂ pt , t ∈ T }, ∂− = {pt |p ∈ HBD,D � −∂ pt , t ∈ T },
Δ+ = {pt |p ∈ HBD,D �+Δ pt , t ∈ T }, Δ− = {pt |p ∈ HBD,D � −Δ pt , t ∈ T }.

We will refer to Δ+ and Δ− as the definite extension, to ∂+ and ∂− as the defeasible
extension, to Δ+ and ∂+ as the positive extension, and to Δ− and ∂− as the negative
extension.

Computing Temporal Defeasible Logic 119

3 Computing Consequences in TDL

In this section we present an algorithm to compute the extension of a TDL theory. We
show that the time complexity of the algorithm remains computationally feasible and it
is proportional to the size of the theory (number of symbols in a theory). Following the
idea of [23] the algorithm is based on a series of (theory) transformations that allow us
(1) to assert whether a literal is provable or not (and the strength of its derivation) and
(2) to progressively reduce and simplify a theory.

At this point we have to make precise what we mean for two theories to be equivalent.

Definition 4. Two theories D and D′ are equivalent if and only if they have the same
extension, namely D≡ D′ iff ED = ED′ .

The key ideas behind the approach depends on the following properties that allow us to
transform theories into ‘simpler’ ones (i.e., either with rules with less elements in their
antecedent or with less rules).

Proposition 2. Let D = (/0,R,�) be a temporal defeasible theory1. Then

1. If r: →π pt ∈ R then D �+Δ pt′ , ∀t ′ ≥ t.
2. If r: →τ pt ∈ R then D �+Δ pt .
3. If D �+Δ pt , then D∪{r:at1

1 , . . . ,a
tn
n , pt → ctc} ≡ D∪{r:at1

1 , . . . ,a
tn
n → ctc}

4. Let tmin = min{t:Rs[pt] �= /0}, then D � −Δ pt′ ∀t ′ < tmin.
5. Let tπ = min{t:Rπ

s [p
t]},2 t−τ = min{t:Rτ

s [p
t] �= /0, t > tmin}, t+τ = max{t:Rτ

s [p
t] �=

/0, t < tπ}. Then D � −Δ pt′ , ∀t ′ such that either tmin < t ′ < t−τ or t+τ < t ′ < tπ .
6. If D � −Δ pt , then D∪{r:at1

1 , . . . ,a
tn
n , pt → ctc} ≡ D∪{r:at1

1 , . . . ,a
tn
n , pt ⇒ ctc}

The properties in Proposition 2 give us an alternative characterisation of the proof the-
ory for definite conclusions. Properties 1 and 2 provide conditions under which we are
allowed to positively assert a definite conclusion. Properties 3 presents the condition for
the transformation. In fact it tells us that we can remove already proved temporal liter-
als from the body of other (strict) rules without affecting the conclusions we can derive
from a theory. Thus we can use Properties 1–3 to transform a theory into a simpler but
equivalent theory.

Properties 4–6, on the other hand, are related to transformations and conditions to
derive negative definite conclusions. Properties 4, establishes that for all times less than
the minimum time appearing associated to a literal in the conclusion of a rules, we fail
to prove literal, thus we can assert the literal with −Δ . The meaning of Property 5 is
similar to that of Property 4, but this time, the focus is for the times in an interval; in
particular it states that for all instants between two persistent rules (for a literal p) such
that no other rule is in that interval (provided that the smallest instant for a persistent rule
for the same literal is after the last of the right extreme of the interval), we can assert that
the literal is provable with −Δ . Similarly for an interval between the smallest instant

1 Notice that the restriction to theories with an empty set of facts is not a limitation. For any
theory D = (F,R,�) there is an equivalent theory D′ = (/0,R∪{→τ at :at ∈ F}.�) where the
set of facts is empty.

2 If {t:Rπ
s [p

t]}= /0, then we assume tπ to the be the minimum of the temporal order T .

120 G. Governatori and A. Rotolo

for a persistent rule and a transient rule. Finally, Property 6 tells us that after we have
assessed that a strict rule is not applicable for the computation of definite conclusions,
we can transform the rule into a defeasible rule.

Proposition 3. Let D be a theory in TDL. For y ∈ {π ,τ}:
(1) If D �+∂ pt , then D∪{r: pt1

1 , . . . , ptn
n , pt ⇒y q} ≡ D∪{r: pt1

1 , . . . , ptn
n ⇒y q}.

(2) if D � −∂ pt , then D∪{r: pt1
1 , . . . , ptn

n , pt ⇒y q} ≡ D.

The meaning of (1) in the above proposition is that once we have established that a
temporalised literal is positively provable we can remove it from the body of rules
without affecting the set of conclusions we can derive from the theory. Similarly (2)
states that we can safely remove rules from a theory when one of the elements in the
body of the rules is negatively provable.

To give conditions under which we can conclude that a temporal literal is defeasibly
provable, we use the notion of inferiorly defeated set introduced in [21]. The set of
inferiorly defeated rules, Rinfd, is thus defined Rinfd = {r:∃s,s� r, and A(s) = /0}.
Proposition 4. Let D be a TDL theory. If r : ⇒x pt ∈ R and R[∼pt]⊆ Rinfd, then D �
+∂ pt and D � −∂∼pt .

This proposition gives us the main criterion to assess whether we can defeasibly prove
a literal.

We compute the extension of a TDL theory in two phases:

1. in the first phase we compute the definite extension;
2. in the second phase we use the theory from the first phase to generate the theory to

be used to compute the defeasible extension.

3.1 Computing the Definite Extension

Before giving the algorithm to compute the extension we have to introduce some aux-
iliary notation to refer to the data structures needed for the algorithms that compute the
extension.

Definition 5. Let D be a TDL theory and HD be the set of literals in D. For each a∈HD

we have the following sets:

– ptimes(a) = {t:∃r ∈ Rπ [at]};
– ttimes(a) = {t:∃r ∈ Rτ [at]};
– times(a) = ptimes(a)∪ ttimes(a).

We use the same abbreviations as those of Section 2. Thus, e.g., ptimess(a) is the set of
instants associated to Rs[a].

In the presentation of the algorithms we use intervals to give a compact represen-
tation for sets of contiguous instants. We will use both proper intervals, i.e., intervals
with both start and end time, and punctual intervals, i.e., intervals corresponding to
singletons. We will use [t, t ′] for a proper interval and [t] for a punctual interval.

Computing Temporal Defeasible Logic 121

Definition 6. Given an interval I we say that t∗ ∈ I iff

(1) if I = [t, t ′], t < t ′ and t ≤ t∗ < t ′ or
(2) if I = [t] and t∗ = t.

We adopt a compact but isomorphic representation for the extensions, namely, elements
of extensions are now pairs (l, I) were l is a literal and I is an interval; thus (l, I) corre-
sponds to the set of temporalised literals lt such that t ∈ I.

Algorithm 1. ComputeDefinite
Input: A Temporal Defeasible Theory D = (F,R,�)

1 Δ+←{(a, [t]):at ∈ F}
2 Δ− ← {(a, [0,∞]:Rs[a] = /0)}
3 HD ← HD \{a:Rs[a] = /0}
4 while Δ+ �= /0 do
5 Δ+← /0
6 for a ∈ HD do
7 Rs ← Rs \{s:at ′ ∈ A(s), t ′ < min(ptimes(a) and t ′ /∈ ttimes(a))}
8 if times(a) = /0 then
9 Hd ← Hd \{a}

10 for r ∈ Rs do
11 if A(r) = /0 and C(r) = at then
12 if r ∈ Rπ then
13 Δ+← Δ+∪{(a, [t,∞])}
14 Rs ← Rs \{s:C(s) = at ′ , t ′ ≥ t}
15 Rs ←{r:A(r)\{lt ′ } →C(s):r ∈ Rs, t ′ ≥ t}
16 if r ∈ Rτ then
17 Δ+← Δ+∪{(a, [t])}
18 Rs ← Rs \{s:C(s) = at}
19 Rs ←{r:A(r)\{lt}→C(s):r ∈ Rs}
20 Δ+← Δ+∪Δ+

21 for a ∈ HD do
22 tle f t ←max(0,{t:(a, [t ′, t]) ∈ Δ−})
23 tright ←min(0,{t:(a, [t,∞]) ∈ Δ+})
24 Tτ ← {t:(a, [t]) ∈ Δ+, tle f t < t < tright}
25 Tτ ← Tτ ∪{t:C(r) = at ,r ∈ Rτ

s [a], tle f t < t < tright}
26 T ← Tτ ∪{t:C(r) = at ,r ∈ Rπ

s [a], tle f t < t < tright}
27 while Tτ �= /0 do
28 tmin ←min(Tτ)
29 Tτ ← Tτ \{tmin}
30 if tmin +1 /∈ T and tmin +1 < tright then
31 Δ− ← Δ−∪{(a, [tmin])}

At each cycle the algorithm ComputeDefinite scans the set of literals in search of
temporalised literals for which there are no rules for them. This happens in two cases:
(i) there are no rules for a temporalised literal or (ii) all the persistent rules for the literal
have a greater time. For each of such temporalised literals ComputeDefinite adds them
to the negative definite extension of the theory, and removes all rules where at least one
of these literals occurs.

122 G. Governatori and A. Rotolo

Then ComputeDefinite scans the set of rules in search of rules with an empty body.
In case of a positive match the algorithm adds the conclusion of the rule to the pos-
itive definite extension (with an open ended interval for a persistent rule and with a
punctual interval otherwise). Finally the algorithm removes from the body of rules the
temporalised literals matching the newly added conclusions.

We repeat the cycle until (1) there are no more literals to be examined, or (2) the set
of strict rules is empty, or (3) no addition to the extension happened in the cycle.

Proposition 5. ComputeDefinite is correct.

Proof. The correctness of ComputeDefinite follows immediately from Proposition 2.
The transformations in ComputeDefinite correspond to the properties listed in
Proposition 2.

3.2 Computing the Defeasible Extension

We are now ready to give the algorithm that computes the defeasible extension of a
theory. We first give some subroutines corresponding to theory transformations to be
used in the main algorithm. ∂+ and ∂− are sets of accumulators for the conclusions
proved in each cycle of the main routine.

The first algorithm we consider is concerned with literals to be tagged with −∂ .

Algorithm 2. discard(l, I)
Input: a literal l and an interval I

1 ∂− ← ∂−∪{(l, I)}
2 S←{s: lt ∈ A(s), t ∈ I}
3 R← R\S
4 �←�\{(r,s),(s,r):s ∈ S}
5 persistence(S)

The algorithm discard adds a literal to the negative defeasible extension and then
removes rules for which we have already proved that some literal in the antecedent of
the rules is not provable. The literal is parametrised by an interval. This means that the
operation is performed for all instances of the literal temporalised with an instant in the
interval. The transformation corresponding to it is justified by Proposition 3.(2). The
algorithm further calls the subroutine persistence that updates the state of the extension
of a theory.

Algorithm proved (Algorithm 3) concerns defeasible provable literals.

Algorithm 3. proved(l,r, I)
Input: a literal l, a rule r, and and interval I

1 ∂+← ∂+∪{(l, I)}
2 discard(∼l, I)
3 for s ∈ R do
4 if lt ∈ A(s) and t ∈ I then
5 A(s)← A(s)\{lt}
6 R← R\{r}
It first inserts a provable literal in the positive defeasible extension of the theory. Then

proved calls discard with the complementary literal. The next step is to remove all the

Computing Temporal Defeasible Logic 123

instances of the literal temporalised with an instant in the interval I from the body of
rules. Finally it removes the rule for the set of rules. The transformations implemented
by this algorithm are justified by Propositions 3.(1), and 4.

Algorithm persistence updates the state of literals in the extension of a theory after
we have removed rules we know cannot longer be fired (i.e., at least one literal in the
antecedent of the rule is provable with −∂ x).

Algorithm 4. persistence(S)
Input: a set of rules S

1 for (l, [t, t ′] ∈ ∂+) do
2 if s ∈ S and C(s) =∼lt ′ then
3 if t∗ = min{k ∈ ttimes(∼l):k > t ′} then
4 ∂+← (∂+ \{(l, [t, t ′])})∪{(l, [t, t∗])}
5 proved(l, /0, [t ′, t∗])

As we have seen in Section 2 a conclusion proved using a persistent rule persists
until it is terminated by another (applicable) rule for the complement of the conclusion,
thus an entry (l, [t, t ′]) in ∂+ means that l holds from t to t ′ − 1. Hence, there is a rule
for ∼lt′−1. When we insert (l, [t, t ′]) in ∂+ we do not know if the rule for ∼lt′−1 is
applicable or not. The set S passed as parameter to the algorithm is the set of rules we
have discovered to be no longer applicable. At this point we can update the entry for l
in ∂+, and we set it to t ′′, where t ′′ is the next instant for which we have a rule for ∼l.
Consider, e.g., a theory where the rules for p and ¬p are:

r : ⇒π p1,

s : q5 ⇒τ ¬p10,

v : ⇒π ¬p15.

Here, we can prove +∂ pt for 1 ≤ t < 10, no matter whether q is provable at 5 or not.
Suppose we discover that−∂q5. Then we have to remove rule s. In the resulting theory
can prove +∂ pt for 1 ≤ p < 15. Thus we can update the entry for l from (l, [1,10]) to
(l, [1,15]).

For ComputeDefeasible lines 4–11 are essentially the same as the main loop in
ComputeDefinite, lines 4–27 (with the difference that when we eliminate a rule we
update the state of the extension instead of waiting to the end as we did for the definite
extension).

From line 12 we search for rules with empty body. Suppose we have one of such
rules, let us say a rule for lt . If there are no stronger rules for the opposite, no matter
what type of rule we have, we know that the complement of l, i.e.,∼l, cannot be proved
at t. So we call discard with parameter (∼l, [t]), and remove rules where∼lt appears in
the body. At this stage we still have to determine whether we can insert l in ∂+ and the
instant/interval associated to it. We have a few cases. The rule is a defeater. Defeaters
cannot be used to prove conclusions, so in this case, all we can do is to insert all rules
weaker than the defeater in the set of inferiorly defeated rules (line 24). If the rule is
transient, then it can prove the conclusion only at t, and we have to see if there are
transient rules for ∼lt or persistent rules for∼lt′ such that t ′ ≤ t. If there are we have to
wait to see if we can discard such rules. Otherwise, we can add (l, [t]) to ∂+ and carry

124 G. Governatori and A. Rotolo

Algorithm 5. ComputeDefesible
Input: A TDL theory (F,R,≺)

1 ∂+← F
2 ∂− ← {(a, [t]):∼at ∈ F}
3 R← R\{r ∈ R : ∼C(r) ∈ F}
4 ≺←≺\{(r,s),(r,s):s ∈ R,∼C(s) ∈ F}
5 repeat
6 ∂+← /0
7 ∂− ← /0

8 S =
{

s ∈ R : ∃at ′ ∈ A(s) : t ′ < min(ptimes(a)), t ′ /∈ ttimes(a)
}

9 R← R\S
10 persistence(S)
11 for a ∈ HD do
12 if R[l] = /0 then
13 discard(a, [0,∞])
14 if ∃r ∈ R[l]:A(r) = /0 and C(r) = at then
15 if rsup = /0 then
16 discard(∼a, [t])
17 if r ∈ Rd and R[∼l]−Rin f d ⊆ rin f then
18 if r ∈ Rτ

d then
19 proved(a, [t])
20 else if r ∈ Rπ

d [a] then
21 t∗ = min({k ∈ times(∼a)}∪{∞})
22 proved(a, [t, t∗])
23 else
24 Rin f d ← Rin f d ∪ rin f

25 until ∂+ = /0 and ∂− = /0
26 ∂+← ∂+∪∂+
27 ∂− ← ∂− ∪∂−

over the related housekeeping. Finally, in the last case the rule is persistent, and, again
the second part of the condition in line 15 holds, what we have to do in this case is to
search for the minimum time greater or equal to t in the rules for∼l, and we can include
(l, [t, t ′]) in ∂+ and again perform the related housekeeping.

Proposition 6. Let D = (/0,R,�) be a TDL theory such that there is no strict rule with
empty body in R; then the transformation ComputeDefeasible(D) is correct.

3.3 Computing the Extension

To compute the full extension of a TDL theory D we use the following series of
transformation:

1. Let D′ be the theory obtained from ComputeDefinite(D)
2. The defeasible extension is obtained from ComputeDefeasible(D′).

We call the transformation ComputeExtension.

Computing Temporal Defeasible Logic 125

Theorem 1. ComputeExtension is correct.

Proof. The result follows from the correctness of the two steps (Propositions 5 and 6).

Theorem 2. Given a TDL theory D, the extension of D can be computed in O(|R| ∗
|HD| ∗ |TD|) time, where TD is the set of distinct instants in D.

Proof. First of all we notice that for each literal a the set R[a] can be implemented as an
hash table with pointers to the rules, where each rule is implemented as an ordered list
of pairs. The sets of ptimes and ttimes can be constructed as indexes: the information
stored in them can be accessed (in the form required by ComputeDefeasible) in linear
time.

For ComputeDefeasible we have a loop over the set of literals, and inside a loop over
the set of rules. After a successful execution of the loop we reduce the complexity of
the theory and keep trace of the literals and rules for which we have to repeat the cycle.
Every time we remove a rule in the algorithm ComputeDefeasible, we call persistence
to update the extension. For each cycle the number of time we call the procedure is
bounded by the number of instants such that there is a particular literal with that instant
in the head of a rule. The number of operations we are going to perform is bounded by
the number of symbols in the theory (we either remove a rule or a literal from a rule).
The total number of symbols in a theory is bounded by the product of the number of
rules, the number of atoms and the distinct instant of time in the theory.

Thus, the complexity of ComputeExtension is O(|R| ∗ |HD| ∗ |TD|).

4 Discussion and Implementation

TDL is an extension of basic defeasible logic [3] for which [23] proved that the com-
plexity is linear. The extension is twofold: on the syntactic side, literals are labelled
with timestamps, on the conceptual side TDL introduces persistent and transient con-
clusions. The idea of persistent conclusions is that once a conclusion has been classified
as persistent then it continues to hold until there are some reasons to terminate it. From a
computational point of view, we can propagate persistent conclusions from one instant
to the successive instant unless there are some reasons that prevent the propagation.
Based on this intuition, if we restrict the language to rules with the form

at1
1 , . . . ,a

tn
n ⇒ bt

such that
max({t1, . . . , tn})≤ t

then we can devise the following procedure [18] to compute the extension of a theory.
– At time 0, consider the sub-theory restricted to the rules whose consequent is la-

belled by 0. Then use the algorithms given in [23] to compute the extension of the
sub-theory at time 0.

– At time n+ 1, consider the extension at time n. Then for each positive conclusion
(i.e., conclusion whose proof tag is +∂) pi:• introduce a rule rn

pi
: ⇒τ pi

• introduce an instance of the superiority relation rn
pi
≺ s for each s such that

C(s) =∼pn+1
i ;

• remove pn
i from the body of rules where it occurs;

126 G. Governatori and A. Rotolo

For each negative conclusion q j remove rules where q j appears in the body. Com-
pute the extension for the sub-theory restricted to the rules whose consequent is
labelled with n+ 1.

Thus, we compute the extension of a theory D in the interval [0, t] in O(|D| ∗ t)-time
(where |D| is the number of instances of literals in it).

The above procedure applies an incremental swap over the time-line, and the prob-
lem with it is that it cannot look backward. Therefore the major limitation is that it
cannot handle rules where the time of the conclusion precedes the time of some of its
antecedents. This is a drawback, since rules of that form are able to capture interesting
phenomena, such as backward causation and normative retroactivity. While it is debat-
able whether effects can precede the causes (a discussion is reported in [18]), normative
retroactivity occurs indeed in law. This means that a norm is introduced at a particular
time, but its normative effects must be considered at times preceding the validity. In
fact, this happens, e.g., of taxation law, where it is possible to claim a tax benefit from
a date in the past. Theories containing rules such as {a10 ⇒τ b10,b10 ⇒π c0,c3 ⇒π a0}
raise computational problems: clearly, it is not possible to handle the computation by
sequentially running the algorithms of [23] for each time-slice. The procedure proposed
in this paper handles these cases by keeping the complexity under control. An efficient
Java implementation of TDL based on the algorithms presented in this paper is dis-
cussed in [27,26]. Initial experiments with the implementation confirm the scalability
of the approach. The implementation has been tested on both synthetic theories (de-
signed to test particular features of TDL) and concrete theories obtained from real life
scenarios.

On the synthetic side, TDL and the proposed algorithms can account for compact
encodings and efficient computations. For example consider the theories:

T1: ⇒π p0 T2:⇒τ p0, pi ⇒τ pi+1 for 0≤ i≤ 99

The two theories are equivalent (i.e., they generate the same extension) in the time
interval [0,100], but, trivially, our algorithms compute the extension much more quickly
when given the first theory as input than when the second theory is used as input. On
the practical side, of particular interest is the formalisation in TDL of the Road Traffic
Restriction Regulation of the Italian town of Piacenza [26,16].

5 Related Work

Typically there are two mainstream approaches to reasoning with and about time. A
point based approach, as in the present paper, and an interval based approach [1]. Notice
that the current approach is able to deal with constituents holding in an interval of time:
an expression ⇒ a[t1,t2] meaning that a holds between t1 and t2 can just be seen as a
shorthand of the pair of rules⇒π at1 and �τ ¬at2 .

Non-monotonicity and temporal persistence are covered by a number of different
formalisms, some of which are quite popular and mostly based on variants of Event
Calculus or Situation Calculus combined with non-monotonic logics (see, e.g., [28,29]).
TDL has some advantages over many of them. While TDL is able to cover many differ-
ent aspects (in particular retroactivity), its time complexity is linear: to the best of our
knowledge, no logic with the same coverage of TDL is so efficient.

Computing Temporal Defeasible Logic 127

Anyway, we would like to point out that interval and duration based defeasible rea-
soning has been developed by [6,18]. [18] focus on duration and periodicity and re-
lationships with various forms of causality: no complexity result was presented there.
[6] integrates temporal reasoning in argumentation theory and proposes a sophisticated
interaction of defeasible reasoning and standard temporal reasoning (i.e., mutual rela-
tionships of intervals and constraints on the combination of intervals). In [6] constraint-
based temporal reasoning combining intervals and instants are integrated in an
argumentation framework. Predicates as Holds, Occurs and Do are used to associate
constrained temporal information to logic formulas representing properties, events and
actions. From the general point of view, [6] develops a very expressive (but not nec-
essarily tractable) argumentation system: indeed, no complexity results are available
for this work, but the system deals with very complex temporal structures without any
apparent computational concern.

Other interesting approaches integrating temporal reasoning in argumentation theory
include Mann and Hunter’s [24] and Barringer and Gabbay’s [7]. The last one proposes
temporal and modal languages to represent arguments in the nodes of a network and
give a Kripke semantics. Mann and Hunter in [24] encode temporal information via
formulas of the form Holds(α, i) to express that α holds at interval i and propose a
translation into classical propositional calculus.

Acknowledgements. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

A previous version of this work was presented at NMR’2010 [15]. We are grateful
to the referees for their valuable comments on earlier versions.

References

1. Allen, J.: Towards a general theory of action and time. Artificial Intelligence 23, 123–154
(1984)

2. Antoniou, G., Bikakis, A.: Dr-prolog: A system for defeasible reasoning with rules and on-
tologies on the semantic web. IEEE Trans. Knowl. Data Eng. 19(2), 233–245 (2007)

3. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Transactions on Computational Logic 2, 255–287 (2001)

4. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible logic into
logic programming. Theory and Practice of Logic Programming 6, 703–735 (2006)

5. Antoniou, G., Billington, D., Governatori, G., Maher, M.J., Rock, A.: A family of defeasible
reasoning logics and its implementation. In: Proceedings of the 14th European Conference
on Artificial Intelligence, pp. 459–463. IOS Press (2000)

6. Augusto, J., Simari, G.: Temporal defeasible reasoning. Knowledge and Information Sys-
tems 3, 287–318 (2001)

7. Barringer, H., Gabbay, D.M.: Modal and temporal argumentation networks. In: Manna, Z.,
Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200, pp. 1–25. Springer, Heidelberg
(2010)

8. Bassiliades, N., Antoniou, G., Vlahavas, I.: A defeasible logic reasoner for the Semantic
Web. International Journal on Semantic Web and Information Systems 2, 1–41 (2006)

128 G. Governatori and A. Rotolo

9. Dimaresis, N., Antoniou, G.: Implementing modal extensions of defeasible logic for the se-
mantic web. In: AAAI 2007, pp. 1848–1849 (2007)

10. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising deadlines in tempo-
ral modal defeasible logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI),
vol. 4830, pp. 486–496. Springer, Heidelberg (2007)

11. Governatori, G., Palmirani, M., Riveret, R., Rotolo, A., Sartor, G.: Norm modifications in
defeasible logic. In: JURIX 2005, pp. 13–22. IOS Press, Amsterdam (2005)

12. Governatori, G., Rotolo, A.: BIO logical agents: Norms, beliefs, intentions in defeasible
logic. Journal of Autonomous Agents and Multi Agent Systems 17, 36–69 (2008)

13. Governatori, G., Rotolo, A.: A computational framework for institutional agency. Artif. In-
tell. Law 16(1), 25–52 (2008)

14. Governatori, G., Rotolo, A.: Changing legal systems: Legal abrogations and annulments in
defeasible logic. Logic Journal of IGPL 18(1), 157–194 (2010)

15. Governatori, G., Rotolo, A.: On the complexity of temporal defeasible logic. In: NMR 2010
(2010)

16. Governatori, G., Rotolo, A., Rubino, R.: Implementing temporal defeasible logic for mod-
eling legal reasoning. In: Nakakoji, K., Murakami, Y., McCready, E. (eds.) JSAI-isAI 2009.
LNCS (LNAI), vol. 6284, pp. 45–58. Springer, Heidelberg (2010)

17. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic.
In: ICAIL 2005, pp. 25–34. ACM Press (2005)

18. Governatori, G., Terenziani, P.: Temporal extensions to defeasible logic. In: Orgun, M.A.,
Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 476–485. Springer, Heidelberg
(2007)

19. Kontopoulos, E., Bassiliades, N., Governatori, G., Antoniou, G.: A modal defeasible reasoner
of deontic logic for the semantic web. Int. J. Semantic Web Inf. Syst. 7(1), 18–43 (2011)

20. Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall, J., Paschke,
A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer, Heidelberg (2009)

21. Lam, H.-P., Governatori, G.: What are the necessity rules in defeasible reasoning? In: Del-
grande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 187–192. Springer,
Heidelberg (2011)

22. Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient defeasible reasoning
systems. International Journal of Artificial Intelligence Tools 10(4), 483–501 (2001)

23. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory and Practice of
Logic Programming 1, 691–711 (2001)

24. Mann, N., Hunter, A.: Argumentation using temporal knowledge. In: COMMA 2008,
pp. 204–215. IOS Press (2008)

25. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, vol. 3, pp. 353–395. OUP (1993)

26. Rubino, R.: Una implementazione della logica defeasible temporale per il ragionamento
giuridico. PhD thesis, CIRSFID, University of Bologna (2009)

27. Rubino, R., Rotolo, A.: A Java implementation of temporal defeasible logic. In: Governatori,
G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 297–304. Springer,
Heidelberg (2009)

28. Shanahan, M.: Solving the Frame Problem: A Mathematical Investigation of the Common
Sense Law of Inertia. MIT Press (1997)

29. Turner, H.: Representing actions in logic programs and default theories: A situation calculus
approach. Journal of Logic Programming 31(1-3), 245–298 (1997)

Efficient Persistency Management in Complex

Event Processing: A Hybrid Approach
for Gamification Systems

Philipp Herzig1, Bernhard Wolf1, Svenja Brunstein1, and Alexander Schill2

1 SAP Research, Chemnitzer Straße 46, 01187 Dresden, Germany
philipp.herzig@sap.com

2 Technische Universität Dresden, Institute of Systems Architecture,
Nöthnitzer Straße 46, 01187 Dresden, Germany

alexander.schill@tu-dresden.de

Abstract. Complex Event Processing (CEP) has been successfully ap-
plied in various domains. As of today, the management of external,
durable, and encapsulated state in such systems has received little at-
tention in research. An emerging kind of rule and event-based systems
are platforms for gamification. These systems require an efficient man-
agement of entities containing state. In this paper, we are proposing a
hybrid system capable of fast event processing on the one hand and global
state, entity, and persistency management on the other hand. Moreover,
we present and evaluate different synchronization strategies between an
event processor and a business entity provider. We demonstrate that our
extensions outperform conventional CEP solutions in terms of state per-
sistency and ex post analytics by adding just a marginal performance
overhead.

Keywords: Complex Event Processing, Production and ECA Rules,
State Management, Hybrid Systems, Gamification.

1 Introduction

Complex Event Processing (CEP) is used to detect patterns in complex event
clouds or continuous streams of events, for instance, “total value of all with-
drawals in the last 10 days exceeds 30” [1]. CEP has been applied successfully in
different domains such as banking, insurance, or healthcare [2]. More recently,
numerous researchers raised the question how likely it is that critical decisions
are taken “merely on event patterns such as: event a is followed by event b in
last 10 seconds?” [3, p. 123]. For some scenarios, additional knowledge has to be
processed in conjunction with events in order to detect noteworthy patterns.

In this paper, we consider knowledge as state encapsulated in durable entities
representing, for example, users or physical devices. While the state of entities
may change through arbitrary external influences, in CEP applications the state
also changes upon consequences or updates of detected event patterns. Besides
state, entities contain behavior. The behavior determines the next state after

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 129–143, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

130 P. Herzig et al.

updates have been received by the entity. In either case, the current state of
entities has to be processed upon event arrival within an event processor. Al-
though this management of additional context and external state is considered
as a key part for event processing applications [4], its investigation in rule-based
CEP systems has received little attention so far [5].

One domain that needs efficient state management in conjunction with real-
time event processing is gamification. Gamification is defined as the “use of game
design elements in non-game contexts” [6] and has emerged as recent informa-
tion system trend. In the enterprise domain the intention is to introduce game
mechanics on the job in order to foster higher levels of employee engagement
which, in turn, positively influences organizational outcomes, such as organiza-
tional commitment or job performance. Enterprise information systems (EIS),
e.g., ERP, CRM, or SCM may act as mediator to introduce game mechanics
such as goals, rules, or badges [7] on top of existing business processes. Recent
research has shown that gamification yields the desired improvements from a
psychological perspective [8].

1.1 Scenario

In Figure 1, the general scenario of the gamification platform is shown which is
used as example throughout this paper. An enterprise may operate a number of
enterprise systems, e.g., enterprise resource planning (ERP), portal, or customer
relationship management (CRM) systems. These systems are intended to be
gamified. To support the introduction of gamification, another system, called
the gamification platform, is used. This platform comprises an event processing
agent (EPA) and an entity manager.

At design time, designers or psychologists define the gamification logic in the
EPA using a declarative rule language. Moreover, entities such as badges, points,
or levels have to be defined using the entity manager. Furthermore, the enterprise

Enterprise
Systems

ERP

Portal

CRM

Employees
Designer;

Psychologist

Gamification Platform

Entity Manager

Entities

Gamification
State

Event Processing Agent
Gamification

Logic

Fig. 1. General Scenario

Efficient Persistency Management in Complex Event Processing 131

systems have to be configured to send events to the platform, for example, using
a BPM solution or other event driven components.

At runtime, employees interact with the enterprise systems. Accordingly, the
enterprise systems send events to the EPA of the gamification platform. Based on
the gamification rules deployed in the EPA, the rule engine calculates feedback
mechanisms such as point or badge instances for the respective users and updates
the entities’ states using the entity manager. The enterprise systems may retrieve
the users’ current state, e.g., current points or leaderboards, from the entity
manager. For example, the gamification platform may comprise rules that give
the users of a CRM system several points for each customer they maintain in
the system. Furthermore, these users may obtain badges once they have reached
a particular amount of points and the like.

1.2 Requirements

We already discussed the quality attributes for a generic gamification platform in
[9]. These requirements are summarized in the following. Flexibility: The gamifi-
cation platform, especially its logic, has to be changeable to react to new business
requirements. Real-time event correlation and pattern detection: Events sent to
the platform in the form of user actions have to be arbitrarily correlated by
causal, temporal, or spatial operators. If patterns have been detected, feedback
has to be given at least in soft real-time. Persistency and consistency: Merits,
such as points or badges, have to be stored and made available for users them-
selves as well as for other users at any time. Moreover, the data must be highly
consistent, i.e., the stored data must be free of conflicts and contradictions.Man-
ageability: The persisted data must be manageable across the gamifications’ life
cycle. For example, data has to be aggregated or anonymized after a particular
time to ensure legal compliance in some countries or domains. Analyzability: In
order to monitor the impact of the gamification, data must be analyzable by its
stakeholders over certain dimensions such as time, users, or groups. Moreover,
data mining might be applied ex post on the data to predict future user behav-
ior. These predictions, in turn, may lead to a modification of the gamification
logic.

Based on these requirements, we are assessing traditional approaches in Sec-
tion 2. Due to mutual limitations of existing solutions, we are proposing a hybrid
concept in Section 3 based on [5]. The efficiency of the proposed approach, how-
ever, highly depends on the utilized communication paradigms and trade-offs
can be found which are evaluated and discussed in Section 4. We conclude our
paper with an outlook on future research.

2 Solution Approaches

In this section, we describe the advantages and disadvantages of using relational
database or complex event processing technologies as stand-alone solutions.

132 P. Herzig et al.

2.1 Databases

As first solution approach, we highlight databases. Due to ACID (atomicity,
consistency, isolation, durability [10]) properties these systems comply with per-
sistency and consistency. Moreover, databases allow the definition of transient
queries on persistent data. This permits the definition of ad-hoc queries and ex
post analysis and complies with analyzability requirements. Furthermore, well-
established mechanisms for application-level entity management, e.g., object re-
lational mapping exist (manageability).

However, databases typically fall short when large amounts of continuous
data such as events have to be analyzed. Without index the correlation/joining
of many events is very slow1. While the introduction of indexes may provide
significant speed up2, updating these indexes can be costly and inefficient on
large event rates. Events leading to an index update might be never used again.
Thus the cost-benefit ratio of the indexes might be large. Moreover, the efficient
definition of indexes is not possible when the nature of events cannot be assumed
or query statistics are not available. Hence, real-time analysis requirements are
insufficiently supported. Finally, different types of events have different signa-
tures. In databases, different signature types need to be represented by separate
tables. Altering the signature of events or introducing new event types requires
the restructuring of the database schema. This limits their flexibility with regard
to design changes.

2.2 Complex Event Processing

“Complex Event Processing enables to identify causal, temporal, and spatial rela-
tionships between events. Those relationships specify patterns that are analyzed in
real-time using event-pattern matching” [12]. In the last years, CEP has evolved
as the overarching discipline of prior work such as production rule systems, active
databases, and event/action/transition logic systems [13].

In contrast to databases, persistent queries are issued on transient and con-
tinuous event or data streams, i.e., data tuples are available for analysis for a
particular time only. In production rule systems or event-condition-action (ECA)
rule systems, fast pattern matching algorithms are available (e.g., RETE [14]).
In event stream processing (ESP), fast aggregation is realized through window
operators supporting at least soft real-time requirements. Due to reactive na-
ture, zero latency between event arrival and processing can be assumed, i.e.,
events are processed immediately. Moreover, temporal operators such as after,
before, during [15] are supporting the need of temporal relationships. Finally,
the definition of production or ECA rules allows for a high degree of flexibility
due to their dynamic structure.

However, in contrast to databases, the data has to reside within the working
memory. Besides the fact that data in working memory is volatile, all modern

1 O(Πp
i=0ri) or at least O(

∑p
i=0 ri ∗ log(ri)) for merge joins with ri being the number

of pages for the ith relation attribute [11].
2 e.g., O(

∑p
i=0 ri) assuming at least one equijoin [11].

Efficient Persistency Management in Complex Event Processing 133

CEP technologies have to fulfill either implicit memory management (e.g., us-
ing temporal constraints or limited windows sizes) or the explicit declaration
of event expiration durations to reduce memory footprint. For most practical
scenarios, this makes ex post analytics and ad-hoc queries impossible. Finally,
implementing entity management logic directly within rules, easily bloats an ap-
plication and makes it difficult to read and maintain. This strongly suggests for
a decoupling and encapsulation of logic in entities [5].

3 Hybrid Approach

In order to compensate the disadvantages of both alternatives, we are proposing
a hybrid concept in the following section.

3.1 General Case

The general idea of a hybrid system is shown in Figure 2. The system comprises
several event sources, event sinks, one EPA as well as one business entity provider
(BEP).

Event Processing Agent
(Gamification Logic)

Enterprise Systems
Business Entity Provider
(Gamification Data)

Event SourcesEvent SourcesEvent Sources

Event SourcesEvent SourcesEvent Sinks

Gamification
State

QueryAPIUpdateAPI

Rule Engine

ECA or Production
Rules

1

2

3

4

5

6

Fig. 2. Complex Event Processing with Business Entities (based on [5])

The BEP is a container managing so-called business entities which can be
considered as typed data structures containing state and relationships to other
entities. The entities are mapped and stored into relations of the underlying
database. For example, the BEPmanages user entities holding status information
for all users of the gamification platform ({U1, ..., Uk}; Table 1). Furthermore,
the BEP offers an update interface that allows for updates to the state of the
entities. For instance, the BEP may receive low-level updates such as points p
or badges b through the update interface. A query interface might be utilized to
retrieve the entities’ current state (e.g., the user’s average points PUi). Finally,

134 P. Herzig et al.

the BEP may provide derived state in transient data structures upon queries,
e.g., an individual high-score for the user or several leaderboards of multiple
users (Table 1).

Table 1. Business Entity Provider Examples for Gamification

Example Formal Notation

User U1

Set of users {U1, ..., Uk}
Set of points for User Ui {pi1, ..., pin}
Set of badges for User Ui {bi1, ..., bim}
Sum of points for User Ui at timestamp t Pt,Ui =

∑n
j=0 pij

Average of points for User Ui PUi =
1
n

∑n
j=0 pij

Individual high score for user Ui based on P (Pt,Ui , ...,Pt+k,Ui)

Leaderboard between users (U1, ..., Uk)

Within the EPA, multiple rules, e.g. gamification rules, are deployed. In this
paper, rule examples are based on production rules with event processing capa-
bilities, i.e., we consider a left-hand side (LHS) and right-hand side (RHS). In
Table 2, we give examples for the rules’ LHS. Besides typical event operations
such a event occurrences3 (a), boolean (b) and temporal (c) operators, or event
aggregation (d), we also consider rules requiring additional non-event data in
the LHS. This context might be processed upon event arrival such as in ECA
rules (e), e.g., if an event ei occurs in conjunction with the user’s average points
PUi being equal or greater than 20. Furthermore, context might be processed
without explicit event occurrence such as in production rules (f), e.g., if a user
Ui holds any of the badges bi1 or bi2.

On the RHS of rules (Table 3), either complex events (g), domain data (h) or
combinations thereof (i) might be generated.

According to Figure 2, the EPA may receive events from arbitrary event
sources in step ➀. Assuming that the BEP does not contain data at the be-
ginning, only rules of types (a) through (d) are activated. Activated rules may
cause the generation of new events (g), domain data (h), or combinations thereof
(i) in step ➁ (Fig. 2) . While the creation of new (possibly complex) events can
be processed directly, domain data needs to by synchronized with the entities
in the BEP. The rules’ action clause, therefore, may call the update interface of
the BEP in step ➂. After updates have been received, validated, and stored by
the BEP in step ➃, data can be forwarded to various event sinks deployed in

3 Note, that we presume interval-based event semantics in the notation instead of
point-based semantics [16].

Efficient Persistency Management in Complex Event Processing 135

Table 2. LHS Examples for Gamification

LHS Types Example

(a) Simple Event / Event Rule e1 → ...

(b) Boolean event correlation e1 ∧ e2 → ...

(c) Temporal event operators e1 during e2 → ...

(d) Event Aggregation 1
n

∑n
i=0 e

value
i > 20 ∧ e2 → ..., n = sizeof(window)

(e) Event with Context e1 ∧ Pt,Ui ≥ 20 → ...

(f) Context only Ui ∧ (bi1 ∨ bi2) → ...

Table 3. RHS Examples for Gamification

RHS Types Example

(g) Multiple Events ... → e2, e3

(h) Multiple Data (e.g., Point or Badge) ... → pi1, bi2

(i) Multiple Data and Events ... → pi2, bi1, e2, e3

the enterprise in step ➄, e.g., to notify the user on the successful completion of
a task. Some rules in the EPA (namely (e) and (f)) may need state data (plain
or derived) from the BEP. Hence, the event processor may retrieve and evaluate
state by utilizing the BEP’s query interface in step ➅. This, in turn, may lead
to the activation of new rules which closes the processing cycle starting again
from step ➀.

Based on this general scheme, we can map the rule types to the respective
parts of the architecture (Table 4).

While the presented hybrid system might be effective in general, the efficiency
of the approach, however, mainly depends on the communication paradigm that
is used to communicate between the CEP and BEP. Therefore, we investigate
different communication solutions in the next sections and describe their advan-
tages and disadvantages.

3.2 Synchronous Context-Update

In Figure 3, the synchronous communication is shown. Events arrive at the
EPA in step ➀. Only rules of type (a) through (d) are activated in step ➁.
If at least one rule of type (h) or (i) is activated, the update interface of the
BEP is called synchronously in step ➂, i.e., the engine halts until the BEP

136 P. Herzig et al.

Table 4. Rule Types and Business Entity Provider

Scenario Types of Rules

BEP only Table 1

CEP only Table 2 (a), (b), (c), (d), and (h); Table 3 (g)

Query Interface required Table 2 (e) and (f)

Update Interface required Table 3 (h) and (i)

Event Processing Agent
(Gamification Logic)

Enterprise Systems
Business Entity Provider
(Gamification Data)

Event SourcesEvent SourcesEvent Sources

Event SourcesEvent SourcesEvent Sinks

Rule
Engine

API Working
Memory

Gamification
State

QueryAPIUpdateAPI

1 2

3 4

Fig. 3. Synchronous Context-Update

acknowledges the message. Since the respective entity received low-level updates,
another evaluation cycle is triggered. This leads to the potential activation of
rule types (e) and (f) as the rule engine utilizes the BEP’s query interface while
evaluating the rules’ LHS in step ➃.

Two main problems arise out of this architecture. First, due to blocking behav-
ior of synchronous calls, the rule execution and update operations are delayed,
especially when sampling rates of the event sources are high, i.e., there are many
events to be processed concurrently. Second, situations occur where events may
cause the query of the BEP although no update took place. This may result in
many unnecessary calls to the query interface. Although the synchronous ap-
proach works in general, the solution is very inefficient, especially when large
amounts of events have to be processed or many rules of type (e),(f),(h), and
(i) reside within the rule engine. Thus, the approach heavily contradicts the
real-time requirements.

Efficient Persistency Management in Complex Event Processing 137

3.3 Asynchronous Context-Update

Alternatively, the communication can be conducted asynchronously (Fig. 4).
While this may speed up communication in general, race conditions leading to
wrong results and inconsistencies may occur when domain data from the BEP
is required. Therefore, we introduce a proxy component (BEP proxy) within the
EPA that manages the data between CEP and BEP more efficiently and acts
as central synchronization point. This proxy implements the interface specifi-
cation of the update and query interfaces defined by the BEP. Moreover, this
proxy takes care of the same entity management functionality as the BEP except
persistency.

Event Processing Agent
(Gamification Logic)

Enterprise Systems
Business Entity Provider
(Gamification Data)

Event SourcesEvent SourcesEvent Sources

Event SourcesEvent SourcesEvent Sinks

Rule
Engine

API Working
Memory

Gamification
State

QueryAPIUpdateAPI

BEP Proxy1

2

3

4 5

Fig. 4. Asynchronous Context-Update

Compared to the synchronous case, the rule engine only communicates with
the local BEP proxy. All updates and queries are issued against the proxy. In
the update step ➁, the proxy stores the data internally and lazily replicates the
data to the BEP in step ➃. Vice versa, query results might be retrieved directly
from the proxy ➂. In the background, the proxy synchronizes with the BEP ➄,
for example, when the business entities in the BEP change their states due to
exogenous influences to achieve consistency.

While this approach avoids race conditions and heavily accelerates the com-
munication by several orders of magnitude, the low-level updates in the proxy
force a constantly growing memory. Hence, there is a space-time trade-off which
we characterize in the next section.

4 Evaluation

For the evaluation of the concept, the use case covers the gamification of a
networking application which automatically matches users for lunches, coffee

138 P. Herzig et al.

breaks, or other networking opportunities. Users are assigned missions to engage
them in exploring and using all aspects of the application. Production rules
are used to reward various actions, e.g., the user gains points for each added
colleague or accepted meeting. If a specific amount of points has been achieved,
the user completes a particular mission, receives a badge, and is assigned another
mission. For example, after accepting the first meeting, the user completes the
Accept First Meeting mission, receives the corresponding badge and gets the
next mission, e.g., Host a Group Meeting.

4.1 Experimental Setup

Overall the evaluation is based on 46 production rules with event processing ca-
pabilities. Given the types of rules from Section 3, we are using the rule quantities
per type as shown in Table 5.

Table 5. Quantities of Rule Types

�������RHS
LHS

(a)-(d) (e)-(f)

(g) 1 0

(h)-(i) 15 30

The experiments are performed for 2n experimental users with n = 3, ..., 12.
Each user creates on average 0.67 events/second which is based on current usage
statistics of the application4. Eight different event types are created for all possi-
ble actions users can perform in the application. For the experiment, each event
type is triggered with a certain probability defined by the application scenario.
These probabilities are fixed for each users, and thus, in an observation time of
5 minutes, the average number of events in total is

2n Users× 0.67
Events

User× s
× 300s = 201× 2n Events. (1)

Experiments were executed on a machine with 8GB RAM, two 6-core Intel Xeon
L5640 processors in hyper-threading mode. As reference implementation we used
and measured Drools Fusion in Cloud mode.

4.2 Experimental Results

Besides the synchronous and asynchronous strategies from Section 3, we addi-
tionally present a modification to the synchronous approach using the context

4 to test in fast motion, we extrapolated user behavior by replacing day with seconds
at constant event probabilities.

Efficient Persistency Management in Complex Event Processing 139

locally at the EPA. Moreover, we present a plain CEP implementation for com-
parison, i.e., without additional overhead. Figure 5a and 5b present the median
and maximum response times for all four approaches.

In the median case, the asynchronous strategy excels the synchronous strate-
gies significantly up to seven orders of magnitude (1024 users). It is important
to note that beyond 1024 experimental users, the synchronous case is not only
significantly slower, but due to limited queues, the server starts to reject requests
after a particular timeout which results in errors and makes results incompara-
ble. Therefore, we only present synchronous results up to 1024 users. For the
asynchronous case, event rates beyond 4096 users reached the capacities of our
simulation environment. Until then, our asynchronous approach is only slightly
slower compared to the plain CEP approach (0.98ms-4.31ms).

(a) Response Time Median

Users

t
in

 m
s

●

●

●

●

●

●

●

●

8 16 32 64 128 256 512 1024 2048 4096

1
e

+
0

0
1

e
+

0
2

1
e

+
0

4
1

e
+

0
6

1
e

+
0

8

● Sync

Sync Local

Async

CEP Only

(b) Response Time Max

Users

t
in

 m
s

●

●

●

●

●

●

●

●

8 16 32 64 128 256 512 1024 2048 4096

1
e

+
0

4
1

e
+

0
5

1
e

+
0

6
1

e
+

0
7

1
e

+
0

8 ● Sync

Sync Local

Async

CEP Only

Fig. 5. Experimental Max and Median Response Times (in ms)

In the maximum case, the difference between the synchronous and asyn-
chronous approach is smaller (four orders of magnitude for 1024 users). However,
analyzing the underlying response time distributions yields that large response
times are much more likely in the synchronous case (e.g., 95% of responses are
slower than 106ms) compared to the asynchronous one (e.g., 1% of responses is
slower than 105ms but 99% are faster than 100ms).

Furthermore, we can distinguish two phases in the median case. First, the
phase in which the systems runs normally. In this phase, the data distribution
is highly right-skewed as shown in Figure 6a. Second, the phase where the sys-
tem runs under high load. This phase is characterized through an increasing
frequency of high response times (e.g., Fig. 6b - 6d). For example, in the syn-
chronous case, the first phase persists until 16 users. The second phase starts at
32 users. In the asynchronous case, the first phase persists until 2048 users, i.e.,
two orders of magnitude later with regards to the amount of events (Eq. 1).

This statement is further supported by Figure 7a, where we considered a
response time threshold of 500ms. Already for 8 users, 8% of all events are
too late in the synchronous case. For 256 users, already 95% of the events are
above the threshold. In the asynchronous case, events are delayed starting at
512 experimental users (3%).

140 P. Herzig et al.

(a) 8 User

Response Time in ms

F
re

q
u

e
n

c
y

0 5000 10000 15000 20000

0
5

0
0

1
0

0
0

1
5

0
0

(b) 32 User

Response Time in ms

F
re

q
u

e
n

c
y

0 500000 1500000 2500000

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

(c) 256 User

Response Time in ms

F
re

q
u

e
n

c
y

0e+00 1e+07 2e+07 3e+07 4e+07

0
2

0
0

0
4

0
0

0
6

0
0

0

(d) 1024 User

Response Time in ms

F
re

q
u

e
n

c
y

0.0e+00 5.0e+07 1.0e+08 1.5e+08

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

Fig. 6. Evolution of Response Times for Synchronous Communication

(a) Slow Reponse Times (>500ms) − Relative

Users

S
lo

w
 R

e
s
p

o
n

s
e

s
 i
n

 %

●

●

●

●

●

●

● ●

8 16 32 64 128 256 512 1024 2048 4096

0
2

0
4

0
6

0
8

0
1

0
0

● Sync

Sync Local

Async

CEP Only

1
e

+
0

1
1

e
+

0
3

1
e

+
0

5
1

e
+

0
7

(b) Space−Time Tradeoff

Users

m
s

●

●

●

●

●

●

●

●

5
e

−
0

5
5

e
−

0
4

5
e

−
0

3
5

e
−

0
2

8 16 32 64 128 256 512 1024

●

Median Response Time Sync−Async in ms

Memory Usage in 1/MiB

Fig. 7. Slow Reponse Times and Space-Time Tradeoff

However, the speed-up in the asynchronous case comes at the cost of grow-
ing memory in the EPA. The resulting space-time tradeoff is presented in Fig-
ure 7b where the speed-up is compared to the inverse memory consumption of
the asynchronous approach. As presented, the intersection can be found around
32 experimental users, i.e., for small workloads the synchronous case might be
preferred. Larger workloads may be deployed in an asynchronous setting. This
trade-off, however, does not take into account the individual costs for perfor-
mance or memory. For example, at the trade-off point already 60% of events are
highly delayed in the synchronous case which might not be acceptable either.
Thus, a cost-benefit trade-off might look different. Overall, this tradeoff is not
generalizable but depends on the workload, rule, and deployment model of the
experimental setup described above.

4.3 Discussion

As shown above, the plain synchronous system is up to seven orders of magni-
tude slower and runs already under overload at 32 users in the experiment. More-
over, data tuples are discarded under overload conditions leading even to wrong
results in the BEP. Holding the context local in the EPA with synchronous com-
munication, shifts the overload phase to 512 users in our experiments. Therefore,

Efficient Persistency Management in Complex Event Processing 141

the synchronous communication is not acceptable in all cases with regards to
performance.

The asynchronous case with local BEP proxy is able to compete with our
reference CEP implementation in the median case. The overload phase occurs
at 4069 users. The same holds for the pure CEP implementation. Hence, we
argue that our hybrid concept with asynchronous communication serves all the
requirements of Section 1.2.

However, the BEP Proxy has to implement the query and update interfaces of
the BEP. Hence, additional effort is needed for reimplementing and maintaining
these interfaces. Hence, future research may address an automatic translation of
BEP semantics.

Furthermore, the experimental maximum results for the asynchronous solu-
tion suggest room for improvements. Currently, we hold fine grained domain
data within the proxy. For example, the user’s points are stored atomically in
collections or hashmaps. Instead of providing fine grained domain data, this
data might be aggregated according to the semantics defined in the entities.
Such an aggregation may improve maximum response times in general and
bring the overall performance closer to the pure CEP measures. Additionally,
this also reduces memory consumption and improves the space-time trade-off of
Figure 7b.

5 Related Work

The idea of hybrid concepts for state management as presented in this paper are
not completely new. Already [3] noted that “[...] for some applications patterns
such as event a is followed by event b in last 10 seconds are expressive enough;
however, for knowledge-rich applications, they are certainly not. In such applica-
tions real-time actions are triggered not only by events, but also upon additional
knowledge”.

Based on this observation, [5] introduced the general idea of entity manage-
ment with so-called business entities within a business entity provider. While
their concept exactly targets the problem described herein, their paper is of
conceptual nature and even states that their solution runs in a “synchronous
execution mode to the expense of overall event-processing performance”. Our
results demonstrate that synchronous execution may not acceptable at all, de-
pending on the types of rules deployed in the EPA. Thus, not considering the
execution mode may work, but contradicts with requirements in the CEP space.
The introduction of asynchronous communication serves these requirements but
requires additional concepts as described in this paper.

FlexStreams [17] allows the encapsulation of state in procedural definitions
locally available to the stream operators. Well-encapsulated state management
has been proposed by Kozlenkow et al. [4]. The state is maintained at the context
in which it is processed. State deltas are managed and distributed by a state
transformer. However, both approaches require a certain style of programming
paradigm, i.e., a procedural or functional paradigm respectively.

142 P. Herzig et al.

Teymourian et al. [18] proposed semantic CEP for knowledge rich event pro-
cessing, i.e., the usage of ontologies together with rules in order to allow rules
such as “buy Stocks of Companies, who have production facilities in Europe and
produce products from Iron and [...] and their price/volume increased stable in
the past 5 minutes”. Their main assumption is that the ontology does not fit
into the working memory and that the ontology is rarely updated by an external
person. Based on this assumption, they proposed several strategies to query the
ontology. However, besides a polling strategy, other strategies are tailored to the
specifics of semantic query languages.

6 Summary and Outlook

In this paper, we presented and evaluated a hybrid system comprising an event
processor and business entity provider which is capable of fast event processing
on the hand and ex post analytics on the other. We demonstrated that the hybrid
approach extends classical CEP approaches with novel features, such as, state
persistency or ex post analytics. Nevertheless, its performance can still compete
with traditional CEPs since just a minimal processing overhead is added. The
results presented are based on a real-life product scenario. To generalize the
performance and memory costs we are currently formalizing the approach in a
sophisticated performance model. Moreover, we plan to conduct further studies
to validate the approach and identify limitations, additional requirements, and
challenges. Future research also includes the investigation of the impact of ex-
ternal changes to the entity manager which have to be efficiently synchronized
with the event processor.

References

1. Adi, A., Botzer, D., Nechushtai, G., Sharon, G.: Complex event processing for
financial services. In: Services Computing Workshops, SCW 2006, pp. 7–12. IEEE
(September 2006)

2. Magid, Y., Sharon, G., Arcushin, S., Ben-Harrush, I., Rabinovich, E.: Industry ex-
perience with the ibm active middleware technology (amit) complex event process-
ing engine. In: Proceedings of the Fourth ACM International Conference on Dis-
tributed Event-Based Systems, DEBS 2010, pp. 140–149. ACM, New York (2010)

3. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Retractable Complex Event
Processing and Stream Reasoning. In: Bassiliades, N., Governatori, G., Paschke, A.
(eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 122–137. Springer, Heidelberg
(2011)

4. Kozlenkov, A., Jeffery, D., Paschke, A.: State management and concurrency in
event processing. In: Proceedings of the Third ACM International Conference on
Distributed Event-Based Systems, DEBS 2009, pp. 23:1–23:4. ACM, New York
(2009)

5. Obweger, H., Schiefer, J., Suntinger, M., Thullner, R.: Entity-Based State Manage-
ment for Complex Event Processing Applications. In: Bassiliades, N., Governatori,
G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 154–169.
Springer, Heidelberg (2011)

Efficient Persistency Management in Complex Event Processing 143

6. Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From Game Design Elements to
Gamefulness: Defining Gamification. In: MindTrek 2011 Proceedings of the 15th
International Academic MindTrek Conference: Envisioning Future Media Environ-
ments, pp. 9–15. ACM (2011)

7. Flatla, D., Gutwin, C., Nacke, L., Bateman, S., Mandryk, R.: Calibration Games:
Making Calibration Taks Enjoyable by Adding Motivating Game Elements. In:
UIST (2011)

8. Herzig, P., Strahringer, S., Ameling, M.: Gamification of ERP Systems - Ex-
ploring Gamification Effects on User Acceptance Constructs. In: Multikonferenz
Wirtschaftsinformatik, GITO, 793–804 (2012)

9. Herzig, P., Ameling, M., Schill, A.: A Generic Platform for Enterprise Gamifica-
tion. In: Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA), pp. 219–223. IEEE (2012)

10. Bell, D., Grimson, J.: Distributed database systems. Addison-Wesley Longman
Publishing Co., Inc. (1992)

11. Date, C.J.: An Introduction to Database Systems, 8th edn. Pearson Addison-
Wesley, Boston (2004)

12. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley, New York (2007)

13. Paschke, A., Kozlenkov, A.: Rule-Based Event Processing and Reaction Rules.
In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858,
pp. 53–66. Springer, Heidelberg (2009)

14. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1), 17–37 (1982)

15. Allen, J.: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26(11), 832–843 (1983)

16. Chakravarthy, S., Adaikkalavan, R.: Events and streams: harnessing and unleash-
ing their synergy? In: Proceedings of the Second International Conference on Dis-
tributed Event-Based Systems, pp. 1–12. ACM (2008)

17. Sybase Inc.: Flexstreams (2013), http://www.sybase.de/products/
financialservices-solutions/complex-event-processing

18. Teymourian, K., Rohde, M., Paschke, A.: Fusion of background knowledge and
streams of events. In: Proceedings of the 6th ACM International Conference on
Distributed Event-Based Systems, pp. 302–313. ACM (2012)

http://www.sybase.de/products/financialservices-solutions/complex-event-processing
http://www.sybase.de/products/financialservices-solutions/complex-event-processing

Ontology Patterns for Complex Activity

Modelling

Georgios Meditskos, Stamatia Dasiopoulou, Vasiliki Efstathiou,
and Ioannis Kompatsiaris

Information Technologies Institute
Centre of Research & Technology - Hellas

{gmeditsk,dasiop,vefstathiou,ikom}@iti.gr

Abstract. In this paper we propose an activity patterns ontology to
formally represent the relationships that drive the derivation of complex
activities in terms of the activity types and temporal relations that need
to be satisfied. The patterns implement the descriptions and situations
(DnS) ontology pattern of DOLCE Ultra Lite, modelling activity classes
of domain ontologies as instances. The aim is to allow the formal repre-
sentation of activity interpretation models over activity classes that are
generally characterized by intricate temporal associations, and where it is
often the case that the aggregation of individual activities entails the ex-
istence of a new (composite) activity. Due to the expressive limitations of
OWL, these semantics are often defined outside the ontology language,
e.g. they are encapsulated in rules and they are tightly-coupled with
implementation frameworks, hindering the interoperability and reuse of
the underlying knowledge. As a proof of concept, we describe the imple-
mentation of the activity pattern semantics using dynamically generated
SPARQL rules in terms of CONSTRUCT graph patterns.

Keywords: ontologies, patterns, activity modelling, SPARQL rules.

1 Introduction

In the past five years, ontologies have been gaining increasing attention as means
for modelling and reasoning over contextual information, and human activities
in particular. Their expressiveness and level of formality, make them particularly
well-suited for the open nature of context-aware computing, where information
at various levels of abstraction and completeness has to be integrated. Low-level
information acquired from detectors, such as video cameras and contact sensors,
is mapped to ontological representations; high-level activity interpretations are
then inferred through the use of background knowledge specific to the domain in
order to elicit an understanding of the situation and to afford services tailored
to the user needs. For example, inferring that an Alzheimer’s disease patient left
the kitchen to answer an incoming call but failed to resume lunch afterwards
comprises critical contextual information, in which case a respective reminder
needs to be issued.

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 144–157, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Ontology Patterns for Complex Activity Modelling 145

Plenty of ontology-based models have been developed for complex activity
recognition. Central to all, yet primary cause of variation, is the approach taken
to capture activity patterns, namely the structure of complex activities that are
built from atomic or other complex activities. Roughly speaking, two strands per-
meate the relevant literature. The one adopts an a-temporal viewpoint, where
contextual activity information has no temporal extension, and complex activ-
ities are defined as the intersection of their constituent parts [21][6]. Though
relevant to applications where suitable time-windows can be reliably defined, a-
temporal approaches fall short when more intricate activity patterns are involved,
requiring, for instance, the discrimination of sequential and interleaved activi-
ties. The second strand embraces hybrid ontology-based models that manage
temporal information by means of rule-based reasoning [7], Semantic Complex
Event Processing [27] and RDf stream reasoning [26], thus affording far more
expressive and flexible solutions than their a-temporal counterparts.

However, no consensual activity recognition model exists that may be broadly
reused. This is largely due to semantics encapsulated in the implementation
rather than the models developed for activity recognition. A prominent example
is the assertion of new named individuals for representing inferred complex ac-
tivities, e.g. assert a tea preparation instance that is inferred on the basis of heat
water and use tea bag instances. Thus, applications that share similar purpose
and scope cannot directly avail of existing ontologies, unless specific implemen-
tation details are made available.

In order to promote a well-defined description of patterns for high-level activ-
ity interpretation tasks and achieve a high degree of interoperability, we propose
an activity patterns ontology that formally captures the structure of complex
activities. The activity patterns introduced follow the DnS design pattern [10]
of DOLCE+DnS Ultralite (DUL) [9] and make use of the OWL 2 metamod-
elling capabilities (punning). Currently, two activity patterns have been imple-
mented; one for formalising the notion of composition of an activity based on
its constituent activities and one for formalising the notion of specialisation of
an activity within the activity hierarchy. We also present the implementation
of the activity pattern semantics in terms of dynamically generated SPARQL
CONSTRUCT rules (SPIN rules [12]), exemplifying the way the proposed patterns
can be used in the domain of rule-based activity recognition.

The rest of the paper is structured as follows. Section 2 reviews existing
ontology-based activity modelling and processing frameworks. Section 3 provides
an overview of the lightweight vocabulary used by the activity patterns ontol-
ogy to represent domain activities, e.g. actors, places, etc. Section 4 introduces
the core activity pattern for representing complex activity-related conceptualisa-
tions, along with its two implementations defined within the pattern ontology for
addressing the requirements of specialisation and composition of complex activ-
ities. Section 5 presents an example use of the ontology patterns in the domain
of rule-based activity recognition, implementing the activity pattern semantics
as SPARQL CONSTRUCT graph patterns. Conclusions and future directions are
presented in Section 6.

146 G. Meditskos et al.

2 Related Work

Ontologies have been increasingly explored for modelling and reasoning about
complex activities and situations in context-aware applications.

In [6][21][7][22] ontologies are used to recognise typical activities of daily living
(e.g. making tea), through snapshot-like definitions that capture the associated
contextual elements (e.g. turning the kettle on, place tea bag to mug), but fall
short to cover the underlying temporal correlations. In [20], activity definitions
are endowed with temporal properties, such as recently used and second last ac-
tivity, while several approaches have investigated hybrid frameworks, combining
ontologies with rules [16][13][28], as well as other formalisms, such as event cal-
culus [19][18], to support reasoning over the temporal structure of activities. In
addition, extensions to the SPARQL language have been proposed for working
with temporal RDF streaming data [27][26][5][3].

Ontologies have been also explored as means to capture in a declarative way
meta-knowledge. In [29] a top-level ontology is proposed to model the semantics
common to all dimensions of an information space, i.e. levels of granularity, con-
flicting, and overlapping relationships that can be used to evaluate and compare
concepts and terms of the ontologies built upon them. In [14] an ontology-based
framework, based on the Event-Condition-Action (ECA) pattern, is presented
in order to integrate heterogenous semantic web services via rule definition, in
[4] an ontology is used to model different types of event rules in order to en-
able automatic service discovery, while in [8], a Rule Management Ontology is
presented to support the representation of event-based rules that trigger specific
actions in a context-aware recommender system.

Similar to [8], we aim to promote reusable and interoperable contextual activ-
ity models. However, unlike [8] that focuses on the definition of a vocabulary for
representation of event-based rules, we use the DnS ontology pattern to formalise
abstract activity descriptions. As such, the underlying semantics of the activity
patterns can be reused in already existing frameworks for activity modelling and
processing, such as the aforementioned one.

3 The Domain Activity Ontology

In order to enable the definition of patterns for the description of the contextual
conditions and the temporal relations that drive the derivation of complex activ-
ities, there is a need for a core vocabulary for the representation of basic activity
information. The Domain Activity Ontology depicted in Figure 1 serves this pur-
pose. Both the atomic (i.e. asserted) and complex activities of the domain are
represented as instances of the Activity class and they are linked to ranges of
time through the use of the hasStartTime and hasEndTime datatype properties.
Actors are defined using the hasActor property, whereas relevant participating
entities in an activity, such as objects or other persons, are represented using
the hasParticipant property. Spatial information can be associated with the
activities using the hasArea property, e.g. the room where an activity takes

Ontology Patterns for Complex Activity Modelling 147

place. Finally, the ontology supports the correlation of activities through the
hasSubActivity and isSpecialisedBy properties for the representation of the
corresponding semantics of the two proposed patterns. The aforementioned mod-
elling capabilities have been designed with a minimum of semantic commitment
to guarantee maximal interoperability. As such, the Domain Activity Ontology
can be fully aligned with relevant foundational ontologies, such as SEM [11] and
Ontonym [25], reusing existing vocabularies for modelling different aspects of
activities, e.g. entities, places, etc.

hasEndTime
[exactly 1]

hasStartTime
[exactly 1]

hasArea
[allValuesFrom]

isSpecialisedBy
[allValuesFrom]

hasSubActivity
[allValuesFrom]

Activity

Person

PhysicalEnity

Area

xsd:dateTime

hasActor
[allValuesFrom]

hasParticipant
[allValuesFrom]

core pattern class

rdfs:subClassOf
object property restriction
datatype property restriction

Fig. 1. The core vocabulary of the Domain Activity Ontology

4 Design of Activity Patterns

To promote a well-defined description of complex activities structure and achieve
a better degree of knowledge sharing and reuse, an activity patterns ontology has
been developed as specialized instantiations of the descriptions and situations
(DnS) ontology pattern that is part of DOLCE+DnS Ultralite. The developed
activity patterns treat domain activity concepts as instances to allow property
assertions to be made among activity types. In that way, they enable the rep-
resentation of contextualised views on complex activities, and afford reusable
pieces of knowledge that cannot otherwise be directly expressed by the stan-
dard ontology semantics, e.g. temporal correlations among activities that are
not connected in a tree-like manner [15].

In the following, we introduce the core activity pattern and its two current
instantiations, namely the specialisation and composition patterns. The spe-
cialisation pattern formalises complex activities, whose derivation concerns an
already asserted activity instance; the composition pattern formalises complex
activities, whose derivation is based on the aggregation of other activities and
requires the assertion of new activity instances.

148 G. Meditskos et al.

4.1 Core Meta-Activity Pattern

The DnS design pattern provides a principled approach to context reification
through a clear separation of states-of-affairs, i.e. a set of assertions, and their
interpretation based on a non-physical context, called a description [10]. Intu-
itively, DnS axioms try to capture the notion of “situation” as a unitarian entity
out of a state of affairs, with the unity criterion being provided by a “descrip-
tion”. In that way, when a description is applied to a state of affairs, a situation
emerges. We use DnS to formally provide precise representations of contextu-
alized situations and descriptions on activity concepts of the Domain Activity
Ontology, describing the different activity types and temporal relations that can
be associated with complex domain activities.

The implementation of DnS in DUL allows the relation of situations and de-
scriptions with individuals of the dul:Event and dul:EventType classes, respec-
tively. For example, Event-Model-F [23] implements a number of instantiations
on top of the DnS pattern to describe relations among asserted events (instances
of the dul:Event class), such as causality and correlation. The scope of the core
activity pattern, however, is to conceptually describe the activity context that
defines complex activities at the class level, and not to represent relations di-
rectly among activity instances. To this end, the core activity pattern allows the
representation of the following activity-related conceptualisations (Figure 2):

– Activity situations: An activity situation defines a set of activity classes
that are involved in a specific pattern instantiation and they are interpreted
on the basis of an activity description. The classified activity classes are
treated as instances of the MetaActivity class and they are associated
with situations through the isMetaActivityIncludedIn property. More-
over, each situation satisfies only a single description (hasDescription
property).

– Activity descriptions: An activity description serves as the descriptive
context of an activity situation, defining the activity types (definesActi-
vityType property) that classify the domain activities of a specific pattern
instantiation, creating views on situations.

– Activity types: Activity types are DUL concepts that classify activity
classes, i.e. they treat domain activity classes as instances, describing how
they should be interpreted in a particular situation. These descriptions mainly
involve the specification of the temporal constraints that characterise the re-
spective contextual activities, reusing the temporal property assertions pro-
vided by the OWL-Time ontology in terms of the time:TemporalEntity

class [17].

– Meta-activities: The domain activity classes, i.e. the classes of the Domain
Activity Ontology, are instances of the MetaActivity class.

Currently, two implementations of the core activity pattern are provided that
satisfy common interpretation requirements in complex activity recognition ap-
plications, namely specialisation and composition.

Ontology Patterns for Complex Activity Modelling 149

classifies
MetaActivity

[allValuesFrom]

hasDescription
[exactly 1]

ActivitySituation ActivityDescription

MetaActivity ActivityType

defines
ActivityType

[allValuesFrom]

isMetaActivity
IncludedIn

[allValuesFrom]

dul:Entity

dul:Situation dul:Description

dul:hasSetting dul:defines

dul:classifies

dul:satisfies

dul:Concept

time:Temporal
Entity

Domain Activity Ontology

rdf:type

core pattern class alignment class

rdfs:subClassOf
property restriction
rdfs:subPropertyOf

Fig. 2. The core meta-activity pattern and the main alignments with DUL’s DnS
vocabulary

4.2 Activity Specialisation Pattern

The activity specialisation pattern enables to formally capture complex activi-
ties that are defined as further specialisations of a given atomic or other com-
plex activity. As shown in Figure 3, a definition of this type is expressed by a
SpecialisationSituation that satisfies a SpecialisationDescription. The
situation includes the descriptive context that admits the specialisation, namely
the activity that is subject to further specialisation, one or more associated activ-
ities, and their pertinent temporal correlations. The classes SpecialisedActi-
vityType and SpecialisationType express the asserted and derived activity
respectively, while the class ContextType allows to express activities compris-
ing the descriptive context. Temporal correlations among activities are expressed
through their associated SpecialisedActivityType, SpecialisationType and
ContextType classifications that subsume the ActivityType class, and thus
time:TemporalEntity, as depicted in Figure 2.

4.3 Activity Composition Pattern

The activity composition pattern enables to formally capture complex activ-
ities that are defined as the composition of atomic or other complex activi-
ties. As shown in Figure 4, a composite activity definition is expressed by a
CompositionSituation that satisfies a CompositionDescription. The situa-
tion includes the descriptive context that admits the composition, namely the
composite activity, its constituent activities and their pertinent temporal corre-
lations. The classes CompositeType and SubActivityType express the complex
activity to be inferred and its constituent activities respectively. Similar to the
specialisation pattern, the temporal correlations among the involved activities
are expressed through their associated CompositeType and SubActivityType

classifications that subsume the ActivityType class.

150 G. Meditskos et al.

defines
ActivityType
[exactly 1]

defines
ActivityType
[exactly 1]

ActvitySituation ActivityDescription

MetaActivity

ActivityType

Specialisation
Description

Specialisation
Situation

Specialised
ActivityType

ContextType

hasMeta
Description
[exactly 1]

defines
ActivityType

[min 2]

isMetaActivity
IncludedIn

[allValuesFrom]

classifiesMetaActivity
[allValuesFrom]

Specialisation
Type

core class

pattern class

rdfs:subClassOf
property restriction

Fig. 3. The activity specialisation pattern

definesActivityType
[min 2]

MetaSituation

MetaActivity

Composition
Description

Composition
Situation

SubActivity
Type

CompositeType

hasDescription
[exactly 1]

definesActivityType
[exactly 1]

isMetaActivity
IncludedIn

[allValuesFrom]

classifiesMetaActivity
[allValuesFrom]

ActivityType

core class

pattern class

rdfs:subClassOf
property restriction

MetaDescription

Fig. 4. The activity composition pattern

4.4 Example

In the following we describe example instantiations of the activity patterns in the
home-based healthcare domain for specifying the activity contexts that define the
derivation of nocturia incidences. Our scenario involves the following low-level
(atomic) activities that are represented in terms of the Domain Activity Ontology
(see section 3) and they are made available directly through monitoring, e.g. by
video processing and sensor-based modules, such as sleep monitoring devices1:

– Night sleep: The overall night sleep activity is represented as instance of
the NightSleep class.

1 The Renew SleepClockTMis an example of a monitoring device that records, among
others, the sleep onset and waking times.

Ontology Patterns for Complex Activity Modelling 151

– Out of bed: Instances of the OutOfBed class represent periods of time when
the person is out of the bed.

– In bathroom: Instances of the InBathroom class represent periods of time
when the person is in the bathroom.

The scope of the activity pattern instantiations is to describe the way the afore-
mentioned low-level activities can be aggregated and correlated so as to derive
the following complex (inferred) activities of the domain:

– Bed exit: A bed exit (instance of the BedExit class) represents an out of
bed activity that is performed during the night sleep.

– Nocturia: Nocturia represents a new activity element (instance of the Noctu-
ria class), derived by the aggregation of bed exit and in bathroom activities.

Figure 5 depicts the instantiation of the specialisation pattern for describing bed
exits. The example defines ActivityType instances for the classification of activ-
ity classes: the NightSleep and OutOfBed classes are classified by ContextTypes,
the OutOfBed class is further classified by a SpecialisedType and BedExit is
classified by a SpecialisationType instance. Moreover, the NightSleep class
is temporally related (time:intervalContains) to the OutOfBed class through
the corresponding activity type instances that classify them. These relations are
encapsulated as property assertions in the bed exit desc description which is
related to the bed exit sit situation. Intuitively, the instantiation of the pat-
tern defines that an OutOfBed instance is further specialised as BedExit, if it is
temporally contained in a NightSleep activity.

Figure 6 shows the instantiation of the composition pattern for describing
Nocturia activities. Both the InBathroom and BedExit classes are classified by
SubActivityTypes, Nocturia is classified as the CompositeType, and BedExit

is temporally related (time:intervalContains) to InBathroom through their
pertinent classifying instances. Intuitively, the example defines Nocturia as a

defines
ActivityType

classifies
MetaActivity

classifies
MetaActivity

hasDescription
bed_exit_sit

Specialisation
Situation

Specialisation
Description

bed_exit_desc

night_sleep_type

out_of_bed_type

Specialised
ActivityType

ContextType

NightSleep

isMetaActivity
IncludedIn

defines
ActivityType

defines
ActivityType

MetaActivity

Specialisation
Type

bed_exit_type

BedExit

classifies
MetaActivity

OutOfBed

time:interval
Contains

pattern class core class individual
rdf:type

property assertion
rdfs:subClassOf

Fig. 5. The instantiation of the specialisation pattern for BedExit

152 G. Meditskos et al.

composite activity whose instances derive based on the temporal dependencies
between BedExit and InBathroom activities. Additionally, the nocturia type

instance is temporally related to the in bathroom type and bed exit type in-
stances, so as to define the temporal boundaries of the new composite activity:
nocturia is defined to start when the bed exit starts (startedBy) and finishes
together with the in bathroom activity (finishedBy).

classifies
MetaActivity

classifies
MetaActivity

hasDescription
nocturia_sit

Composition
Situation

Composition
Description

nocturia_desc

bed_exit_type

in_bathroom_type

CompositeType

BedExit

isMetaActivity
IncludedIn

defines
ActivityType

defines
ActivityType

MetaActivity

InBathroom

time:interval
Contains

nocturia_type

defines
ActivityType

Nocturia

classifies
MetaActivity

SubActivity
Type

pattern class core class individual
rdf:type

property assertion
rdfs:subClassOf

time:interval
StartedBy

time:interval
FinishedBy

Fig. 6. The instantiation of the composition pattern for Nocturia

5 Transforming Activity Patterns into SPARQL

The purpose of the activity patterns is to describe the contextual conditions and
the temporal relations that drive the derivation of complex activities, through
well-defined and reusable activity models. As such, the encapsulated semantics
can be shared across applications with similar scope but different implementa-
tion frameworks. In this section, we describe a prototype implementation of a
transformation framework that dynamically generates SPARQL rules that im-
plement the semantics of the composition and specialisation patterns.

The abstract architecture of the prototype framework is depicted in Figure 7.
More specifically, the semantics of the Domain Activity Ontology for represent-
ing domain activities, and the semantics of the instantiated patterns, e.g. the
property restrictions, sub-properties, inverse properties, etc. that are defined by
the DnS implementation in DUL, are handled by an OWL ontology reasoner
(e.g. [24]). The ontology model is then used by the SPARQL Generator to dy-
namically generate SPARQL rules, based on the provided pattern instantiations.

5.1 SPARQL Rules

The rules in our framework are defined in terms of domain-specific SPARQL
CONSTRUCT graph patterns (SPIN rules [12]), tailored to the semantics of the pro-
vided pattern instantiations. A SPARQL rule is defined in terms of a CONSTRUCT

Ontology Patterns for Complex Activity Modelling 153

Pattern Instantiations

Domain Activity Ontology

OWL Ontology
Reasoner

classifies
MetaActivity

classifies
MetaActivity

hasMeta
Descriptionnocturia_sit

Composition
Situation

Composition
Description

nocturia_desc

bed_exit_type

in _bathroom_type
CompositeMeta

ActivityType

BedExit

isMetaActivity
IncludedIn

definesMeta
ActivityType

definesMeta
ActivityType

MetaActivity

StartsWith

InBathroom

time:interval
Contains

EndsWith

nocturia_type

definesMeta
ActivityType

Nocturia

classifies
MetaActivity

SubActivity
Type

definesMeta
ActivityType

classifies
MetaActivity

classifies
MetaActivity

hasMeta
Description

bed_exit_sit

Specialisation
Situation

Specialisation
Description

bed_exit_desc

night_sleep_type

out_of_bed_type

SpecialisedMeta
ActivityType

ContextMeta
ActivityType

NightSleep

isMetaActivity
IncludedIn

definesMeta
ActivityType

definesMeta
ActivityType

MetaActivity

ClassMembership
Type

bed_exit_type

BedExit

classifies
MetaActivity

OutOfBed

time:interval
Contains

SPARQL
Generator

SPARQL
(SPIN Rules)

 iterative
execution

atomic activities

Fig. 7. The prototype framework for generating and executing SPARQL rules

and a WHERE clause: the former defines the set of triple patterns that should be
added to the underlying activity model upon the successful pattern matching of
the triple patterns in the WHERE clause. The generation of such rules in involves
the mapping of the conceptual knowledge provided by the activity patterns on
SPARQL triple patterns and functions.

In the case of the specialisation pattern, the activity classes that are classified
by ContextTypes are used to define the triple patterns that match the corre-
sponding activity instances in the WHERE clause. Additionally, the Specialisa-

tionType that classifies the class of the specialisation is used to define the triple
patterns in the CONSTRUCT clause that specify the additional class type of the
specialised instance. In the case of the composition pattern, the triple patterns
that match activity instances in the WHERE clause are determined based on the
SubActivityType classifications. The CompositeType classification is used to
define the activity type of the new composite activity that is generated in the
CONSTRUCT clause. In both activity patterns, the temporal constraints among
activities are checked using SPIN functions2 that implement basic temporal re-
lations (Allen’s temporal operators [1]).

Figure 8 shows the SPARQL rules that are generated for the recognition of
bed exit and nocturia activities performed by a specific patient (actor), based
on the pattern instantiations described in Section 4.4. In Figure 8 (a), the out
of bed activity is further specialised as a bed exit, whereas in Figure 8 (b) a
new nocturia instance is generated by aggregating bed exit and in bathroom
activities. The start time of the composite activity is associated with the start

2 SPIN functions are reusable SPARQL queries that can be referenced inside SPARQL
FILTER and BIND functions.

154 G. Meditskos et al.

time of the bed exit activity, whereas the end time is associated with the end
time of the in bathroom activity, as the example in Figure 6 models through the
temporal-related property assertions startsBy and finishedBy. The SPARQL
function contains checks whether the first time interval ([?st1, ?et1]) con-
tains the second ([?st2, ?et2]). The newURI SPARQL function generates a
unique URI for the new nocturia by concatenating its sub-activity URIs to en-
sure the termination of the reasoning procedure, since always the same URI
is generated from the same sub-activities ?x and ?y. Also note that the rules
further correlate the activity instances in terms of the Domain Activity Ontol-
ogy properties discussed in Section 3. In that way, we materialise information
relevant to the activities that participated in the specialisation of an instance
(isSpecialisedBy property) and to the sub-activities of composite activities
(hasSubActivity property).

CONSTRUCT {
 ?y a BedExit; //SpecialisationType
 isSpecialisedBy ?x.
}
WHERE{
 ?x a NightSleep; //ContextType
 hasStartTime ?st1;
 hasEndTime ?et1;
 hasActor ?p.
 ?y a OutOfBed; //SpecialisedType
 hasStartTime ?st2;
 hasEndTime ?et2;
 hasActor ?p.
 FILTER(:contains(?st1, ?et1, ?st2, ?et2))
}

CONSTRUCT {
 ?new a Nocturia; //CompositeType
 hasStartTime ?st1;
 hasEndTime ?et2;
 hasActor ?p;
 hasSubActivity ?x;
 hasSubActivity ?y.
}
WHERE{
 ?x a BedExit; //SubActivityType
 hasStartTime ?st1;
 hasEndTime ?et1;
 hasActor ?p.
 ?y a InBathroom; //SubActivityType
 hasStartTime ?st2;
 hasEndTime ?et2;
 hasActor ?p.
 FILTER(:contains(?st1, ?et1, ?st2, ?et2))
 BIND(:newURI(?x, ?y) as ?new)
}

(a) (b)

Fig. 8. (a) The specialisation rule for deriving bed exits, (b) the composition rule for
inferring nocturia instances

6 Conclusions

In this paper, we presented an activity patterns ontology that serves as a meta-
model over domain activity classes, capturing the structural notions of atomic
and compound activities, based on the DnS pattern implementation in DUL.
The aim is to allow the formal representation of activity interpretation mod-
els over activity classes that are generally characterized by intricate temporal
associations, and where it is often the case that the aggregation of individual
activities entails the existence of a new (composite) activity. To this end, two
types of implemented patterns were presented, namely specialisation and com-
position that provide well-defined and interoperable activity models that satisfy
common interpretation requirements in activity recognition domains. We also

Ontology Patterns for Complex Activity Modelling 155

elaborated on the implementation of a prototype framework for the genera-
tion of domain-dependent instantiations of the activity patterns in the form of
SPARQL CONSTRUCT graph patterns (SPIN rules).

Future work involves the further extension of the activity patterns to cap-
ture more complex activities whose recognition requires additional information,
such as cardinality and ordering (e.g. sequential, interleaving) constraints. In
the near future, we also plan to provide an ontology API (e.g. in Sesame3) for
enabling users to define pattern instantiations without going into the details
of the implementation of the activity patterns. As far as the prototype frame-
work is concerned, we are currently investigating the possibility of integrating
and adapting the SPARQL generation algorithm in existing SPARQL-oriented
complex activity processing and recognition frameworks, such as in [27] that
combines SPARQL and Prova rules4 and in [2] for processing RDF streams. In
that way, the SPARQL query sets of such frameworks can be dynamically ex-
tended and adapted to reflect changes in the recognition logic, e.g. after learning
new patterns.

Acknowledgement. This work has been supported by the EU FP7 project
Dem@Care: Dementia Ambient Care – Multi-Sensing Monitoring for Intelligent
Remote Management and Decision Support under contract No. 288199.

References

1. Allen, J.F.: Towards a general theory of action and time. Artif. Intell. 23(2),
123–154 (1984), http://dx.doi.org/10.1016/0004-3702(84)90008-0

2. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: Ep-sparql: a unified language
for event processing and stream reasoning. In: Proceedings of the 20th Interna-
tional Conference on World Wide Web, WWW 2011, pp. 635–644. ACM, New
York (2011), http://doi.acm.org/10.1145/1963405.1963495

3. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying rdf
streams with c-sparql. SIGMOD Rec. 39(1), 20–26 (2010)

4. Beltran, V., Arabshian, K., Schulzrinne, H.: Ontology-based user-defined rules and
context-aware service composition system. In: Garćıa-Castro, R., Fensel, D., An-
toniou, G. (eds.) ESWC 2011 Workshops. LNCS, vol. 7117, pp. 139–155. Springer,
Heidelberg (2012)

5. Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - extending SPARQL to
process data streams. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis,
M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 448–462. Springer, Heidelberg (2008)

6. Chen, L., Nugent, C.D.: Ontology-based activity recognition in intelligent pervasive
environments. International Journal of Web Information Systems 5(4), 410–430
(2009)

7. Chen, L., Nugent, C.D., Wang, H.: A knowledge-driven approach to activity recog-
nition in smart homes. IEEE Trans. on Knowl. and Data Eng. 24(6), 961–974
(2012)

3 http://www.openrdf.org/
4 https://prova.ws/

http://dx.doi.org/10.1016/0004-3702(84)90008-0
http://doi.acm.org/10.1145/1963405.1963495
http://www.openrdf.org/
https://prova.ws/

156 G. Meditskos et al.

8. Debattista, J., Scerri, S., Rivera, I., Handschuh, S.: Ontology-based rules for rec-
ommender systems. In: SeRSy, pp. 49–60 (2012)

9. DOLCE+DnS Ultralite (DUL) ontology,
http://www.loa.istc.cnr.it/ontologies/DUL.owl

10. Gangemi, A., Mika, P.: Understanding the semantic web through descriptions and
situations. In: Meersman, R., Schmidt, D.C. (eds.) CoopIS/DOA/ODBASE 2003.
LNCS, vol. 2888, pp. 689–706. Springer, Heidelberg (2003)

11. van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and use
of the Simple Event Model (SEM). J. Web Sem. 9(2), 128–136 (2011)

12. Knublauch, H., Hendler, J.A., Idehen, K.: SPIN - overview and motivation. W3C
member submission, World Wide Web Consortium (February 2011)

13. Maria, K., Vasilis, E., Grigoris, A.: S-CRETA: Smart classroom real-time assis-
tance. In: Novais, P., Hallenborg, K., Tapia, D.I., Rodŕıguez, J.M.C. (eds.) Ambi-
ent Intelligence - Software and Applications. AISC, vol. 153, pp. 67–74. Springer,
Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-28783-1_9

14. May, W., Alferes, J.J., Amador, R.: An ontology- and resources-based approach to
evolution and reactivity in the semantic web. In: Meersman, R. (ed.) OTM 2005,
Part II. LNCS, vol. 3761, pp. 1553–1570. Springer, Heidelberg (2005)

15. Motik, B., Cuenca Grau, B., Sattler, U.: Structured objects in OWL: representation
and reasoning. In: Proceedings of the 17th International Conference on World Wide
Web (WWW 2008), pp. 555–564. ACM, New York (2008)

16. Okeyo, G., Chen, L., Hui, W., Sterritt, R.: A hybrid ontological and temporal
approach for composite activity modelling. In: Min, G., Wu, Y., Liu, L.C., Jin,
X., Jarvis, S.A., Al-Dubai, A.Y. (eds.) TrustCom, pp. 1763–1770. IEEE Computer
Society (2012)

17. Pan, F., Hobbs, J.R.: Time ontology in OWL. W3C working draft, W3C (Septem-
ber 2006), http://www.w3.org/TR/2006/WD-owl-time-20060927/

18. Patkos, T., Chibani, A., Plexousakis, D., Amirat, Y.: A production rule-based
framework for causal and epistemic reasoning. In: Bikakis, A., Giurca, A. (eds.)
RuleML 2012. LNCS, vol. 7438, pp. 120–135. Springer, Heidelberg (2012)

19. Patkos, T., Chrysakis, I., Bikakis, A., Plexousakis, D., Antoniou, G.: A rea-
soning framework for ambient intelligence. In: Konstantopoulos, S., Perantonis,
S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN 2010. LNCS,
vol. 6040, pp. 213–222. Springer, Heidelberg (2010), http://dx.doi.org/10.1007/
978-3-642-12842-4 25

20. Riboni, D., Pareschi, L., Radaelli, L., Bettini, C.: Is ontology-based activity recogni-
tion really effective? In: 2011 IEEE International Conference on Pervasive Comput-
ing and Communications Workshops (PERCOM Workshops), pp. 427–431 (March
2011)

21. Riboni, D., Bettini, C.: Cosar: hybrid reasoning for context-aware activity recog-
nition. Personal Ubiquitous Comput. 15(3), 271–289 (2011),
http://dx.doi.org/10.1007/s00779-010-0331-7

22. Riboni, D., Bettini, C.: Owl 2 modeling and reasoning with complex human activ-
ities. Pervasive and Mobile Computing 7(3), 379–395 (2011)

23. Scherp, A., Franz, T., Saathoff, C., Staab, S.: A core ontology on events for rep-
resenting occurrences in the real world. Multimedia Tools and Applications 58(2),
293–331 (2012)

24. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World
Wide Web 5(2), 51–53 (2011)

http://www.loa.istc.cnr.it/ontologies/DUL.owl
http://dx.doi.org/10.1007/978-3-642-28783-1_9
http://www.w3.org/TR/2006/WD-owl-time-20060927/
http://dx.doi.org/10.1007/978-3-642-12842-4_25
http://dx.doi.org/10.1007/978-3-642-12842-4_25
http://dx.doi.org/10.1007/s00779-010-0331-7

Ontology Patterns for Complex Activity Modelling 157

25. Stevenson, G., Knox, S., Dobson, S., Nixon, P.: Ontonym: a collection of upper
ontologies for developing pervasive systems. In: Proceedings of the 1st Workshop
on Context, Information and Ontologies, CIAO 2009, pp. 9:1–9:8. ACM, New York
(2009)

26. Tappolet, J., Bernstein, A.: Applied Temporal RDF: Efficient Temporal Query-
ing of RDF Data with SPARQL. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS,
vol. 5554, pp. 308–322. Springer, Heidelberg (2009)

27. Teymourian, K., Rohde, M., Paschke, A.: Fusion of background knowledge and
streams of events. In: DEBS, pp. 302–313 (2012)

28. Wessel, M., Luther, M., Wagner, M.: The difference a day makes - recognizing
important events in daily context logs. In: C&O:RR (2007)

29. Ye, J., Stevenson, G., Dobson, S.: A top-level ontology for smart environments.
Pervasive and Mobile Computing 7(3), 359–378 (2011)

A Rule-Based Contextual Reasoning Platform

for Ambient Intelligence Environments�

Assaad Moawad1, Antonis Bikakis2, Patrice Caire1, Grégory Nain1,
and Yves Le Traon1

1 University of Luxembourg, SnT
firstname.lastname@uni.lu

2 Department of Information Studies, University College London
a.bikakis@ucl.ac.uk

Abstract. The special characteristics and requirements of intelligent
environments impose several challenges to the reasoning processes of
Ambient Intelligence systems. Such systems must enable heterogeneous
entities operating in open and dynamic environments to collectively rea-
son with imperfect context information. Previously we introduced Con-
textual Defeasible Logic (CDL) as a contextual reasoning model that
addresses most of these challenges using the concepts of context, map-
pings and contextual preferences. In this paper, we present a platform
integrating CDL with Kevoree, a component-based software framework
for Dynamically Adaptive Systems. We explain how the capabilities of
Kevoree are exploited to overcome several technical issues, such as com-
munication, information exchange and detection, and explain how the
reasoning methods may be further extended. We illustrate our approach
with a running example from Ambient Assisted Living.

Keywords: contextual reasoning, distributed reasoning, Ambient Intel-
ligence, system development.

1 Introduction

Ambient Intelligence (AmI) constitutes a new paradigm of interaction among
agents acting on behalf of humans, smart objects and devices. Its goal is to
transform our living and working environments into intelligent spaces able to
adapt to changes in contexts and to their users’ needs and desires. This requires
augmenting the environments with sensing, computing, communicating and rea-
soning capabilities. AmI systems are expected to support humans in their every
day tasks and activities in a personalized, adaptive, seamless and unobtrusive
fashion [8]. Therefore, they must be able to reason about their contexts, i.e. with
any information relevant to the interactions between the users and system.

The imperfect nature of context, and the special characteristics of AmI en-
vironments impose several challenges in the reasoning tasks. Henricksen and

� The present research is supported by the National Research Fund, Luxembourg,
CoPAInS project (code: CO11/IS/1239572).

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 158–172, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Rule-Based Contextual Reasoning Platform 159

Indulska [15] characterize four types of imperfect context: unknown, ambiguous,
imprecise, and erroneous. Sensor or connectivity failures, which are inevitable
in wireless connections, result in situations that not all context data is available
at any time. When data about a context property comes from multiple sources,
then context may become ambiguous. Imprecision is common in sensor-derived
information, while erroneous context arises as a result of human or hardware
errors. Context is typically distributed among agents with different views of
the environment that use different languages to describe it. Due to the highly
dynamic and open nature of the environments and the unreliable wireless com-
munications, agents do not typically know a priori all other entities present at a
specific time instance, nor can they communicate directly with all of them. De-
spite these restrictions, they must be able to reach common conclusions about
the state of the environment and collectively take context-aware decisions.

In previous works we introduced a new nonmonotonic logic, Contextual De-
feasible Logic (CDL), tailored to the specific requirements of AmI systems. We
presented its language and argumentation semantics, proved its formal properties
[4], and developed algorithms for distributed query evaluation [7]. This paper is a
further step towards reasoning with CDL and making it real in an AmI environ-
ment. Here, we focus on scenarios from Ambient Assisted Living (AAL), though
the same findings may be applied to any subfield of AmI. AAL is a relatively
new research and application domain focused on the technologies and services to
enhance the quality of life of people with reduced autonomy, such as the elderly.
In the framework of the CoPAInS project1, such problematic is studied to eval-
uate the tradeoffs to be made in AAL systems [21], particularly as they pertain
to conviviality, privacy and security [9]. Creating this bridge between CDL and
AAL requires addressing issues, such as dynamicity, adaptability, detection and
communication between devices, and is therefore not trivial. This prompts our
research question: How to deploy CDL in real AmI environments?

To address this question, we created a platform that maps the CDL model to
the business view of AAL using Kevoree [10]. Kevoree is designed to facilitate the
development of Distributed Dynamically Adaptive Systems. Particular features
of Kevoree make it a suitable for our needs: ability to implement heterogeneous
entities as independent nodes ; use of communication channels to enable message
exchanges between nodes; support for shared models to enable common repre-
sentations for different types of nodes; adaptive capabilities to fit with the open
and dynamic nature of AAL.

The contribution of this work is twofold: (a) we describe solutions for the
deployment of a theoretical model (CDL) in real AmI environments; and (b)
we provide an AAL platform, usable by anyone to test and implement AAL
scenarios. The rest of the paper is structured as follows. Section 2 describes our
running AAL example. Sections 3 and 4 present the theoretical and technical
background of this work, namely CDL and Kevoree. Section 5 describes the
integration of CDL with Kevoree in our novel AAL platform. Section 6 presents
related work, and Section 7 concludes and presents our plans for future work.

1 http://wwwen.uni.lu/snt/research/serval/projects/copains

http://wwwen.uni.lu/snt/research/serval/projects/copains

160 A. Moawad et al.

2 An Ambient Assisted Living Example

In this section, we present an Ambient Assisted Living (AAL) scenario, part of
a series of scenarios validated by HotCity, the largest WI-FI network in Luxem-
bourg, in the Framework of our CoPAInS project (Conviviality and Privacy in
Ambient Intelligence Systems).

In our scenario, visualized in Figure 1, the eighty-five years old Annette is
prone to heart failures. The hospital installed a Home Care System (HCS) at her
place. One day, she falls in her kitchen and cannot get up. The health bracelet
she wears gets damaged and sends erroneous data, e.g., heart beat and skin
temperature, to the HCS. Simultaneously, the system analyzes Annette’s activ-
ity captured by the Activity Recognition Module (ARM). Combining all the
information to Annette’s medical profile, and despite the normal values trans-
mitted by Annette’s health bracelet, the system infers an emergency situation.
It contacts the nearby neighbors asking them to come and help.

emergency

prone to
heart attack normal pulse

lying on
the floor

Fig. 1. Context Information flow in the scenario

This scenario exemplifies challenges raised when reasoning with the available
context information in Ambient Intelligence environments. Furthermore, it high-
lights the difficulties in making correct context-dependent decisions.

First, context knowledge may be erroneous. In our example, the values trans-
mitted by the health bracelet for Annette’s heart beat and skin temperature, are
not valid, thereby leading to a conflict about Annette’s current condition. Second,
local knowledge is incomplete, in the sense that none of the agents involved has im-
mediate access to all the available context information. Third, context knowledge
may be ambiguous; in our scenario, the HCS receives mutually inconsistent infor-
mation from the ARM and the health bracelet. Fourth, context knowledgemay be
inaccurate; for example, Annette’s medical profilemay contain corrupted informa-
tion. Finally, devices communicate over a wireless network. Such communications
are unreliable due to the nature of wireless networks, and are also restricted by the
range of the network. For example, the health braceletmay not be able to transmit
its readings to HCS due to a damaged transmitter.

In the next section, we analyze how CDL enables devices to model and reason
with such imperfections.

A Rule-Based Contextual Reasoning Platform 161

3 Contextual Defeasible Logic

Contextual Defeasible Logic (CDL) is a distributed rule-based approach for con-
textual reasoning, which was recently proposed as a reasoning model for Ambient
Intelligence systems [4]. CDL adopts ideas from:

– Defeasible Logic [3] - it is rule-based, skeptical, and uses priorities to resolve
conflicts among rules;

– Multi-Context Systems (MCS, [13,12]) - logical formalizations of distributed
context theories connected through mapping rules, which enable information
flow between contexts. In MCS, a context can be thought of as a logical
theory - a set of axioms and inference rules - that models local knowledge.

Below, we present the representation model of CDL and explain how it fits
with the special characteristics and requirements of Ambient Intelligence envi-
ronments. We also present an operational model of CDL in the form of a query
evaluation algorithm, which we implemented in Kevoree.

3.1 Representation Model

In CDL, the MCS model is extended with defeasible rules and a preference
relation on the system contexts. In CDL, a MCS C is a set of contexts Ci: A
context Ci is defined as a tuple of the form (Vi, Ri, Ti), where Vi is the vocabulary
of Ci, Ri is a set of rules, and Ti is a preference ordering on C.

Vi is a set of positive and negative literals of the form (ci : ai) and ∼ (ci : ai),
which denotes the negation of (ci : ai). Each context uses a distinct vocabulary,
i.e. Vi ∩ Vj = ∅ iff i �= j. This reflects the fact that each entity (e.g. device in
an Ambient Intelligence environment) may use its own terminology. We should
note, though, that the proposed model may also enable different contexts to
use common literals (e.g. URIs) by adding a context identifier, e.g. as a prefix,
in each such literal and using appropriate mappings to associate them to each
context.

Ri consists of a set of local rules and a set of mapping rules. The body of
a local rule is a conjunction of local literals (literals that are contained in Vi),
while its head is labeled by a local literal. There are two types of local rules:

– Strict rules, of the form

rli : (ci : a
1), . . . , (ci : a

n−1)→ (ci : a
n)

They express sound local knowledge and are interpreted in the classical sense:
whenever the literals in the body of the rule ((ci : a

1), . . . , (ci : a
n−1)) are

strict consequences of the local theory, then so is the conclusion of the rule
((ci : a

n)). Strict rules with empty body denote factual knowledge.
– Defeasible rules, of the form

rdi : (ci : a
1), . . . , (ci : a

n−1)⇒ (ci : a
n)

They are used to express uncertainty: a defeasible rule cannot be applied to
support its conclusion if there is adequate contrary evidence.

162 A. Moawad et al.

Mapping rules associate local literals of Ci with literals from the vocabularies
of other contexts (foreign literals). The body of each such rule is a conjunction
of local and foreign literals, while its head is labeled by a local literal. Mapping
rules are modeled as defeasible rules of the form:

rmi : (cj : a
1), . . . , (ck : an−1)⇒ (ci : a

n)

A mapping rule associates literals from different contexts (e.g. (cj : a
1) from Cj

and (ck : an−1) from Ck), with a local literal of the context that has defined
ri, which labels the head of the rule (here (ci : a

n)). By representing mappings
as defeasible rules, we can deal with ambiguities and inconsistencies caused by
importing mutually conflicting information from different contexts.

Finally, each context Ci defines a strict total preference ordering Ti on C to
express its confidence in the knowledge it imports from other contexts:

Ti = [Ck, Cl, ..., Cn]

Ck is preferred to Cl by Ci, if Ck precedes Cl in Ti. The strict total ordering
enables resolving all potential conflicts that may arise from the interaction of
contexts through their mapping rules. In a later version of CDL [6], Ti is defined
as a partial preference order on C, which enables handling incomplete preference
information. For sake of simplicity, we adopt here the original definition of Ti.

Example. The scenario described in Section 2 may be modeled as follows in
CDL. We consider 5 different contexts: sms for the SMS system, hcs for the
Home Care Syste, arm for the activity recognition module, br for the bracelet,
and med for the medical profile. sms has only one mapping rule according to
which, when the Home Care System detects an emergency situation, the SMS
system dispatches messages to a prescribed list of mobile phone numbers:

rmsms : (hcs : emergency)⇒ (sms : dispatchSMS)

The Home Care system imports information from the activity recognition mod-
ule, the bracelet and Annete’s medical profile to detect emergency situations
using two mapping rules:

rm1
hcs : (br : normalPulse)⇒ ¬(hcs : emergency)
rm2
hcs : (arm : lyingOnF loor), (med : proneToHA)⇒ (hcs : emergency)

The factual knowledge of the other three modules is modeled using local rules
with empty body:

rlbr :→ (br : normalPulse)
rlarm :→ (arm : lyingOnF loor)
rlmed :→ (med : proneToHA)

The Home Care System is configured to give highest priority to information
imported by the medical profile and lowest priority to the bracelet:

Thcs = [med, arm, br]

A Rule-Based Contextual Reasoning Platform 163

3.2 Distributed Query Evaluation

In [4] we presented an argumentation semantics of CDL, while in [7] we provided
four algorithms for query evaluation. P2P DR is one of these algorithms, which
is called when a context Ci is queried about the truth value of one of its local
literals (ci : ai), and roughly proceeds as follows:

Algorithm 1. P2P DR

if (ci : ai) (or ¬(ci : ai)) is derived as a conclusion of the local rules of Ci then
return true (or false resp.)

else
for all rules ri in ci that have (ci : ai) or ¬(ci : ai) in their heads do

if ri is applicable then
Compute the Supportive Set of ri, SSri

Compute the Supportive Sets of (ci : ai), SS(ci:ai), and ¬(ci : ai), SS¬(ci,ai)

if SS(ci:ai) is stronger than SS¬(ci,ai) with respect to Ti then
return true

else
return false

We should note that a rule ri is applicable when for all its body literals we have
obtained positive truth values. SSri is the union of the foreign literals with the
Supportive Sets of the local literals contained in the body of ri, while SS(ci:ai) is
the strongest between the Supportive Sets of the rules with head (ci : ai). A set
of literals S1 is stronger than set S2 w.r.t. Ti iff there is a literal l in S2, such
that all literals in S1 are stronger than l w.r.t. Ti. A literal (ck : a) is stronger
than literal (cl : b) w.r.t. Ti iff Ck precedes Cl in Ti.

Example (continued). In our running example, a query to sms about (sms :
dispatchSMS) will initiate a second query to hcs about (hcs : emergency).
The second query will in turn initiate three more queries: a query to br about
(br : normalPulse); a query to arm about (arm : lyingOnF loor); and a query
to med about (med : proneToHA). P2P DR will return true for the latter three
queries, and will compute SS(hcs:emergency) = {(arm : lyingOnF loor), (med :
proneToHA)} and SS¬(hcs:emergency) = {(br : normalPulse)}. W.r.t. Thcs, all
elements of SS(hcs:emergency) are stronger than (br : normalPulse), therefore
P2P DR will return a positive truth value for (hcs : emergency), and the same
value for (sms : dispatchSMS) too, as there is no rule that supports its negation.

As shown in the example above, CDL may deal with several of the challenges
of Ambient Intelligence environments, such as uncertainty, ambiguity, and erro-
neous data. There are still, though, some questions that need to be addressed in
order to fully deploy CDL in real environments: how do the devices actually de-
tect and communicate with each other? and how can we achieve dynamicity and
adaptability? In the next sections, we describe how we addressed such questions
by integrating CDL in the software platform of Kevoree.

164 A. Moawad et al.

4 Kevoree - A Component Based Software Platform

On the one hand, in Ambient Assisted Living (AAL), systems need to be adapted
to users preferences and contexts. They also need to combine various data and
reason about it, but the imperfect nature of context makes this task very chal-
lenging. Returning to our use case, the HCS receives data from different devices,
and many situations may occur causing the data to be erroneous, e.g., Annette
may have left her health bracelet next to her bed instead of wearing it, or the
battery capability may be weak and preventing the bracelet from transmitting
any data.

On the other hand, CDL allows to manage uncertainty and reason about it.
The problem remains to apply such theoretical tools to the AAL domain in order
to solve the very concrete challenges affecting patients. In this section, we present
the Kevoree environment, which we use to address such issues by implementing
the CDL reasoning model. This is illustrated in Figure 2.

Fig. 2. Kevoree bridges the AAL needs to the theoretical model of CDL

4.1 Kevoree: Modeling Framework and Components

Kevoree [10] is an open-source environment that provides means to facilitate the
design and deployment of Distributed Dynamically Adaptive Systems, taking
advantage of Models@Runtime [22] mechanisms throughout the development
process.

This development platform is made of several tools, among which the Kevoree
Modeling Framework (KMF) [11], a model editor (to assemble components to
create an application), and several runtime environments, from Cloud to JavaSE
or Android platforms. The component model of Kevoree defines several concepts.
The rest of this section describes the most interesting ones in relation to the
content of this paper.

Fig. 3. A component in-
stance, inside the node in-
stance onwhich it executes

The Node (in grey in figure 3) is a topological rep-
resentation of a Kevoree runtime. There exist differ-
ent types of nodes (e.g.: JavaSE, Android, etc.) and a
system can be composed of one, or several distributed
heterogeneous instances of execution nodes.

Component instances are deployed and run on a
node instance, as presented on figure 3. Components
may also be of different types, and one or more, het-
erogeneous or not, component instances may run on

A Rule-Based Contextual Reasoning Platform 165

a single node. Components declare Ports (rounds on left and right sides of the
component instance) for provided and required services, and input and output
messages. The ports are used to communicate with other components of the
system.

Fig. 4. An in-
stance of Group
on top, of Chan-
nel on the bot-
tom

Groups (top shape in figure 4) are used to share models
(at runtime) between execution platforms (i.e. nodes). There
are different types of Groups, each of which implements a dif-
ferent synchronization / conciliation / distribution algorithm.
Indeed, as the model shared is the same for all the nodes,
there may be some concurrent changes on the same model,
that have to be dealt with.

Finally (for the scope of this paper), Channels (bottom
shape in figure 4) handle the semantics of a communication
link between two or more components. In other words, each
type of channel implements a different means to transport a
message or a method call from component A to component B,
including local queued message list, TCP/IP sockets connec-
tions, IMAP/SMTP mail communications, and various other
types of communication.

4.2 Kevoree Critical Features

Kevoree appears to be an appropriate choice to provide solutions for the de-
velopment of Ambient Intelligence systems, as it can deal with their dynamic
nature. In such systems, agents are often autonomous, reactive and proactive in
order to collaborate and fulfil tasks on behalf of their users.

In Kevoree, an agent is represented as a node that hosts one or more compo-
nent instances. The node is responsible for the communication with other nodes
by making use of the synchronization Group. Some group types implement al-
gorithms with auto-discovery capabilities, making nodes and their components
dynamically appear in the architecture model of the overall system. The fact
that a new node appears in the model means that an agent is reachable, but it
does not necessarily mean that it participates in any interaction. The component
instances of a node provide the services for the agent. Therefore, for an agent to
take part in a collaborative work, the ports of the component instances it hosts
have to be connected to some ports of other agents’ components.

Some features of Kevoree make it particularly suitable for our needs. First,
it enables the implementation, deployment and management of heterogeneous
entities as independent nodes. Second, it uses communication channels to enable
the exchange of messages among the distributed components. Third, it offers a
common and shared representation model for different types of nodes. Finally,
it is endowed with adaptive capabilities and auto-discovery, which fit with the
open and dynamic nature of AmI environments.

In the next section, we detail how we exploit the features of Kevoree and
integrate them with CDL to create our AAL platform.

166 A. Moawad et al.

5 The AAL Platform

In this section, we explain how CDL and Kevoree are integrated in our AAL
platform. We should note that the parts of CDL, which were not directly mapped
to existing elements Kevoree, were implemented in Java.

5.1 Query Component

In our platform, the notion of context, as this is described in Section 3, is imple-
mented by a new component type that we developed, called Query Component.
This component has two inputs: Console In and Query In, and two outputs:
Console out and Query Out. The Query Component has three properties: a
Name, an initial preference address and an initial knowledge base address. In
Kevoree, each instance must have a unique name. In our platform, we use this
unique name to specify the sender or the recipient of a query. The preference
address and the knowledge base address contain the addresses of the files to be
loaded when the component starts. The knowledge base file contains the rule
set of a context, while the preference file contains the preference order of the
context implemented as a list.

Each component has two console (in/out) and two query (in/out) ports. The
console input port is used to send commands to the component, e.g. to update
its knowledge base or change its preference order. The outputs of the commands
are sent out to the console output port. The query in/out ports are used when a
component is sending/receiving queries to/from other components. Queries are
sent via the “Query out” port and responses are received via “Query In”.

Internally, the Query Component has some private variables, which represent
its knowledge base, the preference order and a list of query servant threads
currently running on it. When the component receives a new query, it creates
a new query servant thread dedicated to solve the query and adds it to the list
of currently running query threads. When this thread reports back the result of
the query, it is killed and removed from the list.

5.2 Query Servant

When a query servant thread is created, it is always associated with an ID and
with the query containing the literal to be solved, and it is added to the list
of running threads of the query component. In accordance with the P2P DR
algorithm that we described in Section 3, the query servant model works as
follows:

1. The first phase consists of trying to solve the query locally using the local
knowledge base of the query component. If a positive/negative truth value
is derived locally, the answer is returned and the query servant terminates.

2. The second phase consists of enumerating the rules in the knowledge base
that support the queried literal as their conclusion. For each such rule, the
query servant initiates a new query for each of the literals that are in the body

A Rule-Based Contextual Reasoning Platform 167

of the rule. For foreign literals, the queries are dispatched to the appropriate
remote components. After initiating the queries, the query servant goes into
an idle state through the java command “wait()”.

3. When responses are received, the query servant thread is notified. Phase two
is repeated again, but this time using the rules that support the negation of
the queried literal.

4. The last step is to resolve the conflict by comparing the Supportive Sets
of the rules that support the queried literals with the Supportive Sets of
the rules that support its negation using the preference order. The result is
reported back to the query component.

5.3 Query Class and Loop Detection Mechanism

The query Java class that we developed for our platform has the following at-
tributes: the queried literal, the name of the component that initiated this query
(query owner), the name of the component to which the query is addressed
(query recipient), the id of the query servant thread that is responsible for solv-
ing this query, a set of supportive sets, and a list that represents the history of
the query. The history is used to track back to the origin of the query by a loop
detection mechanism, which we have integrated in P2P DR.

As P2P DR is a distributed algorithm, we cannot know a-priori whether a
query will initiate an infinite loop of messages. The loop detection mechanism
that we developed detects and terminates any infinite loops. The simple case is
when a literal (ci : a) in component Ci depends on literal (ck : b) of component
Ck, and vice-versa. The loop detection mechanism works as follows: each time
the query servant inquires about a foreign literal to solve the current query, it
first checks that the foreign literal in question does not exist in the history of
the current query, and if not, it generates a new query for the foreign literal by
integrating the history of the current query into the history of the new one. This
way, a query servant is only allowed to inquire about new literals.

5.4 Running Example

Applying the above methodology on the running example described in section
2, we created 5 Query Component instances, each one representing one of the
devices or elements of the scenario: the sms module, the bracelet, the medical
profile, the ARM and the Home Care System. According to the scenario, the sms
module must determine whether to send messages to the neighbors according to
a predefined set of rules. Using a console component of Kevoree that we attached
to the sms module, we were able to initiate queries on the sms module.

Figure 5 shows our experimental setup, which involves the 5 query components
and the console component connected to the sms module (FakeConsole). Note
that, all query input and output ports of the query components are connected
to each other via the same message channel called queryChannel, to allow any
component to communicate and send queries to any other component.

168 A. Moawad et al.

Fig. 5. The running example implemented, a snapshot of the Kevoree Editor

Before pushing the model from the Kevoree editor to the Kevoree runtime (i.e.:
the node that will host the instances), we setup the properties of the components
to initialize their knowledge bases and preference orders as described in Table
1, and according to the CDL representation model that we present in Section 3.
For instance, the sms component is initiated with a knowledge base containing
one mapping rule (M1) that states that if (hcs : emergency) of hcs is true, then
(sms : dispatchSMS) of the sms module will also be true. HCSPref.txt contains
the preference order of hcs, according to which the information imported by
the medical profile is preferred to that coming from the ARM, which is in turn
preferred to that coming from the bracelet.

After pushing the model to the Kevoree runtime, a console appears allow-
ing us to interact with the sms module. We initiate a query about (sms :
dispatchSMS), and we get true as a response. In fact, what happens in the

Table 1. Initialization of the components of the running example

File Name File contents

smsModuleKB.txt M1: (hcs:emergency) → (sms:dispatchSMS)

BraceletKB.txt L1: → (br:normalPulse)

MedProfileKB.txt L1: → (med:proneToHA)

ArmKB.txt L1: → (arm:lyingOnFloor)

HCSKB.txt M1: (br:normalPulse) ⇒ ¬(hcs:emergency)

M2: (arm:lyingOnFloor), (med:proneToHA) ⇒ (has:emergency)

HCSPref.txt med, arm, br

A Rule-Based Contextual Reasoning Platform 169

back-end is that a query servant starts on the sms module to solve the query.
The query servant initiates, then, a new query for (hcs : emergency). In the
knowledge base of hcs, there is one rule supporting this literal, and another one
supporting its negation. hcs evaluates both rules and resolves the conflict using
its preference order. Finally, it sends back the result of the query to the first
query servant, which in turn computes and returns a positive truth value for
(sms : dispatchSMS). The full interaction is displayed in figure 6.

Fig. 6. Execution of the running example

5.5 Limitations

Our platform still has some technical limitations. As it deals with real com-
ponents, we must assume limited memory, battery, computation and power re-
sources. These limitations vary widely from a component to another depending
on the nature of the component, its size and its technical complexity. For the
current implementation, we have limited the knowledge base size to a maximum
of 500 literals and rules. We have also limited the time-out for 10 seconds, so that
if a component does not receive an answer to its query within 10 seconds, the
corresponding thread server will send a time-out response, and the query will
automatically expire. This limits the maximum number of hops that a query
can make before it expires, which in turn limits the communication resources,
as some communication channel might not be free (over sms for example). With
the current settings, we can easily implement small-scale AAL scenarios. How-
ever, dealing with more complex scenarios requires a more scalable methodology.
To address such needs, we are already working on solutions that offer trade-offs
between computation time, memory and communication between devices, and
we are redesigning our algorithms so that they able to adapt between different
strategies depending on the available resources.

170 A. Moawad et al.

6 Related Work

Rule-based approaches offer several benefits with respect to reasoning about con-
text in Ambient Intelligence environments, such as simplicity and flexibility, for-
mality, expressivity,modularity, high-level abstraction and information hiding [5].
Various logics have been proposed so far for such purposes including: First Or-
der Logic [24,14], Logic Programming [25,1], Answer Set Programming [20] and
Defeasible Logic [2]. Classical reasoning approaches (e.g. First Order Logic) are
based on the assumption of perfect knowledge of context, which, as we explained
in Section 1, is not valid in Ambient Intelligence environments. Nonmonotonic ap-
proaches, including the one that we propose in this paper, enable reasoning with
imperfect context, adding though additional complexity overhead to the reasoning
process. Although the complexity of the algorithm that we use for query evalua-
tion is exponential [4], it is among our future plans to design new algorithms that
will exploit the linear complexity of Defeasible Logic.

Although Ambient Intelligence environments are distributed by nature, all
systems that are cited above are based on centralized architectures: a central
entity is responsible for collecting relevant context data from all sensors and
devices operating in the same environment, and for conducting the contextual
reasoning tasks. The shared memory and blackboard models that were used by
other systems (e.g [16,18,17]) are also based on the assumption of a central place
where all relevant data is collected and processed. However, in such environments
context changes may be very frequent, devices may join or disconnect at random
times and without prior notice, while wireless communications are unreliable and
restricted by the range of the transmitters. Moreover, privacy restrictions may
be applied by the users, according to which part of the data stored in a device
must remain local. Therefore, a totally distributed model, such as the one that
we propose here, fits better with such requirements and needs.

7 Conclusion

In this paper, we address some of the challenges imposed by the special char-
acteristics and requirements of intelligent environments to the reasoning pro-
cesses of Ambient Intelligence systems. Such systems must enable heterogeneous
entities, which operate in open and dynamic environments, to collectively rea-
son with imperfect context information. We build on previous work, in which
we introduced Contextual Defeasible Logic as a contextual reasoning model to
address most of these challenges using the concepts of context, mappings and
contextual preferences. In this paper, we first introduce the implementation of
the logic in Kevoree, a component-based software platform for Distributed Dy-
namically Adaptive Systems. Second, we present an Ambient Assisted Living
(AAL) scenario, which we use as a running example to present the main aspects
of our platform. We describe how we implemented the reasoning model of CDL
in Kevoree, and explain how the capabilities of Kevoree are exploited to over-
come several technical issues, such as communication, information exchange and
detection. Third, we discuss the additional technical issues that arise from the

A Rule-Based Contextual Reasoning Platform 171

deployment of CDL in real environments, and propose ways to resolve them.
Finally, we emphasize that we provide a platform, which anyone may use to test
and implement scenarios from any field of Ambient Intelligence.

In the future, we plan to extend CDL to support shared pieces of knowledge,
which are directly accessible by all system contexts, and implement this exten-
sion in Kevoree using its groups feature (see section 4). This will enable different
devices operating in an Ambient Intelligence environment to maintain a common
system state. We also plan to develop and implement reactive (bottom-up) rea-
soning algorithms, which will be triggered by certain events or changes in the envi-
ronment. Such types of algorithms fit better with the adaptive nature of Ambient
Intelligence systems, and may be particularly useful in AAL contexts.We will also
study the integration of a low-level context layer in our platform, which will pro-
cess the available sensor data and feed the rule-based reasoning algorithms with
appropriate values for the higher-level predicates. For this layer, we will inves-
tigate the Complex Event Processing (CEP) methodology [19], which combines
data from multiple sources to infer higher-level conclusions, and we will build on
top of previous works that study the integration of CEP and reaction rules [23].
We will test and evaluate all our deployments and extensions to our platform in
the Internet of Things Laboratory of the Interdisciplinary Centre for Security, Re-
liability and Trust (SnT) in Luxembourg. It is also among our plans to use our
platform to evaluate tradeoffs among requirements of AAL systems, e.g., privacy,
security, usability/conviviality and performance. Finally, we plan to investigate
how the same reasoning methods may be applied to other application areas with
similar requirements, such as the Semantic Web and Web Social Networks.

References

1. Agostini, A., Bettini, C., Riboni, D.: Experience Report: Ontological Reasoning
for Context-aware Internet Services. In: Proceedings of PERCOMW 2006. IEEE
Computer Society, Washington, DC (2006)

2. Antoniou, G., Bikakis, A., Karamolegou, A., Papachristodoulou, N., Stratakis, M.:
A context-aware meeting alert using semantic web and rule technology. Interna-
tional Journal of Metadata Semantics and Ontologies 2(3), 147–156 (2007)

3. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results
for defeasible logic. ACMTransactions on Computational Logic 2(2), 255–287 (2001)

4. Bikakis, A., Antoniou, G.: Defeasible Contextual Reasoning with Arguments in
Ambient Intelligence. IEEE Trans. on Knowledge and Data Engineering 22(11),
1492–1506 (2010)

5. Bikakis, A., Antoniou, G.: Rule-based contextual reasoning in ambient intelligence.
In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403,
pp. 74–88. Springer, Heidelberg (2010)

6. Bikakis, A., Antoniou, G.: Partial preferences and ambiguity resolution in contex-
tual defeasible logic. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS,
vol. 6645, pp. 193–198. Springer, Heidelberg (2011)

7. Bikakis, A., Antoniou, G., Hassapis, P.: Strategies for contextual reasoning with
conflicts in Ambient Intelligence. Knowledge and Information Systems 27(1), 45–84
(2011)

8. Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: Technologies, ap-
plications, and opportunities. Pervasive and Mobile Computing, 277–298 (2009)

172 A. Moawad et al.

9. Efthymiou, V., Caire, P., Bikakis, A.: Modeling and evaluating cooperation in
multi-context systems using conviviality. In: Proceedings of BNAIC 2012 The 24th
Benelux Conference on Artificial Intelligence, pp. 83–90 (2012)

10. Fouquet, F., Barais, O., Plouzeau, N., Jézéquel, J.M., Morin, B., Fleurey, F.: A
Dynamic Component Model for Cyber Physical Systems. In: 15th International
ACM SIGSOFT Symposium on Component Based Software Engineering, Berti-
noro, Italie (July 2012), http://hal.inria.fr/hal-00713769

11. Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O., Plouzeau, N., Jézéquel,
J.-M.: An Eclipse Modelling Framework Alternative to Meet the Models@Runtime
Requirements. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 87–101. Springer, Heidelberg (2012)

12. Ghidini, C., Giunchiglia, F.: Local Models Semantics, or contextual reason-
ing=locality+compatibility. Artificial Intelligence 127(2), 221–259 (2001)

13. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do
without modal logics. Artificial Intelligence 65(1) (1994)

14. Gu, T., Pung, H.K., Zhang, D.Q.: A Middleware for Building Context-Aware Mo-
bile Services. In: Proceedings of the IEEE Vehicular Technology Conference (VTC
2004), Milan, Italy (May 2004)

15. Henricksen, K., Indulska, J.: Modelling and Using Imperfect Context Information.
In: Proceedings of PERCOMW 2004, pp. 33–37. IEEE Computer Society, Wash-
ington, DC (2004)

16. Khushraj, D., Lassila, O., Finin, T.: sTuples: Semantic Tuple Spaces. In: First
Annual International Conference on Mobile and Ubiquitous Systems: Networking
and Services (MobiQuitous 2004), pp. 267–277 (August 2004)

17. Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H., Malm, E.J.: Managing Context
Information in Mobile Devices. IEEE Pervasive Computing 02(3), 42–51 (2003)

18. Krummenacher, R., Kopecký, J., Strang, T.: Sharing Context Information in Se-
mantic Spaces. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM Workshops
2005. LNCS, vol. 3762, pp. 229–232. Springer, Heidelberg (2005)

19. Luckham, D.C.: The power of events - an introduction to complex event processing
in distributed enterprise systems. ACM (2005)

20. Mileo, A., Merico, D., Pinardi, S., Bisiani, R.: A logical approach to home health-
care with intelligent sensor-network support. Comput. J. 53(8), 1257–1276 (2010)

21. Moawad, A., Efthymiou, V., Caire, P., Nain, G., Le Traon, Y.: Introducing convivi-
ality as a new paradigm for interactions among IT objects. In: Proceedings of the
Workshop on AI Problems and Approaches for Intelligent Environments, vol. 907,
pp. 3–8. CEUR-WS.org (2012)

22. Morin, B., Barais, O., Nain, G., Jezequel, J.M.: Taming dynamically adaptive sys-
tems using models and aspects. In: Proceedings of the 31st International Conference
on Software Engineering, ICSE 2009, Washington, DC, USA, pp. 122–132 (2009),
http://dx.doi.org/10.1109/ICSE.2009.5070514

23. Paschke, A., Vincent, P., Springer, F.: Standards for complex event processing and
reaction rules. In: Olken, F., Palmirani, M., Sottara, D. (eds.) RuleML - America
2011. LNCS, vol. 7018, pp. 128–139. Springer, Heidelberg (2011)

24. Ranganathan, A., Campbell, R.H.: An infrastructure for context-awareness based
on first order logic. Personal Ubiquitous Comput. 7(6), 353–364 (2003)

25. Toninelli, A., Montanari, R., Kagal, L., Lassila, O.: A Semantic Context-Aware
Access Control Framework for Secure Collaborations in Pervasive Computing En-
vironments. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 473–486.
Springer, Heidelberg (2006)

http://hal.inria.fr/hal-00713769
http://dx.doi.org/10.1109/ICSE.2009.5070514

Extending an Object-Oriented RETE Network

with Fine-Grained Reactivity
to Property Modifications

Mark Proctor1,2, Mario Fusco2, and Davide Sottara3

Dept. of Electrical & Electronic Engineering, Imperial College London, London (UK)
m.proctor13@imperial.ac.uk

JBoss, a Division of Red Hat Inc.
mfusco@redhat.com

Biomedical Informatics Dept., Arizona State University, Scottsdale (AZ)
davide.sottara@asu.edu

Abstract. Managing rule chaining, especially in presence of recursion,
is a common difficulty when authoring rule based applications. For this
reason, production systems implement strategies such as refraction to
control rule activation repeatability. In this paper, we present a re-
lated extension for an object-oriented version of the RETE algorithm,
called property-based reactivity. This extension provides additional, finer
grained control of repeatable rules, at the object property level. Patterns
have control over which properties they will react to: by default, this is
properties the pattern constrains on, but additional properties may be
included or excluded using appropriate annotations in the rule base. The
engine enhancement is based on a compile-time analysis of the rule base
that minimizes the overhead on the language and the runtime execution.
The correlation between the performance impact due to the strategy and
the structure of the rules has been analyzed and benchmarked using an
implementation based on the open source rule engine Drools.

Keywords: RETE, RETE-OO, production rules, pattern matching,
rule engines, refraction.

1 Introduction

Reactive production rule systems typically offer very limited control in how rules
that are being reevaluated are selected for firing. [3]. For lack of well defined, de-
coupled and configurable strategies, implementing appropriate semantics, users
are forced to mix business and control logic, polluting their data models and
rules. This approach, however, does not scale well with the complexity of the
application: not only are the results less robust, with increased maintenance, but
they are also inefficient. Control logic uses computational resources for evalua-
tions that could otherwise be avoided. As the applications grow in size the ratio
of business logic to control logic degrades: in severe cases, the author can spend
more time telling a rulebase what not to do, rather than what to do. Different

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 173–187, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

174 M. Proctor, M. Fusco, and D. Sottara

solutions exist for this problem, depending on the nature of the underlying en-
gine. This paper focuses its discussion on rule engines based on RETE networks
[8], which are among the most used algorithm in production systems implemen-
tations. Moreover, it assumes an object-oriented rule engine using the semantics
of the Java language in terms of classes and properties, as well as inheritance
and subsumption testing. The engine is based on an adaptation of the RETE al-
gorithm to work with Java and its type system, called RETE-OO, implemented
in the open source rule engine Drools Expert1. In a RETE-OO network the type
discrimination nodes come first, after the root node. In RETE-OO these are re-
ferred to as ObjectTypeNodes and their discrimination obeys Java instanceof

behaviour. The ObjectType may be any Java class or interface. Thus a single
fact may propagate to multiple ObjectTypeNodes depending on its inheritance
hierarchy and implemented interfaces. By knowing the ObjectType for the prop-
agation the engine can ensure type safety for both alpha and beta expression
evaluation, an important advantage for any object-oriented RETE implemen-
tation. RETE-OO also provides the mapping and evaluation of alpha and beta
node constraints to Java properties. Both simple and compound expressions are
supported. Unlike other Java based production systems such as Jess2, RETE-
OO is able to work directly with Java objects, and does not require any form
of shadowing or additional state saving for objects. The engine supports reac-
tive (event) condition action rules, providing the usual working memory opera-
tions insert, retract and modify (update), redefined to use objects as working
memory elements. In the basic version of the engine, the modification of a fact
(object) always triggers a new propagation, rematching all the patterns whose
object type subsumes at least one of types of the modified object itself. The
modify is implemented as an update-in-place [11], rather than the traditional
RETE [8] implementation of retract followed by insert. This paper proposes
an algorithm that will allow the RETE network to react to working memory
changes with a finer and more precise granularity: in particular, reevaluating
only the patterns matching for those properties of objects that have been ac-
tually modified. This can be achieved by performing a compile-time analysis of
the rule base and using the results to enrich the nodes of the RETE network
with additional information. In turn, this will be used at runtime, to efficiently
discriminate irrelevant or undesired modifications. The paper is organized as
follows. Section 2 discusses related works and shows how property reactivity re-
lates to execution control strategies such as refraction. Section 3 describes the
general idea of property reactivity and its proposed integration in a RETE-OO
network. Finally, Section 4, analyzes the impact of its implementation on the
performance of a rule engine, presenting some benchmarks developed for this
purpose.

1 http://www.jboss.org/drools
2 http://herzberg.ca.sandia.gov/

Extend RETE-OO with Property Reactiveness 175

2 Related Works

A generic (production) rule engine executes a recognize-act cycle, where (i) facts
present in the working memory are matched against rules, generating rule in-
stance activations which are placed into an agenda, (ii) a conflict resolution
strategy is used to choose one activation for execution, (iii) the actions defined
by the selected rule are applied to the working memory [10]. These working mem-
ory actions may cause new activations, or even cancel previous ones, allowing
rules to be “forward” chained for more complex inferences. A formal definition of
this execution process is presented in [3]: a rule instance execution r is modeled
as a transition 〈Ej , sj〉 →r 〈Ej+1, sj+1〉, where Ej is the set of eligible rule acti-
vations (according to an eligibility strategy E) in a given rule base and working
memory state sj . The execution of a rule program is then seen as a sequence
of state transitions, as determined by a selection (conflict resolution) strategy
S which, in any state, chooses the actual rule instance r ∈ Ej ∩ Aj for execu-
tion between those rule instances which are both eligible and applicable in that
state. This sequence can potentially be infinite if, given the chosen E and S, the
execution of rule r in a state 〈Ej , sj〉 will necessarily lead to a state 〈Ek, sk〉,k>j

where r will be selected again.
While infinite loops should be avoided, controlled loops may be more or less

desirable, depending on the use case. Consider for example the rules in 1.13:
the former is supposed to be applied only once for each employee, but may
potentially result in an endless loop. The latter instead, is actually expected to
be activated a variable, but finite, number of times.

Listing 1.1. Looping Rule

rule A w a r d senior e m p l o y e e s

when $e : Employee(hiringYear < 2010)

then modify($e) { setSalary ($e.getSalary () * 1.05) };

rule A d e q u a t e salaries by fixed i n c r e m e n t s

when $e : Employee(salary < 1000)

then modify($e) { setSalary ($e.getSalary () + 100) };

For lack of a better strategy in the execution engine, one of the most common
workarounds to prevent infinite loops is to enrich the domain objects with one
or more additional properties, which have the purpose of keeping track of which
rules have been applied to a given working memory fact [5]. Rule 1.2 is an
example. This solution, despite being widely used, has many drawbacks. First,
unlike “local” control strategies [9], where the control logic is domain-specific and
thus part of the domain model itself, this approach blurs the model with non-
business related information, mixing domain and control logic. Sometimes, like
in the example rule 1.2, the control structures (the awarded flag) may actually
be meaningful in the application domain, but be otherwise useless from the
business logic perspective, effectively masking the problem. Secondly, it becomes

3 Rules are represented using the Drools Rule Language (DRL) [?].

176 M. Proctor, M. Fusco, and D. Sottara

a responsibility of the user to define the control flow of the patterns to be matched
and the rules to be executed, instead of leaving it to the rule engine, as it should
be expected of a declarative system. The solution also does not scale with the
number of rules: it is impractical to keep a data structure for each rule that
could potentially be applied to an object. Moreover, a further performance-
related issue should be considered: the first modification would at least cause a
second, useless, reevaluation of the rule’s premise that could be safely avoided.

Listing 1.2. Fixed Rule

rule A w a r d senior employees (fixed)

when $e : Employee(hiringYear < 2010, awarded == false)

then modify($e) { setSalary ($e.getSalary () * 1.05),

setAwarded (true) };

Another common workaround is to split the classes of the domain model into
more granular entities, having a biunivocal relationship with the original ob-
ject. However this solution is undesirable for many reasons. It defeats the point
of using an object-oriented model, forcing to change the domain model only
for implementation reasons; moreover it adds an unnecessary performance over-
head since the RETE-OO network will now require additional runtime joins to
reconstruct the original piece of information [11]. This approach is implicitly
adopted in CLIPS, where “objects and their attributes and values were trans-
formed into object-attribute-value triplets, and these triplets handled exactly
like simple working memory elements” [2]. In this way, when the values of some
properties of an object change, only the modified triplets are sent to the pat-
tern matcher that will have to reevaluate them. A much cleaner approach would
be based on the implementation of a proper strategy. Production systems such
as Drools and Jess provide the “no-loop” rule annotation, which prevents the
creation additional instances of the same rule for the same set of facts. It can
help avoid self-loops, but does not work with more complex loops involving two
or more rules. This feature can be seen as an approximate implementation of
the conflict resolution algorithms known as refraction (or refractoriness), which
were part of the original OPS5 LEX/MEA strategies [7]. The principle has been
restated and standardized as a part of the W3C RIF-PRD specification [6] :
“a given instance of a rule must not be fired more than once as long as the
reasons that made it eligible for firing hold”, then used for formalization in [3].
However, conflicting definitions have also been reported, such as “the same rule
instantiation should not be executed multiple times” [1] or “the same rule can-
not be applied to the same working memory elements multiple times” [10]. In
an object oriented context, their interpretation depends on two aspects. First,
two object may be the same - by identity, or by equality on a subset of key
attributes - even if some of their (non key) slots have been modified. Second,
while definitions such as the one provided by [10] are focused on the facts and
changes in their internal state, the standard definition is focused on constraints
and changes in the truth state of their evaluation, as a possible consequence of a
change in the internal state of an object. So, for example, the second rule of rule
set 1.1 could fire multiple times according to [10] but not according to [6]. In fact,

Extend RETE-OO with Property Reactiveness 177

RIF-PRD allows rules to be marked as “repeatable” to disable constraint-based
refraction. Regardless of its definition, refraction is a strategy that is applied
during the conflict resolution phase, when the matches have been reevaluated
due to the modifications in the previous action phase. This proposal, instead, is
aimed at minimizing the pattern evaluations to what is strictly necessary during
the match phase. Even if, in an object-oriented production system, a working
memory element is an object, it is not considered an atomic entity when it is
modified. A rule consequence normally modifies only a subset of the properties
of an object, so only the portion of the network effectively involved by those
modifications should be notified and updated. This strategy is compatible with
refraction, even in absence of a proper refraction implementation. It will prevent
the selection of a rule instance when, from that rule’s perspective, a working
memory element has not changed: in fact, the rule is not even evaluated for
further instantiation. It should be noted that similar functionalities might exist
in other rule engines: namely, Jess, [?] offers a feature called “slot-specific up-
dates”, which is presented as an implementation of refraction but functionally is
much more similar to our proposal. Due to its closed source nature, however, its
architecture is not documented and no methodology is provided that can be ap-
plied in different contexts. YES/OPS [11] also describes something it calls “new
triggering conditions” but with no implementation details. It further adds the
control symbol ’ !’ on slots to allow “triggering on any change”. This provides
a functionality which is similar to the @Watch annotation defined later in this
paper. Like Jess, YES/OPS is closed source and no additional information can
be found. Clips COOL exhibits similar behaviour but, as previously mentioned,
its implementation is different and more computationally expensive as all slots
are considered individual working memory elements.

3 Property Reactivity

The idea behind property based reactivity is that, whenever a working memory
element (an object) is updated, patterns should not be reevaluated on that ob-
ject, unless they involve constraints on properties that are known to have changed
since the initial insertion or the latest modification, whichever happened later.
This information can be obtained statically at compile time, performing an anal-
ysis of the rule base, and can be used at runtime to optimize the behavior of
the execution engine. In systems such as CLIPS, Jess or Drools, an object type
(class) C is defined by an identifying name, one parent class EC and a set of
slots (also called fields, properties or attributes) SC . Slots are identified by a
name, a range type and their cardinality. Inheritance works with the usual se-
mantics: type and slots are inherited transitively, so that the effective set of slots
available to a type is S�

C = SC ∪S�
EC

. Slot names are unique within the scope of
S�
C ; their ranges may be primitives (using datatypes such as strings, numbers,

dates, etc. . .) or object types. Unlike the others, Drools uses Java classes or
interfaces natively: in this case, Java inheritance is used and slots are mapped
to public getter/setter pairs. This also implies that, while class inheritance is

178 M. Proctor, M. Fusco, and D. Sottara

single, type inheritance may be multiple when interfaces are used. Individual
objects x are instances of one class C(x), so they have one or more declared or
inherited types, and their fields are either populated using appropriate values
from the field’s range or the special value null. The usual working memory ac-
tions - insertion (I), retraction (R) and update/modification (M) - are instance
oriented, involving a single object at a time, and shallow, i.e. for any two objects
x and y, for any op ∈ {I, R,M}, if y is the value of a slot of x, op(x) does
not imply op(y). Modifications of a working memory object x usually involve
only a subset S′(M(x)) of all the slots S�

C(x) made available to x by its class

C(x). The premise (left hand side) of rule R is composed by a sequence of n ob-
ject patterns PR[k]k:0..n−1, usually but not necessarily combined by conjunction.
Other operators and quantifiers might be used, but this would not be relevant
from the point of view of property reactivity. An object pattern P 4, then, is a
logic formula involving the conjunction of (i) a type constraint (for any X to
be be matched, C(X) DP , for the one type literal DP used in P) and (ii)
another sub-formula which is a combination of zero or more atomic slot con-
straints, boolean expressions using the constrained slots in Sc(P) ⊆ S�

DP
. The

set Sc(P) can be further customized using a pattern annotation called @Watch.
The result is the final set of properties the pattern will react to, called S′(P). Its
content is defined by the regular expression (’!’? ’*’)? (’!’? slotName)*

. @Watch(*) forces the pattern to respond to any modification, effectively ini-
tializing S′(P)

.
= S�

DP
, while @Watch(!*) prevents reactiveness to modifications

by initializing S′(P)
.
= ∅. After this override, any additional slot specified in

the annotation is added back to (resp. removed from) the set of watched (resp.
negative) properties Sw(P) (resp. Sn(P)), depending on the use of the negation
operator ’!’. So, S′(P) is effectively computed as:

S′(P) = [Sc(P)|S�
DP
|∅] ∪ Sw(P) \ Sn(P)

When a modification M(x) is executed, for any pattern P whose type DP is a
supertype of x, there are two possible situations : either S′(M(x)) ∪ S′(P) = ∅
or not. In the former case, from the perspective of rule R, the pattern would be
reevaluated using the same working memory element as before the modification:
any activation thus generated would be a candidate for cancellation due to re-
fraction, so there is little point in performing the evaluation and generating the
activation in the first place. The latter, instead, may effectively change the eligi-
bility state of a rule, so reevaluation cannot be avoided and the decision about
the eligibility of any new activation has to be delegated to the agenda and its
strategies. Property reactivity, then, is the modification of the engine behavior
to deal with modification actions, so that a fact x is reevaluated in the context
of a pattern only when S′(M(x))∪S′(P) �= ∅, i.e. if that pattern is attempting a
match on one or more of the properties that have been actually modified. Notice
that, being based on the static declaration of the modified slots, a “false update”
(i.e. assigning to a slot the same value it already has) would be treated exactly
like a real modification.
4 Context indexes are dropped for simplicity.

Extend RETE-OO with Property Reactiveness 179

3.1 Property Reactive RETE

To implement property reactivity, it is necessary to know which object’s proper-
ties have been modified during the execution of a rule instance (S′(M(x))) and
on which properties each node of the RETE network does pattern matching.
To this end, S′(P) is further partitioned between the nodes that concur in the
evaluation of the pattern. This information needs to be encoded in a compact
way that also allows an efficient comparison. Whenever a consequence modifies
an object, it can then propagate the metadata about the affected properties,
so that any node can compare that set with the one describing its local prop-
erties, in order to determine whether it should be affected by that change -
reevaluating its constraints and possibly propagating the object - or if it can
safely ignore and discard it. For efficiency reasons, the sets S′(M) and S′(P)
are precomputed statically, performing a compile-time analysis of the rule base.
In particular, S′(P) can be inferred by processing each pattern in the LHS of
each rule R; The set, then, can be “manually” tweaked using annotations, which
allow to add or remove other properties which are not explicitly involved in the
pattern’s constraints. Any property in the final set will be referred to as being
watched by (the nodes implementing) a pattern. Likewise, S′(M) can be inferred
by processing each modify instruction in a rule’s RHS.

Bit Mask Generation for Property Sets. A bit mask is used to encode these
sets. Since a bit mask is ordered, an arbitrary but deterministic order between
properties is assumed, sorting the elements of S� and allowing it to be modeled
using a Bitset. However, since the masks are computed based on the pattern type,
not the actual object type, this order has to take into account the inheritance
level where each property is defined, allowing patterns to match instances of
subclasses of their declared type. We group the properties based on the level in
the classes’ hierarchy where they are declared (the higher in the hierarchy come
first) and then use a lexicographic order for each group. So, for example, if a
class MyCls had properties a, b, c, d and e, the property set {c, d, a} would first
be reordered as {a, c, d} and, eventually, the bit mask 10110 would be generated.
In this way, since each property corresponds to a bit according to its index, both
S′(M) and S′(P) can be represented using bit masks, called modification bit
mask and watched properties bit mask respectively. Their intersection can be
computed in a very efficient way using bitwise ANDs. The procedure to generate
a bit mask for a given class and a list of properties is reported in Listing 3.1.

RETE Network Building and Configuration. Since RETE matches work-
ing memory elements using a data-flow network, where different nodes concur
to the evaluation of a pattern, the mask has to be allocated appropriately to
optimize the propagation. More over, the masks have to be compatible with
node sharing to preserve the structural optimization provided by the algorithm.
In general, there are five main aspects to be considered when building a RETE
graph, namely (i) the alpha nodes tree, (ii) the beta nodes left inputs (including

180 M. Proctor, M. Fusco, and D. Sottara

Algorithm 1. Generate Bit Mask from a list of Properties

function genBitMask(t : Type, l : PropertyList)
settableProperties← t.settableProperties
bitmask ← newbit[settableProperties.length]
sort(settableProperties)
for all propertypinl do

i ← settableProperties.indexOf(p)
bitmask[i] ← 1

end forreturn bitmask
end function

the (iii) first beta node left input in every beta node sub-tree), the (iv) beta
nodes right inputs and (v) the rule terminal nodes left inputs. Any property-
based reactive modify is scoped to a single object, so mask based filtering is
only needed during an object’s propagation through the alpha network, at the
junction between the alpha network and the beta network or in the left input of
a terminal node. The masks have no other impact during or after beta network
join propagations. So, there are three main parts of the beta network the alpha
network can connect to (i) Beta nodes right inputs, (ii) Root Beta nodes left
inputs and (iii) “Root” Terminal nodes left inputs. Beta nodes are created only
when a rule has two or more patterns: in this case, alpha nodes are connected
to the left input of the first beta node, and to the right input of each beta node.
If a rule has a single pattern, there are no joins and thus no beta nodes, so the
alpha network flows directly into the terminal node. Masks, then, are required
in the alpha network and in these junction points. Three types of bit masks
are distinguished in the system: declared, negative and inferred. The declared
mask represents properties the current node wishes to react to. In alpha nodes,
this is based on the property5 used in the node’s constraint. The declared mask
of a beta right input is created using the node’s join constraints and the right
pattern’s watched properties, if any is defined using @Watch. Beta left inputs
anf terminal nodes have no constraints, but their declared mask may still derive
from the use of @Watch. The negative mask, instead, represents the properties
to be ignored, again as defined by @Watch. These two masks are not used at
runtime, but they are used to build the inferred mask, which in turn will be
used to filter propagations in each node. The beta and terminal nodes left in-
puts can be treated as a special case of beta nodes right input configuration, so
the discussion will be focused only on the construction of the alpha nodes and
the beta nodes right inputs.

Alpha Node Mask Generation. The alpha network construction is incremental.
When adding a pattern, it starts from the object type node and adds each al-
pha node in turn. The last alpha node in a chain is connected to a beta node’s
right input or, as appropriate, to a beta or terminal node’s left input. Due to

5 The discussion generalizes easily to complex constraints, involving more than one
property.

Extend RETE-OO with Property Reactiveness 181

node sharing, an alpha node may have more than one children, creating a tree
structure. However, the path from a beta node to its root object type node is
always linear. An alpha node inferred mask, then, is a bitwise inclusive or

accumulation of the declared masks of all its parents and all its children, down
to and including the beta nodes inputs. In general, a node can never be less
permissive than its child - otherwise the propagation would be blocked, before
reaching the node that would allow it to pass. Likewise, a node must inherit its
parent’s permissions to forward the propagation. The construction is incremen-
tal: as the node is added to the network, its inferred mask is updated using the
parents’ masks, using the function updateAlphaInferredMask in Algorithm 3.1.
The update based on the children has to be delayed until the completion of the
portion of that alpha network.

Algorithm 2. Incremental computation of an Alpha node Inferred mask

function accAlphaDeclaredMasksFromParents(alpha : AlphaNode)
if alpha.parent.type ≡ ALPHA then

return node.declaredMask ∨ accAlphaDeclaredMasksFromParents(alpha.parent)
else

return node.declaredMask
end if

end function
function updateAlphaInferredMask(alpha : AlphaNode, mask : Long)

alpha.inferredMask ← accAlphaDeclaredMasksFromParents(alpha) ∨ mask
if alpha.parent.type ≡ ALPHA then

updateAlphaInferredMask(alpha.parent, alpha.inferredMask)
end if

end function

Beta Node Masks. The beta node is connected to the graph after all its alpha
nodes have been created. Upon connection, it triggers the process necessary
for each alpha node to determine its inferred mask from its children. The beta
node right declared mask is a combination of the properties used by the beta
constraint and the additional properties to react on, as possibly declared using
@Watch. Beta nodes may have an additional right negative mask which lists
the properties on which reactions are to be ignored. In the case of the beta
left and the terminal node left inputs, where there are no join constraints, the
declared mask is simply derived from the @Watch. The mask is added to the
left inputs to maximize node sharing when patterns use the same constraints
but different @Watch declarations. However, this implies that beta nodes which
would normally be shared due to using same constraints, cannot be shared if
they have different @Watch declarations. The beta node right inferred mask is
computed in two steps, as shown in Algorithm 3.1. First, an intermediary value
is computed from the bitwise inclusive or accumulation of all parent alpha
node declared mask and the beta node declared mask. Notice that a beta node
can only have a single parent alpha node, and each alpha node can only have a

182 M. Proctor, M. Fusco, and D. Sottara

single parent alpha node; this forms a single line path, in comparison to the alpha
nodes descendant potential tree shape. The inferred value is then computed from
the bitwise and of the intermediary value and the not of the negated mask.

Algorithm 3. Incremental computation of an Beta node Inferred mask

function calculateBetaMask(beta : BetaNode)
beta.declaredMask ←

genBitMask(beta.typeClass, beta.constrained)
∨ genBitMask(beta.typeClass, beta.watched)

beta.negativeMask ← genBitMask(beta.typeClass, beta.ignored)
beta.intermediaryMask ←

accAlphaDeclaredMasksFromParents(beta.leftInput) ∨ beta.declaredMask
beta.inferredMask ← beta.intermediaryMask ∧ ¬beta.negativeMask

end function

Dynamic Rule Addition and Removal. The proposed method is incremental and
can be applied even if rules are dynamically added to an already complete RETE
network. The same data structures, however, can also be used for rule removal.
The process is subtractive and requires the recalculation of masks for any node
which was shared between the removed rule and any other rule still part of the
network. A high level specification for the procedure to handle the resetting and
recalculation of the inferred masks is shown in Algorithm 3.1.

Listing 1.3. Example Rules

rule R1 when

Dummy($v : v)

MyCls(c >= 1, a >= 1, e >= $v)

then ... end

rule R2 when

Dummy($v : v)

MyCls(c >= 1, d >= 1, b >= $v)

then ... end

rule R3 when

Dummy()

MyCls(c >= 1) @Watch(f, d, !c)

then ... end

3.2 Example

As an example, consider the three rules in Listing 1.3. It focuses, again, on the
beta right input configuration; as this is the most full featured of the network
configurations. The example uses a class named MyCls, which has 6 (integer)
properties a, b, c, d, e and f and three rules R1, R2 and R3. Rule R3 uses

Extend RETE-OO with Property Reactiveness 183

Algorithm 4. Reset masks on Rule removal

function updateMasksOnRuleRemoval(rule : Rule)
alphaRoots ← getRootAlphaNodes(rule)
remove(rule)
betas ← new List()
for all alpha ∈ alphaRoots do

if inUse(alpha) then
for all beta ∈ getAllChildBetaNodes(alpha) do

betas.add(beta)
end for

end if
end for
for all beta ∈ betas do

for all alpha ∈ getAllAlphas(beta) do
alpha.declaredMask

← accAlphaDeclaredMasksFromParents(alpha.parent)
end for

end for
for all beta ∈ betas do

updateAlphaInferredMask(beta.rightParent)
calculateBetaMask (beta)

end for
end function

the @Watch annotation, but otherwise has no other constraint, so it would nor-
mally result in a full cross product. The diagram in figure 1 shows the RETE
network as each rule is added. Once built, Node a1 is shared with three child out-
puts. Applying the proposed algorithm, the masks are computed incrementally
and the final results are shown in Table 1.

Table 1. Bitmasks after adding R3

a1 a2 a3 b1 b2 b3

declared 000100 000001 001000 010000 000010 101000
negative 000000 000000 000100
inferred 111111 010101 001110 010101 001110 101000

A boolean flag table is used to indicate whether a node would block or prop-
agate a modification, based on various possible modification scenarios. We as-
sume that two facts are inserted: Dummy(0) and MyCls(1,1,1,1,1,1). The val-
ues ensure that all constraints evaluate to true on insertion. Each row in Table
3.2 represents a different modification of the MyCls object involving different
properties, assuming that no updated value would cause any constraint to be
evaluated as false. The first column shows the properties being used in each sce-
nario, while the second column shows the corresponding modification bit mask.

184 M. Proctor, M. Fusco, and D. Sottara

�����

��		�

��		�

��		�

�

�

��

�����

��		�

��		�

��		�

��		�
 ��		�

�
 ��

�

�� ��

��������
�����
����

(a) Two Beta RETE

�����

�����	

����	

�����	

�����
 �����

����
������
�

�	 �� ��

�	

�� ��

(b) Three Beta RETE

Fig. 1. Example RETE networks with masks

The remaining columns represent each node in the RETE network: a 0 indicates
that the node will block the modification, while 1 accounts for propagations.

Table 2. Modification Truth Table

fields modify mask a1 a2 a3 b1 b2 b3

fedcba 111111 1 1 1 1 1 1
a 000001 1 1 0 1 0 0
b 000010 1 0 1 0 1 0
c 000100 1 1 1 1 1 0
d 001000 1 0 1 0 1 1
e 000001 1 1 0 1 0 0
f 000001 1 0 0 0 0 1

b a 001010 1 1 1 1 1 0
f e 110000 1 1 0 1 0 1
d e 011000 1 1 1 1 1 1

f d e 011000 1 1 1 1 1 1

4 Benchmarking

The computation of the bit masks can be performed during the compilation
phase of the RETE network: the only operation that needs to be executed at
runtime is a bitwise AND between the modification bit mask and the inferred bit
masks of the traversed nodes. This operation adds negligible overhead and allows
the CPU to save time by avoiding unnecessary propagations into the network
and their related constraint evaluations. In order to quantify this performance

Extend RETE-OO with Property Reactiveness 185

improvement, a synthetic benchmark suite has been developed. Best practices
in writing a Java [4] benchmarking suite have been applied. All tests introduce a
warm up phase long enough to allow the JVM HotSpot to perform the optimiza-
tions necessary to allow a consistent, normalized and optimal set of results. Each
benchmark has been run 10 times, discarding the worst and best results, then
average and standard deviation are computed. The results have been collected
on a machine equipped with a i7-2820QM@2.30GHz Quad core CPU with HT
and 8Gb of RAM, running an OpenJDK 1.7 on top of Ubuntu Quetzal 64bit
operating system. A mock data model with two classes was used, A and B, with
two properties each: a1, a2 and b1, b2 respectively, each of type int.

The first benchmark, shown in rule 1.4 is minimal and compares the use of
property reactivity with (local) refraction. It inserts 1 million instances of A,
with initial values for a1 and a2 set to 1. The rule checks the former property
and modifies the latter. Without property reactivity, no-loop is required to
prevent infinite recursion. With property reactivity, instead, the reevaluation
of the modified instances is blocked before reaching the agenda, so the control
attribute is not needed. This benchmark takes, on average, 2.275±0.080 seconds
to run using no-loop, while, when property reactivity is enabled, it runs in
2.265± 0.047 seconds, with a difference of only the 0.44%.

Listing 1.4. Benchmark #1

rule R0 //no-loop

when

$a: A($a1 : a1 < 10)

then

modify($a) { setA2($a1 + 1) };

end

The second benchmark evaluated the benefits of property reactivity with re-
spect to an ad-hoc control constraint, using a rule base containing the single rule
R1, shown in Listing 1.5. As previously, it inserts a million instances of A(1,1)
and a single instance of B(0,2). The rule modifies the instances of A so that,
during the reevaluation in absence of property reactivity, the join constraint b2
> $a.a2 will block the propagation. This benchmark takes 2.562 ± 0.137 sec-
onds to run. With property reactivity, the control constraint can be removed
and the benchmark runs, on average, in 2.483 ± 0.155 seconds, with a 3.08%
improvement.

Listing 1.5. Benchmark #2

rule R1 when

$a: A(a1 < 10)

$b: B(b1 < $a.a1, b2 > $a.a2)

then

modify($a) { setA2($b.getB2() + 1) };

end

The third benchmark evaluated the correlation between performance gains
and the number of rules potentially triggered by a modification. To this end,

186 M. Proctor, M. Fusco, and D. Sottara

Class A has been modified with a third property a3, and created a new rule
base with R1 and R2 (see Listing 1.6). The benchmark takes 5.187 ± 0.398
seconds without property reactivity, while it takes only 4.690 ± 0.413 seconds
with property reactivity enabled, yielding a 9.58% improvement. This gain, due
to the fact that rules are not reevaluated, scales almost linearly with the number
of rules affected. Two additional properties were a4 and a5 to A and other 2
rules using the same structure as in R1 and R2, obtaining a benchmark with a
total of 4 rules that runs in 12.476± 0.565 seconds without property reactivity
and in 9.015± 0.445 with property reactivity, with a gain of 27.74%.

Listing 1.6. Benchmark #3 (partial)

rule R2 when

// avoid alpha node sharing

$a: A(a1 < 11)

$b: B(b1 < $a.a1, b2 > $a.a3)

then

modify($a) { setA3($b.getB2() + 1) };

end

The last benchmark evaluated the correlation between performance improve-
ment and the distance between the pattern containing the bit mask that blocks
the propagation and the one containing a control constraint. For this measure-
ment, it has been introduced an increasing number of types C, D, etc. . . , again
following the same pattern of A and B. Different rule bases have then been cre-
ated with rules such as R3 (Listing 1.7), for an increasing number of patterns of
2, 4, 8 and 16. The results have been reported in Table 4.

Listing 1.7. Benchmark #4

rule R3 when

$a: A(a1 < 10)

$b: B(b1 < $a.a1)

...

$x: X(x1 < $w.w1, x2 > $a.a2)

then

modify($a) { setA2($c.getC2() + 1) };

end

Table 3. Benchmark #4 results

2 patterns 4 patterns 8 patterns 16 patterns

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PR Off 3.276 ±0.240 3.940 ±0.273 6.118 ±0.364 9.896 ±0.604
PR On 3.141 ±0.172 3.367 ±0.225 4.839 ±0.296 7.512 ±0.306

Gain 4.12% 14.54% 20.91% 24.09%

Extend RETE-OO with Property Reactiveness 187

5 Conclusions and Future Works

We presented an optimization algorithm, based on the static analysis of an
object-oriented production rule base, which provides better control over recur-
sive rule activations due to working memory element modifications and, at the
same time, allows to improve the runtime performance. The approach is more
declarative than traditional flow-control attributes and agenda groups, and al-
lows to write cleaner rules, resulting in rule bases which are easier to maintain.
The optimization is applied at compile time, during the RETE construction
phase, and is compatible with the incremental addition and removal of rules. It
can be enabled, disabled or customized as needed with the use of annotations.
Functionally, it implements a limited form of preventive refraction, which applies
during the match phase instead of the conflict resolution phase. It remains to be
seen whether additional optimizations could be introduced. At the moment, any
“virtual” property constraint configured using @Watch is collapsed into the beta
nodes. While preserving alpha node sharing, it limits beta node sharing, since
beta nodes with the same constraints but different masks can not be considered
equivalent. Moreover, it delays the filtering process, impacting performance. So,
it is planned to investigate the possibility of splitting or pushing back part of the
masks into the alpha network while still optimizing the degree of node sharing.

References

1. Anderson, J.R.: Rules of the Mind. Lawrence Erlbaum Associates, Hillsdale (1993)
2. Auburn, M.: Integrating an object system into CLIPS: Language design and im-

plementation issues, Tech. report, NASA (1990)
3. Berstel-Da Silva, B.: Formalizing both refraction-based and sequential executions

of production rule programs. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS,
vol. 7438, pp. 47–61. Springer, Heidelberg (2012)

4. Boyer, B.: Robust java benchmarking (2008),
http://www.ibm.com/developerworks/java/library/j-benchmark1/index.html

5. Brownston, L., Farrell, R., Kant, E., Martin, N.: Programming expert systems
in OPS5: an introduction to rule-based programming. Addison-Wesley Longman
Publishing Co., Inc., Boston (1985)

6. de Sainte Marie, C., Hallmark, G., Paschke, A.: Rule interchange format, produc-
tion rule dialect. Recommendation, w3c (2013), http://www.w3.org/TR/rif-prd/

7. Forgy, C.: Ops5 users’s manual, Tech. report (1981)
8. Forgy, C.: RETE: A fast algorithm for the many pattern/many object pattern

match problem. Artificial Intelligences 19, 17–37 (1982)
9. Jackson, P.: Introduction to Expert Systems, 3rd edn. Addison-Wesley (1998)

10. Jones, G., Ritter, F.E.: Production systems and rule-based inference. John Wiley
and Sons, Ltd. (2006)

11. Schor, M.I., Daly, T., Lee, H.S., Tibbitts, B.: Advances in RETE pattern match-
ing. In: Proceedings of the Fifth National Conference on Artificial Intelligence,
pp. 225–232 (1986)

http://www.ibm.com/developerworks/java/library/j-benchmark1/index.html
http://www.w3.org/TR/rif-prd/

Computing the Stratified Semantics of Logic Programs
over Big Data through Mass Parallelization

Ilias Tachmazidis and Grigoris Antoniou

University of Huddersfield, UK

Abstract. Increasingly huge amounts of data are published on the Web, and
generated from sensors and social media. This Big Data challenge poses new
scientific and technological challenges and creates new opportunities - thus the
increasing attention in academia and industry. Traditionally, logic programming
has focused on complex knowledge structures/programs, so the question arises
whether and how it can work in the face of Big Data. In this paper, we examine
how stratified semantics of logic programming, equivalent to the well-founded se-
mantics for stratified programs, can process huge amounts of data through mass
parallelization. In particular, we propose and evaluate a parallel approach using
the MapReduce framework. Our experimental results indicate that our approach
is scalable and that stratified semantics of logic programming can be applied to
billions of facts.

1 Introduction

A huge amount of data is being generated at an increasing pace by sensor networks and
social media. In addition, this data is heterogeneous, and needs often to be combined
with other information, including database and web data, to become more useful. This
big data challenge is at the core of many contemporary scientific, technological and
business developments.

The question arises whether the reasoning community, as found in the areas of
knowledge representation, rule systems, logic programming and semantic web, can
connect to the big data wave. On the one hand, there is clear application scope, e.g.
for data cleaning, deriving higher-level knowledge, assisting decision support etc. But
on the other hand, there are significant challenges arising from the area’s traditional
focus on rich knowledge structures instead of large amounts of data, and its reliance on
in-memory methods. The best approach for enabling reasoning with big data is paral-
lelization, as established e.g. by the Larkc project1 [7].

Parallel reasoning can be achieved by distributing the computation among nodes.
Such distribution can be based either on rule partitioning or on data partitioning [12].
For rule partitioning, the computation of each rule is assigned to a node in the cluster.
Thus, the workload for each rule (and node) depends on the structure of the rule set,
which in general does not lead to a balanced workload. On the contrary, in case of data
partitioning, data is divided in chunks and each chunk is assigned to a node, allowing
more balanced distribution of the computation among nodes.

1 www.larkc.eu

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 188–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.larkc.eu

Computing the Stratified Semantics of Logic Programs 189

Parallel reasoning, based on data partitioning, has been studied in [16,23,9]. Several
aspects, such as highly uneven distribution of Semantic Web data, have been pointed out
and addressed in [13]. In terms of scalability, parallel reasoning based on the MapRe-
duce framework has been scaled up to 100 billion triples [22].

Although parallelization approaches have mainly focused on monotonic reasoning,
such as RDFS and OWL-horst, there has been work on nonmonotonic reasoning. Specif-
ically, in [20] authors proposed an approach for scalable reasoning, using the MapRe-
duce framework, over defeasible logic with unary predicates. Experimental evaluation
presented that defeasible reasoning can be performed over billions of facts.

Defeasible reasoning has been extended for predicates of arbitrary arity in [21]. In
particular, authors presented that, under the assumption of stratification, defeasible rea-
soning can be performed over millions of facts and has the potential to scale up to
billions of facts.

In this paper, we propose an approach for stratified semantics of logic programming,
equivalent to the well-founded semantics for stratified programs. Stratification is a well-
known notion applied in many areas of knowledge representation in order to provide
efficient reasoning. It has been used in various problems such as tractable RDF query
answering [19], Description Logics [3,10,15] and nonmonotonic formalisms [4].

The rest of the paper is organized as follows. Section 2 introduces briefly the MapRe-
duce framework and the stratified semantics of logic programming. The algorithm for
the stratified semantics over MapReduce is described in Section 3, while Section 4
presents our experimental evaluation. We conclude in Section 5.

2 Preliminaries

In this Section, we describe the basic notions of: (a) the MapReduce framework and (b)
the stratified semantics of logic programming.

2.1 MapReduce Framework

MapReduce is a framework for parallel processing over huge datasets [5]. Processing
is carried out in two phases, a map and a reduce phase. For each phase, a set of user-
defined map and reduce functions are run in a parallel fashion. The former performs a
user-defined operation over an arbitrary part of the input and partitions the data, while
the latter performs a user-defined operation on each partition.

MapReduce is designed to operate over key/value pairs. Specifically, each Map
function receives a key/value pair and emits a set of key/value pairs. All key/value pairs
produced during the map phase are grouped by their key and passed to the reduce phase.
During the reduce phase, a Reduce function is called for each unique key, processing
the corresponding set of values.

Probably the most well-known MapReduce example is the wordcount example. In
this example, we take as input a large number of documents and the final result is the
calculation of the number of occurrences of each word. The pseudo-code for the Map
and Reduce functions is depicted below.

190 I. Tachmazidis and G. Antoniou

Fig. 1. Wordcount example

map(Long key, String value):
// key: position in document
// value: document line
for each (word w in value) do

EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values : list of counts
int count = 0;
for each (v in values) do

count += ParseInt(v);
Emit(key, count);

Consider as input the lines “Hello world.” and “Hello MapReduce.”. Figure 1 depicts
the whole process. During the map phase, each map operation gets as input a line of
a document. The Map function extracts words from each line and emits that word w
occurred once (“1”). Here we do not use the position of each line in the document, thus
the key in Map is ignored. As mentioned above, the MapReduce framework will group
and sort pairs by their key. The Reduce function has to sum up all occurrence values
for each word emitting a pair containing the word and the final number of occurrences
for this word. The final result for each word will be <Hello, 2>, <MapReduce, 1> and
<world, 1>.

2.2 Stratified Semantics

In this paper, we describe the stratified semantics of logic programming as they were
defined in [17] for stratified programs of the well-founded semantics. We impose several
restrictions in order to achieve parallelization using the MapReduce framework.

Definition 1. [17] A general logic program is a finite set of general rules, which may
have both positive and negative subgoals. A general rule is written with its head, or
conclusion on the left, and its subgoal (body), if any to the right of the symbol “←”,
which may be read “if”. For example,

p(X)← a(X), not b(X).

Computing the Stratified Semantics of Logic Programs 191

is a rule in which p(X) is the head, a(X) is a positive subgoal, and b(X) is a negative
subgoal. This rule may be read as “p(X) if a(X) and not b(X)”. A Horn rule is one with
no negative subgoals, and a Horn logic program is one with only Horn rules. �

We use the following conventions. A logical variable starts with a capital letter while a
constant or a predicate starts with a lowercase letter. Note that functions are not allowed.
A predicate of arbitrary arity will be referred as a literal. If p is a positive literal then ¬p
is its negative literal, p and ¬p are complements of each other. Constants, variables and
literals are terms. A ground term is a term with no variables. The Herbrand universe
is the set of constants in a given program. The Herbrand base is the set of ground
terms that are produced by the substitution of variables with constants in the Herbrand
universe.

Definition 2. [17] A program is stratified if all of its predicates can be assigned a rank
such that

– no predicate depends positively on one of greater rank, and
– no predicate depends negatively on one of equal or greater rank

in any rule. �

Definition 3. [17] Given a program P, a partial interpretation I is a consistent set of
literals whose atoms are in the Herbrand base of P. A total interpretation is a partial
interpretation that contains every atom of the Hebrand base or its negation. We say a
ground (variable-free) literal is true in I when it is in I and say it is false in I when its
complement is in I. Similarly, we say a conjunction of ground literals is true in I if all of
the literals are true in I, and is false in I if any of its literals is false in I �

According to the stratified semantics literals are classified as positive or negative as
follows:

1. Facts are classified as positive literals.
2. All inferences for rank 0 are classified as positive literals, while whose not inferred

are classified as negative.
3. If all literals up to rank k − 1 are classified either as positive or negative, then we

can perform reasoning for rank k. All inferences for rank k are then classified as
positive literals, while whose not inferred are classified as negative.

Definition 4. [17] Let a program P, its associated Herbrand base H and a partial
interpretation I be given. We say A ⊆ H is an unfounded set (of P) with respect to I
if each atom p ∈ A satisfies the following condition: For each instantiated rule R of P
whose head is p, (at least) one of the following holds:

1. Some (positive or negative) subgoal q of the body is false in I.
2. Some positive subgoal of the body occurs in A.

A literal that makes (1) or (2) above true is called a witness of unusability for rule R
(with respect to I). �

192 I. Tachmazidis and G. Antoniou

Fig. 2. Predicates assigned to ranks

3 Algorithm Description

In this section we present a parallel solution for stratified programs, address several
special cases and discuss arising challenges.

According to the Definition 2, for a stratified program, literals that are given as input
(facts) are assigned rank 0. Predicates that are supported by rules containing no negative
subgoals are assigned rank 0, as well. Subsequently, literals depending negatively only
on rank 0, are assigned rank 1. In general, literals depending negatively on rank k − 1,
are assigned rank k. Thus, stratification is finished when all predicates are assigned a
rank.

Consider the following program:

r(X,Y)← q(X,Y), not p(X,Y).
p(X,Y)← a(X,Z), b(Z,Y), not c(X,Z), not d(Y).

Figure 2 shows how predicates are assigned to ranks, which in our example is as
follows:

rank 0: a, b, c, d, q rank 1: p rank 2: r

plain lines represent a positive dependency, while dashed lines represent a negative
dependency.

Once predicates have been assigned to ranks, we proceed with reasoning according
to the following algorithm:

Overall reasoning process:
Set KB = facts;
for (i=0; i<=N; i++) do

do
new_KB = Perform_reasoning(i, KB);
KB += new_KB;

while (new_KB != null) \\ check if fixpoint is reached
done

Initially, we add facts to our knowledge base (KB). Subsequently, for each rank (0 to
N, where N is the highest rank for a given program) we perform reasoning as described
later in this section (Perform reasoning(i, KB)), by taking into consideration the rank
we are reasoning for (i) and the current knowledge base (KB), while classifying all

Computing the Stratified Semantics of Logic Programs 193

the inferred literals as positive. Note that for each rank, reasoning is iterated until no
new conclusion is derived (while (new KB != null)). Once all inferences are computed
for rank i, we continue with the next rank, until all ranks are evaluated. Finally, when
reasoning is finished, literals that are contained in our KB are classified as positive,
while whose that are not are classified as negative.

Consider the following rule from the aforementioned program:

p(X,Y)← a(X,Z), b(Z,Y), not c(X,Z), not d(Y).

here p(X,Y) is our final goal, a(X,Z) and b(Z,Y) are positive subgoals, and not c(X,Z)
and not d(Y) are negative subgoals. We will group all positive subgoals into a positive
goal. A positive goal consists of a new predicate (say ab) that contains as arguments all
the arguments of the final goal (X,Y) plus all the common arguments with the negative
subgoals (X,Z,Y), namely we need to compute ab(X,Z,Y). However, we need to ensure
that for each rule, all arguments of the final goal (X,Y) can be found in a positive
subgoal. In addition, we need to ensure that for each rule, the set of arguments that
can be found in all the negative subgoals (X,Z,Y) is a subset (⊆) of the arguments that
can be found in all the positive subgoals (X,Z,Y). In order to compute the final goal
(p(X,Y)) we retain all values of the positive goal (ab(X,Z,Y)) that have no equal values
with any negative subgoal (not c(X,Z) and not d(Y)) on their common arguments (X,Z
and Y respectively).

As a general guideline, we perform a single join or multiple joins (see Subsection 3.1)
in order to calculate positive goals, and anti-joins (see Subsection 3.2) to calculate the
final goal. However, special cases may apply to certain programs (see Subsection 3.3).

3.1 Positive Goals Calculation

Consider the following program:

p(X,Y)← a(X,Z), b(Z,Y).

and the facts for a and b

a(1,2) a(1,3) b(2,4) b(3,4)

A single join can be performed either in Map or Reduce. However, the basic idea re-
mains the same since in both cases we join a(X,Z) and b(Z,Y) on their common argument
Z in order to produce p(X,Y).

Single Join in Reduce. We will first describe how joins (for the aforementioned rule)
can be performed in Reduce according to the following pseudo-code:

map(Long key, String value):
// key: position in document (irrelevant)
// value: document line (positive literal)
if (value.predicate == "a") then

emit(value.Z, {value.predicate,value.X});
else if (value.predicate == "b") then

emit(value.Z, {value.predicate,value.Y});

194 I. Tachmazidis and G. Antoniou

reduce(String key, Iterator values):
// key: matching argument
// values: positive literals for matching
for each (value in values) do

if (value.predicate == "a") then
a_List.add(value.X})

else
b_List.add(value.Y)

for each (a in a_List) do
for each (b in b_List) do

emit("p(a.X,b.Y)","");

TheMap function will emit pairs of the form<Z,(a,X)> for predicate a and<Z,(b,Y)>
for predicate b, namely the following pairs:

<2, (a,1)> <3, (a,1)> <2, (b,4)> <3, (b,4)>

MapReduce framework will perform grouping/sorting resulting in the following inter-
mediate pairs:

<2, <(a,1), (b,4)>> <3, <(a,1), (b,4)>>

During the reduce phase we match predicates a and b on their common argument (which
is the key) and use the values to emit new literals. Thus, the reducer with key:

2 will emit p(1,4)
3 will emit p(1,4)

As we see in our simple example, p(1,4) is inferred twice. We need to filter out du-
plicates as soon as possible because they will produce unnecessary duplicates as well,
affecting the overall performance. For brevity, we do not provide pseudo-code for dupli-
cate elimination as it is straightforward for readers that are familiar with the MapReduce
framework.

Single Join in Map. In case of highly skewed data distribution, joins cannot be per-
formed during Reduce due to skewed workload, which affects severely parallelization.
However, such joins can be performed efficiently during Map if at least one of the
two relations fits in main memory. As a real-world example, [13,6] show that semantic
web data are highly skewed following zipf distribution. Joins can be performed in Map
according to the following pseudo-code:

// Create an in memory Map from a.Z to a.X
a_HashMap = load_literals_with_predicate_a();
map(Long key, String value):

// key: position in document
// value: document line (positive literal)
if (value.predicate == "b") then

Computing the Stratified Semantics of Logic Programs 195

if (a_HashMap.contains(b.Z)) then
for each (X in a_HashMap.key(b.Z).iterator()) do
emit("p(X,b.Y)","");

First, we need to load in memory facts for predicate a, namely a(1,2) and a(1,3), and
create a HashMap from a.Z to a.X (load literals with predicate a()) in order to reassure
quick lookups. DuringMap, we traverse through given data and for each literal with pred-
icate b (value.predicate == “b”), we lookup the HashMap (a HashMap.contains(b.Z)) for
matching Z values. In case the two relations can be joined on their common argument
(Z), we calculate and emit a new literal (p(X,b.Y)) for each X in the HashMap. During
the map phase the Map function with value:

b(2,4) will emit p(1,4)
b(3,4) will emit p(1,4)

For joins that are performed in Map, we can use the reduce phase for duplicate elimi-
nation. Duplicates are grouped together during grouping/sorting. Thus, for each group
(Reduce function) we eliminate duplicates by emitting each literal (key) only once
(in this case values are ignored). For brevity, we do not provide pseudo-code for the
Reduce as it is straightforward for readers that are familiar with the MapReduce frame-
work.

Multiple Joins. We have already described how to perform a single join. However, we
may need to perform multiple joins (multi-way join) in order to compute a positive goal.
Consider the following program:

q(X,Y)← a(X,Z), b(Z,W), c(W,Y).
p(X,Y)← c(W,Y), b(Z,W), a(X,Z).

In order to compute q(X,Y), we can apply our approach for single join twice, by first
joining a(X,Z) and b(Z,W) on Z, producing a temporary literal (say ab(X,W)), and then
join ab(X,W) and c(W,Y) on W (producing the final goal). However, we can optimize
multi-way join by taking into consideration the whole program instead of computing
each rule separately. Note that the body of both rules is practically identical. Both rules
consist of the same three predicates (a,b,c), which have the same common arguments
(a,b have Z and b,c have W). Thus, we may perform the required joins once and produce
new literals for both q(X,Y) and p(X,Y).

Multi-way join have been described in [8] and optimized in [2]. In order to achieve an
efficient implementation, optimizations in [2] should be taken into consideration. How-
ever, [2] require better knowledge of the available data than our general assumptions on
data distribution (uniform or skewed).

3.2 Final Goal Calculation

Once positive goals are calculated, we need to perform anti-joins with negative sub-
goals on their common arguments in order to retain as final goals literals whose values
are found in the positive goal, but not in any of the negative subgoals. Consider the
following rule:

196 I. Tachmazidis and G. Antoniou

a(X) :- b(X), not c(X).

we need to retain values of X that are found in b, but not in c. In order to perform an
anti-join, we follow the aforementioned approach for a single join, however, emitting
a final goal for each value of X that is supported by the predicate b, and not by the
predicate c.

3.3 Special Cases

Goals with No Common Arguments. Once we have calculated a positive goal, prior
to performing anti-joins, we need to take into consideration if the positive goal and the
negative subgoals have common arguments. Consider the following rule:

a(X) :- b(X), not c(Y).

here b(X) is the positive goal and c(Y) is the negative subgoal. However, the positive
goal and the negative subgoal have no common arguments. Thus, every positive goal
will be included as final goal since there is no negative subgoal preventing conclusions.
In this case we can optimize by omitting anti-joins since they do not affect the final
result.

Cartesian Product. The calculation of a positive goal may depend on positive sub-
goals that have no common arguments. Such calculation results in a cartesian product.
Consider the following rule:

a(X,Y) :- b(X), c(Y), not d(X).

In order to compute the positive goal (say bc(X,Y)) we need to compute the cartesian
product of b(X) and c(Y). To the best of our knowledge there is no efficient solution
proposed in the literature for cartesian product computation for the MapReduce frame-
work. However, if one of b(X) or c(Y) fits in memory (say b(X)), then cartesian product
can be computed in the same fashion as a single join that is performed in Map. We load
b(X) in main memory, while a Map function is applied on each c(Y). Thus, cartesian
product is produced by matching each c(Y) with every b(X) that is found in memory.

Nested Subgoals. For simplicity of presentation we focused on rules where not was
applied only on literals. However, our approach can be generalized for programs con-
taining rules where not applies to a conjunction of literals. Consider the following
program:

p(X,Y)← a(X,Z), b(Z,Y), not (c(X,Z), not d(Y)).

We can compute p(X,Y) by rewriting the program. We need to replace each not that
applies to a conjunction of literals with a logically equivalent expression by transform-
ing the body of the rule into Disjunctive Normal Form. Let us perform the following
transformations:

a(X,Z) ∧ b(Z,Y) ∧ not (c(X,Z) ∧ not d(Y)).≡
a(X,Z) ∧ b(Z,Y) ∧ (not c(X,Z) ∨ d(Y)).≡
(a(X,Z) ∧ b(Z,Y) ∧ not c(X,Z)) ∨ (a(X,Z) ∧ b(Z,Y) ∧ d(Y)).

Computing the Stratified Semantics of Logic Programs 197

Since we have a disjunction of conjunctive clauses, we may rewrite the program by
replacing the aforementioned rule with a set of new rules. Specifically, for each con-
junctive clause, we introduce a new rule, where the head of the new rule is the head of
the initial rule (p(X,Y)), while the body of the new rule is the conjunctive clause. Thus,
for the aforementioned program the initial rule will be replaced by the following rules:

p(X,Y)← a(X,Z), b(Z,Y), not c(X,Z).
p(X,Y)← a(X,Z), b(Z,Y), d(Y).

Once we have generated the new program, we may proceed with computing ranks and
then perform reasoning as described above (provided that the new program is stratified
and for each rule of the new program, all arguments of the final goal belong to a positive
subgoal, while the set of arguments of negative subgoals is a subset (⊆) of the set of
arguments of positive subgoals).

3.4 Final Remarks

Consider the following program:

p(X,Y)← a(X,Z), b(Z,Y), not c(X,Z), not d(Y).

For simplicity of presentation we proposed the computation of the positive goal ab(X,Z,Y),
followed by two anti-joins, first with c(X,Z) and then with d(Y). However, one can follow
a more optimal approach by mixing the application of joins and anti-joins. Specifically,
for the aforementioned program, we can perform an anti-join on a(X,Z) and c(X,Z), pro-
ducing ac(X,Z), and an anti-join on b(Z,Y) and d(Y), producing bd(Z,Y). Subsequently,
we join ac(X,Z) and bd(Z,Y) in order to compute the final goal.

The second approach is more optimal since it generates less intermediate results,
while calculating the required final goal (p(X,Y)). However, in order to reassure correct
application of anti-joins, for each anti-join on a positive and a negative subgoal the
following condition must hold: the set of arguments of the negative subgoal (NS) is a
subset of the set of arguments of the positive subgoal (PS), while the two sets have at
least one common argument, namely NS ⊆ PS and (NS ∩ PS) �= ∅.

Now let us point out the necessity of the imposed restrictions. It is required that for
each rule, all arguments of the final goal belong to a positive subgoal. Consider the
following program:

p(X,Y)← a(X,Z), not b(Z,Y).

here for each value of X in a(X,Z), we need to compute the following subset new Y =
H U − Y In b(Z, Y), where H U is the Herbrand universe and Y In b(Z, Y) is the
set of values of Y that are found in b(Z,Y) such that a(X,Z) and b(Z,Y) have common
values on Z. Such computation will introduce a significant overhead for the computa-
tion of new Y , and will require either a cartesian product of each value of X with its
corresponding subset new Y (which is not applicable in general, see Subsection 3.3) or
storing the final goal (p(X,Y)) in the form p(X,new Y) which will result in long new Y
sequences that will eventually affect parallelization.

We have posed an additional restriction, namely in order to perform an anti-join, the
set of arguments of the negative subgoal must be a subset (⊆) of the set of arguments
of the positive subgoal. Consider the following program:

198 I. Tachmazidis and G. Antoniou

p(X,Y)← a(X,Y), not b(Y,Z).

here we cannot perform an anti-join on a(X,Y) and not b(Y,Z) in order to compute the
final goal (p(X,Y)) since for a given value of Y we need to check whether all literals
b(Y, H U), where H U is the Herbrand universe, are classified as positive or negative.
Thus, for given X,Y we may infer the final goal (p(X,Y)), if there is at least one b(Y,Z)
that is classified as negative. However, for more complex rules such as:

p(X,Y)← a(X,Z), b(Z,Y), not c(Z,W), not d(W,U).

an efficient implementation for MapReduce is yet to be defined since for a given Z we
need to find a combination of c(Z,W) and d(W,U) that are both classified as negative,
while avoiding the full materialization of negative literals. Full materialization of both
positive and negative literals (Herbrand base) may easily become prohibiting even for
small datasets, and thus, is not applicable to big data.

Finally, the approach for non-stratified programs is different and comes with certain
challenges. An extension of our approach would be the computation of the well-founded
semantics. However, the definition of unfounded sets (see Definition 4) affects the scal-
ability of the whole process. In order to conclude that p ∈ A we need to check every
instantiated rule R of P whose head is p. Such evaluation has to be conducted by a single
node (since the MapReduce framework does not allow communication between nodes
during map or reduce phase), causing either main memory insufficiency or skewed load
balancing, decreasing the overall parallelization.

4 Experimental Evaluation

Methodology. In order to evaluate our approach, we searched for proposed benchmarks
in the literature. In [14], authors evaluate the performance of several rule engines on
data that fit in main memory. However, our approach is targeted on data that exceed the
capacity of the main memory. Thus, in order to perform evaluation, we adjusted certain
parameters of the proposed methodology in [14]. We evaluate our approach considering
large join tests, default negation and datalog recursion, while the rest of the proposed
evaluation metrics in [14] are not applicable. Specifically, we do not perform evaluation
for indexing since the MapReduce framework does not provide such an option. We
have not yet developed a complete system that could perform reasoning based on our
approach, thus, all optimizations and cost-based analysis were performed manually.
Finally, in [14], authors separate loading and inference time, focusing on inference time.
However, such a separation is difficult for our approach since loading and inference time
may overlap.

Dataset. Experiments in [14] where based on datasets that consisted of up to several
millions facts. We aim to evaluate our approach for up to 1 billion facts. The main goal
of our approach is to evaluate performance in terms of execution time and reassure
scalability. Thus, we perform experiments for several dataset sizes for both uniform and
zipf (highly skewed) data distributions.

Computing the Stratified Semantics of Logic Programs 199

Large Join Tests. Consider the following program:

pi(X,Y)← a(X,Z), b(Z,Y).

for 1 ≤ i ≤ N , where N is the total number of rules following the above rule pattern.
Scalability of large joins is examined over several dataset sizes, number of rules, data
distributions and number of nodes.

Default Negation. In this paper, we provide a solution for stratified programs. Thus, we
cannot use the well known win-not-win example [17] (also used in [14]), which works
for locally stratified and non-stratified programs. Consider the following program:

p(X,Y)← a(X,Y), not b(X,Y).

Scalability of anti-joins is examined over several dataset sizes, data distributions and
number of nodes. The number of rules has the same effect for anti-joins as for joins
(since it affects only the total amount of final output), and thus, such an evaluation is
omitted.

Datalog Recursion. In order to evaluate datalog recursion, we applied a different eval-
uation method. Instead of generating random data and calculating the transitive closure
of a relation, we evaluated joins using the program described in large join tests (for
N = 1). We performed joins, for uniform data distribution (zipf distribution would re-
quire more complex computation techniques, which are out of the scope of this paper),
changing the percentage of the matched values for the argument Z from 0% to 100%. In
such a way, we were able to estimate the required time for each matching percentage,
as this percentage may vary significantly throughout the transitive closure calculation.

Platform. We have implemented our experiments using the Hadoop MapReduce frame-
work2, version 1.0.4. We have performed experiments on a cluster of the University
of Huddersfield. The cluster consists of 9 nodes (one node was allocated as “master”
node), using a Gigabit Ethernet interconnect. Each node was equipped with 2 cores
running at 1.86GHz, 3GB RAM and 150GB of storage space.

Results. We can identify four main factors that affect the performance of our approach:

1. Number of facts, affecting the input size.
2. Number of rules, affecting the output size.
3. (Anti-)Join percentage, affecting the output size.
4. Compression ratio, affecting the output size, when compression algorithm is used.

our results correspond to several combinations of the above four factors.
Figure 3 shows the runtimes of our system for join operations with input sizes up to

1 billion facts, while number of rules is set to 1 and compression ratio remains fairly
stable. We see that for uniform distribution our approach scales linearly, as join percent-
age remains stable at 50%. However, for zipf distribution our approach exhibits several
fluctuations as the number of facts increases, since the join percentage fluctuates as
well.

2 http://hadoop.apache.org/mapreduce/

http://hadoop.apache.org/mapreduce/

200 I. Tachmazidis and G. Antoniou

0 200 400 600 800 1000
0

20

40

60

80

100

120

Millions of facts

Ti
m

e
in

 m
in

ut
es

1 Node
2 Nodes
4 Nodes
8 Nodes

(a) Join for uniform distribution

0 200 400 600 800 1000
0

20

40

60

80

100

120

Millions of facts

Ti
m

e
in

 m
in

ut
es

1 Node
2 Nodes
4 Nodes
8 Nodes

(b) Join for zipf distribution

Fig. 3. Runtime in minutes for join operations as a function of dataset size, for various numbers
of nodes

Figure 4 presents the runtimes of our system for anti-join operations with input sizes
up to 1 billion facts. For both uniform and zipf distribution, the number of rules is set
to 1, while compression ratio and anti-join percentages remain stable. In this case we
see that our system scales linearly for both data distributions.

0 200 400 600 800 1000
0

20

40

60

80

100

120

Millions of facts

Ti
m

e
in

 m
in

ut
es

1 Node
2 Nodes
4 Nodes
8 Nodes

(a) Anti-join for uniform distribution

0 200 400 600 800 1000
0

10

20

30

40

50

60

Millions of facts

Ti
m

e
in

 m
in

ut
es

1 Node
2 Nodes
4 Nodes
8 Nodes

(b) Anti-join for zipf distribution

Fig. 4. Runtime in minutes for anti-join operations as a function of dataset size, for various num-
bers of nodes

0 50 100 150
0

50

100

150

200

Number of Rules

Ti
m

e
in

 m
in

ut
es

1 Node
2 Nodes
4 Nodes
8 Nodes

Fig. 5. Runtime in minutes for various num-
bers of rules and nodes

0 20 40 60 80 100
0

5

10

15

20

25

Join percentages

Ti
m

e
in

 m
in

ut
es

8 Nodes

Fig. 6. Runtime in minutes for various
matched values percentages

Computing the Stratified Semantics of Logic Programs 201

Figure 5 depicts the scaling properties of our system for 16, 32, 64 and 128 rules.
We need to point out that the system scales linearly for up to 64 rules, while for 128
rules the runtime is higher than the expected (linear). This is attributed to the fact that
compression for 128 rules is less effective, resulting in larger amounts of output.

Figure 6 illustrates the runtimes of our system for various join percentages, while
all the other factors remain stable (500 million facts, 1 rule, 8 nodes and fairly stable
compression ratio). As expected, while the join percentage increases, the runtime in-
creases as well since larger amounts of output are being produced. In general, for the
case of recursion, long chains of MapReduce jobs and low join percentages should be
avoided because reading and sorting/grouping the input introduces a high overhead for
the whole computation.

5 Conclusion and Future Work

In this paper we studied the feasibility of stratified semantics over large amounts of
data. In particular, we considered stratified semantics, equivalent to the well-founded
semantics for stratified programs, proposed a parallel approach based on the MapRe-
duce framework, and ran experiments for various data sizes, rule sizes and data distri-
butions. Our experimental results indicate that such reasoning can scale up to 1 billion
facts even on a modest setup.

In future work, we intend to explore the potential of logic programming considering
computation over big data through parallelization. Parallelization techniques such as
OpenMP3 and Message Passing Interface (MPI) may provide higher degree of flex-
ibility than the MapReduce framework, giving the opportunity to overcome current
limitations. Finally, we plan to study more complex knowledge representation meth-
ods, including the well-founded semantics [17], Answer-Set programming [1], RDF/S
ontology evolution [11] and repair [18].

References

1. Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge
Representation, ch. 7

2. Afrati, F.N., Ullman, J.D.: Optimizing joins in a mapreduce environment. In: EDBT (2010)
3. Baader, F., Kosters, R.: Nonstandard Inferences in Description Logics: The Story So Far.

In: Mathematical Problems from Applied Logic I. International Mathematical Series, vol. 4
(2006)

4. Billington, D.: Defeasible Logic is Stable. J. Log. Comput. 3(4), 379–400 (1993)
5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters
6. Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and oranges: a comparison of

RDF benchmarks and real RDF datasets
7. Fensel, D., van Harmelen, F., Andersson, B., Brennan, P., Cunningham, H., Valle, E.D., Fis-

cher, F., Huang, Z., Kiryakov, A., Il Lee, T.K., Schooler, L., Tresp, V., Wesner, S., Witbrock,
M., Zhong, N.: Towards larkc: A platform for web-scale reasoning. In: ICSC, pp. 524–529
(2008)

3 http://openmp.org/wp/

http://openmp.org/wp/

202 I. Tachmazidis and G. Antoniou

8. Fische, F.: Investigation & Design for Rule-based Reasoning. Tech. rep., LarKC (2010)
9. Goodman, E.L., Jimenez, E., Mizell, D., Al-Saffar, S., Adolf, B., Haglin, D.: High-

Performance Computing Applied to Semantic Databases. In: Antoniou, G., Grobelnik, M.,
Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II.
LNCS, vol. 6644, pp. 31–45. Springer, Heidelberg (2011)

10. Haase, C., Lutz, C.: Complexity of Subsumption in the EL Family of Description Logics:
Acyclic and Cyclic TBoxes. In: ECAI 2008, pp. 25–29 (2008)

11. Konstantinidis, G., Flouris, G., Antoniou, G., Christophides, V.: A Formal Approach for
RDF/S Ontology Evolution. In: ECAI (2008)

12. Kotoulas, S., van Harmelen, F., Weaver, J.: KR and Reasoning on the Semantic Web: Web-
Scale Reasoning (2011)

13. Kotoulas, S., Oren, E., van Harmelen, F.: Mind the data skew: distributed inferencing by
speeddating in elastic regions. In: WWW, pp. 531–540 (2010)

14. Liang, S., Fodor, P., Wan, H., Kifer, M.: Openrulebench: an analysis of the performance
of rule engines. In: Proceedings of the 18th International Conference on World Wide
Web, WWW 2009, pp. 601–610. ACM, New York (2009), http://doi.acm.org/
10.1145/1526709.1526790

15. Nebel, B.: Terminological Reasoning is Inherently Intractable. Artificial Intelligence 43,
235–249 (1990)

16. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.: Marvin:
Distributed reasoning over large-scale Semantic Web data. J. Web Sem. 7(4), 305–316 (2009)

17. Ross, K.A.: The well-founded semantics for general logic programs. Journal of the ACM 38,
620–650 (1991)

18. Roussakis, Y., Flouris, G., Christophides, V.: Declarative Repairing Policies for Curated KBs.
In: HDMS (2011)

19. Serfiotis, G., Koffina, I., Christophides, V., Tannen, V.: Containment and Minimization of
RDF/S Query Patterns. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 607–623. Springer, Heidelberg (2005)

20. Tachmazidis, I., Antoniou, G., Flouris, G., Kotoulas, S.: Towards parallel nonmonotonic rea-
soning with billions of facts. In: KR (2012)

21. Tachmazidis, I., Antoniou, G., Flouris, G., Kotoulas, S., McCluskey, L.: Large-scale parallel
stratified defeasible reasoning. In: ECAI, pp. 738–743 (2012)

22. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL reasoning with
webPIE: Calculating the Closure of 100 Billion Triples. In: Aroyo, L., Antoniou, G.,
Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010,
Part I. LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)

23. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Reasoning Using
MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 634–649. Springer, Heidelberg
(2009)

http://doi.acm.org/10.1145/1526709.1526790
http://doi.acm.org/10.1145/1526709.1526790

Distributed ECA Rules for Data Management
Policies�

Hao Xu1, Arcot Rajasekar1, Reagan W. Moore1, and Mike Wan2

1 DICE Center, University of North Carolina at Chapel Hill, USA
xuh@email.unc.edu, {sekar|moore}@diceresearch.org

2 Retired from DICE Center, University of California at San Diego, USA

Abstract. Data management policies for a distributed system that han-
dles “big data” usually require a core feature set provided by a rule
framework. In this paper, we describe a viable core feature set, partially
extending the event-condition-action framework, based on our experi-
ence in developing and applying the integrated Rule-Oriented Data-
management System [1,2,3]. We attempt to formalize some aspects of
this feature set, focusing on location-aware and asynchronous execution
of rules, based on the Calculus of Concurrent Systems [4].

1 Introduction

Modern data management systems manage collections ranging in size from mod-
erate to a hundred million files or more totaling petabytes of data. The require-
ments for managing large collections of data include both a number of generic
capabilities and diverse features that depend on the details of the data manage-
ment application. A rule-based data management system provides the flexibil-
ity for implementing heterogeneous data management systems within a general
framework, thereby improving the reuse of data management expertise and in-
frastructures, and speeding up the development and deployment of new types
of data grids. In a data management system, data management policies usually
involve keeping track of data objects and their provenance through their life-
cycles, and validating properties such as authenticity and integrity. The advent
of “big data” further requires data management systems to perform these oper-
ations in a scalable way. This imposes a unique challenge for implementing data
management policies on such systems.

To address this challenge, we developed the integrated Rule-Oriented Data-
management System (iRODS) [1,2,3], a community-driven open source data grid
software solution that helps researchers, archivists and others manage large sets
of computer files. In addition to a comprehensive set of generic features, in-
cluding high-performance network data transfer, support for a wide range of
� This research is partially supported by NSF grant #0940841 “DataNet Federation

Consortium” and NSF grant #1032732 “SDCI Data Improvement: Improvement
and Sustainability of iRODS Data Grid Software for Multi-Disciplinary Commu-
nity Driven Application”.

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 203–217, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

204 H. Xu et al.

physical storage systems, backup and replication, and metadata management, a
key component that makes iRODS highly configurable and easily extensible for
a wide range of use cases is policy enforcement points (PEPs) and the iRODS
rule engine. PEPs are events generated from the data management system which
trigger the execution of rules. The rule engine provides a rule language which can
be used to define machine actionable rules which implement data management
policies at PEPs. These features have been vetted through the application of
the software across multiple scientific domains (astronomy, oceanography, seis-
mology, hydrology, biology, social sciences, climate studies, neuroinformatics,
patient health, genomics, etc.) and across multiple types of data management
applications (data sharing, publication, archiving, analysis).

In this paper, we overview the iRODS rule engine, focusing on its extensions
to the event-condition-action (ECA) framework, provide a formalism for remote
and asynchronous execution of rules in our rule engine, and discuss some im-
plementation issues. In the next section, we give a bird’s-eye view of extensions
to ECA in the iRODS rule language. In the third section, we formalize part
of our extensions by extending Calculus of Concurrent Systems (CCS) [4] with
the concepts of multiple sorts of localities and proximity to data. In Sect. 4, we
discuss some of the general features of the iRODS rule engine. In Sect. 5, we
discuss related work and in Sect. 6, we summarize the paper.

2 Extensions to ECA in the iRODS Rule Language

We have designed and implemented our rule engine from scratch, which has been
a key component of iRODS since the the first release of the software. The design
of the iRODS rule language starts with a simple ECA framework, where the
basic structure of a rule in the iRODS rule language looks like 1

RuleName {
on(RuleCondition) {

RuleActions
}

}

As the software evolves, we added new features to the rule engine based on the
requirements of our application domains. In the following subsections, we intro-
duce the following features: location-aware execution, asynchronous execution,
error handling, static and dynamic checking, and controlled vocabularies.

2.1 Location-Aware Execution

An execution of a computer program requires both data and code. Location-
aware execution is useful in scenarios where we need to ask the question such as
“should we move the data closer to the code or the code closer to the data?” In
particular, the following scenarios are of interest:
1 If we follow W3C’s classification of rules [5], this rule naturally falls into the reactive

category. However, iRODS rules can also be used to implement other types of rules.

Distributed ECA Rules for Data Management Policies 205

– Users have terabyte files on a remote storage location. They want to execute
some rule to extract the headers of those files. In this case, it is more efficient
to run the rule at the remote storage location, without moving the files, and
send the result back, than move the files and run the rule locally.

– Users have CPU intensive computations that operate on a set of relatively
small files in a remote storage location. In this case, it is more efficient to
run the rule at a server node where there is sufficient idle CPU resource,
than on the remote storage location.

In our rule language, location-aware execution is implemented by the remote
microservice. The iRODS rule language supports two ways to specify where a
rule should be run. Explicitly, a rule programmer can specific on which server
node of a distributed data management system a rule should be run. For example,
suppose Node A receives an event which would trigger Rule R to execute. Here
the rule can specify that Node A should send Rule R to be run on Node B. A
concrete example could be a dedicated server for virus scan:

acPostProcForPut {
remote (" virusScanServer") {

scanVirus($objPath);
}

}

This rule is triggered at PEP acPostProcForPut. This PEP is invoked when a
data object has been ingested. We assume that virusScanServer is the host
name for our virus scan server, and scanVirus is a microservice that scans for
a virus. $objPath is the logical path of the data object that has been ingested.
This rule invokes the scanVirus microservice on the virusScanServer server.
In more complex rules, a rule can be sent among multiple nodes, which means
that we can have a chain of responsibility pattern, in which each node processes
the rule and passes it on to the next node in the chain.

In addition, one can implicitly specify that a rule should be executed where
the data are located, when the cost of moving large chunks of data across the
network can be much larger than the cost of moving rules.

2.2 Asynchronous Execution

While synchronous execution may be a more straightforwardprogrammingmodel,
asynchronous execution is crucial for scalability in a distributed system, as it en-
sures that one node is not necessarily blocked while waiting for the response to a
request sent to another node.

In the iRODS rule language, asynchronous execution is specified by the delay
microservice. As an example, we can make the rule from the previous subsection
asynchronous, so that it returns immediately to the server which initiates the
remote execution. We can write it like this

206 H. Xu et al.

acPostProcForPut {
remote (" virusScanServer") {

delay("<PLUSET >0s</PLUSET >") {
scanVirus($objPath);

}
}

}

The delay microservice makes the following code block asynchronous. The pa-
rameter <PLUSET>0s</PLUSET> means that we want the delay to be 0 seconds,
which means the code block is scheduled without delay. Note that the variables
are preserved throughout the remote and delayed execution, so that we can
access them inside remote and delayed blocks.

There is a list of other parameters that can be used to schedule other execution
modes. Examples are: run repeatedly or once, run at a fixed time point or at
a time point relative to the time it is received, and repeat at fixed intervals or
repeat at variable intervals for repeated rule.2

These execution modes are useful in a data management system. For example,

– Users have a large number of files to ingest. They want to finish the initial
ingest as fast as possible, and delay the virus check to later.

– Users want to do a virus check periodically at a fixed internal.

The execution of an asynchronous rule is implemented through node-local prior-
itized queues. The node-local scheduler makes a best-effort attempt to execute
each rule in the queue. When the load exceeds the computational capabilities of
a node, the rules stay in the queue until they are scheduled.

2.3 Error Handling

Because of the complexity of the underlying data management system, the rule
language cannot impose a specific error handling scheme. In iRODS, we need
to deal with both transactional and nontransactional parts of the underlying
system. Therefore, instead of giving an error-handling-mechanism-specific se-
mantics to the rule language, we provide a simple language construct where
system-specific error handling can be implemented. For each action, the rule
programmer can specify a recovery action, which traps the errors thrown by
that action. In the recovery action, the rule can try to detect any conflicts or try
to “undo” exactly what the action did. Recovery actions provide a mechanism
for implementing rollback of changes to the system when a rule fails. However,
it is not always possible to “undo” a change consistently in a distributed and
concurrent environment that is only partially transactional, as the change made
by one process may depend on that made by another. In this case, the user

2 Here, we assume that we are dealing with a best-effort type of scheduling system, i.e.
there are no real-time requirements. We also assume that the clocks are synchronized
and the drift in clocks among the server nodes are negligible in our applications.

Distributed ECA Rules for Data Management Policies 207

can either handle the error by simply notifying the administrator and waiting
for a manual solution, or by implementing application-specific schemes such as
multi-version concurrency control (MVCC) [6].

The recovery action to an action is specified by the ::: operator. The recovery
actions for an action are triggered when that action or any subsequent action fails
and are executed in the reverse order of the actions. For example, we can modify
our virus scan rule as follows, where we use the msiSendEmail microservice to
send an email for a recovery action:

acPostProcForPut {
remote (" virusScanServer") {

delay("<PLUSET >0s</PLUSET >") {
scanVirus($objPath) :::
msiSendEmail("admin", $objPath);

}
}

}

2.4 Static and Dynamic Checking

As is known in software engineering, the cost of fixing a software defect increases
with the length of time until it is discovered. Type checking is used in mainstream
programming language such as Java and Python to ensure that a class of common
errors – type errors – are discovered as soon as possible.

– Static typing and dynamic typing: In languages like Java, most type check-
ing is done at compile time. This type of type checking is called static.
In languages such as Python, type checking is done at runtime, which is
called dynamic. The advantage of static type checking is that type errors are
discovered earlier, while the advantage of dynamic typing is reduced require-
ments for type annotation, and increased flexibility such as “duck typing” [7].
Gradual typing [8,9] tries to create a middle ground between static typing
and dynamic typing. In gradual typing, one can have both statically typed
elements and dynamically typed elements.

– Strong typing and weak typing: In both Java and Python, things are strongly
typed, meaning that every value has a type, and values of one type cannot
be converted to values of arbitrary types. In contrast, C is a language with
weak typing, for example, one can convert an unsigned long integer to a
pointer of any type, effectively allowing the interpretation of any memory
block as any type of object, which could cause computer security problems.
In Java, this is almost impossible.

Our rule language has strong gradual typing. This makes it easier for people with
less programming experience to start writing rules, as they are not required to an-
notate anything (functions, variables, rules)with types. As they develop rules, they
may find it helpful to have certain static guarantees, which they can achieve by an-
notating their programwith types. For example, if we want to ensure that a param-
eter of scanVirus is a path literal, we could write scanVirus : path -> integer,

208 H. Xu et al.

which specifies that the parameter of scanVirus is of type path and the return
value of the microservice is of type integer.

2.5 Controlled Vocabularies

Domain specific rules are supported through a set of controlled vocabularies.
On the one hand, controlled vocabularies are a mechanism for limiting how the
state of a system can be modified, thereby simplifying the task of reasoning
about a system. This is especially important for systems that manage lots of
data, where it is crucial to prevent users from inadvertently changing the state
of the system. On the other hand, controlled vocabularies provide a mechanism
to extend the capability of the system to meet the need of specific domains. This
is important for the adoption of data management by researchers from different
fields. Examples are data grids used by scientists, which would benefit from the
expertise of digital preservation policies in managing their research data.

In iRODS, vocabularies are implemented through the module system. A mod-
ule usually contains a set of microservices implementing a vocabulary. It can be
turned on or off, providing or removing access to the vocabulary. As vocabularies
evolve, a mapping mechanism is provided so that the older terms can be mapped
to the newer ones.

3 Formalism

In this section, we attempt to provide a formalism for the location-aware exe-
cution and asynchronous execution aspects of the iRODS rule engine, based on
CCS. Since CCS itself already provides a mechanism for modeling asynchronous
events, we are going to focus on location-aware execution in this section first,
and revisit asynchronous execution later. In a distributed environment, there is
a need for distinguishing between actions performed at different locations. Many
formal languages [10,11,12,13,14,15,16,17,18,19] have been studied for represent-
ing locality in a process algebra. Locality is a core feature which is used to provide
a way to distinguish processes by execution location, which is not possible with
the basic process algebra. For example, we cannot distinguish between a.b+ b.a
and a|b by observational congruence on CCS, but they are distinguishable under
location semantics.

Although location semantics help distinguish processes that are more sequen-
tial from processes that are more parallel, in practice for a data management
system, we need to further distinguish processes running on

– Heterogeneous nodes: difference of the type of location, such as a tape re-
source or a computation node, and

– Different proximity to data: how far away a process is from the data that it
processes.

Distributed ECA Rules for Data Management Policies 209

In this section, we introduce two new concepts that capture these two types of
differences. We start with a basic version of CCS with location prefix, and extend
it with our new concepts. Our use of the location prefix is closely related to the
static approach [18,12] and we follow the notations in [12]. We use CCS instead
of the π-calculus [20] for simplicity.

In our formalism, we have a set P of possible agents,3 ranged over by P . To
construct agents we need actions. Let N be a set of names of channels, ranged
over by a, b, c, For each name a of a channel, we define two actions a and
a which correspond to inputing and outputing from channel a. We follow the
convention that a = a. We model an event by a channel e. An event is triggered
by an input action e. The output action e corresponds to listening to the event.
In data grids, we also allow actions that model operations on data objects. We
model these actions by input channels. Their corresponding output channels
should not appear in any agent. There is a special action τ which corresponds to
a “handshake” between two agents on a channel. We denote the set of all possible
actions by A, ranged over by α, β, γ, We have a set L of locations, ranged
over by l. Let u, v, w, . . . range over sequences of locations l1 :: l2 :: . . . :: ln, which
we call localities. If n = 0, the locality is denoted by ε. Following the standard
location semantics, there is a partial prefix order ≺ on sequences of locations.
To define recursive agents, we use X,Y, Z, . . . to denote an agent variable that
is bound to some agent. We denote the agent obtained by replacing a sequence
X̃ of agent variables with a sequence P̃ of agents in P by P (P̃ /X̃). There is an
agent 0 which does nothing, indicating inaction.

We have a set of locality sorts S and function t : L∗ → S which maps a
locality to its sort. We use sorts to distinguish different types of localities. For
example, to model a data grid with different types of storage nodes, each type
of storage nodes can be modeled by a locality sort, and t can map the locality
of each node to the sort that models the type of that node. We have a function
loc : A → P(L∗), which maps each action to a set of localities of the data
that it operates on. For example, if an action α operates on data from locality
u, then we have u ∈ loc(α). We allow one action to be mapped to more than
one locality to model the situation where a data object is replicated to multiple
nodes, and the action may choose one of the replicas to operate on.4 We denote
the set of all localities by U and use it to model actions that do not operate
on any data. We have a set of proximities R with well-founded total order ≤
and a maximum element ∞. We use proximities to model the unit cost of data
transfer between two nodes in a data grid. Given a subset R of R, we denote
by min≤R the minimum element of R and min≤∅ = ∞. We have a proximity
function prx : L∗ × L∗ → R. In a data grid, we use this function to model the
unit cost of transferring data from where the data are stored to where the action
that operates on the data is performed. Since our loc function allows multiple
localities of data, we lift prx to sets of localities: for all v ∈ L∗, U ⊂ P(L∗),

3 In our paper, we use the term “agent” in the context of process algebra.
4 In another type of applications, we could also give the mapping different semantics,

where an action has to operate on data from all localities that it is mapped to.

210 H. Xu et al.

P ::= 0 | X | A.P | P |P | P\L | fix(X̃ = P̃) | P + P | l :: P
A ::= τ | a | a | r(l)

Fig. 1. Syntax

prx(U, v) = min≤{prx(u, v) | u ∈ U} (1)

The syntax of an agent is given in Fig. 1. We define a transition relation

P
A−→
u

P ′ (2)

between agents. For succinctness, when u = ε, we write simply

P
A−→P ′ (3)

In each transition, we specify the action taken over the arrow and the locality
where the action is taken under the arrow.

Remote Execution. We allow explicit specification of static location by the r(l)
action. We now explain the r(l) action. Intuitively,r(l) designates that the sub-
sequent actions should be moved to location l. It forces the following transition

u :: r(l).P
r(l)−→
u::l

u :: l :: P (4)

Transitions to any other location are not allowed. For example, suppose that we
have an agent r(l).P . This agent initiates a remote agent l :: P at location l

through the transition r(l).P
r(l)−→
l

l :: P . The difference between an r(l) action
and directly adding a location prefix l :: is that they model different intents. A
location prefix only specifies where an action should take place, while an r(l)
action specifies a causal relation between an action at the current locality and
the subsequent actions that take place at location l. For example, the following
agents should be different: a.0 | l :: b.0 and a.0 | r(l).b.0. The former specifies
that action b takes place at location l but does not specify anything related to the
current locality, i.e., agent b.0 may very well be at location l to begin with. The
latter specifies that agent b.0 at location l is a result of a remote execution request
from the current locality. We will see that our strong bisimulation relation is able
to distinguish between these two agents. This feature is essential in modeling the
system behavior when a rule is sent from one server to another.

Asynchronous Execution. Asynchronous rules are modeled by events. An output
action e delays the execution of subsequent actions until event e is triggered by
an input action. There are two types of events that we can model here: Logical
events, such as file create, file access, file update, etc., which are triggered by
changes of system state, and time-based events, which are triggered by changes

Distributed ECA Rules for Data Management Policies 211

α �= r(l) for any l

α.P
α−→P

(prefix)
P

α−→
u

P ′

l :: P
α−→

u::l
l :: P ′ (loc)

P
α−→P ′

P | Q α−→P ′ | Q
(com1)

Q
α−→Q′

P | Q α−→P | Q′ (com2)

P
α−→P ′ Q

α−→Q′

P | Q τ−→P ′ | Q′ (com3)
Pj{f̃ ix(X̃ = P̃)/X̃} α−→P ′

f̃ ix(X̃ = P̃)
α−→P ′ (fixj)

P
α−→P ′ α �∈ L ∪ L

P\L α−→P ′\L
(restrict)

P
α−→P ′

P +Q
α−→P ′ (sum1)

Q
α−→Q′

P +Q
α−→Q′ (sum2) r(l).P

r(l)−→
l

l :: P (rem)

Fig. 2. Semantics

in the physical clock at some location.5 To model events from the underlying sys-
tem, we introduce the notion of event generators. An event generator is a process
which only contains input actions to channels that model events: en1 .en20.
An event generator models a specific system behavior. For example, suppose
that we have events based on a given data object o as follows: e1: pre data ob-
ject o put; e2: post data object o put; e3: pre data object o get; e4: post data
object o get. A system behavior where data object o is put into the data grid
and then retrieved back from the data grid can be modeled by event generator
e1.e2.e3.e4.0. We may have multiple event generators. For example, in a data
grid with both physical-clock-based events and logical-clock-based events, it is
conceptually clearer to group the events into two event generators. For another
example, if we want to model a concurrent access to the data grid by two sep-
arate users, we can model events generated by those two users in two separate
event generators.

The semantics of our calculus is summarized in Fig. 2. Most of the rules are a
variant of the standard rules in CCS, except the rule for remote execution which
we have discussed above.

Bisimulation. We define a bisimulation relation which

– distinguishes between agents which are not distinguishable in the standard
CCS, based on whether they process on heterogeneous nodes and their prox-
imity to data, and

5 In some applications, there are multiple listeners for a single event. Since events are
modeled as channels, we can encode the scenario by using extra auxiliary processes,
or directly model the behavior of one source interacting with multiple channels.

212 H. Xu et al.

– relates agents that are syntactically different but process on the same sort
of node and have the same proximity to data.

We define a relation E ⊂ A × A which identifies all actions of the form r(l):
αEβ if and only if α = β or α is of the form r(l) and β is of the form r(l′) for
some l, l′ ∈ L. A strong bisimulation relation ∼, parametrized by t, loc, and prx,
should satisfy the following property:

– If P ∼ Q and P
α−→
u

P ′, then there exists a Q′ and a v such that Q
β−→
v

Q′,
P ′

∼ Q′, αEβ, t(u) = t(v), and prx(loc(α), u) = prx(loc(α), v).

– If P ∼ Q and Q
α−→
u

Q′, then there exists a P ′ and a v such that P
β−→
v

P ′,
P ′

∼ Q′, αEβ, t(u) = t(v), and prx(loc(α), u) = prx(loc(α), v).

Compared to the strong bisimulation relation of CCS: We do not require that
α and β are identical but equivalent under E. We require t(u) = t(v) and
prx(loc(α), u) = prx(loc(α), v), i.e., the sort of the localities of the two tran-
sitions and the proximity to data should be the same.

We can define weak bisimulation and observational congruence in a similar
manner to their definition in the standard CCS [12]. In our observational con-
gruence, we can further distinguish between a strong observational congruence
and a weak observational congruence by whether we choose to ignore actions of
the form r(l).

As an example, suppose our data grid is set up as follows. There are two
disk storage nodes at location d1 and location d2, one tape storage node d3
and two computation nodes at location c1 and c2. Before defining the functions
and relations, we first establish a equivalence relation on localities. We have the
following equivalent classes:

{ε}, {u :: d1 | u ∈ L∗}, {u :: d2 | u ∈ L∗},
{u :: d3 | u ∈ L∗}, {u :: c1 | u ∈ L∗}, {u :: c2 | u ∈ L∗}

For each equivalent class we choose a representative:

ε, d1, d2, d3, c1, c2

We will define all functions and relations on these representatives. We extend
the definition by identifying a locality with its representative.

The set S of locality sorts is {d, t, c, u}, where d corresponds to disk storage,
t corresponds to tape storage, c corresponds to computation, and u corresponds
to unspecified. The function t is defined as follows: for all i ∈ {1, 2},

t(ε) = u (5)
t(di) = d (6)
t(d3) = t (7)
t(ci) = c (8)

Distributed ECA Rules for Data Management Policies 213

The set R is defined as {0, 1}. We define ≤ on R as {(0, 0), (0, 1), (1, 1)} and let
∞ = 1. We have a binary discrete measure here. The proximity prx function is
defined as follows: for all u, v ∈ {d1, d2, d3, c1, c2},

prx(u, v) =

{
0, u = v �= ε

1, otherwise
(9)

This proximity function allows us to distinguish between a process which is run
on a server where the data object being processed are stored and a process which
is run on a server where the data object being processed are stored somewhere
else. Now suppose that we have two families of actions ei and fi for i ∈ {1, 2, 3},
such that ei requires more data accesses and fi requires more CPU resources.
We define loc as for all i ∈ {1, 2, 3},

loc(ei) = {di} (10)
loc(fi) = {di} (11)

i.e., the actions are indexed by the indices of the data storage node where the
data they process are stored.

Next, let us take a look at the following agents:

1. e1 | f2: run e1 and f2 at an unspecified node.
2. e1.f2 + f2.e1: run either e1.f2 or f2.e1 at an unspecified node.
3. r(d1).e1 | f2: run e1 at d1 and f2 at an unspecified node.
4. r(d1).e1 | r(d2).f2: run e1 at d1 and f2 at d2.
5. r(d3).e1 | r(c2).f2: run e1 at d3 and f2 at c2.
6. r(d2).e1 | r(c2).f2: run e1 at d2 and f2 at c2.
7. r(d1).e1 | r(c1).f2: run e1 at d1 and f2 at c1.
8. r(d1).e1 | r(c2).f2: run e1 at d1and f2 at c2.

The most optimal agent is 7 or 8, which in our setting is bisimilar. Even though
they execute f2 on different nodes, these nodes are of the same sort and have
the same proximity to the data. However, neither of them is bisimilar with any
other agent because of either different locality sorts or different proximities to
the data.

4 Implementation

Rules for distributed data management systems usually are written based on
an asynchronous, distributed execution model, which requires the rule engine
implementation to work closely with the data management system, i.e., the rule
engine should be able to tap into the distributed infrastructure provided by the
underlying data management system, and complement it with rule specific com-
ponents that can also be managed by the underlying data management system.
This is a tighter integration than merely adding a non-distributed rule engine
engine to a distributed system. In this section, we briefly discuss some general
features of the iRODS rule engine: debugging, extensibility, and interoperability.

214 H. Xu et al.

4.1 Rule Debugger

The task of debugging a distributed rule system is challenging. We facilitate this
task by providing a rule debugger that provides the capability of online debug-
ging through a distributed debugger, and supports offline debugging through
an auditing mechanism. The rule debugger is based on the iRODS messaging
system called XMessage. During online debugging, one or more iRODS agents
can be attached to or detached from the debugger through XMessage. When an
agent is attached to the debugger, commands and updates are issued through a
debugging console which provides basic functionality for a general debugger and
transferred through XMessage. Offline debugging is supported by a rule auditing
framework which logs all events generated by the distributed rule engine. The
iRODS rule engine supports rule metadata which tell the rule debugger whether
or not to audit a specific rule, creating an effective separation of system-level
rules and user-level rules.

4.2 Extensibility

Domain specific languages (DSLs) help improve the efficiency of rule develop-
ment, reduce errors, and improve readability of rules. A classic example is Struc-
tured Query Language (SQL). When SQL is passed around as a generic string
in a programming language, the following problems could occur:

– Syntax errors are detected at runtime, as opposed to compile time. This
increases the roundtrip time for fixing errors in software development.

– Parametrized SQL statements generated through simple string concatena-
tion without robust validation are prone to SQL injection attacks.

– The syntax usually involves making calls to APIs which construct, execute,
and iterate over a SQL statement, which is not as readable as the SQL
statement itself.

The iRODS rule language provides support to embedded DSLs through an ex-
tensible compiler architecture. The rule parser is written in a C macro based
embedded DSL which implements a variant of the parsing expression grammar
(PEG). New productions can be added to the parser using this DSL. The DSL
makes use of the C macro facilities to translate DSL code to C code, eliminating
the need for any external tools, ensuring cross platform support.6 The semantic
extension can be done by adding new microservices. Each microservice provides
a way to interpret certain types of language features.

An example is language integrated general query. In iRODS, we have a database,
called iCAT, which can be queried through a general query language that is simi-
lar to SQL. The rule language provides support to this specialized query language
through the extensible compiler feature discussed above.

6 Including Linux, Solaris, Mac OS and AIX. [21]

Distributed ECA Rules for Data Management Policies 215

4.3 Interoperability with Underlying Data Management System
Components

There are two requirements for interoperability. First, the rule engine should
be able to access the underlying data management system. This is usually ac-
complished by providing a programming API (microservice modules). Second,
the rule engine should be able to make use of the underlying data management
system to improve its own scalability, robustness, and managibility.

The iRODS data management system can be configured to manage rules
as data objects, which enables several important features. First, the rules are
backed up. The iRODS backup module puts all the rule engine related files into
an iRODS collection or the iCAT, which can be backed up using iRODS’s own
facilities. In case of a local file corruption, the rules can be retrieved from an
iRODS collection or the iCAT. Second, the rules can be distributed to multiple
server nodes through the iCAT, using a rule, without having to manually copy
the rules to other server nodes. Third, the rules can be assigned metadata, which
improves the manageability of the rules.

5 Related Work

There are many rule languages which implement ECA. RuleML [22,23,24] con-
solidates many different types of rules within a single framework. Drools [25]
is a rule engine which provides a rule language that can be used to implement
ECA rules and their variants. Jess [26] is a rule engine that provides a rule
based programming framework; the programming language is a superset of the
CLIPS [27] programming language. Web Services Business Process Execution
Language (BEPL) [28] is an OASIS standard which is designed for orchestration
of business processes, which provides features for programming rules that react
on message. Closely related to the iRODS rule engine are, Taverna [29], which
is a workflow engine that provides an XML based language workflow language,
and Kepler [30], a scientific workflow engine with a graphical workflow language.
Both of these two systems provide extensive graphical user interface support for
editing and viewing the workflow through various related tools. OASIS XACML
separately developed a similar concept to our PEP, which is also called policy
enforcement points [31]. We based our formalism on CCS. Other process algebras
[32] include Communicating Sequential Processes [33], Algebra of Communicat-
ing Processes [34], and the π-calculus [20]. Most of these calculi share common
constructs such as sequential composition, parallel composition, and communi-
cation. We choose to use CCS as it is simple and its location semantics have been
extensively studied. Many formal languages [10,11,12,13,14,15,16,17,18,19] have
been studied for representing locality in a process algebra, failures [35,10,17],
and reversibility [36]. Our extension addresses the problem that are important
in implementing data management policies on a distributed, heterogeneous data
grid. We do not address complex event processing (CEP) [37] or event calculus
(EC) [38,39] in this paper. Finding out how to incorporate these concepts in our
formalism is part of future work.

216 H. Xu et al.

6 Summary

In this paper, we described the following extensions to ECA: asynchronous and
delayed execution, remote execution, recovery actions, typing, and vocabulary
extension. These extensions have been implemented in the iRODS data manage-
ment system, and have been vetted through the application of the software across
multiple scientific domains and across multiple types of data management ap-
plications. With these extensions, we enable the tuning of generic infrastructure
to meet the requirements of a specific application, which is essential for building
generic data management infrastructures. We formalize part of these extensions
by extending CCS with the concepts of multiple sorts of localities and proximity
to data. We define a bisimulation relation that can distinguish between agents
that run at different sorts of localities and at different proximities to data.

References

1. http://irods.org
2. Ward, J.H., Wan, M., Schroeder, W., Rajasekar, A., de Torcy, A., Russell, T.,

Xu, H., Moore, R.W.: The integrated Rule-Oriented Data System (iRODS) Micro-
service Workbook (2012)

3. Rajasekar, A., Moore, R., Hou, C.Y., Lee, C.A., Marciano, R., de Torcy, A., Wan,
M., Schroeder, W., Chen, S.Y., Gilbert, L., Tooby, P., Zhu, B.: iRODS Primer: in-
tegrated Rule-Oriented Data System. Synthesis Lectures on Information Concepts,
Retrieval, and Services 2(1), 1–143 (2010)

4. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River (1989)

5. http://www.w3.org/2005/rules/wg/wiki/Classification_of_Rules.html
6. Bernstein, P.A., Goodman, N.: Concurrency Control in Distributed Database Sys-

tems. ACM Computing Surveys (CSUR) 13(2), 185–221 (1981)
7. http://en.wikipedia.org/wiki/Duck_typing
8. Siek, J.G., Taha, W.: Gradual Typing for Functional Languages. In: Scheme and

Functional Programming Workshop, vol. 6, pp. 81–92 (2006)
9. Siek, J., Taha, W.: Gradual Typing for Objects. In: Ernst, E. (ed.) ECOOP 2007.

LNCS, vol. 4609, pp. 2–27. Springer, Heidelberg (2007)
10. Amadio, R.M.: An Asynchronous Model of Locality, Failure, and Process Mobility.

In: Garlan, D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282,
pp. 374–391. Springer, Heidelberg (1997)

11. Boudol, G., Castellani, I., Hennessy, M., Kiehn, A.: Observing Localities. Theoret-
ical Computer Science 114(1), 31–61 (1993)

12. Castellani, I.: Observing Distribution in Processes: Static and Dynamic Localities.
Technical Report RR-2276, INRIA (May 1994)

13. Corradini, F., De Nicola, R.: Locality Based Semantics for Process Algebras. Acta
Informatica 34(4), 291–324 (1997)

14. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: A Kernel Language for Agents
Interaction and Mobility. IEEE Transactions on Software Engineering 24(5), 315–
330 (1998)

15. Montanari, U., Yankelevich, D.: Location Equivalence in a Parametric Setting.
Theoretical Computer Science 149(2), 299–332 (1995)

http://irods.org
http://www.w3.org/2005/rules/wg/wiki/Classification_of_Rules.html
http://en.wikipedia.org/wiki/Duck_typing

Distributed ECA Rules for Data Management Policies 217

16. Murphy, D.: Observing Located Concurrency. In: Borzyszkowski, A.M., Sokolowski,
S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 566–576. Springer, Heidelberg (1993)

17. Riely, J., Hennessy, M.: Distributed Processes and Location Failures. In: Degano,
P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256,
pp. 471–481. Springer, Heidelberg (1997)

18. Aceto, L.: A Static View of Localities. Formal Aspects of Computing 6, 201–222
(1994)

19. Boudol, G., Castellani, I., Hennessy, M., Kiehn, A.: A Theory of Processes with
Localities. Formal Aspects of Computing 6, 165–200 (1994)

20. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I. Information
and Computation 100(1), 1–40 (1992)

21. https://www.irods.org/index.php/Testing
22. Paschke, A., Boley, H., Zhao, Z., Teymourian, K., Athan, T.: Reaction RuleML 1.0:

Standardized Semantic Reaction Rules. In: Bikakis, A., Giurca, A. (eds.) RuleML
2012. LNCS, vol. 7438, pp. 100–119. Springer, Heidelberg (2012)

23. http://ruleml.org
24. Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: The Overarching Specification of

Web Rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS,
vol. 6403, pp. 162–178. Springer, Heidelberg (2010)

25. http://www.jboss.org/drools/
26. http://herzberg.ca.sandia.gov/
27. http://clipsrules.sourceforge.net
28. Organization for the Advancement of Structured Information Standards (OASIS):

Web Services Business Process Execution Language (WS-BPEL) Version 2.0 (April
2007)

29. http://www.taverna.org.uk/
30. http://kepler-project.org
31. eXtensible Access Control Markup Language (XACML) Version 3.0
32. Baeten, J.C.: A Brief History of Process Algebra. Theoretical Computer Sci-

ence 335(2), 131–146 (2005)
33. Hoare, C.A.R.: Communicating Sequential Processes. Communications of the

ACM 21(8), 666–677 (1978)
34. Bergstra, J.A., Klop, J.W.: The Algebra of Recursively Defined Processes and the

Algebra of Regular Processes. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172,
pp. 82–94. Springer, Heidelberg (1984)

35. Amadio, R.M., Prasad, S.: Localities and Failures (extended summary). In: Thia-
garajan, P.S. (ed.) FSTTCS 1994. LNCS, vol. 880, pp. 205–216. Springer, Heidel-
berg (1994)

36. Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004)

37. Paschke, A., Vincent, P., Springer, F.: Standards for Complex Event Processing
and Reaction Rules. In: Olken, F., Palmirani, M., Sottara, D. (eds.) RuleML -
America 2011. LNCS, vol. 7018, pp. 128–139. Springer, Heidelberg (2011)

38. Shanahan, M.: The Event Calculus Explained. In: Veloso, M.M., Wooldridge, M.J.
(eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer,
Heidelberg (1999)

39. Bragaglia, S., Chesani, F., Mello, P., Sottara, D.: A Rule-Based Calculus and Pro-
cessing of Complex Events. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS,
vol. 7438, pp. 151–166. Springer, Heidelberg (2012)

https://www.irods.org/index.php/Testing
http://ruleml.org
http://www.jboss.org/drools/
http://herzberg.ca.sandia.gov/
http://clipsrules.sourceforge.net
http://www.taverna.org.uk/
http://kepler-project.org

Semantic Relation Extraction from Legislative

Text Using Generalized Syntactic Dependencies
and Support Vector Machines

Guido Boella, Luigi Di Caro, and Livio Robaldo

Department of Computer Science, University of Turin
Corso Svizzera 185, Turin, Italy

Abstract. In this paper we present a technique to automatically extract
semantic knowledge from legislative text. Instead of using pattern match-
ing methods relying on lexico-syntactic patterns, we propose a technique
which uses syntactic dependencies between terms extracted with a syn-
tactic parser. The idea is that syntactic information are more robust
than pattern matching approaches when facing length and complexity
of the sentences. Relying on a manually annotated legislative corpus, we
transform all the surrounding syntax of the semantic information into
abstract textual representations, which are then used to create a classifi-
cation model by means of a standard Support Vector Machine system. In
this work, we initially focus on three different semantic tags, achieving
very high accuracy levels on two of them, demonstrating both the limits
and the validity of the approach.

Keywords: Automatic Semantic Annotation, Semantic Information Ex-
traction, Dependency Parsing, Support Vector Machines.

1 Introduction and Motivations

At present, there is a huge amount of legal data coming from different sources of
information. In the light of this, one of the most interesting challenge is how to
semantically analyse such data in order to access, reuse, and create knowledge
from what already exists, addressing the problem of the so-called “knowledge
acquisition bottleneck”, i.e., the prohibitive cost of building semantic resources.
In [8], we investigated the plausibility of the best performing method of classifi-
cation in general on legislative text, improving the performance of the classifier
by using both syntactic and statistical analyses.

In this paper we propose a novel technique that is able to automatically
identify semantic relations in legal text relying on a Machine Learning-based use
of the syntactic dependencies extracted with the parser TULE [18], one of the
best-performing syntactic parsers for Italian and English. Most of the existing
work in this field uses manual rather than automatic generation of sequential
patterns that induce semantic information. Although this approach can achieve
good results, it is limited in the sense that it exclusively relies on the sequentiality

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 218–225, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Semantic Relation Extraction from Legislative Text 219

of the expressions. Natural language offers potentially infinite ways of expressing
concepts, without necessary posing any limit on the length and complexity of the
sentences. Our assumption is that syntax is less dependent than learned patterns
on the length and the complexity of textual expressions. In some way, patterns
grasp syntactic relationships, but without any linguistic knowledge.

This research is part of a wider effort to use intelligent technologies for
analysing legal and legislative data in the Eunomos legal document and knowl-
edge management system [5]. Our overall vision is to make texts more meaningful
and clear for professional users who need to know how law affects their domain
of interest. To make this effort sustainable and economically profitable, we need
to use intelligent technologies as much as possible, from NLP to semantic search,
as explained in [7].

2 Related Work

According to well-known surveys on Ontology Learning like [3] and [9], the prob-
lem of extracting ontologies from text can be faced at different levels of gran-
uarity. Most of the existing approaches uses symbolic methods that are based
on lexico-syntactic patterns, which are manually crafted or deduced automati-
cally [1]. The seminal work of [16] represents the main approach based on fixed
patterns to identify IS-A relationships. The main drawback of such technique is
that it does not face the high variability of how a relation can be expressed in
natural language. Still, it generally extracts single-word terms rather than well-
formed and compound concepts. [2] proposed similar lexico-syntactic patterns
to extract part-whole relationships.

Finally, pure statistical approaches present techniques for the extraction of
hierarchies of terms based on words frequency as well as co-occurrence values,
relying on clustering procedures [10,12,22]. The central hypothesis is that similar
words tend to occur together in similar contexts [15]. In [21], the authors pre-
sented an approach based on term co-occurrences to infer relationships between
different concepts. Such techniques are defined by [3] as prototype-based ontolo-
gies rather than formal ontologies, and they usually suffer from the problem of
data sparsity in case of small corpora. In [13], the authors proposed a system
that used a Machine Learning classifier to associate specific category codes to an
input text, for different categories like “Acting agent” and “Emergency type”,
although without using any advanced Natural Language Processing technique
on the sentences.

Since our approach relies on a standard supervised classification strategy, we
also mention the existence of other algorithms like Naive Bayes Classifiers, De-
cision Trees, Neural Networks, and several others; despite this, Support Vector
Machines are usually employed when working with textual data. While the com-
mon use of these algorithms is to label texts with topics or categories, as in [4],
in this paper we present a way to label short chunks of texts with semantic
relations.

220 G. Boella, L. Di Caro, and L. Robaldo

3 Approach

In this section we present our approach to identify semantic relations between
entire legal texts and some entities. Our methodology consists in seeing the prob-
lem in the following way: given a set of semantic annotations sem(x) between
chunks x and the semantic tag sem, the task becomes to fed a SVM-classifier
with their syntactic context. All the nouns y that are not associated to the se-
mantic tag sem are used as negative examples. This way, the classifier is asked
to learn a syntactic model of the chunks that underlies the semantic annotation
sem. Then, when parsing a new text, all its chunks are passed to the sem-based
classifier that decides if they can be annotated with sem. In the next sections
we provide the details on how we organized the classification process.

3.1 Local Syntactic Information

The problem of finding a relation between a term and a semantic label can be
faced by using the term’s local syntactic information. Dependency parsing is a
procedure that extracts syntactic dependencies among the terms contained in a
sentence, like modifiers of nouns, arguments of verbs, and so forth. The idea is
that a semantic tag may be characterized by limited sets of syntactic contexts.
According to this assumption, the task can be seen as a classification problem
where each term in a sentence has to be associated with a specific semantic label
given its syntactic dependencies.

The process starts as follows: the extracted dependencies are transformed
into abstract textual representation in the form of triples. In particular, for each
syntactic dependency dep(a, b) (or dep(b, a)) of a considered noun a, we create an

abstract term dep-target -b̂ (or dep-b̂-target), where b̂ becomes the generic string
“noun” in case it is a noun (different from a); otherwise it is equal to b. This
way, the nouns are transformed into tectual abstractions. This procedure creates
a level of generalization of the feature set that collapses the variability of the
nouns involved in the syntactic dependencies. For instance, let us consider the
sentence below:

A pena di una ammenda da 2500 a 6400 euro o dell’arresto da tre a
sei mesi, il datore di lavoro deve mantenere in efficienza i dispositivi
di protezione individuale e assicurare le condizioni d’igiene, mediante
la manutenzione, le riparazioni e le sostituzioni necessarie e secondo le
eventuali indicazioni fornite dal fabbricante.

[Under penalty of 2500 to 6400 euros or a three to six months deten-
tion, the employer must maintain the personal protective equipment and
ensure the hygiene conditions through maintenance, repairs and replace-
ments necessary and in accordance with any instructions provided by the
manufacturer.]

The first rows of the result of the dependency parsing (the numbers are unique
identifiers)[18] are shown below:

Semantic Relation Extraction from Legislative Text 221

ARG(pena-2,a-1)
RMOD(dovere-24,pena-2)
ARG(ammenda-5,di-3)
ARG(ammenda-5,un-4)
RMOD(pena-2,ammenda-5)
ARG(2500-7,da-6)
RMOD(ammenda-5,2500-7)
ARG(euro-10,a-8)
ARG(euro-10,6400-9)
RMOD(dovere-24,euro-10)
COORD(arresto-13,o-11)
ARG(arresto-13,di-12)
RMOD(pena-2,arresto-13)
ARG(tre-15,da-14)

RMOD(arresto-13,tre-15)
ARG(mese-18,a-16)
ARG(mese-18,sei-17)
RMOD(dovere-24,mese-18)
RMOD(mantenere-25,efficienza-27)
ARG(datore-21,il-20)
SUBJ(dovere-24,datore-21)
ARG(lavoro-23,di-22)
RMOD(datore-21,lavoro-23)
TOP(ROOT-0,dovere-24)
INDCOMPL(dovere-24,mantenere-25)
ARG(efficienza-27,in-26)
ARG(dispositivo-29,il-28)
OBJ(mantenere-25,dispositivo-29)

where SUBJ stands for subject relations, OBJs are themes, ARGs are mandatory
arguments, COORDs are cordinations, INDCOMPLs are indirect complements,
and RMODs are modifiers. Then, the following terms are identified as nouns
by the POS-tagger[18]: pena, ammenda, euro, arresto, mesi, datore, lavoro, effi-
cienza, dispositivi, protezione condizioni, igiene, manutenzione, riparazioni, sos-
tituzioni, indicazioni, fabbricante.

At this point, the system creates one instance for each identified noun. For
example, for the noun phrase “datore di lavoro” (work supervisor), the instance
will be represented by three abstract terms, as shown in Table 1. In the instance,
the noun under evaluation is replaced by the generic term target, while all the
other nouns are replaced with noun. It is important to note that only the term
“datore” (i.e., “supervisor”) is taken into account, since “di lavoro” (i.e., “of
work”) is one of its modifiers.

Table 1. The instance created for the noun “datore” is composed by three items (one
for each syntactic dependency related to “datore”). Note that the considered noun
“datore” is replaced by the generic term “target”, while the other nouns are replaced
with “noun”.

Dependency Instance Item

ARG(datore, il) ARG-target-il

SUBJ(dovere, datore) SUBJ-dovere-target

RMOD(datore, lavoro) RMOD-target-noun

3.2 Learning Phase

Given a legal text T , the system produces as many input instances as the number
of nouns contained in T . In particular, for each noun n in T , and for each semantic
tag sem, we produce an instance T n

sem associated with the label positive if n has
been annotated with sem in the training corpus (negative, otherwise). At the end

222 G. Boella, L. Di Caro, and L. Robaldo

of this process, all the instances are transformed into numeric vectors according
to the Vector Space Model [20], and they are finally used as input training set
for a Support Vector Machine classifier [11]. This is done for all the semantic
information that we tested; this means that we build three classifiers, one for
each semantic tag. Once the classifiers are built, we can classify all the nouns
of a text as belonging to one of the three semantic labels (or none of them) by
passing their syntactic dependencies to such classifiers. According to the example
described in the previous section, for all its 17 nouns contained in the text, the
system builds 17 textual instances, as partially shown in Table 2.

Table 2. Some of the instances created for the sentence of the example (one for each
noun). Note that the nouns “datore” and “manutenzione” are labeled as active role
and involved object respectively, as in the annotated dataset. The noun “dispositivo”
is a negative example for all of the three semantic tags.

noun instance active role passive role inv. object

arg-target-il
datore subj-dovere-target + - -

rmod-target-noun

arg-target-mediante
arg-target-il

manutenzione rmod-assicurare-target - - +
arg-target-noun
arg-target-noun

arg-target-il
dispositivo obj-mantenere-target - - -

rmod-target-noun

...

4 Evaluation

4.1 Data

The data used for evaluating our approach contain 156 legal texts annotated
with various semantic information, with a total of 2253 nouns. In particular, the
data include an extended structure for prescriptions, which has been described
in [6] as individual legal obligations derived from legislation. For our experiments
we initially put the focus on three types of semantic tags:

Active Role. The active role indicates an active agent involved within the sit-
uation described in the text. Examples of common entites related to active
roles are directors of banks, doctors, security managers.

Passive Role. The passive role indicates an agent that is the beneficiary of the
described norm. Examples of agents associated with passive roles are workers
and work supervisors.

Semantic Relation Extraction from Legislative Text 223

Involved Object. An involved object represents an entity that is central for
the situation being described. Examples are types of risk for a worker, the
location of a specific work, and so on.

In the corpus there are 188 annotated active roles, 41 passive roles, and 270
involved objects out of a total of 2253 nouns (about the 22%).

4.2 Algorithms and Tools

For the implementation of our approach we used a Support Vector Machine
(SVM) binary classifier, since it usually achieves state-of-the-art accuracy lev-
els [11,17] with textual data. This algorithm makes use of vectorial represen-
tations of text documents [20] and works by calculating the hyperplane having
the maximun distance with respect to the nearest data examples. More in de-
tail, we used the Sequential Minimal Optimization algorithm (SMO) [19] with
a polynomial kernel. The system relies on an external application based on the
WEKA toolkit [14], a framework that supports several algorithms and validation
schemes allowing an efficient and centralized way to conduct experiments and
evaluate the results.

4.3 Results

In this section we present the evaluation of our technique on the task of auto-
matically associate semantic labels to the nouns contained in the corpus. Notice
that our approach is susceptible from the errors given by the POS-tagger and
the syntactic parser. In fact, in case the POS-tagger does not recognize that a
target term is actually a noun, then the latter is not considered as a possible
item that deserves a semantic label. The same thing happens for the parsing
procedure, that can produce errors that can avoid the correct classification of a
target noun.

The result of our evaluation is threefold: first, we evaluate the ability of the
proposed approach to identify and annotate active roles; then we focus on the
passive roles; finally, we face the more challenging recognition of involved objects,
given their high level of semantic abstraction. Table 3 shows the accuracy levels
reached by the approach using the 10-folds cross validation scheme.

As can be noticed, the approach works almost perfectly with the active role
semantic tag. This means that the syntactic context of the active roles are well
circumscribed, thus it is easy for the classifier to build the model. Regarding the
passive role tag, even if the approach is precise when identifying the right se-
mantic label (100% of Precision), it returns many false negative (27% of Recall).
In a semi-supervised context of an ontology learning process, this can be anyway
a good support, since all of what has been automatically identified is likely to be
correct. Finally, the involved object semantic tag gave quite low results in terms
of Precision and Recall. On average, only six to ten nouns classified as involved
objects were actually annotated with the right semantic label. This is due to
the very wide semantic coverage of this specific tag, and its consequently broad
syntactic context.

224 G. Boella, L. Di Caro, and L. Robaldo

Table 3. Precision, Recall and F-Measure values for the identification of active roles,
passive roles, and involved objects, using 10-folds cross validation

Active Role Precision Recall F -Measure

yes 97.2% 92.6% 94.8%

no 99.3% 99.8% 99.5%

Passive Role Precision Recall F -Measure

yes 100.0% 26.8% 42.3%

no 98.7% 100.0% 99.3%

Involved Object Precision Recall F -Measure

yes 59.3% 31.9% 41.4%

no 91.3% 97.0% 94.1%

5 Conclusion and Future Work

We presented an approach to automatically annotate legislative text with seman-
tic information like active and passive roles, and involved objects. In particular,
we used local syntactic information that are transformed into textual represen-
tation to work with a standard Support Vector Machine classifier. The aim of
this work was to revisit these tasks as classical supervised learning problems
that usually lead to high accuracy levels with high performance when faced with
standard Machine Learning techniques. Our first results on this method highlight
the validity of the approach with two out of the three tested semantic tags.

References

1. Auger, A., Barriere, C.: Pattern-based approaches to semantic relation extraction:
A state-of-the-art. Terminology 14(1), 1–19 (2008)

2. Berland, M., Charniak, E.: Finding parts in very large corpora. In: Annual Meet-
ing Association for Computational Linguistics, vol. 37, pp. 57–64. Association for
Computational Linguistics (1999)

3. Biemann, C.: Ontology learning from text: A survey of methods. In: LDV Forum,
vol. 20, pp. 75–93 (2005)

4. Boella, G., di Caro, L., Humphreys, L., Robaldo, L.: Using legal ontology to im-
prove classification in the eunomos legal document and knowledge management
system. In: Semantic Processing of Legal Texts Workshop (SPLeT 2012) at LREC
2012 (2012)

5. Boella, G., Humphreys, L., Martin, M., Rossi, P., van der Torre, L.: Eunomos,
a legal document and knowledge management system to build legal services. In:
Palmirani, M., Pagallo, U., Casanovas, P., Sartor, G. (eds.) AICOL Workshops
2011. LNCS (LNAI), vol. 7639, pp. 131–146. Springer, Heidelberg (2012)

6. Boella, G., Martin, M., Rossi, P., van der Torre, L., Violato, A.: Eunomos, a le-
gal document and knowledge management system for regulatory compliance. In:
Proceedings of Information Systems: A Crossroads for Organization, Management,
Accounting and Engineering (ITAIS) Conference. Springer, Berlin (2012)

Semantic Relation Extraction from Legislative Text 225

7. Boella, G., di Caro, L., Humphreys, L., Robaldo, L., van der Torre, L.: Nlp chal-
lenges for eunomos, a tool to build and manage legal knowledge. In: Proceedings
of the Eighth International Conference on Language Resources and Evaluation
(LREC) (2012)

8. Boella, G., Di Caro, L., Humphreys, L.: Using classification to support legal knowl-
edge engineers in the eunomos legal document management system. In: Fifth In-
ternational Workshop on Juris-informatics (JURISIN) (2011)

9. Buitelaar, P., Cimiano, P., Magnini, B.: Ontology learning from text: An overview.
In: Ontology Learning from Text: Methods, Evaluation and Applications, vol. 123,
pp. 3–12 (2005)

10. Candan, K., Di Caro, L., Sapino, M.: Creating tag hierarchies for effective navi-
gation in social media. In: Proceedings of the 2008 ACM Workshop on Search in
Social Media, pp. 75–82. ACM (2008)

11. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

12. Fortuna, B., Mladenič, D., Grobelnik, M.: Semi-automatic construction of topic
ontologies. In: Ackermann, M., et al. (eds.) EWMF/KDO 2005. LNCS (LNAI),
vol. 4289, pp. 121–131. Springer, Heidelberg (2006)

13. Grabmair, M., Ashley, K.D., Hwa, R., Sweeney, P.M.: Toward extracting infor-
mation from public health statutes using text classification machine learning. In:
JURIX, pp. 73–82 (2011)

14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009),
http://doi.acm.org/10.1145/1656274.1656278

15. Harris, Z.: Distributional structure. Word 10(23), 146–162 (1954)
16. Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Pro-

ceedings of the 14th Conference on Computational linguistics, vol. 2, pp. 539–545.
Association for Computational Linguistics (1992)

17. Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

18. Lesmo, L.: The Turin University Parser at Evalita 2009. Proceedings of EVALITA 9
(2009)

19. Platt, J., et al.: Sequential minimal optimization: A fast algorithm for training sup-
port vector machines. In: Advances in Kernel Methods-Support Vector Learning,
vol. 208, pp. 98–112 (1999)

20. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975),
http://doi.acm.org/10.1145/361219.361220

21. Srinivasan, P., Rindflesch, T.: Exploring text mining from medline. In: Proceedings
of the AMIA Symposium, p. 722. American Medical Informatics Association (2002)

22. Yang, H., Callan, J.: Ontology generation for large email collections. In: Proceed-
ings of the 2008 International Conference on Digital Government Research, pp.
254–261. Digital Government Society of North America (2008)

http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/361219.361220

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 226–233, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Interpreting Spatiotemporal Expressions
from English to Fuzzy Logic

William R. Murray, Philip Harrison, and Tomas Singliar

Boeing Research and Technology, PO Box 3707, Seattle, WA 98124, USA
{william.r.murray,philip.harrison,tomas.singliar}@boeing.com

Abstract. We discuss extensions to a controlled natural language allowing
spatiotemporal expressions to be interpreted as fuzzy logic functions. The
extensions first required new sentence templates. Next, changes to a GPSG
parser modified its lexicon, and then extended its parsing and logical form rules
to allow user-defined spatial and temporal constraints to be extracted. The
sentence templates ground user-defined culturally-specific times and places to
boundaries surrounding prototypical ideals. Query points, defined by location
and time, are compared to these definitions using Gaussians centered at
prototypical 'ideal' times or places. The Gaussians provide soft fall-off at the
boundaries. Fuzzy logic operators allow larger expressions to be interpreted,
analogous to Boolean combinations of terms.

The mathematically-interpreted spatiotemporal terms act as domain features
for a machine learning algorithm. They allow easy specification (compared to
programming) of basis functions for an inverse reinforcement learning
algorithm that detects anomalous vehicle tracks or suspicious agent behavior.

Keywords: controlled natural language, CPL, spatiotemporal reasoning, GPSG
parsing, inverse reinforcement learning, fuzzy logic, anomaly detection.

1 Introduction

In this paper, we discuss extensions to a controlled natural language to allow
spatiotemporal expressions to be interpreted using fuzzy logic. Semantically, we
interpret spatial and temporal expressions with fuzzy logic or Gaussian expressions.
Fuzzy logic is used for noun-noun expressions (e.g., “winter weekend”) and coordi-
nate expressions (e.g., “neither in the market place nor the city center”), while
Gaussian expressions are used to provide 0 to 1 membership values for user-defined
temporal concepts (e.g., “Ramadan”) and spatial concepts (e.g., “Kirkuk airport”).

In [1], we introduced new sentence templates for the controlled natural language
CPL to allow user definitions of culturally-specific temporal and spatial names as
background knowledge. First, we allow users to define new spatial or temporal
concepts, grounding them with UTC times or geographic coordinates. Here are four
examples:

 Interpreting Spatiotemporal Expressions from English to Fuzzy Logic 227

Examples of Spatial Concept Definitions:
a. Seattle is a city at 47°36′35″N 122°19′59″W.
b. Alamo Square is a park at 37.776384°N 122.434709°W with radius

0.6 km.

Examples of Temporal Concept Definitions:
c. Ramadan starts 20 July 2012 and ends 18 August 2012.
d. Lunch is from 11:00 to 13:00.

Each definition defines a most prototypical point for the center of a time interval or a
radial spatial region. A Gaussian is centered at that point, clamped at 1.0 between the
boundaries, and then falls off smoothly beyond the boundaries. The soft fall-off pro-
vides a means of expressing the vagueness of a temporal concept, such as “lunch,” or
a geographic concept, such as “town square.” In Fig. 1, for example, lunch is modeled
as a time that is most prototypically centered at noontime, includes times from 11 AM
to 1 PM, and then falls off outside those boundaries.

Fig. 1. A membership function approximating the vague temporal concept "lunch.” The most
prototypical time is μ=12 and the boundaries are ±σ, with σ=1. There is a rapid, but smooth
fall-off for values of time outside of 11 AM and 1 PM. In essence, we have superimposed a
Gaussian, scaled it to have value 1 at μ ±σ, and clamped its value to 1.0 from μ-σ to μ+σ.

User-defined concepts, grounded in this way, can then be compared to query “track
points,” defined as events in time and space. Each track point corresponds to an ob-
servation of a vehicle traveling with a given UTC time and geographic coordinates.
Vague spatial expressions, such as “near a bridge,” and temporal expressions, such as
“work hours,” can be composed as expressions that model aspects of the flow of nor-
mal traffic. For example, we would consider traffic to be lower “after work hours in a
city” and higher “in the afternoon near a bridge,” or “near the market place.”

228 W.R. Murray, P. Harrison, and T. Singliar

1.1 Motivation

We need to represent this imprecision, as our machine learning algorithm needs to
know how "close" or "near" a point in time and space is to one of the concepts (e.g.,
"town market," a place; and "market day," a time). The machine learning algorithm
feature values should only vary from 0.0 to 1.0 and provide a soft fall-off as a track
point moves away from satisfying a feature. Essentially, the degree of user concept
proximity is interpreted as a 0.0 to 1.0 fuzzy set membership [2].

The motivation is for ISR (intelligence, surveillance, and reconnaissance) detection
of anomalous vehicle tracks, currently, or suspicious agent behavior, in the future.
Each track comprises a large series of track points for a vehicle. Each track point has
a time stamp, expressed as a UTC time, and location, expressed as latitude and
longitude. A suspicious track may indicate individuals taking circuitous routes to
evade checkpoints, or following convoy routes for reconnaissance. Normal civilian
traffic, in aggregate, would be expected to take the most convenient routes. Similarly,
mercantile ship tracks can be analyzed to monitor possible smuggling. For more
details, see [3].

Fig. 2. Similarly, we "soften" our binary predicate for spatial locations to have a soft fall-off.
Now, rather than having a predicate such as mosque(lat,long) that returns True or False, we
have a membership function that returns 0.0 (far from the mosque) to 1.0 (inside the mosque, at
its center), with a fall-off (e.g., 0.8 could be outside the mosque but close to it).

The machine learning algorithm is based on inverse reinforcement learning [4]. It
learns normal aggregate behavior by inferring a utility function over many vehicle
tracks. More accurate domain modeling leads to more accurate detection of anomal-
ous vehicle tracks and fewer false alarms. The traffic analysis depends crucially on
spatial features (e.g., checkpoints, bridges, markets, border crossings, etc.) and
temporal features (e.g., religious holidays, work hours, special events, etc.). Conse-
quently, users, such as intelligence analysts, can more easily use the application by
expressing relevant spatiotemporal features in controlled English. The alternative,
and prior approach, was to require coding for each change in features. This approach
is unsuitable for subject matter experts unfamiliar with programming or harried by
real-time exigencies.

 Interpreting Spatiotemporal Expressions from English to Fuzzy Logic 229

1.2 Culturally Dependent Concepts

Ideas of time and space are relative to a culture [5-6]. If we wish to model traffic flow
in Spain, compared to the U.S. or Iraq, we need to take into account cultural defini-
tions of work times, meal times, and holidays, as we expect increased or decreased
traffic at these times. We also need to model important places in a town or city that
affect traffic, e.g., checkpoints, bridges, construction, traffic barriers, markets, etc.

Most culturally defined spatiotemporal concepts are not sharply demarcated. For
example, is 1:40 PM still “lunch time”? Where, exactly, are the city center bounda-
ries? Instead, human conceptual representation relies on prototypes (also called
schemas, cognitive frames, and idealized cognitive models) characterized by family
resemblances, and examples that are typical, ideal, and most memorable [5].

Fig. 3. Parse tree for “Insurgents attack at farms, away from mosques, or at checkpoints near
the city during Ramadan”

We model places (spatial regions) as having a central point (the most prototypical
point, e.g., 'downtown' for a city, or a town square off the high street for a village)
with a circle around it, as shown in Fig. 2. This modeling is very poor for large, irre-
gularly shaped regions, such as city boundaries, compared to polygonal boundary
representations, but is adequate for modeling proximity to urban-scale structures, such
as mosques or gas stations that we envision as most typical of our traffic modeling
application. A more precise definition of spatial concepts would be obtained from
geographic information systems (GIS), but a default definition independent of such
data sources is both necessary for graceful performance degradation, and convenient
for conceptual development and experimentation.

The radius of a circle modeling a spatial region models the size of the physical lo-
cation, encompassing the bulk of its area, and intuitively how "close" or "near" a track
point may be to the place. Thus, a car may be "close" to a major bridge if it is 1 km
from it, but not "close" to a café until it is within the same block. In both examples,
the spatial descriptor is relative to the size of the object being discussed. We use a

230 W.R. Murray, P. Harrison, and T. Singliar

similar intuition here, and allow categories of places (e.g., churches) to have a default
radius that we override for exceptionally large or small instances.

2 Extending the Parser

CPL’s GPSG parser, called SAPIR [7], was extended to better account for sentences
with spatiotemporal content, such as the following:

Examples of Spatiotemporal Domain-Modeling Sentences:

a. Insurgents attack in the day, in Kirkuk, but not in the market place.
b. Insurgents attack farms close to the city.
c. Civilians drive away from checkpoints that are outside the city.
d. The Sunnis watch the Shiites of Karbala during Ashura.
e. Insurgents attack at farms, away from mosques, or at checkpoints

near the city during Ramadan

We will use the last sentence as an example. Its parse tree is shown in Fig. 3. Note
that the prepositional phrase "near the city" modifies the noun "checkpoints," but the
prepositional phrase “during Ramadan” and the entire disjunction “at farms, away
from mosques, or at checkpoints near the city” modifies the main verb, “attack.”

The parse tree can be traversed to extract a logical form, and from that just the spa-
tial and temporal constraints that refer to user-defined concepts (e.g., ‘night,’ ‘market
place,’ Kirkuk, or Ramadan), or absolute (e.g., dates, times, and coordinates) temporal
and spatial entities. This form, which we call the spatiotemporal constraint form, is
shown below:

(AND (OR (:SPATIAL-CONSTRAINTS ("at" NIL "farm"))
 (:SPATIAL-CONSTRAINTS ("away from" NIL "mosque"))
 (AND (:SPATIAL-CONSTRAINTS ("at" NIL "checkpoint"))
 (:SPATIAL-CONSTRAINTS ("near" "the" "city"))))
 (:TEMPORAL-CONSTRAINTS ("during" NIL "Ramadan")))

The spatiotemporal constraint form specifies the following:

1. User-defined spatial and temporal concepts to be compared to the track point;
2. Means, using fuzzy logic operators, to compute overall degree of membership;
3. Prepositions, that may tighten the σ used to compare track points to user con-

cepts (e.g., “inside” adjusts σ to be less than “near”).

Each spatial and temporal primitive is interpreted as a lambda function. The function
is applied to track point location and UTC time parameters and compared to the μ and
±σ boundaries defined with the user concept definition and corresponding Gaussian.

The term values for user-defined concepts (e.g., "Ramadan") are combined with
fuzzy logic operators analogous to AND, OR, and NOT Boolean operators. We use
MIN (or multiplication) for AND, MAX for OR, and λx. (1.0 – x) for NOT.

 Interpreting Spatiotemporal Expressions from English to Fuzzy Logic 231

Various extensions to the parser were required to enable the translations:

1. Existing words, or word combinations (multiwords), had to be marked as pre-
positions to be recognized as such. Although the lexicon included many prepo-
sitions, the following were added for convenience:

a. Stative verbs that can be interpreted as prepositions: ‘containing,’
‘enclosing,’ ‘overlapping,’ ‘bordering,’ ‘touching,’ ‘following,’ and
‘preceding.’

b. Adjectives that can modify prepositions: by adding these phrases
‘near by,’ ‘near to,’ ‘opposite from,’ ‘opposite to,’ ‘away from,’ ‘far
from,’ ‘close by,’ ‘right by,’ and ‘right at.’

2. New word features spatial and temporal were added. They mark user-defined
concepts for special treatment in SAPIR’s grammatical rules for attachment,
and in the generation of the logical and spatiotemporal constraint forms.

3. Verb and preposition attachment rules were modified so that prepositions:
a. With words marked with the temporal feature preferentially attach to

verbs.
b. With words marked with the spatial feature also preferentially attach

to verbs, unless:
i. They follow a common noun marked with the spatial fea-

ture (e.g., ‘…at checkpoints near the city’).
ii. They follow the prepositions ‘of’ or ‘from’ (e.g., ‘…the

mayor of Karbala’).

Where neither of these new rules apply, the current parser heuristics apply as before.
Some of these attachment heuristics are domain-specific and were originally tuned for
physics, chemistry, and biology as used in the HALO project [8].

We describe a work in progress and expect these rules, the logical form, and the
spatiotemporal constraint form to evolve over time. For example, other than the at-
tachment rule above, there is currently no interpretation or use of the preposition
‘from’ in a spatial context, as that requires determining the initial origin of a vehicle
for a track point. We also anticipate extending the domain modeling, e.g., we may
model different kinds of events (travelling, stopping), different kinds of track vehicles
(e.g., truck versus car), and eventually add track vehicle origins or destinations. Final-
ly, we may consider anomaly detection in other domains where events and tracks take
on new meanings (e.g., in cyberwarfare, a track may be a sequence of user actions
such as file accesses).

3 Related Work

Most controlled natural languages (e.g., ACE [9], PENG [10], Rabbit [11], CELT
[12], and our earlier versions of CPL [13]) have made little special provision for time
and space, other than distinguishing between times and places for answering when or
where questions, or relating named times and places to hypernyms. For example, CPL
treats WordNet as an ontology, and WordNet [14] describes Baghdad as an instance

232 W.R. Murray, P. Harrison, and T. Singliar

of city and Ramadan as an Islamic calendar month (a hyponym of time_period#n1).
In addition, PENG and CPL have used versions of the situation or event calculus for a
limited handling of time. Other than our work in [1], none of these provided fuzzy
logic interpretations for spatial and temporal prepositions or concepts.

In contrast to controlled natural languages, TimeML [15] and SpaceML [16] pro-
vide markup languages for free-text natural language. TimeML marks events and
words signaling temporal orderings in Allen’s interval algebra [17]. Additionally, it
marks aspectual and subordination links between events, states, and explicitly pro-
vided dates and times (also expressed as partially specified UTC, as in our work).
SpaceML similarly provides a qualitative representation of spatial regions, in this case
suitable for RCC-8 [18], but also tied into quantitative values.

In both cases these markup languages differ from the current work by focusing on
qualitative relational reasoning, i.e., how one time or place is qualitatively related to
another, although both also provide tie-ins to absolute values in time (UTC) or place
(geographic coordinates). The current work, in contrast, provides a different kind of
reasoning: rather than trying to determine the ordering in time and space of two
events, we provide a measure of how close one event is to a target category. The tar-
get category is not a single event, but a composite description of multiple categories,
each of which is a temporal or spatial concept with vague boundaries. Furthermore,
users may define new spatiotemporal concepts grounded appropriately to their culture
and situation, a capability not supported by the markup languages.

4 Summary

We describe work in progress to handle vague spatial and temporal terms in English,
that are culturally and situationally specific, and that are interpreted in terms of fuzzy
logic. We have extended the SAPIR parser for the CPL controlled natural language to
allow interpretation of sentences incorporating spatiotemporal constraints. A spati-
otemporal constraint form is extracted from the logical form of a sentence parse. That
constraint form, in turn, is interpreted in terms of fuzzy logic operators applied to
more basic set membership evaluations. These more basic concept definitions define
measures of set membership (e.g., “To what degree does this track point belong to the
class of points “near to the market place” or “during Ramadan”?). They are inter-
preted as scaled and clamped Gaussians, based on user-defined boundaries and proto-
typical central points. The interpretation from English to fuzzy logic facilitates the
application of machine learning algorithms for anomaly detection, by allowing non-
programmer subject matter experts to more rapidly model new or changing domains.

The research contribution is to extend controlled natural language into the realm of
vague and approximate natural language expressions, and to provide one means of
translating the natural language into formal models amenable to machine reasoning.
In this case we use fuzzy logic to handle vague spatiotemporal terms and prepositions,
and Gaussians around prototypical central points to formalize the natural language
descriptions.

 Interpreting Spatiotemporal Expressions from English to Fuzzy Logic 233

References

1. Murray, W.R., Singliar, T.: Spatiotemporal Extensions to a Controlled Natural Language. In:
Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 61–78. Springer, Heidelberg
(2012)

2. Zadeh, L.A.: Fuzzy logic= computing with words. IEEE Transactions on Fuzzy Systems
(1996)

3. Singliar, T., Marginenantu, D.: Scaling up Inverse Reinforcement Learning through In-
structed Feature Construction. In: Snowbird Learning Workshop 2011 (2011),
http://snowbird.djvuzone.org/2011/abstracts/132.pdf

4. Ng, A., Russell, S.: Algorithms for inverse reinforcement learning. In: Proceedings of
ICML (2000)

5. Lakoff, G.: Women, Fire, and Dangerous Things. University of Chicago Press (1990)
6. Kövecses, Z.: Metaphor in Culture: Universality and Variation. Cambridge University

Press (2005)
7. Harrison, P.: A New Algorithm for Parsing Generalized Phrase Structure Grammar, Ph.D.

dissertation, University of Washington, Seattle (1988)
8. Barker, K., Porter, B., Clark, P.: A Library of Generic Concepts for Composing Know-

ledge Bases. In: Proc. 1st Int Conf. on Knowledge Capture, K-Cap 2001 (2001)
9. Fuchs, N.E., Schwertel, U., Schwitter, R.: Attempto Controlled English – Not Just Another

Logic Specification Language. In: Flener, P. (ed.) LOPSTR 1998. LNCS, vol. 1559, pp. 1–20.
Springer, Heidelberg (1999)

10. Schwitter, R., Tilbrook, M.: PENG: Processable ENGlish. Technical report, Macquarie
University, Australia (2004)

11. Engelbrecht, P., Hart, G., Dolbear, C.: Talking Rabbit: A User Evaluation of Sentence
Production. In: Fuchs, N.E. (ed.) CNL 2009. LNCS (LNAI), vol. 5972, pp. 56–64.
Springer, Heidelberg (2010)

12. Pease, A., Murray, W.R.: An English to Logic Translator for Ontology-Based Knowledge
Representation Languages. In: Proceedings of 2003 IEEE International Conference on
Natural Language Processing and Knowledge Engineering, NLPKE 2003 (2003)

13. Clark, P., Murray, W.R., Harrison, P., Thompson, J.: Naturalness vs. Predictability: A Key
Debate in Controlled Languages. In: Fuchs, N.E. (ed.) CNL 2009. LNCS (LNAI),
vol. 5972, pp. 65–81. Springer, Heidelberg (2010)

14. Fellbaum, C.: WordNet: An Electronic Lexical Database (Language, Speech, and Com-
munication), Hardcover, May 15 (1998)

15. Pustejovsky, J., Castaño, J., Ingria, R., Saurí, R., Gaizauskas, R., Setzer, A., Katz, G.:
TimeML: Robust Specification of Event and Temporal Expressions in Text. In: Fifth In-
ternational Workshop on Computational Semantics, IWCS-5 (2003)

16. Cristani, M., Cohn, A.G.: Mark-up Language for Spatial Knowledge. Journal of Visual
Languages and Computing 13, 97–116 (2002)

17. Allen, J.F.: Towards a general model of action and time. Artificial Intelligence 23(2)
(1984)

18. Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.M.: Qualitative spatial representation and
reasoning with the region connection calculus. Geoinformatica (1997)

Combining Acquisition and Debugging

of Business Rule Models�

Adeline Nazarenko and François Lévy

LIPN, Université Paris 13 – Sorbonne Paris Cité & CNRS (UMR 7030), France
firstname.lastname@lipn.univ-paris13.fr

Abstract. Business rules (BR) can be acquired from complex texts such
as laws, regulations or contracts. However knowledge extraction and for-
malization is a complex task that involves business experts as well as
Information Technology engineers and that is error-prone. Instead of
waiting until the rule base is completed or the BR decision system is put
into production to detect problems, we propose to detect inconsistencies
and errors at an early stage, before the formalization work is completed.
This paper presents the quality procedures that can be implemented in
the process of BR acquisition from NL regulations. We show that the
documented business rule models under construction are useful to de-
tect potential anomalies at a semi-formal level of the BR base, where the
rules exploit a formal vocabulary but are simply structured into premises
and conclusions. Even at the prior and textual level, these documented
models give the business experts a global and structured view over the
NL regulation, which helps the formalization process.

1 Introduction

Business rule acquisition is acknowledged as a serious bottleneck for the devel-
opment of Business Rules Management Systems (BRMS). In many industrial
cases, documents are used to produce structured information about the business
and the resulting business models are exploited in BRMS to assist decision mak-
ing. Actually, since source documents, such as regulatory texts, often drive and
constrain business processes, their content must be caught in the operational
business models on which BRMS rely on.

Acquiring Business Rules (BR) models from text cannot be automated, how-
ever. We argued that this process is a complex one, which must be decomposed
into several phases (elicitation, normalization and formalization) [11], possibly
handled by different people, but nothing warranties that the resulting BR base
is error-prone. Many problems can occur. The original text may not be perfect:
there may be implicit and thus missing information, ambiguous phrases and
more or less apparent contradictions. Errors can also arise in the acquisition

� This work has been initiated in the context of the FP7 231875 ONTORULE
project (http://ontorule-project.eu). We thank to our partners for the fruitful
discussions.

L. Morgenstern et al. (Eds.): RuleML 2013, LNCS 8035, pp. 234–248, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

(http://ontorule-project.eu)

Combining Acquisition and Debugging of Business Rule Models 235

process itself, because it is difficult to have a global view of the source text and
the rule base under construction.

In most cases, however, you must wait until the rule base is completed or the
BRMS is put into production to detect problems. In software development, it iswell
known that poor quality of development leads to greater efforts in detecting bugs
and non-compliance.According to experts1, repairing a bug costs 1 at specification
time, 20 at development time and 150 at operation time. The same holds for the
BR development. It is much better to detect inconsistencies and errors before the
formalization work is completed. This paper presents the quality procedures that
can be implemented in the process of BR acquisition from NL regulations.

After a review of related works (Sec. 2), this paper presents the documented
BR model, the structure on which our debugging approach relies (Sec. 3). This
approach is based on some a priori knowledge of inconsistency (Sec. 4) and it
operates both at the semi-formal and at the textual levels (Sec. 5 and 6) of the
BR base. The whole approach is mainly illustrated on the analysis of a vehicle
safety-belt testing regulation edited by the UNO (regulation number 16). Car
manufacturers have to conform to this text.

2 Related Works

The acquisition of business rules from texts raises several important challenges:
the formalization of the knowledge that is extracted from texts, the control of the
quality of resulting knowledge base and the traceability of the formal knowledge.
These challenges have been addressed in the state of the art of the BR or, more
generally, of the semantic web community.

2.1 Knowledge Formalization

Text-based acquisition naturally addresses the problem of informal to formal
transformation of knowledge. Texts encodes pieces of informal language but
BRMS requires that knowledge be formalized and support operation. Text and
operational rule base are located at the two extremes of the formalization contin-
uum [3] and the main question deals with the translation of textual information
into formal knowledge. The problem has been addressed in different ways.

Controlled languages have deserved a lot of attention, in the academic field (At-
tempto Controlled English (ACE) [7]) in the industrial domain (RuleSpeaks and
OraclePolicyAutomation (OPA)) or at theOMGstandardization level (Semantics
of BusinessVocabulary andBusiness Rules (SBVR)2).Mostworkshave focused on
the controlled to formal language translation (see for instance, the partial transla-
tion recently proposed by [18] on the SBVR side). Less effort has been devoted to
the natural to controlled language transformation. [6] and [1] give only partial so-
lutions, covering only the syntactic transformations or simple sentences.

1 Barry Boehms, in his keynote to Equity 2007. The figures can be found in
http://fr.scribd.com/doc/20893084/Advanced-OOP-and-Design-Patterns ,
slide 27.

2 http://www.omg.org/spec/SBVR/1.0/

http://fr.scribd.com/doc/20893084/Advanced-OOP-and-Design-Patterns
http://www.omg.org/spec/SBVR/1.0/

236 A. Nazarenko and F. Lévy

Exploiting NL regulations and documents is nevertheless an important issue
for the development of BRMS, whenever regulations are written in policy doc-
uments. We proposed [10,13] an interactive approach for transforming NL sen-
tences that have been extracted from source texts into formal rules. Since this
transformation cannot be realized all at once or by a single expert, we proposed
to decompose the formalization process into two main phases: the knowledge elic-
itation and normalization on the one hand, and its formalization on the other
hand. This departs the roles of the business expert in charge of the elicitation,
from that of the IT specialist who takes the normalized and semi-formal form
rather than the source text as input and formalizes it, taking the final application
and a specific target rule engine into account.

2.2 Rule Base Maintenance

A second important issue is related to the quality of the rule bases. It concerns
the correctness of the rules as well as their maintenance when the source doc-
umentation or the applicative goals evolve. The logical works focus on the first
point. To the best of our knowledge, systematic testing methods have not been
developed, due to the difficulty of defining a significant subset of the input space.
Discovering errors in the rules rather relies on a typology of errors and problems
that frequently occur in rule bases.

Different kinds of anomalies are known and described by engineers maintain-
ing rule systems. In details, these forms depend on the syntax of rules and the
underlying reasoning mechanism. Inconsistencies are sets of rules which lead to
contradictions, i.e. a and ¬a for some a. When a complete inference mechanism
is available, it allows to decide if a given set of rules is inconsistent. Most rule sys-
tems apply their rules to different input sets, and name conflict the case where an
input set leads to a contradiction. Other anomalies manifest that something has
been inadequate in the formalization process. They are classified by [16,17,2,5] in
redundancy (a rule can be omitted without affecting the inferences), circularity
(an inference depends on itself) and deficiency (some conclusions are lacking for
a valid input set). In [16,17], a pure rule system is considered, while [2] and [5] deal
with ontology and rules combination. The difference is not in the expressive power
but in the interaction of two knowledge bases3. Note that the notion of valid input
set is hard to define a priori and generally results from an expert judgment.

In the following, we show that some of these error types can be detected before
formalization, thanks to the semantic annotation on which documented business
models are based.

2.3 Semantic Annotation

Traceability has been considered more widely in the Semantic Web context.
Semantic annotation has first been proposed as a way to enrich or enlighten texts

3 Except for the ontology + Logic Programming combination, which mixes two different
views of negation.

Combining Acquisition and Debugging of Business Rule Models 237

with some kind of ”light interpretation” [15]. The texts are actually annotated
with respect to a semantic model, which is often a formerly designed ontology
[12]. The important point is that an annotated document supports semantic
querying while traditional search mainly relies on plain text. A similar approach
is actually embodied in semantic media wikis, where the semantic level is used to
help text browsing or reading, and supports semantic functionalities [9,4]. This
last approach is close to ours apart the fact that the semantic model supporting
the text annotation is richer in BRMS.

We argue in the following that this semantic annotation allows to implement
some quality procedures early in the design of BR: at the semi-formal level and
even at the textual level.

3 Documented Business Rule Models

Our approach of business rule model acquisition strongly relies on the semantic
annotation trend. The overall methodology is to provide an interactive environ-
ment that reduces the expert’s effort, but remains under his/her control for the
quality of the result. It has been described in [10,13,14] and is recalled here.

When they are developed, the rules are gradually linked to the source ontology
and to the fragments of text that gave them birth. This defines an indexing
network that supports traversals in and between the semantic model (ontology
and rule base) under construction and the text. Queries on this complex graph
help the expert collecting relevant fragments that would be otherwise uneasy to
gather. We call the whole structure – document, semantic model and links – a
Documented Business Rule Model (DBRM) (Figure 1).

The annotation scheme describes the data structure in which the source doc-
ument, the underlying ontology and the business rules that derive from them

Ontology (conceptual vocabulary)

Rule base

Regulatory text

Links

Concepts
Roles
Instances
Attributes

R1

R2

R3

R4 R5

If Premise
Then Conclusion

Query

Fig. 1. Index structure with ontologies, rules and texts

238 A. Nazarenko and F. Lévy

 Candidate rule 1

Source
documentation

XML

 Candidate rule 2 Candidate rule 3

 Candidate rule 4
Structural rule

 Candidate rule 5
 Candidate rule 6

ConclusionPremise

NORMALIZATIONSELECTION

revision revision

revisiondecomposition

Fig. 2. Structure of the rule base. The selection, revision and decomposition operations
are encoded as as many annotation relations between the source candidate rules and
the resulting ones.

are encoded. The basic elements of this scheme are (1) the textual units that
are either tokens or sequences of tokens (elementary character strings resulting
from a segmentation process), (2) the ontological entities (concepts, instances,
properties) that are used for annotating the text [14], and (3) the candidate rules
that compose the rule base [8].

The rule base is actually composed of candidate rules that are partially or-
dered by a derivation relation (see Figure 2). The initial candidate rules are
simply sentences that have been extracted from the acquisition text. They are
stored as annotations of the source text. They can be progressively reformulated
and decomposed, which gives rise to additional candidate rules that are stored
in turn as annotations of the previous ones. At the beginning of this derivation
process, the candidate rules are traditional NL sentences. At this textual level, a
candidate rule is a text fragment as in

If a test has a duration less than 6 hours, the test is invalid

At some point, the business expert in charge of the rule elicitation can decompose
them into a premise and a conclusion. At this semi-formal level, a candidate rule
is a pair of text fragments, which are delimited by IF and THENmarkers in
the linearized form:

IF a test has a duration less than 6 hours, THEN the test is invalid

In addition to these high-level annotation relations, low-level ones mark the
textual units that compose the sentences and the candidate rules: full words
(which have a proper meanning) are linked to elements of the conceptual (also
called lexical) vocabulary, i.e. the ontological elements (concepts, properties or
individuals) that compose the domain ontology chosen to interpret the source
document ; grammatical words are either absorbed in a higher level entity (e.g.
of in the concept “attachment of the belt”) or have a role of logical connectives,
and are reduced to the keywords that serve as grammatical words in the chosen
controlled language. The full annotation scheme is described in Fig. 3.

For sake of readability, these low-level annotations are encoded in an SBVR-
style, with underlined and colored fonts: Concept,Relation,Individual, Attribute4

and key word.

4 Resp. class, object property, instance and data property in OWL.

Combining Acquisition and Debugging of Business Rule Models 239

Sentence

Document

Corpus

Property

Concept

Individual

Ontology

Business
Rule Model

Rule base

Candidate
Rule

Token or sequence
of tokens

is part of
is annotated by

Key word

Key word
vocabulary

Fig. 3. Full annotation scheme

IF a test has a duration less than 6 hours, THEN the test is InvalidTest5

Roughly, lexical annotations are built from a lexicalized domain ontology6 which
either preexists or is built on a sample of the text. With the help of search algo-
rithms, the expert marks some initial candidate rules. This parallels the Model
Driven Architecture (MDA) in which an Object Model is generally built before
the rule acquisition. In technical terms, the whole index data structure is encoded
as an RDF graph. Annotation links are encoded in RDFa: the RDF annotations
are anchored in textual units of XML documents and refer to resources that are
OWL entities or candidate rules. The documents can be visualized with HTML
browsers, where low-level annotations are usually represented in a SBVR-style. A
SPARQL engine (CORESE) performs queries on the index structure, supporting
also regular expression search on the text.

4 A priori Knowledge on Inconsistency Problems

Our approach to debugging is to be used as early as possible, during the elici-
tation of knowledge, because it is better to detect problems before working on
the formalization of rules, especially as different persons may support elicitation
and formalization. Of course, the detection of inconsistencies requires reasoning
based on formal rules, but knowing in advance the type of problems that may
arise and the traditional sources of errors helps detect potential problems in
advance and define a prudent acquisition strategy.

Several types of formal problems have been listed in the state of the art
(Section2.2):

5 Here is a simplified underlying XML encoding of the same semi-formal rule:
<Premise> If a <Concept reference="onto:#Test"> test </concept> has a
<Attribute reference="onto#duration"> duration </Attribute> less than 6
hours </Premise> <Conclusion> the <Concept reference="onto:#Test">

test </Concept> is <Concept reference="onto:#InvalidTest"> invalid
</Concept></Conclusion>

6 An ontology where each ontological element has lexical information attached ; we
use SKOS for attaching lexical information.

240 A. Nazarenko and F. Lévy

– Contradictions certainly reveal a modeling error, since a and nota cannot
both be the case. Either one or several rule literals are mistaken, or a con-
dition is missing. Basic contradiction patterns involve one or two rules.

– Redundancy refers to heterogeneous causes: erroneous translations can lead
to unsatisfiable rule conditions; a subcase may be considered and described
apart from the general case. In this latter event, redundancy may have unex-
pected effects if the related rules are modified independently of each other.

– Circularity may be normal when some rules involve recursivity but it may
also show that synonymies have not been detected, or that unclear and
probably useless distinctions have been made in the model.

– Deficiency results from an incomplete modeling. It occurs occasionally at
the formal level, when a rule is missing. It may also appear at the textual
level, if some significant part of text remains unexploited.

The expertise in regulation and legal text analysis gives another source of in-
formation for understanding text-based acquisition errors. The main problems
come from the fact that acquisition processes sequentially, one sentence or one
paragraphs after the other, whereas understanding rule information would re-
quire to have a global view of the regulation, which is presented in one or several
large documents:

– It is difficult for the analyst to focus on the precise semantics of a sentence
so as to rewrite it as a simple and normalized statement and to take a large
context into account. However, extracted from their context, some words
cannot be interpreted (e.g. pronouns without their antecedent) or can be
misunderstood (”a test” can actually refer to a very specific test if the title
of the section is clear enough).

– It is also difficult to combine local analysis with long-distance dependencies.
However, the relevant rule information can be spread into different sections of
the acquisition document (for instance between the definition and the cases
sections) and a general rule may not be explicitly related to all its relevant
specific cases, which are described in a different part and are nevertheless
exceptions to the general rule.

Based on this a priori knowledge, we propose in the following some usual pat-
terns of errors that can be matched on the documented business rule model
and more specifically on the base of textual or semi-formal BR, using SPARQL
queries and more generally semantic technologies.

5 Debugging at the Semi-formal Level

At the semi-formal level, no formal reasoning can be performed but the syntactic
patterns of errors listed by researchers for the systematic checking of anomalies
at the formal level (see section 2.2) can be transposed in an approximate way to
identify potential sources of errors.

At that level, one has to rely on the mentions of concepts, relations and at-
tributes in the premise and conclusion parts of the rules, as well as on concept

Combining Acquisition and Debugging of Business Rule Models 241

disjointness and subsomption relations. We assume that the preexisting ontol-
ogy and semantic annotation are error-prone and we focus on the detection of
anomalies in the rule base under construction.

Most examples are taken from the vehicle safety belt testing domain and are
based on a UNO regulation (# 16). This text describes the various tests that
the car manufacturers must perform on safety belts to conform to international
safety regulations. Since our data do not present all kinds of anomalies, some
examples have been manually designed for illustration, but all these examples
refer to the same basic knowledge: if the required conditions are not satisfied,
the individual performance test is considered as invalid and cannot be carried
out ; if the test is valid, it may be passed or failed according to the performance
output. In the ontology, we therefore have two disjoint subconcepts or subclasses
(ValidTest and InvalidTest) of the Test concept and two disjoint subconcepts
(PassedTest and FailedTest) of ValidTest.

5.1 Models of Contradiction

As enumerating all the contradictory subsets of a logical set of formulas is not
tractable, the formal checks only consider a limited list of simple cases.

Self-contradicting Rule. This involves a single rule in which the conclusion
contradicts the premise or one of its conditions, as in:

IF a test is PassedTest and the test has a duration less than 6 hours
THEN the test is InvalidTest

Such a contradiction can be easily detected through the presence of disjoint
concepts in the premise and conclusion of the rule. Of course, this is not a
formal proof of contradiction but a useful hint for the expert in charge of the
acquisition and debugging of the rule base.

Asymetric Rule Pair. This pattern involves two rules with inconsistent con-
clusions but with one premise subsuming the other.

IF the breaking strength test has a breaking strength load greater than 4 kilos
THEN the breaking strength test is passed
IF the breaking strength test has a breaking strength load greater than 4 kilos
and the breaking position is less than 1cm distant from the attachment of

the belt THEN the breaking strength test is invalid

At the semi-formal level of BR, one can detect that one premise in included in the
other and that the conclusions contain disjoint concepts. In the above example,
the two premises are similar but with one more condition in the second rule.
This means that the second rule is dominated. To solve the contradiction, a new
condition can be added to the first rule (e.g. ”if the breaking position is at least
1cm distant from the attachment”).

242 A. Nazarenko and F. Lévy

Ambivalent Rule Pair. This pattern involves two rules in which the premises
are consistent but neither dominates the other and the conclusions are
inconsistent.

IF the breaking strength test has a cold exposure phase the duration of which
is shorter than 6 hours THEN the test is invalid
IF the breaking strength test has a breaking strength load greater than 4 kilos
THEN the test is passed

The disjointness of the conclusions can be checked as in the previous pattern.
The consistency of premises cannot be proven at the semi-formal level but one
can at least check that neither includes the other. In the above example, the
expert should ask “What if the breaking-strength test has a cold-exposure phase
the duration of which is shorter than 6 hours and has a breaking-strength load
greater than 4 kilos ?”. A duration condition could be added in the second rule.

5.2 Models of Circularity

As the OWL ontology is preexisting, only rule circularities are considered here.

Circularity between the Rules and the Taxonomy. This anomaly occurs
when the conclusion of a rule is also a sub-concept (or a sub-relation) of one of
its conditions. For instance:

IF t is a Test and t has a cold exposure phase and t has a breaking strength
load THEN t is a breaking strength test
A breaking strength test is a Test

In this case, the rule includes the definition of the sub-concept: BreakingStrength-
Test should be defined as a subconcept of Test which has a ColdExposurePhase
and a BreakingStrengthLoad. Checking this pattern only requires comparing for
subsumption the ontological descriptions of the concepts (and relations) involved
in the premise and in the conclusion.

Circular Rule Chains. This anomaly extends the previous one, by involving
more than two rules. The circularity occurs if each rule conclusion is also present
as a premise in the following rule in the chain. It some cases, this may reveal an
underlying problem. It is very often due to an inadequate modeling, as several
classes can be merged.

Once the rules marked, detecting the circular rule chains amounts to building
a directed graph between the litterals (an edge from each premise of each rule
to its conclusion), and then searching for cycles of this graph7.

5.3 Models of Redundancy

Unsatisfiable Rule Condition. The pattern corresponds to a rule in which
two premise conditions are inconsistent.

7 This can be done with Tarjan algorithm in O(E + V), with E=nbr of edges, V=nbr
of vertices.

Combining Acquisition and Debugging of Business Rule Models 243

IF the test is passed and the breaking strength load is more than 3 kilos
and the test is invalid THEN the test is a breaking strength test

Of course, since the condition cannot be satisfied, the rule is useless. Such an
anomaly shows a probable misunderstanding of the text, unless the text itself
is ill formed. In the DBRM, premises can be searched for disjoint concepts.
Searching for twice used attributes is also useful and allows the expert to either
simplify the set of values, or detect conflicts.

Redundant Subconcept. Another anomaly occurs when the conclusion is
subsumed (subconcept or subrelation) by the premise of the rule, as in

IF a breaking strength test has a cold exposure phase THEN it is a Test

The resulting rule is trivial, if one assumes that a BreakingStrengthTest is a Test.
One must probably reconsider either the rule or the subsomption relation. In
the example above, the misunderstanding could come from the fact that Break-
ingStrengthTest is not a subconcept of Test, but BreakingStrengthTestWithCold-
ExposurePhase would be. Comparing the entities of the premise and conclusion
helps checking this type of anomalies.

Redundant Premises. An inappropriate translation from the NL text can
yield a rule with one premise condition implying the other. In the following
example, the second form of the rule is derived from the first by resolving the
reference of it :

IF a Test is a breaking strength test THEN it has a cold exposure phase
IF t is a Test and t is a breaking strength test THEN t has a cold exposure
phase

Unfortunately, this pattern is complex to check on a large text, for computational
reasons.

Subsumed Rule. A rule subsumes another one if their conclusions are identical
and one premise is subsumed by the other.

R1: IF t is a Test and t has a BreakingStrengthLoad THEN t is a breaking
strength test
R2: IF t is a Test and t has a cold exposure phase and t has a
BreakingStrengthLoad THEN t is a breaking strength test

This configuration may show an erroneous interpretation of one of the rules.
As stated in section 4, it can also results from an unseen relation between a
particular case and a general one.

5.4 Models of Deficiency

Incomplete Attribute Range in the Premise. Deficiency is not easy to
characterize in a general way. The only formal hint is given by the attributes

244 A. Nazarenko and F. Lévy

and more specifically by consideration of their range. Bellow is an example from
the steel industry domain. The severity of steel coils defects is defined by the
following rules:

IF the surface of defect on a coil is less than 7 mm2 THEN the defect has
severity low.
IF the surface of defect on a coil is more than 12mm2 THEN the defect has
severity medium.

As severity is undefined for surfaces between 7 and 12 mm2, one can suspect that
a rule is missing. The argument relies on the convexity of the attribute’s range,
which is the case of a great majority of numeric ranges. An analogous analysis
can be made for enumerated ranges, suspecting an anomaly if only some values
are dealt with.

In concrete terms, a SPARQL query can easily gather all the rules of the rule
base that have a given attribute in their premise. It is also possible to narrow
the query to rules having the same given entities in their premise – here, surface,
defect and coil. A further narrowing can check for similar conclusions. In the
above example, such a query would return the rules that also have defect and
severity in their conclusions, which provides the expert with a more manageable
set of rules.

6 Debugging at the Textual Level

Fewer tests can be made at the textual level, where candidate rules are sim-
ple text fragments, possibly with annotation, but without decomposition into
premises and conclusions. However, precautions must be taken at this level.
Quite often, the problems stem from ignorance of the text structure. Most text
types have a specific style and an internal organization that bear part of the text
meaning or at least guide its interpretation. Neglecting these stylistic rules often
lead to misinterpret the text content, which is not properly analyzed in context.

6.1 Discrepancies between Different Parts of the Text

In many regulatory texts, the basic terms and general categories (conditions,
purposes, objectives, etc.) are defined before the statement of rules, but the
vocabulary of these different parts is expected to be consistent. The presence
of undefined basic terms or categories in the rule part of the text is a possible
anomaly.

For instant, the EU regulation about safety belts has

– a Definitions part where all the physical elements of the safety belt system
are defined,

– a Specifications part describing the requirements to check (each test is nor-
mally mentioned by at least one specification in this part),

– a Description part where it is described how the tests must be performed.

Combining Acquisition and Debugging of Business Rule Models 245

In the Description part, an ”exposure test” is mentioned twice but there is no such
mention in the specification part: this reveals an anomaly. A search for the word
“exposure” shows that it occurs in the subtitles of the paragraph “Conditioning
of straps for the breaking-strength test”. A human expert can conclude that
exposure test does not denote a test but rather some form of conditioning, i.e.
the first part of a complex test.

6.2 Undetected Rules

It is often difficult to identify the rule statements in the source text because they
can have various surface forms. There are many ways to express a rule prescrip-
tion. If the rule detection cannot be fully automated, some characteristic rule
markers may nevertheless be searched for. For instance, in the UNO regulation,
the future tense almost always has a prescriptive meaning, as in the following
sentences:

The dynamic test shall be performed on two belt assemblies which have not
previously been under load
If any of these items and parts do not comply with the above conditions, they
shall be subjected to the cold impact test
The abrasion conditioning will be performed on every device in which the strap
is in contact with a rigid part of the belt
The mating parts of the buckle shall be coupled together manually immediately
after being removed from the refrigerated cabinet.

Of course, this test is not always fully reliable. According to our experiments on
the UNO regulation corpus, searching for ”shall” returned 91 rule statements
and 5 additional sentences which were not interpreted as rules. This means that
a sentence containing ”shall” but not marked as a rule is worthy to be presented
as a potential anomaly. This is not specific to the UNO example, since ”shall”
can be found in many legal regulations. Such anomaly detection patterns should
be designed separately for each type of texts.

6.3 Rules without Annotation

Once a sentence is recognized as a rule, it is highly improbable that this rule does
not involve any domain specific notion. A rule without any conceptual annotation
is suspect. It may not be a rule, the domain description may be incomplete, or the
rule may fall out of the scope of the application. Whatever the answer, checking
this point early in the acquisition process can help building an adequate domain
description. The following example from the UNO regulation falls in the third
category:

The apparatus shall not be constructed of materials that will affect the corro-
siveness of the mist.

The absence of annotation shows that the annotation focuses on properties of the
objects submitted to the tests, rather than on the devices used for conducting

246 A. Nazarenko and F. Lévy

the tests. Those devices, accurately described in the annexes, have been left
out of the domain description. As this makes sense with regard to the target
application, the selection of the above rule should be cancelled.

6.4 Large Text Fragments with no Rule

Texts stating business rules and regulatory texts avoid irrelevant considerations.
They are generally divided into parts, which have different functional roles. Some
parts may be peripheral with respect to the target application but the relevant
ones often state a large set of business rules. In those parts, a large chunk of
text without any detected rule can be considered as an anomaly: the expert is
expected to look for missing rules.

For instance, the seven first parts of the UNO regulation# 16 are the following:

– Part 1 lists the types of vehicles under concern,
– Parts 3, 4 and 5 describe how to apply for approval of a vehicle type’s safety

belts, how an approved belt is marked and how the approval is delivered.
– Part 2 defines 51 technical terms used in the following, e.g. “Lap belt: A

two-point belt which passes across the front of the wearer’s pelvic region”.
– Part 6 specifies the required values for different properties of the safety belt

systems
– Part 7 describes in detail the tests to be performed and how the measures

are taken during the test

The parts 1, 3, 4 and 5 are not relevant for the target application but the other
are. Each term of part 2 has to be checked against the ontology. Parts 6 and
7 have to be implemented: each paragraph contains at least one rule. And, as
already mentioned in section 6.1, each test in part 7 must be related to at least
one specification in part 6.

Simple strategies for grasping the sentences involving a particular notion may
also provide some degree of checking, e.g. every sentence mentioning a salt so-
lution refers to the conditioning phase of the corrosion test.

7 Conclusion

As the acquisition of business rules from text is an important challenge, we have
considered improving the quality of the result by debugging the rules as early
as during the NL acquisition phase. Two complementary approaches have been
explored. The first one relies on patterns of anomalies attested at the formal
level by people working on the maintenance of rule systems. Some important
patterns can be searched for at a semi-formal level of description of the business
rules, based on the indexing structure of the Documented Business Rules Model,
and with the help of web semantic and search techniques. The second approach
relies on the structure of the text to find hints of mis-translation. These hints
can help discovering problems that are out of the scope of formal methods. Both
approaches are exemplified on real texts. They provide an interesting tool to
improve the quality of acquired rules.

Combining Acquisition and Debugging of Business Rule Models 247

References

1. Bajwa, I.S., Lee, M.G., Bordbar, B.: Sbvr business rules generation from natural
language specification. In: AAAI Spring Symposium 2011 Artificial Intelligence 4
Business Agility, pp. 541–545. AAAI, San Francisco (2011)

2. Baumeister, J., Kleemann, T., Seipel, D.: Towards the verification of ontologies
with rules. In: Wilson, D., Sutcliffe, G. (eds.) FLAIRS Conference, pp. 524–529.
AAAI Press (2007)

3. Baumeister, J., Reutelshoefer, J., Puppe, F.: Engineering intelligent systems on the
knowledge formalization continuum. International Journal of Applied Mathematics
and Computer Science (AMCS) 21(1) (2011),
http://ki.informatik.uni-wuerzburg.de/papers/baumeister/2011/

2011-Baumeister-KFC-AMCS.pdf

4. Baumeister, J., Reutelshoefer, J., Puppe, F.: Knowwe: A semantic wiki for knowl-
edge engineering. Applied Intelligence 35(3), 323–344 (2011)

5. Baumeister, J., Seipel, D.: Anomalies in ontologies with rules. J. Web Sem. 8(1),
55–68 (2010)

6. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Reasoning about conditions and ex-
ceptions to laws in regulatory conformance checking. In: van der Meyden, R., van
der Torre, L. (eds.) DEON 2008. LNCS (LNAI), vol. 5076, pp. 110–124. Springer,
Heidelberg (2008)

7. Fuchs, N.E., Schwertel, U., Torge, S.: A natural language front-end to automatic
verification and validation of specifications. Tech. Rep. PMS-FB-1999-5, LMU
München, Munich (1999)

8. Guissé, A., Lévy, F., Nazarenko, A.: From regulatory texts to BRMS: How to guide
the acquisition of business rules? In: Bikakis, A., Giurca, A. (eds.) RuleML 2012.
LNCS, vol. 7438, pp. 77–91. Springer, Heidelberg (2012)

9. Kuhn, T.: AceWiki: Collaborative Ontology Management in Controlled Natural
Language. In: Lange, C., Schaffert, S., Skaf-Molli, H., Vlkel, M. (eds.) Proc. of the
3rd Semantic Wiki Workshop. CEUR Workshop Proceedings, vol. 360 (2008)

10. Lévy, F., Nazarenko, A., Guissé, A., Omrane, N., Szulman, S.: An environment for
the joint management of written policies and business rules. In: Proceedings of the
International Conference on Tools with Artificial Intelligence (IEEE-ICTAI 2010),
pp. 142–149 (2010)

11. Lévy, F., Nazarenko, A.: Formalization of natural language regulations through
SBVR structured English (Tutorial). In: Morgenstern, L., Stefaneas, P., Lévy, F.,
Wyner, A., Paschke, A. (eds.) RuleML 2013. LNCS, vol. 8035, pp. 19–33. Springer,
Heidelberg (2013)

12. Ma, Y., Nazarenko, A., Audibert, L.: Formal description of resources for ontology-
based semantic annotation. In: Proceedings of the International Conference on
Language Resources and Evaluation (LREC 2010). ELRA, Malta (2010)

13. Nazarenko, A., Guissé, A., Lévy, F., Omrane, N., Szulman, S.: Integrating written
policies in business rule management systems. In: Bassiliades, N., Governatori, G.,
Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 99–113. Springer,
Heidelberg (2011)

14. Omrane, N., Nazarenko, A., Rosina, P., Szulman, S., Westphal, C.: Lexicalized on-
tology for a business rules management platform: An automotive use case. In:
Olken, F., Palmirani, M., Sottara, D. (eds.) RuleML - America 2011. LNCS,
vol. 7018, pp. 179–192. Springer, Heidelberg (2011)

http://ki.informatik.uni-wuerzburg.de/papers/baumeister/2011/2011-Baumeister-KFC-AMCS.pdf
http://ki.informatik.uni-wuerzburg.de/papers/baumeister/2011/2011-Baumeister-KFC-AMCS.pdf

248 A. Nazarenko and F. Lévy

15. Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: Kim – a semantic
platform for information extraction and retrieval. Nat. Lang. Eng. 10(3-4), 375–392
(2004)

16. Preece, A., Shinghal, R.: Foundation and application of knowledge base verification.
Intl. Journal of Intelligent Systems 9(8), 683–701 (1994)

17. Preece, A., Shinghal, R., Batarekh, A.: Principles and practice in verifying rule-
based systems. Knowledge Engineering Review 7(2), 115–141 (1992)

18. Solomakhin, D., Franconi, E., Mosca, A.: Logic-based reasoning support for sbvr.
In: CILC (Italian Conference on Computational Logic), pp. 311–325 (August 2011)

Author Index

Antoniou, Grigoris 188
Athan, Tara 13

Batsakis, Sotiris 37
Bauer, Bernhard 84
Bikakis, Antonis 158
Boella, Guido 218
Boley, Harold 13, 52
Brunstein, Svenja 129

Caire, Patrice 158
Cristani, Matteo 99

Dasiopoulou, Stamatia 144
De Clercq, Sofie 68
De Cock, Martine 68
Di Caro, Luigi 218

Efstathiou, Vasiliki 144

Frenzel, Christoph 84
Fusco, Mario 173

Getoor, Lise 1
Governatori, Guido 13, 99, 114
Grosof, Benjamin N. 2
Grüninger, Michael 12

Harrison, Philip 226
Herzig, Philipp 129

Kompatsiaris, Ioannis 144

Le Traon, Yves 158
Lévy, François 19, 234

Meditskos, Georgios 144
Moawad, Assaad 158
Moore, Reagan W. 203
Murray, William R. 226

Nain, Grégory 158
Nazarenko, Adeline 19, 234
Nowé, Ann 68

Olivieri, Francesco 99

Palmirani, Monica 13
Paschke, Adrian 13
Proctor, Mark 173

Rajasekar, Arcot 203
Robaldo, Livio 218
Rotolo, Antonino 99, 114

Sanneck, Henning 84
Scannapieco, Simone 99
Schill, Alexander 129
Schockaert, Steven 68
Sierhuis, Maarten 34
Singliar, Tomas 226
Sottara, Davide 173

Tachmazidis, Ilias 188

Wan, Mike 203
Webber, David 36
Wolf, Bernhard 129
Wyner, Adam 13

Xu, Hao 203

	Preface
	Organization
	Table of Contents
	Invited Talks
	Probabilistic Soft Logic: A Scalable Approach for Markov Random Fields
over Continuous-Valued Variables
(Abstract of Keynote Talk)
	Rapid Text-Based Authoring of Defeasible Higher-Order Logic Formulas,
via Textual Logic and Rulelog
(Summary of Invited Talk)

	1 Introduction and Requirements Analysis
	1.1 Reducing the Cost of Authoring Rich Logical Knowledge
	1.2 In Quest of a Dream
	1.3 Logical Expressiveness
	1.4 Text-Based Authoring

	2 Textual Logic
	3 OmniformRules
	4 Experiment: Case Study
	5 Discussion
	6 Summary
	References

	Ontology Repositories Makea World of Difference(Abstract of Keynote Talk)

	Tutorials
	LegalRuleML: From Metamodel to Use Cases (A Tutorial)
	1 Motivation and Background
	2 Methodology of the Tutorial
	3 LegalRuleML Model
	4 Metamodel of the Rule Properties
	5 LegalRuleML Skeleton
	6 Tutorial Use Cases
	References

	Formalization of Natural Language Regulations through SBVR Structured English (Tutorial)
	1 Introduction
	2 Formalizing NL Regulations: A Challenging Task
	2.1 The Translation Task
	2.2 The Problem of Uncommunicability
	2.3 The Complexity of Natural Language
	2.4 Organizing the Formalization Continuum

	3 Divide for Conquer
	3.1 A Three-Step Process
	3.2 SBVR, between Natural and Formal Languages

	4 From Natural Language to SBVR Rules
	4.1 Lexical Normalization and Annotation of the Source Text
	4.2 Extraction of Rule Fragments from the Source Text
	4.3 Lexical and Syntactic Normalization of the Rule Fragments
	4.4 Semantic Transformation

	5 From Normalized Rules to Decision Rules
	5.1 Introducing New Specialized Entities
	5.2 Exhibiting Decision Variables
	5.3 Specifying Actions

	6 Conclusion
	References

	Multi-agent Activity Modeling with the Brahms Environment
(Abstract of Tutorial)

	References

	Rules and Policy Based Handling of XML in Government Contexts Including NIEM
(Abstract of Tutorial)

	Technical Papers, Main Track
	Reasoning over 2D and 3D Directional Relations in OWL: A Rule-Based Approach
	1 Introduction
	2 Background and RelatedWork
	3 Spatial Representation
	4 Spatial Reasoning
	5 Three-Dimensional Representation and Reasoning
	6 Evaluation
	6.1 Theoretical Evaluation
	6.2 Experimental Evaluation

	7 Conclusions and Future Work
	References

	Grailog 1.0: Graph-Logic Visualization of Ontologies and Rules
	1 Introduction
	2 Directed Hyperarcs
	3 Complex Nodes
	4 Labelnodes
	5 Classes
	6 Description Logic Constructions
	7 Horn Logic Clauses
	8 Frames, Positional-Slotted Terms, and Psoa Rules
	9 Conclusions
	References

	Modeling Stable Matching Problems with Answer Set Programming
	1 Introduction
	2 Background
	2.1 The Stable Marriage Problem
	2.2 Answer Set Programming

	3 Modeling the Stable Marriage Problem in ASP
	4 Selecting Preferred Stable Sets
	4.1 Notions of Optimality of Stable Sets
	4.2 Finding Optimal Stable Sets Using Disjunctive ASP
	4.3 ASP Program to Select Optimal Solutions

	5 Complexity and Future Work
	6 Conclusion
	References

	A Fuzzy, Utility-Based Approach for Proactive Policy-Based Management

	1 Introduction
	2 Problems of Classical PBM
	3 A Concept for Proactive PBM
	4 Design of the Fuzzy PBMS with Utilities
	4.1 Fuzzification
	4.2 Fuzzy Inference
	4.3 Defuzzification

	5 Case Study
	5.1 Scenario
	5.2 System Model
	5.3 Evaluation

	6 Related Work
	7 Conclusion
	References

	Picking Up the Best Goal An Analytical Study in Defeasible Logic
	1 Motivation and Basic Intuitions
	2 Logic
	2.1 Language
	2.2 InferentialMechanism

	3 Algorithmic Results
	4 Conclusions and RelatedWork
	References

	Computing Temporal Defeasible Logic
	1 Introduction
	2 Temporal Defeasible Logic (TDL)
	3 Computing Consequences in TDL
	3.1 Computing the Definite Extension
	3.2 Computing the Defeasible Extension
	3.3 Computing the Extension

	4 Discussion and Implementation
	5 Related Work
	References

	Efficient Persistency Management in Complex Event Processing: A Hybrid Approach
for Gamification Systems
	1 Introduction
	1.1 Scenario
	1.2 Requirements

	2 Solution Approaches
	2.1 Databases
	2.2 Complex Event Processing

	3 Hybrid Approach
	3.1 General Case
	3.2 Synchronous Context-Update
	3.3 Asynchronous Context-Update

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Discussion

	5 Related Work
	6 Summary and Outlook
	References

	Ontology Patterns for Complex Activity Modelling
	1 Introduction
	2 Related Work
	3 The Domain Activity Ontology
	4 Design of Activity Patterns
	4.1 Core Meta-Activity Pattern
	4.2 Activity Specialisation Pattern
	4.3 Activity Composition Pattern
	4.4 Example

	5 Transforming Activity Patterns into SPARQL
	5.1 SPARQL Rules

	6 Conclusions
	References

	A Rule-Based Contextual Reasoning Platform for Ambient Intelligence Environments
	1 Introduction
	2 An Ambient Assisted Living Example
	3 Contextual Defeasible Logic
	3.1 Representation Model
	3.2 Distributed Query Evaluation

	4 Kevoree - A Component Based Software Platform
	4.1 Kevoree: Modeling Framework and Components
	Channels
	4.2 Kevoree Critical Features

	5 The AAL Platform
	5.1 Query Component
	5.2 Query Servant
	5.3 Query Class and Loop Detection Mechanism
	5.4 Running Example
	5.5 Limitations

	6 Related Work
	7 Conclusion
	References

	Extending an Object-Oriented RETE Network with Fine-Grained Reactivity
to Property Modifications
	1 Introduction
	2 Related Works
	3 Property Reactivity
	3.1 Property Reactive RETE
	3.2 Example

	4 Benchmarking
	5 Conclusions and Future Works
	References

	Computing the Stratified Semantics of Logic Programs over Big Data through Mass Parallelization
	1 Introduction
	2 Preliminaries
	2.1 MapReduce Framework
	2.2 Stratified Semantics

	3 Algorithm Description
	3.1 Positive Goals Calculation
	3.2 Final Goal Calculation
	3.3 Special Cases
	3.4 Final Remarks

	4 Experimental Evaluation
	5 Conclusion and Future Work
	References

	Distributed ECA Rules for Data Management Policies
	1 Introduction
	2 Extensions to ECA in the iRODS Rule Language
	2.1 Location-Aware Execution
	2.2 Asynchronous Execution
	2.3 Error Handling
	2.4 Static and Dynamic Checking
	2.5 Controlled Vocabularies

	3 Formalism
	4 Implementation
	4.1 Rule Debugger
	4.2 Extensibility
	4.3 Interoperability with Underlying Data Management System Components

	5 Related Work
	6 Summary
	References

	Technical Papers, Human Language Technology Track: Translating between Human-Created Regulations and Formal Rules
	Semantic Relation Extraction from Legislative Text Using Generalized Syntactic Dependencies
and Support Vector Machines
	1 Introduction and Motivations
	2 Related Work
	3 Approach
	3.1 Local Syntactic Information
	3.2 Learning Phase

	4 Evaluation
	4.1 Data
	4.2 Algorithms and Tools
	4.3 Results

	5 Conclusion and Future Work
	References

	Interpreting Spatiotemporal Expressions from English to Fuzzy Logic
	1 Introduction
	1.1 Motivation
	1.2 Culturally Dependent Concepts

	2 Extending the Parser
	3 Related Work
	4 Summary
	References

	Combining Acquisition and Debugging of Business Rule Models
	1 Introduction
	2 Related Works
	2.1 Knowledge Formalization
	2.2 Rule Base Maintenance
	2.3 Semantic Annotation

	3 Documented Business Rule Models
	4 A priori Knowledge on Inconsistency Problems
	5 Debugging at the Semi-formal Level
	5.1 Models of Contradiction
	5.2 Models of Circularity
	5.3 Models of Redundancy
	5.4 Models of Deficiency

	6 Debugging at the Textual Level
	6.1 Discrepancies between Different Parts of the Text
	6.2 Undetected Rules
	6.3 Rules without Annotation
	6.4 Large Text Fragments with no Rule

	7 Conclusion
	References

	Author Index

