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Preface

This book Stem Cell Microenvironments and Beyond presents contributions by 
expert researchers and clinicians in the multidisciplinary areas of medical and bio-
logical research. The chapters provide timely detailed overviews of recent advances 
in the field. The texts are about stem cell microenvironments in different tissues and 
under distinct pathophysiological conditions. The authors focus on the modern 
methodologies and the leading-edge concepts in the field of stem cell biology. In 
recent years, remarkable progress has been made in the identification and character-
ization of the stem cell niches using state-of-the-art techniques. These advantages 
facilitated the identification of cellular components of the stem cell niche and the 
definition of the molecular basis of physical interaction between stem cells and their 
niches and revealed key niche signals involved in stem cell regulation. Just like the 
ecological niche of an organism, a stem cell niche is unique to the individual or 
small population and guides its dynamics. This book describes the major compo-
nents of various stem cell microenvironments such as soluble factors, cell-cell inter-
actions, extracellular matrix proteins, and physical forces. Thus, this book is an 
attempt to describe the most recent developments in the area of stem cell behavior 
regulation which is one of the emergent hot topics in the field of molecular and cel-
lular biology today. Here, we present a selected collection of detailed chapters on 
what we know so far about the stem cell niches in various tissues and under distinct 
pathophysiological conditions. Twelve chapters written by experts in the field sum-
marize the present knowledge about the physiological and pathophysiological roles 
of tissue microenvironments in stem cell regulation.

Daniel Lucas from the University of Michigan School of Medicine introduces 
our current understanding of the hematopoietic stem cell niche and discusses some 
of the open questions in the field for future research. Marina Konopleva and Yoko 
Tabe from the University of Texas MD Anderson Cancer Center describe recent 
research on several key components of specific niches that provide a sanctuary 
where leukemia stem cells evade chemotherapy-induced death and acquire a drug- 
resistant phenotype. Teresa V. Bowman and colleagues from Albert Einstein College 
of Medicine discuss knowledge that we gained from zebrafish about niche factors 
critical for early hemogenic endothelial induction as well as hematopoietic stem cell 
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specification, migration, and expansion. Raúl E. Russo and colleagues from Instituto 
de Investigaciones Biológicas Clemente Estable focus on spinal cord ependymal 
neural stem cell niche regulation. Ilias Kazanis and colleagues from the University 
of Cambridge summarize the recent developments on the role of the microenviron-
ment and how it affects neural stem cells in the brain. Akiva Mintz and his group 
from Columbia University Medical Center introduce the concept of glioblastoma 
stem cells and detail the latest findings within the microenvironment where these 
cells survive, proliferate, and differentiate. Christoph Handschin and colleagues 
from the University of Basel give an overview of the players in the skeletal muscle 
stem cell microenvironment and their mutual interactions with stem cells. Kiminori 
Sato from Kurume University School of Medicine addresses the importance of the 
maculae flavae of the human vocal fold as a stem cell microenvironment. Maria 
P. Alcolea from Wellcome Trust-Medical Research Council Cambridge Stem Cell 
Institute compiles recent observations on esophageal epithelial stem cell biology 
and how microenvironmental changes may lead to esophageal disease and cancer. 
Sujit K Bhutia and colleagues from the National Institute of Technology discuss the 
dynamic interplay between oral cancer stem cells and the tumor microenvironment 
in carcinogenesis. Maria Angelica Miglino and Phelipe Oliveira Favaron from the 
University of Sao Paulo describe the microenvironment and applications of yolk sac 
and amniotic membrane-derived stem cells for human and veterinary regenerative 
medicine. Finally, Carmine Gentile and colleagues from the University of Sydney 
update us with the latest technologies based on our knowledge of the stem cell niche 
and current approaches for engineering artificial stem cell microenvironments.

It is hoped that the articles published in this book will become a source of refer-
ence and inspiration for future research ideas. I would like to express my deep grati-
tude to my wife Veranika Ushakova and Mr. Sivachandran Ravanan from Springer, 
who helped at every step of the execution of this project.

Belo Horizonte, MG, Brazil Alexander Birbrair 

Preface
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Chapter 1
Stem Cell Microenvironments and Beyond

Alexander Birbrair

A. Birbrair (*) 
Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
e-mail: birbrair@icb.ufmg.br

Abstract Endogenous stem cells are indispensable to keep tissue homeostasis due to 
their unique ability to generate more specialized cell types in an organized way depend-
ing on the body needs. Precise control over stem cell differentiation is essential for 
organogenesis and tissue homeostasis. Stem cells reside in specialized microenviron-
ments, also called niches, which maintain them in an undifferentiated and self-renewing 
state. The cellular and molecular mechanisms of stem cell maintenance are key to the 
regulation of homeostasis and likely contribute to several disorders when altered during 
adulthood. Extensive studies in a various tissues have shown the importance of the 
niche in modulating stem cell behavior, including bone marrow, skin, intestine, skeletal 
muscle, vocal cord, brain, spinal cord, stomach, esophagus, and others. In recent past, 
extraordinary advancement has been made in the identification and characterization of 
stem cell niches using modern state-of-art techniques. This progress lead to the defini-
tion of the main cellular components in the microenvironment where stem cells reside 
and the identification of molecular mechanisms by which stem cell behavior is con-
trolled, revealing key niche signals involved in stem cell regulation. Similar to the eco-
logical niche of an organism, a stem cell niche is exclusive to the specific type of stem 
cell and guides its dynamics. This book describes the major cellular and molecular 
components of various stem cells microenvironments in different organs and at distinct 
pathophysiological conditions, such as cell-cell interactions, extra-cellular matrix pro-
teins, soluble factors, and physical forces. Although several advances have been made 
in our understanding of the signals that promote stem cell activation or quiescence, 
several components of the stem cells microenvironment remain unknown due to the 
complexity of niche composition and its dynamics. Further insights into these cellular 
and molecular mechanisms will have important implications for our understanding of 
organ homeostasis and disease. In this book, we present a selected collection of detailed 
chapters on what we know so far about the stem cell niches in various tissues and under 
distinct pathophysiological conditions. Twelve chapters written by experts in the field 
summarize the present knowledge about the physiological function and pathophysio-
logical role of the stem cell regulation by the microenvironment.

mailto:birbrair@icb.ufmg.br
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1.1  Editorial

Endogenous stem cells are indispensable to keep tissue homeostasis due to their 
unique ability to generate more specialized cell types in an organized way depend-
ing on the body needs (Hall and Watt 1989). Precise control over stem cell differen-
tiation is essential for organogenesis and tissue homeostasis (Watt and Hogan 2000). 
Stem cells reside in specialized microenvironments, also called niches (Schofield 
1978), which maintain them in an undifferentiated and self-renewing state. The cel-
lular and molecular mechanisms of stem cell maintenance are key to the regulation 
of homeostasis and likely contribute to several disorders when altered during adult-
hood. Extensive studies in a various tissues have shown the importance of the niche 
in modulating stem cell behavior, including bone marrow (Birbrair and Frenette 
2016), skin (Fuchs 2009), intestine (Tan and Barker 2014), skeletal muscle (Yin 
et al. 2013), vocal cord (Kurita et al. 2015), brain (Koutsakis and Kazanis 2016), 
spinal cord (Marichal et al. 2016), stomach (Bartfeld and Koo 2017), esophagus 
(Alcolea et al. 2014), and others (Borges et al. 2017; Scadden 2014). In recent past, 
extraordinary advancement has been made in the identification and characterization 
of stem cell niches using modern state-of-art techniques. This progress lead to the 
definition of the main cellular components in the microenvironment where stem 
cells reside and the identification of molecular mechanisms by which stem cell 
behavior is controlled, revealing key niche signals involved in stem cell regulation. 
Similar to the ecological niche of an organism, a stem cell niche is exclusive to the 
specific type of stem cell and guides its dynamics. This book describes the major 
cellular and molecular components of various stem cells microenvironments in dif-
ferent organs and at distinct pathophysiological conditions, such as cell-cell interac-
tions, extra-cellular matrix proteins, soluble factors, and physical forces. Although 
several advances have been made in our understanding of the signals that promote 
stem cell activation or quiescence, several components of the stem cells microenvi-
ronment remain unknown due to the complexity of niche composition and its 
dynamics. Further insights into these cellular and molecular mechanisms will have 
important implications for our understanding of organ homeostasis and disease.

In this book, we present a selected collection of detailed chapters on what we 
know so far about the stem cell niches in various tissues and under distinct patho-
physiological conditions. Twelve chapters written by experts in the field summarize 
the present knowledge about the physiological function and pathophysiological role 
of the stem cell regulation by the microenvironment.

Alexander Birbrair
Editor

A. Birbrair



3

Acknowledgments Alexander Birbrair is supported by a grant from Pró-reitoria de Pesquisa/
Universidade Federal de Minas Gerais (PRPq/UFMG) (Edital 05/2016).

References

Alcolea MP, Greulich P, Wabik A, Frede J, Simons BD, Jones PH (2014) Differentiation imbalance 
in single oesophageal progenitor cells causes clonal immortalization and field change. Nat Cell 
Biol 16:615–622

Bartfeld S, Koo BK (2017) Adult gastric stem cells and their niches. Wiley Interdiscip Rev Dev 
Biol 6

Birbrair A, Frenette PS (2016) Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 
1370:82–96

Borges IDT, Sena IFG, de Azevedo PO, Andreotti JP, de Almeida VM, de Paiva AE, Pinheiro Dos 
Santos GS, de Paula Guerra DA, Dias Moura Prazeres PH, Mesquita LL et al (2017) Lung as a 
niche for hematopoietic progenitors. Stem Cell Rev

Fuchs E (2009) Finding one’s niche in the skin. Cell Stem Cell 4:499–502
Hall PA, Watt FM (1989) Stem cells: the generation and maintenance of cellular diversity. 

Development 106:619–633
Koutsakis C, Kazanis I (2016) How necessary is the vasculature in the life of neural stem and 

progenitor cells? Evidence from evolution, development and the adult nervous system. Front 
Cell Neurosci 10:35

Kurita T, Sato K, Chitose S, Fukahori M, Sueyoshi S, Umeno H (2015) Origin of vocal fold stellate 
cells in the human macula flava. Ann Otol Rhinol Laryngol 124:698–705

Marichal N, Fabbiani G, Trujillo-Cenoz O, Russo RE (2016) Purinergic signalling in a latent stem 
cell niche of the rat spinal cord. Purinergic Signal 12:331–341

Scadden DT (2014) Nice neighborhood: emerging concepts of the stem cell niche. Cell 157:41–50
Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic 

stem cell. Blood Cells 4:7–25
Tan DW, Barker N (2014) Intestinal stem cells and their defining niche. Curr Top Dev Biol 

107:77–107
Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430
Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 

93:23–67

1 Stem Cell Microenvironments and Beyond



5© Springer International Publishing AG 2017 
A. Birbrair (ed.), Stem Cell Microenvironments and Beyond,  
Advances in Experimental Medicine and Biology 1041,  
DOI 10.1007/978-3-319-69194-7_2

Chapter 2
The Bone Marrow Microenvironment 
for Hematopoietic Stem Cells

Daniel Lucas

Abstract The main function of the microenvironment in the bone marrow (BM) is 
to provide signals that regulate and support the production of the billions of blood 
cells necessary to maintain homeostasis. The best characterized BM microenviron-
ment is the niche that regulates hematopoietic stem cells. Efforts from many differ-
ent laboratories have revealed that the niche is mainly perivascular and that blood 
vessels and perivascular stromal cells are the key components. In addition numerous 
cell types have been shown to be components of the niche. Here we discuss our cur-
rent understanding of the niche and the evidence supporting the role of different 
types of cells in regulating hematopoietic stem cell numbers and function in vivo.

Keywords Bone marrow • Hematopoiesis • Hematopoietic stem cell • Niche  
• Perivascular • Niche heterogeneity

2.1  Introduction

Hematopoietic stem cells (HSC) are multipotent cells capable of giving rise to all 
types of blood cells and regenerating a healthy hematopoietic system when trans-
planted into irradiated recipients. HSC reside in the bone marrow where they tightly 
associate with multicellular structures that provide a unique microenvironment that 
supports and regulate HSC.  In the bone marrow these structures are called HSC 
niches as defined by Schofield in 1978 who was the first to propose the existence of 
niches capable of regulating HSC function and differentiation (Schofield 1978). 

D. Lucas (*) 
Department of Cell and Developmental Biology, University of Michigan School of Medicine, 
Ann Arbor, MI, USA 

Center for Organogenesis, University of Michigan School of Medicine, Ann Arbor, MI, USA 

The University of Michigan Comprehensive Cancer Center, University of Michigan,  
Ann Arbor, MI, USA
e-mail: dlucasal@med.umich.edu

mailto:dlucasal@med.umich.edu
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Niche cells produce different molecules (e.g. CXCL12 and SCF) that regulate HSC 
numbers, quiescence, self-renewal and trafficking (Asada et al. 2017b; Birbrair and 
Frenette 2016; Crane et al. 2017; Ramalingam et al. 2017; Sanchez-Aguilera and 
Mendez-Ferrer 2017; Yu and Scadden 2016). Losses of niche cells, or niche-derived 
signals, irrevocably cause alterations in some or all of these functions (Asada et al. 
2017b; Birbrair and Frenette 2016; Crane et  al. 2017; Ramalingam et  al. 2017; 
Sanchez-Aguilera and Mendez-Ferrer 2017; Yu and Scadden 2016). The purpose of 
this chapter is to describe our current understanding of the HSC niche and discuss 
some of the open questions in the field for future research.

2.2  Identification of Niche Cells

The cellular composition and function of the HSC niche is an area of intense 
research and new candidate niche cells and HSC regulators are reported every year. 
Different methods have been used to identify niche cells in vivo and it is necessary 
to understand the limitations of these approaches to correctly interpret the 
literature.

Manipulation of the number of candidate niche cells: although the existence 
of HSC niches was proposed in 1978 their existence was not formally proven until 
2003 in two seminal studies from the Scadden and Li laboratories (Calvi et al. 2003; 
Zhang et al. 2003). These showed that genetic modifications that caused expansion 
of osteoblastic (bone-forming) cells and trabecular bone in the bone marrow also 
led to increases in HSC numbers (Calvi et al. 2003; Zhang et al. 2003). Many other 
studies have used genetic approaches to expand or ablate candidate niche cells 
in vivo which led to the identification of perivascular and periarteriolar cells, mega-
karyocytes and several other cells as components of BM HSC niches (Asada et al. 
2017a; Bruns et al. 2014; Kunisaki et al. 2013; Mendez-Ferrer et al. 2008; Nakamura- 
Ishizu et al. 2014; Zhao et al. 2014). The limitations of this approach are that (1) cell 
expansion/ablation frequently cannot distinguish whether the crosstalk between the 
niche cell and the HSC is direct or indirect (e.g. between offspring derived from the 
ablated cell and the HSC); and (2) that ablation of large numbers of cells in the BM 
might lead to non-specific activation of HSC.

Conditional deletion of HSC-supportive factors in candidate niche cells: In 
this method the gene encoding a factor known to regulate HSC (e.g. CXCL12 or 
SCF) is conditionally deleted via Cre-mediated recombination in candidate niche 
populations and the effect of this deletion on HSC (e.g. depletion, proliferation or 
mobilization) is then quantified (Ding and Morrison 2013; Ding et al. 2012). The 
big advantage of these methods is that, in contrast to cell ablation, it does not per-
turb the basic cellular architecture of the bone marrow. The main caveat for these 
approaches is that, to be successful, it is necessary to achieve almost complete Cre- 
mediated deletion of the targeted allele, exclusively, in the candidate cell but no 
other niche components. This is frequently not easy because many of the Cre-drivers 
(including some that were thought to be lineage-specific) used to target niche cells 

D. Lucas
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recombine in more than one type of stromal cell in the bone marrow (Zhang and 
Link 2016).

Imaging the interaction of HSC with candidate niche cells: The discovery 
that the SLAM family markers CD48 and CD150 could be used to image mouse 
HSC (as Lin−CD48−CD150+ cells) in long bones revolutionized the HSC niche field 
(Kiel et al. 2005). Experiments measuring the interaction of this “SLAM” HSC with 
different types of candidate niche cells and structures led to the discovery that most 
HSC are located in perivascular areas of the bone marrow and the discovery of peri-
arteriolar cells, megakaryocytes and osteolineage cells, among others, as candidate 
niche cells (Asada et al. 2017a; Bruns et al. 2014; Kunisaki et al. 2013; Mendez- 
Ferrer et  al. 2008; Nakamura-Ishizu et  al. 2014; Nombela-Arrieta et  al. 2013; 
Silberstein et al. 2016; Zhao et al. 2014). HSC could also be labeled as CD117+α- 
catulin- GFP+ cells using α-catulin-GFP reporter mice (Acar et al. 2015) or Hoxb5+ 
cells using Hoxb5-cherry reporter mice (Chen et al. 2016) although these models 
have not yet been widely used. The main limitation of imaging approaches is that 
they are correlative: they can determine whether HSC are in the proximity of a can-
didate niche cell but additional functional validation is required. Another concern is 
how to define proximity. Different groups have used different cut-offs to define 
HSC proximity to a candidate niche cell and a consensus has yet to emerge. The 
current state of the art to assess for specific interactions is based on testing whether 
the HSC distribution observed in  vivo is statistically different from a computer- 
generated random distribution (Acar et al. 2015; Kunisaki et al. 2013).

2.3  Cellular Composition and Organization of the Murine 
Bone Marrow HSC Niche

Several excellent recent reviews have extensively described the role of each of the 
known niche cell types (Asada et al. 2017b; Birbrair and Frenette 2016; Crane et al. 
2017; Ramalingam et al. 2017; Sanchez-Aguilera and Mendez-Ferrer 2017; Yu and 
Scadden 2016). We will thus focus on describing the cellular composition and orga-
nization of the HSC niche. Figure 2.1 summarizes discoveries from many different 
laboratories over the last 15 years and highlights the complexity of the HSC niche.

Niche cells associated with the vasculature: The bone marrow is a highly vas-
cularized organ where arteries and arterioles enter the tissue and transform into a 
sinusoidal network that is drained by a central vein (Kunisaki et al. 2013). The vast 
majority of HSC are located adjacent to, or in close proximity (less than 5 μm) of, a 
blood vessel (Kiel et al. 2005). HSC arise from an hemogenic endothelium during 
development and remain associated with blood vessels through life (Ramalingam 
et al. 2017). Endothelial cells are an indispensable component of the HSC niche; 
they produce factors like CXCL12, SCF, E-SELECTIN and NOTCH ligands that 
regulate HSC self-renewal and trafficking HSC (reviewed in Ramalingam et  al. 
(2017)). Endothelial-cell derived Notch ligands also regulate BM angiogenesis and 
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abundance of other stromal components of the niche illustrating their central role in 
the niche (Kusumbe et al. 2016; Ramasamy et al. 2014). In close contact with sinu-
soids and arterioles, and connected to them and to each other via different adhesion 
molecules (including GAP junctions (Gonzalez-Nieto et al. 2012; Schajnovitz et al. 
2011)), is a tridimensional network of LepR+ stromal cells that are also major 
sources of the CXCL12 and SCF that maintain HSC (Asada et al. 2017a; Ding and 
Morrison 2013; Ding et al. 2012; Greenbaum et al. 2013). These cells have been 

Fig. 2.1 Structure of the HSC niche. For simplicity hematopoietic cells are depicted with nuclei 
whereas stromal cells are shown without nucleus. Block arrows indicate direct regulation. Most 
hematopoietic stem cells (HSC) are located near perivascular areas (arterioles or sinusoids) where 
endothelial cells (EC) provide critical signals for HSC maintenance and function. LepR+ reticular 
cells form a tridimensional network intimately associated with the vasculature. They produce sig-
nals like CXCL12 and SCF that regulate HSC directly. Megakaryocytes (Mk) are associated with 
the sinusoids and restrict HSC proliferation via CXCL4, TGFβ and TPO signaling. Bone marrow 
macrophages (MΦ) are interspersed through the bone marrow but enriched in the endosteal surface 
close to osteoblasts. They promote HSC retention in the bone marrow by regulating CXCL12 
production by perivascular stromal cells through an unknown mechanism. Macrophages are in turn 
regulated by aged neutrophils that return from the periphery. When macrophages phagocytose 
these aged neutrophils they became activated triggering CXCL12 downregulation in perivascular 
niche cells and thus HSC release. In the arterioles Ng2+ periarteriolar cells promote quiescence in 
a subset of HSC suggesting the existence of a periarteriolar niche. Sympathetic nerves enter the 
bone marrow associated with arteries and regulate HSC trafficking by controlling CXCL12 pro-
duction by perivascular stromal cells. Associated with sympathetic fibers are non-myelinating 
Schwann cells that restrict HSC proliferation via TGFβ signaling. Osteolineage cells (OLC) in the 
endosteal surface of the bone regulate HSC maintenance via embigin and angiogenin signaling
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identified using different types of genetic reporters (e.g. CXCL12-reporter (Omatsu 
et al. 2010; Sugiyama et al. 2006), Nestin-GFPdim (Kunisaki et al. 2013; Mendez- 
Ferrer et  al. 2010) and LepR-cre-lineage traced cells (Ding and Morrison 2013; 
Ding et al. 2012)) and cell surface markers (Chan et al. 2009; Pinho et al. 2013) but 
these largely overlap and likely label the same cell (reviewed in Hanoun and Frenette 
(2013)). Importantly these cells are enriched in osteoprogenitors and are capable of 
giving rise to bone in vivo (Mendez-Ferrer et al. 2008; Omatsu et al. 2010; Zhou 
et al. 2014). Bone marrow arterioles are ensheathed by Ng2+ stromal cells. Ng2+ 
arterioles are enriched in quiescent HSC that also display low levels of reactive 
oxygen species (ROS) when compared to sinusoids. Ablation of Ng2+ cells or con-
ditional CXCL12 deletion in Ng2+ cells causes loss of quiescent HSC (Asada et al. 
2017a; Itkin et al. 2016; Kunisaki et al. 2013). Arterioles also provide physical sup-
port and associate with sympathetic nerves that enter the bone marrow from the 
periphery (Kunisaki et  al. 2013). Both sympathetic nerves and associated non- 
myelinating Schwann cells are components of the HSC niche. Sympathetic nerves 
produce norepinephrine which acts via β3 adrenergic receptors in BM stromal cells 
to control CXCL12 release and thus HSC trafficking from the bone marrow to the 
blood (Katayama et  al. 2006; Mendez-Ferrer et  al. 2008, 2010). GFAP+ non- 
myelinating Schwann cells ensheath BM sympathetic nerves and are major sources 
of active TGFβ that promotes HSC quiescence (Yamazaki et  al. 2011). Another 
component of the niche associated with the vasculature are megakaryocytes. These 
are multinucleated hematopoietic cells that reside in the sinusoids where they pro-
duce platelets. Imaging studies showed that approximately 35% of HSC are in con-
tact with a megakaryocyte (Bruns et al. 2014; Zhao et al. 2014). These cells function 
by restricting HSC proliferation via CXCL4, TGFβ and Thrombopoietin (Bruns 
et al. 2014; Nakamura-Ishizu et al. 2014, 2015; Zhao et al. 2014). Megakaryocyte 
ablation or loss of megakaryocyte-derived signals does not cause loss of HSC. Instead 
it causes HSC proliferation and relocation away from sinusoids, loss of quiescence 
and eventual exhaustion (Bruns et  al. 2014; Nakamura-Ishizu et  al. 2014, 2015; 
Zhao et al. 2014). Because megakaryocytes are hematopoietic cells this regulation 
suggest the existence of a feedback loop through which HSC are informed of their 
cellular output via regulation by their own progeny. In line with these results it has 
been shown that HSC and multipotent hematopoietic progenitors can also directly 
promote HSC proliferation via production of ESL which functions by limiting 
TGFβ availability (Leiva et al. 2016).

Niche cells not associated with the vasculature: The endosteal (inner) surface 
of the bone and trabecular areas are enriched in HSC in the steady-state and during 
regeneration suggesting that bone-lining cells might be niche components. Imaging 
analyses of HSC after transplantation revealed that many HSC where in contact 
with osteolineage (bone-forming) cells in the endosteal surface of the bone 
(Silberstein et al. 2016). Purification of these cells revealed that they were enriched 
in mRNAs for embigin and angiogenin. Deletion of these molecules in osteolineage 
cells led to loss of HSC quiescence and proliferation thus indicating that embigin 
and angiogenin were HSC-regulatory molecules and that bone-lining osteolineage 
cells were components of the HSC niche (Goncalves et al. 2016; Silberstein et al. 
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2016). Macrophages are another type of cell that does not associate with the vascu-
lature but it regulates HSC trafficking (in this case indirectly) by targeting perivas-
cular stromal cells. Many macrophages are found adjacent to the bone surface and 
are defined as “osteomacs”. Macrophage ablation induces a reduction of CXCL12 
production by perivascular niche cells thus triggering HSC mobilization from the 
bone marrow to the periphery (Chow et al. 2011; Christopher et al. 2011; Winkler 
et al. 2010). Another cell that indirectly regulates HSC trafficking are aged neutro-
phils that return from the periphery to the bone marrow where they are phagocy-
tosed by macrophages activating them and ultimately triggering CXCL12 
downregulation in perivascular niche cells and HSC release to the circulation 
(Casanova-Acebes et al. 2013). An open question is that while the crosstalk between 
macrophages and perivascular niche cells is well established the molecules and 
receptors involved in this crosstalk are not known.

Other candidate niche cell: In addition to the ones described above other cell 
types in the bone marrow have been proposed to regulate HSC function in some 
studies. However, other reports have found little to no effect of these cells on HSC 
and additional studies are needed to clarify their function. Bones (vertebrae) 
enriched in adipocytes contain fewer HSC and “fatless” mice, which have fewer 
BM adipocytes, showed faster HSC recovery after lethal irradiation and transplanta-
tion in long bones suggesting that adipocytes negatively regulate HSC during regen-
eration (Naveiras et al. 2009). In contrast, drug-induced adipocyte expansion in vivo 
had no effect on HSC suggesting that adipocytes do not form part of the niche dur-
ing homeostasis (Spindler et al. 2014). A third, recent, report suggests that adipo-
cytes are a proregenerative component of the niche: The authors found that BM 
adipocytes also produce SCF and that Adipoq-Cre/ER mice can be used to lineage- 
trace adipocytes and a subset of LepR+ cells that contain the adipocyte progenitors. 
They also found that SCF derived from Adipoq-Cre/ER+ lineage-traced cells had no 
effect in HSC numbers or function in the steady-state but it was required for HSC 
engraftment after transplantation in long bones (Zhou et al. 2017). In agreement 
“fatless” mice, which have a twofold reduction in BM adipocytes, had normal HSC 
numbers in the steady-state but impaired HSC recovery after BM transplantation in 
long-bones (Zhou et  al. 2017). In contrast, the vertebrae of the fatless mice had 
increased HSC numbers and increased sinusoidal vessels in the steady-state sug-
gesting that the vertebrae-specific effects are mediated via adipocyte-induced 
remodeling of the sinusoids in these bones (Zhou et al. 2017). More analyses are 
needed to dissect direct and indirect effects of adipocytes in HSC and niche cell 
regulation in different bones. It is also not clear what parts of the observed pheno-
types are mediated by mature BM adipocytes or more immature Adipoq-Cre+LepR+ 
progenitors.

Another non-hematopoietic cell that has been proposed to be a component of the 
HSC niche is the osteoblast. These are cells located in the endosteal surface of the 
bone and that are actively producing new bone matrix. They were shown to support 
HSC maintenance in vitro (Taichman and Emerson 1994; Taichman et al. 1996). 
This together with the fact that the central marrow contains fewer HSC than areas 
closer to the bone (Nilsson et al. 2001); and that mice with constitutive expansion of 
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the osteoblastic lineage have increased HSC numbers (Calvi et  al. 2003; Zhang 
et al. 2003) strongly suggested that osteoblast were niche components. However, 
mice deficient in biglycan have a twofold reduction in bone marrow osteoblasts but 
no changes in HSC numbers or function (Kiel et  al. 2007). Similarly, strontium 
treatment expands osteoblasts but has no effect on HSC numbers (Lymperi et al. 
2008). These results suggest that the HSC expansion observed by Calvi et al., and 
Zhang et  al., were mediated by expansion of osteoprogenitors (including LepR+ 
cells and angiogenin-producing osteolineage cells) and not mature osteoblasts 
which seem dispensable for HSC maintenance in the steady-state.

Osteocytes are bone cells that are completely embedded in the bone. Conditional 
deletion of Gsα in osteocytes using DMP1-cre mice led to expansion of BM myeloid 
cells but not HSC suggesting that osteocytes can control hematopoiesis (Fulzele 
et al. 2013). A different study showed that osteocyte depletion did not affect bone 
marrow hematopoietic stem and progenitor numbers in the steady-state but blocked 
G-CSF-induced mobilization (Asada et al. 2013). These studies suggest that osteo-
cytes can regulate physiological and emergency hematopoiesis but do not regulate 
HSC during homeostasis.

Osteoclasts are multinucleated cells that arise via differentiation of myeloid pro-
genitors. They reside in the surface of the bone where they digest the mineralized 
matrix to promote bone resorption. The first study to propose a role for osteoclasts 
in regulating HSC showed that treatment of mice with the cytokine RANKL 
increased osteoclasts numbers and mobilized HSC to the circulation. RANKL- 
induced mobilization was inhibited in PTPε-knockout females-which have a mild 
impairment in osteoclast function-suggesting that the observed phenotype was 
mediated by osteoclasts (Kollet et al. 2006). However, a different study found that 
acute osteoclast depletion via treatment with the bisphosphonate zoledronate did 
not mobilize HSC (Winkler et al. 2010). Lymperi et al., found that chronic osteo-
clast ablation with the bisphosphonate alendronate reduced HSC numbers (Lymperi 
et al. 2011). In contrast Miyamoto et al., examined three mouse models of osteo-
clasts deficiency (op/op, c-Fos-deficient and RANKL-deficient) and found increases 
in HSC numbers (Miyamoto et al. 2011). Paradoxically, the same authors also found 
that HSC mobilization was reduced in mice with a genetic mutation that increased 
osteoclasts numbers but increased in wild-type mice in which osteoclasts have been 
inhibited via alendronate treatment (Miyamoto et al. 2011). Thus the function of 
osteoclasts in the steady-state niche is far from clear and additional studies are 
needed to clarify the role of these cells in regulating HSC and their niches.

2.4  Heterogeneity of the HSC Niche

The niche cells described above are in different spatial locations in the BM and have 
distinct effects on regulation of HSC like maintenance (e.g. endothelial cells, LepR+ 
cells (Ding and Morrison 2013; Ding et al. 2012; Greenbaum et al. 2013)); inhibi-
tion of proliferation (e.g. megakaryocytes or non-myelinating Schwann cells (Bruns 
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et al. 2014; Nakamura-Ishizu et al. 2014, 2015; Yamazaki et al. 2011; Zhao et al. 
2014); or retention (e.g. macrophages (Chow et al. 2011; Christopher et al. 2011; 
Winkler et al. 2010). These raise the possibility that different spatial locations in the 
bone marrow regulate different HSC pools. In this section we discuss the evidence 
for, and against, spatially distinct niches.

Arteriolar and sinusoidal niches: A plethora of imaging and functional analy-
ses have conclusively demonstrated that most HSC reside close to, and are regulated 
by, perivascular niches (Acar et al. 2015; Bruns et al. 2014; Chen et al. 2016; Kiel 
et al. 2005; Kunisaki et al. 2013; Mendez-Ferrer et al. 2010; Nombela-Arrieta et al. 
2013). In addition several studies have proposed the existence of distinct sinusoidal 
and periarteriolar niches. Kunisaki et  al., showed that ~30–35% of all 
Lin−CD48−CD41−CD150+ HSC were located within 20 μm of CD31+Sca1+ BM 
arterioles (Kunisaki et al. 2013). These authors also showed that BM arterioles were 
ensheathed by Ng2+/Nestin-GFPbright cells and that these structures were enriched in 
quiescent HSC when compared to sinusoids. In agreement with these results deple-
tion of Ng2+ perivascular cells led to reduced BM HSC numbers, relocation of HSC 
away from arterioles and loss of HSC quiescence (Kunisaki et al. 2013). In a follow 
up manuscript the same group showed that conditional Cxcl12 deletion in Ng2+ 
perivascular cells using Ng2-creER or Myh11-CreERT2 mice caused loss of BM HSC 
and relocation of HSC away from arterioles. In the same study Cxcl12 deletion in 
LepR+ cells had no effect on BM HSC numbers (Asada et al. 2017a). In contrast Scf 
deletion in Ng2+ cells had no effect on BM HSC numbers but Scf deletion in LepR+ 
cells causes a dramatic HSC loss. These results suggest that Ng2+ periarteriolar and 
LepR+ (which are mainly perisinusoidal albeit some LepR+ are close to arterioles 
(Ding and Morrison 2013; Ding et al. 2012; Kunisaki et al. 2013)) maintain HSC 
via the production of different cytokines (Asada et al. 2017a). It is important to note, 
however, that these results contrast with a previous study that showed that LepR+ 
cells maintain HSC via CXCL12 (Ding and Morrison 2013). Megakaryocytes pro-
mote HSC quiescence ((Bruns et al. 2014; Nakamura-Ishizu et al. 2014, 2015; Zhao 
et al. 2014) and are located exclusively in the sinusoids. Megakaryocyte ablation 
induces HSC proliferation and HSC relocation away from sinusoids but does not 
disrupt HSC interaction with arterioles suggesting that sinusoidal and arteriolar 
HSC niches are functionally independent (Bruns et  al. 2014). The fact that non- 
myelinating Schwann cells, that are associated with the sympathetic nerves in arte-
rioles (Kunisaki et  al. 2013), restrict HSC proliferation (Yamazaki et  al. 2011) 
further supports the concept of a periarteriolar niche that promotes HSC quiescence. 
Additional data supporting the existence of functionally distinct arteriolar and sinu-
soidal niches was presented by Itkin et al. These authors quantified the percentage 
of Lin−CD48−CD150+ hematopoietic stem and progenitor cells (HSPC) that stained 
positive for reactive oxygen species (ROS) in the bone marrow. They found that all 
HSPC adjacent to arteries were ROS− whereas ~35% of all HSPC adjacent to sinu-
soids where ROS+. Increases in vascular leakiness using Cdh5-creERT2:Cxcr4lox/lox or 
Cdh5-creERT2:Fgfr1/2lox/lox mice revealed increased numbers of ROS+ HSPC close to 
sinusoids indicating that vascular permeability controls HSPC metabolic state (Itkin 
et al. 2016). The same study showed that BM sinusoids are the exclusive trafficking 
site and that increased vascular permeability promotes BM HSPC release into the 
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circulation (Itkin et al. 2016). Kusumbe et al., has also shown that arterioles support 
HSPC. Constitutive activation of the Notch pathway in endothelial cells led to a 
threefold increase in BM arterioles and associated perivascular cells and a ~ 50% 
increase in HSC numbers indicating that arteriole density controls HSC frequency 
(Kusumbe et al. 2016).

While the reports above support the idea that arterioles and periarteriolar cells 
maintain and regulate a subset of HSC in the bone marrow other reports have found 
no specific HSC association with arterioles. Acar et  al., using α-catulin-GFP 
reporter mice to label c-kit+GFP+ HSC found that 10% of these HSC were close 
(less than 5 μm) to arterioles and they found no enrichment in quiescent HSC close 
to arterioles (Acar et al. 2015).

Endosteal niches: As discussed above it is clear that most HSC reside in peri-
vascular niches. It is less clear whether the endosteal surface of the bone also pro-
vides a niche for HSC during homeostasis. A note of caution: some studies in the 
literature have used the term “endosteal” to describe cells located in inner surface of 
the bone while other studies have used this term to define cells with bone-forming 
potential. The term “osteoblastic” have been used in a similar way. Through this 
chapter we have used “endosteal” to describe a spatial location (proximity to the 
inner surface of the bone) and “osteoblastic” to define differentiation potential into 
bone cells. Studies in which different fractions of the bone marrow were purified 
and then tested for HSC numbers have shown that HSC are enriched in the BM that 
remains associated with the bone after fractionation supporting the idea of an end-
osteal niche (Nilsson et al. 2001). However, imaging studies have shown that less 
than 5% of HSC are in direct contact with the cells that line the endosteal surface of 
the bone (Acar et al. 2015). One possible explanation for this discrepancy is the fact 
that most arterioles are located within ~40 μm of the bone surface (Itkin et al. 2016; 
Kunisaki et al. 2013) and periarteriolar niches might thus account for HSC enrich-
ment in endosteal areas. However, the fact that macrophages are enriched in areas 
close to the bone “osteomacs” (Christopher et al. 2011; Winkler et al. 2010) and that 
bone-lining osteolineage cells are major sources of the HSC regulatory factors emb-
igin and angiogenin suggest that endosteal cells also support HSC (Goncalves et al. 
2016; Silberstein et al. 2016). A second explanation for the lack of HSC in contact 
with the bone surface is that endosteal cells might be capable of exerting their HSC- 
regulatory function over longer distances than the ones used by endothelial and 
perivascular cells. Additional studies are needed to define whether endosteal signals 
regulate HSC during steady-state hematopoiesis.

2.5  Niches for Hematopoietic Progenitors Downstream 
of the HSC

Hematopoiesis occurs in a hierarchical manner with more immature, multipotent, 
stem and progenitor cells progressively committing into lineage-restricted progeni-
tors before giving rise to mature blood cells (reviewed in Babovic and Eaves (2014)). 
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These hematopoietic progenitors also depend on signals from the microenviron-
ment for maintenance and differentiation but they are much less characterized than 
HSC niches although significant progress has been made in identifying these cells. 
Osteoblasts do not seem to regulate HSC function during homeostasis but they pro-
vide a niche for common lymphoid progenitors (CLP) via CXCL12 production 
(Ding and Morrison 2013; Greenbaum et al. 2013). LepR+ cells are also necessary 
for CLP maintenance via CXCL12 and IL7 production (Cordeiro Gomes et  al. 
2016). Bone marrow macrophages provide a niche for differentiating erythroid cells 
(Chow et al. 2013; Ramos et al. 2013). Differentiating erythroid cells regulate HSPC 
numbers via ACKR1 (Duchene et al. 2017). In the case of myeloid cells it is known 
that stromal cells regulate monocyte egress (Shi et al. 2011) and proliferation after 
TLR activation (Boettcher et al. 2012, 2014); Crebbp haploinsufficiency in stromal 
cells increased myelopoiesis (Zimmer et al. 2011) whereas IκBκ or DICER deletion 
in the stroma lead to myeloproliferative disease (Raaijmakers et al. 2010; Rupec 
et al. 2005). Also, osteocytes regulate myelopoiesis via GαS signaling (Fulzele et al. 
2013). Identifying the specific niches for each hematopoietic progenitor is neces-
sary in order to understand how normal and pathological hematopoiesis occurs. 
This has become more relevant with discoveries suggesting that HSC might not be 
the main source of blood cells in the steady-state. Two independent analyses of 
steady-state hematopoiesis suggest that more differentiated hematopoietic progeni-
tors are responsible for most blood cell production with rare input from HSC (Busch 
et al. 2015; Sun et al. 2014) although these results have been challenged recently 
(Sawai et al. 2016). In addition mice lacking functional HSC or mice in which most 
HSC have been ablated are capable of maintaining almost normal hematopoiesis 
(Jones et al. 2015; Schoedel et al. 2016).

2.6  Concluding Remarks

The bone marrow niche is incredibly complex with multiple cells cooperating to inte-
grate signals and provide input to regulate HSC, hematopoietic progenitors and blood 
cell output. Understanding how these niches function in vivo is essential to under-
stand how hematopoiesis is regulated and might lead to the development of therapies 
that target specific niche components to modulate blood cell production as needed.
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Chapter 3
Leukemia Stem Cells Microenvironment

Yoko Tabe and Marina Konopleva

Abstract The dynamic interactions between leukemic cells and bone marrow 
(BM) cells in the leukemia BM microenvironment regulate leukemia stem cell 
(LSC) properties including localization, self-renewal, differentiation, and prolifera-
tion. Recent research of normal and leukemia BM microenvironments has revealed 
several key components of specific niches that provide a sanctuary where subpopu-
lations of leukemia cells evade chemotherapy-induced death and acquire a drug- 
resistant phenotype, as well as the molecular pathways critical for microenvironment/
leukemia interactions. Although the biology of LSCs shares many similarities with 
that of normal hematopoietic stem cells (HSCs), LSCs are able to outcompete HSCs 
and hijack BM niches. Increasing evidence indicates that these niches fuel the 
growth of leukemia cells and contribute to therapeutic resistance and the metastatic 
potential of leukemia cells by shielding LSCs. Not only “microenvironment-induced 
oncogenesis,” but also a “malignancy-induced microenvironment” have been pro-
posed. In this chapter, the key components and regulation of BM niches in leukemic 
BM is described. In addition, metabolic changes in LSCs, which are currently a 
subject of intense investigation, will also be discussed to understand LSC survival.
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3.1  Introduction

The dynamic interactions between leukemic cells and bone marrow (BM) cells in 
the leukemia BM microenvironment regulate leukemia stem cell (LSC) properties 
including localization, self-renewal, differentiation, and proliferation (Tabe and 
Konopleva 2014). Despite the significant progress that has been achieved in 
chemotherapy- based and targeted treatments of several leukemia subsets, relapse 
remains common after an initial response (Dores et al. 2012; Sant et al. 2010), indi-
cating the persistence of chemoresistant LSCs in the BM. Recent research of normal 
and leukemia BM microenvironments has revealed several key components of spe-
cific niches that provide a sanctuary where subpopulations of leukemia cells evade 
chemotherapy-induced death and acquire a drug-resistant phenotype, as well as the 
molecular pathways critical for microenvironment/leukemia interactions.

Although the biology of LSCs shares many similarities with that of normal 
hematopoietic stem cells (HSCs), LSCs are able to outcompete HSCs and hijack 
BM niches. Increasing evidence indicates that these niches fuel the growth of leuke-
mia cells and contribute to therapeutic resistance and the metastatic potential of 
leukemia cells by shielding LSCs (Hanahan and Coussens 2012; Tabe et al. 2017). 
Not only “microenvironment-induced oncogenesis,” but also a “malignancy- 
induced microenvironment” have been proposed (Shiozawa and Taichman 2010). 
BM niches are part of a complex of BM cells including bone-lining cells (osteo-
blasts and osteoclasts), mesenchymal stem cells (MSCs), sinusoidal endothelium 
and perivascular stromal cells, nonmyelinating Schwann cells and immune cells, 
which play distinct roles in the regulation of hematopoiesis (Ding et  al. 2012; 
Kunisaki et al. 2013) Chemokine receptors (Rombouts et al. 2004; Zeng et al. 2009; 
Tabe et al. 2013; Nervi et al. 2009), adhesion molecules (Jin et al. 2006; Williams 
et al. 2013; Redondo-Muñoz et al. 2008; Jacamo et al. 2014), the sympathetic ner-
vous system (Katayama et  al. 2006), hypoxia-related proteins (Wellmann et  al. 
2004; Suda et  al. 2011), and genetic and epigenetic abnormalities of leukemia- 
associated stroma cells have been proposed as key emerging therapeutic targets 
(Walkley et al. 2007a). In this chapter, the key components and regulation of BM 
niches in leukemic BM is described. In addition, metabolic changes in LSCs, which 
are currently a subject of intense investigation, will also be discussed to understand 
LSC survival.

3.2  Leukemic Microenvironment

3.2.1  Components of Microenvironmental Niches

Endosteal and vascular niches are anatomically closely related to distinct vascular 
structures, arterioles, and sinusoids, which work in concert (Ding et  al. 2012; 
Kunisaki et al. 2013; Calvi et al. 2003; Kiel and Morrison 2008; Adams et al. 2006; 
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Mendelson and Frenette 2014). Recent advances in microscopy and transgenic ani-
mal models have revolutionized the understanding of these niches (Morrison and 
Scadden 2014). Quiescent HSCs associated with periarteriolar niches are found 
within the endosteal BM (Kunisaki et al. 2013), where arterioles run in proximity to 
the endosteal surface, accompanied by sympathetic nerve fibers ensheathed by non-
myelinating Schwann cells. In turn, sinusoids, fenestrated and lined by reticular- 
shaped sinusoidal cells, are associated with less-quiescent HSCs re-localizing to 
perisinusoidal niches (Kunisaki et al. 2013; Kfoury et al. 2014). The surface of the 
endosteum in the endosteal niche is lined by osteoblasts and osteoclasts. Osteoblasts 
are progenitor bone-forming cells derived from pluripotent MSCs (Adams et  al. 
2006). Interactions between angiopoietin-1 (ANG1) in osteoblasts with its receptor 
Tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (TIE2) on 
HSCs result in activation of β1-integrin and N-cadherin and enhanced adhesion 
between niche cells and HSCs, which contributes to the maintenance of stem cell 
quiescence (Arai et al. 2004). Notably, AML cells induce a preosteoblast-rich niche 
in the BM that in turn facilitates AML expansion (Battula et al. 2017). The C-X-C 
motif chemokine 12 (CXCL12), which is produced by osteoblasts, is the major 
chemoattractant of HSCs (Christopher et al. 2009).

Bone-resorbing osteoclasts participate in the initial formation and maintenance 
of cavities that constitute the endosteal niche (Adams et al. 2006; Mendelson and 
Frenette 2014). Osteoclastic bone resorption produces abundant active transforming 
growth factor beta (TGF-β) from bone, which is the largest latent reservoir of TGF-β 
(Morrison and Scadden 2014). The sympathetic nervous system is responsible for 
regulating HSCs residing in the periarteriolar position via norepinephrine signaling 
(Katayama et  al. 2006). A mechanistic analysis showed that nonmyelinating 
Schwann cells activate latent TGF-β, and the neoplastic niche is altered by leukemic 
cells through sympathetic neuropathy (Hanoun et al. 2014). For example, MLL-AF9 
acute myeloid leukemia (AML) cells transform the HSC niche, reducing the num-
bers of arteriole-associated niche cells and the density of their sympathetic nerve 
network (Hanoun et al. 2014; Price and Sipkins 2014). Sympathetic neuropathy by 
myeloproliferative neoplasia (MPN) alter the HSC niche and progression of the 
disease; MPN cells produce interleukin-1β (IL-1β) that destroys Schwann cells sup-
porting sympathetic nerve fibers, followed by the apoptotic loss of Nestin-positive 
(Nestin+) cells and reduced HSC maintenance factors in the microenvironment, 
such as CXCL12, resulting in peripheral mobilization of HSCs and accelerated 
MPN cell expansion in the BM (Price and Sipkins 2014) The perivascular cells in 
the vascular niche include CXCL12-abundant reticular (CAR) cells (Sugiyama 
et al. 2006), Nestin+ MSCs (Méndez-Ferrer et al. 2010) and leptin receptor-positive 
(LepR+) MSCs (Ding et  al. 2012) exhibiting significant overlap and expressing 
multiple soluble and membrane-bound factors that regulate stem cell self-renewal 
and retention (Doan and Chute 2012). The conditional deletion of stem cell factor 
from LepR+ perivascular stromal cells, including Nestin+ MSCs and CAR cells, 
significantly reduces the number of HSCs (Adams et al. 2006).

Multiple mature hematopoietic cells including T-regulatory (Treg) cells, macro-
phages, and megakaryocytes also participate in regulation of the BM  microenvironment 

3 Leukemia Stem Cells Microenvironment



22

(Jin et al. 2006). Treg cells provide a relative immune sanctuary for stem cells on the 
endosteal surface and participate in creating the BM niche and supporting stem cell 
function (Kfoury et al. 2014; Fujisaki et al. 2011). Macrophages promote retention 
of HSCs by regulating CXCL12 production in the BM (Chow et  al. 2011). 
Megakaryocytes, localized with a subset of HSCs, promote stem cell quiescence 
through the production of CXCL4 (Bruns et al. 2014) and TGF-β (Zhao et al. 2014).

3.2.2  Modulation of the LSC Niche

The behavior of LSC is modulated by interactions and signals received within their 
BM microenvironment (Calvi et al. 2003; Kiel and Morrison 2008; Arai et al. 2004; 
Nilsson et al. 2005). Although LSCs share certain self-renewal and differentiation 
features with HSCs, they differ in their dysregulated activation of key pathways 
controlling proliferation, survival and invasion (Lane 2012). One study reported that 
BM niche components contribute to determining the leukemia phenotype by pro-
viding the necessary cytokines and cell contact-mediated signals to LSCs 
(Raaijmakers et al. 2010). LSCs, in turn, contribute to deregulation of the BM  niche 
by their dominant proliferation-promoting signals, and MSCs participate in this 
process. MSCs in the BM constitute a heterogeneous population (Raaijmakers 
2014), and heterotypic signaling from diseased “reprogrammed” MSCs may affect 
other cells in the BM. For example, MSCs are required to drive the initiation and 
progression of myelodysplastic syndrome (MDS), which is characterized by BM 
failure and predisposition for evolution into AML. Transcriptional profiling revealed 
the aberrant gene expression implicated in intercellular crosstalk, osteo/adipogene-
sis, inflammation, and fibrosis in MDS MSCs (Raaijmakers 2014). Deficiency of 
phosphatase and tensin homolog, a tumor suppressor and antagonist of the phos-
phoinositide 3-kinase pathway in hematopoietic cells and BM cells results in myelo-
proliferation that progresses to overt leukemia/lymphoma (Yilmaz et  al. 2006). 
These findings support the concept of niche-induced oncogenesis; primary stromal 
dysfunction can result in secondary neoplastic disease. As a frontier study, Walkley 
et al. reported that dysfunction of the retinoblastoma protein, a central regulator of 
the cell cycle and a tumor suppressor, or of retinoic acid receptor-γ in the BM 
microenvironment contributes to the development of preleukemic myeloprolifera-
tive disease from originally nonmutated hematopoietic cells (Walkley et al. 2007a, 
b). In another study, conditional knockout of DICER1, a gene that regulates 
microRNA processing, in osteoblastic precursors resulted in BM failure and a pre-
disposition for leukemia. Deleting DICER1 causes reduced expression of SBDS, a 
gene mutated in Schwachman–Bodian–Diamond syndrome. Deletion of SBDS in 
mouse osteoprogenitors induces myelodysplasia and the development of AML 
(Raaijmakers et  al. 2010). On the other hand, LSCs themselves create a “foster 
home,” inducing reversible changes in BM stromal cell function or composition that 
result in survival of leukemic cells (Dührsen and Hossfeld 1996). Suppression of 
normal hematopoiesis in patients with leukemia and a relatively low tumor burden 
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may reflect disruption of normal hematopoietic progenitor cell niches and creation 
of leukemia niches by leukemic cells (Colmone et al. 2008).

3.2.3  CXCR4–CXCL12 Interactions and LSC Migration 
to the BM

Interactions between LSCs and BM niches are recognized as the major cause of 
leukemia relapse. Leukemia cells highjack normal BM vascular niches dependent 
upon CXCL12 and E-selectin (Colmone et  al. 2008). The chemokine CXCL12, 
produced by CAR cells, Nestin+ MSCs, and osteoblasts, is a key factor mediating 
homing and engraftment of LSCs into the BM niche. Levels of the CXCL12 recep-
tor CXCR4 are significantly elevated in leukemia cells (Raaijmakers 2014), and the 
association between CXCR4 expression with the poor outcome of patients with 
leukemia has been reported (Rombouts et  al. 2004). Of note, chemotherapy for 
patients with AML and imatinib treatment in patients with CML upregulates 
CXCR4 expression, which results in increased CXCL12/CXCR4 signaling and 
lodging into BM niches, fostering chemoresistance (Zeng et al. 2009; Sison et al. 
2013; Tabe et al. 2012). Inhibiting CXCL12–CXCR4 interactions results in abolish-
ment of CXCL12-induced chemotaxis, inactivation of prosurvival signaling path-
ways including phosphorylation of p44/42 mitogen-activated protein kinase and 
signal tranducer and activator of transcription 3 (STAT3), and decreases in BM 
stromal protective effects on chemotherapy-induced apoptosis in CLL and AML 
cells (Zeng et al. 2009; Zeng et al. 2006; Cho et al. 2015). Recruitment of CXCR4 
and its downstream mediator Lyn into lipid rafts in CML cells contributes to ima-
tinib resistance (Tabe et al. 2012). BM stromal cell-derived TGF-β1 is also known 
as a mediator of resistance during cytarabine treatment of AML (Tabe et al. 2013). 
Combined treatment with the CXCR4 inhibitor plerixafor, the TGFβ-neutralizing 
antibody 1D11, and cytarabine decreases the leukemia burden and prolongs survival 
in a leukemia mouse model, demonstrating that TGFβ and CXCL12 play a role in 
AML chemoresistance (Tabe et al. 2013). Overall, CXCL12–CXCR4 interactions 
in the BM microenvironment contribute to the chemoresistance of leukemic cells, 
and disruption of these interactions by CXCR4 inhibitors represents a rational strat-
egy for blocking LSC homing to the BM niche and/or sensitizing AML cells to 
chemotherapy or kinase inhibitors. Clinical trials exploring this concept are under-
way (Uy et al. 2012); NCT02652871.

3.2.4  Adhesion of LSCs to the BM Niche

Adhesion to the stromal niche is crucial for LSCs because it directly supports self- 
renewal and protects cells from damage by chemotherapy. The transmembrane gly-
coprotein CD44 of LSCs, existing as a standard isoform (CD44s) and a range of 
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variant isoforms (CD44v), is a key regulator of LSC homing to BM niches and 
maintenance of their primitive state (Jin et al. 2006). CD44 modulates interactions 
between LSCs and extracellular matrix components and growth factor ligands to 
promote CD44/ligand/receptor tyrosine kinase (RTK) complex formation and sig-
nal transduction (Nervi et  al. 2009). CD44–hyaluronan interactions contribute to 
self-renewal, proliferation, differentiation, homing to the BM, and preservation of 
the integrity of the stem cell genome by decreasing DNA damage and enhancing 
DNA repair (Williams et al. 2013). CD44/ligand/RTK signaling may participate in 
reprogramming of leukemia cells to exhibit a more stem cell-like LSC phenotype by 
modulating microRNA expression to regulate promoter methylation status and gene 
expression (Williams et  al. 2013). Although activities of CD44s or CD44v have 
been reported to be similar in hyaluronan-mediated regulation of HSC differentia-
tion and MSC homing to BM (Avigdor et al. 2004), CD44v expression preferen-
tially enforces maturation of self-renewing LSCs (Herrlich et al. 2000). Cells in the 
BM niche express integrins as cell adhesion receptors that link extracellular adhe-
sion molecules with the intracellular actin cytoskeleton (Redondo-Muñoz et  al. 
2008) and are required for lodging of LSCs in the BM niche (Redondo-Muñoz et al. 
2008). Integrin heterodimers, composed of an 18α subunits and an 8β subunit, regu-
late cell–cell adhesion, growth factor receptor signaling, cell lineage specification, 
differentiation, survival, proliferation, and migration (Prowse et al. 2011). Many of 
these functions parallel CD44 expression, suggesting integrin–CD44 interactions 
(Williams et al. 2013). Homing of HSCs to the BM requires a coordinated sequence 
of four steps, including E-selectin receptor/ligand interaction and engagement of 
CXCL12–CXCR4 signaling, resulting in activation of very late antigen–4 (VLA-4; 
integrin α4β1); VLA-4 adherence to vascular cell adhesion molecule 1 (VCAM-1); 
and transmigration on endothelium (Sackstein 2011). VLA-4 binds to CD44v to 
form a docking complex for pro-matrix metalloproteinase-9, which is associated 
with transendothelial migration and invasion of chronic lymphocytic leukemia 
(CLL) B-cells (Redondo-Muñoz et al. 2008). Conditional deletion of α4 sensitized 
BCR-ABL(+) leukemia to nilotinib and pharmacological VLA4 blockade with the 
antibody natalizumab prolong survival of NOD/SCID recipients of primary ALL 
when combined with chemotherapy, indicating a role for this integrin in chemore-
sistance of lymphoid malignancies (Hsieh et al. 2013). Mechanistic in vitro studies 
revealed that the interaction between vascular cell adhesion molecule 1 (VCAM-1)  
and VLA-4 play an integral role in the activation of NF-κB in both, the stromal and 
the tumor cell compartments (Jacamo et al. 2014). Nuclear factor-kappa beta activa-
tion via the VCAM-1/VLA-4 interaction causes increased numbers of dysplastic 
hematopoietic cells and progression into secondary AML (Rupec et  al. 2005). 
Abnormal ANG1/TIE signaling has been detected both in endothelial cells and leu-
kemia cells (Watarai et al. 2002; Wakabayashi et al. 2004). In leukemia cells, auto-
crine ANG1/TIE2 signaling activates STAT1/3/5/6 and extracellular regulated 
kinase pathways that increase proliferation, and TIE2/IP-3 kinase signaling sup-
ports AML cell survival (Watarai et al. 2002; Wakabayashi et al. 2004). Secretion of 
the proinflammatory cytokines TNF-α and IL-1β by LSCs upregulates endothelial 
adhesion receptors such as selectins, VCAM-1, and intercellular adhesion 
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molecule- 1, to support vascular adhesion (Stucki et al. 2001). It has been further 
demonstrated that INTEGRIN β3 knockdown impairs homing, downregulates LSC 
transcriptional programs, and induces differentiation via the intracellular kinase 
Syk without affecting normal HSCs (Miller et al. 2013).

3.2.5  Hypoxia/HIF-1α Signaling and BM Vasculature

Overexpression of the hypoxia-regulated component hypoxia-inducible factor 1α 
(HIF-1α)   has been shown in clusters of leukemia cells in BM specimens (Wellmann 
et al. 2004). Hypoxia affects LSC cycling, quiescence, metabolism and chemother-
apy resistance, and HIF-1α could serve as a putative prognostic marker for high-risk 
leukemia and potential therapeutic target (Griessinger et al. 2014). HIF-1α-induced 
quiescence supports chemoresistance of AML cells (Griessinger et al. 2014; Drolle 
et al. 2015). The suppression of reactive oxygen species (ROS) and endoplasmic 
reticulum stress are the main proposed mechanisms of HIF-1α-induced anti- 
apoptosis in LSCs (Zhang et al. 2012). It has also been demonstrated that HIF-1α 
upregulates CXCL12 gene expression in endothelial cells (Ceradini et al. 2004) and 
CXCR4 expression in AML cells (Fiegl et al. 2009), which increases migration and 
homing of circulating CXCR4-positive AML cells into ischemic tissue. Hypoxia 
could favor LSC niche metabolism, too (Korn and Méndez-Ferrer 2017). However, 
some studies have demonstrated that deleting HIF-1α induces AML and MPN pro-
gression (Velasco-Hernandez et al. 2014, 2015). These controversial results reflect 
the complexity of BM environmental control of leukemia cells. One of the key func-
tions of hypoxia and HIF-1α is upregulation of growth factor vascular endothelial 
growth factor (VEGF) and stimulation of angiogenesis. Myeloid leukemia includ-
ing AML, MPN, and MDS is correlated with increased BM angiogenesis (Hussong 
et al. 2000; Aguayo et al. 2000; Lundberg et al. 2000; Medinger et al. 2009; Pruneri 
et al. 1999; Ferrara et al. 2003), and disorganized BM vascularization is a common 
niche change in myeloid malignancies. The microvasculature) is an active compo-
nent of the BM microenvironment, supplying appropriate oxygen and nutrients. 
VEGF secreted by leukemic cells activates receptors on both leukemic and endothe-
lial cells and plays a vital role in the growth of leukemia cells (Ferrara et al. 2003). 
The direct HIF-1α inhibitor PX-478 decreases hypoxia-mediated VEGF expression 
in tumor xenografts, resulting in antitumor activity (Koh et al. 2008). Angiogenesis 
is stimulated in the LSC microenvironment, despite the lower oxygen tension in the 
BM than in arterial blood (Benito et al. 2011). However, it remains difficult to define 
the BM stem cell niche as severely hypoxic (Bonig and Papayannopoulou 2013). 
A quantitative imaging study demonstrated that HSCs in the endosteal BM niche 
closely interact with BM microvessels and yet highly express HIF1α, indicating that 
the hypoxic profile is at least, in part, through a cell-intrinsic mechanism rather than 
a lack of blood supply (Nombela-Arrieta et al. 2013). In fact, cytokines), hormones, 
and genetic modifications can stimulate HIF-1α signaling (Kuschel et al. 2012).
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3.2.6  LSC Metabolism

Leukemia cells have two major metabolic challenges: how to meet the bioenergetic 
and biosynthetic demands of increased cell proliferation and how to survive fluctua-
tions in external nutrient and oxygen availability in the BM environment. Some 
studies have indicated a link between the microenvironment and leukemia cell 
metabolism. The cholesterol-lowering drug lovastatin induces cell-autonomous 
inhibition of LSCs in a co-culture system with MSCs but does not inhibit AML cells 
cultured alone. Lovastatin pretreatment of LSC–stromal co-cultures also prolongs 
survival of mice injected with these cells (Seton-Rogers 2013; Hartwell et al. 2013). 
Adipocytes are the prevalent type of stromal cell in the adult BM, and fatty acids 
produced by adipocytes modulate the activity of signaling molecules (Carracedo 
et al. 2013; Behan et al. 2009). The finding that the rate of relapse after chemo-
therapy in mice injected with syngeneic leukemia cells was higher in obese mice 
than in normal-weight mice (Behan et  al. 2009) suggests the possibility that the 
increased adipocyte content of adult BM promotes leukemia growth and negatively 
affects sensitivity to chemotherapy. BM stromal cells promote survival of AML 
cells via a metabolic shift from pyruvate oxidation to fatty acid β-oxidation (FAO), 
which causes mitochondrial uncoupling that diminishes mitochondrial ROS forma-
tion and decreases intracellular oxidative stress linked to the Bcl-2 anti-apoptotic 
machinery (Samudio et al. 2010). FAO is required for HSC self-renewal and quies-
cence (Ito et al. 2012). Another study demonstrated that AML stem cells rely on 
oxidative phosphorylation and are unable to utilize glycolysis when mitochondrial 
respiration is inhibited (Skrtić et al. 2011), showing that maintenance of mitochon-
drial function is essential for their survival (Lagadinou et al. 2013). These findings 
suggest that acetyl-CoA produced by FAO fuels the Krebs cycle and oxidative phos-
phorylation. In turn, more recent evidence suggests that metabolic signals play criti-
cal roles determining transcriptional regulation; metabolic enzymes are often 
present in transcriptional complexes, and thus provide a local supply of substrates/
cofactors (Suzuki et al. 2009). Interestingly, AML cells alter the immune microen-
vironment via release of high concentrations of arginase II, which suppresses T cell 
proliferation, polarizes surrounding monocytes into a suppressive M2-like pheno-
type, and inhibits proliferation and differentiation of murine granulocyte-monocyte 
progenitors and human CD34+ progenitors (Mussai et al. 2013). These findings sug-
gest that metabolic features supporting the AML BM niche may yield novel thera-
peutic targets.

3.2.7  A Commentary on Likely Future Directions

Circulating leukemia cells are effectively eliminated by traditional or targeted thera-
pies, whereas leukemia cells residing in the BM are chemoresistant and are respon-
sible for relapse. The BM microenvironment contributes to increase leukemic cell 
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adhesion, provides growth factors, and promotes immunosuppression (Tabe and 
Konopleva 2014; Nwajei and Konopleva 2013). At the same time, leukemia cells are 
constantly adjusting their metabolic state in response to extracellular signaling  and/
or nutrient availability by making “decisions” such as quiescence, proliferation or 
differentiation in the constantly changing environment. By elucidating the role of 
the BM microenvironment in the pathogenesis of hematological tumors, recent 
studies have provided insight into the molecular mechanisms involved in stem cell 
activation and homing to the BM niche (Fig. 3.1). Long-term quiescence and self- 
renewal may be crucial for stress resistance of LSCs, and survival and proliferation 
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Fig. 3.1 Key components of the leukemic BM microenvironment and invasion of LSCs. (a) 
Components of normal hematopoietic stem cell (HSC) niches consist of multiple cell types includ-
ing osteoblasts, Cxcl12-abundant reticular (CAR) cells, nestin-positive mesenchymal stem cells 
(MSCs), LepR-expressing perivascular cells, endothelial cells, immune cells (macrophages and 
T-regs) and Schwann cells wrapping sympathetic nerve fibers. (b) Leukemia stem cells (LSCs) 
hijack HSC marrow spaces including perivascular and endosteal niches. The BM stromal cells and 
osteoblasts produce a complex extracellular matrix (ECM) such as vascular cell adhesion mole-
cule- 1 (VCAM-1) , fibronectin (FN) and hyaluronic acid (HA), which facilitate engraftment and 
adhesion of LSCs. Osteoblasts within endosteal niches produce transforming growth factor-β 
(TGF-β), which, in turn, promotes leukemia cell dormancy and decreases their chemosensitivity. 
CAR cells, nestin-positive MSCs, leptin receptor-positive perivascular cells, and endothelial cells 
may play a role in migration of leukemia cells into the BM microenvironment via cytokines, che-
mokines, and adhesion molecules
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of leukemic cells is critically regulated by the transition mechanisms from stem to 
progenitor cell, corresponding to metabolic changes, oxygen concentration, cyto-
kine stimulation, or cell contact regulation (Katayama et al. 2006). The BM micro-
environment presents an attractive target for novel therapeutic strategies. In 
particular, increasing insight into LSC development in their specific BM microenvi-
ronment may ultimately result in novel therapeutic strategies within a framework 
for targeting niche cells to attenuate leukemic progression or targeting LSCs with-
out adversely affecting normal stem cell self-renewal.
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Chapter 4
Developmental HSC Microenvironments: 
Lessons from Zebrafish

Sara Nik, Joshua T. Weinreb, and Teresa V. Bowman

Abstract Hematopoietic stem cells (HSCs) posses the ability to maintain the blood 
system of an organism from birth to adulthood. The behavior of HSCs is modulated 
by its microenvironment. During development, HSCs acquire the instructions to 
self-renew and differentiate into all blood cell fates by passing through several 
developmental microenvironments. In this chapter, we discuss the signals and cell 
types that inform HSC decisions throughout ontogeny with a focus on HSC specifi-
cation, mobilization, migration, and engraftment.

Keywords Zebrafish • Hematopoietic niche • Blood development • Hematopoietic 
stem cell

Sara Nik and Joshua T. Weinreb contributed equally.

S. Nik • J.T. Weinreb 
Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein 
College of Medicine, Bronx, NY, USA 

Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 
Bronx, NY, USA 

T.V. Bowman (*) 
Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein 
College of Medicine, Bronx, NY, USA 

Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 
Bronx, NY, USA 

Departments of Molecular Biology and Medicine (Oncology), Albert Einstein College of 
Medicine, Bronx, NY, USA
e-mail: teresa.bowman@einstein.yu.edu

mailto:teresa.bowman@einstein.yu.edu


34

4.1  Introduction

Hematopoietic stem cells (HSCs) are self-renewing, multi-potent cells with the 
capacity to give rise to all mature blood lineages. HSCs first acquire these skills 
during embryonic development as they move among a variety of niches, each pro-
viding different signals that help educate embryonic HSCs. Much of the earlier 
work on HSC development focused on the intrinsic factors dictating fate choices 
(reviewed in Orkin and Zon (2008)), but studies over the last decade have uncovered 
a wealth of information on the cell types and signals of the microenvironment that 
inform HSC decisions during ontogeny.

The use of the zebrafish (Danio rerio) to understand early patterning and organo-
genesis has exploded since the seminal genetic screens initiated by Christiane 
Haffter (1996). Since that time, over 600 papers have been published studying 
zebrafish hematopoiesis. Zebrafish possess many advantages that make it an excel-
lent model to study developmental hematopoiesis. Hematopoietic cell types and 
gene programs are highly conserved from zebrafish to humans. The small size and 
extensive fertility of zebrafish are ideal attributes for performing unbiased forward 
genetic and chemical screens in a vertebrate model. Combined with the natural opti-
cal clarity of embryos, the use of transgenic zebrafish that express fluorescent pro-
teins in a cell-type or tissue-type specific manner greatly facilitate live imaging of 
cells within their native microenvironment (reviewed in Zhang and Liu (2011)). 
Additionally, with the advent of CRISPR/Cas9 genome editing (Hwang et al. 2013) 
and tol2-based transgenesis (Kawakami et al. 2004), reverse genetic approaches are 
now also commonly used in zebrafish. These advantages have made zebrafish a 
rapidly emerging model system for the study of hematopoiesis.

In all vertebrates including zebrafish, hematopoiesis occurs in sequential waves 
(Fig.  4.1a). The earliest hematopoietic cells emerge during the primitive wave, 
which gives rise to mostly erythroid and myeloid cells arising from the lateral meso-
derm during the first 24 h post fertilization (hpf) (equivalent to blood formation in 
the mammalian yolk sac) (reviewed in Robertson et al. (2016)). The final wave gives 
rise to definitive HSCs that persist into adulthood to maintain hematopoiesis 
throughout the organism’s life. HSCs originate from the posterior lateral mesoderm 
(PLM). The cells emerge from specialized endothelial cells termed hemogenic 
endothelium found within the ventral wall of the dorsal aorta (the equivalent to the 
aorta-gonad-mesonephros (AGM) in mammals, Fig. 4.1b). Induction of HSCs is 
first detectable by expression of the transcription factors gata2b and runx1 in the 
hemogenic endothelium around 24  h post fertilization (hpf) (Burns et  al. 2002; 
Butko et al. 2015; Kalev-Zylinska et al. 2002). The process of HSC conversion from 
endothelium is termed the endothelial-to-hematopoietic transition (EHT) and 
involves the budding of HSC from the aortic endothelium (Bertrand et  al. 2010; 
Boisset et al. 2010; Kissa and Herbomel 2010). Around 48–72 hpf, nascent HSCs 
migrate from the dorsal aorta (DA) via the circulation to an intermediate hematopoi-
etic organ known as the caudal hematopoietic tissue (CHT) (the fetal liver  equivalent 
in mammals) (Kissa et al. 2008; Murayama et al. 2006) (Fig. 4.1b). The CHT is the 
first site where HSC expand and differentiate into mature blood cells. The majority 
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of HSCs then re-enter circulation and seed their final destination in the kidney mar-
row (equivalent to the bone marrow in mammals).

Each stage of HSC development is regulated by extrinsic cues from the local and 
systemic microenvironment. In this chapter, we will review the newest findings on 
the niche factors critical for early hemogenic endothelial induction as well as HSC 
specification, migration, and expansion. Understanding the key signals during 
ontogeny is not only important to developmental biologists, but could also have 
great clinical significance. Many of the players in embryonic niches are also impor-
tant in adult HSC biology, thus new discoveries from development could enlighten 
the microenvironmental requirements necessary for maintaining adult HSC homeo-
stasis. Moreover, uncovering how HSCs are normally produced in the embryo will 
help improve attempts to generate patient-specific HSCs from pluripotent stem cells 
in vitro (reviewed in Kyba and Daley (2003)).

4.2  Somite-Derived Niche Signals Promoting HSC Production

HSCs arise from specific mesoderm positioned in the posterior aspect of the embryo 
and lateral to somitic mesoderm termed the posterior lateral mesoderm (PLM) (Ho 
and Kimmel 1993). Recent work has demonstrated that this juxtaposition is critical 
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Fig. 4.1 The developmental timing and location of HSC development. (a) Timeline showing when 
and where primitive and definitive hematopoietic induction occurs in zebrafish. (b) Schema showing 
the location of the AGM/DA (left) and CHT (right) within zebrafish. Larger diagrams of the boxed 
regions are shown on the bottom. ICM, inner cell mass, AGM aorta-gonad-mesonephros, DA dorsal 
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for the early events of hemogenic endothelial and HSC specification. Specifically, 
several groups demonstrated that signals and cells emanating from the somite are 
required for proper HSC formation within the zebrafish embryo (Clements et al. 
2011; Kim et al. 2014; Kobayashi et al. 2014; Lee et al. 2014; Nguyen et al. 2014; 
Pillay et al. 2016; Pouget et al. 2014).

During embryogenesis, PLM cells begin as bilateral strips along the lateral 
aspect of the embryo and then migrate medially (reviewed in Davidson and Zon 
(2004)). After migration, the endothelial and hemogenic endothelial progenitors 
within the PLM will form the dorsal aorta. During this journey, cells in the PLM 
make direct physical contact with the somites, a connection that Kobayashi and col-
leagues showed were essential for proper HSC formation (Kobayashi et al. 2014). 
The appropriate interaction between these cells is needed for proper transmission of 
Notch signaling, an important pathway for several steps of HSC formation (reviewed 
in Butko et al. (2016)). The Notch signaling pathway is well known to play a funda-
mental role in regulating cell fate decisions among adjacent cells through signaling 
between a transmembrane Notch receptor and membrane-spanning ligands on 
neighboring cells (Artavanis-Tsakonas et al. 1999). Thus, direct cell contact is the 
main modality for transmission of Notch signaling. In zebrafish, PLM cells express-
ing the cell-adhesion factor Jam1a interact with somite cells expressing Jam2a en 
route to the DA (Kobayashi et al. 2014). Knockdown of jam1a led to a decrease in 
Notch signaling and a decrease in HSC formation, but upon forced activation of 
Notch, specifically in endothelial precursors, HSC levels could be rescued.

Several additional studies have implicated Notch signaling in the early somitic 
niche. The non-canonical Wnt ligand, Wnt16, is highly expressed in somites and 
promotes HSC formation in a non-cell autonomous manner (Clements et al. 2011) 
(Fig. 4.2). Mechanistically, Wnt16 regulates the expression of two Notch ligands, 
dlc (delta-c) and dld (delta-d), which promotes Notch signaling for HSC induction. 
The relevant Notch receptor was later shown to be Notch3, which is expressed 
within the dorsal aorta but also earlier in the somites (Kim et al. 2014). Three out of 
four Notch receptors (Notch1a, Notch1b, and Notch3) are important for HSC for-
mation, but only Notch3 function is needed during the stage when the PLM receives 
somite-derived signals. Epistasis analysis between Notch3 and Wnt16 demonstrated 
that Wnt16 lies upstream of Notch3 function within the somite (Kim et al. 2014).

Fibroblast growth factor (FGF) signaling provides a bridge between Wnt16 and 
Notch function during HSC emergence (Lee et al. 2014). Specifically, FGF signal-
ing is required in the developing zebrafish somite for HSC formation during mid- 
somitogenesis (14–17 hpf), but not in the pre-endothelial PLM (Fig. 4.2). During 
this timeframe, FGF signaling informs HSC specification by relaying signals 
between Wnt16 and Dlc via the activity of its receptor, Fgfr4. Slightly later in devel-
opment at the 23 somite-stage (~20.5  hpf), FGF signaling is a crucial player in 
establishing the HSC microenvironment around the dorsal aorta by regulating BMP 
pathway activity in the sub-aortic mesenchyme (Pouget et al. 2014). By modulating 
BMP pathway activity via transcriptional inhibition of bmp4 and activation of the 
BMP antagonists, noggin2 and gremlin1a, FGF provides a carefully regulated axis 
which functions as a developmental switch. Collectively, these data indicate that 
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FGF provides a precise temporal mechanism to both activate and inhibit its own 
signaling activity to modulate HSC formation.

Work from the Currie laboratory found that not only does the somite provide 
signals as the PLM migrates, but cells derived from the somite can migrate and form 
a supportive niche within the dorsal aorta (Nguyen et al. 2014). Zebrafish choker 
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mutants are loss-of-function for the meox1 gene, which encodes a homeobox factor 
normally expressed in the early somite. Interestingly, loss of meox1 resulted in an 
increase in HSC levels within the dorsal aorta. Nguyen and colleagues demonstrated 
that choker mutants also have an expansion of endotomal cells—a specialized sub-
set of somitic cells that they showed give rise to endothelial cells that line the DA 
(Fig. 4.2). Although the somite-derived cells are known to contribute to the DA in 
other organisms (Jaffredo et al. 2013), findings from this study were the first evi-
dence of its existence in zebrafish. Important to the hematopoietic field is the dis-
covery that the endotomal cells are not hemogenic endothelial cells, but rather form 
an endothelial niche that promotes HSC induction from adjacent endothelial cells in 
a Cxcl12 (CXC chemokine ligand 12)-dependent manner. As a complement to these 
findings, Pillay et  al. further characterized somite-derived signaling factors and 
found that retinoic acid (RA) is required prior to DA formation to regulate compo-
nents of the Notch and Cxcl12 chemokine signaling pathways (Pillay et al. 2016).

The above studies demonstrate that the somite is a dynamic and integral niche for 
the earliest events of HSC formation in zebrafish. As HSCs originate in similar ana-
tomical locations in mammals, it is highly probable that the influence of the somite 
on HSC development will be conserved from zebrafish to mammals. The recent 
identification of somite-derived cells within the developing dorsal aorta supports 
this idea (Jaffredo et al. 2013). Undoubtedly, our understanding of the influence of 
the somitic environment on HSC development is at its infancy.

4.3  Vascular Forces Influence HSC Emergence

HSCs emerge within blood vessels, but the functional relevance of this HSC birth 
site had long been a mystery (Dieterlen-Lievre 1975; Medvinsky and Dzierzak 
1996; Walmsley et al. 2002). Research in multiple vertebrate systems has revealed 
that the environment of the vasculature, specifically the dorsal aorta, is a vital niche 
for emerging HSCs. Signals important for vessel growth and those that are key for 
vascular tone are not only critical for proper vascular development, but in many 
instances, play an additional role in HSC induction and survival.

VEGF (Vascular Endothelial Growth Factor) is a pro-angiogenic signal that pro-
motes sprouting of intersegmental blood vessels and HSC formation (Connolly 
et al. 1989; Habeck et al. 2002). During development, there are a variety of inputs 
that regulate VEGF, keeping it at the appropriate level. Moreover, VEGF signaling 
feeds into additional downstream pathways important for HSC production. Carroll 
et al. uncovered estrogen as a titrator of Vegf signaling within the dorsal aorta endo-
thelial niche in zebrafish (Carroll et al. 2014) (Fig. 4.2). In mammals, endogenous 
estrogen levels are generally low during early pregnancy, but increase as gestation 
goes on (Tulchinsky et al. 1972). There are several pieces of evidence suggesting 
that there are mechanisms intentionally in place to limit the amount of estrogen 
exposure on the fetus, including the expression of 17β-hydroxysteroid dehydroge-
nase type 2, which degrades estrogen (E2) in the umbilical arteries and veins 
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(Simard et al. 2011). During the first trimester of pregnancy maternal use of estro-
gen hormone supplementation is associated with an increased risk of infant acute 
leukemia, indicating that in utero exposure to estrogenic compounds may negatively 
impact fetal hematopoiesis (Pombo-de-Oliveira et al. 2006). Carroll and colleagues 
uncovered one mechanism to explain the negative impact of E2 on embryonic 
hematopoiesis (Carroll et  al. 2014). They showed that excessive exposure to E2 
from early somitogenesis (~12 hpf) until 24 hpf, the window of hemogenic endothe-
lial specification, significantly decreased the formation of runx1+ AGM HSCs. 
Activation of Notch signaling via overexpression of vegfa rescued hemogenic endo-
thelium specification and HSC formation defects from excess E2. Overall, they 
show that maternally deposited E2 antagonizes the ventral limit of Vegf and down-
stream Notch signaling, allowing for the correct assignment of hemogenic endothe-
lium and subsequent HSC formation (Carroll et al. 2014).

Prior work showed that TGFβ (Transforming Growth Factor β) signaling also 
regulates VEGF levels (reviewed in Holderfield and Hughes (2008) and Massague 
and Gomis (2006)). New work from the Patient lab showed that Vegf signaling 
could also regulate the TGFβ pathway (Monteiro et  al. 2016) (Fig.  4.2). During 
zebrafish development, Vegfa signaling through its receptors Kdr (Kinase-insert 
domain receptor) and Kdr-like promote the expression of the TGFβ ligands tgfβ1a 
and tgfβ1b in endothelial cells. These ligands bind Tgfβ Receptor 2 (TgfβR2) to 
induce the signaling cascade. Monteiro and colleagues demonstrate that decreasing 
levels of TgfβR2 resulted in a severe decrease in expression of the HSC markers 
runx1 and gata2b at 26–28 hpf but had no effect on endothelial or arterial markers, 
suggesting that HSC emergence is impaired at a step after dorsal aorta specification 
(Monteiro et  al. 2016). Expression of the Notch ligand jagged1a (jag1a) down-
stream of TgfβR2 activation was shown as a critical mediator needed for expression 
of the HSC transcription factors runx1 and cmyb.

These data suggest that TGFβ signaling is a positive regulator of HSC induction, 
but another group found that excessive TGFβ could suppress HSC formation. In a 
study of the transcriptional elongation mutant spt5m806 (suppressor of Ty-5 homo-
log), Yang and colleagues showed that loss of transcriptional pausing lead to ele-
vated TGFβ signaling, which was detrimental to HSC formation (Yang et al. 2016). 
Treatment of spt5m806 mutants with the TGFβ inhibitors SB505124 or LY2157299 
restored HSCs in these embryos. Additionally, they showed that elevating TGFβ 
signaling in wild-type embryos via expression of a constitutively-active TGFβR1/
ALK5 actually diminished HSC levels (Yang et al. 2016). The differences between 
these studies could be the differences between TGFβR1 and TGFβR2 signaling or 
could demonstrate that HSC emergence requires a balanced level of signaling. In 
adult HSCs, there are noted differences in how distinct HSC subtypes respond to 
different levels of TGFβ ligands (reviewed in Blank and Karlsson (2015)). It is also 
known that excess TGFβRI signaling can lead to hematologic defects including 
cytopenias as observed in myelodysplastic syndromes (Zhou et  al. 2008). TGFβ 
receptors can act as homodimers or heterodimers (reviewed in Blank and Karlsson 
(2015)). The different responses to TGFβ receptor perturbation could therefore rep-
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resent differences in receptor dimerization, downstream signaling, levels, or a com-
bination of all three.

In addition to VEGF-regulated signaling, the biomechanical forces present in 
blood vessels were discovered to control embryonic HSC formation. Seminal work 
from the Zon, Daley, and Garcia-Cardena labs showed that blood flow-induced 
physical forces are critical to promote HSC production from endothelial cells both 
in murine and zebrafish models (Adamo et al. 2009; North et al. 2009) (Fig. 4.2). 
Specifically, they found that shear stress stimulated endothelial production of nitric 
oxide (NO), which induced HSC emergence. Through studies in zebrafish mutants 
devoid of a robust heartbeat and therefore possessing poor blood flow, Wang et al. 
later went on to show that the Kruppel-like transcription factor Klf2a directly regu-
lates the NO signaling pathway allowing for HSC induction (Wang et  al. 2011). 
KLF2 (or the zebrafish paralog Klf2a) is a zinc-finger transcription factor expressed 
in endothelial cells that is a known mediator of hemodynamic forces created by 
blood flow (Dekker et al. 2002; Lee et al. 2006). Several previous studies showed 
that KLF2 activates the expression of endothelial NO synthase (eNOS), which is a 
fundamental determinant of cardiovascular homeostasis, including systemic blood 
pressure, vascular remodeling, and angiogenesis (Dimmeler et al. 1999; Groenendijk 
et al. 2007; Lin et al. 2005; Parmar et al. 2006). In zebrafish development, Liu and 
colleagues showed that klf2a expression was induced by blood flow, and that Klf2a 
indeed regulated expression of the eNOS genes nos1 and nos2b in vivo. They dem-
onstrated that activation of the NO signaling pathway was an important downstream 
mediator of Klf2a as treatment with the NO donor SNAP (S-Nitroso-N-Acetyl-d,l- 
Penicillamine) partially rescues artery maturation and HSC production in klf2a- 
deficient embryos (Wang et al. 2011).

HSCs remain adjacent to blood vessels in the adult niche (reviewed in Crane 
et al. (2017)). In particular HSCs in the bone marrow are in close proximity to arte-
rioles, which have different blood flow properties compared to venous or sinusoidal 
vessels (Kunisaki et al. 2013). Of note, HSC localization in the murine liver corre-
sponds to the change in blood flow that occurs in the portal system after birth (Khan 
et al. 2016). These findings indicate that biomechanical forces are not only influenc-
ing HSC emergence, but likely play a function later in the life of a HSC.

4.4  Inflammatory Signaling Regulates HSC Emergence

Adult HSCs can proliferate in response to inflammatory cues from systemic infec-
tion or myeloablation and differentiate to replace lost effector immune cells 
(Baldridge et al. 2010; Essers et al. 2009; Feng et al. 2008; Kobayashi et al. 2015; 
Takizawa et al. 2011, 2012). This response of HSCs is not a secondary outcome to 
the loss of immune cells, but rather a direct response to inflammatory cytokines 
(Baldridge et al. 2010; Essers et al. 2009). More recently, similar cytokine signaling 
pathways have been found to play a critical role during embryonic HSC production 
independent of infection, a process termed sterile inflammation (Espin-Palazon 
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et al. 2014; He et al. 2015; Li et al. 2014; Lim et al. 2017; Sawamiphak et al. 2014; 
Stachura et al. 2013). Specifically, roles for cytokines including tumor necrosis fac-
tors (TNFs) like TNFα and TNFβ, interferons (IFN) like IFNα and IFNγ, interleu-
kins (IL) like IL-6 and growth factors like granulocyte colony stimulating factor 
(G-CSF) appear to be essential for definitive HSCs (Fig. 4.2).

NFκB (Nuclear factor κ-light-chain enhancer of activated B core) is a transcrip-
tion factor stimulated by a variety of pro-inflammatory cytokines such as TNFs and 
toll-like receptor (TLR) agonists such as the bacterial pathogen-associated molecu-
lar pattern (PAMPs) lipopolysaccharide (LPS). TNFα binds to its receptors TNFR1 
or TNFR2 to activate NF-κB (reviewed in Aggarwal et al. (2012) and Faustman and 
Davis (2010)). In zebrafish, Espin-Palazon et al. showed that Tnfα signaling specifi-
cally through Tnfr2 is required for definitive hematopoiesis (Espin-Palazon et al. 
2014). Prior work showed Tnfr2 is also important for vascular development, but the 
hematopoietic requirement of Tnfr2 could be uncoupled from the vascular role by 
titrating the amount of knockdown of tnfr2 (Espin et  al. 2013). Tnfα-induced 
expression of jag1a activated Notch1a signaling required within endothelial cells to 
promote HSC formation. He et al. showed that NFκB-stimulation through Tlr4 is 
also utilized in both zebrafish and mice during definitive hematopoietic induction 
(He et  al. 2015). Like Tnfr2, Notch signaling is a major downstream effector of 
Tlr4-regulated HSC production.

Type I and II Interferons are released in response to infection and stress and sig-
nal through the Interferon α or Interferon γ receptors, respectively (reviewed in 
Baldridge et  al. (2011)). Work from the Speck, North, and Stainier labs demon-
strated that both Type I and II Interferons are employed during zebrafish and murine 
development to promote HSC formation (Li et al. 2014; Sawamiphak et al. 2014). 
Expression of the ligand ifnγ and the Interferon γ receptor crfb17 (cytokine receptor 
family b17) are positively regulated by Notch signaling and blood flow (Sawamiphak 
et  al. 2014). These data place the Interferon γ pathway downstream from early 
endothelial niche signals, and likely downstream of the effects of Tnfα- and Tlr4- 
mediated NFκB signaling.

Myeloid effector cells are some of the main producers of pro-inflammatory cyto-
kines, thus the researchers examining the role of inflammatory signaling in embry-
onic HSC formation also assessed the contribution of myeloid cells on HSC 
development (Espin-Palazon et al. 2014; He et al. 2015; Li et al. 2014). Primitive 
myelopoiesis precedes HSC emergence, thus early neutrophils and macrophages 
are present to interact with precursors to HSCs. Ablation of all primitive myelopoi-
esis via decreasing the levels of the master myeloid transcription factor pu.1 resulted 
in lower HSC formation, suggesting these cells could be early HSC niche cells and 
a key source of pro-inflammatory cytokines during development (Espin-Palazon 
et  al. 2014; He et  al. 2015; Li et  al. 2014). Expansion of primitive neutrophils 
increased HSC numbers in a Tnfα-dependent manner, while the effects of Interferon 
γ could be more dependent on primitive macrophages (Espin-Palazon et al. 2014; Li 
et al. 2014).

In addition to classic myeloid effector cytokines, other inflammatory pathways 
were also recently identified to modulate HSC formation. Through a chemical 
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screen, the Zon lab found that adenosine signaling could increase HSC numbers 
(Tamplin et al. 2015) (Fig. 4.2). The elevation in HSC levels was not due to expan-
sion of existing HSCs, but rather an increased production of HSCs from hemogenic 
endothelium (Jing et al. 2015). Extracellular adenosine binds to the transmembrane 
adenosine receptors A1, A2A, A2B, or A3 (reviewed in Sousa and Diniz (2017)). The 
A2b adenosine receptor was shown to be the main receptor important for the effect 
on HSC formation. They showed that endothelial-expressed A2b activates the cAMP 
(cyclic Adenosine monophosphate)–PKA (Protein Kinase A) pathway, which up- 
regulates expression of the chemokine cxcl8 (il-8), which in turn promotes the 
emergence of HSCs from the endothelium (Jing et al. 2015). CXCL8, also known 
as neutrophil chemotactic factor, induces chemotaxis and phagocytosis in neutro-
phils at sites of infections, and plays a major role in immunity and inflammation 
(reviewed in Kobayashi (2008)). Later in the chapter we will discuss an additional 
role for Cxcl88 signaling in HSC migration.

Adult HSCs must respond to an ever-changing milieu in animals exposed to life 
stressors, such as hematologic injuries and infections. It was long thought that this 
ability arose later in life when animals first encounter these stressful situations, but 
new data from studies of zebrafish embryogenesis indicate that HSCs are exposed 
to and utilize pro-inflammatory signals early in life. In addition to the utilization to 
promote HSC formation, it is possible that the early exposure to pro-inflammatory 
signaling is part of a HSC’s “education” and that perturbation of these pathways in 
early life could have long-lasting impacts on adult HSC function.

4.5  Niche Signals from the Nervous System and Neural Crest

Groundbreaking work from the Frenette lab was among the first to demonstrate that 
the nervous system provided regulatory signals to the bone marrow HSC niche 
(Mendez-Ferrer et  al. 2008). This early work showed a function specifically for 
nerves from the peripheral nervous system (PNS), which are derived from the neu-
ral crest (NC) (reviewed in Bronner and Simoes-Costa (2016)). NC cells are a 
migratory neural-ectoderm-derived cell population that, depending on their location 
within the developing embryo, gives rise to neurons, pigment cells, glia and endo-
crine cells of the parasympathetic and sympathetic nervous system. New work in 
the zebrafish uncovered a role for trunk NC in HSC formation (Damm and Clements 
2017) (Fig. 4.2). Using time-lapse confocal microscopy in transgenic fluorescence 
reporter lines, Damm and Clements were able to demonstrate that NC precursors, in 
particular those arising from the trunk NC, migrate to and physically associate with 
the DA just prior to the initiation of HSC production. This ability of the NC to 
directly migrate from the neural tube to the DA is dependent on platelet- derived 
growth factor (PDGF)  signaling. Perturbing the signaling cascade or the migratory 
path of the trunk NC removed these cells from the HSC microenvironment and 
negatively impacted HSC emergence. Future studies will be informative in discern-
ing the role of the embryonic NC on HSC specification signals, but the close 
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proximity of NC to emerging HSCs in the developing zebrafish suggest that short-
range signaling through PDGF contributes to the HSC niche. Recently, Lim and 
colleagues found that PDGF acts downstream of Hif1α and that it induces a pro-
proliferative effect on HSCs via IL-6 signaling (Lim et al. 2017). Together these 
studies suggest NC precursors could crosstalk with pro-inflammatory signals during 
HSC emergence.

In addition to neural crest inputs, recent studies suggest that the central nervous 
system (CNS) also provides environmental cues to HSCs (Kwan et al. 2016; Pierce 
et al. 2017)}. Kwan et al. uncovered an early role for the hypothalamic-pituitary- 
adrenal (HPA) axis in HSC emergence (Kwan et al. 2016). Through a prior chemi-
cal screen for regulators of HSC development, they identified serotonin as a positive 
regulator of stem cell formation (North et al. 2007). Serotonin is produced both in 
the CNS and the periphery and acts as a neurotransmitter to both CNS and PNS 
neurons (reviewed in Barnes and Sharp (1999)). Within the CNS, serotonin stimu-
lates neurons in the hypothalamus activating the HPA cascade. This axis is a relay 
system among three endocrine glands that results in the balanced production of 
many hormones regulating diverse body processes, including digestion, the immune 
system, and energy storage and expenditure (reviewed in Del Rey et al. (2008)). 
One of the main hormones released by the adrenal gland in response to HPA stimu-
lation is glucocorticoid. In zebrafish developmental hematopoiesis, GCs are the 
main downstream effectors mediating the positive effects of serotonin on HSC for-
mation. Studies in the murine system demonstrate that the HPA axis and GC pro-
duction can also modulate HSC mobilization, indicating a conserved role for the 
CNS in HSC regulation (Pierce et al. 2017).

4.6  Cellular Constituents Involved in HSC Engraftment 
of the CHT Niche

After their emergence, HSCs migrate to different locations at discrete developmen-
tal time points where they receive necessary inputs as part of their “education” to 
become fully functioning adult HSCs. Movement to these different niches is neces-
sary as conditions that hinder HSC seeding of developmental microenvironments 
result in hematopoietic defects (reviewed in Karpova and Bonig (2015)). The stages 
involved in HSC migrations during development are similar to the steps in adult 
HSC mobilization and engraftment: (1) escape the current niche, (2) travel to and 
seed the next niche, and (3) grow and differentiate within the new niche. Studies of 
developmental HSC migrations and niche interactions thus hold great potential to 
inform human HSC transplant biology.

Visualization of HSC movements within and in between their native microenvi-
ronments is greatly enhanced in transparent zebrafish. Murayama and colleagues 
were among the first to image the migration of HSCs from the DA to the CHT, and 
established this anatomical location as the secondary niche for HSCs (Murayama 
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et al. 2006). Since then, many groups have uncovered cellular constituents and vital 
signals regulating the stages of CHT engraftment. To understand the first step, how 
HSCs escape the DA niche, Travnickova et al. used in vivo real time imaging to 
examine the dynamic interactions between emerging HSCs and macrophages 
derived from the primitive wave of hematopoiesis and demonstrated the importance 
of this niche component in facilitating HSC mobilization (Travnickova et al. 2015) 
(Fig. 4.3a). By secreting matrix metalloproteinases (Mmps), these primitive macro-
phages are able to remodel the extracellular matrix, allowing HSCs to migrate 
through the AGM stroma, and begin to mobilize towards the CHT. Coupled with the 
studies on inflammatory signaling, these studies demonstrate that depending on 
developmental time point, primitive macrophages could therefore promote HSC 
production and expansion as well as migration.

To gain insight into the cellular events critical for CHT seeding, Tamplin et al. 
used high-speed, time-lapse imaging to monitor the dynamic interplay between 
HSCs and the CHT niche elements (Tamplin et al. 2015). They observed extensive 
vascular remodeling once HSCs enter into the CHT microenvironment. In a process 
they termed “endothelial cuddling,” a cluster of ECs surrounds a single HSC 
(Fig. 4.3b). Within this “cuddle” niche, HSC are also in contact with a single stro-
mal cell, and this interaction appeared to regulate the plane of cell division of the 
HSC. To uncover pathways regulating HSC-CHT interplay, they also performed a 
chemical screen and identified a novel drug lycorine, which is characterized as a 
putative anti-inflammatory molecule. Treatment of zebrafish with lycorine pro-
moted HSC-CHT niche interactions by inducing significant gene expression 
changes that alter the adhesive properties of ECs and ultimately lead to a long-term 
increase in HSC number from early development to adulthood.

The CHT niche is comprised of two main cell types: the venous endothelial cells 
of the caudal vein (CV) plexus and stromal fibroblast reticular cells (FRCs). The 
origin of the FRCs was unknown until a recent study by Murayama et al., where 
they discovered that they in fact originate from the ventral border of the caudal 
somites, through an epithelial-to-mesenchymal transition (EMT) mechanism 
(Murayama et al. 2015) (Fig. 4.3b). In zebrafish olaca mutants, definitive hemato-
poiesis is greatly diminished due to a drastically compromised ability of HSCs to 
remain and differentiate within the CHT.  However, this was not due to a defect 
within the HSCs, but rather in the CHT niche and its defective maturation of FRCs. 
The defective gene in olaca mutants is the nascent polypeptide-associated complex 
alpha subunit (NACA) gene whose function is to bind to nascent polypeptides on 
the ribosome and act as a chaperone system to ensure proper folding of emerging 
proteins (Kirstein-Miles et al. 2013; Lauring et al. 1995). Its deficiency in mammals 
has been associated with ER stress and the UPR, which can ultimately trigger apop-
tosis (Hotokezaka et al. 2009). Given this role, the authors investigated the role of 
ER stress-induced UPR/apoptosis during CHT niche formation in olaca mutants 
and observed that chemical treatment with chaperones rescued HSC levels and 
reduced cell death within the CHT niche (namely the stromal cells). Along with the 
work demonstrating the role of somites in the emergence of HSCs (Kobayashi et al. 
2014; Nguyen et al. 2014), this work demonstrates a second contribution of somitic 
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Fig. 4.3 Signals and cell types regulating developmental HSC mobilization and engraftment. (a) 
The left diagram shows the position within the zebrafish shown in the cross-section (right). The 
right panel highlights the most recent findings on the niche cells and signaling pathways involved 
in HSC mobilization/migration from the DA. Expression of the transcription factors c-Myb and 
Cbfβ in emerging HSCs is important to mediate egress from the DA. Appropriate levels of Cxcl12 
are required for this process, and are regulated by endotomal-derived endothelial cells and HSC 
expression of c-Myb. Macrophages serve as escorts that facilitate HSC migration into the CV. (b) 
The left diagram shows the position within the zebrafish shown in the cross-section (right). The 
right panel highlights the most recent findings on the niche cells and signaling pathways involved 
in HSC engraftment in the CHT niche. Within the CHT, HSCs are surrounded by endothelial cells 
and contact a stromal cell, which provides cues on the orientation of the division plane. The stro-
mal cells are derived from the somite and are critical for HSC maintenance in the CHT niche. 
Secreted factors, such as Cxcl8 and G-csf modify HSC interactions and proliferation within the 
niche. HSC hematopoietic stem cell, NC notochord, DA dorsal aorta, CV caudal vein, Cxcl12-CXC 
chemokine ligand 12, Cbfβ core binding protein beta, CA caudal artery, CVP caudal vein plexus, 
CHT caudal hematopoietic tissue, Cxcl8-CXC chemokine ligand 8, Gcsf granulocyte-colony stim-
ulating factor
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mesoderm-derived stromal cells within the CHT niche. Many non-hematopoietic 
mesodermal cells within bone marrow are derived from somitic mesoderm. Thus, 
although adult HSCs within the bone marrow are no longer in contact with develop-
ing somites or muscle, a conserved crosstalk between these two mesodermal com-
partments likely remains important into adulthood.

4.7  Signals that Regulate CHT Engraftment

The best characterized players in the adult HSC niche are the chemokine CXCL12 
and the growth factor Stem Cell Factor (SCF)  (reviewed in Crane et al. (2017)). 
CXCL12-mediated signaling is one of the main targets for therapeutic mobilization 
of HSCs (reviewed in Karpova and Bonig (2015)). Chemokine downregulation also 
plays a role in mobilizing HSCs from their initial site within the DA (Zhang et al. 
2011). Zhang et  al. showed that HSC egression from the DA was impaired in a 
zebrafish mutant cmybhkz3, due to upregulated expression of Cxcl12 (Fig. 4.3a). The 
cmybhkz3 mutants can initiate definitive hematopoiesis normally, but the HSCs accu-
mulate in the DA and don’t egress to begin the migration and seeding process, col-
lectively indicating that C-Myb is required to down-regulate Cxcl12 signaling and 
promote HSC mobilization. Based on this model, high levels of cxcl12 expression 
within the HSC niche are required to prevent nascent HSCs from mobilizing too 
early from the DA. As HSCs develop and mature, cxcl12 expression decreases to 
facilitate their release and migration to the CHT. Interestingly, high levels of cxcl12 
and cmyb are observed in the meox1/choker mutants that have expanded endotomal- 
contribution to the DA, suggesting the somite-derived cells could play a role in the 
crosstalk of C-Myb and Cxcl12.

Cbfβ, a non-DNA-binding subunit of the core-binding factor (Cbf), is also 
required for the release of HSCs from the AGM into circulation (Bresciani et al. 
2014) (Fig. 4.3a). Similar to the cmybhkz3 mutant, cbfb knockout zebrafish mutants 
show defects in HSC escape from the DA niche. In cbfb mutants, nascent HSCs 
emerge unaffected, but do not seed the CHT. This uncouples the role of CBFB from 
its interacting partner RUNX1, a key transcription factor that regulates the emer-
gence of HSCs from the DA, and provides it an independent and temporally 
 regulated function in HSC development. The downstream mediator of this egress 
defect in cbfb mutants is unknown, but given the importance of chemokine signal-
ing in directing HSC migrations, it is possible that Cbfβ regulates expression of 
chemokines in a model analogous to cMyb-Cxcl12 identified by Zhang et al.

As with egression of HSCs from the DA to the CHT, chemokine signaling is also 
a vital component of the hematopoietic niche that enhances CHT colonization. By 
analyzing the CHT of 72 hpf zebrafish embryos, Blaser et al. observed that the che-
mokine Cxcl8 and its receptor Cxcr1 are positive regulators of HSC colonization 
(Blaser et al. 2017) (Fig. 4.3b). Mechanistically, Cxcr1 signals in a positive feed-
back loop to enhance CHT residency time and endothelial cell “cuddling” (an HSC- 
niche interaction described above), resulting in an increased mitotic rate and 
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expanded pool of HSCs. Using a parabiotic zebrafish system they were able to show 
that Cxcr1 acts non-autonomously to promote HSC engraftment by directly altering 
the vascular niche.

Cytokine signaling from granulocyte-colony-stimulating factor (G-Csf) has also 
been reported to positively regulate the expansion of embryonic HSCs in the devel-
oping CHT (Stachura et al. 2013). The G-Csf receptor gcsfr is expressed starting as 
early as 6 hpf and up through 72 hpf, indicating it is active during both waves of 
hematopoiesis. The two ligands of Gcsfr, gsfa and gsfb are expressed at low levels 
at 6 hpf with increasing levels over time during development through 72 hpf. By 
modulating Gcsf levels through gain and loss of function experiments, Stachura 
et al. demonstrated that the number of HSCs in the CHT at 48 hpf directly correlated 
with Gcsf levels (Fig. 4.3b). Clinically, G-CSF is used to promote granulopoiesis 
and to promote HSC mobilization, thus it is possible that embryonic Gcsf could also 
play a role in developmental HSC migrations.

WNT (Wingless/INT) signaling is a well characterized pathway in regeneration 
and stem cell formation, but recent work from the Traver and Willert labs has dem-
onstrated a new role for the WNT pathway in HSC migration to secondary sites 
such as the CHT (Grainger et  al. 2016). In their study, Grainger and colleagues 
depicted how early Wnt signals, specifically Wnt9a, from the developing aorta, 
prior to 20 hpf, are required for HSCs to undergo an expansion event at 31 hpf. HSC 
loss when wnt9a levels are diminished persists to later stages of embryonic hemato-
poiesis, including CHT seeding, which the authors show is due to an accumulation 
of G1-arrested endothelial cells, preventing the initial HSC amplification needed to 
drive later expansion and seeding.

4.8  Conclusions and Perspectives

During development HSCs acquire the skills they will need throughout the life of an 
organism: self-renew, differentiate, regenerate, and migrate. These attributes are 
mediated via the integration of stem cell intrinsic programs and extrinsic microen-
vironmental signals. Using the imaging and genetic approaches afforded in the 
zebrafish system, researchers have defined niche components involved in hemo-
genic endothelial induction as well as HSC emergence, proliferation, mobilization, 
and engraftment. Although each stage of HSC development occurs in distinct ana-
tomical locations, common themes are emerging among all of the developmental 
niches. Myeloid effector cells, endothelial cells, somite-derived and neural crest-
derived cells serve as niche constituents beginning in the earliest stages of HSC 
ontogeny and into adulthood. The HSC-supportive cells are also developing and 
will therefore provide different signals depending on context. For example, granu-
locytes and macrophages provide inflammatory signaling which promotes HSC 
emergence, but macrophages also aid in HSC mobilization from the DA via secre-
tion of MMPs (Espin-Palazon et al. 2014; He et al. 2015; Li et al. 2014; Travnickova 
et al. 2015).

4 Developmental HSC Microenvironments: Lessons from Zebrafish



48

The preserved juxtaposition of HSCs and niche constituents from emergence 
through adulthood also suggests that the signals employed during development have 
conserved roles in adult HSC biology. For example, interferon signaling is involved 
in HSC specification and then re-used in adulthood to promote HSC proliferation 
and differentiation (Baldridge et al. 2010; Essers et al. 2009; Li et al. 2014). The 
chemokine CXCL12 is a well-known regulator of HSC mobilization and prolifera-
tion in adults (Karpova and Bonig 2015), and it has similar conserved roles in HSC 
development (Nguyen et al. 2014; Zhang et al. 2011). Although the developmentally- 
defined biomechanical forces of blood flow are not known to play a role in adult 
HSCs, the enrichment of HSCs in the bone marrow positioned adjacent to arterioles, 
which have different blood flow properties than sinusoids, suggests that it is possi-
ble that biomechanical properties have a yet to be determined role in adult HSC 
homeostasis. Thus, despite the seemingly different characteristics of adult and 
developing HSCs, studies of both microenvironments provide complementary and 
surprisingly conserved information about the extrinsic regulation of HSCs.

The mounting data on the HSC niche clearly shows that it is a highly complex 
microenvironment with many revelations still to be learned. The discoveries on the 
contribution of the nervous system and neural crest cells to the HSC niche highlight 
the need for researchers to keep an open mind when conceptualizing the microenvi-
ronment. Zebrafish are a great system to make unbiased and novel discoveries 
regarding the niche. Conditional and inducible cell ablation strategies will allow 
researchers to determine which niche constituents are used and when. Tissue- 
specific mutagenesis approaches will now permit the assignment of specific signals 
to specific cell types. Lineage-tracing can provide information about the origins of 
niche cells from development into adulthood. By capitalizing on these advanced 
experimental strategies in zebrafish, researchers should be able to translate findings 
in the developmental HSC niche into approaches to benefit the treatment of blood 
diseases as well as in vitro HSC production.

References

Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J, Suchy-Dicey 
A, Yoshimoto M, Lensch MW, Yoder MC, Garcia-Cardena G, Daley GQ (2009) Biomechanical 
forces promote embryonic haematopoiesis. Nature 459:1131–1135

Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its 
superfamily: 25 years later, a golden journey. Blood 119:651–665

Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal 
integration in development. Science 284:770–776

Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA (2010) Quiescent haematopoietic 
stem cells are activated by IFN-gamma in response to chronic infection. Nature 465:793–797

Baldridge MT, King KY, Goodell MA (2011) Inflammatory signals regulate hematopoietic stem 
cells. Trends Immunol 32:57–65

Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. 
Neuropharmacology 38:1083–1152

S. Nik et al.



49

Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D (2010) Haematopoietic stem cells 
derive directly from aortic endothelium during development. Nature 464:108–111

Blank U, Karlsson S (2015) TGF-beta signaling in the control of hematopoietic stem cells. Blood 
125:3542–3550

Blaser BW, Moore JL, Hagedorn EJ, Li B, Riquelme R, Lichtig A, Yang S, Zhou Y, Tamplin OJ, 
Binder V, Zon LI (2017) CXCR1 remodels the vascular niche to promote hematopoietic stem 
and progenitor cell engraftment. J Exp Med 214:1011–1027

Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C (2010) In vivo imag-
ing of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464:116–120

Bresciani E, Carrington B, Wincovitch S, Jones M, Gore AV, Weinstein BM, Sood R, Liu PP 
(2014) CBFbeta and RUNX1 are required at 2 different steps during the development of hema-
topoietic stem cells in zebrafish. Blood 124:70–78

Bronner ME, Simoes-Costa M (2016) The neural crest migrating into the twenty-first century. Curr 
Top Dev Biol 116:115–134

Burns CE, DeBlasio T, Zhou Y, Zhang J, Zon L, Nimer SD (2002) Isolation and characterization 
of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Exp 
Hematol 30:1381–1389

Butko E, Distel M, Pouget C, Weijts B, Kobayashi I, Ng K, Mosimann C, Poulain FE, McPherson 
A, Ni CW, Stachura DL, Del Cid N, Espin-Palazon R, Lawson ND, Dorsky R, Clements WK, 
Traver D (2015) Gata2b is a restricted early regulator of hemogenic endothelium in the zebraf-
ish embryo. Development 142:1050–1061

Butko E, Pouget C, Traver D (2016) Complex regulation of HSC emergence by the Notch signal-
ing pathway. Dev Biol 409:129–138

Carroll KJ, Esain V, Garnaas MK, Cortes M, Dovey MC, Nissim S, Frechette GM, Liu SY, Kwan 
W, Cutting CC, Harris JM, Gorelick DA, Halpern ME, Lawson ND, Goessling W, North TE 
(2014) Estrogen defines the dorsal-ventral limit of VEGF regulation to specify the location of 
the hemogenic endothelial niche. Dev Cell 29:437–453

Clements WK, Kim AD, Ong KG, Moore JC, Lawson ND, Traver D (2011) A somitic Wnt16/
Notch pathway specifies haematopoietic stem cells. Nature 474:220–224

Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL, Delfino JJ, Siegel NR, 
Leimgruber RM, Feder J (1989) Tumor vascular permeability factor stimulates endothelial cell 
growth and angiogenesis. J Clin Invest 84:1470–1478

Crane GM, Jeffery E, Morrison SJ (2017) Adult haematopoietic stem cell niches. Nat Rev Immunol 
17(9):573–590

Damm EW, Clements WK (2017) Pdgf signalling guides neural crest contribution to the haemato-
poietic stem cell specification niche. Nat Cell Biol 19:457–467

Davidson AJ, Zon LI (2004) The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. 
Oncogene 23:7233–7246

Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, 
Horrevoets AJ (2002) Prolonged fluid shear stress induces a distinct set of endothelial cell 
genes, most specifically lung Kruppel-like factor (KLF2). Blood 100:1689–1698

Del Rey A, Chrousos GP, Besedovsky HO (2008) The hypothalamus-pituitary-adrenal axis. 
Elsevier, Amsterdam; Boston. xvii, 394 p

Dieterlen-Lievre F (1975) On the origin of haemopoietic stem cells in the avian embryo: an experi-
mental approach. J Embryol Exp Morphol 33:607–619

Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric 
oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

Espin R, Roca FJ, Candel S, Sepulcre MP, Gonzalez-Rosa JM, Alcaraz-Perez F, Meseguer J, 
Cayuela ML, Mercader N, Mulero V (2013) TNF receptors regulate vascular homeostasis in 
zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3. 
Dis Model Mech 6:383–396

Espin-Palazon R, Stachura DL, Campbell CA, Garcia-Moreno D, Del Cid N, Kim AD, Candel S, 
Meseguer J, Mulero V, Traver D (2014) Proinflammatory signaling regulates hematopoietic 
stem cell emergence. Cell 159:1070–1085

4 Developmental HSC Microenvironments: Lessons from Zebrafish



50

Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, Trumpp A (2009) 
IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458:904–908

Faustman D, Davis M (2010) TNF receptor 2 pathway: drug target for autoimmune diseases. Nat 
Rev Drug Discov 9:482–493

Feng CG, Weksberg DC, Taylor GA, Sher A, Goodell MA (2008) The p47 GTPase Lrg-47 (Irgm1) 
links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2:83–89

Grainger S, Richter J, Palazon RE, Pouget C, Lonquich B, Wirth S, Grassme KS, Herzog W, Swift 
MR, Weinstein BM, Traver D, Willert K (2016) Wnt9a Is required for the aortic amplification 
of nascent hematopoietic stem cells. Cell Rep 17:1595–1606

Groenendijk BC, Van der Heiden K, Hierck BP, Poelmann RE (2007) The role of shear stress 
on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken 
embryos in a venous ligation model. Physiology (Bethesda) 22:380–389

Habeck H, Odenthal J, Walderich B, Maischein H, Schulte-Merker S, screen c T (2002) Analysis 
of a zebrafish VEGF receptor mutant reveals specific disruption of angiogenesis. Curr Biol 
12:1405–1412

Haffter P (1996) The identification of genes with unique and essential functions in the develop-
ment of the zebrafish, Danio rerio. Development. 123:1–36

He Q, Zhang C, Wang L, Zhang P, Ma D, Lv J, Liu F (2015) Inflammatory signaling regulates 
hematopoietic stem and progenitor cell emergence in vertebrates. Blood 125:1098–1106

Ho RK, Kimmel CB (1993) Commitment of cell fate in the early zebrafish embryo. Science 
261:109–111

Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, 
and transforming growth factor-beta in vascular morphogenesis. Circ Res 102:637–652

Hotokezaka Y, van Leyen K, Lo EH, Beatrix B, Katayama I, Jin G, Nakamura T (2009) alphaNAC 
depletion as an initiator of ER stress-induced apoptosis in hypoxia. Cell Death Differ 
16:1505–1514

Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK 
(2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 
31:227–229

Jaffredo T, Lempereur A, Richard C, Bollerot K, Gautier R, Canto PY, Drevon C, Souyri M, 
Durand C (2013) Dorso-ventral contributions in the formation of the embryonic aorta and the 
control of aortic hematopoiesis. Blood Cells Mol Dis 51:232–238

Jing L, Tamplin OJ, Chen MJ, Deng Q, Patterson S, Kim PG, Durand EM, McNeil A, Green JM, 
Matsuura S, Ablain J, Brandt MK, Schlaeger TM, Huttenlocher A, Daley GQ, Ravid K, Zon 
LI (2015) Adenosine signaling promotes hematopoietic stem and progenitor cell emergence. 
J Exp Med 212:649–663

Kalev-Zylinska ML, Horsfield JA, Flores MV, Postlethwait JH, Vitas MR, Baas AM, Crosier PS, 
Crosier KE (2002) Runx1 is required for zebrafish blood and vessel development and expres-
sion of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. 
Development 129:2015–2030

Karpova D, Bonig H (2015) Concise review: CXCR4/CXCL12 signaling in immature hematopoi-
esis—lessons from pharmacological and genetic models. Stem Cells 33:2391–2399

Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon- 
mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 
7:133–144

Khan JA, Mendelson A, Kunisaki Y, Birbrair A, Kou Y, Arnal-Estape A, Pinho S, Ciero P, Nakahara 
F, Ma'ayan A, Bergman A, Merad M, Frenette PS (2016) Fetal liver hematopoietic stem cell 
niches associate with portal vessels. Science 351:176–180

Kim AD, Melick CH, Clements WK, Stachura DL, Distel M, Panakova D, MacRae C, Mork LA, 
Crump JG, Traver D (2014) Discrete Notch signaling requirements in the specification of 
hematopoietic stem cells. EMBO J 33:2363–2373

Kirstein-Miles J, Scior A, Deuerling E, Morimoto RI (2013) The nascent polypeptide-associated 
complex is a key regulator of proteostasis. EMBO J 32:1451–1468

S. Nik et al.



51

Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of 
cell transition. Nature 464:112–115

Kissa K, Murayama E, Zapata A, Cortes A, Perret E, Machu C, Herbomel P (2008) Live imaging 
of emerging hematopoietic stem cells and early thymus colonization. Blood 111:1147–1156

Kobayashi Y (2008) The role of chemokines in neutrophil biology. Front Biosci 13:2400–2407
Kobayashi I, Kobayashi-Sun J, Kim AD, Pouget C, Fujita N, Suda T, Traver D (2014) Jam1a- 

Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling. Nature 
512:319–323

Kobayashi H, Kobayashi CI, Nakamura-Ishizu A, Karigane D, Haeno H, Yamamoto KN, Sato T, 
Ohteki T, Hayakawa Y, Barber GN, Kurokawa M, Suda T, Takubo K (2015) Bacterial c-di-GMP 
affects hematopoietic stem/progenitors and their niches through STING. Cell Rep 11:71–84

Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, 
Ito K, Mar JC, Bergman A, Frenette PS (2013) Arteriolar niches maintain haematopoietic stem 
cell quiescence. Nature 502:637–643

Kwan W, Cortes M, Frost I, Esain V, Theodore LN, Liu SY, Budrow N, Goessling W, North 
TE (2016) The central Nervous system regulates embryonic HSPC production via stress- 
Responsive glucocorticoid receptor signaling. Cell Stem Cell 19:370–382

Kyba M, Daley GQ (2003) Hematopoiesis from embryonic stem cells: lessons from and for ontog-
eny. Exp Hematol 31:994–1006

Lauring B, Sakai H, Kreibich G, Wiedmann M (1995) Nascent polypeptide-associated complex 
protein prevents mistargeting of nascent chains to the endoplasmic reticulum. Proc Natl Acad 
Sci U S A 92:5411–5415

Lee JS, Yu Q, Shin JT, Sebzda E, Bertozzi C, Chen M, Mericko P, Stadtfeld M, Zhou D, Cheng 
L, Graf T, MacRae CA, Lepore JJ, Lo CW, Kahn ML (2006) Klf2 is an essential regulator of 
vascular hemodynamic forces in vivo. Dev Cell 11:845–857

Lee Y, Manegold JE, Kim AD, Pouget C, Stachura DL, Clements WK, Traver D (2014) FGF sig-
nalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling. 
Nat Commun 5:5583

Li Y, Esain V, Teng L, Xu J, Kwan W, Frost IM, Yzaguirre AD, Cai X, Cortes M, Maijenburg 
MW, Tober J, Dzierzak E, Orkin SH, Tan K, North TE, Speck NA (2014) Inflammatory sig-
naling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev 
28:2597–2612

Lim SE, Esain V, Kwan W, Theodore LN, Cortes M, Frost IM, Liu SY, North TE (2017) HIF1 
alpha-induced PDGFRbeta signaling promotes developmental HSC production via IL-6 activa-
tion. Exp Hematol 46:83–95.e6

Lin Z, Kumar A, SenBanerjee S, Staniszewski K, Parmar K, Vaughan DE, Gimbrone MA Jr, 
Balasubramanian V, Garcia-Cardena G, Jain MK (2005) Kruppel-like factor 2 (KLF2) regu-
lates endothelial thrombotic function. Circ Res 96:e48–e57

Massague J, Gomis RR (2006) The logic of TGFbeta signaling. FEBS Lett 580:2811–2820
Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM 

region. Cell 86:897–906
Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is 

regulated by circadian oscillations. Nature 452:442–447
Monteiro R, Pinheiro P, Joseph N, Peterkin T, Koth J, Repapi E, Bonkhofer F, Kirmizitas A, Patient 

R (2016) Transforming growth factor beta drives hemogenic endothelium programming and 
the transition to hematopoietic stem cells. Dev Cell 38:358–370

Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin HF, Handin RI, Herbomel P (2006) 
Tracing hematopoietic precursor migration to successive hematopoietic organs during zebraf-
ish development. Immunity 25:963–975

Murayama E, Sarris M, Redd M, Le Guyader D, Vivier C, Horsley W, Trede N, Herbomel P (2015) 
NACA deficiency reveals the crucial role of somite-derived stromal cells in haematopoietic 
niche formation. Nat Commun 6:8375

4 Developmental HSC Microenvironments: Lessons from Zebrafish



52

Nguyen PD, Hollway GE, Sonntag C, Miles LB, Hall TE, Berger S, Fernandez KJ, Gurevich DB, 
Cole NJ, Alaei S, Ramialison M, Sutherland RL, Polo JM, Lieschke GJ, Currie PD (2014) 
Haematopoietic stem cell induction by somite-derived endothelial cells controlled by meox1. 
Nature 512:314–318

North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman 
TV, Jang IH, Grosser T, Fitzgerald GA, Daley GQ, Orkin SH, Zon LI (2007) Prostaglandin E2 
regulates vertebrate haematopoietic stem cell homeostasis. Nature 447:1007–1011

North TE, Goessling W, Peeters M, Li P, Ceol C, Lord AM, Weber GJ, Harris J, Cutting CC, Huang 
P, Dzierzak E, Zon LI (2009) Hematopoietic stem cell development is dependent on blood flow. 
Cell 137:736–748

Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 
132:631–644

Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, Kratz JR, Lin Z, Jain MK, 
Gimbrone MA Jr, Garcia-Cardena G (2006) Integration of flow-dependent endothelial pheno-
types by Kruppel-like factor 2. J Clin Invest 116:49–58

Pierce H, Zhang D, Magnon C, Lucas D, Christin JR, Huggins M, Schwartz GJ, Frenette PS 
(2017) Cholinergic signals from the CNS regulate G-CSF-mediated HSC mobilization from 
bone marrow via a glucocorticoid signaling relay. Cell Stem Cell 20:648–658.e4

Pillay LM, Mackowetzky KJ, Widen SA, Waskiewicz AJ (2016) Somite-derived retinoic acid reg-
ulates Zebrafish hematopoietic stem cell formation. PLoS One 11:e0166040

Pombo-de-Oliveira MS, Koifman S, Brazilian L, Collaborative Study Group of Infant Acute 
(2006) Infant acute leukemia and maternal exposures during pregnancy. Cancer Epidemiol 
Biomark Prev 15:2336–2341

Pouget C, Peterkin T, Simoes FC, Lee Y, Traver D, Patient R (2014) FGF signalling restricts hae-
matopoietic stem cell specification via modulation of the BMP pathway. Nat Commun 5:5588

Robertson AL, Avagyan S, Gansner JM, Zon LI (2016) Understanding the regulation of vertebrate 
hematopoiesis and blood disorders—big lessons from a small fish. FEBS Lett 590:4016–4033

Sawamiphak S, Kontarakis Z, Stainier DY (2014) Interferon gamma signaling positively regulates 
hematopoietic stem cell emergence. Dev Cell 31:640–653

Simard M, Drolet R, Blomquist CH, Tremblay Y (2011) Human type 2 17beta-hydroxysteroid 
dehydrogenase in umbilical vein and artery endothelial cells: differential inactivation of sex 
steroids according to the vessel type. Endocrine 40:203–211

Sousa JB, Diniz C (2017) The adenosinergic system as a therapeutic target in the vasculature: new 
ligands and challenges. Molecules 22

Stachura DL, Svoboda O, Campbell CA, Espin-Palazon R, Lau RP, Zon LI, Bartunek P, Traver D 
(2013) The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines 
and their roles in hematopoietic development and maintenance. Blood 122:3918–3928

Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG (2011) Dynamic variation in 
cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med 208:273–284

Takizawa H, Boettcher S, Manz MG (2012) Demand-adapted regulation of early hematopoiesis in 
infection and inflammation. Blood 119:2991–3002

Tamplin OJ, Durand EM, Carr LA, Childs SJ, Hagedorn EJ, Li P, Yzaguirre AD, Speck NA, Zon LI 
(2015) Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. 
Cell 160:241–252

Travnickova J, Tran Chau V, Julien E, Mateos-Langerak J, Gonzalez C, Lelievre E, Lutfalla G, 
Tavian M, Kissa K (2015) Primitive macrophages control HSPC mobilization and definitive 
haematopoiesis. Nat Commun 6:6227

Tulchinsky D, Hobel CJ, Yeager E, Marshall JR (1972) Plasma estrone, estradiol, estriol, proges-
terone, and 17-hydroxyprogesterone in human pregnancy I Normal pregnancy. Am J Obstet 
Gynecol 112:1095–1100

Walmsley M, Ciau-Uitz A, Patient R (2002) Adult and embryonic blood and endothelium derive 
from distinct precursor populations which are differentially programmed by BMP in Xenopus. 
Development 129:5683–5695

S. Nik et al.



53

Wang L, Zhang P, Wei Y, Gao Y, Patient R, Liu F (2011) A blood flow-dependent klf2a-NO signal-
ing cascade is required for stabilization of hematopoietic stem cell programming in zebrafish 
embryos. Blood 118:4102–4110

Yang Q, Liu X, Zhou T, Cook J, Nguyen K, Bai X (2016) RNA polymerase II pausing modulates 
hematopoietic stem cell emergence in zebrafish. Blood 128:1701–1710

Zhang P, Liu F (2011) In vivo imaging of hematopoietic stem cell development in the zebrafish. 
Front Med 5:239–247

Zhang Y, Jin H, Li L, Qin FX, Wen Z (2011) cMyb regulates hematopoietic stem/progenitor cell 
mobilization during zebrafish hematopoiesis. Blood 118:4093–4101

Zhou L, Nguyen AN, Sohal D, Ying Ma J, Pahanish P, Gundabolu K, Hayman J, Chubak A, 
Mo Y, Bhagat TD, Das B, Kapoun AM, Navas TA, Parmar S, Kambhampati S, Pellagatti A, 
Braunchweig I, Zhang Y, Wickrema A, Medicherla S, Boultwood J, Platanias LC, Higgins 
LS, List AF, Bitzer M, Verma A (2008) Inhibition of the TGF-beta receptor I kinase promotes 
hematopoiesis in MDS. Blood 112:3434–3443

4 Developmental HSC Microenvironments: Lessons from Zebrafish



55© Springer International Publishing AG 2017 
A. Birbrair (ed.), Stem Cell Microenvironments and Beyond,  
Advances in Experimental Medicine and Biology 1041,  
DOI 10.1007/978-3-319-69194-7_5

Chapter 5
Spinal Cord Stem Cells 
In Their Microenvironment: The Ependyma 
as a Stem Cell Niche

Nicolás Marichal, Cecilia Reali, Omar Trujillo-Cenóz, and Raúl E. Russo

Abstract The ependyma of the spinal cord is currently proposed as a latent neural 
stem cell niche. This chapter discusses recent knowledge on the developmental 
origin and nature of the heterogeneous population of cells that compose this stem 
cell microenviroment, their diverse physiological properties and regulation. The 
chapter also reviews relevant data on the ependymal cells as a source of plasticity 
for spinal cord repair.

Keywords Central canal • Progenitor cells • Neural stem cells • Radial glia • Spinal 
cord • Plasticity • Regeneration

5.1  Introduction

In the adult mammalian brain, stem cells persist in the subventricular zone (SVZ) 
and the dentate gyrus (DG) of the hippocampus where together with other cell 
types, they form complex three dimensional microenvironments or neurogenic 
niches  (Alvarez-Buylla and Garcı́a-Verdugo 2002). The identification of similar 
microenvironmental entities supporting stem cells in the spinal cord has been less 
conclusive. However, the idea that the region surrounding the central canal 
(CC)  -commonly believed as a layer of homogeneous epithelial-like cells- is a 
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potential stem cell niche sharing some features with those in the brain has gained 
ground. In this chapter, we focus on the properties of cells within this spinal cord 
stem cell niche in mammals and non-mammalian vertebrates. We first overview the 
current knowledge about the developmental origin of the cells that line the CC. Next, 
we address their morphological, molecular and functional properties in the postna-
tal spinal cord and discuss the potential of ependymal cells isolated from their natu-
ral microenvironment. We finally review recent data on the signals that modulate the 
biology of cells within this niche and discuss the reaction of ependymal cells in 
diverse models of spinal cord injuries or pathologies with implications for 
self-repair.

5.2  The Origin of Cells Within the CC Niche

In the caudal portion of the neural tube, progenitors are organized in dorso-ventral 
spatial domains (Jessell 2000; Briscoe et  al. 2000) that initially produce distinct 
types of neurons to later generate oligodendrocytes and astrocytes. Six ventral 
domains can be identified in the ventral part of the neural tube based on the combi-
natorial expression of various transcription factors (ventral to dorsal): the floor plate 
domain (FP, Foxa2,Shh), p3 (Nkx2.2, Nkx6.1), pMN (Olig2, Pax6, Nkx6.1), p2 
(Nkx6.1, Pax6, Irx3), p1 (Dbx2, Nkx6.2, Pax6, IrX3), and p0 (Dbx1, Dbx2, Pax6, 
Irx3) (p meaning progenitor and MN motoneuron; Briscoe et al. 2000; Lee and Pfaff 
2001; Dessaud et al. 2008). The study of the dynamic expression of neural progeni-
tor genes in distinct domains of the neuroepithelium indicate that adult ependymal 
cells arise from progenitors in the pMN and p2 domains, as they retain expression 
of Nkx6.1 (p3, pMN and p2 domains) but not Nkx2.2 (p3 domain) (Fu et al. 2003). 
Moreover, lineage-tracing experiments using a tamoxifen-inducible Cre- 
recombinase inserted into the Olig2 locus demonstrated that some ependymal cells 
are produced within the pMN domain (Masahira et al. 2006). More recent experi-
ments with different transgenic Cre-recombinase expressing mice support the view 
that the mature ependymal region in the spinal cord comprises cells with different 
embryonic origins: dorsal ependymal cells originate from the embryonic p2 domain 
whereas ventral cells derive from pMN progenitors (Yu et al. 2013).

The exact timing of birth of ependymal cells has been explored with 5-bromo- 2-
deoxyuridine pulses applied at different stages of embryonic life and various sur-
vival periods. In the brain, the majority of ependymal cells appeared to be generated 
between E14 and E16 and derived from radial glial cells (Spassky et al. 2005). In 
the spinal cord, they seem to appear later. Most ependymal cells in the rat originate 
initially around E18 and continue until postnatal days 8 and 15 (Sevc et al. 2011). 
The increment in cell number accompanies the closure and transformation of the 
primitive lumen into the post-embryonic CC. The transcription factor FoxJ1 in the 
brain is involved in the differentiation of ependimocytes from radial glia (Jacquet 
et al. 2009). A recent study using a FoxJ1-CreER transgenic mouse dates the earliest 
birth of ependymal cells at E15.5 with the CC fully populated by these cells at P10 
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(Li et al. 2016). Ependymal cells in the mouse spinal cord continue dividing postna-
tally to become quiescent 9 weeks after birth (Sabourin et al. 2009).

Besides ependymal cells, a particular type of neuron contributes to the lining of 
the CC. The presence of cells with neuronal characteristics in this area was pro-
posed by studies conducted at the beginning of the last century (reviewed by Vigh- 
Teichmann and Vigh 1983). They were called cerebrospinal fluid contacting neurons 
(CSFcNs) because their peculiar morphology with a prominent process that con-
tacts the CC lumen (Vigh and Vigh-Teichmann 1998; Vigh et al. 1977, 1983) and 
their cell bodies located sub-ependymally. Pioneering studies performed in the rat 
spinal cord showed that neurogenesis is only present during the period between E11 
and E16 (Nornes and Das 1972, 1974). The production of CSFcNs in the rat spinal 
cord starts in E12 and is maintained until E22, peaking between E14 and E15 (Kutna 
et al. 2014). CSFcNs have intriguing features (described in detail below) resembling 
immature neurons in adult neurogenic niches (Marichal et al. 2009). In the mouse 
spinal cord, CSFcNs are produced from two distinct dorsoventral regions during 
embryonic life. Most CSFcNs derive from progenitors circumscribed to the late-p2 
and the oligodendrogenic (pOL, called pMN during the early neurogenic period, see 
above) domains, whereas a second subset of CSFcNs arises from cells bordering the 
FP (Petracca et al. 2016). These cells start to be generated at E10 and continue to 
arise until E14–E16, a developmental stage in which most spinal neurons have been 
already produced.

Taken together, both ependymal cells and neurons contacting the CC seem to be 
generated in late stages of spinal cord development, a fact that may be related with 
the postnatal maintenance of some peculiar anatomical, molecular and functional 
features of embryonic progenitors and neuroblasts.

5.3  The Nature of Neural Stem Cells

The first progenitors in the neural tube are neuroephitelial cells which at the onset 
of neurogenesis become radial glia (RG), the founders of most neurogenic lineages 
during development (Kriegstein and Alvarez-Buylla 2009). Both neuroepithelial 
cells and RG have a pronounced polarity with an apical pole bearing a single pri-
mary cilium protruding into the ventricular lumen and a distal process in contact 
with the pia (Kriegstein and Alvarez-Buylla 2009). This polarity is critical to deter-
mine and regulate the phenotype of neural stem cells (Alvarez-Buylla et al. 2001; 
Pinto and Götz 2007). For example, the apical pole of RG contains components like 
the centrosome and various key proteins (e.g., prominin, PAR3) whose inheritance 
during division determines the fate of daughter cells. In the adult mammalian brain, 
it is currently accepted that progenitors are a subtype of astrocyte (called B cells) 
that retain key features of both neuroepithelial cells and RG (Doetsch et al. 1997; 
Horner and Palmer 2003; Ming and Song 2005; Lledo et al. 2006; Lim et al. 2008). 
The cell bodies of B cells in the subventricular zone (SVZ) are intermingled with 
multiciliated ependymal cells. Each B cell exhibits an irregular process bearing a 
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single primary cilium (9 + 0) projecting into the ventricle lumen. These cells form 
tube–like structures ensheathing the so called A-type cells when migrating towards 
the olfactory bulb (Lois et  al. 1996). Recent fine structural studies performed in 
mice (Cebrián-Silla et al. 2017), indicated that some B cells show envelope-limited 
chromatin sheets, a rare specialization of the nuclear membrane initially described 
in blood neutrophils (Davies and Small 1968). These unusual nuclear compartments 
have been associated with the isolation of telomeres and epigenetic modifications. 
When dealing with other commonly accepted adult neurogenic region like the hip-
pocampus, the unequivocal identification of a cell type as a “primary precursor” is 
less clear. According to Kempermann et al. (2008) several cell types “are involved 
in the course of adult hippocampal neurogenesis”. The common feature is that pre-
cursor cells found in the dentate gyrus are of astroglial nature (Seri et al. 2001). 
However, not all neural progenitors share these anatomical features, such as inter-
mediate progenitors in the SVZ of the developing cortex which have multipolar 
processes that do not contact the ventricle or pial surface (Kriegstein and Alvarez- 
Buylla 2009). In fact, progenitors are heterogeneous cells expressing different mol-
ecules that seem related with their lineage potential (Pinto and Götz 2007). For 
example, expression of brain lipid binding protein (BLBP) seems to determine RG 
as bi-potent or multipotent progenitors (Pinto and Götz 2007; Hartfuss et al. 2001; 
Anthony et al. 2007). The transcription factor Pax6 is a major regulator of the sub-
population of neurogenic RG (Götz et al. 1998; Heins et al. 2002; Bel-Vialar et al. 
2007) and progenitors in the adult mammalian brain (Kohwi et al. 2005; Maekawa 
et al. 2005). In the developing spinal cord Pax6 interacts in a combinatorial manner 
with other transcription factors such as Olig2, Nkx2.2 and Sox9 to control neuro-
genesis and gliogenesis (Heins et  al. 2002; Lee and Pfaff 2001; Rowitch 2004; 
Nacher et al. 2005; Guillemot 2007; Sugimori et al. 2007). The importance of the 
combination of key transcription factors in determining the biology of progenitors 
is highlighted by the possibility of reprogramming somatic cells to pluripotent stem 
cells with just a handful of factors (Yamanaka 2012).

5.4  Progenitor Cells in the Spinal Cord: The CC as a Stem 
Cell Niche

The identity of stem cells in the adult spinal cord has been difficult to establish and 
remains controversial. Although Horner et al. (2000) described proliferating cells in 
the grey and white matter of the rat spinal cord, other studies showed that the vast 
majority of stem cells resides within the ependyma (Mothe and Tator 2005; Sabourin 
et al. 2009). In most text-books the ependyma is depicted as a layer of ephitelial 
cells (Peters et al. 1991). Nevertheless, this oversimplified view has been challenged 
by both classical (Ramón y Cajal 1909) and recent studies. Both in mammals and 
non-mammalian vertebrates, the ependymal region is a complex structure consisting 
of diverse kinds of cells arranged in lateral and dorsal-ventral domains (Schnapp 
et al. 2005; Trujillo-Cenóz et al. 2007; Marichal et al. 2012). In murine, the cell 
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mantle lining the CC harbors no less than three morphologically different cell types: 
(a) ciliated ependymocytes with short basal processes entering the adjacent nervous 
tissue, (b) ciliated ependymocytes with long processes reaching the pial surface 
(RG-like cells) and (c) typical CSFcNs (Fig. 5.1a–c) The first kind of ependymal 
cell predominates in the lateral domains of the CC while RG-like cells are mainly 
concentrated in both polar regions. In contrast, CSFcNs do not have preferential 

Fig. 5.1 (a) Nestin + processes (in red) from cell bodies far apart from the ependymal channel 
lumen invade the layer composed of ependymocytes and CSFcNs (GFP). (b–c) The CSFcNs of 
genetically modified mice expressing GFP under the control of GATA3 transcription factor 
(GATA3-GFP). GFP is expressed in both cell bodies (arrows) and intra-lumen enlarged apical 
processes. These peculiar neurons also express DCX, a marker of immature neurons. (c), 3D image 
of a stalk of 54 optical sections covering the CC a GATA3-GFP mouse (CSFcNs are pointed by 
arrows). The actin skeleton of the apical compartments of the ependymal cells appear as a red fluo-
rescent network (phalloidin conjugated fluorophore). The enlarged rectangle shows a cross section 
of a neuron prolongation passing through an apparent “hole” of the actin network. Calibration 
bars: (a), 20 μm; (b) and (c), 5 μm
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locations (Fig. 5.1b). It is pertinent to discuss here the proposed presence of a fourth 
kind of cell termed “tanycytes” (Horstmann 1954). These cells, firstly described in 
the brain of cartilaginous fishes (Horstmann 1954), have the aspect of RG and are 
particularly abundant in the floor and ventrolateral walls of the third ventricle of 
mammals. Taking into account their location and other morphological details, they 
are usually subdivided into alpha and beta subtypes (Goodman and Hajihosseini 
2015). Even though some authors have used the same term to identify a particular 
kind of ependymal cell in the spinal cord of mice (Meletis et al. 2008), cells with a 
morphological or molecular phenotype of tanycytes in the rat or turtle spinal cord 
has not been reported (Trujillo-Cenóz et al. 2007; Marichal et al. 2012). It is worth 
noting that the CC is far from being an empty channel. In addition to the cilia and 
shorter microvilli projections, the CC contains cellular material of diverse origin. In 
the particular case of mice, the bulbous terminals of the numerous CSFcNs appear 
as the most conspicuous well organized structures within the CC lumen. Together 
with these structurally complex cell compartments, there are also numerous cell 
projections arising from the ependymocytes apical membranes. In rodents, TEM 
studies show that intermingled with motile cilia there are vesicles of dissimilar sizes 
and shapes which seem to be floating freely in the CSF. In other cases, membrane 
extrusions attached by a thin process to their parent cells can be observed. This data 
strongly suggest that the release of cell membranes into the CSF is a common mech-
anism to introduce different kinds of molecules into the CSF. Marzesco et al. (2005) 
have proposed that membrane bounded particles are the carriers within the CC of 
the stem cell marker prominin 1. In other vertebrates like turtles, the CC contains 
together with vesicular material, a clearly visible Reissner’s ribbon occupying most 
of the channel lumen. Nevertheless, in rodents the condensation of Reissner’s rib-
bon glycoproteins only becomes apparent within the phylum terminalis. At this 
level, condensation of the proteins takes the form of the so-called massa caudalis 
(Molina et al. 2001).

As already mentioned, the basal pole of the ependimocytes also bear short and 
long processes that invade adjacent neuropile areas vanishing the apparent boundar-
ies between the ependymal layer and the surrounding spinal tissue. The longest 
processes reach the pial surface whereas the shorter ones contact neighbor capillar-
ies or end intermingled with glial and neuronal processes composing of adjacent 
neuropile zones. As found in other well recognized stem cell niches, progenitor 
cells are related to their neighbors at the level of their apical poles by zonnula 
occludens and gap junctions (Russo et al. 2008; Marichal et al. 2012).

Besides structural differences, several neural stem/progenitor cell markers such 
as Sox2, CD15, CD133, nestin, vimentin, BLBP and GFAP are expressed by sub-
populations of cells lining the CC (Meletis et al. 2008; Hamilton et al. 2009; Hugnot 
and Franzen 2011). As in the brain (Spassky et al. 2005), most cells in the lateral 
domains of the CC express the ependymal cell marker S100β, with a sub-population 
that co-express the RG marker 3CB2 or vimentin and had a basal process projecting 
away from the CC, suggesting a progenitor cell nature (Pinto and Götz 2007). 
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Indeed, many S100β+/3CB2+/vimentin + cells express PCNA –indicating that they 
are cycling cells- with few undergoing division as indicated by pH3 expression 
(Eisch and Mandyam 2007). The expression of nestin -a marker of neuroepithelial 
cells and RG (Pinto and Götz 2007)- defines a second domain of heterogeneous 
cells contacting the poles of the CC (Fig. 5.1a). In adult mice, nestin is expressed 
preferentially on cells contacting the dorsal pole of the CC (Hamilton et al. 2009). 
Although the perikarya of these cells in neonatal rats lay at various distances from 
the CC, their centrosomes are always located in apical endfeet some of which bear 
a single cilium with a 9 + 0 organization, a structural signature of neural stem cells 
(Alvarez-Buylla et al. 2001; Kriegstein and Alvarez-Buylla 2009). The fact that pH3 
nuclei belonging to nestin + cells are always found close to the CC lumen supports 
the idea that RG nuclei in the post-natal spinal cord move apically to divide as 
described for neurogenic RG in the embryo (Kriegstein and Alvarez-Buylla 2009). 
Progenitors in adult neurogenic niches express GFAP in addition to nestin (Ma et al. 
2008). However, the ependyma in the rat lacked GFAP immunoreactivity, in con-
trast with GFAP-GFP transgenic mice which bear GFAP+ cells contacting the dor-
sal pole (Sabourin et al. 2009). The discrepancy between data obtained in rats and 
mice may be species specific or age related (neonatal versus adult). Another feature 
suggesting that midline domains may not be identical in their potential is the fact 
that cells contacting the ventral but not the dorsal pole express the astrocyte and 
ependymal cell marker S100β (Marichal et  al. 2012). In line with this, GFAP 
RG-like cells located on the dorsal pole of the ependyma of adult mice have been 
proposed to be the only cells capable to generate several passages of neurospheres 
producing astrocytes, oligodendrocytes and neurons (Sabourin et  al. 2009, dis-
cussed in more detail below). Another possibility is that nestin+/S100β + cells on 
the ventral pole may be a transitional stage between RG and ependymal cells as 
described during brain development (Spassky et al. 2005).

The occurrence of a well-developed actin skeleton completes the structural and 
molecular architecture of the ependymal region. 3D reconstructions using 
phalloidin- conjugated fluorophores have revealed that the apical portions of the 
ependymal cells are surrounded by a dense network of actin fibers usually associ-
ated with the zonula adherens (Fig. 5.1c). The same technical approach discloses a 
dense actin network close to the inner layer of the plasma membrane of all ependy-
mal cells. The use of genetically modified mice whose CSFcNs express GFP com-
bined with actin staining have demonstrated that the apical dendrites of these nerve 
cells are surrounded by the actin rich apical segments of ependymocytes (Fig. 5.1 c, 
unpublished). Experimental studies have revealed that intraventricular perfusion of 
cytochalasin B produce a pronounced disarrangement of actin microfilaments in 
ependymocytes. In turn, they became rounded up and loosened from their neighbors 
(Mestres and Garfia 1980). It is reasonable to speculate that migration of the epen-
dymal cells induced by different kind of injuries should be preceded by disorganiza-
tion of the normal actin network.
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5.5  Membrane Properties of Cells in the CC Stem Cell Niche

The membrane properties of cells lining the CC has been characterized both in the 
spinal cord of turtles and rats (Russo et al. 2004, 2008; Marichal et al. 2009, 2012). 
Both in the turtle and neonatal rats, the cells in the lateral domains of the CC had 
electrophysiological properties similar to those of progenitors during cortical devel-
opment: (a) low input resistances, (b) passive responses, (c) hyperpolarized resting 
membrane potentials and (d) extensive gap junction coupling via Cx43 (Bittman 
et al. 1997; Noctor et al. 2002). The cluster of electrically and metabolically cou-
pled ependymal cells in the lateral aspects of the CC in turtles matches the expres-
sion of BLBP and the transcription factor Pax6 and Nkx6.1, suggesting these cells 
are multipotent progenitors (Pinto and Götz 2007). In line with this electrophysio-
logical and molecular signature, these progenitors have a higher rate of proliferation 
to those located in dorsal or ventral domains (Russo et al. 2008) and can generate 
both glial cells and neurons (Fernández et  al. 2002). Whereas progenitors in the 
lateral domains of rodents share some properties of those in non-mammalian verte-
brates such as the predominance of passive membrane properties, extensive cou-
pling via Cx43 and higher rates of proliferation than midline domains, they lack the 
expression of BLBP and Pax6, a fact that may be related to their inability to gener-
ate new neurons in the post-natal life (Marichal et al. 2009).

In contrast to cells on lateral domains, RG in dorsal and ventral domains are not 
electrically coupled via Cx43 and function as individual units, both in reptiles 
(Russo et al. 2008) and mammals (Marichal et al. 2012). Unlike neurogenic RG in 
the developing cortex (Noctor et al. 2002), cells in the midline domains of the CC 
have active membrane properties. In turtles, a subset of cells in the midline with 
the morphological phenotype of RG display a conductance that is active at resting 
membrane potentials and deactivates slowly when the membrane is hyperpolarized 
(Reali et al. 2011). The mechanisms and functional relevance of this voltage-gated 
conductance remains to be explored. Similarly, RG in the post-natal spinal cord of 
rodents had complex electrophysiological phenotypes displaying various combi-
nations of a delayed rectifier (IKD), A-type (IA) and/or calcium currents. The pres-
ence of IKD is a common feature among adult progenitors since it has been reported 
in hippocampal nestin+ type 2 cells (Filippov et al. 2003) and GFAP+ cells in the 
SVZ (Liu et  al. 2006). Although IA was not found in the adult SVZ (Liu et  al. 
2006), progenitors from the embryonic (Smith et al. 2008) and neonatal (Stewart 
et al. 1999) SVZ as well as human stem cells (Schaarschmidt et al. 2009) express 
IA. The phenotype of midline RG with conspicuous IKD and IA is remarkably simi-
lar to that of oligodendrocyte progenitors (Chittajallu et al. 2004), raising the pos-
sibility they are bipolar precursors committed to the oligodendrocyte lineage 
(Levine et al. 2001). It remains to be explored whether these cells can differentiate 
in oligodendrocyte progenitor cells with a multipolar morphology and expression 
of NG2 or PDGFRα.

The complex repertoire of K+ currents may regulate fundamental properties of 
ependymal progenitor-like cells. IKD channels are major regulators of cell 
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 proliferation (Ghiani et  al. 1999; MacFarlane and Sontheimer 2000a; Chittajallu 
et  al. 2002) and IA channels are essential for proliferation of multipotent human 
neural stem cells (Schaarschmidt et al. 2009). Thus, K+ channels in midline RG may 
be part of epigenetic mechanisms that regulate proliferation. In addition, IA has been 
implied in the differentiation of oligodendrocyte precursors (Sontheimer et al. 1989) 
and rat spinal cord astrocytes (MacFarlane and Sontheimer 2000b). Thus, another 
possibility is that K+ currents participate in the transition from RG to post-mitotic 
spinal cells.

A minority of midline RG have ICa strong enough to sustain a low threshold 
spike, a phenotype described in some floor plate cells (Frischknecht and Randall 
1998). Ca2+ electrogenesis plays a central role during development by regulating 
events such as neural induction (Webb et  al. 2005) and neuronal differentiation 
(Spitzer et al. 2004). RG displaying ICa could be precursors showing the first signs 
of differentiation into CSFcNs (Marichal et al. 2009).

5.6  Spinal Stem Cells Outside Their Niche

Until now, we described the features of the different components of the ependymal 
stem cell region in their normal endogenous microenvironment. However, more 
than two decades ago, the properties showed by ependymal cells isolated and plated 
in different cultures media provided the first evidences of their stem-cell 
characteristics.

Weiss et al. (1996) developed an in vitro protocol for primary cultures of cells 
taken from the adult spinal cord and found the presence of growth factor-responsive 
stem cells. These cells generated spheres with self-renewal/expansion properties 
and multipotency giving rise to neurons, astrocytes, and oligodendrocytes. After 
this study, Frisen’s group also tested whether ependymal cells specifically showed 
stem cells properties in vitro. For this, they labeled ependymal cells by injecting 
1,1′-Dioctadecyl-3,3,3′,3′-Tetramethylindocarbocyanine Perchlorate (DiI)in the 
lateral ventricles of the brain (Johansson et al. 1999). Neurospheres derived from 
DiI-labeled primary cells expressed neuronal, astrocytic and oligodendrocyte 
molecular markers.

More recently, the same group generated two transgenic mouse lines expressing 
tamoxifen-dependent Cre recombinase (CreER) under the control of FoxJ1 (HFH4) 
or nestin regulatory sequences (Meletis et al. 2008). These mice allowed to study 
the fate map of the spinal cord ependymal cells (Meletis et al. 2008). FoxJ1 is a 
transcription factor involved in the formation of motile cilia active in the spinal cord 
only in cells that line the CC. Primary cultures showed that the recombined neuro-
spheres from both nestin-CreER and FoxJ1-CreER mice could be serially passaged 
and were multipotent and differentiated into neurons, astrocytes, and oligodendro-
cytes. Despite being an excellent strategy to make the linage tracing of ependymal 
cells, the general expression of these genes in the cells surrounding the CC (excluding 
the CSFcNs) does not allow to discriminate between the heterogeneous  populations 
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of cells contacting the CC (described above). Using a GFAP-GFP transgenic mice 
line, Sabourin et al. (2009) showed that the majority of neurosphere forming cells 
are dorsally located GFAP+ cells lying ependymally and subependymally that 
extend radial processes toward the pial surface. A posterior study also claimed that 
GFAP-expressing cells lining the CC participate to the generation of multipotent 
neurospheres in  vitro. However, they showed restricted self-renewal properties 
compared with GFAP-negative ependymal-derived neurospheres or GFAP- 
expressing neural stem cells from the SVZ (Fiorelli et al. 2013).

Taken together, the remarkable multipotent stem cell properties of spinal cord 
ependymal cells outside their niche make them an attractive source for the replace-
ment of glia and neurons lost after injury or neurodegenerative diseases. The precise 
identity of the cell population with highest in vitro stemness within the spinal cord 
ependymal niche remains controversial and future work needs to be done to solve 
this problem.

5.7  Regulation of the CC Stem Cell Niche

Stem cells in neurogenic niches of the adult brain are regulated by a plethora of fac-
tors such as age and activity (Kempermann 2008), hormones (Lucassen et al. 2008) 
and neurotransmitters (Jang et al. 2008). The decrease of neurogenesis with age in 
mammals seems to be related with the decline of the activity of progenitor cells via 
distinct mechanisms in the SVZ and the hippocampus (Molofsky et  al. 2006; 
Hattiangady and Shetty 2008). Similarly, the mitotic activity of spinal ependymal 
cells gradually declines as the animal ages to stop about 9 weeks after birth (Sabourin 
et al. 2009). The molecular mechanisms of the proliferation halt during early post-
natal life in this spinal stem cell niche has not been yet unveiled.

During embryogenesis, the biology of progenitors and newborn cells is tightly 
regulated by activity via the action of diverse neurotransmitter systems (Ben-Ari 
and Spitzer 2010; Wang and Kriegstein 2009). Progenitors in adult stem cell niches 
in the brain have been shown to be regulated by γ-amino butyric acid (GABA), 
glutamate, acetylcholine, dopamine, serotonin and nitric oxide (Jang et al. 2008). In 
the SVZ for example, GABA released from newborn neurons inhibits the prolifera-
tion of neighboring progenitors making a feedback control system to adjust neuro-
genesis to functional demands (Lo Turco et al. 1995; Haydar et al. 2000; Liu et al. 
2005). Although less is known about this kind of regulation in spinal stem cell 
niches, a similar set of neurotransmitters -either produced by cellular components 
of the niche or by surrounding axonal fibers- may influence the behavior of 
CC-contacting progenitors (Reali et  al. 2011; Corns et  al. 2013, 2015; Marichal 
et al. 2016). Both in low vertebrates and mammals, progenitor-like cells in the ependyma 
(Fig. 5.2a) are surrounded by CSFcNs which have the molecular signature of imma-
ture neurons (expression of DCX and PSA-NCAM) and synthetize GABA 
(Fig. 5.2b; Roberts et al. 1995; Stoeckel et al. 2003; Reali et al. 2011). In addition, 
GABAergic terminals are present around the CC (Fig. 5.2a; Trujillo-Cenóz et al. 2007; 
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Reali et al. 2011) and the fact that CSFcNs receive functional GABAergic contacts 
(Russo et al. 2004) suggest that there is an active GABAergic signaling in this stem 
cell niche. Indeed, functional studies in turtles (Reali et al. 2011) have shown that in 
clusters of gap junction coupled BLBP+ progenitors lining the CC (Fig.  5.3a), 
GABA generates currents with components mediated by GABA transporters (GAT, 
Fig. 5.3b1–3) and GABAA receptors (Fig. 5.3c1–3). Uncoupling BLBP+ progeni-
tors with carbenoxolone suggests that individual progenitors react differently to 
GABA with various combinations of GABA transporter- and ionic- induced cur-
rents. GABA also depolarizes ependymal cells of the spinal cord of juvenile rats 
(Corns et al. 2013), suggesting that GABAergic signaling on CC-contacting pro-
genitors is a phylogenetically preserved trait.

CSFcNs in close contact with ependymal cells also have functional GABAA 
receptors (Russo et al. 2004; Marichal et al. 2009; Reali et al. 2011). Gramicidin 
perforated patch recordings showed that GABAA receptor activation generate 

Fig. 5.2 GABA around the central canal (CC). (a) Immunohistochemistry for GAD-65/67 (red) 
and brain lipid binding protein (BLBP, green) reveals a plexus of GAD+ terminals surrounding the 
CC. A few CC-contacting cells on the dorso-lateral aspect of the CC are reactive for GAD (arrow-
heads). Many GAD+ terminals are in close apposition with either proximal (upper inset, arrows) 
or distal (lower inset, arrow) processes of BLBP+ cells. (b) In contrast to GAD expression, the CC 
is surrounded by a large number of cells containing GABA (1) which co-express HuC/D (2 and 3). 
Main panel in A and B are confocal optical sections. Upper and lower insets are stacks of ten opti-
cal sections. Scale bars: (a), main panel 20 μm, upper and lower insets, 10 μm; (b), 10 μm. Modified 
with permission from The Journal of Physiology (Reali et al. 2011)
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responses ranging from depolarizations that elicited spike firing (Fig.  5.4a) to 
hyperpolarization from rest (Marichal et al. 2009; Reali et al. 2011). GABA-induced 
depolarization in neurons is a common feature in the developing brain (Ben-Ari 
2002; Ben-Ari and Spitzer 2010) and migrating neuroblasts in the SVZ and rostral 
migratory stream (Wang et al. 2004). Both in the SVZ and the dentate gyrus, GABA 
provides an excitatory drive to newborn neurons because of high activity of NKCC1 
(Bordey 2007). As neurons mature, GABA action switches from excitation to inhi-
bition because down-regulation of NKCC1 and/or increase of KCC2 activity (Rivera 
et  al. 1999; Ganguly et  al. 2001). Similarly, the excitatory action of GABA in 
CSFcNs stems from a depolarized ECl because a predominance of NKCC1 over 
KCC2 (Fig. 5.4b, c; Reali et al. 2011). In line with the idea that CFScNs may be at 
different stages of maturation, cells hyperpolarized by GABA generally fired repeti-
tively -an electrophysiological phenotype of more differentiated neurons (Spitzer 
et  al. 2004; Russo and Hounsgaard 1999)- and have measurable KCC2 activity. 
GABAA receptor activation induces an increase in intracellular Ca2+ that requires 

Fig. 5.3 GABA signals on CC-contacting progenitors. (a) Current responses to a series of voltage 
steps in a CC-contacting cell (1). The cell is dye coupled with neighbouring cells (2). Notice the 
close proximity of GAD terminals to the cluster of dye coupled cells (2, main panel and inset). (b) 
Progenitors are depolarized by transient application of GABA (400 ms, 1 mM; (1). In some pro-
genitors GABA-induced inward currents (2) do not reverse at membrane potentials from −100 to 
+20 mV (3). (c) In other clusters of progenitors, the depolarization induced by GABA (1) is gener-
ated by currents (2) that have clear reversal potentials (3). (a)2, confocal optical section. Scale bar 
in (a)2: main panel, 20 μm; inset, 3 μm. Modified with permission from The Journal of Physiology 
(Reali et al. 2011)
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extracellular Ca2+, in both progenitors and immature neurons of the turtle CC (Reali 
et al. 2011). These studies show that GABAergic signaling around the CC shares 
fundamental properties with those in the embryo and adult neurogenic niches, sug-
gesting that GABA may be part of the mechanisms regulating the CC stem cell 
niche. Future research has to solve the source of ambient GABA around the CC and 
the functional role of GABAergic signaling on CC-contacting progenitors and 
CSFcNs.

Another transmitter that has shown to have a role in the ependymal stem cell 
niche is acetylcholine (Ach). The CC of rats is surrounded by cholin acetyl transfer-
ase (ChaT) fibers and Ach depolarizes ependymal cells and CSFcNs via activation of 
α7- and non-α7 nicotinic Ach receptors (Corns et al. 2015). Furthermore, activation 
of nicotinic receptors increases proliferation of ependymal cells both in vitro and 
in vivo (Corns et al. 2015). This study suggests that cholinergic signaling may be a 
key regulator of the CC stem cell niche. Interestingly, inflammation during experi-
mental autoimmune encephalomyelitis produces a decrease of ependymal cell pro-
liferation, an effect that is relieved by administration of nicotine (Gao et al. 2015).

ATP may be important to shape the properties of spinal progenitors, particularly 
in the context of spinal cord injury. Purinergic signaling has an important role dur-

Fig. 5.4 GABA as a dual neurotransmitter: excitation and inhibition. (a) In some cases the GABA 
induces a induced depolarization strong enough to generate spikes (1, gramicidin perforated 
patch). In a different sub-population of CSFcNs GABA generated a hyperpolarization that stops 
firing (2, gramicidin perforated patch). (b) Currents induced by GABA at −70 mV (1) in control 
(top trace) and in the presence of bumetanide (20 μM, second trace from top). Notice that in the 
presence of bumetanide, GABA generates an outward current, an effect that reversed upon wash 
out (third trace from top). Blocakde of KCC2 with of furosemide (100 μM, fourth trace from top) 
increased the amplitude of the inward GABA-induced current. The I/V plots of GABA-induced 
currents shows the shifts in EGABA induced by bumetanide and furosemide (2). The scatter plot in 3 
shows the changes in EGABA induced by bumetanide and furosemide for different cells. (c) Most 
HuC/D cells (1) express NKCC1 (2 and 3). (d) Double immunohistochemistry for HuC/D (1) and 
KCC2 (2). KCC2 is strongly expressed in neurons outside the CC region (1–3 arrows) whereas in 
the ependyma is weakly expressed in some HuC/D+ cells located dorsally (1–3, arrowheads). (c) 
and (d), confocal optical sections. Scale bars: (c) and (d), 20 μm. Modified with permission from 
The Journal of Physiology (Reali et al. 2011)
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ing development by regulating processes such as progenitor cell proliferation, 
migration, differentiation and synapse formation (Zimmermann 2006). During the 
development of the cortex, ATP released through connexin hemichannels in RG 
activates P2Y1 receptors generating a Ca2+ wave by IP3 mediated Ca2+ release that 
propagates among neighboring RG (Weissman et al. 2004). These Ca2+ waves regu-
late the proliferation of RG and have been proposed as a mechanism for synchroniz-
ing the cell cycle of a cohort of progenitors (Weissman et  al. 2004). Purinergic 
signaling leads to the expansion of the ventricular zone stem cell niche (Lin et al. 
2007) and can initiate important events as transient release of ATP triggers the 
development of the eye by inducing the expression of Pax6 via P2Y1 receptor acti-
vation (Massé et al. 2007). In addition, nucleotide signaling seems also to partici-
pate in adult neurogenesis as the ATP hydrolyzing ectonucleotidase NTPDase2 is a 
hallmark of adult neurogenic niches (Abbracchio et al. 2006). However, the detailed 
function of ATP signaling in regulating adult stem cell niches is still poorly 
understood.

Different kinds of insults are linked to increased levels of extracellular ATP. 
For example, after spinal cord injury (SCI) ATP levels increase around the lesion 
epicenter (Wang et al. 2004). It has been proposed that ATP may act as a diffusible 
“danger signal” to alert about damage and start repair (Abbracchio et  al. 2009). 
Purinergic signaling has been also implied in the secondary expansion of tissue 
damage after SCI (Wang et al. 2004; Peng et al. 2009). CSFcNs have P2X2 recep-
tors (Stoeckel et al. 2003) that when activated by ATP generates a powerful excita-
tion (Marichal et al. 2009).

The P2X7 receptor merits particular attention in relation to CNS injury. P2X7 
receptors have the peculiarity of having a rather low sensitivity being activated at 
100 μM to 3 mM of ATP whereas other P2X receptors have EC50 of 1–10 μM 
(Khakh and North 2006; Surprenant and North 2009). In addition, P2X7 are highly 
permeable to Ca2+ and when activated for several seconds become permeable to 
the large cation N-methyl-D-glucamine (Surprenant et al. 1996). Ependymal cells 
in both the medial (Fig. 5.5a, b) and lateral (Fig. 5.5c, d) domains of the CC have 
functional ionotropic P2X7 receptors (Masahira et  al. 2006). The activation of 
P2X7 receptors by ATP or its selective agonist BzATP generates a slow inward 
current and a Ca2+ wave that propagates bidirectionally from the site of ATP appli-
cation (Fig. 5.5). It is possible that P2X7 receptors may be a key component of the 
response of the ependymal stem cell niche to spinal cord injury. The activation of 
P2X7 receptors in the distal processes lying within injured tissue would generate 
a Ca2+ wave propagating towards the CC, generating a local Ca2+ increase in key 
cellular compartments such as the nucleus and the apical process of CC-contacting 
progenitors (Fig. 5.6). Ca2+ transients may modulate nuclear gene expression, acti-
vating or repressing function-specific transcription factors that may affect events 
such as proliferation, differentiation and migration (Glaser et  al. 2013; Miras-
Portugal et al. 2015) of ependymal cells. For example, interference of Ca2+ signal-
ing by blockade or genetic knockdown of purinergic receptors impairs the 
migration of intermediate neuronal progenitors to the subventricular zone (Liu 
et  al. 2008). Ca2+ waves propagated to or generated at the apical pole of 
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CC-contacting RG may generate changes in this cellular compartment with major 
functional consequences (Fig. 5.6).Whether the increase in Ca2+ induced by P2X7 
receptor activation is beneficial by awakening the “dormant” progenitors in the 
ependyma or detrimental by activation of caspases inducing apoptosis (Gandelman 
et al. 2013) is a key question to solve in future studies.

5.8  A Perspective: The Ependyma as a Source of Plasticity 
for Spinal Cord Repair

Anamniotes like cyclostomes (Rovainen 1976; Wood and Cohen 1979; Armstrong 
et  al. 2003; Shifman et  al. 2007), certain fish (Hooker 1932;  Coggeshall and 
Youngblood 1983; Dervan and Roberts 2003; Takeda et  al. 2007; Reimer et  al. 
2008), anuran larvae (Michel and Reier 1979; Beattie et al. 1997; Gibbs and Szaro 
2006) and tailed amphibians (Piatt and Piatt 1958; Sims 1962; Butler and Ward 
1965; Davis et  al. 1990; Chevallier et  al. 2004; McHedlishvili et  al. 2007) have 
remarkable endogenous mechanisms of regeneration that lead to functional recov-
ery after spinal cord injury (Diaz Queiroz and Echeverri 2013; Lee-Liu et al. 2013). 
We have shown that this ability is partly shared by the fresh-water turtle Trachemys 
dorbignyi, an amniote vertebrate. Turtles spontaneously reconnect their transected 
spinal cord with the formation of a cellular bridge that serves as a permissive scaf-
fold for regenerating axons (Rehermann et al. 2009). This is in sharp contrast to 

Fig. 5.5 ATP signaling in the CC. (a) RG in the dorsal pole of the CC filled with Fluo-4 before 
(1), during (2) and after (3, 4) application of BzATP (1 s, 1 mM) on the apical process that contacts 
the CC. The cell morphology is shown in the inset in 6. The arrowheads indicate the sequence of 
Ca2+ increase along the cell. (b) ΔF/F0 analysis of ROIs in A1 (open circles) shows the time course 
of (Ca2+)i increase after BzATP application. (c) Time lapse imaging of an ependymocyte filled with 
Fluo-4 in the lateral domain of the CC (inset in 1) before (1), during (2) and after (3, 4) application 
of BzATP (1 mM). (d) ΔF/F0 in the ROI (circle in A1) and the simultaneous inward current (black 
trace) generated by BzATP. (a) and (b), pseudocolor images in a living slice. Modified with per-
mission from Purinergic Signalling (Marichal et al. 2009)
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mammals in which a “glial scar” blocks the passage of incoming axons (Ramón y 
Cajal 1913; Silver and Miller 2004; Thuret et al. 2006). Studies made on lizards 
(Egar et  al. 1970), tailed amphibians (Singer et  al. 1979; Zhang et  al. 2000; 
McHedlishvili et  al. 2007) and immature eels (Dervan and Roberts 2003) have 
shown that regeneration of the injured spinal cord is orchestrated by the plastic reac-
tion of ependymal cells. One of the major events after injury in species with and 
without endogenous repair capabilities is an increase in the proliferation of ependy-
mal cells (Mothe and Tator 2005; Meletis et al. 2008). In turtles, the proliferative 
reaction is spatially focused around the lesion epicenter engaging mostly the 
domains of BLBP/Pax6 progenitors (Rehermann et al. 2011). The capability of RG 
expressing BLBP to contribute to neural repair has been demonstrated in rodents in 
which transplanted embryonic RG “bridge spinal cord lesions and promote func-
tional recovery” (Hasegawa et al. 2004). The presence of BLBP cells within the 

Fig. 5.6 Cartoon showing the possible involvement of P2X7 receptors and Ca2+ waves in the 
reaction of CC-contacting prgenitors after spinal cord injury. Putative mechanisms are proposed
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bridge suggest the possibility that some of the progenitors detach from the CC and 
invade the cellular bridge (Rehermann et al. 2009).

Cells belonging to the bridge matrix also behave as oligodendrocyte precursors 
and/or premyelinating oligodendrocytes (Levine et al. 2001) enveloping regenerat-
ing axons. Then, it is likely that analogous phenomena may occur in the embryonic- 
like microenvironment supporting neural repair in the turtle spinal cord.

The emerging view when comparing data from turtles with those obtained from 
anamniotes is that in the latter the ependymal layer as a whole, has retained some 
properties of the embryonic neural tube. For example, in Xenopus tadpoles there is 
a close axonal-ependymal association during early stages of the regeneration pro-
cess (Michel and Reier 1979) and in axolotls the cells lining the CC regenerate the 
spinal cord inducing a multipotent blastema (Schnapp et  al. 2005; Tanaka and 
Ferreti 2009). In turtles, however, the bridge region lacks a distinguishable CC. The 
BLBP+ cells of the ependymal layer appear as the most likely candidate to give rise 
to the abundant pre-myelinating oligodendrocytes that envelop the incoming axons. 
The origin and functional role of GFAP+ cells in the cellular bridge is still uncer-
tain. However, unlike in mammals, GFAP+ cells do not interfere with regenerating 
axons because they appear aligned with axon bundles. Therefore, turtles appear as a 
unique amniote model system occupying a peculiar intermediate place between the 
anamniotes with complete regenerating capabilities and mammals, with very 
restricted capabilities to restore damaged spinal circuitry.

How tissue damage can activate ependymal cells to trigger endogenous repair 
remains a fundamental issue to solve. Experiments performed in zebrafish indicate 
that regenerative properties seem to be linked to a protein encoded by the connective 
tissue growth factor that helps forming a glial bridge allowing the transit of growing 
axons through the lesion site (Mokalled et al. 2016). In contrast, our recent wide 
scale genome study performed in the turtle Trachemys scripta elegans showed the 
“absence of a group of genes exclusive of regenerating taxa” suggesting that ana-
tomical and functional recovery results from cellular and molecular mechanisms 
involving the “expression patterns of genes shared by all amniotes” (Valentin-Kahan 
et al. 2017).

Although mammals lost the ability for self-repair, some cells in the CC still react 
to injury by proliferating and migrating toward the lesion (Beattie et  al. 1997; 
Johansson et al. 1999; Mothe and Tator 2005), where most become astrocytes within 
the core of the scar (Meletis et al. 2008). However, a number of ependyma-derived 
cells become oligodendrocytes that interact with axonal sprouts (Meletis et  al. 
2008). Ependyma-derived cells seem to play a central role in the formation of the 
scar thereby limiting the extension of damage (Sabelström et al. 2013). Astrocyte- 
like and oligodendrocyte-like cells derived from the ependyma concentrate in the 
core of the scar and release growth factors that improve the survival of neurons 
around the lesion (Sabelström et  al. 2013). However, a recent report casts some 
doubts about the actual contribution of ependymal cells to scar formation (Ren et al. 
2017) suggesting that more research is needed to understand the potential of the CC 
as a source for repair.
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Chapter 6
Being a Neural Stem Cell: A Matter 
of Character But Defined 
by the Microenvironment

Evangelia Andreopoulou, Asterios Arampatzis, Melina Patsoni, 
and Ilias Kazanis

Abstract The cells that build the nervous system, either this is a small network of 
ganglia or a complicated primate brain, are called neural stem and progenitor cells. 
Even though the very primitive and the very recent neural stem cells (NSCs) share 
common basic characteristics that are hard-wired within their character, such as the 
expression of transcription factors of the SoxB family, their capacity to give rise to 
extremely different neural tissues depends significantly on instructions from the 
microenvironment. In this chapter we explore the nature of the NSC microenviron-
ment, looking through evolution, embryonic development, maturity and even disease. 
Experimental work undertaken over the last 20 years has revealed exciting insight 
into the NSC microcosmos. NSCs are very capable in producing their own extracel-
lular matrix and in regulating their behaviour in an autocrine and paracrine manner. 
Nevertheless, accumulating evidence indicates an important role for the vasculature, 
especially within the NSC niches of the postnatal brain; while novel results reveal 
direct links between the metabolic state of the organism and the function of NSCs.
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6.1  Intrinsic vs. Extrinsic Regulation

The emergence of neural tissue has been an early event during evolution, having 
occurred in pre-bilaterian animals. Irrespective of being a small network of neurons, 
or an extremely elaborate neuroglial system, as in the avian and the mammalian 
CNS, the nervous tissue is built by neural progenitors. These can be either loosely 
specified cells within an epithelium, or more distinct neural stem cells that undergo 
a well-controlled scenario of symmetric and asymmetric divisions before generat-
ing differentiated cells (reviewed in Hartenstein and Stollewerk (2015)). By focus-
ing on the basic similarities or the vast differences of neurogenic processes across 
evolution, it can be hypothesized that the identity and the properties of neural stem 
cells (NSCs; in this review the term will be applied for any cell directly or indirectly 
giving rise to mature neurons and glia) are largely inherent, or mostly dependent on 
micro-environmental cues; both statements being equally strong.

The conserved expression of transcription factors of the SoxB gene family, as 
well as the ability of both very primitive and very recent NSCs to generate neurons 
with shared characteristics (e.g. expression of synaptotagmin), indicate that being a 
NSC is most probably a matter of character, installed within the hard wiring of early 
neuroectodermal/neuroepithelial specification. This introduces a first question to be 
debated: Does the epithelial to neuroepithelial transformation depend on external 
cues? The classical view is that small parts of the mesoderm, outside the neuroepi-
thelial anlage (for example the organizer or the node of amniotes) induce the neural 
fate through the Bone Morphogenetic Protein (BMP) and Int/Wingless (Wnt) sig-
nalling pathways (Hartenstein and Stollewerk 2015). Notably though, Van der Kooy 
and his team (Smukler et al. 2006) experimenting at the edges of physiological con-
ditions, reported that mouse Embryonic Stem Cells (ESCs), when cultured in condi-
tions lacking instructive cues, start a neural differentiation program, suggesting that 
this is the default pathway of early embryonic pluripotent cells. If that is the case, 
signals from the organizer are important not in installing neural identity on stem 
cells, but in liberating them form the activity of suppressors. Adding to the concept 
of a mighty inherent programming in NSCs, both embryonic and adult-derived 
NSCs can be cultured in vitro in very low densities (what is called clonal expansion) 
where they exhibit the fundamental properties that are observed in the organism. 
For example, in clones generated by embryonic cortical NSCs, neurons are gener-
ated before glial cells and with the appropriate temporal specification pattern 
(Okano and Temple 2009). In addition, the decreased expression of a single gene 
(encoding for the DNA-associated protein Trnp1) can produce gyrencephalia in the 
normally lissencephalic (i.e. lacking cortical folds) mice (Stahl et al. 2013); whilst 
over-expression only of Polo-like kinase 4 results in centrosome amplification in 
NSCs and subsequent microcephaly (Marthiens et al. 2013). Furthermore, a Rho 
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guanosine triphosphatase–activating protein (called ARHGAP11B) has been sin-
gled out as a gene expressed only in human RGCs that has possibly contributed to 
their distinct behaviour as compared to mouse RGCs (Florio et al. 2015).

On the other hand, it is obvious that even the very primitive NSCs (meaning 
either those found in early animal species, or those operating during early embry-
onic stages of neurogenesis) do not behave in similar ways, exhibiting fundamen-
tally different repertoires of neurogenesis, as dictated by the available genetic 
information and cues from the micro-environment. NSCs isolated from the adult 
mouse brain are still in a stage of genetic and epigenetic flexibility that allows them 
to revert to an ESC behaviour once implanted in the blastocyst microenvironment 
(Clarke et al. 2000), or to generate directly blood cells when exposed to the appro-
priate cues (Bjornson et al. 1999). In contrast, human glial progenitors grafted in the 
mouse hippocampus generate astrocytes that exhibit the human morphology, irre-
spective of the overwhelming mouse tissue environment (Han et  al. 2013). The 
interplay between intrinsic and extrinsic cues in controlling the behaviour of NSCs 
can be clearly seen in ex vivo experimental assays. When mouse NSCs are cultured 
in growth factor-rich conditions as free-floating cells, they tend to generate 3D 
aggregates called neurospheres (Fig. 6.1). These are essentially amorphous com-
plexes consisted of multipotent progenitors and more differentiated cells of neuro-
nal and glial fate. When the same cells are cultured on 3D scaffolds, again in growth 
factor-rich conditions and under appropriate rotor spin, they generate microscopic 
brains (Camp et al. 2015; Qian et al. 2016).

In this chapter, we will focus mostly on the microenvironment of NSCs, describ-
ing the main cellular and extracellular elements with which NSCs are in direct or 
indirect contact throughout the different stages of their life: from embryonic devel-
opment to the mature CNS as well as in cases of disease, especially during tumori-
genesis. Whenever possible, we will also refer to the functional significance of these 
micro-environmental cues. The larger volume of information is derived from studies 
in rodents (mostly mice and rats); however, whenever available, information will be 
given for the human NSCs and for other model organisms. Before continuing, a 
reference should be made to the concept of the NSCs as “builders” of their micro-
environment. NSCs have the extraordinary ability to perform significant aspects of 
their cell-generation program in vitro, and when operating in vivo they built the 
nervous system with a minimal contribution from other tissues (such as adipose, 
bone and connective tissue, or muscles). These observations suggest that NSCs 
combine the ability to perform a sophisticated program of symmetric and asymmet-
ric divisions, with strictly controlled progression towards fate commitment, and to 
produce, at the same time, basic elements of the tissue, such as the extracellular 
matrix (ECM). Indeed, embryonic and adult NSCs gradually create and maintain a 
tissue populated almost exclusively by their daughter cells that -besides neurons- 
include cells exhibiting a range of structural, nutritional and even tissue-clearing 
activity (Lovelace et  al. 2015). In parallel, NSCs synthesize basic ECM compo-
nents, such as laminins and Tenascin-C (Kazanis et  al. 2007, 2010; Lathia et  al. 
2007) and single-cell transcriptome analysis in mouse and human NSCs has revealed 
their ability to control self-renewal in an autocrine way (Pollen et al. 2015).
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Fig. 6.1 (a) NSCs isolated from the embryonic cortex at E12.5 and kept in culture exhibit the 
characteristic structure of NEP cells and RGCs. They possess a short and a long process (apical 
and basal, respectively, in the tissue). Here, cells are shown at different times in culture, with the 
long process becoming more elongated over time, as would happen in the tissue in order to stay 
attached to the pial surface. Note a NSC cell that has divided, with the daughter cell remaining in 
contact with the basal process. (b) In a microphotograph of a section taken from an E13.5 mouse 
embryo and immunostained for the RGC marker BLBP, the three microenvironments to which a 
RGC is exposed can be seen: (1) cell bodies are stacked around the ventricle, in the ventricular/
subventricular zones. (2) Basal processes cross the mantle, where immature neurons assume their 
final positions and differentiate. (3) The RGC endfeet reach the pial surface. (c) NSCs are able to 
produce much of the ECM components of the microenvironment. Here, isolated NSCs from the 
E13.5 mouse cortex have been immunostained for nestin (marker of NSCs, in green) and for the 
glycoprotein Tenascin-C (in red). (d) NSCs isolated from the embryonic or the adult mouse and rat 
brain can be kept in cultures, where they form 3D, free-floating aggregates called neurospheres. (e) 
When neurospheres are allowed to attach to a substrate and growth factors are removed from the 
medium, many progenitors start to differentiate in neurons (Sox2, marking nueral progenitors is in 
green and Dcx, marking immature neurons is in white)
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6.2  The NSC Microenvironment During Embryogenesis

As already mentioned NSCs operate in microenvironments with limited presence of 
extra-neural elements; thus, they are surrounded and remain in direct contact mostly 
with other NSCs and their progeny. An interesting example of how these cells inter-
act with each other at the very early stages of development in order to shape the 
nervous system is the phenomenon of lateral inhibition that has been described in 
Drosophila melanogaster (Hartenstein and Wodarz 2003). Within the homogeneous 
pool of neuroectodermal cells, that all express proneural genes, individual cells 
show activation of Notch ligands (such as Delta) that act upon their immediate 
neighbours and instruct them to downregulate proneural gene expression. Only 
these, stochastically selected, cells progress towards becoming NSCs that delami-
nate from the neuroectoderm and initiate a program of asymmetric neurogenic divi-
sions (Isshiki et al. 2001).

6.2.1  One NSC, Three Microenvironments

During mammalian neurogenesis, NSC bodies are densely packed as a pseudolay-
ered epithelium that forms the neural tube. In the developing mouse cerebral cortex 
and up to embryonic day (E) 11 these cells are called neuroepithelial (NEP). They 
express Sox2 and nestin and because they undergo mitosis only when positioned at 
the surface of the ventricle (initially the lumen of the neural tube that progressively 
expands to form the brain ventricles) their nuclei remain in constant movement, 
migrating away and towards the ventricle (a phenomenon called interkinetic nuclear 
migration) in order to allow enough space for cell division. NEP cells are bipolar, 
with a short apical process always remaining in contact with the ventricle and a 
longer basal process remaining in contact with the pial surface (Fig. 6.1a); however, 
recently an alternative architecture was described to occur in the ventral forebrain 
with the basal process ending on a blood vessel (Tan et al. 2016) (see also section 
6.2.3). The length of this basal process constantly increases as new layers of neural 
stem and progenitor cells as well as of neurons and glia are formed. NEP cells 
divide almost exclusively in a symmetric self-renewing mode in order to expand 
their population, creating the so called ventricular zone (VZ). After E11, possibly in 
order to adjust to the ever increasing width of the cortex, NEP cells acquire more 
glial characteristics becoming radial glial cells (RGCs). These retain the bipolar 
shape, with the basal process becoming much longer (Fig. 6.1a), express additional 
markers such as the transcription factor Pax6 and the glial proteins BLBP (Fig. 6.1b) 
and GLAST and exhibit a wide range of cell-division types with the asymmetric, 
self-renewing being the dominant (Johansson et al. 2010). The tightly packed NEP 
cells and RGCs of the VZ can support their self-renewal in an autocrine manner, 
both in humans and rodents (Fietz et al. 2012). In addition, their cell bodies are sur-
rounded by an ECM rich in laminins, Tenascin-C and glycosaminoglycans but poor 
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in collagen IV, nidogen, perlecan and fibronectin (Akita et  al. 2008; Fietz et  al. 
2012; Garcion et al. 2004; Lathia et al. 2007; Milošević et al. 2014). The exact role 
of different ECM molecules has yet to be fully elucidated, but Tenascin-C seems to 
control the NEP-to-RGC maturation process via orchestrating the activity of FGFs 
and BMPs (Garcion et al. 2004; Theocharidis et al. 2014) and glycosaminoglycans 
regulate proliferation (Sirko et al. 2010). Moreover, NSCs of the VZ bind to ECM 
via integrins and syndecan and these interactions are crucial for their periventricular 
positioning, for interkinetic nuclear migration and for regulating the angle of divi-
sion (Loulier et al. 2009; Marthiens and ffrench-Constant 2009). The latter is of key 
importance in controlling the type of division, with symmetric divisions being 
dependent on the split of a small fragment of the apical pole of the cell membrane 
(Kosodo et al. 2004). The asymmetry of division of NSCs and the ensuing cell fate 
are also affected by N-cadherin and β-catenin, components of the molecular machin-
ery of the adherens junctions that are formed between cells of the VZ (Draganova 
et al. 2015; Jiang and Nardelli 2015; Marthiens and Ffrench-Constant 2009). The 
existence of adherens junctions is important for the correct positioning of RGCs and 
when impaired, for example by the genetic perturbation of afadin expression 
-another of their components- it can lead to cortical malformations similar to human 
pathologies such as lissencephaly and double cortex (Yamamoto et  al. 2015). 
Recently, a better image of how local extrinsic cues signal to NSCs via the ECM has 
been elucidated in the developing chick cortex. Wnt7alpha signalling among neigh-
bouring cells was reported to be mediated through integrin/decorin (another ECM 
component) interactions in order to control proliferation and differentiation (Long 
et al. 2016). Finally, the location of NEP cells and RGCs around the neural tube/
ventricle, especially the observation that mitosis occurs only at the surface of the 
ventricle (Fig. 6.1a), also suggests that factors from the CSF most probably act upon 
NSCs. Indeed, factors such as Wnts, BMPs (Lehtinen et al. 2011), IGFs, FGFs and 
Shh (that is sensed by the apically positioned single cilium of each NSC) regulate 
proliferation and specification of progenitors (briefly reviewed in Jiang and Nardelli 
(2015)). Lehtinen and colleagues (Lehtinen et al. 2011) reported expression of the 
receptor of IGF1 and 2 at the apical membrane of NSCs and showed that NSCs lack 
expression of these growth factors. They also confirmed that IGF1 and 2, produced 
by the embryonic choroid plexus, are crucial in supporting proliferation of embry-
onic NSCs. In the spinal cord, where the succession of neurogenesis and oligoden-
drogenesis has been investigated extensively, Shh secreted at the ventral neural tube 
instructs the generation of oligodendrocyte progenitors whilst BMPs from the dor-
sal domains instruct the generation of motor neurons (Mekki-Dauriac et al. 2002).

The bipolar morphology of NEP cells and especially of RGCs, allows them to act 
as scaffolds for the guided migration of their daughter cells that move towards the 
pial surface in order to occupy their correct position within the 6-layered cortex 
(Rakic 2003). Therefore, RGCs remain in constant and direct contact with migrat-
ing progeny (Cameron and Rakic 1994), a process controlled by integrins (Anton 
et al. 1999), although shifts between neighbouring RGC basal processes (tangential 
migration) occur under the control of ephrin signalling (Torii et  al. 2009). 
Interestingly, at the end of neurogenesis, when the appropriate number of neurons 
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has been produced, RGCs receive feedback instructing them to switch towards glio-
genesis; cardiotrophin-1 produced by neurons has been reported to be one such 
signal (Barnabé-Heider et al. 2005).

The third compartment of each RGC, which shows functionally distinct interac-
tions with the microenvironment, is the endfoot of the basal process at the pial sur-
face. The pial surface is an area of the developing nervous system that is especially 
rich in ECM molecules, characterized by the expression of components such as 
nidogen, collagen IV and perlecan that are excluded from the main embryonic corti-
cal tissue (Fietz et al. 2012; Lathia et al. 2007). The multiple interactions between 
integrins expressed by RGCs and different laminins of the basement membrane of 
the pial/meningeal surface are of paramount importance for the correct migration 
and positioning of newborn neurons. Defects in these interactions lead to patholo-
gies reminiscent of cobblestone lissencephaly and double cortex in humans 
(Belvindrah et al. 2007a; Graus-Porta et al. 2001; Yamamoto et al. 2015). Notably, 
the laminin- integrin interactions seem to be dispensable for the correct proliferative 
behaviour of RGCs (Haubst et al. 2006), but very instrumental for their survival 
(Radakovits et al. 2009).

6.2.2  Evolution

During evolution, this prototype architecture of the embryonic cortex changed with 
the appearance of additional types of neural progenitors within the VZ, but most 
importantly with the emergence of novel stem and progenitor populations located in 
novel germinal zones (reviewed in Borrell and Calegari (2014)). In mammals, 
RGCs started dividing asymmetrically in order to generate intermediate (or basal) 
progenitors that migrate deeper into the tissue forming the Sub-Ventricular Zone 
(SVZ). These progenitors undergo a number of mitoses before terminally differen-
tiating and their emergence allowed the formation of the 6-layered neocortex 
(Wilsch-Bräuninger et al. 2016). In a next evolutionary step, a third group of pro-
genitors located even deeper in the tissue (outer SVZ/oSVZ) appeared in lissenece-
phalic species (such as rodents) but their population became much more prominent 
in primates. oSVZ cells generate larger clones than intermediate progenitors (Pollen 
et al. 2015) and their presence is correlated with the explosive expansion of neocor-
tex accommodated by the formation of gyrencephalia (Wilsch-Bräuninger et  al. 
2016). In rodents, the transcriptome of the SVZ (of intermediate progenitors) is 
similar to that found at the cortical plate where newborn neurons mature (Fietz et al. 
2012) and significantly distinct to that of the VZ. This, applies also to ECM compo-
nents. In contrast, in the human developing cortex the ECM signature of all three 
progenitor pools seems to be similar, but significantly different from that of the 
cortical plate (Fietz et al. 2012). This might reflect size requirements as the human 
brain has scaled in a way that allowed for larger extracellular space (Herculano- 
Houzel 2012; Syková and Nicholson 2008). For example, the ECM molecule 
Tenascin-C, that in the mouse participates in the creation of the VZ environment but 
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is not expressed in the SVZ parenchyma (Garcion et al. 2004), re-appears in the 
human SVZ, both in the basal progenitor and the oSVZ compartments (Pollen et al. 
2015). The necessity for NSCs to build and/or operate in microenvironments that 
are specialized according to the future brain structure to be formed has been revealed 
in another recent transcriptome analysis in the ferret (De Juan Romero et al. 2015). 
When comparing NSC compartments between areas that give rise to folds or fis-
sures, the expression of genes correlated with cell-to-cell interactions, such as cad-
herin 8, and with the response to growth factors, such as FGF receptors 2 and 3, was 
found to be significantly different (De Juan Romero et al. 2015).

6.2.3  Blood Vessels, Systemic Cues and Tissue Mechanics

As mentioned earlier, the CNS is a tissue constructed mostly by neural elements 
(neurons and glia), with minimal contribution of other tissues, with the exception of 
blood vessels (BVs). Although at the initial stages of neurogenesis (both in terms of 
evolution and of development) NSCs become specified and proliferate in the 
absence of vasculature, BVs become an important component of the NSC microen-
vironment (this has been reviewed in more detail in Koutsakis and Kazanis (2016)). 
Notably, although the levels of oxygenation of the embryonic CNS are not known 
in detail, the culture of embryonic stem cell-derived NSCs in low oxygen (3%; 
rather than in the usual 20% culture conditions), which is thought to be more rele-
vant to normal situation, is reported to enhance survival and differentiation effi-
ciency (Stacpoole et al. 2011). The processes of neurogenesis and angiogenesis are 
considered to be “coupled” due to their co-ordination during the seasonal changes 
in the size of certain nuclei in the brain of songbirds (Louissaint et  al. 2002). 
Furthermore, endothelial cells can enhance neurogenesis in co-culture assays 
(Androutsellis-Theotokis et al. 2010; Shen 2004). However, the existence of more 
direct interactions between NSCs and BV mural cells (endothelial cells and peri-
cytes), with functional implications in the developing nervous systems, is only now 
starting to be elucidated. The vascularisation of the forebrain begins after NEP cells 
have formed the VZ and it progresses first at the pial surface (around E9) and sub-
sequently at the periventricular domains (around E11) (Tan et al. 2016; Vasudevan 
et  al. 2008). Descriptive analyses have now convincingly shown that RGC basal 
processes remain in contact with BVs throughout the forebrain (Vasudevan et al. 
2008) and that intermediate progenitors, which form the SVZ, are positioned and 
undergo mitoses in close proximity to BVs (Javaherian and Kriegstein 2009). The 
latter could be of significance in the rodents, in which intermediate progenitors (a) 
lack the capacity to produce ECM (in contrast to NSCs of the VZ) (Fietz et  al. 
2012), (b) lack processes that are in contact with the pial basement membrane. 
Therefore, the basement membrane of BVs (Tan et al. 2016) might be offering nec-
essary extracellular cues. Recent experimental work revealed that specifically in the 
ventral telencephalon and in a gradually increasing proportion of RGCs, the basal 
process does not anchor at the pial surface, but rather to the basement mabrane of 
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BVs (Tan et al. 2016). Notably, this cell-to-cell communication is mediated by inte-
grin/laminin interactions, as has been described for NSCs of the adult brain (Kazanis 
et al. 2010; Shen et al. 2008). Disruption of these interactions leads to decreased 
proliferation, aberrant formation of interneurons and reduced cortical synaptic inhi-
bition (Tan et  al. 2016), because interneurons are generated at the ventral telen-
cephalon before migrating and populating the cortex (Alifragis et al. 2004).

The other, obvious, contribution of BVs to the microenvironment of NSCs is the 
transfer of components of the circulation; primarily oxygen, but also a myriad of 
other factors. It should be noted that in Drosophila, in which NSCs are bathed in the 
blood precursor called haemolymph (Limmer et al. 2014), the stereotypic succes-
sive changes in the expression of different transcription factors, which defines the 
cellular output of NSCs and which was thought to be entirely cell-autonomous, is 
partly regulated by ecdysone, a systemic steroid hormone (Syed et al. 2017). The 
haemolymph also provides insulin-like peptides; some of which are produced 
locally in the brain and some are of systemic origin (reviewed in Liu et al. (2014)). 
The same seems to apply for the coupling of the insulin/IGF metabolic pathway to 
NSC proliferation in mammals, with low quantities of both insulin and IGF-1 and 2 
being able to cross the blood brain barrier and the occurrence of local synthesis (Liu 
et  al. 2014). Notably, changes in  local IGF expression lead to changes in brain 
growth and size (D’Ercole et  al. 2002). Another family of hormones that was 
recently revealed to regulate proliferation of NSCs, with an evolutionary twist in 
their role, are thyroid hormones. Their activity on intermediate progenitors of the 
SVZ, via integrin αvβ3 expressed on their membrane, regulates proliferation; hence, 
the size of this progenitor pool and the size of neocortex (Stenzel et al. 2014).

During the last decade another area in which increasing amount of work has been 
performed is the assessment on how the biomechanics of the tissue can influence the 
behaviour of stem cells (reviewed in detail in Lin et al. (2016)). Results from in vitro 
assays have shown that specification of both embryonic stem cells and human 
induced pluripotent stem cells towards the neuronal fate is affected by the stiffness 
of the microenvironment (Keung et al. 2012; Kothapalli and Kamm 2013) and that 
oligodendrogenesis depends on the mechanical properties of the microenvironment 
(Jagielska et al. 2012). Importantly, in vivo analysis of the developing rodent brain 
using atomic force microscopy showed significant changes in the stiffness of the 
tissue over time (gradual increase in the VZ/SVZ and decrease in the cortical plate) 
and differences between areas (e.g. higher stiffness in the SVZ compared to the VZ) 
(Iwashita et al. 2014). These data suggest that the triple microenvironment to which 
NEP cells and RGCs are exposed during cortical development (as described in 
section 6.2.1) also vary in mechanical properties, although it is very difficult to dif-
ferentiate if NSC behaviour is affected primarily by these differences, or just by the 
ECM composition variations that also control mechanical properties (Kothapalli 
and Kamm 2013). In practical terms, in order to achieve maximal results in direct-
ing cell cultures towards the optimal direction, the mechanical properties of the 
microenvironment (that include stiffness, elasticity, surface topography and compo-
sition) have to be combined with micro-patterning with specific growth factors, 
morphogens and ECM molecules (Kothapalli and Kamm 2013), altogether mimick-
ing the complex in vivo situation.
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6.3  The NSC Microenvironment of the Postnatal CNS

Contrary to the assumption that neurogenesis in mammals is completed by the end 
of the embryonic period, experiments continuously demonstrate that small scale 
NSC activity occurs in the adult brain as well. NSC-driven cell generation in the 
adult CNS is detected primarily in two specialized microenvironments: the Sub- 
Ependymal Zone of the lateral walls of the lateral ventricles (SEZ, also known as 
Ventricular-SVZ) and the Sub-Granular Zone (SGZ) of the dentate gyrus of the 
hippocampus (general review in (Kazanis 2012, 2013). According to the unified 
hypothesis of the lineage of NSCs, a fraction of RGCs during early postnatal stages 
gives rises to adult NSCs (Alvarez-Buylla et al. 2001). The SEZ is populated mostly 
by NSCs of ventral telencephalon origin, although some cortical origin has also 
been demonstrated (Willaime-Morawek et al. 2006), while the SGZ is populated by 
NSCs having migrated from the ventral hippocampus (Li et al. 2013).

6.3.1  In the Subependymal Zone

6.3.1.1  The SEZ System

The SEZ is located at the lateral walls of the lateral ventricles of the brain and NSCs 
cluster between BVs and the monolayer of ependymal cells that separate it from the 
ventricle (Fig. 6.1a, c). It contains quiescent NSCs, various progenitor types, dif-
ferentiated cells and vessels and, due to its specific cytoarchitecture and its anatomi-
cal restriction, it is called a neurogenic niche. NSCs of astoglial morphology (also 
called B1 cells) divide rarely and asymmetrically to self-renew and to generate tran-
sit amplifying cells (type C cells) (Doetsch et al. 1999). Type B1 cells are the most 
multipotent cells of the SEZ and can exist in a quiescent or activated state (Mich 
et al. 2014; Pastrana et al. 2009). Type C cells then divide symmetrically approxi-
mately three times before becoming type A cells (Ponti et al. 2013). The more com-
mitted progeny of type C cells are: (a) type A cells (or neuroblasts) that are of 
neuronal commitment, express doublecortin and PSA-NCAM and migrate as chains 
towards the olfactory bulbs via the rostral migrtaory stream (RMS) where they dif-
ferentiate into interneurons and contribute to the olfaction (Lazarini et al. 2014). (b) 
Oligodendrogenic precursor cells that migrate to the corpus callosum (Etxeberria 
et al. 2010; Kazanis et al. 2017).

6.3.1.2  Ependyma, Choroid Plexus and Cerebrospinal Fluid

The highly specialized architecture of the SEZ enables specific cell-cell interactions 
and the local activity of important modulators of NSC behaviour. Type B1 cells 
have small processes which penetrate the ependymal layer and communicate with 
the ventricle and longer processes that maintain contact with BVs (Mirzadeh et al. 
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2008; Tavazoie et al. 2008). We have suggested that ependymal cells are an impor-
tant component of the niche, since their number is correlated with the number of 
NSCs and the ependymal expression on noggin (a BMP inhibitor) facilitates neuro-
genesis (Kazanis and ffrench-Constant 2012; Lim et al. 2000). CSF is constantly 
produced by the choroid plexus (CP), a monolayer of epithelial cells that lie on a 
highly vascularized stroma, floating within the brain ventricles (Marques et  al. 
2016). The adult human has about 150 mL of CSF which is renewed 2–3 times per 
day and NSCs remain in contact with the CSF which contains multiple soluble fac-
tors which modulate NSC properties (Delgado et al. 2014; Lehtinen et al. 2011; Lun 
et al. 2015; Silva-Vargas et al. 2016). The synthesis of CSF is controlled by mecha-
nisms such as the blood-CSF barrier formed by the CP epithelial cells and the blood 
flow which in the CP is five times higher than that in the brain parenchyma. 
Comprehensive analysis of the adult CP transcriptome and secretome, both under 
physiological conditions and in disease (Marques et al. 2016; Silva-Vargas et al. 
2016; Thouvenot et al. 2006), has unraveled the expression of several genes encod-
ing key molecules known to modulate NSCs. Among these are insulin-like growth 
factor 2, several members of the fibroblast growth factor family, epidermal growth 
factor, transforming growth factor alpha, platelet-derived growth factors, bone mor-
phogenetic proteins, sonic hedgehog, Wnts and axon guidance molecules such as 
Slits. Notably, the transcriptome of the CP changes significantly during adulthood; 
as a consequence, NSC medium conditioned with early postnatal CP is pro- 
proliferative for NSCs, but becomes anti-proliferative when conditioned with adult 
CP (Silva-Vargas et al. 2016).

6.3.1.3  Vasculature

As described above, type B1 cells retain a process connecting them with BVs of the 
neurogenic niche. NSC quiescence is controlled through direct cell contact with 
endothelial cells, via ephrinB2 and Jagged1 signalling (Ottone et al. 2014) and via 
diffusible factors such as neurotrophin-3 (Delgado et al. 2014). Moreover, the che-
mokine stromal-derived factor 1 (SDF-1) is expressed in endothelial cells and 
recruits type B1 and C cells into the vascular plexus via chemotaxis (Kokovay et al. 
2010). Endothelial cells also secrete an EGF-like growth factor, called Betacellulin, 
which activates EGFRs on type B1 and C cells and ErbB-4 receptors on neuroblasts. 
It is therefore suggested that betacellulin acts in vivo on early as well as later stages 
of the SEZ neurogenic lineage and its role is the promotion of SEZ cell proliferation 
and OB neurogenesis (Gómez-Gaviro et al. 2012). Notably, the architecture of the 
vasculature within the SEZ presents specialized features, when compared with other 
periventricular areas, such as its higher density, its penetration very proximal to the 
ependymal layer and its higher levels of leakage (Culver et al. 2013; Kazanis et al. 
2010; Tavazoie et al. 2008). Finally, the transit amplifying progenitors in the SEZ, 
similar to intermediate progenitors in the SVZ of the developing cortex, are posi-
tioned and undergo mitosis very close to BVs and especially at domains that lack 
pericytes and astrocytic endfeet (Shen et al. 2008; Tavazoie et al. 2008).
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6.3.1.4  Cell-ECM Interactions

NSCs express low levels of ECM receptors such as integrin-α6β1, syndecan-1 and 
Lutheran, but their expression rises significantly when they become mitotically 
active and remains high in proliferating progenitors (Kazanis et al. 2010). When 
integrin-α6β1 function is disturbed in vivo by intracerebroventricular infusion of 
blocking antibodies, progenitors move away of BVs and their proliferation increases 
(Kazanis et al. 2010; Shen et al. 2008). We and others have shown that NSCs and 
local astrocytes produce many of the laminins, the tenascin-C and the chondroitin/
dermatan sulfate chains that surround them within the SEZ (Akita et  al. 2008; 
Kazanis et al. 2007, 2010). In addition, highly organized extravascular 3D struc-
tures, formed by laminins, collagen IV, heparan sulfates and perlecan, that are called 
fractones, have been shown to connect the meninges with the ependymal cell layer 
(Mercier et al. 2002). Fractones are in direct contact with NSCs and their progeny 
and a significant aspect of their function is to sequester and capture growth factors 
and morphogens such as FGF2 and BMP-4 (Douet et al. 2013; Kerever et al. 2007; 
Mercier and Douet 2014). Recently, another ECM component, called anosmin-1, 
was described to be of importance in regulating NSC proliferation through its bind-
ing to FGFR1 (García-González et al. 2016).

When type A cells migrate towards the olfactory bulbs through the rostral migra-
tory stream, they do so within corridors rich in ECM components, such as laminins 
and tenascin-C, formed by specialized astrocytes and in close contact with BVs 
(Bovetti et al. 2007b; Todd et al. 2017). Their organized migration is controlled by 
cell-ECM interactions and is facilitated by the expression of matrix metalloprotein-
ases by neuroblasts (Bovetti et  al. 2007a). Defective β1 or β8-integrin function 
impairs migration (Belvindrah et al. 2007b; Mobley and McCarty 2011), overex-
pression of anosmin-1 enhances it (García-González et al. 2016) and the interaction 
between laminin-γ1 chains and soluble netrin-4 (produced by astrocytes) is neces-
sary for the activation of integrin signalling (Staquicini et  al. 2009). As soon as 
neuroblasts reach their target area they migrate tangentially and differentiate into 
interneurons, a process controlled by another ECM component, Tenascin-R (David 
et al. 2013). The mess frequent oligodendroglial progenitors produced by NSCs, 
migrate towards the corpus callosum again in close contact with BVs and under the 
control of netrin (Cayre et al. 2013).

6.3.1.5  Diffusible Factors

The extremely complicated processes that take place within the SEZ stem cell niche 
are controlled and co-ordinated by a vast range of factors, operating in small volume 
and at the same time. In most of the cases we don’t know in detail the source of 
these factors, nor the exact way their activity is tuned with each other. An important 
morphogen during embryonic development of the nervous system is Sonic 
Hedgehog (Shh). It has been shown to control proliferation of activated NSCs (in 
culture it shortens both G1 and S-G2/M phases) and by knocking out its receptor 
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Patched it led to a transient increase in proliferation followed by exhaustion of type 
B1 cells (Daynac et al. 2016). Shh signalling has been shown to be more significant 
in two domains of the SEZ: at the dorsal, subcallosal, ventricular wall, where it 
transiently controls oligodendrogenesis during early postnatal stages (Tong et al. 
2015) and at the ventral SEZ where its activity depends on the function of primary 
cilia (Tong et al. 2014b).

Another family of molecules known to control proliferation and cell fate of stem 
and progenitor cells during development are bone morphogenetic proteins (BMP). 
The low density lipoprotein receptor-related protein 2 (LRP2), an endocytic recep-
tor for BMP4, is specifically expressed in ependymal cells of the SEZ and lack of 
expression in adult mice leads to impaired proliferation of neural progenitors 
(Gajera et  al. 2010). Other experiments revealed that exogenous BMPs limit the 
EGF-induced proliferation of type C cells, while inhibition of BMP-SMAD signal-
ling promoted activation of quiescent NSCs. Therefore, correct tuning of BMP and 
EGF activity is necessary for the regulation of NSC quiescence and transit amplify-
ing progenitor mitotic activity (Joppé et  al. 2015). Moreover, induced over- 
expression of Noggin, a secreted BMP inhibitor, in ependymal cells or in NSCs led 
to enhanced proliferation of transit amplifying progenitors and favoured oligoden-
drogenesis (Lim et al. 2000; Morell et al. 2015). The binding of BMPs to fractones 
(exemplified by BMP-4) has been suggested as one mechanism for regulating their 
local activity (Mercier and Douet 2014). Finally, in the ependymal of the post-injury 
spinal cord, anchoring of the BMP type 1b receptor subunit into lipid rafts is con-
trolled by β1-integrin; thus, providing a mechanism of regulating BMP-dependent 
astrogliogenesis by NSCs (North et al. 2015).

In vitro studies have shown that different members of the int/Wingless (Wnt) 
family of morphogens can promote proliferation and either neuronal (Wnt3a, 
Wnt5a) or oligodendroglial (Wnt3a) differentiation of SEZ-derived NSC cultures 
(Ortega et al. 2013; Yu et al. 2006) and transcripts for these factors have been identi-
fied in the SEZ and adult OB (Shimogori et al. 2004). Notably, the transcription of 
Axin2, a target of the canonical Wnt signalling pathway, is active in type B, type C, 
but not type A cells; hence, suggesting distinct functions of Wnt signalling in differ-
ent progenitors (Adachi et al. 2007). Non-canonical Wnt signalling has also been 
shown to function in the SEZ, since diversin is expressed in type A cells and its 
overexpression increases their proliferation (Ikeda et al. 2010).

Several Eph tyrosine kinase receptors and their ephrin ligands, as well as mul-
tiple components of the Notch signaling are present in the SEZ. Holmberg and col-
leagues (Holmberg et al. 2005) identified an ephrin-A2/Eph A7 feedback system, 
operating between progenitors of different maturity in the SEZ in order to control 
proliferation and cell generation capacity. Ephrin-A and B signaling has been shown 
to positively regulate NSC proliferation within the SEZ as well as the cellular archi-
tecture and the migration of neuroblasts in the RMS (Conover et al. 2000; Todd 
et al. 2017). In 2008, the intriguing ability of SEZ NSCs to regenerate low levels of 
ependymal cell damage was revealed (Luo et  al. 2008). Few years later, EphB2 
signaling was found to mediate this type of plasticity, with astrocytes becoming 
ependymal cells and vice versa (Nomura et al. 2010). Recently, the Eph/ephrinB2 
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and Notch signaling was also shown to regulate quiescence of NSCs at the cell 
contact between NSCs and endothelial cells, mediated by Jagged1 expression on 
endothelial cells (Ottone et al. 2014). Canonical Notch signaling has been shown to 
be crucial for regulating quiescence and activation of NSCs by additional experi-
mental work. Deletion of Rbpj forced NSCs to progress in the lineage producing 
type C and A cells, eventually depleting their pool (Imayoshi et al. 2010). Moreover, 
conditional deletion of Notch1 affected activated NSCs, but spared quiescent NSCs 
(Basak et al. 2012). An interesting link between notch signalling and the activity of 
PEDF, a factor well-described to affect NSC self-renewal in the SEZ (Ramírez- 
Castillejo et al. 2006), was reported with PEDF inducing symmetric cell divisions 
downstream of notch (Andreu-Agulló et al. 2009).

An important aspect of the neurogenic activity of the SEZ is the migration of 
neuroblasts to the olfactory bulbs. The direction of movement of neuroblasts is 
guided by the direction of movement of the CSF, controlled by ependymal cilia 
(Sawamoto et al. 2006). Netrins have been identified as potent modulators of neuro-
blast migration, since netrin-1 is expressed by olfactory bulb cells and netrin recep-
tors, such as neogenin and DCC, are expressed on type A cells (Astic et al. 2002; 
Murase and Horwitz 2002). Although the regulation of neuroblast migration and 
differentiation is still largely unknown, neogenin has also been shown to synchro-
nize their migration and their terminal differentiation by affecting cell cycle kinet-
ics, similar to cannabinoids’ activity through the PKC-dependent phosphorylation 
of fascin (O’Leary et al. 2015; Sonego et al. 2013).

6.3.1.6  Neurotransmitters and Neuromodulators

Because cytogenesis in the SEZ is known only to supply new neurons and oligoden-
drocyte progenitors in the olfactory bulbs and the corpus callosum, respectively, 
neurotransmission wasn’t expected to play a significant regulatory role. Nevertheless, 
augmenting evidence suggests the contrary. An interesting hypothesis is that dopa-
minergic regulation of proliferation in the SEZ allows the niche to communicate 
with the periphery. A downside of this system is that in pathologic conditions of loss 
of dopaminergic innervation, as observed in Parkinson’s disease, NSC self-renewal 
and progenitor proliferation is disturbed (O’Keeffe et  al. 2009b). Dopaminergic 
regulation appears to be EGF-dependent and FGF2-independent (O’Keeffe et  al. 
2009b), and most of the experimental data converge on a key role of D1, D2 and D3 
receptors (Kim et al. 2010; Lao et al. 2013; O’Keeffe et al. 2009a). Specifically for 
D3 receptors, they are specifically expressed on type C cells (Kim et al. 2010) and 
their activation induces NSC self-renewal and type-C cell generation through Akt 
and ERK1/2 signaling (Lao et al. 2013). A role for cholinergic neurotransmission 
was also suggested when researchers identified a population of choline acetyltrans-
ferase (ChAT) positive neurons in the rodent SEZ with a morphology distinct to 
those of the striatum (Paez-Gonzalez et al. 2014). Neuroblast generation could be 
modulated using optogenetic tools in order to induce or block cholinergic activity, 
and it was shown that response to Ach was mediated through FGFRs (Paez- Gonzalez 
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et al. 2014). Recently, cholinergic stimulation was shown to control the response of 
SEZ cells to experimental stroke (Wang et al. 2017). Serotonergic axons had been 
identified near the walls of the ventricles since the late 90’s, described also to be in 
close association with ependymal cells (Mathew 1999). These observations were 
confirmed recently and serotonin receptors 2C and 5A were found to be expressed 
by type B cells. The intracerebroventricular infusion of 2C agonists and antagonists 
altered the proliferation of NSCs in the SEZ (Tong et al. 2014a) and the chronic 
activation of 1A and 2C receptors induced proliferation in the olfactory bulbs 
(Soumier et al. 2010).

Finally, the best described neurotransmitter to have a role in regulating neuro-
genesis in the SEZ is gamma-amino butyric acid (GABA) . In the postnatal SEZ, 
young neuroblasts spontaneously release GABA, which activates GABAα receptors 
and depolarizes precursor cells resulting in the inhibition of cell proliferation and 
neuronal differentiation through the recruitment of the PI3K-related kinase signal-
ing pathway and histone H2AX phosphorylation. Surprisingly, these changes can 
lead to long-lasting changes in stem cell numbers, the niche size, and neuronal 
output (Fernando et  al. 2011). A year later a negative-feedback mechanism with 
which neuroblasts restrict their own production was described to involve GABAergic 
inhibition (Alfonso et al. 2012), since type B and C cells were shown to secrete the 
diazepam-binding inhibitor protein (DBI) which acts as a positive modulator of 
SEZ postnatal proliferation and neurogenesis by competitively inhibiting GABA 
binding to its receptors. Subsequently, the existence of significant heterogeneity in 
regard to GABA receptor subunit composition throughout the human SEZ was 
found (Dieriks et al. 2013). For example, expression of GABA(A)R α2 and γ2 units 
was specifically detected on cells proximal to large SEZ BVs, where the SEZ was 
much thicker.

6.3.2  In the Subgranular Zone (SGZ)

The neurogenic region of the hippocampus is restricted to the subranular zone 
(SGZ) close to the dentate gyrus (Kazanis 2012, 2013). Similarly to the SEZ, the 
SGZ is characterized by the existence of relatively quiescent NSCs of astroglial 
morphology that generate precursors of neuronal commitment (neuroblasts) which 
migrate to their target area in the granule neuron layers to differentiate in mature 
neurons, which integrate in an already existent neuronal network. The neurogenic 
system of the SGZ does not form an anatomically separate structure. However, 
NSCs are confined in a restricted area, surrounded by intermediate progenitors, 
astrocytes, mature granule cells and blood vessels; thus, the SGZ is also referred to 
as a stem cell niche (Palmer et al. 2000) (Fig. 6.2b). In the SGZ the number of cells 
being produced is smaller compared to that of the SEZ (Kazanis 2013), but their 
function is significantly different as they contribute to processes such as memory 
and learning. This is why impaired neurogenesis has been linked to the development 
of mental health and cognitive disorders (Aimone et al. 2011; Noonan et al. 2010; 
Sahay et al. 2011).
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Fig. 6.2 Schematic illustrations of the cyto-architecture of the SEZ (in a) and of the SGZ (in b). 
Note the NSCs of astroglial morphology (light blue cells) and the presence of blood vessels in 
these neurovascular niches. (c) High magnification image of the human SEZ taken from a newborn 
baby. The ependymal cell layer is at the right of the image (in white), Dcx + neuroblasts are at the 
centre (in green) and an astrocyte-rich ribbon area at the left (GFAP+ cells in red); nuclei are coun-
terstained with Dapi (in blue). [Schemas in A, B reproduced from: The neural stem cell microen-
vironment (August 31, 2008), StemBook, ed. The Stem Cell Research Community, StemBook, 
doi/https://doi.org/10.3824/stembook.1.15.1, http://www.stembook.org, under a Creative 
Commons Attribution 3.0 Unported License]
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6.3.2.1  Cell-Cell and Cell-ECM Contact

The ECM composition of the SGZ has not been thoroughly investigated so far. In 
vitro assays of NSCs isolated from the rat hippocampus have revealed that they are 
able to produce their own ECM (laminin, fibronectin) and their adhesion to different 
substrates is controlled by integrins (Harper et al. 2010). The role of β1-integrin in the 
SGZ seems to mimic aspects described during development and in the SEZ. It is nec-
essary for the structural integrity of the niche, for controlling proliferation of NSCs 
and for inhibiting astroglial differentiation (Brooker et al. 2016). Recent experimental 
work also indicated that the large ECM glycoprotein Reelin, which is mostly known 
to regulate migration of progenitors (Courtès et al. 2011) plays a role in controlling 
quiescence of NSCs, but is dispensable for progression into the lineage (Sibbe et al. 
2015). Finally, it should be noted that the SGZ is a neurovascular niche (Palmer et al. 
2000), with abundant BVs that offer access to an ECM rich basement membrane.

6.3.2.2  Diffusible Factors

NSCs isolated from the adult hippocampus can be kept in culture in the form of neu-
rospheres (Fig. 6.1) , similar to NSCs of the embryonic brain and of the SEZ. These 
cells are kept in medium rich in FGF2 and EGF. Recently, it was found that hippo-
campal NSCs produce their own ciliary neurotrophic factor (CNTF), which pushes 
them towards differentiation. In contrast, the presence of FGF2 down- regulates the 
expression of CNTF and inhibits spontaneous differentiation in vitro (He et al. 2012). 
The role of Wnt signalling has been investigated in vitro and in vivo, and the intrigu-
ing finding was that distinct functional outputs were generated depending on whether 
the Wnt/β-catenin, or the Wnt/Planar cell polarity pathway was activated. The first is 
crucial for cell fate determination and the latter for morphological maturation of neu-
roblasts (Schafer et al. 2015). NSCs and their daughter progenitor cells also express 
the Wnt receptor Frizzled-1 (FZD1). Conditional knockdown of FZD1 resulted in a 
range of defects, including increased astroglial differentiation in expense of neuro-
genesis and increased migration of newborn neurons (Mardones et al. 2016). Finally, 
interesting results have been generated by investigating BMP signalling in the hip-
pocampal cytogenic niche. Expression of BMP target genes, such as ID3 revealed 
low levels of BMP activity in proliferating cells. In addition, overexpression of nog-
gin into granule cells of the dentate gyrus resulted in increased proliferation of NSCs 
(Bonaguidi et al. 2008). Furthermore, ablation of BMP receptor–II enhanced prolif-
eration and maturation of NSCs and of neuroblasts, whilst overexpression of BMP-4 
caused cell cycle exit (Bond et al. 2014).

6.3.2.3  Metabolic Regulation

The contribution of hippocampal neurogenesis to learning, memory and mental 
health in general has invited high interest in the mechanisms by which the periph-
eral body conditions can be coupled with NSC activity (reviewed in Triviño-Paredes 
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et  al. (2016)). Nevertheless, it is still early days and no solid hypotheses can be 
formed. Many factors such as BDNF and orexin-A have been identified (Chieffi 
et al. 2017), but much more details have been generated regarding the role of oxy-
gen. Low O2 tensions induce expression of hypoxia-inducible factors (HIFs) which 
are heterodimers consisting of a constitutively expressed β-subunit and an oxygen- 
regulated α-subunit and regulate oxygen homeostasis and direct molecular responses 
to hypoxia (Semenza 2012). HIF1α promotes self-renewal (via Notch signalling) 
and blocks apoptosis and differentiation (Panchision 2009). Indeed, deep within the 
nervous tissue, and especially in the SGZ, normally hypoxic conditions seem to 
enhance Wnt/β-catenin signalling that—as described above- is essential for NSC 
self-renewal and lineage progress (Mazumdar et al. 2010). As soon as neuroblasts 
migrate away from this hypoxic microenvironment they become vulnerable to oxi-
dative stress and apoptosis occurs. If HIF1α becomes stabilized, then apoptotic cell 
death is significantly reduced (Chatzi et al. 2015). Finally, a mechanism coupling 
levels of exogenous glucose to NSC activity was described. High glucose levels 
lead to reduced Hes-1 expression, through reduced CREB activity, and subsequent 
inactivation of NSCs; the same effect being achieved in CREB-deficient NSCs 
(Fusco et al. 2016).

6.3.2.4  Neurotransmission, Neuropeptides-Neurohormones

Various neurotransmitters and neurohormones have been identified as significant 
modulators of neurogenesis in the hippocampus. Glutamate, the major excitatory 
neurotransmitter, can act on NSCs mostly via the metabotropic glutamate receptor 
5 (mGluR5) that is highly expressed on them. When norbin, which is a positive 
regulator of mGluR5, was knocked-out it led to impaired proliferation and matura-
tion of newborn neurons without affecting cell-fate specification (Wang et al. 2015). 
Because norbin is expressed in granule cells, its effect seems to be non-cell autono-
mous for NSCs and is probably mediated by cell-cell contact. Importantly, norbin- 
deficient mice exhibit depressive-like behaviour. Moreover, a newly identified target 
of neural activity and especially of glutamatergic neurotransmission is the family of 
BMP/RA-inducible neural-specific proteins (BRINP) (Motomiya et  al. 2007). 
BRINP-1 expression is increased in response to kainic acid stimulation of the hip-
pocampus and in BRINP-1 deficient mice neurogenesis is significantly deregulated 
with the generation of more immature neurons and the emergence of symptoms 
relevant to human mental disorders such as schizophrenia and attention-deficit/
hyperactivity disorder (Kobayashi et al. 2014). Another neurotransmitter that has 
been directly linked to NSC activity is norepinephrine, acting through β3 adrener-
gic receptors that are specifically expressed in Hes5-expressing progenitors in the 
SGZ. Notably, serotonin was found not to exert any effects of NSCs of the SGZ 
(Jhaveri et al. 2010).

Additional indications for the role of peripheral cues, such as of neurohor-
mones, have been recently provided in cell culture assays. Ghrelin, which acts pri-
marily in the hypothalamus but it has been also observed in other regions such as the 
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hippocampus, exerts a mitogenic effect in cultured hippocampal NSCs. This is due 
to the enhanced progression from G1 to S phase mediated by the enhanced nuclear 
expression of E2F1 and the balanced activity on positive and negative cell cycle 
regulators (Chung and Park 2016). Finally, melatonin, which is secreted by the 
pineal gland and has a remarkably pleiotropic nature is able to enhance the prolif-
eration of adult hippocampal NSC in vitro. Melatonin exerted its action via the 
melatonin receptor, a G-protein coupled-receptor, and resulted in phosphorylation 
of Raf, MEK, and ERK1/2 (Tocharus et al. 2014).

6.3.3  Hypothalamus

Although the main and better described neurogenic niches in the adult mammalian 
brain are located in the SEZ of the lateral ventricle and the SGZ of the hippocampal 
dentate gyrus, there is increasing evidence for adult neurogenesis also in the hypo-
thalamus (Batailler et al. 2016; Kokoeva et al. 2007), a brain region that is known 
for its key role in the neuroendocrine regulations including reproduction, metabo-
lism or food intake. Recent lineage-tracing studies have convincingly demonstrated 
the existence of neurogenic cells, capable of generating mainly neurons, within the 
pool of tanycytes, the non-ciliated ependymoglial cells lining the ventral part of the 
third ventricle (3V) (Haan et al. 2013; Lee et al. 2012; Robins et al. 2013). In light 
of the function of the hypothalamus, cytogenesis within this niche is expected to be 
regulated by extrinsic cues, linking it with metabolic and other behavioural condi-
tions (Lee et al. 2012; Migaud et al. 2015; Perera et al. 2011). Until now, though, 
only limited progress has been made towards elucidating this regulation. Tanycytes 
are expressing FGF10; hence, suggesting a role of this growth factor in the hypotha-
lamic niche (Haan et al. 2013). Other growth factors that when administered intra-
cerebroventricularly have been shown to induce neurogenesis in the hypothalamus 
are BDNF (Pencea et al. 2001) and CNTF (Belsham et al. 2009). Finally, in sheep 
that are a seasonal species, neurogenesis in the hypothalamus shows response to 
seasonal stimuli (Batailler et al. 2016).

6.4  The NSC Microenvironment in the Aged 
and the Pathological Brain

6.4.1  Ageing, Degeneration and the Cancer Stem Cell 
Hypothesis

The NSC microenvironment changes significantly during ageing; however, very 
little is known about the details of these changes and on how they might affect 
NSCs. Within the ageing SEZ niche, the ECM structures called fractones seem to 
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change (Kerever et al. 2015): their numbers are decreased but their size increases 
and their composition in heparan sulfate chain is altered; however, FGF2 capture, 
one major functional aspect, remains unchanged. The CNS microenvironment is 
known to change, especially in terms of its ECM components, in different patho-
logical conditions such as Alzheimer’s and vascular dementia (Lepelletier et  al. 
2017; Rosenberg 2017), autism (Mercier et  al. 2011), as well as after stroke 
(Haddock et al. 2007). At the same time, accumulating evidence suggests that in 
such cases of pathology the behaviour of NSCs changes (Curtis et al. 2007; Darsalia 
et al. 2005, 2007; Ekonomou et al. 2010; Yamashita et al. 2006; Zhang et al. 2014) 
and much more intriguingly latent progenitors seem to be activated (Florio et al. 
2015; Magnusson et al. 2014; Sirko et al. 2013). These data, in combination with the 
exciting finding that adult brain NSCs can be rejuvenated by systemic factors 
(Katsimpardi et al. 2014; Ruckh et al. 2012), support the expectation that, by deci-
phering the cross-talk between aged or disease-affected NSC with their microenvi-
ronment, this will lead to major breakthroughs in regenerative medicine.

Cancer stem cells (CSCs) exhibit tumor initiation potential (Deleyrolle et  al. 
2011; Piccirillo et al. 2012). CSCs express markers such as CD133+ (or prominin) 
and Nestin and are found in various brain cancers (glioblastoma, medulloblastomas, 
ependymomas and oligodendrogliomas) in close proximity with the aberrant tumor 
vasculature. Their interaction with endothelial cells seems to be crucial in maintain-
ing the CSC pool (Bao et al. 2006; Calabrese et al. 2007), while various microenvi-
ronmental factors provide instructive cues that modulate CSC behavior (Lathia 
et al. 2011) using mechanisms such as cell-to-ECM interactions, growth factor sig-
naling and cell-to-cell communication (Gilbertson and Rich 2007).

6.4.2  Glioma/Glioblastoma (GBM)

6.4.2.1  CSCs-ECM Interactions

Significant signaling crosstalk exists between ECM components and membrane 
proteins expressed on CSCs and vascular cells, for example between the laminin 
family of proteins and their receptors integrins. Integrins αvβ3 and α6β1, are 
enriched in CSCs located in the perivascular niche and normally in direct contact 
with endothelial cells and are essential for their proliferation and self-renewal while 
targeting of integrin α6 reduces tumor formation potential (Burgett et  al. 2016; 
Lathia et al. 2010). Activation of integrin-mediated phosphoinositide 3-kinase (PI3- 
K) survival signaling has also been reported to facilitate glioma cell migration (Joy 
et al. 2003), while repression of integrin α6 promoter inhibits stemness of glioblas-
toma cells (Ying et al. 2014) via reduced expression by Kruppel-like transcription 
factor 9 (KLF9). Moreover, the pro-oncogenic activity of integrin α6 stems from its 
association with N-cadherin in order to achieve translocation of extracellular signal-
regulated kinase (ERK) to the nucleus (Velpula et al. 2012). The ERK pathway has 
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also been implicated in the promotion of glioma invasion properties through the 
expression of integrin α3 (overexpressed in invading CSCs and perivascular tumor 
cells) (Nakada et al. 2013). Another mechanism by which integrins (namely α6β1) 
inhibit pro-apoptotic cascades initiated by tumor necrosis factor (TNF) receptor 1 
(TNF-R1), when the cells are attached to laminin, is the induction of the expression 
of the cellular FLICE inhibitory protein (cFLIP) (Huang et al. 2012). The produc-
tion of laminins and other ECM components within the perivascular glioblastoma 
niche is dependent mainly on non-CSCs and endothelial cells (laminin α2, fibronec-
tin and collagen IV) while CSCs express low levels of α2, α3 and α5 laminin chains 
(Lathia et al. 2012).

Tenascin-C extracellular matrix glycoprotein is another main component of the 
ECM of malignant brain neoplasms and is overexpressed in GBM tumors where it 
exhibits a strong association with cells in the perivascular compartment (Behrem 
et al. 2005; Brösicke et al. 2013; Lathia et al. 2012). Tenascin-C is secreted by tumor 
cells (Hirata et al. 2009) and has been characterized to be inducing neural progeni-
tor cell migration (Ziu et  al. 2006), as well as to have anti-anchorage effects on 
endothelial cells, visualized by distinct blood vessel characteristics (Xia et al. 2016). 
Its link with increased motility/migration of GSCs in vitro and in vivo is the anti- 
adhesive role it exerts through the modulation of the focal adhesion kinase pathway 
(Xia et al. 2016). Glioma invasiveness has also been attributed to increased expres-
sion and proteolytic activity of ADAM9 (a disintegrin and metalloproteinase 9) 
which involves the mitogen-activated protein kinase 8 pathway (Sarkar et al. 2015). 
Metalloproteinases are logical candidates for regulating invasiveness of tumor cells 
since ECM remodeling is a necessary condition; however, two other members of the 
ADAM family, ADAM10 and ADAM17 have also been shown to promote self- 
renewal of the GSC population (Bulstrode et al. 2012).

In addition to the biochemical cues provided by the ECM, mechanotransduction 
has been recognized as a pivotal element in cell-ECM interactions, modulating the 
tumorigenic phenotype because the rigidity of the microenvironment impacts tumor 
cell migration/proliferation properties. As ECM rigidity increases (stiff ECMs), 
glioblastoma cells migrate extensively and proliferate rapidly, while the opposite 
behavior is observed in soft ECMs. This efficient rigidity-sensing and propulsive 
force-generating system of tumor cells involves components of the cytoskeleton like 
myosin II (Umesh et al. 2014), α-actinins 1 and 4 (Sen et al. 2009), linkers to the 
ECM such as talin-1 (Sen et al. 2011) as well as sophisticated regulation of epider-
mal growth factor receptor signaling (Umesh et al. 2014). Surprisingly, CSCs are 
generally insensitive to mechanical inputs and don’t present the typical non-motile 
phenotype in compliant ECMs as they generate low levels of myosin-dependent 
contractile force. This phenomenon is reversed and activation of myosin-dependent 
contractility through RhoA GTPase, Rho-associated kinase (ROCK), or myosin 
light chain kinase (MLCK) restores stiffness-dependent migration, leading to a less 
invasive phenotype and prolonged survival in mice orthotopically implanted with 
such CSCs (Wong et al. 2015).
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6.4.2.2  CSCs-Vasculature Interactions

Extensive interplay between CSCs and endothelial cells (ECs) has been identified, 
one example already being examined regarding the generation of laminin α2 from 
endothelial cells which can bind to integrin receptors on the CSCs. EC mediated 
pathophysiological processes such as angiogenesis and hallmark functions of CSCs 
such as self-renewal are interconnected and elimination of endothelial cells can lead 
to detrimental effects for GSCs, driven in part from Notch signaling (Hovinga et al. 
2010). The endothelial secretome can preserve CSCs properties, promoting mTOR- 
dependent survival (Maria Galan-Moya et al. 2011) or activating Notch signaling 
via nitric oxide (NO) produced by nitric oxide synthase 3 (NOS3) (Charles et al. 
2010). High levels of NO can also be produced endogenously in GSCs, which have 
elevated nitric oxide synthase 2 (NOS2) expression, compared with non-GSCs and 
normal neural progenitor cells, thus promoting their tumorigenic profile (Eyler et al. 
2011). Vice versa, CSCs produce proangiogenic factors such as vascular endothelial 
growth factor (VEGF) and stromal-derived factor 1 (SDF1), boosting EC activation 
and migration and supporting angiogenesis/vasculogenesis (Bao et al. 2006; Folkins 
et al. 2009; Oka et al. 2007; Ping et al. 2011). VEGF secretion can be promoted by 
the chemokine CXCL12 (SDF1), whose receptor’s (CXCR4) expression is elevated 
in GSCs and activates a PI3K/Akt dependent pathway (Ping et al. 2011). Interestingly, 
VEGF is part of an autocrine VEGF–VEGFR2–Neuropilin-1 signaling pathway, 
indicating that CSCs can regulate, sustain and promote their own growth rate 
through the expression of vascular endothelial growth factor receptor 2 (VEGFR2) 
(Hamerlik et al. 2012).

In addition to the effect of secreted factors exchanged between ECs and CSCs, 
direct interactions between these two distinct cell types have been studied. Notch 
signaling plays a pivotal role in EC-CSC crosstalk and can be activated through 
Notch ligand independent way (e.g. nitric oxide) or through ligand dependent man-
ner. Nestin is co-expressed with Notch receptors, Notch1 and Notch2, on CSCs 
which have elevated levels of Notch activity in conjunction with constitutive activa-
tion of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and 
NF-κB-dependent genes (Garner et al. 2013; Zhu et al. 2011). On the other hand, 
ECs express Notch ligands Delta-like 4 (DLL4) and Jagged-1 (JAG1) and enhance 
the self-renewal of adjacent Notch receptor-expressing stem cells properties through 
juxtacrine signaling (Zhu et  al. 2011). Recently, the binding of integrin αvβ3, 
expressed on ECs to the RGD-peptide in the extracellular domain of L1CAM on 
CSCs, was shown to mediate an FGF2-induced cascade involving the activation of 
BMX, FAK, p130CAS and the downstream effectors ERK and JNK. It resulted in 
enhanced formation of ECs networks and their chemotactic attraction by FGF2; 
thereby, promoting angiogenesis (Burgett et  al. 2016). Notch signaling has also 
been linked to glioblastoma radioresistance and the utilization of gamma-secretase 
inhibitors (GSIs) attenuates this protective effect, sensitizing CSCs to radiation 
damage (Wang et al. 2010). Finally, junctional adhesion molecule A (JAM-A) is 
expressed on CSCs and becomes suppressed during differentiation; being essential 
as an adhesion factor for cell maintenance (Lathia et al. 2014). JAM-A is a target of 
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miR-145 (negative regulator), which is downregulated in CSCs (Alvarado et  al. 
2016). High JAM-A/low miR-145 expression signature has significant predictive 
value and presents clinical relevance as it indicates poor patient survival (Alvarado 
et al. 2016).

6.4.2.3  Diffusible Factors

A key factor of the glioma micro-environment in initiating tumorigenesis by GSCs 
is Transforming Growth Factor-beta (TGFβ). TGFβ induces the self-renewal 
capacity of GSCs through the Smad-dependent induction of leukemia inhibitory 
factor (LIF) and the subsequent activation of the JAK-STAT pathway (Peñuelas 
et al. 2009). Moreover, TGFβ activity is mediated by the ID family of helix-loop- 
helix proteins (Anido et al. 2010). Expression levels of IDs are higher in tumor cells 
and ECs of higher grade glial neoplasms correlate with proliferation and angiogen-
esis patterns (Vandeputte et al. 2002). ID4 transforms astrocytes into a stem-cell like 
state through Notch signaling (Jeon et al. 2008) and ID3 promotes GSCs features in 
astrocytes (Jin et al. 2011). In addition, pAKT-pSmad5 signaling-driven ID3 induc-
tion by activation of EGF signaling along with the subsequent production of ID3-
regulated cytokines (GRO1, interleukin-6 (IL-6) and interleukin-8 (IL-8), 
enhances tumor formation, expansion and heterogeneity (Jin et al. 2011). Finally, 
CSCs are able to protect themselves from endogenous BMPs via the expression of 
the BMP antagonist Gremlin1. Gremlin1 blocks the pro-differentiation effects of 
BMPs via the p21WAF1/CIP1 complex and overexpression of Gremlin1  in non- 
CSCs decreases their endogenous BMP signaling to promote stem-like features 
(Yan et al. 2014).

6.4.2.4  Hypoxia

As with NSCs during development, in the adult brain hypoxic micro-environmental 
conditions maintain and expand the GSC phenotype (Bar et al. 2010; Heddleston 
et al. 2009; Li et al. 2009; Seidel et al. 2010; Soeda et al. 2009). HIFs have been 
shown to facilitate GSC survival and self-renewal (Li et al. 2009; Soeda et al. 2009). 
HIF2α induces VEGF expression exclusively in the stem cell subpopulation (Li 
et al. 2009; Seidel et al. 2010), whereas HIF1α transcriptionally regulates the VEGF 
promoter in GSCs and non-GSCs cells (Li et al. 2009) and represses Neuropilin-2 
(NRP2) in non-GSC cells, increasing paracrine VEGF-induced EC function and 
inhibiting the potent anti-tumorigenic activity of semaphorin 3F (SEMA3F) (Coma 
et  al. 2011). By stabilizing the intracellular domain of Notch, HIF1α synergizes 
with Notch and drives CSC maintenance (Qiang et al. 2012). Targeting HIF iso-
forms results in anti-proliferative and anti-tumorigenic effects while reducing cell 
migration/invasion in vitro and in vivo (Li et al. 2009; Méndez et al. 2010; Seidel 
et al. 2010).
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6.4.3  Other Brain Cancer Types

Ependymoma and medulloblastoma CSCs interact with ECs in matrigel cultures 
and promote EC network formation (Calabrese et al. 2007). Upregulation of lam-
inin α2 has been detected in a distinct group of invasive and metastatic posterior 
fossa ependymomas, linked to poor patient survival (Witt et al. 2011). Tumor peri-
vascular cells in medulloblastoma were resistant to radiation-induced damage 
through the activation of the PI3K/Akt pathway (Hambardzumyan et al. 2008).

6.5  New Relevant Research Trends

There are three fields that are currently at the forefront of research but haven’t pro-
duced solid results, yet. Firstly, the regulation of NSCs by exosomes released in the 
microenvironment by proximal cells (reviewed in Bátiz et al. (2016). Secondly, the 
cross-talk between the immune system and NSCs, that was initially thought to be 
one-way (immune cells to NSCs) (Pluchino et  al. 2005), but seems to be bi- 
directional (Cossetti et al. 2014; Pluchino and Cossetti 2013). Thirdly, the effects of 
the gut microbiota to brain development and adult neurogenesis (Fung et al. 2017; 
Heberden 2016; Heijtz et al. 2011).
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Chapter 7
Glioblastoma Stem Cells and Their 
Microenvironment

Anirudh Sattiraju, Kiran Kumar Solingapuram Sai, and Akiva Mintz

Abstract Glioblastoma (GBM) is the most common primary malignant astrocy-
toma associated with a poor patient survival. Apart from arising de novo, GBMs 
also occur due to progression of slower growing grade III astrocytomas. GBM is 
characterized by extensive hypoxia, angiogenesis, proliferation and invasion. 
Standard treatment options such as surgical resection, radiation therapy and chemo-
therapy have increased median patient survival to 14.6 months in adults but recur-
rent disease arising from treatment resistant cancer cells often results in patient 
mortality. These treatment resistant cancer cells have been found to exhibit stem cell 
like properties. Strategies to identify or target these Glioblastoma Stem Cells (GSC) 
have proven to be unsuccessful so far. Studies on cancer stem cells (CSC) within 
GBM and other cancers have highlighted the importance of paracrine signaling net-
works within their microenvironment on the growth and maintenance of CSCs. The 
study of GSCs and their communication with various cell populations within their 
microenvironment is therefore not only important to understand the biology of 
GBMs but also to predict response to therapies and to identify novel targets which 
could stymy support to treatment resistant cancer cells and prevent disease recur-
rence. The purpose of this chapter is to introduce the concept of GSCs and to detail 
the latest findings indicating the role of various cellular subtypes within their micro-
environment on their survival, proliferation and differentiation.
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7.1  Introduction

7.1.1  Disease Classification and Histopathology

Glioblastoma (GBM) is classified according to the 2007 WHO classification as a 
grade IV (high grade) astrocytoma (Louis et al. 2007). GBM is the most common 
and aggressive primary (arising de novo) malignant astrocytoma which is often 
characterized by extensive microvascular hyperplasia, hypercellularity, prolifera-
tion, diffuse infiltrating margins and necrotic foci, often surrounded by pseudopali-
sading cells, an ominous histopathological feature that distinguishes them from 
non-malignant “low-grade” gliomas (grade I and II) (Brat et al. 2004; Bissell and 
Radisky 2001; Rong et al. 2006; Van Meir et al. 2010). These pseudopalisades have 
previously been reported to be highly hypoxic and instigate microvascular hyper-
cellularity through secretion of hypoxia inducible factors (HIFs), vascular endothe-
lial growth factor A (VEGF-A) and interleukin 8 (IL-8). Using microarray analysis, 
The Cancer Genome Atlas (TCGA) researchers were able to identify genomic 
changes which drive GBM tumor development and classified the disease into clas-
sical (EGFR high, mutated TP53 low), proneural (mutated TP53 high, mutated 
IDH1 high, mutated PDGFA high), mesenchymal (mutated NF1 high, frequent 
mutations of PTEN and TP53) and neural subtypes (mutations in same genes as 
other subgroups; expression of neural genes) (Verhaak et al. 2010).

7.1.2  Therapeutic Challenges for Treating GBMs

Standard treatment strategies for GBM patients in the clinic include surgical resec-
tion, radiotherapy, chemotherapy with temozolomide (TMZ) and the recently FDA 
approved oscillating electric field therapy (Hottinger et al. 2014; Weller et al. 2012). 
Regardless of efforts to increase safety and efficacy of these treatments in the clinic, 
the median overall survival of patients has only extended to about 14.6 months. 
GBM is a highly infiltrative disease with cancer cells migrating extensively into 
surrounding normal neural tissue. It is therefore not possible to remove all tumor 
cells from patients through surgical resection, as they have been observed 2–3 cm 
from the original site of the tumor. Importantly, these invasive cells that are left 
behind after surgery close to the margins of the resection cavity give rise to even 
more aggressive tumors (Chaichana 2014; Eyupoglu et al. 2013; Yong and Lonser 
2011). These cells that repopulate and maintain GBM tumors after gross surgical 
resection are thought to be undifferentiated glioblastoma stem cells (GSCs) (Jackson 
et al. 2015; Lathia et al. 2015; Ahmed et al. 2013; Cho et al. 2013). Seeding other 
normal regions of the brain with primary GBM cells during resection is another 
possible limitation of surgery.

The vasculature within the central nervous system protects neural tissue from 
harmful molecules by the formation of a blood-brain barrier (BBB). It comprises of 
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astrocytes and pericytes which wrap around endothelial cell tight junctions (Abbott 
2002; Abbott et al. 2010; Agarwal et al. 2013; Persidsky et al. 2006; Wolburg and 
Lippoldt 2002). The protective nature of the BBB causes several complications in 
delivering effective concentrations of therapies to tumor tissue as it regulates the 
extravasation of macromolecules and chemotherapy (Hawkins and Davis 2005; 
Pardridge 2005). GBMs exhibit high genetic heterogeneity due to clonal evolution 
of cancer cells making it difficult to target all GBM cells using a single biomarker 
targeted therapy that results in cancer cells surviving treatment and ultimate recur-
rence (Patel et  al. 2014; Bonavia et  al. 2011; Sottoriva et  al. 2013; MDM et  al. 
2010). GSCs are thought to exist primarily in hypoxic or necrotic areas which are 
often inaccessible by chemotherapy and are thought to be resistant to chemotherapy 
due to overexpression of drug efflux pumps and their slow division rate (Seidel et al. 
2010; Bar et al. 2010; Li et al. 2009; Heddleston et al. 2010; Heddleston et al. 2009; 
Carmeliet and Jain 2000; Dewhirst et al. 2008; Pistollato et al. 2010; Singh et al. 
2004a; Murat et al. 2008a). Radiation therapy is another standard treatment option 
for GBM patients but has proven to be ineffective in completely eliminating the 
disease (Bao et al. 2006a; Bao et al. 2006b). Radiation causes the creation of free 
radicals in oxygenated areas that in turn cause DNA breaks in cells within the expo-
sure field. GSCs are often resistant to radiation therapy as they are thought to exist 
primarily in hypoxic regions within the tumors where the creation of high amounts 
of free radicals is not possible (Bao et  al. 2006a; Wang et  al. 2010a). Radiation 
therapy also inflicts immediate and long term neuro-cognitive deficits due to dam-
age to surrounding normal neural tissue (Tallet et al. 2012; Greene-Schloesser et al. 
2012; Greene-Schloesser and Robbins 2012).

7.1.3  Attempts to Target GSCs and Role of Microenvironment

Strategies to bypass or to enhance the permeability of the BBB in order to deliver 
effective concentrations of chemotherapy have shown promise. Furthermore, engi-
neering advances have allowed for limiting radiation exposure and protecting nor-
mal areas of brain (Konofagou et al. 2012; Baskar et al. 2012; Nhan et al. 2014; 
Burgess et  al. 2014; Jordao et  al. 2013). But strategies to identify GSC specific 
biomarkers and the targeting of therapies against them have not been fruitful thus 
far. Recent studies have highlighted the importance of the microenvironment includ-
ing paracrine factors secreted within the perivascular niche, hypoxic areas and the 
extracellular matrix on the biology and maintenance of GSCs. It is therefore imper-
ative to understand the important pathways within the GSC niche that are critical for 
their survival and maintenance. It is also important to identify the nature of origin of 
GSCs as it could allow elucidating their biology and understanding extracellular 
factors that are critical for their maintainance. In this chapter, we introduce you to 
recent finding regarding the GSC microenvironment and highlight critical steps that 
could be taken in the future.
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7.2  Discovery of Cancer Cells Expressing Stem Cell Surface 
Markers

A stochastic model in which all cancer cells possessed similar proliferative capabil-
ity was predicted to explain tumor progression. Cancers were therefore thought to 
arise upon spontaneous mutations that occur within terminally differentiated 
somatic cells leading to aberrant cellular proliferation (Hanahan and Weinberg 
2011; Dalerba et al. 2007). Teratomas, which are benign masses arising from aber-
rantly proliferating undifferentiated stem cells were thought to occur only in rare 
cases due to genetic and developmental defects within the germline cell lineages. 
Researchers later discovered a subpopulation within acute myeloid leukemia (AML) 
patient samples associated with normal hematopoietic stem cells by sorting for 
expression of cell surface markers (Lapidot et al. 1994). Clonogenic assays showed 
that this small subset of cancer cells expressing normal stem markers, now termed 
cancer stem cells (CSCs), could give rise to de novo leukemia, histologically similar 
to parental disease, when engrafted in bone marrow of immunocompromised mice 
(Lapidot et al. 1994). Using ectopic xenograft assays, it was determined that CD38+/
CD34- immunophenotype were able to initiate de novo leukemia in immunocom-
promised mice (Lapidot et al. 1994). Subsequently, studies sorting for the presence 
normal stem cell markers in populations of cancer cells found similar CSC in solid 
cancers in locations such as the breast, liver, colon, prostrate, pancreas, skin (mela-
noma) and brain (Singh et  al. 2003; Fang et  al. 2005, 2010; Zhu et  al. 2010; 
Tomuleasa et al. 2010).

The brain had long been thought to have limited differentiation and regenerative 
capabilities but the discovery of neural stem cells (NSCs) (prior to the discovery of 
CSCs) within distinct niches in the subventricular zone (SVZ) of the forebrain lat-
eral ventricles and the subgranular zone (SGZ) in the dentate gyrus of the hippo-
campus indicated that neurogenesis within the brain could possibly occur throughout 
adult life (Riquelme et al. 2008; Vescovi et al. 2006; Eriksson et al. 1998). The dis-
covery of CSCs in leukemia and other solid cancers led to studies aimed at discover-
ing similar such cancer cells within tumors of the central nervous system. The initial 
discovery of neurosphere forming undifferentiated stem cells within human GBM 
biopsy samples (GSCs) and the identification of CD133+ as a marker for this cel-
lular subpopulation within those samples alerted researchers to the possibility of 
cell populations within GBMs which might have greater differentiation capability 
than other cells within tumors (Ignatova et al. 2002; Uchida et al. 2000; Singh et al. 
2004b). Xenograft studies found that the CD133+ subset of GBM cells could give 
rise to histologically identical orthotopic GBMs in immunocompromised rodents. 
Later studies also showed that these GSCs could be differentiated into cells showing 
decreased differentiation and proliferation capabilities (Laks et al. 2009; Kang et al. 
2014; Bradshaw et al. 2016). These findings gave rise to a hierarchic model to pre-
dict tumor progression, in which undifferentiated cancer cells expressing stem cell 
surface markers were considered at the top of the hierarchy and cancer cells show-
ing reduced differentiation capabilities, such as transiently amplifying progenitor 
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cells and terminally differentiated cells were considered lower in hierarchy (Nguyen 
et al. 2012; Dick 2009; Cabrera et al. 2015; Kreso and Dick John 2014).

The existence of GSCs still remains a point of intense contention within scien-
tific circles due to (i) the relatively small number of these cells within patient GBM 
samples, (ii) its uncertain cell of origin; and (iii) lack of a universal identification 
marker specific for GSC immunophenotype, as recent studies show that not all 
GSCs are CD133 + .

7.2.1  Identification and Isolation of GSCs Using Cell Specific 
Markers

A high variability in cell surface marker expression in observed within patient GBM 
samples and between samples from different patients due to the highly heteroge-
neous nature of the disease (MDM et al. 2010). Although initial studies had identi-
fied cell populations enriched for CD133 cell surface marker as GSCs, further 
reports identified GBM cells which did not show enrichment in their CD133 expres-
sion but formed neurospheres in culture and tumorigenesis in xenograft assays. 
Cellular heterogeneity within biopsy samples and inefficient antibody labeling dur-
ing FACS could explain for the lack of expression of CD133  in these cells (Son 
et al. 2009; Ogden et al. 2008; Shackleton et al. 2009; Nishide et al. 2009; Kelly 
et al. 2009). GBMs consist of various clones expressing a diverse genetic profile and 
it is hypothesized that GSCs from one region of a tumor could express different cell 
surface markers when compared to GSCs in another region of the tumor. Therefore, 
the location within tumors from where GSCs are enriched may also play a vital role 
in there stem cell marker expression.

CD133+ GBM cells have been shown to be resistant to radiation and chemo-
therapy due to activation of cell cycle checkpoint pathways, enhancement of DNA 
repair and aberrant cell survival mechanisms. Gene expression profiling of treat-
ment resistant GBM cells showed them to be enriched for CD133 expression (Bao 
et al. 2006a; Murat et al. 2008b). Tumors derived from CD133+ GBM cells have 
also been reported to be highly vascularized due to promotion of angiogenesis 
through secretion of VEGF and SDF-1. These tumors also show greater invasion 
into normal brain tissue when compared to other GBM cell lines (Bao et al. 2006b). 
Additionally, the stage of a patient’s disease could also impact the cell surface 
marker expression of GSCs thereby showing variable results when comparing dif-
ferent patient samples. The particular therapy regiment along with its duration could 
also potentially impact cell surface marker expression within GBMs of patients. 
GSCs have also been reported to show high cellular plasticity. Recent reports have 
shown that not only can GSCs differentiate into progenitor and terminal cells, but 
their daughter cells can also de-differentiate back into GSCs depending on microen-
vironmental cues and adaptation to treatment (Lee et al. 2016; Safa et al. 2015). 
Terminal differentiated GBM cells could therefore express markers of different 
 lineages simultaneously and have no counterparts in normal physiological lineages 
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(Heddleston et al. 2011). GSCs have also recently been shown to transdifferentiate 
into endothelial cells (Heddleston et al. 2011; Ricci-Vitiani et al. 2010; Wang et al. 
2010b). These data indicate that CD133 could be considered as a biomarker of 
GSCs and provides survival advantages to tumors. However, evidence suggests that 
additional markers could more precisely identify GSC populations due their drivers 
and high plasticity.

Alternate cell surface markers such as integrin α6, SSEA-1, A2B5 and CD44 
could also be considered to enrich for GSC population (Ogden et al. 2008). Integrin 
α6 high cells have been reported to be more tumorigenic than integrin α6 low cells. 
Integrin α6 co-segregates with CD133 but integrin α6 positive cells are enriched for 
neurosphere formation regardless of enrichment in CD133 expression. Knockdown 
of integrin α6 impedes neurosphere formation and tumor development in xenografts 
indicating that integrin α6 is probably expressed on a broader pool of GSCs (Lathia 
et al. 2010). SSEA-1 (stage specific embryonic antigen-1) is thought to be secreted 
by neural stem cells to modulate Wnt signaling and has been shown to be expressed 
on CD133+ tumors. SSEA-1+ GBM cells also show greater tumorigenicity when 
compared to SSEA-1- GBM cells (Son et al. 2009). A2B5+ GBM cells have also 
been shown to be highly tumorigenic compared to A2B5- GBM cells. This corrobo-
rates the fact that A2B5 has been shown to co-segregate with CD133 in flow cytom-
etry studies (Ogden et al. 2008). But, similar to integrin α6, A2B5+/CD133- GBM 
cells showed tumor initiating capability in xenograft studies. This indicates that 
A2B5 could be used to enrich a broader pool of GSCs. Side population using 
Hoechst 33,342 was also shown to as a cell surface marker independent technique 
to enrich for GSCs. However, conflicting reports about the tumorigenic capability of 
isolated cells as well as viability issues after exposure to the dye have yet to be 
addressed (Bleau et al. 2009). Intracellular stem markers such as Olig2, Musashi, 
Bmi and Sox2 could also be used to verify enriched GSC populations (Bao et al. 
2006a). These studies indicate that more than one biomarker may potentially have 
to be used in order to segregate a GSC population. Additionally, the set of biomark-
ers used to efficiently segregate GSCs from one patient’s GBM may not efficiently 
segregate the entire pool of GSCs from another patient’s GBM due to the highly 
heterogeneous nature of the disease.

7.2.2  Glioblastoma Cell of Origin

The stochastic and hierarchic models not only predict gross steps that occur in the 
process of tumor progression but also indicate possible cells of origin (COIs) in a 
variety of cancers. The identification and isolation of COIs in GBM and other can-
cers could not only indicate which of the two predicted models of tumor progression 
might be accurate but could also shed light on the emergence of CSCs and their role 
in tumors maintenance, which eventually could lead to identification of better tar-
gets for cancer therapy.

Currently, there are two lines of thought regarding COIs of cancers, one that 
assumes that somatic differentiated cancer cells undergo de-differentiation and 
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transform upon genetic mutations and microenvironmental cues to give rise to CSCs 
(Hanahan and Weinberg 2011; Friedmann-Morvinski and Verma 2014). These CSCs 
could later give rise to progenitor cancer cells and terminally differentiated cancer 
cells. The other line of thought assumes that normal stem cells already present in 
various organs undergo genetic mutations and react to aberrant paracrine signaling 
within their microenvironment to give rise to altered undifferentiated malignant 
stem cells. These deviant stem cells can then give rise to aberrant progenitor cells 
with unregulated proliferative capabilities and later terminally differentiated cancer 
cells (Kreso and Dick John 2014; Reya et al. 2001; Tan et al. 2006) (Fig. 7.1).

7.2.3  Role of the Microenvironment in Maintenance 
of Glioblastomas Stem Cells

The site of origin of GSCs, either from a defined COIs or through de-differentiation 
from somatic GBM cells, is highly dependent on the microenvironment and the 
paracrine signaling networks. It is therefore important to understand the interactions 
of actors in the vicinity of established tumors.
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Fig. 7.1 Diagrammatic representation of stochastic and hierarchical models of tumor progression. 
NSC normal stem cells; CSC cancer stem cells; CPC cancer progenitor cells/transiently amplifying 
cells; TDC terminally differentiated cells; mut genetic mutation
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7.3  Role of the Neural Stem Cell Niche in the Origin 
and Maintenance of Glioblastoma Stem Cells Arising 
from Aberrant Stem and Precursor Cells

Niches for stem cells are found in various organs in the body and are specific for 
each type of stem cell. These niches are not just repositories for stem cells but are 
also complex and dynamic ecosystems (Gilbertson and Rich 2007; Scheres 2007; 
Scadden 2006). In the brain, stem cells have been found to primarily reside in the 
SVZ and SGZ. The niches within SVZ and SGZ consist of heterogeneous cell popu-
lations, extracellular matrix proteins and other secreted proteins. The role of the 
stem cell niche within the brain is to regulate the self-renewal and differentiation of 
neural stem cells (Gage 2000; Merkle et al. 2004; Palmer et al. 2000).

SVZ, lining the later ventricles in the brain contains slow diving Nestin+/ GFAP+ 
type B astrocytes (NSCs), which are rapidly dividing type C astrocytes (progenitor 
cells) that give rise to type A astrocytes (neuroblasts). Type A astrocytes in turn give 
rise to committed neurons upon migrating anteriorly towards olfactory bulb (OB) 
(Alcantara Llaguno et al. 2015). The astrocytes within these niches are also in close 
contact with ependymal cells that line the cavity of the niches and play a role in 
preventing the differentiation of cell within the niche by (i) expressing CXCR4 (that 
binds to distally secreted SDF-1), (ii) binding to sonic hedgehog (SHH) and (iii) by 
secreting factors such as EGF, bFGF, IGF1, TGF-α, VEGF, ephrins (Doetsch 2003; 
Fidoamore et al. 2016). The other main component of SVZ and SGZ is a network of 
capillaries that are in close proximity to NSCs. These facilitate bi-directional com-
munication between NSCs and endothelial cells through factors such as BDNF, 
VEGFC, PDGF, IL8, IGF-1 and bFGF (Riquelme et al. 2008; Leventhal et al. 1999; 
Ramirez-Castillejo et al. 2006). This close proximity to endothelial cells and the 
ensuing communication indicates a possibility that there may be amore permeable 
BBB within the stem cells niches allowing them access to systemic growth factors, 
nutrients and hormones (Fidoamore et al. 2016).

The extracellular matrix is yet another important player in regulation of neural 
stem cell fate. Studies show that tenascin C has a regulatory effect on NSC fate and 
number (Garcion et al. 2004; Tavazoie et al. 2008). Heparin sulfate proteoglycans 
(HSPs) have been shown to interact with BMP-2-2, HH, Wnts and other morpho-
gens crucial in adult neurogenesis. HSPs have also been shown to interact with 
tenascin C, collagens, laminins, VEGF, EGF, FGFs, IGF-II, PDGF-AA, chemo-
kines and cytokines (Doetsch 2003). NOTCH signaling which is an important para-
crine signaling mechanism for regulating proliferation and differentiation of NSCs 
is also altered in GSCs, helping GSCs maintain an undifferentiated stem-like cell 
state. GSCs have been shown to lose oncogenic potential when NOTCH and its 
ligands Delta-like1 and Jagged-like-1 are downregulated (Stockhausen et al. 2009; 
Louvi and Artavanis-Tsakonas 2006; Fan et al. 2010). In addition, neuronal signals 
from ChAT+ (Choline acetyltransferase) neurons present within the SVZ, microglia 
and cerebrospinal fluid could also regulate NSC proliferation and differentiation 
(Paez-Gonzalez et  al. 2014). These studies indicate the highly sophisticated and 
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tightly regulated balance of various components of the neural stem cell niche that 
are responsible for maintaining NSCs. Dysregulation of any one of these compo-
nents could result in a domino-effect which could cause de-regulated proliferation 
or differentiation of NSCs and their progenitor cells. Recent studies have also shown 
that deletion of Nf1, Trp53 and PTEN in adult neural stem cells and their progenitors 
resulted in altered migration of aberrantly differentiated progenitors from 
SVZ. These altered cells gave rise to tumors in the brain instead of migrating and 
terminally differentiating into neurons. Aberrant mutations within cells of the NSC 
niche or NSCs themselves could results in GSCs, which may migrate elsewhere to 
form tumors or give rise to cells with similar differentiation potential through asym-
metric division. These progeny can then in turn migrate to other regions of the brain 
to initiate tumors. Therefore, the site of origin of GSCs may not be the site of origin 
of GBMs (Alcantara Llaguno et al. 2015).

7.4  Role of Tumor Microenvironment in the Origin 
and Maintenance of De-Differentiated Somatic  
GBM Cells

7.4.1  Perivascular Niche

Extensive neovasculogenesis and abnormal morphology of vasculature is a com-
mon characteristic of GBMs. GBMs exhibit various forms of neovascularization 
which allow supply of essential nutrients and oxygen to tumor cells (Jhaveri et al. 
2016).

The process of de novo formation of blood vessels in situ, termed as 
“Vasculogenesis” is thought to occur primarily during fetal development. However, 
recent research has shown that vessel formation can also result from circulating 
endothelial cells, tumor associated macrophages (TAMs), Tie-2+ monocytes and 
GSCs (De Palma et  al. 2007; Venneri et  al. 2007; Folkman and Shing 1992). 
Angiogenesis, a process of stimulating the sprouting of new blood vessels from 
preexisting vasculature is a critical step in tumor development and migration. GBMs 
are often characterized as having significantly increased angiogenesis and studies 
have indicated GSCs to play an important role in this process (Jhaveri et al. 2016). 
GSCs have been shown to overexpress factors that promote blood vessel formation 
such as VEGF and SDF-1α and their knockdown has been shown to significantly 
affect vessel formation in tumors in vivo (Folkins et al. 2009). 20–90% of CD31+ 
endothelial cells were found to carry the same genetic mutations as tumor cells in 
human GBM samples (such as amplification of EGFR and chromosome 7) and 
GSCs cultured in endothelial cell culture conditions have been reported to transdif-
ferentiate into CD31+ and Tie-2+ endothelial cells (Ricci-Vitiani et  al. 2010). 
Studies also showed that co-implantation of GSCs and endothelial cells in immuno-
compromised mice resulted in accelerated initiation and growth of orthotopic 
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GBMs due to endothelial derived factors (Heddleston et  al. 2011; Jhaveri et  al. 
2016). In addition, CD133+ GSC population has also been reported to contain a 
CD144+ (vascular endothelial-cadherin) cell population with the CD133+/CD144+ 
cell population showing an overexpression of pro-vasculogenesis markers such as 
CD31, CD105, CD 34 and VEGFR-2 (Wang et al. 2010b; Soda et al. 2011). In addi-
tion, circulating bone marrow derived cells have also been reported to be present 
within GBM vasculature but recent reports evaluating such transdifferentiating 
GSC or bone marrow derived cell populations have revealed that their presence 
within tumor vasculature is rare and might vary among tumors (Hardee and Zagzag 
2012). GSCs have also been reported to transdifferentiate into pericytes but further 
investigation is needed to determine the role of such pericytes in tumor neovascular-
ization (Cheng et al. 2013).

Nestin+/CD133+ stem-like cells within GBMs (GSCs) have been reported to 
reside in close proximity to capillary networks within niches in GBMs that resemble 
the neural stem cell niche. Endothelial and other vascular cells are thought to play a 
role in the maintainance of differentiation and proliferation of NSCs within the 
neural stem cell niche and the same is thought to occur in the case of GSCs. The 
dedifferentiation of GSCs into endothelial cells or the migration of endothelial cells 
that do not participate in the process of neovascularization towards GSCs could pos-
sibly serve as a mechanism to secrete factors to prevent maturation and proliferation 
of GSCs, which often impedes efficacy of radio- and chemo- therapies (Fidoamore 
et al. 2016; Calabrese et al. 2007). GBM cells have also been reported to infiltrate 
areas around brain vasculature and incorporate blood vessels into the tumor in a 
process termed as “Vascular Co-option”. These tumor incorporated blood vessels 
are thought to undergo apoptosis inducing a state of hypoxia within these regions 
which could possibly maintain GSCs and stimulate the secretion of pro-angiogenic 
factors (Holash et al. 1999; Reiss et al. 2005; Liebelt et al. 2016).

SDF-1 or CXCL12 maintains NSCs in their niche and regulates their trafficking 
and homing within the brain. SDF-1 is a ligand for CXCR7 and is the only ligand 
for CXCR4, which is secreted either as an autocrine or paracrine factor in several 
cancers including GBM. Apart from promoting cancer cell proliferation, invasion, 
angiogenesis and cancer stem cell maintainance, SDF-1 has been shown to recruit 
bone marrow derived cells (BMDCs) that promote neovascularization, such as 
CXCR4 secreting endothelial precursor cells. GSCs express both CXCL12 and its 
receptors and endothelial cells within the brain have been reported to express 
CXCL12 to recruit GBM cells. The CXCR4/CXCL12 signaling axis is particularly 
high in pseudopalisading regions and invasive ends of GBM, indicating their impor-
tance in GSC maintainance and movement (Doetsch 2003; Sun et  al. 2010). 
CXCL12 has also been reported to regulate tumor apoptosis by activating NF-κB, 
which reduces TNFα production. Radiation therapy, chemotherapy and treatment 
by VEGFR inhibitors activates CXCL12/CXCR4 pathway, resulting in the recruit-
ment of myeloid BMDCs and promotion of angiogenesis and tumor invasion (Wang 
et al. 1996; Duda et al. 2011).

Notch signaling pathway is yet another way in which the perivascular niche plays 
an important role in regulating differentiation state of GSCs. NOTCH1 silencing has 
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been shown to interfere with the transdifferentiation of GSCs into endothelial cells and 
increased their sensitivity to radiation damage (Wang et al. 2010a; Fan et al. 2010). 
Nitric oxide (NO) has been shown to activate notch signaling pathway and maintains 
a stem-like phenotype in tumors. Along with NOTCH1 overexpression, GSCs also 
express NO receptor, sGC and are often found in close proximity to endothelial cells 
that express endothelial nitric oxide synthase (eNOS) (Charles et al. 2010).

Tumor cells have also been reported to form a matrix embedded network capable 
of conducting fluids within the tumor through a process termed as “Vascular Mimicry”. 
CD133+ GSCs have been reported to form tube networks in in vitro 3D matrigel 
experiments and GSCs have been reported to form tubular structures of vascular chan-
nels in tumors in vivo (El Hallani et al. 2010). Knockdown of VEGFR-2 in GSCs 
resulted in the loss of the ability to form these tubular structures and hypoxia is 
thought to play an important role in this process by upregulating CD144 expression in 
GSCs through HIF-1α and HIF-2α (Mao et al. 2013; Yao et al. 2013).

7.4.2  Hypoxic Niche

In healthy brain tissue, the normal physiological oxygen concentration ranges 
between 12.5 and 2.5%. GBM tissue however shows regions of mild hypoxia (2.5–
0.5%) and severe hypoxia (0.5–0.1%) (Evans et al. 2004). It is hypothesized that the 
oxygen tension gradient within a tumor niche plays a vital role in differentiation of 
cells. The cells present in the periphery of tumor masses are thought to exhibit low 
proliferation rate, low levels of HIF1α and increased angiogenesis. The cells present 
at the tumor core are thought to exist in near anoxic conditions with very low pro-
liferation rates and high levels of HIF1α. Cells present in the intermediate region of 
tumors are thought to high proliferation rate, form neurospheres in hypoxic condi-
tions and show increased levels of expression of VEGF, Glut1 and carbonic anhy-
drase IX (CAIX) (Pistollato et al. 2010). Therefore, the presence of intratumoral 
hypoxia promotes the existence of a pool of stem-like cancer cells at the core of the 
tumor which are often resistant to radio- and chemo- therapies.

The importance of hypoxia in maintaining the differentiation state and prolifera-
tion of normal stem cells within their niches and its mechanism is well established. 
Within the bone marrow, hematopoietic stem cells (HSCs) migrate to hypoxic 
niches where they are maintained in a state of quiescence by the hypoxia induced 
protein, osteopontin (Stier et al. 2005). Severe hypoxia also prevents the differentia-
tion of NSCs and embryonic stem cells without affecting their proliferation while 
also improving the generation of induced pluripotent stem cells (iPSCs) (Mathieu 
et al. 2014).

Neovascularization within GBM tissue often results in the formation of disorga-
nized, chaotic and highly torturous blood vessels which are unable to effectively 
supply the entire tumor tissue with oxygen and nutrients. The lack of uniform oxy-
genation and the high proliferative rate of tumor cells results in the formation of 
regions of pseudopalisading necrosis that develop in order to protect the surrounding 
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normal tissue from effects of hypoxia (Brat et al. 2004). Hypoxia and the activation 
of hypoxia response genes are thought to play a vital role in GBM progression, pro-
liferation, aggressiveness and resistance to therapy. This was directly demonstrated 
in a recent multicenter trial that found hypoxia levels in GBM patients demonstrated 
by 18F–FMISO PET/CT correlated with worse prognosis (Gerstner et al. 2016).

The effect of hypoxia on cells is mediated through intracellular family of pro-
teins called hypoxia inducible factors (HIFs) which form transcriptional complexes 
consisting of HIF-β subunit (ARNT- aryl hydrocarbon nuclear translocator) which 
is constitutively expressed and oxygen regulated HIF-α subunits which belong to 
the basic helix-loop-helix-Per-Arnt-Sims (PAS) family of transcriptional activators. 
HIF1α (ubiquitously expressed), HIF 2α and HIF3α (tissue specific expression) are 
the three mammalian HIF-1 subunits. Even though the HIF-1α is highly transcribed 
and translated in normoxic conditions, it is rapidly hydroxylated on two conserved 
proline residues (P402 and P564) on the oxygen dependent degradation domain 
(ODD) by HIF specific prolyl hydroxylases PHD1, PHD2 and PHD3. Hydroxylated 
HIF-1α is then recognized by the von Hippel-Lindau tumor suppressor (pVHL), a 
subunit of E3 ubiquitin ligase which ubiquitinates HIF-1α for degradation by 26S 
proteosome (Nath and Szabo 2012).

Under hypoxic conditions, the hydroxylation of ODD of HIF-1α and its subse-
quent recognition by pVHL is inhibited, resulting in the accumulation of HIF-1α 
protein within the cytoplasm. In such conditions, HIF-1α translocated into the 
nucleus and dimerizes with HIF-1β to form HIF-1α/β dimer complex. HIF-1α/β 
dimer binds to HIF response elements (HRE) which contain the core consensus 
sequence 5’RCGTG-3′ (R  =  purine residue) along with coactivators p300 and 
CBP. HREs are present within promoters, introns and 3′ enhanced regions of many 
stress response gene families which facilitate adaptations to hypoxic conditions 
such as angiogenesis, hematopoietic growth factors, glucose transporters and glyco-
lytic enzymes thereby affecting cell proliferation, survival and movement (Nath and 
Szabo 2012; Semenza 2010, 2013).

HIF-1α levels also increase due to metabolic and genetic changes within tumors 
such as increased production of H2O2 (which stabilizes HIF-1α). Increase in the 
levels of HIF-1α in response to low oxygen pressure leads to reprogramming of 
tumor metabolism towards glycolysis, thereby increasing the expression of glucose 
uptake receptors, glycolytic enzymes, lactate productions and reducing conversion 
of pyruvate to acetyl coenzyme A. HIF-1α also increases the conversion of glucose 
to glycogen by activating expression of hexokinases (HK1 and HK2), glycogen 
synthase (GYS1), UDP- glucose pyrophosphorylase (UGP2), phosphoglucomutase 
1 (PGM1), glycogen branching enzyme (GBE1) and PPP1R3C. PPP1R3C activates 
GYS1 and also inhibits expression of liver-type glycogen phosphorylase (PYGL) 
which breaks down glycogen. The reduced oxygen availability in GBM results in 
increased oxidative phosphorylation and causes increased ROS generation, which 
can lead to additional mutations. HIF-1α is increased through PI3K/AKT pathways 
upon downregulation of PTEN. Additionally, PTEN mutations and its altered deg-
radation also increase HIF-1α levels within tumor cells (Fidoamore et  al. 2016; 
Nath and Szabo 2012; Semenza 2010, 2013). HIF-1α is also thought to be involved 
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in increasing mutational rate in tumors by reducing levels of mismatch repair pro-
tein (mutS) and promoting glucose flux through a non-oxidative arm of the pentose 
phosphate pathway (Zhong et al. 1999). HIF-1α also increases the expression of 
VEGF and VEGF receptors (FLT-1 and FLK-1), plasminogen activator inhibitor-1 
(PAI-1), angiopoietins (Ang-1 and Ang-2) and matrix metalloproteinases (MMP-2 
and MMP-9) thereby promoting angiogenesis and invasion (Semenza 2013; Mendez 
et  al. 2010). HIF-1α also reduced the sensitivity of GBM cells towards pro- 
differentiation and pro-apoptotic signals such as bone morphogenic proteins (BMPs) 
(Pistollato et al. 2009; Persano et al. 2012). HIF-1α also activates the expression of 
multidrug resistance 1 (MDR1) gene which encodes for P-glycoprotein (P-gp), 
belonging to a family of ATP binding cassette (ABC) transporters which acts as a 
drug efflux pump, thereby reducing intracellular concentration of various chemo-
therapeutics (Chou et al. 2012; Chen et al. 2014). HIF-1α also stabilizes NF-κB and 
contributes to suppressing hypoxia related apoptosis through expression of NF-κB 
target genes such as Bax, Bcl-2, Bcl-xL (Gorlach and Bonello 2008).

Hypoxia has also been reported to induce expression of stem cell and GSC mark-
ers such as CD133, Oct4 and Sox2. Studies also report differentiation of CD133+ 
cell population upon exposure of GSCs to normoxic conditions, indicating that 
reduced levels of HIF-1α affect their differentiation state (McCord et al. 2009).

HIF-1α and HIF-2α share 75% homology but have distinct functions within 
cells. HIF-2α is also regulated by PHD hydroxylation at the transcriptional level as 
opposed to HIF-1α which is only regulated at the translational level. Genes such as 
OCT4, Nanog, Sox2, Serpin B9, and TGF-α are specifically regulated by HIF-2α. 
Recent studies have shown that HIF-2α is preferentially expressed in GSCs and 
knockdown of HIF-2α reduces self-renewal of GSCs indicating an important role 
for HIF-2α in maintaining the stem-like differentiation state of GSCs. Studies have 
also reported that the expression of HIF-2α in non-stem GBM cells induce expres-
sion of stem cell markers such as Oct4, myc and Nanog and neurosphere formation. 
Expression of non-degradable HIF-2α also increases tumorigenic potential of non- 
stem GBM cells in vivo and increases ratio of GSCs to non-stem GBM cells (Li 
et al. 2009; Heddleston et al. 2009). Future studies into the specific role of HIFs in 
the maintainance and self-renewal of GSCs and their effect on the GSC microenvi-
ronment such as promoting angiogenesis and invasion could help us better under-
stand the GSC biology and lead to identification of better targets within GSC 
microenvironment.

7.4.3  ECM and Paracrine Factors

The components of the extracellular matrix that form a complex of macromolecules 
within the tumor cell niche are essential for the survival and migration of GBM 
cells. Remodeling of ECM to facilitate processes such as angiogenesis and pro- 
survival signals through integrin mediated signaling cascades promotes GBM 
growth and progression. Overexpression of basement membrane protein laminin 8 
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and its cellular receptor integrin α6β1 in GBM cells has been reported to promote 
tumor progression (Huang et  al. 2012). Laminin is also a critical component in 
adherent GSC cultures, upon which GSCs tend to form tumorspheres. Heparin sul-
phate binds to basic Fibroblast Growth Factor (bFGF) and stimulates GBM cell 
growth and prevents radiation induced cell death (Bao et al. 2006a; Folkman et al. 
1988). Binding of GBM cells to ECM components allows for intracellular signal 
transduction through formation of multimeric complexes termed focal adhesions 
with other proteins such as focal adhesion kinase (FAK) (Fidoamore et al. 2016; 
Gilmore and Romer 1996).

Integrin play a vital role in the interactions of GBM cells with components of the 
ECM and vascular cells such as endothelial cells and pericytes. Integrin α6 is highly 
expressed in NSCs where it heterodimerizes with integrinβ1 and integrin β4 and 
binds to ECM protein laminin. Through its binding to laminin, integrin α6β1 regu-
lates self-renewal and differentiation by favoring adhesion to ventricular zone 
(Fortunel et  al. 2003). GBM cells that overexpress integrin α6 were reported to 
show self-renewal and ability to differentiate into CNS lineage indicating that inte-
grin α6 expression confers stem-like cellular state (Lathia et al. 2010). Integrin β1 
plays an important role in perivascular niche where it promotes GBM invasion and 
functions together with CXCR4 to regulate critical stem cell pathways such as SHH, 
Wnt, and Notch. Integrin α3 is overexpressed on invasive GBM and on GBM cells 
in close proximity to endothelial cells and is thought to regulate invasiveness of 
GSCs through ERK1/2 pathway (Nakada et al. 2013). Overexpression of integrin 
αvβ5 and integrin αvβ3 is associated with heightened invasiveness of GBMs and 
overexpression of integrin αvβ8 is associated with a more infiltrative phenotype in 
GBMs. Paracrine factors such as TGF-β1 and TGF-β2 are associated with an 
increase in the integrins αvβ3, αvβ5 and αvβ8 and thus result in aggressive GBMs 
(Fidoamore et al. 2016). Interaction of vitronectin (VN) with integrins αvβ3 and 
αvβ5 has been reported to enhance expression of Bcl-2 and Bcl-XL and confer che-
moresistance at invasive ends of GBM. Overexpression of integrins αvβ3, αvβ5 and 
β1 along with an increase in synthesis of basement membrane components such as 
fibronectin and matrigel have been reported to confer radio-resistence to GBM cells 
(Uhm et al. 1999).

Cadherins stimulate intracellular signaling upon intercellular adhesion between 
GBM cells and regulators of their cell fate such as cdc42, protein kinase C (PKC), 
β-catenin and Numb. N-cadherin plays a vital role in the NSC niche where it main-
tains the stem cell differentiation state while overexpression of E-cadherin in GBM 
samples is associated with poor patient outcomes. E-cadherin expressing CD133+ 
GSCs have also been reported to transdifferentiate into endothelial cells. Cadherin 
11 plays a vital role by enhancing migration of GBM cells in tumors. Expression of 
cadherins is regulated by interleukin 8 (IL-8) and transcriptional activators such as 
FoxP2, FoxP4, Twist and Snail (Fidoamore et al. 2016; Brooks et al. 2013). Tenascin 
C has been reported to be highly expressed after radiation therapy in GBMs and its 
expression is correlated with poor patient survival as it promotes tumor cell growth 
and preserves differentiation state of GSCs (Leins et  al. 2003; Mannino and 
Chalmers 2011) (Fig. 7.2).
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7.5  Future Directions

Standard forms of therapy have been ineffective in significantly increasing the over-
all survival of GBM patients and the failures of these therapies have been pinned on 
the highly heterogeneous nature of GBMs. As summarized above, a wide variety of 
studies that have investigated the existence of a stem-like GBM population within 
tumors and their resistance to chemo- and radiation therapy. The expansion and re- 
establishment of aggressive GBMs post therapy by these stem-like cells is thought 
to be one of the major reasons for disease recurrence which is a major cause of 
GBM patient mortality. It is therefore imperative to design therapeutics which can 
effectively target GSCs which exist within hypoxic regions and invasive ends of 
GBMs.

As mentioned above, recent reports have brought to light the gaps in knowledge 
regarding cellular plasticity and the role played by the GBM microenvironment. 
Studies have shown that non-stem GBM cells de-differentiate into GSCs along with 
transdifferentiation of GSCs into cells of the perivascular niche. Therapies designed 
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to target GSC specific biomarkers and angiogenic blood vessels might therefore 
prove to be ineffective in future. The recent development of transgenic models 
which can recapitulate, to a certain extent, the heterogenous nature of GBMs could 
allow for the better identification of microenvironmental components which have a 
relevant impact on GSC proliferation and survival. Knowledge about the interac-
tions between GSCs and their microenvironment, cellular plasticity within GBMs 
and the cellular signaling cascades that maintain stemness of GSCs would allow for 
the targeting of multiple critical events within tumors. Delivering GSC targeted 
lethal therapeutics using genetically engineered cellular components of GSC micro-
environment could potentially reduce disease recurrence (Birbrair et al. 2016).

Investigations of the biology of GSCs and how they become resistant to therapy 
can also extend to greater understanding of the role of the microenvironment in their 
maintenance and survival. It is therefore essential to appreciate the highly integrated 
nature of the GSC niche consisting of various cell populations with regards to their 
cellular functions and identity.
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Chapter 8
Plasticity of the Muscle Stem Cell 
Microenvironment

Ivana Dinulovic, Regula Furrer, and Christoph Handschin

Abstract Satellite cells (SCs) are adult muscle stem cells capable of repairing 
damaged and creating new muscle tissue throughout life. Their functionality is 
tightly controlled by a microenvironment composed of a wide variety of factors, 
such as numerous secreted molecules and different cell types, including blood ves-
sels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, 
growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue 
stiffness. This complex niche controls SC biology—quiescence, activation, prolif-
eration, differentiation or renewal and return to quiescence. In this review, we 
attempt to give a brief overview of the most important players in the niche and their 
mutual interaction with SCs. We address the importance of the niche to SC behavior 
under physiological and pathological conditions, and finally survey the significance 
of an artificial niche both for basic and translational research purposes.

Keywords Skeletal muscle • Muscle regeneration • Satellite cells • Stem cell-niche 
• Muscular dystrophies • Extracellular matrix

8.1  Satellite Cells

Over the past half a century, the focus of research on muscle regeneration has shifted 
from other myogenic cells of muscle tissue to satellite cells (SCs), from develop-
mental myogenesis to adult muscle regeneration, from cell-intrinsic properties of 
SCs to the relevance of extrinsic factors delivered by their niche. SCs, small, inac-
tive cells wedged between the myofiber and the surrounding extracellular matrix 
(ECM), have attracted the attention of scientists since their discovery 56 years ago 
(Mauro 1961). The astonishing translational potential of SCs continues to fascinate, 
and the ever expanding knowledge of SCs and their microenvironment paves the 
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way for the development of novel cell and gene therapies, in vitro disease models 
and preclinical drug testing paradigms. Here, we discuss different aspects of SC 
biology and the niche in health and disease. For a more detailed assessment of the 
particularities of SCs and the SC niche, we direct readers to several recent reviews 
focusing on the extracellular matrix (Thomas et al. 2015), blood vessels (Mounier 
et al. 2011), bioengineering (Bursac et al. 2015), SC function from a cell-intrinsic 
perspective (Almada and Wagers 2016) and an extensive review on SC biology (Yin 
et al. 2013).

8.1.1  Skeletal Muscle Regeneration and Muscle Stem Cells

Comprising approximately 40% of body weight, skeletal muscle can be considered 
the largest organ in the human body (Janssen et al. 2000). Muscle not only supports 
breathing and movement, but is also a very important metabolic and endocrine 
organ. It comes as no surprise that skeletal muscle has a remarkable capability to 
repair damage caused by injuries or simple everyday wear-and-tear. As numerous 
animal studies demonstrate, skeletal muscle is able to regain near original morphol-
ogy and functionality after several weeks of serious damage caused by injection of 
myotoxic agents (e.g. cardiotoxin, bupivacaine, barium chloride or notexin), freez-
ing, crushing, or complete mincing and re-transplantation (Rosenblatt 1992; Carlson 
and Gutmann 1972; Fink et al. 2003; Dinulovic et al. 2016a; Warren et al. 2004). 
However, aging, traumatic injuries in humans resulting in volumetric muscle loss 
and various myopathies result in impaired functionality and inability of the tissue to 
regain homeostatic conditions.

SCs are the main cells responsible for sustaining skeletal muscle morphology 
and functionality throughout the lifetime of an individual. They are largely lineage- 
committed adult stem cells located at the periphery of muscle fibers, situated 
between the sarcolemma (the myofiber membrane) and basal lamina (BL) (Mauro 
1961), in close proximity to blood vessels (Mounier et al. 2011) and the neuromus-
cular junction (Kelly 1978). This specific environment surrounding SCs is known as 
the SC niche.

Under resting conditions, SCs are in the G0 phase (non-cycling state) and quies-
cent, with a heterochromatic nucleus and a thin rim of cytoplasm containing scarce 
organelles. These cells are most commonly distinguished by the expression of the 
paired box transcription factor Pax7. SCs have a tremendous myogenic potential 
and self-renewal capabilities, as demonstrated by single-fiber (Collins et al. 2005) 
as well as single cell (Sacco et al. 2008) implantation in irradiated muscles of immu-
nodeficient mice.

The classical cascade of regeneration resembles that of prenatal skeletal muscle 
development (Bentzinger et al. 2012). In response to injury or other stimuli, SCs 
become activated, increase in size and begin to proliferate. The majority of the prog-
eny reduces Pax7 and induces MyoD expression. After several rounds of prolifera-
tion, these myoblasts start to express myogenin and exit the cell cycle as myocytes. 
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The myocytes subsequently fuse in order to form new or repair existing myofibers 
(depending on the severity of injury). The myofibers then express myogenic regula-
tory factor 4 (MRF-4) and grow, supported by hypertrophy, until reaching their 
pre-injury size. At the same time, a part of the SC progeny reacquires high Pax7 
levels and returns to quiescence, thereby replenishing the SC pool and maintaining 
sufficient reserves for future rounds of regeneration.

Besides SCs, several other cell types, such as muscle side-population (SP) cells, 
muscle-derived stem cells (MDSCs), bone marrow stem cells, PW1+ interstitial 
cells, CD133+ cells, mesoangioblasts (MABs) and pericytes, can successfully 
regenerate muscles and some can even reconstitute the niche upon transplantation 
into damaged muscle (Péault et al. 2007). However, the contribution of these cells 
seems to be very low under physiological conditions and dependent on SCs, which 
are essential for skeletal muscle regeneration and therefore represent the true stem 
cells of muscle tissue (Lepper et al. 2011; Sambasivan et al. 2011; McCarthy et al. 
2011; Murphy et al. 2011).

According to their gene expression profiles and their characteristics in vitro SCs 
stemming from different muscle groups (e.g. head vs. limb muscles) are heteroge-
neous. Nevertheless, SCs from the masseter muscle (head) are able to regenerate the 
extensor digitorum longus (EDL) muscle (limb) as efficiently as SCs from the EDL 
muscle (Ono et al. 2010), attesting to the enormous influence of the in vivo micro-
environment on the behavior and functionality of SCs, which in some cases can 
overcome the intrinsic differences between SCs.

8.1.2  The Heterogeneity of Satellite Cells and Its Dependence 
on the Niche

Several studies have addressed the heterogeneity of SC populations in regard to 
their renewal potential. Interestingly, SC heterogeneity was not only reported 
between different muscle beds, but also observed between SCs on the same muscle 
fibers, thereby implicating additional factors besides ontogeny and composition of 
the fiber type as possible causes. According to these studies, only a small proportion 
of SCs are bona fide stem cells, whereas the vast majority are committed progeni-
tors with limited stemness. For example, Chakkalakal et al. discovered heterogene-
ity among SCs based on their proliferative history, suggesting that cells that cycle 
less frequently have higher self-renewal potential (Chakkalakal et al. 2012). On a 
related note, Rocheteau et al. evaluated differential DNA strand segregation, where 
one daughter cell retains the template strands, stays in the niche and returns to qui-
escence, while the other daughter cell receives newly synthesized DNA strands, 
continues to proliferate and finally differentiates (Rocheteau et  al. 2012). It was 
suggested that such DNA strand segregation would prevent accumulation of 
proliferation- associated mutations in the stem cell, and therefore provide a lifelong 
supply of progenitors. Similarly, in a lineage tracing experiment with  Myf5-Cre/
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ROSA-YFP mice, Kuang et al. found that the majority of SCs are Pax7+/Myf5+, and 
only small subset are Pax7+/Myf5− cells (Kuang et al. 2007). Upon isolation and 
transplantation, both cell populations are capable of proliferating and differentiat-
ing, but only Myf5− SCs occupy the niche in the transplanted muscle. In addition, 
after in vivo activation, Pax7+/Myf5+ (committed progenitors) are exclusively prone 
to symmetrical division, giving rise to more committed progenitors, whereas Pax7+/
Myf5− (true stem cells) on the other hand can divide both symmetrically and asym-
metrically, producing uncommitted and committed daughter cells. Mechanistically, 
the asymmetrical distribution of the Par complex results in p38α/β MAPK activa-
tion and MyoD expression only in the committed daughter (Troy et  al. 2012). 
Importantly, the capability to control the orientation of the cell division is tightly 
coupled to the SC niche. Following asymmetric division, the uncommitted progeni-
tor remains in the niche in contact with the BL, whereas the committed progenitor 
is pushed towards the muscle fiber, thus losing contact with the niche. In contrast, 
both daughter cells retain contact with the BL and the myofiber during a stem cell 
pool expansion through symmetric division of Pax7+/Myf5− cells.

8.2  The Satellite Cell Niche in Quiescence and Regeneration

SC quiescence, activation, proliferation, differentiation and renewal are intricately 
connected to the niche. There is a plethora of cell-cell and cell-matrix interactions, 
numerous paracrine and endocrine molecules (e.g. growth factors and cytokines), as 
well as biophysical properties of muscle that have a direct effect on the SC. However, 
this communication is bidirectional, as the SCs themselves also influence their local 
environment. The most important factors governing the niche in quiescence and 
activation are depicted in Figs. 8.1 and 8.2, respectively.

8.2.1  The Extracellular Matrix

In homeostatic conditions, SCs are situated just outside the muscle fiber, in direct 
contact with the sarcolemma and the ECM. The ECM surrounding muscle fibers is 
called the basal membrane (BM) and it consists of two parts—the reticular lamina 
(RL) and the BL, the latter being in direct contact with the fiber. The BM is a mesh 
composed of various glycoproteins and proteoglycans with sequestered growth fac-
tors. The main components of the RL are fibrillar collagens, whereas the main com-
ponents of the BL are laminin-2 (α2β1γ1) and non-fibrillar collagen IV (Sanes 
2003). The laminins and collagen of the BL self-assemble into networks that are 
cross-linked by the glycoprotein nidogen. This network provides binding sites for 
components of the RL on one, and the sarcolemma and SC membrane on the other 
side. In addition, proteoglycans such as perlecan are anchored to the main BL 
mesh and bind polypeptidic growth factors with their glycosaminoglycan chains. 
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Fig. 8.1 The quiescent niche. Under homeostatic conditions, the SC and its niche are in a quies-
cent (q) state. The qSC receives signals that keep it dormant, such as angiopoietin 1 (Ang1) from 
periendothelial cells (PECs) and calcitonin (Calc) from the bloodstream, but at the same time 
actively contributes to the niche state by secreting protease inhibitors (Serpin, Tfpi2, Timpf4). The 
SC is attached with M-cadherin to the myofiber (MF) and with integrin to the basal lamina (BL). 
Fibro/adipogenic progenitors (FAPs) and macrophages (MAs) are present in low numbers and are 
mainly inactive. Further abbreviations: Calcr calcitonin receptor; EC endothelial cell; FI fibro-
blast; RL reticular lamina; Tie-2 receptor for Ang1
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Fig. 8.2 The activated niche. The damaged myofiber (dMF) changes the signaling balance in the 
niche and causes activation (a) of the SC by liberating hepatocyte growth factor (HGF). The aSC 
increases in size and begin secreting matrix metalloproteases (MMPs), as well as fibronectin, 
which together with Wnt7a supports SC proliferation through the Frizzled 7 and syndecan 4 recep-
tors. The dMF expresses Delta and secretes Wnt7a, stromal cell-derived factor 1 (SDF-1) and 
growth factors (GFs) that further regulate SC behavior. GFs are also secreted by fibroblasts (FIs), 
endothelial cells (ECs) and are delivered by the bloodstream to the niche. In addition, cytokine 
secreting fibro/adipogenic progenitors (FAPs) and macrophages (MAs) increase in number. The 
result is higher density of the basal lamina (BL) and reticular lamina (RL). Further abbreviations: 
c-Met receptor for HGF; CXCR4 receptor for SDF-1; Notch receptor for Delta; PEC periendothe-
lial cell
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These growth factors, including fibroblast growth factors (FGFs), epidermal growth 
factor (EGF), insulin-like growth factors (IGFs) and hepatocyte growth factor 
(HGF), are secreted by various components of the niche, such as muscle fibers, 
interstitial cells and SCs, or can be delivered to the niche by blood vessels.

Integrins on the SC membrane and the sarcolemma bind to laminins in the BL, 
forming focal adhesions and contributing to mechanical stability between the ECM 
and intracellular cytoskeleton. However, these interactions also have important sig-
naling functions. The main integrin isoforms on SCs are α7 and β1, which bind to 
laminin-2 on the BL side (Blanco-Bose et al. 2001). After SC activation, the expres-
sion of integrins on the SC membrane changes, along with the preference for bind-
ing partners in the BL. For example, activated, but not quiescent SCs express the β3 
integrin isoform, which probably binds to fibronectin (FN) in a complex with the αv 
chain (Liu et al. 2011). Both quiescent and activated SCs also express the trans-
membrane heparin sulfate proteoglycans syndecan-3 and syndecan-4. These pro-
teins form complexes with different tyrosine kinases such as c-Met and FGF 
receptor (FGFR) on the SC membrane and are consequently important not only for 
cell adhesion to the BL, but also for SC activation (Cornelison et al. 2001).

Expression profiles of quiescent and activated SCs suggest that SCs actively con-
tribute to maintaining niche quiescence while remaining highly sensitive to activat-
ing stimuli (Pallafacchina et al. 2010). Quiescent SCs express the protease inhibitors 
Serpin and Tfpi2 as well as metalloprotease inhibitor Timpf4. Upon activation, 
however, these genes become downregulated, and instead, SCs start expressing the 
matrix metalloproteases MMP-2 and MMP-9 (Guérin and Holland 1995). MMPs 
are major enzymes responsible for ECM degradation.

Activated SCs also produce FN, an ECM glycoprotein whose role in SC mainte-
nance by enabling their attachment to the niche has recently been demonstrated 
(Lukjanenko et al. 2016). SC-produced FN potentiates Wnt7a signaling through the 
receptor complex syndecan-4/Frizzled-7, thereby supporting symmetric division of 
SCs and expansion of the stem cell pool (Bentzinger et al. 2013). Specific knock- 
down of FN in SCs leads to a drastic reduction in symmetric division, in particular in 
the Pax7+/Myf5− population, leading to a drop in SC numbers during regeneration.

Collagen VI is another BL component essential for preserving the SC pool. 
Fibroblasts are the prime producers of this protein as well as many other BL com-
ponents. Collagen VI knock-out mice exhibit reduced regeneration and an inability 
to maintain SC numbers following injury. This defect is, however, rescued by trans-
planting wild-type fibroblasts, demonstrating the critical importance of non-SC- 
autonomous ECM factors in SC maintenance (Urciuolo et al. 2013).

8.2.2  The Muscle Fiber

On the apical side, SCs are bound to a muscle fiber, and M-cadherin is the main 
adhesion protein supporting the connection between these two cell types. Myofibers 
are important regulators of SC state: for example, myofiber damage or stretch 
induces nitric oxide (NO) synthesis in the BL, which is able to activate MMPs, and 
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through that action liberate ECM-bound HGF, allowing its binding to the c-Met 
receptor on SCs. This HGF signaling through c-Met has been proposed as an initial 
activation signal for SCs (Tatsumi et al. 2006).

SCs are furthermore affected by the Notch and Wnt signaling pathways in regard 
to quiescence, activation, proliferation and differentiation (Yin et al. 2013). Proof- 
of- concept was provided in different studies, e.g. by ablation of RBP-Jκ, a down-
stream mediator of Notch. This ablation leads to spontaneous activation and 
differentiation of SCs without a proliferative phase, precipitating depletion of the 
SC pool and thus indicating that Notch signaling is essential for SC quiescence 
(Bjornson et al. 2012; Mourikis et al. 2012). Upon injury, damaged fibers express 
Delta, a ligand of the Notch receptor, which stimulates SC proliferation. In addition, 
regenerating fibers synthesize Wnt7a, which induces SC symmetrical cell division 
by binding to the Frizzled7 receptor (Polesskaya et al. 2003).

In regeneration, myofibers secrete stromal cell-derived factor-1 (SDF-1), which 
binds to the C-X-C motif chemokine receptor 4 (CXCR4) on SCs and induces SC 
chemoattraction (Ratajczak et al. 2003). Injured fibers and other cells of the niche 
also secrete FGFs, EGF and IGFs, which further regulate SC proliferation and dif-
ferentiation. For instance, FGF-2 induces proliferation and represses differentiation 
of progenitor cells by binding to the tyrosine kinase FGFR and activating the Ras/
MAPK pathway (Fedorov et  al. 2001). Likewise, IGF-II supports proliferation, 
while the pleiotropic functions of IGF-I include stimulation of SC proliferation, dif-
ferentiation, migration and anti-inflammatory effects on the niche (reviewed in 
(Philippou et al. 2007)). These effects of IGF-I are mediated through several signal 
transduction pathways, all initiated by IGF-I binding to the tyrosine receptor kinase 
IGF1R. The situation is further complicated by the existence of multiple IGF-I iso-
forms, as well as IGF binding proteins (IGFBPs) secreted by activated SCs, whose 
function is to transport IGFs and modulate their half-life (reviewed in (Jones and 
Clemmons 1995)). On the other hand, myofibers also secrete myostatin (Mstn), a 
member of the transforming growth factor β (TGF-β) family and negative regulator 
of muscle growth that has been implicated in reducing SC activation and self- 
renewal (McCroskery et al. 2003).

Much attention has been given to metabolic reprograming of SCs, that is, the 
effects of the metabolism of a SC on its fate (Tang and Rando 2014). Some research 
proposes that in quiescence, SCs primarily rely on fatty acid oxidation (Ryall et al. 
2015), whereas upon activation, they increase substrate utilization through glycoly-
sis, and finally switch to oxidative phosphorylation during differentiation 
(Wagatsuma and Sakuma 2013). Other studies suggest that activated SCs depend 
more on oxidative phosphorylation (Tang and Rando 2014; Rodgers et  al. 2014; 
Cerletti et al. 2012). It also remains unclear how metabolic substrate utilization in 
skeletal fibers (the SC niche) influences the SC state. Experiments with caloric 
restriction have suggested that the increased fatty acid oxidation and mitochondrial 
activity in the fiber in this context probably induce SC activation through increased 
oxidative phosphorylation (Cerletti et al. 2012).

Effects of fiber metabolism on SCs are furthermore implied by the observation 
that resting SC numbers are considerably higher in oxidative slow-twitch compared 
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to glycolytic fast-twitch myofibers (Gibson and Schultz 1982). Moreover, a similar 
difference in SC numbers can be achieved by endurance exercise, which promotes 
a switch from glycolytic to oxidative fibers (Shefer et al. 2010; Wilson et al. 2012). 
Although a conclusive explanation for the correlation between SC numbers and the 
oxidative fiber type remains elusive, the metabolic properties and the vasculariza-
tion have been linked to this observation. The existence of a denser blood vessel 
network in slow fibers is of particular interest given close vicinity of the majority of 
SCs to blood vessels (Mounier et al. 2011). However, this simple view has recently 
been challenged. Namely, mice with myofiber-specific overexpression of peroxi-
some proliferator-activated receptor γ coactivator 1α (PGC-1α), a nodal modulator 
of oxidative metabolism, exhibit both a switch to oxidative fibers and increased 
capillarity (Lin et al. 2002), but nevertheless have fewer SCs, albeit with an increased 
myogenic capacity (Dinulovic et al. 2016b). In fact, in regard to most metabolic and 
contractile traits, PGC-1α transgenic, bona fide oxidative and endurance-trained 
muscles are indistinguishable. Interestingly, the muscle fiber PGC-1α transgene 
affects expression of BM components FN and tenascin-C (Dinulovic et al. 2016b), 
which might account for the increased myogenic potential of the SCs. However, a 
possible influence of other differences in the microenvironment, for instance the 
increased percentage of M2 macrophages in resting conditions in these animals, 
should not be overlooked (Dinulovic et al. 2016a; Furrer et al. 2017). Therefore, an 
alternative explanation for the correlation between SC number and fiber type could 
be a difference in ECM organization. For example, the slow soleus muscle has dou-
ble the amount of collagen IV and half the amount of laminin-2 compared to the fast 
rectus femoris in rats (Kovanen et al. 1988). However, the link between SC number 
and fiber type-specific ECM composition is still poorly understood and thus awaits 
further research.

8.2.3  Blood Vessels, Oxygen, (Peri)Endothelial Cells 
and Secreted Systemic Factors

The close proximity of SCs and capillaries suggests that blood vessels are an impor-
tant part of the niche. Indeed, the close correlation between a well-developed capil-
lary network and successful skeletal muscle regeneration has been demonstrated 
(Arsic et al. 2004; Ochoa et al. 2007). This is not surprising given the fact that a 
myriad of factors and cells that modify the SC niche, such as hormones and mono-
cytes, are delivered by blood vessels. In addition, endothelial cells can secrete 
growth factors (EGF, IGF-I, bFGF) including vascular endothelial growth factor 
(VEGF) and platelet-derived growth factor BB (PDGF-BB), which promote SC 
proliferation (Christov et al. 2007). Conversely, differentiating myogenic cells also 
secrete VEGF, thereby stimulating angiogenesis (Rhoads et al. 2009). Interestingly, 
peri-endothelial cells, such as smooth muscle cells, secrete angiopoietin 1 (Ang1), 
which regulates the SC state by binding to the Tie-2 receptor that is highly expressed 
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in resting SCs. This interaction in turn induces the expression of quiescence markers 
and blocks the expression of differentiation markers in SCs through ERK1/2 signal-
ing (Abou-Khalil et  al. 2009), resulting in a return to quiescence at the end of 
regeneration.

A reduction in partial oxygen pressure has also emerged as an essential factor in 
SC biology. Hypoxia is a critical factor for many stem cells, with a strong link 
between low oxygen levels and the undifferentiated cell state (Mohyeldin et  al. 
2010). Myoblasts cultured under hypoxic conditions show increased quiescence 
and higher self-renewal efficiency upon transplantation in vivo (Liu et al. 2012).

Finally, systemic, circulating factors facilitate the adjustment of SCs to distal 
processes away from the niche. For example, calcitonin, a thyroid hormone that is 
secreted in response to high blood calcium levels, is important for SC dormancy and 
sub-laminar location. It exerts its effects by binding to the calcitonin receptor 
(Calcr), which is expressed by resting, but not by activated SCs (Fukada et al. 2007). 
A specific knock-out of Calcr in SCs results in their relocation from the niche and 
loss by apoptosis (Yamaguchi et al. 2015). Likewise, SC-specific knock-out of the 
androgen receptor, which is expressed in this cell population (Sinha-Hikim et al. 
2004), leads to induction of Mstn expression, a fiber-type switch and a reduction in 
muscle mass and strength (Dubois et al. 2014).

8.2.4  Motor Neurons, Fibroblasts, Fibro/Adipogenic 
Progenitors and Immune Cells

In slow-twitch muscles, SCs are located in close proximity to the neuromuscular 
junction (NMJ) (Kelly 1978), and the difference in SC numbers between slow- and 
fast-twitch fibers is correlated with the pattern of neuron firing (Gibson and Schultz 
1982). When denervated, skeletal muscle fibers undergo atrophy, to which SCs ini-
tially respond with activation and proliferation similar to what is observed in dam-
aged muscle, but after several weeks of denervation, SC number declines due to loss 
of proliferative capacity and apoptosis (Kuschel et al. 1999; Jejurikar et al. 2002). 
Conversely, it has been shown that developing muscle produces neurotrophins, 
which function as retrograde survival factors for the motor neuron (Griesbeck et al. 
1995), and SCs secrete the axonal guidance factor semaphorin 3A with possible 
implications in muscle regeneration (Tatsumi et al. 2009). Although initially found 
to have a role in neuron survival, neurotrophins are emerging as important modula-
tory factors for various cell populations and tissues including skeletal muscle. For 
example, nerve growth factor (NGF) is expressed by regenerating fibers, which 
implies its involvement in muscle regeneration. Similarly, SC expression of brain-
derived neurotrophic factor (BDNF) is important for SC maintenance, and conse-
quently affects muscle regeneration (Clow and Jasmin 2010; Menetrey et al. 2000).

Fibroblasts contribute to the niche by secreting growth factors and structural 
components of the BL. Temporary thickening of the ECM coupled with an increase 
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in the number of muscle tissue fibroblasts is a hallmark of muscle regeneration 
(Serrano et al. 2011). Furthermore, interactions between Tcf4+ fibroblasts and SCs 
are necessary for successful regeneration. Selective, conditional ablation of SCs in 
Pax7CreERT2/+;R26RDTA/+ mice leads to insufficient proliferation of fibroblasts in the 
initial phases of regeneration and fibrosis at the later stages, whereas the partial 
ablation of fibroblasts in Tcf4CreERT2/+;R26RDTA/+ mice causes reduced proliferation 
and precocious differentiation of SCs, resulting in a decreased diameter of regener-
ated muscles and depletion of the SC pool (Murphy et al. 2011).

Skeletal muscle-resident mesenchymal progenitors expressing PDGFRα are 
known as fibro/adipogenic progenitors (FAPs) due to their ability to differentiate 
into adipocytes and fibroblasts (Uezumi et  al. 2010). In homeostatic conditions, 
these cells are in close proximity to blood vessels (Pretheeban et al. 2012), and their 
number quickly rises in the event of muscle damage. FAPs facilitate myofiber for-
mation and myoblast differentiation by secreting specific ECM components and 
cytokines, respectively (Joe et  al. 2010). These cells also display the ability to 
remove necrotic tissue (Heredia et al. 2013), thereby supporting muscle regenera-
tion. Interestingly, proper signaling from myotubes and eosinophils prevents FAP 
differentiation into adipocytes (Uezumi et al. 2010).

Immune cells are additional important players in defining the SC niche in regen-
eration. Some of these cells, like tissue macrophages and mast cells, are permanent 
members of the niche, but their importance in modulating the SC microenvironment 
in quiescence is likely limited. However, they take on an active role upon sterile 
injury, which induces muscle fiber damage and necrosis. Resident immune cells 
react by secreting cytokines and chemokines including tumor necrosis factor α 
(TNF-α), interleukin 6 (IL-6) and macrophage inflammatory protein 2 (MIP-2), 
which primarily drive the extravasation of neutrophils (Wang and Thorlacius 2005; 
Brigitte et al. 2010). Next, neutrophils secrete MIP-1α, monocyte chemoattractant 
protein-1 (MCP-1) and other cytokines attracting monocytes from blood vessels, 
which rapidly become the most abundant inflammatory cell type in the damaged 
tissue (Scapini et al. 2000). Depending on the milieu of inflammatory signals and 
immune cells present in the niche, the macrophages derived from the monocytes can 
acquire the M1 or M2 type. M1 macrophages secrete proinflammatory cytokines 
(TNF-α, IL-1β) and are characteristic of the early post-injury stages. They are 
essential for the removal of necrotic tissue and promote SC proliferation. Upon 
clearance of cellular debris, the altered conditions in the niche promote an increase 
in the number of M2 macrophages, which secrete anti-inflammatory cytokines (IL- 
4, IGF-I, TGF-β) and support the differentiation stages of regeneration (Ceafalan 
et al. 2014; Arnold et al. 2007). Temporal regulation of the inflammatory cascade is 
crucial in the process. For example, suppression of M1 macrophages leads to 
reduced SC proliferation, persistence of necrosis and results in fat and fibrotic tissue 
accumulation. Likewise, suppression of the switch from the M1 to the M2 type 
negatively affects myogenesis and myofiber growth (Segawa et al. 2008; Deng et al. 
2012; Summan et al. 2006). In addition to paracrine signaling, macrophages estab-
lish direct contact with myoblasts and myotubes through cell adhesion interactions 
(e.g. via VCAM-1-VLA-4, ICAM-1-LFA-1, PECAM-1-PECAM-1 and CX3CL1- 
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CX3CR1), which prevent apoptosis of myogenic cells (Sonnet et al. 2006). Apart 
from innate immunity, cells of the adaptive immune system are also central to regu-
lating SC behavior during sterile injury. An instrumental role of T regulatory cells 
in proper SC expansion and muscle regeneration, as well as in the M1 to M2 mac-
rophage switch after injury has been described (Castiglioni et al. 2015; Burzyn et al. 
2013).

8.2.5  Other Stem Cells with Myogenic Capacity

Apart from the true stem cells of muscle tissue and the battalion of auxiliary cells 
that participate in skeletal muscle regeneration, additional multipotent progenitors 
from muscle and other organs can contribute to this process. The function and 
ontogeny of many of these heterogeneous groups of cells are unclear, but interest-
ingly, they are all found in close proximity to blood vessels (Péault et al. 2007). In 
addition, they have not been fully characterized and therefore, their interaction 
remains obscure.

Some of those myogenic progenitors, such as SP cells, CD133+ cells and MDSCs, 
can be found in skeletal muscle tissue, while others originate from the blood vessel 
wall, for example MABs, pericytes, endothelial as well as myo-endothelial cells 
(Péault et  al. 2007). Interestingly, these blood vessel-derived progenitors have a 
myogenic potential even when isolated from organs other than skeletal muscle (e.g. 
pericytes and endothelial cells isolated from adult human pancreas or adipose tis-
sue) (Péault et al. 2007).

Unlike SCs, all these myogenic progenitors are able to cross the blood wall and 
home in on muscle tissue when administered via the bloodstream. They can engraft 
skeletal muscle, albeit often to a low extent, as demonstrated for SP cells (Péault 
et al. 2007). Although systemic delivery represents an enormous advantage in cell 
therapy for muscle disorders, some problems do exist. For example, the majority of 
intravenously injected cells end up trapped in filter organs (liver, lung, spleen) 
instead of muscle. In addition, systemic delivery of cells can cause blood flow 
obstruction, e.g. pulmonary embolism and myocardial infarction, resulting in isch-
emia and tissue damage (Berry 2015). And finally, their potential to form several 
cell populations poses a danger of e.g. ectopic formation of bone tissue in muscle 
(Birbrair et al. 2014).

Due to lack of specific markers, these progenitors are heterogeneous in nature 
and possibly consist of several groups of cells with different functions. For instance, 
in skeletal muscle tissue, type 2 pericytes (nestin+) have myogenic and angiogenic 
potential, while type 1 pericytes (nestin−) have adipogenic and fibrogenic potential. 
Importantly, other resulting cell populations depend on the pericyte microenviron-
ment, which is perturbed in dystrophic conditions and aging (Birbrair et al. 2015).

Some of these multipotent progenitors offer several potential advantages over 
SCs in terms of systemic delivery, better survival and proliferation potential, leading 
to increased regenerative capacity, as demonstrated for MDSCs (Qu-Petersen et al. 

I. Dinulovic et al.



153

2002). Intra-arterial delivery of MABs in a mouse model for limb-girdle muscular 
dystrophy (LGMD) and a dog model of Duchenne muscular dystrophy (DMD) also 
resulted in amelioration of the dystrophic phenotype (Sampaolesi et al. 2003, 2006). 
However, the outcome of transplantation can largely depend on the local microenvi-
ronment, e.g. caused by tissue damage, or the presence or absence of other cell 
populations and signaling molecules (Birbrair et al. 2014, 2015). Importantly, the 
significance of these cell populations to contribute to tissue maintenance upon skel-
etal muscle damage or in skeletal muscle formation under physiological conditions 
is largely undetermined. In any case however, even if the contribution of these popu-
lations to skeletal muscle formation independent of cell therapy is minor or non- 
existent, these cells could still significantly contribute to regeneration by secreting 
paracrine factors, such as growth factors, as suggested for pericytes and SPs (Birbrair 
et al. 2014; Péault et al. 2007).

8.2.6  The Biophysical Properties of Muscle

Aside from other factors of the niche, rigidity of the microenvironment can pro-
foundly affect SC behavior. The elastic stiffness of uninjured skeletal muscle is 
~12 kPa, and ECM deposition during regeneration increases this value (Engler et al. 
2004). SCs can sense and react to this biophysical property of the environment 
through focal adhesions (Geiger et al. 2009). When cultured on rigid plastic dishes 
(~106kPa), SCs quickly lose their quiescence and stemness. Myoblasts cultured on 
hydrogels prefer a substrate stiffness of ~21 kPa, while softer (~ 3 kPa) and stiffer 
(~ 80 kPa) gels reduce their proliferative rate (Boonen et al. 2009). In line, SCs 
cultured on soft hydrogels that mimic the stiffness of natural muscle (12 kPa) are 
able to self-renew and significantly improve their contribution to muscle regenera-
tion upon transplantation (Gilbert et al. 2010).

8.3  The Satellite Cell Niche in Pathological Contexts

Aging, muscle dystrophies and related pathologies invariably lead to perturbed con-
ditions of the SC niche. These changes can cause a reduction or an expansion in the 
SC pool, irresponsiveness to stimuli and therefore a reduced SC activation rate, 
aberrant proliferation and precocious or reduced differentiation, or SC senescence 
and apoptosis upon activation. For example, a disproportion of symmetric and 
asymmetric SC division might tip the balance towards SC loss in aging and a patho-
logical SC expansion with a reduced number of myogenic progenitors in dystrophic 
conditions (Chang et  al. 2016). Irrespective of the dysregulation, the outcome is 
diminished SC regenerative capacity in both contexts.

Although some of the pathological changes are SC intrinsic, altering the niche 
can alleviate the underlying condition in many cases. Nevertheless, it is difficult to 
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precisely discriminate between intrinsic and extrinsic origins of the SC pathology 
due to the bidirectional signaling between SCs and their microenvironment. 
Importantly, the niche can induce modifications in SC properties that can persist 
even after removal of SCs from the niche, and are hence perceived as “intrinsic”.

8.3.1  The Satellite Cell Niche in Aging

With advanced age, skeletal muscle mass and neuromuscular performance dimin-
ishes, a condition termed sacropenia. Decreased fiber and motor neuron numbers, 
reduced fiber size, a myofiber switch towards the oxidative type and loss of myonu-
clei resulting in an increase in myonuclear domain size are all common observations 
in aging, collectively resulting in a marked decrease of the efficiency of muscle 
regeneration (Larsson and Ansved 1995; Faulkner et al. 2007). The reduction of the 
SC pool has been proposed as an explanation for the underlying condition (Shefer 
et al. 2010). However, based on conflicting results in different studies (Conboy et al. 
2003), the prevailing opinion is that a drop in the myogenic potential of SCs might 
be the causative factor of the impaired regenerative capacity. Some characteristics 
of the aged niche that lead to reduced potency of SCs are illustrated in Fig. 8.3.

Some changes in the aged niche are precipitated by aberrant signaling. For 
instance, lack of Delta upregulation by injured aged muscles leads to reduced Notch 
signaling in SCs and hence reduced SC proliferation — a phenotype that can be 
overcome by alternative Notch activation (Conboy et al. 2003). Interestingly, exper-
iments with heterochronic, parabiotic pairings (a shared circulatory system between 
a young and an old animal) demonstrated that systemic factors at least partially 
account for the perturbed SC biology, as the exposure to young blood restored oth-
erwise reduced Notch signaling and improved SC proliferation in old mice (Conboy 
et  al. 2005). The subsequent search for rejuvenating humoral factors led to the 
implication of the hormone oxytocin (Elabd et al. 2014) and growth factor GDF11 
(Sinha et al. 2014; Walker et al. 2016) as systemic factors that decline with age and 
whose induction is able to revert aging-related SC pathology. However, the function 
of GDF11 in promoting muscle and cardiac health in aging has been largely dis-
credited in more recent studies (Schafer et al. 2016; Egerman et al. 2015; Harper 
et al. 2016). Exacerbated canonical Wnt signaling due to elevated circulating Wnt 
activators in aged mice was also suggested as being responsible for aging-related 
tissue fibrosis and conversion of myoblasts into fibroblasts, a process that can be 
curbed by Wnt inhibitors (Brack et al. 2007). Increased NF-κB and TGF-β signaling 
in aged muscles are additional examples of how the immediate niche can negatively 
impact the regenerative potential of SCs (Oh et al. 2016; Carlson et al. 2008).

ECM deposition in the aged niche in general is thought to act as a damper and 
therefore exert a negative influence on the activation potential of SCs, e.g. by 
increasing tissue stiffness. For example, slow muscles boost the expression of 
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Fig. 8.3 The aged niche. The aged myofiber (agMF) has a smaller diameter, fewer myonuclei and 
reduced levels of Delta, a ligand of Notch, which is crucial to SC proliferation. Further changes to 
the niche include increased fibroblast (FI) numbers and a denser basal and reticular lamina (BL, 
RL) with reduced fibronectin levels, active macrophages (MAs) secreting TGF-β, as well as 
increased levels of FGF-2, IL-6 and Wnt signaling molecules. Further abbreviations: EC endothe-
lial cell; FAP, fibro/adipogenic progenitor; PEC, periendothelial cell
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collagen IV while fast muscles elevate the levels of laminin with aging (Kovanen 
et  al. 1988). The ensuing imbalance in the components of the BL in old muscle 
disturbs the signal transduction pathways that govern SCs in the niche, such as those 
triggered by higher levels of TGF-β, a negative regular of SC proliferation (Carlson 
et al. 2008), and FGF-2. FGF-2 signaling through FGFR1 results in SC loss based 
on unmitigated cycling. Importantly, this effect can be reverted by increasing 
Spry1  in SCs, an inhibitor of FGF signaling and preserver of SC quiescence 
(Chakkalakal et al. 2012). The p38α/β MAPK pathway, downstream of FGF signal-
ing, is consequently overactivated in aged SCs, leading to reduced asymmetric divi-
sion and higher numbers of committed daughter cells, hence resulting in diminished 
self-renewal. Improving the SC environment by transplanting old SCs into a young 
host could not revert this condition, in contrast to the successful pharmacological 
inhibition of the p38α/β MAPK pathway in SCs (Cosgrove et al. 2014; Bernet et al. 
2014). Most likely triggered by increased IL-6 blood levels, the JAK/STAT signal-
ing pathway is also overactivated in aged SCs and results in a reduction of symmet-
ric division and self-renewal, which can be reverted with pharmacological inhibitors 
(Price et al. 2014; Tierney et al. 2014). In geriatric mice (30 months of age), SCs 
lose their ability for reversible quiescence by switching to pre-senescence. At that 
age, the respective stimuli fail to induce SC activation and proliferation, but instead 
prompt senescence in a process termed geroconversion. Silencing of p16INK4a, a cell 
cycle inhibitor that triggers the switch to pre-senescence, is able to restore the acti-
vation and proliferation potential of SCs (Sousa-Victor et al. 2014). Intriguingly, 
blocking autophagy in young SCs causes senescence, while its restoration in old age 
reestablishes the regenerative potential of SCs (Garcia-Prat et al. 2016). Furthermore, 
loss of FN from the aged BL prevents sufficient attachment of SCs to the niche and 
thus disturbs signaling through focal adhesion kinase, thereby precipitating SC loss 
(Lukjanenko et al. 2016). In addition, mislocalization of integrin β1 on aged and 
dystrophic SCs leads to impaired sensitivity to FGF-2, consequently causing 
reduced SC proliferation and ultimately SC depletion, resulting in impaired regen-
eration. In both models, activation of β1-integrin reverts the impairment of SC func-
tion (Rozo et al. 2016).

Hormonal and pharmacological interventions, calorie restriction as well as cell 
therapy have been proposed for the prevention and treatment of sarcopenia. 
However, to date, physical activity remains the most efficacious approach to 
 combating this disease (Jang et al. 2011), e.g. by boosting the number and myogenic 
capacity of SCs (Shefer et al. 2010; Snijders et al. 2009). Although an SC pathology 
is most likely not the only driving force for development of sacropenia, SC dysfunc-
tion contributes to impaired muscle regeneration and increased fibrosis (Brack et al. 
2007). Recent advances in understanding aberrant signal transduction pathways and 
communication between aged SCs and their niche will potentially offer new phar-
macological avenues in the treatment of sarcopenia that could circumvent the inher-
ent problems of exercise interventions in geriatric patients.
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8.3.2  The Satellite Cell Niche in Dystrophic Conditions

Muscular dystrophies are a heterogeneous group of sporadic and inherited disorders 
that lead to progressive muscle wasting and weakness. Fiber size variation, fiber 
necrosis followed by inflammation, and muscle tissue replacement by fat and scar 
tissue are often hallmarks of these pathologies, depending on the severity of the 
dystrophy in question (Emery 2002). Many dystrophies are caused by a mutation in 
structural proteins of the cytoskeleton, membrane or ECM, which comprise a part 
of the SC niche.

One of the most common and extensively studied dystrophy is DMD, which 
arises due to a genetic mutation in the structural protein dystrophin. Lack of dystro-
phin, a member of the membrane-bound protein complex, leads to the improper 
connection of the cytoskeleton to the ECM, rendering fibers more prone to mechan-
ical damage. As a consequence, recurring rounds of degeneration and regeneration 
form a vicious cycle and impose proliferative pressure on SCs. It has been proposed 
that progressive worsening of the disease over time is at least partially due to telo-
mere shortening and ultimately loss of the regenerative potential of SCs (Sacco 
et al. 2010). The most important signaling molecules implicated in the dystrophic 
niche are presented in Fig. 8.4.

Infiltrating macrophages and T cells induce fibrosis through secretion of pro- 
fibrotic cytokines, which in chronic diseases such as muscular dystrophies result in 
fibrotic tissue formation at the expense of functional muscle tissue (Mann et  al. 
2011). For instance, in acute injury, a wave of TNF-α-secreting M1 macrophages 
induces a reduction of the preceding FAP expansion, thereby limiting ECM accu-
mulation. Under chronic conditions, however, loss of proper control of macrophage 
polarization results in exacerbated TGF-β secretion that in turn causes FAP persis-
tence and fibrosis (Lemos et al. 2015). Therefore, anti-inflammatory drugs like cor-
ticosteroids, despite their potential pro-atrophic side effects, are the current standard 
of care for DMD. A big portion of current DMD therapy-related research focuses on 
intercepting the pathways implicated in fibrotic tissue formation, namely those trig-
gered by TGF-β and Mstn (Bentzinger et al. 2010).

Interestingly, SC fate conversion from the myogenic to the fibrogenic lineage 
can contribute to fibrosis development in DMD. Thus, increased Wnt signaling in 
dystrophic muscle triggers TGF-β2 secretion, which in turn induces pro-fibrotic 
gene expression in SCs, thereby limiting their myogenic potential (Biressi et  al. 
2014). Besides progressive fibrosis, the SC niche in DMD is affected by other 
events, such as alterations in the BL with differential expression of laminin α2, 
laminin β1 and collagen IV, which are implicated in the direct interactions with SCs 
(Hayashi et al. 1993), as well as that of decorin and biglycan, proteoglycans linked 
to TGF-β sequestration (Fadic et al. 2006). These changes presumably also contrib-
ute to alterations in muscle stiffness, which further affects SC behavior. In addition, 
perturbed conditions can alter the differentiation of several multipotent progenitor 
populations in the muscle, including FAPs, resulting in extracellular fat accumulation 
(Uezumi et al. 2010). Of note, these alterations to the SC niche can be extrapolated 
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Fig. 8.4 The dystrophic niche. The dystrophic fiber (dyMF) is smaller in diameter with centrally 
located nuclei, a hallmark of ongoing damage and regeneration. As a result, dySCs are under high 
proliferative pressure. Similar to the aged niche, elevated levels of TGF-β and Wnt, as well as 
increased numbers of fibroblasts (FIs), are common features of the dystrophic niche. In addition, 
inflammation caused by high numbers of fibro/adipogenic progenitors (FAPs) and macrophages 
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RL) at the expense of muscle tissue. Further abbreviations: EC endothelial cell; PEC periendothe-
lial cell
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to other dystrophies and muscle pathologies with prominent fibrosis and fat accu-
mulation, even diseases such as type 2 diabetes (Berria et al. 2006; Goodpaster and 
Wolf 2004).

The niche has been the primary focus of research on SC dysfunction in DMD, 
mainly due to a body of literature suggesting that dystrophin expression is limited 
to differentiated myofibers. However, recent findings suggest a direct role of SCs in 
the pathology based on the discovery that dystrophin is also expressed in activated 
SCs and is important for establishing cell polarity, thus enabling asymmetric SC 
division (Dumont et al. 2015). Lack of SC dystrophin therefore results in reduced 
numbers of committed progenitors and differentiated myocytes, as well as a higher 
numbers of Myf5− progenitors. However, both increased and decreased SC numbers 
have been reported in DMD, a discrepancy that could be due to the difference in age 
of the subjects in the studies in question (Kottlors and Kirschner 2010; Jiang et al. 
2014). Given the reciprocal regulation between SCs and fibroblasts (Murphy et al. 
2011), it will be interesting to further explore the role of SC dystrophin in fibrotic 
tissue accumulation and other DMD symptoms.

Dysferlinopathy is another example of a muscular dystrophy (LGMD) with a 
complex etiology. In this disease, a mutation in the structural protein dysferlin pri-
marily prevents myotubes from patching contraction-induced small ruptures in the 
sarcolemma. However, dysferlinopathy also affects proper muscle regeneration, 
where impairment in the release of cytokines upon injury results in reduced neutro-
phil recruitment and leads to a prolonged inflammatory phase, creating a subopti-
mal environment for successful regeneration by SCs (Chiu et al. 2009).

Despite extensive efforts, no treatment for most of these debilitating diseases has 
been found so far. Therapies are mainly symptomatic and palliative, relying on cor-
ticosteroids as well as pulmonary and cardiac management in the case of DMD 
(Wagner et al. 2007). Experimental treatments centered on stem cell therapy (e.g. 
SC transplantation), gene therapy (e.g. antisense oligonucleotide exon skipping, 
viral delivery of mini-dystrophin, CRISPR/Cas9-mediated deletion) and pharma-
cology (e.g. Mstn blockade) might, however, result in therapeutic breakthroughs in 
the future (Chakkalakal et  al. 2005; Fairclough et  al. 2013; Young et  al. 2016; 
Mendell and Rodino-Klapac 2016).

8.4  Future Directions: An Artificial Niche

Autologous SC therapy represents one of the most promising treatments both for 
dystrophies and sacropenia. In sacropenia, enhancement of the myogenic potential 
of SCs and expansion of bona fide SCs in vitro prior to their transplantation in order 
to boost regeneration would most likely be sufficient, while in dystrophic condi-
tions, the approach would comprise stem cell and gene therapy, including correction 
of a relevant genetic mutation in vitro. However, several hurdles impede the success 
of such trials. For example, the inability of SCs to home in on muscle with systemic 
delivery (Elster et  al. 2013), poor migration when delivered intramuscularly 
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(Bentzinger et al. 2014), as well as reduced proliferation, immediate differentiation 
and apoptosis of injected cells have been reported. These effects are further com-
pounded by the rapid and irreversible loss of SC stemness in culture, resulting in 
reduced myogenic potential upon transplantation (Montarras et al. 2005). Thus, as 
expanding the stem cell population is a necessary step prior to implantation, improv-
ing the intrinsic myogenic potential of SCs, e.g. by overexpressing PGC-1α, can 
help to lead to enhanced early muscle tissue formation after transplantation 
(Haralampieva et al. 2017). Furthermore, attempts have been made to mimic the SC 
niche in vitro to circumvent some of the aforementioned problems.

Bioengineering efforts have made progress in creating 3D biomimetics as acel-
lular or cellular scaffolds for use in regenerative therapy (Handschin et al. 2015). 
From cylindrically shaped, collagen I-based gels to various natural hydrogels and 
finally fibrin gels, conditions conductive to increasing cell survival, fusion and mat-
uration are constantly improving (Bursac et al. 2015). For example, in the case of 
trauma-induced volumetric muscle loss, acellular biodegradable materials filled 
with anti-fibrotic and pro-myogenic factors on one, and angiogenic and neuro-
trophic factors on the other hand, would possibly provide optimal conditions to tip 
the balance towards functional muscle tissue instead of scar tissue formation when 
transplanted in a timely manner (Sicari et al. 2014; Shvartsman et al. 2014). These 
scaffolds would provide not only fast infiltration and proper activation of the myo-
genic cells of the host, but also support fast establishment of the vascular and neural 
network necessary to support the newly formed muscle tissue. Other conditions 
such as aging and dystrophies require, however, more intricate cellular approaches, 
with biomaterials that closely resemble the SC niche in terms of stiffness and com-
position, enabling the cell-matrix interactions that are crucial for proper SC func-
tion. In that regard, polyethylene glycol hydrogels cross-linked with laminin have 
been used successfully in improving SC self-renewal in vitro and engraftment in 
vivo (Gilbert et al. 2010). This substrate, in combination with pharmacological inhi-
bition of the p38α/β MAPK pathway, was also able to reverse the age-related SC 
pathology (Cosgrove et al. 2014).

Besides identification of ECM proteins as crucial components of an artificial 
niche, the search for extrinsic factors that would enable SC expansion in vitro with-
out loss of cell stemness has led to the discovery of a cocktail of four cytokines. 
Intrigued by the role of CD4+ and CD8+ T cells in regeneration, Fu and colleagues 
identified T cell-derived factors that are responsible for increased SC proliferation. 
They defined a pro-inflammatory cytokine combination composed of IL-1α, IL-13, 
TNF-α and INF-γ that is sufficient and necessary to maintain SC potency in vitro 
(Fu et al. 2015). This combination of cytokines promoted proliferation and limited 
differentiation of SCs for 20 passages. The gene expression profile of cells expanded 
in this way suggests that these cells retain at least some of the features of freshly 
isolated SCs, such as high Pax7 and low MyoD expression. SCs expanded under 
such conditions were not only able to engraft efficiently and occupy the niche upon 
transplantation into muscle, but also to respond to secondary injury by undergoing 
activation and self-renewal (Fu et  al. 2015). In addition, the transplantation effi-
ciency of such expanded cells in vitro was comparable to freshly isolated SCs. Since 
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the cocktail in question has been optimized for murine SCs, efforts will have to be 
made to find proper conditions and factors for human SCs.

Recently, Quarta and colleagues successfully mimicked the in vivo microenvi-
ronment of SCs by using a defined serum-free quiescence medium and artificial 
muscle fibers. A 3D microscaffold with an elasticity between 1 and 2 kPa based on 
collagen, recombinant laminin and α4β1 integrin provided optimal stiffness and 
enabled signaling pathways to keep the cells in reversible quiescence (Quarta et al. 
2016). This method proved effective in keeping both murine and human SCs in a 
quiescent state for up to a week. With this system, the engraftment potential and 
self-renewal of cultured cells upon transplantation surpassed that of freshly isolated 
SCs and was comparable to SCs associated with their native fibers. These results 
confirm the importance of the niche and mimicking the in vivo microenvironment 
for maintaining SC stemness in vitro (Quarta et al. 2016).

These studies provide crucial insights into the optimal conditions for keeping 
SCs in a quiescent state in vitro, SC propagation, and preservation of the stemness 
for subsequent in vivo transplantation. Importantly, an artificial niche not only 
enables disease modeling and gene therapy, but also provides an amenable experi-
mental system for toxicology screenings of novel drugs, thereby reducing the bur-
den of animal studies (Madden et al. 2015; Huh et al. 2012). Together with novel 
imaging and cell tracking techniques (Haralampieva et  al. 2016), the increasing 
knowledge about SC biology, the importance of the niche, and the interplay of SCs 
with myofibers and other cell types will hopefully result in novel therapeutic 
approaches to treating sarcopenia, muscular dystrophies and other skeletal muscle- 
associated pathologies.
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Chapter 9
The Macula Flava of the Human Vocal Fold 
as a Stem Cell Microenvironment

Kiminori Sato

Abstract

 1. There is growing evidence to suggest that the cells in the maculae flavae are 
tissue stem cells of the human vocal fold and maculae flavae are a candidate for 
a stem cell niche.

 2. The latest research shows that the cells in the human maculae flavae are involved 
in the metabolism of extracellular matrices that are essential for the viscoelastic-
ity in the human vocal fold mucosa as a vibrating tissue, and considered to be 
important cells in the growth, development, and aging of the human vocal fold 
mucosa.

 3. The cells in the human maculae flavae possess proteins of all three germ layers, 
indicating they are undifferentiated and have the ability of multipotency.

 4. The cell division in the human adult maculae flavae is reflective of asymmetric 
self-renewal and cultured cells form a colony-forming unit. Therefore, the phe-
nomenon gives rise to the strong possibility that the cells in the human maculae 
flavae are tissue stem cells.

 5. Recent research suggests that the cells in the human maculae flavae arise from 
the differentiation of bone marrow cells via peripheral circulation.

 6. The hyaluronan concentration in the maculae flavae is high and contains cells 
which possess hyaluronan receptors, indicating that the maculae flavae are 
hyaluronan- rich matrix, which is required for a stem cell niche.

 7. A proper microenvironment in the maculae flavae of the human vocal fold 
mucosa is necessary to be effective as a stem cell niche maintaining the stemness 
of the contained tissue stem cells.
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9.1  Introduction

Among mammals, only humans can speak and sing songs throughout their lifetime. 
And only the human adult vocal fold has a vocal ligament, Reinke’s space, and a 
layered structure (Kurita et al. 1986; Sato et al. 2000; Hirano 1975; Hirano and Sato 
1993). Why do only human adults have such a characteristic vocal fold structure? 
Why and how does the newborn vocal fold mucosa grow, develop and mature? 
What are the factors for initiating and continuing the growth of the human vocal 
fold mucosa? Why does the adult vocal fold maintain its characteristic layered 
structure for many decades?

After birth, adult stem cells, including both germ-line stem cells and tissue stem 
cells, reside in a specific microenvironment termed a “niche”, which varies in nature 
and location depending on the tissue type (Li and Xie 2005). These adult stem cells 
are an essential component of tissue homeostasis; they support ongoing tissue 
regeneration replacing cells lost due to natural cell death (apoptosis) or injury (Li 
and Xie 2005).

Adult tissue-specific stem cells (tissue stem cells) have the capacity to self-renew 
and generate functionally differentiated cells that replenish lost cells throughout an 
organism’s lifetime. Tissue-specific stem cells reside in a niche, whereby a complex 
microenvironment maintains their multipotency.

Viscoelastic properties of the lamina propria of the human vocal fold mucosa deter-
mine its vibratory behavior and depend on extracellular matrices, such as collagen 
fibers, reticular fibers, elastic fibers, proteoglycan, glycosaminoglycan and glycopro-
teins. The three-dimensional structures of these extracellular matrices are indispens-
able to the viscoelastic properties of the human vocal fold mucosa. Fine structures of 
the human vocal fold mucosa influence vibrating behavior and voice quality.

Human adult maculae flavae are dense masses of cells and extracellular matrices 
located at the anterior and posterior ends of the membranous portion of the bilateral 
vocal folds. The histological structure of the maculae flavae in the human adult 
vocal fold mucosa is unique and not suitable for vibration. Therefore, their roles in 
the human vocal fold as a vibrating tissue are very interesting. However, their roles 
in the human vocal fold have not been clarified until recently (Lanz and Wachsmuth 
1955; Subotic et al. 1984; Vecerina-Volic et al. 1988; Campos Banales et al. 1995; 
Fayoux et al. 2004).

The latest researches show that the human maculae flavae are involved in the 
metabolism of extracellular matrices that are essential for the viscoelasticity of the 
human vocal fold mucosa, and are considered to be an important structure in the 
growth, development and ageing of the human vocal fold mucosa. In addition, there 
is growing evidence to suggest that the cells in the maculae flavae are tissue stem 
cells of the human vocal fold mucosa and maculae flavae are a candidate for a stem 
cell niche.
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In this chapter, the latest research regarding the maculae flavae of the human 
vocal fold as a stem cell microenvironment are summarized.

9.2  Maculae Flavae in the Human Adult Vocal Fold

The vibratory portion (membranous portion) of the human vocal fold is connected 
to the thyroid cartilage anteriorly via the intervening anterior macula flava and ante-
rior commissure tendon. Posteriorly, it is joined to the vocal process of the arytenoid 
cartilage via the intervening posterior macula flava (Figs. 9.1 and 9.2). The vocal 
ligament runs between the anterior and posterior maculae flavae.

thyroid cartilage
anterior commissure tendon
anterior macula flava

Reinke’s space

vocal ligament

posterior macula flava
elastic cartilage portion 
of the vocal process

hyaline cartilage portion 
of the vocal process

Fig. 9.1 Human adult 
vocal fold and maculae 
flavae

thyroid cartilage

anterior commissure tendon

anterior macula flava

vocal ligament
Reinke’s space

posterior macula flava

vocal process of
arytenoid cartilage

Fig. 9.2 Transverse 
section of human adult 
vocal fold (Elastica van 
Gieson stain)
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Human adult maculae flavae are dense masses of cells and extracellular matrices 
(Fig.  9.3) (Sato and Hirano 1995a; Sato et  al. 2010a). The maculae flavae are 
located at the anterior and posterior ends of the membranous portion of the bilateral 
vocal folds. They are elliptical in shape and their size is approximately 
1.5 mm × 1.5 mm × 1 mm (Sato and Hirano 1995a). The border between the  maculae 
flavae and the surrounding soft tissue is relatively clearly delineated (Fig.  9.2) 
(Sato et al. 2003a).

The extracellular matrices of the human adult maculae flavae are composed of 
glycoproteins and glycosaminoglycan and fibrillar proteins such as collagen fibers, 
reticular fibers, and elastic fibers (Fig.  9.3). These extracellular matrices in the 
maculae flavae extend to those in the lamina propria (Reinke’s space and vocal 
ligament) of the human vocal fold mucosa (Sato and Hirano 1995a).

Fig. 9.3 Macula flava of the human adult vocal fold. (a) Human adult maculae flavae are dense 
masses of cells (Hematoxylin and eosin stain). (b) There are many collagen fibers stained red and 
elastic fibers stained black around the cells in the human adult maculae flavae (Elastic van Gieson 
stain). (c) There are many collagen fibers stained red and reticular fibers (type III collagen) stained 
black around cells in the human adult maculae flavae (Silver stain). (d) Much glycosaminoglycan 
(hyaluronan, hyaluronic acid) is situated around the cells in the human adult maculae flavae 
(Alcian blue stain, pH 2.5). Maculae flavae are strongly stained light blue with Alcian Blue at pH 
2.5. Material in the maculae flavae that is strongly stained with Alcian Blue (pH 2.5) is digested by 
hyaluronidase
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9.3  Intermediate Filaments of the Cells in the Human Adult 
Maculae Flavae

The expression of proteins in the intermediate filaments of the cytoplasm is specific 
to cell type and differentiation (Becker et al. 2006a).

Proteins in the intermediate filaments containing cytokeratin, vimentin, glial 
fibrillary acidic protein (GFAP) and desmin are distributed in the cytoplasm of the 
cells in the adult maculae flavae (Sato et al. 2012a). Additionally, cells in the human 
maculae flavae express SOX 17, which is an endodermal cell marker. Consequently, 
the cells in the human adult maculae flavae express proteins of all three germ layers. 
This suggests that the cells in the maculae flavae are undifferentiated cells and have 
the ability of multipotency.

9.4  Radiosensitivity of the Cells in the Human Adult 
Maculae Flavae

The radiosensitivity of the cells in the maculae flavae is morphologically higher 
than that of fibroblasts in Reinke’s space of the human vocal fold mucosa, indicating 
that the cells in the maculae flavae are not yet as fully differentiated as fibroblasts 
(Sato et al. 2008b).

9.5  Telomerase of the Cells in the Human Adult Maculae 
Flavae

In multicellular organisms, telomerase resides mainly in the germ cells that give rise 
to sperm and eggs, and in a few other kinds of proliferating normal cells such as 
stem cells (Becker et al. 2006b).

The cells in the maculae flavae express telomerase reverse transcriptase, indicating 
the special DNA polymerase called telomerase resides in the cells in the maculae 
flavae (Sato et al. 2012b). This suggests that the cells in the human maculae flavae 
are a tissue stem cell of the human vocal fold mucosa.

9.6  Cell Cycle of the Cells in the Human Adult Maculae Flavae

Cells express Ki-67 during proliferation (G1-, S-, G2- M-phase) in the cell cycle, but 
cells that are in an arrested state (G0-phase) do not express Ki-67 (Schlüter et al. 1993).

The cells in the human maculae flavae do not express Ki-67, indicating that they 
are resting cells (G0-phase), as are other stem cells (Sato et al. 2012b).
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9.7  Vocal Fold Stellate Cells in the Human Adult Maculae 
Flavae

Interstitial cells with a star-like appearance in the human adult maculae flavae were 
discovered in our laboratory in 2001 (Fig. 9.5) (Sato et  al. 2001a, 2003b, 2004, 
2010b; Sato and Nakashima 2005). These cells had no nomenclature and were thus 
designated “vocal fold stellate cells” in the series of our study. Vocal fold stellate 
cells are stellate in shape and possess vitamin A-storing lipid droplets (Sato et al. 
2003b). There are a number of morphological differences between vocal fold stel-
late cells and fibroblasts in the human vocal fold mucosa. Along the surface of the 
vocal fold stellate cells, a number of vesicles are present and constantly synthesize 
extracellular matrices which are essential for the viscoelastic properties of the 
human vocal fold mucosa (Sato et al. 2001a).

As a result of this heterogeneity, it is uncertain whether the vocal fold stellate 
cells derive from the same embryonic source as fibroblasts in the human vocal fold 
mucosa. The vocal fold stellate cells in the maculae flavae form an independent 
cell category that are considered a new category of cells in the human vocal fold 
mucosa.

9.8  Cell Division of Cells in the Human Maculae Flavae

In vitro culturing of the human maculae flavae yields interesting results. After a few 
weeks of primary culture in an MF-start primary culture medium (Toyobo, Osaka, 
Japan), two types of cells, fibroblast-like spindle cells (Group A) and cobblestone- 
like squamous cells (Group B), grow from the human macula flava fragments 
(Fig. 9.6) (Sato et al. 2016a). After removing the two types of cells by cell scraper, 
each type of cell is individually subcultured in an MF-medium (Mesenchymal Stem 
Cell Growth Medium) (Toyobo, Osaka, Japan) to proliferate the cells.

After a week of first subculture, subcultured Group A cells become stellate in 
shape and possess slender cytoplasmic processes (Fig. 9.7a). Small lipid droplets 
are present in the cytoplasm. The nuclei are oval in shape and their  nucleus- cytoplasm 
ratios are low. These cells are morphologically similar to vocal fold stellate cells.

After a week of second subculture, subcultured Group B cells form a colony- forming 
unit (Fig. 9.7b), indicating these cells are mesenchymal stem cells or stromal 
stem cells in the bone marrow.

Therefore, the colony-forming phenomenon gives rise to the possibility that the 
cells in the human maculae flavae are tissue stem cells (Sato et al. 2016a).

As mentioned above, the cell division in the human adult maculae flavae with 
mesenchymal stem cell growth medium is reflective of asymmetric self-renewal 
(Sato et al. 2016a). Asymmetry in cell division gives rise to the possibility that the 
maculae flavae in the human adult vocal fold is a stem cell niche containing tissue 
stem cells (Sato et al. 2016a).
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9.9  Transition Area Between the Human Adult Maculae 
Flavae and Surrouding Tissue

The transition area between the maculae flavae and their surrounding tissue is 
interesting.

The posterior macula flava is attached to the vocal process of the arytenoid carti-
lage posteriorly (Figs. 9.1 and 9.2). Elastic cartilage located at the tip of the vocal 
process facilitates movement of the vocal process during adduction and abduction 
(Sato et  al. 1990). The transition of cells and extracellular matrices between the 
posterior macula flava and the elastic cartilage portion of the vocal process is grad-
ual, and the border between them is not clearly delineated. The cells in the posterior 
macula flava appear to differentiate into chondrocytes in the tip of the vocal process 
(Sato et al. 2012b).

The cells in the human maculae flavae express CD44 (mesenchymal stem cell 
marker). Most of the fibroblasts in the tissue surrounding the maculae flavae do not 
express CD44. However, CD44-positive fibroblasts are observed at the periphery of 
the maculae flavae. The cells in the macula flava appear to differentiate into fibro-
blasts in the surrounding tissue (Sato et al. 2012b).

These findings raise the possibility that the cells in the maculae flavae generate 
functionally differentiated cells, such as chondrocytes and fibroblasts in the human 
vocal fold mucosa (Sato et  al. 2012b). Additional investigations are needed to 
determine whether the cells in the maculae flavae have the capacity to self-renew 
and generate functionally differentiated cells (multipotency) that replenish lost cells 
throughout an organism’s lifetime.

9.10  Hierarchy of Tissue Stem Cells in the Human  
Maculae Flavae

Here, the question arises whether the vocal fold stellate cells are tissue stem cells or 
progenitor cells (transit-amplifying cells).

Both colony-forming subcultured cells (cobblestone-like squamous cells) and 
non-colony-forming subcultured cells (fibroblast-like spindle cells) (Fig. 9.6) 
express cytoplasmic cytokeratin, vimentin, GFAP and desmin (Kurita et al. 2015). 
Consequently, both colony-forming cells (cobblestone-like squamous cells) and 
non-colony-forming cells (fibroblast-like spindle cells) express ectoderm and meso-
derm germ layers. This suggests that they are undifferentiated cells and have the 
ability of multipotency (Kurita et al. 2015).

The vocal fold stellate cells are possibly transit-amplifying cells, that is, progeni-
tor cells (Sato et al. 2016a). However, at the present state of our investigation, it is 
difficult to clarify the stem cell system and hierarchy of stem cells in the human 
maculae flavae and determine whether the vocal fold stellate cells are tissue stem 
cells or progenitor cells.
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9.11  Microenvironment, Hyaluronan-Rich Matrix, 
of the Maculae Flavae as a Stem Cell Niche 
in the Human Vocal Fold

The structural and biochemical microenvironment that confers stemness upon cells 
in multicellular organisms is referred to as the stem cell niche. A stem cell niche is 
composed of a group of cells in a special tissue location for the maintenance of stem 
cells (Li and Xie 2005).

Hyaluronan serves as an important niche component for numerous stem cell 
populations (Haylock and Nilsson 2006; Preston and Sherman 2011). After the 
 discovery of hyaluronan, it was assumed that its major functions were in the bio-
physical and homeostatic properties of tissues. However, current studies lead to 
understanding that hyaluronan also plays a crucial role in cell behavior (Toole 
1991). A hyaluronan-rich matrix, which is composed of the glycosaminoglycan 
hyaluronan and its transmembrane receptors (cell surface hyaluronan receptors), is 
able to directly affect the cellular functions of stem cells in a stem cell niche 
(Haylock and Nilsson 2006; Preston and Sherman 2011).

The maculae flavae in the human adult vocal fold are strongly stained light 
blue with Alcian Blue at pH 2.5 (Fig. 9.4). The materials in the maculae flavae that 
are strongly stained with Alcian Blue (pH 2.5) are digested by hyaluronidase.  
A great deal of glycosaminoglycan (hyaluronan) is situated around the cells in the 
human adult maculae flavae and hyaluronan concentration is high. The border 
between dense masses of hyaluronan (macula flava) and the surrounding tissue is 

Fig. 9.4 Coronal section of 
the posterior macula flava 
(Alcian blue stain, pH 2.5)
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Fig. 9.6 Primary culture 
of macula flava with 
MF-start primary culture 
medium (Toyobo, Osaka, 
Japan) (Phase-contrast 
microscopy). Two types of 
cells, cobblestone-like 
squamous cells and 
fibroblast-like spindle 
cells, grow from the 
macula flava fragments in 
the primary culture

Fig. 9.5 Transmission electron micrograph of a vocal fold stellate cell in the human macula flava 
(uranyl acetate and lead citrate stain). Vocal fold stellate cells are stellate in shape and possess 
slender cytoplasmic processes. They possess vitamin A-storing lipid droplets and intracellular 
organelles such as rough endoplasmic reticulum and Golgi apparatus

clearly delineated. Additionally, most of the cells in the maculae flavae express 
CD44 (cell surface hyaluronan receptors) (Fig. 9.8). This indicates that the human 
maculae flavae are hyaluronan-rich pericellular matrix (Sato et al. 2012b).

Since the cells in the human maculae flavae have cell surface hyaluronan recep-
tors and are surrounded by a high concentration of hyaluronan (Sato et al. 2012b), 
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Fig. 9.7 Individual 
subculture of each type of 
cell in an MF-medium 
(Mesenchymal Stem Cell 
Growth Medium) (Toyobo, 
Osaka, Japan) to 
proliferate the cells 
(Phase-contrast 
microscopy). (a) Stellate 
cells. Fibroblast-like cells 
in the primary culture 
become stellate in shape 
and possess slender 
cytoplasmic processes and 
have small lipid droplets in 
the cytoplasm. (b) 
Colony-forming unit. 
Cobblestone-like 
squamous cells in an 
MF-medium form a 
colony-forming unit

Fig. 9.8 CD44 on 
cytoplasm of cells in the 
human adult macula flava, 
shown by 
immunohistochemical 
staining
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the maculae flavae are a candidate for a stem cell niche, which is a microenviron-
ment nurturing a pool of tissue stem cells (Sato et al. 2012b).

9.12  Origin of Cells in the Human Maculae Flavae

Bone marrow-derived cells have received a great deal of attention with regard to 
tissue development and regeneration. Bone marrow-derived cells are considered to 
contain bone marrow derived mesenchymal stem cells, which are multipotent cells 
capable of self-renewal (Pittenger et al. 1999; Prockop 1997), and to be the origin 
of circulating fibrocytes, which are associated with wound healing and tissue fibro-
sis (Bucala et al. 1994). They circulate in the peripheral blood and are distributed to 
organs under normal conditions. When tissue is injured, they contribute to tissue 
repair by cell differentiation and migrate into injured tissue as needed (Forbes et al. 
2004; Brittan et al. 2002).

The cells in the human maculae flavae express CD34 (hematopoietic stem cell 
marker). They also express CD45 (leukocyte common antigen), and collagen type I 
(Kurita et al. 2015). These proteins (CD34, CD45 and collagen type I), which are 
major makers of bone marrow derived circulating fibrocytes, are present in the cells 
in the human maculae flavae (Kurita et al. 2015).

Circulating fibrocytes were first described as blood-born fibroblast-like cells by 
Bucala, et al. (Bucala et al. 1994) They were found to be unique cells because they 
co-expressed hematopoietic markers as well as collagen type I and other 
 mesenchymal markers. CD34, CD45 and collagen type I are major markers for 
circulating fibrocytes derived from bone marrow (Abedi 2012). CD34, CD45 and 
collagen type I are expressed in the cells in the human adult maculae flavae. 
Consequently, cells in the human maculae flavae quite possibly arise, not from resi-
dent interstitial cells of the vocal fold mucosa, but from the differentiation of bone 
marrow cells via peripheral circulation (Kurita et al. 2015).

9.13  Side Population Cells in the Vocal Fold Mucosa

Side population cells are regarded as a cell population enriched with stem cells or 
progenitor cells, and recognized as a candidate for tissue stem cells.

In one recent study, side population cells were identified in the epithelium and 
subepithelial tissue including the anterior and posterior maculae flavae (Yamashita 
et al. 2007). In another recent study, side population cells increased significantly in 
Reinke’s space of an injured vocal fold starting on day 3, with a peak at day 7, fol-
lowed by a decrease back to baseline values on day 14 (Gugatschka et al. 2011). 
These cells in the maculae flavae participated in the early stages of wound healing 
(Gugatschka et al. 2011). The two investigation cited here suggest that the anterior 
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and posterior maculae flavae contain stem cells or progenitor cells and these cells 
have the capacity to play essential roles in tissue regeneration.

9.14  Vocal Fold Stem Cells and Their Niche in the Human 
Newborn Vocal Fold Mucosa

The results of our studies are consistent with the hypothesis that the cells in the 
maculae flavae are tissue stem cells or progenitor cells of the human newborn vocal 
fold mucosa (Sato et al. 2016b).

Newborns already have maculae flavae at the same sites as in adult vocal folds 
(Hirano and Sato 1993; Sato and Nakashima 2005; Sato and Hirano 1995b). The 
newborn maculae flavae are composed of relatively dense masses of cells and situ-
ated at the anterior and posterior ends of the bilateral vocal fold mucosae. The cells 
in the newborn maculae flavae possess some features of mesenchymeal cells (Sato 
and Nakashima 2005; Sato and Hirano 1995b). The cells in the human newborn 
maculae flavae possess proteins of all three germ layers (Sato et al. 2016b). They are 
undifferentiated cells which arise not from resident interstitial cells but from the 
differentiation of bone marrow cells (Sato et al. 2016b).

Extracellular matrices composed of collagen fibers, reticular fibers, elastic fibers 
and ground substances are not abundant in the newborn maculae flavae. A new-
born’s macula flava is in the process of acquiring a hyaluronan-rich matrix making 
it a candidate for a stem cell niche.

At birth, the cells have already been supplied, likely from the bone marrow, into 
the maculae flavae in the newborn vocal fold and are ready to start the growth and 
development of the human vocal fold mucosa as a vibrating tissue (Sato and 
Hirano 1995b).

9.15  Mechanical Regulation (Cellular Mechanotransduction) 
of the Cells in the Human Maculae Flavae

Current scientific findings suggest that the magnitude and frequency of tensile strain 
are particularly important in determining the type of mechanically induced differen-
tiation that stem cells will undergo (Kurpinski et al. 2010). The macula flava is the 
microenvironment where the magnitude and frequency of tensile strain during vocal 
fold vibration are greatest (Titze and Hunter 2004). The function and fate of the 
cells in the human maculae flavae are regulated by various microenvironmental fac-
tors. In addition to chemical factors, mechanical factors also modulate the behavior 
of cells in the human maculae flavae.

We hypothesize that the tensions caused by phonation (vocal fold vibration) after 
birth stimulate cells in the anterior and posterior maculae flavae to accelerate pro-
duction of extracellular matrices and form the vocal ligament, Reinke’s space and 
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the layered structure (Sato et al. 2001b, 2016b). The results of our studies (morpho-
logic differences are detected between adult vocal fold mucosae that have been 
phonated and those that have remained unphonated since birth (Sato et al. 2008, 
2012, 2015)) are consistent with this hypothesis.

We also hypothesize that after the layered structure of the adult vocal fold is 
completed, the tensions caused by phonation (vocal fold vibration) stimulate cells 
in the anterior and posterior maculae flavae to accelerate production of extracellular 
matrices and maintain the layered structure of the human adult vocal fold mucosa as 
a vibrating tissue. The results of our study (morphologic differences are detected 
between the adult vocal fold mucosae that have remained phonated and those that 
have been unphonated for a long period (Sato et al. 2011)) are consistent with this 
hypothesis.

The bending stresses on the vocal fold associated with phonation (vocal fold 
vibration) are greatest in the region of the maculae flavae located at both ends of the 
vocal fold mucosa (Titze and Hunter 2004). Tension caused by phonation seems to 
regulate the behavior of the cells (mechanical regulation) in the maculae flavae of 
the human vocal fold. It is of interest whether the mechanical forces caused by vocal 
fold vibration from outside the cells in the maculae flavae contacts influence intra-
cellular signaling cascades through cell-matrix that ultimately alter many cellular 
behaviors.

“Mechanotransduction” is the term for the ability of living tissues to sense 
mechanical stress and respond by tissue remodeling. Cellular mechanotransduction 
is the mechanism by which cells convert mechanical stimuli into biomechanical 
responses. More recently, mechanotransduction has expanded to include the sensa-
tion of stress, its translation into a biochemical signal and the sequence of biological 
responses it produces. Mechanical stress has become increasingly recognized as 
one of the primary and essential factors controlling biological functions, ultimately 
affecting the functions of the cells, tissue, and organs (Mofrad and Kamm 2010). It 
is very likely that the mechanical stress caused by phonation (vocal fold vibration) 
is one of the primary and essential factors controlling biological functions, 
ultimately affecting the function of the cells in the macula flava of the human vocal 
fold mucosa. However, the role of mechanotransduction in the vibrating vocal fold 
mucosa remains unclear.

It is readily apparent that tensile and compressive strains can have direct effects 
on cell morphology and structure, including changes in the cell membrane, shape, 
and volume as well as cytoskeletal structure and organization (Kurpinski et  al. 
2010). These physical changes can be converted into changes in cell signaling and 
transcriptional activities in the nucleus to cause alterations in cellular differentia-
tion, proliferation, and migration (Kurpinski et al. 2010).

The function and fate of stem cells are regulated by various microenvironmental 
factors (Kurpinski et al. 2010). In addition to chemical factors, mechanical factors 
can also modulate stem cell survival, organization, migration, proliferation, and dif-
ferentiation (Kurpinski et al. 2010). Stem cells are potentially one of the main play-
ers in the phenotype determination of a tissue in response to mechanical loading 
(Kurpinski et al. 2010).
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The cells in the human maculae flavae may be sensing the mechanical forces, and 
these tissue-specific mechanical forces (vocal fold vibration) could promote cell 
differentiation toward the phenotype of the cell residing within the vocal fold tissue. 
However, little is known about how force affects biological signaling. It is suggested 
that the combination of multiple mechanical and chemical factors may be involved 
in more complicated signaling mechanisms and assessment of the relative impor-
tance of each factor needs further investigations.

9.16  Future Prospects

As a result of the latest research, there is growing evidence to suggest that the cells 
in the human maculae flavae are adult multipotent stem cells, tissue stem cells or 
progenitor cells in the human vocal fold mucosa and that the human maculae flavae 
are a candidate for a stem cell niche.

Investigations concerning how to regulate these cells contained in the human 
maculae flavae are challenging but important in the field of regenerative medicine of 
the human vocal fold.

The manipulation, not only of cells, but also their microenvironment, is one of 
the strategies in regenerative medicine. Artificial manipulations of these cells using 
cutting-edge methods (e.g. via chemical biology) could lead to advanced develop-
ments in vocal fold regeneration. Understanding the mechanisms responsible for 
microenvironmental regulation of the cells in the human maculae flavae will pro-
vide the tools needed to manipulate cells through their microenvironment for the 
development of therapeutic approaches to diseases and tissue injuries of the vocal 
fold. Translational medicine focused on how to regulate cells and extracellular 
matrices (microenvironments) contained in the maculae flavae of the vocal folds 
will contribute to our ability to restore and regenerate human vocal fold tissue.
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Chapter 10
Oesophageal Stem Cells and Cancer

Maria P. Alcolea

Abstract Oesophageal cancer remains one of the least explored malignancies. 
However, in recent years its increasing incidence and poor prognosis have stimu-
lated interest from the cancer community to understand the pathways to the initia-
tion and progression of the disease.

Critical understanding of the molecular processes controlling changes in stem 
cell fate and the cross-talk with their adjacent stromal neighbours will provide 
essential knowledge on the mechanisms that go awry in oesophageal carcinogene-
sis. Advances in lineage tracing techniques have represented a powerful tool to start 
understanding changes in oesophageal cell behaviour in response to mutations and 
mutagens that favour tumour development.

Environmental cues constitute an important factor in the aetiology of oesopha-
geal cancer. The oesophageal epithelium is a tissue exposed to harsh conditions that 
not only damage the DNA of epithelial cells but also result in an active stromal 
reaction, promoting tumour progression. Ultimately, cancer represents a complex 
interplay between malignant cells and their microenvironment. Indeed, increasing 
evidence suggests that the accumulation of somatic mutations is not the sole cause 
of cancer. Instead, non-cell autonomous components, coming from the stroma, can 
significantly contribute from the earliest stages of tumour formation.

The realisation that stromal cells play an important role in cancer has trans-
formed this cellular compartment into an attractive and emerging field of 
research. It is becoming increasingly clear  that the tumour microenvironment 
provides unique opportunities to identify early diagnostic and prognostic mark-
ers, as well as potential therapeutic strategies that may synergise with those tar-
geting tumour cells.
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This chapter compiles recent observations on oesophageal epithelial stem cell 
biology, and how environmental and micro-environmental changes may lead to 
oesophageal disease and cancer.

Keywords Oesophageal cancer • Oesophageal stem cells • Oesophageal models  
• Lineage tracing • Early tumorigenesis

10.1  Outline

Oesophageal tissue maintenance, self-renewal and regenerative potential remains a 
largely unexplored field in epithelial stem cell biology. However, the increasing 
incidence and poor prognosis of oesophageal cancer have stimulated interest from 
the cancer and stem cell community to understand the cellular and molecular mech-
anisms underlying oesophageal stem cell biology, and how dysregulation of tissue 
homeostasis can lead to epithelial diseases such as cancer.

Evidence indicates that environmental cues represent an important factor in the 
aetiology of oesophageal carcinogenesis. The oesophageal epithelium is a tissue 
exposed to harsh environmental conditions; alcohol and tobacco consumption as 
well as gastric refluxate represent only a portion of the aggressions that the oesopha-
gus has to endure. This certainly dictates the way this tissue is maintained and func-
tions, and makes it susceptible to the accumulation of genetic mutations and the 
development of cancer.

In this chapter, I will revise recent observations in oesophageal epithelial stem 
cell biology, and how environmental changes may lead to oesophageal disease and 
cancer.

10.2  Oesophagus

The oesophagus is a relatively uncomplicated tube that connects our external environ-
ment with our stomach, providing means to transport food and liquids for their subse-
quent digestion and absorption into our bodies (Fig. 10.1). Although this organ forms 
part of the gastrointestinal tract, its mere function is to transport ingested substances 
unidirectionally, no food processing or absorption happens here (Goetsch 1910).

Given its piping function, the architecture of this organ is relatively simple 
compared to other gastrointestinal organs such as the stomach and the intestine. 
Although histological differences exist between different animals, the oesopha-
gus is constituted by a layer of epithelial tissue or mucosa at the outer lumen 
side, underlying submucosa where vascular and connective tissue can be found, 
and the muscularis external. This muscularis muscle layer grades from skeletal 
to smooth muscle towards the stomach side of the oesophagus. This muscular 
grading allows for voluntary swallowing to become a reflex towards the end of 
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the oesophagus, ensuring food or drink to be delivered to the stomach for diges-
tion. At the gastroesophageal junction the sphincter prevents reflux guarantying 
unidirectional transport (Goetsch 1910).

10.3  Environment

The outer most side of the oesophagus, the mucosa or oesophageal epithelium, is in 
direct contact with the outside. Of the gastrointestinal track, this and the epithelial 
mucosa of the oral cavity will be the part more directly exposed to unprocessed 
ingested material. This ranges from relatively high temperature products like hot tea 
infusions or coffee, to cold drinks, environmental pollutants, including cigarette 
smoke in case of smokers, alcohol consumption and chemicals such as drugs but 
also endless food preservatives, colouring and texturizing agents (Lin et al. 2016; 
Tetreault 2015; Fitzgerald 2005). All this is aggravated by the constant physical 
abrasion of the tissue by undigested food fragments.

The constant wear and tear to which this tissue is exposed necessitates a resis-
tant lining to ensure functionality, endurance and, ultimately, survival. This is 
achieved by a squamous epithelium formed by several layers of epithelial cells 
with high turnover frequency that stratify towards the surface forming a multi-
layered highly resilient tissue (Alcolea and Jones 2015). Studies using thymidine 
analogue incorporation in patients have suggested a turnover of approximately 
11 days for healthy human oesophageal epithelium, double that of the intestine 
(Pan et al. 2013). Epithelial cells proliferate at the base of the tissue, and subse-
quently differentiate stratifying toward the tissue surface where they terminally 
differentiate and eventually shed at the outer lumen side (Barbera et al. 2015). This 
represents an excellent way to keep renewing cells potentially damaged by expo-
sure to environmental factors.

However, even though the oesophageal epithelial lining is able to resists and face 
most day-to-day aggressions, when abused the epithelium may suffer damage and 

Fig. 10.1 Representation 
of the human oesophagus. 
This tissue has a simple 
anatomy; it represents a 
tube that connects our 
external environment with 
our stomach. Sphincters 
ensure a unidirectional 
transport of ingested 
material under normal 
conditions
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result in oesophageal disease or even cancer. One clear example of this is acid reflux 
(Fitzgerald 2005).

Under normal conditions, all ingested substances are transported into the stom-
ach in one direction only. The sphincter at the junction between the oesophagus and 
stomach relaxes to allow food down, remaining closed otherwise to protect the 
oesophagus from the strong acid composition of the stomach digestive secretions. 
Under certain conditions some of the acid is leaked back into the oesophagus, some-
thing known as gastric reflux (Fig. 10.2) (di Pietro and Fitzgerald 2013). Frequent 
exposure to this refluxate can lead to oesophageal inflammation, and develop into 
more advanced oesophageal diseases such as Barrett’s oesophagus (BE), which has 
the potential to evolve towards oesophageal adenocarcinoma (EAC) as discussed 
below (Desai et al. 2012).

The continuous harsh environmental conditions to which this organ is exposed 
dictates the way it is maintained and functions, and makes it susceptible to abuses 
exceeding its tolerance that may lead to disease and cancer.

10.4  Oesophageal Cancer

Oesophageal cancer (OEC) represents the eight most common cancer and the sixth 
most common cause of cancer death worldwide (Rustgi and El-Serag 2014). Despite 
recent medical advances, this disease still presents late in the clinic and its prognosis 
remains poor, with a 5 year survival rate of only 10–25% of those diagnosed. There 

Fig. 10.2 Ingested material is normally transported unidirectionally. Under certain circumstances, 
gastric reflux occurs exposing the oesophageal epithelium to stomach secretions that sensitize the 
tissue. Continued exposure may result in epithelial metaplasia, transforming this squamous tissue 
in intestinal-like columnar epithelium (Barrett’s oesophagus). This represents a risk factor, predis-
posing to adenocarcinoma transformation
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are two major histological subtypes of OEC, squamous cell carcinoma (SCC) and 
adenocarcinoma (AC) (Pennathur et al. 2013; Napier et al. 2014).

The incidence of the two major OEC subtypes presents clear geographic patterns 
that has been attributed to different environmental and nutritional factors. SCC is 
the major cause of OEC worldwide, representing 90% of all OEC. SCCs are pre-
dominantly high in the so-called Asian belt, encompassing Turkey, northeaster Iran, 
Kazakhstan, as well as northern and central China. The main risk factors for this 
type of cancer are tobacco and alcohol consumption; however, other factors such as 
diet, environmental pollutants and particularly hot beverages have been suggested 
to influence the distinctive geographic incidence shown by this cancer (Pennathur 
et al. 2013; Agrawal et al. 2012).

AC has a significantly different etiology to that of SCC. AC has been suggested 
to arise from abnormal glandular differentiation as a result of long-term gastric 
reflux (Leedham et al. 2008; Chang et al. 2007). This cancer presents one of the 
fastest increasing incidences in Europe and Noth America as a result of the rise in 
obesity, mal-dietary habits and Barrett’s oesophagus, a premalignant condition 
resulting from gastric reflux (Pennathur et al. 2013; di Pietro et al. 2014).

10.5  Oesophageal Squamous Cell Carcinoma

SCCs have been associated with a high frequency of genetic alterations. Recent 
studies have shown that SCCs in the oesophagus present a greater mutational bur-
den than breast cancer and glioblastoma multiforme (Song et al. 2014). However, 
the somatic mutation rate was still lower than that observed in head and neck squa-
mous cell carcinomas (Stransky et  al. 2011) and oesophageal adenocarcinoma 
(EAC) (Dulak et al. 2013).

Different studies in different geographical locations, including North America 
and China, have identified recurrent genes frequently found mutated in SCC sam-
ples. Among those, TP53, NOTCH, PIK3CA and FAT1 (FAT Atypical Cadherin), as 
well as copy number variations in CCND1 (Cyclin D1) and CDKN2A, seem to be 
common in the list of SCC mutant genes (Gao et al. 2014; Lin et al. 2014; Zhang 
et al. 2015; Sasaki et al. 2016).

10.6  Oesophageal Adenocarcinoma

The strongest and best-characterized risk of EAC is gastroesophageal reflux. 
Decades of evidence have linked EAC to Barrett’s oesophagus (BE), a premalignant 
condition where the stratified oesophageal epithelium is replaced by a columnar 
intestinal epithelium in a metaplastic process in response to the strong environmen-
tal conditions of chronic gastric reflux. However, despite this knowledge, 
Adenocarcinoma has remained cause of concern due to its concerning rise in 
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incidence for the last couple of decades in western and developed Countries. Efforts 
made to increase detection and surveillance of Barrett’s oesophagus have not sig-
nificantly affected this trend, given that 95% of EAC arise from patients who had 
not been previously diagnosed with BE (Reid et al. 2010).

Other factors that increase the risk of EAC are obesity, cigarette smoking and 
diet low in fruit and vegetables (Engel et al. 2003).

Sequencing studies have described the mutational signature of EAC, reflecting 
the high mutational burden of this disease. TP53 is the most recurrently mutated 
gene, other genes mutated at a lower rate inlcude CDKN2A, SMAD4, ARID1A, 
PIK3CA and SYNE1 (Dulak et al. 2013; Chong et al. 2013). More recently, work 
from Prof. Fiztgerald laboratory, has shown the highly dynamic nature of the muta-
tional landscape of BE and EAC. This study demonstrated the polyclonal evolution 
of BE, with high grade dysplasia being able to arise from multiple different clones. 
This has significant clinical implications, as dysplasia may redevelop from residual 
BE left behind after treatment therapies (Ross-Innes et al. 2015).

10.7  Understanding Human Oesophagus From Mouse 
Models

In order to improve the poor prognosis and progressive rise in the incidence of 
oesophageal cancer, it is imperative to understand the etiology of this complex and 
heterogeneous disease. Insights as to how it originates and evolves will provide 
valuable information to unveil new avenues for diagnosis and therapeutics.

However, in order to do this, it is first critical to understand how this tissue is 
maintained under normal homeostatic conditions, how it responds to tissue pertur-
bations such as injury or aggression, and how those rules become deregulated dur-
ing oncogenesis.

Over last couple of decades there have been several studies trying to unveil the 
identity of a stem cell population in the oesophagus. Although, there has been some 
work in human tissue, the most detailed studies use mouse models (Alcolea and 
Jones 2014). One of the major advantages is that mice can be manipulated geneti-
cally with relative ease (van der Weyden et al. 2002). An increasing range of mouse 
strains covering a broad spectrum of genetic models have been instrumental in 
revealing changes in cell behaviour in response to oncogenes, tumour suppressor 
genes or just simply by allowing visualization of individual cells using fluorescent 
reporters. These valuable research tools are also extremely versatile, making possi-
ble the tight control over gene expression in vivo in a temporal, spatial or tissue 
specific manner, something that has revolutionized our knowledge in epithelial stem 
cell biology in the last couple of decades (Alcolea and Jones 2013).

Additionally, most of the basic principles of stem cell biology and tumour devel-
opment have been established in mouse models and have been shown to be con-
served from human (van der Weyden et al. 2002; Yuspa et al. 1994). Making the use 
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of mouse models, not only critical tools for basic research, but also for preclinical 
trials to target specific molecular pathways in order to tests their therapeutic 
potential.

Given the advantages of available mouse models, it is not surprising that research-
ers have made use of them to understand oesophageal stem cell dynamics. However, 
these rodent models also presents some caveats, as fundamental differences between 
mouse and human oesophagus exist.

The human oesophagus is a squamous non-keratinized epithelium organized 
around structures called papillae that divide the tissue into papillary and interpapil-
lary zones (Fig. 10.3). Proliferation takes place in the first 5–6 layers from the base-
ment membrane. On commitment to differentiation, cells exit cell cycle and stratify 
into the suprabasal layers, migrating to the tissue surface from which they are even-
tually shed. Unlike the mouse oesophagus, the human oesophagus lacks a cornified 
protective layer at the tissue surface, making it more vulnerable to the chemical and 
physical properties of the substances we ingest. This is circumvented to some extent 
by having additional cell layers that form a thicker epithelium, as well as by the 
presence of submucosal glands that release mucous and acid neutralizing agents 
exerting a protective role (Goetsch 1910; Barbera et al. 2015; Seery 2002; Marques- 
Pereira and Leblond 1965).

Generally speaking, mouse oesophagus presents a simpler structure. It is also 
lined by a squamous epithelium that consists of layers of keratinocytes. However, 
unlike humans, proliferation is confined to the basal cell layer, and no glands, 
 papillae or other accessory structures are found (Doupe et al. 2012; Messier and 
Leblond 1960; Rosekrans et al. 2015).

Despite the benefit and advantages of using mouse models to understand human 
oesophageal biology, the significant differences between the two species makes it 
critical to ultimately test animal observations for their validity in human models.

The recent development of organoid cultures in different epithelial tissues, 
including the oesophagus, has provided an extraordinary opportunity to translate 
observations from mouse models into humans (Fatehullah et al. 2016; DeWard et al. 

Human OesophagusMouse Oesophagus

Progenitors Differentiating

Fig. 10.3 Schematic representation depicting differences between human and mouse oesophagus
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2014; Sato et al. 2011). This 3D in vitro culture method allows for the formation of 
organized cellular structures with different cellular subtypes and a function reminis-
cent of that found in the original tissue. This opens new venues to thoroughly char-
acterise human epithelial stem cell biology in health and disease by considering 
cell-cell interactions while retaining spatial resolution, at least to some extent.

10.8  Oesophageal Stem Cells in Rodent Models

The oesophagus represent an epithelial barrier in contact with the exterior and, as 
such, it requires to be in constant turnover to sustain tissue integrity in response to 
the continuous damage. Proliferation, confined to the basal layer in mice and first 
few layers in human, is required to generate new cells to maintain the tissue in 
homeostasis. Under normal conditions, it is critical that upon division the same 
number of proliferating and differentiating cells are produced in order to maintain a 
balanced equilibrium. An imbalance will result in the loss of cell production, com-
promising tissue integrity, or in an excessive cell proliferation potentially leading to 
cancer (Doupe et al. 2012; Frede et al. 2014; Frede et al. 2016; Alcolea et al. 2014).

Work in the late sixties, studying tritiated thymidine incorporation in the rat 
oesophagus had suggested that all proliferating cells were equipotent, and that the 
commitment and exit from the basal layer was stochastic. By performing these 
experiments, Leblond and co-workers observed how all the cells incorporating the 
labelled thymidine isotope during division were localized to the basal layer, arguing 
against asymmetrical division. Over time, half of the labelled cells stratified to the 
suprabasal layers, suggesting that cell fate making was happening after cell division 
in a stochastic manner (Marques-Pereira and Leblond 1965).

With the advent of the stem cell/ transit amplifying model proposed to explain 
epithelial tissue maintenance (Potten and Booth 2002), more recent studies 
attempted to unveil the identity of a discrete stem cell population in the oesophagus. 
These hypothesised that the oesophageal epithelium is maintained by a slow-cycling 
self-renewing stem cell population, generating short lived transit-amplifying cells, 
that terminally differentiate after a few rounds of division (Croagh et  al. 2007). 
Based on previous studies reporting alpha 6 integrin and CD71 maker combination 
as a mean to identify epidermal stem cells (Li et al. 1998; Tani et al. 2000), in vivo 
studies looked into these in mouse oesophagus and concluded that alpha 6 integrin 
positive basal cells could be separated in two distinct populations CD71 dim and 
CD71 bight. Label retaining and in  vivo reconstitution assays indicated that the 
CD71 dim population fulfilled the criteria of a stem cell compartment (Croagh et al. 
2007). However, this population failed to manifest an enhanced colony forming 
potential in in vitro clonogenic assays.

A subsequent study used a Hoechst exclusion assay to identify a label retaining 
population in the mouse oesophagus that was enriched for CD34 expression; a 
known stem cell marker (Trempus et al. 2003). This population presented increased 
clonogenic and regenerative potential both in vitro and in vivo, showing the typical 
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features of a potential stem cell population. Interestingly, further analysis of this 
putative stem cell population did not correlate with the integrin alpha 6 high/CD71 
dim expression profile previously reported in mouse oesophageal stem cells (Kalabis 
et al. 2008).

A more recent report from DeWard et al. used a combination of basal cell surface 
markers to separated oesophageal cells into distinct populations with different 
in vitro organoid forming efficiency. This study shows that SOX2 is oesophageal 
basal cell maker that plays an important role in organoid formation and self-renewal. 
And suggests basal cells expressing the highest levels of basal markers integrin 
alpha 6, beta 1 and p75 represent a putative stem cell population based on their 
increased organoid formation efficiency. However, no differences were observed in 
their self-renewal potential (DeWard et  al. 2014). Based on this observation, the 
study concludes that a non-quiescent stem cell population resides in the basal epi-
thelium of the mouse oesophagus.

The development of new genetically engineered mouse strains expressing mul-
ticolour fluorescent reporters which expression may be controlled temporally and/
or spatially by specific promoters and/or drug treatment, has revolutionized our 
knowledge of cell behaviour in epithelial tissues in health and disease (Alcolea and 
Jones 2013). By exploiting the available reporter mouse strains scientists can now 
label individual cells throughout the tissue with an inheritable fluorescent reporter, 
and track their fate over the course of time either by performing end point experi-
ments, or by in situ live imaging in the living organism (Alcolea and Jones 2014; 
Park et al. 2016).

Using quantitative methods of lineage tracing, we performed a comprehensive 
study to reconcile previous observations on mouse oesophageal stem cell behav-
iour. Individual basal cells were fluorescently labelled, and their fate tracked over 
the course of 1 year. Large scale clone size analysis using methods of mathematical 
statistics revealed that a single progenitor population that divides stochastically, 
balancing the production of proliferating and differentiating cells, is responsible 
for the maintenance of the mouse oesophageal epithelium (Doupe et  al. 2012). 
Additional, transgenic label-retaining assays based on calculating the dilution of 
doxycycline induced Histone-2B-GFP fusion protein (Tumbar et  al. 2004) indi-
cated that no slow-cycling epithelial cells were present in the oesophageal epithe-
lium. Further, quantification of the Histone-2B-GFP levels in individual cells led to 
the conclusion that all basal cells divide at a similar rate, in agreement with the 
original observations by Leblond and co-workers (Marques-Pereira and Leblond 
1965; Doupe et al. 2012).

In order to unveil whether tissue injury could reveal populations with distinctive 
regenerative potential, a refined endoscopic method was used to create a discrete 
incision in the mouse oesophagus. Similar genetic lineage tracing and label retain-
ing assays were performed. Remarkably, the uniformity of the basal cell population 
was once more revealed in response to wounding. The widespread activation of 
progenitor cells around the wound rapidly produced an excess of proliferating cells 
in order to close the defect in the epithelium (Fig. 10.4), leading to a very efficient 
and rapid healing response (Doupe et al. 2012).
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10.9  Oesophageal Stem Cells in Human

As discussed above mouse and human oesophagus show certain histological differ-
ences. In essence, both tissues are formed by layers of squamous epithelial cells 
divided in two main compartments; the basal zone with one (mouse) or several 
(human) layers of small basophilic cells, and the differentiated zone where cells 
become progressively flatter as they approach the lumen surface where they shed 
from the tissue. One of the major differences in human oesophagus is the existence 
of a structured architecture around papillae. These arise from the invagination of the 
lamina propia at regular intervals and results in the tissue being divided in papillary 
and interpapillary epithelium (Fig. 10.3) (Goetsch 1910; Seery 2002). These defined 
structures have been proposed to be a potential niche for stem cells in the human 
oesophagus (Barbera et al. 2015; Seery 2002; Seery and Watt 2000). However, such 
compartmentalization is not found in mice (Doupe et al. 2012).

The number of studies available on human oesophagus have been limited by the 
inaccessibility of the sample, as well as the technical challenges to study stem cell 
behaviour and regeneration in this tissue.

Initial studies, based on PCNA staining, a proliferation maker, suggested the 
existence of a putative stem cell population located at the tip of the papillae 
(Jankowski et al. 1992). Later studies looked into cell division symmetry and found 
that cells in the interpapillary zone divided rarely and asymmetrically; giving rise to 
one basal daughter and one suprabasal differentiating cell (Seery and Watt 2000). 
They concluded that interpapillary basal cells attained to the expected stem cell 
definition at the time; stem cell fate in squamous tissue was believed to be main-
tained largely through division asymmetry (Watt and Hogan 2000).

More recently label retaining assays using the thymidine analogue 5-iodo- 
2′deoxyuridine (IdU) in patients undergoing oesophagectomy showed a higher pro-
portion of IdU retaining cells in the papillary basal layer of healthy oesophagus. The 
conclusion was that a putative slow-cycling self-renewing stem cell population 
resides in the defined niche of the oesophageal papillae (Pan et al. 2013).

Progenitors
Differentiating

HomeostasisMulti-layered Squamous EpitheliumMouse Oesophagus

Fig. 10.4 Stochastic model of oesophageal tissue maintenance in mouse. Quantitative cell fate analy-
sis in the mouse oesophagus has revealed that a single functionally equivalent progenitor population 
maintains the tissue by dividing stochastically, balancing the production of proliferating and differen-
tiating cells. Each division can produce one of three outcomes. Symmetric fate results in two prolifer-
ating or differentiating cells, while asymmetric divisions generate one of each
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The most recent report studying human oesophageal tissue maintenance, uses a 
comprehensive wholemount staining technique to asses for proliferation and stem 
cell markers such as CD34. Data shows that proliferation and mitotic activity was 
highest in the interpapillary basal layer and decreased linearly towards the tip of the 
papilla, where a CD34 positive population resides. Additional 2D and 3D organo-
typic in vitro assays looked into the regenerative potential of different cell popula-
tions sorted based on CD34 and epithelial cadherin. Interestingly, no differences in 
self-renewal were observed when performing either single cell or population assays 
(Barbera et al. 2015). These observations are in agreement with earlier studies sug-
gesting a slow cycling population resides in the papillary zone, and seem to resolve 
conflictive reports (Pan et al. 2013; Jankowski et al. 1992). Interestingly, this study 
also presents data in line with recent findings in mouse oesophagus. Progenitor 
cells, which can respond to injury and regenerate tissue, were found to be wide-
spread and are not restricted to the basal layer, including cells that have already 
committed to epithelial differentiation (Barbera et al. 2015; Doupe et al. 2012).

10.10  Oesophageal Cell Behaviour in Tumourigenesis

The advent of in vivo linage tracing techniques has represented a powerful tech-
nique to start understanding changes in oesophageal cell behaviour in response to 
mutations and mutagens that favour tumour development.

Sequencing studies previously suggested that loss of function Notch mutations 
and loss of heterozygosity were frequently found in squamous cell carcinomas, 
including oesophageal SCCs (Agrawal et al. 2011, 2012; Song et al. 2014; Stransky 
et al. 2011; Gao et al. 2014; Lin et al. 2014). Using a lineage tracing approach simi-
lar to that previously used to study mouse oesophageal tissue maintenance (Doupe 
et  al. 2012), we challenged mouse oesophageal homeostasis by inhibiting Notch 
signalling in vivo. An engineered mouse model expressing an inducible dominant 
negative form of mastermind like-1 tagged to a fluorescent GFP reporter (DNM1- 
GFP) was used in this study (Tu et al. 2005). Quantitative clonal data revealed that 
Notch inhibition confers a strong competitive advantage to mutant progenitor cells, 
generating clones that expand rapidly over the weeks following induction. Further 
analysis on clonal growth and progenitor differentiation suggested that mutants 
present a blockage in terminal division, where dividing cells produce two differen-
tiating cells (Fig. 10.4). As a result, mutant cells divide 3 fold faster than wild type 
cells, and, on average, each cell division produces an excess of progenitors over 
differentiating cells (Fig. 10.5) (Alcolea et al. 2014). Interestingly, the clonal advan-
tage of these clones does not only rely on cell autonomous mechanisms but also 
exerts a ‘bystander effect’, actively eliminating wild type cells, similar to those 
observed in super competitor mutants in Drosophila (de la Cova et al. 2004; Moreno 
and Basler 2004). Additional treatment with carcinogens illustrates the potential 
role of Notch inhibiting mutations in tumour formation; mutant clones were seen to 
provide means for other less advantageous mutations to colonize the tissue when 
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co-existing (Alcolea et al. 2014). This exemplifies how different mutations could 
potentially synergise during the early stages of tumour formation.

Further studies have used a combination of diethylnitrosamine (DEN) and the 
multikinase inhibitor Sorafenib, as a two-stage carcinogenic protocol to investigate 
cell dynamics during oesophageal tumorigenesis. DEN is a nitrosamine found in 
cigarette smoke and traditionally used to induce tumours in the oesophageal epithe-
lium (Hoffmann et al. 1982; Rubio 1983; Rubio et al. 1987). These nicotine-derived 
compounds are activated in the body to form alkylating agents that cause DNA 
 damage (Goodsell 2004). Inclusion of Sorafenib was drawn from previous 
 observations showing the cancer promoting effect of this drug. Sorafenib was shown 
to lead to SCC formation in skin, and head and neck in patients treated for liver, 
kidney and thyroid cancers (Schneider et al. 2016; Arnault et al. 2009). DEN and 
Sorafenib drug combination generates early tumours forming high grade dysplasias 
(HGD) in the mouse oesophagus. Interestingly, lineage tracing data in the epithelial 
compartment points to the polyclonal origin of these tumoral lesions. Against all 
predictions, cells in dysplasias shared a common dynamics, with progenitor cells 
showing a moderate bias towards the production of dividing over non-dividing 
daughter cells (Fig. 10.5). Also, despite the tumour outgrowth no significant change 
in the rate of cell division was observed (Frede et al. 2016).

Fig. 10.5 Oesophageal progenitor cells are able to change their cell fate programme in response 
to tissue perturbations such as injury, neoplastic mutations and tumorigenesis (red arrows). Notch 
inhibiting mutations in progenitors showed an increased proliferation rate, favouring asymmetric 
cell division. Surprisingly, benign tumours developed upon cigarette smoke derived nitrosamines 
did not show a significant change in the rate of cell division. The perturbation seemed to be the 
result of a discrete bias towards proliferation
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The remarkably uniform behaviour described in dysplasia contrasts with obser-
vations in squamous cell carcinomas produced in a Kras G12D mutant background. 
These advanced cancers were characterised by the existence of a subset of clones 
with a significant bias towards proliferation, reflecting the onset of cancer heteroge-
neity. It remains to be elucidated whether this subpopulation has an increased 
tumour initiating potential when compared to the bulk tumour cell population 
(Frede et al. 2016).

10.11  Oesophageal Cancer and Microenvironment

Cancer is a complex disease that develops in response to a concert of genetic altera-
tions and environmental factors. The constant exposure of the oesophagus to dam-
aging agents through ingestion, as well as gastric refluxate may  result in tissue 
injury. This can have a significant impact on the epithelium not only by promoting 
the mutational burden, but also indirectly, by activating the underlying stroma (Lin 
et al. 2016).

It has traditionally been thought that the sole cause of cancer lays on the accumu-
lation of genetic alterations that promote disease progression. However, increasing 
evidence suggest that there is an entire new dimension to it, i.e. the tumour micro-
environment. Non-cell autonomous components, coming from the stroma, can sig-
nificantly contribute not only to cancer progression but also to cancer initiation (Hu 
et al. 2012; Whiteside 2008; Tlsty and Coussens 2006).

 The primary function of the stroma is to offer structural support to organs and 
epithelial tissues lining them. However, it also serves as a sensor orchestrating the 
signals required to modulate cell behaviour in response to environmental changes. 
Communication between epithelial and stromal cells is essential for tissue damage 
repair. However, stromal activation can be aberrantly triggered by the abnormal 
behaviour of mutant epithelial cells, misleadingly understood as an injury, promot-
ing tumorigenesis (Arwert et al. 2012).

The tumour stroma, which consists of immune cells, fibroblasts, endothelial 
cells, perivascular cells, adipocytes and extracellular matrix, constitute the microen-
vieronment in which the tumour must develop (Arwert et  al. 2012). Given that 
tumours have been proposed to function as an injury that is not able to heal, 
 suggested by Dvorak (Dvorak 1986), the interplay between tumour cells and the 
different stromal compartments will have a significant role in tumour development 
and progression. The same way this interplay is central for adequate wound repair. 
The main difference resides in the fact that wound healing is a controlled mecha-
nism, while tumour formation is a disorganized process (Arwert et al. 2012; Gurtner 
et al. 2008).

Among the risk factors promoting oesophageal cancer discussed above, cigarette 
smoke, alcohol, gastric reflux, obesity and dietary habits, all of them share a com-
mon feature. They all have a significant impact on the tumour stroma, mainly by 
promoting tissue damage. This has the inevitable consequence of fibroblast activa-
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tion, increased immune response, changes in extracellular matrix and vascular reor-
ganization, among others (Lin et al. 2016).

10.11.1  Mesenchymal Compartment

The main cellular component of the tumour stroma in most tumour types are fibro-
blasts. Tumour associated fibroblasts (TAFs) have been shown to be a heteroge-
neous cell population that plays an active role from the earliest stages of tumour 
formation. TAFs contribute to disease progression by providing the suitable envi-
ronment for carcinogenesis, proliferation, angiogenesis and invasion. Growth fac-
tors, cytokines and extracellular matrix are released to promote tumour cell 
transformation (Joyce and Fearon 2015; Malanchi et  al. 2012; Zhang and Wang 
2015; Kalluri 2016). More recently, it has been shown how TAFs can also have an 
impact on drug resistance by signalling to tumour cells (Hirata et al. 2015; Au Yeung 
et al. 2016; Kaur et al. 2016).

Cancer associated fibroblasts (CAFs) have been proposed to have a critical 
role in the development of oesophageal cancer. Reports suggests that oesopha-
geal CAFs can derive from different cellular populations, including normal fibro-
blasts and bone marrow-derived cells among others (Nouraee et  al. 2013; 
Hutchinson et al. 2011). Transforming growth factor β1 (TGFβ1) and microR-
NAs have been implicated in the conversion of fibroblasts to CAFs (Noma et al. 
2008; Tanaka et al. 2015).

In the oesophagus, fibroblasts are localized in the submucosa layer laying directly 
underneath the epithelial mucosa (Goetsch 1910). Increased transforming growth 
factor β1 (TGFβ1) and hepatocyte growth factor (HGF) have been linked to the 
progression from dysplasia to ESSC (Xu et al. 2013). In human ESCC, TGFβ recep-
tor II (TβRII) was found to be downregulated in CAFs. This was associated with 
increased proliferation and reduced apoptosis in adjacent epithelial cells (Achyut 
et al. 2013). Incresed cyclooxygenase (COX)-2, the enzyme of prostaglandin E2 
(PGE2), has been linked to both ESCC and EAC development via its pro- 
inflammatory function (Achyut et al. 2013; Taddei et al. 2014). Indeed, one of the 
means by which CAFs have been proposed to contribute to carcinogenesis is by 
producing pro-inflammatory factors.

10.11.2  Immune Compartment

One microenvironmental component that has become increasingly relevant in recent 
years due to mounting evidence probing its significant contribution to tumorigenesis 
and its therapeutic potential is the immune compartment (Chen and Mellman 2017).

M.P. Alcolea



201

Injury by gastric refluxate in the oesophagus has been shown to result in chronic 
inflammation with upregulation of cytokines, such as IL1b, IL6, and IL8 (Fitzgerald 
et al. 2002). Increased IL1b/IL6 signalling contributes to the metaplastic and dys-
plastic conversion of BE, as well as its evolution towards oesophageal adenocarci-
noma (Quante et al. 2012). A mouse model overexpressing interleukin-1b developed 
human Barrett-like metaplasia and EAC in an interleukin 6 dependent manner. This 
phenotype was accelerated by exposure to bile acids, one component of gastroduo-
denal reflux, or nitrosamines, generated at the oesophageal junction when salivary 
nitrite is reduced in response to gastric secretions (Winter et al. 2007). Lineage trac-
ing data suggested that Lgr5 positive cells of gastric origin were the origin of the 
Barrett’s lesion in this IL1b-IL6 immune permissive environment. The results also 
indicated that the oesophageal to columnar transition happens under the control of 
Notch Delta1-dependent signalling (Quante et al. 2012).

The role of inflammation is also important for ESCC (Sadanaga et al. 1994). It 
has been shown that the main risk factors for this type of cancer, smoking and alco-
hol, favour an inflammatory response via direct chemical irritation of the oesopha-
geal epithelium, as well as production of reactive oxygen species (Sadanaga et al. 
1994; Kubo et al. 2014). A conditional mouse model where p120catenin was lost in 
the oesophagus revealed the role of the tumour microenvironment as a tumour 
driver. ESSC development in this model was associated to inflammation, immune 
cell infiltration, and increased NFkB/Stat-3 cross-talk in tumours (Stairs et  al. 
2011). A later study reinforced the important role of the immune response in ESCC 
development. Conditional SOX2 overexpression in the oesophagus was insufficient 
to drive SCC formation. Transformation of oesophageal progenitor cells required 
cooperation of increased Sox2 and microenvironment-activated Stat3, leading to 
tumorigenesis (Liu et al. 2013).

Several immune cell types have been involved in tumour development. Although 
the main function of our immune system is to protect our organism from invasion, the 
same must have mechanisms that protect us against persistent or dysregulated immune 
reactions. This is a critical function for our survival. Tumour cells have been proposed 
to hijack some of these mechanisms in order to persist and evolve. For instance, regu-
latory T cells that under normal conditions maintain tolerance to self-antigens, pre-
venting autoimmune disease, if aberrantly activated in response to oesophageal cancer, 
promote tumour immune suppression favouring disease  progression (Nabeki et  al. 
2015). Myeloid-derived suppressor cells (MDSCs) are immature cells that also sup-
press the immune reaction by induction of regulatory T cells, and inhibition of protec-
tive cell types such as T cells and natural killer cells. This cell population was found 
to be increased in ESCC mouse models (Stairs et al. 2011; Chen et al. 2014). Similarly, 
macrophages switching from M1 to M2 start producing cytokines and growth factors 
that favour oesophageal tumour development (Miyashita et al. 2014). Another immune 
suppressive mechanism hijacked by cancer cells is the modulation of immune check-
points. Programmed cell death protein ligand (PD-L1) is a protein expressed on the 
surface of several tumour cells, and it is thought to play a role in immune escape by 
inhibiting T cell function. PD-L1 has shown a significant potential as melanoma target 
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treatment and also presents good prospects for oesophageal cancer (Raufi and 
Klempner 2015).

Ultimately, cancer represents a complex interplay between malignant cells and 
their neighbouring stromal compartment. The realisation of the increased genetic 
stability of stromal cells compared to cancer cells has made them an attractive cel-
lular compartment, formerly disregarded. Mounting line of evidence indicate the 
largely unexplored potential of tumour microenvironment, not only as a source of 
plausible therapeutic targets, but also of diagnostic and prognostic markers (Lin 
et al. 2016).

All in all, the oesophagus has proven to be an excellent model to understand 
basic epithelial stem cell biology. Its multi-layered stratified architecture, constant 
turnover, interaction with the environment and cross-talk with the microenviron-
ment render this an ideal tissue where to explore stem cell behaviour in health and 
disease. Despite good progress in the field, further research is still needed to identify 
how stromal changes govern epithelial cell behaviour, and how those contribute to 
cancer development. The new research tools now widely accessible, such as a broad 
spectrum of genetically engineered mouse models, organoid cultures and recent 
developments in CRIPR technology represent an exciting prospect for oesophageal 
stem biology.
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Chapter 11
Oral Cancer Stem Cells Microenvironment

Prajna Paramita Naik, Prashanta Kumar Panda, and Sujit K. Bhutia

Abstract Cancer stem cells (CSCs) play important role in tumor growth and 
metastasis coupled with increased recurrences and acquired therapeutic resistance 
in oral cancer. The tumor microenvironment imposes intense pressure in cancer 
evolution in response to adverse growth conditions, resource limitation and immune 
predation. Here, we discussed the dynamic interplay between cancer stem cells and 
tumor microenvironment in the formation of intratumoral heterogeneity to modu-
late tumor progression. The CSCs niche provide a special microhabitat for survival, 
maintenance of stemness and tumor  re-propagation. Moreover, adaptive cellular 
behavior might be driven by tough tumor microenvironmental selective forces 
which highly regulate alterations in the gene expression leading to the reprogram-
ming of signaling pathways generating stem-like characteristics, adaptive metabolic 
plasticity and energy fueling with autophagy to permit the CSCs to sustain in the 
ever changing microenvironments during tumor progression. On the other hand, 
CSCs also direct the tumor microenvironment modulation and remodeling  in its 
favour. The cytokines, chemokines and growth factors released from CSCs regu-
lates neoangiogensis, differentiation, degradation of matrix protein and immune 
suppression favoring tumor-promoting conditions and initiates multiple signaling 
cascades augmenting the tumor progression.

Keywords Oral cancer • Tumor heterogeneity • Cancer stem cell • Tumor 
microenvironment

11.1  Introduction

Oral cancer or oral squamous cell carcinoma (OSCC) accounts for more than 90% 
of malignant oral lesions with about 300,000 new cases registered each year 
worldwide. According to GLOBOCAN database, the anatomic subsites where the 
cancer of oral cavity occurs; includes the base of tongue, palate, nasopharynx, 
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oropharynx, hypopharynx, tonsils, pyriform sinus and other and ill-defined sites 
of the lip, oral cavity and pharynx (Ferlay et al. 2010). In the year 2012, there 
were approximately 300,373 new cases of lip/oral cavity cancer and 142,387 new 
cases of other pharyngeal (i.e. excluding the nasopharynx) cancer worldwide as 
per the most recent GLOBOCAN estimates (Ferlay et  al. 2012). In India, the 
global epicenter of oral cancer, the disease occurrence trends vary by region 
and investigators estimate that the total number of new mouth cancer cases will 
increase from 45,859 in 2010 to 64,525 in 2020 (Takiar et al. 2010). Betel quid 
chewing, excessive alcohol consumption, tobacco smoke, HPV infection and radi-
ation exposure are the chief risk factors for on setting the disease (Brandwein-
Gensler et  al. 2005; Marron et  al. 2010; Licitra et  al. 2006; Chen et  al. 2008). 
Along with the conventional anticancer approaches such as surgery, radiotherapy 
and cytotoxic chemotherapy, several selective treatment modalities are also avail-
able which is based on the increased understanding of tumor biology and specific 
tumor subtypes (Fan et al. 2011). Though there is availability of high end multidi-
mensional treatment regimen, the oral cancer treatment is quite unpromising with 
significant functional and aesthetic deficits such as facial disfigurement aside 
from functional deformity like speech impairment and difficulty in swallowing 
(Naik et al. 2016). Near about 30% of oral cancer cases are often coupled with an 
exorbitant rate of post-treatment loco- regional recurrence, ipsilateral and bilateral 
lymph node metastasis due to the dissemination of neoplastic cells via abundant 
lymphatic submucosal plexus present in the oral cavity, ultimately leading to 
death (Fan et al. 2011). Further, the 5 year survival rate of oral cancer patients is 
restricted to only 50–60% (Leemans et al. 1994).

The ever increasing failure rate of contemporary treatment motilities, rising 
intrinsic and acquired therapeutic resistance, persistent recurrences and relapse of 
oral cancer are mostly due to the random cytoreduction strategies that are designed 
to target only the bulk tumor cells setting aside a small subpopulation of therapy 
tolerant cells. Such rare and therapy tolerant subpopulation of cells with exclusive 
ability of self-renewal, progeny differentiation and tumorigenicity is termed as 
“Cancer Stem Cells” (CSCs). The CSCs are also reported to have the unique proper-
ties of enhanced DNA damage responses, apoptotic evasion, active drug efflux 
potential  and  epithelial to mesenchymal transition (EMT) which offer CSCs the 
supremacy to tumorigenesis, sustained growth and therapeutic resistance (Fig. 11.1) 
(Costea et al. 2006). The tumor microenvironment (TME) imposes intense pressure 
in cancer evolution in response to adverse growth conditions, resource limitation 
and immune predation. Moreover, the ability of the tumor cells to organize its sur-
rounding environment in its favor along with the ability of microenvironment to 
shelter tumor cells from adverse exogenous constraints determines fate of the dis-
ease progression (Sottoriva et al. 2013; McGranahan and Swanton 2017). TME var-
ies in terms of nutrients, oxygen, growth factors, cytokines, pH, extra-cellular matrix 
(ECM), vascularization and stromal components including fibroblasts and immune 
cells (Hjelmeland et al. 2011). This distinction within the tumor landscape creates 
various functional niches that govern the sensitivity of the genetically similar cancer 
cells to same treatment module (Almendro et al. 2013; Holohan et al. 2013).
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11.2  Tumor Heterogeneity and Tumor Niche

The tumor “onco-genotype” evolves gradually over time due to inherent genomic 
instability that makes nearly every tumor cell population unique and increases the 
clinical challenges for effective treatment as it also differs among patients. Many 
reports claim that tumor mass often show significant intratumor heterogeneity 
encompassing various discernable phenotypic features including cellular morphol-
ogy, genetic heterogeneity, metabotypes, proliferative, angiogenic, immunogenic, 
and metastatic potential. Such phenotypic and functional heterogeneity among the 
cells within the same tumor occur as a consequence of integration of both genetic 
and non-genetic influences including genetic alteration, environmental variations 
and reversible changes in cell properties (Marusyk et  al. 2012; Meacham and 
Morrison 2013). The pedigrees of intratumoral heterogeneity are extremely dis-
puted and various cellular mechanisms are hypothesized to rationalize the diversity 
within a tumor. The two major frameworks that explain the intratumor phenotypic 
heterogeneity are “Clonal Evolution Model” or “Stochastic Model” and “Cancer 
Stem Cell (CSC) Model” or “Hierarchical Model”. The clonal evolution model was 

Fig. 11.1 Therapeutic relevance of oral cancer stem cells. Conventional or traditional therapy 
targets only bulk cells of oral cancer sparing the cancer stem cell population by virtue of abrupt 
developmental signaling, altered drug metabolism, niche remodeling and epigenetic reprogram-
ming which subsequent in survival and maintenance of oral CSCs post-therapy followed to thera-
peutic resistance and recurrence of oral cavity cancers. Combinatorial therapy of targeting both 
CSCs and their microenvironmental link ups will be more effective in tumor remission

11 Oral Cancer Stem Cells Microenvironment
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originally pioneered by Peter Nowell in a ground-breaking article which documents 
cancer as an evolutionary process where tumors mostly arise as a result of stepwise 
acquisition of mutational events within the original clone from a single cell of origin 
allowing sequential selection of more persevering subclones leading to cancer pro-
gression. Moreover, the report claims that cells in the dominant subclone popula-
tions would retain comparable tumorigenic potential (Fig.  11.2) (Nowell 1976). 
According to this model, the formation of tumors is dependent on the acquisition of 
oncogenic mutations where it is believed that cancers arise through a Darwinian- 
like clonal evolution. However, this gene centric clonal evolution model is chal-
lenged by the cancer stem cell model which affirms that the apparent phenotypic 
and functional heterogeneity of tumor may be professed to the differences in the 
differentiation status owing to both genetic and non-genetic or epigenetic variabil-
ity. The CSC model proposes that the genetic and epigenetic landscapes consider-
ably switch the  somatic evolution on the road to the achievement of a lucrative 
phenotype attuned to Lamarckian scheme offering a first-rate inheritable state for 
better adaptation to the changing milieu; either a stem-like or/and drug-resistant 
state (Fig. 11.2). The CSC model also postulates that cancers comprise of a hierarchy 
of tumorigenic subpopulation of cancer stem cells along with the non-tumorigenic 

Fig. 11.2 Tumor heterogeneity model. The first model or clonal evolution theory to explains that 
various cancer cell populations evolve progressively by multistep acquisition of mutation finally 
generating heterogeneous tumor with clonal expansion of dominant subclones. The second model 
or cancer stem cell model describes that tumor heterogeneity arises due to the stem properties of a 
rare population of cancer cells which may get differentiated into any cell type within the tumor. 
Importantly, this model proposes that CSC-to-non-CSC conversion is a unidirectional process. The 
third model or cancer cell plasticity model posits the bidirectional conversions between non-CSCs 
and CSCs in response to the changing microenvironment
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progeny populations where the CSCs rest at the apex of positional hierarchy and 
drive tumor growth and disease progression. It is highly essential to note that the 
clonal evolution model and CSC models are not mutually exclusive and the progres-
sion of intratumoral heterogeneity is a highly complex process (Shackleton et al. 
2009). Intriguingly, recent reports emphasize that the concept of intratumor hetero-
geneity not only relevant to the cancer cells but also to the interaction of cancer cells 
with the diverse microenvironmental components. The intratumoral heterogeneity 
and evolutionary processes happening therein are influenced by topological niches 
and corresponded by functional heterogeneity (Marusyk et al. 2012). This alterna-
tive cancer cell plasticity model emphasizes that microenvironmental cues encour-
age self-renewal mechanisms to acquire CSC characteristics-a reversible process 
that is inherently transitory allowing the interconversion of CSCs to non-CSCs 
(Fig. 11.2). Cancer cell plasticity model is bidirectional involving the interconver-
sion of tumogenic and non-tumorigenic cells within tumor adding extra complexity 
to the CSCs and clonal model to explain the intratumoral heterogeinity. This model 
suggests that both CSCs and non-CSCs are highly adaptable populations that read-
ily switch between tumorigenic and non-tumorigenic cell states owing to appropri-
ate microenvironmental stimuli which are capable of inducing transient evolution 
and plasticity (Cabrera et al. 2015). Moreover, a comprehensible role of microenvi-
ronment in tumorigenicity was recently demonstrated in melanoma. Quintana et al. 
experimentally showed that same melanoma cells have different tumorigenic capac-
ity depending on the transplant conditions i.e. type of mouse strain, use of matrigel 
and duration of experiment suggesting microenvironmental regulation of tumor 
heterogeneity and tumorigenicity (Quintana et al. 2008).

11.3  Concept of Cancer Stem Cells in Oral Cancer

The exorbitant inefficacies of contemporary treatment modalities coupled with 
increased recurrences and metastasis in oral cancer are alleged to the CSCs which 
challenges the traditional concept and supports the existence of a small subpopula-
tion of intratumoral cells called as Cancer Stem Cells (CSCs) or Cancer Initiating 
Cells (CICs) or Tumor Initiating Cells (TICs) with exclusive self-renewal capacity, 
tumorigenesis and metastatic potential. Though the concept of cancer stem cells 
was proposed in the late 1970s by a German physiologist Rodulf Virchow, who 
found similarities between the embryonic tissues and cancer tissues (Visvader and 
Lindeman 2008; Huntly and Gilliland 2005); Bonnet et al. (1997) were the first to 
isolate CSCs from acute myeloid leukaemia samples (Dick 1997). The CSCs from 
solid tumors were first isolated and identified in breast cancer by Al-Hajj et  al. 
(2003). They isolated a subpopulation of CD44+/ CD24− cells within the breast 
cancer tissues having the high tumorigenic capacity (Al-Hajj et al. 2003). The exis-
tence of CSCs is also described in other solid tumors including prostate, melanoma, 
lung, colon, brain, liver, HNSCC, gastric and pancreatic cancer (Singh et al. 2003; 
Kim et al. 2005; Li et al. 2007; Prince et al. 2007; Lessard and Sauvageau 2003). 
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Prince et al. for the first time accomplished the isolation of CSCs in HNSCC in 
2007. They segregated a pool of cells in HNSCC with a high CD44 expression that 
exhibited stem cell-like characteristics like self-renewal, generation of differenti-
ated progeny, lack of differentiation markers, and expression of immature cell mark-
ers. These CD44+ cells were shown to have the exclusive tumorigenic capacity 
when introduced in immunosuppressed mice (Prince et al. 2007). Unlike to the bulk 
tumor cells, CSCs are akin to normal stem cells having the unique ability of unlim-
ited self-renewal and hierarchical differentiation. Like normal stem cells, CSCs are 
also prophesied to have the properties of enhanced resistance to DNA damage and 
evasion of apoptosis. In addition to this, CSCs show some exceptional features; like 
epithelial to mesenchymal transition (EMT) enhanced invasive capacity and meta-
static proficiency that helps in tumorigenesis, sustained growth and therapeutic 
resistance (Visvader and Lindeman 2008). Most of the contemporay therapy mod-
ules target only the bulk tumor population escaping the assassin CSCs that serve as 
a reservoir for post treatment tumor repopulation.

Oral CSCs may arise from normal adult epithelial stem cells which maintain the 
self-renewal machinery of a pre-existing normal stem cell rather than developing 
new self- renewal pathways like Notch, Hedgehog and Wnt signaling (Reya and 
Clevers 2005). Additional oncogenic mutations that drive the de-differentiation pro-
cess followed by self-renewal in progenitors or partly differentiated cells would also 
allow the re-acquisition of the stem-like properties (Zhou et al. 2009). Moreover, 
de-differenciation of terminally differentiated adult oral epithelial cells via the 
acquisition of stem-like mutations can also result in the origin and development of 
CSCs (Zhang et al. 2013). Several factors are reported to be involved in the genera-
tion of CSC phenotypes in oral cancer. Nutrient starvation, reduced blood supply, 
hypoxia, mild therapeutic stress and challenged microenvironment are documented 
to reprogram the genetic and epigenetic landscapes that induce the acquisition of an 
adapted inheritable state such as drug-resistant state or/and stem-like state (Pisco 
and Huang 2015). One of the studies showed that long-term exposure with nicotine 
elevates the ALDH1 population and enhanced the stemness gene expression, upreg-
ulated EMT mediators and increased the self-renewal and sphere-forming primary 
oral cancer epithelial cells (Sinha et  al. 2013). Moreover, smoking induced drug 
resistance was reversed by inhibiting nicotinic acetylcholine receptors suggesting 
nicotine as a potential inducer in oral CSC generation (An et al. 2012). In addition, 
recent report indicates that chronic arecoline exposure to oral epithelial cells 
enhances stem population by overexpressing, stemness-related transcription factors 
Oct4, Nanog and Sox2 (Wang et al. 2016). Human Papilloma Virus (HPV) proteins 
E6 and E7 activate Wnt signaling pathway in HPV16-positive oropharyngeal SCC 
that may cause the de-differentiation of oral cancer cells to CSCs (Rampias et al. 
2010). The isolation and characterization of CSCs in oral cancer has been achieved 
successfully via the use of different techniques which mostly involve cell lines, 
primary tumor specimens and xenograft models. CSC isolation and characterization 
can be performed using flow cytometry and FACS based on the expression of spe-
cific cell surface markers, such as CD133, CD44 and ALDH1. Moreover, sorting the 
side populations (SP) of tumor cells via intracellular Hoechst 33,342 exclusion has 
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also been used for the identification and characterization of CSCs. The orosphere 
culture system is also efficient in separating CSCs from oral cancer cell lines or 
tumors. Finally, the gold standard quantitative xenotransplantation assay that assess 
the in vivo tumorigenicity and self-renewing potential of putative CSCs is finally 
performed for functional characterization of isolated CSCs (Lin et al. 2011).

11.4  Tumor Microenvironment

Now-a-days tumors are considered as an organ with distinct tumor vasculature in 
which the cancer cells are accompanied by a protumor microenvironment (Egeblad 
et al. 2010). Rudolf Virchow was the first person to demonstrate the presence of 
leucocytes in tumor tissues and proposed that non-cancerous tissue elements came 
from the field of inflammation might affect tumorigenesis (Balkwill and Mantovani 
2001). TME comprises (1) aberrantly proliferating cancer cells, (2) cancer stem 
cells (3) extracellular matrix (ECM) (4) infiltrating immune cells (neurophill, eosin-
ophil, basophil, B and T lymphocytes, mast cells, natural killer cells), antigen pre-
senting cells (APC) (macrophages, dendritic cells) and Tumor associated 
macrophages (TAMs) (5) angiogenic endothelial cells and their precursors includ-
ing pericytes and (6) Stromal cells like fibroblast cells, myofibroblasts and cancer 
associated fibroblasts (CAFs) (Hanahan and Coussens 2012; Friedl and Alexander 
2011). TME shelters cancer cells and provides protection against various genetic 
and epigenetic insults (Hovinga et al. 2010; Folkins et al. 2007; Tlsty and Coussens 
2006; Yun 2008). Tumor niches are discrete and dynamic domains ensuring precise 
functional characteristics that helps in forming a suitable habitat for certain cells 
with specific fates. Likely, CSC niche provides a special microhabitat for survival, 
maintenance of stemness and post-therapy tumor  re-propagation. Moreover, spe-
cific stimuli from the microenvironment prop up the CSCs to maintain its exclusive 
properties (Fuchs et  al. 2004; Xie and Li 2007; Morrison and Spradling 2008). 
Though century ago, it has been established that TME plays a crucial role in the 
tumor progression and metastasis, till date it is not clear whether CSCs direct the 
TME modulation, generate their own “micro-niches”, or exploit the pre-existing 
environment in its favor (Paget 1889). However, the existence of a supportive peri-
vascular niche is evidenced in HNSCC and majority of the CSCs are located within 
a 100 μm-radius of blood vessels in primary tumors (Krishnamurthy et al. 2010).

11.4.1  Extracellular Matrix

Extracellular matrix is a highly complex and dynamic array of interacting proteins 
that are being regularly synthesized, processed and assembled during cell homeo-
stasis and adhesion, migration, wound repair and tumor development and progres-
sion. Regardless of once viewed only as an architectural support, the ECM is now 
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documented as a key element in controlling cellular processes. Any variation in the 
composition of the ECM by altered processing, secretion, or expression contrib-
utes greatly to tumorigenesis (Ziober et al. 2006). In oral carcinoma, alterations in 
cell–cell and cell–extracellular matrix interactions regulate invasion of malignant 
cells into the underlying connective tissue and migration of malignant cells to form 
metastases at distant sites (Lyons and Jones 2007). The major ECM molecules 
involved in oral cancer development and progression include fibronectin, laminin 
and collagens and their ECM receptors and integrins (α2β1, α3β1, α5β1, and α6β4) 
(Ziober et al. 2006). An immunohistochemical study of extracellular matrix, deco-
rin and vitronectin in OSCC proposes that in primary tumors of metastatic cases, 
the expression of laminin, type IV collagen, heparansulphate proteoglycan, deco-
rin and vitronectin obviously decreased, while the expression of fibronectin and 
tenascin increased when compared with those of the non-metastatic cases (Harada 
et  al. 1994). The neo-expressed  Tenascin-C and one of its integrin receptors 
αvβ6 in oral SCC and tumor stromal environment influences the oral SCC behavior 
(Ramos et al. 1997).

11.4.2  Infiltrating Immune Cells

The host-tumor immune response is extremely complex, multifactorial and dynamic. 
Though the primary function of immune system is to destroy the foreign cells; 
tumor cells within the tumor microenvironment escape the immune surveillance not 
due to the absence of immune cells, but due their aberrant activity. Tumors exploit 
the host response by creating a favorable microenvironment during cancer progres-
sion by scheming chronic inflammation to establish a habitat that favor tumor sur-
vival and growth (Whiteside 2006a). Moreover, it is reported that established tumors 
have the ability to lessen the immune response and also they are relatively poor in 
initiating an immune response (Whiteside 2006b). Therefore, understanding the 
immune response within tumor microenvironment holds great importance in tumor 
biology. The adaptive immune response contributes in a variety of ways to tumori-
genesis through the immune interactions in the TME. According to reports a hetero-
geneous distribution of tumor infiltrating leucocytes were seen in solid tumor 
microenvironment which includes granulocytes, mast cells, macrophages, myeloid- 
suppressor cells, natural killer (NK) cells, CD8+ T-cells (CTL), T-memory cells, 
T-regulatory (T-reg) cells and dendritic cells (DC) (Fridman et al. 2012; Senovilla 
et al. 2012). The creation of an immune suppressed microenvironment and evasion 
of the adaptive immune response may be executed through decreased expression of 
major histocompatibility complexes (MHC I) or induction of T cell apoptosis 
(Young 2006; Ogino et al. 2006; Grandis et al. 2000). In head and neck cancer, a 
reduced expression of MHC-I is reported which is mediated by the overexpression 
of gangliosides in tumor cells (Tourkova et al. 2005). Moreover, it is reported that 
oral carcinoma cells contain membranous FasL-positive vesicles which triggers 
T-cell apoptosis induction that helps in evading the cytotoxic response (Young 
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2006). Furthermore, an elevated incidence of intratumoral Tregs and IL-17+ non-
 Th17 cells are documented to be associated with poor outcome in oropharyngeal 
carcinoma patients (Punt et al. 2016). Cytokines like IL-10 and TGF-β were reported 
to let local naive T cells to convert into suppressor T cells and take advantage of the 
suppressive functions of existing Treg cells (Ferris et al. 2006). The antigen present-
ing cells, DCs when exposed IL-10 encourage immunetolerance and CD4+ T cells 
differentiation into suppressive Treg cells (Jonuleit et al. 2000). Another study illus-
trates that higher density of immature DCs and Treg cells and a lower density of 
mature DCs and activated CTLs in metastatic head and neck cancer indicates an 
immunosuppressive microenvironment which could be involved in the spread of 
neoplastic cells to cervical lymph nodes (Gonçalves et al. 2013). Moreover, Quan 
et al., reported that an adaptive immune response is driven by both mature, antigen- 
experienced T and B cells within the microenvironment of oral carcinoma (Quan 
et al. 2016). In HNSCC, the intratumoral cytotoxic CD8+ T cells were shown to 
have increased expression of programmed death-1(PD-1), a surface protein that 
blocks function of T lymphocytes. Moreover, programmed death ligand -1 (PD-L1) 
expression is associated with augmented CD8+ T cell apoptosis (Cho et al. 2011). 
Recent studies have emphasized the interaction between CSCs and immune system 
in tumorigenesis of oral cancer. It is reported that CD44+ HNSCC cells showed 
selective PD-L1 expression compared to CD44− cells leading to its decreased 
immunogenicity which can be partially restored by inhibiting its expression (Lee 
et  al. 2016). Moreover, according to reports CD44+ HNSCC cells displayed 
decreased HLA-A2 and TAP2 expression, the latter of which is indispensable for 
assembling the MHC Class I-tumor antigen peptide complex suggesting that CSCs 
in HNSCC may be less immunogenic than the bulk of the tumor cells (Chikamatsu 
et al. 2011).

Among the microenvironment components, tumor-associated macrophages 
(TAMs or tumor infiltrating macrophages) are the major inflammatory component 
of the tumor which encourages tumor progression by prompting tumor invasion, 
migration, and angiogenesis (Shieh et al. 2009). Usually, macrophages can be cat-
egorized into two distinct polarized states with opposite responses. The first one is 
the classically activated pro-inflammatory (M1) state which possesses antitumor 
activity whereas the second one is the alternatively activated suppressive (M2) state 
which promotes tumor invasion and metastasis (Lúcio et al. 2016; Hu et al. 2016). 
Accordingly, M1 TAMs participate in anti-tumor immune response via the produc-
tion of proinflammatory cytokines like INF- γ, IL-12, IL-23 (Sica et  al. 2006) 
whereas M2 TAMs contribute to protumor immune response via the production of 
various suppressive cytokines such as IL-10 and TGF-β and its accumulation near 
blood vessels promotes angiogenesis (Martinez and Gordon 2014; Li et al. 2002; 
El-Rouby 2010). The CD68 recognizes both tumoricidal M1 TAMs and anti- 
inflammatory M2 TAMs while CD163 recognizes only M2 TAMs (He et al. 2014). 
The substantial reports suggested a significant correlation between TAMs and poor 
prognosis in patients with oral cancer (Lúcio et  al. 2016). According to reports, 
TAMs in oral SCC mostly possess a M2-like phenotype. Moreover, M2 TAMs 
are  documented to stimulate tissue remodeling and hinder anti-tumor cytotoxic 
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effects of M1 TAMs (Sica et al. 2006; Zamarron and Chen 2011). Higher level of 
TAM infiltration is described to associate with higher tumor state and lymph node 
metastasis (Li et al. 2002; Marcus et al. 2004; Liu et al. 2008). Furthermore, TAMs 
play a protumor role in mucoepidermoid carcinoma and it is highly correlated with 
angiogenesis, invasion and migration (He et al. 2014). Moreover, it is reported that 
Axl signaling in oral cancer promotes polarizing of TAMs toward a M2 phenotype 
via Axl/PI3/Akt/NF-kB pathway which subsequent in poor prognosis (Chiu et al. 
2015). Recently, it has been proposed that infiltrating CD11b+ myeloid cells in the 
vascularization showed characteristics of M2 macrophages and promoted neovas-
cularization and tumor progression in recurrence after irradiation compared to non- 
irradiated tumors in oral carcinoma. Moreover, CD11b+ myeloid cells and CD206+ 
M2 macrophages get intensified during recurrence after radiotherapy in human oral 
cancer specimens (Okubo et al. 2016). In HNSCC, TAMs are reported to produce 
an elevated level of inflammatory cytokine called macrophage migration inhibitory 
factor (MIF) that stimulates neutrophils. The neutrophils are recruited to HNSCC 
tumor by MIF via a CXCR2 mechanism which further leads to tumor invasiveness 
(Dumitru et  al. 2011). The activated neutrophil induces ROS-mediated genetic 
instability, increases invasion via HGF and triggers angiogenesis via MMP9 and 
VEGF (Galdiero et al. 2013). Another report indicates that VEGF and IL-18 released 
by neutrophils promote neoangiogenesis and encourage the benign tumour cells to 
acquire metastatic phenotype in the early stage of oral cavity cancer (Karin and 
Greten 2005). Expression of signal regulatory protein α (SIRPα), a surface protein 
significantly correlates with the expression of CD68 and CD163 on macrophages. 
Again, the inhibition of SIRPα was found to reduce the phagocytosis ability and 
IL-6 and  TNF-α production of macrophages (Ye et  al. 2016). Furthermore, it is 
reported that TME and the peripheral blood in HNSCC contains an increased loads 
of TAMs with increased levels TGF-β which trigger immunosuppression and tumor 
growth in oral cancer (Costa et al. 2013). Moreover, TAMs produces ROS and pros-
taglandins which support inflammation and tumorigenesis (Karin and Greten 2005; 
Coussens and Werb 2002).

11.4.3  Tumor-Associated Fibroblasts Cells

Fibroblasts shape the structural framework, the tumor stroma of tissues by synthesiz-
ing ECM component (Brouty-Boyé 2005). Fibroblasts in tumor stroma have been 
designated peritumoral fibroblasts, reactive stroma, cancer-associated fibroblasts 
(CAFs) and myofibroblasts. Activated fibroblasts are prominent contributors in car-
cinogenesis of oral cancer. It reported that fibroblasts inhibit early stages of tumor 
progression however at later stages in cancer CAFs promote both tumor growth and 
progression. Generally, CAFs evolve from circulating fibroblasts and co-evolve 
along with tumor giving rise to a distinct phenotype. A common marker indicating 
CAF phenotype is the α-smooth muscle actin (α -SMA) and a greater proportion of 
α-SMA-positive peritumoral fibroblasts have been demonstrated to associate with 

P.P. Naik et al.



217

poor prognosis in many cancers (Bhowmick et al. 2004). Other markers includes 
tenascin-C, periostin, NG-2, PDGF receptor-a/b, FSP (S100A4), FAP vimentin, type 
I collagen, prolyl 4-hydroxylase and fibroblast surface protein. For the first time, in 
2004, CAFs in stroma of oral SCC were reported (Barth et al. 2004) and since then, 
massive studies have emphasized their importance in disease progression. High fre-
quency of CAFs in OSCCs is significantly correlated with invasion, disease progres-
sion, tumor recurrence and poor patient prognosis (Kawashiri et  al. 2009; Vered 
et al. 2010). The growth factors, matrix proteins and proteases secreted by fibro-
blasts and tumor cells create a tumor microenvironment that facilitates tumor main-
tenance, invasion and metastasis via the paracrine interaction of epithelial tumor 
cells and stromal cells (Mueller and Fusenig 2002). Moreover, in HNSCC CAFs are 
also characterized by expression of integrin α6, an important molecule in cell adhe-
sion and surface signaling. Integrin α6 is reported to bind with ECM component 
laminins and interacts with CDKN1A, which alters the cell cycle progression. Also, 
upregulation of α-SMA and integrin-α6 was demonstrated to be highly correlated 
with poor clinical outcome in oral cancer (Lim et al. 2011). The CAFs secrete vari-
ous cytokines like TGF-β, CXCL12, paracrine motility factor and hepatocyte growth 
factor (HGF) (Leef and Thomas 2013). The TGF-β promotes immune suppression 
whereas upon binding with CXCR4, CXCL12 upregulates MMP9 and  HIF-1α 
expression that promotes EMT (Ishikawa et al. 2009; De Wever et al. 2008). Recently, 
it is proposed that fibroblast-derived HGF and SDF-1 seem to portray a crucial role 
in the mutual interactions between oral SCC cells and underlying stromal fibroblasts 
that consequents in the local invasion (Daly et al. 2008). Moreover, report elucidates 
that the paracrine interaction between oral carcinoma cells SCC-25 and CAFs pro-
vides a mechanistic background for the gene regulation of MMPs which causes to 
poor clinical outcome in head and neck cancer (Fullár et al. 2012). Furthermore, the 
presence of MMP-1 (Collagenase 1) expression in the stromal compartment of inva-
sive head and neck cancer suggests that its expression in peritumoral fibroblasts is 
induced in paracrine manner by tumor cells and tumor- infiltrating inflammatory 
cells (Johansson et al. 1997; Westermarck et al. 2000). Comparison of the secretome 
profiles between CAFs and normal oral fibroblasts (NOF) using mass spectrometry-
based proteomics and biological network analysis reveals that proteins engaged in 
ECM organization and disassembly and collagen metabolism are highly upregu-
lated. Moreover, the expression of type I collagen N-terminal propeptide (PINP) was 
found to associate in vivo with CAFs in the tumor front and promoted shortened 
survival of oral cancer patients (Bagordakis et al. 2016).

Myofibroblasts are cells that display a phenotype between fibroblasts and smooth 
muscle cells α-SMA expression (Chaponnier et al. 2006). Myofibroblasts secrete a 
large repertoire of chemokines, cytokines, inflammatory mediators, growth factors, 
neurotransmitters, hormones, adhesion proteins and most abundantly ECM proteins 
(Powell et al. 2005). Barth et al. in 2004 for the first time produced evidence in favor 
of a role for myofibroblasts in OSCC and later of this year, Lewis et al. demon-
strated that myofibroblasts when induced TGF-β1 by release HGF to promotes 
OSCC invasion in vitro (Barth et  al. 2004; Lewis et  al. 2004). Myofibroblasts 
 activation in the vicinity of tumor cells in stroma encourages the setting up of recip-
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rocal paracrine interactions between the two cell compartments. In oral SCC, αvβ6- 
dependent activation of TGFβ1 mediated fibroblast–myofibroblast transdifferentiation 
occurs during tumor invasion and factors released from myofibroblasts favors tumor 
growth (Kellermann et al. 2008; Marsh et al. 2011). Myofibroblast-released factors 
like activin A, induces invasion and triggers the release of matrix MMP by OSCC 
tumor cells. Moreover, presence of myofibroblasts in OSCCs correlates with aug-
mented production of MMP-2 and MMP-9 (Sobral et al. 2011).

11.4.4  Tumor-Associated Endothelial Cells

Tumor angiogenesis is a multifaceted process where formation of new blood vessels 
occurs in response to interactions between tumor cells and endothelial cells (ECs), 
growth factors, and ECM components. Tumor vessels are reported to stimulate the 
progression of many human solid tumors, including HNSCC (Zeng et  al. 2005). 
Tumor-associated ECs (TAEs) and tumor vessels vary in many respects from their 
normal counterparts. Unlike normal vessels, tumor vessels possess different struc-
tural features, such as leakiness, uneven thickness of the basement membrane and 
fewer pericytes (Akino et al. 2009). Moreover, TAEs expressed typical endothelial 
cell markers like CD31. Unexpectedly, TAEs are found to be cytogenetically abnor-
mal and relatively large and heterogeneous nuclei (Hida et al. 2004). Substantial 
reports have documented that tumor cells secrete angiogenic growth factors that 
stimulate EC proliferation to induce angiogenesis (Folkman 2002; Sparmann and 
Bar-Sagi 2004). New tumor vessels penetrate into neoplastic growths and enhance 
nutrients and oxygen supplying and oxygen and removes waste materials (Folkman 
2002). According to reports, the angiogenic factors like VEGF and IL-8 released by 
tumor or stromal cells are documented to directly bind to their receptors on ECs to 
trigger angiogenesis by encouraging endothelial sprouting, branching, differentia-
tion and survival (Folkman 2002; Sparmann and Bar-Sagi 2004). Notch ligand 
Jagged1 play a critical role in angiogenesis in HNSCC. Report indicates that tumor 
cells induced by growth factors via MAPK triggered Notch activation in neighbor-
ing endothelial cells which promoted capillary-like sprout formation suggesting the 
direct interplay between tumor cells and ECs that promotes angiogenesis. Jagged1 
enhances neovascularization and HNSCC growth in vivo and it expression is signifi-
cantly correlated with tumor blood vessel content (Zeng et al. 2005).

11.5  Crosstalk Between Cancer Stem Cells and Tumor 
Microenvironment

Recently, two interesting model of tumor evolution was proposed by Castaño et al. 
keeping an analogy with bed and bug to connect the association between the TME 
and CSCs. One of models proposes that “The bed (TME) determines the bug (CSC) 
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fate” in which microenvironmental factors are believed to play critical role in niche 
formation and intratumoral heterogeneity (i. e. ‘niche drives clone’). On the other 
hand, another model proposes “The bug makes their own bed” in which tumor sub-
clones with certain mutations are thought to confer selective advantage to populate 
the tumor (i.e. ‘clone drives niche’) (Castaño et al. 2012). Both the components, 
TME and CSCs work synergistically in cancer progression (Fig. 11.3).

11.5.1  Tumor Microenvironment Determines Fates of Cancer 
Stem Cells

According to literature, any non-stem cancer cells can spontaneously give rise to a 
stem-like state in response to specific microenvironmental stimuli. Growth of can-
cer cells in a confined microenvironment leads to the alterations in metabolic and 
physicochemical milieu and the reciprocal interaction between tumor cells and 
TME promotes tumor progression (Chaffer et  al. 2011). TME continuously gets 
reshaped during tumor progression and prompt adaptive cellular behaviors includ-
ing dormancy, invasion and metastasis and therapy resistance. This adaptive cellular 
behavior might be driven by tough tumor microenvironmental selective forces that 
highly regulated alterations in the gene expression leading to the reprogramming of 
signaling pathways generating stem-like characteristics (Marjanovic et  al. 2013; 
Anderson et al. 2006). The typical triad of tumor microenvironment that plays a 
crucial role in driving malignant tumor cell behaviors consists of hypoxia, nutrient 
depletion and low pH (Heddleston et al. 2010; Keith and Simon 2007). The interde-
pendence of tumor cells with their respective microenvironment and the intratu-
moral heterogeinity of cancer postulate the idea that CSCs are “bugs” that cannot 
live without the “bed” i.e. the TME (Castaño et al. 2012).

11.5.1.1  Hypoxia

Hypoxia is one of the most common features of malignant head and neck tumor 
which is also registered as a key contributor of tumor progression, metastasis and 
chemo-radio therapy resistance in HNSCC. Improper vascularization, poor oxygen 
transport in the intratumaoral region and necrotic areas may lead to the acute or 
chronic hypoxia in the tumor microenvironment where the oxygen demand cannot 
meet the oxygen supply (Vaupel and Mayer 2007; Jiang et al. 2011). As an adaptive 
response to the reduced oxygenation, cancer cells may produce hypoxia inducible 
factors (HIFs). HIFs comprises hypoxia-inducible factor 1α (HIF-1α), hypoxia- 
inducible factor 1 (HIF-1β), hypoxia-inducible factor 2α (HIF-2α) and hypoxia 
-inducible factor 3α (HIF-3α) (Brennan et  al. 2005). Dimerization HIF-1α and 
HIF-1β leads to the transcriptional activation of genes responsible for the adaption 
to hypoxia which includes the genes involved in angiogenesis, metastasis and ther-
apy resistance (Li et  al. 2013). Reports suggest that hypoxic microenvironment 
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generates selection pressure for the development of therapy tolerant aggressive 
tumor consisting of CSC phenotypes (Lin and Yun 2010). Moreover, hypoxia plays 
a crucial role in maintaining CSCs in their undifferentiated state and permits the 
accumulation of genetic and epigenetic insults over an extended period of time and 
aids in self-renewal. HIFs are reported to target genes like Wnt, cMyc, Notch, Oct4 
which are involved in maintaining stem properties (Fig. 11.3) (Keith and Simon 
2007; Winquist et al. 2009; Qing and Simon 2009). Recent reports advocate that 
hypoxic microenvironment may promote the stem-like biological properties of 
laryngeal cancer cell lines by the intensification of the CD133+ stem cell 

Fig. 11.3 Crosstalk between cancer stem cells and microenvironment. Tumor associated cells 
including fibroblast, macrophages, T cells, B cells, neutrophills and endothelial cells secretes of 
growth factors, interleukin and chemokines that helps in proliferation, angiogenesis and immune 
evasion. CSCs encourage the proliferation of tumor associated cells by secreting secrete growth 
factors and chemokines. Hypoxia in the tumor microenvironment induces the production of 
HIF-1α, Oct4, Wnt and Notch and endorses stem like-features in cancer cells
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subpopulation. The laryngeal carcinaoma cells Hep-2 and AMC-HN-8 when grown 
under hypoxic condition stimulated HIF-1α production along with the acceleration 
of stemness signature gene OCT4, SOX2 and NANOG. Hypoxia also augmented 
the laryngeal CSC marker CD133 expression and increased the proliferation, inva-
sion, colony formation and sphere formation capacity (Wu et  al. 2014). Reports 
also explore that hypoxia can induce stemness in laryngeal carcinoma by enriching 
the percentage of CD133+ cells post radiation treatment. After 10 Gy of irradiation 
for 24 h the hypoxic Hep2 cells introduced G1 cell cycle arrest and acquired stem 
like characteristics by overexpressing the stemness marker CD133 in laryngeal car-
cinoma (Wang et  al. 2011). Moreover, hypoxia is also reported enhance the 
ALDH1high CSC population in a syngeneic mouse model of HNSCC (Duarte et al. 
2012). In orthotopic immunocompetent murine models of  HNSCC, hypoxia 
induced autophagy is described to promote the evolution of aggressive phenotypes 
(Vigneswaran et al. 2011).

11.5.1.2  Autophagy

Autophagy is an evolutionarily conserved catabolic pathway involving degradation 
of cytoplasmic content which recycles ATP and metabolites in response to nutrient 
deprivation or metabolic stress, hypoxia, chemo/radiotherapy and activated onco-
genes. Autophagy offers survival advantage to tumors by virtue of its nutrient recy-
cling capacity as tumors cells are frequently exposed to metabolic stress owing to 
hypoxia and nutrient deprivation and promotes tumorigenesis (Bhutia et al. 2013). 
The autophagic stroma model of cancer emphasizes the induction of oxidative 
stress, mitochondrial dysfunction and autophagy/mitophagy in tumor invasion and 
metastasis. Intriguingly, autophagy/mitophagy induction in the tumor stromal com-
partment helps the cancer cells to directly “feed off” of stromal-derived energy-rich 
metabolites (glutamine, pyruvate, and ketones/BHB) and chemical building blocks 
(amino acids, nucleotides) (Fig.  11.3). It is important to note that in the tumor 
microenvironment, the aggressive cancer cells are “eating” the CAFs via autoph-
agy/mitophagy (Pavlides et al. 2010). The solid tumor core which is a hypoxic and 
nutritionally challenged environment constructs a compensatory environment 
around them by turning the CAFs into their “metabolic slaves” (Roy and Bera 
2016). Interestingly, it reported that loss of caveolin-1 (Cav-1) in stromal cells 
drives the activation of the metabolic reprogramming of CAFs and upregulates the 
expression of pyruvate kinase M2 (PKM2), a glycolytic enzyme resulting in the 
induction of autophagy and glycolysis. Enhanced glycolysis fuels the mitochondrial 
metabolism of nearby cancer cells leads to high ATP generation and cell survival 
(Capparelli et al. 2012). RAS-dependent and NF-κB–dependent HNSCC cell line 
were each able to induce metabolic reprogramming of CAFs via oxidative stress 
resulting in a lactate shuttling process that feeds the cancer cells fueling anabolic 
growth via and MCT1/MCT4 metabolic couple between the tumor and the stroma 
(Curry et al. 2014).
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11.5.1.3  Tumor Metabolism

The “Warburg effect”, as proposed by Otto Warburg in the 1920s, postulates that 
even in presence of abundant oxygen, cancer cells are more reliant on aerobic gly-
colysis than the oxidative phosphorylation (OXPHOS). Though glycolysis is less 
efficient in terms of ATP production, during the proliferation of cancer cells, it pro-
vides metabolites for the synthesis of macromolecules. However, contradictorily 
“Reverse Warburg Effect” posits that tumor cells exploit normal stroma through 
H2O2 paracrine signaling resulting in oxidative stress in stromal fibroblasts thereby 
trigger mitochondrial dysfunction, mitophagy and glycolytic metabolism. This 
helps in the release of metabolic intermediate metabolites like lactate, glutamine 
and ketone bodies to be used for oxidative phosphorylation in cancer cells. According 
to report, the non-physiological high glucose and oxygen concentration favor a gly-
colytic phenotype. However, when patient-derived, low-passage CSCs is investi-
gated OXPHOS was found to be preferred energy metabolism of CSCs. Moreover, 
it is reported that when OXPHOS is blocked CSCs are able to switch to a glycolytic 
phenotype. This observed adaptive metabolic plasticity might permit the CSCs to 
sustain in the microenvironments during tumor progression (Neiva et  al. 2009; 
Dong et al. 2013).

There exists a multicompartment model of energy metabolism in oral cancer. It 
is also reported that it may be a three metabolic compartments in OSCC, where the 
peripheral tumors cells relies on OXPHOS and cells in the deeper layer tumor are 
more glycolytic (aerobic or anaerobic) whereas the third metabolic compartment 
represented as cells in tumor stroma undergoing aerobic glycolysis. This three com-
partment metabolism was demonstrated through higher level of expression of 
MCT4 in tumor stroma and deeper tumor, whereas MCT1 level was more in the 
leading tumor edge. Energy metabolism through OXPHOS in the leading tumor 
edge was confirmed by functional mitochondrial metabolism markers TOMM20 
and LDHb (Curry et al. 2014). In differentiated cancer cells, the glycolytic pheno-
types predominate over OXPHOS phenotype. CSCs instead might rely more on 
oxidative metabolism for their energy production. The CSCs also appear to be meta-
bolically plastic and when OXPHOS is blocked they can eventually develop resis-
tance by acquiring an intermediate glycolytic/oxidative phenotype. For the first time 
Curry et  al. reported the connection between cancer stemness with lactate and 
ketone uptake and mitochondrial metabolism in HNSCC (Fig. 11.4). “Three com-
partment tumor metabolism” involving (1) proliferative and mitochondrial-rich can-
cer cells (Ki-67+/TOMM20+/COX+/MCT1+); (2) non-proliferative and 
mitochondrial-poor cancer cells (Ki-67/TOMM20/COX/MCT1); and (3) non- 
proliferative and mitochondrial-poor stromal cells (Ki-67/TOMM20/COX/MCT1) 
in HNSCC displayed metabolic symbiosis where the non-proliferative stromal cells 
provide metabolites for OXPHOS in highly proliferating cancer cells (Bagordakis 
et al. 2016). Again, metabolic stress in the confined TME is recently reported to 
assist in emergence and sustenance of CSC-like phenotypes. Chronic metabolic 
stress (CMS) due to long-term nutrient deprivation in the TME persuades a Wnt- 
dependent phenoconversion of non-CSCs toward CSCs through stochastic state 
transition (Lee et al. 2015).
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11.5.1.4  Interaction Between Stromal Cells and Cancer Stem Cells

Endothelial cell-secreted factors are reported to enhance the invasive migration and 
resistance to anoikis in oral CSCs (Fig.  11.3) (Neiva et  al. 2009). According to 
recent study, endothelial cell-secreted EGF induced EMT via Snail induction 

Fig. 11.4 Three compartment metabolism in tumor stroma. The non-proliferating cancer stem 
cells rely on the mostly on OXPHOS instead of glycolysis. However, proliferating cancer stem 
cells rely on both OXPHOS and glycolysis. The differentiated and proliferating non-stem cancer 
cell relies only on glycolysis. Autophagy mediated generation of metabolites in the tumor stromal 
and lactate shuttling process via the reverse Warburg effect offers metabolic coupling between the 
tumor and the stromal cells
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through the PI3k-Akt pathway and promoted the acquisition of a stem-like pheno-
type in HNSCC as shown by downregulation of epithelial markers (E-cadherin, 
Desmoplakin), upregulation of mesenchymal markers (Vimentin, N-Cadherin), 
induction of cell motility, upregulation of ALDH and CD44 and growth as non- 
adherent orospheres. Moreover, endothelial cell-secreted factors is shown to stimu-
late Bmi-1 expression and promote the self-renewal of cancer stem cells in HNSCC 
(Krishnamurthy et al. 2010). The endothelial cells in HNSCC tumors are shown to 
secrete more IL-6 and a higher level IL-6R are expressed in CSCs. Their interaction 
in turn directs the JAK/STAT to encourage survival and self-renewal of CSCs 
(Fig. 11.3) (Duffy et al. 2008). Impeding the interaction between endothelial cells 
derived IL-6 and IL-6R is found to prevent STAT-3 signaling and cisplatin induced 
stemness (Neiva et al. 2009). It was also reported to induce stemness through the 
Bmi-1 and CD44 overexpression in head and neck cancer (Nör et al. 2014). Factors 
secreted by CSCs promote the differentiation of MDSC population into TAMs 
(Raggi et  al. 2016). Moreover, TAMs undergo the process of ‘immune edition’ 
where the potentially danger antitumorigenic macrophage function is switched to 
protumorigenic immune suppression favoring antitumor immunity evasion 
(Ramanathan and Jagannathan 2014). TAMs operate various paracrine signaling 
loops in the microenvironment that facilitates invasion and metastasis. TAMs, in 
one hand, are shown to secrete EGF that drives tumor progression whereas on the 
other hand OSCC cells produce CSF-1 that urges further TAM proliferation and 
tumor infiltration. TAMs are also shown to secrete macrophage migration inhibitory 
factor (MMIF) that allows neutrophil chemo-attraction and activation further induc-
ing the secretion of protumorigenic chemokines like IL-4, IL-8, IL-10, IL-13, TGF- 
β, TNF-α and GM-CSF that induce immunosuppression (Fig. 11.3) (Markwell and 
Weed 2015). Furthermore, CAFs promote immunosuppression and evasion of 
immune surveillance by preferentially inducing the T cell apoptosis and Treg activa-
tion in OSCC via the production of a higher level of cytokines like IL-6, CXCL8, 
TNF, TGFβ1 and VEGFA along with the co-regulatory molecules like B7H1 and 
B7DC (Fig. 11.3) (Takahashi et al. 2015). The SDF-1/CXCR4 signaling is believed 
to promote metastasis and therapy resistance attributes of CSCs wherein the CSCs 
overexpresses CXCR4 and responds to a chemotactic gradient of SDF-1 (Fig. 11.3). 
In OSCC, SDF-1 induces lymph node metastasis via activation of both the ERK1/2 
and Akt/PKB cascades (Uchida et al. 2013).

11.5.1.5  Matrix Remodeling Enzymes and Cancer Stem Cells

Matrix metalloproteinases (MMPs) are important class of zinc-dependent endopep-
tidases that are involved in degradation of matrix proteins that facilitates invasion 
and metastasis. The over expression of MMPs is also reported to induce acquisition 
of CSC-like properties in oral cancer (Fig. 11.3). Up regulation of membrane type 1 
matrix metalloproteinase (MT1-MMP), a cell surface matrix degrading proteinase 
decreased the  expression of epithelial markers (E-cadherin, cytokeratin18 and 
β-catenin) and increased the  expression of mesenchymal markers (vimentin and 
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fibronectin) to promte EMT in SCC-9 cells. Moreover, it increased the level of 
Twist and ZEB and promoted expression of CSCs surface markers, self-renewal 
ability, resistance to therapies and apoptosis (Yang et al. 2013). A disintegrin and 
metalloproteinase domain-containing protein 17 (ADAM17) is recently reported to 
be associated with metastasis in oral cancer. Increased levels of ADAM17 expres-
sion and concomitant CD44 cleavage is shown to be regulating CD44 cleavage 
which is critical for orasphere formation or stemness and HNSCC tumorigenesis 
(Fig. 11.3) (Kamarajan et al. 2013).

11.5.2  Cancer Stem Cells Remodel Tumor Microenvironment

Dynamic interplay between CSCs and TAMs modulates the molecular, functional 
and phenotypic identities of both types of cell. The bidirectional interaction of polar-
ized macrophages with stem and progenitor cells plays a significant role in tissue 
repair and remodeling by tumor-promoting conditions in the TME (Fig. 11.3). The 
tumor cell produces CSF-1, IL-10, chemokines (CCL2, CCL18, CCL17 and 
CXCL4) and ECM components and induces M2-like polarization of macrophages 
promoting cancer progression (Fig.  11.3) (Raggi et  al. 2016). In HNSCC, CSCs 
overexpresses IL-6 R which upon interaction with IL-6 promotes tumorigenesis 
(Nör et al. 2014). CSCs releases Peristonin that act on α3βv integrin to recruit TAMs. 
Moreover, it is also reported that M-CSF secreted by CSCs promotes the differentia-
tion of MDSCs to TAMs (Fig. 11.3) (Raggi et al. 2016). It also shows that CSCs 
secrete VEGF to promote neoangiogensis and support a local vascular environment 
(Gilbertson and Rich 2007). The CSCs are reported to remodel the extracellular 
matrix by promoting the degradation of matrix protein via various proteinases which 
facilitates the migration of CSCs to distant sites. Hyaluronic acid (HA), an ECM 
component upon interaction with stem cell surface marker CD44 initiates multiple 
signaling cascades augmenting the oral tumor progression. The transmembrane pro-
tein CD44 is also a co-receptor for several receptor tyrosine kinases (RTKs) includ-
ing c-MET and EGFR. In oral cancer, ERK1/2 interaction with CD44 induces tumor 
aggressiveness (Judd et al. 2012). Moreover, HA synthesizing enzyme hyaluronan 
synthase 2 (HAS2) are highly synthesized in oral cancer and HAS2 down regulation 
leads to CD44 dependent decrease of tumor cell migration (Wang et al. 2013). The 
CSCs in HNSCC are characterized as high CD44  expressing phenotypes  which 
is a docking receptor necessary for MMP-9 (Zhang et al. 2012). Over expression of 
transcription factor Snail promotes EMT in cancer cells to endorse stem-like proper-
ties and in this context snail mediated overexpression of MMPs is shown to be asso-
ciated with the high invasion capacity in UMSCC1 cell lines (Lin et  al. 2011). 
Moreover, EMMPRIN or CD147 (Extracellular matrix metallo-protease inducer) is 
a cell surface protein and oral stem cell marker which mediates ECM remodeling 
during invasion and metastasis via MMP induction (Huang et al. 2013). In HNSCC, 
EMMPRIN-2 overexpression induces secretion of MMP-2, uPA, Cathepsin which 
in turn promotes ECM remodelling and angiogenesis thereby paving the way 
towards invasion and metastasis (Huang et al. 2014).
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11.6  Conclusion and Prospective

The molecular crosstalk between cancer stem cells and tumor microenvironment 
play an important role in formation of intratumoral heterogeneity to modulate tumor 
progression in oral cancer. TME accommodates cancer cells including CSCs and 
creates an immunosuppressive atmosphere that safeguards CSCs from various 
genetic and epigenetic offenses. Tumor niches are discrete domains that assure spe-
cific functional characteristics and encourage the formation of suitable microhabitat 
for CSCs to maintain its stemness, invasiveness, metastatic proficiency, tumorige-
nicity and therapy resistance properties. Moreover, specific stimuli including 
hypoxia, autophagy, tumor metabolism and tumor associated stromal cells in the 
microenvironment stimulate reprogramming of signaling pathways in the way to 
acquire stem-like characteristics. In HNSCC, CSCs express specific receptors, cyto-
kines and chemokines to recruit TAMs, promotes angiogenesis, differentiation of 
MDSCs to TAMs to support immune evasion and tumor growth. In addition, CSCs 
triggers extensive remodeling of ECM by inducing the degradation of matrix pro-
tein via various proteinases which facilitates invasion and metastasis. Although the 
molecular interplay between CSCs and TME is well established, many cellular 
events in this microhabitat remain unidentified. How CSCs especially circulating 
tumor cells influence the stromal cells at new sites during metastasis and what is 
molecular signaling for polarizing tumor associated cells? Does high autophagy 
flux in CSCs associate intracellular antigen presentation to reprogram in generating 
tumor promoting macrophages and other immune cells? It is also not known what is 
the detail molecular circuit in establishing connection between CSCs and epidermal 
keratinocytes during tumor progression in oral cancer. In conclusion, understanding 
the CSCs and its tumor microenvironment with identification of key molecular 
pathway might facilitate the development strategy to improve therapeutic outcomes 
through precise intervention to treat oral cancer.
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Chapter 12
Fetal Membranes-Derived Stem Cells 
Microenvironment
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Abstract Recently, the regenerative medicine has been trying to congregate differ-
ent areas such as tissue engineering and cellular therapy, in order to offer effective 
treatments to overcome several human and veterinary medical problems. In this 
regard, fetal membranes have been proposed as a powerful source for obtainment of 
multipotent stem cells with low immunogenicity, anti-inflammatory properties and 
nontumorigenicity properties for the treatment of several diseases, including replac-
ing cells lost due to tissue injuries or degenerative diseases. Morpho-physiological 
data have shown that fetal membranes, especially the yolk sac and amnion play 
different functions according to the gestational period, which are direct related to 
the features of the microenvironment that their cells are subject. The characteristics 
of the microenvironment affect or controls important cellular events involved with 
proliferation, division and maintenance of the undifferentiated stage or differentia-
tion, especially acting on the extracellular matrix components. Considering the 
importance of the microenvironment and the diversity of embryonic and fetal 
membrane- derived stem cells, this chapter will addressed advances in the isolation, 
phenotyping, characteristics of the microenvironment, and applications of yolk sac 
and amniotic membrane-derived stem cells for human and veterinary regenerative 
medicine.
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12.1  Introduction

Regenerative medicine is defined as a branch of translational research that congre-
gates important areas related to tissue engineering and cellular therapy (Mason and 
Dunnill 2008). When combined they provide promising alternatives to overcome 
several human and veterinary medical problems related to the replacement of tis-
sues and organs that have been damage by diseases, trauma and congenital issues, 
which in the present scenario especially for humans, can not be solved by tissues 
and organs donation and transplantation (Mahla 2016).

In the last 20 years, cellular therapy has grown a lot and several different stem 
cells (SC) lineages from different organs and species have been established and 
characterized (Fernandes et  al. 2012; Avasthi et  al. 2008). SC are present in all 
organisms during the life and are defined according to the ability of keeping the 
undifferentiated state along the life (self-renewal capacity) or undergoing differen-
tiation on specialized cell types, after specific stimuli, or using specific cell culture 
media associated with growth factors in vitro (Bertin et al. 2016).

Nevertheless, the obtaining and use of SC, especially those obtained from embry-
onic tissues that show higher capacity of proliferation and differentiation (Zare et al. 
2014) are limited by political, ethical, social, and legal regulations (Gupta 2009). In 
order to overcome these issues, the fetal membrane tissues, an abundant, ethically 
acceptable and readily accessible source of SC have been investigated in the recent 
years (Lobo et  al. 2016; Favaron et  al. 2014, 2015; Mançanares et  al. 2015; 
Fernandes et al. 2012). Compared to SC derived from their adult counterparts, the 
fetal membrane SC have higher proliferation abilities, greater differentiation poten-
tial being generally defined as multipotent (Bertin et al. 2016; Fratini et al. 2016), 
do not cause immunological troubles (Bobis et al. 2006), and they are consider a 
safe cell lineage for in vivo applications (Vidane et al. 2014).

Recently, the SC and their effects have not been studied alone, but considering 
their relationship with the microenvironment or the niche associated to these cells. 
The niche is responsible to define the morpho-physiological and biochemical char-
acteristics of the microenvironment where quiescent SC are located before specific 
signals activate the process of cell differentiation. In particular, this dynamic com-
partment performs mainly three functions: (1) controls process related to SC prolif-
eration, (2) determines the fate of SC daughters and (3) protects SC from exhaustion 
or death (Bertin et al. 2016). In this regard, there is a strict relationship between the 
SC and the niche, that permits to the SC by cellular mechano-transducers sense 
changes in the matrix elasticity, resulting in morphological and differentiation 
changes of the SC (Engler et al. 2006). It is known that there are common elements 
constituting the SC microenvironment or their niche: (1) stromal cells that support 
SC interacting with each other via cell surface receptors and soluble factors, (2) the 
vasculature and nervous system that drag systemic and physiological inputs and (3) 
extracellular matrix (ECM) proteins, such as: fibronectin, laminin, elastin, and the 
collagen system (Arenas and Zurbarán 2002), which all together supply structural 
organization, mechanical signals to the niche, cell migration, proliferation and 
 differentiation (Bertin et al. 2016; Nogami et al. 2016; Choi et al. 2013; Yamazaki 
et al. 2011; Brown et al. 2010; Engler et al. 2006).
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The role of ECM deserves special attention since in one hand, the interactions of 
the cells with the ECM provide essential mechanical signals and, on the other hand, 
the ECM can concentrate important growth factors and cytokines by binding both 
local and systemic biomolecules within the microenvironment (Bertin et al. 2016).

Only recently, tissue bioengineering using decellularization process described 
that fetal tissues possess more coiled fibers and fibronectin than adult bioscaffolds 
(Silva et al. 2016), which can increase the possibilities of applications in regenera-
tive medicine. For this, a concomitant effort have been done to in one hand study the 
diversity of SC-derived from embryonic and fetal membranes and in other hand 
describe the diversity of ECM molecules in these tissues and understand their func-
tions for cell proliferation, migration and differentiation (Favaron et al. submitted).

Considering the importance of the microenvironment for SC proliferation and 
differentiation and the diversity of embryonic and fetal membrane-derived SC, this 
chapter will addressed advances in the isolation, phenotyping, characteristics of the 
microenvironment, and applications of yolk sac and amniotic membrane-derived 
SC for human and veterinary regenerative medicine.

12.2  Yolk Sac Membrane and Derived Stem Cells

The yolk sac displays a remarkable diversity of developmental, structural and func-
tional characteristics, mainly because this is an unique extraembryonic membrane 
that occurs in all vertebrates (Mossman 1987). In mammals, the yolk sac precedes 
and supports the chorioallantoic placentation during early stages of pregnancy 
(Sheng and Foley 2012) and it is responsible for maternal-fetal exchange (Favaron 
et al. 2012). For this, special attention has been drawn to this fetal membrane, since 
it maintains essential functions during early stages of gestation, including the hema-
topoiesis and development of the vascular system, nutrient transfer, migration of 
primordial germinative cells, and organogenesis (such as the development of the 
primitive intestine) (Mançanares et al. 2013; Hyttel et al. 2010; Jafredo et al. 2005; 
Nakagawa et al. 2000; Auerbach et al. 1996).

Due to the primary hematopoiesis function, so far, much data on cell differentia-
tion from yolk sac tissues are available for hematopoietic SC from mice and humans 
(Jafredo et  al. 2005; Auerbach et  al. 1996, 1998; Yoder et  al. 1997; Huang and 
Auerbach 1993; Globerson et al. 1987). In contrast to what was expected the precur-
sor cells derived from pluripotent SC isolated from yolk sac tissues are not fully 
totipotent, but were able to differentiate into lymphocytes, granulocytes, mono-
cytes, erythrocytes, and megakaryocytes (Zhang et al. 2003; Palis and Yoder 2001; 
Ikuta and Weissman 1992). Despite this, the extraembryonic hematopoietic SC 
derived from the yolk sac are consider a valuable source of SC to support existing 
transplantation therapies in clinical regenerative medicine (Sugiyama et al. 2011; 
Wilpshaar et  al. 2002). In addition, the understand of both biology and 
 microenvironment of the hematopoietic SC in the yolk sac membrane in different 
phases of the gestation is crucial to improve their use on cell therapies.
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However, in recent years promising studies have been done on yolk sac mesen-
chymal SC not only for human (Wang et al. 2008; Xiao-dong et al. 2003, 2005) and 
rodents (Favaron et al. 2014; Zhao et al. 2002; Zhao 2003), but also for other species 
such as dog (Fratini et al. 2016; Wenceslau et al. 2011) and bovine (Mançanares 
et al. 2015). The yolk sac membrane used for mesenchymal SC isolation usually 
present a villous structure for which the histological microenvironment is composes 
by endodermal cells, mesenchyme with vitelline vessels inside and a basal mesothe-
lium (Fernandes et al. 2012). The vitelline vessels are abundant inside the mesen-
chyme and the endodermal cells high proliferative during the gestation (Fig. 12.1a–c). 
Using tissue explants or digestive solutions such as trypsin or collagenase, mesen-
chymal SC are isolated and available for culture (Fig. 12.1d). As the membrane, the 
mesenchymal SC-derived from the yolk sac show interesting and promising charac-
teristics regarding to the morphology, growth and differentiation potential.

12.3  Amniotic Membrane and Derived Stem Cells

The amnion is the innermost membrane that surround the embryo/fetus during the 
entire pregnancy. It forms a sac that contains the amniotic fluid (Favaron et  al. 
2015), a novel and interesting source of SC for cell therapy, especially due to their 

Fig. 12.1 Yolk sac morphology and cell culture. (a) The yolk sac membrane is composed by endo-
dermic cells (E), mesenchyme (M) with vitelline vessels (V) and mesothium (Mes). Staining using 
hematoxilin and eosin. (b, c) Immunohistochemistry for vimentin showing the intense vasculariza-
tion (V) of the yolk sac membrane and for PCNA, showing high proliferation of the endodermic 
cells (arrows). (d) Culture of yolk sac stem cells from rodent (Necromys lasiurus, Cricetidae). 
Note the yolk sac explant (Yst) with fibroblastic-like stem cells (arrows) with a central nucleus

P.O. Favaron and M.A. Miglino



239

high renewal capacity, expression of embryonic markers, multipotency to differenti-
ate in different cell lines, low immunogenicity, anti-inflammatory properties, nontu-
morigenicity, and noninvasive isolation (Kim et al. 2014; Antonucci et al. 2012). 
Regarding to this easily sample collection, the amniotic membrane are available for 
sampling just after the parturition avoiding all political and ethical restrictions 
involved with embryonic SC.

Histologically, the amniotic membrane is composed by a very thin cubic epithe-
lial layer, a subjacent mesoderm and dispersed small blood vessels (Fig. 12.2a, b). 
In contrast to the very simple histological nature (Chang et al. 2010), recently data 
have shown data amniotic-derived stem cells (Fig. 12.2c) collect in different gesta-
tional stages present different pattern of phenotype, methylation, immunomodula-
tory and stemness properties of amniotic-derived SC (Barboni et al. 2014), which 
are closely related to the microenvironment of this extraembryonic membrane and 
its functions in the different gestational phases.

The human amniotic membrane derived SC were isolated for the first time in 
2004 and demonstrated the ability to differentiate into osteogenic and adipogenic 
cell lines (In ‘t Anker et al. 2004). Later, it was also demonstrated the ability of these 
cells for differentiation in other cell lines, such as chondrogenic in dogs (Vidane 
et al. 2014; Rutigliano et al. 2013) and neurogenic in sheep (Zhu et al. 2013).

In clinical practice, the potential of amniotic membrane derived SC is very wide 
and increasing, and their clinical applications can reach a variety of diseases, espe-
cially those associated with degenerative processes induced by inflammatory and 
fibrotic processes (Parolini and Caruso 2011). In this regard, the clinical applica-
tions of amniotic membrane SC show satisfactory therapeutic results, without toxic-
ity or side effects. Studies using monkeys have demonstrated the usefulness of these 
cells for the treatment of injured areas of the spinal cord in the central nervous 
system, resulting in the regeneration of neurons (Sankar and Muthusamy 2003). 
Additionally, studies have shown satisfactory results for the treatment of Parkinson 
in rat models using amniotic membrane SC in order to produce dopamine and pre-
vent neuronal degeneration (Kakishita et  al. 2003). In vivo studies in rats also 
showed that after inoculation, the amniotic SC were able to restore liver function 
(Miki et al. 2007). In addition, transplantation in immunodeficient rats with liver 
problems showed evidences of synthesis and excretion of albumin after 7 days of 
cell transplantation (Sakuragawa et al. 2000). Amniotic membrane SC expressed 
pancreatic markers such as α2B amylase and produced glucagon, after being 
induced to pancreatic differentiation (Ilancheran et  al. 2007). Transplantation of 
amniotic membrane SC showed also satisfactory clinical results for the treatment of 
pulmonary disease (Insausti et al. 2010; Magatti et al. 2009) and diabetes mellitus 
(Uccelli et al. 2008).

For this reason, the amniotic membrane emerged as a new and important source 
of SC established in several species including human (In ‘t Anker et al. 2004; Díaz- 
Prado et  al. 2011), horse (Cremonesi et  al. 2011; Lange-Consiglio et  al. 2012), 
sheep (Mauro et al. 2010), cat (Vidani et al. 2016; Vidane et al. 2014; Rutigliano 
et al. 2013), dog (Uranio et al. 2011), rat (Marcus et al. 2008) and rabbit (Borghesi 
et al. 2017) with different patterns of phenotype and differentiation potential, which 
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can be associated with the histological and physiological characteristics regarding 
to the microenvironment associated in this membrane during the gestation.
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Fig. 12.2 Histology and 
culture of amniotic 
membrane. (a, b) 
Histology of dog and 
human amniotic 
membrane, respectively. 
Note the cubic epithelium 
(arrow), mesoderm (M) 
and the presence of small 
blood vessels (V). Staining 
using hematoxilin and 
eosin. (c) Culture of 
amniotic stem cells from 
rabbit. Note the 
fibroblastic-like 
morphology of the cells
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Chapter 13
Current Technologies Based on the Knowledge 
of the Stem Cells Microenvironments

Damia Mawad, Gemma Figtree, and Carmine Gentile

Abstract The stem cell microenvironment or niche plays a critical role in the regu-
lation of survival, differentiation and behavior of stem cells and their progenies. 
Recapitulating each aspect of the stem cell niche is therefore essential for their 
optimal use in in vitro studies and in vivo as future therapeutics in humans. 
Engineering of optimal conditions for three-dimensional stem cell culture includes 
multiple transient and dynamic physiological stimuli, such as blood flow and tissue 
stiffness. Bioprinting and microfluidics technologies, including organs-on-a-chip, 
are among the most recent approaches utilized to replicate the three-dimensional 
stem cell niche for human tissue fabrication that allow the integration of multiple 
levels of tissue complexity, including blood flow. This chapter focuses on the 
physico-chemical and genetic cues utilized to engineer the stem cell niche and pro-
vides an overview on how both bioprinting and microfluidics technologies are 
improving our knowledge in this field for both disease modeling and tissue regen-
eration, including drug discovery and toxicity high-throughput assays and stem cell- 
based therapies in humans.
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13.1  Introduction

The stem cell microenvironment (niche) plays a major role in controlling the cellu-
lar fate and therefore any application of these cells in vitro and in vivo. To date, 
increasing knowledge of the in vivo niche has improved the engineering of in vitro 
systems for stem cells by integrating critical three-dimensional features, such as 
specific cellular and extracellular components, tissue responsiveness to stiffness and 
blood flow. While some of these aspects are not fully recapitulated in in vitro mod-
els of the stem cell niche and some of these models better recapitulate some aspects 
of the in vivo niche versus others depending on their application, this review aims at 
describing briefly the latest technologies based on our knowledge of the stem cell 
niche and more in details current approaches for its engineering, with a particular 
focus on future applications for human disease modeling, including drug discovery 
and toxicity high-throughput assays and regenerative medicine.

13.2  Stem Cell Niche In Vivo and In Vitro

Stem cells and their applications generated a great hope for research and medicine 
in the past decades. However, their use in humans has been limited by several fac-
tors, including ethical conundrum on stem cell editing (Lanphier et al. 2015). From 
the engineering point of view, their use is very costly per se and they present limited 
survival following their injection in the host tissue, which further increases costs 
associated with their use for therapies in humans. To overcome these limitations, 3D 
cultures have been investigated based on our knowledge of a highly-defined spatial 
and temporal bioavailability of factors during embryogenesis and organogenesis, 
such as oxygen, growth factors, cytokines and extracellular matrix (ECM) mole-
cules (please see Fig. 13.1) (Passier et al. 2016; Gunter et al. 2016; Gentile 2016; 
Dennis et al. 2015). For instance, survival of dissociated stem cells is less than 5% 
within the first days of delivery. On the contrary, 3D cultures of stem cells increased 
cell survival over time (Dennis et  al. 2015). Similarly, incorporation of vascular 
cells, growth factors and cytokines improved stem cell survival into the host (Gentile 
2016). Stem cells and progenitor cells also respond to the same stimuli in different 
ways based on their origin and differentiation state (Gentile 2016). Based on their 
intrinsic cell composition, the 3D in vivo niche of pluripotent stem cells (PSCs) 
typical of the blastocyst is characterized by cells of the three germ layers (meso-
derm, endoderm and ectoderm), which is recapitulated in vitro within embryoid 
bodies (EBs) (Doetschman et  al. 1985; Itskovitz-Eldor et  al. 2000; Vallier and 
Pedersen 2005; Bratt-Leal et al. 2009; Carpenedo et al. 2009; Lanphier et al. 2015). 
Conversely, multipotent mesenchymal stem cells (MSCs) are characterized by a 
less-defined niche than PSCs, as MSCs are present within the blood stream until 
they reach the host tissue to differentiate. However, 3D in vitro cultures of MSCs in 
either mesenspheres or fibrin gels show improved features compared to monolayer 
cultures (Potapova et  al. 2007; Murphy et  al. 2014a). 3D cultures of neural and 
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cardiac progenitor (neurospheres and cardiospheres, respectively) also showed 
improved features compared to monolayer cultures (Messina et al. 2004; Reynolds 
and Rietze 2005; Marban and Cingolani 2012; Baraniak et  al. 2012). Due to all 
these reasons, engineering of the niche specific for each stem cell type becomes 
critical in avoiding the failure of stem cell-based therapies in humans.

13.2.1  Technologies Based on the Stem Cell Niche

Several groups have engineered the typical niche of the human body using stem 
cells, including the blood brain barrier and brain (Lippmann et al. 2012; Adriani 
et al. 2016), lung airway (Benam et al. 2016) and the hematopoietic niche (Torisawa 
et  al. 2014). However, there are still several challenges in engineering a fully- 
controlled stem cell niche of these and other vital organs, such as the brain, the heart 
and the immune system. The most challenging features to overcome are: (i) replicat-
ing physiologically-relevant culture conditions without affecting the robustness of 
the cellular response to the experimental stimuli, such as blood flow and tethering 
effects of the extracellular matrix during development; (ii) stem cells limited sur-
vival in new culturing conditions and/or following engraftment; (iii) maintaining a 
specific phenotype in culture. Factors determining optimal engineering of 3D cul-
tures of stem cells have been previously described, and include cell composition, 
gradient of oxygen and nutrients, growth factors, extracellular matrix and stiffness, 

Fig. 13.1 Engineering of the stem cell niche: approaches and applications (adapted from Gentile 
2016)
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cellular adhesion molecules, and the addition of exogenous material (see (Gentile 
2016)). Aging of cells represent an additional limitation to the use of stem cells and 
converting them into cells with a younger phenotype has been recently achieved in 
haematopoietic stem cells (Guidi and Geiger 2017). Conversely, 3D cultures have 
been utilized to define how the niche affects cell behaviour in cardiac microtissues 
(Boudou et al. 2012; Polonchuk et al. 2017; Figtree et al. 2017).

Approaches to culture stem cell in vitro can be divided in: (i) natural and syn-
thetic scaffolds ((Willerth and Sakiyama-Elbert 2008, Cosson et al. 2015, He and Lu 
2016)) (ii) scaffold free-technologies (also described as organoids, microtissues, 
spheroids, etc.) (Gentile 2016); (iii) organs-on-a-chip (Van der Helm et al. 2016; 
Huh et al. 2013; Zhang et al. 2009; Van der Meer and Van den Berg 2012). Chemical, 
physical and genetic stimuli have been utilized for optimal engineering of the stem 
cell niche to either retain their phenotype or to differentiate them into other cells, as 
described in the following sections of this chapter. Bioprinting and microfluidics 
have emerged as the main technologies for 3D cultures of stem cells and therefore 
for the optimal engineering of their niche.

13.2.1.1  3D Bioprinting of the Stem Cell Niche

3D bioprinting is the layer-by-layer deposition of defined biological material (or 
“bioink”) within a biopaper (or “hydrogel”), both engineered for optimal tissue for-
mation and organogenesis, and it allows the inclusion of physiological features of 
several complexity, such as blood vessels or gradient of extracellular cues (Mironov 
et al. 2003; Jakab et al. 2010; Visconti et al. 2010; Murphy and Atala 2014). It can 
be divided in three types: (i) ink jet, (ii) laser jet; and (iii) extrusion, all fully con-
trolled by a computer (Kamble et al. 2016). Bioprinting of 3D structures, including 
spheroid cultures to be used as building blocks, demonstrated higher architectural 
complexity and improved cell survival with liquid-like properties, like oil droplets 
in water and mimicking natural processes (Dennis et al. 2015; Fleming et al. 2010). 
During the bioprinting process utilizing spheroid cultures, critical factors to con-
sider are: (i) spheroid diameter and composition (for the bio-ink); (ii) viscosity; and 
(iii) gelification time (for the hydrogel) (Gentile 2016). Main chemical, physical and 
genetic approaches utilized to improve the engineering of bioprinted tissues and 
organs are fully described in Sects. 13.2.2, 13.2.3 and 13.2.4 of this chapter.

13.2.1.2  Microfluidics and Human-on-a-Chip

Multi-compartmental bioengineered constructs have been engineered as “organs- 
on- a-chip” with microfluidics, representing improved complexity of physiological 
systems (Oleaga et  al. 2016; Frey et  al. 2014; Bhatia and Ingber 2014). 
Microfabricated structures can be used to precisely control the spatial positioning of 
cells and study their interactions (Hui and Bhatia 2007). These physiological sys-
tems are fabricated by combining soft lithography for cardiac bodies (Christoffersson 
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et al. 2016), 3D bioprinting of monolayer cells at high density scaffold- free (“bio-
printed heart on a chip” (Lind et al. 2016)) or in presence of scaffolds for endothe-
lialization (Zhang et al. 2016). Additionally, 3D microfluidic devices can be readily 
monitored with several imaging modalities and closely replicate key physiological 
and structural features of small functional units of organs. For example, “micro-
channels” can permit physiological flow rates, peristaltic contractions and the 
essential function of blood vessels for delivering oxygen and nutrients, while 
removing waste (Bhatia and Ingber 2014; Huh et al. 2010). Miniaturized models of 
functional biological units have already been fabricated on a chip, including models 
for lung, liver, kidney, intestine, heart, fat, bone marrow, cornea, skin, and the blood-
brain barrier (Bhatia and Ingber 2014).

13.2.1.3  Static Versus Dynamic Stem Cell Niche

Although microfluidic-based organ-on-a-chip systems can integrate key compo-
nents together and still allow precise control and measurement in a dynamic envi-
ronment, certain features of static 3D spheroid cultures may still be more 
advantageous. For example, spheroids can generate more tissue mass, allowing sci-
entists to perform analytical experiments that usually require large samples. On one 
hand, 3D spheroid cultures also allow the growth of macroscale architecture and 
highly complex and spatially heterogeneous tissues that cannot be supported at the 
microscale. On the other hand, microfluidic chips still offer an unprecedented flex-
ibility in independently controlling and monitoring features such as flow and other 
mechanical cues, helping to dissect their contribution to tissue and organ function. 
Finally, microfluidics allow fluorescence confocal microscopy analyses of cells, 
trans-epithelial electrical resistance measurements, multiple electrode arrays, and 
other analytical systems not easily recapitulated in static 3D spheroid cultures 
(Bhatia and Ingber 2014, Huh et al. 2010). Therefore, there is growing interest in 
integrating 3D spheroid cultures with microfluidics and 3D bioprinting technology 
for the engineering of the stem cell niche for both static and dynamic conditions.

13.2.2  Physico-Chemical Approaches to Engineer the Niche 
for an Undifferentiated Phenotype

Decades long intensive research has established that synthetic polymers are excel-
lent candidates to serve as platforms for the support of the long-term culture of stem 
cells. For instance, Villa-Diaz et al. (2010) showed the ability of a well-defined syn-
thetic polymer, poly[2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl)ammonium 
hydroxide] (PMEDSAH), to sustain long-term (~25 passages) hESC growth in sev-
eral different culture media. Short term self-renewal of hESC has been also shown 
in a synthetic hydrogel fabricated from poly (N-isopropylacrylamide-co- acrylic 
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acid) [p(NIPAAm-co-AAc] and crosslinked with a peptide (Li et al. 2006). These 
are two examples of 2D and 3D polymeric scaffolds with controlled and well- 
defined properties that are being developed as platforms for in vitro cell studies to 
investigate the interactions of cells and materials. While a 3D network mimics 
closely the native environment of the cell, a 2D scaffold allows more control over 
surface properties such as topography and roughness.

13.2.2.1  Surface Topography

Controlling the nano and micro scale topography of a polymeric substrate has a 
direct effect on the cell behavior (Murphy et  al. 2014b). Also, generating well- 
defined patterns in these substrates has the potential to produce functional custom-
ised tissues for applications in regenerative medicine. In a study by Kim et  al. 
(2010) the adhesion of human adipose-derived stem cells (hASCs) is shown to be 
favourable on micro-patterned surfaces of poly(lactic-co-glycolic acid) (PLGA) as 
opposed to unpatterned surfaces. The long-term self-renewal (>3 weeks) of mouse 
embryonic stem cells (mESCs) cultured on 2-hydroxyethyl methacrylate-co- 
ethylene dimethacrylate (HEMA-EDMA) substrates is shown to be dependent on 
the surface roughness (Jaggy et al. 2015). Substrates with a hierarchical topography 
at both nano- and microscale (large agglomerates up to 9 μm in height with an aver-
age surface roughness (Sa) of 919 ± 22 nm) supported the long-term maintenance 
of mESCs. On the contrary, culturing of mESCs on either smooth (Sa = 2 ± 0.4 nm) 
or nano rough surfaces (Sa = 68 ± 30 nm) led to their fast differentiation. McMurray 
et  al. (2011) identified a nanostructured polycaprolactone surface that retains a 
stem cell phenotype and maintains stem cell growth over 8 weeks. In a 3D configu-
ration, the adhesion and expansion of hESCs was tested on electrospun nanofibers 
mats fabricated from three synthetic FDA approved polymers: (i) poly-ɛ-
caprolactone (PCL), (ii) poly-L-lactic acid (PLLA) and (iii) poly lactic-co-glycolic 
acid (PLGA) (Kumar et al. 2015). The study reported three important factors that 
can modulate the colony size of stem cells: chemical nature of the polymer back-
bone, the diameter size of the fibre and the fibre orientation. PCL polymer pre-
sented as the most supportive substrate for hESCs self-renewal (see Fig.  13.2). 
Smaller diameter nanofibrous substrates (280 ± 122 nm) supported a significantly 
greater number of hESC colonies, relative to their larger diameter counterparts 
(521 ± 195 nm). Aligned nanofibrous substrates were found to be more suited than 
their random counterparts. With the advent of technology, various fabrication tools 
are available for researchers to produce controlled micro or nanoscale features on 
polymeric surfaces facilitating adhesion and proliferation of cells. Examples 
include photolithography, printing techniques, self-assembly of block copolymers 
and instability-induced patterning (Nie and Kumacheva 2008). These techniques 
allow patterning of the polymeric surface at different length scales and hence more 
control over directing the stem cell fate.
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13.2.2.2  Surface Stiffness

It is well established that the stiffness of the polymeric construct has a direct and 
strong influence on stem cell behavior (Engler et al. 2006). However, the correlation 
between the substrate stiffness and the effect on the stem cell fate depends on both 

Fig. 13.2 Reduced PCL nanofibrous substrate fiber diameters enhance hESC clonogenicity. (a) 
PCL nanofibrous substrates (aligned and random) with large and small fiber diameters. Nanofiber 
diameters are indicated under each image. An arrow indicates the predominant direction of fiber 
orientation. Scale bar = 3 μm. (b) Average fiber diameters (mm) for large and small PCL fibers in 
aligned and random conformations. (c) Quantification of the number of hESC colonies recovered 
on PCL nanofibrous substrates with various fiber diameters, in both aligned and random confor-
mations; in physiological normoxia (2% O2) for 21 days. (d) Characterization of hESC CFU mor-
phology on: PCL smaller fiber diameter (aligned, 280 nm; random, 318 nm), PCL larger fiber 
diameter (aligned, 521  nm; random 660  nm), and Matrigel™ (positive control) (adapted from 
Kumar et al. 2015)
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the stiffness of the material and the type of stem cell under investigation. A study by 
Chowdhury et al. (2010) demonstrated that mESC cultured on soft substrates fabri-
cated from polyacrylamide (PA) gels (0.6 kPa) maintained their pluripotent state in 
contrast to when they were cultured on rigid substrates such as polystyrene 
(>4 MPa). On the other hand, Cozzolino et al. (2016) reported that resident liver 
stem cells (RLSCs) differentiated within 24 h after being cultured on PA gels with 
an elastic modulus matching the stiffness of healthy liver (0.4 kPa). In contrast, 
when cultured on PA gels with a stiffness of 80 kPa (corresponding to the stiffness 
of fibro cirrhotic parenchyma), RLSCs maintained their phenotype, delaying the 
onset of hepatocyte differentiation process. In the natural biological environment, 
the behaviour of cells is dictated by the structure and mechanical properties of the 
tissue. As such, one main design criteria of biomaterial-based approaches is tune-
able mechanical properties, which led to intense research interests in polymers. The 
diversity of existing synthetic and natural polymers, coupled with the ability to 
design new types of polymers can readily produce biomaterials with controlled 
properties. Hydrogels, which are crosslinked 3D polymeric networks, are predomi-
nantly used when the stiffness of the substrate needs to be adjusted; this is mainly 
because the mechanical properties of the hydrogel can be tuned by adjusting the 
crosslinking density (Mawad et al. 2007, 2012). Hydrogels could be fabricated cov-
ering a large range of mechanical properties (very soft, ~ < 1 kPa to very stiff, ~ 
500 kPa). They can also be fabricated from natural polymers such as alginate, chi-
tosan, gelatin or synthetic polymers such as polyacrylamide (PA), poly(vinyl alco-
hol) (PVA) and poly(ethylene glycol) (PEG). The reader is referred to a 
comprehensive review by Tsou et al. (2016) describing how different type of hydro-
gels interact with different type of stem cells.

13.2.2.3  Summary

Surface topography, stiffness and type of polymer all play a crucial role in determin-
ing the fate of stem cells. Although the actual mechanisms are still not well defined, 
protein adsorption on the poymeric surface is a key factor. The conformation, orien-
tation and quantity of adsorbed protein allow cell attachment via integrin receptor 
(Dee et  al. 2003; Dalby et  al. 2014). Furthermore, cell surface integrins play an 
important role in the interaction of stem cells with the surrounding matrix and are 
described as vital for their self-renewal (Lee et al. 2010; Kohen et al. 2009). As such 
the physicochemical properties of polymers play a significant role in modulating 
cell-matrix interactions. For example, anionic polymers such as poly[(methyl vinyl 
ether)-alt-(maleic acid)] (PMVE-alt-MA) that bears carboxylic and sulfonic groups 
can bind to growth factors enabling cell attachment (Brafman et al. 2010). hPSCs 
cultured on PMVE-alt-MA exhibited higher expression levels of integrins. 
Consequently, these polymers are demonstrated to support ex vivo expansion of 
hPSCs while maintaining their undifferentiated state.
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13.2.3  Physico-Chemical Approaches to Engineer the Niche 
for Stem Cell Differentiation

One of the main objectives of using polymeric biomaterials in stem cell technology 
is to direct the cell differentiation into a specific cell lineage. However, the complex-
ity and dynamic nature of the stem cell niche requires that a number of physico- 
chemical stimuli should be incorporated in the material design to achieve a positive 
outcome. For instance, a material designed for neural tissue regeneration would 
require a polymer of low stiffness (100–500 Pa), whereas bone applications benefit 
from composite materials (polymer and inorganic bioactive ceramics) mimicking 
the native composite nature of bone itself.

13.2.3.1  Neurogenic Lineage

Over the past decade significant developments have been made in combining neural 
stem cells (NSCs) with natural or synthetic polymeric biomaterials. In particular, 
nanofiber scaffolds or hydrogels combined with stem cells and growth factors are 
being developed to tackle neurological diseases. Nanofiber scaffolds are attractive 
in neural regeneration because they create aligned neural tissue similar to the native 
one. Using these nanofiber scaffolds, stem cell differentiation can be controlled by 
the orientation and diameter of the fibres (Sperling et al. 2017, see Fig. 13.3), 2D 
versus 3D configurations (Jakobsson et  al. 2017), and polymer chemistry (Saha 
et  al. 2008). Synthetic polymers such as PLA (Soleimani et  al. 2010), PLGA 
(Kramer et al. 2011) and their co-polymers (Bini et al. 2006) are extensively used as 
the base materials for fabricating nanofiber mats for neural tissue engineering. 
These polymers are biodegradable, can be functionalized and spun into ultrafine 
continuous fibres that closely resemble the extra cellular matrices.

On the other hand, hydrogels play a significant role in neural transplantation 
because stem cells can be mixed with the biomaterial in a liquid form and induced 
to gel following targeted injection in vivo. Hydrogels are also porous structures that 
facilitate nutrient and oxygen transport and their mechanical properties can be tuned 
to suit the application requirements. In the presence of the appropriate growth fac-
tors, hydrogels can be employed to direct the differentiation of neural stem cells. 
These growth factors can be either chemically grafted on the polymeric backbone or 
simply physically entrapped in the network. Examples of hydrogels used for dif-
ferentiation of neural stem cells include those based on natural polymers such as 
collagen (Huang et al. 2013; Yuan et al. 2014), hyaluronic acid (HA) (Liang et al. 
2013; Preston and Sherman 2011) and hyaluronan derivative (Moshayedi and 
Carmichael 2013), or synthetic polymers such as PEG (Mckinnon et al. 2013), and 
polyurethane (Hsieh et al. 2015). In recent years, a new class of “smart” synthetic 
polymers, conducting polymers (CPs), is being explored for scaffold fabrication for 
nerve regeneration. CPs are conjugated polymers capable of conducting electrons. 
Coupled with their organic nature that matches the mechanical properties of tissue, 
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they are being explored as platforms to induce electric stimulation for electrore-
sponsive cells such as neurons (Ghasemi-Mobarakeh et  al. 2011). Polypyrrole is 
one example of CP demonstrated to differentiate neural cells (Stewart et al. 2015; 
Jin and Li 2014). In a study by Zhang et al. (2010) it was shown that by controlling 
the dopant in the polypyrrole scaffold, the cell fate could be directed. Polypyrrole 
doped with the polymer polystyrene sulfonate (PSS) induced hESCs differentiation 
after 20 days, whereas polypyrrole doped with the peptide laminin enhanced cell 
attachment and spreading. This study shows that by adjusting the type of dopant in 
the electroactive polymer, cell fate and development could be controlled.

13.2.3.2  Myogenic Lineage

Human iPSCs are being applied in cardiac regeneration due to their ability to dif-
ferentiate into cardiomyocytes. While iPSCs have been shown to improve cardiac 
function following injection into an infarcted heart (Masumoto et al. 2014), a major 
limitation is the significant decrease in their viability following engraftment. 

Fig. 13.3 SEM analysis of mESCs growth and differentiation on poly(lactic-co-glycolic acid) 
(PLGA) fiber scaffolds. (a) and (b) show differentiated mESCs on random and aligned PLGA 
fibers respectively. Scale bar (a) 50 μm, (b) 100 μm. Representative confocal fluorescent images of 
the neural marker, nestin shown in green, on random (c) and aligned (d) PLGA fibers. The cell 
nuclei were counterstained with DAPI (blue). Scale bar 100 μm. (e) Percentage of positive cells for 
nestin determined by flow cytometry analysis of mESC differentiation on PLGA nanofibers. * 
indicates a p values <0.05. (adapted from Sperling et al. 2017)
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A biomaterial-based approach is being sought to resolve this issue. In contrast to 
2D, 3D polymeric constructs have been shown to display many features of the 
native myocardium, such as cell-cell interaction, spontaneous beating activity and 
increased cardiac specific protein expression (Thavandiran et al. 2013). Design cri-
teria of a biomaterial tailored for the heart include: (i) mechanical durability under 
continuous strain; (ii) support of contractile functionality of the cardiomyocytes; 
(iii) appropriate stiffness; and (iv) conductivity, to help transduce the bioelectric 
signal of cardiomyocytes. Elastomeric polymers are being used in cardiac regenera-
tion because of their long-term mechanical stability under exposure to repeated 
strain cycles. Examples include poly(glycerol sebacate) (PGS) (Ravichandran et al. 
2013), poly(urethane) (Alperin et al. 2005) and its biodegradable analogue poly(ester 
urethane) (Nieponice et al. 2010), PLA and PLGA (Chen et al. 2015). However, 
these polymers degrade into small acidic compounds that can trigger an immune 
response in the heart. To accommodate the contractile functionality of the cardio-
myocytes, the stiffness of the scaffold could be modulated. Seeding cardiomyocytes 
in 3D PGS scaffolds of varying stiffness (2.35–5.99  kPa), it was found that the 
contractile function of the cardiac constructs correlate positively with low stiffness 
(Marsano et al. 2010). However, this study investigated the role of matrix mechani-
cal properties on the function of differentiated cardiomyocytes. To examine whether 
elasticity plays a role in directing cardiac differentiation, tissue culture plates were 
coated with polydimethylsiloxane (PDMS), an inert synthetic polymer of tuneable 
mechanical properties and embryonic stem cells (ES) seeded on top were monitored 
for their development (Arshi et al. 2013). The authors reported that the differentia-
tion of pluripotent ES cells into functional cardiomyocytes was better supported by 
the rigid PDMS substrate (~1000  kPa) in comparison to their softer counterpart 
(~10 kPa).

The interplay between the material stiffness and differentiation into cardiac lin-
eage is not straightforward and requires consideration of not only the material prop-
erties but the polymer chemical composition, the type of stem cells used and the 
dimensionality of the construct (2D versus 3D). In a similar work by Battista et al. 
(2005) investigating the effect of elasticity of collagen scaffolds on embryonic stem 
cells, it was found that cardiac differentiation was significantly inhibited as the col-
lagen scaffold stiffness was increased from 16 to 34 Pa. Also the study investigated 
the effect of biochemical cues by introducing laminin and fibronectin in the scaf-
folds. Laminin was found to promote differentiation into beating cardiomyocytes, 
whereas fibronectin stimulated endothelial cell differentiation and vascularization. 
These studies point out to the complexity of reproducing the extracellular environ-
ment in the laboratory. Not only the polymer chemistry needs to be considered, but 
its processing into a scaffold with tuneable mechanical closely matching that of the 
tissue is a key factor to achieve the required objective. Also, biochemical cues either 
added as soluble factors in the scaffold or anchored covalently on the polymer back-
bone are essential to mediate cell adhesion and direct differentiation of cardiac pro-
genitor cells.

To date, contractile activity of cardiomyocytes has been investigated in: (i) thin 
layers (Shim et al. 2012; Feinberg et al. 2007), (ii) 3D cardiac microtissues  generated 
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in PDMS molds (Boudou et  al. 2012) or non-adherent plates (Ravenscroft et  al. 
2016); or (iii) fully bioprinted system (Lind et al. 2016). Recently, bioprinted vascu-
larized cardiac tissue have been generated by plating iPSC-cardiomyocytes on top 
of bioprinted vascular network of endothelial cells (Zhang et  al. 2016). Further 
maturation of iPSC-cardiomyocytes into a more adult phenotype has been investi-
gated via electrical, for instance either with electrical impedence spectroscopy 
(Burgel et al. 2016) or using electrically conductive silicon nanowires (e-SiNWs) 
(Tan et al. 2017).

13.2.4  Genetic Approaches to Engineer the Stem Cell Niche

Reprogramming of stem cells in 3D cultures via CRISPR or TALEN technology has 
the potential to unveil mechanisms regulating the stem cell niche (Sun and Ding 
2017; Yin et al. 2016; Gonzalez 2016). Reprogramming of somatic cells into stem 
cells is dependent on donor age, a factor that limits the use of stem cell-based thera-
pies in humans (Lo Sardo et al. 2017). However, Schwank et al. (2013) have recently 
demonstrated how the use of CRISPR genome editing in 3D cultures generated 
from patients with cystic fibrosis (CF) could advance tissue repair and functionality. 
In this study, targeted genome editing of intestinal spheroid cultures from two CF 
patients with CRISPR-Cas9-mediated homology-directed repair corrected the 
mutation (deletion of phenylalanine at position 508) of the CF trans-membrane con-
ductor receptor (CFTR), the primary cause of the disease, supporting the feasibility 
an autologous gene therapy strategy using 3D cultures in patients with hereditary 
diseases (Yui et al. 2012). Similarly, gene editing in 3D cultures could be utilized as 
in vitro disease models to identify novel molecular targets for future therapies, as 
recently demonstrated in genome-edited human intestinal epithelial organoids 
(Matano et al. 2015).

13.2.5  Synthetic Biology and the Stem Cell Niche

Synthetic biology allows the integration of highly dynamic and transient multiple 
stem cell niches at the same time during embryogenesis, which generated promising 
results in regulating the stem cell niche in vitro with direct application for future 
stem cell-based therapies (Purcell and Lu 2014). Thanks to the integration between 
the synthetic and biological components, tissue homeostasis or diverse functions of 
the stem cell niche can now be controlled by transcriptional activators and/or repres-
sors, and other novel mechanisms, such as: (i) switches; (ii) memory elements, (iii) 
cascades; (iv) time-delayed circuits; (v) oscillators; (vi) logic gates; (vii) artificial 
gene circuits (Cheng and Lu 2012; Lohmueller et al. 2012; Purcell and Lu 2014; 
Siuti et al. 2013). For instance, biosensors generated using synthetic biology can 
record the history of cellular exposure to either individual or a sequence of 
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environmental signals, creating a memory within the bioengineered tissue (Siuti 
et al. 2013). This memory may then be used for the delivery of exogenous signals 
and apply them in sequence rather than simultaneously, which may help to over-
come several limitations occurring with stem cells, such as limited survival and 
engraftment upon transplantation.

13.3  Conclusions and Future Perspectives

Engineering of three-dimensional niche with defined features demonstrated to 
improve survival and architectural structure of stem cells, leading to a more physi-
ological microenvironment and behavior. Due to the remaining hurdles in recapitu-
lating in one in vitro model all the biological, morphological and physiological 
features typical of the in vivo stem cell niche features (Hunsberger et  al. 2015), 
future studies aiming at integrating all the different physicochemical and genetic 
cues typical of the 3D niche described in this chapter should be considered before 
engineering stem cell-based therapeutics for humans. Furthermore, engineering of 
in vitro systems including bioprinted organs-on-a-chip for drug discovery and toxic-
ity testing using stem cells may benefit from the integration of the abovementioned 
features. This information will become undoubtedly even more relevant with the 
upcoming interest in “precision medicine” and bio-banking of patient-specific 3D 
mini-organs (Bredenoord et al. 2017).
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