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Preface

Game Theoretic Analysis of Congestion, Safety and Security is an interdisciplinary
undertaking. Many researchers working on congestion have not extensively con-
sidered safety/security, and vice versa. However, significant interactions exist
between the two research areas, which motivated this book. This book is intended
to establish a new and enhanced current state of affairs within this topic, illustrate
linkages between research approaches, and lay the foundation for subsequent
research. Congestion (excessive crowding) is defined broadly to include all kinds
of flows; e.g., road/sea/air traffic, people, data, information, water, electricity, and
organisms. The book considers systems where congestion occurs, systems which
may be in parallel, series, interlinked, or interdependent, with flows one way or both
ways. Congestion models exist in abundance. The book makes ground by intro-
ducing game theory and safety/security. For the analysis to be game theoretic, at
least two players must be present. For example, in [1] one approver and a popu-
lation of normal and adversary travelers are considered. Similarly, in [2], one
defender and one attacker are considered, in addition to drivers who choose the
more time-efficient of two arcs of different lengths. Multiple players can be
adversaries with different concerns regarding system reliability; e.g., one or several
terrorists, a government, various local or regional government agencies, companies,
or others with stakes for or against system reliability. Governments, companies, and
authorities may have tools to handle congestion, as well as ensure safety/security
against various threats. The players may have a variety of individual concerns
which may or may not be consistent with system safety or security. Much of the
congestion literature is not game-theoretic, and does not extensively consider safety
or security. Also, most game-theoretic analyses do not account for congestion. The
book consists of eight chapters.

In “Congestion Management in Motorways and Urban Networks Through a
Bargaining-Game-Based Coordination Mechanism,” Felipe Valencia, José D.
López, Alfredo Núñez, Christian Portilla, Luis G. Cortes, Jairo Espinosa and Bart
De Schutter acknowledge that road traffic networks are large-scale systems that
demand distributed control strategies. Local traffic controllers for each subnetwork
play a cooperative game where they communicate with each other. Their strategies

v

http://dx.doi.org/10.1007/978-3-319-11674-7_1
http://dx.doi.org/10.1007/978-3-319-11674-7_1


are the control sequences, their payoffs are the local performance indices such as
avoiding congestion, thus balancing local against global performance.

In “Advanced Information Feedback Coupled with an Evolutionary Game in
Intelligent Transportation Systems,” Chuanfei Dong, Yuxi Chen, Xu Ma and Bokui
Chen study a mean velocity difference feedback strategy and a congestion coeffi-
cient difference feedback strategy for intelligent transportation systems. The two
strategies are based on the time-varying trend in feedback information, which could
lead to higher route flux with better stability. The authors also investigate infor-
mation feedback coupled with an evolutionary game in a 1-2-1-lane intelligent
transportation system with dynamic periodic boundary conditions.

In “Solving a Dynamic User-Optimal Route Guidance Problem Based on Joint
Strategy Fictitious Play,” Tai-Yu Ma develops a multi-player repeated game to
model users’ compliances to route recommendations by a system administrator.
Users use their experience to estimate travel time through different routes. Users can
be informed or non-informed, engage in joint strategy fictitious play, and adapt their
route choices progressively to reach their destinations.

In “A Psycho-Social Agent-Based Model of Driver Behavior Dynamics,”
Theodore Tsekeris and Ioannis Katerelos present a psycho-social agent-based
model of interaction between drivers, accounting for heterogeneity and dynamic
adjustment responses. Cognitive processes, risk assessment, time responsiveness of
driving behavior, control dimensions of neighboring drivers, and the topology of
interaction cause states such as fixed point, periodicity, and transient chaos.

In “Game-Theoretic Context and Interpretation of Kerner’s Three-Phase Traffic
Theory,” Kjell Hausken and Hubert Rehborn interpret Kerner’s three-phase traffic
theory game theoretically applying the chicken game. The three phases, claimed to
be incommensurable with classical two-phase theory, are free flow and two con-
gested phases, which are synchronized flow and wide moving jam. They show how
the number of chickens changes through the hysteresis loop in a density versus flow
rate diagram.

In “A Heuristic Method for Identifying Near-Optimal Defending Strategies for a
Road Network Subject to Traffic Congestion,” Mengyao Gao, Bo Zhang, Vicki M.
Bier and Tao Yao analyze how road networks are vulnerable to interdictions. An
attacker interdicts links to maximize congestion. A heuristic method is developed to
determine how the defender protects the road network to minimize congestion
assuming that selfish drivers choose routes to minimize individual travel cost.

In “Multiple Stakeholders in Road Pricing: A Game Theoretic Approach,”
Anthony E. Ohazulike, Georg Still, Walter Kern and Eric C. van Berkum consider a
game-theoretic approach as an alternative to the standard multi-objective optimi-
zation models for road pricing. A non-cooperative game is modeled to study road
pricing strategies considering various and potentially conflicting externalities in
traffic such as congestion, air pollution, and noise. The game is sequential where the
leaders determine link tolls in the first stage and the road users choose routes in the
second stage. A “first-best taxation” schedule is proposed to deal with the scenario
that a Nash equilibrium may not exist.
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In “Stackelberg and Inverse Stackelberg Road Pricing Games: State of the Art
and Future Research,” Kateřina Staňková and Alexander Boudewijn consider a
game-theoretical toll design problem for improving the performance of road traffic
systems. The road authority is modeled as the first mover to decide the toll; and the
drivers are modeled as the second mover to respond to the toll by adapting driving
behavior and thus impacting traffic flows. Depending on the toll structure, the
authors discuss two problem formulations: a Stackelberg game where toll is uni-
form or time-varying; and an inverse Stackelberg game where toll is traffic-flow
dependent.
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Congestion Management in Motorways
and Urban Networks Through
a Bargaining-Game-Based Coordination
Mechanism

Felipe Valencia, José D. López, Alfredo Núñez, Christian Portilla,
Luis G. Cortes, Jairo Espinosa and Bart De Schutter

Abstract Road traffic networks are large-scale systems that demand distributed
control strategies. Distributed model predictive control (DMPC) arises as a feasible
alternative for traffic control. Distributed strategies decompose the whole traffic
network into different subnetworks with local optimal controllers that make deci-
sions on actions to be taken by the actuators responsible for traffic control (traffic
lights, routing signals, variable speed limits, among others). However, subnetworks
are interacting elements of the whole traffic network. Hence, local control decisions
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made for one sub-network affect and are influenced by the decisions taken for the
other subnetworks. Under these circumstances, the DMPC traffic problem can be
treated as a game where the rules are provided by the physical system, the players
are the local optimal controllers, their strategies are the control sequences, and the
payoffs are the local performance indices (such as the total time spent by the users
in the network). This configuration allows the achievement of a computational
burden reduction, with a compromise between local and global performance. Since
DMPC local controllers are able to communicate with each other, the control of the
traffic network corresponds to a cooperative game. In this chapter, game-theory-
based DMPC is developed and tested for control of urban and motorway networks.

Keywords Game theory � Distributed model predictive control � Large-scale
systems � Motorway control � Urban traffic control � Bargaining games

1 Introduction

Sustainable mobility of people is a key issue in modern society. However, nowa-
days many traffic networks are operating in an inefficient way, producing several
negative impacts on the environment and leading to a deterioration in quality of life
for the users. Solutions such as building new roads or improving the existing
infrastructure are not always feasible because of environmental and budgetary
regulations. Thus the development of efficient management and control systems for
traffic and transportation to satisfy the ever-increasing demand for mobility has
become a crucial area of research.

Several control strategies for traffic control have been reported in the literature.
Often, they are simulation based. That is, traffic models are used to determine the
impact of different control strategies and the sensitivity of the performance with
respect to the tuning parameters (e.g. the Adaptive Split Cycle Offset Optimisation
Technique method). Among the different simulation-based strategies reported in the
literature, those based on model predictive control (MPC) have been quite com-
monly proposed to solve traffic problems. These techniques are focused on the
optimal use of the information provided by the infrastructure already installed, and
on reducing the travel time while explicitly considering the physical and operational
constraints of the system [3, 13, 17, 47]. However, despite the advantages of MPC
over other methods, the application of this control scheme in real large-scale sys-
tems (such as traffic networks) is rendered impractical due to the computational
burden of its centralized nature. In order to make the real-life implementation of
MPC in large-scale systems possible, distributed model predictive control (DMPC)
approaches have been proposed Camponogara et al. [4]. DMPC is a control scheme
in which the system is divided into a number of subsystems. Each subsystem is able
to share information with other subsystems in order to determine its local control
actions [33, 42, 52]. The main goal of the DMPC approach is to achieve some

2 F. Valencia et al.



degree of coordination among subsystems that are solving local MPC problems
with locally relevant variables, costs, and constraints, without solving the central-
ized MPC problem Jia and Krogh [14], Necoara et al. [32].

In this chapter, the application of a new bargaining-game-theory-based DMPC for
the management of congestion in motorways and urban traffic networks is presented.
Game theory is a branch of applied mathematics used in a wide range of disciplines
(see [51] for a more detailed overview of game theory). Game theory attempts to
capture behaviors in strategic situations, or games where the outcome of a player is
not only a function of his own choices but also depends on the choices of others [28].
Some DMPC schemes based on game theory concepts have been reported in the
literature. In Du et al. [5], Giovanini and Balderud [8], Li et al. [19], Trodden et al.
[44] DMPC schemes based on Nash optimality were proposed. In such approaches,
the DMPC problem was formulated as a non-cooperative game, and the convergence
of the solution to a Nash equilibrium point of the resulting non-cooperative game was
demonstrated. In Rantzer [39–41] the DMPC problem was related to game theory
using a cooperative game framework, as proposed in Von Neumann et al. [51]. In
these approaches, the Lagrangemultipliers of the dual decomposition were conceived
as price mechanisms in a market serving to achieve mutual agreements among
subsystems, and dynamic price mechanisms were used for decomposing and dis-
tributing the optimization problem associated with the original MPC problem. More
specifically, the minimization problem was converted into a min-max problem, and
again the convergence of the solution to a Nash equilibrium was demonstrated. In
Maestre et al. [24–26], Muñoz de la Peña et al. [27] some other DMPC approaches
based on cooperative game theory were presented. In these approaches, each sub-
system computes local control actions and suggests control actions to the remaining
subsystems. The final control decisions are taken by each subsystem based on the
local information and the suggested control actions from the other subsystems.

The congestion management described in the current chapter uses the theory of
bargaining games as a mathematical framework. In previous bargaining games
based approaches [48, 49, 50], the authors demonstrated that (in some cases) the
convergence of the DMPC solution to a Nash equilibrium point could produce
undesired results because it could give an undesirable closed-loop behavior in the
controlled system. Moreover, in DMPC the controllers are able to communicate
with each other. In this chapter, the communication capabilities of the controllers in
a DMPC scheme will be exploited for improving the decision-making of each
controller. Such improvements pertains to the knowledge each local controller has
about the preferences of the remaining controllers. In this way, local control actions
can be chosen in such a way that synergy among controllers arises as a consequence
of their cooperative behavior. Note that this is not an additional objective of the
proposed control scheme, but only an additional feature which is related to the
formulation of DMPC as a bargaining game.

In order to present the proposed congestion management system, in Sect. 2 non-
linear DMPC is formulated as a bargaining game. Then, in Sects. 3 and 4 the specific
application of game theory to congestion management in motorways and urban traffic
networks is shown. Finally, in Sect. 5 some closing remarks are discussed.

Congestion Management in Motorways and Urban Networks … 3



2 Non-linear Distributed Model Predictive Control:
Bargaining Game Approach

Distributed model predictive control (DMPC) is a variant of decentralized control
where some information is exchanged among subsystems in order to determine the
local control actions [33, 42, 52]. Compared with totally decentralized control
schemes, DMPC architectures yield better closed-loop behavior due to the com-
munication, cooperation, and perhaps negotiation between subsystems. However,
these elements also increase the computational and communication burden [4, 33].
Nevertheless, DMPC is becoming important because it is effective in supporting the
implementation of complex control systems with hard requirements involving fault
tolerance and flexibility, it has high control capabilities and allows the imple-
mentation of optimal controllers in real-life large-scale systems through system
decomposition, reducing the computational burden associated with the solution of
one large centralized optimization problem [37, 53].

Figure 1 shows a DMPC control scheme. In this figure Process 1 and Process 2
have local MPC controllers. Since these processes interact with each other, sharing
information between controllers is required in order to allow them to compute their
own control actions. Otherwise, the system may lose performance and/or stability.
So, at each time step local controllers must decide on the control actions to be
locally applied, transmit them to the other controllers, and negotiate with the other

Fig. 1 Schematic diagram of a typical DMPC scheme. Here each process has a local MPC
controller with the ability to share information with the other MPC controllers with the purpose of
deciding on which control action to apply

4 F. Valencia et al.



controllers on which control actions will be applied. In the following sections this
procedure is mathematically described and discussed using control theory and game
theory as mathematical frameworks.

2.1 Problem Statement

Consider the discrete-time non-linear system given by:

xðk þ 1Þ ¼ fdxðxðkÞ; uðkÞÞ ð1Þ

where xðkÞ 2 R
n and uðkÞ 2 R

m denote the state and input vectors of the dynamic
system at time step k, with fdxð�Þ a non-linear function describing the time evolution
of the dynamical system to be controlled. The general idea of non-linear model
predictive control (NMPC) is to determine the sequence of control actions for the
system by solving an optimization problem considering the predicted trajectories
given by the non-linear discrete-time model of Eq. (1).

Commonly, a quadratic cost function (that may be interpreted as the total energy
of the system) is used to measure the performance of the system:

Lð~xðkÞ; ~uðkÞÞ ¼
XkþNp�1

h¼k

½xTðhþ 1jkÞQxðhþ 1jkÞ� þ
XkþNp�1

h¼k

uTðhÞRuðhÞ� � ð2Þ

where the superscript T denotes the transpose operation, xðhjkÞ denotes the pre-
dicted value of x at time step h given the conditions at time step k, u(h) denotes the
control input u at time step h, ~xðkÞ ¼ ½xTðk þ 1jkÞ; . . .; xTðk þ NpjkÞ�T ,
~uðkÞ ¼ ½uTðkÞ; . . .; uTðk þ NcÞ; . . .; uTðk þ Np � 1Þ�T , where xðkjkÞ ¼ xðkÞ, and
uðhÞ ¼ uðk þ Nc � 1Þ, for h ¼ k þ Nc; . . .; k þ Np � 1; Q and R are diagonal
matrices with positive diagonal elements, and Nc, Np are the control and prediction
horizons respectively, with Nc �Np. Recall that ~xðkÞ; ~uðkÞ are the projections of the
state and input vectors along the prediction horizon Np. Hence, Lð�Þ is a function of
~xðkÞ; ~uðkÞ instead of being a function of xðkÞ; uðkÞ.

Let X � R
n and U � R

m denote the feasible sets for the states and inputs of the
system, i.e., xðkÞ 2 X; uðkÞ 2 U (these sets are determined by the physical and
operational constraints of the system). Then, the NMPC problem can be formulated
as the non-linear optimization problem:

min
~uðkÞ

Lð~xðkÞ; ~uðkÞÞ
s:t: :
xðhþ 1Þ ¼ fdxðxðhÞ; uðhÞÞ
xðhþ 1Þ 2 X; uðhÞ 2 U;

ð3Þ

Congestion Management in Motorways and Urban Networks … 5



This optimization problem corresponds to the centralized formulation of the
NMPC problem. Although widely studied, the solution of Eq. (3) is hard to com-
pute in real-time for large-scale systems such as traffic networks. This fact moti-
vates the use of distributed predictive control schemes.

For instance, following the approaches in Kotsialos et al. [16, 18], Papageorgiou
et al. [34] for motorways and the approaches presented in Lin et al. [21, 22] and the
references therein for urban traffic, both traffic systems can be modeled as Eq. (1).
Since they are composed of several interacting elements (links in the case of the
motorways and intersections in the case of the urban traffic networks), the whole
network can be decomposed into those fundamental elements and local predictive
control schemes can be used for an optimal local control of each element. A
motivation for such a decomposition is that traffic networks are large-scale systems,
therefore a centralized optimal solution is not viable due to the lack of flexibility
and vulnerability of this control structure (See Table 1 for a comparison between
centralized and distributed structures).

For implementing DMPC schemes the whole system must be decomposed into
several subsystems. For each subsystem a local MPC is designed, and a negotiation
strategy is provided to each controller in order to determine the local control actions
to be applied. Assume that the whole system can be decomposed into M subsystems

xrðk þ 1Þ ¼ fdxrðxðkÞ; urðkÞ; u�rðkÞÞ; for r ¼ 1; . . .;M ð4Þ

where xrðkÞ 2 R
nr and urðkÞ 2 R

mr are the local states and inputs, and
u�rðkÞ ¼ ½uT1 ðkÞ; . . .; uTr�1ðkÞ; uTrþ1ðkÞ; . . .; uTMðkÞ�T . Furthermore, assume that the
sets Xr � R

nr and Ur � R
mr define the local feasible sets for xrðkÞ and urðkÞ

respectively, where X ¼ PM
r Xr and U ¼ PM

r Ur, P denoting the Cartesian product.
From the system decomposition of (4) the cost function Lð~xðkÞ; ~uðkÞÞ can be
expressed as Venkat et al. [49, 50].

Table 1 Comparison between centralized and distributed MPC

Centralized Distributed

Objective Single objective Both local and global system
objectives

Prediction model Broad system prediction model Several prediction models (one
per local controller)

Communications All system information should be
transmitted to a central unit

Local information is transmitted
between local controllers

Processing Centralized computation of the
control actions to be applied to the
system under control

Local controllers compute the
local control actions based on the
available information

6 F. Valencia et al.



Lð~xðkÞ; ~uðkÞÞ ¼
XM
r¼1

XkþNp�1

h¼k

xTr ðhþ 1jkÞQrxrðhþ 1jkÞ þ
XkþNc�1

h¼k

uTr ðhÞRrurðhÞ
 !

ð5Þ

Let /rð~xðkÞ; ~uðkÞÞ denote the local cost function, and for the sake of simplicity,
/rð~xðkÞ; ~uðkÞÞ is defined as the term inside the brackets in Eq. (5). Therefore, the
centralized optimization problem (3) can be equivalently solved through the solu-
tion of (6), with r ¼ 1; . . .;M.

mineuðkÞ P
M

r¼1
/rðexðkÞ; euðkÞÞ

s:t::
xrðhþ 1Þ ¼ fdxrðxðhÞ; urðhÞ; u�rðhÞÞ
xrðhÞ 2 Xr; urðhÞ 2 Ur; yrðhÞ 2 Yr

ð6Þ

The optimization problem Eq. (6) defines the non-linear DMPC (NDMPC)
formulation. In this formulation, each controller determines its local control actionseurðkÞ according to its local cost function /rðexðkÞ; euðkÞÞ. Note that from Eq. (6) a
set of M local optimization problems is derived, all coupled via the cost function
and the constraints. In this sense, Eq. (6) defines a situation in which the success of
each controller depends upon the decisions of the remaining controllers. This sit-
uation defines a game referred to in this chapter as the NDMPC game.

Game-theory-based NDMPC has been previously studied by several authors. In
these approaches the DMPC was analyzed as a non-cooperative game [5, 8, 19, 44],
where local decisions were computed as the solution to the local optimization
problem (7). In those cases, the authors demonstrated the existence of at least one
Nash equilibrium point and the convergence of the distributed solution to this point.

mineurðkÞ
/rðexðkÞ; urðhÞ; u�rðhÞÞ

s:t::
xrðhþ 1Þ ¼ fdxrðxðhÞ; urðhÞ; u�rðhÞÞ
xrðhÞ 2 Xr; urðhÞ 2 Ur

ð7Þ

Although there exist several strategic situations where achieving a Nash equi-
librium point is desired, this is not the case in DMPC. For instance, in Venkat et al.
[48–50] the authors presented some examples where DMPC approaches with assured
convergence to a Nash equilibrium point exhibited an unexpected closed-loop
behavior, thereby limiting the applicability of those schemes. Alternatively, [39–41]
transformed the optimization problem (7) into a min-max optimization problem.
Accordingly, the solution to (7) does not require information exchange and also
converges to a Nash equilibrium point. However, depending on the dimensions of the
system the solution to the min-max problem might not be feasible in real-time. Based
on these facts, bearing in mind the work done in Venkat et al. [48–50] on feasible
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cooperation MPC (where convergence of the distributed scheme to the centralized
solution was demonstrated), and given that local controllers are able to communicate
with each other, a cooperative game framework is used in this chapter for analyzing
the situation arising from Eq. (6).

2.2 The Distributed Model Predictive Control Game

As it was stated in Sect. 2.1, in the NDMPC formulation the success of each local
controller is based upon the choices of the remaining controllers. According to
Myerson [28], such situations are the object of study of game theory. In the
NDMPC case, the game is determined by the physical laws used to model the
system to be controlled, by the models locally used to predict the system’s behavior,
and by the physical and operational constraints of the whole system. Since NDMPC
is a discrete-time control strategy, it is played at each time step k, i.e., at each time
step an optimal control action is obtained (over the decision space) based on local
performance indices. Note that from Eq. (6) at each time step k each local controller
has a decision space Ur for selecting the sequence of control actions eurðkÞ, and this
selection obeys the minimization of the local cost function /rðexðkÞ; euðkÞÞ (moves,
strategies, and choices in the NDMPC game). So, based on Nash [31], Von
Neumann et al. [51] the NDMPC circumstance has all the elements required for
being analyzed within the game theory framework. In order to make this concept
clear, Table 2 shows a didactic comparison between Game Theory and DMPC.

Mathematically, a game G can be defined in its strategic form as a tuple G ¼
ðN ; fXrgr2N ; f/rgr2N Þ where N ¼ f1; . . .;Mg is the set of players, Xr is the
decision space (set of feasible decisions) of the r-th player; and /r : X1 � XM ! R

is the profit function of the r-th player (i.e., we must maximize instead of minimize
as in MPC). Often, /r quantifies the preferences of player r (and determines its

Table 2 Comparison between game theory and DMPC

Game Theory DMPC

Game Set of rules used to describe the
circumstances

Local and global system model rules, as
well as physical and operational constraints

Play Every particular instance at which
the game is played

Each time step k

Move The occasion choosing of an
alternative under the conditions of
the game

Each time step k (as shown at the end of
Sect. 2)

Strategy Preference and/or rule followed
by each player to select an
alternative

Minimization of the local system-wide-
control cost function (as shown at the end of
Sect. 2)

Choice The selected alternative in a move
according to the strategy

Local control action to be applied to the
system, driven by the minimization of the
local system-wide-control cost function

8 F. Valencia et al.



strategy), and gives to each player some degree of rationality [1]. Let N be the set
of local controllers, Xr ¼ Xr \ Ur be the decision space of controller r, and
f/rðexðkÞ; euðkÞÞgi2N be the set of profit functions. Then the NDMPC game in its
strategic form is a tuple GNDMPC ¼ ðN ; fXrgr2N ; f/rðexðkÞ; euðkÞÞgr2N Þ. In the
light of (6), the game GNDMPC involves a group of controllers who have the
opportunity to collaborate for a mutual benefit: improving both local and whole
system performance. So, GNDMPC is a bargaining game according to the definition
provided by Nash in Nash [29–31]. Furthermore, the game GNDMPC has a group of
individuals involved in the bargaining, a mutual benefit which is the objective of the
bargaining, and a utopia point defined by the set of choices where all the individuals
involved in the bargaining achieve at the same time their maximum benefit. Thus,
the only missing element to define the game GNDMPC as a bargaining game is the
disagreement point.

According to Nash [29–31] the disagreement point is the benefit perceived by a
player when an agreement is not possible. Such benefit is associated with an
alternative plan carried out by the player in this situation, which is determined by
the information locally available. Moreover, the disagreement point should give to
the players a strong incentive to increase their demands as much as possible without
losing compatibility. Following these statements the disagreement point grðkÞ 2 R

for each player (local controller) in the NDMPC game should be defined such that it
reflects the expected cost associated with the non-cooperative behavior. That is, the
expected value of the local cost function if the local controller “decides” not to
cooperate. Associated with this cost, there is a local control action to be applied that
acts as an alternative plan carried out by the controller in a non-cooperative situ-
ation. In addition, the disagreement point must be updated following a rule that
provides incentives for changing the decision of the controllers that decide not to
cooperate, and for enhancing the performance of the controllers that decide to
cooperate.

For controller r, assume grðkÞ as the expected maximum loss of performance.
Then, at time step k : grðkÞ � /rðexðkÞ; euðkÞÞ denotes the utility of such subsystem.
Associated with the utility perceived by controller r there is a plan or sequence of
local control actions eurðkÞ. Thereby, as in Nash [29–31], controller r seeks a
feasible local control sequence that maximizes its own utility. That is, controller
r looks for a control sequence ~urðkÞ such that /rð~xðkÞ; ~uðkÞ is minimum and
grðkÞ�/rð~xðkÞ; ~uðkÞÞ. If that control sequence exists, the plan of action is locally
to apply the first element of the control sequence ~urðkÞ, to use a shifted control
sequence as the initial condition for making the decision again in the next time step,
and to reduce the disagreement according to the expression grðk þ 1Þ ¼ grðkÞ
�aðgrðkÞ � /rð~xðkÞ; ~uðkÞÞÞ, with a 2 R; 0\a\1. If that control action does not
exists, the plan of action is to keep applying the current local control action, to use a
shifted control sequence from the initial condition as a condition for performing the
next decision making stage, and to make the value of the disagreement point equal
to the value of keeping the current control action, viz., grðkÞ ¼ /rð~xðkÞ; ~uðkÞÞ.
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Given the updating conditions of the disagreement point, decreasing its value
(which implies the controller r “decides” to cooperate) provides strong incentives
for increasing their demand from the cooperative behavior; but, making its value
equal to the current value of the cost function (which implies the controller
r “decides” not to cooperate) provides incentives to controller r for changing its
decision not to cooperate. Indeed, if the expected maximum loss of performance
grows the decision space is augmented, the probability of finding a control sequence
such that /rð~xðkÞ; ~uðkÞÞ is minimum, and grðkÞ�/rð~xðkÞ; ~uðkÞÞ is increased.
Mathematically, the disagreement point is formulated as follows [45]:

grðk þ 1Þ ¼ grðkÞ � aðgrðkÞ � /rð~xðkÞ; ~uðkÞÞÞ if grðkÞ�/rð~xðkÞ; ~uðkÞÞ
grðkÞ þ ð/rð~xðkÞ; ~uðkÞÞ � grðkÞÞ if grðkÞ\/rð~xðkÞ; ~uðkÞÞ

�
ð8Þ

Despite of the similarities between the bargaining games defined by Nash in
[Nash 29, 30, 31] and the game GNDMPC (see Table 3), there are some differences
that should be accounted for in order to define a bargaining solution to the NDMPC
game (in NDMPC the solution pertains to the control actions to be locally applied
by each controller). The main difference is that since it is expected that the system
will operate over a long time period, the NDMPC game is a sequence of infinite
bargaining games which are played at each time step, in a variable-decision envi-
ronment influencing the behavior of the local controllers and their decision-making
stage. Thus, the original game theory is extended in order to have a mathematical
framework for analyzing NDMPC bargaining games. In this way the concept of
discrete-time dynamic bargaining game for DMPC (identified as GT-NDMPC in
this chapter) is introduced in Valencia [45].

A discrete-time dynamic bargaining game refers to a situation where at each time
step a bargaining game is solved depending on the dynamic evolution of the decision
environment. In this bargaining game the dynamic evolution of the decision

Table 3 Comparison between bargaining games and DMPC

Bargaining game theory DMPC

Players A group of individuals involved in
the bargaining

The set of local controllers that are
able to communicate among them,
and bargain

Decision
Space

The set of all choices available to
the individuals involved in the
bargaining

The set of available control actions,
determined by the physical and
operational constraints

Disagreement
point

Minimum level of satisfaction
expected by the individuals from the
bargaining

Maximum expected loss of perfor-
mance by each local controller from
the bargaining

Utopia point The set of choices where all the
individuals involved in the bar-
gaining achieve at the same time
their maximum benefit

The set of control actions that
minimize all the local system-wide-
control cost functions at the same
time
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environment is determined by the state xðkÞ 2 R
n and input uðkÞ 2 R

m. Mathemat-
ically, a discrete-time dynamic bargaining game is defined as follows:

Definition 1 (Discrete-time Dynamic Bargaining Game) A discrete-time dynamic
bargaining game for the set of players N is a sequence of games fðHðkÞ; gðkÞÞg1k¼0,
where:

1. HðkÞ is a nonempty closed subset of RN containing the feasible values for the
profit function of each player, at k ¼ 1; 2; 3; . . ..

2. gðkÞ is the disagreement point, gðkÞ 2 intðHðkÞÞ.
3. frðHðkÞÞ :¼ minf/rðkÞ : ð/rðkÞÞr2N 2 HðkÞg exists for every r 2 N at each

time step k.
4. There exist functions fr 2 R

nr ; g 2 R
z; hr 2 R; r ¼ 1; . . .;N, determining the

dynamic evolution of the decision environment and the disagreement point of
player r, and the dynamic evolution of the feasible set, such that:

xrðk þ 1Þ ¼ frðxðkÞ; uðkÞÞ
grðk þ 1Þ ¼ hrðxðkÞ; uðkÞ; gðkÞÞ
Hðk þ 1Þ ¼ gðxðkÞ; uðkÞ;HðkÞÞ

ð9Þ

with xrðkÞ 2 Xr, Xr � X, z the dimensions of the feasible set of values for the
profit function, and uðkÞ the vector of actions taken by the players affecting the
decision environment. Here, the function gðxðkÞ; uðkÞ;HðkÞÞ is defined by the
set of time dependent constraints on xðkÞ and uðkÞ, and the facts that can reduce
the size of the decision space.

5. There exists a tuple ð/1ðxðkÞ; uðkÞÞ; . . .;/MðxðkÞ; uðkÞÞÞ 2 HðkÞ with
/rðxðkÞ; uðkÞÞ the profit function of the r-th player.

Let Nrð~xðkÞ; ~uðkÞÞ be the set resulting from the intersection of Xr and the
equality constraint given by the local prediction model [4]. Then, the setHðkÞ in the
GT-NDMPC game is defined as HðkÞ :¼ fð/1ðxðkÞ; uðkÞÞ; . . .;/MðxðkÞ; uðkÞÞÞ 2
R

M jðxðkÞ; uðkÞÞ 2 Nrð~xðkÞ; ~uðkÞÞg. Here gðxðkÞ; uðkÞ;HðkÞÞ is equal to the whole
system model [1]. Then, the game GNDMPC is a discrete-time dynamic bargaining
game. Although in the definition of fðHðkÞ; gðkÞÞg1k¼0 it is desired that
gðkÞ 2 intðHðkÞÞ, from the definition of grðkÞ such a condition cannot be guaran-
teed. In that case, the value of the disagreement point might lie on the boundary of
the feasible set. If this happens and there exists a feasible search direction to
minimize the local cost function, then a control action satisfying the constraint
grðkÞ�/rð~xðkÞ; ~uðkÞÞ is achieved. Otherwise, there is no change in the local
control actions. This allows each local controller to decide whether or not to
cooperate with the remaining subsystems. Note that in these statements there exists
an underlying utility concept.
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For GT-NDMPC game the utility of each local controller is given by the dif-
ference between the disagreement point and the local cost function, i.e.,
grðkÞ � /rð~xðkÞ; ~uðkÞÞ. From Nash [31], Harsanyi [11], Peters [36], Akira [1] the
solution of a bargaining game is given by the maximization of the Nash products,
namely, the product of the utility functions PM

r¼1grðkÞ � /rð~xðkÞ; ~uðkÞÞ in the
NDMPC case. Based on the axiomatic characterization proposed in Valencia [45]
the outcome of the game GNDMPC is given by the solution of the optimization
problem (the logð�Þ function arises from the transformation of the Nash products).

max
~uðkÞ

PM
i¼r

wrlogðgrðkÞ � /rð~xðkÞ; ~uðkÞÞÞ
s:t: :
xrðhþ 1Þ ¼ fdxrðxðhÞ; urðhÞ; u�rðhÞÞ
grðkÞ�/rð~xðkÞ; ~uðkÞÞ
xrðhÞ 2 Xr; urðhÞ 2 Ur

ð10Þ

Then, the maximization problem of Eq. (10) can be solved in a distributed way
by locally solving the system-wide control problem of Eq. (11).

max
~urðkÞ

PM
i¼r

wrlogðgrðkÞ � /rð~uiðkÞ; ~u�iðkÞÞÞ
s:t: :
xrðhþ 1Þ ¼ fdxrðxðhÞ; urðhÞ; u�rðhÞÞ
grðkÞ�/rð~uiðkÞ; ~u�iðkÞÞ
xrðhÞ 2 Xr; urðhÞ 2 Ur

ð11Þ

considering ~u�rðkÞ to be fixed and optimizing only in the direction of ~urðkÞ. For
implementing the distributed solution of the GT-NDMPC game, a negotiation
model based on the model proposed in Nash [31] for two-player games is used
Valencia [45]. In this negotiation model each local controller is:

• fully informed on the structure of the game;
• fully informed on the utility function of the remaining subsystems;
• assumed intelligent and rational, i.e., each controller has a set of preferences,

treats, and rational expectations of its future environment.

Additionally, it is assumed that the communication architecture allows each
subsystem to communicate with the remaining subsystems in order to transmit their
disagreement points and their local measurements of the states and inputs. Such a
model adapted for solving the GT-NDMPC game has the steps shown in algorithm 1.

The initial condition for solving Eq. (11) at time step k þ 1 is given by the
shifted control input, and ~uiðkÞ is a feasible control action used as initial condition
for the optimization procedure of subsystem i at time step k (shifted control input
from previous time instant). As in the case of the negotiation model proposed in
Nash [31], the negotiation model for solving the GT-NDMPC game in a distributed
way represents a two-moves game where the decisions are taken in steps 3 and 4.

12 F. Valencia et al.



It is worth noting that the proposed negotiation model allows for the avoidance
of iterative procedures. This is the main difference of the proposed control scheme
with respect to the approaches based on Lagrange multipliers, or those schemes
based on game theory reported in the literature. Moreover, it provides each sub-
system enough elements for deciding on whether or not to cooperate, depending of
the benefit perceived to result form the cooperative behavior.

The closed-loop stability of a system controlled via the proposed scheme can be
derived by combining the feasibility proof in Valencia et al. [46] and the definition
of a disagreement point (the disagreement point provides an upper boundary for
local and whole system cost functions). From Algorithm 1, the stability of the
proposed GT-NDMPC method depends on the decision of each subsystem on
whether or not to cooperate. In order to demonstrate the stability of the closed-loop
system, in Valencia [45] two cases were considered: All subsystems always
cooperate, or some subsystems do not cooperate at first but a few time steps ahead
they all start to cooperate. Following the same procedure proposed in Valencia [45]
for these cases, closed-loop stability conditions can be derived.

In Sects. 3 and 4 the GT-NDMPC game formulation presented in the current
section is applied to congestion management on motorways and in urban traffic.

3 Bargaining-Game-Based Coordination for Congestion
Management on Motorways

3.1 Motorway Traffic Model

Let us start by introducing some concepts and notations related to the traffic model
used in this section, viz. the METANET model described in Kotsialos et al. [16, 18],
Papageorgiou et al. [34]. In this model, the motorway network is represented as a

Congestion Management in Motorways and Urban Networks … 13



directed graph in which the links represent homogeneous motorway stretches. Each
stretch has uniform characteristics, e.g., no on-/off-ramps, no major changes in the
geometry, and no metering lines. A node is placed at the locations where a major
change in the road characteristics occurs, as well as at junctions and at the on-/off-
ramps. A link is further divided into segments of equal distance. Each segment is
characterized by its length (Lm), number of lanes (km), vehicle density (qðm;iÞðkÞ),
mean speed (vðm;iÞðkÞ), and output flow (qðm;iÞðkÞ), with m denoting the link number,
ðm; iÞ denoting the segment i of the link m, and k the time step. For each segment, the
dynamic evolution of density of vehicles, mean speed, and length of the queue at the
on-ramps is determined. Let Rðm;iÞðkÞ, Cðm;iÞðkÞ, and Aðm;iÞðkÞ denote the relaxation,
convection, and anticipation terms, defined as in Kotsialos et al. [16, 18],
Papageorgiou et al. [34]. Moreover, let the subscript o denote the origin nodes (nodes
allowing the access of traffic from an external road; mainstream origin or on-ramp).
For instance, do denotes the demand at the origin o. This traffic accessing a link by on-
ramp o often is limited or controlled by a traffic light (or ramp-metering), where roðkÞ
denotes the ramp-metering rate, used to regulate the vehicles accessing themotorway.

The METANET model was used here because this model provides an adequate
description of the traffic flow on a motorway with reduced complexity, which is
desirable for control purposes. For instance, in Kotsialos et al. [16, 18],
Papageorgiou et al. [34] and the references therein, there are several control strat-
egies where the METANET model was used for representing the traffic flow
dynamics. Also in Kejun et al. [15], Groot et al. [9], Baskar et al. [2], Hegyi et al.
[12], Lu et al. [23] the METANET model was used for representing the dynamic
behavior of the traffic flow.

Let qoðkÞ be the flow of vehicles incoming from the origin o to the link to which
origin o is connected (1,i). The value of qoðkÞ is given by:

qoðkÞ ¼ min do þ woðkÞ
Ts

;CoroðkÞ;Co
qmax;i � qð1;iÞðkÞ
qmax;i � qcr;i

 !" #
ð12Þ

where Co is the capacity of origin o under free flow conditions, qmax;i is the
maximum density of a segment, wo denotes the queue of vehicles on the origin node
o, Ts is the sample time. Discussions on the meaning of the parameters in (12) and
their selection can be found in, e.g., [16, 18, 34].

The dynamic evolution of density, speed, and queues in a traffic segment of a
motorway is given by:

qðm;iÞðk þ 1Þ ¼ qðm;iÞðkÞ þ
Ts

Lmkm
ðqin;ðm;iÞðkÞ � qout;ðm;iÞðkÞÞ ð13Þ

vðm;iÞðk þ 1Þ ¼ vðm;iÞðkÞ þ Rðm;iÞðkÞ þ Cðm;iÞðkÞ

þ Aðm;iÞðkÞ �
dTsqoðkÞvðm;iÞðkÞ

Lmkmðqðm;iÞðkÞ � lÞ
ð14Þ
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woðk þ 1Þ ¼ woðkÞ þ TsðdoðkÞ � qoðkÞÞ ð15Þ

with

qin;ðm;iÞðkÞ ¼ qoðkÞ þ qðm�1;ilastÞðkÞ ð16Þ

qout;ðm;iÞðkÞ ¼ kmqðm;iÞðkÞvðm;1ÞðkÞ ð17Þ

where qðm�1;ilastÞðkÞ is the flow from the last segment of the link m − 1, and the term
dTsqoðkÞvðm;iÞðkÞ
Lmkmðqðm;iÞðkÞ�lÞ defines the reduction in the speed in the link (m,i) due to the incoming

flow from the origin o.

3.2 Bargaining-Game Approach to Congestion Management
on Motorways

The idea of congestion management on motorways is to provide a control strategy
for regulating the number of vehicles entering the traffic network. In this sense,
expected travel time is used as the cost function for the NMPC. The travel time is a
performance index that relates the amount of vehicles on a motorway at any one
time with the changes in the timing of the traffic lights. Let xðkÞ ¼ ½qTðkÞ; vTðkÞ;
wTðkÞ�T , and uðkÞ ¼ rðkÞ, where qðkÞ; vðkÞ; wðkÞ; rðkÞ are the vectors containing
the densities, mean speeds, queues, and ramp-metering rates of all links, segments
and origins of the motorway respectively. Thus, the performance index of the users
of the motorway and the access roads over a prediction horizon Np is given by:

Lð~xðkÞ; ~uðkÞÞ ¼ Ts
XkþNp�1

h¼k

X
m2M

X
i2wm

qðm;iÞðhÞLmkm
 

þa
X
o2O

woðhÞ þ arðDroðhÞÞ2
! ð18Þ

whereM is the set of links, wm denotes the set of segments of link m,O denotes the
set of origins, DroðkÞ ¼ roðkÞ � roðk � 1Þ, and a; ar [ 0 are tuning parameters
associated with the time spent by the users in the queues at the origins and with the
smoothness of the changes of the control actions. Since the traffic on a motorway
way is very sensitive to changes in the ramp-metering rates in Eq. (18) the norm of
those changes over the prediction horizon is penalized instead of the value itself.

Since motorways are large-scale systems, implementation of centralized NMPC
is not advisable [7]. Assume that the whole system can be decomposed into
M subsystems r such that the local models have the form (4) for all r.
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The decomposition could be made based on the inputs, or merging different
segments [6]. Let Mr; Wr, and Or denote the set of links, the set of segments, and
the set of origins belonging to the subsystem r. Then, NDMPC for congestion
management on a motorway is given by:

min
~uðkÞ

PM
r¼1

/rð~xðkÞ; ~uðkÞÞ
s:t: :
xrðhþ 1Þ ¼ fdxrðxðhÞ; urðhÞ; ~u�rðkÞÞ
qmin;ðm;iÞ � qðm;iÞðkÞ� qmax;ðm;iÞ
wmin;o �woðkÞ�wmax;o

vmin;ðm;iÞ � vðm;iÞðkÞ� vmax;ðm;iÞ
rmin;o � roðkÞ� rmax;o

m 2 Mr; i 2 Wr; o 2 Or

ð19Þ

with fdxrðxðhÞ; urðhÞ; ~u�rðkÞÞ being the local prediction model. Furthermore, the
system decomposition Xr and Ur are defined by the sets Mr, Wr, and Or which
determine the links and segments belonging to the subsystem r.

Then, the NMPC problem for travel time reduction can be equivalently for-
mulated as in Eq. (6), with the corresponding definition for the variables and sets.
Since each subsystem model requires the information from the remaining subsys-
tems for making the prediction, the values of the local travel times /rð~xðkÞ; ~uðkÞÞ
are coupled to each other. Thus, a situation arises belonging to the set of games
GNDMPC, where N is the set of local controllers trying to minimize their local cost
function, over a feasible set Xr ¼ X� U.

In addition, since the travel time of the users of the motorway can be expressed
as Lð~xðkÞ; ~uðkÞÞ ¼PM

r¼1 /rð~xðkÞ; ~uðkÞÞ, and since the local controllers are able to
communicate with each other, the game GNDMPC is a discrete-time bargaining game
fðHðkÞ; gðkÞÞg1k¼0. The outcome of the game GNDMPC associated with the distrib-
uted congestion management scheme described in this section is obtained by the
solution to the local optimization problems previously described in Eq. (11) con-
sidering for its implementation the algorithm 1, proposed in Sect. 1.

3.3 Simulation and Results

Consider the motorway shown in Fig. 2. It consists of a motorway with ten seg-
ments and nine on-ramps modeled as origins and it allows the entry of new vehicles
to the motorway regulated by the traffic signals riðkÞ; i ¼ 1; . . .; 9. A period of 12 h
is simulated. The Matlab function fmincon is used for solving each local optimi-
zation problem. The solver used an interior point method. In order to test the
performance of the proposed congestion management scheme a time-varying
demand profile is used. Thus, the curve of demand shown in Fig. 3 is simulated at
each on-ramp. The maximum number of entering cars per input is 600; and an

16 F. Valencia et al.
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initial queue of 10 vehicles is considered (see Fig. 3). For simulation purposes all
links are assumed to have the same characteristics. The parameters for the simu-
lations are taken from Zegeye et al. [54]. Note that in Fig. 2 the current control
action is denoted by rðk � 1Þ while the control action to be locally applied is
denoted by r	i ðkÞ; i ¼ 1; . . .; 9. In this case the prediction and control horizons are
Np ¼ 10 and Nc ¼ 5, respectively. For implementing the proposed scheme the
whole system is divided into ten subsystems. Each subsystem has a link and an on-
ramp (Fig. 2 shows the system partition). For comparison purposes a centralized
NMPC is also implemented (with Np ¼ 10 and Nc ¼ 5). The comparison between
the proposed GT-NDMPC and a centralized NMPC is done because the centralized
solution is the best possible. Therefore, NMPC provides the best baseline for
evaluating the loss of performance of the motorway with the GT-NDMPC scheme.

From the formulation of the GT-NDMPC for congestion management purposes
on the motorway of Fig. 2, the controllers at each on-ramp must share the current
local control actions and the measurements of their local states. Based on this
information, all controllers are able to identify the current operating conditions of
the remaining controllers, and they are also able to decide which control actions
should be locally applied with the purpose of minimizing their effect on the per-
formance of the other local controllers. It is worth pointing out that the information
exchange can be done using any full duplex communication channel.

Figure 4a and b show the cycle for each on-ramp light. From these figures it is
evident that the centralized and the proposed congestion management schemes
generate different sequences of control actions at times with higher demands.
Moreover, in the off-peak time intervals, the same constant control actions are used
for managing the congestion at the motorway. It is noteworthy that although at peak
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Fig. 3 Simulated demand at each on-ramp in the evaluation of the proposed GT-NDMPC
approach in the case study for evaluating the performance of the proposed GT-NDMPC approach
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demand the traffic network presents a congestion scenario (600 vehicles are
expecting to get onto the motorway at each on-ramp), blocking actions are not
required, i.e., flow on the motorway and on the on-ramps is reduced. This is
reflected in the behavior of the speed and density of vehicles.

Figure 5a and b present the evolution along the simulation of the speed at
the different links when the control actions are computed by the NMPC and
the GT-NDMPC respectively. In these figures, it is clear that as the demand at the

(a)

(b)

Fig. 4 Comparison of control actions at each on-ramp for the centralized and proposed schemes.
a Control actions at each on-ramp computed using a centralized NMPC approach. b Control
actions at each on-ramp computed by the proposed GT-NDMPC approach
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on-ramps increases the speed at the links decreases, reaching the lowest value at the
link (1,7) when the control actions are computed by the NMPC. It is noteworthy that
the speed distribution over the motorway depends on the control scheme used for
computing the control actions. In fact, the speed distribution with the proposed

(a)

(b)

Fig. 5 Comparison of speed behavior between the proposed and centralized approaches.
a Behavior of the speed with the NMPC approach. b Behavior of the speed with the proposed GT-
NDMPC approach
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GT-NDMPC was [60, 100]; lower than the speed distribution with the NMPC (here
speed distribution is understood as the range where all the speed trajectories are
moving).

Figure 6a and b show the time evolution of the density of vehicles at each link.
From these figures it is possible to infer that the centralized NMPC allows a better
use of the traffic infrastructure. Since NMPC performed a larger reduction of speed
than the GT-NDMPC, the density of vehicles in the motorway increases. Hence, the

(a)

(b)

Fig. 6 Comparison of densities between centralized and proposed schemes. a Time evolution of
the density when the control actions are computed by an NMPC approach. b Time evolution of the
density when the control actions are computed by the proposed GT-NDMPC approach
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expected length of the queues at the on-ramps decreases. It is worth pointing out
that despite the demand, the control schemes kept the density below the critical
density. Thus the traffic system remained stable along the simulation.

Although GT-NDMPC presents a loss of performance with respect to the cen-
tralized NMPC, the loss of performance is not significant. Let the total time spent
(TTS) by the vehicles on the motorway and the entrance ramps over the entire
simulation period be defined as:

TTS ¼
XNsim

l¼1

X
m2M

X
i2wm

qi;mðlÞLmkm þ
X
o2O

woðlÞ
 !

Ts ð20Þ

where Nsim is the number of simulation steps. Another performance index used for
evaluating control schemes with application to motorways is the Total Waiting
Time (TWT) [43], this index is computed as:

TWT ¼
XNsim

i¼1

X
m2w0

wmðlÞ
0@ 1A ð21Þ

Table 4 presents the TTS and the TWT for two optimization-based control
techniques, namely, the centralized NMPC, the proposed GT-NDMPC, and the
ALINEA method reported in Haj-Salem et al. [10], Papageorgiou et al. [35] which
is a simpler approach for traffic control on motorways. In fact, the control action in
the ALINEA method is a sort of integral state-feedback where riðk þ 1Þ ¼ riðkÞþ
Kðqcr;m � qðm;iÞðkÞÞ, with K the gain of the controller. Note that, ALINEA is a
simpler control law and the optimization-based techniques perform better (in terms
of the TTS and the TWT indexes) on the motorway presented in this chapter. In
fact, significant improvements are achieved even with the proposed GT-NDMPC,
which (due to system partition) has a poorer performance compared to the cen-
tralized NMPC. The TTS results shown in Table 4 also confirm the loss of per-
formance using GT-NDMPC; however, a distributed control scheme can be used as
an alternative for controlling large-scale traffic networks. Note that although the
TWT increases by about 77 % in the GT-NDMPC case with respect to the cen-
tralized case, the difference in the TTS is just about 4 %. This means that with GT-
NDMPC there are more vehicles waiting in the queues but once they are on the
motorway they are efficiently evacuated, resulting in a reduction of their TTS.

Table 4 TTS and TWT for the ALINEA, NMPC, and GT-NDMPC control schemes

Controller TTS Relative difference (%) TWT Relative difference (%)

ALINEA 3,998 0 291,683 0

NMPC 3,677 8.03 131,485 54.92

GT-NDMPC 3,833 4.127 231,830 20.51
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Figure 7a and b show the evolution of the queues at each on-ramp. It is evident
that the centralized NMPC maintains the queues at almost all on-ramps at the same
length while in the case of the motorway controlled by the GT-NDMPC each on-
ramp has its own queue length, resulting from the negotiation among controllers.
Consequently, a better use of the infrastructure is achieved with the centralized
NMPC, which is able to manage the congestion on the motorway. For instance the
total waiting time index for the centralized MPC is significantly lower than in the
case of the GT-NDMPC.

(a)

(b)

Fig. 7 Comparison of queues between the centralized and proposed schemes. a Time evolution of
the queues when the control actions are computed by a centralized NMPC approach. b Time
evolution of the queues when the control actions are computed by the proposed GT-NDMPC
approach
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Figure 8 presents the computational time associated with both the solution of the
centralized NMPC and that of the proposed GT-NDMPC. In Fig. 8, the time
involved in the solution of each local controller was considered because it is
assumed that all local controllers are working at the same time. Thus the compu-
tational time of the proposed GT-NDMPC is determined by the slowest local
controller. From Fig. 8, it is evident that (as expected) the time required by the GT-
NDMPC for computing the local control actions is lower than the time required by
the centralized NMPC. In fact, the computational time of the centralized NMPC is
higher by an order of magnitude. Accordingly, from the point of view of the
computational time, the GT-NDMPC scales better than the NMPC. It is worth to
point out that the sample time Ts is 60 s. Assume that there is an exponential
dependence of the computational time on the number of on-ramps on the motorway.
Thus with the centralized NMPC a maximum of 28 on-ramps can be controlled,
while with the GT-NDMPC ideally up to 648 on-ramps can be controlled before
requiring to increase the sampling time. Previous scaling results were obtained
following the rules tNMPC ¼ 0:02707exp 0:2nð Þ and tNDMPC ¼ 0:091exp 0:01nð Þ for
centralized NMPC and GT-NDMPC respectively, with n the number of on-ramps.

Fig. 8 Comparison of the computational time of both centralized NMPC and GT-NDMPC
schemes. Here tNMPCðkÞ represents the time taken by the centralized NMPC for computing the
control actions at time step k, while tNDMPCrðkÞ; r ¼ 1; . . .; 9 represents the time taken by each
local controller for computing the local control actions at the same time step
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4 Bargaining-Game-Based Coordination for Urban
Congestion Management

4.1 Urban Traffic Model

As in Sect. 3, let us begin by introducing some concepts and notations related to the
traffic model used here, viz. the Macroscopic Simplified Urban Traffic Model (S
model) described in Lin et al. [21, 22]. Similar to the motorway case, in urban traffic
models the concepts of links and origins are also used. In this model J denotes the
set of nodes or intersections, L denotes the set of links or roads, Iðu;dÞ � J denotes
the set of input nodes, and Oðu;dÞ � J denotes the set of output nodes. Hence, each
link is defined by its input and output nodes, i.e. by the pair ðu; dÞ; u; d 2 J
marking the starting and ending intersections respectively. The S model has the
particularity that each intersection takes the corresponding cycle time as its simu-
lation time interval. Therefore, the simulation time intervals might be different for
each intersection. So the input and output flow rates of each link are averaged over
the cycle times (the flows leaving or entering links are described with flow rates
rather than with numbers of cars Lin et al. [22]). For a link ðu; dÞ 2 L, let cd be the
cycle time with kd its corresponding time step counter. Figure 9 illustrates the
concepts previously introduced.

Let aleaveðu;d;oÞðkdÞ denote the leaving flow rate of link (u, d) turning to the output

link o. Let gðu;d;oÞðkdÞ be the green time signal duration allowing the vehicles to
flow from link (u,d) to output link o. Then, aleaveðu;d;oÞðkdÞ can be computed as the

minimum value out of the capacity of the intersection, the number of cars waiting or
arriving to the next intersection, and the available space in the downstream link:

aleaveðu;d;oÞðkdÞ ¼ min bðu;d;oÞðkdÞlðu;dÞ
gðu;d;oÞðkdÞ

cd
;
gðu;d;oÞðkdÞ

cd
þ aarriveðu;d;oÞðkdÞ;

�
bðu;d;oÞðkdÞP

u2Iðd;oÞ
bðu;d;oÞðkdÞ

Cðd;oÞ � nðd;oÞ
cd

9>=>;
ð22Þ

where bðu;d;oÞðkdÞ is the relative fraction of the traffic at link (u,d) turning towards
output link o at time step kd , lðu;dÞ is the saturated flow rate leaving link (u,d),

aarriveðu;d;oÞðkdÞ is the arriving average flow rate of the substream going towards o, Cðd;oÞ
is the storage capacity of the link (d,o) expressed in number of vehicles, and
nðd;oÞðkdÞ is the number of vehicles at link (d,o) at time step kd . In (22) aarriveðu;d;oÞðkdÞ is
calculated as the fraction of the input flow rate of link (u,d) the destination of which
is the output link o. Let aarriveðu;dÞ ðkdÞ be the average flow rate arriving at the end of the

queue at link (u,d) at time step kd . Thus:
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aarriveðu;d;oÞðkdÞ ¼ bðu;d;oÞðkdÞaarriveðu;dÞ ðkdÞ ð23Þ

with aarriveðu;dÞ ðkdÞ defined as:

aarriveðu;dÞ ðkdÞ ¼
cd � cðkdÞ

cd
aenterðu;dÞðkd � dðkdÞÞ þ cðkdÞ

cd
aenterðu;dÞðkd � dðkdÞ � 1Þ ð24Þ

where aenterðu;dÞðkdÞ is the average flow rate entering to the link (u,d) at time step kd
cðkdÞ, and dðkdÞ being functions depending on the vehicles that arrived at the
queues of the link (u,d) (see Appendix A of Lin et al. [22] for details). Note that
aenterðu;dÞðkdÞ ¼

P
i2Iði;u;dÞ a

leave
ði;u;dÞðkdÞ.

In order to derive a model for a traffic network, a balance between entering and
leaving vehicles is performed. Taking the definitions for aarriveðu;dÞ ðkdÞ and aleaveðu;dÞðkdÞ
into account, and assuming that the vehicles are in the queue corresponding to their
output destination o, the dynamic evolution of the number of vehicles and queues at
link (u,d) is given by:

nðu;dÞðkd þ 1Þ ¼ nðu;dÞðkdÞ þ aenterðu;dÞðkdÞ � aleaveðu;dÞðkdÞ
� �

cd ð25Þ

qðu;d;oÞðkd þ 1Þ ¼ qðu;d;oÞðkdÞ þ aarriveðu;d;oÞðkdÞ � aleaveðu;d;oÞðkdÞ
� �

cd ð26Þ

where the number of vehicles waiting in the queue is given by the sum of the
vehicles waiting in each individual queue, viz., qðu;oÞðkdÞ ¼

P
o2Oðu;dÞ qðu;d;oÞðkdÞ.

4.2 Bargaining-Game Approach to Congestion Management
in Urban Traffic

For an urban traffic network, let xðkÞ ¼ ½nTðkÞ; qTðkÞ�T be the state vector, where
nðkÞ and qðkÞ are vectors whose components are the number of vehicles and the
queues at each link of the network. Moreover, let uðkÞ ¼ gðkÞ be the input vector,
with gðkÞ a vector whose components are the green signal time durations of each
traffic light in the network. Furthermore, assume that all intersections in the network
have the same cycle time cd with k its corresponding time step counter. Then, the
urban traffic model of (25)–(26) can be written as Eq. (1).

Thus, this urban traffic model can be used as prediction model for implementing
NDMPC. Again, the idea of this traffic network is to provide a control strategy for
congestion management. Hence, the performance index (travel time) is used as the
cost function. From Eqs. (25)–(26) the expected travel time inside a prediction
horizon Np is determined by Eq. (27) Lin et al. [21, 22]:
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Lð~xðkÞ; ~uðkÞÞ ¼ cd
XkþNp�1

h¼k

X
ðu;dÞ2L

nðu;dÞðhÞ
0@ 1A ð27Þ

As in the case of motorways, urban traffic networks are large-scale systems and
therefore solving the optimization problem (3) is not feasible in real-time. Assume
that the whole urban traffic network can be decomposed into M subsystems r such
that each local model can be expressed as Eq. (4).

Let Lr denote the set of links (u,d) belonging to subsystem r. Let P ¼
fp1; p2; . . .; pTg be the set of intersections in the urban traffic network, where
pi; i ¼ 1; . . .; T are its elements. Let Pr � P be the set of intersections belonging
to subsystem r. Then, from Eq. (27) and the system decomposition, the NMPC for
congestion management in an urban traffic network is given by:

min
~uðkÞ

PM
r¼1

/rð~xðkÞ; ~uðkÞÞ
s:t: :
xrðhþ 1Þ ¼ fdxrðxðhÞ; urðhÞ; ~u�rðkÞÞ
0� nðu;dÞðkÞ�Cðu;dÞ
qðu;d;oÞðkÞ� 0
0� gðu;d;oÞðkÞ� cdP
ðu;dÞ2pi

gðu;d;oÞðkÞ ¼ cd

ðu; dÞ 2 Lr; pi 2 Pr

ð28Þ

with fdxrðxðhÞ; urðhÞ; ~u�rðkÞÞ being the local prediction model. Also, from the
system decomposition, the sets Xr and Ur are determined by the sets Lr and Pr
defining the links and intersections belonging to each subsystem. Note that the
optimization problem (28) has the same form as the optimization problem (6).
Therefore, a calculated circumstance belonging to the discrete-time dynamic bar-
gaining games fðHðkÞ; gðkÞÞg1k¼0 arises.

In this circumstance or game each local controller has to make a trade-off between
its local control objective /rð~xðkÞ; ~uðkÞÞ and the common goal Lð~xðkÞ; ~uðkÞÞ. It is
worth pointing out that subsystems are able to achieve a mutual benefit because the
common goal Lð~xðkÞ; ~uðkÞÞ provides them with the opportunity to collaborate.
Moreover, in the resulting game fðHðkÞ; gðkÞÞg1k¼0 for the traffic network decom-
position N is the set of local controllers, their preferences are determined by the
minimization of the local cost /rð~xðkÞ; ~uðkÞÞ, and the decision space is given by
Xr ¼ Xr � Ur. Furthermore, the decision environment evolves according to the
model of the traffic network and the local model used for predicting the trajectories of
the local states. Let Nrð~xðkÞ; ~uðkÞÞ be the set resulting from the intersection of Xr

with the space defined by the local prediction model. Then, in the game associated
with the distributed congestion management in urban networks HðkÞ :¼
fð/1ð~xðkÞ; ~uðkÞÞ; . . .;/Mð~xðkÞ; ~uðkÞÞÞ 2 R

M jð~xðkÞ; ~uðkÞÞr 2 Nrð~xðkÞ; ~uðkÞÞg, with
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ð~xðkÞ; ~uðkÞÞr the tuple defining the value of /rð~xðkÞ; ~uðkÞÞ. Finally, a solution to the
gameGNDMPC resulting from the urban traffic network decomposition can be obtained
by solving the same local optimization problems of (11), implemented with the
negotiation model proposed in Sect. 1.

4.3 Simulation and Results

For evaluating the performance of the proposed congestion management scheme an
urban traffic network with three intersections is proposed. Each intersection has four
links with three lanes, where each lane has a length of 452 m, and a capacity of 192
vehicles per lane. For simulation purposes, it is assumed that the vehicles have a
length of 7 m and a free flow speed of 50 km/h. Moreover, a cycle time of 50 s and
initial queues of 5 vehicles in each link are also considered. As in the case of the
motorway, the Matlab function fmincon is used for solving each local optimization
problem. The solver uses a interior point algorithm. Figure 10 shows the urban
network used as a case study. Moreover, for implementing the proposed distributed
congestion management scheme the urban traffic network is divided into three
subsystems as illustrated in Fig. 10. Each subsystem is composed of the four links
at interacting in the intersections.

In the network of Fig. 10 (and according to the notation used in that figure) the
output flow rate for origins o1 to o6 is assumed constant and equal to 460 veh/h; the
flow of vehicles entering through links (1,a) and (6,a) is assumed constant and
equal to 705 veh/h; through links (2,b) and (7,b) 903 veh/h; through links (3,c) and
(8,c) 902 veh/h; through link (5,c) 300 veh/h; and through link (4,a) it is assumed to
be time-varying with the trapezoidal shape shown in Fig. 11b. Furthermore, in order
to reduce the complexity of the optimization problems, two operational modes for
the traffic lights are considered. As shown in Fig. 11a, in each operational mode
several destinations at each link in an intersection are allowed. As a consequence,
one decision variable is required for assigning the green light time to each flow rate
at each intersection [20, 21, 22] (the sum of the times assigned to each operational
mode must be equal to the cycle time).

As in the case of the motorways, in the distributed congestion management
scheme for urban traffic the local controllers should exchange their measurements
of the local states as well as their current local control actions. This allows each
local controller deciding on the control action to be locally applied following the
focusing on others criteria. That is, each local controller selects the feasible control
action that minimizes the effect of the local decisions on the performance of the
remaining controllers.

Figure 12a shows the evolution of the number of vehicles waiting in the queues of
the urban traffic network. In this figure the centralized scheme for congestion man-
agement exhibits longer queues than the distributed scheme. However, the duration
of the queues with NMPC is not longer than the duration with GT-NDMPC.
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Recall that centralized NMPC takes all interactions into account in its predictions.
Therefore, this control scheme is able to manage the increasing size of the queues
more efficiently than the distributed scheme. There is a concept associated with the
length of the queues that measures the time spent by the vehicles running with free
flow speed from the beginning of a link until reaching the tail of the queue corre-
sponding to its destination o. Figure 12b shows the aggregate behavior of the total
time of vehicles at free flow speed (delay time) along the network. Note that when the
length of the queues increases, the total time of vehicles traveling in free flow speed
decreases, as expected.

For performing congestion management, the green light time must be assigned to
each flow rate. Figure 13a and b show the green time for phases 1 and 2 at the
intersection a (see Fig. 10). Note that the total time of the operative modes is equal
to 50 s, which is the cycle time. In addition, from Fig. 13a and b it is evident that the

(a)

(b)

Fig. 11 Parameters of the simulation. a Operational modes for the traffic lights considered in the
simulations. b Flow rate of link (4,a) used in the simulations
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GT-NDMPC approach uses more aggressive control actions than the centralized
approach, viz. the changes of the control actions of the GT-NDMPC are bigger than
the changes of the control actions in the centralized NMPC. This allows the dis-
tributed congestion management scheme to have queues that are not longer than the
queues with the centralized NMPC approach.

A comparison of the total time spent by the users of the traffic network, the
vehicles waiting in the queues, and the total delay time for several congestion
management schemes is presented in Table 5. The adaptive SCOOT method was

NMPC

GT   NDMPC

(a)

(b)

_

NMPC

GT   NDMPC_

Fig. 12 Comparison of the total number of vehicles in the queue and at free flow speed for both
centralized and proposed approaches. a The total number of vehicles waiting in the queues along
the traffic network. b Total time of vehicles at free flow speed in the traffic network with the
implemented NMPC schemes
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included because it is one of the optimization-based alternatives for traffic control in
urban networks. Moreover, the SCOOT method proposed the concept of the green
wave in order to reduce the complexity of the resulting optimization problem. In
this table it is evident that the performance of centralized and GT-NDMPC schemes
implemented for congestion management in urban networks is almost the same,
while other schemes severely increased the TVQ, keeping a similar TTS. This
validates the possibility of using distributed schemes based on game theory for
congestion management in urban traffic networks.

_
(a)

(b)

Fig. 13 Green time signal assigned by the controllers in intersection a. a Phase 1. b Phase 2
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Table 6 presents a comparison of the computational times in the urban traffic
network for the centralized NMPC, the proposed GT-NDMPC, and the adaptive
SCOOT method. As shown in Table 6, despite the simplifications involved in the
SCOOT method, the proposed GT-NDMPC requires a lower computation time.
Furthermore, with the GT-NDMPC the heuristics behind the SCOOT method
(which may hinder the application of this method in large urban networks) are
avoided.

4.4 Disagreement Point Analysis

From a game theory point of view, in both the motorway and urban traffic models it
was observed that each local controller behaved according to its own desires and
preferences. Figure 14a and b show the evolution of the disagreement point in each
case (motorway and urban network respectively).

Note that in Fig. 14a and b the evolution of the disagreement point is almost the
same for all controllers in the case of the motorway. This is because the similarities
of the subsystems in this case (recall that all segment parameters and on-ramp
demands are the same). Thus, this game is close to being a symmetric game.
However, in the case of the urban traffic network the behavior of the disagreement
points is different for each subsystem. This is in accordance with the flow rate
specifications for the links (recall that the flow rates at the boundary of the network
are different). Thus, this game is clearly non-symmetric. Note that the disagreement
point trajectories present some oscillations along the simulation, which are more
evident in the case of the urban traffic network. Such behavior is due to the decision
making each controller performs. When they decide to cooperate the disagreement

Table 5 Comparison of total
time spent (TTS) for a
vehicle, and total vehicles in
the queues (TVQ) for
centralized, distributed,
adaptive SCOOT, and fixed
time schemes

Configuration TTS [veh � h] TVQ [veh]

Centralized NMPC 3,498 7,744

GT-NDMPC 3,522 9,369

State-feedback 3,769 25,612

SCOOT 3,961 38,857

Fixed time 5,142 124,125

Table 6 Comparison
between computational times
for centralized NMPC, for
each subsystem in the
proposed GT-NDMPC, and
for the adaptive SCOOT
method

Configuration Computational time [s]

Centralized NMPC 390.6207

Subsystem 1 60.2311

Subsystem 2 95.2946

Subsystem 3 88.4602

SCOOT 164.6238
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point decreases, but when they decide not to cooperate the disagreement point
increases. The decision regarding cooperation is defined by the perceived benefit
from the cooperative behavior. So, if there are no alternatives such that the local
performance index is less than the disagreement point, the controller decides not to
cooperate.

(a)

(b)

Fig. 14 Evolution of the disagreement point in the congestion management. a Motorways.
b Urban traffic
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5 Conclusion

In this chapter, bargaining game theory was used as a mathematical framework for
analyzing the game arising from the distributed model predictive control formu-
lation. In this way, the non-linear model predictive control –NMPC– problem was
initially presented. Then the system was decomposed; motivated by the fact that
implementation of NMPC in real large-scale systems is not advisable. As a con-
sequence of the system decomposition, the NMPC problem became a set of coupled
optimization problems. Since each optimization problem was locally solved, a
trade-off between local and global system performance was required. Moreover,
since the controllers solving the local optimization problems were able to com-
municate with each other, bargaining among controllers was possible. Hence, the
distributed model predictive control –DMPC– formulation resulting from system
decomposition can be characterized as a bargaining game (GT-NDMPC).

Once the similarities between bargaining games and GT-NDMPC were estab-
lished, some extensions to the original theory were performed. Specifically, the
discrete-time dynamic bargaining game concept was defined. Such a concept was
required because original bargaining game theory does not consider the time
evolution of the decision environment, of the decision space, and of the disagree-
ment point. Finally, based on the concepts of a discrete-time dynamic bargaining
game and a disagreement point, a solution to the GT-NDMPC game and an
algorithm for computing such a solution in a distributed way were proposed.

Despite of game theory often presenting selfish procedures for strategic decision
making, in this chapter the bargaining game theory afforded conditions for solving
the DMPC problem inside a focusing on others frame, without implying that the
subsystems have to solve more than one optimization problem at each time step,
which would prevent the convergence of the solution on a Nash equilibrium point.
This non selfish bargaining game approach is the main difference with the schemes
based on game theory previously reported in the literature (see e.g., [27, 44]).
Additionally, a reduction of the computational burden associated with the com-
munications between subsystems is achieved, and avoiding the solution of more
than one optimization problem. Furthermore, only local functions that depend on
decisions made by the other subsystems were required. This makes the proposed
bargaining approach (GT-NDMPC) to the DMPC problem more flexible than
almost all the DMPC schemes presented in the literature. This statement has also
been validated in Portilla et al. [38].

The bargaining-game-based formulation for distributed model predictive control
–GT-NDMPC– was applied in this chapter for congestion management in motor-
ways and urban traffic networks. To this end, macroscopic models were used to
represent the dynamic behavior of the vehicles in the network. Since these models
are discrete-time, they were used by the controllers as prediction models. Moreover,
an expression for the travel time was derived from these models. Travel time was
used as the cost function in both centralized and distributed NMPC approaches.
With the models, the cost function, and the constraints defined, the centralized
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NMPC was formulated. After that, the whole system was decomposed into several
subsystems. Also, local models and their corresponding constraints were defined.
Furthermore, the bargaining situation associated with the system decomposition
was analyzed. At the end, the elements defining the corresponding discrete-time
dynamic bargaining games were introduced.

Finally, the proposed scheme for congestion management was tested on a
motorway with ten on-ramps, and in an urban traffic network with three intersec-
tions. The performance of the GT-NDMPC approach was compared with the per-
formance of a centralized NMPC approach. In conclusion, the distributed
congestion management scheme based on game theory presented a performance
similar to the one obtained using a centralized scheme.
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Advanced Information Feedback Coupled
with an Evolutionary Game in Intelligent
Transportation Systems

Chuanfei Dong, Yuxi Chen, Xu Ma and Bokui Chen

Abstract It has been explored for decades how to alleviate traffic congestions and
improve traffic fluxes by optimizing routing strategies in intelligent transportation
systems (ITSs). It, however, has still remained as an unresolved issue and an active
research topic due to the complexity of real traffic systems. In this study, we
propose two concise and efficient feedback strategies, namely mean velocity dif-
ference feedback strategy and congestion coefficient difference feedback strategy.
Both newly proposed strategies are based upon the time-varying trend in feedback
information, which can achieve higher route flux with better stability compared to
previous strategies proposed in the literature. In addition to improving feedback
strategies, we also investigate information feedback coupled with an evolutionary
game in a 1-2-1-lane ITS with dynamic periodic boundary conditions to better
mimic the driver behavior at the 2-to-1 lane junction, where the evolutionary
snowdrift game is adopted. We propose an improved self-questioning Fermi (SQF)
updating mechanism by taking into account the self-play payoff, which shows
several advantages compared to the classical Fermi mechanism. Interestingly, our
model calculations show that the SQF mechanism can prevent the system from
being enmeshed in a globally defective trap, in good agreement with the analytic
solutions derived from the mean-field approximation.
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1 Introduction

Cooperation is ubiquitous in economic and social systems [13]. These systems are
filled with selfish individuals who try to maximize their own benefits. But being
contrary to the view of the Darwinian selection, cooperation becomes the main
behavior of these systems. The emergence of cooperation in selfish circumstances
has therefore attracted much attention from physicists recently. Game theory,
together with its extensions, provides a useful framework to investigate this problem
[2, 31, 51]. In the recent years game theory has been introduced into traffic flow
studies and related fields to solve conflicts when two or more vehicles or pedestrians
compete for an empty space [7, 24, 26, 37, 40, 43, 46, 50, 55, 56, 58, 60]. For
instance, Perc [43] introduced the evolutionary game between neighboring agents in
the Biham-Middleton-Levine (BML) model, and he found that a traffic flow seizure
is induced. The evolutionary game was also introduced into random walk to study
immigration behaviors [46] and into unidirectional pedestrian flow to study its phase
transition behaviors [26]. Tanimoto et al. [50] and Zheng and Cheng [60] introduced
game theory to study the evacuation process. Furthermore, Wang et al. [55] pro-
posed a memory-based Snowdrift Game (SG) [45] on networks which abandon the
learning mechanism. Instead, a self-questioning mechanism and a memory-based
updating rule were adopted. Gao et al. [24] extended this work and studied both the
evolutionary Prisoner’s Dilemma Game (PDG) [3] and Snowdrift Game (SG) [45]
with a self-questioning mechanism combined with a stochastic evolutionary rule,
mainly on a scale-free traffic network. In Gao et al. [24], they found the so-called
“Cooperative Ping-pong Effect” occurs in both games in certain cases, and plays an
important role in determining the behavior of the whole system. However, none of
these studies incorporated the effect of information feedback into an evolutionary
game.

For some socioeconomic systems, it is desirable to provide real-time information
or a short-term forecast about dynamics. For instance, in stock markets it is
advantageous to give a reliable forecast in order to maximize profits. In traffic flow,
advanced traveler information systems (ATIS) provide real-time information about
traffic conditions to road users by means of communication such as variable
message signs, radio broadcasts, or on-board computers [1]. The aim is to help
individual road users to minimize their personal travel time. Therefore traffic
congestion can be alleviated, and the capacity of the existing infrastructure is used
more efficiently. Figure 1 shows a schematic diagram of an information feedback
system, which demonstrates that feedback information plays a significant role in the
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loop. An intelligent transportation system (ITS) is an example of such information
feedback system in our daily life. The vehicle behavior and dynamics based on the
advanced information feedback in an ITS is an important research topic due to its
high efficiency in controlling spatial distribution of traffic patterns.

Traffic flow and related problems have attracted considerable attention in the
past decade [12, 28, 38, 42]. Understanding the characteristics of the city traffic is
one of the most essential parts in the community of traffic research. This leads to the
fact that traffic flow models have been studied increasingly. In order to understand
significant traffic flow phenomena, traffic models such as the kinetic theory [6, 29],
fluid-dynamical model [32], car-following model [25, 49] and cellular automaton
(CA) model [5, 8, 36, 39, 57] have been investigated. In particular, the first CA
traffic model, the Nagel-Schreckenberg model [39] is so far the most popular cel-
lular automaton model in analyzing the traffic flow due to its simplicity and features
which can well reproduce real traffic flows. Modeling traffic flow dynamics by
cellular automata models has constituted the subject of intensive research by sta-
tistical physics during the past few years [12, 28]. However, it still remains an
unresolved issue to propose an optimal information feedback strategy in order to
essentially improve the road capacity in intelligent transportation systems (ITSs).
Recently, dynamics of traffic flow based on a two-route model [52] with advanced
information feedbacks have been intensively investigated [9–11, 15–17, 20–22, 27,
30, 33, 35, 44, 52–54, 59]. The route-choice strategy has also been extended to the
three-route and crossing traffic systems [14, 18, 19, 23].

Each feedback strategy has its strength and weakness, e.g., Travel Time Feed-
back Strategy (TTFS) [52] brings a lag effect to make it impossible to provide the
road users with the real situation of each route; for Mean Velocity Feedback
Strategy (MVFS) [35], the random brake mechanism of the Nagel-Schreckenberg
(NS) model [39] brings fragile stability of velocity [54]. In order to provide a
concise and efficient feedback, two strategies named Mean Velocity Difference
Feedback Strategy (MVDFS) and Congestion Coefficient Difference Feedback
Strategy (CCDFS) are proposed. In contrast to Mean Velocity Feedback Strategy
(MVFS) and Congestion Coefficient Feedback Strategy (CCFS), the two newly
proposed feedback strategies depend on the variation of parameters from time t1 to

Fig. 1 The schematic diagram of information feedback coupled with an evolutionary game in an
intelligent information system
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t2, and Dt ¼ t2 � t1 is the time difference. Compared with Prediction Feedback
Strategy (PFS) [14, 15, 19], the new feedback strategies are implemented with
higher efficiency since estimates of the future road conditions in each iteration are
not required. It is noteworthy that [20, 22] studied the situation where 75 % drivers
exhibit aggressive behavior with the rest 25 % drivers exhibiting timid behavior
near the exit, which is similar to the study of [34]. The aggressive and timid
behaviors are analogous to the defection and cooperation in an evolutionary game.
Dong and Ma [22] found that the aggressive behavior can cause traffic congestions
near the exit especially in high-density phases and make the route saturated in a
relatively low density state, which is consistent to the results shown by Perc [43].

In this study, we couple the advanced information feedback with the evolu-
tionary SG game and the self-questioning Fermi updating mechanism (including the
self-play payoff) to study the evolution of cooperation in a 1-2-1 route intelligent
transportation system with dynamic periodic boundary conditions (Fig. 2). The

Fig. 2 The schematic diagram of an intelligent transportation system (ITS). We study one ITS
pattern with dynamic periodic boundary conditions in the dashed box to represent the whole ITS.
The lane between two ITS patterns is assumed to be long enough to hold all the waiting cars that
cannot enter the system immediately. There are information boards at both entrance and exit of
each ITS pattern. In each ITS pattern, two routes are assumed for simplicity, i.e., route A and route
B. The dynamic drivers at the entrance follow the information feedback on board 1 while the static
drivers ignore them and enter one route randomly. At the exit, when both players choose to
cooperate, the cooperators will leave the ITS pattern based on the information shown on the
information board 2. It is noteworthy that when we mention an ITS in the chapter, we refer to this
ITS pattern with dynamic periodic boundary conditions
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information feedback makes the evolutionary game unique in intelligent transpor-
tation systems. As indicated by the dashed box (Fig. 1), when cooperations take
place, cooperators leave the exit in according to feedback information instead of
randomly. We report the simulation results adopting four different feedback strat-
egies MVFS, CCFS, MVDFS, and CCDFS using a revolutionary coupling
approach. The remainder of this chapter is as follows: In Sect. 2, we clarify the
notion and briefly introduce the evolutionary game theory, the Nagel-Schrecken-
berg (NS) model, the two-route model proposed by Wahle et al. [52], the exit
scenario, and four feedback strategies: MVFS, CCFS, MVDFS and CCDFS. We
present and discuss the simulation results and analyze the results in Sect. 3. Finally,
we summarize our conclusions in the last section.

2 The Models and Feedback Strategies

2.1 Notations

Unless noted otherwise all the notations in this chapter are the same as in Table 1.

2.2 Evolutionary Game Theory

At the most elementary level, many evolutionary games can be formalized as two-
person games in which each player can either cooperate (C) or defect (D). In soci-
ology and economics, the Prisoner’s Dilemma Game (PDG) [3] and Snowdrift Game
(SG) [45] have been widely used to model a situation in which mutual cooperation
leads to the best outcome in social terms, but defectors can benefit the most indi-
vidually. In mathematical terms, this is described by a payoff matrix (Table 2, lower
panel: entries correspond to the row player’s payoffs), where mutual cooperation
yields the reward R, mutual defection leads to punishment P, and the mixed choice
gives the cooperator the sucker’s payoff S and the defector the temptation T . Game
theory has restricted a precondition of 2R[ T þ S. For mutual cooperation, the
society benefits the most, thus corresponding to the largest total payoff. In the PDG,
the rank of the four payoff values is T [R[P[ S, while in the SG it is
T [R[ S[P, so the SG is more favorable to sustain the cooperative behavior. In
a real traffic system, especially a 1-2-1 route ITS, the SG is more appropriate than
PDG in order to avoid collisions when both players choose to defect. Therefore, we
adopt the SG in this chapter. The number in the payoff matrix shown in Table 3
describes the probability of a vehicle leaving the exit when the driver plays the game
with its neighbor on an alternative route. In order to satisfy the payoff rank of the SG,
we adopt small quantities � and d in the payoff matrix. As will be shown later, � and d
represent the advanced characteristics that are unique to the intelligent transportation
systems whereas the numbers themselves do not represent these effects. Here we set

Advanced Information Feedback Coupled … 45



� ¼ d ¼ 10�10. Since � ¼ d � 1, they do not really affect the payoff matrix but
satisfy the payoff rank of the SG. The advanced characteristics that two parameters (�
and d) represent can be described as follows: (1) the vehicles leave the exit following
the information feedback when cooperation takes place (indicated by the factor �),
(2) the defective penalty is imposed if both players choose to defect at the exit
(implied by the factor d, see Sect. 2.4.2 for detail). Both scenarios contribute to the
payoff matrix satisfying the inequalities (both 2R[ T þ S and T [R[ S[P),
which makes the evolutionary game unique in the ITS.

Table 1 Major notations

Fi The flux of route i

Li The length of route i

Ni The number of vehicles on route i

qi The vehicle density on route i, qi ¼ Ni=Li
Ntot The total number of vehicles in the traffic system

Nc The number of cooperators in the traffic system

Nd The number of defectors in the traffic system

Vi
mean The mean velocity of all the vehicles on route i

vi The velocity of the ith vehicle

vmax The maximum velocity of vehicles

xi The position of the ith vehicle

gi The number of empty cells in front of vehicle i

nj The number of vehicles of the jth congestion cluster

q The number of congestion clusters on one route

C The congestion coefficient

VD The mean velocity difference

CD The congestion coefficient difference

Dtc The time difference in the congestion coefficient difference feedback strategy
(CCDFS)

Dtv The time difference in the mean velocity difference feedback strategy (MVDFS)

Pe The probability that two vehicles encounter at the exit

Pb The random brake probability in the NS model

Sdyn The fraction of dynamic drivers

b The tunable parameter in the classical Fermi (CF) rule

fc0 The initial fraction of cooperation (cooperator, C-agent) in the system

fd0 The initial fraction of defection (defector, D-agent) in the system ð¼ 1� fc0Þ
fc The fraction of cooperation in the system ðNc=NtotÞ, fcðt ¼ 0Þ ¼ fc0 (a.k.a. the

frequency of cooperation or cooperation ratio)

fd The fraction of defection in the system ð1� fcÞ
Pi;j!j The probability that an agent i turns to an agent j after it plays a game with an agent j

Ui The real payoff of agent i in the snowdrift game (SG) with the self-questioning Fermi
(SQF) mechanism

U
0
i

The virtual payoff of agent i in the SG with the SQF mechanism
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The commonly used updating rules include the deterministic rule proposed by
Nowak and May [41], the stochastic evolutionary rule proposed by Szabó and Töke
[47] and the memory-based self-questioning updating rule proposed by Wang et al.
[55]. Later, Gao et al. [24] combined the self-questioning mechanism [55] with the
stochastic Fermi rule [47]. In Gao et al. [24], they considered that players get real
payoffs through a game on the basis of the payoff matrix in each time
step. Meanwhile, each player calculates a virtual payoff by self-questioning, i.e., to
adopt its anti-strategy and play a virtual game with its neighbors who keep their
strategies unchanged, and get a virtual payoff. By comparing the real payoff and the
virtual payoff, players will find out whether their current strategies are advanta-
geous. In the next round, player will change its current strategy to its anti-strategy
with probability Pi;i0!i0 :

Pi;i0!i0 ¼ 1
1þ exp½bðUi � U0

iÞ�
: ð1Þ

where Ui and U0
i are the real and virtual payoff of player i, respectively. The

parameter 1=b denotes the noise parameter modeling the uncertainty caused by
strategy adoption. It is noteworthy that a player does not play a game with itself in
the study of Gao et al. [24], while in the original work of Szabó and Töke [47], the
self-play, i.e., each player plays a game with itself is included. In the present work,
we consider each player plays game with both itself and its neighbor. Based upon
this self-play mechanism, we propose a modified SQF updating rule by redefining
payoffs such that Ui and U0

i include the self-play payoffs as shown in the following
table (Table 4, entries correspond to the row player’s payoffs).

Table 2 Payoff matrix of an
evolutionary game Column Player

C D

Row C R, R S, T

Player D T, S P, P

or equivalently

C D

Row C R S

Player D T P

Table 3 Payoff matrix of the
SG Column Player

C D

Row C 0:5þ �, 0:5þ � 0, 1.0

Player D 1.0, 0 �d, �d
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Unless noted otherwise the SQF rule hereafter refers to the modified SQF rule.
For comparison, we also study the classical Fermi (CF) rule [47] case without
employing the SQF mechanism, in which players update their strategies by learning
from their neighbors, as the updating mechanism:

Pi;j!j ¼ 1
1þ exp½bðUi � UjÞ� : ð2Þ

where Ui and Uj are considered as real payoffs (including the self-play payoffs) of
players i and j according to the payoff matrix shown above (also see Table 4). When
a C-agent plays a game with another C-agent, the probability of a C-agent turns to a
D-agent is Pc;c!d ¼ 1� Pc;c!c.

In this chapter, we study a 1-D ITS with dynamic periodic boundary conditions,
which is different from the 2-D lattice case, in which each player usually has four
nearest neighbors (i.e., von Neuman neighborhood). In the 2-D case, the players can
randomly choose one of their immediate neighbors with equal probability and
update their strategies by learning from their neighbors (i.e., with the CF updating
rule). Each player will adopt the selected neighbor’s strategy (C or D) with a certain
probability P as shown in Eq. (2), which is usually determined by the payoffs of the
two players. As the players aim at maximizing their own benefits, therefore, if the
selected neighbor has a higher payoff, it is more likely that its strategy will be
adopted, and vice versa [47]. Given the fact that two routes are separated in our
model, the game can take place only at the 2-to-1 lane junction near the exit of each
ITS pattern. Since cooperators and defectors initially are randomly distributed on
each route, it is similar to the situation in which each player randomly chooses one
of its immediate neighbors at the exit, as in the 2-D case.

Table 4 The real and virtual payoffs in the SG with the SQF and the CF updating rules. The self-
play is included in both cases. a and b indicate two examples of payoff calculations

Real payoffc (SQF) Virtual payoff (SQF) Real payoffc (CF)

C D C D C D

C 1:0þ 2� a 0:5þ � 1:0� d b �2d 1:0þ 2� 0:5þ �

D 1:0� d �2d 1:0þ 2� 0:5þ � 1:0� d �2d
a When a C-agent plays a game with its neighboring C-agent, each C-agent gets 0:5þ � as the
payoff. Meanwhile, the C-agent plays a game with itself and gets 0:5þ � as the payoff. Therefore,
the real payoff that a C-agent meets another C-agent in the SG with the SQF updating rule is equal
to the sum of these two payoffs, i.e., 1:0þ 2�:
b When a C-agent plays a game with its neighboring C-agent, the virtual payoff is calculated as
follows: the C-agent adopts its anti-strategy (D-agent) and plays a virtual game with its
neighboring C-agent, the C-agent gets 1.0 as the payoff. Meanwhile, the C-agent adopts its anti-
strategy (D-agent) and plays a game with itself with anti-strategy (also D-agent) and gets − d as the
payoff. Therefore, the virtual payoff that a C-agent meets a C-agent in the SG with the SQF
updating rule is equal to the sum of these two payoffs, i.e., 1.0 − d:
c The real payoff in the SG with the CF updating rule is the same as the real payoff in the SG with
the SQF updating rule. Entries correspond to the row player’s payoffs.
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The key quantity for characterizing the cooperative behavior is the frequency of
cooperation fc, which is defined as the fraction of cooperators in the whole popu-
lation. The parameter fc is obtained by counting the number of cooperators in the
whole population ðNc=NtotÞ after the system reaches an equilibrium state, at which
the number of cooperators fluctuates slightly around an average value. In our
model, we assume that the initial fraction of cooperation is fc0 and defectors is
fd0 ¼ 1� fc0. Since we fix the total number of vehicles Ntot in the ITS, the fractions
of cooperation, fcðtÞ, and defection, fdðtÞ ¼ 1� fcðtÞ, evolve with time t when
games take place at the exit.

2.3 The NS Mechanism

The Nagel-Schreckenberg (NS) model is briefly introduced as follows, which can
be divided into the following four rules [39]:

R1: Acceleration:

viðtÞ ! viðt þ 1
3
Þ ¼ min½viðtÞ þ 1; vmax�; ð3Þ

R2: Deceleration:

viðt þ 1
3
Þ ! viðt þ 2

3
Þ ¼ min½viðt þ 1

3
Þ; giðtÞ�; ð4Þ

R3: Random brake:

viðt þ 2
3
Þ ! viðt þ 1Þ ¼ max½0; viðt þ 2

3
Þ � 1�; ð5Þ

with a certain brake probability Pb;
R4: Movement:

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ: ð6Þ

In the NS model, the road is divided into cells (sites) with a length of
Dx ¼ 7:5m. The total length of the route is set to be L ¼ 2; 000 cells (corresponding
to 15 km). giðtÞ denotes the number of empty cells in front of car i, i.e., the gap or
headway. A time step corresponds to Dt ¼ 1s, the typical time a driver needs to
react. In the present work, we set the maximum velocity vmax ¼ 3 cells/time step
(corresponding to 81 km/h and thus is a reasonable value) for simplicity.
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2.4 Two-Route Model and Exit Scenario

2.4.1 Two-Route Scenario

We adopt the modified version of the two-route model proposed by Wahle et al.
[52]. We assume that the total number of cars in a 1-2-1 route ITS is Ntot that
includes the waiting cars. To initialize the simulation, all vehicles wait on the lane
before they enter the ITS. If a driver is a so-called dynamic one, he selects the route
according to the real-time information displayed on the roadside, while a percentage
of drivers (referred to as static drivers) ignores the advice, thus entering a route
randomly. The length of two routes A and B are equal to each other. The fractions of
dynamic and static travelers are Sdyn and 1� Sdyn, respectively. After a vehicle
enters one of two routes, the vehicle follows the dynamics of the NS model. Since
we use dynamic periodic boundary conditions, after a vehicle reaches the end point,
it immediately returns to the waiting lane connected to the entrance with a position
next to the waiting car in front of it without a gap. In other words, the dynamic
periodic boundary conditions indicate that the waiting lane length is dynamic
instead of static, which can only hold the number of waiting cars at the current
moment. So we do not really care about the vehicle dynamic on the waiting lane. It
is important to note that if a vehicle cannot enter the preferred route, it will wait till
the next time step rather than entering the un-preferred route. In simulations,
vehicles could enter the preferred route only when the first three sites (given vmax ¼
3 cells/time step) of the route are empty in order to avoid collisions.

2.4.2 Exit Scenario

The dashed box in Fig. 2 illustrates the “one entrance and one exit” structure of the
ITS. In reality, there are different paths for drivers to choose from one place to
another. Different drivers departing from the same place could choose two different
paths to get to the same destination, which is analogous to a 1-2-1 route system. The
rules at the exit of the two-route system are as follows:

(a) Rules at the exit when both vehicles have a chance to leave:

(i) According to the information shown on the information board 2 (see
Fig. 2), the vehicle on the route with higher vehicle density leaves first;

(ii) If both routes have the same vehicle density, the vehicles leave
randomly.

(b) For the vehicles fail to leave at the exit, their position(t) = L and velocity
(t) = position(t) − position(t − 1).

In 1-D and 2-D traffic flow models (see e.g., [43, 46]), when cooperations take
place, the players have equal probability to move (1-D case) or move alternately (2-
D case). However, in an ITS, when both players choose to cooperate, the
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cooperators have a chance to follow the information shown on the board to leave
the ITS. On the other hand, when both drivers choose to defect, both of them drive
to position(t) = L with velocity(t) = 0 instead of velocity(t) = position(t) − position
(t − 1) for penalty. In this way, the route conditions benefit from the cooperative
behavior, and the defective penalty makes the defective behavior unfavorable. As
we described earlier in this chapter, the influence is implied by the parameters � and
d in the payoff matrix (Table 3), respectively. It is noteworthy that when the SG is
not considered in Sect. 3.1, all the drivers are forced to follow the exit scenario,
which is equivalent to the situation that all the players are assumed to be cooper-
ators when adopting the SG. In reality, in order to impose all the drivers to follow
the exit scenario, there must be automatic traffic barriers at the exit. However, it is
impossible to have a barrier control at the end of each 2-to-1-lane junction in real
traffic systems due to the high cost, which indicates the defector is highly likely to
appear and thus the game analysis shown in Sect. 3.2 is more realistic compared to
the case study in Sect. 3.1.

2.5 Related Definitions

The road conditions can be characterized by the fluxes of two routes, and the flux of
the ith route is defined as follows:

Fi ¼ Vi
meanqi ¼ Vi

mean
Ni

Li
ð7Þ

where Li represents the length of the ith route, Vi
mean and Ni denote the mean

velocity of all the vehicles and the vehicle number on the ith route, respectively.
The physical sense of the flux F is the number of vehicles passing the exit of the
traffic system at each time step. Rather remarkably, the waiting cars do not con-
tribute to the calculation of the time-dependent flux. Therefore the larger the value
of F is, the better the processing capacity of the traffic system is. We describe four
different feedback strategies as follows:

MVFS: At each time step, the velocity of each vehicle is known from navigation
systems (GPS). The traffic control center calculates the mean velocity of each route
and displays the number on the board located at the entrance of each route. Road
users at the entrance will choose one road with a larger mean velocity.

CCFS: The position of each vehicle is known by the signal transmitted from
navigation systems (GPS). The traffic control center computes the congestion
coefficient of each route based on this information and displays it on the board.
Road users at the entrance will choose the route with a smaller congestion coeffi-
cient. The congestion coefficient is defined as

CðtÞ ¼
XqðtÞ
j¼1

n2j ðtÞ: ð8Þ
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Here, njðtÞ stands for vehicle number of the jth congestion cluster (see Fig. 2), in
which cars are close to each other without a gap at time t. qðtÞ is the number of
clusters on one route. However, it may not be optimal for road users to make a wise
choice by considering only the current road condition. Given the situation that
although initially VA

mean\VB
mean, V

A
mean increases with time while VB

mean decreases. In
this circumstance, it is better for the road user to enter route A instead of route
B since route A has the potential to become better. Based upon this scenario, we
propose two concise and efficient feedback strategies as follows:

MVDFS: At each time step, each vehicle on the routes sends its velocity to the
traffic control center. The work of the traffic control center is to calculate the
velocity difference between time t1 and t2, and display it on the board. Road users at
the entrance will choose one road with a larger mean velocity difference.

The mean velocity difference ðVDÞ between time t1 and t2 is defined as

VDðt;DtvÞ ¼ Vmean t2ð Þ � jsgnðDtvÞj � Vmean t1ð Þ
¼ Vmean t � ð1� HðDtvÞÞDtv½ � � jsgnðDtvÞj � Vmean t � HðDtvÞDtv½ �

¼
PNðt2Þ

i¼1 Vi t � ð1� HðDtvÞÞDtv½ �
N t � ð1� HðDtvÞÞDtv½ �

� jsgnðDtvÞj �
PNðt1Þ

i¼1 Vi t � HðDtvÞDtv½ �
N t � HðDtvÞDtv½ � :

ð9Þ

where sgnðxÞ is the signum function of a real number x, which is defined as follows:

sgnðxÞ ¼
1; if x[ 0
0; if x ¼ 0
�1; if x\0

8<
: ð10Þ

and HðxÞ is the unit step function, which defined as the integral of the Dirac delta
function:

HðxÞ ¼
Zx

�1
dðsÞds ¼ 1; if x� 0

0; if x\0

�
ð11Þ

ViðtÞ stands for the velocity of the ith vehicle at time t, NðtÞ denotes the vehicle
number on one route at time t, t2 ¼ t � ð1� HðDtvÞÞDtv and t1 ¼ t � HðDtvÞDtv. It
is noteworthy that for Dtv ¼ 0, MVDFS changes back to MVFS.

CCDFS: At each time step, the traffic control center receives data from the
navigation systems (GPS) as CCFS. The work of the traffic control center is to
calculate the congestion coefficient difference between time t1 and t2 and display it
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on the board. Road users at the entrance choose one road with smaller congestion
coefficient difference.

The congestion coefficient difference ðCDÞ between time t1 and t2 is defined as

CDðt;DtcÞ ¼ C t2ð Þ � jsgnðDtcÞj � C t1ð Þ
¼ C t � ð1� HðDtcÞÞDtc½ � � jsgnðDtcÞj � C t � HðDtcÞDtc½ �

¼
Xqðt2Þ
j¼1

n2j ½t � ð1� HðDtcÞÞDtc�

� jsgnðDtcÞj �
Xqðt1Þ
j¼1

n2j ½t � HðDtcÞDtc�:

ð12Þ

where the definitions of njðtÞ and qðtÞ are the same as those defined in CCFS.
Similar to MVDFS, when Dtc ¼ 0, CCDFS returns to CCFS. Given the imple-
mentation efficiency in real traffic systems, we only focus on the situations that
Dtv;c [ 0, but Eqs. (9 and 12) are valid for any real number of Dtv;c.

Finally, we point out that initially we set the routes and information boards
empty and let vehicles enter the routes randomly during the first 100 time steps in
the simulation. Thus, the information feedback starts at the 101th time step. In the
following section, the performance of four different feedback strategies will be
shown and discussed in detail.

3 Simulation Results

3.1 Advanced Information Feedback in a 1-2-1 Route ITS

Firstly, we focus on the advanced information feedback strategy in ITSs itself, thus
ignoring the evolutionary game in this section. Given the stability and convergency,
the smoothed simulation results shown in Fig. 3 are obtained based on 10 times
average over 90,000–100,000 time steps. Figures 3a, b show the dependence of the
average flux on the time difference Dtc and Dtv by using CCDFS and MVDFS,
respectively. As to the routes’ processing capacity, there are positive peak structures,
corresponding to the highest flux*0.43 in both cases, at the vicinity of Dtc � 2 and
Dtv � 3. We also test the simulation result without 10-time average, which basically
shows the same curve shape and the peak location. Therefore, the average does not
change the result to any significant degree. When Dtv ¼ 0 ðDtc ¼ 0Þ, MVDFS
(CCDFS) is equivalent to MVFS (CCFS), which allows direct comparison between
MVDFS (CCDFS) and MVFS (CCFS). In Fig. 3, it is clear that both MVDFS and
CCDFS significantly improve the road capacity compared to the previous strategies
when the time difference is less than *30. Supposing if we delete signum function,
sgnðxÞ, in Eqs. (9–12), when Dtv ¼ 0 ðDtc ¼ 0Þ, VDðt;DtvÞ ¼ 0 ðCDðt;DtcÞ ¼ 0Þ,
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i.e., the random case, then we cannot intuitively see the difference between the
improved strategies and previous ones in Fig. 3. Unless noted otherwise, all the
parameters hereafter refer to LA ¼ LB ¼ 2;000, Pb ¼ 0:25, Sdyn ¼ 1:0, Dtc ¼ 2,
Dtv ¼ 3, and Ntot ¼ 2000.

In contrast to MVDFS and CCDFS, the fluxes of two routes adopting MVFS and
CCFS show larger oscillations (see Fig. 4). These oscillations could be caused by
several factors. First, as we have mentioned earlier, the NSmodel has a random brake
scenario which causes the fragile stability of velocity, thus MVFS cannot completely
reflect the real route conditions. Second, the oscillations can be partially caused by the
potential information lag by using the current information [54]. When we adopt
MVDFS or CCDFS, it is similar to the situation in which we implement a linear
extrapolation in time and therefore it is equivalent to the prediction feedback [15, 19]
for a short time scale to a certain degree. Though CCFS is better than MVFS, both
MVFS and CCFS cannot reflect the tendency of road condition variation with time.
For example, when adopting MVDFS, if there exist congestion clusters at the end of
route A, the average velocity of the whole route will definitely decrease even though
VA
mean [VB

mean. The mean velocity difference of route A, VA
Dðt;DtvÞ, is negative [see

Eq. (9)] in this situation. If a road user finally chooses to enter route B, there are three
possible outputs: first, VB

meanðt2Þ[VB
meanðt1Þ, with t2 [ t1; second, VB

mean remains the
same; third, VB

mean decreases but V
B
Dðt;DtvÞ[VA

Dðt;DtvÞ (both of them are negative
under this circumstance). In order to prevent the congestion clusters from further
expanding, the route users should enter route B whose condition tends to be better
(condition I) or no worse than that of route A (condition II or III). For CCDFS, the
analysis is similar. The only difference is that road users will select the route with
smaller congestion coefficient difference CDðt;DtcÞ instead, because the large con-
gestion coefficient indicates the unfavorable jammed states which certainly do harm
to the traffic system. Compared with MVFS and CCFS, the performance by adopting
MVDFS and CCDFS is remarkably improved, not only considering the value but also

(a) (b)

Fig. 3 a Average flux by performing CCDFS versus time difference Dtc. b Average flux by
performing MVDFS versus time difference Dtv. The results are based on 10 times average. The
parameters are, Sdyn ¼ 1:0, and Ntot ¼ 2; 000
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the stability of the flux. Therefore, considering the flux of the two-route system,
MVDFS and CCDFS are better.

In Fig. 4, the plot of vehicle density versus time step shows a similar tendency as
that of the flux. The routes’ accommodating capacity is greatly enhanced with an
increase in the average vehicle density from 0.16 to 0.29, thus the high fluxes of
two routes with MVDFS and CCDFS are mainly due to the increase of the vehicle
density. According to the stability of the vehicle density on each route, the vehicles
are uniformly distributed on each route instead of staying together at the end of the
route. The plot of speed versus time step shows that although the velocities are
more stable by using the new strategies, they are lower than MVFS and CCFS. The
reason is that the routes’ accommodating capacity is more efficient by using the new
strategies. As mentioned earlier, the system has only one exit, and at most one car
can leave at each time step. Therefore the more cars the lane holds, the lower
velocities the vehicles have. Fortunately, the traffic flux consists of two parts, the
mean velocity and the vehicle density. Hence as long as the vehicle density,
q ¼ N=L, is large enough, the road flux can still be greatly improved.

Figure 5 shows the dependence of the average flux fluctuates on the fraction of
dynamic travelers ðSdynÞ by using four different feedback strategies. As to the
routes’ processing capacity, the new strategies are proved to be better than the

Fig. 4 Flux (the first row), vehicle density (the second row), and average speed (the third row) of
each route with mean velocity feedback strategy (MVFS, the first column), mean velocity
difference feedback strategy (MVDFS, the second column), congestion coefficient feedback
strategy (CCFS, the third column), and congestion coefficient difference feedback strategy
(CCDFS, the fourth column). Sdyn ¼ 0:5
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previous ones because the fluxes are always larger at each Sdyn value and even
slightly increase with a persisting increase of dynamic drivers. The fact that the
values of average fluxes in Fig. 5 by adopting MVFS and CCFS are smaller than
those shown in [54] is caused by the different structures of the (1-2-1 route) traffic
system and the exit scenario.

Finally, it is of particular interest to find that the newly proposed information
feedback strategy seems to be independent of the selected information type and
only relies on the information changing rate or tendency. Without loss of generality,
we focus on the comparison of CCFS and CCDFS in the following section and set
Dtc ¼ 2 for all cases.

3.2 Evolutionary Game Coupled with the NS Model
in a 1-2-1 Route ITS

In this section, we focus on the evolutionary game coupled with the NS model in a
1-2-1 route ITS. The simulations are carried out for 200,000 time steps. The results
shown in Figs. 6 and 7 are based on the average over 190,000–200,000 time steps.
As will be shown later (e.g., see Fig. 8), the evolution of cooperation reaches a
steady state at around 20,000 time step. Since the calculated result does not vary a
lot after it reaches the steady state, the total run time steps only need to reach greater
than 20,000. If a vehicle passes the exit without encountering any vehicle on the

Fig. 5 Average flux by performing different strategies versus Sdyn
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alternative route, it leaves the system without changing its strategy (i.e., C-agent or
D-agent). If the vehicles near the exit on both routes have a chance to leave the
system, the game takes place and the players update their strategies based upon the
rules described in Sect. 2.2. Once a car leaves the system, it keeps its strategy until
the driver has a chance to play a game with others at the exit again, and so on and so
forth.

As we described earlier, we employ the Snowdrift Game (SG) [45] in this
chapter. We first investigate the dependence of the average flux on the total vehicle
number, Ntot, in an ITS by adopting CCFS (without the SG), CCDFS (without the
SG) and CCDFS coupled with the SG (with both the self-questioning Fermi (SQF)
updating rule and the classical Fermi (CF) updating rule). In Fig. 6, the solid lines
with different colors show the cases without adopting the SG. The dashed lines with
different colors illustrate the cases with the SQF updating rule [see Eq. (1)] and the
dotted lines with different colors represent the cases with the CF updating rule [see
Eq. (2)]. It is clear that CCDFS without adopting the SG has the highest flux among
all six cases. Given the payoff matrix (Table 3) and the fact that when the SG is not
adopted, all the drivers are forced to be cooperators due to the fictitious barrier
control at the exit, this result is within our expectation. However, the game analysis
in this section is more realistic in a real traffic system as explained in Sect. 2.4.2.
When adopting the SG, the saturated Ntot decreases with respect to the cases
without evolutionary game, consistent with the result shown in Fig. 2 in Perc [43];
the evolutionary game has a tendency to make the road saturated (in our case) or
phase state transition from free flow to fully jammed flow (in 2-D BML model [43])
occurring at a relatively low density state. Compared with the CCDFS case with the

Fig. 6 Average flux versus total number of vehicles ðNtotÞ in the traffic system
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CF rule (the red dotted line), the average flux by adopting CCDFS with the SQF
rule (the magenta dashed line) is higher, indicating that the SQF rule is more
favorable in terms of alleviating the traffic congestion. As expected from the earlier
analysis, the worst condition occurs at the situation by adopting CCFS with the CF
updating rule (the green dotted line), which corresponds to the lowest average flux
and the smallest saturated vehicle density. In the following analysis of the evolu-
tionary game, we focus on the strategy CCDFS with both the SQF and the CF
updating rules. We select two values of Ntot ¼ 200 (unsaturated state) and Ntot ¼
2; 000 (fully saturated state) as case studies. Hereafter unless noted otherwise, we
choose fc0 ¼ 0:85 and b ¼ 10 in this section.

Figure 7 shows the the velocity distribution of each route with and without the
evolutionary game. When adopting the SG, the fraction of low speed vehicles
clearly increases with respect to the cases without the SG. Compared with the cases
adopting the SQF updating rule, the CF updating rule leads to a relatively large
fraction of low speed vehicles (especially for the combination of CCDFS with the

Fig. 7 The velocity distribution of each route with CCFS (the first row) and CCDFS (the second
row). The first column shows the cases without adopting the SG. The second and third columns
illustrate the velocity distribution from the information feedback coupled with the SG (the second
column: with the SQF updating rule; the third column: with the CF updating rule)
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CF rule), which indicates an unfavorable jammed state on the route. The payoff
matrix (Table 3) indicates that the traffic congestion is mainly caused by the
defective behavior of D-agents at the end of each route. Thus, the SQF updating
rule is better than the CF updating rule in terms of alleviating the traffic congestion.
The detailed analysis of the evolutionary game below will help one further
understand the vehicle dynamic behavior shown above.

We first investigate the evolution of cooperation with the classical Fermi (CF) and
the self-questioning Fermi (SQF) rule (see Sect. 2.2 for detail). Figure 8 shows the
variation of the fraction of cooperation, fc, with time based on different updating rules
and total vehicle number, Ntot. It shows that the evolution of cooperation reaches a
steady state at around 20,000 time steps. In both cases, the fraction of cooperation, fc,
reaches an equilibrium state with the density of cooperators fluctuating slightly
around a convergent value. Although the convergent value with the SQF mechanism
is higher than that with the CF mechanism, it is independent of the vehicle number or
the phase state in both cases. When Ntot ¼ 200, it converges faster than the larger
Ntot ¼ 2; 000 case. Inspection of Fig. 8 reveals that the SQF mechanism can prevent
the system from being enmeshed in a globally defective trap, which is a shortcoming
of the existing models based on the learning mechanisms. The underlying reason lies
in the fact that the players with the SQF mechanism consider both the real and virtual
payoffs by playing games with themselves and their neighbors, depending on which
players make their decisions on whether switching to their anti-strategy. In contrast to
the case with the SQF rule, the players with the CF rule only consider the real payoffs
without self-questioning, so they cannot further consider the information about their

Fig. 8 Fraction of cooperation versus time by adopting CCDFS

Advanced Information Feedback Coupled … 59



surroundings and the mutual payoffs of the whole system. This leads to a higher
possibility of selfish individuals trying to maximize their own benefit to grow in the
system. The relatively low flux (Fig. 6) and large fraction of low speed vehicles
(Fig. 7) with the CF rule can therefore be explained by the low fraction of C-agent in
the system.

In order to show the advantages of the SQF mechanism, we also study the
dependence of the updating mechanism on the value of b, which characterizes
the noise introduced to permit irrational choices. Figure 9 shows the variation of the
cooperation fraction, fc, with time by adopting the SQF and the CF updating rules
based on various b. We select b ¼ 1; 3; 10 as case studies. It is of particular interest
to find that the convergent value of f SQFc in the newly proposed SQF mechanism
only slightly relies on the tunable parameter b; a large b corresponds to a slightly
large f SQFc . With the CF mechanism, the convergent value of f CFc however, greatly
relies on the noise term b; the larger the b, the smaller the convergent fc. On
average, f SQFc [ f CFc . This comparison intuitively reveals one of the advantages of
the SQF mechanism.

We also study the effect of the initial cooperation fraction, fc0, on the convergent
value of fc by adopting the SQF and the CF rules. Figure 10 shows five cases with
initial cooperation ratios fc0 ¼ 1:0; 0:85; 0:63; 0:23 and 0:05 by adopting the SQF
(Fig. 10a) and CF (Fig. 10b) rules. Despite the different initial cooperation ratios,
fc0, they all converge to the same steady state, fc � 0:63 (for SQF) and 0.23 (for
CF). Interestingly, the convergent value is independent of the initial fraction, fc0, in
both cases. We also test the case of the CF rule without self-play payoff counted, the
convergent value is also independent of fc0. The convergent fc with the SQF rule is
always higher than that with the CF rule at various fc0 in Fig. 10. Again, it dem-
onstrates the advantages of the newly proposed SQF mechanism. The simulation
results with original SQF rule [24] adopted are not shown as it is even worse than
the CF rules in terms of the convergent fc under certain circumstances. It seems to
be caused by the 1-D structure of our model, where each player at most has one
neighbor whereas in a 2-D lattice, each player can have 4 neighbors or 8 neighbors.

(a) (b)

Fig. 9 Fraction of cooperation fc versus time for different values of b by adopting CCDFS
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However, the self-play [47] solves the shortcoming of the original SQF rule. By all
accounts, the improved SQF mechanism will be a powerful tool in the analysis of
evolutionary game in both traffic networks and other social and economic systems.

Finally, we analytically calcualte the evolution of the cooperation ratio, fc, by
using a simple mean-field approximation [4, 46]. In the SG with either the SQF or
CF updating rule [see Eqs. (1–2)], if one agent is cooperator and the other is
defector (ignoring the parameter � and d here due to their tiny values), then

PSQF
c;d!d ¼

1
1þ e0:5b

;PCF
c;d!d ¼

1
1þ e�0:5b ð13Þ

PSQF
d;c!c ¼ 0:5;PCF

d;c!c ¼
1

1þ e0:5b
ð14Þ

If both agents are defectors, then

PSQF
d;d!c ¼

1
1þ e�0:5b ;P

CF
d;d!c ¼ 0:5 ð15Þ

If both agents are cooperators:

PSQF
c;c!d ¼ 0:5;PCF

c;c!d ¼ 0:5 ð16Þ

As fc þ fd ¼ 1, the mean-field equation can be written as an equation about fc as
follows (we choose the situation of the SG with the SQF updating rule as an
example of analysis):

dfc
dt

¼ Pe � 2fc � fd PSQF
d;c!c � PSQF

c;d!d

� �
þ fd � fd PSQF

d;d!c þ PSQF
d;d!c

� �
þ fc � fc �PSQF

c;c!d � PSQF
c;c!d

� �� �

¼ Pe � 2fc � fd 0:5� 1
1þ e0:5b

� �
þ fd � fd 2

1þ e�0:5b
� fc � fc

� �

ð17Þ

(a) (b)

Fig. 10 Fraction of cooperation fc versus time at various fc0 by adopting CCDFS
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where Pe is the probability that two cars encounter at the exit (so the SG takes
place) before leaving an ITS. By either integrating Eq. (17) and assuming t ! 1,
or just assuming dfc=dt ¼ 0, the analytic approximation of the steady state value, fc
can be obtained and compared with the corresponding simulation result (Table 5).
Table 5 shows that our simulation results are in good agreement with the analytic
solution from the mean-field approximation, especially when b is relatively small,
e.g., b ¼ 1.

Finally, we point out that a lot of further studies are needed, involving the study
of, e.g., player cooperative behavior by using the SG/PDG in an asymmetric two-
route ITS with a speed limit bottleneck on the short route (e.g., see Fig. 1 in Chen
et al. [9]). This study will allow us to investigate the cases with accidents. Also, it
would be interesting to study the cooperative behavior by a n-person chicken game
(e.g., see [48]) when games take place at the end of a multi-route intelligent
transportation system (e.g., see Fig. 1 in Dong et al. [19]). Moreover, an optimal
exit scenario proposal may have a chance to increase both the fraction of cooper-
ation and the vehicle flux.

4 Conclusion

For the first time, we studied the advanced information feedback coupled with an
evolutionary game in a 1-2-1 route ITS with dynamic periodic boundary conditions.
The feedback information makes the cooperative behavior unique in ITSs. When a
cooperation takes place, the cooperator leaves the exit by following the information
feedback shown on the board. We studied in detail the evolution of cooperation for
the Snowdrift Game (SG) model with two different updating rules: an improved
self-questioning Fermi (SQF) mechanism and the classical Fermi (CF) mechanism.
The former one shows several advantages compared with the latter one. Note that in
our model, each player not only plays game with its neighbor but also with itself,
thus including the self-play payoffs. The SQF mechanism avoids the system from
being enmeshed in a trap of the globally defective state, which is a shortcoming of
the pre-existing models. Furthermore, we investigated the influences of total

Table 5 Comparison of the convergent value of fc by adopting the mean-field approximation and
the simulation results in the SG with the SQF and CF updating rules

b ¼ 1
(MFAa)

b ¼ 1
(SIMb)

b ¼ 3
(MFA)

b ¼ 3
(SIM)

b ¼ 10
(MFA)

b ¼ 10
(SIM)

Convergent f SQFc 0.55 0.54 0.62 0.59 0.67 0.63

Convergent f CFc 0.44 0.43 0.35 0.32 0.29 0.23
a MFA mean-field approximation
b SIM simulation
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number of vehicles in an ITS, noise term, and the initial fraction of cooperation on
the SG. The results show that the steady state of the cooperation ratio, fc, is
independent with the total number of vehicles and the initial fraction of cooperation.
Compared with the CF rule, the convergent values of fc with the SQF rule are barely
affected by the noise term and show relatively a higher steady cooperation ratio fc.
Our simulation results are in good agreement with the analytic solutions derived
from the mean-field approximation and therefore shed new light on the study of
evolutionary games in 1-D intelligent traffic networks.

In addition, the simulation results (without adopting the SG) with four different
feedback strategies, i.e., MVFS, CCFS, MVDFS, and CCDFS in a 1-2-1 route ITS,
were compared in terms of variations of the flux, vehicle density, speed, and
average flux against the fraction of dynamic drivers. Variations of average flux with
time difference (Dt) by adopting CCDFS and MVDFS indicate that MVDFS and
CCDFS are better than the other two feedback strategies in an ITS with only one
entrance and one exit. One highlight of this chapter is that it brings forward two
new quantities, mean velocity difference and congestion coefficient difference, to
radically improve road conditions. In contrast to the previous two feedback strat-
egies, MVDFS and CCDFS can significantly improve the road conditions, in terms
of increasing vehicle density and flux, reducing oscillation, and enhancing average
flux with the increase of dynamic driver percentage. These advantages result from
the fact that the new feedback strategies consider the tendency of road condition
variations. Thus, in these situations, the system has the ability to alleviate the
negative effects of congestion caused by the traffic jam. Thanks to the rapid
development of modern scientific technology, MVDFS or CCDFS can be imple-
mented in real traffic systems in the near future. If a navigation system (GPS) is
installed in each vehicle, the velocity and position information of vehicles are
known. Consequently, the mean velocity difference or the congestion coefficient
difference in MVDFS or CCDFS can be calculated by the computers used to
calculate the average velocity or congestion coefficient in previous strategies
without extra cost. Taking into account the reasonable cost and more accurate
description of road conditions, we conclude that these two feedback strategies are
applicable.

Acknowledgments C.F. Dong appreciates many fruitful discussions with Prof. Bing-Hong Wang
at the University of Science and Technology of China, and Dr. Nan Liu at the University of
Chicago. The authors would like to thank the editors and the anonymous referees’ helpful com-
ments and suggestions.

References

1. Adler JL, Blue VJ (1998) Toward the design of intelligent traveler information systems.
Transp Res Part C 6:157–172

2. Axelrod R (1984) The evolution of cooperation. Basic books, New York
3. Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396

Advanced Information Feedback Coupled … 63



4. Barato AC, Hinrichsen H (2008) Boundary-induced nonequilibrium phase transition into an
absorbing state. Phys Rev Lett 100:165701

5. Barlovic R, Santen L, Schadschneider A, Schreckenberg M (1998) Metastable states in
cellular automata for traffic flow. Eur Phys J B 5:793–800

6. Bellouquid A, Delitala M (2011) Asymptotic limits of a discrete kinetic theory model of
vehicular traffic. Appl Math Lett 24:149–155

7. Bier VM, Hausken K (2013) Defending and attacking a network of two arcs subject to traffic
congestion. Reliab Eng Syst Saf 112:214–224

8. Biham O, Alan Middleton A, Levine D (1992) Self-organization and a dynamical transition in
traffic-flow models. Phys Rev A 46:R6124

9. Chen BK, Sun XY, Wei H, Dong CF, Wang BH (2011) Piecewise function feedback strategy
in intelligent traffic systems with a speed limit bottleneck. Int J Mod Phys C 22:849–860

10. Chen BK, Sun XY, Wei H, Dong CF, Wang BH (2012) A comprehensive study of advanced
information feedbacks in real-time intelligent transportation systems. Phys A 391:2730–2739

11. Chen BK, Dong CF, Liu YK, Tong W, Zhang WY, Liu J, Wang BH (2012) Real-time
information feedback based on a sharp decay weighted function. Comput Phys Commun
183:2081–2088

12. Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and
some related systems. Phys Rep 329:199–329

13. Colman AM (1995) Game theory and its applications in the social and biological sciences.
Butterworth-Heinemann, Oxford

14. Dong CF (2009) News story: intelligent traffic system predicts future traffic flow on multiple
roads. PHYSorg.com. 12 Oct 2009

15. Dong CF, Ma X, Wang GW, Sun XY, Wang BH (2009) Prediction feedback in intelligent
transportation systems. Phys A 388:4651–4657

16. Dong CF, Ma X (2010) Corresponding angle feedback in an innovative weighted
transportation system. Phys Lett A 374:2417–2423

17. Dong CF, Ma X, Wang BH (2010) Weighted congestion coefficient feedback in intelligent
transportation systems. Phys Lett A 374:1326–1331

18. Dong CF, Ma X, Wang BH (2010) Effects of vehicle number feedback in multi-route
intelligent traffic systems. Int J Mod Phys C 21:1081–1093

19. Dong CF, Ma X, Wang BH, Sun XY (2010) Effects of prediction feedback in multi-route
intelligent transportation systems. Phys A 389:3274–3281

20. Dong CF, Paty CS (2011) Application of adaptive weights to intelligent information systems:
an intelligent transportation system as a case study. Inf Sci 181:5042–5052

21. Dong CF, Wang BH (2011) Applications of cellular automaton model to advanced
information feedback in intelligent traffic systems. In: Salcido A (ed) Cellular automata—
simplicity behind complexity, pp 237–258. ISBN 978-953-307-579-2

22. Dong CF, Ma X (2012) Dynamic weight in intelligent transportation systems: a comparison
based on two exit scenarios. Phys A 391:2712–2719

23. Fukui M, Nishinari K, Yokoya Y, Ishibashi Y (2009) Effect of real-time information upon
traffic flows on crossing roads. Phys A 388:1207–1212

24. Gao K, Wang WX, Wang BH (2007) Self-questioning games and ping-pong effect in the BA
network. Phys A 380:528–538

25. Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow-the-leader models of traffic flow.
Oper Res 9:545–567

26. Hao QY, Jiang R, Hu MB, Jia B, Wu QS (2011) Pedestrian flow dynamics in a lattice gas
model coupled with an evolutionary game. Phys Rev E 84:036107

27. He ZB, Chen BK, Jia N, Guan W, Lin BC, Wang BH (2014) Route guidance strategies
revisited: comparison and evaluation in an asymmetric two-route traffic network. Int J Mod
Phys C 25:1450005

28. Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys
73:1067–1141

64 C. Dong et al.

http://PHYSorg.com


29. Helbing D, Treiber M (1998) Gas-kinetic-based traffic model explaining observed hysteretic
phase transition. Phys Rev Lett 81:3042–3045

30. Hino Y, Nagatani T (2014) Effect of bottleneck on route choice in two-route traffic system
with real-time information. Phys A 395:425–433

31. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge
University Press, Cambridge

32. Kerner BS, Konhäuser P (1994) Structure and parameters of clusters in traffic flow. Phys Rev
E 50:54–83

33. Kerner BS (2011) Optimum principle for a vehicular traffic network: minimum probability of
congestion. J. Phys. A 44:092001

34. Laval JA, Leclercq L (2010) Mechanism to describe stop-and-go waves: a mechanism to
describe the formation and propagation of stop-and-go waves in congested freeway traffic. Phil
Trans R Soc A 368:4519

35. Lee K, Hui PM, Wang BH, Johnson NF (2001) Effects of announcing global information in a
two-route traffic flow model. J Phys Soc Jpn 70:3507–3510

36. Li XB, Wu QS, Jiang R (2001) Cellular automaton model considering the velocity effect of a
car on the successive car. Phys Rev E 64:066128

37. Li RH, Yu JX, Lin J (2013) Evolution of cooperation in spatial Traveler’s Dilemma game.
PLoS ONE 8:e58597

38. Nagatani T (2002) The physics of traffic jams. Rep Prog Phys 65:1331–1386
39. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I

2:2221–2229
40. Nakata M, Yamauchi A, Tanimoto J, Hagishima A (2010) Dilemma game structure hidden in

traffic flow at a bottleneck due to a 2 into 1 lane junction. Phys A 389:5353–5361
41. Nowak M, May RM (1992) Evolutionary games and spatial chaos. Nature 359:826
42. Orosz G, Wilson RE, Stépán G (2010) Traffic jams: dynamics and control. Phil Trans R Soc A

368:4455–4479
43. Perc M (2007) Premature seizure of traffic flow due to the introduction of evolutionary games.

New J Phys 9:3
44. Roughgarden T (2003) The price of anarchy is independent of the network topology.

J Comput Syst Sci 67:341–364
45. Sugden R (1986) The economics of rights, cooperation and welfare. Blackwell, Oxford
46. Sun XY, Jiang R, Hao QY, Wang BH (2010) Phase transition in random walks coupled with

evolutionary game. Europhys Lett 92:18003
47. Szabó G, Töke C (1998) Evolutionary prisoner’s dilemma game on a square lattice. Phys Rev

E 58:69–73
48. Szilagyi MN (2006) Agent-based simulation of the n-person chicken game. In: Jorgensen S,

Quincampoix M, Vincent TL (eds) Advances in dynamical games, vol 9. Annals of the
International Society of Dynamic Games, Birkhäuser, Boston, pp 695–703

49. Tang TQ, Li CY, Huang HJ (2010) A new car-following model with the consideration of the
driver’s forecast effect. Phys Lett A 374:3951–3956

50. Tanimoto J, Hagishima A, Tanaka Y (2010) Study of bottleneck effect at an emergency
evacuation exit using cellular automata model, mean field approximation analysis, and game
theory. Phys A 389:5611

51. von Neumann J, Morgenstern O (1944) Theory of games and economic behaviour. Princeton
University Press, Princeton

52. Wahle J, Bazzan ALC, Klügl F, Schreckenberg M (2000) Decision dynamics in a traffic
scenario. Phys A 287:669–681

53. Wahle J, Bazzan ALC, Klügl F, Schreckenberg M (2002) The impact of real-time information
in a two-route scenario using agent-based simulation. Transp Res Part C 10:399–417

54. Wang WX, Wang BH, Zheng WC, Yin CY, Zhou T (2005) Advanced information feedback in
intelligent transportation systems. Phys Rev E 72:066702

55. Wang WX, Ren J, Chen GR, Wang BH (2006) Memory-based snowdrift game on networks.
Phys Rev E 74:056113

Advanced Information Feedback Coupled … 65



56. Wang XF, Zhuang J (2011) Balancing congestion and security in the presence of strategic
applicants with private information. Eur J Oper Res 212:100–111

57. Xiang Z-T, Li Y-J, Chen Y-F, Xiong L (2013) Simulating synchronized traffic flow and wide
moving jam based on the brake light rule. Phys A 392:5399–5413

58. Yamauchi A, Tanimoto J, Hagishima A, Sagara H (2009) Dilemma game structure observed in
traffic flow at a 2-to-1 lane junction. Phys Rev E 79:036104

59. Zhao X-M, Xie D-F, Gao Z-Y, Gao L (2013) Equilibrium of a two-route system with delayed
information feedback strategies. Phys Lett A 377:3161–3169

60. Zheng XP, Cheng Y (2011) Conflict game in evacuation process: a study combining cellular
automata model. Phys A 390:1042

66 C. Dong et al.



Solving a Dynamic User-Optimal Route
Guidance Problem Based on Joint
Strategy Fictitious Play

Tai-Yu Ma

Abstract Dynamic route guidance systems aim to provide users with on-line
information on traffic conditions and suggest relevant route guidance to facilitate
route choices for users. In this study, we consider the problem as a multi-player
repeated game in a dynamic multi-agent transportation system. We propose a game
theory approach based on joint strategy fictitious play by explicitly modeling users’
compliances to route recommendations as an inertia term. Each guided user makes
his travel time estimations and local outgoing link decisions based on his historical
experiences and traffic time information received en-route as provided by a system
administrator. Based on the travel times estimated en-route, users adapt their route
choices progressively via fast routes to their destinations. The dynamic user-optimal
route guidance problem is formulated as a variational inequality problem in a queue-
based traffic flow model. We show that the proposed approach can solve a dynamic
user-optimal route guidance problem based on users’ local outgoing link choice
decisions. The numerical studies are implemented by considering two classes of
users in the system: informed and non-informed users. The results demonstrate the
convergence of the proposed algorithm and highlight significant travel times and
delay reduction in a congested situation. Although the user-compliance mechanism
for the route recommendations is currently modeled as a static term, it provides
rooms for further improvement based on more realistic compliance mechanisms.
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1 Introduction

A route guidance system is a kind of traveler information system which provides
route recommendation messages to drivers equipped with in-vehicle guidance
advice. Drivers input their destinations before their trips and the system computes
routes with least travel times based on periodically updated predictions of the state
of traffic in the network [5, 31, 47]. There are two kinds of route guidance systems:
the reactive route guidance system and the anticipatory route guidance system. The
first one utilizes regularly updated traffic information to compute the least travel
time routes without taking into account the driver’s compliance for the recom-
mended route. The second one anticipates drivers’ route choices with respect to
predicted traffic conditions and provides route recommendations accordingly. The
system generates route recommendations based on a current traffic situation and
anticipates other drivers’ route choice behavior in such a way that traffic-flow
prediction is consistent with its own prediction [3, 5, 33]. According to system
design objectives, if route recommendations are given in a way such that total
system travel times of all drivers are minimized, it is called system-optimal route
guidance. However, if it is based on user-optimal guidance, i.e. users are oriented to
least travel time routes, the system is called user-optimal route guidance system. In
this study, we consider the latter problem unless otherwise mentioned.

The route guidance system is expected to reduce recurring traffic congestion on a
road network and enhance indirectly road safety. The empirical study indicated that
traffic congestion is positively associated with accident occurrence frequency [60].
A recent comprehensive study on the relationship between road safety and con-
gestion on motorways revealed that increasing congestion may affect significantly
road safety due to unstable traffic condition and more frequently lane changing
behavior [41]. The authors suggested that future research effort is needed to study
the potential impact of congestion on road safety. The absence of route guidance
systems may compromise safety and security on our roads. Route guidance systems
can reduce travel times, remove congestion, and increase users’ road safety and
security. Route guidance systems have thus been increasingly used, especially in
urban areas. Current route guidance systems such as Tomtom (www.tomtom.com)
or Garmin (www.garmin.com) provide users with detailed real-time traffic infor-
mation, which is especially helpful for users to better plan their trips, get efficiently
and safely to their destinations, and avoid traffic congestion, accidents, road blocks,
or other hindrances. Such systems can also reduce a user’s burden to find routes,
especially in unfamiliar rural areas. However, route guidance systems may also
cause driver distractions and increase accident risk, e.g. because users focus more
on operating the system than on being alert in traffic. Similar safety issues have
been reported e.g. when crossing a road while operating a mobile phone. To reduce
the risk of accident, voice guidance is generally available to reduce driver dis-
tractions while operating the system. Although the functionalities and safety issues
of route guidance systems continuously improve, such systems provide advantages
weighted against safety issues. The evaluation of route guidance systems from a
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road safety perspective has received increased attention in recent years and has
become an important issue for road safety research [1].

The problem of dynamic route guidance can be formulated as a dynamic user
equilibrium problem at each user’s current node (road intersection), i.e. the decision
node at which users decide which outgoing link to choose or are split (guided) to
routes from that node to their respective destinations [5]. It states that at user
equilibrium, all guided users use the least travel time routes towards their desti-
nations. Hence the route guidance problem is a generation of dynamic traffic
assignment problem, but it differently incorporates pre-trip/en-route traffic infor-
mation and driver compliance to route recommendations to generate consistent
route guidance [6]. The problem is difficult to solve due to the fact that there is no
closed form of travel time function in a simulation-based traffic flow model. Several
dynamic traffic assignment solution methods have been proposed for solving route
guidance problem [29, 31, 69]. The reader is referred to [51, 57, 67] for a com-
prehensive review of dynamic traffic assignment model and solution methods.

The state-of-the-art solution methods are generally based on an iterative route
adjustment procedure based on themethod of successive averages (MSA) to obtain an
approximate solution [68]. This method consists of shifting users to cheaper routes on
a day-to-day basis until a stable state (user equilibrium) is achieved. The system first
predicts network conditions for next time slices and then recommends the time-
dependent shortest routes to guided users accordingly. However, this approach does
not consider the resistance in drivers’ route choice behavior and may generate later
congestion if too many guided users are assigned to these routes [5, 14, 33]. Bottom
[5] proposed an analytical framework for consistent route guidance problem in which
three system components, i.e. route splits, network conditions and guidance mes-
sages, are identified and the causal relationships between pairs of these components
are analyzed. The author formulated the consistent route guidance problem as a fixed
point problem and proposed solution methods based on the MSA and Polyak iterate
averaging methods. As mentioned by Paz and Peeta [48], the solution method of
Bottom [5, 6] is computational intensive for real time implementation. Moreover
driver’s compliance behaviormodeling is still missing in the solutionmethod. For this
issue, the authors focused particularly on modeling driver’s route choice behavior
with information provision [49, 50] and proposed a behavior consistent route guid-
ance framework based on the control theory [48].

Other approaches based on control theory for optimizing the route guidance
system were also studied [15, 21, 43]. The drawback of these methods is that
drivers’ reactions to received information are not taken into account which results in
an inaccurate traffic flow prediction. For this issue, Peeta and Yu [49, 50] proposed
a hybrid, rule-based approach to model day-to-day and within-day adaptive route
choice behavior under information provision. The perception of the cost of route is
updated based on an individual’s current experience for that day. The within-day
route choice considered an individual’s compliance and inertia for received infor-
mation which are modeled by some probabilistic decision rules. Jha et al. [32]
applied the discrete choice model to capture a driver’s day-to-day departure time
and route choice behavior under information provision. The driver’s perception was
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updated based on a weighted combination of historical perceptions of travel cost
and traffic information. In an experimental study, Selten et al. [54] reported labo-
ratory experiments on the driver’s day-to-day route choice game in a simple two-
route network. They found that drivers adjust their daily route choices based on
their received payoff history. Wahle et al. [59] proposed a multi-agent micro-
simulation model to study the impact of online information provisions on a two-
route scenario. Drivers are modeled as agents shifting their route choices with
minimum travel times under dynamic information provision. However, the driver’s
adaptive learning behavior was not incorporated into this study.

The effectiveness of route guidance system depends on consistent forecast of
future network states under driver compliance assumption. Modeling driver’s
compliance and response to traffic information have become active research issues.
Related work on these issues concerns modeling the feedback effect of the
advanced traveler information system (ATIS) on traffic state prediction [8, 16, 17],
driver’s response to information [11, 22, 55] and modeling compliance rate of route
guidance related to the quality of information [10, 62, 64].

Game theory has been widely studied for the Nash equilibrium problem in
N-player repeated games [20, 65]. It was applied for system-optimal routing [23],
distributed controls [52] and optimization [36]. One of the promising learning
processes in games is fictitious play (FP) which is an N-player repeated game in
which each player selects a best action based on the assumption that other players’
choices follow their historical frequencies of past decisions [7]. It has been proven
that the FP process converges to Nash equilibrium for N-player repeated games
with identical payoff functions and other classes of games [4, 45]. The FP process is
promising for modeling route choice behavior because it is similar to a driver’s day-
to-day route choice adaptation behavior based on his past experiences [49]. Existing
applications of the FP process mostly focused on the congestion game problem, i.e.
how to compute the pure Nash equilibrium of a route choice based on an adaptive
learning process [12, 44]. The reader is referred to Hurkens [30], Young [65] and
Hart [26] for related learning processes of N-player games.

This paper aims to propose a game-theory based approach for solving the user-
optimal route guidance problem. We consider the user-optimal route guidance
problem as a distributed and individual routing problem. The term “distributed” is
related to local link choice decisions based on each individual user’s expected time-
dependent shortest route computation and best reply strategy. Our motivation is that
in a multiplayer dynamic congestion game, each player (user or driver) makes his
route decision at his current node based on an estimated travel time to his desti-
nation. Like in the joint strategy fictitious play process [42], each player makes his
individual decision based on information gained from both his historical experience
and the updated traffic condition information obtained. The added value of the
proposed method is that it is convenient to model driver’s compliance to route
recommendations. We demonstrate that the proposed approach can achieve an
effective reduction in travel time through such a self-learning process.

The rest of this paper is organized as follows. In Sect. 2, we present a mathe-
matical formulation of the route guidance problem based on the variational
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inequality formulation of dynamic user equilibrium [19]. An iterative adjustment
process is described as its general solution method. For the implied traffic flow
model the point queue model is applied. Section 3 recalls the FP process for an
N-player repeated game. It follows the distributed joint strategy fictitious play with
inertia (JSFP) process for the dynamic route guidance problem. As far as the
numerical study is concerned, we test the performance of the proposed method and
compare it with classical iterative solution method in an illustrative test network.
Finally, we draw the conclusions and future extensions.

2 User-Optimal Route Guidance Problem

We first state briefly the notation used in this study. The physical road network is
modeled by a directed graph GðN;EÞ where N is a set of nodes {n} and E is a set of
directed links {e}. Note that a node is defined as a road intersection, and a link is
defined as a road section connected by its head node and tail node. Both origins(o)/
destinations(d) are nodes where travelers depart from/arrive at on the road network.

Notation

o Origin, 8o 2 O. O is the set of origins
d Destination, 8d 2 D. D is the set of destinations
k Origin-destination pair (o, d), 8k 2 K. K is the set of origin-destination

pairs
s Node not belonging to destination set, 8s 2 S. S = N \ D
u Tail node of a directed link where its head node is s
rsd Route from node s to destination d. A route is defined as a concatenation

of links or nodes without cycles connecting from node s to destination d.
Rsd is the set of rsd

crðtÞ Travel time on route r for guided and non-guided users when entering
initial node of the route at time t

g Superscript label for guided users
cgr ðtÞ Travel time on route r for guided users when entering initial node of the

route at time t
f gr ðtÞ Flow of guided users (number of guided users per time unit) on route r at

time t
Ug

sdðtÞ Travel demand rate of guided users (number of guided users per time
unit) from node s to destination d when entering the node at time t

t Time, continuous floating variable. t0 denotes the time when the first user
enters the network

D Discretized time slice on which traffic information is regularly updated
T The predefined and fixed time that exceeds the simulation times for all

users moving on the network to their destinations
h Discretized time interval index h 2 H, where h ¼ t=Db c with xb c being

the operator denoting the largest integer smaller than or equal to x
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H Set of discretized time interval indexes over T
z Departure time interval index z 2 Z , where z ¼ t=Dzb c with Dz being the

discretized departure time slice
Z Set of departure time interval indexes over a predefined departure time

period Tz
w Iteration index

The user-optimal route guidance problem (URG) can be formulated as a user-
optimal dynamic equilibrium problem based on the variational inequality formula-
tion. The problem consists of finding user-optimal route recommendations at each
node of the network stating that all guided users use least travel time routes from their
current node to their respective destination. The problem is a generalization of
dynamic user equilibrium problem and has been widely studied in the past [5, 47, 68].
In what follows, we present the mathematical formulation of the problem and apply a
point queue model and classical iterative solution method.

2.1 Problem Formulation

Consider a dynamic user-optimal routing problem on a road network with given
fixed time-dependent origin-destination demand. Users (drivers) on the road net-
work are distinguished as two classes: guided users and non-guided users. Each
user determines himself whether to be guided (by purchasing a route guidance
system) or non-guided (by not purchasing a route guidance system). The former are
equipped with an in-vehicle device capable of receiving regularly updated traffic
condition information and making en-route route changes to the destination. The
latter are assumed to be non-informed users who utilize time-dependent shortest
routes, fixed at the time of departing from his node of origin. This simplification
reflects that non-guided users select their minimum cost routes based on their prior
knowledge of network conditions. The two classes of users are loaded in the road
network with respective routing rules and determine jointly the traffic conditions
and the travel times on each route. Although the user-optimal route guidance
problem is relevant to the guided users, the system simulates the traffic flow
propagation in the simulator of the two types of users based on the same traffic flow
model (described later). The system can then obtain experienced travel times of
each guided and non-guided user and updates route recommendations for guided
users accordingly. Route recommendations are not provided to non-guided users,
and are thus also not updated for non-guided users. The URG problem is related to
the class of guided users1 and can be formulated as a fixed-point problem for each
generic node-destination pair of (s, d) [5, 68], i.e. a user-optimal route choice

1 Note that one can also incorporate the learning behavior of non-guided users in the URG
problem and solve the corresponding fixed point problem for both classes of users [6].
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problem from a guided user’s current node to his destination. The fixed-point
problem can be formulated mathematically as an infinite dimensional variational
inequality problem with respect to each pair (s, d) as follows [19, 28]:

Given a pair (s, d),find a user-optimal routeflowvector for the class of guided users
fg� ¼ f g�r ðtÞ r 2 Rsd; t 2 ½t0; T �j� �

where Rsd is the set of routes connecting (s, d) such
that

ZT

t0

X
r2Rsd

cgr ðtÞ½f gr ðtÞ � f g�r ðtÞ�
( )

dt� 0; ð1Þ

for all fg� 2 Ng
sd , where superscript * expresses user-optimal route flow for guided

users. Ng
sd is the set of feasible route flows for guided users which satisfies the

following conditions:

X
r2Rsd

f gr ðtÞ ¼ Ug
sdðtÞ; 8s 2 S;8d 2 D flow conservationð Þ ð2Þ

f gr ðtÞ� 0; 8t 2 ½t0; T� non-negativity of route flowð Þ ð3Þ

The above variational inequality problem aims to find a set of user-equilibrium
route assignments for guided users. Equations (2) and (3) show flow conservation
for each node-destination pair and non-negativity constraints of route flow
respectively. The solution of the problem states that only routes with least travel
times are used [18, 19]:

cgr ðtÞ[ min
r2Rsd

ðcrðtÞÞ ) f g�r ðtÞ ¼ 0

f g�r ðtÞ[ 0 ) cgr ðtÞ ¼ min
r2Rsd

ðcrðtÞÞ

(
for all t 2 ½t0; T � ð4Þ

This user-optimal equilibrium in (4) states that travel time on the routes used by
guided users are the minimum of the travel times by guided and non-guided users
on all possible routes connecting the same origin and destination on a road network.
There is no analytical form to obtain such a user-optimal equilibrium for a simu-
lation-based traffic flow model. The solution approaches are based on iterative
procedures (described in Sects. 2.3 and 3) to iteratively update route recommen-
dations for guided users toward user-optimal equilibrium states. Hence, there is no
circular issue to achieve Eq. (4), i.e. for any user, route choices are always deter-
mined before loading on their chosen route. The last equation sign in Eq. (4) is
interpreted as in computer programming of the simulator, where all crðtÞ such that
r 2 Rsd are inserted into the Min function on right hand side to determine cgr ðtÞ on
the left hand side. Equation (4) states Wardrop’s user-optimal equilibrium in traffic
theory [61]. In the context of the route guidance problem, it can be stated as “the
journey times on all the routes actually used by guided users are equal, and
less than those which would be experienced by a guided user on any other routes”,
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i.e. at a Wardrop user-optimal equilibrium, no guided user can reduce his travel
time by unilaterally changing his own route choice. This concept is equivalent to a
Nash equilibrium concept [13]. It is also a correlated equilibrium of an N-player
game in our dynamic routing problem context [27]. Note that we can observe that
the dynamic-user equilibrium assignment problem in transportation science is a
special case of the dynamic URG problem at a user’s origin node [5, 68].

2.2 Traffic Flow Model and Link Travel Time Prediction

The traffic dynamic is modeled using the point queue model without taking into
account physical dimension at intersections [24, 34]. Although the point queue
model is very simple, it represents approximately realistic traffic flow propagation
similar to Nagel-Schreckenberg microscopic traffic flow model [46]. The basic
concept of the point queue model is based on traffic flow supply and demand
dynamics at intersections. If flow demand (inflow rate) is superior to its supply
(time-dependent flow capacity) queues are formed at the end of the link. Let link
flow capacity be defined as the maximum rate of flow at time t [58]. We distinguish
link inflow (outflow) capacity reðtÞ (deðtÞ) stating maximum flow rate at the head
(tail) node of a link. Each link is characterized by its maximum flow capacity
dmax
e ¼ rmax

e and its maximum speed constraint. The number of vehicles can be
stocked on a link is determined by qmax

e le where qmax
e is maximum traffic density,

and le is link length. When a vehicle arrives at link, a least travel time based on free
flow speed is calculated for passing through that link. The outflow at the end node
u of that link depends on total demand (outflows from all upstream links of node u)
and supply (flow capacities on that link and its downstream links). If the demand at
node u is superior to its supply, a priority queue is generated at node u. Later
arriving vehicles joint this queue and wait for already queued vehicles to be
cleaned. We formulate the basic concept of the point queue model as follows.

Let YeðtÞ and XeðtÞ denote the cumulative number of users (vehicles) arriving
and leaving link e at time t, respectively. For any user (guided or non-guided user),
the link travel time ceðtÞ when entering link e at time t is calculated as

ceðtÞ ¼ X�1
e ðYeðtÞÞ � t ð5Þ

The above function computes user’s experienced link travel times, which depend
on the entering time and traffic state of that link. We assume that the First-In-First-
Out principle is respected for each link, which guarantees that link travel time is a
non-decreasing function of traffic flow. The partial flow capacity from upstream
links to downstream links depends on the number of lanes and the priorities
associated with the links [24]. The point queue model assures that traffic flow
propagation in the network respects basic physical rules of traffic. Consider a node
s with a set of upstream links J�ðsÞ and a set of downstream links JþðsÞ. Let e� and

74 T.-Y. Ma



eþ be an upstream and downstream link of node s, respectively. In the merge case,
flow from the upstream links e� to a specific downstream link eþ cannot exceed the
link flow capacity of eþ at time t, i.e.

X
e�2J�ðsÞ

qe�eþðtÞ� reþðtÞ; 8eþ 2 JþðsÞ; ð6Þ

where qe�eþðtÞ is link outflow from e� to eþ at time t. In the diverge case, the
outflow from e� to eþ is constrained by the following equation (supply-demand
approach, Lebacque [37]; Lebacque and Khoshyaran [38]):

qe�eþðtÞ�minðae�eþdmax
e� ; reþðtÞÞ; ð7Þ

where ae�eþ is a split coefficient between 0 and 1, corresponding partial outflow
capacity allocation from e� to eþ, depending on physical configuration and number
of lanes on link. The link inflow capacity at time t is determined by

reþðtÞ ¼ rmax
eþ

0
if #eþðtÞ\qmax

eþ leþ
otherwise

�
; ð8Þ

where #eþðtÞ is the number of vehicles on link eþ at time t. Note that the point
queue model can be replaced by other more realistic traffic flow models to capture
queue spillovers at intersections [25, 35, 39, 40]. The route guidance system pro-
vides route recommendations for the guided users based on predictions of future
traffic conditions. It is important to estimate travel times of routes for the route
recommendations that are computed. Consider a guided user currently located at
node s. We aim to estimate a travel time from the guided user’s current node s by
taking a link esu to his destination d. This estimation can be calculated by summing
up the link travel time of esu plus the estimated minimum travel time from u to d,
i.e.:

~crsd ðtÞ ¼ ~cesuðtÞ þ c�rud ðtÞ; ð9Þ

where the first term represents the estimated travel time on link esu at time t. The
second term is estimated as the shortest travel time at time t based on time-
dependent shortest route computation by a variant of the Dijkstra algorithm [66].
We assume that the system administrator has current traffic state information based
on road traffic monitoring sensors. The link travel times can then be estimated as
their free-flow travel times plus their waiting times in queues. The queuing time is
estimated as keðtÞ=deðtÞ, where keðtÞ is the number of vehicles queuing on link
e and deðtÞ is the outflow capacity of link e at time t. In case deðtÞ ¼ 0, the queuing
time of last leaving vehicle is used. The computation of Eq. (9) is based on the most
recent traffic information update. Note that more realistic travel time prediction
methods based on traffic physics and data-mining techniques can also be applied if
needed [53].
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2.3 Iterative Solution Algorithm Based on the MSA

The iterative solution algorithm is a widely used solution method for the URG
problem [3, 68]. It consists of finding a dynamic user equilibrium (Nash equilib-
rium) for routes from the guided users’ current node to their destinations by iter-
atively shifting flow towards cheaper routes based on current network state and
travel time prediction. The route guidance is assumed to be unchanged during each
discretized time slice D. The guided users are progressively propagated toward their
destinations. The process is repeated until the maximum number of iteration is
achieved or the gap in relation to the idealized user equilibrium state is stabilized.
The objective of the iterative solution algorithm is to obtain a stabilized user-
optimal splitting rate at each node of the network for the guided users. The iterative
solution algorithm is described as follows.

Main algorithm

Step 1: Initialization. Initialize link travel time by free flow travel time. Set the flow
splitting rates (choice probabilities of next outgoing links for given destinations)
/0
sudðhÞ ¼ 0 for all discretized time indexes h 2 H, destinations d 2 D, non-des-

tination nodess 2 S and outgoing nodes of s. Set iteration index w = 0.

Step 2: Dynamic network loading and route guidance advice update.

a. Update link travel time prediction ~ceh for all e 2 E. Compute time-dependent
shortest routes r�wsd ðhÞ for all nodes s 2 S and d 2 D.

b. Compute temporal route guidance advice e/w
sudðhÞ as (Zuurbier [68]):

e/w
sudðhÞ ¼

1 if r ¼ r�wsd ðhÞ and esu 2 r
0 otherwise

�
; ð10Þ

for all h 2 H; s 2 S; d 2 D

c. The updated route guidance advice is weighted by the MSA as

/w
sudðhÞ ¼ ð1� aÞ/w�1

sud ðhÞ þ ae/w
sudðhÞ; for all u 2 CðsÞ; ð11Þ

for all h 2 H; s 2 S; d 2 D, where a ¼ 1=w, and CðsÞ is the set of outgoing nodes
of s. The above route advice update is the weighted average of previous route
guidance advice and temporal route guidance advice. We have the property thatP

u2CðsÞ /
w
sudðhÞ ¼ 1. This property can be verified without difficulty by updating

/w
sudðhÞ for each u 2 CðsÞ on the time-dependent shortest route from any node s to

destination d.
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Step 3: Stop criteria. We define a gap function for the dynamic user (Nash)
equilibrium which measures how far users’ experienced travel times are from ideal
shortest route travel times. The gap function is defined as

Gap ¼
P

z2Z;k2K;r2Rzk ;m2Xzkr
½cmðtÞ � c�zk�P

z2Z;k2K Ûzkc�zk
; ð12Þ

where m is a user. Xzkr is the set of users (guided and non-guided) on route r with
origin-destination pair k and departure time interval z. cmðtÞ is user m’s experienced
travel time with departure time t. Ûzk is the number of guided and non-guided users
for origin-destination pair k and departure time interval z. c�zk represents minimum
travel time with respect to z and k. If the gap value is stabilized or the maximum
number of iterations is achieved then stop; otherwise, set w: = w + 1 and go to
Step 2.

3 Joint Strategy Fictitious Play for Dynamic User-Optimal
Route Guidance Problem

This Sect. 3 applies only for guided users to solve the URG problem. The iterative
solution algorithm in Sect. 2.3 is based on a centralized time-dependent shortest
route computation to assign guided users to those shortest routes. Differently, the
following proposed route guidance approach is based on individual users’ learning
strategy in response to day-to-day traffic congestion and en-route traffic state
information. Guided user’s learning strategy is based on the FP process to decide a
sequence of outgoing links toward his destination. In this way, guided user’s
compliance to route recommendations or behavioral inertia can be incorporated,
and en-route traffic information can be useful to estimate expected travel time to
destination. We show that such distributed route guidance decisions undertaken at
each individual level can achieve similar travel time reduction result as the iterative
solution algorithm. In this section, we first recall the concept of the FP process for
an N-player repeated game. Then we propose a distributed joint strategy fictitious
play with inertia process for the URG problem.

3.1 Fictitious Play

Let us recall the FP process for the congestion game problem. Consider a finite set
of players (guided users) I ¼ 1; . . .; vf g where each player has to select a finite set
Ai of actions (routes) to his destination. A payoff function of player i is determined
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by the profile of actions of all players, written as Ui : A ! <, where A ¼ �i¼1;...;vAi

is the Cartesian product of each player’s action choices. Let ai 2 Ai be the action
choice of player i. The actions of all other players are denoted as a�i ¼
a1; . . .; ai�1; aiþ1; . . .; avf g 2 A�i. Let a ¼ ðai; a�iÞ 2 A be an action profile of all

the players. The user-optimal strategy can be defined as

a�i ¼ Argmax
ai2Ai

½Uiðai; a�iÞ� ð13Þ

The pure Nash equilibrium is achieved for the action profile a� ¼ ða�i ; a��iÞ if for
any player i the following condition holds [42]:

Uiða�i ; a��iÞ ¼ max
ai2Ai

½Uiðai; a��iÞ� ð14Þ

The well-known FP process states that each player selects his optimal action
following a strategy (probability distribution over his action set) which best responds
to the empirical frequencies of actions taken by all other players. The empirical
frequency of a player is evaluated as the percentage of the number of iterations (or
days in user’s day-to-day route choice learning context) that an action has been taken
until previous iteration (day). The FP process requires that each player knows the
empirical frequencies of all other players and selects a best response based on the
assumption that other players select their action independently based on their
empirical frequencies. The payoff function is computed by the joint probability dis-
tribution of all other players. It has been proven that the FP process converges to Nash
equilibrium in potential games [45]. However, the FP process is not computationally
feasible for a large-scale N-player repeated game due to the high computational times
of the payoff function for very large action choice sets [56]. An alternative way is that
each player considers the actions of all other players jointly and selects a best action
based on the joint empirical frequencies of all other players. This process is called
JSFP process, which reduces the computational burden of the FP process [42]. On
each iteration, each player only needs to compute the expected payoffs of his actions
and selects a best action randomly from among his best action choice set. To model a
player’s unwillingness to change, a stochastic mechanism called inertia needs to be
taken into account. The inertia takes into account a player’s probabilistic resistance to
change his behavior in his action choice [42]. Note that the inertia can be considered as
a human risk aversion behavior to reduce his cognitive effort. The inertia strength is in
general related to a player’s learning process under uncertainty [9, 63]. In this study,
we propose a distributed JSFP process with inertia, which consists of learning
optimal route guidance policy at local level with updated online traffic information.
Each time when a player (guided user) arrives at a node of the network, he computes
the expected payoffs (travel times) for each outgoing link (action) based on the
empirical, average payoffs made by the other players as well as on updated travel time
estimation. Each player does not need to track the actionsmade by all other players but
instead he needs to estimate the average payoff of actions based on the joint actions of
all other players. The distributed JSFP process is described as follows.
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3.2 Distributed Joint Strategy Fictitious Play Algorithm
Under Information Provision

Consider a finite set of guided users i 2 I ¼ 1; . . .; vf g. Each guided user has a
finite number of routes to select to his destination. To avoid the difficulty of
enumerating all possible routes for each origin-destination pair, we consider the
route choice problem locally, i.e. each guided user constructs his route progres-
sively by selecting an outgoing link from his current node until he arrives at his
destination. Consider guided user i arriving at a node s. A finite set of routes from
s to user’s destination d 2 D is denoted by Rsd

i . The action profile of all guided
users’ route choices can then be defined as Rsd ¼ �i¼1;...;vRsd

i ¼ Rsd
1 �

Rsd
2 � � � � � Rsd

v . The payoff function Ui;sd : Rsd ! < states user i’s experienced
travel times on his route from s to d. As it is practically impossible to observe and
enumerate all possible actions of all routes in Rsd , direct computation of the best
route based on mixed strategies of all other users is not feasible. To reduce the
computational difficulty of the FP process, the JSFP process only needs to compute
the predicted payoffs of actions. We assume that a road network administrator
observes current network states and sends travel time predictions based on Eq. (9)
to guided users. Based on regularly updated travel time estimations of routes,
guided users select their best routes progressively until they arrive at their
destinations.

The distributed JSFP with inertia

Step 0 (Initialization): initialize free flow link travel time. Set initial iteration (day)
index w = 0.

Step 1: Each time a guided user i 2 I arrives at a node s, compute the expected
(average) payoffs up to iteration w for each action candidate e (outgoing link of s) as:

�Uw
i;sdðeÞ ¼

1
w

Xw�1

s¼0

Us
i;sdðeÞ; 8e 2 JþðsÞ; ð15Þ

where JþðsÞ is the set of outgoing links of node s. Us
i;sdðeÞ is the empirical

(experienced) payoffs for taking the outgoing link e to guided user i’s destination
d at iteration s, i.e.

Us
i;sdðeÞ ¼ �

X
e2rsd

csi ðeÞ; ð16Þ

where csi ðeÞ is the experienced travel times of link e of guided user i at iteration s. It
is important to note that the experienced payoffs can be obtained a posteriori once
guided users arrive at their destination. Therefore each guided user needs to
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estimate these expected travel times based on future travel time prediction. The
expected payoff of Eq. (15) is then approximated by

�Uw
i;sdðeÞ 	

w� 1
w

�Uw�1
i;sd ðeÞ þ 1

w
~Uw
i;sdðeÞ; 8e 2 JþðsÞ; ð17Þ

where ~Uw
i;sdðeÞ is the estimated travel time for guided user i for taking link e to his

destination, estimated by Eq. (9). Each guided user computes his best response
action set as:

Bw
i;sd ¼ e 2 JþðsÞ : arg max

e2JþðsÞ
½�Uw

i;sdðeÞ�
� �

; ð18Þ

The best response action set represents the outgoing links with the best expected
payoffs at iteration w.

The action awi;sd chosen by guided user i at iteration w when arriving at node s is
defined by the following rules:

If aw�1
i;sd 2 Bw

i;sd ) awi;sd ¼ aw�1
i;sd ð19Þ

If aw�1
i;sd 62 Bw

i;sd then
awi;sd 2 RandðBw

i;sdÞ with probability 1 � e
awi;sd ¼ aw�1

i;sd with probability e ðinertiaÞ
�

ð20Þ

where RandðBw
i;sdÞ is a random element in Bw

i;sd . Rule (19) states that if the action on
a previous day is still optimal, guided users retain the same choices. Otherwise,
guided users will either randomly choose an action among their best action set with
probability ð1� eÞ or retain their previous actions through inertia e. Note that the
MSA approach updates route guidance advices by a weighting of current advice
and historical advices whereas the JSFP approach re-uses previous successful
advice (on the previous day) if current advice is identical. In case when current
advice is different from the previous day, the probabilistic rule of Eq. (20) applies.
Based on the distributed JSFP process with inertia described above, each guided user
constructs the best route towards their destination progressively. When each guided
user arrives at their destination, experienced average payoffs �Uw

sdðeÞ are updated by
Eqs. (15) and (16) for all s 2 S; d 2 D. Note that the expected payoff for actions is
computed based on average experienced payoffs for users of the same class with the
same destination when arriving at node s at the same time interval.

Step 2: If the gap function value stabilizes, i.e. Gapw � Gapw�1
�� ��=Gapw�1 � f with

f being a small constant (e.g. 0.001) for three consecutive iterations or when a
predefined number of maximum iterations is achieved then stop; otherwise set
w :¼ wþ 1 and go to Step 1.
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The FP process with identical interest, i.e. all players share a common interest, has
been proved to converge to Nash equilibrium [21, 45]. The JSFP with inertia
process with self interest was proved to converge to a pure Nash equilibrium in all
generalized ordinal potential games [42]. The convergence property of the dis-
tributed JSFP with inertia to a near Nash equilibrium for the route guidance
problem is based on the established proof by Marden et al. [42]. The numerical
result in Sect. 4 supports this argument. Indeed the convergence to a pure Nash
equilibrium depends on consistent traffic prediction. How the traffic prediction
influences obtained near Nash equilibrium needs to be further studied in the future.
The distributed JSFP process for the route guidance problem can be considered as
an iterative user-optimal route learning process. Each guided user computes
expected travel times to destination on each alternative links and makes his best
response under the assumption that other users would follow their historical routing
decisions. This procedure [Eqs. (18)–(20)] is similar to the route adjustment of the
MSA [Eqs. (10) and (11)] but differently it is based on a microscopic approach
(individual user’s route choice decision and learning) compared to the macroscopic
shortest route flow split of the MSA.

4 Numerical Study

The numerical study is implemented using a road network with 32 nodes and 94
links (Fig. 1). The travel demand profile is set in such a way to generate congestion
during a two-hour traffic generation period. There are four origins and one desti-
nation. For network attribute setting, link length is set randomly between 3 and
3.5 km. The number of lanes is set as two for orthogonal links and as one for
negatively sloped links. The departure time is randomly selected from each user’s
departure time interval on the first day and then kept unchanged for subsequent
days in order to analyze the impact of route guidance recommendation. Moreover,
to test the performance of the proposed approach, two classes of users are imple-
mented: guided users and non-guided users. Only guided users can receive regu-
larly updated traffic information. Different scenarios with respect to the variation in
travel demand and the percentages of guided users are implemented to test the

5 9 131 17

6 10 142 18

7 11 153 19

8 12 164 20

Origin (o)

Destination (d)

21 25 29

22 26 30

23 27 31

24 28 32

The number in each 
node is its ID  

Fig. 1 A simple network
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performance of the proposed algorithm. The implementation of microscopic traffic
flow simulation is based on discrete event simulation technique programmed using
C++ language.

4.1 Computational Results

The demand profile is shown on the right side of Fig. 2. The number of users
increases gradually until it reaches the peak hour traffic flow of 8,640 users/h and
then decreases gradually to 960 users/h. Travel time delay for the scenario of not
using a route guidance system is shown on the right side of Fig. 2. Traffic infor-
mation update frequency is adapted to the size of the network as 1 min. Note that if
the information update frequency is too low it may reduce the effect of the route
guidance system on travel time reduction.

The convergence result of the proposed distributed JSFP with inertia is shown on
the left side of Fig. 2. The gap function decreases rapidly and then stabilizes. When
comparing the effect of market penetration of route guidance systems on the con-
vergence, it is reasonable to find higher gap function value for higher market
penetration. This is because increasing the number of guided users on recom-
mended routes may generate congestion on these routes and reduce its benefits. To
verify the performance of the proposed route guidance algorithm, we compare the
average travel times of each class for various market penetrations. The left subplot
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Fig. 2 The convergence result of the gap function (left) and travel demand profile and total system
travel time delay which illustrates the congestion pattern over time (right)
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of Fig. 3 illustrates a significant average travel time reduction for guided users in the
scenario of 20 % market penetration of route guidance. The average travel times of
guided users converge rapidly after three iterations. The subplot on the right of
Fig. 3 illustrates the impact of inertia parameter e on average travel times of guided
users. Inertia is an important parameter which reflects a guided user’s sensitivity to
and/or confidence in route guidance. Small inertia values mean that guided users
have a lot of confidence in the route guidance recommendations and follow rec-
ommended routes. Higher inertia values indicate that guided users have less con-
fidence and thus a higher probability of re-using their past routes. It is observed that
when the inertia value increases significantly the average travel times of guided
users increase accordingly.

Table 1 compares the performance of the JSFP and MSA algorithms with respect
to different demands (number of users) and to the market penetration of route
guidance. The reference case is a less-congested situation. We define the loading
factor as the ratio of number of users with respect to the reference case. We consider
a highly-congested scenario with a loading factor of 2 and test the performance of
the two algorithms. As illustrated in Table 1, the advantage of the route guidance
system is relatively limited with about 2–3 % average travel time reduction for the
reference case. However, in a congested case, the average travel times for guided
users are significantly reduced compared with non-guided users. The average travel
time reduction is 25.5 and 7.8 % for market penetrations of 20 and 50 % respec-
tively. The advantage of the route guidance system for guided users decreases as the
percentage of guided users increases. This is due to the over-reaction effects
resulting from inconsistent travel time prediction [2] and from the simplification of
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user’s compliance elasticity by a constant inertia term.We argue that when consistent
travel time prediction is provided, the over-reaction effect can be reduced and a
consistent travel time reduction for guided users can be achieved. When comparing
the JSFP and MSA algorithms, the result illustrates similar average travel times for
these two algorithms for low market penetrations but higher average travel times of
guided users with the MSAmethod in the high market penetrations of route guidance
scenarios (left subplot of Fig. 4). A similar result is found for the comparison of

Table 1 Total and average travel times of guided and non-guided users

Loading
factor

% of guided
users

JSFP MSA

Total
TT
(h)

Avg. TT (min) Total
TT (h)

Avg. TT (min)

Non-guided
users

Guided
users

Non-guided
users

Guided
users

1.0 0 1,663 31.2 – – – –

20 1,630 30.7 30.1 1,630 30.7 30.0

50 1,621 30.4 30.4 1,618 30.3 30.4

80 1,630 30.3 30.6 1,622 30.4 30.4

100 1,646 – 30.9 1,634 – 30.6

2.0 0 5,237 49.1 – – – –

20 4,444 43.9 32.7 4,522 44.9 32.2

50 3,962 38.6 35.6 4,011 40.5 34.7

80 3,838 33.7 36.6 4,067 39.8 37.7

100 3,889 – 36.5 4,698 – 44.0

Remark: 1. TT is total travel times; 2. Reported values are the average value for the last 5 of 60
iterations
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percentage savings of total travel times for all users (right side of Fig. 4). Figure 5
illustrates actual travel time delay for the same number of users in each class over the
simulation period. It illustrates a significant travel time delay reduction for guided
users during the peak hour period. Moreover when the percentage of guided users
increases from 20 to 50 %, their experienced delay increases accordingly due to the
aforementioned inconsistent travel time predictions.

5 Conclusions

In this study, we propose a distributed algorithm based on joint strategy fictitious
play with inertia to solve the dynamic user-optimal route guidance problem. The
proposed algorithm incorporates users’ inertia and en-route traffic information when
computing route guidance recommendations. The en-route traffic information
consists of periodically updated link travel times and time-dependent shortest travel
times provided by a system administrator for guided users. The proposed approach
is based on individual selfish adaptive online route choice behavior with real-time
traffic information provision. The numerical results demonstrate the convergence of
the proposed algorithm to Nash equilibrium in a dynamic congested network. The
advantages of the proposed algorithm reside in its distributed and self-guidance
aspects. We compare the performance of the proposed method with the method of
successive averages. The result shows the effectiveness of the proposed algorithm
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for not only reducing the average travel times of guided users but also improving
the total fluidity of the congested network.

Currently, the guided user’s compliance mechanism is modeled as a constant
inertia term to reflect the guided user’s habits/resistance to the recommended route
guidance information. However, experiments on the route choice behavior of users
revealed that their adaptive route choice behavior may depend on many other
factors such as travel distance/times, descriptive information, familiarity and route
complexity [50]. More realistic decision rules for the compliance mechanism can be
elaborated to replace the static inertia term in the proposed JSFP process. Moreover,
in this study our traffic condition prediction method doesn’t consider the route
choice decisions of guided users in the future and accordingly cannot provide
consistent travel time prediction. This issue may induce too much traffic on the
recommended routes if the market penetration (the percentage of guided users) were
to become too high and would thus reduce the benefits of the system. Furthermore,
modeling compliance elasticity related to the information accuracy needs to be
studied in the future extensions.

Examples of future extensions are the dynamic compliance mechanism with
online information provision and with the aforementioned route choice decision
factors. How to provide the consistent traffic prediction to increase the effectiveness
of the route guidance system needs to be studied. Some case studies on large-scale
road networks with consistent travel time predictions are also necessary to assess the
performance and effectiveness of the proposed approach to reducing travel times and
delays for users. Moreover, different information acquisition schemes such as vehi-
cle-to-vehicle communication, radio broadcasting and variable message signs (VMS)
could also be incorporated into the model. It would be also interesting to compare the
performance of the proposed algorithm with existing route guidance systems. From a
theoretical point of view, the convergence property and the stability of the algorithm
still need to be analyzed in the future. Currently, the effect of adoption of a route
guidance system on road safety is still less studied, this issue can be further studied in
the future to evaluate the benefits of such a system on road safety.
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A Psycho-Social Agent-Based Model
of Driver Behavior Dynamics

Theodore Tsekeris and Ioannis Katerelos

Abstract This paper suggests a psycho-social agent-based model, referred to as
Holistic-Emergent Social Interaction-Oriented Dynamics (HESIOD) model, to
simulate the drivers’ behavior dynamics under various types of interaction among
vehicles. The HESIOD model allows representing the heterogeneity and dynamical
processes involved in such control dimensions as risk assessment and time
responsiveness of driving behavior (controlled dimension). It is shown that highly
differentiated states may arise, such as fixed point, periodicity and transient chaos.
The dynamical state is found to be mostly affected by the degree to which the
control dimensions of neighboring vehicle drivers depart from each other, and the
topology of interaction among drivers. In contrast with the aggregate statistical-
probabilistic models, this agent-based model can offer valuable insights into the role
of both cognitive processes and interactions of drivers on their actual driving
behavior. The findings may have useful implications for improving the level of
service, safety and security in roads.

Keywords Road traffic behavior � Agent-based model � Risk assessment � Time
response � Road safety

1 Introduction

Modern pervasive wireless technologies and high-performance monitoring systems
enable one to identify with reasonable accuracy the spatio-temporal vehicle
trajectories and possible interactions between them in road networks. In conjunction
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with the road infrastructure and operational characteristics and traffic composition,
heterogeneity of drivers is also an important factor influencing the vehicular
interaction (congestion) patterns, level-of-service, safety and security conditions.
The modeling and interpretation of users’ heterogeneity can enhance the design and
evaluation of mechanisms for the efficient monitoring, prediction and control of
traffic congestion, as well as the design of appropriate measures to improve safety
and security in road networks.

Several methodological approaches have been developed and implemented to
investigate the heterogeneity of driver behavior. Some of them have focused on the
risk assessment and time responses according to different traffic flow and vehicle
interaction scenarios. Observatory analysis, by use of driver simulator, has stressed
the importance of such psychological attributes as aggressiveness, attentiveness or
risk on their passing behavior [1]. These attributes can be categorized among the
drivers’ population with respect to the age and/or experience and possibly other
individual (cognitive/behavioral) characteristics [21, 29].

Particularly, it has been found that the younger the driver is, the more risky and
frequent the passing becomes. In addition to the interpersonal (driver-to-driver)
interactions, there are also intrapersonal factors that influence risk-taking and
responsiveness of drivers. Farah et al. [4] examined the cognitive style of thinking
of drivers, their goal-directed behavior, the focus of attention and emotional control
to predict their risk proneness. Statistical-probabilistic models have further been
developed to interpret and predict the risk associated with the passing behavior. In
such a study, Farah et al. [5] accounted for variables related to personal driver
characteristics (age, gender), in addition to those capturing the impact of road
geometry and traffic conditions. Moreover, Farah and Toledo [6] suggested a
probabilistic model to additionally capture drivers’ desire to pass and their gap
acceptance decisions to complete a desired passing maneuver. Very few artificial
intelligence approaches, such as rule-based neural networks [2] and pattern rec-
ognition techniques [30], have also been considered to analyze the heterogeneities
of road driving behavior.

Agent-based traffic micro-simulations offer a flexible and accurate framework
that allows one to represent naturally the heterogeneity and learning capabilities of
driver-vehicle agents [3, 11, 23]. The specification of such models can express in
detail several intricate parameters of the behavior of drivers under different network
topologies and traffic conditions. Hence, they can be employed to tackle a variety of
traffic state representation and control problems. These problems can involve the
design of adaptive self-organized traffic signal control in urban road networks and
of in-vehicle driver assistance systems, through application of decentralized
information propagation and inter-vehicle communication protocols [14, 27].

The present article suggests an agent-based simulation model, referred to as
Holistic-Emergent Social Interaction-Oriented Dynamics (HESIOD) model [13], to
represent the dynamics of driver behavior in terms of their risk assessment and time
responsiveness. In contrast with other agent-based traffic micro-simulation models,
it consistently accounts for both intrapersonal and interpersonal (driver-to-driver)
factors that influence these characteristics and emergent road traffic phenomena.
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Section 2 describes the main components of the HESIOD model. Section 3 presents
the simulation setup (model parameters and topologies) and Sect. 4 the results of the
simulations. Section 5 offers insights into validation and implementation issues and
concludes.

2 Holistic-Emergent Social Interaction-Oriented
Dynamics (HESIOD) Model

The HESIOD model relies on a minimum set of micro-prerequisites concerning the
characteristics of cognitive agents in order to represent the emergence of (non)
stationary macro-outcomes. The HESIOD model follows a bottom-up approach
where each agent has to obey in two simple rules: (a) strives to attain social
consensus and (b) simultaneously, attempts to maintain internal consistency, in the
sense of a stabilized internal cognitive state.

An indicative example can be given by assuming that other drivers influence my
behavior. Hence, if all drivers I see around me are speeding, I want to cope with
them and I will speed up, since I am not considering myself as a “worse” driver than
them.1 This response strives to keep my internal cognitive equilibrium in order. If
every driver follows the same rationale, then the overall speed will escalade quickly
to an unreasonable scale. On the other hand, if I see that all drivers around me are
decelerating, I may suppose that there is some trouble ahead (or even a police
control); therefore, I would also decelerate but only as much as needed for dem-
onstrating that I am not a “worse” driver than they are. In this way, the model could
enable a deeper understanding and interpretation of the dynamical features, stability
and self-organization properties of inter-drivers’ network interactions.

The two basic principles of the HESIOD model refer to a psychological and a
sociological one. Both of them correspond to specific individual characteristics of
the agents. The psychological principle focus on the maximum change of an
internal balance factor Ψ (Psi), in each iteration of the HESIOD algorithm, to
restore the internal equilibrium of every agent (e.g. I am a skilled driver vs. I am an
incompetent driver). The sociological principle involves the consideration of a
social regulation parameter, Κ (Kappa), in analogy with the internal consistency
regulation through factor Ψ. The Κ factor denotes the impact of social influence on
the individual. This may also encompass the influence of social norms, customs or
historical conventions in driving [28]. As it is described later, these two model
parameters affect the way in which the control dimensions of the behavior of each
driver agent change over time, in the social context of the connected neighboring
drivers.

1 Particularly, headlight flashing can be very irritating, at this point! A very antagonistic view of
my fellow co-driver. This kind of behavior is strongly associated with cultural parameters, mainly
in reference to the driving style usually met in southern European countries.
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Specifically, in each iteration (corresponding to one time interval) t, each agent
i considers the control dimension At;j of other agents j ¼ 1; . . .; n within his/her
Bound of Confidence (BC),2 and “calculates” the point of social convergence; here,

this is defined as the mean �At;j ¼
Pn

j At;j

.
n. Then, the agent updates his/her pre-

vious value (new position) At;i as a function of his/her own factor ji, as follows:

Atþ1;i ¼ At;i þ
Pn

j At;j

n
� At;i

� �
� ji ð1Þ

By defining the realistic range of values 0 < K ≤ 2, a value ji ¼ 0:5 means that
the agent i will move half-way to the point of convergence, with ji ¼ 1 will move
exactly at the point of convergence, with ji ¼ 1:5, will move one and a half times
towards the point of convergence, etc. Through factor K, an agent decides to move
towards a point of social convergence only to an adjustable degree.3 The same
procedure is respected regarding the second control dimension Bt,j.

Following the changes in control dimensions due to the social negotiation (inter-
drivers’ interaction) process described above, the control dimension sustained the
maximum (largest) change is identified and left intact for each agent.4 The factor Ψ
will determine the exact change concerning the other control dimension. By
defining the realistic range of values 0 < Ψ ≤ 2, with Ψ = 0.5, the half of change
sustained by the dimension with maximum change is subtracted, with Ψ = 1,
exactly the change sustained by the dimension with maximum change is subtracted,
and, with Ψ = 1.5, one and a half of change sustained by the dimension with
maximum change is subtracted. Namely, agents with Ψ < 1 or Ψ > 1 tend to
underestimate or overestimate, respectively, the cognitive change occurred, in terms
of re-establishing internal consistency. The above operations are outlined in the
following steps:

2 The Bound of Confidence (BC) expresses the bound within which each agent takes other agents’
opinions (driving behaviors) into account [10]. For instance, if I get surpassed by a car having the
triple of my speed and I am already driving to the speed limit (into the city), then this behavior
(driving at such a high speed) can be outside my bound of confidence; so, I am not at all influenced
(this behavior is far too riskier than I can bear) and therefore, it does not influence me: I will pass
the challenge.. As one can easily understand, if a driver has a very wide bound of confidence, then
s/he is susceptible to be influenced by almost any driving behavior no matter how risky it is.
3 K can also be of zero value. This means that a driver with K = 0, insists in retaining his/hers
speed no matter what the other drivers in proximity are doing.
4 A cognitive procedure named Focus On Max Change (FOMC, [12]). Although this procedure
may seem arbitrary, since it is not backed up by concrete data, the mechanism tends to imitate
satisfyingly real behaviors when one is oriented more to assess dynamically a given situation than
to apprehend it statically. In the real world, the FOMC can be easily depicted: if someone is
receiving two stimuli, the one which differs maximally from his/her own position (state) will
attract his/her attention in priority. Nevertheless, the above mentioned mechanism is subjected to
ongoing research and testing; so, a better refinement can be expected in future projects.
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Step I: Find the differences (social shifts):

oAt;i ¼ At�1;i � At;i

�� ��; oBt;i ¼ jBt�1;i � Bt;ij ð2Þ

Step II: Focus on maximum change and correct (psychological shifts):

oAt;i [ oBt;i
� � ! At;i ¼ At;i & Bt;i ¼ Bt�1;i � oAt;i � wi ð3Þ

oBt;i [ dAt;i
� � ! Bt;i ¼ Bt;i & At;i ¼ At�1;i � oBt;i � wi ð4Þ

Due to successive subtractions, values out-of-range [1, 5] may arise: a rescale
algorithm is needed for the reposition of the values. In this study, values below or
above this range are truncated to the corresponding lower or upper limit, respec-
tively. The above constraints denote that the influence of other drivers is bounded
and, hence, large changes in behavior are properly avoided to account for safety
considerations, but small ones are (and must be) taken into account.

Therefore, in the HESIODmodel, every decision of each driver is bi-dimensional:
it is simultaneously socially (with the other drivers) negotiated and this negotiation
potentially provokes cognitive inconsistencies internal to each driver. Social influence
destabilizes the internal cognitive consistency and, in turn, each attempt of restoring it
destabilizes the previously attained social consensus (equilibrium). These interactions
are performed within a network whose topology plays a crucial role on the dynamic
outcome of the system. In other words, changes in the structure of the network of
interactions among drivers can yield overwhelming changes in the dynamical state of
the whole system. Keeping the parameters K andΨ intact, but changing the topology,
highly differentiated dynamic states may arise, such as fixed point, periodicity,
transient chaos, and pure chaos [13].

Given that the social and individual factors are opposite and complementary
with each other, it is then sufficient to maintain the same sum (Ψ + Κ = 2). Katerelos
[13] showed that, when Ψ + Κ = 2, the HESIOD model ends up to a periodic
equilibrium if the topology is a complete graph. In the described phase space of the
system (p. 73), with Ψ + Κ > 2, one observes transient or pure chaos when
[Ψ + Κ > 2 & Ψ ≤ 1] and [Ψ + Κ > 2 & Ψ > 1] respectively. When Ψ + Κ < 2, the
system equilibrates in a fixed point (a flat-line): no change is expected to the future.5

3 Control Dimensions and Communication Topologies

The simulation setup is basically defined in terms of the model control dimensions,
which concern the cognitive processes of driver agents, and the communication
topology between them. This setup and appropriate definition and interrelationship

5 These simulations use homogenous agents: they all share a common K and Ψ.
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of the control dimensions of the driver agents render the present model different
from any other that adopts the HESIOD modeling framework. The heterogeneity of
drivers reflect two control dimensions (i) the risk assessment, Ra, and (ii) the time
responsiveness, Rt, to avoid risk and/or increase speed and comfort. These two
control dimensions may be related to either an aggressive or a defensive driving
behavior, according to their initial values and their change over time, as they are
adjusted in real time in response to the interactions among driver agents.

It is noted that the present model specification cannot fully capture the whole
range of aspects (e.g. driving style, cultural factors, social beliefs, safety attitudes,
security concerns etc.) explaining/influencing the actual driving behavior. The
interrelations among driver agents’ behavior are multi-determined. Nonetheless, it
provides a general framework within which a whole range of special cases may be
considered (for instance, setting Κ = 0 would denote that there is no influence from
other drivers). The model adopts the plausible assumption -and a normal practice in
cognitive social psychology- of the emotional contagion effect from one agent on
the others. Specifically, each driver agent is able to encounter the beliefs/responses
of the neighboring agents, in terms of their risk assessment and time responsive-
ness. In other words, one by observing actual behaviors can make successful
assumptions about how other people think.

Information about these two control dimensions can provide crucial insight into
the cognitive processes underlying the decisions of driver agents. In addition, they
can be experimentally measured, with the aid of historical data about the driver and
vehicle operation, as ordinal variables, e.g., by assigning scores relative to the
ability of each driver to assess risk (including health, safety and security issues) and
timely respond to changing road conditions [8].

A generalized relationship between the rate of change of traffic speed v (accel-
eration/deceleration) and the two control dimensions can be expressed as:

ov
ot

¼ f cþ aRa þ bRtð Þ; ð5Þ

where γ, α, β are parameters whose magnitude and sign may vary with the driver
characteristics under different traffic conditions. For instance, according to Kerner’s
three-phase traffic flow theory [15–17, 19], the speed of drivers along a freeway may
change in a different way, according to whether the density increases at a constant
flow rate (from free flow to synchronized flow), which gives rise to a spontaneous or
induced traffic breakdown, the flow rate decreases at constant density (from syn-
chronized flow to wide moving jam) and the density decreases (from wide moving
jam to free flow). Each of the above three phases are associated with a different causal
relationship among the two control dimensions and the speed variability, as drivers in
a congested environment (as density increases) tend to becomemore anxious, fearful,
and cautious about accidents. The present model can potentially enrich such traffic
flow theories, by taking into account the socio-psychological micro-foundations of
driver behavior. Especially, it can possibly offer interpretation to road traffic phe-
nomena (e.g., sudden rise of congestion, and unexpected occurrence of accident and
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volatile conditions), which are largely regarded as unexplained from existing traffic
flow theories.

These control dimensions may vary among drivers due to a variety of (neuro-)
psychological functions, such as attention, perception and executive functions [7].
These functions may perform a tradeoff between age and driving experience: a
decline is typically associated with age, but, at some extent, this is compensated by
experience. The values of Ra dimension range from 1 (worst value) to 5 (best
value), i.e., risk assessment is maximized when Ra = 5. The values of Rt range from
1 (signifying under-responsiveness) to 5 (signifying over-responsiveness), and its
value is considered to be optimized when Rt = 3.

The Κ factor moderates the changes of Ra and Rt, while the Ψ factor moderates
the relationship between Ra and Rt. The current simulation setup includes three
driver agents moving with their vehicles along a road segment, where overtaking is
allowed, from left (upstream) to right (downstream) direction and interacting with
each other (Fig. 1). At the initial time interval t = 0, the initial values for driver
agent 1, whose age is 65 years old, are Ra = 3 and Rt = 2, for driver agent 2, whose
age is 25 years old, are Ra = 2 and Rt = 5, and for driver agent 3, whose age is
35 years old, are Ra = 3 and Rt = 3. The bound of confidence (BC) for all agents is
set equal to 5, meaning that, in the current set of simulations, it has no effect on the
interaction between agents. In other words, the network of interactions among
driver agents is dependent on their communication topology (or graph topology)
and an equal weight is assigned to each link between them (Fig. 2).

Several topologies, such as those of all-to-all (complete graph topology), one-to-
all, peer-to-peer and in-tandem interaction patterns, can be employed to define the
human environment affecting the responses of one driver agent with respect to the
actions of all the others. Each specific topology can correspond to a set of road
environment and design (capacity) characteristics influencing the interaction among
drivers. Such characteristics may be related to the road geometry and typology
(highway or arterial street), deployment of vehicle-to-vehicle communication sys-
tems, speed limit, and weather and visibility conditions.

Fig. 1 Basic configuration of a complete graph topology (undirected graph) of driver agents in a
road segment
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A Cellular Automata (CA) topology can be well suited to the given problem to
designate the set of possible interactions within a group of drivers moving along a
road segment (e.g., [18, 22]). The CA topology is based on the concept of
“locality”: every driver agent i can negotiate Ra i and Rt i, only with his/her
“neighbor” driver agents. Nevertheless, other topologies where information scarcity
exists (e.g., in low-density rural roads) or communication channels between drivers
are ubiquitous (e.g., in fully automated highway systems) may be adopted
according to the specific conditions of the road operation environment.6 Figure 1
illustrates the basic configuration of a complete graph topology (CGT), wherein
every driver agent bilaterally interacts with the others in the locality of a road
segment, as reflect the bidirectional arrows between them.

4 Results

The simulation period encompasses 30 time intervals t. By considering an ade-
quately short interval t = 2 s for driver agents to adjust/correct their risk assessment
and driving responses (remaining steady, breaking, decelerating or accelerating),
the total period refers to 30 × 2 = 60 s (1 min). Figures 3, 4, 5 and 6 show the
behavior of the model for the CGT and various sets of K, Ψ values, i.e., Κ + Ψ < 2
(Fig. 3), Κ + Ψ = 2 (Fig. 4), Κ + Ψ > 2 (Fig. 5), for all driver agents, as well as a
combination of these sets among the driver agents (Fig. 6). Figures 7, 8, 9 and 10
illustrate the corresponding behavior of the model for the IGT. For the case of the
CGT, the results generally indicate a periodic behavior and, finally, the achievement
of a flat equilibrium at the end of the period. In other words, the final equilibrium

Fig. 2 Basic configuration of an incomplete graph topology (directed graph) of driver agents in a
road segment

6 Since an indicative example of three vehicles (very small number of active agents) is employed
here, the notion of cellular automata topology can be translated ad hoc to a directed graph (3 node-
incomplete graph) compared to an undirected graph (3 node–complete graph).
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Fig. 3 Simulation results of a Ra and b Rt for CGT and Κ, Ψ pairs of agents (0.7, 0.5), (1, 0.8) and
(0.5, 1) respectively
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Fig. 4 Simulation results of a Ra and b Rt for CGT and Κ, Ψ pairs of agents (0.8, 1.2), (1.5, 0.5)
and (1, 1) respectively
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state denotes the achievement of a ‘social consensus’ among driver agents. This
type of consensus suggests an increased efficiency of road operation through
smoother flow conditions as well as increased road security and safety, by reducing
the risks of misperception and collision.

Nevertheless, this dynamical outcome stands as a desirable result provided that,
after social negotiation between them, drivers will “agree” not to exceed the speed
limit or, more generally, to engage in actions compromising severely rules of road

Fig. 5 Simulation results of a Ra and b Rt for CGT and Κ, Ψ pairs of agents (1, 2), (1.5, 1.2) and
(1, 1.5) respectively
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Fig. 6 Simulation results of a Ra and b Rt for CGT and Κ, Ψ pairs of agents (1, 2), (0.8, 1.2) and
(0.7, 0.5) respectively
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Fig. 7 Simulation results of a Ra and b Rt for IGT and Κ, Ψ pairs of agents (0.7, 0.5), (1, 0.8) and
(0.5, 1) respectively
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Fig. 8 Simulation results of a Ra and b Rt for IGT and Κ, Ψ pairs of agents (0.8, 1.2), (1.5, 0.5)
and (1, 1) respectively
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Fig. 9 Simulation results of a Ra and b Rt for IGT and Κ, Ψ pairs of agents (1, 2), (1.5, 1.2) and
(1, 1.5) respectively
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Fig. 10 Simulation results of a Ra and b Rt for IGT and Κ, Ψ pairs of agents (1, 2), (0.8, 1.2) and
(0.7, 0.5) respectively
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security and safety.7 Otherwise, psychosocial negotiation could end up in collec-
tively adopting risky behaviors8 and maintain them as long as there is no external
intervening (restraining) factor.9

From a closed system point of view, these drivers will attain equilibrium
between them; thus, no further changes of behavior are expected and the predict-
ability horizon of the whole system becomes infinite. In other words, the system
behavior is fully predictable. On the other hand, considerable differences are
observed in the dynamics of driver agent behavior when the communication
topology between them is incomplete. Specifically, the results generally show a
highly periodic behavior and/or transient chaotic processes which emerge after a
few iterations. These processes can be considered as a type of social ‘fragmenta-
tion’ or ‘polarization’ (particularly in Figs. 9 and 10) among the behavior of driver
agents, which move far away from a flat equilibrium or consensus regime. The
increase of the volatility of the underlying dynamics can be associated with less
controllable road traffic operations and, hence, reduced levels of security and safety,
due to the higher risk of misperception and collision [25].

As one can clearly observe in Figs. 7, 8, 9 and 10, the system dynamics do not
achieve an equilibrated/stable collective behavior. Although drivers never agree
with each other in a steady state, they are in a dynamic process of constantly
changing agreement. In this case, the system is much more flexible and adaptive.
This is to say that, in certain circumstances, driving behaviors can change instantly
from one extreme to another (especially for drivers with K + Ψ > 2), with regard to
the risk assessment and perceived responsiveness.

In most common driving conditions (even in official racing conditions), pre-
dictability of the fellow drivers’ behavior is of paramount importance: every
decision (conscious or not) is made by making predictions of each other’s behavior.
Namely, predictability is attained by either the absence of changes of behavior or
the successful assumption and adjustment of each driver to the immediate expected
responses of the other drivers. Unpredictable driving can (and most of times, does)
end up in a series of unfortunate events. This kind of driving behavior is associated,
for instance, with abrupt deceleration (causing more severe impacts when it is less
expected) or with zig-zag turning (causing unwilling and uncontrollable drifting),
combined with the “panic” provoked to other drivers. It seems like this kind of

7 In a rather theoretical view, in real life, this case can look like a race between supercars in
Daytona or, even more vividly, the race of “24 h of Isle of Man”: the drivers maintain extreme
speeds while very close to one another.
8 Such as “spontaneous races”, “drifting”, “spinning”, “chicken-game” etc.
9 Police controls/blocks, “car chasing”, etc. During the recent years, the common procedure
adopted by police officers confronting suspects of unlawful actions when they try to get away via
driving through the road network, is to stay behind and wait either for the suspect to run out of fuel
or for the suspect to enter a controlled environment minimizing possible collateral damage. Evi-
dently, a certain tactic of “pushing” the suspect to a kind of “road race/car chase” (and, therefore
“negotiating” with him/her either his/her driving skills or his/her vehicle’s potential regarding
acceleration and handling), could challenge the suspect and augment dramatically the probability
of harming him/herself or others.
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driver is relying heavily on other fellow drivers’ readiness in reacting to his/her
own unpredictable behavior.10 At the network level, characteristic examples refer to
abrupt exogenous disturbances to capacity/supply conditions or sudden changes in
demand due to unexpected or planned events, which in turn can impact security and
safety.

5 Concluding Remarks and Further Issues

The present results, as obtained from a series of diverse computational simulations,
on the basis of the HESIOD agent-based model, suggest how many and much
different states may emerge in the interaction among road drivers. Specifically, the
interaction dynamics of driver agents is affected by their own behavior, in terms of
such control dimensions as risk assessment and time responsiveness, the behavior
of neighboring agents, and the topology (or communication pattern) between them.
The consideration of cognitive processes involved in these road traffic interaction
patterns can enrich and improve the robustness of future micro-simulation models
of drivers’ behavior.

The findings can also help to address challenging questions concerning the
ability of advanced driver assistance and vehicle control systems, based on real-
time vehicle-to-vehicle information and communication protocols, to improve road
safety, enhance security and facilitate evacuation procedures in response to attack
situations, and support new-generation traffic control strategies. In particular, the
results show that symmetric driver interaction may lead to a more stable equilibrium
state and smoothed traffic flow conditions, while asymmetric interaction may lead
to a periodic state with some potential for chaos. In addition, interconnected drivers
who reach a social agreement in their cognitive parameters create more predictable
and less risky driving situations, compared to drivers who do not reach such an
agreement. The above cognitive issues can enhance the design of advanced driver
support systems, as the enhancement of connectivity and cooperation among
drivers and the improvement of the predictability of traffic conditions can help to
smooth out dynamic behavioral adjustment patterns and, thus, improve the effi-
ciency, reliability, safety and security of road network operations in both urban/
suburban and rural environments.

Furthermore, traffic law enforcement by police/patrol stations and knowledge
about the efficacy of law enforcement measures (e.g., red-light cameras and speed
radar detectors) may substantially mitigate the feeling of anger and make driving
experience less stressful, or happier, for motorists [24]. The current results may
provide theoretically supportive evidence about the impact of such measures on
increasing the predictability of fellow drivers’ responses and avoiding enervation

10 This holds without taking into account possible enervation of other drivers and, consecutively,
the adoption of an aggressive (and dangerous if escalades) stance against the trespasser (him/her)!
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and aggressiveness, thus, preventing overreaction and decreasing the risk of
accident.

At the next stages of the model development, changes in behavioral parameters
and traffic flow conditions may be considered to provide a feedback to local net-
work topology, in terms of the interconnectivity among driver agents. Several
validation and implementation issues arise for further research, including:

(a) The transformation of risk assessment and response time to speed and
acceleration changes over time (e.g., [9, 20]).

(b) Theoretical validation of the present model estimates on the basis of readily
available traffic flow measurements and comparison with traditional car-
following/lane-changing models and the observed average flow versus speed
relationship (i.e., the fundamental diagram of traffic flow) for selected road
segments and types/conditions of road operation.

(c) As far as the calibration of model and empirical validation of results are
concerned, different types of vehicular interactions and passing maneuvers
may occur anywhere on a section of road. Therefore, field studies to collect the
appropriate data are expensive and inefficient, since they cannot adequately
control over all the explanatory variables, especially those concerning the
personal driver characteristics. In the current context, driving simulators can
provide a reliable alternative to observe individual driving behavior.

Real-world interviews and field surveys could also be used to measure different
control variables of drivers’ behavior in various road environment and traffic
conditions. Moreover, experimental results from neuro-psychological tests of on-
road driving behavior could provide valuable information on measures concerning
the driving performance, speed, attention, visual-spatial abilities and executive
functioning of specific groups of drivers, such as the older ones [7]. For calibration
purposes, this information may be coupled with processed data concerning the
trajectories and flow variables of individual vehicles equipped with global posi-
tioning system (GPS).

Finally, the present model setup could be extended in a network setting, e.g., that
of a downtown area or an inter-city network [26], to include a set of links with
interdependent flows and explain macroscopic congestion phenomena. In that case,
the dynamics of interaction among drivers moving in a specific road link, or a
terrorist attack of one or several agents, would possibly affect the behavior of
drivers moving at upstream links, for instance, through the delay propagation and
cascading effects resulting from the formation of a downstream bottleneck. The
behavior adjustment of upstream driver agents, or even agents before starting their
trips, located at the sources of demand (home or employment location), may
additionally encompass a range of travel choices, such as route, departure time and
mode choices. Relevant implications and extensions can include capacity decisions,
which should be properly made to reduce uncertainty and ensure an appropriate
level of network reserve capacity. Such decisions may significantly impact the
overall cost of measures to address concerns about reliability, safety and security.
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Game-Theoretic Context
and Interpretation of Kerner’s
Three-Phase Traffic Theory

Kjell Hausken and Hubert Rehborn

Abstract We present four classical developments in traffic theory and Kerner’s
(Phys A 392:5261–5282, 2013, [36]) critique that these are not consistent with
fundamental empirical features of traffic breakdown at a highway bottleneck
(transition from free flow (F) to congested traffic at the bottleneck) that is the basic
empiric of traffic theory. Kerner argued that traffic breakdown is probabilistic, can
be spontaneous (emerging internally at the bottleneck) or induced (emerging from a
downstream bottleneck), and is a transition from free flow to synchronized flow
(S) (synchronized flow is one of the two traffic phases of congested traffic) called as
a F → S transition, after which wide moving jam (J) (J is another from two phases
of congested traffic) may arise. Return to free flow occurs through hysteresis and
usually at smaller flow rates. Common games in traffic theory are presented
and exemplified, i.e. the chicken game, battle of the sexes, prisoner’s dilemma, and
coordination game. The four developments and Kerner’s theory are linked to game
theory, and especially to the chicken game. For the first F → S transition the
density increases at a constant flow rate. Increasing density increases the prevalence
of the chicken strategy due to drivers in a congested environment becoming
apprehensive, fearful, and wary of accidents. For the second S → J the chicken
strategy is equally likely while the flow rate decreases at constant density. For the
third J → F transition the density decreases which decreases the prevalence of the
chicken strategy. Finally, within free flow F where the flow rate and density again
increase, the chicken strategy is played with higher probability.

Keywords Features of traffic breakdown � Induced and spontaneous transitions �
Kerner’s three-phase traffic theory � Empirical flow measurements � Kerner’s BM
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principle � Game theory � Chicken game � Battle of the sexes � Prisoner’s
dilemma � Coordination game

1 Introduction

Since the classical empirical work of Greenshields [23] about the fundamental
diagram and highway capacity, traffic and transportation theory has developed
substantially, empirically and theoretically, based on the achievements in the
understanding of real traffic, as reviewed for example in [11, 19, 20, 26, 28, 47, 52,
53, 71].

Traffic theory experienced substantial developments in the 1950s, in particular
due to classical works of Lighthill and Whitham [45], Richards [60], Herman et al.
[27], and Gazis et al. [21, 22]. Relationships between flow rate and density were
developed, and congestion, breakdown, and driver behavior upstream and down-
stream of bottlenecks were studied. Minimizing travel costs from the individual
driver’s perspective, and from a system optimal perspective, were also analyzed
based on the classical Wardrop’s [75] User Equilibrium (UE) and System Optimum
(SO) principles. More recently, developments such as the kinetic traffic theory and
the probabilistic traffic flow theory have been developed. See [44] regarding rear-
end collisions related to kinematic waves near bottlenecks. See [63] for references
to recent developments, and [18, 57, 67, 72, 74] for dynamic traffic theory.

Among the many available traffic theories, this chapter focuses strongly on
Kerner’s [36] theory. Whereas classical theories distinguish between free flow F and
congested traffic, Kerner [36] compiled empirical data on freeways and argues that
empirical data including findings in the form of real traffic data are inconsistent with
the earlier classical developments. He divides congested traffic into synchronized
flow S and wide moving jam J. Synchronized flow expresses continuous traffic flow
with no significant stoppage, and speed synchronization within and across lanes,
with bunching of vehicles, and low probability of passing. A wide moving jam, as a
whole localized structure on a road system, moves upstream through any highway
bottlenecks, maintaining the mean speed of the downstream front. A wide moving
jam differs from other, e.g. narrower moving jams which usually do not maintain the
mean speed of the downstream jam front. These three phases give room for prob-
abilistic F → S transition between free flow and synchronized flow through hys-
teresis, probabilistic S → J transition from synchronized flow to wide moving jam,
and probabilistic spontaneous or induced F → S breakdown. Spontaneous
F → S breakdown means breakdown given earlier free flow at the bottleneck, and
up- and downstream of the bottleneck, caused by internal disturbance in free flow
around a bottleneck. Induced F → S breakdown occurs through congested traffic
emerging downstream of the bottleneck, usually caused by upstream propagation.

Some research has tested Kerner’s [36] theory. Mendez and Velasco [49] apply
kinetic traffic flow theory for aggressive drivers and determine F → S transitions
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under specific conditions, qualitatively in accordance with Kerner’s three-phase
theory. Knorr and Schreckenberg [42] reproduce the three phases F, S, J. Jin et al.
[31] confirm that the S→ J transition is more difficult in single-lane traffic. Jin et al.
[32] confirms the F → S transition. Rehborn et al. [59] find that three phases are
common on freeways in the UK, the USA and Germany. Schönhof and Helbing
[64] apply data from the freeway A5 near Frankfurt and identify findings incon-
sistent with the three-phase traffic theory, and question the concept of a “general
pattern” of congested traffic flow. Kerner [36, p. 5269, Footnote 5] and Kerner [34,
Sects. 10.3.7, 10.3.10 and 10.5] have countered this criticism as invalid. Kerner
et al. [40] argue that three-phase and two-phase traffic-flow theories are incom-
mensurable in the sense of Kuhn’s [43] scientific revolution. Kuhn [43] compares
the transition between two scientific paradigms with a gestalt switch in psychology,
where an irrational element plays a role rather than deliberate rational discussion.
See [8, 30, 76] for further studies related to Kerner’s [36] theory.

This chapter intends to make a first step towards extending the classical
developments, and in particular Kerner’s [36] theory, into the game theoretic
domain. Game theory assumes multiple players choosing multiple strategies, and
the payoffs to each depend on the combination of strategies chosen by all players
[17]. Traffic theory is largely not game theoretic. A few exceptions exist. First,
some attempts have been made to account for drivers choosing different strategies.
For example, Daganzo [12, 13] proposes a behavioral theory of multi-lane traffic
flow which in the idealized form assumes two types of drivers, aggressive (referred
to as rabbits) and timid (referred to as slugs). Second, Rosenthal [61] propose
congestion games where each player’s payoff depends on the resources it chooses
and the number of players choosing the same resource. Rosenthal proved that any
congestion game is a potential game and Monderer and Shapley [51] prove the
converse. It is well known that Beckmann et al.’s [2] classical optimization problem
leading to a Wardrop equilibrium is the potential function of a congestion game.
For further work on congestion games see [46, 62, 73]. Third, fictitious play was
first introduced by Brown [7], and has been applied e.g. to system-optimal routing,
see [18]. Peeta and Yu [55] show that route choice is similar to a driver’s adaptation
behavior based on his past experiences. Fourth, Stackelberg [66] games have been
applied in bi-level-programming [50, 72]. Researchers are encouraged to extend
research on traffic and transportation theory more thoroughly into game theory.

One difference between the classical models and Kerner’s theory is that the
former is typically based on theoretical hypotheses that have been developed and
compared against measurements, whereas Kerner’s theory is more directly based on
empirics. Philosophy of science distinguishes between a theoretical domain of
justification and an empirical domain of discovery. Our view is that one may in
principle start in any domain, but should move back and forth to ensure that the
concerns of both domains are satisfied. The classical developments typically started
in the theoretical domain, and may potentially be criticized for not adequately
testing the proper hypotheses. Kerner’s theory started in the empirical domain, and
may potentially be criticized for being driven too exclusively by empirical
concerns.

Game-Theoretic Context and Interpretation of Kerner’s Three-Phase Traffic Theory 115



The objective of this chapter is first to present these developments. Thereafter we
present and exemplify common games in traffic theory, which we assess to be the
chicken game, battle of the sexes, prisoner’s dilemma, and coordination game. This
means both modeling specific traffic theory examples using game theory, and using
game theory to model specific traffic theory examples. Finally we link the devel-
opments in traffic theory to game theory. We focus mainly on highway traffic, but
some of the game theory examples allude also to urban and rural traffic. Section 2
outlines four classical developments in traffic theory. Section 3 presents and dis-
cusses Kerner’s empirically based theory. Section 4 describes and exemplifies
common games in traffic theory. Sections 5 and 6 link Sects. 2 and 3 to game
theory. Section 7 concludes.

2 Four Classical Developments in Traffic Theory

Let us outline four developments within traffic theory. These are somewhat sepa-
rated in the description but are chosen since they in our view are historically
representative and have laid and lay the foundation for subsequent and future
developments. First, Lighthill and Whitham [45] and Richards [60] proposed in
1955–1956 that the maximum flow rate determines the free flow capacity at a
bottleneck. If that capacity is exceeded, traffic breakdown will follow with con-
gestion upstream of the bottleneck. The relationship between flow rate and density
satisfies the law of conservation of the number of vehicles. The solutions are
discontinuous with shock waves. The main problem with the model is that it cannot
explain induced traffic breakdown, see [36].

Second, Herman et al. [27] and Gazis et al. [21, 22] proposed in 1959–1961 that
traffic breakdown follows from the over-deceleration effect. One vehicle deceler-
ates, the subsequent driver overreacts after a time delay by decelerating more, and
the subsequent driver decelerates even more after a time delay, etc. This causes
decreasing speed for subsequent vehicles propagating upstream causing
F→ J transition from free flow F to wide moving jam J. This model has influenced
a plethora of traffic models. One problem with the model shown in [36] is that real
traffic data shows no F → J transition, but instead F → S transition from free flow
F to synchronized flow S.

Third, the free flow capacity at a bottleneck has classically been assumed to have
a specific value (see [48, 70] and references therein) or a probabilistic or stochastic
value (see, e.g., [5, 6]). One problem with this assumption is that it predicts that free
flow persists when below this value, which contradicts the empirics that traffic
breakdown can be induced by a wide moving jam or a moving synchronized flow
pattern occurring elsewhere but reaching the bottleneck, see [36].

Fourth, Wardrop [14, 75] proposed in 1952 two classical principles for minimum
travel costs. His user equilibrium principle states that traffic distributes so that travel
times on all routes used from any origin to any destination are equal, while all
unused routes have equal or greater travel times. His system optimal principle states
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that the network-wide travel time should be minimum from a system optimal point
of view. One problem with these two principles is that when the flow rate is
between minimum and maximum capacity, the vehicle speed can either be large as
in free flow or lower as in synchronized flow, see Fig. 5d and [36]. Kerner [36] thus
proposed the breakdown minimization (BM) principle which minimizes the con-
gestion probability. Beyond Wardrop’s [14, 75] two principles, a third possible
principle is macroscopic models in which costs of a large group of drivers are taken
into account.

3 Kerner’s Empirically Based Theory

Kerner [33, 34, 36] applies empirical traffic breakdown data (see [5, 6, 16, 24, 33,
34, 36, 48, 56, 70] and references therein) to present a theory based on the fol-
lowing four empirical features:

1. Traffic breakdown is a phase transition from free flow F to synchronized flow
S. Downstream of synchronized flow, vehicles accelerate into free flow (Figs. 1,
2 and 3).

2. Traffic breakdown can be spontaneous (Figs. 1 and 2) or induced (Fig. 3).
3. The traffic breakdown probability increases logistically in flow rate, see [56].
4. Traffic breakdown exhibits hysteresis. With probabilistic breakdown at a certain

flow rate causing synchronized flow, return to free flow usually occurs at smaller
flow rates (Fig. 4).

Figures 1 and 2 show free flow upstream and downstream of a bottleneck before
breakdown, and thereafter spontaneous breakdown with synchronized flow.
Figure 3 shows induced traffic breakdown caused by, e.g., breakdown at a down-
stream bottleneck causing a wide moving jam eventually reaching the upstream
bottleneck inducing breakdown.

In Kerner’s three phase theory, with flow rate below the minimum capacity in
Fig. 5d, F → S transition from free flow F to synchronized flow S is impossible.
Free flow F is maintained, guaranteed, and stable. With flow rates between mini-
mum and maximum capacity, all three phases F, S, and J are possible. This means
that free flow is metastable with respect to an F→ S transition. Metastability within
a phase means that transition to another phase is possible, but may not occur.1 With
flow rate above the maximum capacity in Fig. 5d, the free flow transforms with
probability one to synchronized flow S. Above the minimum capacity the proba-
bility of F → S transition is an increasing function with increasing flow rates up to
the maximum capacity. In contrast to the classical developments in Sect. 2, Kerner
[36] argues that F → J transitions, from free flow to wide moving jam, are
impossible, and have never been observed in empirical data. Instead a cascade of

1 See [29] for a new mechanism for metastability.
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F → S transitions occurs, and subsequently a S → J transition2 may occur from
synchronized flow to wide moving jam. That is, to get from F to J an F → S→
J transition is needed, where the S → J transition occurs and at a different location
than the initial F → S transition.

In Kerner’s three-phase theory, the probability of spontaneous F → S break-
down in Fig. 5c is the logistic function found by Kerner et al. [41] in numerical
simulations of the cellular automata (CA) model in 2002, i.e.

PB
FS ¼ PB

FSðqsumÞ ¼
1

1þ Exp½aðqP � qsumÞ� ; ð1Þ

which increases from a negligible strictly positive value when the flow rate qsum is
small towards PB

FS ¼ 1 as qsum approaches infinity, where superscript B means
breakdown and subscript FS means F → S transition. We define qsum = qin + qon,
where qin is the flow rate on the main road and qon is the on-ramp inflow rate. The
parameters α and qP are determined by curve fitting, see [41]. See Brilon et al. [5, 6]
for a qualitatively similar function found from empirical studies of traffic
breakdown.

Fig. 1 Empirical example of spontaneous traffic breakdowns at on-ramp bottleneck (real
measured traffic data of road detectors installed along three-lane freeway): a averaged speed in
space and time. b, c Time-functions of average speed (b) and flow rate (averaged between freeway
lanes) (c) at bottleneck location. 1-min average data. Taken from [33, 36]

2 The difference between S and J is that while the downstream front of a wide moving jam
propagates through a highway bottleneck upstream with a mean velocity (often about −15 km/h),
the downstream front of synchronized flow is usually fixed at the bottleneck (Figs. 1, 2 and 3).
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When traffic at N different bottlenecks breaks down independently of each other
(usually requires more than 300 m between each bottleneck, see [36]), the proba-
bility of spontaneous F → S traffic breakdown in at least one bottleneck is

Fig. 2 Empirical example of spontaneous traffic breakdown at off-ramp bottleneck. Real measured
traffic data of the flow rate (a–d) and average speed (e–h) through road detectors installed along
three-lane freeway: a, e Total flow rate (a) and average speed (e) on the main road in space and time.
b–d, f–h Time-functions of total flow rate across freeway (b–d) and average speed (f–h) measured at
three locations of road detectors (x = 21.8 (b, f), 20.9 (c, g), and 19.9 km (d, h); road location 21.8 km
is about 1.1 km upstream of the beginning of the off-ramp merging region). 1-min average data.
Dashed arrows in the flow direction shown in a, emark the spatiotemporal propagation of a flow rate
impulse and the related decrease in the free flow speed; this impulse of the flow rate increase and
speed decrease in free flow is marked by dashed up-arrows at the locations of road detectors in b–d,
f–h as well as labeled by ‘‘flow rate increase” and ‘‘speed decrease” in (b, f). Dashed arrow in the
upstream direction shown in emarks the propagation of the upstream front of synchronized flow after
the breakdown has occurred; dashed down-arrow in f–h marks this upstream front of synchronized
flow at the locations of road detectors. Dashed lines in a, emark the bottleneck location at which the
downstream front of synchronized flow resulting from the breakdown is localized. For a more
detailed explanation of this spontaneous traffic breakdown at the off-ramp bottleneck see
Sect. 3.3.1.2 of [34]. Taken from [36]
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PFS;net ¼ 1�
YN

k¼1

ð1� PB;k
FS Þ; ð2Þ

where PB
FS, using Eq. (1), is the probability of F → S breakdown at bottleneck k,

k = 1,…,N, N > 1. Kerner [35] proposes that the network optimum is reached at

Fig. 3 Empirical example of traffic breakdown at on-ramp bottleneck induced by wide moving
jam propagation (real measured traffic data of road detectors installed along three-lane freeway):
a Averaged speed in space and time. b, c Time-functions of average speed (b) and flow rate
(averaged between freeway lanes) (c) at bottleneck location (x = 17.1 km). 1-min average data.
Taken from [33, 36]

Fig. 4 Example of well-known empirical hysteresis phenomenon caused by traffic breakdown
(F → S transition) and return transition from congested traffic to free flow (S → F transition) (real
measured traffic data of road detectors). Taken from [33]
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Min
q1;...;qM ;qm � 0

PFS;netðq1; . . .; qMÞ; m ¼ 1; . . .;M; M[ 1; ð3Þ

where M is the number of network links for which flow rates can be adjusted, and
qm is the link inflow rate for link m. The optimization in Eq. (3) is constrained by
qm � 0 since a link inflow rate cannot be negative. An infinite inflow rate qsum ¼ 1
in Eq. (1) causes PB

FS ¼ 1 and thus PFS;net ¼ 1 in Eq. (2), which it is the objective of
Eq. (3) to prevent, and hence an upper constraint on qsum is not needed. Principle
(3) for optimization of traffic and transportation networks introduced by Kerner
et al. [41] in 2011 is called Kerner’s breakdown minimization (BM) principle.

Verbally, the BM principle means that the optimum of traffic network is reached
when the breakdown probability in at least one bottleneck is minimum. This is
equivalent to maximizing the probability of breakdown at none of the bottlenecks,
i.e. [35]

Fig. 5 Explanations of the fundamental empirical features of traffic breakdown at a highway
bottleneck with Kerner’s three-phase theory [33, 34]: a, b Simulations of spontaneous (a) and
induced (b) breakdown at on-ramp bottleneck taken from [39]. c Simulations of the probability of
spontaneous traffic breakdown at on-ramp bottleneck on a single-lane road taken from [41].
d Qualitative Z-speed-flow-rate characteristic for traffic breakdown; F free flow, S synchronized
flow (results of simulations of the Z-speed-flow-rate characteristic for traffic breakdown can be
found in [33, 34, 37–39]; see, for example, Fig. 3.17b of [34]. Taken from [36]

Game-Theoretic Context and Interpretation of Kerner’s Three-Phase Traffic Theory 121



Max
q1;...;qM ;qm � 0

PC;netðq1; . . .; qMÞ; PC;net ¼
YN

k¼1

PB;k
C ; PB;k

C ¼ 1� PB;k
FS : ð4Þ

The product sign to determine PC;net in Eq. (4) expresses the probability PB;1
C of

no breakdown at bottleneck 1, multiplied with the probability PB;2
C of no breakdown

at bottleneck 2, etc., and eventually multiplied with the probability PB;N
C of no

breakdown at bottleneck N. Wardrop’s [14, 75] two principles minimize travel costs
for each driver and maximize traffic throughput. In contrast, the BM principle
depends neither on travel time nor travel costs. However, Kerner [36, p. 5274]
argues that applying “the BM principle should result in relatively small travel costs
associated with free flow in a network.”More specifically, as evidence of this claim,
Kerner [35] compares Wardrop’s [14, 75] two principles with the BM principle for
two alternative routes, each of which have exogenous on-ramp inflows, and applies
traffic data and microscopic traffic simulations to show that the maximum network
inflow rate allowing free flow is “considerably greater” (and equivalent to the
empirical measurements) when using the BM principle rather than Wardrop’s [14,
75] two principles.

To illustrate how the probability PB
FS of spontaneous F → S breakdown at the

on-ramp in Eq. (1), and shown in Fig. 5c, can be derived practically, we use the
KKW-1 model (see [41] for detail) with many runs of the same duration TOb for
given flow rates qsum and qon. Each of the runs begins with free flow and it was
checked whether the F → S transition at the on-ramp occurred within the given
time interval TOb or not. Then the number of realizations with the KKW-1 model,
nP, where the F → S transition at the on-ramp had occurred, was divided by the
total number of realization, NP, and approximated with the probability PB

FS of
spontaneous F → S breakdown in Eq. (1), i.e.

PB
FS � nP=NP; ð5Þ

Equation (5) expresses that the approximate probability that the F→ S transition
at the on-ramp in an initial free flow occurs during the time interval TOb at given
flow rates qsum and qon. Equation (5) converges towards the probability for
NP → ∞ (taken from [41]). Figure 6 shows with two curves labelled 1 and 2, for
different values of α and qP, exponential increase of PB

FS as functions of the flow rate
qsum at a chosen flow rate to the on-ramp qon.

4 Common Games in Traffic Theory

Game theory requires two players at least or multiple players, that at least one
player has a strategy set of at least two strategies, and that the payoff to each player
depends on the combinations of strategies chosen by all players. This chapter
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confines attention to two strategies for each player. Future research can generalize
to arbitrarily many strategies for each player. The authors are unaware that the
games in this section have been considered in the traffic theory literature, and thus
this section is presented without references, aside from [58]. This section is based
on theoretical reasoning and applies analogies. Empirical support is left for future
research.

4.1 Two-Player Traffic Games

Many traffic encounters involve two players, e.g. two drivers meeting in an inter-
section. Rapoport and Guyer [58] classified the 78 ordinally ranked 2 × 2 games,
i.e. games between two players where each player can choose between two strat-
egies. We confine attention to two strategies for each player to retain simplicity and
illustrate key basic features. For example, although intermediate strategies in
practice exist between the two extreme strategies “driving safely” and “driving
recklessly”, e.g. “driving reasonably safely” or “driving slightly recklessly,” the two
extremes illustrate what we seek to convey. For our purpose, with individual drivers
encountering each other, we start with the game in Table 1, where the payoffs can
be ordinally ranked in 24 different manners. The payoff before the comma is earned
by the row player. The payoff after the comma is earned by the column player.
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Fig. 6 Probability of breakdown phenomenon at the on-ramp for the KKW-1 model [41]: a,
b The probability PB

FS that the F → S transition occurs within TOb = 30 min (curve 1) or already
within TOb = 15 min (curve 2), after the on-ramp inflow was switched on (at t0 = 8 min), versus the
traffic demand upstream of the on-ramp, qsum = qmin + qon. Results are shown for two different flow
rates to the on-ramp, qon = 60 vehicles/h in a and qon = 200 vehicles/h in b. The following criterion
that a F→ S transition has occurred is used: The vehicle speed just upstream of the on-ramp drops
below the level 80 km/h and then remains at nearly the same low level for more than 4 min. The
probabilities were obtained from NP = 40 independent runs. The curves in a, b are fitted with
Eq. (1). The values (α, qP) are: a curve 1 (0.014, 2031) and curve 2 (0.015, 2135), b curve 1
(0.027, 1828) and curve 2 (0.029, 1927). Taken from [41]
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For the two games chicken game and prisoner’s dilemma, explained below,
C means cooperation and D means defection, and R, T, S, P are defined as follows:
Cooperation C means driving safely according to the law and to ensure overall
efficient traffic development, assuming that these objectives coincide. Defection
D means driving recklessly with various objectives such as minimizing one’s travel
time from point A to point B, maximizing adventure, making other drivers nervous,
enjoying the thrill of driving fast, and behavior which often means breaking the law.
If both players (drivers) cooperate, they will both receive the reward payoff R in the
upper left cell in Table 1. If the row player defects while the column player
cooperates, the row player will receive the temptation payoff T shown before the
comma in the lower left cell in Table 1, and the column player receives the sucker
payoff S shown after the comma in the lower left cell. Conversely, if the row player
cooperates while the column player defects, their payoffs will be reversed shown in
the upper right cell in Table 1. Finally, if both players defect, they will both receive
the punishment payoff P. For the two games battle of the sexes and coordination
game, also explained below, C and D simply mean two different strategies, and R,
T, S, P are four different payoffs with ordinal rankings discussed below.

Table 2 shows four common symmetric 2 × 2 games, assuming that the four
payoffs R, T, S, P can take the four values 1, 2, 3, 4, and each payoff differs from the
other three payoffs. The Nash [54] equilibria are marked in bold. Strategies by
multiple players will constitute a Nash [54] equilibrium if no player has an
incentive to deviate unilaterally, i.e. unilaterally changing his strategy. Having
looked at typical traffic situations, we judge these four to be especially common in
traffic. This research has revealed that the chicken game is especially common, and
we present the other three games to illustrate that these are also possible.

Table 2 Four common symmetric 2 × 2 games

Chicken game Battle of the sexes

Column player Column player

C D C D

Row player
C 3, 3 2, 4

Row player
C 2, 2 3, 4

D 4, 2 1, 1 D 4, 3 1, 1

Prisoner’s dilemma Coordination game

Column player Column player

C D C D

Row player
C 3, 3 1, 4

Row player
C 4, 4 1, 2

D 4, 1 2, 2 D 2, 1 3, 3

Table 1 Symmetric 2 × 2
game Column player

C D

Row player
C R, R S, T

D T, S P, P
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4.1.1 Two-Player Chicken Game

In the chicken game each player prefers the daredevil strategy (not to yield to the
other), but the lowest payoff is earned when both players choose the daredevil
strategy (do not yield). The second highest payoff is earned when both players
choose the chicken strategy (which means yielding to the other). The chicken game
(T ≥ R ≥ S ≥ P) is exemplified by the 1955 Warner Brothers drama film “Rebel
Without a Cause” where Jim Stark (James Dean) and Buzz Gunderson (Corey
Allen) race stolen cars towards an abyss. The first one who jumps out of the car
loses and is deemed the “chicken”. They might alternatively have driven the cars
towards each other, exemplified by the 1984 Paramount Pictures musical drama
film “Footloose” where Ren McCormack (Kevin Bacon) and Jim Youngs (Chuck
Cranston) drive two tractors towards each other. The preferred temptation payoff
T = 4 is obtained by being the last to jump or the one driving straight ahead
(daredevil, i.e. defection) while the other is the first to jump or swerve to one side
(chickens out, i.e. cooperates). If both defect they will be punished by mutual death
or injury expressed with the lowest ranked payoff P = 1. Ordinally ranked payoffs
means that the cardinally ranked mutual punishment payoff can be arbitrarily
negative. If both cooperate they will both get the reward payoff R = 3 which is
second best since they avoid injury or death, and avoid being the single chicken
which gives the second lowest ordinally ranked sucker payoff S = 2.

The chicken game describes many traffic situations, and is probably the most
common game in traffic theory. One example is two drivers heading towards the
same intersection where the First-In-First-Out (FIFO) law applies. The FIFO law
applies e.g. in roundabouts and in regular intersections in some countries, speci-
fying that the first reaching the intersection or roundabout has the right to proceed
through the intersection. Despite traffic law, doubts may arise about who chooses to
proceed through the intersection and who chooses to yield. First, the drivers may
arrive simultaneously, leaving other factors to determine who proceeds first, such as
the size, color, and type of vehicle (bus, car, taxi, motorbike), the car’s speed, the
curvature of the terrain, whether one incoming road is broader than the other, the
characteristics of the driver (age, sex, cultural background, clothing, personality,
and biological factors, etc.). Second, the drivers may have different subjective
conceptions about who arrives first, due to high speed, various disturbances (pas-
sengers, music, etc.), and limited capacity for processing information and prefer-
ences. Third, one driver may arrive after the other driver, but the late incoming
driver may drive a more dangerous looking car, drive downhill on a broader road at
higher speed, and display more aggressive driving behavior. In intersections where
the FIFO law does not apply, e.g. because the law is right-of-way based (e.g. the
one coming from the right or riding on the larger road has priority), the same
dilemma will exist if the drivers don’t arrive simultaneously. For example, the
driver dictated by traffic law to yield may choose not yield because he arrives at the
intersection slightly before or slightly after, but dangerously close in time, the other
driver. Ample opportunities for both drivers exist in such situations, with or without
the FIFO rule, to choose the chicken strategy or the daredevil strategy. The two
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equilibria are that they choose opposite strategies, which prevents accidents caused
by the driver choosing the chicken strategy. Choosing the chicken strategy ensures
that no risky situations arise. Choosing the chicken strategy presupposes that the
drivers are in a chicken game. Given that the traffic situation is a chicken game,
choosing the chicken strategy is consistent with choosing safe and less aggressive
driving behavior which conceptualizes different degrees of a driver’s reactions to
other drivers.

Designing traffic law where drivers choose opposite strategies is not particularly
feasible. Hence traffic law is designed to remove uncertainty, risk, and unclarity, for
example specifying that the first driver reaching an intersection or roundabout has
the right to proceed. This means recommending the chicken strategy. Breaking the
law by choosing the daredevil strategy has consequences such as risk of fine,
incarceration, losing one’s driver’s license, injury, death, etc. One challenge for
traffic theory is that recommending the chicken strategy for all drivers means
dictating that all drivers play the non-equilibrium of mutual cooperation to obtain
the second best reward payoff. This places a tall order on drivers, since the
incentives for the daredevil strategy is usually or often lurking underneath many
traffic situations.

4.1.2 Two-Player Battle of the Sexes

The battle of the sexes (T ≥ S ≥ R ≥ P) closely resembles the chicken game, but the
S and R payoffs are reversed. This preserves the two equilibria, but the mutual
cooperation reward payoff is now third best and the discrepancy between tempta-
tion and sucker is smaller. Both players are thus more pleased with either equi-
librium than with both choosing C or both choosing D, in contrast to the chicken
game where one player in either equilibrium gets lower payoff than when both
choose C. One example of the battle of the sexes is two routes [3, 9, 57, 74] from
point A to point B. Assume that both routes are narrow roads where passing and
overtaking another driver is impossible. Assume that two drivers need to drive back
and forth between points A and B. They thus prefer to choose opposite routes to
avoid meeting and having to overtake each other. The battle of the sexes assumes
different preferences for the two players for the two equilibria, (4, 3), (3, 4), which
is usually realistic since two routes usually differ regarding length, quality, surface,
curvature, steepness, scenery, lighting, etc., vehicles differ regarding size, weight,
power, acceleration, gas consumption, etc., and drivers differ regarding abilities,
competence, preferences, beliefs, etc. Beneficial for the battle of the sexes is that
both players have the same or similar facts and information (realistic, e.g. when
both know the road geography, or common congestion phenomena through time),
and that they can communicate to agree on their opposite choices (realistic, e.g. if
they know each other, meet for various purposes, or communicate electronically).
However, choosing either of the two equilibria can also be accomplished by tacit
understanding, trial and error, and adjustment over time if the game is repeated.
Inferior in all regards, for the battle of the sexes, since both T and S are smaller than
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both R and P, are that they choose the same route. This stands in contrast to the
chicken game where the non-equilibrium chicken strategy chosen by both players,
giving payoff R to both players, is preferred over the chicken strategy when the
other player chooses the daredevil strategy, giving the lower payoff S to the player
choosing the chicken strategy.

Another example is two drivers driving along a narrow road at night over a
mountain in freezing temperatures, or along a scorching hot desert road. Assume
that they drive back and forth between points A and B repeatedly around the clock,
e.g. transporting sand. They prefer to drive together in order to benefit from jointly
lighting up the surroundings, to benefit from safety for the event that one vehicle
brakes down, and to benefit from companionship. Inferior for both drivers is to
drive apart from each other, regardless who drives first, since both T and S are
smaller than both R and P. Two drivers driving together may have different pref-
erences for who shall drive first. For example, one driver may prefer to drive second
which simply means following the lights of the front car, passively enjoying an easy
ride with limited need for attention. However, it is also possible for a driver to
prefer driving first, for example if that driver feels more experienced and capable of
staying on the road, or to experience a sense of adventure when driving into the
dark.

4.1.3 Two-Player Prisoner’s Dilemma

Starting from the chicken game, if the S and P payoffs are reversed we will get the
prisoner’s dilemma (T ≥ R ≥ P ≥ S). This minor alteration means that mutual
defection does not give the lowest payoff. In contrast, the lowest payoff follows
from cooperating when the opponent defects, which causes the detrimental sucker
payoff. More detrimentally, mutual defection is the one unique equilibrium.
Defection is the dominant strategy regardless what the other player chooses. The
prisoner’s dilemma is especially descriptive of public goods provision where free
riding on others’ provision is beneficial. The prisoner’s dilemma is descriptive of
traffic situations where one’s strategy is costly for oneself and beneficial for others
in the sense of providing a public good. For example, consider a driver in the front
of a queue headed towards an intersection with no approaching drivers in the
opposite direction. Using the blink light to indicate a left or right turn is costly for a
driver (the manoeuver requires attention, takes time, and the cost is embedded in the
car’s cost), causes no or negligible benefit for the driver, but is beneficial for the
drivers further back in the queue who can adjust their driving behavior accordingly,
knowing whether the front driver plans to turn left or right. Second, consider a large
lorry ahead of a motorcycle. Installing braking lights in the lorry is costly and has
no or negligible benefit for the lorry driver to the extent that being rear ended does
not substantially damage the lorry, but is beneficial for the motorcycle driver who
gets a forewarning that the lorry is braking which may prevent the motorcycle
driver from rear ending the lorry with potential injury or death.
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4.1.4 Two-Player Coordination Game

Starting from the prisoner’s dilemma, if the temptation payoff T is moved from
most preferred to third preferred, thus virtually eliminating incentives to be temp-
ted, we will get the coordination game (R ≥ P ≥ T ≥ S) with two equilibria. As an
example, consider two persons stranded with one car and one bicycle each in an
uninhabited area, or assigned the task of developing traffic law for an uninhabited
area. They have to agree on whether to drive on the right or left side of the road.
This is a coordination game such as in the lower right corner of Table 2. Both prefer
to agree on the law for which side to drive on, but the law has no or minor
importance. For the bicycle the law has no importance and the payoff is the same
for left and right, and low payoff if they choose opposite laws. For cars with driving
wheel on the left, and persons from countries where the law is to drive on the right
side, some preference exists for driving on the right side expressed with 4 > 3 in the
lower right corner of Table 2. For cars with driving wheel on the right preferences
may be opposite, and preferences may depend on whether the persons are
Englishmen, Americans, etc. Other conventions are the law in some countries of
yielding for traffic coming from the right (Norway), or that the first driver to reach
an intersection has the right to proceed first (United States), and the various colors
of the various lights on vehicles. Conventions such as these, where agreement is
more important than what one agrees on, is widespread in traffic situations, illus-
trating the applicability of the coordination game.

4.2 n-Player Traffic Games

Although many traffic situations consist of or can be simplified to encounters
between two drivers, many traffic situations inevitably have to be analyzed as
encounters between more than two drivers. For example, four drivers may simul-
taneously reach an intersection. Two or three drivers may simultaneously assess
whether to overtake a slow driver. These play games with each other and with
meeting drivers. Drivers in a platoon interact complexly with each other. Changing
lanes, or merging when lanes merge, usually means relating to more than one other
driver. Braking abruptly may cause being rear-ended, which may cause a chain
collision with many drivers in a queue. More generally, congested traffic means
interacting with many drivers. Over the next subsections we consider situations
with more than two drivers.

4.2.1 n-Player Chicken Game

Figure 7 shows the n-player chicken game. If n = 2, the horizontal axis shows the
second player choosing defection (daredevil) at X = 0 (causing the first player to get
the sucker payoff S with the chicken strategy, and the detrimental punishment payoff
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P with the daredevil strategy) and cooperation (chicken) at X = 1 (causing the first
player to get the reward payoff R with the chicken strategy, and the beneficial
temptation payoff T with the daredevil strategy). With more than n = 2 players, the
curve from S to R expresses the cooperation payoffC(X) to the one player given that a
fraction X of the other n − 1 players chooses cooperation. The curve, which does not
have to be linear, is upward sloping since R ≥ S, which expresses that more players
choosing the chicken strategy is beneficial for the one player choosing the chicken
strategy. The curve from P to T expresses the defection payoffD(X) to the one player
given that a fraction X of the other n − 1 players chooses cooperation. This curve,
which also does not have to be linear, is upward sloping with a steeper slope since
T ≥ R ≥ S ≥ P, which expresses more players choosing the chicken strategy is
beneficial for the one player choosing the daredevil strategy. Consequently, the two
curves cross each other at an equilibrium number of cooperators, assuming that the
number n of players is sufficiently large so that the integer problem can be ignored.
That is, when n = 2, the one player chooses S when X = 0 and chooses T when X = 1.
When n is large, an intermediate number of cooperators is optimal. To verify that the
crossing point is an equilibrium, assume that X is low. This means that defectors have
an incentive to switch to cooperation which increases X towards the equilibrium.
Conversely, assume that X is high. This means that cooperators have an incentive to
switch to defection which decreases X towards the equilibrium.

Figure 7 illustrates an equilibrium with many cooperators (chickens). It is
descriptive of stable traffic situations where incentives for the temptation payoff are
low or harshly punished e.g. by surveillance, police presence, or cultural norms. This
equilibrium is beneficial from a collective and public safety point of view since the
incentives to go for the temptation payoff T are low. Eliminating the incentives for the
temptation payoff is hard, illustrated by the prevalence of the chicken game, and thus
the equilibrium occurs for an X strictly below X = 1. In less stable traffic situations,
e.g. with no surveillance, police, or different cultural norms, incentives for the
temptation payoff may be much larger. This is accomplished by moving the curve
from P to T in Fig. 7 vertically upwards causing Fig. 8 where the curves cross at a
much lower X. That is, in Fig. 8 the payoff for being a daredevil is strictly higher than
in Fig. 7, whereas the cooperation curveC(X) from S to R is equivalent for Figs. 7 and
8. Figure 8 thus illustrates an equilibrium with few cooperators (chickens).

eq   
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C(X)                                  R
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D(X)
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X
0   Ratio of cooperators (chickens) among the n-1 other players    1

Fig. 7 n-player chicken game with many chickens, T > R > S > P, where X, 0 ≤ X ≤ 1, is the
fraction of chickens, C(X) is the cooperation payoff, D(X) is the defection payoff, eq means
equilibrium, T, R, S, P are defined in Tables 1 and 2, and the vertical axis is an ordinal scale

Game-Theoretic Context and Interpretation of Kerner’s Three-Phase Traffic Theory 129



Many of the examples of two-player chicken games in Sect. 4.1.1 are readily
generalized to more than two players. For an example, an intersection or round-
about may have five or more incoming roads. If five drivers headed simultaneously
towards the intersection are likely to choose the chicken strategy, accident may be
prevented, but not if the five drivers are more likely to choose the daredevil
strategy.

A second example is lane changing behavior. Changing lanes is risky. The safest
strategy from a system optimal viewpoint is that all drivers remain in their chosen
lanes. However, drivers may change lane or not depending on other drivers’
decisions to accelerate or decelerate or other actions. A daredevil may change lanes
repeatedly, as a slalom strategy, to get ahead in traffic. If he is the sole daredevil,
and all the others are chickens, the daredevil will gain substantially, while the
nervous chickens hold back to prevent accidents. However, if all drivers choose the
daredevil strategy, that is X = 0 in Figs. 7 and 8, traffic will become chaotic, and
they will all receive the lowest punishment payoff P, which as an ordinal payoff can
be arbitrarily negative.

Also illustrative of the chicken game are merge methods for roads narrowing
from n to n-1 lanes in one given direction, e.g. the late merge or zipper method,
early merge, and dynamic late merge. Traffic law specifies merging which means
the chicken strategy. But, incentives exist to choose the daredevil strategy to get
ahead. Irritation, frustration, and uncertainty usually arise among the other drivers,
but the driver choosing the daredevil strategy benefits as long as accidents are
prevented.

Another example of the chicken strategy is drivers in a queue or platoon.3 The
daredevils overtake the driver ahead eventually reaching their destinations earlier
but at enhanced risk. The chickens are left behind using more time to reach their
destination, but enjoying more safety and security. For analysis of the n-player
chicken game see [67–69].

eq D(X) T
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Fig. 8 n-player chicken game with few chickens, T > R > S > P, where X, 0 ≤ X ≤ 1, is the fraction
of chickens, C(X) is the cooperation payoff, D(X) is the defection payoff, eq means equilibrium, T,
R, S, P are defined in Tables 1 and 2, and the vertical axis is an ordinal scale

3 A platoon is a group of vehicles following each other with low distance between each vehicle,
accomplished by electronic, and sometimes mechanical, coupling. Traffic throughput increases
because of the synchronization where e.g. reaction times are decreased or eliminated.
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4.2.2 n-Player Battle of the Sexes

Figure 9 shows the n-player battle of the sexes. The logic of the equilibrium for
intermediate X is the same as for the chicken game in Figs. 7 and 8. The only
difference is that the C(X) curve from S to R in Fig. 9 is downward sloping, as
opposed to upward sloping in Figs. 7 and 8. This reflects that in the battle of the
sexes being the sole player choosing C (which means chicken in the chicken game)
is not as bad as in the chicken game. Quite the contrary, the sole player choosing
C gets the second best payoff. Whereas in the chicken game more cooperators
(chickens) benefit each cooperator, so that many chickens together is preferred
given that one is a chicken, and being the sole chicken is worst, for the battle of the
sexes more players choosing C hurt each player choosing C, so that many players
choosing C is worst, and being the sole player choosing C is best, given that one
chooses C. The same logic applies for choosing D, with the asymmetry that the
maximum payoff T is reached if one is the only player choosing D, and the min-
imum payoff P is reached if all players choose D.

The two-player battle of the sexes examples in Sect. 4.1.2 are generalizable to
n players. A further example is lanes in most cities for designated purposes, most
commonly public transportation e.g. in the form of buses, taxis, drivers with certain
privileges, or vehicles with certain characteristics such as e.g. electric cars. These
lanes for specific purposes account for the battle of the sexes equilibrium in Fig. 9
for intermediate X. Given that most drivers use the other lanes, the first driver using
the designated lane benefits tremendously, gaining the payoff T in Fig. 9. Also, as
more and more designated drivers switch to the designated lane, the load of the non-
designated lanes decreases which benefit the non-designated drivers. The two
lowest payoffs are earned when the designated lane is empty, and the non-desig-
nated lanes are empty. One purpose of designated lanes is to make public trans-
portation more attractive, by shifting the incentives of some drivers of cars to switch
to taking the bus, which alleviates the overall traffic load. Other purposes, when
such lanes allow electric cars, are to decrease air pollution, and shift incentives from
driving conventional cars to driving electric cars. Allowing increased use of des-
ignated lanes will be beneficial only if the load of the designated lane is low. If
electric cars become too numerous, so that the flow rate in the designated lane
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Fig. 9 n-player battle of the sexes, T > S > R > P, where X, 0 ≤ X ≤ 1, is the fraction of chickens,
C(X) is the cooperation payoff, D(X) is the defection payoff, eq means equilibrium, T, R, S, P are
defined in Tables 1 and 2, and the vertical axis is an ordinal scale
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becomes lower than in the non-designated lanes, the electric cars, and also the other
designated drivers, will start driving in the non-designated lanes. At that point,
traffic law usually changes, e.g. forbidding electric cars from using designated
lanes.

4.2.3 n-Player Prisoner’s Dilemma

Figure 10 shows the n-player prisoner’s dilemma. That defection is the dominant
strategy regardless what the other players choose means that the D(X) curve gives
strictly higher payoff than the C(X) curve for all X, so that these two curves don’t
cross. The one unique equilibrium is thus where the D(X) curve crosses the left
vertical axis giving the mutual defection payoff P to all players. The public goods
provision examples in Sect. 4.1.3 for the two-player prisoner’s dilemma are directly
generalizable to n players.

4.2.4 n-Player Coordination Game

Figure 11 shows the n-player coordination game. The C(X) curve is upward
sloping, but in contrast to Figs. 7, 8, 9 and 10, the D(X) curve is downward sloping,
and exceeds C(X) for low X. That means that with a lower fraction than X of players
choosing C, a player choosing C switches to D which decreases the fraction X of

R
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0 Ratio of cooperators among the n-1 other players 1

Fig. 10 n-player prisoner’s dilemma, T > R > P > S, where X, 0 ≤ X ≤ 1, is the fraction of
chickens, C(X) is the cooperation payoff, D(X) is the defection payoff, eq means equilibrium, T, R,
S, P are defined in Tables 1 and 2, and the vertical axis is an ordinal scale

eq    R

T

X

One P D(X)

player’s
strategy S C(X)

0 Ratio of players choosing C among the n-1 other players 1

Fig. 11 n-player coordination game, R > P > T > S, where X, 0 ≤ X ≤ 1, is the fraction of
chickens, C(X) is the cooperation payoff, D(X) is the defection payoff, eq means equilibrium, T, R,
S, P are defined in Tables 1 and 2, and the vertical axis is an ordinal scale
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players choosing C eventually causing the equilibrium with no players choosing C,
i.e. X = 0 and payoff P to all players choosing D. Conversely, with a higher fraction
than X of players choosing C, a player choosing D switches to C increasing the
fraction X of players choosing C eventually causing the equilibrium with only
players choosing C, i.e. X = 1, and payoff R to all players choosing C. The crossing
of the two curves D(X) and C(X) is thus a tipping point from which movement to
either of the two corner equilibria can occur. The coordination examples in
Sect. 4.1.4 for the two-player coordination game are directly generalizable to n
players. Consider an early society which has not yet established a convention or law
of driving on the right or left side of the road. If roughly half the drivers drive on the
right side and the other half on the left side, some time may elapse before one or the
other convention gets established, especially if some drivers recalcitrantly insist on
their preference. However, as one convention gets a slight advantage, the process
towards one of the corner equilibria can be expected to speed up as the payoff
difference between the two curves D(X) and C(X) increases with movement away
from the tipping point in Fig. 11.

5 Linking the Four Classical Developments with Game
Theory

First, congestion as described, e.g. by Lighthill and Whitham [45] and Richards
[60], see also [15] means that each driver has to react to more drivers in the
surroundings. The opposite of congestion is one single driver where the choice of
daredevil versus chicken is irrelevant. As congestion increases, we know from
Figs. 7 and 8 that all drivers prefer a large fraction of chickens, which causes
predictability and stability. This gives room for daredevils to take advantage which
disrupts the stability.

Second, the over-deceleration effect, see e.g. Herman et al. [27] and Gazis et al.
[21, 22], can be expected to be more pronounced with many chickens. Chickens are
risk averse. When a preceding driver brakes, the subsequent chicken may brake
excessively, and the subsequent chicken even more excessively. This may bring the
queue of drivers to a standstill. The probability of accident may be low, but the flow
rate will also be low. As an opposite consideration, with only daredevils, where all
drivers know that all drivers are alert daredevils, the queue may not come to a
standstill, but the traffic situation will be more volatile with probability of accident.
Overall, the over-deceleration effect is risky with the joint presence of chickens and
daredevils with different conceptions of how much deceleration is needed.

Third, using the classical conception, e.g. [4, 70], where the free flow capacity
has a fixed value, the game theoretic analyses are simpler since it is clear-cut
whether traffic is in free flow or not. Conversely, with Kerner’s [36] theory, no such
fixed value exists, impact of congested patterns from other bottlenecks, hysteresis,
etc. impact, which the game theoretic analysis has to account for.
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Fourth, Wardrop’s [14, 75] user equilibrium principle is of the same nature as
Nash’s [54] equilibrium. The two concepts were developed separately. Haurie and
Marcotte [25] proved that a Nash equilibrium in a network game with a finite
number of players converges to a Wardrop equilibrium when the number of players
increases. In such an equilibrium no driver can beneficially deviate unilaterally.
Wardrop’s [14, 75] system optimal principle is of the same nature as collective
optimization principles in economics, and can be obtained by marginal cost road
pricing. To obtain system optimality, culture, incentives, or laws may be needed for
all drivers to choose the chicken strategy.

6 Linking Kerner’s Three-Phase Traffic Theory with Game
Theory

This section uses Kerner’s three phase theory from Sect. 3, uses the gametheoretic
insights from Sects. 4 and 5, and describes Kerner’s three phases game theoretically
by applying the chicken game. In the first phase with free flow the fractions of
chickens and daredevils can vary greatly up and down within certain ranges of the
density and flow rate. For the first transition F → S from free flow F to synchro-
nized flow S more drivers become chickens. For the second transition from syn-
chronized flow S to wide moving jam J the fraction of chickens remains constant. In
the third transition from wide moving jam J to free flow F, the fraction of chickens
decreases.

Let us describe this more thoroughly, showing with reference to Figs. 7 and 8 the
mathematical relations that specify that the three phases can in fact be parallelized
to the chicken game. See for example Antoniou and Pitsillides [1, Chap. 2] for
parallelism between real life situations and games. Figures 4 and 5d illustrate three
transitions between the three exhaustive and mutually exclusive phases F, S, and
J. The first phase is free flow F. In free flow F an intermediate (which can be large
or small) number of drivers cooperate as chickens, where the C(X) and D(X) curves
cross each other for an equilibrium value of X between that of Figs. 7 and 8. That is,
in free flow F intermediately many drivers choose the chicken strategy at a given
speed, density, and flow rate, or the probability that a given driver chooses the
chicken strategy in a given situation, is intermediate. The linear relationship
between density and flow rate in Fig. 4, from zero and up to the maximum point
shown in Fig. 4, illustrates greatly varying density and flow rate within this range.
Close to the lower extreme, with only two drivers in a given direction, the density
and flow rate are low, the drivers hardly interact, and whether they choose the
chicken strategy or daredevil strategy has little importance. As the flow rate and
density increase, more chickens ensure stability, and daredevils cause instability
and uncertainty. Nevertheless, within free flow F the fraction of chickens and
daredevils can vary up and down within certain ranges.
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When the flow rate exceeds the minimum capacity shown in Fig. 5d, the
probability of F → S transitions increases with increasing flow rates. F → S transi-
tions can occur at many flow rates above the minimum capacity flow rate shown in
Fig. 5d. When this F → S transition occurs, this marks the transition from free flow
F to synchronized flow S which is the second phase. For this first transition, as the
driver density (vehicles/km) exceeds a minimum level, the flow rate (vehicles/(hour
× lane)) might no longer increase but might remain almost constant. This almost
constant flow rate despite increased density follows either from drivers decreasing
their speed, or follows from more drivers entering the network at an on-ramp, or
follows from vehicles reducing their headways (i.e. distance or time between
vehicles). Decreasing speed follows from drivers becoming increasingly appre-
hensive, fearful, and wary of accidents, due to the larger number of drivers sur-
rounding them in a congested environment. If drivers become increasingly
apprehensive in this manner, the chicken strategy will become more likely.
Increasing density at constant flow rate is correlated with higher prevalence of the
chicken strategy. Hence the first F → S transition means that some drivers switch
from the daredevil strategy to the chicken strategy, or that a given driver chooses
the chicken strategy with higher probability. Graphically in Fig. 8, this means that
the curve from P to T gets shifted downwards, causing Fig. 7, as the benefit of
defection (daredevil) decreases. This shifts the intersection between the P-T curve
and the S-R curve towards the right, as in Fig. 7, which increases the number of
cooperators, i.e. chickens. That is, in synchronized flow S, with more congestion,
the benefit of the daredevil strategy decreases, as drivers become more risk averse
and seek to avoid risky and costly accidents in a congested environment with many
possibilities of accident. In other words, any given daredevil gets a lower payoff D
(X) as the P-T curve shifts downwards, which increases the equilibrium value of X,
which increases the payoff C(X) of any given chicken. Assume that the fraction of
daredevils is unusually high at a certain place and time, e.g. due to hooligans
driving home from a soccer match or drivers for various reasons becoming
aggressive in dense traffic. The F → S transition then occurs for lower than usual
values of flow rate and density. The smaller than usual number of chickens becomes
even more apprehensive, and the subsequent transitions through the hysteresis loop
back to free flow become more problematic and proceed more slowly.

A direct reversal from synchronized flow S to free flow F is impossible without
the flow rate decreasing first, which means fewer vehicles/(hour × lane). A decrease
in the flow rate can be linked to a second transition S → J, from synchronized flow
to wide moving jam. For this S → J transition, we assume that the flow rate
decreases while the fraction of chickens remains constant, and the speed and density
are constant. That is, unchanged speed and density does not change the curves and
equilibrium value of X in Fig. 7 (or Fig. 8).

When the flow rate has decreased sufficiently at constant density, a new tran-
sition can occur. That is, for the third J → F transition, the density can again
decrease at constant flow rate and constant low speed. Decreasing density gives
more space around each driver which increases the prevalence of the daredevil
strategy, causing fewer chickens. More space around each driver (lower density)
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raises the P-T curve in Fig. 7 to that of Fig. 8, causing intersection with the S-R
curve for a lower equilibrium value of X. Any given daredevil thus gets a higher
payoff D(X) as the P-T curve shifts upwards, which decreases the equilibrium value
of X, which decreases the payoff C(X) of any given chicken. With lower congestion
in the sense of lower flow rate, the density eventually decreases towards the initial
density, but with lower flow rate and lower speed than before the first transition,
due to the hysteresis phenomenon, and we are back at the free flow phase F.

As the density has decreased sufficiently, within the free flow phase, due to
bottleneck disappearances and the removal of drivers from the network, causing
low congestion, the flow rate and speed again increase and the density increases,
while within the free flow phase. The increasing density again means that the P-T
curve in Fig. 8 gets shifted downwards causing Fig. 7, with higher equilibrium
value of X, higher payoff C(X) to any given chicken, and drivers switch from the
daredevil strategy to the chicken strategy, within the free flow phase. The drivers
remain in free flow until the flow rate and density again exceed certain levels, and
the new transitions F → S → J → F emerge.

Summing up, for the first F → S transition the chicken strategy becomes more
likely. For the second S → J transition the chicken strategy is equally likely while
the flow rate decreases at constant density. For the third J → F transition strategy
the chicken strategy becomes less likely while the density decreases. Finally, within
free flow F where the flow rate and density again increase, the chicken strategy
becomes more likely. Figure 12 summarizes the changes in the number of chickens
during these three transitions.

The arguments in this section of how driver behavior leads to spatio-temporal
congestion patterns are in our view intuitive. We have conceptualized joint changes
in flow rate and density game theoretically. The presentation is currently phrased
more in terms of driving-behavioral conjectures than in terms of results. Future
research should validate the conjectures, applying real data and for example mi-
crosimulation. Data should be compiled from different locations, and at different
times during the day and week, to elicit different driving behavior. One approach is
to incorporate the chicken strategy in a car-following model to show numerically
how the relationship in Fig. 11 happens. Real data can be used to estimate the
probabilities of Eqs. (1) and (2) in numerical examples to enhance the understanding
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Fig. 12 Changes in the number of chickens during the three transitions, F → S, S → J, J → F
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of the chicken traffic game and the relevant probabilities to follow the chicken or the
daredevil strategy, which signify the transitions F → S, S → J, and J → F. Chen
et al. [10] shows that hysteresis arises due to variable driver characteristics, which
should be scrutinized further to determine how hysteresis prevalence and the shape
of the hysteresis loop depend on fractions of chickens and daredevils. Future
research should also scrutinize whether aspects of Kerner’s three phase theory can be
linked to other games than the chicken game. Future research should furthermore
consider other observed forms of flow-density relationships, e.g. hypercongestion
where, as the flow rate decreases, the density slowly increases until reaching a jam
density. For hypercongestion see e.g. [4, 65].

7 Conclusion

This chapter presents four classical developments in traffic theory, and Kerner’s [36]
theory, and links these to game theory. First, Lighthill and Whitham [45] and
Richards [60] suggested that flow rate and traffic density satisfies the conservation
law for the number of vehicles, and that traffic breaks down when exceeding the free
flow capacity. Second, Herman et al. [27] and Gazis et al. [21, 22] suggested that
over-deceleration impacts breakdown, where subsequent drivers decelerate exces-
sively. Third, May [4] and others suggested that the free flow capacity is a fixed
deterministic or stochastic value. Fourth, Wardrop [14, 75] suggested one principle
which minimizes individual travel costs for each driver, of the same spirit as Nash
[54] equilibrium, and one principle which minimizes traffic throughput, analogous to
collective welfare maximization in economic theory. Fifth, Kerner [36] argued that
the first four classical developments, which constitute generally accepted funda-
mentals of traffic theory, are not consistent with the empirics of traffic breakdown.

Kerner [36] suggested the three phases free flow F, synchronized flow S with
congestion, and wide moving jam J. He argued that traffic data shows no F → J
transition, as commonly believed, but instead breakdown as F → S transition, and
subsequent S → J transition. Furthermore, traffic breakdown is not only sponta-
neous, but can be induced e.g. by a wide moving jam propagating upstream.
Observing that the traffic breakdown probability increases logistically in flow rate,
Kerner [36] demonstrated hysteresis where, after an F → S transition, return to free
flow usually occurs at smaller flow rates. Kerner argued for minimizing breakdown
as the key principle.

We present and exemplify common games applicable for traffic theory, i.e. the
chicken game, battle of the sexes, prisoner’s dilemma, and the coordination game.
The chicken game is especially prevalent in traffic. The chicken game is a quite
risky game with ample issues related to safety and security. Traffic theory dictates
that all drivers choose the chicken strategy which is not an equilibrium. The first
driver switching from the chicken strategy to the daredevil strategy benefits, and
benefits more with the presence of many chickens. With more daredevils in traffic,
and especially when these encounter each other, the probability of accident
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increases. From a traffic safety point of view it is of interest to design laws, culture,
incentives, sanctions, and punishments to foster the proliferation of the chicken
strategy and prohibit or limit the attractiveness of the daredevil strategy. For these
two player and n-player games future research should develop simulation envi-
ronments and test situations to determine and verify empirically which traffic sit-
uations correspond to which games.

We proceed to link the four classical developments with game theory, and
formulate Kerner’s three-phase theory game theoretically, applying the chicken
game. In the first F → S transition from free flow to synchronized flow, where the
density increases at a constant flow rate, more drivers choose the chicken strategy,
or the probability that any given driver in a given situation chooses the chicken
strategy increases. This F → S transition, which can be spontaneous or induced,
occurs through increasing density at constant flow rate where drivers become
increasingly apprehensive, fearful, and wary of accidents, caused by the larger
number of drivers surrounding them in a congested environment. In the second
S → J transition from synchronized flow to wide moving jam the chicken strategy
is equally likely while the flow rate decreases at constant density. The propagation
of the wide moving jam phase is very stable and independent of the driver behavior
(e.g., aggressive, calm). For the third J → F transition strategy the chicken strategy
becomes less likely while the traffic density decreases giving increased incentives
for the daredevil strategy. Finally, within free flow F where the flow rate and
density again increase, the chicken strategy becomes more likely and the daredevil
strategy less likely. This closes the hysteresis circle. A new hysteresis circle
will start if the density again increases at a constant flow rate.

A few practical implications of this chapter are to raise awareness of which
games play a role in traffic, which strategies in these games are likely in certain
circumstances, and the implications. Future research should consider practical
implications of the proposed game-theoretic analysis of traffic flow dynamics, e.g.,
for modeling and controlling traffic flow under various congestion conditions.

Future research should generalize, empirically and theoretically, Kerner’s [35]
comparison of his BM principle with Wardrop’s [14, 75] two principles for two
alternative routes to general networks, e.g. determining necessary and sufficient
conditions for optimum. The probabilistic occurrence of hysteresis certainly com-
plicates such analyses. Kerner’s [35] analyses of the three principles should also be
merged with Bier and Hausken’s [4] analysis of two alternative routes, where safety
and security are accounted for in the sense of defense and attack, modeling con-
gestion in accordance with Small and Verhoef [65]. More generally, future research
should conduct simulations and more thorough numerical analysis, compare the
discussed game theory approaches with real data, provide a more thorough quan-
titative analysis, and test empirically on freeways and city traffic.
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A Heuristic Method for Identifying
Near-Optimal Defending Strategies
for a Road Network Subject to Traffic
Congestion

Mengyao Gao, Bo Zhang, Vicki M. Bier and Tao Yao

Abstract In this study we investigate the vulnerability of road networks to inter-
dictions. We consider that an intentional attacker wants to maximize the congestion
level on the network by interdicting some links of the network. The drivers are
assumed to be selfish and always choose the route that minimizes the individual travel
cost. In this case, network traffic flow follows user equilibrium (UE) traffic assign-
ment, which however is affected by the interdiction initiated by the attacker. In this
problem, the role of the defender is to minimize the damage that can be caused by an
attack. A heuristic method is developed to solve for near-optimal attack (interdiction)
and defense strategies, the effectiveness of which is demonstrated by simulation
results. Numerical experiments are conducted to examine factors that influence the
application of this method. Specifically, we compare the efficiency of this method
when applied to different Cartesian grid-like networks. Managerial insights into the
vulnerability and defense of road networks are drawn from the analysis.

1 Introduction

In recent decades, there have been more and more cases of terrorist attacks on
transportation systems, not only endangering human beings’ lives, but also
destroying infrastructure systems such as food supply, telecommunication, finance
and electric power. The most well-known are bombings of railway transit in
Madrid, London, and Singapore, as well as “9.11.” Reports give an impression that
railway and flight are at higher risk than other modes of transport. However, a
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project named “Light Rail Now” [10] reveals that most terrorist incidents actually
occurred on road networks, based on data from the US State Department and
Wikipedia for the 41-year period from 1967 to 2007. Figure 1 shows the terrorist
incident counts in different transport modes [10]. Over 80 % of terrorist incidents
occurred on road networks, including 74.9 % involving private vehicles and 9.5 %
involving buses, causing about 30,000 deaths and injuries. Thus, defending the road
network against terrorist attacks is clearly important.

How can we defend a road network? Let us imagine a terrorist attack on a road
network. At the beginning of the attack, no government agency would be able to
respond immediately. Each driver or pedestrian on the road would try to rush to a
safe place, which would make traffic highly congested. After a while (maybe
several minutes, if the attack occurred in a large modern city), ambulances and
police would rush to the site to save lives. However, they may not be able to get to
their destination quickly, because of congestion and damage to the transportation
infrastructure. Therefore, actions of defending should ideally be taken before an
attack in order to increase the robustness and defensibility of the road network. In
this chapter, we develop a heuristic method to determine a near-optimal group of
links to be protected to minimize the cost associated with a potential terrorist attack.

Optimizing networks against interdiction is often a multi-objective problem.
Royset and Wood [14] define an attacker’s network interdiction process as a bi-
objective maximum-flow network-interdiction problem, i.e., minimizing post-inter-
diction maximum flow (capacity of the network) and minimizing “total interdiction
cost” (interdiction resource cost). The problem is modeled from the attackers’ per-
spective, aiming at destroying as much of the network as possible at the lowest cost.
They propose a new structure of algorithms to find the efficient frontier in the cost-to-
effectiveness tradeoff. Murray and Mahmassani [11] create a bi-level mathematical
program to identify vulnerable links in various scenarios. Feng andWen [5] optimize
a traffic control system for earthquake disasters which cause interdictions in the
transportation. To maximize the traffic volume and minimize travel time, they build a
bi-level programing model. A study by Ng et al. [12] about shelter allocation in
emergency evacuations is also a bi-objective problem in static user equilibrium, using
bi-level programming. Objectives in that study are to maximize the volume of people
sheltered and tominimize the routes. However, these researchers base their models on
shortest path theory without considering congestion. In their models, each route is

Fig. 1 Terrorist incidents
involving transportation
(1967–2007)
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given a fixed weight representing either distance or travel time, and each driver is
assumed to choose the route with the minimum weight. If some link on that route is
interdicted, the driver will then select the route with the second minimum weight, etc.
These models cannot accurately characterize road network flow when the travel
demand on the network is large enough to cause congestion on some links. However,
congestion is widespread in urban traffic, and as we mentioned earlier will become
more serious when the urban transportation network is attacked.

To our knowledge, only Bier and Hausken [2] take congestion into account
when choosing network defense strategies. Two cases on a two-arc network are
studied—one when both arcs work, and one when one of the arcs is interdicted. The
authors also assume that a driver may refuse to travel if the travel time exceeds
some reservation time, which creates a penalty. By comparing the total travel time
and penalty time in these two cases, they suggest that more defense effort should be
assigned to less congested arcs, and to routes with larger capacity.

Although there are not many studies on interdiction and defense of traffic net-
works, there is a rich literature about interdiction and defense of other networks,
like power and security systems. These studies provide us an effective strategy for
reducing loss from attacks, which is to identify the critical links in the network and
then defend them or allocate fortification resources nearby. For example, Church
and Scaparra [4] apply the p-median model to identify the assets whose failures
would result in the maximum loss to a system. In power systems, Bier et al. [3]
identify the transmission lines with the maximum current flow as critical and defend
them against interdictions. The authors propose a nested algorithm to iteratively
choose the critical links to secure. In this chapter, we borrow the idea of a nested
algorithm, and develop a heuristic method to identify near-optimal defense strate-
gies for a road network subject to congestion.

In particular, we address network defense problems subject to traffic congestion
on networks of more reasonable size than in [2], but without the concept of res-
ervation times. Specifically, we define three types of players (drivers, a defender,
and an attacker), and two types of strategic actions (attacking and defending). The
attacker, such as a terrorist, plans an intentional attack on one or more links of a
road network to maximize social loss. The defender knows of the threat from the
attacker, but does not know which links will be attacked. In order to minimize the
loss, the defender wishes to secure some links so that they cannot be interdicted by
the attacker. The drivers in the network are assumed to be selfish, and the traffic
flow can be characterized by UE. We view the problem from the perspective of the
defender and develop a heuristic method to solve for near-optimal defense strate-
gies. Numerical experiments are conducted to demonstrate that the proposed
method can apply to realistic Cartesian-grid networks.

The remainder of this chapter is organized as follows. In Sect. 2, we show our
UE model and present a convex combination method to solve the model. We
propose a heuristic method to find near-optimal defense strategies for a congested
traffic network in Sect. 3, and give a simple example of its application in Sect. 4.
Section 5 presents two sets of numerical experiments to explore the effectiveness of
our method. We conclude our study in Sect. 6.

A Heuristic Method for Identifying Near-Optimal Defending Strategies … 145



2 Problem Formulation

2.1 Notation

The network can be represented as a graph G = (V, E), where V is a set of nodes and
E is a set of links. Let qrs be the travel rate between origin r and destination s,
comprising the origin-destination (O-D) demand matrix. In this chapter, the O-D
demand matrixes are given beforehand. Let xm denote the flow on link m, and tm
denote the travel time on link m. For the case of congestion, tm ¼ t xmð Þ, indicating
that the travel time on link m is a function of the flow. Let wrs

i be the flow on route
i between origin r and destination s. Thus, we have the relationship
xm ¼ P

r

P
s

P
i w

rs
i d

rs
m;i; 8m, meaning that the flow on each link is the sum of the

flows on all routes using that link, where drsm;i ¼ 1 if route i goes through link m and
drsm;i ¼ 0 if not. Table 1 summarizes the notation.

The assumptions of this chapter are that:

1. The attacker knows what has been defended and won’t waste his/her attack on
defended infrastructure;

2. All flows are simultaneous.

2.2 UE Model

Wardrop’s two principles [18] are commonly used to characterize traffic assignment
on a network. The first principle assumes that the driver chooses the route from
origin to destination with the shortest travel time among all available routes,
neglecting how his or her decision affects other drivers. The second principle [18]
assumes that every driver’s route choice is controlled by a central planner who aims
to efficiently utilize the system to obtain the minimum average travel time. UE and
system optimum (SO) models (stemming from the first and second principles,

Table 1 Notation
Symbol Description

G Network

V A set of nodes in the network

E A set of links in the network

xm Flow on link m

tm Travel time on link m

wrs
i Flow on route i from origin r to destination s

drsm;i drsm;i ¼ 1 if route i goes through link m and drsm;i ¼ 0
if not

qrs Travel rate between origin r and destination s
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respectively) can be applied to calculate traffic flows and travel times for each route.
In this chapter, we assume that the attack on the network is sudden, so that a central
planner would not be able to react immediately. Therefore, in this case, UE fits the
problem better than SO.

To obtain the link-flow pattern, the UE model can be constructed as a program
with a nonlinear objective function and linear constraints. Beckmann et al. [1] give
the following formulation:

minz x!� � ¼ X
m

Zxm
0

t sð Þds ð1aÞ

subject to

X
i

wrs
i ¼ qrs 8r; s ð1bÞ

xm ¼
X
r

X
s

X
i

wrs
i d

rs
m;i 8m ð1cÞ

wrs
i � 0 8i; r; s: ð1dÞ

In this formula, optimizing the objective function guarantees equilibrium. The
objective function (1a) is to minimize the sum of the integrals of the travel time
function for links. It is a strictly mathematical construct to solve equilibrium
problems, without any economic or behavioral indication. Constraint (1b) illustrates
that the flow on all routes from an origin to a destination is equal to the corre-
sponding O-D travel demand. Equation (1c) defines the flow on link m. Constraint
(1d) is the non-negativity constraint.

Beckmann et al. [1] prove the equivalence of formulation (1a, 1b, 1c, 1d) and the
UE problem, as well as the uniqueness of the solution. For details, see [1].

2.3 Convex Combination Algorithm

Researchers have proposed various methods to determine vehicle flows using a UE
model. Scarf [15], Todd [17], and Garcia and Zangwill [12] develop a fixed point
method and explore its application. Pang and Chan [13] create a generalized linear
method, as well as successive linearization with Lemke’s method. Frank and Wolfe
[7] first proposed the convex combination method, which was later improved by
Florian and Nguyen [6]. For comparison of these methods, please refer to Friesz [8]
and Sheffi [16]. Here, for reasons of both computational efficiency and accuracy, we
select Frank and Wolfe’s convex combination method to solve our UE model.
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The convex combination method transforms the original nonlinear objective
function to a linear approximation function. With subsequent iterations, the opti-
mum of the linear program gets closer and closer to the optimum of the original
program. Once it satisfies the convergence condition, the optimal solution for the
UE model is obtained from the transformed program.

In detail, in the nth iteration, the direction that minimizes z xn
!� �

is y!� xn
!
. The

slope of z xn
!� �

in this direction is

�rz xn
!� �

�
y!� xn

!� �

y!� xn
!��� ���

T

ð2Þ

Here y! is an auxiliary feasible solution in the feasible region. For any given y!, the
dropped objective function can be changed to a linear approximation:

zn y!� � ¼ z xn
!� �

� �rz xn
!� �

�
y!� xn

!� �

y!� xn
!��� ���

T2
64

3
75 � y!� xn

!��� ���

¼ z xn
!� �

þrz xn
!� �

� y!� xn
!� �

ð3Þ

Then, in the nth iteration, the descent direction that minimizes the objective
function can be found through the approximate linear program,

min znð y!Þ ¼ zðxn!Þ þrzðxn!Þ � ð y!� xn
!Þ ð4aÞ

subject to X
i

wrs
i ¼ qrs 8r; s ð4bÞ

ym ¼
X
r

X
s

X
i

wrs
i d

rs
m;i 8m ð4cÞ

wrs
i � 0 8i; r; s ð4dÞ

After the direction y!� xn
!

is known, it is easy to show that the flow assignment for
the next iteration is

xnþ1
��! ¼ xn

!þ a y!� xn
!� �

ð5Þ

where a is the step size. Since z is a convex function, when it reaches its maximum
value, the differential of this function is equal to zero. In this way, a can be
calculated from the following formula:
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o
oa

z xn
!þ a y!� xn

!� �h i
¼ 0 ð6Þ

To conclude, the convex combination algorithm can be stated as follows:

Step 0: Initialization. Load flow x1
!

onto the empty network according to
t1m ¼ tð0Þ; 8m. Set n ¼ 1.

Step 1: Direction search. Solve the approximate linear program (4a, 4b, 4c, 4d) to

get descent direction y!� xn
!
.

Step 2: Step size. Find a by solving

o
oa

z xn
!þ a y!� xn

!� �h i
¼ 0 ð7Þ

Step 3: New flow. Set the flow xnþ1
��! ¼ xn

!þ a y!� xn
!� �

Step 4: Convergence. If the stopping criteria z xn
!� �

� z xn�1
��!� 	









\ 0:01
� 	

is

satisfied, output xnþ1
��!

; otherwise, set n ¼ nþ 1 and go back to step 1.

3 Algorithm

3.1 A Heuristic Method

In order to improve the road network in terms of congestion after attacks, our task is
to deal with two critical issues. The first issue is to find the equilibrium vehicle flow in
the traffic network under the assumption of UE. The convex combination method
introduced in Sect. 2.3 works here to optimize the UE model. The second issue is to
protect the network against supposed attacks, which will be discussed in this section.

To solve the second issue, we here propose the heuristic of identifying the arcs
transporting the largest vehicle flow as the most critical links, and protecting them
from attack. Specifically, the heuristic interdicts the unprotected link with maxi-
mum flow by deleting it from the original network; after multiple “vulnerable” links
are identified in sequentially updated versions of the network, these deleted links
are added back into the network but are considered to be invulnerable to attack.

The complete algorithm combines this heuristic method with the convex com-
bination method. At each iteration, the heuristic assumes that terrorists will attack
the link with maximum flow, as computed by the convex combination method, and
removes this link from the original network. We define a set K which stores these
vulnerable links temporarily. When a predetermined number of links have been
interdicted, these deleted links are selected for protection, removed from K and put
into a protection set X. The specific steps are listed below.
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Step 0–1: Initialization. Set j ¼ 0 and X ¼ Ø.
Step 0–2: Initialization. Set l ¼ 0 and K = Ø.

Step 1: Attacks. Run the convex combination method to assign the equilibrium
flow. Select the arc with maximum flow and remove it from the network.
If there is more than one such arc, select randomly. If the selected arc is
already an element of X, select the arc with the next highest flow to
attack, etc. This selected arc is added into K.

Step 2: Set l ¼ lþ1 and go back to step 1, until l equals to u (where u is the
predetermined number of arcs to be added to the set X per iteration).

Step 3: Set X ¼ Xþ K. This is to add the links in K into the protection set X.
Step 4: Set j ¼ jþ 1 and return to step 0–2, until j equals to v (where v is a

predetermined number of iterations).

4 An Illustrative Example

4.1 Data Description

We now apply our method to the Manhattan road network. From Fig. 2, we can tell
that the Manhattan transportation network is a Cartesian grid. The Cartesian grid
traffic network is common in U.S. cities. As a result, our research focuses on this
kind of network. Since actual traffic flows are complicated, we simplify the network
by focusing on a smaller region of ten avenues and ten streets (9 blocks by 9
blocks) around Times Square, as displayed in Fig. 3, and labeled as shown in Fig. 4.
For simplicity, we further assume that the distance between any pair of adjacent
nodes is 0.1 mile, and that all the streets are one-direction. The speed limit is taken
to be 20 miles/h when there is no congestion. We assume that the relationship
between the travel time and flow is quadratic in the form t ¼ bþ cx2. When x = 0,
the travel time is 0.1 miles divided by 20 miles/h, or 18 s per block. The congestion
coefficient is assumed to be 0.05, so the congestion function is tm ¼ 18þ 0:05x2m.

Since Times Square is at the center of this network, we set a small square (three
blocks by three blocks) as the center area, and assume 100 vehicles enter or exit
from this area every minute. The corresponding origins or destinations for these O-
D pairs are averagely located in our study area, i.e. Manhattan. Note that in this
chapter we measure flow by volume per unit time and allow the flow on a specific
arc to be fractional.

4.2 Measurement

This new approach is expected to protect some important streets so as to reduce the
impact of attacks. Based on this goal, the performance of this method can be
measured as the improvement in overall cost (i.e., travel time) compared to the
overall cost of the unprotected network:
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improvement ¼ � c2 � c0ð Þ � c1 � c0ð Þ
c1 � c0

ð8Þ

Here, c2 is the expected system cost of the protected network after a random attack.
c1 is the expected cost of the corresponding unprotected network after a random
attack, and c0 is the cost of the original network without attacks.

Fig. 2 Overview of
Manhattan
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4.3 Result

MATLAB 2012b was used for our numerical experiments because of its advantages
for matrix calculations. Input data consist of the network description and the O-D
pairs. According to features of Manhattan, the network is a 10� 10 grid, with one
business center, one-way streets, and 100 vehicles entering and exiting from the
network every minute. The network is represented by a connectivity matrix, where a
value of 1 in the i, j element means that a link connects nodes i and j. O-D pairs are
stored in an n� 2 matrix whose first column is origins and second column is desti-
nations. The experiment is implemented on a platform with Intel Xeon at 3.06 GHz.

We set four iterations for our method, and in each iteration identify the four links
with maximum flow to be interdicted. The Lion-XC system takes about 10 h to
calculate the 16 links that need to be protected. They are listed in Table 2, and
highlighted in red in Fig. 5. Since our algorithm is built on the assumption of
attackers’ greedy strategy, the links with more flow are more likely to be selected as
the critical links. From Fig. 5, we find these identified links are mainly distributed in

Fig. 3 Studied area

Fig. 4 Simplified network
model
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Times Square, which conforms to our anticipation and to our traditional view that a
center area is more vulnerable than other areas.

We randomly attack five links of this network after the 16 links identified above
are assumed to be protected, to test the effectiveness of our defense. After 100
replicates, we get an average improvement of 14.1 % in this network. (The standard
deviation is 1.625 with 99 degrees of freedom, showing that we had enough rep-
lications.) Verified by t-test, the average is a good estimate, with statistical sig-
nificant of 0.05 and t statistic of 0.875. This indicates that if we protect the critical
links listed in Table 2, we can get roughly 14 % better performance than that of the
unprotected network.

Table 2 Critical links
Link number Link (node, node)

1 (34, 35)

2 (54, 55)

3 (14, 15)

4 (56, 66)

5 (56, 57)

6 (36, 37)

7 (16, 17)

8 (68, 78)

9 (45, 46)

10 (35, 45)

11 (65, 66)

12 (26, 36)

13 (45, 55)

14 (43, 53)

15 (47, 57)

16 (41, 51)

Fig. 5 Protected network
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5 Numeric Experiments

In this section, we conduct two sets of numerical experiments, in order to get
insights into the performance of our heuristic method. The first set of experiments
explores the range of applicability of the method. The second set of experiments
determines the relationship between vulnerability and defense of road networks.

5.1 Experiment 1

Our method may of course perform differently in different networks, even if we
protect the same number of links. To explore the range of applicability, we
therefore vary the networks along four dimensions:

1. Size (numbers of nodes and arcs).
2. Traffic flow (amount of travel between given O-D pairs).
3. Number of business centers in the network (assuming that most O-D pairs will

have either an origin or a destination within a business center).
4. Directionality of streets (one-way or two-way).

In order to figure out which factors affect the performance of our method most
significantly, we design a 24�1 fractional factorial experiment and study a set of
eight hypothetical urban traffic networks based on the example in Sect. 4. (As
before, we consider only Cartesian grids, and every node except for boundary nodes
is assumed to be linked with the four other closest nodes.)

The input parameters are listed in Table 3.
For convenience, the high value of each factor is coded as +, and the low value is

coded as −. The resulting two-level fractional factorial design is shown in Table 4.
This experiment provides sufficient information to estimate both main effects and
two-factor interactions between the four factors.

Table 5 summarizes the analysis of variance for this experiment. Of the four
factors we considered, size appears to be the most significant factor influencing the

Table 3 Data of factors

Codes Factor Level Data Indication

A Size Low 10� 10 nodes Small

High 20� 20 nodes Large

B Flow Low 100 Non-peak hour

High 200 Peak hour

C Center Low 1 Single business center

High 2 Multiple business centers

D Directionality Low 1-direction One-way streets

High 2-direction Two-way streets
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performance of our algorithm. The p-values of all factors except size (highlighted in
bold in the table) are larger than 5 %, suggesting that these factors don’t affect the
performance of our algorithm significantly.

These results indicate that our method is widely applicable to Cartesian grid
networks with differing numbers of business centers, amounts of traffic, and street
directionality. In terms of size, since we protect 16 links in both cases, the per-
centage of protected links in a large network (2.1 %) will obviously be lower than in
a small network (8.9 %), so it makes sense that measured performance would be
worse in large networks.

5.2 Experiment 2

Differing numbers of streets to be protected may of course also result in different
levels of improvement. Therefore, in this experiment, we will vary the number of
protected links, keeping the rest of the network constant.

We arbitrarily pick the third network in Table 4 as our study subject. This is a
10 × 10 road network, with one business center, 200 vehicles entering and exiting
from the network every minute, and two-way streets. Protecting different numbers

Table 4 Experimental design

Run Size Flow Center Directionality Improvement (%)

1 − − − − 14.1

2 + − − + 2.3

3 − + − + 22.3

4 + + − − 6.8

5 − − + + 11.8

6 + − + − 4.3

7 − + + − 22.9

8 + + + + 4.7

Table 5 Analysis of variance for improvement (%)

Source DF Seq SSa MS F p

Main effects 4 430.86 107.715 12.23 0.034

Size 1 351.13 351.13 39.87 0.008
Traffic flow 1 73.20 73.20 8.31 0.063

Business center 1 0.40 0.40 0.05 0.844

Directionality of streets 1 6.13 6.13 0.70 0.465

Residual error 3 26.42 8.81

Total 7 457.28
a Seq SS represents sequential sum of squares
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of links, we get different effectiveness, as shown in Table 6. In this table, we also
calculate the proportion of protected links and the benefit/cost ratio (improvement
divided by proportion of protected links).

By plotting percent improvement as a function of percent defended in Fig. 6, the
relationship is apparent. Below 25 % of links defended, the relationship is
approximately linear. As the percentage of defended links increases, the improve-
ment approaches 100 %, so the marginal benefit of additional protection effort must
decrease.

Analyzing the data for less than 25 % of links protected in Minitab, Table 7
shows that the percentage of protection links is significantly related to the
improvement achieved, with p-value = 0.000. The R-squared value of 99.9 % also
shows the near-perfect linear relationship between protection and improvement, as
illustrated in Fig. 7.

Table 6 Improvement as a function of protection effort

Number of links
protected

Percentage of
protected linksa

Improvement (%) Improvement/percentage
of protected links

8 4.44 12.7 2.86

16 8.89 22.3 2.51

24 13.33 34.1 2.56

32 17.78 45.7 2.57

40 22.22 56.4 2.54

60 33.33 68.1 2.04

80 44.44 74.5 1.68

100 55.56 86.4 1.56

120 66.67 89.7 1.35

140 77.78 94.1 1.21

162 100.00 100.0 1.00
a Percentage of protected links is calculated as the number of protected links divided the total
number of links in the network (i.e., 180), times 100

Fig. 6 Improvement
effectiveness (%) versus
protected links (%)
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With this linear relationship, the government has to decide on the acceptable risk
level and/or the available budget for protection, and can then get a near-optimal
decision for this multiple-criteria decision making problem.

6 Conclusion

In this chapter, we developed a heuristic method to identify near-optimal defense
strategies for a road network subject to congestion. In particular, when applied to a
realistic-sized Cartesian grid-like network, we can significantly reduce the cost
caused by attacks. For instance, in Manhattan, protecting 5 % of the total of 180
links in our network, the expected cost associated with an attack can be successfully
reduced by 14 %.

Moreover, we designed a 24�1 fractional factorial experiment to analyze the
factors influencing the improvement achieved by the proposed method. The results
show that factors such as traffic demand, the number of business centers, and street
directionality (one-way or two-way) have much less impact on the performance of
the method than the percentage of protected links. Therefore, keeping the other
factors constant, we change the percentage of protected links, and find that the
degree of improvement is almost perfectly linearly related to the percentage of
secured links when that percentage is less than a threshold. Once the percentage
exceeds that threshold, defending additional links becomes less effective.

In future research, we will extend our study by evaluating the effectiveness of
protection against attacks that target the most heavily traveled arcs, rather than

Table 7 Regression analysis of improvement as a function of protection effort

The regression equation is improvement (%) = 1.05 + 2.29 protected links (%)

Predictor Coefficient SE Coefficient t p

Constant 1.0076 0.6903 1.46 0.240

Protected links (%) 2.49268 0.04683 53.22 0.000

S = 0.658319 R-Sq = 99.9 % R-Sq (adj) = 99.9 %

Fig. 7 Scatterplot of
improvement (%) versus
protection effort (%)
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random attacks. Moreover, more numerical tests can be conducted to examine how
close to optimal our heuristic is and what can be done to improve the effectiveness
and efficiency of heuristic. In addition, we may explore the problem along another
direction by using an SO model to characterize the network traffic under attack,
assuming that government agencies are able to respond to an attack rapidly enough
and act as a central planner to control the traffic. It would be interesting to study the
differences between that case and the UE model.
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Multiple Stakeholders in Road Pricing:
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Abstract We investigate a game theoretic approach as an alternative to the standard
multi-objective optimization models for road pricing. Assuming that various, partly
conflicting traffic externalities (congestion, air pollution, noise, safety, etcetera) are
represented by corresponding players acting on a common network, we obtain a non-
cooperative game where each player pursues a different road pricing strategy to
control a specific externality. The game is actually a Stackelberg game, but now with
multiple leaders/actors in the upper level determining link tolls, and road users as
followers in the lower level, adapting their route choice to the tolls imposed. This
chapter reviews our earlier results on the game theoretic models, and the existence of
Nash Equilibrium (NE). In order to cope with the fact that NE may not exist in the
game, we propose a “first-best taxation” scheme, allowing the government to
enforce pre-described NE (analogous first-best pricing schemes). We further discuss
the stability of this taxing mechanism.
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1 Introduction

Over the past years, vehicle ownership has increased tremendously. It has been
realized that the social cost of owning and driving a vehicle does not only include
the purchase, fuel, and maintenance fees, but also the cost of man hour loss to
congestion and road maintenance, costs of health issues resulting from accidents,
exposure to poisonous compounds from exhaust pipes, and high noise level from
vehicles. Therefore, routing traffic flow requires a model that optimizes several
different objectives which may be in conflict with each other. Such model should
also consider the user benefit. Optimization of more than one traffic externality has
been considered by many authors. Road pricing that simultaneously treats time
losses, increased fuel consumption, and emission is discussed in [7, 33]. Traffic
congestion, air pollution and accident externalities are considered in [6]. Single- and
bi-criteria Pareto optimization that deal with users with two objectives (time and
money) and different values of time are studied in [4, 10, 34]. Road damage
externality is incorporated in the road pricing models in [14]. Authors in [24]
discuss a road charge design that includes multiple objectives and constraints. In
particular, objective functions or constraints considered in [24] include social
welfare improvement, revenue generation, and distributional equity impact.

All the models mentioned above are based on the idea of multi-objective opti-
mization where one leader decides which point on the Pareto-front is chosen. They
do not address issues arising when different stakeholders/autonomous cities with
possibly conflicting objectives toll the road. There is need for such models since
autonomy of states/cities or regions is increasingly becoming popular in the area of
infrastructure or road management. In the literature, there are few works dealing with
this subject: competition among stakeholders1 with privately owned network aiming
at maximizing their toll revenue is studied in [31, 35]. They formulate their problem
as equilibrium problem with equilibrium constraints (EPEC). Both toll and capacity
competition among private asymmetric roads with congestion in a network with
parallel links are studied in [29]. In their paper, [3] analyse the allocative efficiency
of private toll roads vis a vis free access and public toll road pricing on a network
with two parallel routes connecting a common origin and destination. In one of their
study regimes, they considered a mixed duopoly with a private road competing with
a public toll road. On the other hand, tax competition on a parallel road network
when different governments have tolling authority on the different links of the
network is studied in [2]. The existence and efficiency of oligopoly equilibrium in a
congested network with parallel roads, in which operators compete for traffic by
simultaneous toll and capacity choices was studied in [9]. They establish sufficient
conditions for the existence of a pure-strategy oligopoly equilibrium. In contrast to
parallel network, road pricing in a serial network was studied in [12]. They use two
links in series where private operators own one link each. The paper investigates the
traffic patterns and pricing rules under various regimes of road operation in serial

1 We use stakeholders, leaders and actors interchangeably.
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networks. Further discussions on toll competition among operators of serial links can
be found in [23, 26]. Authors in [28] also discuss toll and capacity competition
among owners of private toll roads on general networks. In their work, they provide
a theoretical proof of the existence of the constant volume=capacity v=cð Þ ratio
property over general traffic networks. The effects of alternative pricing and
investment policies on service level of cross-border transport infrastructure and
economic welfare of two neighboring countries are studied in [13]. They show that
the investment rule becomes efficient if infrastructure charge is levied. They
established that this result holds for all regimes with charging, regardless of their
differences in objective functions, financial constraints, and organization of decision
units. Study of a bilateral monopoly situation on a private highway, involving
strategic interactions between a private highway operator and a private transit
operator who uses the same highway for its services can be found in [27].

The studies mentioned above assume that network or road segments are pri-
vately owned or managed by private stakeholders. Authors in [36] propose practical
pricing schemes that can take into account competition and/or collaboration
between different administrative regions of the network. Using numerical examples,
they demonstrate that local/regional pricing may be beneficial or detrimental to the
whole network, depending on the structure and O–D pattern of the network. They
showed that cooperation among regions in congestion pricing can improve overall
system performance in terms of total social welfare. However, they only consider
competition among separate regions in a network. Furthermore, their results and
findings are based on numerical examples. This motivated us to study the existence
of Nash Equilibrium among competing stakeholders on the same network infra-
structure [18]. To this end, we assume that private stakeholders (with possibly
contradicting objectives) may influence the implementation of road pricing during
policy making on one and the same network. With regards to their individual
objectives, they propose tolls that may contradict the interests of others. In practice,
it happens quite often that stakeholders with different interests jointly own the same
network infrastructure. Our model thus generalizes the one of [36]. Again, how to
incorporate road users’ acceptability of road pricing has not yet been fully discussed
in earlier literature; road users were modelled to have no say on the imposed tolls.
Campaigns for the implementation of road pricing have failed in many cities like
Edinburgh (in 2002), Trondheim (in 2005), New York (in 2008), Hong Kong (in
1986), as well as several cities in the Netherlands, due to lack of users support. This
lack of support is a consequence of the fact that the debate on the implementation
involves stakeholders with conflicting interests. Moreover, users are often not taken
into consideration at the same level as stakeholders. In this chapter, we address
these issues and formulate a general model that allows each stakeholder (including
users) to partake in toll setting. We allow users’ interest to be represented at the
same level as the stakeholders (by making one stakeholder represent users’ inter-
est). In conformity with literature, our model shows that competition among
stakeholders may deteriorate social welfare. To counter this effect, we design a
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mechanism that induces a system optimal toll pattern among competing actors. In
our model, tolls are used to maximize stakeholder’s or system’s social welfare and
not to generate revenue. We assume that the tolls are reinvested into the trans-
portation system so as to not increase the societal cost. Nevertheless, when a
stakeholder’s objective is to maximize his toll revenue, the model is still valid.

This chapter is an excerpt from our publications [16, 18]. The rest of the chapter
is organized as follows: Sect. 2 gives the basic traffic model for our road pricing
problem and extends the usual single leader single-objective road pricing to single
leader multi-objective road pricing. Section 3 then extends the single leader to
multi-leader multi-objective road pricing using a game theoretical approach, and
further introduces the concept of Nash Equilibrium for the road pricing game as
discussed in [18] and investigates the elastic demand case. In Sect. 4, we introduce
the optimal Nash inducing mechanism which ensures that Nash Equilibrium exists,
and that it coincides with system optimum. Finally, Sect. 5 concludes the chapter
and opens up further research directions.

2 Basic Traffic Model for Road Pricing

2.1 Notations

Let G = (N, A) be a network, with N the set of all nodes and A the set of (directed)
arcs or links in G. We use the notations given in Table 1:

2.2 Single Leader Problem Formulation

2.2.1 Stakeholder’s Problem

The stakeholder problem describes what the objective of a stakeholder is, and what
the constraints and possible strategies are in achieving his objectives. We sum-
marize the “tolling problem” for fixed demand, which each stakeholder k would like
to solve as if he was the unique leader. We assume that each stakeholder controls a
unique objective, and he wishes to minimize his own costs CkðvÞ under user flow
and environmental feasibility conditions. We have also assumed a uni-modal
model. Extending the result to a multimodal model is straightforward by adding a
superscript on each flow related entity, parameter and/or variable to indicate the
user class.

We will focus on fixed demand. The problem of stakeholder k can thus be stated
as follows:
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SPk : min
v

Zk :¼ CkðvÞ s:t:
v ¼ Kf w

Cf ¼ �d k

f � 0 q

9>=>; FeC FDð Þ

gðvÞ� 0 n g Side Constraints SCð Þ

ð1Þ

The first set of constraints is the flow feasibility conditions for fixed demand
(FeC_FD); the first constraint states that the flow on a link is equal to the sum of all
path flows that pass through this link, while the second equation states that the sum
of flows on all paths originating from origin node p and ending at destination node
q for an OD pair pq equals the demand �d for this OD pair. The bar sign “–”
indicates a fixed parameter. The third inequality simply states that the path flows

Table 1 Notations
A Set of all arcs (links) in G

R Set of all paths

W Set of all OD pairs

f Path flow vector

v Vector of link flows

d Travel demand vector

Γ OD-path incident matrix

Λ Arc-path incident matrix

D(λ) Vector of demand functions

B(d) Inverse demand (or benefit) function

λw Least cost to transverse the wth OD pair

K Set of all actors in the pricing game

C Vector of actors’ network cost functions

Z(v) Total network cost i.e. Z vð Þ ¼ P
k2K

Ck vð Þ

a Index for links in G

r Index for paths (routes)

w Index for OD pairs

fr, Flow on path r

va Flow on link a

dw Demand for the wth OD pair

Rw Set of all paths connecting OD pair w

V Set of feasible flow

Dw (λw) Demand function for the wth OD pair

Bw (dw) Inverse demand function for the wth OD pair

t(v) Vector of link travel time functions

k Index for actors

Ck(v) Objective with Ck vð Þ ¼ P
a2A

Ca
k vað Þ
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(and thus the link flows) are non-negative. We have also indicated the corre-
sponding multipliers w; k; q; nð Þ in the Karush-Kuhn-Tucker (KKT) conditions
(see Eq. 1). The last constraint g vð Þ� 0 (where gðvÞ �R Aj j� Kj j) contains possible
side constraints on the link flow vector v. These side constraints (which we assume
to be convex or linear in v) may be standardization constraints such as:

The total emission on certain links should not exceed the stipulated emission
standard.
The total noise level on certain links should not exceed the standard allowed dB
(A) level.
The number of cars on certain roads should not exceed certain upper bounds, so
as to preserve the pavements and check accidents, etcetera.

Assumption 1

• Throughout the chapter we assume that the link cost (or travel time) function
vector t vð Þ is continuous and satisfies t vð Þ � t �vð Þð ÞT v� �vð Þ[ 0 8v 6¼
�v; v; �v 2 V and all functions Ck vð Þ are continuous, strictly convex, and strictly
monotone (in the sense that @Ck vð Þ=@va � 0 8k; a), and the side constraints
g vð Þ� 0 [see Eq. (1)], if used, are linear.
Elastic demand can be modelled by subtracting the term ck

P
w �W

R dkw
0 Bwð1Þd1 in

the objective of stakeholder k, where ck is a constant parameter that indicates how
much user benefit actor k considers in his objective (see [18]).

2.3 Multi-objective Model (MO)

2.3.1 System Problem (SP)

In a standard MO model that considers all stakeholders, the system optimizer has to
solve a program of type:

MO : min
v

Z ¼ C1ðvÞ; C2ðvÞ; C3ðvÞ; . . .; C Kj jðvÞ
� �

s.t. FeC FD; SC ð2Þ

where the indices 1; 2; 3; . . .; Kj j refer to different objectives. More precisely, one
has to find a point on the Pareto front of this program (see [8, 11]). In what follows
we will consider the Pareto point given as the minimizer of the (special) MO
program:

MO : min
v

Z :¼
X
k2K

CkðvÞ s.t. FeC FD; SC ð3Þ

Note that by choosing different weight factors for the objectives in the MO, we
could model preferences for some externalities.
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2.3.2 (Road) User Problem (UP)

Without loss of generality, we assume that the only determinant of user’s route
choice behaviour is the travel costs of a trip. Under Assumption 1, the well-known
Beckmann’s formulation [1] of Wardrop’s user equilibrium (UE) describes the
users’ behaviour mathematically by the convex program:

UP : min
v

X
a2A

Zva
0

bta uð Þdu s.t. FeC FD ð4Þ

where b is the value of time (VOT). We consider homogeneous users only and
assume a unity VOT b for simplicity.

2.4 First and Second-Best Pricing

To solve the toll pricing problem in the presence of a single leader, first and second
best pricing techniques are mostly used. The theory behind road pricing is the
theory of Stackelberg games where a leader (an actor) moves first, followed by
sequential moves of other players (road users). The leader anticipates the followers
move, and thus designs the tolls in such a way that the subsequent move by the
followers will result in a flow pattern desired by this leader. For travelers, the
generalized travel cost of making one trip on link a consists of the charged toll, ha,
and the experienced travel time cost btaðvaÞ� 0. The first-best pricing idea is based
on a comparison between the KKT-conditions for MO and the KKT-conditions for
UP. In general the first best prices are not unique. We summarize the result in the
following corollary (see [15, 32] for a proof).

Corollary 1 Suppose �v is a solution for MO, then any social toll vector h (with toll
ha on link a) satisfying the following set of linear conditions is a toll such that �v is
also user equilibrium with respect to costs btðvÞ þ h:P

a2A
btað�vaÞ þ hað Þdar � kw 8r�Rw; 8w�WP

a2A
btað�vaÞ þ hað Þ�va ¼

P
w2W

�dwkw
or in short KT btð�vÞ þ hð Þ�CTk

btð�vÞ þ hð ÞT�v ¼ �dTk

ð5Þ

where k is a free vector (of multipliers, see Eq. 1) with components kw representing
the minimum route travel cost for a given OD pair w. We will refer to Eq. (5) as
equilibrium condition for fixed demand (EqC_FD). For elastic demand, the matrix
form of Eq. (5) becomes
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KT bt �vð Þ þ hð Þ�CTB �dð Þ
bt �vð Þ þ hð ÞT�v ¼ B �dð ÞT�d

ð6Þ

where B dð Þ is the vector of inverse demand functions with components BwðdwÞ
representing the inverse demand function for OD pair w. One of the possible tolls is
given by the “first-best pricing” toll [15, 32]:

�h ¼ r
X
k

Ck �vð Þ � btð�vÞ ð7Þ

where r is the derivative with respect to v.
If there are extra conditions on the toll vector h [e.g., some links a 2 Y are non-

tollable ðha ¼ 0Þ] there might be no feasible first-best pricing toll. In this case one
has to find a second-best pricing vector, and instead of a standard program MO,
one has to solve the following program:

min
v;h

Z ¼
X
k

CkðvÞ s.t

KTðbtðvÞ þ hÞ�CTk
ðbtðvÞ þ hÞTv ¼ �dTk
ha ¼ 0 8a 2 Y
gðvÞ� 0
FeC FD

ð8Þ

Note that the above “single level” program results from a bi-level program where
the upper level solves the MO and the lower level solves the UE. In program (8), the
objective is still the one from MO and the lower level UE problem is now replaced
with an equilibrium condition (5) and the feasibility conditions. These conditions
ensure that the solution of (8) is feasible and in user equilibrium.

3 Multi-leader Model in Road Pricing

In the foregoing models, we discussed a one-leader road pricing problem using the
multi-objective (MO) program. Such models have their shortcomings; when one
decision maker (dm), (e.g. the government or a private road owner), controls the
traffic flow of a transportation system through road pricing, then it is likely that some
other stakeholders affected by activities of transportation may not be happy with the
decisions made by this dm. This is because when the dmmodels the MO road pricing
problem, all traffic externalities are simultaneously considered with or without
preference for any externality (see MO Eq. 3). When preference is given, say, to
congestion, it may translate to huge costs for some other stakeholders. For example,
lower travel time (say high speeds) may translate to more accidents (say costs for
insurance companies). Even without preference for any externality, it is intuitive that
stakeholders will still prefer to partake in toll setting to protect their interests.
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The main problem of a classical approach from multi-objective optimization is the
following: supposing that each stakeholder can influence the toll setting, why should
an independent player accept a situation which he can improve by changing the
tolls?

In such situation the classical concept of Nash Equilibrium in game theory gives
an appropriate alternative model [18]. Such models are accepted in economics
in situations where independent players may influence the market with their strat-
egies in order to optimize their specific objectives.

The question we like to address from a game theoretical/economic point of view
is: What happens when each stakeholder optimizes his objective by tolling the same
network, given that other stakeholders are doing the same? Formally, we again
introduce the mathematical and economic theory as given in [18].

3.1 Mathematical and Economic Theory

The Mathematical Program with Equilibrium Constraints (MPEC) [Eq. (8)]
described in the previous section is a Stackelberg game where a leader (dm) moves
first, followed by sequential moves of other players (road users). If we assume that
various stakeholders are allowed to propose a toll (or at least influence the tolls) for
a network, then users are influenced not only by just one leader as in Stackelberg
game, but by more than one decision maker. In a multi-leader-multi-follower game/
problem, the leaders take decisions (search for toll vectors hk; k 2 K, that optimize
their respective objectives) at the upper level which influence the followers (users)
at the lower level. The followers then react accordingly (user/Wardrop equilibrium),
which in turn may cause the leaders to update their individual decisions leading to
lower level players reactions again. These updates continue until a stable situation is
reached. A stable state is reached if no stakeholder can improve his objective by
unilaterally changing his proposed toll. Note however, that given the stable state
decision tolls of leaders, the lower level stable situation is given by the (unique)
Wardrop equilibrium. So the bi-level game can be seen as a single (upper) level
game with additional equilibrium conditions (for the lower level).

In the above non-cooperative scenario, each actor continuously solves a math-
ematical program with equilibrium conditions which is influenced by other actors’
program with equilibrium conditions, and this translates to an equilibrium problem
subject to equilibrium condition. Since stable state upper level tolls will lead to a
(unique) Wardrop’s equilibrium at the lower level, our aim therefore is to find a
Nash toll vector for the leaders (see Fig. 1).

After settling on a Nash toll vector, users represented in the upper level may
search for an alternative but lower toll vector using Eq. (5).

Remark The theory described above does not necessarily mean that stakeholders
have different toll collecting machines on the links. Our model describes the Nash
toll vector that can be reached during policy making or debate when stakeholders
choose not to form a grand coalition.
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3.2 Mathematical Models for the Bi-level Nash Equilibrium
Game

Assume that Assumption 1 holds, so in particular the Wardrop equilibrium (WE)
v is unique. Let hk be the link toll vector of player k 2 K. We use h�k to denote all
toll vectors in Knk. In the Nash game, for given �h�k , the kth stakeholder tries to find
a solution toll �hk for the following problem:

Actor 1 UsersActor NActor 2

Network users playing Nash game
(Wardrop’s Equilibrium)

T
oll (

T
oll(

Toll(

Nash
game

Nash
game

Nash
game

Nash
game

U
sers’response

U
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U
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oll ( θ

U
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Cooperation among stakeholders
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T
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U
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(b)

Fig. 1 a Non-cooperative and b cooperative road pricing game
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Wk
�hk; �h�k� � ¼ min

hk
Wk hk; �h�k� �

where for given hk (and �h�k)

Wkðhk; �h�kÞ :¼ min
vk

Zk ¼ CkðvkÞ s:t

KT btðvkÞ þ hk þ P
j2Knk

�h j

 !
�CTkk

btðvkÞ þ hk þ P
j2Knk

�h j

 !T

vk ¼ �dTkk
and

vk ¼ Kf k

Cf k ¼ �d
f k � 0
ðhk � 0Þ

ð9Þ

For an elastic demand model where actors and users take into account the con-
sumer surplus, then system (9) is equivalent to:

Wk hk; �h�k� �
:¼ max

vk
Zk ¼ ck

P
w2W

Rdkw
0
Bwð1Þd1� CkðvkÞ s.t

KT btðvkÞ þ hk þ P
j2Knk

�h j

 !
�CTBðdkÞ

btðvkÞ þ hk þ P
j2Knk

�h j

 !T

vk ¼ B dk
� �T

dk
and

vk ¼ Kf k

Cf k ¼ d
f k � 0
hk � 0
� �

ð10Þ

Note that in the optimization problem above, each leader k can only change his own
link toll vector hk . The strategies �h j; j 6¼ k of the other leaders are fixed in k0s
problem. The left hand constraints are the equilibrium conditions and the right ones
are the feasibility conditions.

A pure Nash Equilibrium (NE) defines a situation where for fixed strategies �h�k

of the opponent players, the best that player k can do is to stick to his own toll �hk.
A NE is thus a set of toll vectors �h ¼ �hk; k 2 K

� �
such that for each player k the

following holds:

Wkð�hk; �h�kÞ�Wkðhk; �h�kÞ for all feasible tolls hk and all k 2 K ð11Þ

For numerical examples, an interested reader is referred to [16].

3.3 Existence of Nash Equilibrium

In game theory, it is often interesting to know if Nash Equilibrium (NE) exists for
non-cooperative games, and how to find it if it exists. Further, it will also be
appealing to know if coalitions leave the players better off. In our road pricing
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game, NE translates to a tolling pattern that is stable among the stakeholders.
Stability is used to mean a toll pattern where no stakeholder can improve his
objective by changing his toll strategy given other players’ toll pattern. If we can
find a Nash toll pattern, then stakeholders can be presented with such a toll pattern
since this will save them from time consuming debates and feelings of unfairness.
Before we continue, we recall.

Assumption 1

• (in Sect. 2) We assume throughout that the link cost (or travel time) function
vector tðvÞ is continuous and satisfies tðvÞ � tð�vÞð ÞTðv� �vÞ[ 0 8v 6¼ �v; v; �v 2
V and all functions CkðvÞ are continuous, strictly convex, and strictly monotone
(in the sense that @CkðvÞ=@va � 0 8k; a), and the side constraints gðvÞ� 0 [see
Eq. (1)], if used, are linear.

In this subsection, we investigate the existence of Nash Equilibrium (NE) in our
tolling game. We show below that this simple standard Nash Equilibrium concept
as described in the preceding section (see Eqs. 9 and 11) is not always applicable to
the tolling problem. The main reason lies in the special structure of the problems
Wkð�hk; �h�kÞ in (9) leading to the following fact:

Fact: Due to Assumption 1, for given vectors �hk; k 2 K the corresponding
solution ð�v; �kÞ of the system (9) (i.e., user equilibrium with respect to the costs
½btðvÞ þPj �K

�h j�) is unique. Therefore:
Assertion: If �h is a Nash Equilibrium toll vector, then all corresponding solution

vectors �vk; �kk
� �

are identical for all actors, hence

ð�vk; �kkÞ ¼ ð�v; �kÞ; k 2 K: ð12Þ

Proof Given that �hk solves problem (9) for all actors k 2 K, then it means that at
Nash Equilibrium, the link toll vector �h is given by �h ¼ P

k2K
�hk , where

�ha ¼
P
k2K

�hka; 8a 2 A. Due to Assumption 1, this toll vector �h yields a unique flow

pattern �v and unique minimum route cost �k. Of course, the users do not differentiate
the tolls (per actor k), what they experience is the total toll vector �h, and as such, the
vector �h (together with the travel time costs) determines the unique user/Wardrop’s
equilibrium flow �v and unique cost �k for the system. h

3.4 Unrestricted Toll Values

From Eq. (12) we can directly deduce the following result.

Corollary 2 Suppose the leaders can toll all links with no restrictions {no con-
straint hk � 0 in [Eq. (9)]}, then, for the tolling game, there does not exist a Nash
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Equilibrium in general for fixed and elastic demand cases. Moreover, for this game,
there is no stable coalition among players.

Proof For fixed demand, recall that by Eq. (12) the vector ð�v; �kÞ are the same for all
actors at Nash Equilibrium.

Assume that the actors’ toll vector �h is a Nash Equilibrium toll with ð�v; �k; �hkÞ the
solution of player k. Under the fact that at least one of the players, say player ‘, has
a different ideal (or optimal) link flow ~v‘ in SPk [see Eq. (1)] since players are
assumed to have conflicting objectives, and by our discussion in Sect. 2.4 [see
Eq. (7)], player ‘ can achieve this flow ð~v‘Þ in W‘ð~h‘; �h�‘Þ by choosing e.g., the
first-best pricing toll

~h‘ ¼ rC‘ð~v‘Þ � btð~v‘Þ �
X
k2Kn‘

�hk ð13Þ

Since at any turn of the game (assuming now it is player ‘’s turn to play), player ‘
can toll ~h‘ as in Eq. (13) leading to his ideal flow ~v‘ in SP‘ [Eq. (1)], clearly no Nash
Equilibrium can be reached. Furthermore, since every actor ‘ can find a feasible ~h‘

as in (13), then there is no stable coalition among players since each actor k 2 K
can always achieve SPk on his own. h

A similar discussion clearly holds for the case of elastic demand. Note that a link
component of the toll vector ~h‘ given in (13) may be negative. In the next sub-
section, we show that the result of Corollary 2 can be achieved even with restriction
to non-negative tolls.

3.5 Restricted Toll Values

Corollary 3 Even under the extra conditions hk � 0 in Eq. (9), there does not exist
a Nash Equilibrium in general.

Proof For a fixed demand model, we can always achieve a first-best pricing toll in
Eq. (5) satisfying ~h‘ � 0: To see this, note that any leader ‘ 2 K has the following
valid toll vectors as part of a whole polyhedron (see proof below) that achieve the
ideal flow vector ~v‘ in system (1) for leader ‘:

~h‘ ¼ aðrC‘ð~v‘ÞÞ � btð~v‘Þ� �� X
k2Kn‘

�hk; where a[ 0 ð14Þ

By making a large enough (in view that C‘ is strictly monotonically increasing—
see Assumption 1) we can assure ~h‘ � 0. Again as in Corollary 2, at any point in the
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game, a player, say player ‘, can toll ~h‘ as in (14) leading to his ideal flow ~v‘ in SP‘

[Eq. (1)], clearly no Nash Equilibrium can be reached even with ~h‘ � 0: h

Proof of (14) Suppose ~v‘ is an ideal flow vector that solves (1) for player ‘. Let h‘

be the corresponding toll vector satisfying (5). By using the variational inequality
transformation of the user equilibrium problem UE [30], it means that ~v‘ is a
solution of the UP

min
v‘

btð~v‘Þ þ h‘
� �T

v‘ s.t. v 2 V ð15Þ

where btðvÞ is a vector of link travel time functions. Obviously ~v‘ also solves the
following UP:

min
v‘

a btð~v‘Þ þ h‘
� �T

v‘ s.t. v 2 V where a[ 0 ð16Þ

but,

a btð~v‘Þ þ h‘
� �T

v‘ ¼ btð~v‘Þ þ h‘
� �þ ða� 1Þ btð~v‘Þ þ h‘

� �� �T
v‘

¼ btð~v‘Þ þ h‘ þ ða� 1Þ btð~v‘Þ þ h‘
� �� �� �T

v‘

this means that with h‘, any vector

~h‘ ¼ h‘ þ ða� 1Þ btð~v‘Þ þ h‘
� �� � ¼ a btð~v‘Þ þ h‘

� �� btð~vÞ

is a valid toll vector as well. Recall that for one objective C‘, the marginal social
cost (MSC) toll given by [see also Eq. (7)]

h‘ ¼ rC‘ð~v‘Þ � btð~v‘Þ

is one toll vector that achieves the ideal flow vector ~v‘, therefore

~h‘ ¼ a btð~v‘Þ þ h‘
� �� btð~v‘Þ ¼ a btð~v‘Þ þ rC‘ð~v‘Þ � btð~v‘Þ� �� �� btð~v‘Þ

¼ a rC‘ð~v‘Þ
� �� btð~v‘Þ

In the presence of other actors’ toll
P
keKn‘

�hk; ~h‘ now becomes

~h‘ ¼ a rC‘ð~vÞð Þ � btð~vÞ �
X
k2Kn‘

�hk; where a[ 0: h
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Equation (14) suggests that the tolls could grow infinitely large as a result of actors’
move to achieve their ideal or optimal objective values (see the numerical example
on the non-existence of NE in [16]). Such a high toll, though theoretically possible
due to fixed demand, is, in fact, not realistic since high tolls may discourage some
users from travelling or at least make them change their mode of transportation.
This phenomenon is captured when demand is allowed to be elastic; when tolls are
restricted to be non-negative, and demand assumed elastic, a very high toll pattern
implies that OD demands will near zero, which in turn lowers the societal welfare or
economic benefit of the actors as described in the actors’ objectives. Further, from
Eq. (6), we have that for any given flow pattern ðv̂; d̂Þ, the total network toll is given
by

hT v̂ ¼ Bðd̂ÞT d̂ � btðv̂Þ ð17Þ

revealing that the link toll vector h is bounded. Note that the boundedness of the
tolls in elastic demand does not guarantee the existence of Nash Equilibrium (see
Braess example below).

We emphasize that extra restrictions on the tolls hk may play in favour of the
existence of a Nash Equilibrium as demonstrated in [16].

In general, what can we say about the existence of NE? A well-known theorem
in game theory [25] states that a game has a Nash Equilibrium if the following
conditions are met:

• the strategy sets for each player are compact and convex, and
• each player’s cost function Wkðhk; �h�kÞ is continuous and quasi-convex in his

strategy hk.

However, in general, we cannot expect such a convexity property. Even the
mostly used “system optimization” function, the travel time function, is in general
not convex as we will show with an illustrative example (see Braess network
example below).

Since we do not expect a Nash Equilibrium to exist in general for the road
pricing game, it means that in practice, rational stakeholders or actors may never
reach an agreement on a given toll pattern. This may be an indication why road
pricing, even with its rich potentials in alleviating a lot of traffic externalities, is still
unpopular among stakeholders and road users. In most countries, such as the United
States (New York City in 2008) and The Netherlands (in 2011), the road pricing
scheme was almost at implementation stages when the parliament withdrew the idea
due to conflicts of interests.
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3.6 Numerical Examples

3.6.1 The Braess Network Example

We use a well-known network to show that even for the total network travel time
(objective), the function Wkð�hk; �h�kÞ in general, may not be convex in the tolls
(strategy set). Such a drawback is enough to imply non-existence of Nash Equi-
librium (NE) in the road pricing game [25]. This shows that we do not expect NE in
the road pricing game in general. The square labels numbered 1–5 (Fig. 2) are the
unique link identities. The other labels are the costs a user encounters by using the
links (for example, v2 for link 2 and v4 � 0:5v24 for link 4, where vi is the flow on
link i). The fixed demand from node a to node d is 1. hi 2 ½0; 1� represents the toll
on link i where hi ¼ 0; for i 6¼ 1; 3. For two classes of tolls, namely; h3 � h1 and
h3 � h1 we derive the following user equilibrated flows vi on the links:

for h3 � h1

if h3 � 0:5, then v1 ¼ v5 ¼ 0; v2 ¼ v3 ¼ v4 ¼ 1

if h3 � 0:5, then v1 ¼ 0; v2 ¼ 1; v3 ¼ v4 ¼ 1� ð1þ 2ðh3 � 1ÞÞ1=2; v5 ¼
ð1þ 2ðh3 � 1ÞÞ1=2.

for h3 � h1

if h3 � 0:5, then v1 ¼ ðh3 � h1Þ; v2 ¼ v3 ¼ 1� ðh3 � h1Þ; v4 ¼ 1; v5 ¼ 0
if h3 � 0:5

v1 ¼ ðh3 � h1Þ if ðh3 � h1Þ� 1� ð1þ 2ðh3 � 1ÞÞ1=2
2� 2ð0:5þ 0:5h1Þ1=2 otherwise

(

Fig. 2 Braess network

174 A.E. Ohazulike et al.



v2 ¼ 1� ðh3 � h1Þ if ðh3 � h1Þ� 1� ð1þ 2ðh3 � 1ÞÞ1=2
2ð0:5þ 0:5h1Þ1=2 � 1 otherwise

 
v3 ¼ 1� ð1þ 2ðh3 � 1ÞÞ1=2 � ðh3 � h1Þ if ðh3 � h1Þ� 1� ð1þ 2ðh3 � 1ÞÞ1=2

0 otherwise

�
v4 ¼ 1� ð1þ 2ðh3 � 1ÞÞ1=2 if ðh3 � h1Þ� 1� ð1þ 2ðh3 � 1ÞÞ1=2

2� 2ð0:5þ 0:5h1Þ1=2 otherwise

 

v5 ¼ ð1þ 2ðh3 � 1ÞÞ1=2 if ðh3 � h1Þ� 1� ð1þ 2ðh3 � 1ÞÞ1=2
2ð0:5þ 0:5h1Þ1=2 � 1 otherwise

 

Let the tolls now satisfy h3 � h1 and h3 � 0:5 and ðh3 � h1Þ� 1� ð1þ 2ðh3 � 1ÞÞ1=2,
then the system travel time function vT tðvÞ is given by:

vT tðhÞ ¼ 1:5� ðh3 � h1Þ þ ðh3 � h1Þ2 þ 0:5ð1þ 2ðh3 � 1ÞÞ1=2 � 0:5ð1þ 2ðh3 � 1ÞÞ
þ 0:5ð1þ 2ðh3 � 1ÞÞ3=2

Note that we follow the traditional way of modelling travel time function in which
the tolls are not optimized in vT tðvÞ, so, for example, the travel time for the object
vT tðvÞ on link 1 is v1ð1þ 0Þ ¼ v1, and that of link 3 is v3 � 0 ¼ 0.

The Hessian of the travel time (TT) function vT tðhÞ, HTT given above is

HTT ¼ 2 �2
�2 2þ 3

2 ð1þ 2ðh3 � 1ÞÞ�ð1=2Þ � 1
2 ð1þ 2ðh3 � 1ÞÞ�ð3=2Þ

� �
The major determinant of this matrix is negative if h3 2 1

2 ;
2
3

� �
, thus, we con-

clude that the travel time function vT tðvÞ is in general not convex in the strategy set
fh1; h3g. So, a Nash Equilibrium may not exist for the road pricing game. This non-
convexity property does not change even when other players’ objectives are convex
in their strategy sets [25].

3.7 Solving General Multi-objective Problem Using the Game
Model

As a by-product of our game theoretic model for road pricing, it turns out that the
proposed game model presents an alternative way to solve general multi-objective
problems. The setup is as follows: (1) each objective is modelled as being con-
trolled and optimized by one actor without changing other actors’ chosen strategies,
(2) as in road pricing game, actors optimize their objectives in turns, (3) each turn or
move by the actors corresponds to an iteration, and each iteration results in a
feasible solution, (4) solutions of all iterations are then plotted to display the
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solution trend to Nash Equilibrium point. Note that Nash Equilibrium, in general,
may not exist, or if it exists, may not be Pareto optimal.

Definition If for objective k 2 K, CkðvÞ denotes the cost or objective function (to
be minimized), then a solution vector �v 2 V dominates a solution vector v 2 V if
and only if the following holds:

Ckð�vÞ�Ck vð Þ 8k 2 K and
Cjð�vÞ\CjðvÞ for at least one j 2 K

the solution �v 2 V is Pareto optimal if there does not exist any other solution vector
v 2 V that dominates �v.

Definition A point is a Nash Equilibrium point if at this point, no player can
improve his objective by unilaterally changing his strategy without deteriorating at
least one of other players’ objectives.

Since multi-objective problems usually have possibly many Pareto solutions,
plotting the game iterations as described in step 4 above graphically displays the
solution space of a multi-objective problem, aiding the policy makers to choose a
solution point for implementation. The graphical display may show how far the NE
point is from the Pareto optimal solutions.

In particular, the game approach can list Pareto optimal solutions of an MOP
very fast in the game without depending on the prior definition of Pareto domi-
nance. The fact that almost all known (genetic) algorithms for solving MOPs
depend on Pareto dominance to generate non-dominated solutions makes it difficult
to solve MOPs when the objective number exceeds four. The algorithms begin to
deteriorate in efficiency as the objective number increases. The game mechanism
we describe does not deteriorate with objective number, and has nothing to do with
Pareto dominance, so it could be a promising tool for solving multi-objective
problems. An interested reader is referred to [17] for comparison of the game
approach with a genetic algorithm in solving MOPs.

3.8 Compromise Between Nash and Multi-objective (MO)
Optimization

Assume that we have a concrete multi-leader tolling problem wherein the Nash
Equilibrium exists. Can we find a “better” toll vector? Stakeholders can possibly
improve the system welfare (by solving a modified MO) without deteriorating their
individual utilities with reference to Nash outcome �v. On the other hand, if side
payments are allowed, stakeholders will be better off cooperating or solving the MO
(see Eq. 3). A possible model is given below: given the actors Nash Equilibrium
flow pattern �v, the grand coalition game that guarantees every actor his Nash
outcome is given by
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min
v

Z ¼ P
k2K

CkðvÞ
s.t
FeC FD
CkðvÞ�Ckð�vÞ 8k�K

ð18Þ

The objective minimizes the actors collective cost or the system cost. The first
constraint contains the flow feasibility conditions [see Eq. (1)], and the second
constraint ensures that no actor is worse off than in the Nash outcome �v. Since the
Nash flow pattern �v is a feasible solution for the above problem, it serves as an
upper bound for the above problem. Given that v^ solves the MO above, then it is
always profitable for the stakeholders to agree on the solution v^ of the above
program (see [16]). Note that given this solution v^, a corresponding “first-best”
pricing toll has to be chosen to induce v^ as a UE. If extra constraints on the tolls h
are present, then a second-best pricing approach can be used in the same way.
Omitting the last constraint implies that some actors may be worse off than in the
Nash game, making such a coalition unpopular, but then with side payments across
the actors, the MO can guarantee each player his Nash outcome, and even more,
additional benefits. This is always true since the total utility is optimal in the MO
(Eq. 3). Similar and even more elaborate discussion on Pareto-improving conges-
tion pricing can also be found in [5].

In the next section we propose a new way to combine the multi-objective model
with NE concept and overcome the problem of non-existence studied in [18].

4 Optimal Nash Inducing Mechanism

We showed in our Sect. 3.3 that the existence of a NE cannot be guaranteed for the
road pricing game. In practice such a phenomenon is not desirable since it makes
the whole pricing game unstable. Further, even if Nash Equilibrium exists among
the actors, the resulting flow may be far from (Pareto) optimal flow. Therefore the
question we would like to answer is: Can we design a tolling game that yields a
stable outcome for the actors? In this section we design a mechanism which induces
a NE and even more returns the system optimal strategy as the optimal strategy for
each actor. For this model we will assume that there exists a “grand leader (GL)”
who has authority over all other leaders (by adding one more uppermost level in
Fig. 1—see Fig. 3), and be seen as the central (or federal) government. His sole
objective is to ensure (Pareto) optimal social welfare of the entire system. Since
competition may lead to tolls that deteriorate the social welfare, and since it is not
clear if there is a profit sharing rule that leaves grand coalition as the only stable
coalition among the actors (the core of the game), we develop a mechanism that
achieves efficient and desirable global outcome irrespective of what the actors do.
This mechanism aligns the objective of each actor with that of the GL. Thus, actors
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with once conflicting interests, now indirectly pursue common (GL’s) interest. To
achieve this goal, the mechanism uses taxing scheme to simultaneously induce a
pure NE and cooperative behaviour among actors, thus, yielding tolls that are
optimal for the system (Fig. 3).

We assume that the total revenue generated from the taxing scheme, just as the
tolls (by the stakeholders), are invested back into the system. We also assume that
the actors’ utility functions are known to the GL. The tax can be seen as what an
actor pays on the utility he enjoys for taking part in road pricing, which (the tax)
depends on the flow pattern (and hence the toll pattern) proposed or chosen by this
actor.

Recall that for any solution �v of the models below, we can always choose a first-
best pricing toll which ensures that �v is UE.

4.1 Mathematical Formulation of the Mechanism

4.1.1 Grand Leader’s Problem

Again for simplicity, we restrict ourselves to fixed origin-destination demands
(extension to Elastic demand model is straightforward).

Fig. 3 Multi-level-multi-leader road pricing game
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The GL problem is a multi-objective (grand coalition) optimization problem MO
(see Eqs. 2 and 3) that searches for a flow pattern minimizing the stakeholders
collective (or entire system) cost. Using the weighted sum method, we aggregate
the objectives into one, converting it to a single objective optimization problem.
Here we have used equal weights on the objectives. Note that the grand leader
“reserves the right” to choose weights on the objectives as he deems socially
equitable/profitable for the system. The formulation is as follows:

GL : min
v

ZðvÞ ¼
X
k2K

CkðvÞ s:t
v ¼ Kf w
Cf ¼ �d k
f � 0 q

ð19Þ

The constraints are the flow feasibility constraints and w 2 R
Aj j; k 2 R

Wj j; q 2
R

Rj j are the KKT multipliers associated with the constraints.
Let L be the Lagrangian and �v the solution to (19), then, there exists ð�w; �k; �qÞ

such that the following KKT optimality conditions hold:

L ¼
X
k2K

CkðvÞ þ ðKf � vÞTwþ ðd � Cf ÞTk� f Tq

rvL ¼ P
k2K

rCkð�vÞ � �w ¼ 0 or d
dva

P
k2K

Ca
k ð�vaÞ � �wa ¼ 0 8a�A ð20Þ

rf L ¼ KT �w� CT�k� �q ¼ 0 or
P
a2A

�wadar � �kw � �qr ¼ 0 8r�Rw; 8w�W ð21Þ

f T�q ¼ 0 or �qrfr ¼ 0 8r�R
�q� 0
f � 0

ð22Þ

Equation (22) is called complementarity equation.

4.1.2 Stakeholder’s (or Actor’s) Problem

Having shown that NE does not exist in general, we discuss a mechanism where the
GL chooses appropriate taxes xk; k 2 K that force the game into a NE. This taxing
mechanism is as follows.

The GL penalizes (taxes) the kth actor by vTxk , where vT is the transpose vector
of link flows and xk 2 R

Aj j is a leader specific constant tax vector. The tax term

vk
� �T

xk should be seen as what actor k pays for proposing flow vector vk (or toll

pattern hk, since the flows v are toll dependent). We omit the superscript k on the
flow vector of actor k since the actors’ flows are identical at NE [18].

Now for fixed tax xk each of the stakeholders k 2 K solves the following opti-
mization problem:
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min
v

ZkðvÞ ¼ CkðvÞ þ vTxk s:t
v ¼ Kf w
Cf ¼ �d k
f � 0 q

ð23Þ

Let L be the Lagrangian and ~v ¼ vk the solution to (23), then, with appropriate
ðw; k; qÞ, the following KKT conditions hold:

L ¼ CkðvÞ þ vTxk þ ðKf � vÞTwþ ðd � Cf ÞTk� f Tq

rvL ¼ rCkð~vÞ þ xk � w ¼ 0 or d
dva

Ca
k ð~vaÞ þ xka � wa ¼ 0 8a�A ð24Þ

rf L ¼ KTw� CTk� q ¼ 0 or
P
aeA

wadar � kw � qr ¼ 0 8r�Rw; 8w�W ð25Þ

f Tq ¼ 0 or qrfr 8r�R
q� 0
f � 0

ð26Þ

Observe that the only difference between the GL’s and the stakeholder’s KKT
conditions is in Eqs. (20) and (24). Now, the GL can choose taxes xk 8k 2 K such
that the optimal strategies coincide with the optimal strategy �v of GL. To force
Eq. (24) to be exactly the same as Eq. (20), i.e.

rCkðvÞjv¼~vþxk � w ¼
X
k2K

rCkðvÞ
					
v¼�v

��w

) xk ¼
X
k2K

rCkðvÞ
					
v¼�v

�rCkðvÞjv¼~vþw� �w

To achieve this, for each k we can choose the same flow vk ¼ ~v ¼ �v and w ¼ �w, and
choose the taxes

xk ¼
X
l2Knk

rClðvÞ
						
�v

ð27Þ

Note that by the convexity assumptions on CkðvÞ; the solutions �v and ~v of programs
(19) and (23) are unique.

To summarize:

• By our construction, we have shown that if the GL chooses taxes xk 8k 2 K as
in (27) then the solution strategies vk ¼ ~v of the all stakeholders in (23) coincide
with GL’s solution �v in (19).

• So, any toll vector �h which induces �v to be a UE can be chosen [e.g. the first-best
toll given in (7)] by the first actor (say actor k). Since the flow vk ¼ ~v ¼ �v is

180 A.E. Ohazulike et al.



optimal for all actors, it then means that together with the taxes xk the toll �h is
also optimal for other actors, and therefore is a cumulative NE toll in the Nash
game of Sect. 3.2.

Remark Observe from Eq. (24) that a taxing scheme defined by the tax function
vTxk with

xk ¼ �w�rCkðvÞjv¼�v ð28Þ

is also an optimal Nash inducing scheme, where �w is as defined in grand leader’s
problem (19).

This means that with the taxes in (27) or (28), the objectives of the players are
now aligned, and they now pursue common interest. This mechanism is analogous
to the first-best pricing where a stakeholder, knowing road users reaction (user
equilibrium), chooses a toll such that the user equilibrium coincides with his desired
flow pattern. So, Eq. (27) could be called first-best taxes.

Interpretation of the taxes: Now we interpret the tax function vTxk for actor
k 2 K. The term rClðvÞ in Eq. (27) measures how sensitive actor l’s objective is to
changes in the link flow vector v. A high value of rClðvÞ means that the objective
ClðvÞ of actor l is very sensitive to changes in link volumes, and a low value
suggests otherwise. The whole term

P
l2Knk rClðvÞ in (27) measures the cumula-

tive change in the objectives (of actors l 2 Knk) with respective to a unit increase in

the link flow. Consequently, the tax function vTxk ¼ vT
P

l2Knk rClðvÞ

 �

for actor

k measures the total change in other actors’ objectives ðl 2 KnkÞ when the link flow
vector is increased at v. A large tax vTxk on k means that actor k’s “optimal” choice
of v contradicts to a large extent the interests of actors in Knk. In fact, the tax
function vTxk is the marginal cost which actor k 2 K imposes on the system by not
considering other actors’ objectives during his choice of v. Therefore, by taxing
actor k the quantity vTxk we internalize in his objective the cost he imposes on other
actors, and indirectly make him aware of other actors’ objective. In this way, his
choice for the link flow vector v or more precisely, his choice of hk inducing v is
optimal for the system.

4.2 Flexible Taxing Scheme

It will be interesting to see if there are other taxing schemes [other than those
defined in Eqs. (27) and (28)] that induce NE and system optimal behaviour among
the actors. It turns out that as in the first-best tolls in (6), there are (possibly)
infinitely many values for xk in the taxing schemes vTxk (other than those defined in
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Eqs. 27 and 28) that induce optimal Nash. Using the KKT optimality conditions
above, we state the following corollary

Corollary 4 If ~v is the optimal flow vector in (23) for actor k 2 K, then the
following holds:

X
a2A

d
dva

Ca
k ðvaÞ

				
va¼~va

þxka

 !
dar ¼ kw þ qr � kw 8r 2 Rw; 8w 2 W

X
a2A

d
dva

Ca
k ðvaÞ

				
va¼~va

þxka

 !
~va ¼

X
w2W

kw�dw

ð29Þ

condensed to

KT rCkðvÞjv¼~vþxk
� ��CTk

rCkðvÞjv¼~vþxk
� �T

~v ¼ �dTk
for some k� 0 ð30Þ

Proof The proof follows the idea from the first-best toll as well as the proof for the
alternative first-best pricing tolls given in [32]. h

The first line of Eq. (29) states that each leader k 2 K would want each road user
to follow the route that minimizes his (user’s) travel cost with respect to his (lea-
der’s) objective function. The second line balances the network travel cost (w.r.t.
k’s objective function). The following result on the first-best taxes is analogous to
Corollary 1.

Corollary 5 Suppose �v solves the GL’s problem (19), then any taxing scheme vT x^
k

such that x^
k
satisfies the following linear conditions is an optimal Nash inducing

taxing scheme on actor k 2 K:

KT rCkðvÞjv¼�vþx^
k


 �
�CTk

rCkðvÞjv¼�vþx^
k


 �T
�v ¼ �dTk

for some k� 0 ð31Þ

where x^
k
may be different from xk given in Eq. (30).

Proof The proof follows from Eq. (30). h

In particular, for example, actor k might wish to minimize “his tolls” by mini-
mizing vTx subject to (31).

Remarks

1. Equations (27) and (28) directly satisfy condition (31).
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2. By just knowing the objective CkðvÞ of stakeholder k, the flexible taxing scheme
enables the grand leader (with a desired flow pattern �v) to determine xk for
stakeholder k (see Eq. 31); Eq. (27) requires that he knows other stakeholders
objective, and Eq. (28) yields only one possible value for xk. Also, any of the
stakeholders can pull out of the road pricing scheme/game without altering the
taxing model. The taxing mechanism can be compared with the usual social
taxing scheme where taxes depend on income, and you only need to know one’s
income to compute the tax.

4.3 Coalition Among Leaders Under the Mechanism

In game theory and mechanism design, stability of solutions has always been of
great interest. In this section, we would want to investigate how stable the optimal
Nash inducing mechanism is. In particular, if side payments are allowed for the
actors, we would like to know whether the actors will be better off forming
coalitions than staying as a single player in the road pricing game under the taxing
scheme described above.

It turns out that the Nash inducing scheme is stable (see Corollary 6). In par-
ticular, we prove that there is no coalition formed by actors that will lead to a better
payoff than in the induced Nash scenario. We therefore state the following
corollary:

Corollary 6 With the taxing scheme described, there does not exist a coalition in
which any of the actors is better off than in the induced Nash scenario.

Proof Suppose such a coalition exists, say with a feasible flow vector v̂ in which
actor k 2 K is better off than in the Nash scenario, then, it simply contradicts the
already established fact that the induced Nash flow vector �v 6¼ v̂ is the optimal (idle)
flow vector for all leaders under the taxing scheme. Hence, such a coalition does not
exist. In fact, for an arbitrary coalition say of two leaders k and m:

Let

~CkðvÞ ¼ CkðvÞ þ vTxk

~CmðvÞ ¼ CmðvÞ þ vTxm

where

xk ¼
X
l2Knk

rClðvÞ
						
v¼�v

; xm ¼
X
l2Knm

rClðvÞ
						
v¼�v

as given in Eq. (27) and �v is the GL solution (see Eq. (19)). After coalition, their
objective function is
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~CkðvÞ þ ~CmðvÞ ¼ CkðvÞ þ CmðvÞ þ vTðxk þ xmÞ ð32Þ
h

Proof Given that ~v 2 V minimizes objective (32), then KKT conditions for the
minimization problem differ from those of stakeholder’s problem (Eq. 23) only in
rvL which is given by:

rvL ¼ rCkðvÞjv¼~vþrCmðvÞjv¼~vþ
X
l2Knk

rClðvÞ
						
v¼�v

þ
X
l2Knm

rClðvÞ
						
v¼�v

�w ¼ 0

ð33Þ

where �v is the GL’s optimal flow pattern. Since �w exists for the GL’s problem, then
with w ¼ 2�w, it means that ~v ¼ �v is a feasible solution for Eq. (33), and hence
optimal (see Eq. 20). Therefore, for ~v ¼ �v; Eq. (33) becomes

2
X
l2K

rClðvÞ
					
v¼�v

 !
� 2�w ¼ 0 ð34Þ

due to Eq. (20). h

In the taxing scheme described above, we assumed that we can toll all links
without bounds. This is the so called first-best pricing scheme. In the next section,
we discuss the taxing mechanism with toll constraints/bounds. It is worthwhile
stating that when tolls are not allowed on some links (the so called second-best
pricing scheme), we face even a harder problem.

4.4 Optimal Nash Inducing Scheme for Second-Best Pricing

Due to the practical flavour of the second-best road pricing scheme, where only a
subset of the network links is allowed to be tolled, we establish in this subsection,
results on the second-best scheme for the Nash Equilibrium inducing mechanism.
In particular, we would want to know how robust our Nash inducing mechanism is
when the tolls are constrained.

4.4.1 Unbounded Tolls

Here, we will see that the taxing scheme is also applicable when extra conditions on
tolls are present and the first-best tolls are no longer feasible.
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Grand leader’s problem
Suppose we have the toll constraints ha � 0 8a 2 A, ha ¼ 0 8a 2 Y , where Y 	 A.
As a single-level non-linear program, the bi-level optimization problem (mathe-
matical problem with equilibrium conditions—MPEC) can be reformulated as
follows (see Eq. 8):

min
v;h;k

X
k2K

CkðvÞ s:t

KT btðvÞ þ hð Þ�CTk
btðvÞ þ hð ÞTv ¼ �dTk
k� 0
ha � 0 8a 2 A
ha ¼ 0 8a 2 Y
v 2 V

ð35Þ

Stakeholder’s problem
Each actor k 2 K, instead of Eq. 23, now solves the following non-linear program
(see system 10):

min
v;hk ;k

ZkðvÞ ¼ CkðvÞ þ vTxk s:t

KT btðvÞ þ hk þ
X
l eKnk

�hl

0@ 1A24 35�CTk

btðvÞ þ hk þ
X
l eKnk

�hl

0@ 1A24 35T

v ¼ �dTk

k� 0

hka � 0 8a 2 A

hka ¼ 0 8a 2 Y

v 2 V

ð36Þ

If we compare the KKT conditions of systems (35) and (36) (under the assumption
that solutions of (35) and (36) satisfy the KKT conditions), then as in subsection
4.1, we have the following:

• let �v be the solution of program (35). If the GL chooses taxes xk as in (27), then
the �v is also optimal for problem (36) for all stakeholders.

In fact, there is no problem arising from the extra conditions on tolls since
system (36) holds for all k 2 K, so the resulting toll vector h ¼Pk�K hk will satisfy
ha ¼ 0; 8a 2 Y (since hka ¼ 0 8a 2 Y ; 8k 2 K).

Remarks The GL’s optimal link toll vector �h is a valid (cumulative) Nash toll vector
for the actors (recall the optimal Nash inducing scheme), i.e., hk ¼ �h and hl ¼ 0 for
l 6¼ k yield a NE (inducing flow �v).

One possible optimal toll vector for the actors is ~hk ¼ �h and ~hl ¼ 0 8l 2 Knk
assuming that actor k makes the first move (i.e. actor k is player 1). Though these
optimal link tolls are not unique in general, a toll vector ~hk 8k 2 K is Nash optimal
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for the actors if the cumulative Nash toll
P

k2K ~hka ¼ ha 8a 2 A yields the unique
flow vector �v that solves the GL’s problem (35).

4.4.2 Bounded Tolls

We consider further constraints on the tolls, for example, upper bound constraints
requiring that ha �/a 8a 2 A; with /a 2 Rþ. In this case, and for equity reasons,
one may assume that each stakeholder has a link toll bound given by: /k

a ¼ /a
Kj j.

In fact, we make the following observation:

1. Any link toll vector �ha �/a 8a 2 A that yields the unique flow vector �v which
solves theGL’s problem (35) is also a validNash link toll vector for the actors, withX

k2K
~hka ¼ �ha 8a 2 A ð37Þ

irrespective of how �ha is distributed among the actors.
2. The toll vectors ~h in 1 are in general not unique. This means that a link toll

outcome of the actors’ Nash game may be optimal and at the same time not sum
up to the pre-calculated GL’s toll as in Eq. (37).

3. Again, though these link tolls are not unique in general, a toll vector ~hk 8k 2 K
is Nash optimal for the actors if the cumulative Nash toll

P
k2K ~hka ¼ ha 8a 2 A

yields the unique flow vector �v that solves the GL’s problem (35).

4.5 General Application of the Optimal Nash Equilibrium
Inducing Mechanism

The optimal inducing mechanism can also be used to induce system optimal per-
formance in the following scenarios:

1. Malicious nodes in car to car communication where cars exchange data/
information within a limited time frame
In telecommunication networks where cars equipped with sensors exchange (say)
traffic and environmental information (such asweather, road closure, accidents and
so on), it is assumed that “rational” cars will send a piece of information depending
onwhat they get in return. This decision ismadewithin a limited time since the cars
are in motion and have limited radius of broadcast. This means that car “A” will
“only” send valuable data to car “B” if car “A” gets someworthwhile data in return,
and this of course may not be socially optimal, so using our mechanism, we can
induce a system optimal data exchange among the cars by making the system
optimal data exchange the optimal strategies for the cars [19–22].
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2. Local authorities tolling separate regions of the network.
As we explained in our taxing scheme, the GL now will be the federal gov-
ernment asking each local authorities to pay tax to the federal government based
on the tolls they collect on these roads. But then, these taxes will be chosen in a
way to induce optimal road tolls among these local authorities. The induced
optimal tolls are such that the entire nation’s network flow is optimized or at
least enables the optimization of the GL’s objective.

3. Energy producers in the energy market liberalization problem.
Governments can force energy marketers to set prices that are socially desirable
using the taxing scheme model. The government will tax marketers’ profit in a
way that if they try to maximize their profit, they will end up setting the socially
desired price.

4. Agents in the principal-agents model. The principal will set tax on agents’
salaries such that agents’ optimal salary quotations will be the desired amount
that the principal is willing to pay.

5. Internet providers in the providers-subscribers Internet price setting problem. As
in 3.

6. Competition of firms over the same market shares. As in 3.
7. Employees that have flexibility on the number of workdays.

The employer will set taxes based on the number of working hours such that
when the employees try to maximize their net income, they will end up working
exactly the number of working hours desired by the employer.

5 Concluding Remarks and Future Research

5.1 Contributions and Conclusion

We presented a game theoretical approach to solve the multi-objective road pricing
including externalities other than congestion. Due to political and equity reasons,
various stakeholders and/or regions may partake in toll setting on the same network
infrastructure. We studied the existence of Nash Equilibrium (NE) for the road
pricing game. Even when tolls may be bounded, we show that in many practical
settings, NE need not exist. We also represent the road users’ interest at the upper
level and argue that such an idea can lead to better acceptance of road pricing
schemes. Since actors cannot be forced to form the grand coalition, and since
competition may deteriorate the social welfare, we develop a mechanism that
simultaneously induces a pure NE and cooperative behaviour among actors, thus,
yielding optimal tolls for the system. The road pricing game can be remodelled and
be used as a fast tool for generating Pareto points for multi-objective problems. The
chapter also sheds some light on how the models developed can be applied in other
real life instances.
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5.2 Research Extensions and Recommendations

Since the models used in this chapter centred on classical optimization formula-
tions, the number of variables can grow large with large networks. This calls for
efficient optimization heuristic algorithms for large networks. Since flat link charge
alone as described in this chapter may not fully attribute an externality to a car, for
example, emission costs, we will extend our models to a kilometre charge, which
will then take care of the (current) taxes on gasoline, diesel and petrol. Furthermore,
a working paper is extending the models of this chapter to multimodal settings and
time dependent models.
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Stackelberg and Inverse Stackelberg Road
Pricing Games: State of the Art
and Future Research

Kateřina Staňková and Alexander Boudewijn

Abstract Optimal toll design deals with the problem of determining toll which
improves performance of a road traffic system. Noncooperative game theory is an
excellent tool to investigate possible strategies to analyze such a problem, in which
one has to take drivers’ reaction to toll and consequent changes in the traffic flow
into account. Depending on the toll structure, the problem may be formulated as a
Stackelberg game (when toll is uniform or time-varying) or as an inverse Stac-
kelberg game (when toll is traffic-flow dependent), with the road authority as the
leader and drivers as followers. While the inverse Stackelberg approach is more
complex to adopt, it has been shown in our previous work that in most situations it
brings better outcome for the road authority. This chapter reviews existing results
on this topic, discusses our recent case studies within this framework, develops new
properties, and brings forward the open issues within this area.

Keywords Game theory � Second-best road pricing � Stackelberg games � Inverse
Stackelberg games � Dynamic optimal toll design

1 Introduction

The subject of this chapter is the game of the dynamic optimal toll design problem
played on a given road network, with the road authority as the leader and drivers in the
road network as the followers. The aim of the road authority is to reach her (a priori
defined) objective by setting tolls on a proper subset of the links, the so-called tollable
links. The drivers make their travel decisions, taking the tolls into account.

There exists an extensive amount of literature dealing with the optimal toll
design problem and impacts of toll on various performance criteria in the network
[1–8]. The literature can be subdivided in research addressing the first-best and the
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second-best optimal toll design problems. In the former problem, toll can be
imposed on all the links of a given network, whereas only a proper subset of the
links is tollable in the latter. While research addressing the first-best optimal toll
design problem is focused on the structure of the optimal toll the research dealing
with the second-best (dynamic) toll is mainly restricted to simulation examples.
Exception is the research on static optimal toll design problem [8]. The optimal
first-best toll was proven to be a function of the traffic flows in the network
(although with rather strong restrictions). For the second-best optimal toll design
problem, the first heuristics appeared rather recently, in [4, 9, 10]. These heuristics
suggest that finding the optimal toll as a function of the traffic flows in the road
network may improve the system performance remarkably (and will never lead to
the worse performance than one would get with uniform toll).

The problem of finding the toll as a function of traffic flow fits within the
framework of the so-called inverse Stackelberg games [9–11]. In the inverse
Stackelberg game, the road authority calculates tolls as mappings of the traffic flows
in the network, and therefore, the possible responses of the drivers are taken into
account at the first place, while in the classical Stackelberg game the traffic-flow
invariant toll is imposed first and the drivers react second [9, 12].

The inverse Stackelberg games are extensions of Stackelberg games [12, 13].
While the term “inverse Stackelberg games” is widely used in the existing literature
[9, 11, 14–17] and captures the basis of these games very well, in some references
different terms are used to refer to these games. In [12] these games can be found
under term “incentives”, while in [18] the term “reverse Stackelberg games:” is
used. Since the notion of “incentives” was already used in the economical theory in
a slightly different context1 [19, 20], in this chapter we will confine ourselves to the
standardly used term “inverse Stackelberg games”.

The problem to find the optimal second-best toll is not a trivial one, as the
optimal outcome for the road authority often cannot be reached and even if it can
be reached, it might be impossible to compute it. Computation of the first-best
outcome (i.e., the optimal toll value for the situation with all links tollable), if
applicable, is often used to estimate what result one can reach with the second-best
tolling. However, even if it was realistic to assume that the road authority knows the
optimal first-best tolls, having this information does not necessarily help to estimate
how close to this outcome one can get if only a limited number of links is tollable.

This chapter reviews existing results on this topic, discusses our recent case
studies within this framework, develops new properties, and brings forward the
open issues within this area. The optimal toll design problem is formulated in a
general manner and on a general network, with only a few restrictions on the
network properties and on the drivers’ behavior. However, in the case studies we
will confine ourselves to simple traffic models for which solution of the Stackelberg
and inverse Stackelberg road pricing games can be found analytically and can
therefore be easily verified. The same observations can be made using more

1 In fact, for a subset of inverse Stackelberg problems.
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complex models and therefore our conclusions are not restricted to simple models
only. Similarly, while the results presented in this chapter are stated with route-
based equilibria in mind [21, 22], they can be transformed to the problems with
link-based equilibria as well [23, 24].

We will also explain surprising results and point out unresolved issues. For
example, it is obvious that with more sophisticated toll choices one can get much
better outcomes than with the standard toll, however using the complicated toll
mechanisms might lead to exactly the same outcomes as using standard toll in some
situations. Moreover, the idea that toll should increase with congestion to motivate
drivers to use alternative links intuitively seems to hold, but we show that this needs
not be the case.

This chapter is organized as follows. In Sect. 2 we formulate the standard game-
theoretical model of the optimal toll design problem with the road authority as a
leader and drivers as followers. In Sect. 3 we present our findings related to the
problem properties and illustrate the problem solution procedure and its properties
via examples. In Sect. 4 we will discuss what problems still remain to be solved
within this area. Conclusions will be given in Sect. 5. Appendix 1 gives simple
introduction to the Stackelberg and inverse Stackelberg games and Appendix 2
gives introduction to standard traffic models used to capture drivers’ behavior.

2 Road Pricing Games

2.1 Motivation: Game Theory and Optimal Toll Design
Problem

Given a traffic network defined as a collection of nodes, directed links, and set of
origin-destination pairs, imposing tolls on a subset of the links in this network may
improve its traffic performance remarkably. The traffic performance is evaluated via
the objective function of the road authority who imposes the tolls. Such a function
is commonly defined as the total travel time (time that all drivers spend when
traveling from their origin to their destination), as a total toll revenue (money that
all drivers spend), a linear combination of both, or for example reliability of the
traffic system [5, 18].

Any update of the toll on any of the routes in the network might cause change of
the drivers’ behavior, while a change in drivers’ behavior might call for toll update,
as this should reflect the current traffic conditions. This is schematically depicted in
Fig. 1. How would we look for the optimal toll on a given traffic network without
mathematical modeling? Most probably we would try out different toll values on
different links and observe how these tolls influence traffic behavior in our network.
With each choice of tolls, we would have to wait until the situation becomes more
less stable, i.e., until we get a behavioral pattern which does not change from day to
day very much, as no traveler can improve her situation by unilateral change of her
route. Instead of long-term observations, we use mathematical models to analyze
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different toll schemes. In these models, it is assumed that the drivers’ behavior is in
certain equilibrium [21, 25, 26] and we can analyze how the road authority should
act in order to improve the system performance. With use of the equilibrium models
of the drivers’ behavior one can compute the optimal drivers’ response to any toll
choice and subsequently, we can compute an equilibrium situation between the road
authority and the drivers. Game theory turns out to be an excellent tool to model
and solve situations in which multiple parties interact with different, often con-
flicting, objectives [9, 12, 27–29].

If one assumes that all links in the network can be tolled (the so-called first-best
tolling), while the optimal tolls can achieve negative values, the problem is rather easy
to solve even for very complex traffic models, with both fixed and elastic (variable)
traffic demand [30, 31]. Therefore, this chapter focuses on the situation in which only
proper subset of links can be tolled (the so-called second-best pricing). While there
exists a large body of literature focusing on finding solution to this problem via
heuristic algorithms [4, 6, 32, 33], we would like to express how game theory can help
to solve this problem and what general properties and phenomena one can observe
when finding the optimal tolls using game-theoretic models. As we will express in
detail below, we can formulate the optimal toll design problem as an inverse Stac-
kelberg game (if tolls are defined explicitly as functions of past and current traffic
flows) or as a Stackelberg games (if tolls are assumed to be constants for each time
period). For basic introduction to these two types of games, see Appendix 1.

2.2 Preliminaries and Notation

Let G ¼ ðN;AÞ be a strongly connected road network, where N and A are finite
nonempty sets of nodes and directed arcs (also called directed links), respectively.
The set of tollable arcs will be denoted by T � A. There is a finite, nonempty set

THE ROAD AUTHORITY

THE DRIVERS

toll update
driver’s behavior update

(LEADER)

(FOLLOWERS)

Fig. 1 The scheme of the
game between the road
authority and the drivers
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of origin-destination pairs RS � N�N. Let the set K ¼ 1; 2; . . .; jKjf g be a
time index set. Eachk 2 K refers to the interval ðk � 1ÞD; k D½ Þ, where D [h] is the
length of each time interval in hours. In this chapter we will confine ourselves to the
fixed demand case, however the theory presented here also applies to the elastic
(variable) demand case. Therefore, for an ordered pair of nodes ðr; sÞ, where r is an
origin and s is a destination, there is a positive travel demand dðr;sÞ [veh] on the
number of drivers traveling from r to s during the observed time period.

LetP be the set of all simple paths (i.e., paths without cycles) in the network and
let Pðr;sÞ � P be the set of all paths between an origin-destination pair ðr; sÞ. Each
path is formed by one or more directed arcs.

The route flow rate2 on path p 2 P during the k-th time interval will be denoted

by f ðkÞp ([veh/h]), the arc flow rate on arc a during the k-th time interval will be

denoted by qðkÞa ([veh/h]).
The route travel cost on the route p 2 P for the travelers entering p during the k-

th time interval will be denoted by cðkÞp , the arc travel cost for the drivers entering

a during the k-th time interval will be denoted by 1ðkÞa ([euro]).
The route and arc tolls, times, costs, and flows are related through a dynamic

route-arc incidence indicator dðkÞ;ðk
0Þ

p;a 2 f0; 1g, which equals 1, if the travelers
entering the route p 2 P during the k-th time interval enter the arc a during the k0-th
time interval, and 0 otherwise. We will assume that the route times, costs, and tolls
are additive,3 and that the flow conservation constraints hold, i.e.,

h kð Þ
p ¼

X
k02K

X
a2A

d kð Þ; k0ð Þ
p;a h k0ð Þ

a ; ð1Þ

s kð Þ
p ¼

X
k02K

X
a2A

d kð Þ; k0ð Þ
p;a t k0ð Þ

a ; ð2Þ

c kð Þ
p ¼

X
k02K

X
a2A

d kð Þ; k0ð Þ
p;a 1 k0ð Þ

a ; ð3Þ

q k0ð Þ
a ¼

X
k2K

X
a2A

d kð Þ; k0ð Þ
p;a f kð Þ

p ; ð4Þ

where h kð Þ
p and s kð Þ

p are the total toll to be paid by travelers who are using the route p,
entering this route during the k-th time interval, and the travel time of such travelers,
respectively, and t k0ð Þ

a is the arc travel time of the drivers entering link a during the
k0-th time interval. The link travel time is a function of the link flow on the same arc
q k0ð Þ
a .

2 In the remainder of this paper we will use the term “route flow” instead of the “route flow rate”.
3 In reality, this does not need to be the case. For research dealing with non-additive costs, tolls, or
flows we refer the reader to [34].
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For each arc a 2 A, the arc travel cost 1ðkÞa for the k-th time interval is a linear
combination of the actual arc travel time ta and the actual arc toll ha with coeffi-
cients α [veh/h] and 1, i.e.,

1ðkÞa ¼def a ta þ ha; ð5Þ

where α [euro/time unit] is called the value of time, which is supposed to be
independent of q.4

Let q denote the vector of all link flows in the network for all times, i.e.,

q ¼defðqð1Þ1 ; . . .; qð1ÞjAj; q
ð2Þ
1 ; . . .qðjKjÞ

jAj ÞT : Similarly, let c be the vector of all route costs in

the network for all times. For each link from T a traffic-flow dependent toll can be
imposed. The traffic-flow dependent toll on link a 2 T will be given by function
Fha : q ! R

0
þ. The traffic-flow dependent toll on all tollable links is then given by a

vector function Fha : q ! R
0
þ

� �jTj
. For each k-th time this toll is a function which

maps past and current traffic flows in the network to a nonnegative number. Such a
function can be very simple, such as a polynomial function of actual link flow on
the same link, i.e.,

ha ¼ Fha qðkÞa

� �
¼def

XM
m¼0

wðmÞ;ðkÞ
a qðkÞa

� �m
; ð6Þ

where

wðmÞ;ðkÞ
a ¼def 0 for a 2 A nT;

2 R for a 2 T;

�
; M 2 N0: ð7Þ

There are of course other options for such a toll function. Moreover, a time-
varying but traffic-flow independent toll is obviously a special case of (6) with
M = 0.

2.3 Drivers’ Behavior–Dynamic Traffic Assignment

A standard way to model the drivers’ behavior is the so-called dynamic traffic
assignment (DTA) model, which determines driver-optimal traffic flows over a
network. The DTA model also has to take into account the dynamic rules according
to which the traffic spreads. Therefore, the DTA model describes the drivers’
optimal response to the current traffic conditions under the assumption that the

4 There are various ways in which the route cost functions can be defined, another common way is
based on a so-called generalized cost function, as described in [5]. In fact, any function which
includes toll can be taken as a cost measure.
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traffic dynamics follows certain rules (which are also included into the DTA
model).

The DTA model consists of the dynamic network loading (DNL) model, which
describes the dynamics of the traffic system, and the dynamic travel choice (DTC)
model, which describes how the drivers make their travel decisions [21, 35].
Typical DNL and DTC models are described in Appendix 2. Without the loss of
generality, in the beginning of the game the network is assumed to be empty.

2.4 Formulation of Road Pricing Games

Let Z denote the objective function of the road authority (to be minimized). Then
the inverse Stackelberg pricing game is defined as follows:

ðISG)
Find optimal toll function F�

h : q ! ðRþ
0 ÞjTj so that

ZISG ¼ Z q�;F�
hðq�Þ

� � ¼ min
ðq;FhðqÞÞ

Z q;FhðqÞð Þ;
where q� is the vector of dynamic user equilibrium flows
with the tolls given by F�

hðqÞ

8>>><
>>>:

ð8Þ

Note that final toll values are then given by FhðqÞ.
The “standard” Stackelberg pricing game is then defined as a subproblem of

(ISG):

ðSGÞ
Find optimal toll vector h� 2 ðRþ

0 ÞjTj so that
ZSG ¼ Z q�; h�ð Þ ¼ min

ðq;hÞ
Z q; hÞð Þ;

where q� is the vector of dynamic user equilibrium flows
with the tolls h�

8>>><
>>>:

ð9Þ

3 Main Properties of the Road Pricing Games

Note that Problems SG and ISG are nonlinear programming problems. Moreover,
SG is a special case of ISG, thus most theory summarized in this section refers to
ISG.

Definition 3.1 (Admissible toll functions) Function Fh : q ! ðRþ
0 ÞjTj is an

admissible toll function if it is continuous on ðR0
þÞjqj.

Proposition 3.1 (Existence of ZISG) Suppose that for any given admissible Fh there
exists a unique vector qo which is in dynamic user equilibrium. Let Dmax denote the
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maximal travel demand for all origin-destination pairs, i.e., Dmax ¼def max

fdðr;sÞg8ðr;sÞ2RS, and let Z be continuous on ð½0;Dmax�Þjqj. Then there exists an

optimal ZISG value.

Proof Any continuous function defined on a compact set S has a global minimum
in S. The rest readily follows from the definition of ISG. h

The optimal value ZISG is referred to as the team optimum of the road authority.
This value would be achieved if the drivers disregarded their own aims and helped
the road authority minimize its objective function Z. As such, the existence of the
optimal value ZISG does not assure the existence of toll mechanisms that achieve
this outcome.

Proposition 3.2 (Uniqueness of ZISG) Let there exist a problem DP dual to the
dynamic user equilibrium (DUE) problem so that (DP) is a minimization of a real-
valued convex function with respect to q (i.e., the DUE traffic flow vector solves
DP). Let for any given admissible Fh there exist a unique vector qo which satisfies

the dynamic user equilibrium. Let Z be continuous and convex on ð½0;Dmax�Þjqj.
Then there exists a unique optimal value ZISG ¼def Z q�; h�ð Þ, but optimal toll mapping
Fh might be non-unique or might not exist at all.

Proof If DUE can be written as a minimization of a convex function with respect to
q, then ISG can be formulated as a two-player static inverse Stackelberg game with
convex costs. Moreover, if certain leader’s toll function Fh is a solution of the
2-player inverse Stackelberg game with follower’s cost function defined on a
jqj–dimensional domain, then this leader’s toll function is any surface tangent to the
jqj–dimensional level set of the follower’s cost function at the q-coordinates of the
leader’s team minimum. There are infinitely many such tangent surfaces, differing in
their complexity (similarly as in Fig. 4 a linear tangent could be replaced by for
example a quadratic surface tangent to the level curve of JF at the team minimum
coordinates). It might still happen that the optimal function Fh does not exist, for
example if the number of tollable links is too low compared to the total number of
links. In such a case we cannot construct the tangent hyperplane of the level set of the
follower’s cost function at the q-coordinates of the leader’s team minimum. h

Note that it was proven in [34] that the static (Wardrop) user equilibrium satisfies
the assumption of Proposition 3.2 regarding the existence of DP. Note also that any
open-loop dynamic game can be converted into a static game and therefore Prop-
osition 3.2 holds for a wide class of road pricing games with open-loop dynamic
user equilibria, such as the logit-based stochastic user equilibrium or the deter-
ministic dynamic user equilibrium [21].

Theorem 3.1 Both problems (SG) and (ISG) are strongly NP-hard.

Proof The proof follows from the fact that problem (SG) is a quadratic bilevel
programming problem [36]. Even a static linear-linear variant (with linear cost
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functions for the travelers and a linear objective function) of the SG problem was
proven to be strongly NP-hard (see [5, 9, 37, 38] ). Therefore, the problem ISG is
strongly NP-hard, too. h

This theorem shows us that it is extremely hard to find the toll schemes that
would be optimal. Often restricting ourselves for certain (low) number of param-
eters in toll scheme (which indicates number of tollable links for SG and number of
parameters in toll function in ISG) might simplify the problem.

Proposition 3.3 (Tolls decreasing with traffic flow) There exist ISG problems in
which optimal tolls are decreasing with traffic flows.

Proof Let us consider a simple example of a static optimal toll design problem on a
network with three parallel links between one origin-destination pair, travelers
driven by the Deterministic User Equilibrium (DUE), and the road authority min-
imizing the total travel time of the system. For the sake of simplicity both traffic
demand for the origin-destination pair and value of time are normalized to one and
the link cost and time functions are linear i.e.,

d ¼ q1 þ q2 þ q3; ð10Þ

11 ¼ a t1ðq1Þ þ h1ðq1Þ; 12 ¼ a t2ðq2Þ þ h2ðq2Þ; 13 ¼ a t3ðq3Þ; ð11Þ

t1ðq1Þ ¼ b1q1 þ d1; t2ðq2Þ ¼ b2 q2 þ d2; t3ðq3Þ ¼ b3 q3 þ d3: ð12Þ

with d = 1, α = 1, β1 = 1, β2 = 2, β3 = 0.05, δ1 = 1.008, δ2 = 0.672, δ3 = 2. Then the
total travel time function can be computed as

Zðq1; q2; q3Þ ¼
X3
j¼1

qjtjðqjÞ

¼ 1:05q21 þ 2:05q22 � 1:092q1 � 1:428q2 þ 2:05þ 0:1q1 q2: ð13Þ

The global minimum of Zðq1; q2; q3Þ is in q�1 ¼ 0:504, q�2 ¼ 0:336, q�3 ¼ 0:16
and Fðq�1; q�2; q�3Þ ¼ 1:53. This is what the road authority hopes to obtain.

Let us assume that the road authority calculates the tolls on links 1 and 2 as
linear functions of the link flows on the same links, i.e., h1ðq1Þ ¼ aq1 þ b,
h2ðq2Þ ¼ a q2 þ b, with h1ð�Þ; h2ð�Þ[ 0 on (0, 1). With DUE, 11 ¼ 12 ¼ 13 holds if
all three links are used. The following linear system has to be solved:

b1q
�
1 þ d1 þ aq�1 þ b ¼ b2q

�
2 þ d2 þ aq�2 þ b ð14Þ

b2q
�
2 þ d2 þ aq�2 þ b ¼ b3q

�
3 þ d3; ð15Þ

The solution is a = −1, b = 1 Thus, if the road authority sets tolls on links 1 and 2
as
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h1ðq1Þ ¼ 1� q1; h2ðq2Þ ¼ 1� q2; ð16Þ

ðq�1; q�2; q�3Þ is an optimal response of the travelers and the optimal value of the total
travel time (team minimum) for the road authority will be reached. Obviously, we
could construct similar example in a dynamic setting. h

Proposition 3.4 (Comparison of outcomes of ISG and SG) Let ZISG denote the
minimal value of the objective function with a toll function solving ISG and let ZSG

denote the corresponding minimal value of the objective function with toll solving
SG. Then ZISG 	 ZSG

Proof This follows from definition of SG and ISG, where SG is a special case of
ISG, and general properties of the inverse Stackelberg games. h

Note that for most problems ZISG\ZSG even with toll function being polyno-
mial (6). Moreover, when having jTj tollable links, even when we restrict the
number of parameters of toll function in ISG to jTj, the inequality ZISG 	 ZSG will
still hold.

Proposition 3.5 (Comparison of outcomes of ISG and SG 2) For one origin-
destination problems with linear link travel time function ZISG ¼ ZSG.

Proof Follows from [9]. h

To summarize the theory presented in this section, we can show that ISG brings
at least as good results as SG, even when we restrict toll functions to relatively
simple schemes (and therefore we are looking for suboptimal solution of ISG).

Example 3.1 Let us consider the Beltway network in Fig. 2, with stochastic (logit-
based) dynamic user equilibrium for the drivers. The set of origins R contains
nodes from North, East, and West, while the set of destinations S comprises nodes
from the south, RS ¼ R�S. Therefore, there are 27 origin-destination pairs and

1357 routes in the network. The link speed #
ðkÞ
a [km/h] is given by the Smulders

speed-density function [33]. All parameters of this case study coincide with those
in [33].

The total travel time obtained with the first-best tolling is 1:3286 � 104[h]. The
total travel time with no tolls is 1:6025 � 104[h]. In Table 1 you can see ZISG and
ZSG with different number of tolled links. For ISG we used polynomial tolls with
degree equal to the number of tolled links. The total travel time will for sure change
if we choose different links to toll, but it is obvious that the tolling improves the
system performance and that the inverse Stackelberg based tolling outperforms the
Stackelberg based tolling.
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4 Solved and Open Problems

As shown in [5], even the optimal toll design problem with traffic-flow invariant
tolls may lead to an objective function (of the road authority) which is very
irregular, even non-smooth, and with multiple local extremes. Such a function may
be very difficult to minimize by standard optimization techniques (e.g., gradient-
based methods), as the risk of reaching a local minimum with such methods is
rather high. Although for very specific objective functions (e.g., the convex func-
tions) classical methods can find the solution of the SG and ISG problems (see [9,
10] for analytical solution of the ISG problem for networks with one original-
destination pair, polynomial link travel times and tolls, and deterministic dynamic
user equilibrium).

When solving a general inverse Stackelberg game, one first needs to determine
the best possible outcome for the leader, the team optimum. This is impossible to
obtain with very complicated DUE models and objective functions. In such a
situation, it is better to look for sub-optimal solutions of ISG, assuming for example
the toll function being defined by (6). In [18, 33, 39] such a toll was imposed on

SOUTH 

EAST

NORTH

WEST

Fig. 2 Beltway network

Table 1 Comparison of SG
and ISG results for case study
on the Beltway network

Number of tolled links ZSG (h) ZISG (h)

1 1:5999� 104 1:5128� 104

2 1:5379� 104 1:4998� 104

4 1:4877� 104 1:4315� 104

8 1:4435� 104 1:3698� 104
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various networks, including Beltway network. It has been shown that ISG toll
outperformed SG toll remarkably. It remains to be seen how to resolve the ISG
problem with Fh not being given a priori, for nontrivial scenarios. It might, how-
ever, be sufficient to adopt a sub-optimal ISG toll instead, as this already gives
excellent results. Moreover, with the toll defined by (6), the problem simplifies to
finding optimal coefficients of a given function.

Regarding the simpler SG problems, it is still not clear how to determine the
optimal toll values in general. Nevertheless, many heuristic methods have suc-
cessfully been adopted to determine solutions.

Another issue which remains to be solved is how to select a set of m links to toll
so that the performance of the system will be as good as possible, if m is a fixed
number.

5 Conclusions and Future Research

In this chapter we dealt with optimal toll design problem with traffic flow-depen-
dent second-best tolling from a game theoretic viewpoint. We discussed the
properties of these problems in a general setting, illustrated our results by means of
examples, and included solved and open issues in this area.

If the set of tollable links is restricted and the first-best system optimum cannot
be reached, one can try to get as close as possible to this optimal value. It is clear
that the inverse Stackelberg toll strategy can improve the system performance
remarkably.

We showed some phenomena of inverse Stackelberg games when applied to the
optimal toll design problem, e.g., that in some cases the toll on the tolled link might
be decreasing with the link flow on the same link. If the flow-dependent toll is
decreasing with the link flow, some very congested links remain untolled. This
conclusion cannot be drawn with use of a traffic flow-invariant tolls.

Other question to be discussed is practical relevance of the proposed concept of
the traffic-flow dependent tolls. Currently tested car devices using global posi-
tioning systems (GPS) which can “punish” the driver for certain route choices more,
while giving the complete information about the costs of available routes, make our
approach practically applicable.

Appendix 1: Basics of Stackelberg and Inverse
Stackelberg Games

For the sake of simplicity we will outline here only static 2-player Stackelberg and
inverse Stackelberg games. For more advanced introduction, see [9].
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Players in these games are called leader and follower. The leader has the
decision variable uL 2 DL; while the follower has the decision variable uF 2 DF,
DL and DF are called the decision spaces of the leader and the follower, respec-
tively. For the sake of clarity, let us assume that both DL and DF are real. Let us
assumed that the leader and the follower have the real-valued cost functions
JL : DL �DF ! R, JF : DL �DF ! R, respectively, which are known to both
players. Each player wants to choose her decision variable in such a way as to
minimize her own cost function. In a Stackelberg game, the leader announces her
decision uL, which is subsequently made known to the follower. Subsequently, the
follower chooses uF. Hence, uF becomes a function of uL, written as

uF ¼ qFðuLÞ; ð17Þ

which is determined through the relation

min
uF

JFðuL; uFÞ ¼ JFðuL; qFðuLÞÞ: ð18Þ

In (18) it is assumed that this minimum exists and that it is unique for each
possible choice uL of the leader. The function qFð�Þ is sometimes called a reaction
function of the follower. Before the leader announces her decision uL, she will
realize how the follower will react; hence, the leader will choose, and subsequently
announce, uL so as to minimize JLðuL; qFðuLÞÞ.
Example 5.1 Let

JLðuL; uFÞ ¼ u2L þ uF � 5ð Þ2; ð19Þ

JFðuL; uFÞ ¼ uL2 þ uF2 � uL uF: ð20Þ

The reaction curve is given by uF ¼ qFðuLÞ ¼ 1
2 uL: Hence, the leader will

choose uL by minimizing

JL uL;
1
2
uL

� �
; ð21Þ

which immediately results in uL ¼ 2. With this decision of the leader, the follower
will choose uF ¼ 1. The costs for the leader and the follower are given by 20 and 3,
respectively. In Fig. 3 the important contours of the leader’s and the follower’s cost
functions and the reaction curve of the follower are depicted. Point uL ¼ 1, uF ¼ 2
is the closest point to the point uL ¼ 5, uF ¼ 0 lying on the reaction curve of the
follower. h

Another concept, to be dealt with now, is the concept of inverse Stackelberg
game, introduced in, e.g., [9, 11, 14]. Unlike in the Stackelberg game, the leader
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does not announce the scalar uL, as above, but a “decision rule” given by the
function qLð�Þ : DF ! DL, instead.

Given the function qLð�Þ (in [18] called leader’s function), the follower will
make his optimal choice u�F according to

u�F ¼ argmin
uF

JFðqLðuFÞ; uFÞ: ð22Þ

The leader, before announcing her qLð�Þ, will realize how the follower will play
and he can exploit this knowledge in order to choose the best possible qL-function,
such that ultimately her own cost is minimized. Symbolically, we could write

q�Lð�Þ ¼ argmin
qLð�Þ

JLðqLðu�FðqLð�ÞÞÞ; u�FðqLð�ÞÞÞ: ð23Þ

In this way one enters the realm of composed functions [40], which is known to
be a notoriously complex area. It turns out to be difficult to find the optimal qL
function analytically. However, in the following example we will show a situation
in which such a qL can be found.

Example 5.2 Suppose the cost functions are those of the previous example and
DL ¼ DF ¼ R. If both the follower and the leader would be so kind as to minimize
JL uL; uFð Þ, the follower totally disregarding his own cost function, the leader
would obtain

Fig. 3 Graphical illustration
of the Stackelberg solution
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min
uL;uF

JL uL; uFð Þ ¼ JL 0; 5ð Þ ¼ 0: ð24Þ

This value is called the team minimum. Now the lealignder should choose the
curve uL ¼ qL uFð Þ in such a way that the point uL; uFð Þ ¼ 0; 5ð Þ lies on this curve
and, moreover, that this curve does not have other points in common with the set

f uL; uFð Þ : JF uL; uFð Þ	JF 0; 5ð Þg: ð25Þ

To keep the problem simple a linear curve is chosen. Clearly, there exists only
one line satisfying the required conditions and it is line

uL ¼ qL uFð Þ ¼ 2uF � 10: ð26Þ

With this choice of the leader, the best for the follower to do is to minimize

JF 2uF � 10; uFð Þ; ð27Þ

which leads to uF ¼ 5. The situation is depicted in Fig. 4. Hence uL ¼ 0 and,
interestingly, the leader obtained his team minimum in spite of the fact that the
follower minimized his own cost function (though with the constraint
uL ¼ 2 uF � 10. The costs for the leader and the follower will be 0 and 25,
respectively. Compared with the previous example, the leader is much better off
(0 < 20) while the follower is worse off (25 > 3).

Fig. 4 Graphical illustration
of the inverse Stackelberg
solution
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Notice that a “classical” Stackelberg game is a special case of an inverse
Stackelberg game with qLð�Þ being constant.

In the dynamic setting, optimal leader’s behavior is much more difficult to find
than in the static setting and depends on the information that is available to both
players. For more information about this, see [9, 12].

Appendix 2

Dynamic Network Loading (DNL) Model

The DNL model is formulated as a system of equations expressing link dynamics,
flow conservation, flow propagation, and boundary constraints. The DNL model
simulates the route flows in the network, yielding link flows, link volumes, and link
travel times. Typically, the DNL model is defined by the following set of equations
used in this paper is adapted from [35]5:

v
ðr;sÞ; kþ~tðkÞað Þ
a;p ¼ uðr;sÞ;ðkÞa;p ð28Þ

uðr;sÞ;ðkÞa;p ¼
qðr;sÞ;ðkÞp ; if a is the first link
on path p;
vðr;sÞ;ðkÞa�;p ; if a� is the preceding link of
a:

8>><
>>:

ð29Þ

uðkÞa ¼
X
p2P

uðr;sÞ;ðkÞa;p ð30Þ

vðkÞa ¼
X
p2P

vðr;sÞ;ðkÞa;p ð31Þ

xðkÞa ¼
X
k0 	 k

u k0ð Þ
a � v k0ð Þ

a

� �
D; ð32Þ

where ~tðkÞa is integer-valued. In addition, the link travel time function for the k-th
time interval is a nondecreasing and link-specific function of the link volume on the
link. Δ [h] is the time interval length.

Equation (28) is a flow propagation equation. It describes the propagation of the

inflows uðr;sÞ;ðkÞa;p through the link and therefore it determines the outflows vðr;sÞ;ðkÞa;p .
Additionally, it relates the inflows and the outflows of link a at the k-th time interval

5 Please note that inflows and outflows are expressed in terms of flows; the DNL model is implicit.
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of vehicles traveling on route p from origin r to destination s. Variable~tðkÞa is defined
as follows:

~tðkÞa ¼def v; if tðkÞa 2 v� 0:5; vþ 0:5ð ÞD½ Þ: ð33Þ

Equation (29) describes the flow conservation conditions. If link a is the first link
on route p, the inflow rate is equal to the corresponding route flows determined by
the route choice model. If link a is not the first link on the route, then the inflow rate

uðr;sÞ; kð Þ
a;p is equal to the link outflow rate vðr;sÞ;ðkÞa�;p of the preceding link a−.
Equation (30) states that the total link inflows are determined by summing all

link inflows for all routes that flow into link a at that time interval.
Equation (31) states that the total link outflows are determined by summing all

link outflows for all routes that flow out of link a at that time interval.

Equation (32) defines the link volume xðkÞa ; i.e., the number of travelers present at
the beginning of the k-th time interval on link a.

The interested reader is referred to [35] and [5], where the standard DNL model
is introduced with a high level of detail.

Dynamic Travel Choice (DTC) Model

Each driver chooses her route from her origin to her destination in order to mini-
mize her perceived travel costs.

The DTC determines how for all observed time intervals the drivers are dis-
tributed on all available routes in the network so that some specific dynamic user
equilibrium (DUE) is achieved.

There are many different DUE models; for an explanation of the most important
DUE models see, e.g., [21] or [5].
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