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Preface

This book was partially motivated by the recent rapid progress on deep convolu-
tional and recurrent neural network models and the abundance of important
applications in computer vision, where quantitative performance has significantly
improved in object recognition, detection, and automatic image caption. However
publicly available image database with generally well-annotated image or object
labels (but with some labeling noise), such as ImageNet (1.2 million images),
PASCAL Visual Object Classes (VOC) Dataset and Challenge (VOC) (*12,000
images), and Microsoft Common Objects in Context (COCO; *300,000 images),
have been the essential resource to fuel the learning process of the deep neural
networks that work well in practical and challenging scenarios.

These types of large-scale annotated image datasets are, unfortunately, not
available in medical image analysis tasks yet, even though improving medical
imaging applications through deep neural network models and imaging data is
highly valuable. This is partly explained by the fact that labels or annotations for
medical image database are much harder or expensive to obtain. The general practice
of collecting labels for ImageNet, as for example using Google image search engine
for pre-selection, followed by manual label refinement through crowd-sourcing (e.g.,
Amazon Mechanical Turk), is largely nonfeasible due to the formidable difficulties
of medical annotation tasks for those who are not clinically trained.

Indeed, employing deep neural networks, especially convolutional neural net-
work models, requires a large amount of annotated training instances. This concern
was reflected in that only four papers (out of 250 total publications) in MICCAI
2014, the 17th International Conference on Medical Image Computing and
Computer Assisted Intervention, were based on deep learning models while at least
20% of papers at IEEE Conference on CVPR 2014 were related to deep neural
networks. Even after that, this situation has drastically changed. We have had nearly
10% of the publications (23 papers) in MICCAI 2015 that are built upon deep
neural network models for a variety of medical imaging problems: fetal ultrasound
standard plane detection, vertebrae localization and identification, multi-view
mammogram analysis, mass segmentation, glaucoma detection, nucleus localization
in microscopy images, lymph node detection and segmentation, organ segmentation
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in CT/MRI scans, coronary calcium scoring in cardiac CT angiography, etc. We
certainly predict this uprising trend will continue for MICCAI 2016.

To answer the question of how to learn powerful and effective deep neural
networks with often sub-hundred of patient scans (where significant quantitative
performance gains have been reported), many chapters in this book will precisely
address this promising trend by describing detailed technical contents on data
preparation, network designs, and evaluation strategies. Moreover, what can be
learned from this early success and how to move forward rapidly are the other two
main topics to be discussed in details for this book.

Overview and Goals

Deep learning, in particular Convolutional Neural Networks (CNN), is a validated
image representation and classification technique for medical image analysis and
applications. We have observed many encouraging work that report new and newer
state-of-the-art performance on quite challenging problems in this domain. The
main reason behind this stream of work, we believe, is that effective task-dependent
image features can be directly or intrinsically learned through the hierarchy of
convolutional kernels inside CNN. Hand-crafted image feature engineering research
was a relatively weak subtopic in medical image analysis, compared to the
extensive evaluation and studies on image features for computer vision. This
sometimes limits the generality and applicability of well-tested natural image fea-
ture descriptors, such as SIFT (scale-invariant feature transform), HOG (histogram
of oriented gradients) and others into medical imaging tasks.

On the other hand, CNN models have been proved to have much higher
modeling capacity, compared to the previous image recognition mainstream
pipelines, e.g., HAAR, SIFT, HOG image features followed by spatial feature
encoding, then random forest or support vector classifiers. Given millions of
parameters to fit during model training (much more than previous pipelines), CNN
representation empowers and enables computerized image recognition models, with
a good possibility to be able to handle more challenging imaging problems. The
primary risk is overfitting since model capacity is generally high in deep learning
but often very limited datasets are available (that are with good quality of labels to
facilitate supervised training). The core topics of this book are represented by
examples on how to address this task-critical overfitting issue with deep learning
model selection, dataset resampling and balancing, and the proper quantitative
evaluation protocols or setups.

Furthermore, with deep neural networks (especially CNNs) as De facto building
blocks for medical imaging applications (just as previous waves of Boosting,
Random Forest), we would argue that it is of course important to use them to
improve existing problems, which has been widely studied before, but more criti-
cally, it is the time to consider exploiting new problems and new experimental,
clinical protocols that will foster the development of preventative and precision
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medicine tools in imaging to impact modern clinical practices. Without loss of
generality, we give the following three examples: Holistic CT slice based inter-
stitial lung disease (ILD) prediction via deep multi-label regression and unordered
pooling (significantly improving the current status of the mainstream image patch
based ILD classification approaches with several built-in prerequisites that never-
theless prevents clinically desirable diagnosis protocols for ILD pre-screening from
ultra-low dose CT scans to be a reality); Precise deep organ/tumor segmentation
based volumetric measurements as new imaging bio-markers (remarkably enabling
to provide more precise imaging measurement information to better assist physi-
cians than the current popular RECIST metric, for high-fidelity patient screening,
tumor management and patient-adaptive therapy); and Unsupervised category
discovery and joint text-image deep mining using large-scale radiology image
database (opening the door to compute, extract, and mine meaningful clinical
imaging semantics via modern hospitals’ PACS/RIS database systems that could
include millions of patient imaging and text report cases, overcoming the limitation
of lack of strong annotations).

Lastly, from our perspective, this is just the beginning of embracing and
employing new deep neural network models and representations for many medical
image analysis and medical imaging applications. We hope this book will help to
get you more prepared and ready to exploit old and new problems. Happy reading
and learning!

Organization and Features

This book covers a range of topics from reviews of the recent state-of-the-art
progresses, to deep learning for semantic object detection, segmentation and
large-scale radiology database mining. In the following, we give a brief overview
of the contents of the book.

Chapter 1 describes a brief review of nearly 20 years of research by
Dr. Ronald M. Summers (MD/Ph.D.) in medical imaging based computer-aided
diagnosis (CAD) where he won the presidential early career award for scientists and
engineers in 2000 and his personal take and insights on the recent development of
deep learning techniques for medical image interpretation problems?

Chapter 2 lists a relatively comprehensive review of the recent methodological
progress and related literature of deep learning for medical image analysis, in the
topics of abdominal, chest and cardiology imaging, histopathology cell imaging,
and chest X-ray and mammography.

Chapters 3 to 10 cover all various topics using deep learning for object or
landmark detection tasks in 2D and 3D medical imaging. Particularly, we present a
random view resampling and integration approach for three CAD problems (Chap.
3); 3D volumetric deep neural networks for efficient and robust landmark detection
(Chap. 4); a restricted views based pulmonary embolism detection (Chap.5); a new
method on cell detection (Chap.6); tumor cell anaplasia and multi-nucleation
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detection (Chap. 7) in microscopy images; Predicting interstitial lung diseases and
segmentation label propagation (Chap. 8); an in-depth study on CNN architectures,
dataset characteristics and transfer learning for CAD problems (Chap. 9); followed
by a computationally scalable method of accelerated cell detection with sparse
convolution kernels in histopathology images (Chap. 10).

Chapters 11 to 16 discuss several representative works in semantic segmentation
using deep learning principles in medical imaging. Specifically, this book describes
automatic carotid intima-media thickness analysis (Chap. 11); deep segmentation
via distance regularized level set and deep-structured inference (Chap. 12); struc-
tured prediction for segmenting masses in mammograms (Chap. 13); pathological
kidney segmentation in CT via local versus global image context (Chap. 14);
skeletal muscle cell segmentation in Microscopy (Chap. 15); and a bottom-up
approach for deep pancreas segmentation in contrasted CT images (Chap. 16).

Chapter 17 discusses a novel work on interleaved text/image deep mining on a
large-scale radiology image database for automated image interpretation which was
not technically feasible in the pre-deep learning era. Finally, we would like to point
out the way we organized this book in roughly three blocks of detection, seg-
mentation, and text-image joint learning aligned with the status how computer
vision is progressing with deep learning. These three blocks of research topics are
probably essential for imaging understanding and interpretation of all imaging
problems.

Target Audience

The intended reader of this book is a professional or a graduate student who is able
to apply computer science and math principles into problem solving practices. It
may be necessary to have some level of familiarity with a number of more advanced
subjects: image formation, processing and understanding, computer vision, machine
learning, and statistical learning.

Bethesda, USA Le Lu
Princeton, USA Yefeng Zheng
Adelaide, Australia Gustavo Carneiro
Gainesville, USA Lin Yang
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Chapter 1
Deep Learning and Computer-Aided
Diagnosis for Medical Image Processing:
A Personal Perspective

Ronald M. Summers

Abstract These are exciting times for medical image processing. Innovations in
deep learning and the increasing availability of large annotated medical image
datasets are leading to dramatic advances in automated understanding of medical
images. From this perspective, I give a personal view of how computer-aided diag-
nosis of medical images has evolved and how the latest advances are leading to
dramatic improvements today. I discuss the impact of deep learning on automated
disease detection and organ and lesion segmentation, with particular attention to
applications in diagnostic radiology. I provide some examples of how time-intensive
and expensive manual annotation of huge medical image datasets by experts can be
sidestepped by using weakly supervised learning from routine clinically generated
medical reports. Finally, I identify the remaining knowledge gaps that must be over-
come to achieve clinician-level performance of automated medical image processing
systems.

Computer-aided diagnosis (CAD) in medical imaging has flourished over the past
several decades. New advances in computer software and hardware and improved
quality of images from scanners have enabled this progress. The main motivations
for CAD have been to reduce error and to enable more efficient measurement and
interpretation of images. From this perspective, I will describe how deep learning has
led to radical changes in howCAD research is conducted and in howwell it performs.
For brevity, I will include automated disease detection and image processing under
the rubric of CAD.

Financial Disclosure The author receives patent royalties from iCAD Medical.
Disclaimer No NIH endorsement of any product or company mentioned in this manuscript
should be inferred. The opinions expressed herein are the author’s and do not necessarily
represent those of NIH.

R.M. Summers (B)
Imaging Biomarkers and Computer-Aided Diagnosis Laboratory,
Radiology and Imaging Sciences, National Institutes of Health Clinical Center,
Bldg. 10, Room 1C224D MSC 1182, Bethesda, MD 20892-1182, USA
e-mail: rms@nih.gov
URL: http://www.cc.nih.gov/about/SeniorStaff/ronald_summers.html

© Springer International Publishing Switzerland 2017
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and Pattern Recognition, DOI 10.1007/978-3-319-42999-1_1
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4 R.M. Summers

For medical imaging, CAD has focused predominantly on radiology, cardiology,
and pathology. Examples in radiology include the automated detection of micro-
calcifications and masses on mammography, lung nodules on chest X-rays and CT
scans, and colonic polyps on CT colonography [1]. In cardiology, examples include
CAD for echocardiography and angiography [2–4]. In digital pathology, examples
include detection of cellular components such as nuclei and cells and diseases such
as breast, cervical, and prostate cancers [5].

Despite significant research progress in all of these applications, the translation of
CAD systems from the bench to the bedside has been difficult and protracted. What
have been the impediments to realizing the full potential of medical imaging CAD?
There have been a number of difficulties. First, the development of CAD systems is
time-consuming and labor-intensive. Researchers must aggregate cases with proven
pathology. This is no easy task as the best proof involves surgical excision and
histopathologic analysis. It is not always possible to obtain such reference standards
of truth. Once the medical data and reference standard have been collected, the data
must be annotated. For example, for radiology images, the precise location and extent
of the abnormality must be determined by a trained expert. Such hand annotation by
an expert is time-consuming and expensive. The best annotations come frommultiple
trained observers annotating the same abnormality so that a probabilistic assessment
of confidence of lesion location can be obtained. Consequently, many CAD systems
involve only on the order of tens or hundreds of proven cases. Better evidence usually
comes from large datasets, on the order of thousands or more, unattainable for all but
the most well-funded studies. For example, the NLST study involved over 53,000
patients and cost over $250 million [6]. Few studies can achieve these numbers.

These difficulties with data collection have severely hampered CAD research.
They have led to the contraction ofmost CAD research into only a fewmajor problem
domains, such as lung nodule detection and mammographic mass detection. But
clinicians need to address numerous imaging problems while interpreting medical
images. For example, to properly diagnose a chest CT scan, a physician needs to
inspect dozens of structures andmust be aware of hundreds of potential abnormalities
including lesions and normal variants [7]. Most of these numerous imaging problems
have been ignored or understudied.

Another difficulty has been the time-consuming task of handcrafting of algorithms
forCADsystems.Until recently, itwas necessary to developmathematical algorithms
specifically tailored to a particular problem. For example, when I started to develop
a CAD system for virtual bronchoscopy in 1997, there were no prior examples on
which to build [8]. My lab had to develop shape-based features to distinguish airway
polyps from normal airways [9, 10]. When we extended the software to find polyps
in the colon on CT colonography, it took about five years to perfect the software
and annotate the images to the point where the software could undergo a robust
evaluation on over 1000 cases [11]. It took another five years for translation from
the bench to the bedside [12]. Other groups found it similarly time-consuming to
develop, validate, and refine CAD systems for colonic polyp detection.

Most of our CADs used machine learning classifiers such as committees of sup-
port vector machines, which appeared to be superior to other approaches including
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conventional neural networks, decision trees and linear discriminants [13–18]. About
two years ago, I heard about “deep learning”, a new up-and-coming technology for
machine learning [19]. Deep learning was the name given to an improved type of
neural network havingmore layers to permit higher levels of abstraction. Deep learn-
ing was finding success at solving hard problems such as recognizing objects in real
world images [20, 21]. An aspect of deep learning that caught my attention was its
ability to learn the features from the training data. I had long been unhappywith CAD
systems that required hand-chosen parameters and hand-crafted features designed
for a particular application. I realized early on that such hand-tuning would not be
reliable when the CAD software was applied to new data. In addition, the hand-
tuning was very time-consuming and fragile. One could easily choose parameters
that worked well on one dataset but would fail dramatically on a new dataset. Deep
learning had the appeal of avoiding such hand-tuning.

About this time, Dr. Le Lu joined my group. An expert in computer vision, Le
brought the passion and knowledge required to apply deep learning to the challenging
problems we were investigating. As we learned about the current state of research on
deep learning, I was surprised to find that other investigators had used convolutional
neural networks, one type of deep learning, in the past [22, 23]. But there seemed
to be something different about the most recent crop of deep learning algorithms.
They routinely used GPU processing to accelerate training by as much as a factor
of 40-fold. They also used multiple convolution layers and multiple data reduction
layers. Of great importance, the authors of these new deep learning networks made
their software publicly available on the Internet. Soon, an entire zoo of deep learning
architectures was available online to download and try, using a variety of different
computer programming platforms and languages [24].

In 2013, I was fortunate to attract Dr. Holger Roth to be a postdoctoral fellow
in my group. Holger had received his graduate training under David Hawkes at
University College London. With this outstanding foundation, Holger was poised to
enter the new deep learning field and take it by storm. He published early papers on
pancreas and lymphnode detection and segmentation, two very challenging problems
in radiology image processing. Not only could he develop the software rapidly by
leveraging the online resources, but the deep learning networks were able to train
on relatively small datasets of under 100 cases to attain state-of-the-art results. With
this encouragement, we applied deep learning to many other applications and shifted
much of our lab’s focus to deep learning.

Holger and two other postdoctoral fellows inmy group, Drs. Hoo-Chang Shin and
Xiaosong Wang, have applied deep learning to other challenges. For example, Hoo-
Chang showed how deep learning could combine information from radiology reports
and their linked images to train the computer to “read” CT and MRI scans and chest
X-rays [25, 26]. Xiaosong found a way to automatically create semantic labels for
medical images using deep learning [27]. Holger showed how deep learning could
markedly improve the sensitivity (by 13–34%) of CAD for a variety of applications,
including colonic polyp, spine sclerotic metastasis and lymph node detection [28].
Hoo-Chang showed how the use of different convolutional neural network (CNN)
architectures and dataset sizes affected CAD performance [29].
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While the use of deep learning by the medical image processing community
trailed that of the computer vision community by a couple of years, the uptake of
deep learning in medical research has been nothing short of amazing. While in 2014
only five papers by my count used deep learning, in 2015, at least 20 papers used
it at the important MICCAI annual meeting, not including the satellite workshops.
When my colleagues Hayit Greenspan and Bram van Ginneken sent out a request
for deep learning papers in medical imaging for a special issue of the journal IEEE
Transactions on Medical Imaging, we anticipated about 15 papers but received 50
submissions in just a few months [30]. These were full journal papers showing the
results of detailed experiments and comparisons with existing methods. Clearly, the
time was ripe for deep learning in medical image processing.

Interest and advances in deep learning are still growing rapidly in both the com-
puter vision and the medical image processing communities. In the computer vision
community, there is a developing sense that the large ImageNet archive used for train-
ing the first generation of deep learning systems is nearing exhaustion and new, larger
next-generation image databases are needed to take deep learning to the next level,
e.g., the Visual Genome project [31]. New CNN architectures are constantly being
proposed by large companies and academic research groups that claim improved
performance on datasets such as ImageNet. Deep networks with hundreds of layers
have been proposed [32]. Researchers are leveraging specialized network elements
such as memory and spatial locality to improve performance [33, 34].

In themedical image processing community, there is a great need for false positive
(FP) reduction for automated detection tasks. Earlywork indicates that substantial FP
reduction or improved image retrieval is possiblewith off-the-shelf deep learning net-
works [28, 35, 36]. Yet even these reductions do not reach the specificity obtained by
practicing clinicians. Clearly, further work is required, not just on improved machine
learning, but also on the more traditional feature engineering.

Another focus area in the medical image processing community is improved
segmentation of organs and lesions. Here again there is evidence that deep learn-
ing improves segmentation accuracy and reduces the need for hand-crafted features
(Fig. 1.1) [37, 38]. However, segmentation failures still occur and requiremanual cor-
rection. It is likely that for the foreseeable future, semi-automated segmentation with
occasional manual correction will be the norm. Consequently, proper user interface
design for efficient 3D manual correction will be advantageous. Large datasets will
be required to provide representation of more outlier cases. A number of annotated
datasets of medical images are available for download [39–42]. The use of crowd-
sourcing to annotate large medical datasets requires further investigation [43–45].

It is clear that deep learning has already led to improved accuracy of computer-
aided detection and segmentation in medical image processing. However, further
improvements are needed to reach the accuracy bar set by experienced clinicians.
Further integrationwith othermedical image processing techniques such as anatomic
atlases and landmarks may help. Deeper network architectures, more efficient train-
ing, larger datasets, and faster GPUs are expected to improve performance. Insights
from neuroscience may lead to improved deep learning network architectures.
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Fig. 1.1 Automated segmentation of the pancreas using deep learning. a, b Original contrast-
enhanced abdominal CT image (a) without and (b) with (red contours) manual segmentation of the
pancreas. c Heat-scale probability map of pancreas computed using deep learning, superimposed
over the image in b Reprinted from Ref. [37]

Whether or not it is achieved, the societal implications of clinician-level accuracy
of learning systems need to be considered. Such systemsmay reduce errors, but could
also cause disruption in the healthcare industry [46].

Whether performance will reach a plateau is unknown, but current deep learning
systems now represent the state of the art. Given its current upward trend, the promise
of deep learning in medical image analysis is bright and likely to remain so for the
foreseeable future.

Acknowledgements This workwas supported by the Intramural Research Program of the National
Institutes of Health, Clinical Center.



8 R.M. Summers

References

1. Giger ML, Chan HP, Boone J (2008) Anniversary paper: history and status of CAD and quan-
titative image analysis: the role of Medical Physics and AAPM. Med Phys 35(12):5799–5820

2. Willems JL, Abreu-Lima C, Arnaud P, van Bemmel JH, Brohet C, Degani R, Denis B, Gehring
J, Graham I, van Herpen G et al (1991) The diagnostic performance of computer programs for
the interpretation of electrocardiograms. N Engl J Med 325(25):1767–1773

3. Rubin JM, Sayre RE (1978) 1978 memorial award paper: a computer-aided technique for
overlaying cerebral angiograms onto computed tomograms. Invest Radiol 13(5):362–367

4. Fujita H, Doi K, Fencil LE, Chua KG (1987) Image feature analysis and computer-aided diag-
nosis in digital radiography. 2. Computerized determination of vessel sizes in digital subtraction
angiography. Med Phys 14(4):549–556

5. Xing F, Yang L (2016) Robust nucleus/cell detection and segmentation in digital pathology
and microscopy images: a comprehensive review. IEEE Rev Biomed Eng 9:234–263

6. Harris G (2010) CT scans cut lung cancer deaths, study finds, The New York Times. http://
www.nytimes.com/2010/11/05/health/research/05cancer.html. 4 Nov 2010

7. Summers RM (2003) Road maps for advancement of radiologic computer-aided detection in
the 21st century. Radiology 229(1):11–13

8. Summers RM, Selbie WS, Malley JD, Pusanik L, Dwyer AJ, Courcoutsakis N, Kleiner DE,
Sneller MC, Langford C, Shelhamer JH (1997) Computer-assisted detection of endobronchial
lesions using virtual bronchoscopy: application of concepts from differential geometry. In:
Conference on mathematical models in medical and health sciences, Vanderbilt University

9. Summers RM, Pusanik LM, Malley JD (1998) Automatic detection of endobronchial lesions
with virtual bronchoscopy: comparison of two methods. Proc SPIE 3338:327–335

10. Summers RM, Selbie WS, Malley JD, Pusanik LM, Dwyer AJ, Courcoutsakis N, Shaw DJ,
Kleiner DE, Sneller MC, Langford CA, Holland SM, Shelhamer JH (1998) Polypoid lesions
of airways: early experience with computer-assisted detection by using virtual bronchoscopy
and surface curvature. Radiology 208:331–337

11. Summers RM, Yao J, Pickhardt PJ, Franaszek M, Bitter I, Brickman D, Krishna V, Choi
JR (2005) Computed tomographic virtual colonoscopy computer-aided polyp detection in a
screening population. Gastroenterology 129(6):1832–1844

12. DachmanAH, Obuchowski NA, Hoffmeister JW, Hinshaw JL, FrewMI,Winter TC, VanUitert
RL, Periaswamy S, Summers RM, Hillman BJ (2010) Effect of computer-aided detection for
CT colonography in a multireader, multicase trial. Radiology 256(3):827–835

13. Wang S, Summers RM (2012) Machine learning and radiology. Med Image Anal 16(5):933–
951

14. Jerebko AK, Malley JD, Franaszek M, Summers RM (2003) Multiple neural network classi-
fication scheme for detection of colonic polyps in CT colonography data sets. Acad Radiol
10(2):154–160

15. Jerebko AK, Malley JD, Franaszek M, Summers RM (2003) Computer-aided polyp detection
in CT colonography using an ensemble of support vector machines. In: Cars 2003: computer
assisted radiology and surgery, proceedings, vol 1256, pp 1019–1024

16. Jerebko AK, Summers RM, Malley JD, Franaszek M, Johnson CD (2003) Computer-assisted
detection of colonic polyps with CT colonography using neural networks and binary classifi-
cation trees. Med Phys 30(1):52–60

17. Malley JD, Jerebko AK, Summers RM (2003) Committee of support vector machines for
detection of colonic polyps from CT scans, pp 570–578

18. Jerebko AK, Malley JD, Franaszek M, Summers RM (2005) Support vector machines com-
mittee classification method for computer-aided polyp detection in CT colonography. Acad
Radiol 12(4):479–486

19. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
20. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical

image database, 248–255

http://www.nytimes.com/2010/11/05/health/research/05cancer.html
http://www.nytimes.com/2010/11/05/health/research/05cancer.html


1 Deep Learning and Computer-Aided Diagnosis … 9

21. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla
A, Bernstein M (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis
115(3):211–252

22. Sahiner B, Chan HP, Petrick N, Wei DT, Helvie MA, Adler DD, Goodsitt MM (1996) Classi-
fication of mass and normal breast tissue: a convolution neural network classifier with spatial
domain and texture images. IEEE Trans Med Imaging 15(5):598–610

23. Chan HP, Lo SC, Sahiner B, Lam KL, Helvie MA (1995) Computer-aided detection of mam-
mographic microcalcifications: pattern recognition with an artificial neural network. Med Phys
22(10):1555–1567

24. Gulcehre C (2016) Deep Learning Software Links. http://deeplearning.net/software_links/.
Accessed 18 May 2016

25. Shin H-C, Lu L, Kim L, Seff A, Yao J, Summers RM (2015) Interleaved text/image deep
mining on a very large-scale radiology database. In: The IEEE conference on computer vision
and pattern recognition (CVPR), pp 1090–1099

26. Shin H.-C, Roberts K, Lu L, Demner-FushmanD, Yao J, Summers RM (2016) Learning to read
chest X-rays: recurrent neural cascade model for automated image annotation. arXiv preprint
arXiv:1603.08486

27. WangX, Lu L, Shin H, KimL, BagheriM, Nogues I, Yao J, Summers RM (2017) Unsupervised
joint mining of deep features and image labels for large-scale radiology image annotation and
scene recognition. IEEE Winter Conference on Applications of Computer Vision (WACV)pp
998–1007. arXiv:1701.06599

28. Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, Kim L, Summers RM (2016) Improving
computer-aided detection using convolutional neural networks and random view aggregation.
IEEE TMI 35(5):1170–1181

29. Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016)
Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset
characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298

30. Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical
imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging
35(5):1153–1159

31. KrishnaR, ZhuY,GrothO, Johnson J, HataK,Kravitz J, Chen S, Kalantidis Y, Li L.-J, Shamma
DA (2016) Visual genome: connecting language and vision using crowdsourced dense image
annotations. arXiv preprint arXiv:1602.07332

32. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition.
arXiv:1512.03385

33. Hochreiter S, Schmidhuber J (1997) Long short-termmemory. Neural Comput 9(8):1735–1780
34. Jaderberg M, Simonyan K, Zisserman A (2015) Spatial transformer networks. In: Advances in

neural information processing systems pp 2008–2016
35. Ciompi F, de Hoop B, van Riel SJ, Chung K, Scholten ET, Oudkerk M, de Jong PA, Prokop

M, van Ginneken B (2015) Automatic classification of pulmonary peri-fissural nodules in
computed tomography using an ensemble of 2D views and a convolutional neural network
out-of-the-box. Med Image Anal 26(1):195–202

36. Anavi Y, Kogan I, Gelbart E, Geva O, Greenspan H (2015) A comparative study for chest
radiograph image retrieval using binary, texture and deep learning classification. In: 2015
37th annual international conference of the IEEE engineering in medicine and biology society
(EMBC), pp 2940–2943

37. Roth HR, Lu L, Farag A, Shin H-C, Liu J, Turkbey EB, Summers RM (2015) DeepOrgan:
multi-level deep convolutional networks for automated pancreas segmentation. In: Navab N,
Hornegger J, Wells WM, Frangi AF (eds) Medical image computing and computer-assisted
intervention – MICCAI 2015, Part I, vol 9349. LNCS. Springer, Heidelberg, pp 556–564

38. Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M (2013) Deep feature learning
for knee cartilage segmentation using a triplanar convolutional neural network. Med Image
Comput Comput Assist Interv 16(Pt 2):246–253

http://deeplearning.net/software_links/
http://arxiv.org/abs/1603.08486
http://arxiv.org/abs/1701.06599
http://arxiv.org/abs/1602.07332
http://arxiv.org/abs/1512.03385


10 R.M. Summers

39. Grand challenges in biomedical image analysis. http://grand-challenge.org/. Accessed 18May
2016

40. VISCERAL. http://www.visceral.eu/. Accessed 14 Dec 2015
41. Roth HR, Summers RM (2015) CT lymph nodes. https://wiki.cancerimagingarchive.net/

display/Public/CT+Lymph+Nodes. Accessed 14 Dec 2015
42. Roth HR, Farag A, Turkbey E.B, Lu L, Liu J, Summers RM (2016) Data from Pancreas-CT.

The cancer imaging archive. https://wiki.cancerimagingarchive.net/display/Public/Pancreas-
CT. Accessed 18 May 2016

43. Nguyen TB, Wang SJ, Anugu V, Rose N, McKenna M, Petrick N, Burns JE, Summers RM
(2012) Distributed human intelligence for colonic polyp classification in computer-aided detec-
tion for CT colonography. Radiology 262(3):824–833

44. McKenna MT, Wang S, Nguyen TB, Burns JE, Petrick N, Summers RM (2012) Strategies for
improved interpretation of computer-aided detections for CT colonography utilizing distributed
human intelligence. Med Image Anal 16(6):1280–1292

45. Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N (2016) AggNet: deep
learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans Med
Imaging 35(5):1313–1321

46. Summers RM (21 April 2016) Progress in fully automated abdominal CT interpretation. AJR
Am J Roentgenol, 1–13

http://grand-challenge.org/
http://www.visceral.eu/
https://wiki.cancerimagingarchive.net/display/Public/CT+Lymph+Nodes
https://wiki.cancerimagingarchive.net/display/Public/CT+Lymph+Nodes
https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT


Chapter 2
Review of Deep Learning Methods
in Mammography, Cardiovascular,
and Microscopy Image Analysis

Gustavo Carneiro, Yefeng Zheng, Fuyong Xing and Lin Yang

Abstract Computerized algorithms and solutions in processing and diagnosis
mammography X-ray, cardiovascular CT/MRI scans, and microscopy image play an
important role in disease detection and computer-aided decision-making. Machine
learning techniques have powered many aspects in medical investigations and clini-
cal practice. Recently, deep learning is emerging a leading machine learning tool in
computer vision and begins attracting considerable attentions in medical imaging. In
this chapter, we provide a snapshot of this fast growing field specifically for mam-
mography, cardiovascular, and microscopy image analysis. We briefly explain the
popular deep neural networks and summarize current deep learning achievements in
various tasks such as detection, segmentation, and classification in these heteroge-
neous imaging modalities. In addition, we discuss the challenges and the potential
future trends for ongoing work.

2.1 Introduction on Deep Learning Methods
in Mammography

Breast cancer is one of the most common types of cancer affecting the lives of
women worldwide. Recent statistical data published by the World Health Organisa-
tion (WHO) estimates that 23% of cancer-related cases and 14% of cancer-related
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deaths among women are due to breast cancer [1]. The most effective tool to reduce
the burden associated with breast cancer consists of early detection in asymptomatic
women via breast cancer screening programs [2], which commonly use mammog-
raphy for breast imaging. Breast screening using mammography comprises several
steps, which include the detection and analysis of lesions, such as masses and calcifi-
cations, that are used in order to estimate the risk that the patient is developing breast
cancer. In clinical settings, this analysis is for the most part a manual process, which
is susceptible to the subjective assessment of a radiologist, resulting in a potentially
large variability in the final estimation. The effectiveness of this manual process can
be assessed by recent studies that show that this manual analysis has a sensitivity of
84% and a specificity of 91% [3]. Other studies show evidence that a second reading
of the same mammogram either from radiologists or from computer-aided diagnosis
(CAD) systems can improve this performance [3]. Therefore, given the potential
impact that second reading CAD systems can have in breast screening programs,
there is a great deal of interest in the development of such systems.

2.2 Deep Learning Methods in Mammography

A CAD system that can analyze breast lesions from mammograms usually com-
prises three steps [3]: (1) lesion detection, (2) lesion segmentation, and (3) lesion
classification. The main challenges involved in these steps are related to the low
signal-to-noise ratio present in the imaging of the lesion, and the lack of a consistent
location, shape, and appearance of lesions [4, 5]. Current methodologies for lesion
detection involve the identification of a large number of candidate regions, usually
based on the use of traditional filters, such as morphological operators or difference
of Gaussians [6–13]. These candidates are then processed by a second stage that
aims at removing false positives using machine learning approaches (e.g., region
classifier) [6–13]. The main challenges faced by lesion detection methods are that
they may generate a large number of false positives, while missing a good proportion
of true positives [4]; in addition, another issue is the poor alignment of the detected
lesion in terms of translation and scale within the candidate regions—this issue has
negative consequences for the subsequent lesion segmentation that depends on a rel-
atively precise alignment. Lesion segmentation is then addressed with global/local
energy minimisation models on a continuous or discrete space [14–16]. The major
roadblock faced by thesemethods is the limited availability of annotated datasets that
can be used in the training of the segmentation models. This is a particularly impor-
tant problem because, differently from the detection and classification of lesions,
the segmentation of lesions is not a common task performed by radiologists, which
imposes strong limitations in the annotation process and, as a consequence, in the
availability of annotated datasets. In fact, the main reason behind the need for a
lesion segmentation is the assumption that the lesion shape is an important feature in
the final stage of the analysis: lesion classification. This final stage usually involves
the extraction of manually or automatically designed features from the lesion image
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and shape and the use of those features with traditional machine learning classi-
fiers [17–19]. In this last stage, the main limitation is with respect to the features
being extracted for the classification because these features are usually hand-crafted,
which cannot guarantee optimality for this classification stage.

The successful use and development of deep learning methods in computer vision
problems (i.e., classification and segmentation) [20–24] have motivated the medical
image analysis community to investigate the applicability of suchmethods inmedical
imaging segmentation and classification problems. Compared to the more traditional
methods presented above (for the problem of mammogram analysis), deep learning
methods offer the following clear advantages: automated learning of features esti-
mated based on specific detection/segmentation/classification objective functions;
opportunity to build complete “end-to-end” systems that take an image, detect, seg-
ment, and classify visual objects (e.g., breast lesion) using a single model and a
unified training process. However, the main challenge faced by deep learning meth-
ods is the need for large annotated training sets given the scale of the parameter
space, usually in the order of 106 parameters. This problem is particularly important
in medical image analysis applications, where annotated training sets rarely have
more than a few thousand samples. Therefore, a great deal of research is focused on
the adaptation of deep learning methods to medical image analysis applications that
contain relatively small annotated training sets.

There has been an increasing interest in the development of mammogram analy-
sis methodologies based on deep learning. For instance, the problem of breast mass
segmentation has been addressed with the use of a structured output model, where
several potential functions are based on deep learning models [25–27]. The assump-
tion here is that deep learning models alone cannot produce results that are accurate
enough due to the small training set size problemmentioned above, but if these mod-
els are combined with a structured output model that makes assumptions about the
appearance and shape of masses, then it is possible to have a breast mass segmenta-
tion that produces accurate results—in fact this method holds the best results in the
field in two publicly available datasets [19, 28]. Segmentation of breast tissue using
deep learning alone has been successfully implemented [29], but it is possible that
a similar structured output model could improve even more the accuracy obtained.
Dhungel et al. [30] also worked on a breast mass detection methodology that con-
sists of a cascade of classifiers based on the Region Convolutional Neural Network
(R-CNN) [23] approach. The interesting part is that the candidate regions produced
by the R-CNN contain too many false positives, so the authors had to include an
additional stage based on a classifier to eliminate those false positives. Alternatively,
Ertosun and Rubin [31] propose a deep learning-based mass detection method con-
sisting of a cascade of deep learning models trained with DDSM [28]—the main
reason that explains the succesful use of deep learning models here is the size of
DDSM, which contains thousands of annotated mammograms.

The classification of lesions using deep learning [32–34] has also been suc-
cessfully implemented in its simplest form: as a simple lesion classifier. Carneiro
et al. [35] have proposed a system that can classify the unregistered two views of a
mammography exam (cranial–caudal and mediolateral–oblique) and their respective
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segmented lesions and produce a classification of the whole exam. The importance
of this work lies in its ability to process multi-modal inputs (images and segmenta-
tion maps) that are not registered, in its way of performing transfer learning from
computer vision datasets to medical image analysis datasets, and also in its capa-
bility of producing high-level classification directly from mammograms. A similar
high-level classification using deep learning estimates the risk of developing breast
cancer by scoring breast density and texture [36, 37]. Another type of high-level
classification is the method proposed by Qiu et al. [38] that assesses the short-term
risk of developing breast cancer from a normal mammogram.

2.3 Summary on Deep Learning Methods
in Mammography

Based on the recent results presented above, it is clear that the use of deep learn-
ing is allowing accuracy improvements in terms of mass detection, segmentation,
and classification. All the studies above have been able to mitigate the training set
size issue with the use of regularization techniques or the combination of different
approaches that can compensate the relatively poor generalization of deep learning
methods trained with small annotated training sets. More importantly, deep learning
is also allowing the implementation of new applications that are more focused on
high-level classifications that do not depend on lesion segmentation. The annotation
for this higher level tasks is readily available from clinical datasets, which generally
contain millions of cases that can be used to train deep learning models in a more
robust manner. These new applications are introducing a paradigm shift in how the
field analyzes mammograms: from the classical three-stage process (detection, seg-
mentation, and classification of lesions) trained with small annotated datasets to a
one-stage process consisting of lesion detection and classification trained with large
annotated datasets.

2.4 Introduction on Deep Learning for Cardiological
Image Analysis

Cardiovascular disease is the number one cause of death in the developed countries
and it claims more lives each year than the next seven leading causes of death com-
bined [39]. The costs for addressing cardiovascular disease in the USA will triple
by 2030, from 273 billion to 818 billion (in 2008 dollars) [40]. With the capabil-
ity of generating images of a patient’s inside body non-invasively, medical imaging
is ubiquitously present in the current clinical practice. Various imaging modalities,
such as computed tomography (CT),magnetic resonance imaging (MRI), ultrasound,
and nuclear imaging, are widely available in clinical practice to generate images
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of the heart, and different imaging modalities meet different clinical requirements.
For example, ultrasound is most widely used for cardiac function analysis (i.e., the
pumping of a cardiac chamber) due to its low cost and free of radiation dose; nuclear
imaging and MRI are used for myocardial perfusion imaging to measure viability
of the myocardium; CT reveals the most detailed cardiac anatomical structures and
is routinely used for coronary artery imaging; while fluoroscopy/angiography is the
workhorse imaging modality for cardiac interventions.

Physicians review these images to determine the health of the heart and to diagnose
disease. Due to the large amount of information captured by the images, it is time
consuming for physicians to identify the target anatomy and to perform measure-
ments and quantification. For example, many 3D measurements (such as the volume
of a heart chamber, the heart ejection fraction, the thickness and the thickening of
the myocardium, or the strain and torsion of the myocardium) are very tedious to
calculate without help from an intelligent post-processing software system. Various
automatic or semi-automatic cardiac image analysis systems have been developed
and demonstrated to reduce the exam time (thereby increase the patient throughput),
increase consistency and reproducibility of the exam, and boost diagnosis accuracy
of physicians.

Cardiovascular structures are composed of the heart (e.g., cardiac chambers and
valves) and vessels (e.g., arteries and veins). A typical cardiac image analysis pipeline
is composed of the following tasks: detection, segmentation, motion tracking, quan-
tification, and disease diagnosis. For an anatomical structure, detection means deter-
mining the center, orientation, and size of the anatomy; while, for a vessel, it often
means extraction of the centerline since a vessel has a tubular shape [41]. Early work
on cardiac image analysis usually used non-learning-based data-driven approaches,
for example, fromsimple thresholding and region growing tomore advancedmethods
(like active contours, level sets, graph cuts, and random walker) for image segmen-
tation. In the past decade, machine learning has penetrated into almost all steps of
the cardiac image analysis pipeline [42, 43]. The success of a machine learning-
based approach is often determined by the effectiveness and efficiency of the image
features.

The recent advance of deep learning demonstrates that a deep neural network can
automatically learn hierarchical image representations, which often outperform the
most effective hand-crafted features developed after years of feature engineering.
Encouraged by the great success of deep learning on computer vision, researchers in
the medical imaging community quickly started to adapt deep learning for their own
tasks. The current applications of deep learning on cardiac image segmentation are
mainly focused on two topics: left/right ventricle segmentation [44–52] and retinal
vessel segmentation [53–60].Most of them areworking on 2D images as input; while
3D deep learning is still a challenging task. First, evaluating a deep network on a large
volumemay be too computationally expensive for a real clinical application. Second,
a network with a 3D patch as input requires more training data since a 3D patch
generates a much bigger input vector than a 2D patch. However, the medical imaging
community is often struggling with limited training samples (often in hundreds or
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thousands) due to the difficulty to generate and share patients’ images. Nevertheless,
we started to see a few promising attempts [61–63] to attack the challenging 3D deep
learning tasks.

2.5 Deep Learning-Based Methods for Heart Segmentation

Carneiro et al. [44] presented a method using a deep belief network (DBN) to detect
an oriented bounding box of the left ventricle (LV) on 2D ultrasound images of the
LV long-axis views. One advantage of the DBN is that it can be pre-trained layer by
layer using unlabeled data; therefore, good generalization capability can be achieved
with a small number of labeled training images. A 2D-oriented bounding box has five
pose parameters (two for translation, one for rotation, and two for anisotropic scal-
ing). Since an exhaustive searching in this five-dimensional pose parameter space
is time consuming, they proposed an efficient search strategy based on the first-
or second-order derivatives of the detection score, which accelerated the detection
speed by ten times. Furthermore, the DBN has also been applied to train a boundary
detector for segmentation refinement using an active shape model (ASM). The LV
detection/segmentation module can also be integrated in a particle filtering frame-
work to track the motion of the LV [44]. This work was later extended to segment
the right ventricle (RV) too [46]. In follow-up work [47], the DBN was applied to
segment the LV on short-axis cardiac MR images. Similarly, the LV bounding box is
detectedwith aDBN. Furthermore, anotherDBNwas trained to generate a pixel-wise
probability map of the LV. Instead of using the ASM as [44], the level set method is
applied on the probability map to generate the final segmentation.

Avendi et al. [50] proposed a convolutional network (CNN)-based method to
detect an LV bounding box on a short-axis cardiac MR image. Stacked autoencoder
was then applied to generate an initial segmentation of the LV, which was used to
initialize the level set function. Their level set function combines a length-based
energy term, a region-based term, and the prior shape. Instead of running level set
on the probability map as [44], it was applied on the initial image.

Different to [44, 50], Chen et al. proposed to use a fully convolutional network
(FCN) to segment the LV on 2D long-axis ultrasound images [52]. In [44, 50],
deep learning was applied in one or two steps of the whole image analysis pipeline.
Differently, the FCN can be trained end-to-end without any preprocessing or post-
processing. It can generate a segmentation label for each pixel efficiently since the
convolution operation is applied once on the whole image. Due to the limited training
samples, a deep network often suffers from the over-fitting issue. There are multiple
canonical LV long-axis views, namely apical two-chamber (A2C), three-chamber
(A3C), four-chamber (A4C), and five-chamber (A5C) views. Instead of training an
LV segmentation network for each task, the problem was formulated as a multi-task
learning,where all tasks shared the low-level image representations.At the high level,
each taskhad its ownclassification layers. The segmentationwas refined iteratively by
focusingon theLVregiondetectedby the previous iteration.Experiments showed that
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the iterative cross-domain deep learning approach outperformed alternative single-
domain deep learning, especially for tasks with limited training samples.

Zhen et al. [49] presented an interesting method for direct estimation of a ven-
tricular volume from images without performing segmentation at all. They proposed
a new convolutional deep belief network. A DBN is composed of stacked restricted
Boltzman machine (RBM), where each layer is fully connected to the previous layer.
Due to the full connectivity, the network has more parameters than a CNN; therefore
it is more prone to over-fit. In [49], the first RBM layer was replaced with a multi-
scale convolutional layer. The convolutional DBN was trained without supervision
on unlabeled data and the trained network was used as an image feature extractor.
A random forest regressor was then trained on the DBN image features to directly
output an estimate of the LV area on each MR slice. Summing LV areas from all
images results in the final volume estimate.

Due to the difficulty of 3D deep learning, all the above-reviewed methods work
on 2D images, even though the input may be 3D. A 3D volume contains much
richer information than a 2D image. Therefore, an algorithm leveraging 3D image
informationmay bemore robust. For heart segmentation, we only found one example
using 3D deep learning, namely marginal space deep learning (MSDL) [62]. MSDL
is an extension of marginal space learning (MSL), which uses hand-crafted features
(i.e., Haar-like features and steerable features) and a boosting classifier. Here, the
hand-crafted features are replaced with automatically learned sparse features and a
deep network is exploited as the classifier. In [62], Ghesu et al. demonstrated the
efficiency and robustness of MSDL on aortic valve detection and segmentation in
3D ultrasound volumes. Without using GPU, the aortic valve can be successfully
segmented in less than one second with higher accuracy than the original MSL.
MSDL is a generic approach and it can be easily re-trained to detect/segment other
anatomies in a 3D volume.

2.6 Deep Learning-Based Methods for Vessel Segmentation

Early work on vessel segmentation used various hand-crafted vesselness measure-
ments to distinguish the tubular structure from background [64]. Recently, we saw
more and more work to automatically learn the most effective application-specific
vesselnessmeasurement froman expert-annotated dataset [65, 66].Deep learning has
potential to replace those classifiers to achieve better segmentation accuracy. How-
ever, the current applications of deep learning on vessel segmentation are mainly
focused on retinal vessels in fundus images [53–60]. We only found limited work on
other vessels, e.g., the coronary artery [62, 63] and carotid artery [61]. We suspect
that the main reason is that a fundus image is 2D; therefore, it is much easier to
apply an off-the-shelf deep learning package on this application. Other vessels in a
3D volume (e.g., CT or MR) are tortuous and we have to take the 3D context for a
reliable segmentation. With the recent development of 3D deep learning, we expect
to see more applications of deep learning on other vessels too.
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In most work, pixel-wise classification is performed by a trained deep network to
directly output the segmentation mask. For example, Wang et al. [53] applied a CNN
to retinal vessel segmentation. To further improve the accuracy, they also used the
CNN as a trainable feature extractor: activations of the network at different layers
are taken as features to train random forests (RF). State-of-the-art performance has
been achieved by an ensemble of RF classifiers on the public DRIVE and STARE
datasets. Li et al. [54] presented another method based on an FCN with three lay-
ers. They formulated the task as cross-modality data transformation from the input
image to vessel map. The first hidden layer was pre-trained using denoising autoen-
coder, while the other two hidden layers were randomly initialized. Different to [53]
(which generates a label of the central pixel of an input patch), Li et al. approach
outputs labels for all pixels in the patch. Since overlapping patches are extracted
during classification, a pixel appears on multiple patches. The final label of the pixel
is determined by majority voting to improve the classification accuracy. Fu et al. [60]
adapted a holistically nested edge detection (HED) method for retinal vessel seg-
mentation. HED is motivated by the FCN and deeply supervised network, where the
outputs of intermediate layers are also directly connected to the final classification
layer. After getting the the vessel probability map using HED, a conditional random
field is applied to further improve the segmentation accuracy.

Since pixel-wise classification is time consuming, Wu et al. [58] proposed to
combine pixel classification and vessel tracking to accelerate the segmentation speed.
Starting from a seed point, a vessel is traced in the generalized particle filtering frame-
work (which is a popular vessel tracing approach), while theweight of each particle is
set by the CNN classification score at the corresponding position. Since CNN classi-
fication is invoked only on a suspected vessel region during tracing, the segmentation
speed was accelerated by a fact of two. Besides retinal vessel segmentation, deep
learning has also been exploited to detect retinal vessel microaneurysms [56] and
diabetic retinopathy [57] from a fundus image.

Coronary artery analysis is the killer application of cardiac CT. Due to the tiny
size of a coronary artery, CT is currently the most widely used noninvasive imaging
modality for coronary artery disease diagnosis due to its superior image resolution
(around 0.2–0.3mm for a state-of-the-art CT scanner). Even with a quite amount of
published work on coronary artery segmentation in the literature [64], we only found
onework using deep learning [62] for coronary artery centerline extraction. Coronary
centerline extraction is still challenging task. To achieve a high detection sensitivity,
false positives are unavoidable. The false positives mainly happen on coronary veins
or other tubular structures; therefore, traditional methods cannot reliably distinguish
false positives from true coronary arteries. In [41], aCNN is exploited to train a classi-
fier which can distinguish leakages from good centerlines. Since the initial centerline
is given, the image information can be serialized as a 1D signal along the centerline.
Here, the input channels consist of various profiles sampled along the vessel such
as vessel scale, image intensity, centerline curvature, tubularity, intensity, and gradi-
ent statistics (mean, standard deviation) along and inside a cross-sectional circular
boundary, and distance to themost proximal point in the branch. Deep learning-based
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branch pruning increases the specificity from 50 to 90% with negligible degradation
of sensitivity.

Similar to heart segmentation reviewed in Sect. 2.5, almost all previous work on
deep learning for vessel segmentation was focused on 2D. Recently, Zheng et al. [61]
proposed an efficient 3D deep learning method for vascular landmark detection. A
two-step approach is exploited for efficient detection. A shallow network (with one
hidden layer) is used for the initial testing of all voxels to obtain a small number of
promising candidates, followed by more accurate classification with a deep network.
In addition, they proposed several techniques, i.e., separable filter decomposition
and network sparsification, to speed up the evaluation of a network. To mitigate the
over-fitting issue, thereby increasing detection robustness, small 3D patches from a
multi-resolution image pyramid are extracted as network input. The deeply learned
image features are further combined with Haar-like features to increase the detection
accuracy. The proposed method has been quantitatively evaluated for carotid artery
bifurcation detection on a head–neck CT dataset. Compared to the state-of-the-art,
the mean error is reduced by more than half, from 5.97 to 2.64mm, with a detection
speed of less than 1 s/volume without using GPU.

Wolterink et al. [63] presented an interesting method using a 2.5D or 3D CNN
for coronary calcium scoring in CT angiography. Normally, a standard cardiac CT
protocol includes a non-contrasted CT scan for coronary calcium scoring [67] and
a contracted scan (called CT angiography) for coronary artery analysis. If calcium
scoring can be performed on a contrasted scan, the dedicated non-contrasted scan
can be removed from the protocol to save radiation dose to a patient. However, cal-
cium scoring on CT angiography is more challenging due to the reduced intensity
gap between contrasted coronary lumen and calcium. In this work voxel-wise clas-
sification is performed to identify calcified coronary plaques. For each voxel, three
orthogonal 2D patches (the 2.5D approach) or a full 3D patch are used as input. A
CNN is trained to distinguish coronary calcium from other tissues.

2.7 Introduction to Microscopy Image Analysis

Microscopy image analysis can provide support for improved characterization of var-
ious diseases such as breast cancer, lung cancer, brain tumor, etc. Therefore, it plays a
critical role in computer-aided diagnosis in clinical practice and pathology research.
Due to the large amount of imagedata,which continue to increase nowadays, it is inef-
ficient or even impossible to manually evaluate the data. Computerized methods can
significantly improve the efficiency and the objectiveness, thereby attracting a great
deal of attention. In particular, machine learning techniques have been widely and
successfully applied to medical imaging and biology research [68, 69]. Compared
with non-learning or knowledge based methods that might not precisely translate
knowledge into rules, machine learning acquires their own knowledge from data
representations. However, conventional machine learning techniques usually do not
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directly deal with raw data but heavily rely on the data representations, which require
considerable domain expertise and sophisticated engineering [70].

Deep learning is one type of representation learning methods that directly process
raw data (e.g., RGB images) and automatically learns the representations, which can
be applied to detection, segmentation, or classification tasks. Compared with hand-
crafted features, learned representations require less human intervention and provide
much better performance [71]. Nowadays, deep learning techniques have made great
advantages in artificial intelligence, and successfully applied to computer vision,
natural language processing, image understanding, medical imaging, computational
biology, etc. [70, 72]. By automatically discovering hidden data structures, it has
beaten records in several computer vision tasks such as image classification [73] and
speech recognition [74], and won multiple competitions in medical image analysis
such as brain image segmentation [75] and mitosis detection [76]. Meanwhile, it has
provided very promising performance in other medical applications [77, 78].

Recently, deep learning is emerging as a powerful tool and will continue to
attract considerable interests in microscopy image analysis including nucleus detec-
tion, cell segmentation, extraction of regions of interest (ROIs), image classifica-
tion, etc. A very popular deep architecture is convolutional neural networks (CNNs)
[70, 79], which have obtained great success in various tasks in both computer vision
[73, 80–82] andmedical image analysis [83]. Given images and corresponding anno-
tations (or labels), a CNN model is learned to generate hierarchical data represen-
tations, which can be used for robust target classification [84]. On the other hand,
unsupervised learning can also be applied to neural networks for representation
learning [85–87]. Autoencoder is an unsupervised neural network commonly used
in microscopy image analysis, which has provided encouraging performance. One
of significant benefits of unsupervised feature learning is that it does not require
expensive human annotations, which are not easy to achieve in medical computing.

There exist a number of books and reviews explaining deep learning princi-
ples, historical survey, and applications in various research areas. Schmidhuber [88]
presents a historical overview of deep artificial neural networks by summarizing rele-
vantwork and tracing back the origins of deep learning ideas. LeCun et al. [70]mainly
review supervised learning in deep neural networks, especially CNNs and recurrent
neural networks, and their successful applications in object detection, recognition,
and nature language processing. The book [71] explains several established deep
learning algorithms and provides speculative ideas for future research, the mono-
graph [87] surveys general deep learning techniques and their applications (mainly)
in speech processing and computer vision, and the paper [83] reviews several recent
deep learning applications in medical image computing (very few in microscopy
imaging). Due to the emergence of deep learning and its impacts in a wide range of
disciplines, there exist many other documents introducing deep learning or relevant
concepts [74, 89–92].

In this chapter, we focus on deep learning in microscopy image analysis, which
covers various topics such as nucleus/cell/neuron detection, segmentation, and classi-
fication.Comparedwith other imagingmodalities (e.g.,magnetic resonance imaging,
computed tomography, and ultrasound), microscopy images exhibit unique com-
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(a) Breast cancer (b) Muscle

(c) Pancreatic neuroendocrine Tumor

Fig. 2.1 Sample images of breast cancer, muscle, and pancreatic neuroendocrine tumor using dif-
ferent tissues and stain preparations. Hematoxylin and eosin (H&E) staining is used for the first two,
while immunohistochemical staining is for the last. These image exhibit significant challenges such
as background clutter, touching nuclei, and weak nucleus boundaries, for automated nucleus/cell
detection and segmentation

plex characteristics. In digital histopathology, image data are usually generated
with a certain chemistry staining and presents significant challenges including back-
ground clutter, inhomogeneous intensity, touching or overlapping nuclei/cells, etc.
[72, 93–96], as shown in Fig. 2.1. We will not review all deep learning techniques in
this chapter, but instead introduce and interpret those deep learning-based methods
specifically designed for microscopy image analysis. We will explain the principles
of those approaches and discuss their advantages and disadvantages, and finally
conclude with some potential directions for future research at deep learning in
microscopy image analysis.

2.8 Deep Learning Methods

Deep learning is a kind of machine learning methods involving multi-level repre-
sentation learning, which starts from raw data input and gradually moves to more
abstract levels via nonlinear transformations. With enough training data and suffi-
ciently deep architectures, neural networks can learn very complex functions and
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discover intricate structures in the data [70]. One significant advantage is that deep
learning does not require much engineering work, which is not easy to achieve in
some specific domains. Deep learning has been successfully applied to pattern recog-
nition and prediction, and outperforms traditional machine learningmethods inmany
domains including medical image computing [83]. More specifically, deep learning
exhibits its great power in microscopy image analysis. To our knowledge, up to now
there are mainly four commonly used deep networks in microscopy image analysis:
CNNs, fully convolutional networks (FCNs), recurrent neural networks (RNNs), and
stacked autoencoders (SAEs). More details related to optimization and algorithms
can be found in [71, 89].

2.9 Microscopy Image Analysis Applications

In microscopy image analysis, deep neural networks are often used as classifiers
or feature extractors to resolve various tasks in microscopy image analysis, such
as target detection, segmentation, and classification. For the usage of a classifier, a
deep neural network assigns a hard or soft label to each pixel of the input image
in pixel-wise classification or a single label to the entire input image in image-level
classification. CNNs are the most popular networks in this type of applications and
their last layers are usually chosen as a multi-way softmax function corresponding to
the number of target classes. For the usage of a feature extractor, a network generates
a transformed representation of each input image, which can be applied to subsequent
data analysis, such as feature selection or target classification. In supervised learning,
usually the representation before the last layer of a CNN is extracted, but those from
middle layers or even lower layers are also helpful to object recognition [111, 112].
To deal with limited data in medical imaging, it might be necessary to apply pretrain
and fine-tune to the neural network. Tables2.1 and 2.2 summarize the current deep
learning achievements in microscopy image analysis.

2.10 Discussions and Conclusion on Deep Learning
for Microscopy Image Analysis

Deep learning is a rapidly growingfield and is emerging as a leadingmachine learning
tool in computer vision and image analysis. It has exhibited great power in medical
image computing with producing improved accuracy of detection, segmentation, or
recognition tasks [83].Most of works presented in this paper use CNNs or one type of
the variants, FCNs, to solve problems in microscopy image analysis. Our conjecture
is that CNNs provide consistent improved performance across a large variety of
computer vision tasks and thus it might be straightforward to apply convolutional
networks tomicroscopy image computing.More recently, FCNshave attracted a great
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Table 2.1 Summary of current deep learning achievements in microscopy image analysis.
SSAE= stacked sparse autoencoder, P=precision, R= recall, F1 = F1-score, AUC=area under
curve, and ROC=Receiver operating characteristic

Network Usage Topic Data Evaluation metric

[97] CNN Pixel
classification

Mitosis detection Breast cancer
images

P, R, F1

[98] CNN Pixel
classification

Nucleus
detection

Brain tumor,
NET, breast
cancer images

P, R, F1

[99] CNN Pixel
classification

Cell detection Breast cancer
images

P, R

[100] CNN Pixel
classification,
feature extraction

Neutrophils
identification

Human
squamous cell
carcinoma
images

P, R

[101] CNN Pixel
classification

Cell detection Larval zebrafish
brain images

P, R, F1

[102] CNN Patch
classification

Mitosis detection NIH3T3 scratch
assay culture
images

Sensitivity,
specificity, F1,
AUC

[103] CNN Patch scoring Cell detection NET, lung cancer
images

P, R, F1

[104] CNN Regression Cell, nucleus
detection

Breast cancer,
NET, HeLa
images

P, R, F1

[105] CNN Regression Nucleus
detection,
classification

Colon cancer
images

P, R, F1, AUC

[106] FCN Regression Cell counting Retinal pigment
epithelial and
precursor T Cell
lymphoblastic
lymphoma
images

Counting
difference

[107] CNN Voting Nucleus
detection

NET images P, R, F1

[108] CNN Pixel
classification

Mitosis detection Breast cancer
images

P, R, F1, AUC,
ROC, relative
changes

[109] CNN Pixel
classification

Hemorrhage
detection

Color fundus
images

ROC

[110] SSAE Feature
extraction

Nucleus
detection

Breast cancer
images

P, R, F1, average
precision
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Table 2.2 Summary of current deep learning achievements in microscopy image analysis.
FCNN= fully connected neural network, DSC=dice similarity coefficient, PPV=positive pre-
dictive value, NPV=negative predictive value, IOU= intersection over union, MCA=mean class
accuracy, ACA=average classification accuracy, and BAC=balanced accuracy

Network Usage Topic Data Evaluation metric

[113] CNN Pixel clas-
sification

Neuronal
membrane
segmentation

Ventral nerve cord
images of a
Drosophila larva

Rand, warping,
pixel errors

[114] CNN Pixel clas-
sification

Neuronal
membrane
segmentation

Ventral nerve cord
images of a
Drosophila larva

Rand, warping,
pixel errors

[115] CNN Pixel clas-
sification

Nucleus, cell
segmentation

Developing C.
elegans embryos
images

Pixel-wise error
rate

[116] CNN Pixel clas-
sification

Nucleus, cytoplasm
segmentation

Cervical images DSC, PPV, NPV,
overlapping ratio,
pixel error

[117] FCN Pixel clas-
sification

Neuronal
membrane and cell
segmentation

Ventral nerve cord
images of a
Drosophila larva,
Glioblastoma-
astrocytoma U373
cell and HeLa cell
images

Rand, warping,
pixel errors, IOU

[118] FCN Pixel clas-
sification

Neuronal
membrane
segmentation

Ventral nerve cord
images of a
Drosophila larva

Rand, warping,
pixel errors

[119] RNN Pixel clas-
sification

Neuronal
membrane
segmentation

Ventral nerve cord
images of a
Drosophila larva

Rand, warping,
pixel errors

[120] SDAE Patch
reconsti-
tution

Nucleus
segmentation

Brain tumor, lung
cancer images

P, R, F1

[121] CNN Image
classifica-
tion

Image classification Human Epithelial-2
(HEp-2) cell
images

MCA, ACA

[122] FCNN Cell clas-
sification

Cell classification Optical phase and
loss images

ROC

[123] CNN Feature
extraction

Image classification Glioblastoma
multiforme and low
grade glioma
images

F1, accuracy

[124] CNN Feature
extraction

Image classification Colon cancer
images

Accuracy

(continued)



2 Review of Deep Learning Methods … 25

Table 2.2 (continued)

Network Usage Topic Data Evaluation metric

[125] Autoencoder Feature
extraction

Image
classification

Basal-cell
carcinoma cancer
images

Accuracy, P, R,
F1, specificity,
BAC

[126] SPSD Feature
extraction

Image
classification

Glioblastoma
multiforme and
kidney clear cell
carcinoma,
tumorigenic breast
cancer, and
control cell line
images

Accuracy

deal of interest due to the end-to-end training design and efficient fully convolutional
inference for image semantic segmentation. FCNs begin to enter in microscopy
imaging and are expected to become more popular in the future.

Model training in deep learning is usually computationally expensive and often
needs programming with graphics processing units (GPUs) to reduce running time.
There are several publicly available frameworks supporting deep learning. Caffe
[127] is mainly written with C++ programming languages and supports command
line, Python, and MATLAB interfaces. It uses Google protocol buffers to serialize
data and has powered many aspects of the communities of computer vision and
medical imaging. Theano [128] is a Python library that allows efficient definition,
optimization, and evaluation of mathematical expressions. It is very flexible and has
supported many scientific investigations. TensorFlow [129] uses data flow graphs
for numerical computation and allows automatic differentiation, while Torch [130]
is developed with Lua language and it is flexible as well. Another commonly used
deep learning library in medical imaging is MatConvnet [131], which is a Matlab
toolbox for CNNs and FCNs. It is simple and easy to use. There exist some other
libraries supporting deep learning, and more information can be found in [132, 133].

Although unsupervised deep learning is applied to microscopy image analysis,
the majority of the works are using supervised learning. However, deep learning with
supervision usually require a large set of annotated training data, which might be
prohibitively expensive in the medical domain [83]. One way to address this problem
is to view a pre-trained model that is learned with other datasets, either natural or
medical images, as a fixed feature extractor, and use generated features to train a
target classifier for pixel-wise or image-level prediction. If the target data size is
sufficiently large, it might be beneficial to initialize the network with a pre-trained
model and then fine-tune it toward the target task. The initialization can be conducted
in the first several or all layers depending on the data size and properties. On the other
hand, semi-supervised or unsupervised learning might be a potential alternative if
annotated training data are not sufficient or unavailable.
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Another potential challenge of applying deep learning to microscopy image com-
puting is to improve the network scalability, thereby adapting to high resolution
images. In pathology imaging informatics, usually it is necessary to conduct quan-
titative analysis on whole-slide images (WSI) [134] instead of manually selected
regions, since it can reduce biases of observers and provide complete information
that is helpful to decision-making in diagnosis. The resolution of aWSI image is often
over 50000× 50000, and has tens of thousands or millions of object of interest (e.g.,
nuclei or cells). Currently, pixel-wise prediction with CNNs is mainly conducted in
a sliding-window manner, and clearly this will be extremely computationally expen-
sive when dealing with WSI images. FCNs are designed for efficient inference and
might be a good choice for computation improvement.

This paper provides a survey of deep learning in microscopy image analysis,
which is a fast evolving field. Specifically, it briefly introduces the popular deep
neural networks in the domain, summarizes current research efforts, and explains
the challenges as well as the potential future trends. Deep learning has benefitted
the microscopy imaging domain and we expect that it will play a more important
role in the future. New learning algorithms in artificial intelligence can accelerate the
process of transferring deep learning techniques from natural toward medical images
and enhance its achievements.
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Chapter 3
Efficient False Positive Reduction
in Computer-Aided Detection Using
Convolutional Neural Networks
and Random View Aggregation

Holger R. Roth, Le Lu, Jiamin Liu, Jianhua Yao, Ari Seff,
Kevin Cherry, Lauren Kim and Ronald M. Summers

Abstract In clinical practice and medical imaging research, automated computer-
aided detection (CADe) is an important tool. While many methods can achieve high
sensitivities, they typically suffer from high false positives (FP) per patient. In this
study, we describe a two-stage coarse-to-fine approach using CADe candidate gen-
eration systems that operate at high sensitivity rates (close to 100% recall). In a
second stage, we reduce false positive numbers using state-of-the-art machine learn-
ing methods, namely deep convolutional neural networks (ConvNet). The ConvNets
are trained to differentiate hard false positives from true-positives utilizing a set of 2D
(two-dimensional) or 2.5D re-sampled views comprising random translations, rota-
tions, and multi-scale observations around a candidate’s center coordinate. During
the test phase, we apply the ConvNets on unseen patient data and aggregate all prob-
ability scores for lesions (or pathology). We found that this second stage is a highly
selective classifier that is able to reject difficult false positives while retaining good
sensitivity rates. The method was evaluated on three data sets (sclerotic metastases,
lymph nodes, colonic polyps) with varying numbers patients (59, 176, and 1,186,
respectively). Experiments show that the method is able to generalize to different
applications and increasing data set sizes. Marked improvements are observed in all
cases: sensitivities increased from 57 to 70%, from 43 to 77% and from 58 to 75%
for sclerotic metastases, lymph nodes and colonic polyps, respectively, at low FP
rates per patient (3 FPs/patient).
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3.1 Introduction

Cancer is a leading cause of death in the world [1]. Timely detection of abnormalities
and precursors of cancer can help fighting the disease. Accurate computer-aided
detection (CADe) can help support the radiological diagnostic process. CADe can
be used in determining the stage of a patient’s disease, potentially enhancing the
treatment regimens [2]. For this purpose, computed tomography (CT), is often applied
as a screening and staging modality that can visualize abnormal anatomy, including
tumors and associated metastases. Still, diagnosis of CT scans is primarily done by
hand, involving a radiologist scrolling through often thousands of image slices per
patient. Today’s restrictions on radiologists’ time are prone to cause human errors
when performing this complex and sometimes tedious task. Here, CADe has great
potential to reduce radiologists’ clinical workload, serving as first or second readers
[3–5], ultimately improving the disease assessment.

While CADe has been an area of active research for the preceding decades, most
methods rely on pre-determined metrics, so called hand-crafted features. For exam-
ple, intensity statistics, histogram of oriented gradients (HoG) [6], scale-invariant
feature transform (SIFT) [7], Hessian based shape descriptors (such as blobness)
[8], and many others are applied with the hope that these features can help dif-
ferentiate normal from abnormal anatomy. They are typically computed on local
regions of interest (ROIs) and then used to train shallow classifiers like support
vector machines (SVM) or random forests. The process of finding suitable features
requires considerable engineering skills and efforts to generate CADe systems that
perform sufficiently. At present, only few examples of CADe have made it into the
clinic, e.g., [9–13]. In many cases, CADe methods suffer from low sensitivity and/or
specificity levels, and have not made the jump from academic research papers to
clinical practice.

In this paper, we present a method to improve existing CADe systems by in
hierarchical two-tiered approach that aims at high recalls together with reasonable
low FP rates per patient. This is achieved by efficiently integrating state-of-the-art
deep convolutional neural networks [14, 15] into CADe pipelines.

3.2 Related Work

The recent success of ConvNets in computer vision can be mainly attributed to
more accessible and affordable parallel computation, i.e., Graphical ProcessingUnits
(or GPUs) and the increase in large amounts of annotated training sets. This made
it feasible to train very deep ConvNets for recognition and classification [16, 17].
However, even modestly sized networks have been shown to increase the state-of-
the-art in many applications that relied on hand-crafted features [18–20]. This has
made ConvNets one of the work horses of in the field of “deep learning” [21, 22].

Shortly after the success of ConvNets in classifying natural images [14], they have
also shown substantial advancements in biomedical applications across different



3 Efficient False Positive Reduction in Computer-Aided Detection … 37

modalities, including electron microscopy (EM) images [23], digital pathology
[24, 25], MRI [26], and computed tomography (CT) [27–29].

In this study, we show that ConvNets can be an efficient second stage classifier in
CADe by employing random sets of 2D or 2.5D sampled views or observations. Ran-
dom 2D/2.5D image decomposition can be an universal representation for utilizing
ConvNets in CADe problems. The approach has also been shown to be applicable to
problems where each view is sampled under some problem-specific constraints, e.g.,
using the local orientation vessels [30]). ConvNet scores can be simply aggregated at
test time,making amore robust classifier.Here,we show that the proposed approach is
generalizable by validating three different datasets with different numbers of patients
and CADe applications. In all cases, we can report marked improvement compared
to the initial performance of the CADe systems: sensitivities improve from 57 to
70%, from 43 to 77% and 58 to 75% at 3 FPs per patient for sclerotic metastases [4],
lymph nodes [31, 32] and colonic polyps [10, 33], respectively. Our results indicate
that ConvNets can be applied for effective false positive pruning while maintaining
high sensitivity recalls in modern CADe systems.

3.2.1 Cascaded Classifiers in CADe

Cascaded classifiers for FP reduction have been proposed before and shown to be
a valid strategy for CADe system design. One strategy is to design post-processing
filters that can clean up candidates based on certain hand-crafted rules, such as for
the removal of 3D flexible tubes [34], ileo-cecal valve [35], or extra-colonic findings
[36] in CT colonography.

Alternatively, the classifiers can be retrained in a cascaded fashion using only
pre-filtered candidates with reasonable high detection scores. This however is often
not very effective and is not often employed in practice. A better strategy is to derive
new image features at the candidate locations in order to train new classifiers [6, 27,
37–39]. Since the search space has been already narrowed down by the candidate
generation step, more computationally expensive features can be extracted for the FP
reduction stage. The hope is that these new features can reveal information that was
omitted during candidate generation and hence arrive at a better final decision. We
follow this last approach in this paper and derive new “data-driven” image features
using deep ConvNets for classification.

3.3 Methods

3.3.1 Convolutional Neural Networks

Let us now introduce deep convolutional networks (ConvNets). As their name sug-
gest, ConvNets apply convolutional filters to compute image features that are useful
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for classification. The convolutional filter kernel elements are learned from the raw
image training data in a supervised fashion. This is important as it avoids the “hand-
crafting” of features for classification, while learning features that are useful for
the classification problem to be solved [22]. Examples of trained convolutional fil-
ter kernels and responses of the first layer are shown in Fig. 3.2. The ConvNet was
able to learn different kernel features that respond to certain texture pattern in the
image. These complex features are useful to capture the essential information that
is necessary to classify a ROI/VOI as TP or FP for the classification task at hand. A
data-driven approach of feature learning like this is a major advance over trying to
find suitable features by hand and has shown good performance on state-of-the-art
data sets [17].

Furthermore, convolutional layers can be stacked in order to allow for several
hierarchies of feature extraction. As shown in this study, similar configured ConvNet
architectures can be used to detect very different lesions or pathologies without the
need of manual feature design. An example of learned filter kernels from the first
convolutional layer is shown in Fig. 3.1.

In addition to convolutional layers, typical ConvNets possess max-pooling layers
that summarize feature activations across neighboring pixels (Fig. 3.2). This enables
the ConvNet to learn features that are more spatially invariant to the location of
objects within the input image. The last convolution layer is often fed into locally
connected layers that act similar to a convolutional layer but without weight sharing
[14]. Finally, the classification is achieved by fully connected neural network layers
that are often topped by a softmax layer that provides a probabilistic score for each
class. Intuitively, the ConvNet encodes the input image with increasing abstraction
as the features are propagated through the layers of the network, concluding with a
final abstract classification choice [21].

Popular methods to avoid overfitting during training are to design the fully con-
nected layers as “DropOut” [40, 41] or “DropConnect” [42] layers. They can act
as regularizers by preventing the co-adaptation of units in the neural network. In
this study, we employ a relatively modest ConvNet with two convolutional lay-
ers, two locally connected layers, and a fully connected layer with a final two-
way softmax layer for classification. Our experiments are based on the open-source

Fig. 3.1 A convolutional
neural network (ConvNet)
uses learned filter kernels to
computer features from the
input region of interest. In
order to make the response
image the same size as the
input, the input image can be
padded
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Fig. 3.2 Example of
64-trained filter kernels (left)
of the first convolutional
layer which are used for
feature extraction (here for
detection of sclerotic bone
lesions in CT). Some filter
responses are shown on the
after convolution with the
trained kernels. One can see
learned kernels for complex
higher order gradients,
similar to blobness or
difference of Gaussian filters.
See [20] for more examples

implementations (cuda-convnet1) by Krizhevsky et al. [14, 43] including efficient
GPU acceleration and the DropConnect addition by [42]. In all experiments, our
ConvNets are trained using stochastic gradient descent withmomentum for 700-300-
100-100 epochs on mini-batches of 64-64-32-16 images, following the suggestions
of [42] for the CIFAR-10 data set (initial learning rate of 0.001 with the default
weight decay). In each case, the data set mean image is subtracted from each training
and testing image fed to the ConvNet (Table3.1).

3.3.2 A 2D or 2.5D Approach for Applying ConvNets to CADe

It depends on the imaging data whether a two-dimensional (2D) or two-and-a-half-
dimensional (2.5D) decompositional approach is more suited to sample the image
aroundCADe candidate locations for subsequentConvNet classification (Fig. 3.3). In
high-resolution 3D data, we take volumes-of-interest (VOIs) to extract 2.5D orthog-
onal planes within a VOI. These planes can be randomly orientated as explained
later. However, low inter-slice resolution can limit the amount of 3D information
visible in z-direction. Hence, 2D regions of interest (ROIs) can be extracted in ran-
dom orientations. The location of both VOI and ROI regions can be obtained by some
form of candidate generation process. Candidate generation should require close to
100% sensitivity as it will limit the sensitivity of the whole CADe system. FP rates
should lie within a reasonable range of ∼40 to ∼150 per patient or volume. In our

1https://code.google.com/p/cuda-convnet.

https://code.google.com/p/cuda-convnet
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Table 3.1 The applied ConvNet architecture to 2.5D inputs detailing the number of filters, kernel
sizes and output sizes across different layers. Note, we use overlapping kernels with stride 2 during
max-pooling

Layer Type Parameters Filters/Neurons Output

0 Input 32× 32× 3

1 Cropping Translations 24× 24× 3

2 Convolution 5× 5 kernels 64 24× 24× 3

3 Max-pooling 3× 3 kernels 12× 12× 3

4 Convolution 5× 5 kernels 64 12× 12× 3

5 Max-pooling 3× 3 kernels 6× 6× 3

6 Locally connected 3× 3 kernels 64 6× 6× 3

7 Locally connected 3× 3 kernels 32 6× 6× 3

8 Fully connected
(DropConnect)

512 2

9 Fully connected 2 2

10 Softmax 2

Fig. 3.3 2.5D random view
aggregation: CADe locations
can be either observed as 2D
image patches or using a
2.5D approach, that samples
the image using three
orthogonal views (shown by
red, green, and blue
borders). Here, a lymph node
in CT is shown as the input
to our method

experiments, we will show results including both extremes with lymph node candi-
dates having around 40 ∼ 60 FPs/vol. and colonic polyps ∼150 FPs/patient. Many
existing CADe systems can deliver these specifics [4, 31–33]. Hence, our proposed
FP reduction system using ConvNets could be useful in many applications.
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3.3.3 Random View Aggregation

ConvNets have been described as being very “data hungry”. Even though a high-
resolution CT scan have millions of voxels. FP locations of modern CADe systems
should be less than a couple hundreds per case. Hence, we propose a simple and
efficient way of increase both variation and number of training samples. Larger
training data sets also reduce the changes of overfitting. This can be achieved by data
augmentation such as translation andmirroring of images in the 2D case [14, 24, 25].
However, in volumetric data, multiple 2D or 2.5D observations per ROI or VOI can
be generated by random translation, rotation and scaling within the 3D image space
[44]. We perform Nt translations along a random vector v, Nr random rotation by
α = [0◦, . . . , 360◦] around a ROI’s (translated) center coordinate, and Ns different
physical scales s by changing the edge length of a local ROI (in our case, ROI/VOI
have squared/cubed shapes). Note, that we keep the same number of pixels/voxels
while resampling thedifferent scales by adjusting thephysical pixel sizes accordingly.
In the case of limited 3D resolution (slice thicknesses of 5mm or more), translations
and rotations are just applied within the axial plane (2D). In total, this procedure will
produce N = Ns × Nt × Nr random observations of each ROI.

This N× increase of data samples will improve the ConvNets training and its
ability to generalize to unseen cases as we will show in the results. Furthermore,
we can apply the same strategy in testing unseen cases and aggregate ConvNet
predictions {P1(x), . . . , PN } at N random observations. We will show that simple
averaging the ConvNet scores as in Eq.3.1 will increase the overall performance of
the system. Here, Pi (x) is the classification score of one ConvNet prediction:

p (x |{P1(x), . . . , PN (x)}) = 1

N

N∑

i=1

Pi (x). (3.1)

3.3.4 Candidate Generation

In general, our FP reduction method can work well with any candidate generation
system that runs at high sensitivity and reasonable low FP rates. We can use our
ground truth data set to label each of N observations on candidate as ‘positive’ or
‘negative’ depending on whether it is on a true lesion (object of interest) or not.
All labeled observations can then be used to train the ConvNets in a fully super-
vised fashion, typically using stochastic gradient descent on minibatches in order to
minimize some loss function (see Sect. 3.3.1). In this paper, we leverage on three
existing CADe systems with suitable performances for our FP reduction approach:
[4] for sclerotic bone lesion detection, [31, 32] for lymph nodes detection, and [33]
for colonic polyps.
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3.4 Results

3.4.1 Computer-Aided Detection Data Sets

We chose three radiological data sets for different clinical applications of CADe,
compromising sclerotic metastases detection in imaging of the spine, and for can-
cer monitoring and screening, detection of lymph nodes and detection of colonic
polyps. The data sets also exhibit very different numbers of patients with 59, 176
(86 abdominal, 90 mediastinal) and 1,186 patients per data set respectively. This
illustrates the ability of ConvNets to scale to different data set sizes, even if the data
set is relatively small as in the sclerotic metastases case (59)—and large data sets
of over 1,000 patients as in the case of colonic polyps (1,186). See Table3.2 for
further information on the patient populations. In the case of sclerotic metastases
and lymph nodes, we sampled N = 100 (Nt = 5, Nr = 5 with α = [0◦, . . . , 360◦],
and Ns = 4 with s = [30, 35, 40, 45] mm) ROIs/VOIs (see Fig. 3.3) around each
candidate coordinated given by the prior CADe systems [4, 31–33]. Due to the much
larger data set size in the case of colonic polyps, we chose N = 40 (Ns = 4, Nt = 2
and Nr = 5), keeping s the same. The choice of s is important to cover the average
dimensions of the lesions/objects of interest (i.e. bone metastases, lymph nodes, or
colonic polyps), and to include some context area which might be useful for clas-
sification. The random translations were limited up to a maximum displacement of
3mm in all cases. Each ROI, or VOI was sampled at 32 × 32 pixels for each channel
(Table3.3).

Typical training times for 1200 optimization epochs on a NVIDIA GeForce GTX
TITAN (6GBmemory) were 9–12h for the lymph node data set, 12–15h for the bone
lesions data set, and 37h for the larger colonic polyps data set.We used unit Gaussian
randomparameter initializations as in [42] in all cases. In testing, computingConvNet
scores on N = 100 2D or 2.5D image patches at each ROI/VOI takes circa 1–5min
on a CT volume. For more detailed information about the performed experiments
and results, we refer the reader to [20] (Fig. 3.4).

Table 3.2 CADe data sets used for evaluation: sclerotic metastases, lymph nodes, colonic polyps.
Total/mean (target) lesion numbers, total true positive (TP) and false positive (FP) candidate numbers
are stated. Note that one target can have several TP detections (see [20] for more detail)

Dataset # Patients # Targets # TP # FP # Mean
targets

# Mean
candidates

Sclerotic
lesions

59 532 935 3,372 9.0 73.0

Lymph nodes 176 983 1,966 6,692 5.6 49.2

Colonic
polyps

1,186 252 468 174,301 0.2 147.4
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Table 3.3 CADe performance with ConvNet Integration: previous1 CADe performance compared
to ConvNet2 performance at the 3 FPs/patient rate (see [20] for more detailed experiments)

Dataset Sensitivity1 (%) Sensitivity2 (%) AUC1 (%) AUC2 (%)

Sclerotic lesions 57 70 n/a 0.83

Lymph nodes 43 77 0.76 0.94

Colonic polyps(>=6mm) 58 75 0.79 0.82

Colonic polyps(>=10mm) 92 98 0.94 0.99

Fig. 3.4 Free Response Operating Characteristic (FROC) curve of sclerotic bone lesion
detection [20]

3.5 Discussion and Conclusions

This work and many others (e.g., [18, 19, 45]) show the value of deep ConvNets for
medical image analysis and the efficient implementation within existing computer-
aided detection (CADe) frameworks.We showedmarked improvements within three
CADe applications, i.e., bone lesions, enlarged lymph nodes, and colonic polyps in
CT (Fig. 3.5).
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Fig. 3.5 Free Response Operating Characteristic (FROC) curve of lymph node detection [20]

ConvNets can be applied to 3D medical imaging applications using the standard
architectures from computer vision [14, 42] with efficient 2.5D resampling of the 3D
space, but applying 2D convolutions within the ConvNet architecture. Recent work
that explores the direct application of 3D convolutional filters within the ConvNet
architecture also shows promise [23, 45, 46]. It has to be established whether 2D
or 3D ConvNet implementations are more suited for certain tasks. There is some
evidence that ConvNet representations with direct 3D input suffer from the curse-of-
dimensionality and are more prone to overfitting [20]. Volumetric object detection
might require more training data and might suffer from scalability issues when full
3D data augmentation is not feasible. However, proper hyper-parameter tuning of
the ConvNet architecture and enough training data (including data augmentation)
might help eliminate these problems. In the mean time, random 2.5D resampling (as
proposed here) might be an very efficient (computationally less expensive) way of
diminishing the curse-of-dimensionality and to artificially increase the variation of
training data. Furthermore,we showed that averaging scores of 2.5Dobservations can
markedly improve robustness and stability of the overall CADe system (Sect. 3.4).

On another note, 2.5D (three-channel inputConvNets) have the advantage that pre-
trained ConvNets which are trained on much larger available data bases of natural
images (e.g. ImageNet) can be used. It has been shown that transfer learning is a
viable approach when the medical imaging data set size is limited [18, 19]. There is
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Fig. 3.6 Free Response Operating Characteristic (FROC) curve of colonic polyp detection [20]

evidence that even larger and deeper ConvNets perform better on classification tasks
[16, 17, 47], however, even more training data is needed. In this case, the application
of these modern networks to the medical imaging domain might especially benefit
from pre-training [18] (Fig. 3.6).

In conclusion, the proposed 2D and 2.5D random aggregation of ConvNet scores
is a promising approach for many CADe applications in medical imaging.

Acknowledgements This work was supported by the Intramural Research Program of the NIH
Clinical Center.
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Chapter 4
Robust Landmark Detection in Volumetric
Data with Efficient 3D Deep Learning

Yefeng Zheng, David Liu, Bogdan Georgescu, Hien Nguyen
and Dorin Comaniciu

Abstract Recently, deep learning has demonstrated great success in computer vision
with the capability to learn powerful image features from a large training set. How-
ever, most of the published work has been confined to solving 2D problems, with a
few limited exceptions that treated the 3D space as a composition of 2D orthogonal
planes. The challenge of 3D deep learning is due to a much larger input vector, com-
pared to 2D, which dramatically increases the computation time and the chance of
over-fitting, especially when combined with limited training samples (hundreds to
thousands), typical for medical imaging applications. To address this challenge, we
propose an efficient and robust deep learning algorithm capable of full 3D detection
in volumetric data. A two-step approach is exploited for efficient detection. A shallow
network (with one hidden layer) is used for the initial testing of all voxels to obtain
a small number of promising candidates, followed by more accurate classification
with a deep network. In addition, we propose two approaches, i.e., separable filter
decomposition and network sparsification, to speed up the evaluation of a network.
To mitigate the over-fitting issue, thereby increasing detection robustness, we extract
small 3D patches from a multi-resolution image pyramid. The deeply learned image
features are further combined with Haar wavelet-like features to increase the detec-
tion accuracy. The proposed method has been quantitatively evaluated for carotid
artery bifurcation detection on a head-neck CT dataset from 455 patients. Compared
to the state of the art, the mean error is reduced by more than half, from 5.97mm to
2.64mm, with a detection speed of less than 1s/volume.

4.1 Introduction

An anatomical landmark is a biologically meaningful point on an organism, which
can be easily distinguished from surrounding tissues. Normally, it is consistently
present across different instances of the same organism so that it can be used to
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establish anatomical correspondence within the population. There are many appli-
cations of automatic anatomical landmark detection in medical image analysis. For
example, landmarks can be used to align an input volume to a canonical plane on
which physicians routinely perform diagnosis and quantification [1, 2]. A detected
vascular landmark provides a seed point for automatic vessel centerline extraction
and lumen segmentation [3, 4]. For a nonrigid object with large variation, a holistic
detection may not be robust. Aggregation of the detection results of multiple land-
marks on the object may provide a more robust solution [5]. In some applications,
the landmarks themselves provide important measurements for disease quantifica-
tion and surgical planning (e.g., the distance from coronary ostia to the aortic hinge
plane is a critical indicator whether the patient is a good candidate for transcatheter
aortic valve replacement [6]).

Various landmark detection methods have been proposed in the literature. Most
of the state-of-the-art algorithms [1–6] apply machine learning (e.g., support vector
machines, random forests, or boosting algorithms) on a set of handcrafted image
features (e.g., SIFT features or Haar wavelet-like features). However, in practice, we
found some landmark detection problems (e.g., carotid artery bifurcation landmarks
in this work) are still too challenging to be solved with the current technology.

Deep learning [7] has demonstrated great success in computer vision with the
capability to learn powerful image features (either supervised or unsupervised) from
a large training set. Recently, deep learning has been applied in many medical image
analysis problems, including body region recognition [8], cell detection [9], lymph
node detection [10], organ detection/segmentation [11, 12], cross-modality regis-
tration [13], and 2D/3D registration [14]. On all these applications, deep learning
outperforms the state of the art.

However, several challenges are still present in applying deep learning to 3D
landmark detection. Normally, the input to a neural network classifier is an image
patch, which increases dramatically in size from 2D to 3D. For example, a patch of
32 × 32 pixels generates an input of 1024 dimensions to the classifier. However, a
32 × 32 × 323Dpatch contains 32,768voxels. Such abig input feature vector creates
several challenges. First, the computation time of a deep neural network is often too
slow for a real clinical application. The most widely used and robust approach for
object detection is the sliding window based approach, in which the trained classifier
is tested on each voxel in the volume. Evaluating a deep network on a large volume
may take several minutes. Second, as a rule of thumb, a network with a bigger
input vector requires more training data. With enough training samples (e.g., over 10
million in ImageNet), deep learning has demonstrated impressive performance gain
over other methods. However, the medical imaging community is often struggling
with limited training samples (often in hundreds or thousands) due to the difficulty to
generate and share images. Several approaches can tackle or at leastmitigate the issue
of limited training samples. One approach is to reduce the patch size. For example, if
we reduce the patch size from 32 × 32 × 32 voxels to 16 × 16 × 16, we can reduce
the input dimension by a factor of eight. However, a small patch may not contain
enough information for classification. Alternatively, instead of sampling a 3D patch,
we can sample on three orthogonal planes [15] or even a 2D patch with a random
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Fig. 4.1 Training procedure of the proposed deep network based 3D landmark detection method

orientation [10]. Although they can effectively reduce the input dimension, there is
a concern on how much 3D information is contained in 2D planes.

In this work we tackle the above challenges in the application of deep learning
for 3D anatomical structure detection (focusing on landmarks). Our approach sig-
nificantly accelerates the detection speed, resulting in an efficient method that can
detect a landmark in less than one second. We apply a two-stage classification strat-
egy (as shown in Fig. 4.1). In the first stage, we train a shallow network with only
one small hidden layer (e.g., with 64 hidden nodes). This network is applied to test
all voxels in the volume in a sliding window process to generate 2000 candidates
for the second-stage classification. The second network is much bigger with three
hidden layers (each has 2000 nodes) to obtain more discriminative power. Such a
cascaded classification approach has been widely used in object detection to improve
detection efficiency and robustness.

In this work we propose two techniques to further accelerate the detection speed:
separable filter approximation for the first-stage classifier and network sparsification
for the second-stage classifier. Theweights of a node in the first hidden layer are often
treated as a filter (3D in this case). The response of the first hidden layer over the
volume can be calculated as a convolution with the filter. Here, a neighboring patch
is shifted by only one voxel; however, the response needs to be recalculated from
scratch. In this work we approximate the weights as separable filters using tensor
decomposition. Therefore, a direct 3D convolution is decomposed as three one-
dimensional convolutions along the x , y, and z axis, respectively. Previously, such
approximation has been exploited for 2D classification problems [16, 17]. However,
in 3D, the trained filters are more difficult to be approximated as separable filters. We
propose a new training cost function to enforce smoothness of the filters so that they
can be approximated with high accuracy. The second big network only applies on a
small number of candidates that have little correlation. Separable filter approximation
does not help to accelerate classification. However, many weights in a big network
are close to zero. We propose to add L1-norm regularization to the cost function to
drive majority of the weights (e.g., 90%) to zero, resulting in a sparse network with
increased classification efficiency without deteriorating accuracy.

The power of deep learning is on the automatic learning of a hierarchical image
representation (i.e., image features). Instead of using the trained network as a clas-
sifier, we can use the responses at each layer (including the input layer, all hidden
layers, and the output layer) as features and feed them into other state-of-the-art clas-
sifiers (e.g., boosting). After years of feature engineering, some handcrafted features
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have considerable discriminative power for some applications and they may be com-
plimentary to deeply learned features. In this work we demonstrate that combining
deeply learned features and Haar wavelet-like features, we can reduce the detection
failures.

The remainder of this chapter is organized as follows. In Sect. 4.2 we present a
new method to train a shallow network with separable filters, which are efficient in a
slidingwindowbased detection scheme to prune the landmark candidates. Section4.3
describes a sparse network that can effectively accelerate the evaluation of a deep
network, which is used to further test the preserved landmark candidates. We present
a feature fusion approach in Sect. 4.4 to combine Haar wavelet-like features and
deeply learned features to improve the landmark detection accuracy. Experiments on
a large dataset in Sect. 4.5 demonstrate the robustness and efficiency of the proposed
method. This chapter concludes with Sect. 4.6. Please note, an early version of this
work was published in [18].

4.2 Training Shallow Network with Separable Filters

A fully connected multilayer perceptron (MLP) neural network is a layered architec-
ture. Suppose the input is a n0-dimensional vector [X0

1, X
0
2, . . . , X

0
n0 ]. The response

of a node X1
j of the first hidden layer is

X1
j = g

(
n0∑
i=1

W 0
i, j X

0
i + b0j

)
, (4.1)

for j = 1, 2, . . . , n1 (n1 is the number of nodes in the first hidden layer). Here, W 0
i, j

is a weight; b0j is a bias term; And, g(.) is a nonlinear function, which can be sigmoid,
hypo-tangent, restricted linear unit (ReLU), or other forms. In this work we use the
sigmoid function

g(x) = 1

1 + e−x
, (4.2)

which is themost popular nonlinear function. If we denoteX0 = [X0
1, . . . , X

0
n0 ]T and

W0
j = [W 0

1, j , . . . ,W
0
n0, j

]T , Eq. (4.1) can be rewritten as X1
j = g

(
(W0

j )
TX0 + b0j

)
.

Multiple layers can be stacked together using Eq. (4.1) as a building block. For a
binary classification problem as this work, the output of the network can be a single
node X̂ . Suppose there are L hidden layers, the output of the neural network is
X̂ = g

(
(WL)TXL + bL

)
. During network training, we require the output to match

the class label Y (with 1 for the positive class and 0 for negative) by minimizing the
squared error E = ||Y − X̂ ||2.

In object detection using a sliding window based approach, for each position
hypothesis, we crop an image patch (with a predefined size) centered at the position
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hypothesis.We then serialize the patch intensities into a vector as the input to calculate
response X̂ . After testing a patch, we shift the patch by one voxel (e.g., to the right)
and repeat the above process again. Such a naive implementation is time consuming.
Coming back to Eq. (4.1), we can treat the weights of a node in the first hidden
layer as a filter. The first term of the response is a dot-product of the filter and
the image patch intensities. Shifting the patch over the whole volume is equivalent
to convolution using the filter. Therefore, alternatively, we can perform convolution
using each filterW0

j for j = 1, 2, . . . , n1 and cache the responsemaps. During object
detection, we can use the cached maps to retrieve the response of the first hidden
layer.

Although such an alternative approach does not save computation time, it gives
us a hint for speedup. With a bit abuse of symbols, supposeWx,y,z is a 3D filter with
size nx × ny × nz . Let us further assume that Wx,y,z is separable, which means we
can find three one-dimensional vectors, Wx ,Wy,Wz , such that

Wx,y,z(i, j, k) = Wx (i).Wy( j).Wz(k) (4.3)

for any i ∈ [1, nx ], j ∈ [1, ny], and k ∈ [1, nz]. The convolution of the volume with
Wx,y,z is equivalent to three sequential convolutions with Wx , Wy , and Wz along
its corresponding axis. Sequential convolution with one-dimensional filters is much
more efficient than direct convolution with a 3D filter, especially for a large filter.
However, in reality, Eq. (4.3) is just an approximation of filters learned by a neural
network and such a rank-1 approximation is poor in general. In this work we search
for S sets of separable filters to approximate the original filter as

Wx,y,z ≈
S∑

s=1

Ws
x .W

s
y .W

s
z . (4.4)

Please note, with a sufficient number of separable filters (e.g., S ≥ min{nx , ny, nz}),
we can reconstruct the original filter perfectly.

To achieve detection efficiency, we need to cache n1 × S filtered response maps.
If the input volume is big (the size of a typical CT scan in our dataset is about
300 MB) and n1 is relatively large (e.g., 64 or more), the cached response maps
consume a lot of memory. Fortunately, the learned filters W0

1, . . . ,W
0
n1 often have

strong correlation (i.e., a filter can be reconstructed by a linear combination of other
filters). We do not need to maintain a different filter bank for eachW0

i . The separable
filters in reconstruction can be drawn from the same bank,

W0
i ≈

S∑
s=1

ci,s .Ws
x .W

s
y .W

s
z . (4.5)
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Here, ci,s is the combination coefficient,which is specific for eachfilterW0
i . However,

Ws
x , W

s
y , and Ws

z are shared by all filters. Equation (4.5) is a rank-S decomposition
of a 4D tensor [W0

1,W
0
2, . . . ,W

0
n1 ], which can be solved using [19].

Using 4D tensor decomposition, we only need to convolve the volume S times
(instead of n1.S times using 3D tensor decomposition) and cache S response maps.
Suppose the input volume has Nx × Ny × Nz voxels. For each voxel, we need to do
nxnynz multiplications using the original sliding window based approach. To calcu-
late the response of a hidden layer with n1 nodes, the total number of multiplications
is n1nxnynzNx NyNz . Using the proposed approach, to perform convolution with S
set of separable filters, we need do S(nx + ny + nz)Nx NyNz multiplications. To cal-
culate the response of n1 hidden layer nodes, we need to combine the S responses
using Eq. (4.5), resulting in n1SNx NyNz multiplications. The total number of multi-
plications is S(nx + ny + nz + n1)Nx NyNz . Suppose S = 32, n1 = 64, the speedup
is 62 times for a 15 × 15 × 15 patch.

To achieve significant speedup and save memory footprint, we need to reduce
S as much as possible. However, we found, with a small S (e.g., 32), it was more
difficult to approximate 3D filters than 2D filters [16, 17]. Nonlinear functions g(.)
are exploited in neural networks to bound the response to a certain range (e.g., [0, 1]
using the sigmoid function). Many nodes are saturated (with an output close to 0
or 1) and once a node is saturated, its response is not sensitive to the change of
the weights. Therefore, a weight can take an extremely large value, resulting in a
non-smooth filter. Here, we propose to modify the objective function to encourage
the network to generate smooth filters

E = ||Y − X̂ ||2 + α

n1∑
i=1

||W0
i − W0

i ||2. (4.6)

Here,W0
i is the mean value of the weights of filterW0

i . So, the second termmeasures
the variance of the filter weights. Parameter α (often takes a small value, e.g., 0.001)
keeps a balance between two terms in the objective function. The proposed smooth
regularization term is different to the widely used L2-norm regularization, which is
as follows

E = ||Y − X̂ ||2 + α

L∑
j=1

n j∑
i=1

||W0
i ||2. (4.7)

The L2-norm regularization applies to all weights, while our regularization applies
only to the first hidden layer. Furthermore, L2-norm regularization encourages small
weights, therefore shrinks the capacity of the network; while our regularization
encourages small variance of the weights.

The training of the initial shallow network detector is as follows (as shown in the
left dashed box of Fig. 4.1). (1) Train a network using Eq. (4.6). (2) Approximate the
learned filters using a filter bank with S (S = 32 in our experiments) sets of separable
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filters to minimize the error of Eq. (4.5). The above process may be iterated a few
times (e.g., three times). In the first iteration, the network weights and filter bank are
initialized with random values. However, in the following iterations, they are both
initialized with the optimal values from the previous iteration.

Previously, separable filter approximation has been exploited for 2D classification
problems [16, 17]. We found 3D filters were more difficult to be approximated
well with a small filter bank; therefore, we propose a new objective function to
encourage the network to generate smoothfilters for higher separability. Furthermore,
unlike [17], we also iteratively retrain the network to compensate the loss of accuracy
due to approximation.

4.3 Training Sparse Deep Network

Using a shallow network, we can efficiently test all voxels in the volume and assign
a detection score to each voxel. After that, we preserve 2000 candidates with the
largest detection scores. The number of preserved candidates is tuned to have a
high probability to include the correct detection (e.g., hypotheses within one-voxel
distance to the ground truth). However, most of the preserved candidates are still
false positives. In the next step, we train a deep network to further reduce the false
positives. The classification problem is now much tougher and a shallow network
does not work well. In this work we use a big network with three hidden layers, each
with 2000 nodes.

Even though we only need to classify a small number of candidates, the com-
putation may still take some time since the network is now much bigger. Since
the preserved candidates are often scattered over the whole volume, separable filter
decomposition as used in the initial detection stage does not help to accelerate the
classification. After checking the values of the learned weights of this deep network,
we found most of weights were very small, close to zero. That means many con-
nections in the network can be removed without sacrificing classification accuracy.
Here, we apply L1-norm regularization to enforce sparse connection

E = ||Y − X̂ ||2 + β

L∑
j=1

n j∑
i=1

||W j
i ||. (4.8)

Parameterβ can be used to tune the number of zeroweights. The higherβ is, themore
weights converge to zero.With a sufficient number of training epochs, part of weights
converges exactly to zero. In practice, to speed up the training, we periodically check
the magnitude of weights. The weights with a magnitude smaller than a threshold are
set to zero and the network is refined again. In our experiments, we find that 90% of
the weights can be set to zero after training, without deteriorating the classification
accuracy. Thus, we can speed up the classification by roughly ten times.
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The proposed acceleration technologies can be applied to different neural network
architectures, e.g., amultilayer perceptron (MLP) and a convolutional neural network
(CNN). In this workwe use theMLP.While the shallow network is trainedwith back-
propagation to directlyminimize the objective function in Eq. (4.6), the deep network
is pretrained using the denoising auto-encoder criterion [7] and then fine-tuned to
minimize Eq. (4.8). The right dashed box of Fig. 4.1 shows the training procedure of
the sparse deep network.

4.4 Robust Detection by Combining Multiple Features

To train a robust neural network based landmark detector on limited training samples,
we have to control the patch size. The optimal patch sizewas searched andwe found a
size of 15 × 15 × 15 achieved agood trade-off betweendetection speed and accuracy.
However, a small patch has a limited field-of-view, thereby may not capture enough
information for classification. In this work we extract patches on an image pyramid
with multiple resolutions. A small patch in a low-resolution volume has a much
larger field-of-view at the original resolution. To be specific, we build an image
pyramid with three resolutions (1mm, 2mm, and 4-mm resolution, respectively).
The intensities of patches from multiple resolutions are concatenated into a long
vector to feed the network. As demonstrated in Sect. 4.5, a multi-resolution patch
can improve the landmark detection accuracy.

Deep learning automatically learns a hierarchical representation of the input data.
Representation at different hierarchical levels may provide complementary infor-
mation for classification. Furthermore, through years’ of feature engineering, some
handcrafted image features can achieve quite reasonable performance on a certain
task. Combining effective handcrafted image features with deeply learned hierarchi-
cal features may achieve even better performance than using them separately.

In this work we propose to use probabilistic boosting-tree (PBT) [20] to combine
all features. A PBT is a combination of a decision tree and AdaBoost, by replacing a
weak classification node in the decision tree with a strong AdaBoost classifier [21].
Our feature pool is composed of two types of features: Haar wavelet-like features
(h1, h2, . . . , hm) and neural network features r j

i (where r j
i is the response of node i

at layer j). If j = 0, r0i is an input node, representing the image intensity of a voxel
in the patch. The last neural network feature is actually the response of the output
node, which is the classification score by the network. This feature is the strongest
feature and it is always the first selected feature by the AdaBoost algorithm.

Given 2000 landmark candidates generated by the first detection stage (Sect. 4.2),
we evaluate them using the bootstrapped classifier presented in this section. We
preserve 250 candidates with the highest classification score and then aggregate
them into a single detection as follows. For each candidate we define a neighborhood,
which is a 8 × 8 × 8mm3 box centered on the candidate. We calculate the total vote
of each candidate as the summation of the classification score of all neighboring
candidates. (The score of the current candidate is also counted since it is neighboring
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to itself.) The candidate with the largest vote is picked and the final landmark position
is the weighted average (according to the classification score) of all candidates in its
neighborhood.

4.5 Experiments

In this section we validate the proposed method on carotid artery bifurcation detec-
tion. The carotid artery is themain vessel supplying oxygenated blood to the head and
neck. The common carotid artery originates from the aortic arch and runs up toward
the head before bifurcating to the external carotid artery (supplying blood to face)
and internal carotid artery (supplying blood to brain). Examination of the carotid
artery helps to assess the stroke risk of a patient. Automatic detection of this bifurca-
tion landmark provides a seed point for centerline tracing and lumen segmentation,
thereby making automatic examination possible. However, as shown in Fig. 4.2a, the
internal/external carotid arteries further bifurcate to many branches and there are
other vessels (e.g., vertebral arteries and jugular veins) present nearby, which may
cause confusion to an automatic detection algorithm.

We collected a head-neck CT dataset from 455 patients. Each image slice has
512 × 512 pixels and a volume contains a variable number of slices (from 46 to
1181 slices). The volume resolution varies too, with a typical voxel size of 0.46 ×
0.46 × 0.50mm3. To achieve a consistent resolution, we resample all input volumes
to 1.0mm.A fourfold cross validation is performed to evaluate the detection accuracy
and determine the hyper parameters, e.g., the network size, smoothness constraint
α in Eq. (4.6), sparsity constraint β in Eq. (4.8). There are two carotid arteries (left
versus right) as shown in Fig. 4.2. Here, we report the bifurcation detection accuracy
of the right carotid artery (as shown in Table4.1) with different approaches. The
detection accuracy of the left carotid artery bifurcation is similar.

The rough location of the carotid artery bifurcation can be predicted by other
landmarks using a landmark network [22]. However, due to the challenge of the
task, the prediction is not always accurate. We have to crop a box as large as 50 ×
50 × 100mm3 around the predicted position to make sure the correct position of
the carotid artery bifurcation is covered. To have a fair comparison with [4], in
the following experiments, the landmark detection is constrained to this box for all
compared methods.

For each approach reported in Table4.1, we follow a two-step process by apply-
ing the first detector to reduce the number of candidates to 2000, followed by a
bootstrapped detection to further reduce the number of candidates to 250. The final
detection is picked from the candidate with the largest vote from other candidates.

The value of a CT voxel represents the attenuation coefficient of the underlying
tissue to X-ray, which is often represented as a Hounsfield unit. The Hounsfield unit
has a wide range from −1000 for air to 3000 for bones/metals and it is normally
represented with a 12-bit precision. A carotid artery filled with contrasted agent
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Fig. 4.2 Carotid artery bifurcation landmark detection in head-neck CT scans. a 3D visualization
of carotid arteries with white arrows pointing to the left and right bifurcations (image courtesy of
http://blog.remakehealth.com/).b–dAfewexamples of the right carotid artery bifurcation detection
results with the ground truth labeled as blue dots and detected landmarks in red

Table 4.1 Quantitative evaluation of carotid artery bifurcation detection accuracy on 455 CT scans
based on a fourfold cross validation. The errors are reported in millimeters

Mean Std Median 80th Percentile

Haar + PBT 5.97 6.99 3.64 7.84

Neural network (Single resolution) 4.13 9.39 1.24 2.35

Neural network (Multi-resolution) 3.69 6.71 1.62 3.25

Network features + PBT 3.54 8.40 1.25 2.31

Haar + network + PBT 2.64 4.98 1.21 2.39

http://blog.remakehealth.com/
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occupies only a small portion of the full Hounsfield unit range. Standard normaliza-
tion methods of neural network training (e.g., linear normalization to [0, 1] using
the minimum and maximum value of the input, or normalizing to zero-mean and
unit-variance) do not work well for this application. In this work we use a window
based normalization. Intensities inside the window of [−24, 576] Hounsfield unit
is linearly transformed to [0, 1]; Intensities less than −24 are truncated to 0; And,
intensities higher than 576 are truncated to 1.

Previously, Liu et al. [4] used Haar wavelet-like features + boosting to detect
vascular landmarks and achieved promising results. Applying this approach on our
dataset, we achieve a mean error of 5.97mm and the large mean error is caused by
too many detection outliers. The neural network based approach can significantly
improve the detection accuracy with a mean error of 4.13mm using a 15 × 15 × 15
patch extracted from a single resolution (1mm). Using patches extracted from an
image pyramid with three resolutions, we can further reduce the mean detection
error to 3.69mm. If we combine features from all layers of the network using the
PBT, we achieve slightly better mean accuracy of 3.54mm. Combining the deeply
learned features and Haar wavelet-like features, we achieve the best detection accu-
racy with a mean error of 2.64mm. We suspect that the improvement comes from
the complementary information of the Haar wavelet-like features and neural network
features. Figure4.2 shows the detection results on a few typical datasets.

The proposed method is computationally efficient. Using the speedup technolo-
gies presented in Sects. 4.2 and 4.3, it takes 0.92 s to detect a landmark on a computer
with a six-core 2.6GHzCPU (without using GPU). For comparison, the computation
time increases to 18.0 s if we turn off the proposed acceleration technologies (namely,
separable filter approximation and network sparsification). The whole training pro-
cedure takes about 6h and the sparse deep network consumes majority of the training
time.

4.6 Conclusions

In thisworkweproposed 3Ddeep learning for efficient and robust landmark detection
in volumetric data. We proposed two technologies to speed up the detection using
neural networks, namely, separable filter decomposition and network sparsification.
To improve the detection robustness,we exploit deeply learned image features trained
on a multi-resolution image pyramid. Furthermore, we use the boosting technology
to incorporate deeply learned hierarchical features and Haar wavelet-like features to
further improve the detection accuracy. The proposed method is generic and can be
retrained to detect other 3D landmarks or the center of organs.
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Chapter 5
A Novel Cell Detection Method Using
Deep Convolutional Neural Network
and Maximum-Weight Independent Set

Fujun Liu and Lin Yang

Abstract Cell detection is an important topic in biomedical image analysis and it is
often the prerequisite for the following segmentation or classification procedures. In
this chapter, we propose a novel algorithm for general cell detection problem: First,
a set of cell detection candidates is generated using different algorithms with varying
parameters. Second, each candidate is assigned a score by a trained deep convolu-
tional neural network (DCNN). Finally, a subset of best detection results are selected
from all candidates to compose the final cell detection results. The subset selection
task is formalized as a maximum-weight independent set problem, which is designed
to find the heaviest subset of mutually nonadjacent nodes in a graph. Experiments
show that the proposed general cell detection algorithm provides detection results
that are dramatically better than any individual cell detection algorithm.

5.1 Introduction

Cell detection is an important topic in biomedical image analysis because it is often
the first step for the following tasks, including cell counting, segmentation, and
morphological analysis. Many automatic cell detection algorithms are proposed in
recent literatures [1–3]. Parvin et al. proposed an iterative voting algorithm based on
oriented kernels to localize cell centers, in which the voting direction and areas were
dynamically updated within each iteration. In [2], a simple and reliable cell detector
was designed based on a Laplacian of Gaussian filter. A learning-based cell detection
algorithmwas proposed in [3]. It used an efficient maximally stable extremal regions
(MSER) detector [4] to find a set of nested candidate regions that will form a tree
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graph. Then a nonoverlapping subset of those regions was selected for cell detection
via dynamic programming.

All the methods reviewed above give good detection results under certain circum-
stances. However, in general, they all have some limitations. For example, both [1]
and [2] are sensitive to the selection of proper cell diameter parameters. However,
finding an appropriate parameter that works under all conditions is extremely diffi-
cult when the cells exhibit large size variations. In [3], the algorithm heavily depends
on the quality of MSER detector that does not take advantage the prior cell shape
information and the performance will deteriorate when the cells overlap with one
another.

In this chapter, we propose a novel algorithm for general cell detection that does
not require the fine tuning of parameters. First, a set of cell detection candidates is
produced from different algorithms with varying parameters. Second, each candidate
will be assigned a score using a trained deep convolutional neural network (DCNN)
[5, 6]. Third, we will construct a weighted graph that has the detection candidates as
nodes and the detection scores (DCNN outputs) as weights (an edge exists between
two nodes if their corresponding detection results lie in the same cell). Finally, a
subset of mutually nonadjacent graph nodes is chosen to maximize the sum of the
weights of the selected nodes. An overview of the algorithm is shown in Fig. 5.1.
The selection of the best subset is formulated as a maximum-weight independent
set problem (MWIS). MWIS is a combinatorial optimization problem that has been
successfully applied in clustering [7], segmentation [8], and tracking [9], etc.

To the best of our knowledge, this is the first work that formulates the general cell
detection problem as a MWIS problem, and this is also the first work to introduce
DCNN to provide weights to a graph for future combinational optimization.

Fig. 5.1 An overview of the proposed general cell detection algorithm. a A set of detections
candidates generated using multiple detection algorithms. Each candidate is marked with blue dot.
b An undirected weighted graph was constructed from all detection candidates. The red color
indicates the selected nodes. c The final cell detection results using the proposed method
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5.2 Methodology

5.2.1 Cell Detection Using MWIS

A set of cell detection candidates (points),P = {p1, . . . , pn}, are first generated based
on different cell detection algorithms with various parameters. An undirected and
weighted graph, G = (V,E, w), is constructed, where the node vi corresponds to
the i-th cell detection candidate pi, E denotes undirected edges between nodes, and
wi denotes weight for the i-th node vi. Two nodes vi and vj are adjacent, (vi, vj) ∈
E, if the Euclidean distance between their respective detection results pi and pj is
smaller than a threshold λ. A node vi will be assigned a larger weight value wi

if its corresponding detection result pi is close to the real cell center, otherwise
smaller weight will be assigned. After graph G is constructed, an optimal subset
of V will be selected with the constraint that two nodes adjacent to each other will
not be selected simultaneously. A subset is represented by an indicator vector x =
{x1, . . . , xi, . . . xn}, where xi ∈ {0, 1}. xi = 1 indicates that node vi is in the subset,
and xi = 0 represents that vi is not in the subset. This best subset selection is then
formulated as finding the maximum-weight independent set (MWIS) x∗.

x∗ = argmax
x

wTx, s. t. xTAx = 0, xi ∈ {0, 1}, (5.1)

where A = (aij)n×n is the adjacent matrix, aij = 1 if (vi, vj) ∈ E and aij = 0 other-
wise. The diagonal elements of A are zeros. The quadric constraints can be integrated
into the object function to reformulate the optimization as

x∗ = argmax
x

(
wTx − 1

2
αxTAx

)
, s. t. xi ∈ {0, 1}, (5.2)

where α is a positive regularization parameter to encode the nonadjacent constraints
in (5.1).

The MWIS optimization can be solved by some numerical approximation algo-
rithms [8, 10]. In [10], the integer constraints in (5.2) are relaxed, and a graduated
assignment algorithm iteratively maximizes a Taylor series expansion of the object
function in (5.2) around the previous solution in the continuous domain. The relaxed
continuous solution will then be binarized to obtain the discrete solution. This bina-
rization proceduremight lead to errors. In order to avoid this type of error, [8] directly
seeks a discrete solution in each iteration in maximizing the Taylor series approxi-
mation. However, in this case the solution of (5.2) might not satisfy the nonadjacent
constraints in (5.1). In our algorithm, unlike all the previous procedures, we propose
to find the optimal results iteratively only in the solution space of (5.1).

Denote f (x) as the objective function in (5.2), let x(t) ∈ {0, 1}n denotes the current
solution in the t-th iteration, each iteration consists of the following two steps in our
algorithm.
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Step 1: For any point x ∈ {0, 1}n in the neighborhood of x(t), we first find the first-
order Taylor series approximation of f (x) as

f (x) ≈ T(x) = f (x(t)) + (x − x(t))T (w − αAx(t)) = xT (w − αAx(t)) + const,
(5.3)

where const represents an item that does not depends on x. Define y(t) as the inter-
mediate solution to (5.3), it can be computed by maximizing the approximation T(x)
as y(t) = 1(w − αAx(t) ≥ 0), where 1(·) is an indicator function.
Step 2: The solution of (5.3) might not satisfy the nonadjacent constraints listed
in (5.1). If this is the case, we need to find a valid solution of (5.1) based on y(t).
This is achieved by the following steps: (1) We first sort all the nodes based on their
weights with an decreasing order. The nodes with y(t) = 1 will be placed in front
of the nodes that have y(t) = 0. (2) The nodes are then selected from the front of
the queue sequentially with a constraint that the picked node will not be adjacent to
those that are already chosen.

After we find the valid solution, the x(t+1) in the solution space of (5.1) based on
y(t) is computed using a local search method by first randomly removing k selected
nodes and the probability to remove each node is inversely proportional to its weight,
then choosing themaximumweighted node in the queue that are not adjacent to those
selected until all nodes are considered. This procedure continues until convergence
or maximum iterations reached and the best solution is selected as x(t+1). The reason
that we randomly remove k selected nodes is to help the optimization escape from
potential local maxima.

5.2.2 Deep Convolutional Neural Network

In this section, we need to calculate the weight wi for each detection candidate
vi ∈ V from Sect. 5.2.1. A deep convolutional neural network (DCNN) is trained
for this purpose to assign each node a proper score as its weight. In our algorithm,
a detection candidate is described by a small rectangle region centering around the
detected position. Some training samples are shown in the first row in Fig. 5.2. The
patches whose centers are close to the true cell centers are annotated as positive (+1)
samples, marked with red rectangles in Fig. 5.2. Patches that have centers far away
from true cell centers will be annotated as negative (−1) samples, marked with blue
rectangles in Fig. 5.2.

DCNNArchitecture: In our algorithm, the input features are the raw intensities of
31 × 31 image patches around the detected position. Considering the staining varia-
tions and the generality of the detection framework, color information is disregarded
since they may change dramatically with respect to different staining protocols. The
DCNN consists of seven layers: three convolutional (C) layers, two pooling layers,
and two fully connected (FC) layers. In our implementation, max pooling (MP) is
applied. The MP layers select the maximal activations over nonoverlapping patches
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Fig. 5.2 Some training samples forDCNNand their foveationversions.Thefirst rowdenote original
training samples. Positive samples are marked with red rectangles and negatives are marked with
blue. The second row denote the samples after foveation

Table 5.1 The configuration of the proposed DCNN architecture in our algorithm

Layer Type Maps (M) and
neurons (N)

Filter size Nonlinearity Weights

0 I 1M × 31N × 31N – – –

1 C 6M × 28N × 28N 4 × 4 Rectifier 102

2 MP 6M × 14N × 14N 2 × 2 – –

3 C 12M × 12N × 12N 3 × 3 Rectifier 660

4 MP 12M × 6N × 6N 2 × 2 – –

5 C 12M × 4N × 4N 3 × 3 Rectifier 1308

6 FC 100N 1 × 1 Rectifier 19300

7 FC 2N 1 × 1 Softmax 202

of the input layers. Except the output layer, where the two-way softmax function is
used as activation function, the rectifier nonlinear activation functions are used in
the convolutional layers and the fully connected layer prior to the output layer. A
detailed configuration of the DCNN used in our algorithm is shown in Table5.1.

Foveation: The task of DCNN is to classify the center pixel of each rectangle
patch, so it will be ideal if we can keep the focus on the central region (fovea) and
also retain the general structure of the image. Foveation, inspired by the structure
of human photoreceptor topography, has been shown to be effective in imposing
a spatially variant blur on images [11]. In our algorithm, a Gaussian pyramid is
first built for each input image, then all the pyramid layers are resized to the input
image scale. In the foveated image, pixels closer to the image center are assigned
intensity values in higher resolution layers at the same coordinate, pixels far away
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from the centerswill be assigned values from lower resolution layers. Some foveation
examples are shown in the second row of Fig. 5.2.

DCNNTraining: Several cell detection algorithms [1, 2] with varying parameters
are chosen to generate training samples for the DCNN. All the true cell centers are
manually annotated in training images. The detected results within a certain distance
τ1 to the annotated cell centers are marked as positive training samples, others that
locate far away from the centers (measured by τ2) are marked as negative training
samples, where τ2 ≥ τ1. Each training sample is further rotated by seven angles.
In our implementation, a mini-batch of size 10, which is a compromise between
the standard and stochastic gradient descent forms, is used to train the DCNN. The
learning rate is initiated as 0.01, and decreases as the number of epoches increases.

5.3 Experiments

The proposed algorithm is tested with two datasets: (1) 24 neuroendocrine (NET)
tissuemicroarray (TMA) images, and (2) 16 lung cancer images. Each image contains
roughly 150 cells. For each dataset, twofold cross-validation is used to evaluate the
accuracy. All the true cell centers are manually labeled by doctors. An automatic
detection is considered as true positive (TP) if the detected result is within a circle
centered at the ground-truth annotationwith a radius r. The detected results that do not
fall into the circle will be labeled as false positive (FP). All missed true cell centers
are counted as false negative (FN). The results are reported in terms of precision
(P = TP

TP+FP ) and recall (R = TP
TP+FN ). Both the maximum-weight independent set

(MWIS) and the deep convolutional neural network (DCNN) are evaluated in the
following sections.

First, in order to justify the proposed two-step iterative algorithm to solve the
MWIS problem stated in Eq. (5.1), we have compared it with a commonly used
greedy non-maximum suppression (NMS) method [6], which keeps selecting an
available node with the highest score and then removing the node and its neigh-
bors until all the nodes are checked. As defined before, two nodes are considered as
neighbors if their Euclidean distance is smaller than a threshold parameter λ. Tak-
ing detection results obtained from [1–3] as inputs, we generate a set of detection
results for both the proposed algorithm and NMS by changing the parameter λ. The
comparison of the converged object function values of Eq. (5.1) achieved by the pro-
posed algorithm (Ours) and NMS are shown in Fig. 5.3a, d. The comparative results
of detection accuracy (F1 score) are shown in Fig. 5.3b, e for Net and Lung dataset,
respectively.We can observe that: (1) Both the proposed algorithm and NMSmethod
are insensitive to parameter λ, and (2) the proposed algorithm consistently produces
solutions of better qualities in terms of maximizing the object function in Eq. (5.1)
and outperforms the NMS method in most cases in terms of detection accuracy, F1

score. For both methods, the detect candidates with scores below than 0 (1 denotes
positive and –1 denotes negative while training) will not be considered.
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Fig. 5.3 The evaluation of the proposed general cell detection algorithm using two different
datasets. The first and second row denotes results of the NET and Lung datasets, respectively.
a and d The comparison of the object values of Eq. (5.1) achieved by the proposed algorithm (Ours)
and NMS with different parameter λ. b and e The comparison of the proposed algorithm (Ours)
and NMS by changing the parameter λ. The baseline method is the algorithm presented by Arteta
et al. [3]. c and f The comparison of detection accuracies among IRV, ITCN (different parameters),
and our algorithm. The best results of IRV and ITCN are marked with stars

Second, the proposed cell detection algorithm is compared with three detection
algorithms: (1) Iterative radial voting (IRV) [1] with different cell diameter parameter
{19, 22, 25, 28, 31} for NET and {17, 20, 23, 26, 29} for Lung dataset; (2) Image-
based tool for counting nuclei (ITCN) [2] with diameter parameter set as {20, 23, 26,
29, 32} for NET and {17, 20, 23, 26, 29} for Lung dataset; (3) A learning-based cell
detection algorithm (Arteta et al. [3]) that does not require the parameter selection
once a structured supported vector machine is learned on the training images. Both
algorithms (1) and (2) will generate a pool of detection candidates, and we will
evaluate whether the proposed algorithm is capable of finding the best subset that
outperforms each individual algorithm. Please note that we use IRV+OURS and
ITCN+OURS to denote the proposed algorithm using the detection results of IRV
and ITCN as candidates for best subset selection, respectively. The experimental
results are shown in Fig. 5.3. The first row denotes the testing results using the NET
dataset, and the second row presents the testing results using the lung cancer dataset.
The detailed comparative results are explained below.

The comparative results of IRV, IRV+OURS, ITCN, ITCN+OURS with respect
to different parameters are shown in Fig. 5.3c, f. As one can tell, whether or not
IRV and ITCN can provide satisfactory results heavily depend on proper parameter
selections, which is not always feasible or convenient during runtime. When the
parameter is not selected correctly, the performance will deteriorate significantly as
illustrated in (c) and (f) (red and blue dotted lines). However, our proposed algorithm



70 F. Liu and L. Yang

Fig. 5.4 Qualitative cell detection results using different algorithms. The first row denotes the cell
detection results using NET and the second row denotes the cell detection results using the Lung
cancer dataset. From left to right, the columns denote: cropped image patch, cell detection results
of [1–3], and the proposed algorithm. The detection errors are labeled with dotted yellow rectangles

Table 5.2 Comparison of cell detection accuracy

Method NET Lung

F1-score Prec. Rec. F1-score Prec. Rec.

IRV [1] 0.8260 0.7999 0.8539 0.7584 0.6657 0.8812

ITCN [2] 0.7950 0.8277 0.7647 0.7264 0.6183 0.8804

Arteta et al. [3] 0.8328 0.8806 0.7899 0.8118 0.8820 0.7520

[1]+[2]+[3]+OURS 0.9182 0.9003 0.9369 0.9036 0.8843 0.9237

does not require careful selection of parameters as shown in Fig. 5.3b, e. In addition,
it consistently outperforms any best individual detection result using IRV and ITCN
(red and blue lines) (Fig. 5.4).

In order to justify the accuracy of the assignedweightsw usingDCNN inEq. (5.1),
we have compared DCNN with a random forest (RF) classifier using different fea-
tures: (1) Global scene descriptor (GIST) and (2) raw pixel values following by a
principle component analysis (PCA) for the dimension reduction. The comparison
results can be seen in Fig. 5.5. It is obvious that DCNN consistently provides better
results than other methods on both Net and Lung datasets. The quantitative detection
results are summarized in Table5.2. We can see that the proposed algorithm consis-
tently performs better than both the parameter sensitive methods (IRV and ITCN)
and the parameter nonsensitive method [3]. Please note that in Table5.2, we report
the best detection results of [1] and [2] using the optimal parameters. Some qualita-
tive automatic cell detection results are shown in Fig. 5.4 using both NET and lung
cancer data.
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Fig. 5.5 Comparisons of
methods to compute w in
Eq. (5.1)

Net Lung
0.82

0.84

0.86

0.88

0.9

0.92
GIST+RF
PCA+RF
DCNN

5.4 Conclusion

In this chapter,wehaveproposed anovel cell detection algorithmbasedonmaximum-
weight independent set selection thatwill choose the heavies subset fromapool of cell
detection candidates generated from different algorithms using various parameters.
The weights of the graph are computed using a deep convolutional neural network.
Our experiments show that this novel algorithm provide ensemble detection results
that can boost the accuracy of any individual cell detection algorithm.
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Chapter 6
Deep Learning for Histopathological Image
Analysis: Towards Computerized Diagnosis
on Cancers

Jun Xu, Chao Zhou, Bing Lang and Qingshan Liu

Abstract Automated detection and segmentation of histologic primitives are critical
steps for developing computer-aided diagnosis and prognosis system on histopatho-
logical tissue specimens. For a number of cancers, the clinical cancer grading system
is highly correlated with the pathomic features of histologic primitives that appreci-
ated fromhistopathological images. However, automated detection and segmentation
of histologic primitives is pretty challenged because of the complicity and high den-
sity of histologic data. Therefore, there is a high demand for developing intelligent
and computational image analysis tools for digital pathology images. Recently there
have been interests in the application of “Deep Learning” strategies for classifica-
tion and analysis of big image data. Histopathology, given its size and complexity,
represents an excellent use case for application of deep learning strategies. In this
chapter, we present deep learning based approaches for two challenged tasks in
histological image analysis: (1) Automated nuclear atypia scoring (NAS) on breast
histopathology. We present a Multi-Resolution Convolutional Network (MR-CN)
with Plurality Voting (MR-CN-PV) model for automated NAS. MR-CN-PV con-
sists of three Single-Resolution Convolutional Network (SR-CN) withMajority Vot-
ing (SR-CN-MV) model for getting independent NAS. MR-CN-PV combines three
scores via plurality voting for getting final score. (2) Epithelial (EP) and stromal
(ST) tissues discrimination. The work utilized a pixel-wise Convolutional Network
(CN-PI) based segmentation model for automated EP and ST tissues discrimina-
tion. We present experiments on two challenged datasets. For automated NAS, the
MR-CN-PV model was evaluated on MITOS-ATYPIA-14 Challenge dataset. MR-
CN-PVmodel got 67 scorewhichwas placed the second comparingwith the scores of
other five teams. The proposed CN-PI model outperformed patch-wise CN (CN-PA)
models in discriminating EP and ST tissues on a breast histological images.
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6.1 Introduction

Cancer is the leading cause of death in the United States [1] and China [2]. In 2015
alone there were 4.3 million new cancer cases and more than 2.8 million cancer
deaths in China [2]. Fortunately, most of the cancers have a very high chance of cure
if detected early and treated adequately. Therefore, earlier diagnosis on cancers and
better prognostic prediction of disease aggressiveness and patient outcome are pretty
important. The pathological diagnosis remains the “gold standard” in cancer diagno-
sis [3]. Currently, the routine assessment of histological grade and other prognostic
factors for cancers are done by pathologists looking over the Hematoxylin & Eosin
(H&E) stained histopathology images under microscope. Histological grade based
onH&E image is amorphological assessment of tumor biological characteristics and
has been shown to be highly correlated to the patient outcome in long-term survival or
disease-free survival [4, 5]. For instance, the Nottingham Grading System (NGS) is
one of the popular grading system used world wide for evaluating the aggressiveness
of breast cancer. In this system, the pathologists take into considerations three factors,
which are nuclear atypia, tubule formation, and mitotic rate. Nuclear atypia refers to
abnormal appearance of cell nuclei. The introduction of nuclear atypia scoring covers
a second important criteria necessary for breast cancer grading. It gives an indication
about the stage of evolution of the cancer. Nuclear Atypia Score (NAS) is a value,
1, 2, or 3, corresponding to a low, moderate or strong nuclear atypia (see Fig. 6.1),
respectively. Epithelial (EP) and Stromal (ST) tissues are two basic tissues in his-
tological samples. In breast tissue samples, ST tissue includes the fatty and fibrous
connective tissues surrounding the ducts and lobules, blood vessels, and lymphatic
vessels, which are supportive framework of an organ. EP tissue is the cellular tissue
lining and found in the ductal and lobular system of the breast milk ducts. About
80% breast tumors originate in the breast EP cells. Although ST tissue is typically
considered as not being part of malignant tissue, the changes in the stroma tend to
drive tumor invasion andmetastasis [6]. Therefore, tumor-stroma ratio in histological
tissues is being recognized as an important prognostic value [7], since cancer growth
and progression is dependent on the microenvironment of EP and ST tissues. Yuan
et al. in [8] found that the spatial arrangement of stromal cell in tumors is a prognostic
factor in breast cancer. Consequently a critical initial step in developing automated
computerized algorithms for risk assessment and prognosis determination is to be
able to distinguish stromal from epithelial tissue compartments on digital pathology
images.

Histologic image assessment has remained experience-based qualitative [9], and
it always causes intra- or inter-observers variation [10] even for experienced pathol-
ogists [11]. This ultimately results in inaccurate diagnosis. Moreover, human inter-
pretation on histological images has low agreements among different pathologists
[9]. Inaccurate diagnosis may results in severe overtreatment or undertreatment, thus
causing serious harms to patients. There is an acute demand for developing com-
putational image analysis tools to help pathologists make faster and more accurate
diagnosis [12]. With the advent of whole-slide digital scanners, the traditional glass
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Fig. 6.1 The sample images under×40magnification with different Nuclear Atypia Scores (NAS):
a NAS = 1, b NAS = 2, and c NAS = 3

slides can now be digitalized and stored in digital image form [13]. Digital pathol-
ogy makes computerized quantitative analysis of histopathology imagery possible
[5]. The interpretation of pathological images via computerized techniques is becom-
ing a powerful tool for probing awide variety of pathology problems [14, 15]. Studies
have showed that such tools have the potential to tackle the inherent subjectivity in
manual qualitative interpretation, and they largely reduce the workload of patholo-
gists via high-throughput analysis [9]. Toward this end, in this chapter, we focus on
two challenged problems: (1) Automated nuclear atypia scoring; (2) Epithelial (EP)
and Stromal (ST) tissues discrimination on breast histopathology.

The rest of the paper is organized as follows: A review of previously related works
on deep learning (DL) for histological image analysis, EP and ST discrimination,
and automated nuclear atypia scoring (NAS) is presented in Sect. 6.2. A detailed
description of methodology on leveraging DL for automated NAS as well as EP and
ST tissues discrimination are presented in Sects. 6.3 and 6.4, respectively. The exper-
imental setup and comparative strategies are discussed in Sect. 6.5. The experimental
results and discussions are reported in Sect. 6.6. Concluding remarks are presented
in Sect. 6.7.

6.2 Previous Works

As Figs. 6.1 and 6.2 show, histologic images are highly challenged data. It is
extremely challenging for automated image analysis tools due to the highdata density,
the complexity of the tissue structures, and the inconsistencies in tissue preparation.
Therefore, it is crucial to develop intelligent algorithms for automated detection and
segmentation of histologic primitives as well as the classification of tissue samples
in an accurate, fast, practical, and robust manner [9].



76 J. Xu et al.

Fig. 6.2 The illustration of epithelial and stromal regions in a breast histologic tissue sample.
The annotated epithelial (red) and stromal (green) regions are shown in a. c–f are four different
epithelial patches from the original tissue sample (b) which have been magnified to show the details
of epithelial regions

6.2.1 Previous Works on Deep Learning for Histological
Image Analysis

Recently, deep convolutional network (CN), an instance of Deep Learning (DL)
architectures, have shown its advantageous in image analysis over other non-deep
learning based approaches. DL is a data-driven and end-to-end learning approach
which learns high-level structure features from just pixel intensities alone that are
useful for differentiating objects by a classifier. Recently, it has been successfully
employed for medical image analysis with various applications [16–24]. The DL
based approaches have evoked great interests from the histological image analysis
community since the pioneer work in [25]. Histopathology, given its size and com-
plexity, represents an excellent use case for application of deep learning strategies. In
[25], a popular six-layer CN, which is also called “ConvNet” is employed for mitotic
detection. This work won the ICPR 2012 contest and MICCAI 2013 Grand Chal-
lenge on mitotic detection. The model was a patch-wise training process for pixel-
wise labeling. It was first trained with a great amount of context patches. Basically,
there were two types of context patches: foreground patches whose central pixels
are located within target objects and background patches whose central pixels are
located around the neighborhood pixel of the target objects. After training, the model
was employed to predict the central pixel of chosen patches being targeted objects
or not. Recently, much effort has been focused on nuclear detection or segmentation
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[26–28]. In terms of nuclear detection, a Stacked Sparse Autoencoder (SSAE) based
model was employed in [29] for discriminating nuclear and non-nuclear patches.
Then integrating with the sliding window operation the SSAE model was further
utilized to automated nuclear detection from high-resolution histological images in
[26]. In [27], a Spatially Constrained CN was presented to nucleus detection. This
segmentation free strategy can detect and classify different nuclear types simulta-
neously on colorectal adenocarcinoma images. The CN involves convolutional and
subsampling operations to learn a set of locally connected neurons through local
receptive fields for feature extraction. Therefore, CN is good at capturing contex-
tual information. Based on these contexture information, a pixel-wise based CN was
developed for pixel-wise segmentation of nuclear regions in [28]. Pixel-wise seg-
mentation is different from patch-wise classification since pixel-wise segmentation
aims to predict class label of each pixel in an image based on a local patch around that
pixel [25], while patch-wise classification aims to assign a single label to the entire
image patch [30]. Therefore, pixel-wise classification is more challenged. In [31],
the authors employed a convolutional autoencoder neural network architecture with
autoencoder for histopathological image representation learning. Then a softmax
classification is employed for classifying regions of cancer and noncancer.

6.2.2 Previous Works on Nuclear Atypia Scoring

Automated Nuclear Atypia Scoring (NAS) is a challenged task. Currently, a few
works were reported in this field. Most of current works focus on nuclei detection
and segmentation since the NAS criteria is highly related to the shape, texture, and
morphological features of nuclei in the tissue samples. In [32, 33], nuclear regions
were first segmented and then a classifier was trained to grade the tissues based on
the nuclear features extracted from segmented nuclear regions. In [34], the authors
developed a method to select and segment critical nuclei within a histopathological
image for NAS. However, it is a pretty challenged task to accurately detect and
segment nuclei in the cancerous regions, especially in the regions with strong NAS
(i.e., NAS = 3). Therefore, image-level classification might be a better solution
to this problem. Different from nuclear segmentation based approaches, a image-
level analysis based approach was proposed in [35] for NAS. Image-level feature
extraction had been extensively utilized for distinguishing normal and cancerous
tissue samples in [31, 36]. In order to differentiate entire ER+BCa histopathology
slides based on their mBR grades, a multi-fields-of-view (multi-FOV) classifier was
utilize in [37, 38] to automatically integrate image features from multiple fields of
views (FOV) at various sizes. Inspired by these works, we present aMulti-Resolution
Convolutional Network (MR-CN) which consists of a combination of three Single-
Resolution Convolutional Network (SR-CN) paths connected with plurality voting
strategy for automated NAS, while each SR-CN path integrated with majority voting
for independent NAS.
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6.2.3 Previous Works on Epithelial
and Stromal Segmentation

Handcrafted features based approaches had been extensively employed to the recog-
nition of different tissues in histological images. In [39], local binary pattern (LBP)
and contrast measure based texture features were used for discriminating EP and
ST regions from immunohistochemistry (IHC) stained images of colorectal cancer.
More recently, five perception-based features related to human perception were stud-
ied in [40] to differentiate EP and ST patches. In [41], color-based texture features
extracted from square image blocks for automated segmentation of stromal tissue
from IHC images of breast cancer. A binary graph cuts approach where the graph
weights were determined based on the color histogram of two regions, was used for
segmenting EP and ST regions from odontogenic cysts images in [42]. A wavelet-
basedmultiscale texture is presented in [43] for the segmentation of the various types
of stromal compartments on ovarian carcinoma virtual slides. In [44], a cell graph
feature describing the topological distribution of the tissue cell nuclei was used for
discriminating tumor and stromal areas on immunofluorescence histological images.
In [45], IHC stained TMA cores were automatically stratified as tumor or non-tumor
cores based on a visual word dictionary learning approach. In [46], a multi-class
texture based model is presented for identifying eight different types of tissues from
colorectal cancer histology. A publicly available interactive tool called Ilastik was
employed in [47] for pixel-wise image segmentation of glands and epithelium from
other types of tissue in the colorectal digitized sample. The tool is trained based
on labels provided by the user and each pixels neighborhood in the image is char-
acterized by nonlinear features such as color, texture, and edge features. A random
forest classifier is then used to produce pixel-level segmentations.We showed in [30]
that patch-wise CN (CN-PA) based models outperform handcrafted features based
approaches in [39, 40] for discriminating EP and ST) tissues. In this work, we will
leverage pixel-wise CN (CN-PI) for pixel–pixel segmentation of EP and ST regions
from histological tissue images.

For simplicity, the symbols used in the paper was enumerated in Table6.1.

6.3 Deep Learning for Nuclear Atypia Scoring

A slide (or case) with different Resolution of Views (ROVs) is defined as an image
set

y = {y(sh), y(s2), . . . , y(sH )}, (6.1)

where sh (h = 1, 2, . . . , H ) represents a ROV of a slide. For instance, a slide y in
Fig. 6.8 has three different ROVs which are y(s1) at ×10, y(s2) at ×20, and y(s3)
at ×40, respectively. Their sizes are 769 × 688, 1539 × 1376, and 3078 × 2752,
respectively. Each slide or case y has a NAS or label l. Here l ∈ {1, 2, 3} represents



6 Deep Learning for Histopathological Image … 79

Table 6.1 Enumeration of the symbols used in the paper

Symbol Description Symbol Description

NGS Nottingham Grading
System

NAS Nuclear Atypia Scoring

EP Epithelial/Epithelium ST Stromal/Stroma

H & E Hematoxylin and Eosin IHC Immunohistochemistry

PI Pixel-wise PA Patch-wise

DL Deep Learning CN Convolutional
Networks

CN-PI Pixel-wise CN CN-PA Patch-wise CN

SR Single Resolution MR Multi-Resolution

MV Majority Voting PV Plurality Voting

SR-CN-
MV

Single-Resolution
Convolutional
Networks with Majority
Voting

MR-CN-PV Multi-Resolution
Convolutional
Networks Plurality
Voting

ROV Resolution of View FOV Field of View

NKI Netherlands Cancer
Institute

VGH Vancouver General
Hospital

D1 Dataset 1: Nuclear
Atypia Scoring

D2 Dataset 2: EP and ST
tissues discrimination

SLIC Simple Linear Iterative
Clustering algorithm

Ncut Normalized Cuts
algorithm

SP Superpixel SW Sliding Window

F1 F1 score ACC Accuracy

TPR True Positive Rate FPR False Positive Rate

FNR False Negative Rate TNR True Negative Rate

PPV Positive Predictive Rate Negative Predictive
Rate

NPR

FDR False Discovery Rate FNR False Negative Rate

MCC Matthews Correlation
Coefficient

ROC Receiver Operating
Characteristic

NASwith three different scores, i.e., NAS= 1, NAS= 2, and NAS= 3, respectively.
The aim of the work is to find a optimal map f (·) for each input slide y which can
be written as

f : y �→ l (6.2)

where y comprises of three ROVs of a slide.
Figure6.3 shows the flowchart of proposed Multi-Resolution Convolutional Net-

work with Plurality Voting (MR-CN-PV) model for NAS. The model consists of a
combination of three Single-Resolution Convolutional Network with Majority Vot-
ing (SR-CN-MV) paths. Each path independently learns a representation via CN and
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Fig. 6.3 The flowchart of proposed MR-CN-PV model for automated nuclear atypia scoring on
a multi-resolution-of-view (M-ROV) histologic image. MR-CN-PV consists of a combination of
three SR-CN-MV paths connected with plurality voting strategy

Fig. 6.4 The illustration of CN configuration for automated nuclear atypia scoring

performs NAS through majority voting at its own. Predictions across all paths are
then integrated with plurality voting strategy for final NAS.

6.3.1 CN Model for Nuclear Atypia Scoring

CN model employed in this work is based on AlexNet network [48]. The review of
AlexNet network architecture is described in [49] and we direct interested readers
to the paper for a detailed description of the architecture. The configuration of the
network is shown Fig. 6.5. The detailed architecture used in this work is shown
in Table6.2. From each image y(sl) in the training set, we randomly chose many
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Fig. 6.5 The visualization of CN architecture used for pixel-wise segmentation

256 × 256 histologic patches yi (sl) to train a CN. The number of training patches
chosen from training slides is shown in Table6.3.

6.3.2 Integration MR-CN with Combination Voting
Strategies for NAS

As Fig. 6.4 shows, each SR-CN independently learns a representation via CN from
training images with a single resolution. Each SR-CNN is integrated with majority
voting to independently performs NAS.

6.3.2.1 Majority Voting

For each ROV of a slide, a majority voting strategy [50] is integrated with trained
SR-CN for NAS. The voting strategy can be described as
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Table 6.2 The architecture of CN used in this work

Layer Operation � of
Kernels

Kernel
size

Stride Padding Activation
function

Normalization

Nuclear atypia scoring

1 Input 3 – – – – –

2 Convolution 96 11 × 11 4 – ReLU LRN

3 Pooling 96 3 × 3 2 – – –

4 Convolution 256 5 × 5 1 2 ReLU LRN

5 Pooling 256 3 × 3 2 – – –

6 Convolution 384 3 × 3 1 1 ReLU –

7 Convolution 384 3 × 3 1 1 ReLU –

8 Convolution 256 3 × 3 1 1 ReLU –

9 Pooling 256 3 × 3 2 – – –

10 Fully connected 256 – – – ReLU –

11 Fully connected 128 – – – ReLU –

12 Output 3 – – – – –

EP and ST discrimination

1 Input 3 32 × 32 – – – –

2 Convolution 32 5 × 5 1 2 – –

3 Max pooling 32 3 × 3 2 0 ReLU LRN

4 Convolution 32 5 × 5 1 2 ReLU –

5 Max pooling 32 3 × 3 2 0 – LRN

6 Convolution 64 5 × 5 1 2 ReLU –

7 Max pooling 64 3 × 3 2 0 – –

8 Fully connected 64 – – – – –

9 Fully connected 64 – – – – –

10 Output 2 – – – – –

H(y(sl)) =
{
C j , if

∑T
i=1h

j (yi (sl)) > 0.5
∑N

k=1

∑T
i=1h

k(yi (sl));
random, otherwise.

(6.3)

where h j (yi (sl)) is the predicted class C j ( j ∈ {1, 2, 3}) for the input of i th image
patch yi (sl) by the CN-based classifier h(·) (see Fig. 6.3). Here sl (l ∈ {1, 2, 3})
represents a slide y in the testing set with three different resolutions: ×10, ×20,
and ×40, respectively. Similar to training images, the patches yi (sl) are randomly
chosen from a testing image via sliding window scheme whose size is 256 × 256.
The voting strategy in Eq. (6.3) can described as follows. For an image y(sl) under
a particular resolution sl , if there are more than 50% image patches in y(sl) being
predicted as C j , the image is labeled as C j . Otherwise, the image will be randomly
labeled.
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Table 6.3 The number of training and testing images as well as the corresponding training and
testing patches for D1 and D2

Nuclear atypia scoring

Resolution � of total
images

Training Testing

Training Validation

� of images � of patches � of images � of patches � of images

×10 297 274 7023 23 703 124

7049 706

7080 705

×20 1188 1116 14004 72 1328 496

14160 1344

14140 1356

×40 4752 4544 28108 208 2655 1984

28235 2834

28265 2647

EP and ST discrimination

Dataset � of images Tissue Training Testing

� of images Training set Validation
set

� of images

NKI 106 Epithelium 85 77804 41721 21

Stroma 70215 37625

VGH 51 Epithelium 41 40593 16914 10

Stroma 36634 15264

6.3.2.2 Plurality Voting

After each ROV in a slide is graded with the corresponding SR-CN-MV model, a
plurality voting strategy is leveraged to combine three scores by SR-CN-MVmodels
for getting final score. The plurality voting is defined as [50]

FS(y) = Cargmax
j

3∑
l=1

H j (y(sl)) (6.4)

where FS(y) is the final score of each slide in the testing set and H j (y(sl)) is the
score by a SR-CN-MV model which is computed with Eq. (6.3).

We train three SR-CN-MVmodelswith threeROVs of the slides in the training set,
respectively. During the testing, each trained SR-CN-MV independently performs
NAS on a ROV of the input slide. Finally, a plurality voting approach is utilized
to combine the scores by three SR-CN-MV and get final NAS for each slide in the
testing set.
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6.4 Deep Learning for Epithelial and Stromal Tissues
Segmentation

In this section, we present CN-based approach for pixel-wise segmentation of EP
and ST tissues on breast histological tissue samples.

6.4.1 The Deep Convolutional Neural Networks

The CN employed in this work is based on AlexNet network [48] which was trained
on image benchmark challenge CIFAR-10. The visualization of the network’s archi-
tecture is shown in Fig. 6.5.

6.4.2 Generating Training and Testing Samples

In this work, the generation of training samples is critical. Define R(·) a d × d patch
extraction operator and R(cuv) ∈ Rd2

a context patch around pixel cuv of the imageC.

R(cuv) =
{
clm, clm ∈ C|i − d

2
≤ l ≤ i + d

2
, j − d

2
≤ m ≤ j + d

2

}
. (6.5)

where d = 32 in this work. The context patch R(cuv) accommodate the local spatial
dependencies among central pixel and its neighborhoods in the context patch. As
Fig. 6.6 shows, two types of training patches are extracted from training images

1. The EP patcheswhose central pixels (cuv in Eq. (6.5)) are locatedwithin annotated
EP regions;

2. The ST patcheswhose central pixels (cuv in Eq. (6.5)) are locatedwithin annotated
ST regions.

Table6.3 shows the number of training and testing images for two data cohorts of D2

evaluated in this work. For D2, we randomly selected 106 images from Netherlands
Cancer Institute (NKI) Dataset cohort and 51 from Vancouver General Hospital
(VGH) dataset cohort as training images. The remaining 21 images from NKI and
10 images from VGH were used for testing, respectively. The images corresponding
to the training sets with NKI and VGH dataset cohorts were used for generating
training patches. Figure6.6 shows the procedure of generating challenged training
patches from the images corresponding to the training setswithNKI andVGHdataset
cohorts. First, dilation operation is applied to the boundaries of EP and ST regions
of a training image. This operation will result in the thicker boundary maps. Then
EP (region in red box in Fig. 6.6e) or stromal (region in green box 6.6f) patches are
extracted from the tissues based on the location of central pixel (cuv in Eq. (6.5))
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Fig. 6.6 The illustration of generating challenged training patches on a tissue sample (a). Dilation
operation is applied to the boundaries of epithelial and stromal regions in annotation map (b) which
results in the thicker boundarymaps (c). Then epithelial (e) or stromal (f) patches are extracted from
the tissues based on the location of central pixel (cuv in Eq. (6.5)) in epithelial or stromal regions,
respectively

in EP or ST regions, respectively. Besides the challenged training patches, we also
extracted a great amount of general patches within EP and ST regions based on the
manual annotation (see red and green regions Fig. 6.6b). The number of training
patches in this work extracted from training images is given in Table6.3.

6.4.3 The Trained CN for the Discrimination of EP
and ST Regions

Figure6.7 shows the flowchart of proposed CN based model for pixel-wise discrim-
inating EP and ST regions in a breast histological tissue sample. For each testing
image from NKI and VGH cohorts, a sliding window scheme is leveraged to choose
the same context image patches based on Eq. (6.5). The window slides across the
entire image row by row from upper left corner to the lower right with a step size
of 1 pixel. Border padding is employed to address issues of boundary artifacts (see
Table6.2). The pixel-wise segmentation is achieved by predicting the class proba-
bilities of the central pixel cuv of each context patch R(cuv) chosen by the sliding
window scheme, which can be described by the following equation:
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Fig. 6.7 The illustration of pixel-wise segmentation with CN for epithelial and stromal segmenta-
tion for an input tissue sample (a) where each context patch feeding to CN is 32 × 32. b The trained
CN. c The segmentation results on a input tissue sample (a) where the resultant false map represent
EP (red) and ST (green), respectively

pW (l = k|R(cuv)) = 1

1 + exp(−WT R(cuv))
, (6.6)

where pW (·) (k ∈ {0, 1}) is a sigmoid functionwith parametersW . Thefinal predicted
class l = 0 or l = 1 of cuv is determined by the higher probability of prediction results
on the context patch R(cuv).

In Fig. 6.7, predicted class l = 0 or l = 1 with Eq. (6.6) via CN model represents
the EP or ST pixel, respectively.

6.5 Experimental Setup

In order to show the effectiveness of the proposed models on two challenged tasks,
the proposed and comparative models are evaluated on two data sets D1 and D2,
respectively.
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Fig. 6.8 The illustration of a case y in D1 with three different magnifications: a y(s1) has a frame
at ×10, b y(s2) has 4 frames at ×20, and c y(s3) has 16 frames at ×40

6.5.1 Data Set

6.5.1.1 Dataset 1 (D1): Nuclear Atypia Scoring

The dataset was provided by the 22nd ICPR NAS contest [51]. The slides were
stained with standard H&E dyes and they have been scanned by slide scanner Ape-
rio Scanscope XT. In each slide, the pathologists selected several frames at ×10
magnification. Each ×10 frame is subdivided into four frames at ×20 magnifica-
tion. Each ×20 frame is also subdivided into four frames at ×40 magnification (see
Fig. 6.8). Therefore, each slide y includes three H&E stained histologic images with
three different magnifications: ×10 (i.e., y(s1)), ×20 (i.e., y(s2)), and ×40 (i.e.,
y(s3)), whose sizes are 769 × 688, 1539 × 1376, and 3078 × 2752, respectively.
The number of training images with different resolutions are shown in Table6.3. 124
slides were provided for testing. The dataset only provided the NAS for the slides in
the training set. The NAS of the slides in the testing set were not provided.

6.5.1.2 Dataset 2 (D2): Epithelial and Stromal Tissues Discrimination

This data set was downloaded via the links provided in [52]. The data was acquired
from two independent cohorts: Netherlands Cancer Institute (NKI) and Vancouver
General Hospital (VGH). It consists of 157 rectangular image regions (106 NKI, 51
VGH) in which Epithelial and Stromal regions were manually annotated by patholo-
gists. The images are H&E stained histologic images from breast cancer TMAs. The
size of each image is 1128 × 720 pixels at a 20X optical magnification.
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6.5.2 Comparison Strategies

6.5.2.1 Nuclear Atypia Scoring

The proposed method is compared against other state-of-the-art methods for the
performance of automated NAS on the slides from the testing set. As the dataset
did not provide the groundtruth, the NAS on each testing slide were submitted to
the organizer of the contest for evaluation. The performance and the rank were
then returned by the organizer. We also compare the performance of each single
path of SR-CN-MV on a particular ROV against MR-CN-PV across three ROVs
(see Fig. 6.3).

6.5.2.2 Epithelial and Stromal Tissues Discrimination

We compare the proposed pixel-wise CN (CN-PI) with patch-wise CN (CN-PA)
studied in [30] in discriminatingEPandST tissues.Adetailed description of proposed
and comparative models are illustrated in Table6.4. The comparative models are
described in the paper [30] and we direct interested readers to the paper for a detailed
description of the models.

Table 6.4 The illustration of models considered in the paper for comparison and the detailed
description of the different models

Nuclear atypia scoring

Models Input images Size of
patches

Network Voting strategy

SR-CN-MV Image with single
resolution

256 × 256 AlexNet Majority voting

SR-CN-PV Image with multiple
resolutions

Plurality voting

EP and ST discrimination

Models Generating patches Size of
patches

Network Classifier

CN-PA CN-SW [30] Sliding window +
square image

50 × 50 AlexNet SMC

CN-Ncut [30] Superpixel(Ncut) +
square image

CN-SLIC [30] Superpixel(SLIC) +
square image

CN-PI Context patch of
pixel level

32 × 32
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6.5.3 Computational and Implemental Consideration

All the experiments were carried out on a PC (Intel Core(TM) i7-3770@3.40GHz
GHz processor with 16 GB of DDR3 1600MHz RAM), a Titan X NVIDIA Graphics
Processor Unit and Hard Disk Seagate ST31000524AS (1TB/7200). The software
implementation was performed using MATLAB 2014b with Ubuntu14.04 Linux
system. CN model was implemented on Caffe framework [53].

6.6 Results and Discussion

6.6.1 Qualitative Results

The qualitative segmentation results (Fig. 6.9c–f) of the different CN models for a
histological image in D2 (Fig. 6.9a) are shown in Fig. 6.9. In Fig. 6.9b–f, green and
red regions represent epithelial and stromal regions that were segmented with respect
to the pathologist determined ground truth (Fig. 6.9b). The black areas in Fig. 6.9b–f
were identified as background regions and hence not worth computationally interro-
gating. The results in Fig. 6.9c–f appear to suggest that CN-PI basedmodel (Fig. 6.9c)
outperform CN-PA models Fig. 6.9d–f.

Fig. 6.9 Segmentation of epithelial (red) and stromal (green) regions on a tissue image (a) using
the different segmentation approaches on D2. b The ground truth of annotations of stromal and
epithelial regions by an expert pathologist in a. The classification results are shown for CN-PI (c),
CN-SW (d), CN-Ncut (e), and CN-SLIC (f)
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Fig. 6.10 The histogram
plotting of scores by our
model and other five top
models by different groups.
Our result ranked the second
(in green bar) as comparing
to other results

Fig. 6.11 The histogram
plotting of nuclear atypia
scoring by SR-CN-MV with
three single resolution of
views (ROVs) and
MR-CN-PV across three
ROVs

6.6.2 Quantitative Results

The quantitative performance of NAS for proposedMR-CN-PVmodel and other five
top state-of-the-art methods are shown in Fig. 6.10. As the dataset did not provide
the groundtruth for the slides in the testing set, the scores by proposed MR-CN-PV
model and other state-of-the-art methodswere provided by the organizer. Besides our
score, the organizer also provided other five top scores by five groups that attended
the contest. The proposedMR-CN-PVmodel got 67 points in the slides of testing set
which ranks the second comparing with five top state-of-the-art methods. Moreover,
the MR-CN-PVmodel is computationally efficient. The average computational time
on each images with the resolution of ×10, ×20, and ×40 are 1.2, 5.5, and 30 s,
respectively. The histogram plotting of scores in Fig. 6.10 suggests the effectiveness
of proposed approach in automated NAS. Figure6.11 shows the histogram plotting
of three SR-CN-MV model on each resolution and MR-CN-PV model across three
ROVs for NAS. The results also suggest the effectiveness of proposed MR-CN-PV
model.

The quantitative performance for tissue segmentation for different models on D2

are shown in Table6.5. The results show that the CN-PI model outperforms the
CN-PA models in discriminating two tissues.
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Fig. 6.12 The ROC curves for the different models (see Table6.4) for detecting EP and ST regions
on NKI (a) and VGH (b) data cohorts where AUC values of each models are shown in the figures

Figure6.12a, b show the ROC curves corresponding to segmentation accuracy for
different models on NKI (Fig. 6.12a) and VGH (Fig. 6.12b) of D2. The AUC values
suggest that the pixel-wise based CN outperform patch-wise based CN.

6.7 Concluding Remarks

In this chapter, we utilized deep convolutional neural network (CN) for two chal-
lenged problems: (1) Automated nuclear atypia scoring (NAS); (2) Epithelial (EP)
and Stromal (ST) tissues discrimination on breast histopathology. For NAS, we inte-
grated CN with two combination strategies. The proposed approach yielded good
performance in automated NAS. This shows that the proposed approach can be
applied in clinical routine procedure for automated NAS on histologic images. For
epithelial and stromal tissues discrimination, we presented a pixel-wise CN-based
model for segmentation of two tissues. Both qualitative and quantitative evaluation
results show that the proposed model outperformed patch-wise CN based models.
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Chapter 7
Interstitial Lung Diseases via Deep
Convolutional Neural Networks:
Segmentation Label Propagation,
Unordered Pooling and Cross-Dataset
Learning

Mingchen Gao, Ziyue Xu and Daniel J. Mollura

Abstract Holistically detecting interstitial lung disease (ILD) patterns from CT
images is challenging yet clinically important. Unfortunately, most existing solutions
rely on manually provided regions of interest, limiting their clinical usefulness. We
focus on two challenges currently existing in two publicly available datasets. First of
all, missed labeling of regions of interest is a common issue in existingmedical image
datasets due to the labor-intensive nature of the annotation task which requires high
levels of clinical proficiency. Second, no work has yet focused on predicting more
than one ILD from the same CT slice, despite the frequency of such occurrences. To
address these limitations, we propose three algorithms based on deep convolutional
neural networks (CNNs). The differences between the two main publicly available
datasets are discussed as well.

7.1 Introduction

Interstitial lung disease (ILD) refers to a group ofmore than 150 chronic lung diseases
that causes progressive scarring of lung tissues and eventually impairs breathing.
The gold standard imaging modality for diagnosing ILD patterns is high-resolution
computed tomography (HRCT) [1, 2]. Figures7.1 and 7.2 depict examples of the
most typical ILD patterns.

Automatically detecting ILD patterns fromHRCT images would help the diagno-
sis and treatment of this morbidity. The majority of previous work on ILD detection
is limited to patch-level classification, which classifies small patches from manu-
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Fig. 7.1 Visual aspects of the most common lung tissue patterns in HRCT axial slices in UHG
dataset. Infected regions are annotated with different colors in the publicly available dataset [1]. a
Emphysema (EM). b Fround Glass (GG). c Fibrosis (FB). d Micronodules (MN)

Fig. 7.2 Examples of ILD patterns. Every voxel in the lung region is labeled as healthy or one
of the four ILDs: ground glass, reticular, honeycomb or emphysema. The first row is the lung CT
images. The second row is their corresponding labelings

ally generated regions of interest (ROIs) into one of the ILDs. Approaches include
restricted Boltzmann machines [3], convolutional neural networks (CNNs) [4], local
binary patterns [5, 6] and multiple instance learning [7]. An exception to the patch-
based approach is the recent work of Gao et al. [8], which investigated a clinically
more realistic scenario for ILD classification, assigning a single ILD label to any
holistic two-dimensional axial CT slice without any pre-processing or segmentation.
Although holistic detection is more clinically desirable, the underlying problem is
much harder without knowing the ILD locations and regions a priori. The difficulties
lie on several aspects, which include the tremendous amount of variation in dis-
ease appearance, location, and configuration and also the expense required to obtain
delicate pixel-level ILD annotations of large datasets for training.

Wewould like to tackle these challenges from several aspects. There are twomain
publicly available datasets for CT imaging based ILD classification [1, 2]. The first
one is from University Hospital of Geneva (UHG), with limitedannotations [1]. As
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shown in Fig. 7.1, we find that only less than 15% of the lung region in the pixel
coverage measure is labeled, which significantly restricts the number of available
training image pixels, patches or data. Assigning semantic labels to each pixel of a
CT image is tedious, time-consuming and error-prone, or simply is not affordable
and feasible for a large amount of patients. Supervised learning, the most common
technique for integrating domain knowledge, usually needs the manual annotation
from expensive medical experts to assign a label to every pixel. This hinders the
learning scalability both in the amount of training data and in the number of classes.
On the other hand, we have witnessed the success of many applications in computer
vision and medical imaging analysis when a large-scale well-annotated dataset is
available [9].

Therefore automated image annotation or labeling methods are needed to assist
doctors during the labeling process. In an ideal framework, computerized algorithms
would complete most of the tedious tasks, and doctors would merely validate and
fine-tune the results, if necessary. We propose a segmentation propagation algorithm
that combines the cues from the initial or partial manual annotations, deep convolu-
tional neural networks (CNN) based single pixel classification and formulate into a
constrained dense fully connected conditional random field (CRF) framework [10].
Ourmain technical novelties are the constrained unary (manually labeled pixels are
hard-enforced with their original ILD image labels; pixels outside of lung are con-
sidered as hard-encoded background; unlabeled lung pixels are the key subjects to be
assigned ILD labels using our method) and pairwise terms (message passing is only
allowed for any pair of lung image pixels) and their efficient implementation in [11].
The proposed method is applicable to other problems as a generic semi-supervised
image segmentation solution. This work is partially inspired by interactive graph-cut
image segmentation [12] and automatic population of pixelwise object-background
segmentation from manual annotations on ImageNet database [13].

Another challenge we would like to solve is detecting multiple ILDs simultane-
ouslywithout the locations which has not been addressed by previous studies [3, 4, 8,
14], including that ofGao et al. [8],which all treat ILDdetection as a single-label clas-
sification problem. When analyzing the Lung Tissue Research Consortium (LTRC)
dataset [2], the most comprehensive lung disease image database with detailed anno-
tated segmentation masks, we found that there are significant amounts of CT slices
associated with two or more ILD labels. For this reason, and partially inspired by the
recent natural image classification work [15], we model the problem as multi-label
regression and solve it using a CNN [16]. We note that multi-label regression has
also been used outside of ILD contexts for heart chamber volume estimation [17,
18]. However, this prior work used hand-crafted features and random-forest-based
regression, whereas we employ learned CNN-based features, which have enjoyed
dramatic success in recent years over hand-crafted variants [9]. Thus, unlike prior
ILD detection work [3–6, 8], our goal is to detect multiple ILDs on holistic CT slices
simultaneously, providing a more clinically useful tool.

While CNNs are powerful tools, their feature learning strategy is not invariant to
the spatial locations of objects or textures within a scene. This order-sensitive feature
encoding, reflecting the spatial layout of the local image descriptors, is effective in
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object and scene recognition. However, it may not be beneficial or even be counter-
productive for texture classification. The spatial encoding of order-sensitive image
descriptors can be discarded via unordered feature encoders such as bag of visual
words (BoVW), Fisher vectors (FV) [19], or aggregated by order-sensitive spatial
pyramid matching (SPM). Given the above considerations, we enhance our CNN-
regression approach using spatial-invariant encodings of feature activations formulti-
label multi-class ILD detection.

7.2 Methods

Our algorithms are of two respects. The first onewould extend the limited labels in the
UHG dataset to every pixel in the lung region. Specifically, we explore the possible
ways to propagate the ILD labels from the limited manually drawn regions to the
whole lung slice as a per-pixel multi-class image segmentation and labeling. The
fully connected conditional random field builds the pairwise potentials densely on all
pairs of pixels in the image. The CRF optimization is conducted as message passing
that can naturally handle multi-class labeling. The CRF unary energies are learned
from CNN-based image patch labeling. Ground truth labels by radiologists are also
integrated into the CRF as hard constraints. The proposed algorithm is evaluated on
a publicly available dataset [1] and the segmentation/labeling results are validation
by an expert radiologist.

The second method focuses on predicting multiple labels simultaneously on the
same slice and is tested on theLTRCdataset.Wepropose twovariations ofmulti-label
deep convolutional neural network regression (MLCNN-R) models to address the
aforementioned challenges. First, an end-to-end CNN network is trained for multi-
label image regression. The loss functions are minimized to estimate the actual pixel
numbers occupied per ILD class or the binary [0,1] occurring status. Second, the con-
volutional activation featuremaps at different network depths are spatially aggregated
and encoded through the FV [19] method. This encoding removes the spatial config-
urations of the convolutional activations and turns them into location-invariant repre-
sentations. This type of CNN is also referred as FV-CNN. The unordered features are
then trained using a multivariate linear regressor (Mvregress function in MATLAB)
to regress the numbers of ILD pixels or binary labels. Our proposed algorithm is
demonstrated using the LTRC ILD dataset [2], composed of 533 patients. Our exper-
iments use fivefold cross-validation (CV) to detect the most common ILD classes of
ground glass, reticular, honeycomb and emphysema. Experimental results demon-
strate the success of our approach in tackling the challenging problem of multi-label
multi-class ILD classification.
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7.2.1 Segmentation Label Propagation

We formulate the segmentation problem as a maximum a posteriori (MAP) inference
in a CRF defined over pixels. To take into account of long-range image interactions,
an efficient fully connected CRF method is adapted [11].

The CRF representation captures the conditional distribution of the class labeling
X given an image I . Consider a random field X defined over a set of variables
{X1, . . . , XN }, with Xi ∈ X being associated with every pixel i ∈ V and taking a
value from the label set L = {l1, . . . , lK } of label categories. The labeling of X from
images is obtained with a maximum a posterior (MAP) estimation of the following
conditional log-likelihood:

E(x) =
∑

i

ψu(xi ) +
∑

i< j

ψp(xi , x j ), (7.1)

where i and j range from 1 to N . ψu(xi ), the unary potential, is computed inde-
pendently by the convolutional neural network classifier for each pixel/patch. The
pairwise potentials in our model have the form

ψp(xi , x j ) = u(xi , x j )

K∑

m=1

k( fi , f j )

= u(xi , x j )

K∑

m=1

ω(m)k(m)( fi , f j ).

(7.2)

Each k(m) is a Gaussian kernel

k(m)( fi , f j ) = exp(−1

2
( fi − f j )

T�(m)( fi − f j )), (7.3)

where the vectors fi and f j are feature vectors for pixels i and j in an arbitrary
feature space; u is a label compatibility function; and ω(m) are linear combination
weights.

In our implementation, we use two-kernel potentials, defined in terms of the CT
attenuation vectors Ii and I j (introduced in [8]) and positions pi and p j :

k( fi , f j ) = ω(1)exp

(
−|pi − p j |2

2θ2α
− |Ii − I j |2

2θ2β

)

+ ω(2)exp

(
−|pi − p j |2

2θ2γ

)
.

(7.4)

The first termpresents the appearance kernel, which represents the affinities of nearby
pixels with similar CT attenuation patterns. The second term presents the smoothness
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Fig. 7.3 Major intermediate results. a Three channels of different HU windows illustrated as RGB
values. bAnnotated ROI. c Annotated lung mask. d CNN classifier at a spatial interval of 10 pixels.
e Final result integrating image features, unary prediction and hard constraints

kernel, which removes small isolated regions. The parameters θα, θβ and θγ are used
to control the degree of nearness and similarity. The inference of fully connected
conditional random field is efficiently approximated by an iterative message passing
algorithm. Each iteration performs a message passing, a compatibility transform and
a local update. The message passing can be performed using Gaussian filtering in
feature space. The complexity of the algorithm reduces from quadratic to linear in the
number of variables N and sublinear in the number of edges in the model (Fig. 7.3).

Unary classifier using Convolutional Neural Network: At present, there is a vast
amount of relevant work on computerized ILD pattern classification. The majority
focuses on image patch based classification using hand-crafted [5, 6, 20] or CNN
learned features [8]. We use the CNN-based CRF unary classifier because of its
state-of-the-art performance: classification accuracy of 87.9% reported in [8]. To
facilitate comparison, five common ILD patterns are studied in this work: healthy,
emphysema, ground glass, fibrosis and micronodules (Fig. 7.4). Image patches of
size 32 × 32 pixels within the ROI annotations of these five classes, are extracted
to train a deep CNN classifier. The well known CNN AlexNet model [9] trained
on ImageNet is used to fine-tune on our image patch dataset. 32 × 32 pixel images
patches are rescaled to 224 × 224 and three channels of different HU windows [8]
are generated to accommodate the CNN model.
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Fig. 7.4 Examples of 32 × 32 patches for each ILD category. From left to rights columns: healthy,
emphysema, ground glass, fibrosis and micronodules

Hard Constraints: The image labels given by radiologists from the dataset [1]
are considered as ground truth and ought to be strictly enforced. During each CRF
message passing iteration, the hard constrained image regions are hard-reset to be
consistent with their ground truth labels. In such cases, there is only message passing
out of the hard constrained regions towards unlabeled lung image pixels. On the other
hand, we assume that the ILD label map should only be inferred within the lung field.
The lung field CRF ILD labeling is conditionally independent of image pixel patterns
outside the lung mask. In implementation of Eq.7.4, the parameters θα, θβ and θγ are
set to be a small constant (0.001) for any pixel pairs linking lung and non-lung spatial
indexes (pi , p j ) so the associated k( fi , f j ) has a numerically vanishing value, which
is equivalent to no message passing.

Specifically, we explore the possible ways to propagate the ILD labels from
the limited manually drawn regions to the whole lung slice as a per-pixel multi-
class image segmentation and labeling. The fully connected conditional random
field builds the pairwise potentials densely on all pairs of pixels in the image. The
CRF optimization is conducted as message passing that can naturally handle multi-
class labeling. The CRF unary energies are learned from CNN based image patch
labeling. Ground truth labels by radiologists are also integrated into the CRF as hard
constraints. The proposed algorithm is evaluated on a publicly available dataset [1]
and the segmentation/labeling results are validation by an expert radiologist.

7.2.2 Multi-label ILD Regression

Our algorithmcontains twomajor components: (1)we present a squared L2 loss func-
tion based multi-label deep CNN regression method to estimate either the observable
ILD areas (in the numbers of pixels), or the binary [0,1] status of “non-appearing”
or “appearing”. This regression-based approach allows our algorithm to naturally
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Fig. 7.5 Three functions for mapping the number of pixels to the regression label

preserve the co-occurrence property of ILDs in CT imaging. (2) CNN activation
vectors are extracted from convolutional layers at different depths of the network and
integrated using a Fisher vector feature encoding scheme in a spatially unordered
manner, allowing us to achieve a location-invariant deep texture description. ILD
classes are then discriminated using multivariate linear regression.

CNN Architecture: Deep CNN regression is used to calculate the presence or the
area of spatial occupancy for IDL in the image,wheremultiple pathology patterns can
co-exist. The squared L2 loss function is adopted for regression [15] instead of the
more widely used softmax or logistic-regression loss for CNN-based classification
[4, 8, 9]. There are multiple ways to model the regression labels for each image. One
straightforward scheme is to count the total number of pixels annotated per disease
to represent its severity, e.g., Fig. 7.5 left. We can also use a step function to represent
the presence or absence of the disease, as shown in Fig. 7.5middle, where the stage
threshold T may be defined using clinical knowledge. For any ILD in an image, if
its pixel number is larger than T , the label is set to be 1; otherwise as 0. A more
sophisticated model would have a piecewise linear transform function, mapping the
pixel numbers towards the range of [0,1] (Fig. 7.5 right). We test all approaches in
our experiments.

Suppose that there are N images and c types of ILD patterns to be detected or
classified, the label vector of the i th image is represented as a c-length multivariate
vector yi = [yi1, yi2, . . . , yic]. An all-zero labeling vector indicates that the slice is
healthy or has no targeted ILD found based on the ground truth annotation. The L2
cost function to be minimized is defined as

L( yi , ŷi ) =
N∑

i=1

c∑

k=1

(yik − ŷik)
2, (7.5)

There are several successful CNN structures from previous work, such as AlexNet
[9] and VGGNet [21]. We employ a variation of AlexNet, called CNN-F [22], for
a trade-off between efficiency and performance based on the amount of available
annotated image data. CNN-F contains five convolutional layers, followed by two
fully connected (FC) layers. We set the last layer to the squared L2 loss function.
Four classes of ILDs are investigated in our experiments: ground glass, recticular,
honeycomb and emphysema (other classes have too few examples in the LTRC
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database [2]). The length of yi is c = 4 to represent these four ILD classes. Based
on our experience, random initialization of the CNN parameters worked better than
ImageNet pre-trained models. Model parameters were optimized using stochastic
gradient descent.

Unordered Pooling Regression via Fisher Vector Encoding: In addition to CNN-
based regression, we also test a spatially invariant encoding of CNN feature activa-
tions. We treat the output of each k-th convolutional layer as a 3D descriptor field
Xk ∈ R

Wk×Hk×Dk , where Wk and Hk are the width and height of the field and Dk is
the number of feature channels. Therefore, the whole deep feature activation map is
represented by Wk × Hk feature vectors and each feature vector is of dimension Dk .

We then invoke FV encoding [19] to remove the spatial configurations of total
Wk × Hk vectors per activation map. Following [19], each descriptor xi ∈ Xk is soft-
quantized using a Gaussian mixture model. The first- and second-order differences
(uT

i,m, vT
i,m) between any descriptor xi and each of the Gaussian cluster mean vectors

{µm},m = 1, 2, . . . , M are accumulated in a 2MDk-dimensional image representa-
tion:

f FV
i = [

uT
i,1, v

T
i,1, . . . , u

T
i,M , vT

i,M

]T
. (7.6)

The resulting FV feature encoding results in very high 2MDk (e.g., M = 32 and
Dk = 256) dimensionality for deep features of Xk. For computational and memory
efficiency, we adopt principal component analysis (PCA) to reduce the f FV

i features
to a lower-dimensional parameter space. Based on the ground truth label vectors yi ,
multivariate linear regression is used to predict the presence or non-presence of ILDs
using the low-dimensional image features PCA( f FV

i ).

7.3 Experiments and Discussion

The proposed algorithms are testing on two datasets, UHG and LTRC,respectively.
The training folds and testing fold are split at the patient level to prevent overfitting
(i.e., no CT slices from the same patient are used for both training and validation).
CNN training was performed in MATLAB using MatConvNet [23] and was run on
a PC with an Nvidia Tesla K40 GPU.

7.3.1 Segmentation Label Propagation

UHGdataset [1] is used for training and validation under twofold cross-validation for
the segmentation propagation problem. ROIs of total 17 different lung patterns and
lung masks are also provided along with the dataset. Figure7.6 shows the annotation
provided by the dataset, the labeling obtained from our algorithm and the ground
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Fig. 7.6 Comparison between the annotation provided by the UHG dataset, our labeling results,
and the final annotation verified by experienced radiologists

Table 7.1 Confusion matrix, precision, recall and F-score of ILD pattern labeling

Ground truth Prediction

NM EM GG FB MN

NM 0.9792 0.0067 0.0029 0.0020 0.0092

EM 0.2147 0.7389 0 0.0170 0.0294

GG 0 0 1.0000 0 0

FB 0.0414 0.0271 0.0118 0.8046 0.1151

MN 0.0007 0.0013 0.0174 0.0058 0.9748

Precision 0.9500 0.9320 0.8175 0.9060 0.9666

Recall 0.9792 0.7389 1 0.8046 0.9748

F-scall 0.9644 0.8243 0.8996 0.8523 0.9707

truth validated by radiologists. In our implementation, we use the lungmask provided
from the dataset. Please note that trachea is included in the lung mask provided from
the dataset. This misleads our algorithm to give a prediction in the trachea region. A
recent rough lung segmentation method [24] can be used to automate this process.

Quantitative evaluation is given in Table7.1 with the total accuracy reaching
92.8%. More importantly, the amount of auto-annotated pixels is 7.8 times greater
than the amount of provided annotation [1]. Thus the labeled training dataset [1] is
significantly enlarged via segmentation label propagation. This data expansion is a
critical contribution of this paper. The CRF solver is implemented in C++. The most
time consuming part is the unary classification of densely sampled image patches.
To speed up testing, a relatively coarse prediction map of image patches is sufficient.
This map can be bi-linearly interpolated and later refined by the CRF pairwise con-
straints. In our implementation, we predict the labels of image patches at a spatial
interval of 10 pixels. Parameters θα, θβ and θγ are set to be 80, 13, and 3 through a
small calibration dataset within training. We set ω(1) = ω(2) = 1, which is found to
work well in practice.
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7.3.2 Multi-label ILD Regression

LTRC dataset [2] enjoys complete ILD labeling at the CT slice level [10]. We use
the LTRC dataset to evaluate the algorithm detecting multiple labels simultaneously.
Every pixel in the CT lung region is labeled as healthy or one of the four tissue types:
ground glass, reticular, honeycomb or emphysema. Only 2D axial slices are investi-
gated here, without taking successive slices into consideration. Many CT scans for
ILD study have large inter-slice distances (for example 10mm in [1]) between axial
slices, making direct 3D volumetric analysis implausible. The original resolution of
the 2D axial slices is 512 × 512 pixels. All images are resized to the uniform size of
214 × 214 pixels.

To conduct holistic slice based ILDclassification [8],wefirst convert the pixelwise
labeling into slice-level labels. There are 18883 slices in total for training and testing.
Without loss of generality, if we set T = 6000 pixels as the threshold to differentiate
the presence or absence of ILDs, there are 3368, 1606, 1247 and 2639 positive
slices for each disease, respectively. In total there are 11677 healthy CT images,
5675 images with one disease, 1410 images with two diseases, 119 images with
three diseases, and 2 images with four diseases. We treat the continuous values
after regression (in two types of pixel numbers or binary status) as “classification
confidence scores”. We evaluate our method by comparing against ground truth ILD
labels obtained from our chosen threshold.

Each ILD pattern is evaluated separately by thresholding the “classification con-
fidence scores” from our regression models to make the binary presence or absence
decisions. Classification receiver operating characteristic (ROC) curves can be gen-
erated in this manner. We experimented with Fig. 7.5’s three labeling converting
functions. Regression using the ILD occupied pixel numbers or the binary status
labels produced similar quantitative ILD classification results. However, the piece-
wise linear transformation did not perform well.

When constructing the FV-encoded features, f FV
i , the local convolutional image

descriptors are pooled into 32 Gaussian components, producing dimensionalities as
high as 16K dimensions [19]. We further reduce the FV features to 512 dimensions
using PCA. Performance was empirically found to be insensitive to the number of
Gaussian kernels and the dimensions after PCA.

All quantitative experiments are performed under fivefold cross-validation. The
training folds and testing fold are split at the patient level to prevent overfitting (i.e.,
no CT slices from the same patient are used for both training and validation). CNN
training was performed in MATLAB using MatConvNet [23] and was run on a PC
with an Nvidia Tesla K40 GPU. The training for one fold takes hours. The testing
could be accomplished in seconds per image.

We show the ROC results directly regressed to the numbers of ILD pixels in
Fig. 7.7. The area under the curve (AUC) values are marked in the plots. In Fig. 7.7d,
AUC scores are compared among configurations using FV encoding on deep image
features pooled from different CNN convolutional layers. Using activations based
on the first fully connected layer (fc6) are also evaluated. Corresponding quantitative
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Fig. 7.7 ILD detection results shown in ROC curves. Both CNN and FV-CNN regression are used
to regress to the numbers of pixels. a Detection results of CNN regression. b, c Detection results
of FV-CNN via the unordered feature pooling using conv5 and conv1 layer, respectively. d AUC
versus FV pooling at different convolutional layers

results are shown in Table7.2. Both deep regressionmodels achieve highAUCvalues
for all four major ILD patterns. FV unordered pooling operating on the first CNN
convolutional layer conv1produces the overall best quantitative results, especially for
Honeycomb. Despite residing in the first layer, the filters and activations on conv1 are
still part of a deep network since they are learned through back-propagation. Based
on these results, this finding indicates that using FV encoding with deeply learned
conv1 filter activations is an effective approach to ILD classification.

Figure7.8 presents some examples of successful and misclassified results. First
four cases of examples are well successfully detected all types of ILD patterns. In the
second to last, although it is marked as misclassified (compared to the ground truth
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Table 7.2 Quantitative results comparing the AUC between different layers. Both CNN and multi-
variant linear regression regress to pixel numbers

Disease Area under the curve (AUC)

conv1 conv2 conv3 conv4 conv5 fc6 CNN

Ground glass 0.984 0.955 0.953 0.948 0.948 0.930 0.943

Reticular 0.976 0.958 0.954 0.951 0.950 0.939 0.917

Honeycomb 0.898 0.826 0.828 0.823 0.806 0.773 0.698

Emphysema 0.988 0.975 0.967 0.966 0.967 0.985 0.988

Fig. 7.8 Examples of correctly detected and misclassified ILD slices

binary labels with T = 6000 pixels), our method finds and classifies emphysema and
ground glass correctly that do occupy some image regions. These qualitative results
visually confirm the high performance demonstrated by our quantitative experiments.

7.4 Conclusion

In this work, we present several solutions related to ILD pattern detections. The
first segmentation label propagation method efficiently populates the labels from
the annotated regions to the whole CT image slices. High segmentation/labeling
accuracy are achieved. The amount of labeled training data in [1] is significantly
expanded and will be publicly shared upon publication1.

We also present a new ILD pattern detection algorithm using multi-label CNN
regression combined with unordered pooling of the resulting features. In contrast to
previous methods, our method can perform multi-label multi-class ILD detection.
Moreover, this is performed without the manual ROI inputs needed by much of the
state-of-the-art [3–5].Wevalidate on a publicly available dataset of 533 patients using
five-foldCV, achievinghighAUCscores of 0.982, 0.972, 0.893 and0.993 forGround-
Glass, Reticular, Honeycomb and Emphysema, respectively. Future work includes

1http://www.research.rutgers.edu/minggao.

http://www.research.rutgers.edu/minggao
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performing cross-dataset learning and incorporating weakly supervised approaches
to obtain more labeled training data. Nonetheless, as the first demonstration of effec-
tive multi-class ILD classification, this work represents an important contribution
toward clinically effective CAD solutions.
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Chapter 8
Three Aspects on Using Convolutional
Neural Networks for Computer-Aided
Detection in Medical Imaging

Hoo-Chang Shin, Holger R. Roth, Mingchen Gao, Le Lu,
Ziyue Xu, Isabella Nogues, Jianhua Yao, Daniel Mollura
and Ronald M. Summers

Abstract Deep convolutional neural networks (CNNs) enable learning trainable,
highly representative and hierarchical image feature from sufficient training data
which makes rapid progress in computer vision possible. There are currently three
major techniques that successfully employ CNNs to medical image classification:
training the CNN from scratch, using off-the-shelf pretrained CNN features, and
transfer learning, i.e., fine-tuning CNNmodels pretrained from natural image dataset
(such as large-scale annotated natural image database: ImageNet) to medical image
tasks. In this chapter, we exploit three important factors of employing deep con-
volutional neural networks to computer-aided detection problems. First, we exploit
and evaluate several different CNN architectures including from shallower to deeper
CNNs: classicalCifarNet, to recentAlexNet and state-of-the-artGoogLeNet and their
variants. The studied models contain five thousand to 160 million parameters and
vary in the numbers of layers. Second, we explore the influence of dataset scales and
spatial image context configurations on medical image classification performance.
Third, when and why transfer learning from the pretrained ImageNet CNN models
(via fine-tuning) can be useful for medical imaging tasks are carefully examined.
We study two specific computer-aided detection (CADe) problems, namely thora-
coabdominal lymph node (LN) detection and interstitial lung disease (ILD) classifi-
cation. We achieve the state-of-the-art performance on the mediastinal LN detection
and report the first fivefold cross-validation classification results on predicting axial
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CT slices with ILD categories. Our extensive quantitative evaluation, CNN model
analysis, and empirical insights can be helpful to the design of high-performance
CAD systems for other medical imaging tasks, without loss of generality.

8.1 Introduction

Large-scale annotated image datasets (i.e., ImageNet [1, 2]) coupled with the rekin-
dled deep convolutional neural networks (CNN) [3, 4] have led to rapid progress in
natural image recognition. From the perspective of data-driven learning, large-scale
labeled datasets with representative data distribution characteristics are crucial to
learning accurate or generalizable models [4, 5]. ImageNet [1] offers a very com-
prehensive database of more than 1.2 million categorized natural images of 1000+
classes. CNNmodels pretrained on ImageNet serve as the backbone for many object
detection and image segmentation methods that are fine-tuned for other datasets
[6, 7], such as PASCAL [8] and medical image categorization [9–12]. However,
there exists no large-scale annotatedmedical image dataset comparable to ImageNet,
because data acquisition is difficult and quality annotation may be very costly.

Currently, there are three major strategies to employ CNNs on medical image
classification: (1) “training CNN from scratch” [13–17]; (2) using “off-the-shelf
CNN” features (without retraining the CNN) complementary to existing handcrafted
image features, onChest X-ray [10] andCT lung nodule identification [9, 12]; and (3)
performing unsupervised pretraining on natural or medical images and fine-tuning
on target medical images via CNN or other types of deep learning models [18–21].

Previous studies have analyzed three-dimensional patch creation for LN detection
[22, 23], atlas creation from chest CT [24], and the extraction of multi-level image
features [25, 26]. Recently, decompositional 2.5D view resampling and aggregation
of randomviewclassification scores are used to acquire a sufficient number of training
image samples for CNN. There are also several extensions from the decompositional
view representation [27, 28], such as using a novel vessel-alignedmulti-planar image
representation for pulmonary embolismdetection [29], fusing unregisteredmultiview
for mammogram analysis [16], and classifying pulmonary perifissural nodules via
an ensemble of 2D views [12].

Although natural andmedical images differ significantly, image descriptors devel-
oped for object recognition in natural images, such as scale-invariant feature trans-
form (SIFT) [30] and histogram of oriented gradients (HOG) [31], are widely used
for object detection and segmentation in medical image analysis. ImageNet pre-
trained CNNs have been used for chest pathology identification and detection in
X-ray and CT modalities [9, 10, 12]. Better performance results are reported when
deep image features are integrated with low-level image features (e.g., GIST [32],
bag-of-visual-words (BoVW) and bag-of-frequency [12]).

Here we exploit and discuss three important aspects of employing deep convo-
lutional neural networks for computer-aided detection problems. Particularly, we
explore and evaluate different CNN architectures varying in width (ranging from
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5 thousand to 160million parameters) and depth (various numbers of layers), describe
the performance effects of varying dataset sizes and spatial image contexts, and dis-
cuss when and why transfer learning from pretrained ImageNet CNN models can be
valuable. We further verify our hypothesis that inheriting and adapting rich hierar-
chical image features [5, 33] from ImageNet dataset for computer-aided diagnosis
(CAD) is helpful. CNN architectures of the most studied seven-layered “AlexNet-
CNN” [4], a shallower “Cifar-CNN” [27], and amuchdeeper versionof “GoogLeNet-
CNN” [33] (with our modifications on CNN structures) are studied. This work is
partiallymotivated by recent studies [34, 35] in computer vision. The thorough quan-
titative analysis and evaluation on deep CNN [34] or sparsity image coding methods
[35] elucidate the emerging techniques of the time and provide useful suggestions
for their future stages of development, respectively.

Two specific computer-aided detection (CADe) problems, namely thoracoabdom-
inal lymph node (LN) detection and interstitial lung disease (ILD) classification are
explored. On the task of mediastinal LN detection, we surpass all currently reported
results. We obtain 86% sensitivity on 3 false positives (FP) per patient, versus the
prior state-of-art performance at sensitivities of 78% [36] (stacked shallow learning)
and 70% [27] (CNN). ILD classification outcomes under the patient-level fivefold
cross-validation protocol (CV5) are investigated and reported. The ILD dataset [37]
contains 905 annotated image sliceswith 120 patients and 6 ILD labels. Such sparsely
annotated datasets are generally difficult for CNN learning, due to the scarcity
of labeled instances. Previous studies are all based on image patch classification
[37–39].

Evaluation protocols and details are critical to deriving significant empirical find-
ings [34]. Our experimental results suggest that different CNN architectures and
dataset resampling protocols are critical for the LN detection tasks where the amount
of labeled training data is sufficient and spatial contexts are local. SinceLN images are
more flexible than ILD images with respect to spatial resampling and reformatting,
LN datasets can be extensively augmented by such image transformations. Thus LN
datasets contain more training and testing data instances (due to data augmentation)
than ILD datasets. Fine-tuning ImageNet-trained models for ILD classification is
clearly advantageous and yields early promising results, when the amount of labeled
training data is insufficient and multi-class categorization is used, as opposed to the
LN dataset’s binary class categorization. Another important finding is that CNNs
trained from scratch or fine-tuned from ImageNet models consistently outperform
CNNs that merely use off-the-shelf CNN features, in both the LN and ILD classifi-
cation tasks. We further analyze, via CNN activation visualizations, when and why
transfer learning from non-medical to medical images in CADe problems can be
valuable.
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8.2 Datasets and Related Work

Convolutional neural networks are employed two CADe problems: thoracoabdom-
inal lymph node (LN) detection and interstitial lung disease (ILD) detection. Until
the detection aggregation approach [27, 40], thoracoabdominal lymph node (LN)
detection via CADe mechanisms has yielded poor performance results. In [27], each
3D LN candidate produces up to 100 random 2.5D orthogonally sampled images or
views which are then used to train an effective CNN model. The best performance
on abdominal LN detection is achieved at 83% recall on 3FP per patient [27], using
a “Cifar-10” CNN. Using the thoracoabdominal LN detection datasets [27], we aim
to surpass this CADe performance level, by testing different CNN architectures,
exploring various dataset re-sampling protocols, and applying transfer learning from
ImageNet pretrained CNN models.

Interstitial lung disease (ILD) comprises about 150 diseases affecting the inter-
stitium, which can severely impair the patient’s ability to breathe. Gao et al. [41]
investigate the ILD classification problem in two scenarios: (1) slice-level classifi-
cation: assigning a holistic two-dimensional axial CT slice image with its occurring
ILD disease label(s); and (2) patch-level classification: (2.a) sampling patches within
the 2D ROIs (Regions of Interest provided by [37]), then (2.b) classifying patches
into seven category labels (six disease labels and one “healthy” label). Song et al. [38,
39] only address the second subtask of patch-level classification under the “leave-
one-patient-out” (LOO) criterion. By training on the moderate-to-small scale ILD
dataset [37], our main objective is to exploit and benchmark CNN based ILD classi-
fication performances under the CV5 metric (more realistic and unbiased than LOO
[38, 39] and hard split [41]), with and without transfer learning.

ThoracoabdominalLymphNodeDatasets.Weuse the publicly available dataset
from [27, 40]. There are 388 mediastinal LNs labeled by radiologists in 90 patient
CT scans, and 595 abdominal LNs in 86 patient CT scans. To facilitate compari-
son, we adopt the data preparation protocol of [27], where positive and negative LN
candidates are sampled with the fields-of-view (FOVs) of 30–45mm, surrounding
the annotated and detected LN centers (obtained by a candidate generation process).
More precisely, [27, 36, 40] follow a coarse-to-fine CADe scheme, partially inspired
by [42], which operates with ∼100% detection recalls at the cost of approximately
40 false or negative LN candidates per patient scan. In this work, positive and nega-
tive LN candidate are first sampled up to 200 times with translations and rotations.
Afterwards, negative LN samples are randomly re-selected at a lower rate close to the
total number of positives. LN candidates are randomly extracted from fields-of-view
(FOVs) spanning 35–128mm in soft tissue window [−100, 200HU]. This allows us
to capture multiple spatial scales of image context [43, 44]. The samples are then
rescaled to a 64 × 64 pixel resolution via B-spline interpolation.

Unlike the heart or the liver, lymph nodes have no predetermined anatomic ori-
entation. Hence, the purely random image resampling (with respect to scale, dis-
placement and orientation) and reformatting (the axial, coronal, and sagittal views
are in any system randomly resampled coordinates) is a natural choice, which also
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Table 8.1 Average number of images in each fold for disease classes, when dividing the dataset in
fivefold patient sets

Normal Emphysema Ground glass Fibrosis Micronodules Consolidation

30.2 20.2 85.4 96.8 63.2 39.2

happens to yield high CNN performance. Although we integrate three channels of
information from three orthogonal views for LN detection, the pixel-wise spatial cor-
relations between or among channels are not necessary. The convolutional kernels in
the lower level CNN architectures can learn the optimal weights to linearly combine
the observations from the axial, coronal, and sagittal channels by computing their
dot products. Transforming axial, coronal, and sagittal representations to RGB also
facilitates transfer learning from CNN models trained on ImageNet.

Interstitial Lung Disease Dataset. The publicly available dataset [37] is stud-
ied. It contains 905 image slices from 120 patients, with six lung tissue types of
annotations: healthy (NM), emphysema (EM), ground glass (GG), fibrosis (FB),
micronodules (MN), and consolidation (CD) (Fig. 8.2). At the slice level, the objec-
tive is to classify the status of “presence/absence” of any of the six ILD classes for an
input axial CT slice [41]. Characterizing an arbitrary CT slice against any possible
ILD type, without any manual ROI (in contrast to [38, 39]), can be useful for large-
scale patient screening. For slice-level ILD classification, we sampled the slices 12
times with random translations and rotations. After this, we balanced the numbers
of CT slice samples for the six classes by randomly sampling several instances at
various rates. For patch-based classification, we sampled up to 100 patches of size
64 × 64 from each ROI. This dataset is divided into five folds with disjoint patient
subsets. The average number of CT slices (training instances) per fold is small, as
shown in Table8.1.

In this ILD dataset [37], very few CT slices are labeled as normal or healthy.
The remaining CT slices cannot be simply classified as normal, because many ILD
disease regions or slices have not yet been labeled. Thus ILD [37] is a partially
labeled database as one of itsmain limitations.Research is being conducted to address
this issue. For example, [45] proposes to fully label the ILD dataset pixelwise via
segmentation label propagation.

To leverage the CNN architectures designed for color images and to transfer
CNN parameters pretrained on ImageNet, we transform all grayscale axial CT slice
images via three CT window ranges: lung window range [−1400, −200HU], high-
attenuation range [−160, 240HU], and low-attenuation range [−1400, −950HU].
We then encode the transformed images into RGB channels (to be aligned with the
input channels of CNN models [4, 33] pretrained from natural image datasets [1]).
The low-attenuation CT window is useful for visualizing certain texture patterns
of lung diseases (especially emphysema). The usage of different CT attenuation
channels improves classification results over the usage of a single CT windowing
channel, as demonstrated in [41]. More importantly, these CT windowing processes
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Fig. 8.1 Some examples of CT image slices with six lung tissue types in the ILD dataset [37].
Disease tissue types are located with dark orange arrows

Fig. 8.2 Some examples of 64 × 64 pixel CT image patches for a NM, b EM, c GG, d FB, e MN
f CD
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do not depend on the lung segmentation, which instead is directly defined in the CT
HU space.

We empirically compare performance in two scenarios: with or without a rough
lung segmentation.1 There is no significant difference between two setups. For CNN-
based image recognition, highly accurate lung segmentation seems not very neces-
sary. The localization of ILD regions within the lung is simultaneously achieved
through selectively weighted CNN reception fields in the final convolutional layers
during CNN training [47, 48]. Areas outside of the lung appear in both healthy or
diseased images and CNN training learns to ignore them by setting very small filter
weights around the corresponding regions (Fig. 8.8).

8.3 Methods

In this study, we explore, evaluate, and analyze the influence of various CNN Archi-
tectures, dataset characteristics (when we need more training data or better models
for object detection [49]) and CNN transfer learning from nonmedical to medical
image domains. These three key elements of building effective deep CNN models
for CADe problems are described below.

8.3.1 Convolutional Neural Network Architectures

We mainly explore three convolutional neural network architectures (CifarNet
[5, 27], AlexNet [4] and GoogLeNet [33]) with different model training parame-
ter values. The current deep learning models [27, 50, 51] in medical image tasks
are at least 2 ∼ 5 orders of magnitude smaller than even AlexNet [4]. More com-
plex CNN models [27, 50] have only about 150 or 15K parameters. Roth et al. [27]
adopt the CNN architecture tailored to the Cifar-10 dataset [5] and operate on image
windows of 32 × 32 × 3 pixels for lymph node detection, while the simplest CNN
in [52] has only one convolutional, pooling, and FC layer, respectively.

We use CifarNet [5] as used in [27] as a baseline for the LN detection. AlexNet [4]
and GoogLeNet [33] are also modified to evaluate these state-of-the-art CNN archi-
tecture from ImageNet classification task [2] to our CADe problems and datasets.
A simplified illustration of three CNN architectures exploited is shown in Fig. 8.3.
CifarNet always takes 32 × 32 × 3 image patches as input while AlexNet and
GoogLeNet are originally designed for the fixed image dimension of 256 × 256 × 3
pixels. We also reduced the filter size, stride, and pooling parameters of AlexNet
and GoogLeNet to accommodate a smaller input size of 64 × 64 × 3 pixels. We

1This can be achieved by segmenting the lung using simple label fusion methods [46]. First, we
overlay the target image slice with the average lung mask among the training folds. Second, we
perform simple morphology operations to obtain the lung boundary.
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Fig. 8.3 A simplified illustration of the CNN architectures is used. GoogLeNet [33] contains two
convolution layers, three pooling layers, and nine inception layers. Each of the inception layer of
GoogLeNet consists of six convolution layers and one pooling layer

do so to produce and evaluate “simplified” AlexNet and GoogLeNet versions that
are better suited to the smaller scale training datasets common in CADe problems.
Throughout the paper, we refer to the models as CifarNet (32× 32) or CifarNet
(dropping 32× 32); AlexNet (256× 256) or AlexNet-H (high resolution); AlexNet
(64× 64) or AlexNet-L (low resolution); GoogLeNet (256× 256) or GoogLeNet-H
and GoogLeNet (64× 64) or GoogLeNet-L (dropping 3 since all image inputs are
three channels).

CifarNet

CifarNet, introduced in [5], was the state-of-the-art model for object recognition
on the Cifar10 dataset, which consists of 32 × 32 images of 10 object classes. The
objects are normally centered in the images. CifarNet has three convolution layers,
three pooling layers, and one fully connected layer. This CNN architecture, also used
in [27] has about 0.15 million free parameters. We adopt it as a baseline model for
the LN detection.

AlexNet

The AlexNet architecture was published in [4], achieved significantly improved per-
formance over the other non-deep learningmethods for ImageNet Large-ScaleVisual
Recognition Challenge (ILSVRC) 2012. This success has revived the interest in
CNNs [3] in computer vision. ImageNet consists of 1.2 million 256 × 256 images
belonging to 1000 categories.At times, the objects in the image are small and obscure,
and thus pose more challenges for learning a successful classification model. More
details about the ImageNet dataset will be discussed in Sect. 8.3.2. AlexNet has
five convolution layers, three pooling layers, and two fully connected layers with
approximately 60 million free parameters. AlexNet is our default CNN architecture
for evaluation and analysis in the remainder of the paper.
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GoogLeNet

TheGoogLeNetmodel proposed in [33], is significantlymore complex and deep than
all previous CNN architectures. More importantly, it also introduces a new module
called “Inception”, concatenating filters of different sizes and dimensions into a
single module. Overall, GoogLeNet has two convolution layers, two pooling layers,
and nine “Inception” layers. Each “Inception” layer consists of six convolution layers
and one pooling layer. GoogLeNet is the current state-of-the-art CNN architecture
for the ILSVRC challenge, where it achieved 5.5% top-5 classification error on the
ImageNet challenge, compared to AlexNet’s 15.3% top-5 classification error.

8.3.2 ImageNet: Large-Scale Annotated Natural Image
Dataset

ImageNet [1] has more than 1.2 million 256 × 256 images categorized under 1000
object class categories. There are more than 1000 training images per class. The
database is organized according to theWordNet [53] hierarchy, which currently con-
tains only nouns in 1000 object categories. The image object labels are obtained
largely through crowdsourcing, e.g., Amazon Mechanical Turk, and human inspec-
tion. Some examples of object categories in ImageNet are “sea snake”, “sandwich”,
“vase”, “leopard”, etc. ImageNet is currently the largest image dataset among other
standard datasets for visual recognition. Indeed, the Caltech101, Caltech256 and
Cifar10 dataset merely contain 60000 32 × 32 images and 10 object classes. Fur-
thermore, due to the large number (1000+) of object classes, the objects belonging to
each ImageNet class category can be occluded, partial and small, relative to those in
the previous public image datasets. This significant intraclass variation poses greater
challenges to any data-driven learning system that builds a classifier to fit given data
and generalize to unseen data. ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) has become the standard benchmark for large-scale object recognition.

8.3.3 Training Protocols and Transfer Learning

When learned from scratch, all the parameters of CNN models are initialized with
random Gaussian distributions and trained for 30 epochs with the mini-batch size of
50 image instances. Training convergence can be observed within 30 epochs. The
other hyperparameters are momentum: 0.9; weight decay: 0.0005; (base) learning
rate: 0.01, decreased by a factor of 10 at every 10 epochs.We use theCaffe framework
[54] and NVidia K40 GPUs to train the CNNs.

AlexNet and GoogLeNet CNN models can be either learned from scratch or
fine-tuned from pretrained models. Girshick et al. [6] find that, by applying
ImageNet pretrained ALexNet to PASCAL dataset [8], performances of semantic
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20-class object detection and segmentation tasks significantly improve over previ-
ous methods that use no deep CNNs. AlexNet can be fine-tuned on the PASCAL
dataset to surpass the performance of the ImageNet pretrained AlexNet, although
the difference is not as significant as that between the CNN and non-CNN methods.
Similarly, [55, 56] also demonstrate that better performing deep models are learned
via CNN transfer learning from ImageNet to other datasets of limited scales.

Our hypothesis on CNN parameter transfer learning is the following: despite the
disparity between natural images and natural images, CNNs comprehensively trained
on the large scale well-annotated ImageNet may still be transferred to make medical
image recognition tasks more effective. Collecting and annotating large numbers of
medical images still poses significant challenges. On the other hand, the mainstream
deep CNN architectures (e.g., AlexNet and GoogLeNet) contain tens of millions
of free parameters to train, and thus require sufficiently large numbers of labeled
medical images.

For transfer learning, we follow the approach of [6, 55] where all CNN layers
except the last are fine-tuned at a learning rate 10 times smaller than the default
learning rate. The last fully connected layer is random initialized and freshly trained,
in order to accommodate the new object categories in our CADe applications. Its
learning rate is kept at the original 0.01. We denote the models with random ini-
tialization or transfer learning as AlexNet-RI and AlexNet-TL, and GoogLeNet-RI
and GoogLeNet-TL. We found that the transfer learning strategy yields the best
performance results. Determining the optimal learning rate for different layers is
challenging, especially for very deep networks such as GoogLeNet.

We also perform experiments using “off-the-shelf” CNN features of AlexNet
pretrained on ImageNet and training only the final classifier layer to complete the
new CADe classification tasks. Parameters in the convolutional and fully connected
layers are fixed and are used as deep image extractors, as in [9, 10, 12]. We refer
to this model as AlexNet-ImNet in the remainder of the paper. Note that [9, 10,
12] train support vector machines and random forest classifiers using ImageNet
pretrained CNN features. Our simplified implementation is intended to determine
whether fine-tuning the “end-to-end” CNN network is necessary to improve perfor-
mance, as opposed to merely training the final classification layer. This is a slight
modification from the method described in [9, 10, 12].

Finally, transfer learning in CNN representation, as empirically verified in previ-
ous literature [11, 57–60], can be effective in various cross-modality imaging settings
(RGB images to depth images [57, 58], natural images to general CT andMRI images
[11], and natural images to neuroimaging [59] or ultrasound [60] data). More thor-
ough theoretical studies on cross-modality imaging statistics and transferability will
be needed for future studies.
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8.4 Experiments and Discussions

In this section, we evaluate and compare the performances of nine CNN model
configurations (CifarNet, AlexNet-ImNet, AlexNet-RI-H, AlexNet-TL-H, AlexNet-
RI-L, GoogLeNet-RI-H, GoogLeNet-TL-H, GoogLeNet-RI-L and combined) on
two publicly available datasets [27, 37, 40].

8.4.1 Thoracoabdominal Lymph Node Detection

We train and evaluate CNNs using threefold cross-validation (folds are split into
disjoint sets of patients), with different CNN architectures. In testing, each LN can-
didate has multiple random 2.5D views tested by CNN classifiers to generate LN
class probability scores. We follow the random view aggregation by averaging prob-
abilities [27].We first sample the LN image patches at a 64 × 64 pixel resolution.We
then upsample the 64 × 64 pixel LN images via bilinear interpolation to 256 × 256
pixels, in order to accommodate AlexNet-RI-L, AlexNet-TL-H, GoogLeNet-RI-H,
andGoogLeNet-TL-H. For themodifiedAlexNet-RI-L at (64 × 64) pixel resolution,
we reduce the number of first layer convolution filters from 96 to 64 and reduce the
stride from 4 to 2. For the modified GoogLeNet-RI (64 × 64), we decrease the num-
ber of first layer convolution filters from 64 to 32, the pad size from 3 to 2, the kernel
size from 7 to 5, stride from 2 to 1 and the stride of the subsequent pooling layer from
2 to 1. We slightly reduce the number of convolutional filters in order to accommo-
date the smaller input image sizes of target medical image datasets [27, 37], while
preventing overfitting. This eventually improves performance on patch-based clas-
sification. CifarNet is used in [27] to detect LN samples of 32 × 32 × 3 images. For
consistency purposes, we downsample 64 × 64 × 3 resolution LN sample images to
the dimension of 32 × 32 × 3.

Results for lymph node detection in the mediastinum and abdomen are reported in
Table8.2. FROC curves are illustrated in Fig. 8.4. The area-under-the-FROC-curve
(AUC) and true positive rate (TPR, recall or sensitivity) at three false positives per
patient (TPR/3FP) are used as performance metrics. Of the nine investigated CNN
models, CifarNet, AlexNet-ImNet, and GoogLeNet-RI-H generally yielded the least
competitive detection accuracy results. Our LN datasets are significantly more com-
plex (i.e., display much larger within-class appearance variations), especially due
to the extracted fields-of-view (FOVs) of (35–128mm) compared to (30–45mm) in
[27], where CifarNet is also employed. In this experiment, CifarNet is under-trained
with respect to our enhanced LN datasets, due to its limited input resolution and para-
meter complexity. The inferior performance of AlexNet-ImNet implies that using the
pretrained ImageNet CNNs alone as “off-the-shelf” deep image feature extractors
may not be optimal or adequate for mediastinal and abdominal LN detection tasks.
To complement “off-the-shelf” CNN features, [9, 10, 12] all add various handcrafted
image features as hybrid inputs for the final classification.
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Fig. 8.4 FROC curves averaged on threefold CV for the abdominal (left) and mediastinal (right)
lymph nodes using different CNN models

Table 8.2 Comparison of mediastinal and abdominal LN detection results using various CNN
models. Numbers in bold indicate the best performance values on classification accuracy

Region Mediastinum Abdomen

Method AUC TPR/3FP AUC TPR/3FP

[40] – 0.63 – 0.70

[27] 0.92 0.70 0.94 0.83

[36] – 0.78 – 0.78

CifarNet 0.91 0.70 0.81 0.44

AlexNet-ImNet 0.89 0.63 0.80 0.41

AlexNet-RI-H 0.94 0.79 0.92 0.67

AlexNet-TL-H 0.94 0.81 0.92 0.69

GoogLeNet-RI-H 0.85 0.61 0.80 0.48

GoogLeNet-TL-H 0.94 0.81 0.92 0.70

AlexNet-RI-L 0.94 0.77 0.88 0.61

GoogLeNet-RI-L 0.95 0.85 0.91 0.69

Combined 0.95 0.85 0.93 0.70

GoogLeNet-RI-H performs poorly, as it is susceptible to overfitting. No suffi-
cient data samples are available to train GoogLeNet-RI-H with random initializa-
tion. Indeed, due toGoogLeNet-RI-H’s complexity and22-layer depth,million image
datasets may be required to properly train this model. However, GoogLeNet-TL-H
significantly improves upon GoogLeNet-RI-H (0.81 versus 0.61 TPR/3FP in medi-
astinum; 0.70 versus 0.48 TPR/3FP in abdomen). This indicates that transfer learn-
ing offers a much better initialization of CNN parameters than random initialization.
Likewise,AlexNet-TL-Hconsistently outperformsAlexNet-RI-H, thoughby smaller
margins (0.81 versus 0.79 TPR/3FP in mediastinum; 0.69 versus 0.67 TPR/3FP in
abdomen). This is also consistent with the findings reported for ILD detection in
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Table8.3. GoogLeNet-TL-H yields results similar to AlexNet-TL-H’s for the medi-
astinal LN detection, and slightly outperforms Alex-Net-H for abdominal LN detec-
tion. AlexNet-RI-H exhibits less severe overfitting than GoogLeNet-RI-H. We also
evaluate a simple ensemble by averaging the probability scores from five CNNs:
AlexNet-RI-H, AlexNet-TL-H, AlexNet-RI-H, GoogLeNet-TL-H, and GoogLeNet-
RI-L. This combined ensemble outputs the classification accuracies matching or
slightly exceeding the best performing individual CNN models on the mediastinal
or abdominal LN detection tasks, respectively.

Many CNN models achieve notably better (FROC-AUC and TPR/3FP) results
than the previous state-of-the-art methods [36] for mediastinal LN detection:
GoogLeNet-RI-L obtains anAUC= 0.95 and 0.85 TPR/3FP, versus AUC= 0.92 and
0.70 TPR/3FP [27] and 0.78 TPR/3FP [36]which uses stacked shallow learning. This
difference lies in the fact that annotated lymph node segmentationmasks are required
to learn a mid-level semantic boundary detector [36], whereas CNN approaches only
need LN locations for training [27]. In abdominal LN detection, [27] obtains the
best trade-off between its CNN model complexity and sampled data configuration.
Our best performing CNN model is GoogLeNet-TL (256× 256) which obtains an
AUC=0.92 and 0.70 TPR/3FP.

The main difference between our dataset preparation protocol and that from [27]
is a more aggressive extraction of random views within a much larger range of FOVs.
The usage of larger FOVs to capture more image spatial context is inspired by deep
zoom-out features [44] that improve semantic segmentation. This image sampling
scheme contributes to our best reported performance results in both mediastinal
LN detection (in this paper) and automated pancreas segmentation [61]. Comparing
to the scenario that abdominal LNs are surrounded by many other similar looking
objects, mediastinal LNs are more easily distinguishable, due to the images’ larger
spatial contexts. Finally, from the perspective of the data model trade-off: “Do We
Need More Training Data or Better Models?” [49], more abdomen CT scans from
distinct patient populations need to be acquired and annotated, in order to take full
advantage of deep CNN models of high capacity. Nevertheless, deeper and wider
CNN models (e.g., GoogLeNet-RI-L and GoogLeNet-TL-H versus Cifar-10 [27])
have shown improved results in the mediastinal LN detection.

Figure8.5 provides examples of misclassified lymph nodes (in axial view) (both
false negatives (Left) and false positives(Right)), from the Abdomen and Medi-
astinum datasets. The overall reported LN detection results are clinically significant,
as indicated in [62].

8.4.2 Interstitial Lung Disease Classification

The CNN models evaluated in this experiment are (1) AlexNet-RI (training from
scratch on the ILD dataset with random initialization); (2)AlexNet-TL (with transfer
learning from [4]); (3) AlexNet-ImNet: pretrained ImageNet-CNN model [4] with
only the last cost function layer retrained from random initialization, according to
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Fig. 8.5 Examples of misclassified lymph nodes (in axial view) of both false negatives (Left) and
false positives (Right). Mediastinal LN examples are shown in the upper row, and abdominal LN
examples in the bottom row

Table 8.3 Comparison of interstitial lung disease classification accuracies on both slice-level
(Slice-CV5) and patch-based (Patch-CV5) classification using fivefold CV. Bold numbers indicate
the best performance values on classification accuracy

Method AlexNet-
ImNet

AlexNet-RI AlexNet-TL GoogLeNet-RI GoogLeNet-TL Avg-All

Slice-CV5 0.45 0.44 0.46 0.41 0.57 0.53

Patch-CV5 0.76 0.74 0.76 0.75 0.76 0.79

the six ILD classes (similar to [9] but without using additional handcrafted non-
deep feature descriptors, such as GIST and BoVW); (4) GoogLeNet-RI (random
initialization); (5) GoogLeNet-TL (GoogLeNet with transfer learning from [33]).
All ILD images (patches of 64 × 64 and CT axial slices of 512 × 512) are resampled
to a fixed dimension of 256 × 256 pixels.

We evaluate the ILD classification task with fivefold CV on patient-level split,
as it is more informative for real clinical performance than LOO. The classification
accuracy rates for interstitial lung disease detection are shown in Table8.3. Two
subtasks on ILD patch and slice classifications are conducted. In general, patch-level
ILD classification is less challenging than slice-level classification, as far more data
samples can be sampled from the manually annotated ROIs (up to 100 image patches
per ROI), available from [37]. From Table8.3, all five deep models evaluated obtain
comparable results within the range of classification accuracy rates [0.74, 0.76].
Their averaged model achieves a slightly better accuracy of 0.79.

F1-scores [38, 39, 52] and the confusion matrix (Table8.5) for patch-level ILD
classification using GoogLeNet-TL under fivefold cross-validation (we denote as
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Table 8.4 Comparison of interstitial lung disease classification results using F-scores: NM, EM,
GG, FB, MN and CD

NM EM GG FB MN CD

Patch-LOO [38] 0.84 0.75 0.78 0.84 0.86 –

Patch-LOO [39] 0.88 0.77 0.80 0.87 0.89 –

Patch-CV10 [52] 0.84 0.55 0.72 0.76 0.91 –

Patch-CV5 0.64 0.81 0.74 0.78 0.82 0.64

Slice-Test [41] 0.40 1.00 0.75 0.80 0.56 0.50

Slice-CV5 0.22 0.35 0.56 0.75 0.71 0.16

Slice-Random 0.90 0.86 0.85 0.94 0.98 0.83

Table 8.5 Confusion matrix for ILD classification (patch-level) with fivefold CV using
GoogLeNet-TL

Ground truth Prediction

NM EM GG FB MN CD

NM 0.68 0.18 0.10 0.01 0.03 0.01

EM 0.03 0.91 0.00 0.02 0.03 0.01

GG 0.06 0.01 0.70 0.09 0.06 0.08

FB 0.01 0.02 0.05 0.83 0.05 0.05

MN 0.09 0.00 0.07 0.04 0.79 0.00

CD 0.02 0.01 0.10 0.18 0.01 0.68

Patch-CV5) are also computed. F1-scores are reported on patch classification only
(32 × 32 pixel patches extracted from manual ROIs) [38, 39, 52], as shown in
Table8.4. Both [38, 39] use the evaluation protocol of “leave-one-patient-out”
(LOO), which is arguably much easier and not directly comparable to tenfold CV
[52] or our Patch-CV5. In this study, we classify six ILD classes by adding a con-
solidation (CD) class to five classes of healthy (normal - NM), emphysema (EM),
ground glass (GG), fibrosis (FB), and micronodules (MN) in [38, 39, 52]. Patch-
CV10 [52] and Patch-CV5 report similar medium to high F-scores. This implies that
the ILD dataset (although one of the mainstream public medical image datasets) may
not adequately represent ILD disease CT lung imaging patterns, over a population
of only 120 patients. Patch-CV5 yields higher F-scores than [52] and classifies the
extra consolidation (CD) class. At present, the most pressing task is to drastically
expand the dataset or to explore across-dataset deep learning on the combined ILD
and LTRC datasets [63].

Recently, Gao et al. [41] have argued that a new CADe protocol on holistic classi-
fication of ILD diseases directly, using axial CT slice attenuation patterns and CNN,
may be more realistic for clinical applications. We refer to this as slice-level clas-
sification, as image patch sampling from manual ROIs can be completely avoided
(hence, no manual ROI inputs will be provided). The experimental results in [41]
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Fig. 8.6 Visual examples of misclassified ILD 64× 64 patches (in axial view), with their ground
truth labels and inaccurately classified labels

are conducted with a patient-level hard split of 100 (training) and 20 (testing). The
method’s testing F-scores (i.e., Slice-Test) are given in Table8.4. Note that the F-
scores in [41] are not directly comparable to our results, due to different evaluation
criteria. Only Slice-Test is evaluated and reported in [41], and we find that F-scores
can change drastically from different rounds of the fivefold CV.

While it is a more practical CADe scheme, slice-level CNN learning [41] is
very challenging, as it is restricted to only 905 CT image slices with tagged ILD
labels. We only benchmark the slice-level ILD classification results in this section.
Even with the help of data augmentation (described in Sect. 8.2), the classification
accuracy of GoogLeNet-TL from Table8.3 is only 0.57. However, transfer learning
from ImageNet pretrainedmodel is consistently beneficial, as evidenced byAlexNet-
TL (0.46) versus AlexNet-RI (0.44), and GoogLeNet-TL (0.57) versus GoogLeNet-
RI (0.41). It especially prevents GoogLeNet from overfitting on the limited CADe
datasets. Finally, when the cross-validation is conducted by randomly splitting the
set of all 905 CT axial slices into five folds, markedly higher F-scores are obtained
(Slice-Random in Table8.4). This further validates the claim that the dataset poorly
generalizes ILDs for different patients. Figure8.6 shows examples of misclassified
ILD patches (in axial view), with their ground truth labels and inaccurately classified
labels.

For ILD classification, the most critical performance bottlenecks are the chal-
lenge of cross-dataset learning and the limited patient population size. We attempt
to overcome these obstacles by merging the ILD [37] and LTRC datasets. Although
the ILD [37] and LTRC datasets [63] (used in [19]) were generated and annotated
separately, they contain many common disease labels. For instance, the ILD disease
classes emphysema (EM), ground glass (GG), fibrosis (FB), and micronodules (MN)
belong to both datasets, and thus can be jointly trained and tested to form a larger and
unified dataset. In this work, we sample image patches from the slice using the ROIs
for the ILD provided in the dataset, in order to be consistent with previous methods
in patch-level [38, 39, 52] and slice-level classification [41].
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8.4.3 Evaluation of Five CNN Models Using ILD
Classification

In thiswork,wemainly focus onAlexNet andGoogLeNet.AlexNet is thefirst notably
successful CNNarchitecture on the ImageNet challenge and has rekindled significant
research interests on CNN. GoogLeNet is the state-of-the-art deep model, which has
outperformed other notable models, such as AlexNet, OverFeat, and VGGNet [64,
65] in various computer vision benchmarks. Likewise, a reasonable assumption is
that OverFeat and VGGNet may generate quantitative performance results ranked
between AlexNet’s and GoogLeNet’s. For completeness, we include the Overfeat
and VGGNet in the following evaluations, to bolster our hypothesis.

Overfeat

OverFeat is described in [64] as an integrated framework for using CNN for clas-
sification, localization and detection. Its architecture is similar to that of AlexNet,
but contains far more parameters (e.g., 1024 convolution filters in both “conv4” and
“conv5” layers compared to 384 and 256 convolution kernels in the “conv4” and
“conv5” layers of AlexNet), and operates more densely (e.g., smaller kernel size of
2 in “pool2” layer “pool5” compared to the kernel size 3 in “pool2” and “pool5” of
AlexNet) on the input image. Overfeat is the winning model of the ILSVRC 2013 in
detection and classification tasks.

VGGNet

TheVGGNet architecture in [65] is designed to significantly increase the depth of the
existing CNN architectures with 16 or 19 layers. Very small 3 × 3 size convolutional
filters are used in all convolution layers with a convolutional stride of size 1, in
order to reduce the number of parameters in deeper networks. Since VGGNet is
substantially deeper than the other CNNmodels, VGGNet is more susceptible to the
vanishing gradient problem [66–68]. Hence, the network may be more difficult to
train. Training the network requires far more memory and computation time than
AlexNet. The 16 layer variant is used here.

The classification accuracies for ILD slice and patch level classification of five
CNN architectures (CifarNet, AlexNet, Overfeat, VGGNet and GoogLeNet) are

Table 8.6 Classification results on ILD classification with LOO

Method ILD-Slice Method ILD-Patch

CifarNet – CifarNet 0.799

AlexNet-TL 0.867 AlexNet-TL 0.865

Overfeat-TL 0.877 Overfeat-TL 0.879

VGG-16-TL 0.90 VGG-16-TL 0.893

GoogLeNet-TL 0.902 GoogLeNet-TL 0.911
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Table 8.7 Training time and memory requirements of the five CNN architectures on ILD patch-
based classification up to 90 epochs

CifarNet AlexNet Overfeat VGG-16 GoogLeNet

Time 7m 16s 1h 2m 1h 26m 20h 24m 2h 49m

Memory 2.25 GB 3.45 GB 4.22 GB 9.26 GB 5.37 GB

Fig. 8.7 Visualization of first layer convolution filters of CNNs trained on abdominal andmediasti-
nal LNs in RGB color, from random initialization (AlexNet-RI (256× 256), AlexNet-RI (64× 64),
GoogLeNet-RI (256× 256) and GoogLeNet-RI (64× 64)) and with transfer learning (AlexNet-TL
(256× 256))

shown in Table8.6. Based on the analysis in Sect. 8.4.2, transfer learning is only
used for the slice level classification task. From Table8.6, quantitative classification
accuracy rates increase as CNN models become more complex (CifarNet, AlexNet,
Overfeat, VGGNet and GoogLeNet, in ascending order), for both ILD slice and
patch level classification. These results validate our assumption that OverFeat’s and
VGGNets performance levels fall between AlexNet’s and GoogLeNets. CifarNet
is designed for images with smaller dimensions (32 × 32 images), and thus is not
catered to classification tasks involving 256 × 256 images.

CNN training is implemented with the Caffe [54] deep learning framework, using
a NVidia K40 GPU on Ubuntu 14.04 Linux OS. All models are trained for up to 90
epochs with early stopping criteria, where a model snapshot with low validation loss
is taken for the final model. Other hyperparameters are fixed as follows: momentum:
0.9; weight decay: 0.0005; and a step learning rate schedule with base learning rate
of 0.01, decreased by a factor of 10 every 30 epochs. The image batch size is set to
128, except for GoogLeNet’s (64) andVGG-16’s (32), which are themaximum batch
sizes that can fit in the NVidia K40 GPU with 12GB of memory capacity. Table8.7
illustrates the training time and memory requirements of the five CNN architectures
on ILD patch-based classification up to 90 epochs.

8.4.4 Analysis via CNN Learning Visualization

In this section, we determine and analyze, via CNN visualization, the reasons for
which transfer learning is beneficial to achieve better performance on CAD applica-
tions.
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Thoracoabdominal LN Detection. In Fig. 8.7, the first layer convolution fil-
ters from five different CNN architectures are visualized. We notice that with-
out transfer learning [6, 55], somewhat blurry filters are learned (AlexNet-RI
(256× 256), AlexNet-RI (64× 64), GoogLeNet-RI (256× 256) and GoogLeNet-RI
(64× 64)). However, in AlexNet-TL (256× 256), many higher orders of contrast-
or edge-preserving patterns (that enable capturing image appearance details) are evi-
dently learned through fine-tuning from ImageNet. With a smaller input resolution,
AlexNet-RI (64× 64) and GoogLeNet-RI (64× 64) can learn image contrast filters
to some degree; whereas, GoogLeNet-RI (256× 256) and AlexNet-RI (256× 256)
have oversmooth low-level filters throughout.

ILD Classification. We analyze visual CNN activations from the ILD dataset
since the slice-level setting is most similar to ImageNet’s. Both datasets use full-size
images. The last pooling layer (pool-5) activation maps of the ImageNet pretrained
AlexNet [4] (analogical to AlexNet-ImNet) and AlexNet-TL, obtained by process-
ing two input images of Fig. 8.1b, c, are shown in Fig. 8.8a, b. The last pooling layer
activation map summarizes the entire input image by highlighting which relative
locations or neural reception fields relative to the image are activated. There are a
total of 256 (6× 6) reception fields in AlexNet [4]. Pooling units where the relative
image location of the disease region is present in the image are highlighted with
green boxes. Next, we reconstruct the original ILD images using the process of de-
convolution, backpropagating with convolution and un-pooling from the activation
maps of the chosen pooling units [69]. From the reconstructed images (Fig. 8.8 bot-
tom), we observe that with fine-tuning, AlexNet-TL detects and localizes objects of
interest (ILD disease regions depicted in Fig. 8.1b, c) better than AlexNet-ImNet.

8.4.5 Findings and Observations

Through the experimental study so far in this chapter, our empirical findings are
summarized below. These observations may be informative for the design of high-
performance image recognition CADe systems.

1. Deep CNN architectures with 8, even 22 layers [4, 33], can be useful even for
CADe problems where the available training datasets are limited. Previously,
CNN models used in medical image analysis applications have often been 2 ∼ 5
orders of magnitude smaller.

2. The trade-off between using better learning models and using more training data
[49] should be carefully considered when searching for an optimal solution to
any CADe problem (e.g., mediastinal and abdominal LN detection).

3. Limited datasets can be a bottleneck to further advancement of CADe. Building
progressively growing (in scale), well annotated datasets is at least as crucial
as developing new algorithms. This has been accomplished, for instance, in the
field of computer vision. The well-known scene recognition problem has made
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Fig. 8.8 Visualization of the last pooling layer (pool-5) activations (top). Pooling units where the
relative image location of the disease region is located in the image are highlightedwith green boxes.
The original images reconstructed from the units are shown in the bottom [69]. The examples in a
and b are computed from the input ILD images in Fig. 8.1b, c, respectively

tremendous progress, thanks to the steady and continuous development of Scene-
15, MIT Indoor-67, SUN-397 and Place datasets [56].

4. Transfer learning from the large-scale annotated natural image datasets (Ima-
geNet) to CADe problems has been consistently beneficial in our experiments.
This sheds some light on cross-dataset CNN learning in the medical image
domain, e.g., the union of the ILD [37] and LTRC datasets [63], as suggested
in this paper.

5. Using the off-the-shelf deep CNN image features to CADe problems can be
improved by either exploring the performance complementary properties of hand-
crafted features [9, 10, 12], or by training CNNs from scratch and better fine-
tuning CNNs on the target medical image dataset, as evaluated in this paper.

8.5 Conclusion

In this paper, we study and exploit three important aspects on deep convolutional
neural networks architectures, dataset characteristics, and transfer learning for CADe
problems.We evaluate CNN performance on two different computer-aided diagnosis
applications: thoracoabdominal lymph node detection and interstitial lung disease
classification. The empirical evaluation, CNN model visualization, CNN perfor-
mance analysis and empirical insights can be generalized to the design of high-
performance CAD systems for other medical imaging tasks.
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Chapter 9
Cell Detection with Deep Learning
Accelerated by Sparse Kernel

Junzhou Huang and Zheng Xu

Abstract As lung cancer is one of the most frequent and serious disease causing
death for both men and women, early diagnosis and differentiation of lung can-
cers is clinically important. Computerized tissue histopathology image analysis and
computer-aided diagnosis is very efficient and has become amenable. The cell detec-
tion process is the most basic step among the computer-aided histopathology image
analysis applications. In this chapter, we study a deep convolutional neural network-
based method for the lung cancer cell detection problem. This problem is very chal-
lenging due to many reasons, e.g., cell clumping and overlapping, high complexity
of the cell detection methods, and the lack of humanly annotated datasets. To address
these issues, we introduce a deep learning-based cell detection method for the effec-
tiveness, as the deep learning methods have been demonstrated to be repeatedly
successful in various computer vision applications in the last decade. However, this
method still takes very long time to detect cells in very small images, e.g., 512× 512,
albeit it is very effective in the cell detection task. In order to reduce the overall time
cost of this method, we combine this method with the sparse kernel technique to
significantly accelerate the cell detection process, up to 500 times. With the afore-
mentioned advances, our numerical results confirm that the resulting method is able
to outperformmost state-of-the-art cell detection methods in terms of both efficiency
and effectiveness.

9.1 Introduction

Pathology is defined as the science of the causes and effects of diseases, especially
the branch of medicine that deals with the laboratory examination of samples of
body tissue for diagnostic or forensic purposes. Conventionally, tissue samples were

J. Huang (B) · Z. Xu
University of Texas at Arlington, 701 S. Nedderman Dr., Arlington, TX 76013, USA
e-mail: jzhuang@uta.edu

Z. Xu
e-mail: zheng.xu@mavs.uta.edu

© Springer International Publishing Switzerland 2017
L. Lu et al. (eds.), Deep Learning and Convolutional Neural
Networks for Medical Image Computing, Advances in Computer Vision
and Pattern Recognition, DOI 10.1007/978-3-319-42999-1_9

137



138 J. Huang and Z. Xu

taken by the pathologists from the human body, placed under a microscope and were
examined for diagnostic purposes. But over the time, this became labor intensive as
the diseases started evolving more complex. But the recent technological advances,
likeWhole Slide Digital scanners are able to digitize the tissue samples, store them as
images are helping the pathologists by reducing their manual labor. Another impor-
tant part of these preparation is the staining. In this process, different components of
the tissue are stained with different dyes, so as to give the pathologists a clear idea
of what they are looking at.

The primary aim of staining is to reveal cellular components and counterstains
are used to provide contrast. One such staining methodology is the Hematoxylin–
Eosin (H&E) staining, that has been used by pathologists for over a hundred years.
Histopathology images are stained using this methodology. Hematoxylin stains cell
nuclei blue, while Eosin stains cytoplasm and connective tissue pink [2]. One other
staining methodology is the immunohistochemical (IHC) staining, which is used
to diagnose whether the cancer is malignant or benign, to determine the stage of
a tumor and to determine which cell type is at the origin of the tumor. After this
process of staining, fast slide scanners are used to digitize the sample into images,
which provide detailed and critical information at the microscopic level.

Pathologists have been aware of the importance of quantitative analysis of the
pathological images. Quantitative analysis provides pathologists clearer insights of
the presence or absence of a disease, their progress, nature, grade, etc. This was the
point where the need for computer-aided diagnosis (CAD) aroused. Now, CAD has
become a research area in the field of medical imaging and diagnostic radiology. It is
nowpossible to use histological tissue patternswith computer-aided image analysis to
facilitate disease classification. Thus, quantitative metrics for cancerous nuclei were
developed to appropriately encompass the general observations of the experienced
pathologist, and were tested on histopathological imagery. Though, several surveys
have been published in this topic involving cancer/tumor detection and diagnosis in
histopathological images [1–5], this survey aims at elaborating the techniques used
for Cell Detection in particular in histopathology images.

9.1.1 Related Work

9.1.1.1 Unsupervised Learning Techniques

Unsupervised learning is themachine-learning task of inferring a function to describe
hidden structure from unlabeled data. Since the examples given to the learner are
unlabeled, there is no error or reward signal to evaluate a potential solution. This dis-
tinguishes unsupervised learning from supervised learning and reinforcement learn-
ing. There are actually two approaches to unsupervised learning. The first approach
is to teach the algorithm not by giving explicit categorizations, but by using some sort
of reward system to indicate success. This type of training will generally fit into the
decision problem framework because the goal is not to produce a classification but



9 Cell Detection with Deep Learning Accelerated by Sparse Kernel 139

to make decisions that maximize rewards. The second type of unsupervised learning
is called clustering. In this type of learning, the goal is not to maximize a utility
function, but simply to find similarities in the training data. The assumption is often
that the clusters discovered will match reasonably well with an intuitive classifica-
tion. For instance, clustering individuals based on the demographics might result in a
clustering of the wealthy in one group and the poor in another. This section and hence
this survey focuses on the second method, clustering since this is the one which is
most commonly used and is applicable to real world problems

Correlational Clustering

This paper [6] proposes a cell detection algorithm which is applicable to different
cell modalities and cell structures. This method first computes a cell boundary prob-
ability map from a trained edge classier. The resulting predictions are used to obtain
superpixels using a watershed transform. As the probability map is a smoothed one,
it helps avoiding tiny noninformative superpixels, while still keeping boundaries
with low probability separated from background superpixels. and a weighted region
adjacency graph. Then an adjacency graph is built using the superpixels. Each graph
edge e corresponds to an adjacent superpixel pair. But there arises a problem where
negative potentials forces superpixels to be in separate regions, while positive ones
favor to merge them. This adjacency graph-partitioning problem is then solved using
Correlation Clustering.

SIFT Keypoint Clustering

This unstained cell detection algorithm [7] uses Scale Invariant Feature Transform
(SIFT), a self-labeling algorithm, and two clustering steps to achieve effective cell
detection in terms of detection accuracy and time. This paper uses bright field and
phase contrast microscopic images for detection. This algorithm is heavily weighted
on SIFT (a local image feature detector and descriptor) and its related techniques.
Each detected keypoint is characterized by its spatial coordinates, a scale, an orien-
tation, a difference of Gaussians (DOG) value, and principal curvatures ratio (PCR)
value [7]. The DOG value indicates the keypoint strength and its value is positive
for black-on-white blobs and negative for white-on-black blobs. Now, the actual cell
detection is done using keypoint clustering and self-labeling. This done using a series
of steps viz., (1) Keypoint Extraction, (2) Blob Type Detection, (3) Scale Adaptive
Smoothing, (4) Second Keypoint Extraction, (5) Cell/Background Keypoint Clus-
tering, and (6) Cell/Cell Keypoint Clustering. The proposed approach was evaluated
on Five cell lines having in total 37 images and 7250 cells were considered for the
evaluation: CHO, L929, Sf21, HeLa, and Bovine cells. The F1 measures on these
data is between 85.1.

SIFT, Random Forest, and Hierarchical Clustering

This is almost similar to the previous algorithm, except it brings in Random Forest
and Hierarchical Clustering instead of Keypoint Clustering [8]. The algorithm goes
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like this: First, Keypoint learning is adopted as a calibration step before the actual
cell detection procedure. This classifies the keypoints as background and cell key-
points. To check if two given keypoints belong to the same cell, a profile learning
methodology is used. This is done by extracting the intensity profiles of the given
keypoints. The profile features are extracted from these profiles and these are used
to classify the profiles as inner or cross profile.

Now comes the Hierarchical Clustering part. This part combines the problems
of Keypoint Learning and Profile Learning to detect cells. This can be achieved
by constructing a graph, but this algorithm uses a technique called agglomerative
hierarchical clustering (AHC) which uses a similarity measure between two cell
keypoints. Finally, Hierarchical Clustering methods such as Linkage Method and
Finding-the-hit-point method are used to detect cells. The model has been evaluated
over a set of 3500 real and 30,000 simulated images, and the detection error was
between 0 and 15.5.

9.1.1.2 Supervised Learning Techniques

Supervised learning is the machine-learning task of inferring a function from labeled
training data. The training data consist of a set of training examples. In supervised
learning, each example is a pair consisting of a vector and a desired output value.
A supervised learning algorithm analyzes the training data and produces an inferred
function, which can be used for mapping new examples. An optimal scenario will
allow for the algorithm to correctly determine the class labels for unseen instances.
This requires the learning algorithm to generalize from the training data to unseen
situations in a reasonable way. It is the most common technique for training neural
networks and decision trees. Both of these techniques are highly dependent on the
information given by the predetermined classifications. In the case of neural net-
works, the classification is used to determine the error of the network and then adjust
the network to minimize it, and in decision trees, the classifications are used to
determine what attributes provide the most information that can be used to solve the
classification puzzle. This section focuses on the supervised learning techniques that
are considered to be optimum for the application of cell detection.

Automatic Mitotic Cell Detection

Extracting themitotic cell from thehistopathological image is a very challenging task.
This technique [9] consists of three modules viz., discriminative image generation,
mitotic cell candidate detection and segmentation, andmitotic cell candidate classifi-
cation. In the first module, a discriminative image is obtained by linear discriminant
analysis. In the second module, classification is performed to detect real mitotic
cells. In the third module, a 226-dimension feature is extracted from the mitotic cell
candidates and their surrounding regions. An imbalanced classification framework
is then applied to perform the classification for the mitotic cell candidates in order to
detect the real-mitotic cells. The proposed technique provides 81.5% sensitivity rate
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and 33.9% precision rate in terms of detection performance, and 89.3% sensitivity
rate and 87.5% precision rate in terms of segmentation performance. Thus, the pro-
posed work is intended to reduce the workload of pathologists when they evaluate
the cancer grade of biopsy.

Cell Detection under Nonoverlapping Constraints

Robust cell detection in high-density and low-contrast images is still challenging
since cells often touch and partially overlap, forming a cell cluster with blurry inter-
cellular boundaries. In such cases, current methods [10] tend to detect multiple cells
as a cluster. This also leads to many other problems. To solve the above-mentioned
problems, the authors have formulated a series of steps. First, the redundant candi-
date regions that contain false positives and false negatives are detected. Second, a
tree structure is generated in which the candidate regions are nodes, and the relation-
ships between nodes are generated on the basis of information about overlapping.
Third, the score for how likely the candidate regions contain the main part of a sin-
gle cell is computed for each cell using supervised learning. Finally, the optimal
set of cell regions from the redundant regions under nonoverlapping constraints is
selected. Figure9.2 shows the overview of the proposed approach. The proposed cell
detection method addresses all of the difficulties in detecting dense cells simulta-
neously under high-density conditions, including the mistaken merging of multiple
cells, the segmentation of single cells into multiple regions, and the misdetection of
low-intensity cells. The system is evaluated over several types of cells in microscopy
images, which achieved an overall F-measure of 0.9 on all types.

Improved Cell Detection using LoG

This is a benchmark algorithm, one of the most widely used papers for comparison.
This algorithm [11] consists of a number of concepts executed in a sequential man-
ner. They are (1) The staining phase where for the in vivo tissue samples, human
breast tissues were stained with hematoxylin and for the in vitro tissue samples,
frozen blocks of K1735 tumor cells were stained with DAPI. (2) The image capture
where Images of hematoxylin or DAPI stained histopathology slides were captured
using a Nuance multispectral camera mounted on a Leica epifluorescence micro-
scope. (3) The automatic image binarization where foreground extraction is done
using graph-cuts-based binarization. (4) Next, nuclear seed points are detected by a
novel method combining multiscale Laplacian-of-Gaussian filtering constrained by
distance-map-based adaptive scale selection, which are used to perform an initial
segmentation that is refined using a second graph-cuts-based algorithm. (5) Refine-
ment of Initial Nuclear Segmentation using—Expansions and Graph Coloring. The
purpose of the refinement is to enhance the initial contours between touching nuclei
to better delineate the true edges between them. (6) The last step is the Efficient
Computer-Assisted Editing of Automated Segmentation Results. Though automatic
segmentation would result in accurate result, some extent of manual intervention
may be needed to fix some errors like over-segmentation and under-segmentation.
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Fast Cell Detection from High-Throughput Microscopy

High-throughput microscopy has emerged as a powerful tool to analyze cellular
dynamics in an unprecedentedly high resolved manner. Available software frame-
works are suitable for high-throughput processing of fluorescence images, but they
often do not performwell on bright field image data that varies considerably between
laboratories, setups, and even single experiments. This algorithm [12] is an image-
processing pipeline that is able to robustly segment and analyze cells with ellipsoid
morphology from bright field microscopy in a high-throughput, yet time efficient
manner. The pipeline comprises two steps: (i) Image acquisition is adjusted to obtain
optimal bright field image quality for automatic processing. (ii) A concatenation
of fast performing image-processing algorithms robustly identifies single cells in
each image. This method allows fully automated processing and analysis of high-
throughput bright field microscopy data. The robustness of cell detection and fast
computation time will support the analysis of high-content screening experiments,
online analysis of time-lapse experiments as well as development of methods to
automatically track single-cell genealogies.

9.1.1.3 Deep Learning Techniques

Deep learning is a branch of machine-learning based on a set of algorithms that
attempt to model high-level abstractions in data by using multiple processing layers
with complex structures, or otherwise composed of multiple nonlinear transforma-
tions. Deep learning is part of a broader family of machine-learning methods based
on the learning representations of data. An observation can be represented in many
ways such as a vector of intensity values per pixel, or in a more abstract way as a
set of edges, regions of particular shape, etc. Some representations make it easier to
learn tasks (e.g., face recognition or facial expression recognition) from examples.
One of the promises of deep learning is replacing handcrafted features with efficient
algorithms for unsupervised or semi-supervised feature learning and hierarchical
feature extraction. Research in this area attempts to make better representations and
create models to learn these representations from large-scale unlabeled data.

Deep Convolutional Neural Network and Maximum-Weight Independent Set

This paper [13] proposes a novel algorithm for general cell detection problem. First,
a set of cell detection candidates is generated using different algorithms with varying
parameters. Second, each candidate is assigned a score by a trained deep convolu-
tional neural network (DCNN). Finally, a subset of best detection results is selected
from all candidates to compose the final cell detection results. The subset selection
task is formalized as a maximum-weight independent set problem, which is designed
to find the heaviest subset of mutually nonadjacent nodes in a graph.

The proposed algorithm is tested with two datasets: (1) 24 neuroendocrine (NET)
tissue microarray (TMA) images and (2) 16 lung cancer images. The results show
that the proposed algorithm achieves a precision of 0.91, a recall of 0.90, and
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an F1-measure of 0.93 on NET and a precision of 0.90, a recall of 0.88, and an
F1-measure of 0.92 on Lung cancer data.

Deep Learning-based Immune Cell Detection

Immunohistochemistry (IHC) staining can be used to determine the distribution and
localization of the differentially expressed biomarkers of immune cells (such as
T cells or B cells) in cancerous tissue for an immune response study. To manually
count each subset of immune cells under a bright field microscope for each piece
of IHC stained tissue is usually extremely tedious and time consuming. This makes
automatic detection a necessity to find such cells in IHC images, but there are several
challenges. A novel method [14] for automatic immune cell counting on digitally
scanned images of IHC stained slides is proposed. This method uses a sparse color
unmixing technique to separate the IHC image into multiple color channels that
correspond to different cell structures.

Sparse Reconstruction and Stacked Denoising Autoencoders

This cell detection algorithm uses the sparse reconstruction with trivial templates and
combines it with a stacked denoising autoencoder (sDAE). The sparse reconstruction
handles the shape variations by representing a testing patch as a linear combination
of shapes in the learned dictionary. Trivial templates are used to model the touching
parts. The sDAE, trained with the original data and their structured labels, can be
used for cell segmentation. This algorithm [15] achieves a precision of 0.96, a recall
of 0.85 and an F-1 measure of 0.90, better than the state-of-the-art methods, such
as Laplacian-of-Gaussian (LoG), iterative radial voting (IRV), and image-based tool
for counting nuclei (ITCN), and single-pass voting (SPV).

Deep Voting

This is a convolutional neural network (CNN)-based hough votingmethod to localize
nucleus centroids with heavy cluttering and morphological variations in microscopy
images. This method [16], called as Deep Voting consists of two steps, (1) assign
each local patch of an input image, several pairs of voting offset vectors, (2) collect
the weighted votes from all the testing patches and compute final voting density
map. The Salient Features of this algorithm are (1) The computation of local density
map is similar to that of Parzen-window estimation, (2) This method requires only
minimum annotation.

Structured Regression using Convolutional Neural Network

Cell detection is a crucial prerequisite for biomedical image analysis tasks such as cell
segmentation. Unfortunately, the success of cell detection is hindered by the nature
ofmicroscopic images such as touching cells, background clutters, large variations in
the shape and the size of cells, and the use of different image acquisition techniques.
To alleviate these problems, a nonoverlapping extremal regions selection method
is presented by C. Arteta et al., and achieves state-of-the-art performance on their
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data sets. However, this work heavily relies on a robust region detector and thus the
application is limited. This algorithm is a novel CNN-based structured regression
model, which is able to handle touching cells, inhomogeneous background noises,
and large variations in sizes and shapes. The proposed method only requires a few
training images with weak annotations.

9.1.2 Challenges

Cell Detection is still an open research area and there is still scope of improvement in
this field [17–22]. Indeed, there are open challengeswhich shall be addressed in future
research. The challenges include heterogeneity of the data, where the cells differ in
size, shape, orientation, and so on. Another major challenge is the use of different
datasets, which arises a need for a single benchmark dataset. Such a benchmark
dataset would eliminate the difference in the results caused by the difference in
the dataset and type of the data [23–31]. Another important challenge to be looked
upon, is the robustness of the algorithms that were proposed and being proposed.
Though the datasets are different, the proposed algorithms must be robust to data and
environmental changes. This would give clearer insights [32–39]. Also, overlapping
and clustered nuclei is another major challenge in cell detection and segmentation
[40–44].

9.1.2.1 Pixel-Wise Detector with Its Acceleration

In this chapter, we study a fully automatic lung cancer cell detection method using
DCNN with its acceleration variant. In the proposed method, the training process is
only performed on the local patches centered at the weakly annotated dot in each
cell area with the non-cell area patches of the same amount as the cell areas. This
means only weak annotation of cell area (a single dot near the center of cell area)
are required during labeling process, significantly relieving the manual annotation
burden. This training technique also decreases the training time cost as it usually
feeds less than one percent pixel patches of a training images to the proposed model,
even when the cell density is high. Another benefit for this technique is to reduce
the over-fitting effect and make the proposed method general enough to detect the
rough cell shape information in the training image, providing the benefit for further
applications, e.g., cell counting, segmentation and tracking.

During testing stage, the very first strategy is using the conventional sliding win-
dow manner to perform the pixel-wise cell detection. However, the conventional
sliding window manner for all local pixel patches is inefficient due to the consider-
able redundant convolution computation. To accelerate the testing process for each
testing image, we present a fast-forwarding technique in DCNN framework. Instead
of preforming DCNN forwarding in each pixel patch, the proposed method per-
forms convolution computation in the entire testing image, with a modified sparse
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convolution kernel. This technique almost eliminates all redundant convolution com-
putation compared to the conventional pixel-wise classification, which significantly
accelerates the DCNN forwarding procedure. Experimental result reports the pro-
posed method only requires around 0.1s to detect lung cancer cells in a 512× 512
image, while the state-of-the-art DCNN requires around 40s.

To sum up, we propose a novel DCNN-based model for lung cancer cell detection
in this paper. Our contributions are summarized as three parts: (1) We built-up a
deep learning-based framework in lung cancer cell detection with modified sliding
windowmanner in both training and testing stage. (2)Wemodify the training strategy
by only acquiring weak annotations in the samples, which decreases both labeling
and training cost. (3) We present a novel accelerated DCNN forwarding technology
by reducing the redundant convolution computation, accelerating the testing process
several hundred times than the traditional DCNN-based sliding window method. To
the best of our knowledge, this is the first study to report the application of accelerated
DCNN framework for lung cancer cell detection.

9.2 Pixel-Wise Cell Detector

9.2.1 Overview

An overview of our method is presented in Fig. 9.1. The proposed framework [45] is
based on the pixel-wise lung cancer cell detection over CNN. Slides of hematoxylin
and eosin stained lung biopsy tissue are scanned at 40× magnification. Since the
extreme high resolution of the original slide, smaller image patches are randomly
extracted as the datasets. There are two parts, training part and cell detection testing
part. In the training part, the provided training images are preprocessed into image
patches at first. There are two types of image patches, positive image patches and
negative image patches, which are produced according to the human annotation of

Whole Slide Image

Positive Samples

Negative Samples

Convolu onal Neural Network

Extracted 
Patches

Train CNN

CNN Kernel Weights Classify 

Extracted 
Patches
for Each 

Pixel

Cell Detection 
Results 

Moment 
Centroid

Annotated
Image

Fig. 9.1 Overview of the proposed framework. Both local appearance and holistic architecture
features are extracted from image tile from the whole slide image
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the training images. Then, the convolutional neural network is trained using the
manually annotated image patches of the training data. In the cell detection testing
part, the testing image is input into the trained CNN to get the output possibility map,
and then the image moment analysis method is applied to get the lung cancer cell
centroids.

9.2.2 Deep Convolutional Neural Network

Deep Convolutional Neural Network (DCNN) have been developed to be a powerful
framework in the domains of image processing, DCNN is a type of feed forward
artificial neural network, which is very effective in the extraction of the hierarchical
feature expressions for the image classification and recognition tasks without any
prior knowledge of domain-specific image feature. Convolution layer and pooling
layer are DCNN typical layers The convolution layer performs the convolution of
input feature maps with filter, followed by an optional a point-wise nonlinear func-
tion to produce the output feature maps. The filter is a rectangular kernel, which
extracts the same type of local features in every possible position of the input map.
The pooling layer takes just one value from a subwindow of the input map, which
makes the resolution of the feature maps decrease to make the output feature maps
keep invariance to local deformations. Max-pooling and average-pooling are most
commonly used operations. After extracting features with several pairs of convolu-
tion layer and pooling layer, fully connected layers mix the output features into the
complete feature vector. The output layer is the fully connected layer with the clas-
sification prediction as the output result. Therefore, DCNN is a classification system
that performs automatic feature extraction and classification procedures together.

Our DCNN model is a 7-layer network(excluding input) with 2 convolutional
layers(C), 2 max-pooling layers(MP), 1 fully connected layer(FC), 1 rectified linear
unit layer followed by the output layer, which is the special case of fully connected
layer with the softmax function as the activation function with twoutput classes(lung
cancer cell or non-cell), as shown in Fig. 9.2. The architecture and mapped proximity
patches of our proposed DCNN model is illustrated in Fig. 9.2. The detailed config-
uration of our DCNN is: Input (20× 20× 3) - C (16× 16× 20) - MP (8× 8× 20)
- C(4× 4× 50) - MP (2× 2× 50) - FC (500) - ReLu (500) - FC (2). the sizes of
the layers are defined as width*height*depth, where depth represents the number
of feature maps and width*height represents the dimensionality of the feature map.
the filter size of the convolution layer is 5× 5, the max-pooling layer is 2× 2 with
the stride of 2. For the output layer, the activation function is softmax function, i.e.,
so f tmax(x) = exp(x)/Z , where Z is a normalization constant. This function con-
vert the computation result x into positive values (the summation to the values is
one), so as to be interpreted as a probability distribution.
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Fig. 9.2 DCNN architecture used for the experiments

9.2.3 Implementation

The training set is composed of the image patches abstracted from the weakly anno-
tated images. All the true lung cancer cell centers are manually annotated in the
training images. the task of training data preparation is to generate image patches
according to the annotated lung cancer cell centers. We extract the square image
patches from the training images within the distance d1 from the lung cancer cell
center as positive training samples. the square image patches from the training images
that locate far from the lung cancer cell centers are negative training samples. As
the number of pixel marked as the negative is far more than the number as posi-
tive, we randomly selected the same number of negative image patches avoiding the
over-fitting problems.

Our implementation is base on Caffe framework [46], Caffe provides a clean and
modifiable framework for state-of-the-art deep learning algorithms and a collection
of reference models. it also support the use of GPU to accelerate the execution of
deep learning algorithms.

In the testing stage, we first abstract the image patches centered at each pixel of
the testing image, then apply the trained DCNN classifier to these patches producing
the output probability labels for the patch.

Our method is also able to approximate the location of cell nuclei based on the
rough shape information provided by the proposed patch-by-patch manner. For each
cell area, we estimate the centroid of the lung cancer cell area as the nuclei location
via the image raw moments.

Mp,q,i =
∑

x

∑

y

x p yq Ii (x, y), (9.1)

where x, y indicate the pixel location coordinate, i denotes the i th cell area. Ii (x, y)
is the image intensity function for the binary image at i th cell area. Ii (x, y) = 1 if
pixel located at (x, y) is in the i th cell area, otherwise Ii (x, y) = 0. With image raw
moments calculated, we are able to approximate the centroid of i th cell area:
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(xi , yi ) = (
M1,0,i

M0,0,i
,
M0,1,i

M0,0,i
) (9.2)

Given an input lung cancer histopathological image I , the problem is to find a
set D = {d1, d2, . . . , dN } of detections, each reporting the centroid coordinates for
a single-cell area. The problem is solved by training a detector on training images
with given weakly annotated ground-truth information G = {g1, g2, . . . , gM}, each
representing the manually annotated coordinate near the center of each cell area. In
the testing stage, each pixel is assigned one of two possible classes, cell or non-cell,
former to pixels in cell areas, the latter to all other pixels. Our detector is a DCNN-
based pixel-wise classifier. For each given pixel p, the DCNN predicts its class using
raw RGB values in its local square image patch centered on p.

9.3 Sparse Kernel Acceleration of the Pixel-Wise Cell
Detector

9.3.1 Training the Detector

Using the weakly annotated ground-truth dataG, we label each patch centered on the
given groun-truth gm as positive(cell) sample. Moreover, we randomly sample the
negative(non-cell) samples from the local pixel patches whose center are outside of
the boundary of positive patches. The amount of negative sample patches is the same
as the positive ones. If a patch window lies partly outside of the image boundary, the
missing pixels are fetched in the mirror padded image.

For these images, we only feed very few patches into the proposed model for
training, therefore extremely accelerating the training stage. Besides, this technique
also partly eliminates the effect of over-fitting due to the under-sampling usage of
sample images (Fig. 9.3).

9.3.2 Deep Convolution Neural Network Architecture

Our DCNN model [47] contains two pairs of convolution and max-pooling layers,
followed by a fully connected layer, rectified linear unit layer and another fully con-
nected layer as output. Figure9.4 illustrates the network architecture for training
stage. Each convolution layer performs a 2D-convolution operation with a square
filter. If the activation from previous layer contains more than one map, they are
summed up first and then convoluted. In the training process, the stride of max-
pooling layer is set the same as its kernel size to avoid overlap, provide more non-
linearity and reduce dimensionality of previous activation map. The fully connected
layer mixes the output from previous map into the feature vector. A rectified linear
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Fig. 9.3 The illustration of generation of training samples: a Tiles are randomly sampled from the
whole slide images. b The sampled tiles are manually annotated by well-trained pathologists, which
construct the weakly annotated information. c We only feed the local pixels patches center on the
annotated pixels and the randomly sampled non-cell patches of the same amount as the cell ones

non-cell
 cell

C MP C MP FC ReLU FC

Fig. 9.4 The DCNN architecture used in the training process of the proposed framework. C, MP,
FC, ReLU represents the convolution layer, max-pooling layer, fully connected layer, and rectified
linear unit layer, respectively

unit layer is followed because of its superior nonlinearity. The output layer is simply
another fully connected layer with just two neurons(one for cell class, the other for
non-cell class), activated by a softmax function to provide the final possibility map
for the two classes. We detail the layer type, neuron size, filter size, and filter number
parameters of the proposed DCNN framework in the left of Table9.1.

9.3.3 Acceleration of Forward Detection

The traditional sliding window manner requires the patch-by-patch scanning for
all the pixels in the same image. It sequentially and independently feeds patches
to DCNN and the forward propagation is repeated for all the local pixel patches.
However, this strategy is time consuming due to the fact that there exists a lot of
redundant convolution operations among adjacent patches when computing the slid-
ing windows.

To reduce the redundant convolution operations, we utilize the relations between
adjacent local image patches. In the proposed accelerationmodel, at the testing stage,
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Table 9.1 Backward (left) and accelerated forward (right) network architecture. M : the number of
patch samples, N : the number of testing images. Layer type: I - Input, C - Convolution, MP - Max
Pooling, ReLU - Rectified Linear Unit, FC - Fully Connected
Type Maps and

neurons
Filter
size

Filter
num

Stride Type Maps and neurons Filter
size

Filter
num

Stride

I 3× 20× 20M – – – I 3× 531× 531N – – –

C 20× 16× 16M 5 20 1 C 20× 527× 527N 5 20 1

MP 20× 8× 8M 2 – 2 MP 20× 526× 526N 2 – 1

C 50× 4× 4M 5 50 1 C 50× 518× 518N 9 50 1

MP 50× 2× 2M 2 – 2 MP 50× 516× 516N 3 – 1

FC 500M 1 – – FC(C) 500× 512× 512N 5 – 1

ReLU 500M 1 – – ReLU 500× 512× 512N 1 – –

FC 2M 1 – – FC(C) 2× 512× 512N 1 – –

the proposed model takes the whole input image as input and can predict the whole
label mapwith just one pass of the accelerated forward propagation. If a DCNN takes
n × n image patches as inputs, a testing image of size h × w should be padded to
size (h + n − 1)× (w+ n − 1) to keep the size consistency of the patches centered
at the boundary of images. The proposed method, in the testing stage, uses the
exact weights solved in the training stage to generate the exactly same result as the
traditional slidingwindowmethod does. To achieve this goal, we involve the k-sparse
kernel technique [48] for convolution andmax-pooling layers into our approach. The
k-sparse kernels are created by inserting all-zero rows and columns into the original
kernels to make every two original neighboring entries k-pixel away. To accelerate
the forward process of fully connect layer, we treat fully connected layer as a special
convolution layer. Then, the fully connect layer could be accelerated by the modified
convolution layer. The proposed fast forwarding network is detailed in Table9.1
(right). Experimental results show that around 400 times speedup is achieved on
512× 512 testing images for forward propagation (Fig. 9.5).

9.4 Experiments

9.4.1 Materials and Experiment Setup

Data Set

The proposed method is evaluated on part of the National Lung Screening Trial
(NLST) data set [49]. Totally 215 tile images of size 512× 512 are selected from
the original high-resolution histopathological images. The nuclei in these tiles are
manually annotated by the well-trained pathologist. The selected dataset contains a
total of 83245 nuclei objects.
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Fig. 9.5 The illustration of acceleration forward net: 1The proposedmethod takes the whole image
as input in testing stage. 2 The input image is mirror padded as the sampling process in the training
stage. 3 The padded image is then put into the accelerated forward network which generates the
whole label map in the rightmost. Note that the fully connected layer is implemented via a modified
convolution layer to achieve acceleration

Experiments Setup

We partition the 215 images into three subsets: training set (143 images), validation
set (62 images) and evaluation set (10 images). The evaluation result is reported
on evaluation subset containing 10 images. We compare the proposed method with
the state-of-the-art method in cell detection [50] and the traditional DCNN-based
sliding windowmethod [51]. For fair comparisons, we download the code from their
websites and follow their default parameter settings carefully.

Infrastructure and Implementation Details

All experiments in this paper are conduced on a Workstation with Intel(R) Xeon(R)
CPU E5-2620 v2 @ 2.10GHz CPU, 32 gigabyte RAM. The computation involved
GPU computing is performed on a nVidia Tesla K40c GPU with 12 gigabytes mem-
ory. The training process of proposed method is implemented based on the Caffe
framework [46].

Evaluation Metrics

For quantitative analysis, we define the ground-truth areas as circular regions within
8 pixels for every annotated cell center [50]. Since the proposed method detects the
cell area shape, we calculate the raw image moment centroid as its approximate
nuclei location. A detected cell centroid is considered to be a true positive (T P)
sample if the circular area of radius 8 centered at the detected nuclei contains the
ground-truth annotation; otherwise, it is considered as False Positive (FP). Missed
ground-truth dots are counted as False Negatives (FN ). The results are reported in
terms of F1 score F1 = 2PR/(P + R), where precision P = T P/(T P + FP) and
recall R = T P/(T P + FN ).
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9.4.2 Results

Training Time Cost

Themean training time for the proposedmethod is 229s for the training set described
below. The unaccelerated version with the same training strategy costs the same time
as the proposedmethod. Besides, the state-of-the-artMSER-basedmethod [50] costs
more than 40,0000s, roughly 5 days for training 143 images of size 512× 512. The
proposed method is able to impressively reduce several thousand times time cost
of training stage than the state-of-the-art MSER-based method due to the proposed
training strategy.

Accuracy of Testing

Table9.2 reports the F1 score metric comparison between the proposed method and
MSER-basedmethod. The proposedmethod outperforms the state-of-the-art method
in almost all of the evaluation images in terms of F1 scores.We also visually compares
our results with the MSER-based method in Fig. 9.6. The proposed method detects
almost all of the cell regions even in images with intensive cells.

Testing Time Cost

As shown in Fig. 9.7, the proposed method only costs around 0.1s for a single
512× 512 tile image, which is the fastest among the three methods. The proposed
method accelerates the forwarding procedure around 400 times compared with the
traditional pixel-wise sliding-window method, which is due to the accelerated for-
warding technique.

9.5 Discussion

The aforementioned LeNet- based methods grant us some basic frameworks for the
cell detection task. However, there are still many more challenges left for us to solve.

Huge Data Scale

When the histopathological image scale grows to some insane level, e.g., 1010 pixels.
The current framework, evenwith the sparse kernel acceleration, is not able to classify

Table 9.2 F1 scores on the evaluation set

1 2 3 4 5 6 7 8 9 10 Mean

MSER [50] 0.714 0.633 0.566 0.676 0.751 0.564 0.019 0.453 0.694 0.518 0.559

Proposed 0.790 0.852 0.727 0.807 0.732 0.804 0.860 0.810 0.770 0.712 0.786
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MSER ProposedOriginal

Fig. 9.6 Visual Comparison between the proposed method and MSER-based method [50]. The
green area denotes the detected cell area by the corresponding method. Blue dots denote the ground-
truth annotation. The proposed method is able to detect the cell area missed by the MSER-based
method as denoted in red circle. Better viewed in ×4 pdf

Fig. 9.7 Mean time cost comparison on the evaluation set

all cell pixels within a reasonable time frame. However, as we observe some most
recent success from the distributed computing and parallel GPU computing, the
actual performance of the huge-scale pixel-wise cell detection could benefit from
these techniques from the distributed computing.

Hardware I/O Burden

As mentioned before, the data scale can insanely grow to a huge level. One other
problem is the disk I/O cost, which is usually the bottleneck of the whole slide cell
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detection process. As a result, choosing the appropriate I/O strategy is one of the
major task in optimizing the overall performance of the pixel level cell detection.
Therefore, dealing with it could be a future work. A potential direction could be seen
in [52].

Network Structure

In this chapter, we only study a very fundamental neural network structure, i.e.,
LeNet [51]. There are several other advanced pixel-wise classifiers to study further,
e.g., AlexNet [53], GoogLeNet [54]. We might also try more complicated tasks, e.g.,
subtype detection [55].

Optimization Strategy

At present, most deep learning methods are still using basic stochastic gradient
descent to train their neural network. While we are aware of some recent advance
in the stochastic optimization area [56], we can expect to accelerate the training
process.

Model Compression

Recently, the research community leans to develop very deep neural networks to
significantly improve the performance. However, the hardware memory usually lim-
its this trend. To resolve this problem, we can involve some model compression
techniques to compress the model [57] so that the current memory can fit in deeper
models.

9.6 Conclusion

In this chapter, we have discussed a DCNN-based cell detection method with its
sparse kernel acceleration. The proposed method is designed based on the DCNN
framework [46], which is able to provide state-of-the-art accuracy with only weakly
annotated ground truth. For each cell area, only one local patch containing the cell
area is fed into the detector for training. The training strategy significantly reduces
the time cost of training procedure due to the fact that only around one percent of all
pixel labels are used. In the testing stage, we modified the training network to accept
the input of the whole image. By utilizing the relation of adjacent patches, in the
forwarding propagation, the proposed method provides the exact same result within
a few hundredths time. Experimental results clearly demonstrate the efficiency and
effectiveness of the proposed method for large-scale lung cancer cell detection.
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Chapter 10
Fully Convolutional Networks in Medical
Imaging: Applications to Image
Enhancement and Recognition

Christian F. Baumgartner, Ozan Oktay and DanielRueckert

Abstract Convolutional neural networks (CNNs) are hierarchical models that have
immense representational capacity and have been successfully applied to computer
vision problems including object localisation, classification and super-resolution. A
particular example ofCNNmodels, known as fully convolutional network (FCN), has
been shown to offer improved computational efficiency and representation learning
capabilities due to simplermodel parametrisation and spatial consistency of extracted
features. In this chapter, we demonstrate the power and applicability of this particular
model on two medical imaging tasks, image enhancement via super-resolution and
image recognition. In both examples, experimental results show that FCN models
can significantly outperform traditional learning-based approaches while achieving
real-time performance. Additionally, we demonstrate that the proposed image clas-
sification FCNmodel can be used in organ localisation task as well without requiring
additional training data.

10.1 Introduction

With the advent of efficient parallel computing power in form of GPUs, deep neural
networks and in particular deep convolutional neural networks (CNNs), have recently
gained considerable research interest in computer vision andmedical image analysis.
In addition to the improved computational power, the availability of large image
datasets and annotations have allowed deep neural network models to achieve state-
of-the-art performance in many different tasks.
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A notable scientific breakthrough in the computer vision domain was made by
Krizhevsky et al. [1] in the ImageNet LSVRC-2010 classification challenge. In that
work, the authors used a feature extractor consisting of a number of convolutional
layers and a classifier based on the multiple fully connected layers to address the
challenge of image recognition. Many of the new benchmarks that followed used
a similar architecture with a trend towards deeper model architectures and smaller
kernel sizes such as VGG-net [2] and residual networks [3].

The considerable success of CNNs can be attributed to two main reasons: (I)
Its scalable feature learning architecture that tunes model parameters for a given
particular task and relies very little on feature-engineering or prior knowledge, and
(II) the end-to-end model training strategy which allows to simultaneously optimise
all components of a particular image-processing pipeline. These advantages over
traditional learning-based algorithms have recently also led to a wide adoption of
CNNs in the medical image analysis domain. In the last 3 years, there has already
been a considerable amount of work, which demonstrated the successful applications
of CNNs in medical imaging problems. In many of these applications, the CNN-
based approaches have been shown to outperform many traditional methods based
on the hand-engineered analysis frameworks and image features. A few well-known
applications include semantic segmentation inmicroscopy [4] and cardiac images [5],
anatomical landmark localisation [6, 7], spatial image alignment [8] and abnormality
classification [9].

In this chapter, we discuss two specific applications of CNNs in the medical
imaging domain in detail, namely an approach for cardiac image enhancement via
super resolution (SR) and a technique for real-time image recognition and organ
localisation. The former approach addresses the clinical difficulties that arise when
imaging cardiac volumes using stacked 2D MR acquisitions, which suffer from low
resolution (LR) in the through plane direction. The discussed SR model accurately
predicts a high-resolution (HR) isotropic volume from a given LR clinical image.
The second technique discussed in this chapter aims to improve fetal mid-pregnancy
abnormality scans by providing robust real-time detection of a number of standard
views in a stream of 2D ultrasound (US) data. Moreover, the method provides a
localisation of the fetal target anatomy via bounding boxes in frames containing
such views, without needing bounding box annotations during training.

Both of the presented methods employ fully convolutional network architectures
(FCN), that is, network architectures which consist solely of convolutional and max-
pooling layers and forgo the fully connected layers traditionally used in the classifi-
cation step. Generally, the use of fully connected layers restricts the model to fixed
image sizes which must be decided during training. In order to obtain predictions for
larger, rectangular input images during test time, typically the network is evaluated
multiple times for overlapping patches of the training image size, and it usually hin-
ders real-time performance of the algorithm. FCNs can be usedto calculate the output
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to arbitrary image sizes much more efficiently in a single forward pass. The second
attribute that makes FCNs particularly suitable for the techniques discussed in this
chapter, is that they allow to design networks which retain a spatial correspondence
between the input image and the network output. Therefore, whenever classifica-
tion speed or spatial correspondence of the input and output are desired, it can be
beneficial to employ FCNs. Recent applications of such networks include semantic
segmentation [10], natural image super-resolution [11, 12], and object localisation
[13].

The chapter is structured as follows: Sect. 10.2 presents an overview of related
work in medical image super-resolution, as well as examples of the use of resid-
ual learning and multi-input CNN models on cardiac image super-resolution prob-
lem. Section10.3 describes the automatic scan plane detection approach. Finally, the
advantages of CNNs on these particular problems are discussed and future research
directions are given.

10.2 Image Super-Resolution

In this section,we present an example use of fully convolution neural networks for the
medical image super resolution task. The presented neural network model predicts
a 3D high-resolution cardiac MR image from a given input low-resolution stack of
2D image slices, which is experimentally shown to be useful for subsequent image
analysis and qualitative assessment.

10.2.1 Motivation

3Dmagnetic resonance (MR) imaging with near isotropic resolution provides a good
visualisation of cardiac morphology, and enables accurate assessment of cardiovas-
cular physiology. However, 3D MR sequences usually require long breath-hold and
repetition times, which leads to scan times that are infeasible in clinical routine,
and 2D multi-slice imaging is used instead. Due to limitations on signal-to-noise
ratio (SNR), the acquired slices are usually thick compared to the in-plane resolution
and thus negatively affect the visualisation of anatomy and hamper further analy-
sis. Attempts to improve image resolution are typically carried out either during the
acquisition stage (sparse k-space filling) or retrospectively through super-resolution
(SR) of single/multiple image acquisitions.

RelatedWork: Most of the SRmethods recover the missing information through the
examples observed in training images, which are used as a prior to link low and high-
resolution (LR–HR) image patches. Single image SRmethods, based on theway they
utilise training data, fall into two categories: non-parametric and parametric. The for-
mer aims to recover HR patches from LR ones via a cooccurrence prior between
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the target image and external training data. Atlas-based approaches such as the
patchmatch method [14] and non-local means-based single image SR [15] methods
are two examples of this category. These approaches are computationally demand-
ing as the candidate patches have to be searched in the training dataset to find the
most suitable HR candidate. Instead, compact and generative models can be learned
from the training data to define the mapping between LR and HR patches. Paramet-
ric generative models, such as coupled-dictionary learning-based approaches, have
been proposed to upscale MR brain [16] and cardiac [17] images. These methods
benefit from sparsity constraint to express the link between LR and HR. Similarly,
random forest-based nonlinear regressors have been proposed to predict HR patches
from LR data and have been successfully applied on diffusion tensor images [18].
Recently, CNN models [11, 12] have been put forward to replace the inference step
as they have enough capacity to perform complex nonlinear regression tasks. Even
by using a shallow network composed of a few layers, these models [12] achieved
superior results over other state-of-the-art SR methods.

Contributions: In the work presented here, we extend the SR-CNN proposed by
[11, 12] with an improved layer design and training objective function, and show
its application to cardiac MR images. In particular, the proposed approach simpli-
fies the LR–HR mapping problem through residual learning and allows training a
deeper network to achieve improved performance. Additionally, the new model can
be considered more data-adaptive since the initial upscaling is performed by learning
a deconvolution layer instead of a fixed kernel [12]. More importantly, a multi-input
image extension of the SR-CNNmodel is proposed and exploited to achieve a better
SR image quality. By making use of multiple images acquired from different slice
directions one can further improve and constrain the HR image reconstruction. Sim-
ilar multi-image SR approaches have been proposed in [19, 20] to synthesise HR
cardiac images; however, these approaches did not make use of available large train-
ing datasets to learn the appearance of anatomical structures in HR. Compared to the
state-of-the-art image SR approaches [12, 14], the proposedmethod shows improved
performance in terms of peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM) [21]. Additionally, the experimental results show that cardiac
image segmentation can benefit from SR-CNN as the segmentations generated from
super-resolved images are shown to be similar to the manual segmentations on HR
images in terms of volume measures and surface distances. Lastly, it is shown that
cardiac motion tracking results can be improved using SR-CNN as it visualises the
basal and apical parts of the myocardium more clearly compared to the conventional
interpolation methods (see Fig. 10.1).

10.2.2 Methodology

The SR image generation is formulated as an inverse problem that recovers the
high-dimensional data through the MR image acquisition model [22], which has
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Fig. 10.1 The low-resolution image a is upscaled using linear b and cubic spline c interpolations,
and the proposed method d which shows a high correlation with the ground-truth high-resolution
image e shown on the rightmost

Fig. 10.2 The proposed single image super resolution network model

been the starting point of approaches in [14, 17, 19]. The model links the HR
volume y ∈ R

M to the low-dimensional observation x ∈ R
N (N � M) through the

application of a series of operators as: x = DBSM y + η where M defines the
spatial displacements caused due to respiratory and cardiac motion, S is the slice
selection operator, B is a point-spread function (PSF) used to blur the selected
slice, D is a decimation operator, and η is the Rician noise model. The solution
to this inverse problem estimates a conditional distribution p( y|x) that minimises
the cost function Ψ defined by y and its estimate Φ(x,Θ) obtained from LR input
data. The estimate is obtained through a CNN parameterised by Θ that models
the distribution p( y|x) via a collection of hidden variables. For the smooth �1
norm case, the loss function is defined as min

Θ

∑
i Ψ�1

(
Φ(xi ,Θ) − yi

)
, where

Ψ�1(r) = {0.5 r2 if |r | < 1 , |r | − 0.5 otherwise} and (xi , yi ) denote the training
samples. The next section describes the proposed CNN model.

Single Image Network: The proposed model, shown in Fig. 10.2, is formed by con-
catenating a series of convolutional layers (Conv) and rectified linear units (ReLU)
[23] to estimate the nonlinear mapping Φ, as proposed in [12] to upscale natural
images. The intermediate feature maps h(n)

j at layer n are computed through Conv

kernels (hidden units)wn
k j as max

(
0,

∑K
k=1 h

(n−1)
k ∗wn

k j

)
= hnj where∗ is the con-

volution operator. As suggested by [2], in order to obtain better nonlinear estimations,
the proposed architecture uses small Conv kernels (3×3×3) and a large number of
Conv+ReLU layers. Such approach allows training of a deeper network. Differ-
ent to the models proposed in [11, 12], we include an initial upscaling operation
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within the model as a deconvolution layer (Deconv) (x ↑ U )∗w j = h0j where ↑ is
a zero-padding upscaling operator andU = M/N is the upscaling factor. In this way,
upsampling filters can be optimised for SR applications by training the network in an
end-to-end manner. This improves the image signal quality in image regions closer
to the boundaries. Instead of learning to synthesise a HR image, the CNN model
is trained to predict the residuals between the LR input data and HR ground-truth
information. These residuals are later summed up with the linearly upscaled input
image (output of Deconv layer) to reconstruct the output HR image. In this way,
a simplified regression function Φ is learned where mostly high-frequency signal
components, such as edges and texture, are predicted (see Fig. 10.2). At training
time, the correctness of reconstructed HR images is evaluated based on the Ψ�1(.)

function, and the model weights are updated by backpropagating the error defined
by that function. In [24] the �1 norm was shown to be a better metric than the �2
norm for image restoration and SR problems. This is attributed to the fact that the
weight updates are not dominated by the large prediction errors.

Multi-imageNetwork: The single imagemodel is extended tomulti-input image SR
by creating multiple input channels (MC) from given images which are resampled to
the same spatial grid and visualise the same anatomy. In this way, the SR performance
is enhanced by merging multiple image stacks, e.g. long-axis (LAX) and short axis
(SAX) stacks, acquired from different imaging planes into a single SR volume.
However, when only a few slices are acquired, a mask or distance map is required as
input to the network to identify the missing information. Additionally, the number of
parameters is supposed to be increased so that the model can learn to extract in image
regions where the masks are defined, which increases the training time accordingly.
For this reason, a Siamese network [25] is proposed as a thirdmodel (see Fig. 10.3) for
comparison purposes, which was used in similar problems such as shape recognition
frommultiple images [26]. The first stage of the network resamples, the input images
into a fixed HR spatial grid. In the second stage, the same type of image features are
extracted from each channel which are sharing the same filter weights. In the final
stage, the features are pooled and passed to another Conv network to reconstruct

Fig. 10.3 The proposed Siamese multi-image super resolution network model
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the output HR image. The view pooling layer averages the corresponding features
from all channels over the areas where the images are overlapping. The proposed
models are initially pre-trained with small number of layers to better initialise the
final deeper network training, which improves the network performance [11].

10.2.3 Results

Themodels are evaluated on end-diastolic frames of cine cardiacMR images acquired
from 1233 healthy adult subjects. The images are upscaled in the direction orthog-
onal to the SAX plane. The proposed method is compared against linear, cubic
spline, and multi-atlas patchmatch (MAPM) [14] upscaling methods in four differ-
ent experiments: image quality assessment for (a–b) single and multi-input cases, (c)
left-ventricle (LV) segmentation, (d) LV motion tracking.

Experimental Details: In the first experiment, an image dataset containing 1080
3D SAX cardiac volumes with voxel size 1.25 × 1.25 × 2.00 mm, is randomly split
into two subsets and used for single image model training (930) and testing (150).
The images are intensity normalised and cropped around the heart. Synthetic LR
images are generated using the acquisition model given in Sect. 10.2.2, which are
resampled to a fixed resolution 1.25 × 1.25 × 10.00 mm. The PSF is set to be a
Gaussian kernel with a full-width at half-maximum equal to the slice thickness [22].
For the LR/HR pairs, multiple acquisitions could be used as well, but an unbalanced
bias would be introduced near sharp edges due to spatial misalignments. For the
evaluation of multi-input models, a separate clinical dataset of 153 image pairs of
LAX cardiac image slices and SAX image stacks are used, of which 10 pairs are split
for evaluation. Spatial misalignment between SAX and LAX images are corrected
using image registration [27]. For the single/multi-image model, seven consecutive
Conv layers are used after the upscaling layer. In the Siamese model, the channels
are merged after the fourth Conv layer.

Image Quality Assessment: The upscaled images are compared with the ground-
truth HR 3D volumes in terms of PSNR and SSIM [21]. The latter measure assesses
the correlation of local structures and is less sensitive to image noise. The results

Table 10.1 Quantitative comparison of different image upsampling methods

Exp (a) PSNR (dB) SSIM # Filters/atlases

Linear 20.83 ± 1.10 0.70 ± 0.03 –

CSpline 22.38 ± 1.13 0.73 ± 0.03 –

MAPM 22.75 ± 1.22 0.73 ± 0.03 350

sh-CNN 23.67 ± 1.18 0.74 ± 0.02 64, 64, 32, 1

CNN 24.12 ± 1.18 0.76 ± 0.02 64, 64, 32, 16, 8, 4, 1

de-CNN 24.45 ± 1.20 0.77 ± 0.02 64, 64, 32, 16, 8, 4, 1
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Fig. 10.4 Results on the testing data, PSNR (solid) and SSIM (dashed)

Table 10.2 Image quality results obtained with three different models: single image de-CNN,
Siamese, and multi-channel (MC) that uses multiple input images

Exp (b) de-CNN(SAX) Siamese(SAX/4CH) MC(SAX/4CH) MC(SAX/2/4CH)

PSNR (dB) 24.76 ± 0.48 25.13 ± 0.48 25.15 ± 0.47 25.26 ± 0.37

SSIM 0.807 ± 0.009 0.814 ± 0.013 0.814 ± 0.012 0.818 ± 0.012

p - values 0.005 0.016 0.017 –

in Table10.1 show that learning the initial upscaling kernels (de-CNN) can improve
(p = 0.007) the quality of generated HR image compared to convolution only net-
work (CNN) using the same number of trainable parameters. Additionally, the per-
formance of 7-layer network is compared against the 4-layer shallow network from
[12] (sh-CNN). Addition of extra Conv layers to the 7-layer model is found to be
ineffective due to increased training time and negligible performance improvement.
In Fig. 10.4, we see that CNN-based methods can learn better HR synthesis models
even after a small number of training epochs. On the same figure, it can be seen that
the model without the residual learning (nrCNN) underperforms and requires a large
number of training iterations.

Multi-input Model: In the second experiment, we show that the single image SR
model can be enhanced by providing additional information from two and four cham-
ber (2/4CH) LAX images. The results given in Table10.2 show that by including
LAX information in the model, a modest improvement in image visual quality can
be achieved. The improvement is mostly observed in image regions closer to areas,
where the SAX-LAX slices overlap, as can be seen in Fig. 10.5a–d. Also, the results
show that themulti-channel (MC)model performs slightly better than Siamesemodel
as it is givenmore degrees-of-freedom, whereas the latter is more practical as it trains
faster and requires fewer trainable parameters.

Segmentation Evaluation: As a subsequent image analysis, 18 SAX SR images are
segmented using a state-of-the-art multi-atlas method [28]. The SR images gener-
ated from clinical 2D stack data with different upscaling methods are automatically
segmented and those segmentations are compared with the manual annotations per-
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Fig. 10.5 The LV is better visualised by using multi-input images (b, d) compared to single image
SR (a, c). Also, the proposed method (g) performs better than MAPM [14] (f) in areas where
uncommon shapes are over-smoothed by atlases

Table 10.3 Segmentation results for different upsampling methods, CSpline (p = 0.007) and
MAPM (p = 0.009). They are compared in terms of mean and Hausdorff distances (MYO) and LV
cavity volume differences (w.r.t. manual annotations)

Linear CSpline MAPM de-CNN High Res

Exp (c) LV Vol Diff
(ml)

11.72 ±
6.96

10.80 ±
6.46

9.55 ± 5.42 9.09 ± 5.36 8.24 ± 5.47

Mean Dist
(mm)

1.49 ± 0.30 1.45 ± 0.29 1.40 ± 0.29 1.38 ± 0.29 1.38 ± 0.28

Haus Dist
(mm)

7.74 ± 1.73 7.29 ± 1.63 6.83 ± 1.61 6.67 ± 1.77 6.70 ± 1.85

formed on ground-truth HR 3D images. Additionally, the HR images are segmented
with the samemethod to show the lower error bound. The quality of segmentations are
evaluated based on the LV cavity volume measure and surface-to-surface distances
for myocardium (MYO). The results in Table10.3 show that CNN upscaled images
can produce segmentation results similar to the ones obtained from HR images. The
main result difference between the SRmethods is observed in image areas where thin
and detailed boundaries are observed (e.g. apex). As can be seen in Fig. 10.5e–h, the
MAPM over-smooths areas closer to image boundaries. Inference of the proposed
model is not as computationally demanding as brute-force searching (MAPM),which
requires hours for a single image, whereas SR-CNN can be executed in 6.8 s on GPU
or 5.8 mins CPU on average per image. The shorter runtime makes the SR methods
more applicable to subsequent analysis, as they can replace the standard interpolation
methods.

Motion Tracking: The clinical applications of SR can be extended toMYO tracking
as it can benefit from SR as a pre-processing stage to better highlight the ventricle
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boundaries. End-diastolic MYO segmentations are propagated to end-systolic (ES)
phase using B-Spline FFD registrations [29]. ES meshes generated with CNN and
linear upscaling methods are compared with tracking results obtained with 10 3D-
SAX HR images based on Hausdorff distance. The proposed SR method produces
tracking results (4.73 ± 1.03 mm) more accurate (p = 0.01) than the linear interpo-
lation (5.50 ± 1.08 mm). We observe that the images upscaled with the CNN model
follow the apical boundaries more accurately, which is shown in the supplementary
material: www.doc.ic.ac.uk/~oo2113/publication/miccai16/.

10.2.4 Discussion and Conclusion

The results show that the proposed SR approach outperforms conventional upscal-
ing methods both in terms of image quality metrics and subsequent image analysis
accuracy. Also, it is computationally efficient and can be applied to image analysis
tasks such as segmentation and tracking. The experiments show that these appli-
cations can benefit from SR images since 2D stack image analysis with SR-CNN
can achieve similar quantitative results as the analysis on isotropic volumes without
requiring long acquisition time. We also show that the proposed model can be easily
extended to multiple image input scenarios to obtain better SR results. SR-CNN’s
applicability is not only limited to cardiac images but to other anatomical structures
as well. In the proposed approach, inter-slice and stack spatial misalignments due to
motion are handled using a registration method. However, we observe that large slice
misplacements can degrade SR accuracy. Future research will focus on that aspect
of the problem.

10.3 Scan Plane Detection

In this section, we show how a simple convolution neural network can be used for
very accurate detection of fetal standard scan planes in real-time 2D US data.

10.3.1 Motivation

Abnormal fetal development is a leading cause of perinatal mortality in both indus-
trialised and developing countries [30]. Although many countries have introduced
fetal screening programmes based on the mid-pregnancy ultrasound scans at around
20 weeks of gestational age, detection rates remain relatively low. For example, it
is estimated that in the UK approximately 26% of fetal anomalies are not detected
during pregnancy [31]. Detection rates have also been reported to vary considerably
across different institutions [32] which suggests that, at least in part, differences in

www.doc.ic.ac.uk/~oo2113/publication/miccai16/
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Abdominal View
(98%)

Lips View
(96%)

Detection Unsupervised Localisation

(a) Input frame (b) Prediction (c) Category-specific 
feature map

(d) Localised 
salicency map

(e) Approximate
localisation

Fig. 10.6 Overview of the proposed framework for two standard view examples. Given a video
frame (a) the trained convolutional neural network provides a prediction and confidence value (b).
By design, each classifier output has a corresponding low-resolution feature map (c). Backpropa-
gating the error from the most active feature neurons results in a saliency map (d). A bounding box
can be derived using thresholding (e)

training may be responsible for this variability. Moreover, according to the WHO, it
is likely that worldwide many US scans are carried out by individuals with little or
no formal training [30].

Biometric measurements and identification of abnormalities are performed on a
number of standardised 2D US view planes acquired at different locations in the
fetal body. In the UK, guidelines for selecting these planes are defined in [33].
Standard scan planes are often hard to localise even for experienced sonographers
and have been shown to suffer from low reproducibility and large operator bias [34].
Thus, a system automating or aiding with this step could have significant clinical
impact particularly in geographic regions where few highly skilled sonographers
are available. It is also an essential step for further processing such as automated
measurements or automated detection of anomalies.

In this section, we show how a real-time system which can automatically detect
12 commonly acquired standard scan planes in clinical free-hand 2D US data can be
implemented using a relatively simple convolutional neural network.Wedemonstrate
the detection framework for (1) real-time annotations of US data to assist sonogra-
phers, and (2) for the retrospective retrieval of standard scan planes from recordings
of the full examination. Furthermore, we extend this architecture to obtain saliency
maps highlighting the part of the image that provides the highest contribution to a
prediction (see Fig. 10.6). Such saliency maps provide a localisation of the respec-
tive fetal anatomy and can be used as starting point for further automatic processing.
This localisation step is unsupervised and does not require ground-truth bounding
box annotations during training.

Related Work: Standard scan plane classification of 7 planes was proposed for a
large fetal image database [35]. This differs significantly from the present work since
in that scenario it is already known that every image is in fact a standard plane whilst
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in video data the majority of frames does not show standard planes. A number of
papers have proposed methods to detect fetal anatomy in videos of fetal 2D US
sweeps (e.g. [36]). In those works, the authors were aiming at detecting the presence
of fetal structures such as the skull, heart or abdomen rather specific standardised
scan planes.

Automated fetal standard scan plane detection has been demonstrated for 1–3
standard planes in 2D fetal US sweeps [37–39]. US sweeps are acquired by moving
the US probe from the cervix upwards in one continuous motion [38]. However,
not all standard views required to determine the fetus’ health status are adequately
visualised using a sweep protocol. For example, visualising the femur or the lips
normally requires careful manual scan plane selection. Furthermore, data obtained
using the sweep protocol are typically only 2–5s long and consist of fewer than 50
frames [38]. To the best of our knowledge, fetal standard scan plane detection has
never been performed on true free-hand US data which typically consist of 10,000+
frames. Moreover, none of related works were demonstrated to run in real-time,
typically requiring multiple seconds per frame.

Note that themajority of the relatedworks followed a traditional machine learning
approach in which a set of fixed features (e.g. Haar-like features) are extracted from
the data and are then used to train a machine learning algorithm such as random
forests. The only exceptions are [37, 38], who also employed convolutional neural
networks and performed an end-to-end training.

10.3.2 Materials and Methods

Data and Pre-processing: Our dataset consists of 1003 2D US scans of consented
volunteers with gestational ages between 18 and 22 weeks which have been acquired
by a team of expert sonographers using GE Voluson E8 systems. For each scan,
a screen capture video of the entire procedure was recorded. Additionally, for each
case the sonographers saved multiple “freeze frames” of a number of standard views.
A large fraction of these frames have been annotated allowing us to infer the correct
ground-truth (GT) label. All video frames and images were downsampled to a size
of 225×273 pixels.

We considered 12 standard scan planes based on the guidelines in [33]. In partic-
ular, we selected the following: two brain views at the level of the ventricles (Vt.)
and the cerebellum (Cb.), the standard abdominal view, the transverse kidney view,
the coronal lip, the median profile, and the femur and sagittal spine views. We also
included four commonly acquired cardiac views: the left and right ventricular out-
flow tracts (LVOT and RVOT), the three vessel view (3VV) and the four chamber
view (4CH). Examples, of each category are shown in Fig. 10.7.

Since this work aims at detection of scan planes in real video data, rather than
categorisation we need a robust way to model the challenging background class, i.e.
the “not a standard scan plane” category. Due to the large variations in appearance
that free-hand ultrasound a large amount of images is required to adequately represent
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Fig. 10.7 Overview of the modelled standard scan planes

this class. Therefore, we additionallywe sampled 50 random frames from each video,
that is in total 50150 images, to model the background.

NetworkArchitecture: The architecture of theCNNdiscussed in this section is sum-
marised in Fig. 10.8. The architecture is inspired by the AlexNet [1], but is designed
with lower complexity for optimal speed. However, in contrast to the AlexNet and
following recent advances in computer vision, we opted for a fully convolutional
network architecture which replaces traditional fully connected layers with convo-
lution layers using a 1×1 kernel [40, 41]. In the final convolutional layer (C6), the
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Fig. 10.8 Overview of the discussed network architecture. The size and stride of the convolutional
kernels are indicated at the top (notation: kernel size/stride). Max-pooling steps are indicated by
MP (2×2 bins, stride of 2). The activation functions of all convolutions except C6 are rectified
nonlinear units (ReLUs). C6 is followed by a global average pooling step. The sizes at the bottom
of each image/feature map refer to the training phase and will be slightly larger during inference
due to larger input images

input is reduced to K 13×13 feature maps Fk , where K is the number of classes.
Each of these feature maps is then averaged to obtain the input to the final Softmax
layer.

Note that independent of the input image size the final output will always be
mapped to the same dimension due to the average pool layer. This allows training
on square patches of images as is common for convolutional neural networks [1]
and beneficial for data augmentation [2, 3]. Networks with a densely connected
classification layer need to be evaluated multiple times for rectangular input images,
see, for example [38]. In a fully convolutional architecture, rectangular images can
be evaluated in a single forward pass which allows for significantly more efficient
operation and is crucial for achieving real-time performance.

A key aspect of the network architecture presented in this section is that we
enforce a one-to-one correspondence between each featuremap Fk and the respective
prediction yk . Since each neuron in the feature maps Fk has a receptive field in the
original image, during training, the neurons will learn to activate only if an object of
class k is in that field. This allows to interpret Fk as a spatially encoded confidence
map for class k [40]. In this paper, we take advantage of this fact to generate localised
saliency maps as described below.

Training: We split the dataset into a test set containing 20% of the subjects and a
training set containing 80%. We use 10% of the training data as validation set to
monitor the training progress. In total, we model 12 standard view planes, plus one
background class resulting in K = 13 categories.

We train themodel in and end-to-to end fashion usingmini-batch gradient descent,
using the categorical cross-entropy cost function and the Adam optimiser proposed
in [42]. In order to prevent overfitting we add 50% dropout after the C5 and C6
layers. To account for the significant class imbalance introduced by the background
category, we create stratified mini-batches with even class-sampling.

We sample random square patches of size 225×225 from the input images and,
additionally, augment each batch by a factor of 5 by transforming them with a small
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random rotation and flips along the vertical axis. Taking random square subimages
allows to introduce more variation to the augmented batches compared to training
on the full field of view. This helps to reduce the overfitting of the network. We train
the network for 50 epochs and choose the network parameters with the lowest error
on the validation set.

FrameAnnotationandRetrospectiveRetrieval:After trainingwe feed the network
with video frames containing the full field of view (225×273 pixels) of the input
videos. This results in larger category-specific featuremaps of 13×16. The prediction
yk and confidence ck of each frame are given by the prediction with the highest
probability and the probability itself.

For retrospective frame retrieval, for each subject we calculate and record the
confidence for each class over the entire duration of an input video. Subsequently,
we retrieve the frame with the highest confidence for each class.

Saliency Maps and Unsupervised Localisation: After obtaining the category yk
of the current frame X from a forward pass through the network, we can examine
the feature map Fk (i.e. the output of the C6 layer) corresponding to the predicted
category k. Two examples of feature maps are shown in Fig. 10.6c. The Fk could
already be used to make an approximate estimate of the location of the respective
anatomy similar to [41].

Here, instead of using the feature maps directly, we present a method to obtain
localised saliency with the resolution of the original input images. For each neuron
F (p,q)

k at the location p, q in the feature map it is possible calculate how much
each original input pixel X (i, j) contributed to the activation of this neuron. This
corresponds to calculating the partial derivatives

S(i, j)
k = ∂F (p,q)

k

∂X (i, j)
,

which can be solved efficiently using an additional backwards pass through the
network. Reference [43] proposed a method for performing this backpropagation
in a guided manner by allowing only error signals which contribute to an increase
of the activations in the higher layers (i.e. layers closer to the network output) to
backpropagate. In particular, the error is only backpropagated through each neuron’s
ReLU unit if the input to the neuron x , as well as the error in the higher layer
δ� are positive. That is, the backpropagated error δ�−1 of each neuron is given by
δ�−1 = δ�σ (x)σ (δ�), where σ(·) is the unit step function.

In contrast to [43] who backpropagated from the final output, in this work we
take advantage of the spatial encoding in the category-specific feature maps and
only backpropagate the errors for the 10% most active feature map neurons, i.e. the
spatial locations where the fetal anatomy is predicted. The resulting saliency maps
are significantly more localised compared to [43] (see Fig. 10.9).

These saliency maps can be used as starting point for various image analysis tasks
such as automated segmentation or measurements. Here, we demonstrate how they
can be used for approximate localisation using basic image processing. We blur the
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Fig. 10.9 Saliency maps obtained from the input frame (LVOT class) shown on the left. Themiddle
map was obtained using guided backpropagation from the average pool layer output [43]. The map
on the right was obtained using the discussed method

absolute value image of a saliency map |Sk | using a 25×25 Gaussian kernel and
apply a thresholding using Otsu’s method [44]. Finally, we compute the minimum
bounding box of the components in the threshold image.

10.3.3 Experiments and Results

Real-TimeFrameAnnotation:We evaluated the ability of themethod to detect stan-
dard frames by classifying the test data including the randomly sampled background
class. We report the achieved precision (pc) and recall (rc) scores in Table10.4. The
lowest scores were obtained for cardiac views, which are also the most difficult to
scan for expert sonographers. This fact is reflected in the low detection rates for
serious cardiac anomalies (e.g. only 35% in the UK).

Chen et al. [37] have recently reported pc/rc scores of 0.75/0.75 for the abdominal
standard view, and 0.77/0.61 for the 4CH view in US sweep data. We obtained
comparable values for the 4CHview and considerably better values for the abdominal
view. However, with 12modelled standard planes and free-hand US data the problem
here is significantly more complex. Using, a Nvidia Tesla K80 graphics processing
unit (GPU) we were able to classify 113 frames per second (FPS) on average, which
significantly exceeds the recording rate of the ultrasound machine of 25FPS. An

Table 10.4 Detection scores: precision pc = TP/(TP + FP) and recall rc = TP/(TP + FN) for
the classification of the modelled scan planes and the background class

View pc rc View pc rc View pc rc

Brain (Vt.) 0.96 0.90 Lips 0.85 0.88 LVOT 0.63 0.63

Brain (Cb.) 0.92 0.94 Profile 0.71 0.82 RVOT 0.40 0.46

Abdominal 0.85 0.80 Femur 0.79 0.93 3VV 0.46 0.60

Kidneys 0.64 0.87 Spine 0.51 0.99 4CH 0.61 0.74

Background 0.96 0.93
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Table 10.5 Retrieval accuracy: percentage of correctly retrieved frames for each standard view for
all 201 test subjects

View (%) View (%) View (%)

Brain (Vt.) 0.95 Lips 0.77 LVOT 0.73

Brain (Cb.) 0.89 Profile 0.76 RVOT 0.70

Abdominal 0.79 Femur 0.75 3VV 0.66

Kidneys 0.87 Spine 0.77 4CH 0.78

example of a annotated video can be viewed at https://www.youtube.com/watch?v=
w4tfvRFGhvE.

Retrospective Frame Retrieval: We retrieved the standard views from videos of all
test subjects andmanually evaluatedwhether the retrieved frames corresponded to the
annotated GT frames for each category. Several cases did not have GTs for all views
because they were not manually included by the sonographer in the original scan. For
those cases, we did not evaluate the retrieved frame. The results are summarised in
Table10.5.We showexamples of the retrieved frames for twovolunteers inFig. 10.10.
Note that in many cases the retrieved planes match the expert GT almost exactly.
Moreover, some planes which were not annotated by the experts were nevertheless
found correctly. As before, most cardiac views achieved lower scores compared to
other views.

Localisation:We show results for the approximate localisation of the respective fetal
anatomy in the retrieved frames for one representative case in Fig. 10.10b and in the
supplemental video. We found that performing the localisation reduced the frame
rate to 39FPS on average.

10.3.4 Discussion and Conclusion

In this section, we have introduced a system for the automatic detection of 12 fetal
standard scanplanes from real clinical fetalUS scans. The employed fullyCNNarchi-
tecture allowed for robust real-time inference. Furthermore, we have shown amethod
to obtain localised saliency maps by combining the information in category-specific
feature maps with a guided backpropagation step. To the best of our knowledge, this
approach is the first to model a large number of fetal standard views from a substan-
tial population of free-hand US scans. We have shown that the method can be used
to robustly annotate US data with classification scores exceeding values reported in
related work for some standard planes, but in a much more challenging scenario. A
system based on the presented approach could potentially be used to assist or train
inexperienced sonographers. We have also shown how the framework can be used
to retrieve standard scan planes retrospectively. In this manner, relevant key frames
could be extracted from a video acquired by an inexperienced operator and sent for

https://www.youtube.com/watch?v=w4tfvRFGhvE
https://www.youtube.com/watch?v=w4tfvRFGhvE
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Fig. 10.10 Retrieved standard frames (RET ) and GT frames annotated and saved by expert sono-
graphers for two volunteers. Correctly retrieved and incorrectly retrieved frames are denoted with
a green check mark or red cross, respectively. Frames with no GT annotation are indicated. The
confidence is shown in the lower right of each image. The frames in b additionally contain the
results of the localisation method (boxes)

further analysis to an expert. We have also demonstrated how the localised saliency
maps can be used to extract an approximate bounding box of the fetal anatomy. This
is an important stepping stone for further, more specialised image processing.
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10.4 Discussion and Conclusion

In this chapter, two methods were presented which outperform the respective states-
of-the-art by employing fully convolutional networks and an end-to-endoptimisation.

The network described in Sect. 10.2 was designed to learn to predict high-
resolution images from low-resolution versions of the same images. To this end,
a low-resolution input image was first upsampled to the higher resolution using a
deconvolution layer and then the residual image information was estimated in a
number of convolutional layers to reconstruct the output volume. Importantly, this
entire pipeline was learned in an end-to-end fashion allowing to optimise all the steps
simultaneously. The experimental results showed that FCNs can learn high level rep-
resentations that enable more accurate regression performance in synthesising the
high-resolution volumes. In addition to the standard single input SR-CNN model,
a multi-input model extension was presented to make use of additional intensity
information provided by scans acquired from different imaging planes.

In Sect. 10.3, a different fully convolutional network was described which can
accurately detect 12 fetal standard scan planes in complex free-hand ultrasound
data. In contrast to Sect. 10.2 the output in this case was a single prediction rather
than an image. This could have been achieved using a standard architecture with a
fully connected classification layer. However, constructing the network exclusively
with convolutions allowed to obtain a class-pecific feature mapwhich can indicate an
approximate location of the structure of interest in the image. From those maps, very
accurate category-specific saliencymaps were obtained which can be used to provide
operator an explanation behind the prediction and also for unsupervised localisation
of the target structures.

A number of related scan plane detection works rely on extracting a fixed set of
features from the data and training a classifier such as AdaBoost or random forests on
them [35, 39]. However, similar to the work described in Sect. 10.2, optimising the
feature extraction and classification simultaneously generally leads to better results
than optimising each step separately and more recent-related works has also adopted
this strategy [37, 38].

In conclusion, fully convolutional networks offer an attractive solutionwhenone is
interested in an output that bears some spatial correspondence to the input image. On
the one hand, this may be the case if the output is an image as well. In this chapter, the
work on super resolution fell into this category. Another example of the same nature
whichwas not covered in this chapter is image segmentation [4, 10, 45] inwhich case
the output is a segmentation mask. On the other hand, a spatial correspondence can
be “forced” by making the network output artificially large and aggregating those
feature maps using average pooling. This produces spatial confidence maps in an
unsupervised fashion. In either case, such networks can be optimised end-to-end as
a whole which has been shown to generally produce very good results in medical
imaging and computer vision tasks alike.
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Chapter 11
On the Necessity of Fine-Tuned
Convolutional Neural Networks
for Medical Imaging

Nima Tajbakhsh, Jae Y. Shin, Suryakanth R. Gurudu, R. Todd Hurst,
Christopher B. Kendall, Michael B. Gotway and Jianming Liang

Abstract This study aims to address two central questions. First, are fine-tuned
convolutional neural networks (CNNs) necessary for medical imaging applications?
In response, we considered four medical vision tasks from three different medical
imaging modalities, and studied the necessity of fine-tuned CNNs under varying
amounts of training data. Second, towhat extent the knowledge is to be transferred? In
response, we proposed a layer-wise fine-tuning scheme to examine how the extent or
depthoffine-tuning contributes to the success of knowledge transfer.Our experiments
consistently showed that the use of a pre-trained CNN with adequate fine-tuning
outperformed or, in the worst case, performed as well as a CNN trained from scratch.
The performance gap widened when reduced training sets were used for training
and fine-tuning. Our results further revealed that the required level of fine-tuning
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differed from one application to another, suggesting that neither shallow tuning nor
deep tuning may be the optimal choice for a particular application. Layer-wise fine-
tuning may offer a practical way to reach the best performance for the application
at hand based on the amount of available data. We conclude that knowledge transfer
from natural images is necessary and that the level of tuning should be chosen
experimentally.

11.1 Introduction

Convolutional Neural Networks (CNNs) have recently shown tremendous success
for various computer vision tasks in natural images. However, training a deep CNN
from scratch (or full training) requires a large amount of labeled training data—a
requirement that may be difficult to meet in the medical imaging domain where
expert annotation is expensive and the diseases (e.g., lesions) are rare in the datasets.
A promising alternative to training from scratch is to fine-tune a pre-trained network
[1–3]. The idea is to transfer the knowledge from a source domain with a tremendous
set of labeled images to a target domain where only limited labeled data are available.
Fine-tuned CNNs have recently shown promising performance for medical imaging
applications [4–8]; however, their potentials have not been systematically studied
yet.

In this study, we address the following questions in the context of CNNs and
medical imaging: Is knowledge transfer necessary for high performance? If so, what
level of knowledge transfer is needed?To answer the above central questions, we pro-
pose a layer-wise fine-tuning scheme and study knowledge transfer to the following
4 medical imaging applications (see Fig. 11.1): (1) polyp detection in colonoscopy
videos, (2) image quality assessment in colonoscopyvideos, (3) pulmonary embolism
detection in computed tomography (CT) images, and (4) intima-media boundary
segmentation in ultrasound images. These applications are chosen to cover differ-
ent imaging modality systems (i.e., CT, ultrasound, and optical endoscopy) and the
most common medical vision tasks (i.e., lesion detection, organ segmentation, and
image classification). Our experiments demonstrated that knowledge transfer was
necessary for achieving high performance systems particularly given limited train-
ing data. We also discovered that layer-wise fine-tuning is a practical way to reach
the best performance for the application at hand based on the amount of available
training data.

11.2 Related Works

As summarized in Table11.1, CNNs have been extensively used for solving a variety
of medical vision tasks. However, literature on knowledge transfer from natural
images to the medical imaging domain is not as significant. The related research
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Fig. 11.1 Studied applications. a polyp detection in colonoscopy videos. Polyps are highlighted
with the red circles. b Frame classification for quality monitoring of colonoscopy procedures. The
very left image is an informative image but the rest are non-informative. c Pulmonary embolism
(PE) detection in CT datasets. Dark PE is marked by the arrow in the bright vessel. d lumen-
intima interface (green boundary) and media-adventitia interface (red boundary) segmentation in
ultrasound images

on knowledge transfer can be categorized into two groups. The first group [4, 5, 7]
consists of works wherein a pre-trained CNN is used as a feature generator: the CNN
features (outputs of a certain layer) are extracted and then used to train a new pattern
classifier. The second group consists of works that fine-tune a pre-trained CNN. This
has been accomplished by means of shallow fine-tuning of a pre-trained CNNwhere
only the last layer is trained [9] or by means of deep tuning where all convolutional
layers in a pre-trained CNN are trained [6, 8, 10]. Shallow tuning requires only
limited medical imaging data but may not achieve the desired performance. On the
other hand, deep tuning may better adapt the pre-trained CNN to the application at
hand butmay requiremoremedical imaging data. It would be interesting to study how
different levels of fine-tuning contribute to knowledge transfer in various medical
imaging applications.
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Table 11.1 A brief review of the CNN-related research in medical imaging

Reference Task

Focal pattern detection

[7, 11–13] Nodule detection

[14–16] Polyp detection

[17] Pulmonary embolism detection

[18] Lymph node detection

[19, 20] Cell detection

Segmentation

[21] Cartilage segmentation

[22] Pancreas segmentation

[23–25] Brain (tumor) segmentation

[26] Tissue segmentation

Image classification and registration

[27] MRI acquisition plane recognition

[5] Chest pathology identification

[6] Fetal ultrasound standard plane detection

[28] Radiology image registration

11.3 Contributions

One of our key contributions is a systematic study of layer-wise knowledge transfer to
4medical imaging applicationswith varying distances to natural images. The selected
applications are from three different medical imaging modalities, involving image
classification, object detection, and boundary segmentation. For each application, we
further study the choice between fine-tuning and full training under different amount
of training data. Our findings may add to the state of the art, where conclusions are
solely based on one medical imaging application and are derived for only shallow or
deep fine-tuning.

11.4 Applications and Results

For consistency and also ease of comparison between applications, we use the
AlexNet architecture for all experiments in this study. For each application, we used
a stratified training set by down-sampling the majority class. For training AlexNet
from scratch, we used different learning rates ranging from 0.0001 to 0.01, and found
out that a learning rate of 0.001 led to a proper convergence for all applications. For
fine-tuning the pre-trained AlexNet, we used a learning rate of 0.01 for the last fully
connected layer and a learning rate of 0.001 for the previous layers. To exclude a
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Table 11.2 Learning parameters used for training and fine-tuning of AlexNet in our experiments.μ
is the momentum, α is the learning rate of the weights in each convolutional layer, and γ determines
the rate bywhichα decreases at the endof each epoch.Note that “Fine-tunedAlexNet:layer1-layer2”
indicates that all the layers between and including these two layers undergo fine-tuning

CNNs Parameters

μ αconv1 αconv2 αconv3 αconv4 αconv5 α f c6 α f c7 α f c8 γ

Fine-tuned
AlexNet:conv1-fc8

0.9 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.01 0.95

Fine-tuned
AlexNet:conv2-fc8

0.9 0 0.001 0.001 0.001 0.001 0.001 0.001 0.01 0.95

Fine-tuned
AlexNet:conv3-fc8

0.9 0 0 0.001 0.001 0.001 0.001 0.001 0.01 0.95

Fine-tuned
AlexNet:conv4-fc8

0.9 0 0 0 0.001 0.001 0.001 0.001 0.01 0.95

Fine-tuned
AlexNet:conv5-fc8

0.9 0 0 0 0 0.001 0.001 0.001 0.01 0.95

Fine-tuned
AlexNet:fc6-fc8

0.9 0 0 0 0 0 0.001 0.001 0.01 0.95

Fine-tuned
AlexNet:fc7-fc8

0.9 0 0 0 0 0 0 0.001 0.01 0.95

Fine-tuned
AlexNet:only fc8

0.9 0 0 0 0 0 0 0 0.01 0.95

AlexNet scratch 0.9 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.95

Fig. 11.2 Schematic overview of AlexNet used in our experiments

layer from the tuning process, we set the corresponding learning rate to 0. We used
the notation “CNN (FT):layer1-layer3” to indicate that all the layers from Layer 1
to Layer 3 undergo fine-tuning. For the fine-tuning scenario, we employ the pre-
trained AlexNet model provided in the Caffe library [29]. Table11.2 summarizes the
learning parameters used for the training and fine-tuning of AlexNet in all of our
experiments (Fig. 11.2).
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Fig. 11.3 FROC analysis for polyp detection. a Comparison between incremental fine-tuning,
training from scratch, and a hand crafted approach [30]. b Effect of reduction in the training data
on the performance of CNNs. Note that the sensitivity never reaches 100% due to false negatives
of the candidate generator

11.4.1 Polyp Detection

Polyps are colon wall protrusions that are often missed during colonoscopy. From a
vision perspective, polyp detection is difficult due to their large variations in shape,
color, and size (see Fig. 11.1a). We use the polyp database released through the polyp
detection challenge,1 consisting of 40 short colonoscopy videos. The training videos
contain 3800 frames with polyps and 15,100 frames without polyps, and the test
videos contain 5,700 frames with polyps and 13,200 frames without polyps. Training
and test patches were collected with data augmentation using the bounding boxes
of polyp and non-polyp candidates generated by the system suggested in [30]. For
training and fine-tuning the CNNs, we collect a stratified set of training patches by
down-sampling the negative patches. For evaluation, we performed a free-response
ROC (FROC) analysis.

Figure11.3a compares the FROC curves for polyp detection. To avoid clutter in
the figure, we have shown only a subset of representative FROC curves. As seen, the
handcrafted approach [30] is significantly outperformed by all CNN-based scenarios
(p < 0.05). This result is probably because the handcrafted approach used only geo-
metric information to remove false positive candidates. For fine-tuning, we obtained
the lowest performance with (FT:only fc8), but observed incremental performance
improvement as we included more convolutional layers in the fine-tuning process.
Also, as seen in Fig. 11.3a, fine-tuning the last few convolutional layers was sufficient
to outperform AlexNet trained from scratch in low false positive rates (FT:conv4-
fc8). This superiority becomes even more evident when the training set is reduced
to 25% at poly-level. These findings suggest that deep fine-tuning is necessary for
high-performance polyp detection.

1http://polyp.grand-challenge.org/.

http://polyp.grand-challenge.org/
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11.4.2 Pulmonary Embolism Detection

PEs are blood clots that block pulmonary arteries (see Fig. 11.1c). PEs are hard to
diagnose, but CAD system have shown to be effective in reducing PE miss-rates. We
used a private database consisting of 121 CTPA volumes with a total of 326 PEs. We
first performed a candidate generation method [31] to obtain a set of PE candidates
and then divided the candidates at the volume level into a training set covering 199
unique PEs and a test set with 127 PEs. The training and test patches were extracted
from the candidate locations with data augmentation according to a novel image
representation suggested in [17]. For evaluation, we performed an FROC analysis.

Figure11.4a shows the representative FROC curves for PE detection. The most
notable increase in performance was observed after updating the fully connected
layers (CNN (FT):fc6-fc8). Fine-tuning the remaining convolutional layers led to
marginal improvements although their accumulation resulted in a significant per-
formance gain (CNN (FT):conv1-fc8). Therefore, deep fine-tuning is necessary to
achieve the best knowledge transfer. We also observed that the deeply fine-tuned
CNN performed on a par with the CNN trained from scratch, but neither of them
outperformed the meticulously designed handcrafted approach. We found it inter-
esting that end-to-end learning machines could learn such a sophisticated set of
handcrafted features with minimal engineering effort. By reducing training data at
volume level, as seen in Fig. 11.4b, we observed significant performance degradation
for the CNN trained from scratch and to less extent for the deeply tuned CNN. This
highlights the importance of large training sets for effective training and fine-tuning
of CNNs.
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Fig. 11.4 FROC analysis for pulmonary embolism detection. a Comparison between incremental
fine-tuning, training from scratch, and a handcrafted approach [31]. b Effect of reduction in the
training data on the performance of CNNs



188 N. Tajbakhsh et al.

11.4.3 Colonoscopy Frame Classification

Typically, a colonoscopy video contains a large number of non-informative images,
which are not suitable for inspecting the colon or performing therapeutic actions.
The larger the fraction of non-informative images in a video, the lower the quality
of colon visualization, and thus the lower the quality of colonoscopy. Therefore, one
way to assess the quality of colonoscopy is to monitor the quality of images captured
during the procedures. Technically, image quality assessment at colonoscopy can be
viewed as an image classification task whereby an input image is labeled as either
informative or non-informative. Figure11.1b shows an example of informative frame
and 3 examples of non-informative frames.

To develop our image classification system, we use a balanced dataset of 4,000
frames from six entire-length colonoscopy videos. Each frame is labeled as informa-
tive or non-informative. We divide the frames at the video-level into training and test
sets, each containing approximately 2000 colonoscopy frames. For data augmenta-
tion, we extract 200 sub-images of size 227× 227 pixels from random locations in
each 500× 350 colonoscopy frame, resulting in a stratified training set with approx-
imately 40,000 sub-images. The extracted patches were labeled according to the
images they were selected from. During the test stage, the probability of each frame
being informative is computed as the average probabilities assigned to its randomly
cropped sub-images. We used an ROC analysis for performance evaluation.

Figure11.5a shows ROC curves for colonoscopy frame classification. We com-
pared the performance curves at 3 operating points corresponding to 10, 15, and
20% false positive rates. We observed that all CNN-based scenarios significantly
outperformed the handcrafted approach in at least one of the above 3 operating
points. We also observed that fine-tuning the pre-trained CNN halfway through the
network (FT:conv4-fc8 and FT:conv5-fc8) not only significantly outperformed shal-
low tuning but also was superior to a deeply fine-tuned CNN (FT:conv1-fc8) at 10
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Fig. 11.5 ROC analysis for image quality assessment. a Comparison between incremental fine-
tuning, training from scratch, and a handcrafted approach [32]. b Effect of reduction in the training
data on the performance of CNNs
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and 15% false positive rates. Therefore, deep tuning was not as effective as inter-
mediate tuning. This was probably because the kernels learned in the early layers
of the CNN were suitable for image quality assessment and thus their fine-tuning
was unnecessary. Furthermore, while the CNN trained from scratch outperformed
the pre-trained CNN with shallow fine-tuning (FT:only fc8), it was outperformed
by the pre-trained CNN with a moderate level of fine-tuning (FT:conv5-fc8). There-
fore, the fine-tuning scheme was superior to the full training scheme from scratch.
Figure11.5b compares the deeply fine-tuned CNN and the CNN trained from scratch
using reduced training sets.With 10%of the original training set, bothmodels showed
insignificant performance degradation; however, further reduction in the size of the
training set substantially degraded the performance of fully trained CNNs and, to
a largely less extent, the performance of deeply fine-tuned CNNs. The robustness
of the deeply tuned CNN to sample size can be attributed to the similarity between
ImageNet and the colonoscopy frames in our database. Specifically, both databases
use high-resolution images and share similar low-level image information.

11.4.4 Intima-Media Boundary Segmentation

Carotid intima-media thickness (IMT) has proven to be valuable for predicting
the risk of cardiovascular diseases. The IMT is defined as the average distance
between the lumen-intima and media-adventitia interfaces in a region of interest
(ROI) (Fig. 11.1d). The IMT measurement is performed by a sonographer who man-
ually traces the lumen-intima and media-adventitia interfaces, This, however, is a
time-consuming and tedious task. An automatic image segmentation method can
accelerate the CIMT measurements.

Automatic segmentation of lumen-intima interface (LII) and media-adventitia
interface (MAI) is essential for objectivemeasurement of IMT, as shown inFig. 11.1d.
Technically, this segmentation problem can be viewed as a three-class classification
task wherein the goal is to classify every pixel in the ROI into MAI, LIA, and
background; and hence a CNN-based approach can be adopted. We used a database
consisting of 276 ROIs from 23 patients with annotated LII and MAI. We divided
the ROIs at the patient-level into a training set with 144 ROIs and a test set with
132 ROIs. For training and fine-tuning the CNNs, we extracted training patches
without data augmentation from the background and annotated boundaries. This
was because each ROI allowed us to extract a large number of image patches from
a dense grid of points. During the test stage, the trained CNN was applied to each
image in a convolutional fashion. We then found the maximum probability for MAI
and LII in each column, yielding a 1-pixel thick boundary around each interface. To
measure segmentation accuracy, we computed the distance between the annotated
and segmented interfaces.

Figure11.6 shows the box plots of segmentation error for each of the two inter-
faces. Thewhiskers are plotted according toTukey’smethod. For fine-tuning, holding
all the layers fixed, except the very last layer (fc8), resulted in the lowest performance.
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Fig. 11.6 Box plots of segmentation error for (left) the lumen-intima interface and (right) the
media-adventitia interface

However, segmentation error decreased as more layers were fine-tuned. Specifically,
the highest drop in segmentation error was observed when layers fc7 and fc6 under-
went fine-tuning. For both interfaces, the lowest segmentation error was obtained
using intermediate fine-tuning (FT:conv4-fc8) with a slight increase in segmentation
error as more layer underwent fine-tuning. Therefore, deep fine-tuning was unnec-
essary.

11.5 Discussion

In this study, to ensure generalizability of our findings, we considered four com-
mon medical imaging problems from three different imaging modality systems.
Specifically, we chose pulmonary embolism detection as representative of computer-
aided lesion detection in 3D volumetric images, polyp detection as representative of
computer-aided lesion detection in 2D videos, intima-media boundary segmenta-
tion as representative of machine-learning based medical image segmentation, and
colonoscopy image quality assessment as representative of medical image classifica-
tion. These applications are also different because they require solving problems at
different image scales. For instance, while intimia-media boundary segmentation and
pulmonary embolism detection may require the examination of a small sub-region
within the images, polyp detection and frame classification demand far larger recep-
tive fields. Therefore, we believe that the chosen applications encompass a variety
of applications relevant to the field of medical imaging.

We thoroughly investigated the potential for fine-tuned CNNs in the context of
medical image analysis as an alternative to training deep CNNs from scratch. We
performed our analyses using both large sets of training and reduced training datasets.
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When using complete datasets, we observed that the shallow tuning of the pre-trained
CNNs most often leads to a performance inferior to CNNs trained from scratch,
whereas with deeper fine-tuning, we obtained performance superior to CNNs trained
from scratch. The performance gap between fine-tuned CNNs and those trained from
scratch widened when reducing the size of training sets, which led us to conclude
that fine-tuned CNNs should always be the preferred option regardless of the size of
training sets available.

We observed that the depth of fine-tuning is fundamental to achieving accu-
rate image classifiers. For instance, while intermediate fine-tuning was sufficient
to achieve the optimal performance for intima-media segmentation and colonoscopy
frame classification, deep fine-tuning was essential to achieving the optimal perfor-
mance for polyp detection and pulmonary embolism detection. This behavior was
in contrast to the studied applications in the field of computer vision where shallow
fine-tuning of pre-trained CNNs achieved the state-of-the-art performance. These
observations can be explained by similarities between vision applications and dif-
ferences between vision and medical applications.

In this study, we based our experiments on theAlexNet architecture. Alternatively,
deeper architectures such as VGGNet [33] or GoogleNet [34], could have been
utilized. We surmise that similar conclusion can be derived for these architectures.
We should also emphasize that the objective of this study was not to achieve the
highest performance for a number of different medical imaging tasks, but rather to
study the effectiveness of knowledge transfer from natural to medical images in the
presence and absence of sufficient labeled medical data. Therefore, AlexNet could
be a reasonable architectural choice.

11.6 Conclusion

In this paper, we studied the necessity of fine-tuning and the effective level of knowl-
edge transfer to 4medical imaging applications. Our experiments demonstratedmed-
ical imaging applications were conducive to transfer learning and that fine-tuned
CNNs were necessary to achieve high performance particularly with limited training
datasets.We also showed that the desired level of fine-tuning differed from one appli-
cation to another. While deeper levels of fine-tuning were suitable for polyp and PE
detection, intermediate fine-tuning worked the best for interface segmentation and
colonoscopy frame classification. Our findings led us to conclude that layer-wise
fine-tuning is a practical way to reach the best performance based on the amount of
available data.
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Chapter 12
Fully Automated Segmentation
Using Distance Regularised Level
Set and Deep-Structured Learning
and Inference

Tuan Anh Ngo and Gustavo Carneiro

Abstract We introduce a new segmentation methodology that combines the struc-
tured output inference from deep belief networks and the delineation from level set
methods to produce accurate segmentation of anatomies from medical images. Deep
belief networks can be used in the implementation of accurate segmentation models
if large annotated training sets are available, but the limited availability of such large
datasets in medical image analysis problems motivates the development of methods
that can circumvent this demand. In this chapter, we propose the use of level set
methods containing several shape and appearance terms, where one of the terms
consists of the result from the deep belief network. This combination reduces the
demand for large annotated training sets from the deep belief network and at the
same time increases the capacity of the level set method to model more effectively
the shape and appearance of the visual object of interest. We test our methodology
on the Medical Image Computing and Computer Assisted Intervention (MICCAI)
2009 left ventricle segmentation challenge dataset and on Japanese Society of Radio-
logical Technology (JSRT) lung segmentation dataset, where our approach achieves
the most accurate results of the field using the semi-automated methodology and
state-of-the-art results for the fully automated challenge.
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12.1 Introduction

The segmentation of anatomies from medical images is an important stage in the
process of analysing the health of a particular organ. For instance, the segmentation of
the endocardium and epicardium from the left ventricle (LV) of the heart using cardiac
cine Magnetic Resonance (MR) [3, 4], as shown in Fig. 12.1a, is necessary for the
assessment of the cardiovascular system function and structure. The main challenges
in the LV segmentation from MR are related to the need to process the various slices
from the short axis view, where the area of the LV changes considerably, and to be
robust to trabeculations and papillary muscles. Another example is the segmentation
of the lung from digital chest X-ray (CXR) [5], as displayed in Fig. 12.1b, which is
needed for computing lung volume or estimating shape irregularities [6] for screening
and detecting pulmonary pathologies. The lung segmentation problem is challenging
due to the large shape and appearance variations of the lung, and the presence clavicle
bones and rib cage. One of the main challenges involved in these medical image
analysis segmentation problems is that the usefulness of a system is related to the
accuracy of its segmentation results, which is usually correlated to the size of the
annotated training set available to build the segmentation model. However, large
annotated training sets are rarely available for medical image analysis segmentation
problems, so it is important to develop methods that can circumvent this demand.

Currently, the main approaches explored in medical image segmentation prob-
lems are the following: active contour models, machine learning models, and hybrid
active contour and machine learning models. One of most successful methodologies
explored in the field is the active contour models [7, 8] that is generally represented
by an optimisation that minimises an energy functional which varies the shape of a
contour using internal and external hand-crafted constraints. Internal constraints are
represented by terms that associate cost with contour bending, stretching or shrink-
ing, and the external constraints use the image data to move the contour towards
(or away from) certain features, such as edges. These constraints usually rely on
shape or appearance models that require small training sets. The main challenges

(a) Left ventricle segmentation from MR (b) Lung segmentation from CXR

Fig. 12.1 LV segmentation from cardiac cine MR imaging [4] (a), and lung segmentation from
digital chest X-ray [5] (b)
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faced by active contour models are their inability to model robustly the shape and
appearance variations presented by the visual object of interest.

Machine learning methods allow a more robust modelling of the shape and appear-
ance of visual objects [9, 10], which generally translates into more accurate segmen-
tation results. However, the challenges presented in medical image applications in
terms of segmentation accuracy requirements and large shape and appearance vari-
ations of the visual object of interest imply that the models must have high capacity,
requiring a large and rich annotated training set. This means that the acquisition
of comprehensive annotated training sets is one of the main foci in the design of
machine learning models, which is a complicated task, particularly in medical image
analysis. More recent machine learning methodologies are based on models with
less capacity, which reduces the need for large and rich training sets, where the idea
lies in the combination of active contour models and Markov random fields (MRF)
[11–13]. However, the main issue of these approaches is that MRF models present
large memory complexity, which limits the size of the input image (or volume) to be
segmented.

We propose a new methodology that combines an active contour model (dis-
tance regularised level sets) [14] with a machine learning approach (deep belief net-
work) [15]. Deep belief networks (DBN) are represented by a high capacity model
that needs large amounts of training data to be robust to the appearance and shape
variations of the object of interest, but the two-stage training (consisting of a pre-
training based on a large un-annotated training set, followed by a fine-tuning that
relies on a relatively small annotated training set) [15] reduces the need for anno-
tated training images. Nevertheless, medical image analysis datasets are generally
too small to produce robust DBN models, so its use as a shape term in a level set
method can compensate for its lack of robustness and at the same time can improve
the accuracy of the level set method. In addition, this combination does not present
the large memory complexity faced by MRF models. We show the effectiveness of
our approach on two distinct datasets: the Medical Image Computing and Computer
Assisted Intervention (MICCAI) 2009 LV segmentation challenge dataset [4] and the
Japanese Society of Radiological Technology (JSRT) lung segmentation dataset [16].
Our experiments show that our approach produces the best result in the field when
we rely on a semi-automated segmentation (i.e., with manual initialisation) for both
datasets. Also, our fully automated approach produces a result that is on par with the
current state of the art on the MICCAI 2009 LV segmentation challenge dataset.

12.2 Literature Review

The proposed segmentation methodology can be used in various medical image
analysis problems, but we focus on two applications that are introduced in this section.
The first application is the segmentation of the endocardial and epicardial borders of
the LV from short axis cine MR images, and the second application is the lung seg-
mentation from CXR images. The LV segmentation (see Fig. 12.1a) is challenging
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due to the lack of grey-level homogeneity in the imaging of the LV, which happens
because of blood flow, papillary muscles and trabeculations, and the low resolu-
tion of the apical and basal images [3]. It is possible to categorise LV segmentation
approaches with three properties: (1) segmentation method (region and edge based,
pixel classification, deformable models, active appearance and shape models), (2)
prior information (none, weak, and strong), and (3) automated localisation of the
heart (time-based or object detection). According to Petitjean et al.’s analysis [3]
of the MICCAI 2009 challenge results [4], the highest accuracy is obtained from
image-based methodologies [17, 18] based on thresholding or dynamic programming
applied to image segmentation results. However, these methods usually require user
interaction and show difficulties in segmenting the LV in all cardiac phases. These
drawbacks have been addressed by more sophisticated methods [19–21], but their
segmentation accuracy is not as high as the simpler image-based methods above.
Moreover, the use of techniques specific to the LV segmentation problem [17, 18,
22] produces more accurate results when compared to more general approaches [19,
23]. The main conclusion reached by Petitjean et al. [3] is that Jolly’s method-
ology [21] is the most effective because it is fully automatic and offers the best
compromise between accuracy and generalisation. The most effective methodology
in the MICCAI 2009 challenge for the semi-automated case (i.e., that requires a user
input in terms of the initialisation for the segmentation contour) has been developed
by Huang et al. [18].

The challenges in the lung segmentation problem (see Fig. 12.1b) are related to the
presence of strong edges at the rib cage and clavicle, the lack of a consistent lung shape
among different cases, and the appearance of the lung apex. Current techniques are
based on methods that combine several methodologies, such as landmark learning and
active shape and appearance models [24, 25] or MRF and non-rigid registration [5].
Although presenting state-of-the-art segmentation results, these methods show some
drawbacks: landmark learning is a hard problem that is based on hand-crafted feature
detector and extractor, active shape and appearance models make strong assumptions
about the distribution of landmarks, and MRF inference has high memory complexity
that limits the input image size.

Finally, it is important to note that image segmentation can be posed as a structured
output learning and inference problem [26], where the classification is represented by
a multidimensional binary vector. Traditionally, structured output models use a large
margin learning formulation [27], but a natural way to represent a structured learning
is with a multi-layer perceptron, where the output layer consists of a multidimen-
sional binary vector denoting the segmentation [28]. The recent renaissance of deep
learning methods originated from the development of an efficient learning algorithm
for training DBN [15], which allowed the development of structured inference and
learning with DBN [29–32]. Similarly, the method proposed by Farabet et al. [30]
parses a scene into several visual classes using convolutional neural networks. Nev-
ertheless, the papers above show that DBNs can work solidly in structured output
problems only with the availability of large annotated training sets that allows the
modelling of a robust DBN.
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(a) Left ventricle images and annotation (b) Lung images and
      annotation

Fig. 12.2 Left ventricle images v with overlaid endocardial and epicardial segmentation contours c
and respective segmentation maps y in (a), and lung images with overlaid left and right segmentation
contours and respective segmentation maps in (b)

12.3 Methodology

In order to explain the segmentation algorithm, let us assume that we have an anno-
tated dataset (Fig. 12.2), represented by D = {(v, c, y)i }|D|

i=1, where v : Ω → R rep-
resents an image of the visual object of interest (with Ω ⊆ R

2 denoting the image
lattice), c : [0, 1] → Ω denotes the explicit contour representation of the segmen-
tation, and the binary segmentation map is represented by y : Ω → {0, 1}, where 1
represents the foreground (i.e., points inside the contour c) and 0 denotes the back-
ground (i.e., points outside the contour c). Below, we first explain the segmentation
method based on the distance regularised level set (DRLS), then we describe the
DBN model and the shape prior.

The main segmentation algorithm is based on the distance regularised level set
(DRLS) method [14], where the energy functional is represented by:

E (φ, φDBN, φPRIOR) = μRp(φ) + Eext(φ, φDBN, φPRIOR), (12.1)

where φ : Ω → R represents the signed distance function, defined by

φ(x) =
{−d(x,Ωout ), if x ∈ Ω in

+d(x,Ω in), if x ∈ Ωout , (12.2)

where Ω in = {x ∈ Ω|y(x) = 1}, Ωout = {x ∈ Ω|y(x) = 0}, and d(x,Ω) = infz∈Ω

‖x − z‖2, assuming that y denotes the segmentation map. Also in (12.1), the distance
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regularisation Rp(φ) = ∫
Ω

0.5(|∇φ(x)| − 1)2dx guarantees that |∇φ(x)| ≈ 1,
which avoids the re-initialisations during the segmentation process [14] (a common
issue in level set methods), and

Eext(φ, φDBN, φPRIOR) = λL (φ) + αA (φ) + βS (φ, φDBN) + γS (φ, φPRIOR),

(12.3)

with the length term L (φ) = ∫
Ω
gδ(φ(x))|∇φ(x)|dx (with δ(.) denoting the Dirac

delta function and g � 1
1+|∇Gσ ∗I | representing the edge indicator function), the

area A (φ) = ∫
Ω
gH(−φ(x))dx (with H(.) denoting the Heaviside step function),

and S (φ, φκ) = ∫
Ω

(φ(x) − φκ(x))2dx (with κ ∈ {DBN, PRIOR}) representing the
shape term [33] that drives φ either towards the shape φDBN, which is the distance
function inferred from the deep belief network (DBN) structured inference described
below, or the shape prior φPRIOR, estimated from the training set and also described in
more detail below. The gradient flow of the energy E (φ) is then defined as follows:

∂φ

∂t
=μdiv(dp(|∇φ|)∇φ) + λδ(φ)div(g

∇φ

|∇φ| ) + αgδ(φ)+
2β(φ(x) − φDBN(x)) + 2γ (φ(x) − φPRIOR(x)),

(12.4)

where div(.) denotes the divergence operator, and dp(.) denotes the derivative of the
function p(.) defined in (12.1).

The segmentation is obtained from the minimisation of the energy functional in
(12.1) from the steady solution of the gradient flow equation [14] ∂φ

∂t = − ∂E
∂φ

, where

∂E /∂φ is the Gâteaux derivative of the functional E (φ) and ∂φ

∂t is defined in (12.4).
The main idea of the DRLS [14] is then to iteratively follow the steepest descent
direction (12.4) until convergence, resulting in the final steady solution.

(a) Left ventricle DBN (b) Lungs DBN

Fig. 12.3 Deep belief network that produces the segmentation maps yDBN and respective signed
distance function φDBN for the left ventricle structures (epicardium and endocardium) in (a) and
left and right lungs in (b)
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The structured inference from the DBN (Fig. 12.3) produces the following seg-
mentation map:

yDBN = arg max
y

∑
h1

. . .
∑
hK

P(v,h1, . . . ,hK , y;Θ), (12.5)

where v represents the input image, hk ∈ {0, 1}|hk | represents the |hk | hidden nodes
of layer k ∈ {1, .., K } of the deep belief network, and Θ denotes the DBN parameters
(weights and biases). The probability term in (12.5) is computed as

P(v,h1, . . . ,hK , y) = P(hK ,hK−1, y)

(
K−2∏
k=1

P(hk+1|hk)
)
P(h1|v), (12.6)

where − log P(hK ,hK−1, y) ∝ ERBM(hK ,hK−1, y) with

ERBM(hK , hK−1, y) = −b

K hK − a


K−1hK−1 − a

y y − (hK )
WK hK−1 − (hK )
Wyy

(12.7)

representing the energy function of a restricted Boltzmann machine (RBM) [15],
where bK , aK−1, ay denote the bias vectors and WK ,Wy are the weight matrices.
Also in (12.6), we have

P(hk+1|hk) =
∏
j

P(hk+1( j) = 1|hk), (12.8)

with P(hk+1( j) = 1|hk) = σ(bk+1( j) + h

k Wk+1(:, j)), P(h1( j) = 1|vmφ

) =
σ(b1( j) + v


mφ
W1(:, j)
σ 2 ) (we assume zero-mean Gaussian visible units for the DBN),

where σ(x) = 1
1+e−x , the operator ( j) returns the j th vector value, and (:, j) returns

the j th matrix column. The signed distance function φDBN is then computed with
(12.2). The DBN in (12.5) is trained in two stages. The first stage is based on the
unsupervised bottom-up training of each pair of layers, where the weights and biases
of the network are learned to build an auto-encoder for the values at the bottom layer,
and the second stage is based on a supervised training that uses the segmentation
map y as the training label [15]. The structured inference process consists of taking
the input image and performing bottom-up inferences, until reaching the top two
layers, which form an RBM, and then initialise the layer y = 0 and perform Gibbs
sampling on the layers hK , hK−1 and y until convergence [15]. The signed distance
function φDBN is then computed with (12.2) from yDBN.

The shape prior (Fig. 12.4) is computed with the mean of the manual annotations
{yi }i∈T , where T ⊂ D denotes the training set, as follows: ȳ(x) = 1

|T |
∑|T |

i=1 yi (x),
where x ∈ Ω . Assuming that each element of the mean map ȳ is between 0 and 1,
the shape prior is computed as
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Fig. 12.4 Shape priors
yPRIOR (computed from
ȳ using (12.9)) for
endocardium, epicardium
and lungs

yPRIOR(x) =
{

1, if ȳ(x) > 0.5
0, if ȳ(x) ≤ 0.5

. (12.9)

The signed distance function φPRIOR is then computed with (12.2) from yPRIOR.
The segmentation using the combination of DRLS, DBN and shape prior is

explained in Algorithm 1, which iteratively runs DRLS until convergence using the
segmentation results from the DBN and from the shape prior as two of its optimisa-
tion terms. Notice that the initial segmentation φ0 can be manually provided, which
results in a semi-automated segmentation, or automatically produced, generating a
fully automated segmentation method.

Algorithm 1 Combined DRLS and DBN Segmentation
1: INPUT: test image v, shape prior yPRIOR and initial segmentation φ0
2: Compute signed distance function φPRIOR from map yPRIOR with (12.2)
3: Infer yDBN from v using (12.5)
4: Compute signed distance function φDBN from map yDBN with (12.2)
5: for t = 1:T do
6: Run DRLS using φt−1, φDBN, φPRIOR to produce φt
7: end for
8: Segmentation is the zero level set C = {x ∈ Ω|φT (x) = 0}

12.3.1 Left Ventricle Segmentation

In this section, we present our fully automated left ventricle segmentationmethod.
A cardiac cine MR sequence consists of K volumes {Vi }Ki=1, each representing a par-
ticular cardiac phase, where each volume comprises a set of N images {v j }Nj=1, also
known as volume slices, obtained using the short axis view (Fig. 12.5). We assume to
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Fig. 12.5 Visualisation of an image on the short axis view, where RV and LV stand for right and left
ventricles, respectively, and the red contour represents the endocardium contour and green denotes
the epicardium

Fig. 12.6 All steps for the left ventricle segmentation—Fig. 12.7 depicts each step in more detail

have annotation only at the end diastolic (ED) and end systolic (ES) cardiac phases
(i.e., only two out of the K phases available) for all N images in these two vol-
umes. In each of these annotated images, the explicit endocardial and epicardial
contour representations are denoted by cENDO and cEPI, respectively, and the seg-
mentation maps are denoted by yENDO and yEPI. The set of annotated sequences is
represented by D = {(v, cENDO, cEPI, yENDO, yEPI, i, q)s}s∈{1,...,S},i∈{1,...,Ns },q∈{ED,ES},
where s denotes the sequence index (each sequence represents one patient), i denotes
the index to an image within the sequence s, and q represents the cardiac phase
(Fig. 12.2). Note that our methodology runs the segmentation process slice by slice
in each of the ED and ES volumes, using the steps displayed in Fig. 12.6.

12.3.2 Endocardium Segmentation

For segmenting the endocardium, it is first necessary to detect a region of interest
(ROI) that fully contains the left ventricle. This ROI detection uses the structured
inference computed from a DBN, which outputs an image region that is used in
the estimation of the initial endocardium segmentation φ0 (see Algorithm 1 and
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(a) ROI Detection and Initial Endocardium Segmentation

(b) Endocardium Segmentation

(c) Initial Epicardium Segmentation

(d) Epicardium Segmentation

Fig. 12.7 Models of the ROI detection and initial endocardium segmentation (a), final endocardium
segmentation (b), initial epicardium segmentation (c) and final epicardium segmentation (d)
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Fig. 12.7a). The endocardium segmentation follows Algorithm 1 and is represented
in Fig. 12.7b. We explain the details of the endocardial segmentation below.

12.3.2.1 ROI DBN Detection and Initial Endocardium Segmentation

For the ROI detection, we use the DBN model introduced in (12.5), with parameters
ΘROI, that produces the segmentation map yROI : Ω → [0, 1]. The training set com-
prises images v and their respective ROI segmentation maps that are automatically
built from the manual endocardial border delineations cENDO by producing a seg-
mentation map with 0’s everywhere except at a square of 1’s with size MROI × MROI,
centred at the centre of gravity of the annotation cENDO (see training samples in
Fig. 12.8b).

After estimating the ROI segmentation map yROI, a rough endocardial border
delineation is estimated by first applying the following function:

(vROI,mROI) = fR(yROI, v, MROI), (12.10)

wheremROI is the centre of gravity of yROI computed asmROI = ∫
Ω
xh(yROI)dx, with

h(yROI) = H(y∗
ROI)∫

Ω
H(y∗

ROI)dx
and H(.) denoting the Heaviside step function, and vROI is a

sub-image of size MROI × MROI extracted with vROI = v(mROI ± MROI/2). Then,
Otsu’s thresholding [34] is run on the sub-image vROI, where the convex hull of the
connected component linked to the centre MROI/2 is returned as the rough endocardial
border delineation with yOTSU = fO(vROI), as displayed in Fig. 12.8a. Recall that
Otsu’s thresholding [34] is a segmentation method that binarises a grey-level image
using a threshold estimated to minimise the intra-class variance of the grey values,

(a) ROI DBN & Otsu’s segmentation (b) Training samples

Fig. 12.8 ROI DBN Model and Otsu’s segmentation (a) and training samples for the ROI DBN (b)
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where the classes are defined by the pixel values above and below this threshold.
This segmentation is used to form the initial signed distance function (Algorithm 1),
as follows:

φ0 = fφ(yOTSU,mROI, MROI, v), (12.11)

where we first create a temporary binary map ŷ : Ω → {0, 1} with a map of the
size of v containing only zeros, as in ŷ = 0si ze(v) (the function si ze(i) returns the
size of the image), then we fill this map with the result from yOTSU centred at mROI,
with ŷ(mROI ± MROI/2) = yOTSU(MROI/2 ± MROI/2). Finally, the signed distance
function φ0 is computed from ŷ with (12.2).

12.3.2.2 Endocardium Segmentation Combining DRLS and DBN

Given the initial segmentation φ0 defined in (12.11), we run a slightly modified
version of the segmentation method in Algorithm 1. The main difference is the
introduction of an outer loop between lines 3 and 7, inclusive, which changes the
sub-image of v that will be used as the input for the ENDO DBN, where the change is
related to the sub-image centre given by the centre of gravity of φt−1, computed with
mφt−1 = ∫

Ω
xh(φt−1(x))dx with h(φt−1) = H(−φt−1)∫

Ω
H(−φt−1)dx

(see Fig. 12.7b). Also the
segmentation in line 6 of Algorithm 1 has inputs φt−1, φENDO-DBN,q and φENDO-PRIOR,q

(below, we provide details on these last two functions), with t ∈ {1, 2, . . . , T } and
q ∈ {ED,ES}, where the shape terms, from (12.3), are denoted by S (φ, φκ) =∫
Ω

(φ(x) − φκ(x + mφt−1))
2dx (with κ ∈ {(ENDO-DBN, q), (ENDO-PRIOR, q)},

and q ∈ {ED,ES}). This segmentation algorithm results in the signed distance func-
tion φ∗

ENDO,q , from which we can compute the estimated endocardial contour from
its zero level set {x ∈ Ω|φ∗

ENDO,q(x) = 0} and endocardial binary segmentation map
y∗

ENDO,q = H(−φ∗
ENDO,q).

The ENDO DBN used at this stage is the same as the one depicted in Fig. 12.3a,
where the input image is a sub-image of v of size MENDO × MENDO centred
at position mφt−1 , where this sub-image is represented by vENDO. We have two
distinct DBNs, one to segment images for q = ES phase and another for q =
ED phase of the cardiac cycle, where the training set is formed by samples
{(vENDO, yENDO, i, q)s}s∈{1,...,S},i∈{1,...,Ns },q∈{ED,ES} extracted from the original train-
ing set with fR(.), defined in (12.10). The segmentation from ENDO DBN produces
yENDO-DBN,q from input vENDO using (12.5). The segmentation yENDO-DBN,q can then
be used to compute the signed distance function φENDO-DBN,q with (12.2). Finally, the
ENDO shape prior, represented by yENDO-PRIOR,q , is computed as defined in (12.9)
using the binary segmentation maps {(yENDO, i, q)s}s∈{1,...,S},i∈{1,...,Ns },q∈{ED,ES}. Sim-
ilarly, yENDO-PRIOR,q is used to calculate the signed distance function φENDO-PRIOR,q

with (12.2).
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12.3.3 Epicardium Segmentation

The epicardium segmentation also follows two steps, comprising an initial segmen-
tation, which produces a square region containing the epicardium and an initial
estimation of its border, similarly to the approach in Sect. 12.3.2.1 (Fig. 12.7c). The
second step involves an optimisation with DRLS [14], similar to the one presented
above in Sect. 12.3.2.2 (Fig. 12.7d).

12.3.3.1 Initial Epicardium Segmentation

The epicardium segmentation process is initialised with a rough delineation based
on the endocardium detection (see Fig. 12.7c). Specifically, after the endocardium
segmentation is finalised, we estimate the borders of the epicardium segmenta-
tion by first running the Canny edge detector [35] that outputs the edges within
the sub-image vEPI-initial of size MEPI × MEPI centred at position mEPI-initial,q =∫
Ω
xh(φ∗

ENDO,q(x))dx with h(φ∗
ENDO,q) = H(−φ∗

ENDO,q )∫
Ω
H(−φ∗

ENDO,q )dx
. The edges lying in the

region where H(−φ∗
ENDO,q) equals to one (this region represents blood pool found

by the endocardium segmentation) are erased and then, by “shooting” 20 rays (18
degrees apart from each other) from the centremEPI-initial,q and recording the intersec-
tion position between each ray and the first edge it crosses, we form a set of points that
are likely to belong to the endocardial border. At this stage, since it is expected that
the endocardial border will be relatively close to the epicardial border, we only record
the points that are within a limited range from the original endocardial border (specif-
ically, we expect the epicardial border to be within 1.05 and 1.1 of the length of the
ray from mEPI-initial to the endocardial border; otherwise no point is recorded—these
numbers are estimated from the 95% confidence interval of the distance between the
endocardium and epicardium annotations from the training set). Finally, by fitting
an ellipse to these points and running a small number of iterations of the original
DRLS [14] (which is the model in (12.1)–(12.3) with β = γ = 0), we form the initial
epicardium segmentation that is represented by a map yEPI-initial, which is then used
to form the initial signed distance function φ0 = fφ(yEPI-initial,mEPI-initial, MEPI, v),
as defined in (12.2).

12.3.3.2 Epicardium Segmentation Combining DRLS and DBN

Using the initial epicardium segmentation φ0 from Sect. 12.3.3.1 above, we run
the segmentation method in Algorithm 1 with the same modification explained in
Sect. 12.3.2.2 (i.e., the outer loop between lines 3 and 7 that changes the sub-image of
v used in the input for the EPI DBN according to the centre of gravity mφt−1 of φt−1).
The segmentation in line 6 of Algorithm 1 has inputs φt−1, φEPI-DBN,q and φEPI-PRIOR,q

(please see details below on these last two functions), with t ∈ {1, 2, . . . , T } and
q ∈ {ED,ES}, where the shape terms, from (12.3), are denoted by S (φ, φκ) =
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∫
Ω

(φ(x) − φκ(x + mφt−1))
2dx (withκ ∈ {(EPI-DBN, q), (EPI-PRIOR, q)}, andq ∈

{ED,ES}). This segmentation algorithm results in the signed distance function
φ∗

EPI,q , from which we can compute the estimated epicardial contour from its zero
level set {x ∈ Ω|φ∗

EPI,q(x) = 0} and epicardial binary segmentation map y∗
EPI,q =

H(−φ∗
EPI,q).

The EPI DBN is the same as the one displayed in Fig. 12.3a, where the input
image is represented by vEPI, centred at mφt−1 and of size MEPI × MEPI. We can
estimate the parameters of two DBNs for q ∈ {ED,ES} with the following train-
ing set {(vEPI, yEPI, i, q)s}s∈{1,...,S},i∈{1,...,Ns },q∈{ED,ES} extracted from the original
training set with fR(.), defined in (12.10). The inference process is the same
as the one defined in (12.5), resulting in yEPI-DBN,q , which is used to compute
the signed distance function φEPI-DBN,q with (12.2). Finally, the EPI shape prior,
denoted by yEPI-PRIOR,q , is computed from (12.9) using the binary segmentation maps
{(yEPI, i, q)s}s∈{1,...,S},i∈{1,...,Ns },q∈{ED,ES}. Similarly, yEPI-PRIOR,q is used to calculate
the signed distance function φEPI-PRIOR,q with (12.2).

12.3.4 Lung Segmentation

In this section, we present our semi-automated lung segmentation method.
The annotated chest radiograph database (Fig. 12.2) is represented by D={(v, c,
y, q)i }|D|

i=1, where v represents an image, c denotes the explicit contour representa-
tion, y the respective binary segmentation map, and q ∈ {left lung, right lung}.

The segmentation Algorithm 1 takes a manually provided initial segmenta-
tion φ0 and, in each iteration, uses the functions φt−1, φDBN,q and φPRIOR,q , with
t ∈ {1, 2, . . . , T } and q ∈ {left lung, right lung}, and the final steady solution of this
optimisation is represented by φ∗

q , from which we can compute the estimated con-
tour from the zero level set {x ∈ Ω|φ∗

q (x) = 0} and the binary segmentation map
y∗
q = H(−φ∗

q ). The DBN is the one shown in Fig. 12.3b, where the resulting seg-
mentation yDBN of both lungs is divided into two separate signed distance functions:
φDBN, right lung for the right lung and φDBN, left lung for the left lung, where this separation
is done via connected component analysis.

12.4 Experiments

12.4.1 Data Sets and Evaluation Measures

The proposed endocardium and epicardium segmentation method is assessed
with the dataset and the evaluation introduced in the MICCAI 2009 LV segmen-
tation challenge [4]. This dataset contains 45 cardiac short axis (SAX) cine MR,
which are divided into three sets (online, testing and training sets) of 15 sequences,
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with each sequence containing four ischemic heart failures, four non-ischemic heart
failures, four LV hypertrophies and three normal cases. Each of those sequences
has been acquired during a 10–15 s breath-holds, with a temporal resolution of 20
cardiac phases over the heart cycle, starting from the ED cardiac phase, and con-
taining six to 12 SAX images obtained from the atrioventricular ring to the apex
(thickness = 8 mm, gap = 8 mm, FOV = 320 mm × 320 mm, matrix = 256 × 256).
Expert annotations are provided for endocardial contours in all slices at ED and ES
cardiac phases, and for epicardial contours only at ED cardiac phase. The evalua-
tion used to assess the algorithms submitted to the MICCAI 2009 LV segmentation
challenge is based on the following three measures: (1) percentage of “good” con-
tours, (2) the average Dice metric (ADM) of the “good” contours, and (3) average
perpendicular distance (APD) of the “good” contours. A segmentation is classified
as good if APD < 5 mm. During the MICCAI 2009 LV Segmentation Challenge [4],
the organisers first released the training and test sets, where the training set contained
the manual annotation, but the test set did not include the manual annotation. The
online dataset only became available a few days before the challenge day, so that the
participants could submit their segmentation results for assessment. The challenge
organisers reported all segmentation results for all datasets that were available from
the participants. Currently all three data sets with their respective expert annotations
are publicly available. Given that most of the results from the challenge participants
are available for the training and test sets, we decided to use the training set to esti-
mate all DBN parameters, the online set for validating some DBN parameters (e.g.,
number of layers and number of nodes per layer), and the test set exclusively for
testing (since this is the set which has the majority of results from the participants).

The proposed lung segmentationmethod is assessed with the Japanese Society of
Radiological Technology (JSRT) dataset [16], which contains 247 chest radiographs
with manual segmentations of lung fields, heart and clavicles [25]. Out of these 247
chest radiographs, 154 contain lung nodules (100 malignant, 54 benign) and 93 have
no nodules, and each sample is represented by 12-bit grey-scale image with size
2048 × 2048 pixels and 0.175 mm pixel resolution. This database is randomly split
into three sets: training (84 images), validation (40 images) and test (123 images), and
the assessment is based on following three measures: Jaccard Similarity Coefficient
(Ω), Dice Coefficient (DSC) and Average Contour Distance (ACD) [5].

12.4.2 Experimental Setup

For the endocardium and epicardium segmentation, the training set is used to
model the ROI DBN, ENDO DBN and EPI DBN network (weights and biases), the
shape priors and for estimating the weights of the DRLS method (i.e., μ, λ, α, β, γ in
(12.1) and (12.3)); while the online set is used for the model selection of the DBNs
(i.e., the estimation of the number of hidden layers and the number of nodes per
layer for the DBNs). For this model selection, we use the online set to estimate the
number of hidden layers (from two to four hidden layers), and the number of nodes
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per hidden layer (from 100 to 2000 nodes per layer in intervals of 100 nodes). For
the ROI DBN, the estimated model is as follows: two hidden layers with 1300 nodes
in the first layer and 1500 in the second, and the input and segmentation layers with
40 × 40 nodes (i.e., the image is resized from 256 × 256 to 40 × 40 using standard
blurring and downsampling techniques). For the ENDO DBN trained for the ED
cycle, we reach the following model: two hidden layers with 1000 nodes in the first
layer and 1000 in the second, and the input and segmentation layers with size 40 × 40
nodes (again, image is resized from MENDO × MENDO to 40 × 40). The ENDO DBN
for the ES cycle has the following configuration: two hidden layers with 700 nodes
in the first layer and 1000 in the second, and the input and segmentation layers with
size 40 × 40. The EPI DBN for the ED cycle has the following configuration: two
hidden layers with 1000 nodes in the first layer and 1000 in the second, and the input
and segmentation layers with size 40 × 40 nodes (image resized from MEPI × MEPI

to 40 × 40). For training all DBN models, we augment he training set, where we
generate additional training images by translating the original training image (and its
annotation) within a range of ±10 pixels. More specifically, we have 105 ED images
and 75 ES annotated training images (from the 15 training volumes), and in addition
to the original training image, we generate 40 additional images with the translations
mentioned above. Therefore, in total we have 105 × 41 = 4305 annotated images
for training the ED endocardial DBN and epicardial DBN, and 75 × 41 = 3075
annotated images for training the ES endocardial DBN. The segmentation accuracy
on training saturates with this augmented training data (i.e., adding more translated
training images no longer improves the training results). The level set weights in
(12.1) estimated with the training set for the endocardium segmentation are Δt = 2
(time step in the level set formulation), μ = 0.24

Δt = 0.12, λ = 4, α = −2, β = 0.02,
and γ = 0.001; and for the epicardium segmentation, we have Δt = 2, μ = 0.24

Δt =
0.12, λ = 4, α = −4, β = 0.015, and γ = 0.001. The size of the sub-windows are
set as MROI, MENDO, MEPI = 100 (note that we found that the segmentation results
are stable if MROI, MENDO, MEPI ∈ [80, 120]).

For the lung segmentation, we use the training set for estimating the DBN and
DRLS parameters and the validation set for the DBN model selection (similarly as
for the ROI, ENDO and EPI DBN detailed above). This model selection estimated
the following configuration for the DBN: two hidden layers, where each hidden layer
has 1000 nodes and the input and segmentation layers have 1600 nodes. The initial
guess φ0 in Algorithm 1 is manually produced, so we show how the performance of
our approach is affected by initial guesses of different accuracies, which are gener-
ated by random perturbations from the manual annotation. We denote the different
initial guesses by the index k ∈ {1, 2, 3}, where k = 1 indicates the highest precision
and k = 3 means the lowest precision initial guess. The estimation of the level set
parameters is performed separately for each type of initial guess, and we achieve
the following result: Δt = 2, μ = 0.24

Δt = 0.12, λ = 2, α = −3, β = 0, γ = 0.0005
for k = 1; μ = 0.12, λ = 2, α = −10, β = 0, γ = 0.003 for k = 2; and μ = 0.12,

λ = 2, α = −15, β = 0, γ = 0.007 for k = 3.



12 Fully Automated Segmentation … 213

Note that for the level set weights in (12.1), we follow the recommendation by Li
et al. [14] in defining the values for Δt , and μ (the recommendations are Δt > 1 and
μ < 0.25

Δt ), and for the inference procedure, the number of level set (DRLS) iterations
is T = 10 (note that the segmentation results are stable if T ∈ [5, 20]).

12.4.3 Results of Each Stage of the Proposed Methodology

The role of each stage of the proposed endocardium segmentation is presented in
Table 12.1. The “Initial endocardium segmentation” shows the result produced by
the zero level set of φ0 in (12.11) (i.e., the result from the ROI detection, followed
by the initial endocardium segmentation). The “ENDO DBN alone” displays the
accuracy results of the endocardium segmentation produced by the ENDO DBN
(Sect. 12.3.2.2) alone. The “Model without DBN/shape prior” represents the energy
functional in (12.3) with β = γ = 0, which effectively represents our model with-
out the influence of the ENDO PRIOR and the ENDO DBN. Similarly the “Model
without DBN” denotes the case where the functional in (12.3) has β = 0 (i.e., with
no influence from ENDO DBN) and the “Model without shape prior” has γ = 0 (no
influence from ENDO PRIOR). Finally, the “Proposed model” displays the result
with all steps described in Sect. 12.3.2, and “Proposed model (semi)” represents our
model using a manual initialisation instead of the automated initialisation described
in Sect. 12.3.2.1. This manual initialisation consists of a circle, where the centre is the
manual annotation centre of gravity and the radius is the minimum distance between
the manual annotation and this centre. The proposed epicardium segmentation is
assessed in Table 12.2, which shows the result of the “initial epicardium segmen-
tation” explained in Sect. 12.3.3.1, and the result of the segmentation produced by
the complete model described in Sect. 12.3.3.2 (labelled as “Proposed model”). We
also show the result of the semi-automated epicardium segmentation with manual
initialisation (defined in the same way as the manual initialisation above for the endo-
cardium segmentation), labelled as “Proposed model (semi)”. Note that we do not
show all steps in Table 12.2 because the results are similar to the initial epicardium
segmentation.

Table 12.3 shows the results of our proposed methodology for lung segmentation
with the different types of initial guesses. In this table, we also show the results when
γ = 0, which is denoted by “Model without DBN” (this shows the influence of the
DBN in the proposed methodology); and we also show the results for the initial
guess, represented by “Initial guess only”.

12.4.4 Comparison with the State of the Art

Tables 12.4 and 12.5 show a comparison between our methodology (labelled “Pro-
posed model”) and the state of the art for the endocardium segmentation problem,
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Table 12.2 Quantitative experiments on the MICCAI 2009 challenge database [4] compared differ-
ent versions of the proposed methodology for the epicardium segmentation. Each cell is formatted
as “mean (standard deviation) [min value–max value]”

Method “Good” Percentage Epicardium ADM Epicardium APD

Test set (15 sequences)

Proposed
model (semi)

100(0)[100 − 100] 0.94(0.01)[0.92 − 0.97] 1.73(0.28)[1.16 − 2.17]

Proposed
model

94.65(6.18)[85.71 − 100] 0.93(0.02)[0.88 − 0.96] 2.08(0.60)[1.27 − 3.74]

Initial
epicardium
segmentation

94.65(6.18)[85.71 − 100] 0.93(0.02)[0.88 − 0.96] 2.19(0.58)[1.32 − 3.68]

Training set (15 sequences)

Proposed
model (semi)

100.00(0.00)[100 − 100] 0.94(0.01)[0.91 − 0.96] 1.64(0.34)[1.17 − 2.47]

Proposed
model

98.52(5.74)[77.78 − 100] 0.93(0.02)[0.89 − 0.96] 1.99(0.46)[1.35 − 3.13]

Initial
epicardium
segmentation

96.83(6.92)[77.78 − 100 0.93(0.02)[0.89 − 0.95] 1.99(0.40)[1.46 − 3.14]

while Tables 12.6 and 12.7 display a similar comparison for the epicardium segmen-
tation problem for different subsets of the MICCAI 2009 challenge databases [4].
Most of the approaches on that table are based on active contour models [17, 18,
21, 22, 36, 37], machine learning models [19, 23], or a combination of both mod-
els [38]. Furthermore, Tables 12.4, 12.5, 12.6 and 12.7 also show a semi-automated
version of our method (labelled “Proposed model (semi)”) using the same initial
guess described above in Sect. 12.4.3. Figure 12.9 shows a few endocardium and
epicardium segmentation results produced by our approach for challenging cases,
such as with images from apical and basal slice images and presenting papillary
muscles and trabeculations.

Table 12.8 compares the results of our proposed lung segmentation method with
the ones produced by the current state of the art on the JSRT database. The most
competitive methods in that table [5, 25] are based on hybrid methods based on
MRF and appearance/shape active models. Finally, Fig. 12.10 shows a few lung
segmentation results using initial guess k = 2 on images of the test set.

12.5 Discussion and Conclusions

Table 12.1 clearly shows the importance of each stage of our proposed methodology
for the endocardium segmentation problem. In particular, the initial endocardium
segmentation is similar to the result from DRLS method [14] when the ENDO PRIOR
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Table 12.4 Quantitative experiments on the training and test sets of the MICCAI 2009 challenge
databases [4] comparing the performance of our proposed approach with the state of the art on the
endocardium segmentation problem. Notice that the methods are classified into fully or semi-
automated. The cell formatting is the same as in Table 12.1, but note that ‘?’ means that the result
is not available in the literature. The top performance for each measure and dataset is highlighted

Method “Good” Percentage Endocardium ADM Endocardium APD

Test set (15 sequences)

Semi-automated

Proposed
model (semi)

100(0)[100 − 100] 0.91(0.03)[0.83 − 0.95] 1.79(0.36)[1.28 − 2.75]

[31] 96.58(9.58)[63.15 − 100] 0.89(0.03)[0.83 − 0.93] 2.22(0.46)[1.69 − 3.30]
[18] ? 0.89(0.04)[?−?] 2.10(0.44)[?−?]
Fully automated

Proposed
model

95.91(5.28)[84.62 − 100] 0.88(0.03)[0.82 − 0.93] 2.34(0.46)[1.62 − 3.24]

[21] 94.33(9.93)[62.00 − 100] 0.88(0.03)[0.84 − 0.94] 2.44(0.62)[1.36 − 3.68]
[23] 86.47(11.00)[68.4 − 100] 0.89(0.03)[0.82 − 0.94] 2.29(0.57)[1.67 − 3.93]
[17] 72.45(19.52)[42.11 −

100]
0.89(0.03)[0.84 − 0.94] 2.07(0.61)[1.32 − 3.77]

[37] ? 0.86(0.04)[?−?] ?

[19] ? 0.81(?)[?−?] ?

Training set (15 sequences)

Semi-automated

Proposed
model (semi)

100(0)[100 − 100] 0.91(0.03)[0.85 − 0.95] 1.63(0.40)[1.29 − 2.70]

[31] 98.45(3.11)[91.66 − 100] 0.90(0.03)[0.84 − 0.94] 1.96(0.35)[1.43 − 2.55]
[18] ? 0.90(0.04)[?−?] 2.03(0.34)[?−?]
Fully automated

Proposed
model

97.22(3.16)[91.67 − 100] 0.88(0.05)[0.76 − 0.95] 2.13(0.46)[1.27 − 2.73]

[21] 96.93(7.59)[72 − 100] 0.88(0.06)[0.75 − 0.95] 2.09(0.53)[1.35 − 3.23]

and ENDO DBN terms are not used (row “Model without DBN/shape prior”). The
introduction of shape prior (see row “Model without DBN”) provides a slightly
improvement to the initial segmentation, but it is not a significant change; therefore
we could removed it from the framework in order to obtain small gains in terms
of efficiency (if needed). The largest gain in terms of accuracy comes from the
introduction of ENDO DBN (see row “Model without shape prior”), but note that
ENDO DBN alone is not competitive, which implies that the results produced by
ENDO DBN complements well the results from DRLS. The presence of all terms
together, shows that our “Proposed model” produces better segmentation results than
the DRLS and DBN methods. Also, notice the relative small differences between
the training and testing segmentation results, which indicates good generalisation
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Table 12.5 Quantitative experiments on the online and full sets of the MICCAI 2009 challenge
databases [4] comparing the performance of our proposed approach with the state of the art on the
endocardium segmentation problem. Notice that the methods are classified into fully or semi-
automated. The cell formatting is the same as in Table 12.1, but note that ‘?’ means that the result
is not available in the literature. The top performance for each measure and dataset is highlighted

Method “Good” Percentage Endocardium ADM Endocardium APD

Online set (15 sequences)

Semi-automated

Proposed
model (semi)

100(0)[100 − 100] 0.91(0.03)[0.85 − 0.96] 1.78(0.49)[1.17 − 3.15]

[31] 98.71(3.66)[86.66 − 100] 0.90(0.04)[0.83 − 0.95] 2.04(0.35)[1.53 − 2.67]
Fully automated

Proposed
model

90.54(14.40)[46.67 − 100] 0.89(0.03)[0.82 − 0.94] 2.17(0.46)[1.62 − 3.46]

Full set (45 sequences)

Semi-automated

Proposed
model (semi)

100(0)[100 − 100] 0.91(0.03)[0.83 − 0.96] 1.73(0.31)[1.17 − 3.15]

[31] 97.91(6.18)[63.15 − 100] 0.90(0.03)[0.83 − 0.95] 2.08(0.40)[1.43 − 3.30]
[22] 91.00(8.00)[61 − 100] 0.89(0.04)[0.80 − 0.96] 1.94(0.42)[1.47 − 3.03]
Fully automated

Proposed
model

94.55(9.31)[46.67 − 100] 0.88(0.04)[0.76 − 0.95] 2.22(0.46)[01.27 − 3.46]

[22] 80.00(16.00)[29 − 100] 0.86(0.05)[0.72 − 0.94] 2.44(0.56)[1.31 − 4.20]
[38] 91.06(9.42)[?−?] 0.89(0.03)[?−?] 2.24(0.40)[?−?]
[36] 79.20(19.00)[?−?] 0.89(0.04)[?−?] 2.16(0.46)[?−?]

capabilities of our method (even with the relatively small training set of the MICCAI
2009 challenge database [4]). Finally, by using a manual initialisation, we obtain the
best segmentation results in the field.

For the epicardium segmentation problem, Table 12.2 shows that the initial seg-
mentation produces a result that is close to the final segmentation produced by our
proposed model. This means that the EPI DBN provides a improvement that is not
quite significant. Also note that the use of manual initialisation shows the best result
in the field, similarly to the endocardium segmentation. Finally, one can question
the need for two separate DBN models (i.e., ENDO and EPI DBNs) given their
appearance similarities. The main reason for the use of these two models lies in the
empirical evidence that they produce more accurate segmentation results, as shown
in Tables 12.4 and 12.5, where the rows labelled byProposedmodel (semi) show the
results with the two separate DBNs, while the rows labelled by [31] display results
using a single classifier.
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Table 12.6 Quantitative experiments on the training and test sets of the MICCAI 2009 challenge
databases [4] comparing the performance of our proposed approach with the state of the art on
the epicardium segmentation problem. Notice that the methods are classified into fully or semi-
automated. The cell formatting is the same as in Table 12.1, but note that ’?’ means that the result
is not available in the literature. The top performance for each measure and dataset is highlighted

Method “Good” Percentage Epicardium ADM Epicardium APD

Test set (15 sequences)

Semi-automated

Proposed
model (semi)

100(0)[100 − 100] 0.94(0.01)[0.92 − 0.97] 1.73(0.28)[1.16 − 2.17]

[18] ? 0.94(0.01)[?−?] 1.95(0.34)[?−?]
Fully automated

Proposed
model

94.65(6.18)[85.71 − 100] 0.93(0.02)[0.88 − 0.96] 2.08(0.60)[1.27 − 3.74]

[21] 95.60(6.90)[80.00 − 100] 0.93(0.02)[0.90 − 0.96] 2.05(0.59)[1.28 − 3.29]
[23] 94.20(7.00)[80.00 − 100] 0.93(0.01)[0.90 − 0.96] 2.28(0.39)[1.57 − 2.98]
[17] 81.11(13.95)[57.14 − 100] 0.94(0.02)[0.90 − 0.97] 1.91(0.63)[1.06 − 3.26]
Training set (15 sequences)

Semi-automated

Proposed
model (semi)

100.00(0.00)[100 − 100] 0.94(0.01)[0.91 − 0.96] 1.64(0.34)[1.17 − 2.47]

[18] ? 0.93(0.02)[?−?] 2.28(0.42)[?−?]
Fully automated

Proposed
model

98.52(5.74)[77.78 − 100] 0.93(0.02)[0.88 − 0.96] 1.99(0.46)[1.35 − 3.13]

[21] 99.07(3.61)[86.00 − 100] 0.93(0.01)[0.91 − 0.95] 1.88(0.40)[1.20 − 2.55]

The comparison with the state of the art for the problem of endocardium segmen-
tation (Tables 12.4 and 12.5) and the epicardium segmentation (Tables 12.6 and 12.7)
shows that the proposed approach has the best results for the semi-automated seg-
mentation problem. When considering the fully automated segmentation, the results
from the proposed method are comparable to the ones by [21], which is regarded as
the current state of the art by a recent review paper by Petitjean et al. [3]. In regards
to the “Good” percentage measure, our approach shows better results than the other
methods; whilst in terms of ADM and ADP, our approach shows comparable results.
When considering the epicardium segmentation, the results of our method are com-
parable to the one by Jolly’s approach [21], but better than all others. It is important to
note that although some approaches are more accurate in terms of APD or ADM [17],
they also present low values for “Good” percentage, which means that these methods
also produce a large number of segmentations with APD larger than 5 mm, but the
few ones that survive the “Good” percentage test are reasonably accurate. We also
note the relatively worse performance of the fully automated approach compared to
semi-automated segmentation (not only for our proposed method, but other methods
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Table 12.7 Quantitative experiments on the online and full sets of the MICCAI 2009 challenge
databases [4] comparing the performance of our proposed approach with the state of the art on
the epicardium segmentation problem. Notice that the methods are classified into fully or semi-
automated. The cell formatting is the same as in Table 12.1, but note that ‘?’ means that the result
is not available in the literature. The top performance for each measure and dataset is highlighted

Method “Good” Percentage Epicardium ADM Epicardium APD

Online set (15 sequences)

Semi-automated

Proposed
model
(semi)

100.00(0.00)[100 − 100] 0.94(0.02)[0.88 − 0.96] 1.90(0.53)[1.22 − 3.16]

Fully automated

Proposed
model

84.32(23.45)[12.50 − 100] 0.93(0.03)[0.84 − 0.95] 2.05(0.61)[1.39 − 3.63]

Full set (45 sequences)

Semi-automated

Proposed
model
(semi)

100(0)[100 − 100] 0.94(0.02)[0.88 − 0.97] 1.76(0.40)[1.16 − 3.16]

[22] 91.00(10.00)[70 − 100] 0.92(0.02)[0.84 − 0.95] 2.38(0.57)[1.28 − 3.79]
Fully automated

Proposed
model

92.49(15.31)[12.50 − 100] 0.93(0.02)[0.84 − 0.96] 2.04(0.55)[1.27 − 3.70]

[22] 71.00(26.00)[0 − 100] 0.91(0.03)[0.81 − 0.96] 2.80(0.71)[1.37 − 4.88]
[38] 91.21(8.52)[?−?] 0.94(0.02)[?−?] 2.21(0.45)[?−?]
[36] 83.90(16.80)[?−?] 0.93(0.02)[?−?] 2.22(0.43)[?−?]

(a) Results of endocardium segmentation on the test set

(b) Results of epicardium segmentation on the test set

Fig. 12.9 Epicardium and endocardium segmentation results with challenging cases, such as
images from apical and basal slice images and presenting papillary muscles and trabeculations.
The red contour denotes the automated detection, and green shows the manual annotation. For
more results, please see the supplementary material
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Fig. 12.10 Lung segmentation results with initial guess k = 2. The green contour shows expert
annotation and the red illustrates the final result

in the literature), which implies that there is still an opportunity to improve further the
accuracy of the initial endocardium and epicardium segmentations. In terms of run-
ning time, the system developed based on the proposed methodology runs on average
in 175 ± 35 s for the endocardium segmentation and 119 ± 20 s for the epicardium
segmentation using a non-optimised MATLAB program running on a standard com-
puter (Intel(R) Core(TM) i5-2500k 3.30GHz CPU with 8GB RAM), which is slower
or comparable to other approaches that run between one minute [21–23] and three
minutes [17, 38].

For the lung segmentation problem, Table 12.3 shows that the proposed model
always improve over the initial guess, but this improvement is more obvious with
poorer initial guesses (see results of “Initial guess only” and “Proposed mode” for
k = 3). Another important observation is that the DRLS always improve over the
initial guess, and the introduction of the DBN model improves the initial DRLS result.
An obvious question is the reason for the absence of the shape prior model, and the
reason is that we did not notice any empirical improvement. The comparison with the
state of the art in Table 12.8 shows that with the manual initial guesses k ∈ {1, 2}, our
proposed approach produces the best results in the field. Additionally, using a similar
Matlab code running on the same computer introduced above, our method runs on
average in 20.68 seconds/image, which is comparable to the result by Candemir
et al. [5], who report a running time of between 20 and 25 seconds/image using the
same input resolution and similar computer configuration.

There are several points that can be explored in order to improve the results
above. For the endocardium and epicardium segmentation, we can run the method
over the whole volume and use a 3-D shape model to constrain the search process. We
can also use a motion model to constrain the segmentation process. More complex
DBN models can be trained when new training sets become available. Finally, we
can decrease the running time of our approach by parallelising the segmentation
processes since the segmentation of each slice is done independently of all others
(roughly this means that we can in principle make our approach 10 times faster).
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Table 12.8 Quantitative experiments on the JSRT database [16] comparing our results with the
state of the art on the same database, sorted from best (top) to worst (bottom). The symbol ‘?’
indicates that the result is not available

Method Ω DSC ACD

Proposed
model, k = 1

0.985(0.003)[0.972 − 0.991] 0.992(0.002)[0.986 − 0.996] 1.075(0.065)[0.825 − 1.267]

Proposed
model, k = 2

0.973(0.007)[0.944 − 0.985] 0.986(0.004)[0.971 − 0.993] 1.120(0.165)[0.628 − 1.916]

[5] 0.954(0.015)[?−?] 0.967(0.008)[?−?] 1.321(0.316)[?−?]
[25] 0.949(0.020)[0.818 − 0.978] ?(?)[?−?] 1.62(0.66)[0.95 − 7.72]
Proposed
model, k = 3

0.948(0.012)[0.893 − 0.970] 0.973(0.006)[0.943 − 0.985] 1.852(0.286)[1.120 − 3.708]

[25] 0.945(0.022)[0.823 − 0.972] ?(?)[?−?] 1.61(0.80)[0.83 − 8.34]
[39] 0.940(0.053)[?−?] ?(?)[?−?] 2.46(2.06)[?−?]
[25] 0.938(0.027)[0.823 − 0.968] ?(?)[?−?] 3.25(2.65)[0.93 − 15.59]
[25] 0.934(0.037)[0.706 − 0.968] ?(?)[?−?] 2.08(1.40)[0.91 − 11.57]
[40] 0.930(?)[?−?] ?(?)[?−?] ?(?)[?−?]
[25] 0.922(0.029)[0.718 − 0.961] ?(?))[?−?] 2.39(1.07)[1.15 − 12.09]
[41] 0.907(0.033)[?−?] ?(?)[?−?] ?(?)[?−?]

For the lung segmentation, we plan to introduce an automated initial guess with a
method similar to the one proposed by Candemir et al. [5]. Furthermore, we plan to
extend this method to other segmentation problems.

In this chapter, we have presented a methodology that combines level set method
and structured output deep belief network models. We show the functionality of the
proposed approach in two different problems: the segmentation of endocardium and
epicardium from cine MR and the segmentation of lungs from chest radiographs. In
both problems, we show extensive experiments that show the functionality of our
approach, and they also show that our approach produces the current state-of-the-art
segmentation results.
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Chapter 13
Combining Deep Learning and Structured
Prediction for Segmenting Masses
in Mammograms

Neeraj Dhungel, Gustavo Carneiro and Andrew P. Bradley

Abstract The segmentation of masses from mammogram is a challenging problem
because of their variability in terms of shape, appearance and size, and the low
signal-to-noise ratio of their appearance. We address this problem with structured
output prediction models that use potential functions based on deep convolution
neural network (CNN) and deep belief network (DBN). The two types of structured
output prediction models that we study in this work are the conditional random field
(CRF) and structured support vector machines (SSVM). The label inference for CRF
is based on tree re-weighted belief propagation (TRW) and training is achieved with
the truncated fitting algorithm; whilst for the SSVM model, inference is based upon
graph cuts and training depends on a max-margin optimization. We compare the
results produced by our proposed models using the publicly available mammogram
datasets DDSM-BCRP and INbreast, where the main conclusion is that both models
produce results of similar accuracy, but the CRF model shows faster training and
inference. Finally, when compared to the current state of the art in both datasets, the
proposed CRF and SSVM models show superior segmentation accuracy.

13.1 Introduction

Statistical findings published by World Health Organization (WHO) [1] reveal that
23% of all diagnosed cancers and 14% of all cancer related deaths among women
are due to breast cancer. These numbers show that breast cancer is one of the major
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Fig. 13.1 Examples from INbreast [6] and DDSM-BRCP [7] databases with blue contour denoting
the mass lesion with the blue contour

diseases affecting the lives of many women across the globe. One of the keys to
reduce these numbers is the early detection of this disease, which is task that is mostly
based on mammography screening. An important activity involved in this screening
process is the detection and classification of breast masses, which is difficult because
of the variable size, shape and appearance of masses [2] and their low signal-to-
noise ratio (see Fig. 13.1). In this work, we focus on the problem of accurate mass
segmentation because we assume that such precise segmentation is important for the
subsequent mass classification task [3, 4]. In clinical practice, the task of detecting
and segmenting masses from mammograms typically consists of a manual process
performed by radiologists. This process can introduce variability depending on the
radiologist’s expertise and the number of mammograms to be analysed at one sitting,
which can reduce the efficacy of the screening process. In a recent study [5], it has
been shown that there is a clear trade-off between sensitivity (Se) and specificity (Sp)
in manual interpretation, with a median Se of 84% and Sp of 91%.

Regardless of the development of numerous breast mass segmentation techniques,
computer-aided diagnosis (CAD) systems, which depend on accurate breast mass
segmentation methods, are not widely used in clinical practice. In fact, it has been
observed that the use of CAD systems can reduce screening accuracy by increasing
the rate of biopsies without improving the detection of invasive breast cancer [8].
We believe that one of the reasons is the lack of an easily reproducible and reli-
able assessment mechanism that provides a clear comparison between competing
methodologies, which can lead to a better informed decision process related to the
selection of appropriate algorithms for CAD systems. We have addressed this issue
in previous versions of this work [9, 10], where we propose quantitatively compari-
son mechanisms on the publicly available databases DDSM-BCRP [7] and INbreast
dataset [6]. Another reason for the relatively poor performance of most of the cur-
rently available breast mass segmentation methods lies in their reliance on more
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traditional image processing and segmentation techniques, such as active contours,
which typically produce sub-optimal results due to their non-convex cost functions.
Differently from these methods, our approach is based on a machine learning tech-
nique that estimates optimal models directly from annotated data, and for this reason
our approach has the potential to deliver improved segmentation accuracy, a result
previously demonstrated in other medical image analysis problems [11].

In this work, we propose a new approach for segmenting breast masses from mam-
mograms using two types of structured output prediction models: (1) conditional
random field (CRF) [10, 12] and (2) structural support vector machine (SSVM) [9,
13]. Our main contribution is related to the introduction of powerful deep learning
networks into the CRF and SSVM models above, based on the deep convolutional
neural network (CNN) [14, 15] and the deep neural network (DBN) [16]. These
deep learning architectures are able to extract image features in a fully automated
manner, instead of being hand-crafted. In addition, these CNNs and DBNs have pro-
duced state-of-the-art results in several computer vision problems [14, 17], and we
believe that these methodologies have the potential to produce competitive results
in mass segmentation from mammography. The CRF model uses tree re-weighted
belief propagation [18] for inference and truncated fitting for training [12], whilst
SSVM performs label inference with graph cuts [19] and the parameters learning
with the cutting plane algorithm [13, 20]. Given that these training algorithms learn
all parameters for the structured output prediction models using the manually anno-
tated training data and that we do not make any assumptions about the shape and
appearance of masses, we believe that our proposed approach is capable of modelling
in a robust manner the shape and appearance variations of masses encountered in
the training data if enough annotated training data is available. We test our proposed
methodologies on the publicly available datasets INbreast [6] and DDSM-BCRP [7],
and our methodologies produce state-of-the-art results in terms of accuracy and run-
ning time. Moreover, comparing the CRF and SSVM models, we note that they
produce comparable results in terms of segmentation accuracy, but the CRF model
is more efficient in terms of training and testing.

13.2 Literature Review

Currently, the majority of the methodologies developed for the problem of segment-
ing masses from mammograms are based on statistical thresholding, dynamic pro-
gramming models, morphological operators and active contour models. A statistical
thresholding method that distinguishes pixels inside the mass area from those outside
has been developed by Catarious et al. [21]. Although relatively successful, the main
drawback of this type of approach is that it is not robust to low contrast images [3].
Song et al. [22] have extended this model with a statistical classifier based on edge
gradient, pixel intensity and shape characteristics, where the segmentation is found by
estimating the minimum cut of a graph representation of the image using dynamic
programming. Similar dynamic programming models have also been applied by
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Timp et al. [23], Dominguez et al. [24] and Yu et al. [25]. These approaches are
similar to our proposed structured output prediction models, with the exception that
they do not use structured learning to estimate the weights of the potential functions,
which generally leads to sub-optimal performance. Morphological operators, such
as the watershed method [26] or region growing [4], have also been explored for
the mass segmentation problem, but these operators have been shown to be rather
limited in providing sufficiently accurate results mainly because they only explore
semi-local grey-level distributions without considering higher level information (e.g.,
shape model).

Active contour models are probably the most explored methodology for breast
mass segmentation. The most accurate model reported in the field is the one proposed
by Rahmati et al. [3], which is a level set method based on the maximum likelihood
segmentation without edges that is particularly well adapted to noisy images with
weak boundaries. Several other papers also propose mass segmentation methods
based on standard active contour models [27–31]. The major drawback of active
contour models lies in their need of a good initialization for the inference process
due to the usual non-convexity of the energy function. Moreover, the weights of the
terms forming the energy function of the active contour models are usually arbitrarily
defined, or estimated via a cross-validation process that generally does not produce
an optimal estimation of these weights.

13.3 Methodology

We start this section with an explanation of the learning process of our struc-
tured output prediction model [32]. Assume that we have an annotated dataset
D containing images of the region of interest (ROI) of the mass, represented by
x : Ω → R (Ω ∈ R2), and the respective manually provided segmentation mask
y : Ω → {−1,+1}, where D = (x, y)|D|

i=1. Also assume that the parameter of our
structured output prediction model is denoted by θ and the graph G = (V ,E ) links
the image x and labels y, where V represents the set of graph nodes and E , the set
of edges. The process of learning the parameter of our structured prediction model
is done via the minimization of the following empirical loss function [32]:

θ∗ = arg min
θ

1

|D |
|D|∑

i=1

�(xi , yi , θ), (13.1)

where �(x, y, θ) is a continuous and convex loss function being minimized that
defines the structured model. We use CRF and SSVM formulations for solving (13.1),
which are explained in detail in Sects. 13.3.1 and 13.3.2, respectively, and we explain
the potential functions used for both models in Sect. 13.3.3. In particular, the CRF
formulation uses the loss
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Fig. 13.2 The proposed structured output prediction models with a list of unary and pairwise
potential functions for mass segmentation in mammograms, including the deep learning networks

�(xi , yi , θ) = A(xi , θ) − E(yi , xi ; θ), (13.2)

where A(x; θ) = log
∑

y∈{−1,+1}|Ω|×|Ω| exp {E(y, x; θ)} is the log-partition function
that ensures normalization, and

E(y, x; θ) =
K∑

k=1

∑

i∈V
θ1,kψ

(1,k)(y(i), x) +
L∑

l=1

∑

i, j∈E
θ2,lψ

(2,l)(y(i), y( j), x),

(13.3)
In (13.3), ψ(1,k)(., .) denotes one of the K potential functions between label (seg-
mentation plane in Fig. 13.2) and pixel (image plane in Fig. 13.2) nodes, ψ(2,l)(., ., .)

denoting one of the L potential functions on the edges between label nodes,
θ = [θ1,1, . . . , θ1,K , θ2,1, . . . , θ2,L ]� ∈ RK+L , and y(i) being the i th component of
vector y. Similarly, the SSVM uses the following loss function

�(xi , yi , θ) = max
y∈Y

(Δ(yi , y) + E(y, xi ; θ) − E(yi , xi ; θ)) , (13.4)

where Δ(yi , y) represents the dissimilarity between yi and y, which satisfies the
conditions Δ(yi , y) ≥ 0 for yi �= y and Δ(yi , yi ) = 0.

13.3.1 Conditional Random Field (CRF)

The solution of (13.1) using the CRF loss function in (13.2) involves the computa-
tion of the log-partition function A(x; θ). The tree re-weighted belief propagation
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algorithm provides the following upper bound to this log-partition function [18]:

A(x; θ) = max
µ∈M

θTµ + H(µ), (13.5)

where M = {µ′ : ∃θ,µ′ = µ} denotes the marginal polytope, µ = ∑
y∈{−1,+1}|Ω|×|Ω|

P(y|x, θ) f (y), with f (y) denoting the set of indicator functions of possible con-
figurations of each clique and variable in the graph [33] (as denoted in (13.3)),
P(y|x, θ) = exp {E(y, x; θ) − A(x; θ)} indicating the conditional probability of the
annotation y given the image x and parameters θ (where we assume that this
conditional probability function belongs to the exponential family), and H(µ) =
−∑

y∈{−1,+1}|Ω|×|Ω| P(y|x; θ) log P(y|x, θ) is the entropy. Note that for general graphs
with cycles (such as the case in this paper), the marginal polytope M is difficult to
characterize and the entropyH(μ) is not tractable [12]. Tree re-weighted belief prop-
agation (TRW) solves these issues by first replacing the marginal polytope with a
superset L ⊃ M that only accounts for the local constraints of the marginals, and
then approximating the entropy calculation with an upper bound. Specifically,

L = {µ :
∑

y(c)\y(i)
µ(y(c)) = µ(y(i)),

∑

y(i)

µ(y(i)) = 1} (13.6)

replaces M in (13.5) and represents the local polytope (with µ(y(i)) = ∑
y′

P(y′|x, θ)δ(y′(i) − y(i)) and δ(.) denoting the Dirac delta function), c indexes
a graph clique, and the entropy approximation (that replaces H(µ) in (13.5)) is
defined by

H̃(µ) =
∑

y(i)

H(µ(y(i))) −
∑

y(c)

ρc I (µ(y(c)), (13.7)

where H(µ(y(i))) = −∑
s(i) µ(y(i)) logµ(y(i)) is the univariate entropy of vari-

able y(i), I (µ(y(c))) = ∑
y(c) µ(y(c)) log µ(y(c))∏

i∈c µ(y(i)) is the mutual information of
the cliques in our model, and ρc is a free parameter providing the upper bound on
the entropy. Therefore, the estimation of A(x; θ ) and associated marginals in (13.5)
is based on the following message-passing updates [12]:

mc(y(i)) ∝
∑

y(c)\y(i)
exp

{
1

ρc
ψc(y(i), y( j); θ

}

∏

j∈c\i
exp

{
1

ρc
ψi (y(i), x; θ)

} ∏
d: j∈d md(s( j))ρd

mc(s( j))
, (13.8)

where φi (y(i), x; θ) = ∑K
k=1 w1,kψ

(1,k)(y(i), x) and ψc(y(i), y( j); θ) = ∑L
l=1

w2,lφ
(2,l)(y(i), y( j), x) (see (13.3)). Once the message-passing algorithm converges [18],

the beliefs for the associated marginals are written as:
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μc(y(c)) ∝ 1

ρc
ψc(y(i), y( j))

∏

i∈c
ψi (y(i), x; θ)

∏
d: j∈d md(y( j))ρd

mc(y(i))

μi (yi ) ∝ exp(ψi (y(i), x; θ))
∏

d:i∈d
md(y(i))ρd .

(13.9)

The learning process involved in the estimation of θ is typically based on gradient
descent that minimizes the loss in (13.2) and should run until convergence, which
is defined by the change rate of θ between successive gradient descent iterations.
However, as noted by Domke [12], there are problems with this approach, where
large thresholds in this change rate can lead to bad sub-optimal estimations, and
tight thresholds result in slow convergence. These issues are circumvented by the
truncated fitting algorithm [12], which uses a fixed number of iterations (i.e., no
threshold is used in this training algorithm). We refer the reader to [12] for more
details on this training algorithm.

13.3.2 Structured Support Vector Machine (SSVM)

The SSVM optimization to estimate θ consists of a regularized loss minimiza-
tion problem formulated as θ∗ = minθ ‖θ‖2 + λ

∑
i �(xi , yi , θ), with �(.) defined

in (13.4). The introduction of slack variable leads to the following optimization
problem [13, 20]:

minimizeθ
1
2‖θ‖2 + C

|D|
∑

i ξi

subject to E(yi , xi ; θ) − E(ŷi , xi ; θ) ≥ Δ(yi , ŷi ) − ξi ,∀ŷi �= yi
ξi ≥ 0.

(13.10)

This optimization is a quadratic programming problem involving an intractably large
number of constraints. In order to keep the number of constraints manageable, we
use the cutting plane method that keeps a relatively small subset of the constraints
by solving the maximization problem:

ŷi = arg max
y

Δ(yi , y) + E(y, xi ; θ) − E(yi , xi ; θ) − ξi , (13.11)

which finds the most violated constraint for the i th training sample given the para-
meter θ . Then if the right-hand side is strictly larger than zero, the most vio-
lated constraint is included in the constraint set and (13.10) is resolved. This
iterative process runs until no more violated inequalities are found. Note that
if we remove the constants from (13.11), the optimization problem is simply:
ŷi = arg maxy Δ(yi , y) + E(y, xi ; θ), which can be efficiently solved using graph
cuts [19] if the function Δ(., .) can be properly decomposed in the label space. A
simple example that works with graph cuts is Δ(y, yi ) = ∑

i 1 − δ(y(i) − yi (i)),
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which represents the Hamming distance and can be decomposed in the label space.
Therefore, we use it in our methodology.

The label inference for a test mammogram x, given the learned parameters θ from
(13.10), is based on the following inference:

y∗ = arg max
y

E(y, x; θ), (13.12)

which can be efficiently and optimally solved for binary problems with graph
cuts [19].

13.3.3 Potential Functions

It is worth noticing that the model in (13.3) can incorporate a large number of different
types of potential functions. We propose the use of the deep convolutional neural
networks (CNN) and deep belief networks (DBN), in addition to the more common
Gaussian mixture model (GMM) and shape prior between the nodes of image and
segmentation planes (see Fig. 13.2). Furthermore, we also propose the use of common
pairwise potential functions.

13.3.3.1 CNN Potential Function

The CNN potential function is defined by [15] (Fig. 13.3):

ψ(1,1)(y(i), x) = − log PCNN(y(i)|x, θCNN), (13.13)

where PCNN(y(i)|x, θCNN) denotes the probability of labelling the pixel i ∈ |Ω| ×
|Ω| with mass or background (given the whole input image x for the ROI of the
mass), and θCNN denotes the CNN parameters. A CNN model consists of multiple
processing stages, with each stage comprising two layers (the convolutional layer,

Fig. 13.3 CNN Model with the input x (mass ROI from the mammogram) and the segmentation
of the whole input with y(i) ∈ {−1,+1}, denoting the absence (blue) or presence (red) of mass,
respectively, and i ∈ |Ω| × |Ω|



13 Combining Deep Learning … 233

where the learned filters are applied to the image, and the nonlinear sub-sampling
layer, that reduces the input image size for the next stage—see Fig. 13.3), and a
final stage consisting of a fully connected layer. Essentially, the convolution stages
compute the output at location j from input at i using the learned filter (atqth stage)kq

and bias bq using x( j)q = σ(
∑

i∈Mj
x(i)q−1 ∗ kq

i j + bqj ), where σ(.) is the logistic
function and Mj is the input region addresses; while the nonlinear sub-sampling
layers calculate sub-sampled data with x( j)q =↓ (xq−1

j ), where ↓ (.) denotes a sub-
sampling function that pools (using either the mean or max functions) the values
from a region from the input data. The final stage consists of the convolution equation
above using a separate filter for each output location, using the whole input from the
previous layer. Inference is simply the application of this process in a feedforward
manner, and training is carried out with stochastic gradient descent to minimize the
segmentation error over the training set (via back propagation) [15].

13.3.3.2 DBN Potential Function

The DBN potential function is defined as [16]:

ψ(1,2)(y(i), x) = − log PDBN(y(i)|xS(i), θDBN), (13.14)

where xS(i) is a patch extracted around image lattice position i of size |Ω| × |Ω|
pixels, θDBN represents the DBN parameters (below, we drop the dependence on θDBN

for notation simplicity), and

PDBN(y(i)|xS(i)) ∝
∑

h1

. . .
∑

hQ

P(xS(i), y(i),h1, . . . ,hQ), (13.15)

with the DBN model consisting of a network with Q layers denoted by:

P(xS(i), y(i),h1, . . . ,hQ) = P(hQ,hQ−1, y(i))

⎛

⎝
Q−2∏

q=1

P(hq+1|hq)
⎞

⎠ P(h1|xS(i)),
(13.16)

where hq ∈ R|q| represents the hidden variables at layer q containing |q| nodes. The
first term in (13.16) is defined by:

− log(P(hQ , hQ−1, y(i))) ∝ −b�
QhQ − a�

Q−1hQ−1 − a�
s y(i) − h�

QWhQ−1 − h�
QWsy(i),

(13.17)

where a, b,W are the network parameters, and the conditional probabilities are
factorized as P(hq+1|hq) = ∏|q+1|

i=1 P(hq+1(i)|hq) because the nodes in layer q + 1
are independent from each other given hq , which is a consequence of the DBN
structure (P(h1|xS(i)) is similarly defined). Furthermore, each node is activated by a
sigmoid function σ(.), which means that P(hq+1(i)|hq) = σ(bq+1(i) + Wihq). The



234 N. Dhungel et al.

inference is based on the mean field approximation of the values in layers h1 to hQ−1

followed by the computation of free energy on the top layer [16]. The learning of the
DBN parameters θDBN in (13.18) is achieved with an iterative layer by layer training
of auto-encoders using contrastive divergence [16].

13.3.3.3 GMM Potential Function

The GMM potential function is defined by:

ψ(1,3)(y(i), x) = − log PGMM(y(i)|x(i), θGMM), (13.18)

where PGMM(y(i)|x(i), θGMM) = (1/Z)
∑G

m=1 πmN (x(i); y(i), μm, σm)P(y(i))
with θGMM = [πm, μm, σm]Gm=1, N (.) is the Gaussian function, Z is the normalizer,
x(i) represents the pixel value at image lattice position i , and P(y(i) = 1) = 0.5.
The parameter vector θGMM in (13.14) is learned with the expectation–maximization
(EM) algorithm [34] using the annotated training set.

13.3.3.4 Shape Prior Potential Function

The shape prior potential function is computed from the average annotation (esti-
mated from the training set) at each image lattice position i ∈ Ω , as follows:

ψ(1,4)(y(i), x) = − log Pprior(y(i)|θprior), (13.19)

where P(y(i)|θprior) = λ(1/N )
∑

n δ(yn(i) − 1) + (1 − λ), where λ ∈ [0, 1].

13.3.3.5 Pairwise Potential Functions

The pairwise potential functions between label nodes in (13.3) encode label and
contrast dependent labelling homogeneity. In particular, the label homogeneity is
defined by:

ψ(2,1)(y(i), y( j), x) = 1 − δ(y(i) − y( j)), (13.20)

and the contrast dependent labelling homogeneity that we use is as follows [20]:

ψ(2,2)(y(i), y( j), x) = (1 − δ(y(i) − y( j)))C(x(i) − x( j)), (13.21)

where C(x(i), x( j)) = e−(x(i)−x( j))2
.
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13.4 Experiments

In this section, we first introduce the datasets used, followed by an explanation of
the experimental set-up and the results achieved.

13.4.1 Materials and Methods

We assess performance of our methodology on two publicly available datasets:
INbreast [6] and DDSM-BCRP [7]. The INbreast [6] dataset consists of set of 56
cases containing 116 accurately annotated masses. We divide this dataset into mutu-
ally exclusive training and testing sets, each containing 28 cases (58 annotated images
each). The DDSM-BCRP [7] dataset consists of 39 cases (77 annotated images) for
training and 40 cases (81 annotated images) for testing. Segmentation accuracy is
assessed with Dice index (DI) = 2TP

FP+FN+2TP , where TP denotes the number of mass
pixels correctly segmented,FP the background pixels falsely segmented as mass, and
FN the mass pixels not identified. The ROI to be segmented is obtained by extracting
a rectangular bounding box from around the centre of the manual annotation, where
the size for each dimension of the rectangle is produced by the size of the annotation
plus two pixels [35]. We use the preprocessing method by Ball and Bruce [27] in
order to increase the contrast of the input image. This ROI is then resized to 40 ×
40 pixels using bicubic interpolation. The model selection process for the structure
of the CNN and DBN is performed via cross-validation on the training set, and for
the CNN, the net structure is the one in Fig. 13.3, where the first stage has 6 filters
of size 5 × 5 and the second stage has 12 filters of size 5 × 5, and the sub-sampling
method after each of these stages uses max pooling that reduces the input to half of
its initial size in both stages. The final stage of the CNN has a fully connected layer
with 588 nodes and an output layer with 1600 nodes which is reshaped to 40 × 40

Fig. 13.4 DBN model with
variables x (mass ROI from
the mammogram) and
classification y ∈ {−1,+1},
denoting the absence or
presence of mass,
respectively



236 N. Dhungel et al.

nodes (i.e., same size of the input layer). For the DBN, the model is the one shown
in Fig. 13.4 with h1, h2 and h3 each containing 50 nodes, with input patches of sizes
3 × 3 and 5 × 5. We assessed the efficiency of our segmentation methodology with
the mean execution time per image on a computer with the following configuration:
Intel(R) Core(TM) i5-2500k 3.30GHz CPU with 8GB RAM.

13.4.2 Results

The experimental results presented in Fig. 13.5 assess the importance of adding each
potential function to the energy model defined in (13.3). This figure shows the mean
Dice index results on the testing set of INbreast using the CRF and SSVM models.
In particular, we show these results using several subsets of the potential functions
“CNN”, “DBN3 × 3”, “DBN5 × 5”, “GMM”, “Pairwise” and “Prior” presented in
Sect. 13.3.3 (i.e., the potentials φ(1,k) for k = {1, 2, 3, 4} with 3 × 3 and 5 × 5 denot-
ing the image patch size used by the DBN). It is important to mention that the Dice
index of our methodology using all potential functions on the training set of INbreast
is 0.93 using CRF and 0.95 using SSVM. It is also worth mentioning that the results
on the INbreast test set, when we do not use preprocessing [27], fall to 0.85 using
all potential functions for both models.

The comparison between the results from our methodology and other state-of-
the-art results is shown in Table 13.1. This comparison is performed on the testing
sets of DDSM-BCRP and INbreast, with the Dice index, average training time (for
the whole training set) and testing time (per image), where our CRF and SSVM
models have all potential functions: CNN+DBN3 × 3 + DBN5 × 5 + GMM +
Prior + Pairwise. Notice that in this table, we only list the results available for the
methods that use these publicly available databases because the great majority of

(b) SSVM model in (4)(a) CRF model in (2)

Fig. 13.5 Dice index on the test set of INbreast dataset for our CRF (a) and SSVM (b) models,
using various subsets of the unary and pairwise potential functions
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Table 13.1 Comparison between the proposed CRF and SSVM models and several state-of-the-art
methods

Method #Images Dataset Dice index Test run. time Train run. time

Proposed CRF
model

116 INbreast 0.90 0.1 s 360 s

Proposed
SSVM model

116 INbreast 0.90 0.8 s 1800 s

Cardoso et al.
[35]

116 INbreast 0.88 ? ?

Dhungel et al.
[9]

116 INbreast 0.88 0.8 s ?

Dhungel et al.
[10]

116 INbreast 0.89 0.1 s ?

Proposed CRF
model

158 DDSM-BCRP 0.90 0.1 s 383 s

Proposed
SSVM model

158 DDSM-BCRP 0.90 0.8 s 2140 s

Dhungel et al.
[9]

158 DDSM-BCRP 0.87 0.8 s ?

Dhungel et al.
[10]

158 DDSM-BCRP 0.89 0.1 s ?

Beller et al. [4] 158 DDSM-BCRP 0.70 ? ?

Fig. 13.6 Mass segmentation results produced by the CRF model on INbreast test images, where
the blue curve denotes the manual annotation and red curve represents the automatic segmentation

papers published in this area have used subsets of the DDSM dataset and manual
annotations that are not publicly available, which makes a direct comparison with
these methods impossible. Finally, Fig. 13.6 shows examples of segmentation results
produced by our CRF model on the test set of INbreast.
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13.5 Discussion and Conclusions

The results from Fig. 13.5 explain the importance of each potential function used in
the CRF and SSVM models, where it is clear that the CNN potential function provides
the largest boost in performance. The addition of GMM and shape prior to deep learn-
ing models provides considerable improvements for both CRF and SSVM models.
Another interesting observation is the fact that image preprocessing [27] appears to
be important since it shows a substantial gain in terms of segmentation accuracy. The
comparison with other methods in Table 13.1 shows that our methodology currently
produces the best results for both databases, and the CRF and SSVM models hold
comparable results in terms of segmentation accuracy. However, the comparison in
terms of training and testing running times shows a significant advantage to the CRF
model.

There are other important conclusions to make about the training and testing
processes that are not displayed in these results: (1) we tried other types of CNN
structures, such as with different filter sizes, and we also tried to use more than one
CNN model as additional potential functions, but the use of only one CNN with
the structure detailed in Sect. 13.4.1 produced the best result in cross-validation (the
main issue affecting the CNN models is overfitting); (2) for the DBN models, we
have also tried different input sizes (e.g., 7 × 7 patches), but the combinations of
the ones detailed in Sect. 13.4.1 provided the best cross-validation results; and (3)
the training for both the CRF and SSVM models estimates a much larger weight
to the CNN potential function compared to other potential functions in Sect. 13.3.3,
indicating that this is the most important potential function, but the CNN model
alone (without CRF or SSVM) overfits the training data (with a Dice of 0.87 on test
and 0.95 on training), so the structural prediction models serve as a regularizer to
the CNN model. Finally, from the visual results in Fig. 13.6, we can see that our
proposed CRF model produces quite accurate segmentation results when the mass
does not show very sharp corners and cusps. We believe that the main issue affecting
our method in these challenging cases is the limited size of the training sets in the
DDSM-BCRP and INbreast datasets, which do not contain enough examples of such
segmentations in order to allow an effective learning of a model that can deal with
such complicated segmentation problems.
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Chapter 14
Deep Learning Based Automatic
Segmentation of Pathological Kidney in CT:
Local Versus Global Image Context

Yefeng Zheng, David Liu, Bogdan Georgescu, Daguang Xu
and Dorin Comaniciu

Abstract Chronic kidney disease affects one of every ten adults in USA (over 20
million). Computed tomography (CT) is a widely used imaging modality for kidney
disease diagnosis and quantification. However, automatic pathological kidney seg-
mentation is still a challenging task due to large variations in contrast phase, scanning
range, pathology, and position in the abdomen, etc. Methods based on global image
context (e.g., atlas- or regression-based approaches) do not work well. In this work,
we propose to combine deep learning andmarginal space learning (MSL), both using
local context, for robust kidney detection and segmentation. Here, deep learning is
exploited to roughly estimate the kidney center. Instead of performing a whole axial
slice classification (i.e., whether it contains a kidney), we detect local image patches
containing a kidney. The detected patches are aggregated to generate an estimate
of the kidney center. Afterwards, we apply MSL to further refine the pose estimate
by constraining the position search to a neighborhood around the initial center. The
kidney is then segmented using a discriminative active shape model. The proposed
method has been trained on 370 CT scans and tested on 78 unseen cases. It achieves
a mean segmentation error of 2.6 and 1.7mm for the left and right kidney, respec-
tively. Furthermore, it eliminates all gross failures (i.e., segmentation is totally off)
in a direct application of MSL.

14.1 Introduction

There are two bean-shaped kidneys in a normal person. Their main function is
to extract waste from blood and release it from the body as urine. Chronic kidney
disease (CKD) is the condition that a kidney does not function properly longer than
a certain period of time (usually three months). In the most severe stage, the kidney
completely stops working and the patient needs dialysis or a kidney transplant to
survive. The incidence of CKD increases dramatically with age, especially for people
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older than 65 years. According to an estimate from the Center of Disease Control and
Prevention, one in every tenAmerican adults (over 20million) has some level of CKD
[1]. Computed tomography is a widely used imaging modality for kidney disease
diagnosis and quantification. Different contrast phases are often used to diagnose
different kidney diseases, including a native scan (no contrast at all to detect kidney
stone), corticomedullary phase (much of contrast material still resides within the
vascular system), nephrographic phase (contrast enters the collecting ducts), and
excretory phase (contrast is excreted into the calices) [2].

Various methods have been proposed to detect and segment an anatomical struc-
ture and many can be applied to kidney segmentation. Atlas-based methods segment
a kidney by transferring the label from an atlas to input data after volume registration
[3]. However, volume registration is time consuming and several volume registra-
tions are required in a multi-atlas approach to improve segmentation accuracy, but
with increased computation time (taking several minutes to a few hours). Recently,
regression-based approaches [4–6] were proposed to efficiently estimate a rough
position of an anatomical structure. An image patch cropped from anywhere inside
a human body can be used to predict the center of a target organ by assuming a
relatively stable positioning of organs. Regression is much more efficient than atlas
registration and can estimate the rough position of an organ in a fraction of a second.
Both atlas-based and regression-based approaches use global context to localize an
organ. Alternatively, an organ can be detected via local classification in which we
train a classifier that tells us if an image patch contains the target organ or not. Mar-
ginal space learning (MSL) [7, 8] is such an example, which efficiently prunes the
pose parameter space to estimate the nine pose parameters (translation, orientation,
and size) in less than a second. Recently, deep learning has been applied to kidney
segmentation using the fully convolutional network (FCN) architecture [9]. How-
ever, it has only been validated on contrasted kidneys; therefore, its performance on
more challenging dataset like ours is not clear.

Though existing methods may work well on normal kidneys, pathological kidney
segmentation is still a challenging task. First, the relative position of a pathological
kidney to surrounding organs varies. Normally, the right kidney lies slightly below
the liver, while the left kidney lies below the spleen (as shown by the third and fourth
patients in Fig. 14.1). However, in a patient with severe pathologies, a kidney may
be pushed off by neighboring organs (e.g., liver, spleen, stomach, and colon) due to
the excessive growth of tumor or previous surgery. For example, in our dataset, the
relative position of the right kidney to the liver varies quite a lot, as shown in Fig. 14.1.
The first patient has the right kidney lying at the bottom of the abdomen; while the
kidney of the last patient resides at the top of the abdomen. Previous methods relying
on global image context [3–6] cannot handle such large variation. Second, kidneys
with severe pathologies exhibit extra variations in size, shape, and appearance. Last
but not least, we want to develop a generic algorithm, which can handle all possible
contrast phases in a renal computed tomography (CT) scan (as shown in Fig. 14.5).
The native scan is especially difficult to segment due to the weak contrast between
a kidney and the surrounding tissues.
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Fig. 14.1 Segmentation results of the left (green) and right (red) kidney. The relative position of
the right kidney to the liver (yellow star) varies a lot as well as the scanning range. Note, the first
patient has the left kidney surgically removed

Due to the large “floating” range of a pathological kidney inside the abdomen, a
local classification-based approach is more robust than an approach exploiting global
context (e.g., global image registration [3] or using the liver or other organs to predict
the kidney position [4–6]). For example, even thoughworkingwell on detecting other
large organs (e.g., liver and lungs), a regression-based approach performs worse than
MSL on kidney detection in a 3D magnetic resonance imaging (MRI) dataset [6].
Due to the challenges posed by our dataset, a direct application ofMSL to CT kidney
segmentation achieves a mixed result. It successfully detects and segments a kidney
in 90–95%of cases. For the remaining cases, the segmentationmay be completely off
due to the failure in position detection, especially for patientswith severe pathologies.
We suspect that the limited success of MSL on pathological kidney detection is due
to its use of hand-crafted features, which lack discriminative power to handle such
large variations in our dataset.

In this work, we propose to exploit deep learning for rough localization of the
kidney. Deep learning can automatically build a hierarchical image feature represen-
tation, which has been shown in a lot of computer vision problems to outperform
hand-crafted features. Recently, deep learning has been applied in many medical
image analysis problems, including body region recognition [10], landmark detection
[11], cell detection [12], lymph node detection [13], organ detection/segmentation
[14, 15], cross-modality registration [16], and 2D/3D registration [17]. On all these
applications, deep learning outperforms the state of the art. In this work we apply
deep learning to determine the abdomen range in awhole-body scan and then roughly
localize the kidney inside the abdomen.Deep learning is especially data hungry, com-
pared to othermachine learning algorithms, to achieve goodgeneralization capability.
To mitigate the overfitting issue, we synthesize a lot of training data with realistic
nonrigid deformations. After kidney localization, we apply MSL, but constrain the
position search to a small range around the already detected kidney center. MSL
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also estimates the orientation and size of the kidney, thereby providing a quite good
initial segmentation after aligning a pre-learned mean shape to the estimated pose.
The segmentation is further refined using a discriminative active shapemodel (ASM)
[7]. Please note, in this work, we treat the left and right kidney as different organs
and train separate models to detect/segment them.

The remainder of the chapter is organized as follows. In Sect. 14.2, we present an
approach to synthesize more training data with nonrigid deformation of the kidney.
Abdomen range detection is presented in Sect. 14.3, which is used to constrain the
search of the kidney. Kidney localization is described with detail in Sect. 14.4, fol-
lowed by segmentation in Sect. 14.5. Quantitative experiments in Sect. 14.6 demon-
strate the robustness of the proposed method in segmenting pathological kidneys.
This chapter concludes with Sect. 14.7.

14.2 Training Data Synthesis

To achieve good generalization on unseen data, deep learning needs a lot of training
data; therefore, data augmentation is widely used to generate more training sam-
ples. Conventional data augmentation adds random translation, rotation, scaling,
and intensity transformation, etc. In addition, we also add nonrigid deformation to
cover variation in the kidney shape using an approach proposed in [18, 19]. Given
two training volumes Is and It with annotated kidney mesh Ss and St , respectively,
we estimate the deformation field that warps Ss to St . The estimated deformation
field is then used to warp all voxels in Is to create a synthesized volume I ts . Here,
we use the thin-plate spline (TPS) model [20] to represent the nonrigid deformation
between the source and target volumes. The TPS interpolant f (x, y, z) minimizes
the bending energy of a thin plate

I f =
∫ ∫ ∫

R3

(
∂2 f

∂x2

)2
+

(
∂2 f

∂y2

)2
+

(
∂2 f

∂z2

)2
+ 2

(
∂2 f

∂x∂y

)2
+ 2

(
∂2 f

∂x∂z

)2
+ 2

(
∂2 f

∂y∂z

)2
dxdydz. (14.1)

The interpolant f (x, y, z) can be estimated analytically [20].
The kidneys in source and target volumes may be captured in different coordinate

systems with different field of views. To avoid unnecessary coordinate changes,
before estimating the TPS deformation field, we translate St so that, after translation,
it has the same mass center as Ss .

The above TPS anchor points are concentrated on the kidney surface. To make
the deformation field of background tissues smooth, we add the eight corners of
the field of view of source volume Is as additional TPS anchor points. Suppose
the size of Is is W , H , and D along three different dimensions, respectively. The
following eight points are added as additional anchor points: (0, 0, 0), (W, 0, 0),
(0, H, 0), (W, H, 0), (0, 0, D), (W, 0, D), (0, H, D), and (W, H, D). These corner
points will not change after deformation; therefore, the deformation field is strong
around the kidney and gradually fades out towards the volume border.
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Fig. 14.2 Synthesis of training images with nonrigid deformation of the right kidney. a Source
volume with right kidney mesh overlaid. b Target volume. c Synthesized volume with intensity
pattern from the source volume but the right kidney shape from the target volume

Conceptually, the TPS deformation maps the source volume to the target volume.
However, if we directly estimate this forward TPS warping and apply it to all voxels
of the source volume, the resulting volume may have holes (i.e., voxels without any
source voxels mapping to) unless we densely upsample the source volume. Dense
upsampling the source volume increases the computation time when we perform for-
ward TPS warping. In our implementation, we estimate the backward TPS warping,
which warps the target volume to the source volume. For each voxel in the target
volume, we use the backward TPS warping to find the corresponding position in the
source volume. Normally, the corresponding source position is not on the imaging
grid; so, linear interpolation is used to calculate the corresponding intensity in the
source volume.

Figure14.2 shows an example of data synthesis for the right kidney. The source
and target volumes are shown in Fig. 14.2a, b, respectively. The synthesized volume
has an intensity pattern from the source volume but the right kidney shape from the
target volume, as shown in Fig. 14.2c. The synthesized data is so visually realistic that
it is difficult (if not impossible) to tell which one is real and which one is synthesized,
by comparing Fig. 14.2a, c.

We have 370 training volumes. Since we can synthesize a new volume by taking
an ordered pair of training data, we may synthesize up to 370× 369 = 136, 530 new
training volumes. To reduce the training burden, we synthesize 2,000 new volumes
by randomly picking training data pairs.
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14.3 Abdomen Localization Using Deep Learning

Besides dedicated kidney scans, our dataset contains many whole-body CT scans,
which are often acquired to diagnose cancer atmultiple organs (e.g., to rule outmetas-
tasis). Depending on the exam indication, the scan range along the z-axis (pointing
from patient’s toe to head) may be quite large and often varies a lot (as shown in
Fig. 14.1). If we can constrain position detection to a limited range along the z-axis,
most detection failures can be eliminated. A kidney is bounded by the abdomen,
though the position of a pathological kidney inside the abdomen varies as shown
in Fig. 14.1. In this work we use a two-step approach to localize a kidney. We first
determine the abdomen range and then detect a kidney inside the abdomen.

The abdomen has quite different image characteristics to other body regions (e.g.,
head, thorax, and legs); therefore, it can be detected reliably with an efficient classi-
fication scheme. We perform slice-wise classification by assigning a slice to one of
three classes: above abdomen (head or thorax), abdomen, and legs. In our application,
the lower limit of the abdomen stops at the top of the pubic symphysis (indicated
by the blue line in Fig. 14.3), which joins the left and right pubic bones. With bony
structures clearly visible in a CT volume, this landmark is easy to identify by a human

Fig. 14.3 Definition of
abdomen range in a
whole-body CT volume. The
upper limit of the abdomen
stops at the bottom of the
heart; while, the lower limit
of the abdomen stops at the
top of the pubic symphysis
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being and, hopefully, also easy to detect automatically. The thorax and abdomen are
separated by the diaphragm, which is a cursive structure as shown in Fig. 14.3. In
this work we are not interested in the exact boundary. Instead, we use one axial slice
to determine the upper limit of the abdomen. Here, we pick a slice at the bottom of
the heart as the upper limit of the abdomen (the red line in Fig. 14.3).

A convolutional neural network (ConvNet) is trained to perform the slice-wise
classification. To be specific, we use Caffe [21] to train a ConvNet with five layers of
convolution and two fully connected layers (the “bvlc_reference_caffenet” model).
A straightforward approach is to take a whole axial image as input to a classifier.
However, the classifier may have difficulty in handling the variation of patient’s
position inside a slice. Here, we first extract the body region (the white boxes in
Fig. 14.4) by excluding theblackmargin.The input image is then resized to 227× 227
pixels before feeding into the ConvNet.

Once the ConvNet is trained, we apply it to all slices in an input volume. For each
slice we get a three-dimensional vector representing the classification confidence
of each class (head-thorax, abdomen, and legs). To find the optimal range of the
abdomen, we aggregate the classification scores as follows. Suppose we want to
determine the bottom range of the abdomen (the boundary between the abdomen and
legs); the input volume has n slices; and, the classification scores for the abdomen and
leg classes are A[1, . . . , n] and L[1, . . . , n], respectively. We search for the optimal
slice index AbL such that

AbL = argmax
j

j∑
i=1

(L[i] − A[i]) +
n∑

i= j+1

(A[i] − L[i]). (14.2)

Fig. 14.4 Patch centers (red dots) on a positive axial slice (a) and a negative slice (b) for right
kidney localization. White boxes show the body region after excluding black margin
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Below the abdomen/leg boundary, the leg class should have a higher score than the
abdomen class. So, each individual item of the first term should be positive. Above
the abdomen/leg boundary, the abdomen class should have a higher score; therefore,
the second term should be positive. Equation (14.2) searches for an optimal slice
index maximizing the separation between abdomen and legs. The upper range of the
abdomen AbU is determined in a similar way.

AbU = argmax
j

j∑
i=1

(A[i] − T [i]) +
n∑

i= j+1

(T [i] − A[i]). (14.3)

Here, T [1, . . . , n] is the classification score of the thorax-head class. Aggregating the
classification score of all slices, our approach is robust against noise in classification
result on some slices.

Our approach is robust: the upper/lower range of the abdomen can be determined
within an error of 1–2 slices without any gross failure. Using abdomen detection,
we can quickly exclude up to 75% of slices from the following more through kid-
ney localization procedure (which is far more time consuming). It accelerates the
detection speed and, at the same time, reduces the kidney detection failures.

Previously, slice-based classification is also used by Seifert et al. [22] to deter-
mine the body region. Our approach has several advantages compared to [22]. First,
Seifert et al. formulated the task as a two-class classification problem, where the slice
separating different body regions is taken as a positive sample and all other slices
are treated as negative samples. Each training volume contributes only one positive
training sample (maybe, a few after adding perturbation) and there are many more
negative samples, which are often downsampled to get a balanced training set. So,
only a small number of slices are used for training. In our approach, we formulate the
task as a multi-class classification problem (i.e., thorax-head, abdomen, and legs).
The distribution of different classes is more balanced; therefore, much more slices
can be used for training. Second, using a two-class classification scheme, ideally,
only the target slice should generate a high score and all other slices give a low score.
If there is classification error on the target slice, the detection fails. In our approach,
we aggregate the classification score of all slices to determine the boundary between
body regions. Therefore, our approach potentially is more robust than [22]. Third,
to separate the body into multiple regions, Seifert et al. train a binary classifier for
each separating slice (in our case, two slices with one for the upper and the other
for the lower range of the abdomen). During detection, all these classifiers need to
be applied to all slices. Using a multi-class classification scheme, we apply a single
classifier to each slice only once, which is more computationally efficient. Last but
not least, [22] uses hand-crafted Haar wavelet-like features for classification; while,
we leverage the recent progress on deep learning, which can automatically learn
more powerful hierarchical image features.
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14.4 Kidney Localization Using Deep Learning

Similar to abdomen detection, a classifier (e.g., ConvNet) can be trained to tell us if
an axial image contains a kidney or not. However, this naive global context approach
generates a few gross failures. Assuming a kidney is next to the liver/spleen, a deep
learning algorithm may use features from the liver/spleen to predict presence of a
kidney in an axial image, which has a large input field of view covering kidney
and surrounding organs. However, as shown in Fig. 14.1, the relative position of a
pathological kidney to its surrounding organs is not stable. In this work, we propose
to crop a small image patch enclosing the kidney as input to a ConvNet. Since we
do not know the exact position of the kidney, we need to test multiple patches. The
red dots in Fig. 14.4 show the centers of cropped patches inside a predicted region of
interest (ROI). During the training phase, we calculate the shift of the kidney center
to the body region box center. The distribution of the shift helps us to define the ROI.
As shown in Fig. 14.4, we crop 6× 6 = 36 patches. Around each patch center, we
crop an image of 85× 85mm2, which is just enough to cover the largest kidney in
our training set. For each positive slice, the patch with the smallest distance to the
true kidney center is picked as a positive training sample. Afterwards, we randomly
pick the same number of negative patches from slices without a kidney. Figure14.5
shows a few positive and negative training patches. Some negative patches are quite
similar to positive patches (e.g., the last negative patch versus the first two positive
patches).

Similar to abdomen localization, we use Caffe [21] to train a ConvNet using the
“bvlc_reference_caffenet” model. The standard input image size to this ConvNet
model is 227× 227 pixels. For patch-based classification, we need to perform mul-
tiple classifications. To speed up the computation, we tried different input sizes and
found that we could reduce the input to 65× 65 pixels without deteriorating the
accuracy. With a smaller input image size, we reduce the filter size of the first convo-
lution layer from 11× 11 to 7× 7 and the stride from 4 to 2. All the other network
parameters are kept the same.

After classification of all axial slices, the ultimate goal is to have a single estimate
of the kidney center. For whole slice or body region based classification, we only
get one classification score for each slice. For a patch-based approach, we have
multiple patches and each has a classification score (a real positive value). We take
the summation of scores of all patches that are classified positive as the final score
of that slice. Negative patches do not contribute. A slice with more positive patches
tends to have a higher score. Independent classification of each slice often generates
noisy output (as shown in Fig. 14.6). We perform Gaussian smoothing with a kernel
of 100mm (the rough size of a kidney along the z-axis). After smoothing, we pick the
slice with the largest score as the kidney center along the z-axis (Zo). We then take
positive patches on all slices within [Zo − 50, Zo + 50]mm. The weighted average
of the positive patch centers provides an estimate of the kidney center in the x and y
axes.
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Fig. 14.5 A few a positive and b negative training patches of the left kidney scanned with different
contrast phases. Some negative patches are quite similar to positive patches (e.g., the last negative
patch versus the first two positive patches)

Fig. 14.6 Determining an axial slice containing the kidney center. The blue curve shows the aggre-
gated classification score from multiple patches and the red curve shows the score after smoothing.
The maximum peak on the red curve corresponds to the kidney center

14.5 Kidney Segmentation Based on MSL

After rough localization of a kidney, we use MSL to refine the position and fur-
ther estimate its orientation and size. MSL is an efficient method for 3D anatomical
structure detection and segmentation in various medical imaging modalities. The
segmentation procedure is formulated as a two-stage learning problem: object pose
estimation and boundary delineation. To accurately localize a 3D object, nine pose
parameters need to be estimated (three for translation, three for orientation, and three
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for anisotropic scaling). The object pose estimation is split into three steps: position
estimation, position–orientation estimation, and position–orientation–size estima-
tion. After each step only a small number of promising pose hypotheses are kept;
therefore, the pose parameter space is pruned significantly to increase the detection
efficiency. Since the kidney center has already been roughly determined using a
ConvNet (Sect. 14.4), we constrain the MSL position search to a neighborhood
around the initial center.

After the MSL-based pose estimation, a mean shape is aligned to the estimated
transformation to generate a rough estimate of the kidney shape. We then deform the
shape to fit the kidney boundary using a machine learning based boundary detector
within the ASM framework. Interested readers are referred to [7] for more details of
the MSL-based object detection and segmentation.

14.6 Experiments

We treat the left and right kidney as different organs and train separate models to
detect/segment them.The systems are trainedon370patients and testedon78patients
(each patient contributes oneCT scan). Our dataset is very diverse, containing various
contrast phases and scanning ranges. Many patients have tumors inside the kidney or
neighboring organs and some patients have previous abdominal surgery. The axial
slice size is 512× 512 pixels and the in-slice resolution varies from 0.5 to 1.5mm,
with a median resolution of 0.8mm. The number of axial slices varies from 30 to
1239. The distance between neighboring slices varies from 0.5 to 7.0mm with a
median of 5.0mm. On the test set, one patient has the left kidney surgically removed
and three patients have the right kidney removed. These patients are ignored when
we report the detection/segmentation error of the left and right kidney, respectively.

First, we evaluate the robustness of kidney localization using a ConvNet. There
are far more negative training samples than the positives. We randomly subsample
the negatives to generate a balanced training set with around 10,000 images for each
class. We compare kidney localization errors of three input sizes: a whole slice, a
body region, and a patch (85× 85mm2). Since we only sample one training patch
from each slice, the number of training samples is the same for three scenarios, while
the size of image context is different.

Tables14.1 and 14.2 report the kidney center localization errors. The whole-slice-
based approach results in the worst performance with mean errors of 86.8mm (the
left kidney) and 113.6mm (the right kidney) in determining the z-axis position of
kidney center. Using the body region as input, we can significantly reduce the mean
z-axis localization errors to 14.5mm (the left kidney) and 17.8mm (the right kidney).
The patch-wise classification achieves the best result with mean z-axis localization
errors of 6.8mm (the left kidney) and 7.9mm (the right kidney). In addition, it can
accurately estimate the x and y position of the kidney center, with a mean error
ranging from 2.0 to 3.1mm. The larger mean errors in the z-axis are due to its much
coarser resolution (a median resolution of 5.0mm in z vs. 0.8mm in x/y). For the left
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Table 14.1 Left kidney localization errors on 78 test cases with different input image context sizes

X Y Z

Mean Max Mean Max Mean Max

Whole slice – – – – 86.8 557.5

Body region – – – – 14.5 112.5

Body region
(Multi)

– – – – 12.0 45.7

Patch 2.2 11.6 2.0 14.5 6.8 31.1

Table 14.2 Right kidney localization errors on 78 test cases with different input image context
sizes

X Y Z

Mean Max Mean Max Mean Max

Whole slice – – – – 113.6 631.5

Body region – – – – 17.8 138.7

Body region
(Multi)

– – – – 12.9 101.7

Patch 3.1 46.9 3.0 17.5 7.9 56.7

kidney localization, the maximum z-axis error is 31.1mm.We checked this case and
found that the estimated position was still inside the kidney. (Please note, a typical
kidney has a height of 100mm along the z-axis.) For the right kidney localization,
there is one case that the estimated center is slightly outside the kidney. This error
can be corrected later in the constrained position estimation by MSL.

For the patch-based approach, we perform classification on 36 patches for each
slice. One may suspect that its better performance comes from the aggregation of
multiple classifications. To have a fair comparison, we also perform multiple clas-
sifications for the body region by shifting its center on a 6× 6 grid (the same size
as the patch grid). The results are reported as “Body Region (Multi)” in Tables14.1
and 14.2. Aggregating multiple classifications improves the localization accuracy,
but it is still worse than the proposed patch-based approach. This experiment shows
that local image context is more robust than global context in pathological kidney
detection.

After rough localization of the kidney center using a ConvNet, we apply MSL to
further estimate the nine pose parameters, followed by detailed boundary delineation
using a discriminative ASM. Based on the error statistics in Tables14.1 and 14.2, we
constrain the MSL position search to a neighborhood of [−50, 50] × [−20, 20] ×
[−50, 50]mm3 around the initial estimate.As shown inTable14.3,we achieve amean
mesh segmentation error of 2.6 and 1.7mm for the left and right kidney, respectively.
The larger mean error of the left kidney is due to a case with a segmentation error of
24.7mm. For comparison, without constraint, the mean segmentation errors of MSL
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Table 14.3 Kidney mesh segmentation errors on 78 test cases using marginal space learning
with/without constrained position search range. The mesh errors are measured in millimeters, the
smaller the better

Mean Std Median Worst Worst 10%

Left kidney:
unconstrained

9.5 38.1 1.3 236.9 79.5

Left kidney:
constrained

2.6 4.2 1.5 24.7 11.6

Right kidney:
unconstrained

6.7 27.9 1.4 220.4 51.2

Right kidney:
constrained

1.7 1.2 1.4 6.8 4.6

Table 14.4 Dice coefficient of kidney segmentation on 78 test cases using marginal space learning
with/without constrained position search range. The Dice coefficient is in [0, 1], the larger the better

Mean Std Median Worst Worst 10%

Left kidney:
unconstrained

0.86 0.24 0.94 0.00 0.21

Left kidney:
constrained

0.89 0.15 0.93 0.11 0.54

Right kidney:
unconstrained

0.88 0.19 0.93 0.00 0.46

Right kidney:
constrained

0.92 0.05 0.94 0.73 0.79

are much larger due to some gross detection failures. The difference in the mean
error of the worst 10% cases is more prominent: 11.6mm versus 79.5mm for the left
kidney and 4.6mm versus 51.2mm for the right kidney. In Table14.4, we also report
the Dice coefficient. Unconstrained MSL has six gross failures (the segmentation
has no overlap with ground truth resulting in a Dice coefficient of 0). All the failures
are corrected by the proposed method.

It is hard to compare our errors with those reported in the literature due to the lack
of a common test set. Lay et al. [6] reported that MSL outperformed their regression-
based approach on kidney detection in 3D MRI scans. Here, we achieve further
improved robustness upon MSL. Cuingnet et al. [5] reported 6% of cases with Dice
<0.65, while we have only three kidneys (2%) with Dice <0.65.

Our approach is fully automatic and takes about 3.3 s to detect a kidney: Kidney
localization takes 2.8 s/volume on an NVIDIA GTX 980 GPU; The MSL detec-
tion/segmentation step takes 0.5 s on a computer with an Intel Xeon 6-core 2.6GHz
CPU and 32GB memory (no use of GPU). Figure14.1 shows segmentation results
on a few cases and more examples are shown in Fig. 14.7.
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Fig. 14.7 A few examples of segmentation results of the left (green) and right (red) kidney. An
axial view (top) and a coronal view (bottom) are shown for each example

14.7 Conclusions

In this paper, we proposed a robust fully automatic method for pathological kidney
segmentation in CT scans. Deep learning is exploited to roughly estimate the kidney
center, which is used to constrain the detection by MSL. We show that local image
context (small patches) ismore robust thanglobal context (whole slice or body region)
in kidney detection and the proposed approach significantly reduces the number of
gross failures. Our method works for renal CT data with different contrast phases,
scanning ranges, and pathologies.
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Chapter 15
Robust Cell Detection and Segmentation
in Histopathological Images Using Sparse
Reconstruction and Stacked Denoising
Autoencoders

Hai Su, Fuyong Xing, Xiangfei Kong, Yuanpu Xie, Shaoting Zhang
and Lin Yang

Abstract Computer-aided diagnosis (CAD) is a promising tool for accurate and
consistent diagnosis and prognosis. Cell detection and segmentation are essential
steps for CAD. These tasks are challenging due to variations in cell shapes, touch-
ing cells, and cluttered background. In this paper, we present a cell detection and
segmentation algorithm using the sparse reconstruction with trivial templates and a
stacked denoising autoencoder (sDAE) trained with structured labels and discrimi-
native losses. The sparse reconstruction handles the shape variations by representing
a testing patch as a linear combination of bases in the learned dictionary. Trivial tem-
plates are used to model the touching parts. The sDAE, trained on the original data
with their structured labels and discriminative losses, is used for cell segmentation.
To the best of our knowledge, this is the first study to apply sparse reconstruction
and sDAE with both structured labels and discriminative losses to cell detection and
segmentation. It is observed that structured learning can effectively handle weak or
misleading edges, and discriminative training encourages the model to learn groups
of filters that activate simultaneously for different input images to ensure better seg-
mentation. The proposed method is extensively tested on four data sets containing
more than 6000 cells obtained from brain tumor, lung cancer, and breast cancer and
neuroendocrine tumor (NET) images. Our algorithm achieves the best performance
compared with other state of the arts.
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15.1 Introduction

Reproducible and accurate analysis of digitized histopathological specimens plays a
critical role in successful diagnosis and prognosis, treatment outcome prediction, and
therapy planning. Manual analysis of histopathological slides is not only laborious,
but also subject to interobserver variability. Computer-aided diagnosis (CAD) is a
promising solution. In CAD, cell detection and segmentation are often prerequisite
steps for critical morphological analysis [1, 2]. Cell detection reveals the locations
of individual cells and cell segmentation separates individual cells from their sur-
rounding cells and the background. Cell segmentation is essential to the subsequent
diagnostic analysis procedures since it identifies the geometric information of the
cells (i.e., boundary, shape, and size of the cells) that can be used to compute the
disease characterizing visual information for diagnosis [3].

Accurate cell detection and segmentation in digital pathology has been attract-
ing a wide range of interests recently [4]. The major challenges in cell detection
and segmentation are: (1) large variations of cell shapes, (2) touching cells, and (3)
inhomogeneous intensity and weak/missing boundaries. In early studies, distance
transform was used to detect seeds (cells) in clustered objects. However, it falls short
in handling densely clustered cells. Later, geometric and intensity information are
exploited to improve the distance transform methods [5]. Despite of the improve-
ment, this method is subject to high false detection rate. In [6], mutual proximity
information is used to exclude the false seeds. Another approach to handle touch-
ing/occlusion cells is marker-based watershed algorithms [7–9]. In [10], markers
generated from H-minima transform of cell shape is proposed. The H-value is deter-
mined by the fitting residuals between the ellipses and cell boundaries. However,
H-minima transform-based methods is not robust enough against the intracellular
heterogeneous intensity. In [11], a supervisedmarker-controlledwatershed algorithm
is investigated. The redundant neighboring local minima are merged based on the
features extracted from the valley lines between the cells. Although this supervised
method provides some degree of robustness, in the presence of intracellular hetero-
geneity false valley lines could be detected inside the cells, thereby causing false
detections. In [12], Lin et al. propose a gradient-weight-based watershed algorithm
integrated with a hierarchical merging tree for splitting touching cells for 3D confo-
cal microscopic images. However, in their work the intra-class shape variation is not
considered. In [13], a subregion merging mechanism and a Laplacian-of-Gaussian
(LOG) filter are exploited to improve the conventional watershed algorithm. A cell
detection and segmentation system for RNAi fluorescent cell images are presented
in [14]. The visual cues from different channels of the fluorescent image are utilized
to split the overlapping cells.

Graph-based method have also been explored for cell detection and segmen-
tation [15, 16]. In [17], based on a weighted graph, cell detection is formulated
as a normalized cut-based graph partition problem. In [18], a graph-cut algorithm
preceding by multiscale LOG filtering is investigated. In [19], a multi-reference
graph-cut algorithm is used to split the foreground cells, and touching cells are split
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through geometric reasoning. Despite the endeavors, graph-based algorithms might
be not robust to weak cell boundaries. Recently, deep learning methods are observed
to exhibit significant advantages in visual recognition tasks [20]. A deep convolu-
tional neural network (DCNN) [21] achieves great performance in mitosis detection.
However, this system does not consider touching cells problem that is common in
pathology images.

Other methods for touching cell detection and segmentation is to exploit the
symmetries in cell structure and shape. Based on the assumption that most cells
exhibit round shape, radial votingmethods are proposed to robustly separate touching
cells [22, 23]. In [24], radial symmetry is integrated with other image cues (i.e.,
concave points) to separate touching cells. In [25], Veta et al. propose to detect the
cells based on fast radial symmetry transform and segment the cells based onmarker-
controlledwatershed algorithm.Thesemethods achieve good performance on images
containing mostly round shaped cells. However, in the presence of elongated shaped
cells, voting methods are subject to high false positive rate. To handle the shape
variation, ellipse fitting based on the concave points is studied in [26]. To enhance
the performance, ellipse fitting followed by feature extraction, and classification is
proposed to split the muscle nuclei [27]. In [28], a single-pass radial voting followed
by mean-shift clustering is proposed to split the touching cells and a repulsive level
set is developed for cell segmentation. One drawback of the level set is that it does not
enforce the original topology of the object thus can generate spurious segmentation
contours in the presence of heterogeneous intensity. In [29], an improved radial
voting is proposed for cell detection with considering the variations in cell scales
and a repulsive balloon snake deformable model is applied to cell segmentation.
Recently, shape prior model is proposed to improve the performance in the presence
of weak edges [30, 31].

Sparse representation has achieved encouraging performance in object detection
and tracking [32–35]. Its applications in biomedical images can be found in [36, 37].
In [38], Kårsnäs et al. propose to learn a patch dictionary through a modified vector
quantization algorithm. The learned dictionary is used to delineate the foreground.
The touching cells in the foreground are separated by the marker-controlled water-
shed and a complement to the distance transform. In [31, 39], sparse shape modeling
is cooperated with repulsive active contour models for robust cell segmentation.
Sparse methods are also exploited to learn useful features for classifying histology
images [40–42]. Despite the exiting efforts, the advantages of sparse learning has
not been systematically explored for the cell detection task.

In this paper, we propose a novel cell detection and segmentation algorithm. First,
sparse reconstruction using an adaptive dictionary and trivial templates is proposed
to detect cells, which can handle the shape variations, inhomogeneous intensity, and
cell overlapping. Thereafter, a stacked denoising autoencoder (sDAE) trained with
structural labels is applied to cell segmentation based on the previous cell detection.
Traditionally, denoising autoencoders are trainedon corrupted samples to learn robust
features for classification tasks [43–45]. They require “clean” images as a premise,
but this is difficult to achieve in pathology images due to their noisy nature. In the
proposed method, the noisy original images and their human annotated structural
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labels are used as training samples. The sDAE model is trained to map the original
image into a reconstructed boundary image. In our experiment, it is observed that the
structural labels enforce the first layer of the model to learn a set of filters capturing
the object components (e.g., edges and blob-like patterns). In testing, different subset
of the filters respond to the objects with different shapes. The second layer of the
model learns to capture the correlation between the filters in the first layer, and
serves to correct the mistakenly responding filters. A problem in the sDAE is that the
filters in the first layer is merely a coarse-grained decomposition of the edges and
noise. The learned filters may be shared between objects of different shapes. This
introduces ambiguity into the correlation between the filters andmakes it hard for the
second layer to learn such correlation. The resultant model shows limited robustness
against to noise. Based on this observation, we propose to add a discriminative
loss into the cost function. The obtained model is referred as stacked discriminative
denoising autoencoder (sdDAE). The discriminative training encourages the model
to learn a fine-grained decomposition of the object components with respect to the
categories. Therefore, the first layer of the sdDAE contains a set of filters corresponds
to image structures belong to different categories and noise.With these learned class-
specific filters, noticeable improvement in group activation is achieved and more
robust segmentation performance is obtained.

This article is an extension of our previously published work [46]. The previous
work is significantly extended in three aspects: (i) A new discriminative term is
added into the cost function of the sDAE; (ii) Theworkingmechanismof the proposed
segmentation algorithm is elaborated; (iii) Twomore newdata sets are used to validate
the superior performance of the proposed method.

15.2 Methodology

An overview of the proposed method is shown in Fig. 15.1. During the training
for cell detection, a compact cell dictionary (Fig. 15.1b) is learned by applying
K-selection [47] to a cell patch repository containing single-centered cells. In the
testing (Fig. 15.1a–e), a sample patch from the testing image is first used as a query
to retrieve similar patches in the learned dictionary. Since the appearance variation
within one particular image is small, any sample patch containing a centered cell
can be used. Next, sparse reconstruction using trivial templates [34] is utilized to
generate a probability map to indicate the potential locations of the cells. Finally,
weight-guided mean-shift clustering [48] is used to compute the seed detection. Dif-
ferent from [34], our algorithm removes the sparsity constraints for the trivial tem-
plates. Therefore, the proposedmethod is more robust to the variations of the cell size
and background. During the segmentation stage (Fig. 15.1f–i), the sDAE is trained
using the gradient maps of the training patches and their corresponding human anno-
tated edges (Fig. 15.1f). Our proposed segmentation algorithm is designed to handle
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Fig. 15.1 An overview of the proposed algorithm

touching cells and inhomogeneous cell intensities. As shown in Fig. 15.1h, the
false edges are removed, the broken edges are connected, and the weak edges are
recovered.

15.2.1 Detection via Sparse Reconstruction with Trivial
Templates

AdaptiveDictionaryLearning: During cell dictionary learning, a set of relevant cell
patches are first retrieved based on their similarities compared with the sample patch.
Considering the fact that pathological images commonly exhibit staining variations,
the similarities are measured by normalized local steering kernel (nLSK) feature
and cosine similarity. nLSK is more robustness to contrast changes [49]. An image
patch is represented by the densely computed nLSK features. Principal component
analysis (PCA) is used for dimensionality reduction, as suggested by [49]. Cosine
distance, Dcos = (vTi v j )/(‖vi‖‖v j‖), where vi denotes the nLSK feature of patch
i , is proven to be the optimal similarity measurement under maximum likelihood
decision rule [49]. Therefore, it is used to measure the similarity. The dictionary
patches are selected by a nearest neighbor search.

ProbabilityMapGeneration via Sparse Reconstruction with Trivial Templates:
Given a testing image, we propose to utilize sparse reconstruction to generate the
probability map by comparing the reconstructed image to the original patch via a
sliding window approach. Because the testing image patch may contain part of other
neighboring cells, trivial templates are utilized to model these noise parts. When the
testing patch is aligned to the center of a cell, it can be linearly represented by cell
dictionary bases with a small reconstruction error. The touching part can be modeled
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with trivial templates. Let pi j ∈ R

√
m×√

m denote a testing patch located at (i, j),
and B represent the learned cell dictionary, this patch can be sparsely reconstructed
by: pi j ≈ Bc + e = [B I][c e]T , where e is the term to model the touching part,
and Im×m is an identity matrix containing the trivial templates. The optimal sparse
reconstruction can be found by:

min
c̃

‖pi j − B̃c̃‖2 + λ‖d � c‖2 + γ‖e‖2, s.t. 1T c = 1, (15.1)

where B̃ = [B I], c̃ = [c e]T , and d represents the distance between the testing patch
and the dictionary atoms, � denotes element-wise multiplication, λ controls the
importance of the locality constraints, and γ controls the contribution of the trivial
templates. The first term incorporates trivial templates to model the touching cells,
and the second term enforces that only local neighbors in the dictionary are used for
the sparse reconstruction. The locality constraint enforces sparsity [33]. In order to
solve the locality-constrained sparse optimization, we first perform a KNN search in
the dictionary excluding the trivial templates. The selected nearest neighbor bases
together with the trivial templates form a smaller local coordinate system. Next, we
solve the sparse reconstruction problem with least square minimization [33].

The reconstruction error is defined as εrec = ‖(pi j − B̃c̃) � k(u, v)‖, where
k(u, v) is a “bell-shape” spatial kernel that emphasizes the errors in the central
region. A probability map is obtained by Pi j = |εrec−max(E)|

max(E)−min(E) , where Pi j denotes
the probability at location (i, j), and E represents the reconstruction error map. We
demonstrate the reconstruction results of touching cells with and without trivial tem-
plates in Fig. 15.2a, b. The final cell detection is obtained by running a weight-guided
mean-shift clustering [48] on the probability map.

15.2.2 Cell Segmentation via Stacked Denoising
Autoencoders

In this section, we propose to train a stacked denoising autoencoder (sDAE) [45]
with structural labels to remove the fake edges while preserving the true edges. An
overview of the training and testing procedure is shown in Fig. 15.1f–i. Tradition-
ally, denoising autoencoders (DAE) are trainedwith corrupted versions of the original
samples, and it requires “clean image” as a premise. In our proposed method, we use
the gradient images of original image patches as the noisy inputs and the human anno-
tated boundaries (structured labels) as the clean images. The DAE is trained to map
a noisy input to a clean (recovered) image patch that can be used for segmentation.

For better illustration, we describe a single layer DAE. Let X̃ ∈ R
m denote the

noisy gradient magnitude map of the original image patch centered on a detected
center of the cell (seed). The DAE learns a parametric encoder function fθ(x̃) =
s(Wx̃ + b), where s(·) denotes the sigmoid function to transform the input from the
original feature space into the hidden layer representation y ∈ R

h , where θ = {W,b}
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(a) (b) (c)

Fig. 15.2 a A demonstration of sparse reconstruction with/without trivial templates. From row 1
to 3: a testing patch, the sparse reconstruction without trivial templates, the sparse reconstruction
with trivial templates. Row 4 and 5 are the first term and the second term in equation pi j ≈ Bc + e,
respectively. b A demonstration of reconstruction errors obtained from a testing patch aligned to
the center of the cell and from those misaligned patches. Row 1 displays a small testing image. The
green box shows a testing patch aligned to the cell. Boxes in other colors show misaligned testing
patches. From row 2 to row 5: A testing image patch with occlusion from a neighboring cell, the
reconstruction of the testing patch, the reconstructed patches with the occlusion part removed, and
the visualization of the reconstruction errors. Note that the aligned testing patch has the smallest
error. c From left to right the original testing patches, the gradientmagnitudemaps, and the recovered
cell boundaries using sDAE

andW ∈ R
h×m . A parametric decoder function gθ′(y) = s(W′y + b′), θ′ = {W′,b′}

is learned to transform the hidden layer representation back to a reconstructed version
Z ∈ R

m of the input X̃.
Since it is a reconstruction problem based on real-valued variables, a square error

loss function of the reconstruction z and a manually annotated structural label x
is chosen, and the sigmoid function in gθ′ is omitted. The parameters {θ, θ′} are
obtained by:

min
W,b,W′,b′ ‖x − gθ′ ◦ fθ(x̃)‖2. (15.2)

We choose tied weights by settingW′ = WT [45]. In order to restore, a reliable edge
image that enhances true edge responses and suppresses fake edge responses, we train
a two-layer autoencoder in the experiment (see Fig. 15.2). The final segmentation
results can be obtained by applying several iterations of an active contour model [50]
to the convex hull computed from the reconstructed image.
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15.2.3 The Learned Filters

We demonstrate the mechanism of a two-layer autoencoder for cell segmentation
in Fig. 15.3. We trained a two-layer autoencoder with 400 units in the first layer
and 200 units in the second layer using lung cancer data set. An example cell patch
with weak edges and inhomogeneous intracellular intensity is shown in Fig. 15.3a.

(a) (b)

(f) (g)

(h)

(i)

(c) (d) (e)
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Fig. 15.3 a The original image patch. b The noisy input image patch (gradient magnitude image of
a). c The noisy input image with highlighted regions containing weak edges and noise. The restored
cell edge images in the d first and e second layers. f The filters with the strongest responses in the
first layer. The integer above each filter indexes the filter. The real number shows the magnitude of
the response. g The filter responses restored by the second layer. h The response of the first layer
filters. i The first layer responses restored in the second layer
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Its gradient magnitude image is shown in Fig. 15.3b. In this example, we show
how the learned model suppresses the noise (the green box and the red boxes
in Fig. 15.3c) and recovers the weak edges (pink box in Fig. 15.3c). The restored
images by the first and second layers of the autoencoder are shown in Fig. 15.3d, e,
respectively. The 40 filters with the strongest responses in the first layer are shown
in Fig. 15.3f. As we can see, the learned filters are a decomposition of the pat-
terns present in a patch containing a cell. Different filters are sensitive to different
parts of the cell. The dark blobs in the central regions of the filters, (e.g., filters
120, 329, 328, 164, 343, 265, 295), respond to the relatively dark color inside the
cell, and the edge filters, (e.g., 219, 64, 150, 267, 331, 305, 129, and etc.), respond
to the cell boundaries. It is worth noting that there are several activated white blob fil-
ters (e.g., filter 390) due to the noise present inside the cell (green box in Fig. 15.3c).
Meanwhile, there are several edge filters responding to the fake edges (e.g., filters
61, 109, and 41).

The second layer is learned to improve the restoration. As shown in Fig. 15.3g, i,
the responses of all the dark blob filters are elevated. Specifically, the responses of
the dark blob filters (green box in Fig. 15.3g) are enhanced to counteract the effect
of the filter 390 (yellow box in Fig. 15.3f). More importantly, the responses of the
edge filters (i.e., 137 and 370) are increased to make up the weak edge (pink boxes).
Meanwhile, the responses of the filters corresponding to the fake edges (i.e., 61, 109,
and 41) are decreased (red boxes). All the responses in the first and second layers
are shown in Fig. 15.3h, i, respectively. The responses of the corresponding filters
mentioned above are highlighted with the same colors in Fig. 15.3.

15.2.4 Training DAE with Discriminative Loss

Although the segmentation method described above is able to handle the touch-
ing cells, it tends to generate distorted segmentation when two non-touching cells
locate close to each other. This problem is illustrated in Fig. 15.4, which shows three
example image patches. The DAEmodel trained with Eq.15.2 tends to cast enlarged
contours in the presence of an adjacent cell. This is because the DAE described
above is unable to differentiate valid and invalid combinations of the filter activa-
tions. Therefore, any strong activation of the filters in the first layer is treated as valid
activation such that the undesired strong filter activations cannot be suppressed or
removed. This leaves the model to be less robust to noise which might invoke strong
filter activations. In order to train a DAE that is robust to neighboring strong noise,
we propose to augment the original loss function in Eq.15.2 by a discriminative term
[51]:

min
W,b,W′,b′

N∑

i=1

‖xi − gθ′ ◦ fθ(x̃i)‖2 + L(θd = {Wd ,bd}, yi , fθ(x̃i)), (15.3)
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(a) (b) (c) (d) (e)

Fig. 15.4 a The original image patches. b The ground truth segmentation. c The restored cell
boundaries by models trained without discriminative loss (upper patches) and with discriminative
loss (bottom patches). d The segmentation results obtained by the model trained without discrim-
inative loss. e The segmentation result generated by the model with discriminative term. As can
be seen that the restored image patches obtained by the discriminative DAE is more accurate than
those obtained by the original DAE. Therefore, the final segmentation contours obtained by the
discriminative DAE e is more accurate

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

Fig. 15.5 The 22 cluster centers of the structural labels. As indicated by the cluster centers, the
samples of different clusters occupy different pixels in the image patch. When training with the
discriminative loss, the model can learn the class-specific filters and will be able to differentiate
valid and invalid combinations of the filters

where the discriminative loss term is a multi-class logistic regression:

L(θd = {Wd ,bd}, yi , fθ(x̃i)) =
N∑

i=1

‖yi − (Wd fθ(x̃i) + bd)‖2, (15.4)

where θd = {Wd ,bd} is the parameters of the discriminative loss function, yi is the
class label of data sample x̃i.
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In our problem, the purpose of labeling the data is to enforce the class (group)
information in the learning. That is to enforce the model to learn a set of filters that
form the decomposition with respect to the labels. The labels serve as a definition of
valid and invalid edge combinations. The label yi is generated viaK-means clustering,
and the cluster centers are shown in Fig. 15.5. As we can see, the cluster means
implicitly define a set of valid shapes. In the training, filters with class association
can be learned from these shapes.

We demonstrate the effects of the discriminative loss in training the DAE in
Fig. 15.6. An example image patch and its segmentation results are shown in
Fig. 15.6a. The original image patch, noisy input image and the ground truth segmen-
tation are shown in the left panel. The restored images by the first and second layers
of a two-layer DAE as well as the segmentation result are depicted in the middle
panel. The right panel displays the results obtained by the first and second layers of
a two-layer discriminative DAE. As one can tell, the discriminative DAE generates
better restoration and segmentation results. This is because the filters learned in the
first layer decompose the cell edges and noises with respect to the image labels. This
discriminative training grants themodelmore discriminative power. The second layer
implicitly learns the association between the filters and promotes the simultaneous
activation or silence of the grouped filters. We can observe the improvements by
comparing the Fig. 15.6b, d and c, e. Figure15.6b shows filters with the strongest
activation, including some incorrectly activated filters by the noise. The effects of
the second layer are shown in Fig. 15.6c, e. The highlighted filters in Fig. 15.6b, d
are deactivated. Meanwhile, the responses of the correct cell boundary associated
edge filters are enhanced (green boxes in Fig. 15.6c, e). It is worth noting that filters
associated with particular classes emerge in the discriminative DAE. For this case,
it is the filter 323 highlighted in green box in Fig. 15.6c.

Compared to themost activating filters of the sdDAEFig.15.6, themost activating
filters of the DAE Fig. 15.7 do not capture the cell edges. This is because without
discriminative losses, the learned filters do not decompose into groups corresponding
to different classes (and noise). Some filters may be shared between different classes.
These filters have less discriminative power and may not activate when there is
too much noise. Due to the suboptimal decomposition, the filters are not classified
themselves into different groups, and thus, it is difficult for the second layer to learn
the association between the filters. As a result, the second layer in the DAE do not
help effectively in correcting the reconstruction.

An analysis of the association of the filters learned in the first and second layers
of the denoising autoencoders is depicted in Fig. 15.8. One DAE and one sdDAE are
trainedwith the same structure (400units in thefirst layer and200 in the second layer).
In total, 5000 data samples are passed through the twomodels, and the filter responses
in the first and second layers are recorded. The pairwise response similarity of the
filters are computed. In general, coactivation of the filters are observed, especially for
the sdDAE, and the second layer serves to recover the association between the filters.
This can be observed by comparing the response similarity matrix in Fig. 15.8a, b.
The response similarity matrix of the restored filter responses contains more low-
value entries indicating that the filters activate in groups, especially for the sdDAE.



268 H. Su et al.

265: 1.00 164: 0.89 233: 0.85 380: 0.85 124: 0.82 195: 0.81 34: 0.63 202: 0.60

168: 0.60 106: 0.58 173: 0.44 324: 0.41 386: 0.39 230: 0.38 367: 0.33 270: 0.32

145: 0.31 259: 0.31 360: 0.28 63: 0.27 364: 0.26 249: 0.26 271: 0.25 212: 0.25

193: 0.24 155: 0.24 334: 0.23 181: 0.22 222: 0.20 24: 0.19 84: 0.19 16: 0.18

390: 0.17 5: 0.14 61: 0.13 307: 0.13 308: 0.13 351: 0.12 369: 0.11 113: 0.11

265: 0.99 124: 0.89 202: 0.89 164: 0.88 351: 0.85 307: 0.81 155: 0.80 367: 0.79

129: 0.78 134: 0.78 233: 0.78 386: 0.76 98: 0.75 221: 0.73 145: 0.73 380: 0.73

364: 0.71 84: 0.70 63: 0.69 270: 0.68 388: 0.68 159: 0.66 267: 0.64 104: 0.63

355: 0.63 206: 0.63 193: 0.62 157: 0.62 329: 0.60 271: 0.59 147: 0.59 323: 0.58

226: 0.58 390: 0.58 61: 0.57 87: 0.54 366: 0.54 219: 0.54 195: 0.54 11: 0.52

0  10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400
0

0.2

0.4

0.6

0.8

1

1.2

0  10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400
0

0.2

0.4

0.6

0.8

1

1.2

(a)

(b)

(d)

(e)

(c)

Fig. 15.6 a A demonstration of the segmentation results obtained from sDAE and sdDAE. The left
panel shows the original image patch, the noisy gradient magnitude image, and the ground truth
annotation. The middle panel displays the reconstruction and segmentation results of the DAE.
From left to right are: the reconstruction by a one-layer DAE, the reconstruction by a two-layer
DAE, and the segmentation result. The right panel shows the corresponding results obtained by a
sdDAE. The most activated filters learned in the first (b) and second (c) layers of the sdDAE. The
responses of the filters in the first (d) and second (e) layers of sdDAE. As one can tell, from a that
the sdDAE generates a better restored edge map and segmentation results. A comparison between
(b, d) and (c, e) reveals that the filters incorrectly activated (red boxes in b and d) by the noise are
suppressed, i.e., their responses are decreased significantly (red boxes in e). On the contrary, the
mistakenly silenced filters (green boxes in d) in the first layer are activated by the second layer of
the sdDAE (green boxes in c and e)

This characteristic is resulted by the discriminative training, in which the filters learn
a better decomposition of the edges belonging to the cells from difference classes
and noise.
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Fig. 15.7 The most activating filters in the first layer of a sDAE for the image patch shown in
Fig. 15.6a. Compared to the most activating filters in the sdDAE, less edge filters are triggered.
This is because without discriminative losses, the learned filters do not decompose into groups
corresponding to different classes (and noise). Some filters may be shared between different classes.
These filters have less discriminative power and may not activate when there is too much noise
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Fig. 15.8 An analysis of the group activation of the learned filters and the role of the second layer
of the sdDAE. The upper row shows the results of the DAE and the bottom row depicts the results
from the sdDAE. a The response similarity matrix computed based on the responses of the 400 first
layer filters with respect to 5000 samples. b The response similarity matrix computed based on the
filter responses restored by the second layer. c The histogram of the entry values in the response
similaritymatrix. The blue bars are computed from thematrix in a and the yellow bars are computed
from that in b. It is obvious that the second layers of both the DAE and the sdDAE learn to capture
the association between the filters. That is for the both denoising autoencoders, the restored filter
responses showmore group association. Specifically, more low-value entries present in the response
similarity matrix. Compare to the DAE, the second layer of the sdDAE improves the association
significantly, and it can be seen in the changes of the response similarity matrix and the histogram.
This is because the filters learned with the discriminative loss form a better decomposition of the
edges belonging to cells from different classes and the noise
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15.3 Experimental Results

Data set: The proposed algorithm is extensively tested on four data sets including
about 2000, 1500, 1500, and 1000 cells in lung cancer, brain tumor, breast cancer,
and neuroendocrine tumor (NET) images, respectively. For the detection part, 2000
patches of size 31 × 31 with a centralized single cell are manually cropped from
each data set. K = 1400 patches are selected by K-selection. The parameter γ in
Eq. (15.1) is set to 10−4. In the segmentation part, contours of more than 6900 cells
are annotated. Training sample augmentation is conducted via rotation and random
translation. In total more than 16 × 104 image patches are generated and each of
them is resized to 28 × 28. The samples are clustered into 22 clusters by K-means
clustering. The numbers of training samples from each class are balanced. Therefore,
in total 11 × 104 samples are used for training. A two-layer sDAE and a two-layer
discriminative DAE with 1000 maps in the first layer and 1200 maps in the second
layer are trained on each data set. An active contour model [50] is applied to obtain
the final segmentation result. All the experiments are implemented with MATLAB
and Python Theano Package on a workstation with Intel Xeon E5-1650 CPU and
128 GB memory.

(a) (b) (c) (d) (e) (f)

Fig. 15.9 Detection and segmentation results of a testing image. Row 1 shows the comparison of
the detection results: a is the original image patch. b–f are the corresponding results obtained by
LoG [18], IRV [23], ITCN [52], SPV [28], and the proposed method. Rows 2 shows the comparison
of the segmentation results: a is the ground truth. b–f are the corresponding results obtained by
MS, ISO [53], GCC [18], RLS [28], and the proposed method
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Detection Performance Analysis: We evaluate the proposed detection method
through both qualitative and quantitative comparison with four state of the arts,
including Laplacian-of-Gaussian (LoG) [18], iterative radial voting (IRV) [23], and
image-based tool for counting nuclei (ITCN) [52], and single-pass voting (SPV)
[28]. The qualitative comparison of a randomly selected sample patch is shown in
Fig. 15.9, which demonstrates the superior performance of our method.

To evaluate our algorithm quantitatively, we adopt a set of metrics defined in
[29], including false negative rate (FN ), false positive rate (FP), over-detection rate
(OR), and effective rate (ER). Furthermore, precision (P), recall (R), and F1 score
are also computed. In our experiment, a true positive is defined as a detected seed
that is within the circular neighborhood with 8-pixel distance to a ground truth and
there is no other seeds within the 12-pixel distance neighborhood. The comparison
results are shown in Tables15.1, 15.2 15.3 and 15.4. It can be observed that the
proposed method outperforms the other methods in terms of most of the metrics on
the three data sets, including brain tumor, lung cancer, and breast cancer data sets.
For the NET images, our detection method is outperformed slightly by SPV.We also
observed that in solving Eq. (15.1), increasing the number of nearest neighbors can
help the detection performance. This effect vanishes when more than 100 nearest
neighbors are selected. Friedman test is performed on the F1 scores obtained by
the methods under comparison, and P-values<0.05 are observed. Therefore, the
proposed approach is significantly better than the comparative methods.

Table 15.1 The comparison of the detection performance

Methods Brain tumor data

FN FP OR ER P R F1

LoG [18] 0.15 0.004 0.3 0.8 0.94 0.84 0.89

IRV [23] 0.15 0.04 0.07 0.76 0.95 0.83 0.88

ITCN [52] 0.22 0.0005 0.01 0.77 0.99 0.77 0.87

SPV [28] 0.1 0.02 0.06 0.86 0.98 0.89 0.93

Ours 0.07 0.0007 0.04 0.92 0.99 0.93 0.96

Table 15.2 The comparison of the detection performance

Methods Lung cancer data

FN FP OR ER P R F1

LoG [18] 0.19 0.003 0.13 0.78 0.96 0.80 0.88

IRV [23] 0.33 0.014 0.21 0.64 0.98 0.66 0.79

ITCN [52] 0.31 0.002 0.05 0.68 0.98 0.69 0.81

SPV [28] 0.18 0.008 0.006 0.79 0.98 0.81 0.89

Ours 0.15 0.01 0.06 0.81 0.96 0.85 0.90
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Table 15.3 The comparison of the detection performance

Methods Breast cancer data

FN FP OR ER P R F1

LoG [18] 0.08 0.002 0.29 0.90 0.98 0.92 0.95

IRV [23] 0.21 0.11 0.11 0.74 0.95 0.75 0.84

ITCN [52] 0.19 0.006 0.18 0.78 0.98 0.80 0.88

SPV [28] 0.18 0.001 0.066 0.82 0.997 0.82 0.90

Ours 0.11 0.001 0.05 0.865 0.978 0.88 0.93

Table 15.4 The comparison of the detection performance

Methods NET data

FN FP OR ER P R F1

LoG [18] 0.12 0.002 0.12 0.85 0.97 0.87 0.92

IRV [23] 0.17 0.83 0.06 0.72 0.96 0.81 0.88

ITCN [52] 0.15 0.07 0.003 0.73 0.95 0.83 0.88

SPV [28] 0.04 0.012 0.05 0.90 0.95 0.95 0.95

Ours 0.04 0.024 0.06 0.85 0.90 0.95 0.93

Segmentation Performance Analysis: A qualitative comparison of performance
between our approaches and the other four methods, including mean-shift (MS),
isoperimetric graph partitioning (ISO) [53], graph-cut, and coloring (GCC) [18],
and repulsive level set (RLS) [28], is shown in Fig. 15.9. It is clear that the proposed
method learns to capture the structure of the cell boundaries. Therefore, the true
boundaries can be recovered in the presence of inhomogeneous intensity, and a
better segmentation performance is achieved. The detection and segmentation of
thousands of cells are shown in Fig. 15.10. The quantitative comparison based on the
mean and variance of precision (P), recall (R), and F1 score is shown in Tables15.5,
15.6, 15.7 and 15.8. In addition, Friedman test followed by Bonferroni–Dunn test
is conducted on the F1 scores. P-values are all significantly smaller than 0.05. The
Bonferroni–Dunn test shows that there does exist significant difference between our
methods and the other state of the arts.

We also explored the segmentation performance with respect to the number of
training epoches. The result is shown in Fig. 15.11a. As one can tell, the perfor-
mance increases as the number of training epoches increases, and it converges after
200 epoches. The number of training samples needed for a reasonable performance
depends on the variation of the data. In our experiment setting, it is observed that
around 5000 samples are sufficient. The performance with respect to the model
complexity is shown in Fig. 15.11b, where the dimension of the second layer is
fixed to 200.
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(a)

(b)

(c)

(d)

Fig. 15.10 The detection and segmentation results of one image from each of the four data sets
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Table 15.5 The comparison of the segmentation performance

Methods Brain tumor data

P.M. P.V. R.M. R.V. F1 M. F1. V.

MS 0.92 0.02 0.59 0.08 0.66 0.05

ISO [53] 0.71 0.04 0.81 0.03 0.71 0.03

GCC [18] 0.87 0.03 0.77 0.044 0.78 0.024

RLS [28] 0.84 0.01 0.75 0.09 0.74 0.05

sDAE 0.86 0.018 0.87 0.01 0.85 0.009

sDAE 0.867 0.019 0.885 0.01 0.86 0.01

Table 15.6 The comparison of the segmentation performance

Methods Lung cancer data

P.M. P.V. R.M. R.V. F1 M. F1. V.

MS 0.88 0.01 0.73 0.04 0.77 0.02

ISO [53] 0.75 0.03 0.82 0.025 0.75 0.02

GCC [18] 0.87 0.03 0.73 0.04 0.77 0.02

RLS [28] 0.85 0.013 0.82 0.04 0.81 0.02

sDAE 0.86 0.023 0.85 0.012 0.84 0.01

sdDAE 0.87 0.015 0.866 0.008 0.86 0.006

Table 15.7 The comparison of the segmentation performance

Methods Breast cancer data

P.M. P.V. R.M. R.V. F1 M. F1. V.

MS 0.90 0.007 0.76 0.03 0.84 0.018

ISO [53] 0.70 0.05 0.74 0.06 0.67 0.03

GCC [18] 0.87 0.02 0.72 0.04 0.76 0.024

RLS [28] 0.85 0.02 0.85 0.024 0.84 0.018

sDAE 0.85 0.019 0.91 0.01 0.87 0.01

sdDAE 0.88 0.012 0.90 0.008 0.88 0.008

Table 15.8 The comparison of the segmentation performance

Methods NET data

P.M. P.V. R.M. R.V. F1 M. F1. V.

MS 0.86 0.014 0.76 0.034 0.78 0.017

ISO [53] 0.73 0.048 0.67 0.05 0.66 0.032

GCC [18] 0.88 0.033 0.57 0.046 0.64 0.031

RLS [28] 0.83 0.034 0.79 0.032 0.80 0.025

sDAE 0.89 0.015 0.84 0.012 0.857 0.008

sdDAE 0.89 0.015 0.85 0.011 0.86 0.007
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Fig. 15.11 a F1 score as a function of the number of training epoches. b F1 score as a function of
the model complexity

15.3.1 Computational Complexity

The time complexity of the detection algorithm is composed of two parts: (1) the
adaptive dictionary generation, and (2) the sliding window scanning and clustering.
The step (1) needs to be done only once for the images from one patient. It is
a constant depending on K , the number of patches selected by K-selection. The
time complexity step (2) is dominated by the optimization of the LLC problem
in Eq. (15.1). To compute one sliding window, the optimization procedure consists
of a KNN search and solving an analytic solution to a least square problem. The
time complexity isO(k + q + s2), where k denotes the number of nearest neighbors
(k = 100), q represents the size of the dictionary generated in step (1), and s2 is the
dimension of the trivial templates that equals to the number of pixels in a sliding
window. For an image of size v × v, the time complexity is O(v2(k + q + s2)).
The time complexity for weight-guided mean-shift clustering is O(T R2), where T
denotes the maximal number of iterations, and R is the number of data points. The
proposed detection algorithm is based on MATLAB and is not yet optimized with
respect to efficiency. It takes about 55 s to obtain the detection result of an image of
size 300 × 300.

The complexity of the segmentation is dependent on the number of cells detected.
For each cell, the time complexity is a constant O(s2(L(1)

dae + L(2)
dae + Tdef )), where

L(1)
dae and L(2)

dae denote the number of hidden units in the first layer and the second
layer of the denoising autoencoder, respectively, and Tdef represents the maximum
number of iterations for the active contour deformable model, and s2 is the size of
the input patch. In our experiment, it takes only 286s to segment 2000 cells with
{s2 = 784, L(1)

dae = 1000, L(2)
dae = 1200, Tdef = 5}.
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15.4 Conclusion

In this paper, we have proposed an automatic cell detection and segmentation algo-
rithm for pathological images. The detection step exploits sparse reconstruction with
trivial templates to handle shape variations and touching cells. The segmentation step
applies an sdDAE trained with structural labels and discriminative losses to remove
the non-boundary edges. The proposed algorithm is tested on four data sets contain-
ing more than 6000 cells, and it exhibits superior performance over other methods.
The proposed approach is a general approach that can be adapted to many other
pathological applications.
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Chapter 16
Automatic Pancreas Segmentation Using
Coarse-to-Fine Superpixel Labeling

Amal Farag, Le Lu, Holger R. Roth, Jiamin Liu, Evrim Turkbey
and Ronald M. Summers

Abstract Accurate automatic detection and segmentation of abdominal organs from
CT images is important for quantitative and qualitative organ tissue analysis, detec-
tion of pathologies, surgical assistance as well as computer-aided diagnosis (CAD).
In general, the large variability of organ locations, the spatial interaction between
organs that appear similar in medical scans and orientation and size variations are
among the major challenges of organ segmentation. The pancreas poses these chal-
lenges in addition to its flexibility which allows for the shape of the tissue to vastly
change. In this chapter, we present a fully automated bottom-up approach for pan-
creas segmentation in abdominal computed tomography (CT) scans. The method is a
four-stage systembased on a hierarchical cascade of information propagation by clas-
sifying image patches at different resolutions and cascading (segments) superpixels.
System components consist of the following: (1) decomposing CT slice images as a
set of disjoint boundary-preserving superpixels; (2) computing pancreas class prob-
ability maps via dense patch labeling; (3) classifying superpixels by pooling both
intensity and probability features to form empirical statistics in cascaded random
forest frameworks; and (4) simple connectivity based post-processing. Evaluation of
the approach is conducted on a database of 80 manually segmented CT volumes in
sixfold cross validation. Our achieved results are comparable, or better to the state-
of-the-art methods (evaluated by “leave-one-patient-out”), with a Dice coefficient of
70.7% and Jaccard Index of 57.9%. The computational efficiency of the proposed
approach is drastically improved in the order of 6–8min, compared to other methods
of ≥10 hours per testing case.
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16.1 Introduction

Image segmentation is a key step in image understanding that aims at separating
objects within an image into classes, based on object characteristics and a prior
information about the surroundings. This also applies to medical image analysis
in various imaging modalities. The segmentation of abdominal organs such as the
spleen, liver, and pancreas in abdominal computed tomography (CT) scans can be
an important input to computer-aided diagnosis (CAD) systems, for quantitative and
qualitative analysis and for surgical assistance. In the instance of quantitative imaging
analysis of diabetic patients, a requisite critical step for the development of suchCAD
systems is segmentation specifically of the pancreas. Pancreas segmentation is also
a necessary input for subsequent methodologies for pancreatic cancer detection. The
literature is rich in methods of automatic segmentation on CT with high accuracies
(e.g., Dice coefficients >90%), of other organs such as the kidneys [1], lungs [2],
heart [3], and liver [4]. Yet, high accuracy in automatic segmentation of the pancreas
remains a challenge. The literature is not as abundant in either single- or multi-organ
segmentation setups.

The pancreas is a highly anatomically variable organ in terms of shape and size
and the location within the abdominal cavity shifts from patient to patient. The
boundary contrast can vary greatly by the amount of visceral fat in the proximity
of the pancreas. These factors and others make segmentation of the pancreas very
challenging. Figure16.1 depicts several manually segmented 3D volumes of various
patient pancreases to better illustrate the variations and challenges mentioned. From
the above observations, we argue that the automated pancreas segmentation problem

Fig. 16.1 3D manually segmented volumes of six pancreases from six patients. Notice the shape
and size variations
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should be treated differently, apart from the current organ segmentation literature
where statistical shape models are generally used.

In this chapter, a new fully bottom-up approach using image and (deep) patch-level
labeling confidences for pancreas segmentation is proposed using 80 single-phase
CT patient data volumes. The approach is motivated to improve the segmentation
accuracy of highly deformable organs, like the pancreas, by leveraging middle-level
representation of image segments. First, over segmentation of all 2D slices of an input
patient abdominal CT scan is obtained as a semi-structured representation known as
superpixels. Second, classifying superpixels into two semantic classes of pancreas
and non-pancreas is conducted as a multistage feature extraction and random forest
(RF) classification process, on the image and (deep) patch-level confidence maps,
pooled at the superpixel level. Two cascaded random forest superpixel classification
frameworks are presented and compared. Figure16.2 depicts the overall proposed
first framework. Figure16.9 illustrates the modularized flow charts of both frame-
works. Our experimental results are carried out in a sixfold cross-validation manner.

Fig. 16.2 Overall pancreas segmentation framework via dense image patch labeling
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Our system runs at about two orders of magnitude more computationally efficiently
to process a new testing case than the atlas registration based approaches [5–10]. The
obtained results are comparable, or better than the state-of-the-art methods (evalu-
ated by “leave-one-patient-out”), with a Dice coefficient of 70.7% and Jaccard Index
of 57.9%. Under the same sixfold cross validation, our bottom-up segmentation
method significantly outperforms its “multi-atlas registration and joint label fusion”
(MALF) counterpart (based on our implementation using [11, 12]): Dice coefficients
70.7 ± 13.0% versus 52.51 ± 20.84%. Additionally, another bottom-up supervoxel
based multi-organ segmentation without registration in 3D abdominal CT images
is also investigated [13] in a similar spirit, for demonstrating this methodological
synergy.

16.2 Previous Literature

The organ segmentation literature can be divided into two broad categories: top-
down and bottom-up approaches. In top-down approaches, a priori knowledge such
as atlas(es) and/or shape models of the organ are generated and incorporated into
the framework via learning based shape model fitting [3, 4] or volumetric image
registration [7, 8, 10]. For bottom-up approaches segmentation is performed by
local image similarity grouping and growing or pixel, superpixel/supervoxel-based
labeling [14, 15] since direct representations of the organ is not incorporated. Gener-
ally speaking, top-down methods are targeted for organs which can be modeled well
by statistical shape models [3] whereas bottom-up representations are more effective
for highly non-Gaussian shaped [14, 15] or pathological organs.

Previous literature on pancreas segmentation from CT images have been domi-
nated by top-down approaches which rely on atlas-based approaches or statistical
shape modeling or both [5–10].

• Shimizu et al. [5] utilize three-phase contrast enhanced CT data which are first reg-
istered together for a particular patient and then registered to a reference patient by
landmark-based deformable registration. The spatial support area of the abdom-
inal cavity is reduced by segmenting the liver, spleen, and three main vessels
associated with location interpretation of the pancreas (i.e., splenic, portal, and
superior mesenteric veins). Coarse-to-fine pancreas segmentation is performed by
using generated patient-specific probabilistic atlas guided segmentation followed
by intensity-based classification and post-processing. Validation of the approach
was conducted on 20 multi-phase datasets resulting in a Jaccard of 57.9%.

• Okada et al. [6] perform multi-organ segmentation by combining inter-organ
spatial interrelations with probabilistic atlases. The approach incorporated var-
ious a priori knowledge into the model that includes shape representations of
seven organs. Experimental validation was conducted on 28 abdominal contrast-
enhanced CT datasets obtaining an overall volume overlap of Dice index 46.6%
for the pancreas.
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• Chu et al. [8] present an automated multi-organ segmentation method based on
spatially divided probabilistic atlases. The algorithm consists of image-space divi-
sion and a multi-scale weighting scheme to deal with the large differences among
patients in organ shape and position in local areas. Their experimental results show
that the liver, spleen, pancreas, and kidneys can be segmented with Dice similarity
indices of 95.1, 91.4, 69.1, and 90.1%, respectively, using 100 annotated abdominal
CT volumes.

• Wolz et al. [7]may be considered the state-of-the-art result thus far for single-phase
pancreas segmentation. The approach is a multi-organ segmentation approach
that combines hierarchical weighted subject-specific atlas-based registration and
patch-based segmentation. Post-processing is in the form of optimized graph-cuts
with a learned intensity model. Their results in terms of a Dice overlap for the
pancreas is 69.6% on 150 patients and 58.2% on a subpopulation of 50 patients.

• RecentworkbyWanget al. [10] proposes a patch-based label propagation approach
that uses relative geodesic distances. The approach can be considered a start to
developing some bottom-up component for segmentation,where affine registration
between dataset and atlases were conducted followed by refinement using the
patch-based segmentation to reducemisregistrations and instances of high anatomy
variability. The approachwas evaluated on 100 abdominal CT scanswith an overall
Dice of 65.5% for the pancreas segmentation.

The default experimental setting in many of the atlas-based approaches [5–10]
is conducted in a “leave-one-patient-out” or “leave-one-out” (LOO) criterion for
up to N = 150 patients. In the clinical setting, leave-one-out based dense volume
registration (from all other N-1 patients as atlas templates) and label fusion process
may be computationally impractical (10+ hours per testing case). More importantly,
it does not scale up easily when large-scale datasets are present. On the other hand,
efficient cascade classifiers have been studied in both computer vision and medical
image analysis problems [16–18], with promising results.

16.3 Methods

In this section, the components of our overall algorithm flow (shown in Fig. 16.2)
are first addressed (Sects. 16.3.1 and 16.3.2). The method extensions on exploiting
sliding-window CNN-based dense image patch labeling and framework variations
are described in Sects. 16.3.3 and 16.3.4.

16.3.1 Boundary-Preserving Over-segmentation

Over-segmentation occurs when images (or more generally grid graphs) are seg-
mented or decomposed into smaller perceptually meaningful regions, “superpixels”.
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Within a superpixel, pixels carry similarities in color, texture, intensity, etc., and
generally align with image edges rather than rectangular patches (i.e., superpix-
els can be irregular in shape and size). In the computer vision literature, numerous
approaches have been proposed for superpixel segmentation [19–23]. Each approach
has its drawbacks and advantages but three main properties are generally examined
when deciding the appropriate method for an application as discussed in [20]: (1)
adherence to image boundaries; (2) computationally fast, ease of usage and memory
efficient; especially when computational complexity reduction is of importance and
(3) improvement on both quality and speed of the final segmentation.

Superpixelmethods fall under twomain broad categories: graph-based (e.g., SLIC
[19], entropy rate [21] and [22]) and gradient ascent methods (e.g., watershed [23]
and mean shift [24]). In terms of computational complexity, [22, 23] are relatively
fast in O(MlogM) complexity where M is the number of pixels or voxels in the
image or grid graph. Mean shift [24] and normalized cut [25] are O(M2), or O(M

3
2 ),

respectively. Simple linear iterative clustering (SLIC) [19] is both fast and memory
efficient. In our work, evaluation and comparison among three graph-based super-
pixel algorithms (i.e., SLIC [19, 20], efficient graph-based [22] andEntropy rate [21])
and one gradient ascent method (i.e., watershed [23]) are conducted, considering the
three criterion in [20]. Figure16.3 shows sample superpixel results using the SLIC
approach. The original CT slices and cropped zoomed-in pancreas superpixel regions
are demonstrated. The boundary recall, a typical measurement used in the literature,
to indicate how many “true” edge pixels of the ground-truth object segmentation
are within a pixel range from the superpixels (i.e., object-level edges are recalled
by superpixel boundaries). High boundary recall indicates minimal true edges were
neglected. Figure16.4 shows sample quantitative results. Based on Fig. 16.3, high
boundary recalls, within the distance ranges between 1 and 6 pixels from the semantic
pancreas ground-truth boundary annotation are obtained using the SLIC approach.
The watershed approach provided the least promising results for usage in the pan-
creas, due to the lack of conditions in the approach, to utilize boundary information in
conjunction with intensity information as implemented in graph-based approaches.
The superpixel number range per axial image is constrained ∈ [100, 200] to make a
good trade-off on superpixel dimensions or sizes.

The overlapping ratio r of the superpixel versus the ground-truth pancreas anno-
tation mask is defined as the percentage of pixels/voxels inside each superpixel
that are annotated as pancreas. By thresholding on r, say if r > τ the superpixel
will be labeled as pancreas and otherwise as background, we can obtain the pan-
creas segmentation results. When τ = 0.50, the achieved mean Dice coefficient is
81.2 ± 3.3%which is referred as the “Oracle” segmentation accuracy since comput-
ing r would require to know the ground-truth segmentation. This is also the upper
bound segmentation accuracy for our superpixel labeling or classification frame-
work. 81.2 ± 3.3% is significantly higher and numerically more stable (in standard
deviation) than previous state-of-the-art methods [5, 7–10], to provide considerable
improvement space of our work. Note that both the choices of SLIC and τ = 0.50
are calibrated using a subset of 20 scans. We find there is no need to evaluate differ-
ent superpixel generation methods/parameters and τs as “model selection” using the
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Fig. 16.3 Sample superpixel generation results from the SLIC method [19]. First column depicts
different slices from different patient scans with the ground-truth pancreas segmentation in yellow
(a, d and g). The second column depicts the over segmentation results with the pancreas contours
superimposed on the image (b, e and h). Last, (c) (f) and (i) show zoomed-in areas of the pancreas
superpixel results from b, e and h

Fig. 16.4 Superpixels
boundary recall results
evaluated on 20 patient scans
(Distance in millimeters).
The watershed method [23]
is shown in red, efficient
graph [22] in blue while the
SLIC [19] and the Entropy
rate [21] based methods are
depicted in cyan and green,
respectively. The red line
represents the 90% marker
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training folds in each round of sixfold cross validation. This superpixel calibration
procedure is generalized well to all our datasets. Voxel-level pancreas segmenta-
tion can be propagated from superpixel-level classification and further improved by
efficient narrow-band level-set based curve evolution [26], or the learned intensity
model based graph-cut [7].

16.3.2 Patch-Level Visual Feature Extraction
and Classification: PRF

Feature extraction is a form of object representation that aims at capturing the impor-
tant shape, texture, and other salient features that allow distinctions between the
desired object (i.e., pancreas) and the surrounding to be made. In this work a total of
46 patch-level image features to depict the pancreas and its surroundings are imple-
mented. The overall 3D abdominal body region per patient is first segmented and
identified using a standard table-removal procedurewhere all voxels outside the body
are removed.

(1) To describe the texture information, we adopt the Dense Scale-Invariant Fea-
ture transform (dSIFT) approach [27] which is derived from the SIFT descriptor
[28] with several technical extensions. The publicly available VLFeat implementa-
tion of the dSIFT is employed [27]. Figure16.5 depicts the process implemented
on a sample image slice. The descriptors are densely and uniformly extracted from

Fig. 16.5 Sample slice with center positions superimposed as green dots. The 25× 25 image patch
and corresponding D-SIFT descriptors are shown to the right of the original image
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image grids with inter-distances of 3 pixels. The patch center position are shown as
the green points superimposed on the original image slice. Once the positions are
known, the dSIFT is computed with the geometry of [2 × 2] bins and bin size of 6
pixels, which results in a 32 dimensional texture descriptor for each image patch.
The image patch size in this work is fixed at 25 × 25 which is a trade-off between
computational efficiency and description power. Empirical evaluation of the image
patch size is conducted for the size range of 15–35 pixels using a small subsam-
pled dataset for classification, as described later. Stable performance statistics are
observed and quantitative experimental results using the default patch size of 25 ×
25 pixels are reported.

(2)A second feature group using the voxel intensity histograms of the ground-truth
pancreas and the surrounding CT scans is built in the class-conditional probability
density function (PDF) space. A kernel density estimator (KDE1) is created using
the voxel intensities from a subset of randomly selected patient CT scans. The KDE
represents theCT intensity distributions of the positive

{
X+}

and negative class
{
X−}

of pancreas and non-pancreas voxels CT image information. All voxels containing
pancreas information are considered in the positive sample set, yet, since negative
voxels far outnumber the positive only 5% of the total number from each CT scan
(by random resampling) is considered. Let,

{
X+} = (

h+
1 , h+

2 , . . . , h+
n

)
and

{
X−} =(

h−
1 , h−

2 , . . . , h−
m

)
where h+

n and h−
m represent the intensity values for the positive

and negative pixel samples for all 26 patient CT scans over the entire abdominal CT
Hounsfield range. The kernel density estimators f +(X+) = 1

n

∑n
i=1 K

(
X+ − X+

i

)

and f −(X−) = 1
m

∑m
j=1 K

(
X− − X−

j

)
are computed where K() is assumed to be a

Gaussian kernel with optimal computed bandwidth, for this data, of 3.039. Kernel
sizes or bandwidthmay be selected automatically using 1DLikelihood-based search,
as provided by the used KDE toolkit. The normalized likelihood ratio is calculated
which becomes a probability value as a function of intensity in the range of H =
[0 : 1 : 4095]. Thus, the probability of being considered pancreas is formulated as
y+ = (f +(X+))

(f +(X+)+f −(X−))
. This function is converted as a precomputed lookup table over

H = [0 : 1 : 4095], which allows very efficient O(1) access time.
(3) Utilizing first the KDE probability response maps above and the superpixel

CT masks described in Sect. 16.3.1, as underlying supporting masks to each image
patch, the same KDE response statistics within the intersected subregions, P’ of P,
are extracted. The idea is that an image patch, P, may be divided into more than one
superpixel. This set of statistics is calculated with respect to the most representative
superpixel (that covers the patch center pixel). In this manner, object boundary-
preserving intensity features are obtained.

(4) The final two features for each axial slice (in the patient volumes) are the
normalized relative x-axis and y-axis positions ε[0, 1], computed at each image patch

1http://www.ics.uci.edu/~ihler/code/kde.html.

http://www.ics.uci.edu/~ihler/code/kde.html
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Fig. 16.6 Two sample slices from different patients are shown in a and e. The corresponding super-
pixels segmentation (b, f), KDE probability response maps (c, g) and RF patch-level probability
response maps (d, h) are shown. In c, g and d, h, red represents highest probabilities. In d, h the
purple color represents areas where probabilities are so small and can be deemed insignificant areas
of interest

center against the segmented body region (self-normalized2 to patients with different
body masses to some extent). Once all of the features are concatenated, a total
of 46 image patch-level features per superpixel are used to train a random forest
(RF) classifier Cp. Image patch labels are obtained by directly borrowing the class
information of their patch center pixels, based on the manual segmentation.

Sixfold cross validation for RF training is carried out. Response maps are com-
puted for the image patch-level classification and dense labeling. Figure16.6d, h
show sample illustrative slices from different patients. High probability correspond-
ing to the pancreas is represented by the red color regions (the background is blue).
The responsemaps (denoted asPRF) allow several observations to bemade. Themost
interesting is that the relative x and y positions as features allow for clearer spatial
separation of positive and negative regions, via internal RF feature thresholding tests
on them. The trained RF classifier is able to recognize the negative class patches
residing in the background, such as liver, vertebrae and muscle using spatial location
cues. In Fig. 16.6d, h implicit vertical and horizontal decision boundary lines can
be seen in comparison to Fig. 16.6c, g. This demonstrates the superior descriptive
and discriminative power of the feature descriptor on image patches (P and P’) than
single pixel intensities. Organs with similar CT values are significantly depressed in
the patch-level response maps.

In summary, SIFT and its variations, e.g., D-SIFT have shown to be informative,
especially through spatial pooling or packing [29]. A wide range of pixel-level cor-
relations and visual information per image patch is also captured by the rest of 14

2The axial reconstruction CT scans in our study have largely varying ranges or extends in the
z-axis. If some anatomical landmarks, such as the bottom plane of liver, the center of kidneys, can
be provided automatically, the anatomically normalized z-coordinate positions for superpixels can
be computed and used as an additional spatial feature for RF classification.
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Fig. 16.7 The proposedCNNmodel architecture is composed of five convolutional layers withmax
pooling and two fully connected layers with DropOut [30] connections. A final two-way softmax
layer gives a probability p(x) of “pancreas” and “non-pancreas” per data sample (or image patch).
The number and model parameters of convolutional filters and neural network connections for each
layer are as shown

defined features. Both good classification specificity and recall have been obtained in
cross validation using Random Forest implementation of 50 trees and the minimum
leaf size set as 150 (i.e., using the treebagger(•) function in Matlab).

16.3.3 Patch-Level Labeling via Deep Convolutional Neural
Network: PCNN

In this work, we use Convolutional Neural Network (CNN, or ConvNet) with a stan-
dard architecture for binary image patch classification. Five layers of convolutional
filters first compute, aggregate, and assemble the low level image features to more
complex ones, in a layer-by-layer fashion. Other CNN layers perform max-pooling
operations or consist of fully connected neural network layers. The CNN model we
adopted ends with a final two-way softmax classification layer for “pancreas” and
“non-pancreas” classes (refer to Fig. 16.7). The fully connected layers are constrained
using “DropOut” in order to avoid over-fitting in training where each neuron or node
has a probability of 0.5 to be reset with a 0-valued activation. DropOut is a method
that behaves as a co-adaption regularizer when training the CNN [30]. In testing,
no DropOut operation is needed. Modern GPU acceleration allows efficient training
and run-time testing of the deep CNN models. We use the publicly available code
base of cuda-convnet2.3

To extract dense image patch response maps, we use a straight-forward sliding-
window approach that extracts 2.5D image patches composed of axial, coronal, and
sagittal planes at any image positions (see Fig. 16.8). Deep CNN architecture can
encode large-scale image patches (even the whole 224 × 224 pixel images [31, 32])
very efficiently and no hard crafted image features are required any more. In this
work, the dimension of image patches for training CNN is 64 × 64 pixels which is

3https://code.google.com/p/cuda-convnet2.

https://code.google.com/p/cuda-convnet2
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Fig. 16.8 Axial CT slice of a manual (gold standard) segmentation of the pancreas. From Left to
Right, there are the ground-truth segmentation contours (in red); RF-based coarse segmentation
{SRF}; a 2.5D input image patch to CNN and the deep patch labeling result using CNN

significantly larger than 25 × 25 in Sect. 16.3.2. The larger spatial scale or context
is generally expected to achieve more accurate patch labeling quality. For efficiency
reasons, we extract patches every � voxels for CNN feedforward evaluation and then
apply nearest neighbor interpolation to estimate the values at skipped voxels. In our
empirical testing, simple nearest neighbor interpolation seems sufficient due to the
high quality of deep CNN probability predictions. Three examples of dense CNN
based image patch labeling are demonstrated in Fig. 16.10. We denote the CNN
model generated probability maps as PCNN .

The computational expense of deep CNN patch labeling per patch (in a sliding-
window manner) is still higher than Sect. 16.3.2. In practice, dense patch labeling by
PRF runs exhaustively at 3 pixel interval butPCNN are only evaluated at pixel locations
that pass the first stage of a cascaded random forest superpixel classification frame-
work. This process is detailed in Sect. 16.3.4 where C1

SP is operated at a high recall
(close to 100%) and low specificity mode to minimize the false negative rate (FNR)
as the initial layer of cascade. The other important reason for doing so is to largely
alleviate the training unbalance issue for PCNN in C3

SP. After this initial pruning, the
number ratio of non-pancreas versus pancreas superpixels changes from>100 to∼5.
The similar treatment is employed in our recent work [33] where all “Regional CNN”
(R-CNN) based algorithmic variations [34] for pancreas segmentation is performed
after a superpixel cascading.

16.3.4 Superpixel-Level Feature Extraction, Cascaded
Classification, and Pancreas Segmentation

In this section, we trained three different superpixel-level random forest classifiers of
CSP 1, CSP 2, and CSP 3. These three classifier components further formed two cas-
caded RF classification frameworks (F-1, F-2), as shown in Fig. 16.9. The superpixel
labels are inferred from the overlapping ratio r (defined in Sect. 16.3.1) between the
superpixel label map and the ground-truth pancreas mask. If r ≥ 0.5, the superpixel
is positive while if r ≤ 0.2, the superpixel is assigned as negative. For the rest of
superpixels that fall within 0.2 < r < 0.5 (a relatively very small portion/subset of
all superpixels), they are considered ambiguous and not assigned a label and as such
not used in training.
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Fig. 16.9 Theflowchart of input channels and component classifiers to form the overall frameworks
1 (F-1) and 2 (F-2). ICT indicates the original CT image channel; PRF represents the probability
response map by RF-based patch labeling in Sect. 16.3.2 and PCNN from deep CNN patch classi-
fication in Sect. 16.3.3, respectively. Superpixel level random forest classifier C1

SP is trained with
all positive and negative superpixels in ICT and PRF channels; C2

SP and C3
SP are learned using only

“hard negatives” and all positives, in the ICT
⋃

PRF or ICT
⋃

PCNN channels, respectively. Forming
C1
SP �→ C2

SP , or C
1
SP �→ C3

SP into two overall cascaded models results in frameworks F-1 and F-2

Training C1
SP utilizes both the original CT image slices (ICT in Fig. 16.9) and the

probability response maps (PRF) via the handcrafted feature based patch-level clas-
sification (i.e., Sect. 16.3.2). The 2D superpixel supporting maps (i.e., Sect. 16.3.1)
are used for feature pooling and extraction on a superpixel level. The CT pixel inten-
sity/attenuation numbers and the per-pixel pancreas class probability response values
(from dense patch labeling ofPPF orPCNN later) within each superpixel are treated as
two empirical unordered distributions. Thus our superpixel classification problem is
converted as modeling the difference between empirical distributions of positive and
negative classes. We compute (1) simple statistical features of the first–fourth order
statistics such as mean, std, skewness, kurtosis [35] and (2) histogram-type features
of eight percentiles (20, 30, . . . , 90%), per distribution in intensity or PRF channel,
respectively. Once concatenated, the resulted 24 features for each superpixel instance
is fed to train random forest classifiers.
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Due to the highly unbalanced quantities between foreground (pancreas) super-
pixels and background (the rest of CT volume) superpixels, a two-tiered cascade of
random forests is exploited to address this type of rare event detection problem [36].
In a cascaded classification, C1

SP once trained is applied exhaustively on scanning
all superpixels in an input CT volume. Based on the receiver operating characteris-
tic (ROC) curves for C1

SP, we can safely reject or prune 97% negative superpixels
while maintaining nearly ∼100% recall or sensitivity. The remained 3% negatives,
often referred as “hard negatives” [36], along with all positives are employed to train
the second C2

SP in the same feature space. Combining C1
SP and C2

SP is referred to as
Framework 1 (F-1) in the subsequent sections.

Similarly, we can train a random forest classifier C3
SP by replacing C2

SP’s feature
extraction dependency on the PRF probability response maps, with the deep CNN
patch classification maps of PCNN . The same 24 statistical moments and percentile
features per superpixel, from two information channels ICT and PCNN , are extracted
to train C3

SP. Note that the CNN model that produces PCNN is trained with the image
patches sampled from only “hard negative” and positive superpixels (aligned with
the second-tier RF classifiers C2

SP and C3
SP). For simplicity, PRF is only trained once

with all positive and negative image patches. This will be referred to as Framework
2 (F-2) in the subsequent sections. F-1 only use PRF whereas F-2 depends on both
PRF and PCNN (with a little extra computational cost).

The flow chart of frameworks 1 (F-1) and 2 (F-2) is illustrated in Fig. 16.9. The
two-level cascaded random forest classification hierarchy is found empirically to be
sufficient (although a deeper cascade is possible) and implemented to obtain F-1:C1

SP
andC2

SP, or F-2:C
1
SP andC

3
SP. The binary 3D pancreas volumetricmask is obtained by

stacking the binary superpixel labeling outcomes (after C2
SP in F-1 or C3

SP in F-2) for
each 2D axial slice, followed by 3D connected component analysis implemented in
the end. By assuming the overall pancreas connectivity of its 3D shape, the largest 3D
connected component is kept as the final segmentation. The binarization thresholds
of random forest classifiers in C2

SP and C3
SP are calibrated using data in the training

folds in sixfold cross validation, via a simple grid search. In [33], standalone Patch-
ConvNet dense probability maps (without any post-processing) are processed for
pancreas segmentation after using (F-1) as an initial cascade. The corresponding
pancreas segmentation performance is not as accuracy as (F-1) or (F-2).

16.4 Data and Experimental Results

16.4.1 Imaging Data

80 3D abdominal portal-venous contrast-enhanced CT scans (∼70s after intravenous
contrast injection) acquired from53male and 27 female subjects are used in our study
for evaluation. Seventeen of the subjects are from a kidney donor transplant list of
healthy patients that have abdominal CT scans prior to nephrectomy. The remaining



16 Automatic Pancreas Segmentation Using Coarse-to-Fine … 293

63 patients are randomly selected by a radiologist from the Picture Archiving and
Communications System (PACS) on the population that has neither major abdominal
pathologies nor pancreatic cancer lesions.TheCTdatasets are obtained fromNational
Institutes of Health Clinical Center. Subjects range in the age from 18 to 76 years
with a mean age of 46.8 ± 16.7. Scan resolution has 512× 512 pixels (varying pixel
sizes) with slice thickness ranging from 1.5 to 2.5mmon Philips and SiemensMDCT
scanners. The tube voltage is 120kVp. Manual ground-truth segmentation masks of
the pancreas for all 80 cases are provided by a medical student and verified/modified
by a radiologist.

16.4.2 Experiments

Experimental results are assessed using sixfold cross validation, as described in
Sects. 16.3.2 and 16.3.4. Several metrics to evaluate the accuracy and robustness of
the methods are computed. The Dice similarity index which interprets the overlap
between two sample sets, SI = 2(|A ∩ B|)/(|A| + |B|) where A and B refer to the
algorithm output and manual ground-truth 3D pancreas segmentation, respectively.
The Jaccard index (JI) is another statistic used to compute similarities between the
segmentation result against the reference standard, JI = (|A ∩ B|)/(|A ∪ B|), called
“intersection over union” in the PASCAL VOC challenges [37, 38]. The volumetric
recall (i.e. sensitivity) and precision values are also reported (Fig. 16.10).

Next, the pancreas segmentation performance evaluation is conducted in respect
to the total number of patient scans used for the training and testing phases. Using
our framework F1 on 40, 60 and 80 (i.e., 50, 75, and 100% of the total 80 datasets)
patient scans, the Dice, JI, Precision, and Recall are computed under sixfold cross
validation. Table16.1 shows the computed results using image patch-level features
and multi-level classification (i.e., performing C1

SP and C
2
SP on I

CT and PRF) and how
performance changes with the additions of more patients data. Steady improvements
of∼4% in the Dice coefficient and∼5% for the Jaccard index are observed, from 40
to 60, and 60–80. Figure16.11 illustrates some sample final pancreas segmentation
results from the 80 patient execution for two different patients. The results are divided
into three categories: good, fair, and poor. The good category refers to the computed
Dice coefficient above 90% (of 15 patients), fair result as 50% ≤ Dice ≥ 90% (49
patients) and poor for Dice <50% (16 patients).

Then, we evaluate the difference of the proposed F-1 versus F-2 on 80 patients,
using the same four metrics (i.e., Dice, JI, precision, and recall). Table16.1 shows
the comparison results. The same sixfold cross-validation criterion is employed so
that direct comparisons can be made. From the table, it can be seen that about 2%
increase in the Dice coefficient was obtained by using F-2, but the main improve-
ment can be noticed in the minimum values (i.e., the lower performance bound) for
each of the metrics. Usage of deep patch labeling prevents the case of no pancreas
segmentation while keeping slightly higher mean precision and recall values. The
standard deviations also dropped nearly 50% comparing F-1 to F-2 (from 25.6 to
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Fig. 16.10 Three examples of deep CNN-based image patch labeling probability response maps
per row.Red color shows stronger pancreas class response and blue presents weaker response. From
Left, Center to Right are the original CT image, CT image with annotated pancreas contour in red,
and CNN response map overlaid CT image

Table 16.1 Examination of varying number of patient datasets using framework 1, in four metrics
of Dice, JI, precision, and recall. Mean, standard deviation, lower and upper performance ranges are
reported. Comparison of the presented framework 1 (F-1) versus framework 2 (F-2) in 80 patients
is also presented

N SI (%) JI (%) Precision (%) Recall (%)

F-1 40 60.4 ± 22.3 46.7 ± 22.8 55.6 ± 29.8 80.8 ± 21.2

F-1 60 64.9 ± 22.6 51.7 ± 22.6 70.3 ± 29.0 69.1 ± 25.7

F-1 80 68.8 ± 25.6 57.2 ± 25.4 71.5 ± 30.0 72.5 ± 27.2

F-2 80 70.7 ± 13.0 57.9 ± 13.6 71.6 ± 10.5 74.4 ± 15.1

13.0% in Dice; and 25.4–13.6% in JI). Note that F-1 has the similar standard devia-
tion ranges with the previous methods [5, 7–10] and F-2 significantly improves upon
all of them. From Figs. 16.1 and 16.6 it can be inferred that using the relative x-axis
and y-axis positions as features aided in reducing the overall false negative rates.
Based on Table16.1, we observe that F-2 provides consistent performance improve-
ments over F-1, which implies that CNN based dense patch labeling shows more
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Fig. 16.11 Pancreas segmentation results with the computed Dice coefficients for one good (Top
Row) and two fair (Middle, Bottom Rows) segmentation examples. Sample original CT slices for
both patients are shown in (Left Column) and the corresponding ground-truth manual segmentation
in (Middle Column) are in yellow. Final computed segmentation regions are shown in red in (Right
Column) with Dice coefficients for the volume above each slice. The zoomed-in areas of the slice
segmentation in the orange boxes are shown to the right of the image

promising results (Sect. 16.3.3) than the conventional had-crafted image features
and random forest patch classification alone (Sect. 16.3.2). Figure16.12 depicts an
example patient where F-2 Dice score is improved by 18.6% over F-1 (from 63.9 to
82.5%). In this particular case, the close proximity of the stomach and duodenum to
the pancreas head in particular proves challenging for F-1 without the CNN counter-
part to distinguish. The surface-to-surface overlays illustrates how both frameworks
compare to the ground-truth manual segmentation.

F-1 performs comparably to the state-of-the-art pancreas segmentation methods
while F-2 slightly but consistently outperformothers, even under sixfold cross valida-
tion (CV) instead of the “leave-one-patient-out” (LOO) used in [5–10]. Note that our
results are not directly or strictly comparable with [5–10] since different datasets are
used for evaluation. If under the same sixfold cross validation, our bottom-up segmen-
tation method can significantly outperform an implemented version of “multi-atlas
and label fusion” (MALF) based on [11, 12], on the pancreas segmentation dataset
studied in this work. Details are provided later in this section. Table16.2 reflects the
comparison of Dice, JI, precision and recall results, between our methods of F-1, F-2
and other approaches, in multi-atlas registration and label fusion based multi-organ
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Fig. 16.12 Examples of pancreas segmentation results using F-1 and F-2 with the computed Dice
coefficients for one patient. Original CT slices for the patient are shown in Column a and the
corresponding ground-truth manual segmentation in Column b are in yellow. Final computed
segmentation using F-2 and F-1 are shown in red in Columns c, d with Dice coefficients for the
volume above first slice. The zoomed-in areas of the slice segmentation in the orange boxes are
shown to the right of the images. Their surface-to-surface distancemap overlaid on the ground-truth
mask is demonstrated in Columns c, d Bottom and the corresponding ground-truth segmentation
mask in Column b Bottom are in red. The red color illustrates higher difference and green for
smaller distance

Table 16.2 Comparison of F-1 and F-2 in sixfold cross validation to the recent state-of-the-art
methods [5–10] in LOO and our implementation of “multi-atlas and label fusion” (MALF) using
publicly available C++ code bases [11, 12] under the same sixfold cross validation. The proposed
bottom-up pancreas segmentation methods of F-1 and F-2 significantly outperform their MALF
counterpart: 68.8 ± 25.6% (F-1), 70.7 ± 13.0% (F-2) versus 52.51 ± 20.84% in Dice coefficients
(mean±std)

Reference N SI (%) JI (%) Precision (%) Recall (%)

[5] 20 – 57.9 – –

[6] 28 – 46.6 – –

[7] 150 69.6 ± 16.7 55.5 ± 17.1 67.9 ± 18.2 74.1 ± 17.1

[7] 50 58.2 ± 20.0 43.5 ± 17.8 – –

[9] 100 65.5 49.6 70.7 62.9

[10] 100 65.5 ± 18.6 – – –

[8] 100 69.1 ± 15.3 54.6 – –

Framework 1 80 68.8 ± 25.6 57.2 ± 25.4 71.5 ± 30.0 72.5 ± 27.2

Framework 2 80 70.7 ± 13.0 57.9 ± 13.6 71.6 ± 10.5 74.4 ± 15.1

MALF 80 52.5 ± 20.8 38.1 ± 18.3 – –

segmentation [6–10] and multi-phase single organ (i.e., pancreas) segmentation [5].
Previous numerical results are found from the publications [5–10]. We choose the
best result out of different parameter configurations in [8].
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We exploit two variations of pancreas segmentation in a perspective of bottom-
up information propagation from image patches to (segments) superpixels. Both
frameworks are carried out in a sixfold cross-validation (CV) manner. Our protocol
is arguably harder than the “leave-one-out” (LOO) criterion in [5, 7–10] since less
patient datasets are used in training and more separate patient scans for testing. In
fact, [7] does demonstrate a notable performance drop from using 149 patients in
trainingversus 49patients underLOO, i.e., themeanDice coefficients decreased from
69.6 ± 16.7% to 58.2 ± 20.0%. This indicates that the multi-atlas fusion approaches
[5–10] may actually achieve lower segmentation accuracies than reported, if under
the sixfold cross-validation protocol. At 40 patients, our result using framework 1 is
2.2% better than the reported results by [7] using 50 patients (Dice coefficients of
60.4% vs. 58.2%). Comparing to the usage of N − 1 patient datasets directly in the
memory formulti-atlas registrationmethods, our learnedmodels aremore compactly
encoded into a series of patch- and superpixel-level random forest classifiers and
the CNN classifier for patch labeling. The computational efficiency also has been
drastically improved in the order of 6–8min per testing case (using a mix of Matlab
and C implementation, ∼50% time for superpixel generation), compared to others
requiring 10 hours or more. The segmentation framework (F-2) using deep patch
labeling confidences is also more numerically stable, with no complete failure case
and noticeable lower standard deviations.

Comparison to R-CNN and its variations [33, 39]: The conventional approach for
classifying superpixels or image segments in computer vision is “bag-of-words”
[40, 41]. “Bag-of-words” methods compute dense SIFT, HOG, and LBP image
descriptors, embed these descriptors through various feature encoding schemes and
pool the features inside each superpixel for classification. Bothmodel complexity and
computational expense [40, 41] are very high, comparing with ours (Sect. 16.3.4).
Recently, a “Regional CNN” (R-CNN) [34, 42] method is proposed and shows sub-
stantial performance gains in PASCAL VOC object detection and semantic segmen-
tation benchmarks [37], compared to previous “Bag-of-words” models. A simple
R-CNN implementation on pancreas segmentation has been explored in our previ-
ous work [39] which reports evidently worse result (Dice coefficient 62.9 ± 16.1%)
than our F-2 framework (Dice 70.7 ± 13.0%) that spatially pools the CNN patch
classification confidences per superpixel. Note that R-CNN [34, 42] is not an “end-
to-end” trainable deep learning system: R-CNNfirst uses the pretrained or fine-tuned
CNNs as image feature extractors for superpixels and then the computed deep image
features are classified by support vector machine models.

Our recent work [33] is an extended version of pancreas segmentation from the
region-based convolutional neural networks (R-CNN) for semantic image segmenta-
tion [37, 42]. In [33], (1) we exploit multi-level deep convolutional networks which
sample a set of bounding boxes covering each image superpixel at multiple spa-
tial scales in a zoom-out fashion [43]; (2) the best performing model in [33] is a
stacked R2-ConvNet which operates in the joint space of CT intensities and the
Patch-ConvNet dense probability maps, similar to F-2. With the above two method
extensions, [33] reports the Dice coefficient of 71.8 ± 10.7% in fourfold cross val-
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idation (which is slightly better than 70.7 ± 13.0% of F-2 using the same dataset).
However, [33] cannot be directly trained and tested on the raw CT scans as in this
work, due to the data high-imbalance issue between pancreas and non-pancreas
superpixels. There are overwhelmingly more negative instances than positive ones
if training the CNN models directly on all image superpixels from abdominal CT
scans. Therefore, given an input abdomen CT, an initial set of superpixel regions
is first generated or filtered by a coarse cascading process of operating the random
forests based pancreas segmentation [44] (similar to F-1), at low or conservative clas-
sification thresholds. Over 96% original volumetric abdominal CT scan space has
been rejected for the next step. For pancreas segmentation, these pre-labeled super-
pixels serve as regional candidates with high sensitivity (>97%) but low precision
(generally called Candidate Generation or CG process). The resulting initial DSC is
27% on average. Then [33] evaluates several variations of CNNs for segmentation
refinement (or pruning). F-2 performs comparably to the extended R-CNN version
for pancreas segmentation [33] and is able to run without using F-1 to generate
pre-selected superpixel candidates (which nevertheless is required by [33, 39]). As
discussed above, we would argue that these hybrid approaches combining or inte-
grating deep and non-deep learning components (like this work and [33, 34, 39,
42, 45]) will co-exist with the other fully “end-to-end” trainable CNN systems [46,
47] that may produce comparable or even inferior segmentation accuracy levels. For
example, [45] is a two-staged method of deep CNN image labeling followed by
fully connected Conditional Random Field (CRF) post-optimization [48], achieving
71.6% intersection-over-union value versus 62.2% in [47], on PASCAL VOC 2012
test set for semantic segmentation task [37].

Comparison toMALF (under sixfoldCV): For the ease of comparison to the previ-
ously well studied “multi-atlas and label fusion” (MALF) approaches, we implement
a MALF solution for pancreas segmentation using the publicly available C++ code
bases [11, 12]. The performance evaluation criterion is the same sixfoldpatient splits
for cross validation, not the “leave-one-patient-out” (LOO) in [5–10]. Specifically,
each atlas in the training folds is registered to every target CT image in the testing
fold, by the fast free-form deformation algorithm developed in NiftyReg [11]. Cubic
B-Splines are used to deform a source image to optimize an objective function based
on the normalizedmutual information and a bending energy term. Grid spacing along
three axes are set as 5mm. The weight of the bending energy term is 0.005 and the
normalized mutual information with 64 bins are used. The optimization is performed
in three coarse-to-fine levels and the maximal number of iterations per level is 300.
More details can be found in [11]. The registrations are used to warp the pancreas in
the atlas set (66, or 67 atlases) to the target image. Nearest neighbor interpolation is
employed since the labels are binary images. For each voxel in the target image, each
atlas provided an opinion about the label. The probability of pancreas at any voxel x
in the targetU was determined by L̂(x) = ∑n

i=1 ωi(x)Li(x)where Li(x) is the warped
i-th pancreas atlas and ωi(x) is a weight assigned to the i-th atlas at location x with∑n

i=1 ωi(x) = 1; and n is the number of atlases. In our sixfold cross validation exper-
iments n = 66 or 67. We adopt the joint label fusion algorithm [12], which estimates
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voting weights ωi(x) by simultaneously considering the pairwise atlas correlations
and local image appearance similarities at x. More details about how to capture the
probability that different atlases produce the same label error at location x via a
formulation of dependency matrix can be found in [12]. The final binary pancreas
segmentation label or map L(x) in target can be computed by thresholding on L̂(x).
The resulted MALF segmentation accuracy in Dice coefficients are 52.51 ± 20.84%
in the range of [0, 80.56%]. This pancreas segmentation accuracy is noticeably lower
than the mean Dice scores of 58.2–69.6% reported in [5–10] under the protocol of
“leave-one-patient-out” (LOO) for MALF methods. This observation may indicate
the performance deterioration of MALF from LOO (equivalent to 80-fold CV) to
sixfold CVwhich is consistent with the finding that the segmentation accuracy drops
from 69.6 to 58.2% when only 49 atlases are available instead of 149 [7].

Furthermore, we take about 33.5 days to fully conduct the sixfold MALF cross-
validation experiments using a Windows server; whereas the proposed bottom-up
superpixel cascade approach finishes in ∼9h for 80 cases (6.7min per patient scan
on average). In summary, using the same dataset and under sixfold cross validation,
our bottom-up segmentation method significantly outperforms its MALF counter-
part: 70.7 ± 13.0% versus 52.51 ± 20.84% inDice coefficients, while being approx-
imately 90 times faster. Converting our Matlab/C++ implementation into pure C++
should expect further 2–3 times speed-up.

16.5 Conclusion and Discussion

In this chapter, we present a fully-automated bottom-up approach for pancreas seg-
mentation in abdominal computed tomography (CT) scans. The proposed method
is based on a hierarchical cascade of information propagation by classifying image
patches at different resolutions and multi-channel feature information pooling at
(segments) superpixels. Our algorithm flow is a sequential process of decomposing
CT slice images as a set of disjoint boundary-preserving superpixels; computing
pancreas class probability maps via dense patch labeling; classifying superpixels via
aggregating both intensity and probability information to form image features that
are fed into the cascaded random forests; and enforcing a simple spatial connectivity
based post-processing. The dense image patch labeling can be realized by efficient
random forest classifier on handcrafted image histogram, location and texture fea-
tures; or deep convolutional neural network classification on larger image windows
(i.e., with more spatial contexts).

The main component of our method is to classify superpixels into either pancreas
or non-pancreas class. Cascaded random forest classifiers are formulated for this
task and performed on the pooled superpixel statistical features from intensity values
and supervisedly learned class probabilities (PRF and/or PCNN ). The learned class
probability maps (e.g., PRF and PCNN ) are treated as the supervised semantic class
image embeddings which can be implemented, via an open framework by various
methods, to learn the per-pixel class probability response.
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To overcome the low image boundary contrast issue in superpixel generation,
which is however common in medical imaging, we suggest that efficient supervised
edge learning techniques may be utilized to artificially “enhance” the strength of
semantic object-level boundary curves in 2D or surface in 3D. For example, one of
the future directions is to couple or integrate the structured random forests based
edge detection [49] into a new image segmentation framework (MCG: Multiscale
Combinatorial Grouping) [50] which permits a user-customized image gradient map.
This new approach may be capable to generate image superpixels that can preserve
even very weak semantic object boundaries well (in the image gradient sense) and
subsequently prevent segmentation leakage.

Finally, voxel-level pancreas segmentation masks can be propagated from the
stacked superpixel-level classifications and further improved by an efficient boundary
refinement post-processing, such as the narrow-band level-set based curve/surface
evolution [26], or the learned intensity model based graph-cut [7]. Further exami-
nation into the sub-connectivity processes for the pancreas segmentation framework
that considers the spatial relationships of splenic, portal, and superior mesenteric
veins with pancreas may be needed for future work.
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Chapter 17
Interleaved Text/Image Deep Mining
on a Large-Scale Radiology Image Database

Hoo-Chang Shin, Le Lu, Lauren Kim, Ari Seff, Jianhua Yao
and Ronald Summers

Abstract Exploiting and effective learning on very large-scale (>100K patients)
medical image databases have been amajor challenge in spite of noteworthy progress
in computer vision. This chapter suggests an interleaved text/image deep learn-
ing system to extract and mine the semantic interactions of radiologic images and
reports, from a national research hospital’s Picture Archiving and Communication
System. This chapter introduces a method to perform unsupervised learning (e.g.,
latent Dirichlet allocation, feedforward/recurrent neural net language models) on
document- and sentence-level texts to generate semantic labels and supervised deep
ConvNets with categorization and cross-entropy loss functions to map from images
to label spaces. Keywords can be predicted for images in a retrieval manner, and pres-
ence/absence of some frequent types of disease can be predicted with probabilities.
The large-scale datasets of extracted key images and their categorization, embedded
vector labels, and sentence descriptions can be harnessed to alleviate deep learning’s
“data-hungry” challenge in the medical domain.

17.1 Introduction

ImageNet Large ScaleVisual Recognition Challenge (ILSVRC) [1, 2] providesmore
than one million labeled images from 1,000 object categories. The accessibility of
huge amount of well-annotated image data in computer vision rekindles deep con-
volutional neural networks (Convnets or CNNs) [3–5] as a premier learning tool, to
solve the visual object class recognition tasks. Deep CNNs can perform significantly
better than traditional shallow learning methods but much more training data are
required [2, 3]. In the medical domain, however, there are no similar very large-scale
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labeled image datasets available. On the other hand, gigantic collections of radio-
logic images and reports are stored in many modern hospitals’ Picture Archiving
and Communication Systems (PACS). The invaluable semantic diagnostic knowl-
edge inhabiting the mapping between hundreds of thousands of clinician-created
high-quality text reports and linked image volumes remains largely unexplored. One
of our primary goals is to extract and associate radiologic images with clinically
semantic scalar and vector labels, via interleaved text/image data mining and deep
learning on a very large-scale PACSdatabase (∼780K imaging examinations). Scalar
labels offer image categorization [2, 6] and vector labels embed a low-dimensional
vector distance space for high-level tasks of image to disease terms auto-reporting
[7, 8].

Building ImageNet database is mainly a manual process [1]: harvesting images
returned from Google image search engine (according to the WordNet ontology
hierarchy) and pruning falsely tagged images using crowd-sourcing, as Amazon
Mechanical Turk (AMT). This does not facilitate our data collection and labeling
needs due to the demanding difficulties of medical annotation tasks by general AMT
knowledge workers and data privacy reasons. Thus we propose to mine image cat-
egorization labels from hierarchical, Bayesian document-clustering, e.g., generative
latent Dirichlet allocation (LDA) topic model [9], using ∼780K high-quality radi-
ology text reports in PACS. These reports contain natural language understanding
grade semantics for the diagnostic descriptions or impressions for the linked images
(in the same case), but are not machine-trainable labels. The radiology reports are
text documents describing patient history, symptoms, image (understudied) obser-
vations and impression by board-certified radiologists, but do not contain machine
trainable labels. We find that LDA generated image categorization labels are indeed
valid, demonstrating good semantic coherence of clinician observers [10, 11], and
can be effectively learned using 8-layer and 19-layer deep ConvNets using image
inputs alone [3, 4]. The more recent deeper CNN model [4] also outperforms the
standard one [3] (validation image recognition accuracy of 0.67 vs. 0.59 in the first
level document-clustering labels of 80 classes, and 0.49 vs. 0.26 for the second level
of 800 classes). Our deep CNN models on medical image modalities (mostly CT,
MRI) are initialized with the model weights pre-trained from ImageNet [1] using
Caffe [12], analogous to the deep feature generality from color to depth [13] and
from natural to fMRI images [14].

Kulkarni et al. [8] have spearheaded the efforts of learning/generating the semantic
connections between image contents and the sentences describing them (i.e., cap-
tions). Detecting object(s)/stuff of interest, attributes and prepositions and applying
contextual regularization by conditional random field (CRF) is a feasible approach
[8] becausemany useful tools are available in computer vision. There has not yet been
much comparable development on large scale medical imaging understanding. Here
we take a whole image based representation rather than object-centric formulation
as [8]. From a large collection of radiology reports (see Fig. 17.1), we can extract the
sentences describing key images (as “key frames in videos”) using natural language
processing. The tagged disease-related terms in these sentences are mapped into
R

1×256 vectors using Google’s word2vec tool [15, 16], trained on a corpus of ∼1.2
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Fig. 17.1 Example of reports and key images

billion words from medical documents. Furthermore key images can be trained to
directly predict disease-related terms using deep CNNwith regression loss functions.
The projected vector space potentially permits neural code based retrieval [7, 17] and
auto-reporting [8].

While the keyword generation on medical images can provide a first-level inter-
pretation of a patient’s image, labeling based on categorization can be nonspecific.
We further suggest mining more specific disease words in the reports mentioning the
images to alleviate the issue of nonspecificity. Feedforward CNNs can be then used
to train and predict the presence/absence of the specific disease categories.

17.1.1 Related Work

ImageCLEF medical image annotation tasks (2005–2007) have 9,000 training and
1,000 testing 2D images (converted as 32 × 32 pixel thumbnails [18]) with 57 labels.
Local image descriptors and intensity histograms are used in a bag-of-features
approach for this scene recognition-like problem. The 2013 ImageCLEF image
modality classification challenge has 31 manually labeled categories (including non-
medical), 2,845 training and 2,582 testing images. Image only, caption text only,
and image-text joint inference are the three evaluation protocols. Note that Image-
CLEF tasks are pseudo-artificial, having very limited implications on real clinical
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diagnosis. Unsupervised Latent Dirichlet Allocation based matching from lung dis-
ease words (e.g., fibrosis, normal, emphysema) in radiology reports to 2D image
blocks from axial CT chest scans (of 24 patients) is studied in [19]. This work is
motivated by generative models of combining words and images [20, 21], under very
limited word/image vocabulary, and remains mostly unknown in the last decade.

In theworks [10, 22] thewordswere firstmapped into vector space using recurrent
neural networks, then images were projected into the label-associated word-vector
embeddings, via minimizing the L2 [22] or hinge rank losses [10] between the visual
and label manifolds. The language model is trained on Wikipedia and tested on
label-associated images from the CIFAR [22, 23] and ImageNet [1, 10] datasets. In
comparison, our work is on a large corpus of unlabeled medical dataset of associated
images and text, where the text-derived labels are computed and verified with human
interventions. Graphical models are employed to predict the image attributes [24,
25], or to describe the images [8] using manually annotated datasets [26, 27]. Auto-
matic label mining on large unlabeled datasets is presented in [28, 29], however the
variety of the label space is limited (image caption/annotations). We analyze/mine
the medical image semantics on both document and sentence levels. Deep CNNs are
adopted to learn from image contents [4, 28].

17.2 Data

To gain the most comprehensive understanding on diagnostic semantics, we use all
available radiology reports of ∼780k imaging examinations, stored in a national
research hospital’s PACS since year 2000. ∼216K key 2D image slices (instead of
∼780k 3D image volumes) are studied here. The reason is that out of 3D patient
scans, most imaging information represented are normal anatomies, i.e., not the
focuses to be described in radiology reports. These key images were referenced (See
Fig. 17.1) by radiologistsmanually during reportwriting, to provide a visual reference
to pathologies or other notable findings. Key 2D images are more correlated with the
diagnostic semantics in the reports than 3D scans. Not all patients have referenced
key images (215,786 from 61,845 unique patients). Table17.1 provides extracted
database statistics. Table17.2 shows examples of themost frequently occurringwords
in radiology reports. Leveraging on our deep learning models exploited in this paper,
will make it possible to automatically select key images from 3D patient scans, to
avoid mis-referencing.

Finding and extracting key images from radiology reports are done by natural lan-
guage processing (NLP), i.e., finding a sentence mentioning referenced image. For
example, “There may be mild fat stranding of the right parapharyngeal soft tissues
(series 1001, image 32)” is listed in Fig. 17.1. The NLP steps are sentence tokeniza-
tion, word matching/stemming, relation matching (does this number refer to image
or series), and rule-based information extraction (e.g., translating “image 1013-78”
to “images 1013-1078”). A total of ∼187k images can be retrieved and matched in
this manner, whereas the rest of ∼28k key images are extracted according to their
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Table 17.1 Statistics of the dataset. “Others” include CR (Computed Radiography), RF (Radio
Fluoroscopy), US (Ultrasound)

Total number of # words in documents # image modalities

# documents ∼780k mean 131.13 CT ∼169k

# images ∼216k std 95.72 MR ∼46k

# words ∼1 billion max 1502 PET 67

# vocabulary ∼29k min 2 Others 34

Table 17.2 Examples of the most frequently occurring words in the documents

Right 937k Images 312k Contrast 260k Unremarkable 195k

Left 870k Seen 299k Axial 253k Lower 195k

Impression 421k Mass 296k Lung 243k Upper 192k

Evidence 352k Normal 278k Bone 219k Lesion 180k

Findings 340k Small 275k Chest 208k Lobe 174k

CT 312k Noted 263k MRI 204k Pleural 172k

reference accession numbers in PACS. Our report extracted key image database is the
largest one ever reported and highly representative to the huge collection of radiology
diagnostic semantics over that last decade. Exploring effective deep learning models
on this database opens newways to parse and understand large-scale radiology image
informatics.

17.3 Document Topic Learning with Latent Dirichlet
Allocation

We propose to mine image categorization labels from unsupervised hierarchical,
Bayesian document-clustering, e.g., generative latent Dirichlet allocation (LDA)
topic model [9], using ∼780K high-quality radiology text reports in PACS. Unlike
images from ImageNet [1, 2] often with a dominate object appearing in the center,
our key images are CT/MRI slices showing several coexisting organs/pathologies.
There are high amounts of intrinsic ambiguity to define and assign a semantic label
set to images, even for experienced clinicians. Our hypothesis is that the large collec-
tion of sub-million radiology reports statistically defines the categories meaningful
to topic-mining (LDA) and visual learning (deep CNN).

LDA [9] is originally proposed to find latent topic models for a collection of text
documents (e.g., newspapers). There are some other popular methods for document
topicmodeling, such asProbabilisticLatent SemanticAnalysis (pLSA) [30] andNon-
negativeMatrix Factorization (NMF) [31].We choose LDA for extracting latent topic
labels among radiology report documents because LDA is shown to be more flexible
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yet learns more coherent topics over large sets of documents [32]. Furthermore,
pLSA can be regarded as a special case of LDA [33], and NMF as a semi-equivalent
model of pLSA [34, 35]. LDA or partially labeled LDA topic models are considered
as the most state-of-the-art techniques in [36].

LDA offers a hierarchy of extracted topics and the number of topics can be chosen
by evaluating each model’s perplexity score (Eq. 17.1), which is a common way to
measure how well a probabilistic model generalizes by evaluating the log-likelihood
of the model on a held-out test set. For an unseen document set Dtest, the perplexity
score is defined as in Eq.17.1, where M is the number of documents in the test set
(unseen hold-out set of documents), wd the words in the unseen document d, Nd the
number of words in document d, with Φ the topic matrix, and α the hyperparameter
for topic-distribution of documents.

perplexity(Dtest ) = exp

{
−

∑M
d=1 log p(wd |Φ,α)∑M

d=1 Nd

}
(17.1)

Lower perplexity score generally implies better fit of the model for a given document
set [9].

Based on the perplexity score evaluated on 80% of the total documents used
for training and 20% used for testing, the number of topics chosen is 80 for the
document-level using perplexity scores for model selection. Although the document
numbers in the topic space are approximately balanced, the distribution of image
counts for topics are unbalanced, especially topic 77# consuming nearly half of the
∼216K key images. Ten second-hierarchy topic models are obtained on each of
the first document-level topics, resulting 800 topics, where the number of second-
hierarchy topics is also chosen based on the average perplexity scores evaluated on
each document-level topics. To test the hypothesis of using the whole reports or only
sentence directly describing the key images for latent topic mining, sentence-level
LDA topics are obtained via only three sentences: the sentence mentioning the key
image (Fig. 17.1), and the previous and following sentences as its proximity context.
The perplexity scores keep decreasing with the increasing number of topics, and we
chose the topic number 1000, as the rate of the perplexity score decreasing is very
small beyond that point.

We observe that LDA generated image categorization labels are indeed valid,
demonstrating good semantic coherence of clinician observers [10, 11]. The lists of
key words and sampled images per topic label are subjective to two board-certified
radiologists’ review and validation. Examples of document-level topics with their
corresponding images and topic key words are given in Fig. 17.2. Based on radiol-
ogists’ review, our LDA topics discover semantics at different levels: 73 low-level
concepts (e.g., pathology examination of certain body regions and organs: topic
47# of Sinus diseases; 2# Lesions of in solid abdominal organs, primarily kidney;
10# CT of pulmonary diseases; 13# Brain MRI; 19# Renal diseases, mixed imag-
ing modalities; 36# Brain tumors), 7 mid- to high-level concepts (e.g., topic 77#
including non-primary metastasis spreading across a variety of body parts, topic 79#
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Fig. 17.2 Examples of document-level topics with their corresponding images and topic key words

addressing cases with high diagnosis uncertainty/equivocation, 72# Indeterminant
lesion, 74# Instrumentation artifacts limiting interpretation). Low-level topic images
are visually more coherent (i.e., may be easier to learn). High-level topics may show
analogy to [37, 38]. About half of key images are associated with topic 77#, implying
that the clinicians’ image referencing behavior patterns heavily focus on metastatic
patients. Even though LDA labels are computed with text information only, we next
investigate the learnability of mapping key images towards these topic labels (at all
semantic levels) via deep CNN models.

17.4 Image to Document Topic Mapping with Deep
Convolutional Neural Networks

For each level of topics discussed inSect. 17.3,we train deepConvNets tomap images
into document categories, under Caffe [12] framework. While the images of some
topic categories and some body parts are easily distinguishable (e.g. Fig. 17.2), the
visual differences in abdominal parts are rather subtle. Distinguishing subtleties and
high-level concept categories in the images could benefit from a more sophisticated
model so that the model can handle these subtleties and complexities.

We split ourwhole key image datasets as follows: 85%used as the training dataset,
5% as the cross-validation (CV) and 10% as the test dataset. If a topic has too few
images so that it cannot be divided into training/CV/test for deep CNN learning
(normally rare imaging protocols), then that topic is neglected for CNN training
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(e.g., topic 5# Abdominal ultrasound, 28#, 49# DEXA scans of different usages). In
total, 60 topics were used for the document-level image-topic mapping, 385 for the
second-hierarchy-document-level mapping, and 717 for the sentence-level mapping.
Surprisingly, we find that transfer learning from the ImageNet pre-trained CNN
parameters on natural images to our medical image modalities (mostly CT, MRI)
significantly helps the image classification performance. Thus our convolutional and
fully connected CNN layers are fine-tuned from the ImageNet model by default.
Similar findings of the deep feature generality across different image modalities
have been reported [13, 14] but are empirically verified with only much smaller
datasets than ours. Our key image dataset is∼1/5 size of ImageNet [2], as the largest
annotated medical image dataset to date.

Implementation and Results: All our CNN network settings are exactly same as
the ImageNet Challenge “AlexNet” [3] and “VGG-19” [4] systems. For image cate-
gorization, we change the numbers of output nodes in the last softmax classification
layer, i.e., 60, 385 and 717 for the document-level, document-level-h2, and sentence-
level respectively. The networks are fine-tuned from the pre-trained ImageNetmodels
so that our learning rates are smaller. For all the layers except the newly modified
ones, the learning rate is set 0.001 for weights and biases, momentum 0.9, weight
decay 0.0005 and a smaller batch size 50 (as opposed to 256 [4]). These adapted
layers are initialized from random and their learning rates are set higher: learning
rate: 0.01 for weight, 0.02 for bias, weight decay: 1 for weight, 0 for bias. All key
images are resampled to the spatial resolution of 256 × 256 pixels, mostly from the
original 512 × 512. Then we follow [4] to crop the input images from 256 × 256 to
227 × 227 for training.

We would expect different learning difficulties or classification accuracies among
LDA induced topics. Low-level classes can have key images of axial/sagittal/coronal
slices with position variations and across MRI/CT modalities. Some body parts and
topics, e.g., 63# Pelvic (female reproductive tract) imaging, are visually more chal-
lenging than others. Mid- to high-level concepts all demonstrate much larger visual
appearance within-class variations since they are diseases occurring at different
organs and only coherent at high level semantics. Table17.3 provides the validation
and top-1, top-5 testing in classification accuracy scores for each level of topic mod-
els using AlexNet [3] and VGG-19 [4] based deep CNN models. Out of three tasks,
document-level-h2 is the hardest while document-level being relatively the easiest.

Table 17.3 Validation and top-1, top-5 test scores in classification accuracy using AlexNet [3] and
VGG-19 [4] deep CNN models

AlexNet 8-layers VGG 19-layers

CV top-1 top-5 CV top-1 top-5

document-level 0.61 0.61 0.93 0.66 0.66 0.95

document-level-h2 0.35 0.33 0.56 0.67 0.66 0.84

sentence-level 0.48 0.48 0.56 0.51 0.50 0.58
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Our top-1 testing accuracies are closely comparablewith the validation ones, showing
good training/testing generality and no observable over-fitting. All top-5 accuracy
scores are significantly higher than top-1 values (increasing from 0.658 to 0.946
using VGG-19, or 0.607 to 0.929 via AlexNet in document-level), which indicates
the classification errors or fusions are not uniformly distributed among other false
classes. Latent “blocky subspace of classes” may exist (i.e., several topic classes
form a tightly correlated subgroup) in our discovered label space.

It is shown that the deeper 19-layer model (VGG-19) [4] performs consistently
better than the 8-layer model (AlexNet) [3] in classification accuracy, especially
for document-level-h2. Compared with ImageNet 2014 results, top-1 error rates are
moderately higher (34% vs. 30%) and top-5 test errors (6–8%) are comparable. In
summary, our quantitative results are very encouraging, given less image categoriza-
tion labels (60 vs. 1000) but much higher annotation uncertainties by unsupervised
LDA topic models. Multi-level semantic concepts show good image learnability by
deep CNN models which shed light on automatic parsing very large-scale radiology
image databases.

17.5 Generating Image-to-Text Description

The deep CNN image categorization on multi-level document topic labels in
Sect. 17.4 demonstrate promising results. The ontology of document-clustering dis-
covered categories needs to be further reviewed and refined through a “with clinician
in-the-loop” process. However, it is too expensive and time-consuming for radiol-
ogists to examine all of the 1880 (80 + 800 + 1000) topics generated with their
keywords and images. Moreover, generating image descriptions as in [8, 24, 25]
will result to be more easily understandable than the class label outputs of distinct
document topic levels. To more precisely understand the semantic contents from a
given key image, we propose to generate relevant keyword text descriptions [8] using
deep language/image learning models.

ImageNet database [1] and ImageNet challenge has been very successful in push-
ing the image classification to the next level. However, in the real world there are
so many labels, which are really difficult to be captured by manual labeling, label
asreadilysignment and training/classification using a softmax cost function.

Also, in trying tomine labels from clinical texts, so that we can get and train labels
for radiology images, there existsmany ambiguities in text-based labeling space, e.g.,
[mr, mri, t1–/t2-1 weighted], [cyst, cystic, cysts], [tumor, tumour, tumors, metastasis,
metastatic], etc.

1Imaging modalities of magnetic resonance imaging (MRI).
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Fig. 17.3 Example words embedded in the vector space using word-to-vector modeling (visualized
on 2D)

17.5.1 Removing Word-Level Ambiguity with Word-to-Vector
Modeling

In radiology reports, there exist many recurring word morphisms in the text identifi-
cation space, e.g., [mr, mri, t1–/t2-weighted2], [cyst, cystic, cysts], [tumor, tumour,
tumors, metastasis, metastatic], etc. We train a deep word-to-vector model [15, 16,
39] to address this word-level labeling space ambiguities. Total ∼1.2 billion words
from all available our radiology reports and the biomedical research articles obtained
from OpenI [40] are used. Therefore words with similar meaning are mapped or
projected to closer locations in the vector space than dissimilar ones (i.e., locality-
preserving mapping). Including texts from biomedical research articles resulted in a
better word-to-vector model than using the radiology report text alone (semantically
closer words were also closer in the vector space). Similar findings on unsupervised
feature learning models, that robust features can be learned from a slightly noisy and
diverse set of input, were reported by [41–43]. An example visualization of the word
vectors on the 2D space using PCA is shown in Fig. 17.3.

Skip-gram model [15, 16] is employed with the mapping vector dimension of
R

1×256 per word, trained using hierarchical softmax cost function, sliding-window
size of 10 and frequent words sub-sampled in 0.01% frequency. It is found that
combining an additional (more diverse) set of related documents, such as OpenI
biomedical research articles, is helpful for the model to learn a better vector repre-
sentation, withholding all the hyperparameters the same.

2Natural language expressions for imaging modalities of magnetic resonance imaging (MRI).
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Table 17.4 Statistics of the word-lengths per sentences

# words/sentence mean median std max min

Reports-wide 11.7 9 8.97 1014 1

Images references 23.22 19 16.99 221 4

Image references, no stopwords no digits 13.46 11 9.94 143 2

Image references, disease terms only 5.17 4 2.52 25 1

17.5.2 Using Sentences to Words Based Image
Representation

Even the sentence referring a key image (and sentences before and after that) contain a
variety of words, what we are mostly interested are the disease-related terms (which
are highly correlated to diagnostic semantics). To obtain only the disease-related
terms, we exploit the human disease terms and their synonyms from the Disease-
Ontology (DO) [44] where 8,707 unique disease-related terms are collected. While
the sentences referring an image and their surrounding sentences have 50.08 words
on average, the number of disease-related terms in the three consecutive sentences is
5.17 on average with a standard deviation of 2.5. Therefore we chose to harness bi-
gram languagemodels to describe the images, achieving a good trade-off between the
medium level complexity and not to miss out too many text-image pairs. A complete
statistics about the number of words in the documents are shown in Table17.4.

Each of the bi-gram disease terms are extracted so that we can train a deep CNN
(to be described in the next section) to predict the bi-gram terms as a vector-level
representation (R2×256) describing the image. If multiple bi-grams can be extracted
for a key image via its three content sentences, the image is trained as many times as
the number of bi-gramswith different target vectors {R2×256}. If a disease term cannot
form a bi-gram, then the term is ignored. This process is shown in Fig. 17.4. These
bi-gram words of DO disease-related terms in the vector representation (R256×2)
are analogous to detecting multiple objects of interest and describing their spatial
configurations in the image caption [8]. Deep regression CNN model is employed
here to map a continuous output space from an image where the resulted bi-gram
vector can be matched against a reference disease-related vocabulary, in the word-
to-vector form using cosine similarity.

17.5.3 Bi-gram Deep CNN Regression

It has been shown [45] that deep recurrent neural network (RNN3) can learn the
language representation for machine translation. To learn the image-to-text repre-
sentation, we map the images to the vectors of word sequences describing the image.

3While RNN [46, 47] is one of the popular choices for learning language models [48, 49], deep
convolutional neural network [3, 50] is more suitable for image classification.
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Fig. 17.4 An example of how word sequences are learned for an image. Bi-grams are selected
from the image’s referring sentences, containing disease-related terms of DO [44]. Each bi-gram is
converted to a vector ofZ ∈ R

256×2 to learn from an image. Image input vectors as {X ∈ R
256×256})

are learned through CNNviaminimizing the cross-entropy loss between the target vector and output
vector. The words “nodes” and “hepatis” in the second line are DO terms but ignored since they
cannot form a bi-gram

This can be formulated as a regression CNN, replacing the softmax cost in Sect. 17.4
with the cross-entropy cost function for the last output layer of VGG-19 CNNmodel
[4]:

E = −1

n

N∑
n=1

[g(z)n ĝ(z̄n) + (1 − g(zn)) log(1 − g(ẑn))], (17.2)

where zn or ẑn is any uni-element of the target word vectors Zn or optimized output
vectors Ẑn . Sigmoid function is g(x) = 1/(1 + ex ) and n is the number of samples
in the database. We adopt the CNN model of [4] since it works consistently better
than [3] in our image categorization task. Caffe [12] deep learning framework is
employed. The CNN network is fine-tuned from the previous model on predicting
the topic-level labels in Sect. 17.4, except for the last output layer. The newlymodified
output layer has 512 nodes for bi-grams as 256 × 2 (twice of the dimension R of
the word vectors). The cross-entropy cost decreases and converges during training
in about 10,000 iterations since only fine-tuning is needed.

17.5.4 Word Prediction from Images as Retrieval

For any key image in testing, first we predict its categorization topic labels of
each hierarchy level (document-level, document-level-h2, sentence-level) using three
deep CNN models [4] in Sect. 17.4. Each LDA cluster keeps top 50 keywords
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from document-clustering. All 50 keywords in each cluster of multi-level topics are
mapped into the word-to-vector space as multivariate variables R256 in Sect. 17.5.1.
Thus we obtain 3 sets of 50 R

256 reference word vectors per testing image. Second,
the image is mapped using the learned bi-gram CNN model in Sect. 17.5.3 to have
a R256×2 output vector. Third, in each set, we match each of the 50 R

256 reference
vectors against the first and second half of the R

256×2 output vector (i.e., treated
as two words in the word-to-word matching) where cosine similarity is used. The

Fig. 17.5 Illustrative examples of text generation results. Kidney appears in the third row image
but its report does not mention this
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closest keywords at three hierarchy levels (with the highest cosine similarity against
either of the bi-gram words) are kept per image. The average count of “hits” (i.e.,
the generated keywords exactly appeared in the referencing sentences of the image)
is 0.56. Text generation examples are shown in Fig. 17.5, with three keywords from
three categorization levels per image. We are not focusing on generating naturally
expressed sentences yet [8, 29] but predicting key words with diagnostic indications.
Our “hits” quantitative evaluation can be done precisely and no human based sub-
jective rating is needed. Generating caption-like natural language sentences will be
studied for future work.

17.6 Conclusion and Discussion

It has been inherently unclear how to extend the significant success in image classi-
fication using deep convolutional neural networks, from computer vision to medical
imaging. What are clinically relevant image labels to be defined, how to annotate
the huge amount of medical images required by deep learning models, and to which
extend and scale deep CNN is generalizable in medical image analysis are the open
questions.

In this chapter, we present an interleaved text/image deepmining system to extract
the semantic interactions of radiology reports and diagnostic key images at a very
large unprecedented scale in the medical domain. Images are classified into differ-
ent levels of topics according to their associated documents, and a neural language
model is learned to assign field-specific (disease) terms to predict what is in the
image. We demonstrate promising quantitative and qualitative results, suggesting a
way to extend the deep image classification systems to learning medical imaging
informatics from “big data” at a modern hospital scale. Although the image cate-
gorization labels extracted from unsupervised document topic models show strong
correlations with human understanding, further clinician review and verification will
be needed (especially for finer-level clusters/labels in the hierarchy).

Predicting words for key images by CNN regression shows good feasibility. More
sophisticatedNLP parsing on description sentences is needed [51]. Themost relevant
describing words are the appeared objects (anatomies and pathologies) [52] and their
attributes [24, 25]. The NLP-based anatomy/pathology assertion and negation using
describing sentences can generate reliable labels to predict. Then the weakly super-
vised object detection and segmentation using deep models [53–55] become critical
tasks to solve under this setting (i.e., no object bounding-box given). Understanding
high-level concepts from text and improving large-scale image-sentence embeddings
under weakly supervised annotations [56, 57] should also be developed.
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